Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Pulmonary embolism

Abstract

Pulmonary embolism (PE) is caused by emboli, which have originated from venous thrombi, travelling to and occluding the arteries of the lung. PE is the most dangerous form of venous thromboembolism, and undiagnosed or untreated PE can be fatal. Acute PE is associated with right ventricular dysfunction, which can lead to arrhythmia, haemodynamic collapse and shock. Furthermore, individuals who survive PE can develop post-PE syndrome, which is characterized by chronic thrombotic remains in the pulmonary arteries, persistent right ventricular dysfunction, decreased quality of life and/or chronic functional limitations. Several important improvements have been made in the diagnostic and therapeutic management of acute PE in recent years, such as the introduction of a simplified diagnostic algorithm for suspected PE as well as phase III trials demonstrating the value of direct oral anticoagulants in acute and extended treatment of venous thromboembolism. Future research should aim to address novel treatment options (for example, fibrinolysis enhancers) and improved methods for predicting long-term complications and defining optimal anticoagulant therapy parameters in individual patients, and to gain a greater understanding of post-PE syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of PE.
Figure 2: The sequence of RV failure in acute PE.
Figure 3: Validated diagnostic algorithms for suspected acute PE.
Figure 4: CTPA of a patient with acute and chronic signs of PE.
Figure 5: Radiological findings in a patient with CTEPH.
Figure 6: Pulmonary angiogram of a patient with inoperable CTEPH before and after BPA.

Similar content being viewed by others

References

  1. Wolberg, A. S. et al. Venous thrombosis. Nat. Rev. Dis. Primers 1, 15006 (2015).

    PubMed  Google Scholar 

  2. Naess, I. A. et al. Incidence and mortality of venous thrombosis: a population-based study. J. Thromb. Haemost. 5, 692–699 (2007).

    CAS  PubMed  Google Scholar 

  3. Klok, F. A. et al. Patient outcomes after acute pulmonary embolism. A pooled survival analysis of different adverse events. Am. J. Respir. Crit. Care Med. 181, 501–506 (2010).

    PubMed  Google Scholar 

  4. Klok, F. A. et al. The post-PE syndrome: a new concept for chronic complications of pulmonary embolism. Blood Rev. 28, 221–226 (2014). In this review, the term ‘post-PE syndrome’ is first introduced and its concept described.

    CAS  PubMed  Google Scholar 

  5. Klok, F. A. & Barco, S. Follow-up after acute pulmonary embolism. Hamostaseologie 38, 22–32 (2018).

    PubMed  Google Scholar 

  6. Konstantinides, S. V. et al. 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur. Heart J 35, 3033–3069; 3069a–3069k (2014).

    CAS  PubMed  Google Scholar 

  7. Pepke-Zaba, J. et al. Chronic thromboembolic pulmonary hypertension (CTEPH): results from an international prospective registry. Circulation 124, 1973–1981 (2011).

    PubMed  Google Scholar 

  8. Wendelboe, A. M. et al. Global public awareness of venous thromboembolism. J. Thromb. Haemost. 13, 1365–1371 (2015).

    CAS  PubMed  Google Scholar 

  9. Huang, W., Goldberg, R. J., Anderson, F. A., Kiefe, C. I. & Spencer, F. A. Secular trends in occurrence of acute venous thromboembolism: the Worcester VTE study (1985–2009). Am. J. Med. 127, 829–839.e5 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. Huisman, M. V. & Klok, F. A. How I diagnose acute pulmonary embolism. Blood 121, 4443–4448 (2013).

    CAS  PubMed  Google Scholar 

  11. Klok, F. A., Kooiman, J., Huisman, M. V., Konstantinides, S. & Lankeit, M. Predicting anticoagulant-related bleeding in patients with venous thromboembolism: a clinically oriented review. Eur. Respir. J. 45, 201–210 (2015).

    CAS  PubMed  Google Scholar 

  12. Hoeper, M. M. et al. Chronic thromboembolic pulmonary hypertension. Lancet Respir. Med. 2, 573–582 (2014).

    PubMed  Google Scholar 

  13. Ende-Verhaar, Y. M., Huisman, M. V. & Klok, F. A. To screen or not to screen for chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. Thromb. Res. 151, 1–7 (2017).

    CAS  PubMed  Google Scholar 

  14. Konstantinides, S. V., Barco, S., Lankeit, M. & Meyer, G. Management of pulmonary embolism: an update. J. Am. Coll. Cardiol. 67, 976–990 (2016).

    PubMed  Google Scholar 

  15. Delluc, A. et al. Current incidence of venous thromboembolism and comparison with 1998: a community-based study in Western France. Thromb. Haemost. 116, 967–974 (2016).

    PubMed  Google Scholar 

  16. Wiener, R. S., Schwartz, L. M. & Woloshin, S. When a test is too good: how CT pulmonary angiograms find pulmonary emboli that do not need to be found. BMJ 347, f3368 (2013).

    PubMed  PubMed Central  Google Scholar 

  17. Dentali, F. et al. Time trends and case fatality rate of in-hospital treated pulmonary embolism during 11 years of observation in Northwestern Italy. Thromb. Haemost. 115, 399–405 (2016).

    PubMed  Google Scholar 

  18. ISTH Steering Committee for World Thrombosis Day. Thrombosis: a major contributor to the global disease burden. J. Thromb. Haemost. 12, 1580–1590 (2014).

    Google Scholar 

  19. Alotaibi, G. S., Wu, C., Senthilselvan, A. & McMurtry, M. S. Secular trends in incidence and mortality of acute venous thromboembolism: the AB-VTE population-based study. Am. J. Med. 129, 879–825 (2016).

    PubMed  Google Scholar 

  20. Flinterman, L. E., van, H., V., Cannegieter, S. C. & Rosendaal, F. R. Long-term survival in a large cohort of patients with venous thrombosis: incidence and predictors. PLoS Med. 9, e1001155 (2012).

  21. Baglin, T. et al. Does the clinical presentation and extent of venous thrombosis predict likelihood and type of recurrence? A patient-level meta-analysis. J. Thromb. Haemost. 8, 2436–2442 (2010).

    CAS  PubMed  Google Scholar 

  22. Murin, S., Romano, P. S. & White, R. H. Comparison of outcomes after hospitalization for deep venous thrombosis or pulmonary embolism. Thromb. Haemost. 88, 407–414 (2002).

    CAS  PubMed  Google Scholar 

  23. Lecumberri, R. et al. Dynamics of case-fatalilty rates of recurrent thromboembolism and major bleeding in patients treated for venous thromboembolism. Thromb. Haemost. 110, 834–843 (2013).

    CAS  PubMed  Google Scholar 

  24. Mearns, E. S. et al. Index clinical manifestation of venous thromboembolism predicts early recurrence type and frequency: a meta-analysis of randomized controlled trials. J. Thromb. Haemost. 13, 1043–1052 (2015).

    CAS  PubMed  Google Scholar 

  25. Klok, F. A. et al. Quality of life in long-term survivors of acute pulmonary embolism. Chest 138, 1432–1440 (2010).

    PubMed  Google Scholar 

  26. Klok, F. A. et al. Risk of arterial cardiovascular events in patients after pulmonary embolism. Blood 114, 1484–1488 (2009).

    CAS  PubMed  Google Scholar 

  27. Klok, F. A., Mos, I. C., van Kralingen, K. W., Vahl, J. E. & Huisman, M. V. Chronic pulmonary embolism and pulmonary hypertension. Semin. Respir. Crit. Care Med. 33, 199–204 (2012).

    PubMed  Google Scholar 

  28. Sista, A. K., Miller, L. E., Kahn, S. R. & Kline, J. A. Persistent right ventricular dysfunction, functional capacity limitation, exercise intolerance, and quality of life impairment following pulmonary embolism: systematic review with meta-analysis. Vasc. Med. 22, 37–43 (2017).

    PubMed  Google Scholar 

  29. Sista, A. K. & Klok, F. A. Late outcomes of pulmonary embolism: the post-PE syndrome. Thromb. Res.https://doi.org/10.1016/j.thromres.2017.06.017 (2017).

    CAS  PubMed  Google Scholar 

  30. Stevinson, B. G., Hernandez-Nino, J., Rose, G. & Kline, J. A. Echocardiographic and functional cardiopulmonary problems 6 months after first-time pulmonary embolism in previously healthy patients. Eur. Heart J. 28, 2517–2524 (2007).

    PubMed  Google Scholar 

  31. Kline, J. A., Steuerwald, M. T., Marchick, M. R., Hernandez-Nino, J. & Rose, G. A. Prospective evaluation of right ventricular function and functional status 6 months after acute submassive pulmonary embolism: frequency of persistent or subsequent elevation in estimated pulmonary artery pressure. Chest 136, 1202–1210 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ende-Verhaar, Y. M. et al. Incidence of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism: a contemporary view of the published literature. Eur. Respir. J.https://doi.org/10.1183/13993003.01792-2016 (2017).

    Google Scholar 

  33. Pengo, V. et al. Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N. Engl. J. Med. 350, 2257–2264 (2004).

    CAS  PubMed  Google Scholar 

  34. Klok, F. A. et al. Prospective cardiopulmonary screening program to detect chronic thromboembolic pulmonary hypertension in patients after acute pulmonary embolism. Haematologica 95, 970–975 (2010).

    PubMed  PubMed Central  Google Scholar 

  35. Lijfering, W. M., Rosendaal, F. R. & Cannegieter, S. C. Risk factors for venous thrombosis - current understanding from an epidemiological point of view. Br. J. Haematol. 149, 824–833 (2010).

    PubMed  Google Scholar 

  36. Reitsma, P. H. Genetics in thrombophilia. An update. Hamostaseologie 35, 47–51 (2015). This is an authoritative review on the genetics of the hereditary factors leading to thrombophilia.

    PubMed  Google Scholar 

  37. Sakata, T., Okamoto, A., Mannami, T., Tomoike, H. & Miyata, T. Prevalence of protein S deficiency in the Japanese general population: the Suita Study. J. Thromb. Haemost. 2, 1012–1013 (2004).

    CAS  PubMed  Google Scholar 

  38. Rosendaal, F. R., Koster, T., Vandenbroucke, J. P. & Reitsma, P. H. High risk of thrombosis in patients homozygous for factor V Leiden (activated protein C resistance). Blood 85, 1504–1508 (1995).

    CAS  PubMed  Google Scholar 

  39. Jun, Z. J. et al. Prevalence of factor V Leiden and prothrombin G20210A mutations in Chinese patients with deep venous thrombosis and pulmonary embolism. Clin. Lab. Haematol. 28, 111–116 (2006).

    CAS  PubMed  Google Scholar 

  40. Rosendaal, F. R. et al. Geographic distribution of the 20210 G to A prothrombin variant. Thromb. Haemost. 79, 706–708 (1998).

    CAS  PubMed  Google Scholar 

  41. Bezemer, I. D., Doggen, C. J., Vos, H. L. & Rosendaal, F. R. No association between the common MTHFR 677C->T polymorphism and venous thrombosis: results from the MEGA study. Arch. Intern. Med. 167, 497–501 (2007).

    CAS  PubMed  Google Scholar 

  42. Timp, J. F., Braekkan, S. K., Versteeg, H. H. & Cannegieter, S. C. Epidemiology of cancer-associated venous thrombosis. Blood 122, 1712–1723 (2013).

    CAS  PubMed  Google Scholar 

  43. Grainge, M. J., West, J. & Card, T. R. Venous thromboembolism during active disease and remission in inflammatory bowel disease: a cohort study. Lancet 375, 657–663 (2010).

    PubMed  Google Scholar 

  44. Timp, J. F. et al. Antibiotic use as a marker of acute infection and risk of first and recurrent venous thrombosis. Br. J. Haematol. 176, 961–970 (2017).

    CAS  PubMed  Google Scholar 

  45. van, Z. B. et al. Increasing levels of free thyroxine as a risk factor for a first venous thrombosis: a case-control study. Blood 115, 4344–4349 (2010).

    Google Scholar 

  46. Wattanakit, K., Cushman, M., Stehman-Breen, C., Heckbert, S. R. & Folsom, A. R. Chronic kidney disease increases risk for venous thromboembolism. J. Am. Soc. Nephrol. 19, 135–140 (2008).

    PubMed  PubMed Central  Google Scholar 

  47. Sartwell, P. E., Masi, A. T., Arthes, F. G., Greene, G. R. & Smith, H. E. Thromboembolism and oral contraceptives: an epidemiologic case-control study. Am. J. Epidemiol. 90, 365–380 (1969).

    CAS  PubMed  Google Scholar 

  48. Grodstein, F. et al. Prospective study of exogenous hormones and risk of pulmonary embolism in women. Lancet 348, 983–987 (1996).

    CAS  PubMed  Google Scholar 

  49. Kierkegaard, A. Incidence and diagnosis of deep vein thrombosis associated with pregnancy. Acta Obstet. Gynecol. Scand. 62, 239–243 (1983).

    CAS  PubMed  Google Scholar 

  50. Kakkar, V. V., Howe, C. T., Nicolaides, A. N., Renney, J. T. & Clarke, M. B. Deep vein thrombosis of the leg. Is there a „high risk“ group? Am. J. Surg. 120, 527–530 (1970).

    CAS  PubMed  Google Scholar 

  51. Pomp, E. R., le, C. S., Rosendaal, F. R. & Doggen, C. J. Risk of venous thrombosis: obesity and its joint effect with oral contraceptive use and prothrombotic mutations. Br. J. Haematol. 139, 289–296 (2007).

    PubMed  Google Scholar 

  52. van Adrichem, R. A. et al. Below-knee cast immobilization and the risk of venous thrombosis: results from a large population-based case-control study. J. Thromb. Haemost. 12, 1461–1469 (2014).

    CAS  PubMed  Google Scholar 

  53. van Stralen, K. J., Rosendaal, F. R. & Doggen, C. J. Minor injuries as a risk factor for venous thrombosis. Arch. Intern. Med. 168, 21–26 (2008).

    PubMed  Google Scholar 

  54. Christiansen, S. C. et al. The relationship between body mass index, activated protein C resistance and risk of venous thrombosis. J. Thromb. Haemost. 10, 1761–1767 (2012).

    CAS  PubMed  Google Scholar 

  55. Parker, A. C., Mundada, L. V., Schmaier, A. H. & Fay, W. P. Factor VLeiden inhibits fibrinolysis in vivo. Circulation 110, 3594–3598 (2004).

    CAS  PubMed  Google Scholar 

  56. Bajzar, L., Kalafatis, M., Simioni, P. & Tracy, P. B. An antifibrinolytic mechanism describing the prothrombotic effect associated with factor VLeiden. J. Biol. Chem. 271, 22949–22952 (1996).

    CAS  PubMed  Google Scholar 

  57. Schneider, C., Bothner, U., Jick, S. S. & Meier, C. R. Chronic obstructive pulmonary disease and the risk of cardiovascular diseases. Eur. J. Epidemiol. 25, 253–260 (2010).

    PubMed  Google Scholar 

  58. Ribeiro, D. D. et al. Pneumonia and risk of venous thrombosis: results from the MEGA study. J. Thromb. Haemost. 10, 1179–1182 (2012).

    CAS  PubMed  Google Scholar 

  59. Austin, H. et al. Sickle cell trait and the risk of venous thromboembolism among blacks. Blood 110, 908–912 (2007).

    CAS  PubMed  Google Scholar 

  60. Klatsky, A. L., Armstrong, M. A. & Poggi, J. Risk of pulmonary embolism and/or deep venous thrombosis in Asian-Americans. Am. J. Cardiol. 85, 1334–1337 (2000).

    CAS  PubMed  Google Scholar 

  61. Enga, K. F. et al. Atrial fibrillation and future risk of venous thromboembolism:the Tromso study. J. Thromb. Haemost. 13, 10–16 (2015).

    CAS  PubMed  Google Scholar 

  62. Sorensen, H. T. et al. Heart disease may be a risk factor for pulmonary embolism without peripheral deep venous thrombosis. Circulation 124, 1435–1441 (2011).

    PubMed  Google Scholar 

  63. Klok, F. A. et al. Prevalence and potential determinants of exertional dyspnea after acute pulmonary embolism. Respir. Med. 104, 1744–1749 (2010).

    CAS  PubMed  Google Scholar 

  64. Kahn, S. R. et al. Quality of life, dyspnea, and functional exercise capacity following a first episode of pulmonary embolism: results of the ELOPE cohort study. Am. J. Med. 130, 990.e9–990.e21 (2017).

    Google Scholar 

  65. Kahn, S. R. et al. Functional and exercise limitations after a first episode of pulmonary embolism: results of the ELOPE prospective cohort study. Chest 151, 1058–1068 (2017).

    PubMed  Google Scholar 

  66. Klok, F. A., Tijmensen, J. E., Haeck, M. L., van Kralingen, K. W. & Huisman, M. V. Persistent dyspnea complaints at long-term follow-up after an episode of acute pulmonary embolism: results of a questionnaire. Eur. J. Intern. Med. 19, 625–629 (2008).

    CAS  PubMed  Google Scholar 

  67. Held, M. et al. Functional characterization of patients with chronic thromboembolic disease. Respiration 91, 503–509 (2016).

    CAS  PubMed  Google Scholar 

  68. Konstantinides, S. V. et al. Impact of thrombolytic therapy on the long-term outcome of intermediate-risk pulmonary embolism. J. Am. Coll. Cardiol. 69, 1536–1544 (2017).

    CAS  PubMed  Google Scholar 

  69. Haddad, F., Doyle, R., Murphy, D. J. & Hunt, S. A. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 117, 1717–1731 (2008).

    PubMed  Google Scholar 

  70. Goldhaber, S. Z., Visani, L. & De, R. M. Acute pulmonary embolism: clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER). Lancet 353, 1386–1389 (1999).

    CAS  PubMed  Google Scholar 

  71. van der Bijl, N. et al. Measurement of right and left ventricular function by ECG-synchronized CT scanning in patients with acute pulmonary embolism: usefulness for predicting short-term outcome. Chest 140, 1008–1015 (2011).

    PubMed  Google Scholar 

  72. Vonk, N. A., Westerhof, B. E. & Westerhof, N. The relationship between the right ventricle and its load in pulmonary hypertension. J. Am. Coll. Cardiol. 69, 236–243 (2017). This is an authoritative review on the pathophysiological changes that occur in the right ventricle of the heart in reaction to the increasing vascular load associated with pulmonary hypertension.

    Google Scholar 

  73. Tsang, J. Y. & Hogg, J. C. Gas exchange and pulmonary hypertension following acute pulmonary thromboembolism: has the emperor got some new clothes yet? Pulm. Circ. 4, 220–236 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Smulders, Y. M. Pathophysiology and treatment of haemodynamic instability in acute pulmonary embolism: the pivotal role of pulmonary vasoconstriction. Cardiovasc. Res. 48, 23–33 (2000).

    CAS  PubMed  Google Scholar 

  75. Klok, F. A. et al. Comparison of CT assessed right ventricular size and cardiac biomarkers for predicting short-term clinical outcome in normotensive patients suspected of having acute pulmonary embolism. J. Thromb. Haemost. 8, 853–856 2010).

    CAS  PubMed  Google Scholar 

  76. Klok, F. A., Mos, I. C. & Huisman, M. V. Brain-type natriuretic peptide levels in the prediction of adverse outcome in patients with pulmonary embolism: a systematic review and meta-analysis. Am. J. Respir. Crit. Care Med. 178, 425–430 (2008).

    PubMed  Google Scholar 

  77. de Man, F. S., Handoko, M. L., Guignabert, C., Bogaard, H. J. & Vonk-Noordegraaf, A. Neurohormonal axis in patients with pulmonary arterial hypertension: friend or foe? Am. J. Respir. Crit. Care Med. 187, 14–19 (2013).

    CAS  PubMed  Google Scholar 

  78. McIntyre, K. M. & Sasahara, A. A. The hemodynamic response to pulmonary embolism in patients without prior cardiopulmonary disease. Am. J. Cardiol. 28, 288–294 (1971).

    CAS  PubMed  Google Scholar 

  79. Iwadate, K. et al. Right ventricular damage due to pulmonary embolism: examination of the number of infiltrating macrophages. Forensic Sci. Int. 134, 147–153 (2003).

    PubMed  Google Scholar 

  80. Watts, J. A., Zagorski, J., Gellar, M. A., Stevinson, B. G. & Kline, J. A. Cardiac inflammation contributes to right ventricular dysfunction following experimental pulmonary embolism in rats. J. Mol. Cell Cardiol. 41, 296–307 (2006).

    CAS  PubMed  Google Scholar 

  81. Begieneman, M. P. et al. Pulmonary embolism causes endomyocarditis in the human heart. Heart 94, 450–456 (2008).

    CAS  PubMed  Google Scholar 

  82. Zagorski, J., Gellar, M. A., Obraztsova, M., Kline, J. A. & Watts, J. A. Inhibition of CINC-1 decreases right ventricular damage caused by experimental pulmonary embolism in rats. J. Immunol. 179, 7820–7826 (2007).

    CAS  PubMed  Google Scholar 

  83. Gan, C. et al. Impaired left ventricular filling due to right-to-left ventricular interaction in patients with pulmonary arterial hypertension. Am. J. Physiol. Heart Circ. Physiol. 290, H1528–H1533 (2006).

    CAS  PubMed  Google Scholar 

  84. Spruijt, O. A. et al. The effects of exercise on right ventricular contractility and right ventricular-arterial coupling in pulmonary hypertension. Am. J. Respir. Crit. Care Med. 191, 1050–1057 (2015).

    CAS  PubMed  Google Scholar 

  85. Simonneau, G., Torbicki, A., Dorfmuller, P. & Kim, N. The pathophysiology of chronic thromboembolic pulmonary hypertension. Eur. Respir. Rev.https://doi.org/10.1183/16000617.0112.2016 (2017).

  86. Morris, T. A. Why acute pulmonary embolism becomes chronic thromboembolic pulmonary hypertension: clinical and genetic insights. Curr. Opin. Pulm. Med. 19, 422–429 (2013).

    PubMed  Google Scholar 

  87. Lang, I. M., Dorfmuller, P. & Vonk, N. A. The pathobiology of chronic thromboembolic pulmonary hypertension. Ann. Am. Thorac. Soc. 13 (Suppl. 3), S215–S221 (2016).

    PubMed  Google Scholar 

  88. Bochenek, M. L. et al. From thrombosis to fibrosis in chronic thromboembolic pulmonary hypertension. Thromb. Haemost. 117, 769–783 (2017).

    PubMed  Google Scholar 

  89. Morris, T. A. et al. High prevalence of dysfibrinogenemia among patients with chronic thromboembolic pulmonary hypertension. Blood 114, 1929–1936 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Morris, T. A. et al. Fibrin derived from patients with chronic thromboembolic pulmonary hypertension is resistant to lysis. Am. J. Respir. Crit. Care Med. 173, 1270–1275 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Marsh, J. J., Chiles, P. G., Liang, N. C. & Morris, T. A. Chronic thromboembolic pulmonary hypertension-associated dysfibrinogenemias exhibit disorganized fibrin structure. Thromb. Res. 132, 729–734 (2013).

    CAS  PubMed  Google Scholar 

  92. Quarck, R., Wynants, M., Verbeken, E., Meyns, B. & Delcroix, M. Contribution of inflammation and impaired angiogenesis to the pathobiology of chronic thromboembolic pulmonary hypertension. Eur. Respir. J. 46, 431–443 (2015).

    CAS  PubMed  Google Scholar 

  93. Zabini, D. et al. Comprehensive analysis of inflammatory markers in chronic thromboembolic pulmonary hypertension patients. Eur. Respir. J. 44, 951–962 (2014).

    CAS  PubMed  Google Scholar 

  94. Dorfmuller, P. et al. Microvascular disease in chronic thromboembolic pulmonary hypertension: a role for pulmonary veins and systemic vasculature. Eur. Respir. J. 44, 1275–1288 (2014).

    PubMed  Google Scholar 

  95. Dronkers, C. E. A. et al. Towards a tailored diagnostic standard for future diagnostic studies in pulmonary embolism: communication from the SSC of the ISTH. J. Thromb. Haemost. 15, 1040–1043 (2017).

    CAS  PubMed  Google Scholar 

  96. Le, G. G. et al. Differential value of risk factors and clinical signs for diagnosing pulmonary embolism according to age. J. Thromb. Haemost. 3, 2457–2464 (2005).

    Google Scholar 

  97. Kline, J. A. et al. Prospective multicenter evaluation of the pulmonary embolism rule-out criteria. J. Thromb. Haemost. 6, 772–780 (2008).

    CAS  PubMed  Google Scholar 

  98. Penaloza, A. et al. Pulmonary embolism rule-out criteria (PERC) rule in European patients with low implicit clinical probability (PERCEPIC): a multicentre, prospective, observational study. Lancet. Haematol. 4, e615–e621 (2017).

    PubMed  Google Scholar 

  99. Freund, Y. et al. Effect of the pulmonary embolism rule-out criteria on subsequent thromboembolic events among low-risk emergency department patients: the PROPER randomized clinical trial. JAMA 319, 559–566 (2018).

    PubMed  PubMed Central  Google Scholar 

  100. van der Pol, L. M., van der Hulle, T., Mairuhu, A. T. A., Huisman, M. V. & Klok, F. A. Combination of pulmonary embolism rule-out criteria and YEARS algorithm in a European cohort of patients with suspected pulmonary embolism. Thromb. Haemost. 118, 547–552 (2018).

    CAS  PubMed  Google Scholar 

  101. Wells, P. S. et al. Derivation of a simple clinical model to categorize patients probability of pulmonary embolism: increasing the models utility with the SimpliRED D-dimer. Thromb. Haemost. 83, 416–420 (2000).

    CAS  PubMed  Google Scholar 

  102. Le, G. G. et al. Prediction of pulmonary embolism in the emergency department: the revised Geneva score. Ann. Intern. Med. 144, 165–171 (2006).

    Google Scholar 

  103. Douma, R. A. et al. Performance of 4 clinical decision rules in the diagnostic management of acute pulmonary embolism: a prospective cohort study. Ann. Intern. Med. 154, 709–718 (2011).

    PubMed  Google Scholar 

  104. Righini, M. et al. Age-adjusted D-dimer cutoff levels to rule out pulmonary embolism: the ADJUST-PE study. JAMA 311, 1117–1124 (2014).

    CAS  PubMed  Google Scholar 

  105. van der Hulle, T. et al. Simplified diagnostic management of suspected pulmonary embolism (the YEARS study): a prospective, multicentre, cohort study. Lancet 390, 289–297 (2017). This is a large-cohort follow-up study validating a novel, simple diagnostic algorithm for patients with suspected PE.

    PubMed  Google Scholar 

  106. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02483442 (2015).

  107. Righini, M., Robert-Ebadi, H. & Le, G. G. Diagnosis of acute pulmonary embolism. J. Thromb. Haemost. 15, 1251–1261 (2017).

    CAS  PubMed  Google Scholar 

  108. Dronkers, C. E., Klok, F. A. & Huisman, M. V. Current and future perspectives in imaging of venous thromboembolism. J. Thromb. Haemost. 14, 1696–1710 2016).

    CAS  PubMed  Google Scholar 

  109. Cohen, D. M., Winter, M., Lindenauer, P. K. & Walkey, A. J. Echocardiogram in the evaluation of hemodynamically stable acute pulmonary embolism: national practices and clinical outcomes. Ann. Am. Thorac. Soc.https://doi.org/10.1513/AnnalsATS.201707-577OC (2018).

    PubMed  PubMed Central  Google Scholar 

  110. Henzler, T. et al. Pulmonary embolism: CT signs and cardiac biomarkers for predicting right ventricular dysfunction. Eur. Respir. J. 39, 919–926 (2012).

    CAS  PubMed  Google Scholar 

  111. Galie, N. et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Respir. J. 46, 903–975 (2015).

    CAS  PubMed  Google Scholar 

  112. Tunariu, N. et al. Ventilation-perfusion scintigraphy is more sensitive than multidetector CTPA in detecting chronic thromboembolic pulmonary disease as a treatable cause of pulmonary hypertension. J. Nuclear Med. 48, 680–684 (2007).

    Google Scholar 

  113. Klok, F. A. et al. Derivation of a clinical prediction score for chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. J. Thromb. Haemost. 14, 121–128 (2016).

    CAS  PubMed  Google Scholar 

  114. Guerin, L. et al. Prevalence of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. Prevalence of CTEPH after pulmonary embolism. Thromb. Haemost. 112, 598–605 (2014).

    CAS  PubMed  Google Scholar 

  115. Leclerc, J. R., Gent, M., Hirsh, J., Geerts, W. H. & Ginsberg, J. S. The incidence of symptomatic venous thromboembolism during and after prophylaxis with enoxaparin: a multi-institutional cohort study of patients who underwent hip or knee arthroplasty. Canadian collaborative group. Arch. Intern. Med. 158, 873–878 (1998).

    CAS  PubMed  Google Scholar 

  116. Connors, J. M. Thrombophilia testing and venous thrombosis. N. Engl. J. Med. 377, 1177–1187 (2017).

    PubMed  Google Scholar 

  117. Guyatt, G. H. et al. Approach to outcome measurement in the prevention of thrombosis in surgical and medical patients. Chest 141, e185S–e194S (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kahn, S. R. et al. Prevention of VTE in nonsurgical patients. Chest 141, e195S–e226S (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Gould, M. K. et al. Prevention of VTE in nonorthopedic surgical patients. Chest 141, e227S–e277S (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02048865 (2014).

  121. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02555878 (2015).

  122. Falck-Ytter, Y. et al. Prevention of VTE in orthopedic surgery patients. Chest 141, e278S–e325S (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Heit, J. A. et al. Reasons for the persistent incidence of venous thromboembolism. Thromb. Haemost. 117, 390–400 (2017).

    PubMed  Google Scholar 

  124. Zondag, W. et al. Outpatient treatment in patients with acute pulmonary embolism: the Hestia Study. J. Thromb. Haemost. 9, 1500–1507 (2011).

    CAS  PubMed  Google Scholar 

  125. den Exter, P. L. et al. Efficacy and safety of outpatient treatment based on the hestia clinical decision rule with or without N-terminal pro-brain natriuretic peptide testing in patients with acute pulmonary embolism. A randomized clinical trial. Am. J. Respir. Crit. Care Med. 194, 998–1006 (2016). This is a randomized trial validating the HESTIA clinical decision rule for triaging patients for home treatment of acute PE.

    PubMed  Google Scholar 

  126. Carrier, M., Le, G. G., Wells, P. S. & Rodger, M. A. Systematic review: case-fatality rates of recurrent venous thromboembolism and major bleeding events among patients treated for venous thromboembolism. Ann. Intern. Med. 152, 578–589 (2010).

    PubMed  Google Scholar 

  127. Heidbuchel, H. et al. EHRA practical guide on the use of new oral anticoagulants in patients with non-valvular atrial fibrillation: executive summary. Eur. Heart J. 34, 2094–2106 (2013).

    CAS  PubMed  Google Scholar 

  128. Thoenes, M., Minguet, J., Bramlage, K., Bramlage, P. & Ferrero, C. Betrixaban - the next direct factor Xa inhibitor? Expert. Rev. Hematol. 9, 1111–1117 (2016).

    CAS  PubMed  Google Scholar 

  129. van der Hulle, T. et al. Effectiveness and safety of novel oral anticoagulants as compared with vitamin K antagonists in the treatment of acute symptomatic venous thromboembolism: a systematic review and meta-analysis. J. Thromb. Haemost. 12, 320–328 (2014).

    CAS  PubMed  Google Scholar 

  130. van, E. N., Coppens, M., Schulman, S., Middeldorp, S. & Buller, H. R. Direct oral anticoagulants compared with vitamin K antagonists for acute venous thromboembolism: evidence from phase 3 trials. Blood 124, 1968–1975 (2014). This meta-analysis evaluates DOACs in the treatment of acute VTE.

    Google Scholar 

  131. Kearon, C. et al. Antithrombotic therapy for VTE Disease: CHEST guideline and expert panel report. Chest 149, 315–352 (2016).

    PubMed  Google Scholar 

  132. van der Hulle, T., Huisman, M. V. & Klok, F. A. Meta-analysis of the efficacy and safety of new oral anticoagulants in patients with cancer-associated acute venous thromboembolism. J. Thromb. Haemost. 12, 1116–1120 (2014).

    CAS  PubMed  Google Scholar 

  133. Raskob, G. E. et al. Edoxaban for the treatment of cancer-associated venous thromboembolism. N. Engl. J. Med. 378, 615–624 (2018). This is a randomized trial evaluating a DOAC in the treatment of acute VTE in patients with a malignancy.

    CAS  PubMed  Google Scholar 

  134. Martin, K. et al. Use of the direct oral anticoagulants in obese patients: guidance from the SSC of the ISTH. J. Thromb. Haemost. 14, 1308–1313 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Klok, F. A. et al. Performance of five different bleeding-prediction scores in patients with acute pulmonary embolism. J. Thromb. Thrombolysis 41, 312–320 (2016).

    CAS  PubMed  Google Scholar 

  136. Klok, F. A. et al. Prediction of bleeding events in patients with venous thromboembolism on stable anticoagulation treatment. Eur. Respir. J. 48, 1369–1376 (2016).

    CAS  PubMed  Google Scholar 

  137. Klok, F. A., Barco, S. & Konstantinides, S. V. External validation of the VTE-BLEED score for predicting major bleeding in stable anticoagulated patients with venous thromboembolism. Thromb. Haemost. 117, 1164–1170 (2017).

    PubMed  Google Scholar 

  138. Klok, F. A., Barco, S. & Konstantinides, S. V. Evaluation of VTE-BLEED for predicting intracranial or fatal bleedings in stable anticoagulated patients with venous thromboembolism. Eur. Respir. J.https://doi.org/10.1183/13993003.00077-2018 (2018).

    Google Scholar 

  139. Prandoni, P. et al. The risk of recurrent venous thromboembolism after discontinuing anticoagulation in patients with acute proximal deep vein thrombosis or pulmonary embolism. A prospective cohort study in 1,626 patients. Haematologica 92, 199–205 (2007). This is the largest cohort follow-up study assessing the risk of recurrent VTE in patients with idiopathic VTE.

    PubMed  Google Scholar 

  140. Boutitie, F. et al. Influence of preceding length of anticoagulant treatment and initial presentation of venous thromboembolism on risk of recurrence after stopping treatment: analysis of individual participants’ data from seven trials. BMJ 342, d3036 (2011).

    PubMed  PubMed Central  Google Scholar 

  141. Eichinger, S., Heinze, G., Jandeck, L. M. & Kyrle, P. A. Risk assessment of recurrence in patients with unprovoked deep vein thrombosis or pulmonary embolism: the Vienna prediction model. Circulation 121, 1630–1636 (2010).

    PubMed  Google Scholar 

  142. Tosetto, A. et al. Predicting disease recurrence in patients with previous unprovoked venous thromboembolism: a proposed prediction score (DASH). J. Thromb. Haemost. 10, 1019–1025 (2012).

    CAS  PubMed  Google Scholar 

  143. Rodger, M. A. et al. Identifying unprovoked thromboembolism patients at low risk for recurrence who can discontinue anticoagulant therapy. CMAJ 179, 417–426 (2008).

    PubMed  PubMed Central  Google Scholar 

  144. Rodger, M. A. et al. Validating the HERDOO2 rule to guide treatment duration for women with unprovoked venous thrombosis: multinational prospective cohort management study. BMJ 356, j1065 (2017).

    PubMed  PubMed Central  Google Scholar 

  145. Agnelli, G. et al. Apixaban for extended treatment of venous thromboembolism. N. Engl. J. Med. 368, 699–708 (2013).

    CAS  PubMed  Google Scholar 

  146. Schulman, S. et al. Extended use of dabigatran, warfarin, or placebo in venous thromboembolism. N. Engl. J. Med. 368, 709–718 (2013).

    CAS  PubMed  Google Scholar 

  147. Bauersachs, R. et al. Oral rivaroxaban for symptomatic venous thromboembolism. N. Engl. J. Med. 363, 2499–2510 (2010).

    CAS  PubMed  Google Scholar 

  148. Weitz, J. I. et al. Rivaroxaban or aspirin for extended treatment of venous thromboembolism. N. Engl. J. Med. 376, 1211–1222 (2017).

    CAS  PubMed  Google Scholar 

  149. Jaff, M. R. et al. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: a scientific statement from the American Heart Association. Circulation 123, 1788–1830 (2011).

    PubMed  Google Scholar 

  150. Marti, C. et al. Systemic thrombolytic therapy for acute pulmonary embolism: a systematic review and meta-analysis. Eur. Heart J. 36, 605–614 (2015).

    CAS  PubMed  Google Scholar 

  151. Stein, P. D. & Matta, F. Thrombolytic therapy in unstable patients with acute pulmonary embolism: saves lives but underused. Am. J. Med. 125, 465–470 (2012).

    PubMed  Google Scholar 

  152. Bougouin, W. et al. Pulmonary embolism related sudden cardiac arrest admitted alive at hospital: management and outcomes. Resuscitation 115, 135–140 (2017).

    PubMed  Google Scholar 

  153. Becattini, C. et al. Acute pulmonary embolism: mortality prediction by the 2014 European Society of Cardiology risk stratification model. Eur. Respir. J. 48, 780–786 (2016).

    PubMed  Google Scholar 

  154. Riva, N. et al. Multiple overlapping systematic reviews facilitate the origin of disputes: the case of thrombolytic therapy for pulmonary embolism. J. Clin. Epidemiol. 97, 1–13 (2017).

    PubMed  Google Scholar 

  155. Meyer, G. et al. Fibrinolysis for patients with intermediate-risk pulmonary embolism. N. Engl. J. Med. 370, 1402–1411 (2014). This is a large randomized study evaluating thrombolysis in patients with intermediate–high-risk acute PE.

    CAS  PubMed  Google Scholar 

  156. Konstantinides, S., Geibel, A., Heusel, G., Heinrich, F. & Kasper, W. Heparin plus alteplase compared with heparin alone in patients with submassive pulmonary embolism. N. Engl. J. Med. 347, 1143–1150 (2002).

    CAS  PubMed  Google Scholar 

  157. Alias, S. et al. Defective angiogenesis delays thrombus resolution: a potential pathogenetic mechanism underlying chronic thromboembolic pulmonary hypertension. Arterioscler. Thromb. Vasc. Biol. 34, 810–819 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Goldhaber, S. Z. PEITHO long-term outcomes study: data disrupt dogma. J. Am. Coll. Cardiol. 69, 1545–1548 (2017).

    PubMed  Google Scholar 

  159. Sharifi, M., Bay, C., Skrocki, L., Rahimi, F. & Mehdipour, M. Moderate pulmonary embolism treated with thrombolysis (from the “MOPETT” Trial). Am. J. Cardiol. 111, 273–277 (2013).

    PubMed  Google Scholar 

  160. Engelberger, R. P. & Kucher, N. Ultrasound-assisted thrombolysis for acute pulmonary embolism: a systematic review. Eur. Heart J. 35, 758–764 (2014).

    PubMed  Google Scholar 

  161. Jaber, W. A. et al. Acute pulmonary embolism: with an emphasis on an interventional approach. J. Am. Coll. Cardiol. 67, 991–1002 (2016).

    PubMed  Google Scholar 

  162. Piazza, G. et al. A prospective, single-arm, multicenter trial of ultrasound-facilitated, catheter-directed, low-dose fibrinolysis for acute massive and submassive pulmonary embolism: The SEATTLE II Study. JACC Cardiovasc. Interv. 8, 1382–1392 (2015).

    PubMed  Google Scholar 

  163. Kucher, N. et al. Randomized, controlled trial of ultrasound-assisted catheter-directed thrombolysis for acute intermediate-risk pulmonary embolism. Circulation 129, 479–486 (2014).

    PubMed  Google Scholar 

  164. Zhou, Y. et al. Off-hour admission and mortality risk for 28 specific diseases: a systematic review and meta-analysis of 251 cohorts. J. Am. Heart Assoc. 5, e003102 (2016).

    PubMed  PubMed Central  Google Scholar 

  165. Nanchal, R. et al. Pulmonary embolism: the weekend effect. Chest 142, 690–696 (2012).

    PubMed  PubMed Central  Google Scholar 

  166. Kabrhel, C. et al. A multidisciplinary pulmonary embolism response team: initial 30-month experience with a novel approach to delivery of care to patients with submassive and massive pulmonary embolism. Chest 150, 384–393 (2016).

    PubMed  Google Scholar 

  167. Barnes, G. et al. Nuts and bolts of running a pulmonary embolism response team: results from an organizational survey of the National PERT Consortium members. Hosp. Pract. (1995) 45, 76–80 (2017).

    Google Scholar 

  168. Monteleone, P. P., Rosenfield, K. & Rosovsky, R. P. Multidisciplinary pulmonary embolism response teams and systems. Cardiovasc. Diagn. Ther. 6, 662–667 (2016).

    PubMed  PubMed Central  Google Scholar 

  169. Serhal, M. et al. Pulmonary embolism response teams. J. Thromb. Thrombolysis 44, 19–29 (2017).

    PubMed  Google Scholar 

  170. Jenkins, D., Madani, M., Fadel, E., D’Armini, A. M. & Mayer, E. Pulmonary endarterectomy in the management of chronic thromboembolic pulmonary hypertension. Eur. Respir. Rev.https://doi.org/10.1183/16000617.0111-2016 (2017).

    PubMed  Google Scholar 

  171. Taboada, D. et al. Outcome of pulmonary endarterectomy in symptomatic chronic thromboembolic disease. Eur. Respir. J. 44, 1635–1645 (2014).

    PubMed  Google Scholar 

  172. Lang, I. et al. Balloon pulmonary angioplasty in chronic thromboembolic pulmonary hypertension. Eur. Respir. Rev.https://doi.org/10.1183/16000617.0119-2016 (2017).

    PubMed  Google Scholar 

  173. Voorburg, J. A., Cats, V. M., Buis, B. & Bruschke, A. V. Balloon angioplasty in the treatment of pulmonary hypertension caused by pulmonary embolism. Chest 94, 1249–1253 (1988).

    CAS  PubMed  Google Scholar 

  174. Klok, F. A. et al. Quality of life after pulmonary embolism: validation of the PEmb-QoL questionnaire. J. Thromb. Haemost. 8, 523–532 (2010).

    CAS  PubMed  Google Scholar 

  175. van, E. J. et al. Quality of life after pulmonary embolism as assessed with SF-36 and PEmb-QoL. Thromb. Res. 132, 500–505 (2013).

    Google Scholar 

  176. Hogg, K. et al. Estimating quality of life in acute venous thrombosis. JAMA Intern. Med. 173, 1067–1072 (2013).

    PubMed  Google Scholar 

  177. Tavoly, M. et al. Health-related quality of life after pulmonary embolism: a cross-sectional study. BMJ Open 6, e013086 (2016).

    PubMed  PubMed Central  Google Scholar 

  178. den Exter, P. L., van der Hulle, T., Lankeit, M., Huisman, M. V. & Klok, F. A. Long-term clinical course of acute pulmonary embolism. Blood Rev. 27, 185–192 (2013).

    CAS  PubMed  Google Scholar 

  179. Lubberts, B., Paulino Pereira, N. R., Kabrhel, C., Kuter, D. J. & DiGiovanni, C. W. What is the effect of venous thromboembolism and related complications on patient reported health-related quality of life? A meta-analysis. Thromb. Haemost. 116, 417–431 (2016).

    PubMed  Google Scholar 

  180. Lukas, P. S. et al. Association of fatigue and psychological distress with quality of life in patients with a previous venous thromboembolic event. Thromb. Haemost. 102, 1219–1226 (2009).

    CAS  PubMed  Google Scholar 

  181. Lukas, P. S. et al. Depressive symptoms, perceived social support, and prothrombotic measures in patients with venous thromboembolism. Thromb. Res. 130, 374–380 (2012).

    CAS  PubMed  Google Scholar 

  182. Roman, A., Barbera, J. A., Castillo, M. J., Munoz, R. & Escribano, P. Health-related quality of life in a national cohort of patients with pulmonary arterial hypertension or chronic thromboembolic pulmonary hypertension. Arch. Bronconeumol. 49, 181–188 (2013).

    PubMed  Google Scholar 

  183. Urushibara, T. et al. Effects of surgical and medical treatment on quality of life for patients with chronic thromboembolic pulmonary hypertension. Circ. J. 79, 2696–2702 (2015).

    PubMed  Google Scholar 

  184. Mathai, S. C. et al. Quality of life in patients with chronic thromboembolic pulmonary hypertension. Eur. Respir. J. 48, 526–537 (2016).

    PubMed  PubMed Central  Google Scholar 

  185. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT00771303 (2008).

  186. Leiden University Medical Center. A simplified diagnostic algorithm for suspected pulmonary embolism. Nederlands Trial Registerhttp://www.trialregister.nl/trialreg/admin/rctview.asp?TC=4193 (2013).

  187. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT03196349 (2017).

  188. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT03285438(2017).

  189. Renne, T. et al. Factor XI deficiency in animal models. J. Thromb. Haemost. 7 (Suppl. 1), 79–83 (2009).

    CAS  PubMed  Google Scholar 

  190. Weitz, J. I. Factor XI and factor XII as targets for new anticoagulants. Thromb. Res. 141 (Suppl. 2), S40–S45 (2016).

    CAS  PubMed  Google Scholar 

  191. Buller, H. R. et al. Factor XI antisense oligonucleotide for prevention of venous thrombosis. N. Engl. J. Med. 372, 232–240 (2015). This is the first proof-of-principle randomized trial evaluating a factor XI inhibitor as a thromboprophylactic agent in patients undergoing elective knee surgery.

    PubMed  Google Scholar 

  192. Zhou, J. et al. A first-in-human study of DS-1040, an inhibitor of the activated form of thrombin-activatable fibrinolysis inhibitor, in healthy subjects. J. Thromb. Haemost. 15, 961–971 (2017).

    CAS  PubMed  Google Scholar 

  193. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02923115 (2016).

  194. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT03001544 (2016).

  195. Wyseure, T. et al. Innovative thrombolytic strategy using a heterodimer diabody against TAFI and PAI-1 in mouse models of thrombosis and stroke. Blood 125, 1325–1332 (2015).

    CAS  PubMed  Google Scholar 

  196. Peng, S. et al. A long-acting PAI-1 inhibitor reduces thrombus formation. Thromb. Haemost. 117, 1338–1347 (2017).

    PubMed  Google Scholar 

  197. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02555137 (2015).

  198. Klok, F. A. et al. A simple non-invasive diagnostic algorithm for ruling out chronic thromboembolic pulmonary hypertension in patients after acute pulmonary embolism. Thromb. Res. 128, 21–26 (2011).

    CAS  PubMed  Google Scholar 

  199. Klok, F. A. et al. External validation of a simple non-invasive algorithm to rule out chronic thromboembolic pulmonary hypertension after acute pulmonary embolism. Thromb. Res. 135, 796–801 (2015).

    CAS  PubMed  Google Scholar 

  200. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02684721 (2016).

  201. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT02634203 (2015).

  202. Lele, E. E. et al. Bronchoconstriction during alveolar hypocapnia and systemic hypercapnia in dogs with a cardiopulmonary bypass. Respir. Physiol. Neurobiol. 175, 140–145 (2011).

    PubMed  Google Scholar 

  203. U.R.E. G. W.I.C. H., V. et al. Bronchoconstriction in the presence of pulmonary embolism. Circulation 27, 339–345 (1963).

    Google Scholar 

  204. Calkovska, A., Mokra, D. & Calkovsky, V. Lung surfactant alterations in pulmonary thromboembolism. Eur. J. Med. Res. 14 (Suppl. 4), 38–41 (2009).

    PubMed  PubMed Central  Google Scholar 

  205. Konstantinides, S. et al. Patent foramen ovale is an important predictor of adverse outcome in patients with major pulmonary embolism. Circulation 97, 1946–1951 (1998).

    CAS  PubMed  Google Scholar 

  206. Schulman, S. et al. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N. Engl. J. Med. 361, 2342–2352 (2009).

    CAS  PubMed  Google Scholar 

  207. Schulman, S. et al. Treatment of acute venous thromboembolism with dabigatran or warfarin and pooled analysis. Circulation 129, 764–772 (2014).

    CAS  PubMed  Google Scholar 

  208. Buller, H. R. et al. Oral rivaroxaban for the treatment of symptomatic pulmonary embolism. N. Engl. J. Med. 366, 1287–1297 (2012).

    PubMed  Google Scholar 

  209. Agnelli, G. et al. Oral apixaban for the treatment of acute venous thromboembolism. N. Engl. J. Med. 369, 799–808 (2013).

    CAS  PubMed  Google Scholar 

  210. Buller, H. R. et al. Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. N. Engl. J. Med. 369, 1406–1415 (2013).

    PubMed  Google Scholar 

Download references

Acknowledgements

The work of M.V.H. is supported by The Netherlands Organisation for Health Research and Development (ZonMW 848050006 and 848050007). The work of S.V.K., F.A.K. and S.B. is supported by the German Federal Ministry of Education and Research (BMBF 01EO1003 and 01EO1503). The work of F.A.K. is also supported by the Dutch Heart Foundation (2017T064).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (M.V.H. and F.A.K.); Epidemiology (S.C.C. and P.H.R.); Mechanisms/pathophysiology (A.V.N.); Diagnosis, screening and prevention (F.A.K., G.L.G. and M.R.); Management (M.V.H., S.V.K. and S.F.); Quality of life (F.A.K.); Outlook (M.V.H.); Overview of Primer (M.V.H.).

Corresponding author

Correspondence to Menno V. Huisman.

Ethics declarations

Competing interests

M.V.H. has received research grants from Boehringer Ingelheim, Bayer HealthCare and PfizerBristol-Myers Squibb. He has received consultancy and lecture fees from PfizerBristol-Myers Squibb, Boehringer Ingelheim, Bayer HealthCare and Aspen. S.V.K. has received consultancy and lecture honoraria from Bayer HealthCare, Boehringer Ingelheim, Daiichi-Sankyo and PfizerBristol-Myers Squibb, payment for travel accommodation and meeting expenses from Bayer HealthCare and institutional grants from Boehringer Ingelheim, Bayer HealthCare and Daiichi-Sankyo. S.B. has received payment for travel accommodation and meeting expenses from Daiichi-Sankyo and Bayer HealthCare. F.A.K. has received research grants from Bayer HealthCare, Bristol-Myers Squibb, Boehringer Ingelheim, MSD and Actelion and non-financial research support from Daiichi-Sankyo. P.H.R. is a founder of VarmX BV, holds equity in this company and acts as chief scientific officer. P.H.R. is also an inventor on patents for factor V Leiden and prothrombin G20210A, and his department receives royalties related to these patents. G.L.G. holds an Early Researcher Award from the Province of Ontario, a Canadian Pacific Has Heart and Stroke Foundation Cardiovascular Award and the Chair in Diagnosis of Venous Thromboembolism, Department of Medicine, University of Ottawa Faculty of Medicine. M.R. holds a Chair in Venous Thrombosis and Thrombophilia, Department of Medicine, University of Ottawa Faculty of Medicine and a Heart and Stroke Foundation of Ontario Career Scientist Award. A.V.N. is supported by the Netherlands Organisation for Scientific Research (NOW) Vici grant and has received research grants from Actelion, Pfizer and United Therapeutics. All other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huisman, M., Barco, S., Cannegieter, S. et al. Pulmonary embolism. Nat Rev Dis Primers 4, 18028 (2018). https://doi.org/10.1038/nrdp.2018.28

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/nrdp.2018.28

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing