Characterising a healthy adult with a rare HAO1 knock strategy for primary hyperoxaluria

ELife 9, DOI: 10.7554/elife.54363

Citation Report

#	Article	IF	CITATIONS
1	The Evolution of Gene Therapy in the Treatment of Metabolic Liver Diseases. Genes, 2020, 11, 915.	1.0	3
2	Transcriptional adaptation: a mechanism underlying genetic robustness. Development (Cambridge), 2020, 147, .	1.2	44
3	Novel therapeutic approaches for the primary hyperoxalurias. Pediatric Nephrology, 2021, 36, 2593-2606.	0.9	14
4	Investigational Therapies for Primary Hyperoxaluria. Bioconjugate Chemistry, 2020, 31, 1696-1707.	1.8	16
5	Optimizing the Intracellular Delivery of Therapeutic Anti-inflammatory TNF-α siRNA to Activated Macrophages Using Lipidoid-Polymer Hybrid Nanoparticles. Frontiers in Bioengineering and Biotechnology, 2020, 8, 601155.	2.0	11
6	Development of siRNA Therapeutics for the Treatment of Liver Diseases. Methods in Molecular Biology, 2021, 2282, 57-75.	0.4	7
7	Genomics-driven drug discovery based on disease-susceptibility genes. Inflammation and Regeneration, 2021, 41, 8.	1.5	10
8	Delivery of oligonucleotideâ€based therapeutics: challenges and opportunities. EMBO Molecular Medicine, 2021, 13, e13243.	3.3	181
9	Lumasiran, an RNAi Therapeutic for Primary Hyperoxaluria Type 1. New England Journal of Medicine, 2021, 384, 1216-1226.	13.9	265
10	Phase 1/2 Study of Lumasiran for Treatment of Primary Hyperoxaluria Type 1. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 1025-1036.	2.2	48
11	Therapeutic RNA interference: A novel approach to the treatment of primary hyperoxaluria. British Journal of Clinical Pharmacology, 2022, 88, 2525-2538.	1.1	17
12	Metabolomics datasets in the Born in Bradford cohort. Wellcome Open Research, 0, 5, 264.	0.9	10
13	Small Molecule-Based Enzyme Inhibitors in the Treatment of Primary Hyperoxalurias. Journal of Personalized Medicine, 2021, 11, 74.	1.1	15
14	Metabolomics datasets in the Born in Bradford cohort. Wellcome Open Research, 0, 5, 264.	0.9	5
15	Lumasiran: expanding the treatment options for patients with primary hyperoxaluria type 1. Expert Opinion on Orphan Drugs, 2021, 9, 189-198.	0.5	8
16	Primary hyperoxaluria type 1: novel therapies at a glance. CKJ: Clinical Kidney Journal, 2022, 15, i17-i22.	1.4	10
17	Catabolism of Hydroxyproline in Vertebrates: Physiology, Evolution, Genetic Diseases and New siRNA Approach for Treatment. International Journal of Molecular Sciences, 2022, 23, 1005.	1.8	7
18	Phase 3 trial of lumasiran for primary hyperoxaluria type 1: A new RNAi therapeutic in infants and young children. Genetics in Medicine, 2022, 24, 654-662.	1.1	30

ATION RE

_		-	
C	TAT	REPC	NDT
	ITAL	NEPU	ואר

#	Article	IF	CITATIONS
19	Therapeutic RNA-silencing oligonucleotides in metabolic diseases. Nature Reviews Drug Discovery, 2022, 21, 417-439.	21.5	24
20	Randomized Clinical Trial on the Long-Term Efficacy and Safety of Lumasiran in Patients With Primary Hyperoxaluria Type 1. Kidney International Reports, 2022, 7, 494-506.	0.4	15
21	CMC and regulatory aspects of oligonucleotide therapeutics. , 2022, , 263-320.		0
22	Novel Starting Points for Human Glycolate Oxidase Inhibitors, Revealed by Crystallography-Based Fragment Screening. Frontiers in Chemistry, 2022, 10, .	1.8	1
23	Progress with RNA Interference for the Treatment of Primary Hyperoxaluria. BioDrugs, 2022, 36, 437-441.	2.2	2
24	Improving Treatment Options for Primary Hyperoxaluria. Drugs, 2022, 82, 1077-1094.	4.9	13
25	Lumasiran for Advanced Primary Hyperoxaluria Type 1: Phase 3 ILLUMINATE-C Trial. American Journal of Kidney Diseases, 2023, 81, 145-155.e1.	2.1	21
26	HAO1 negatively regulates liver macrophage activation via the NF-κB pathway in alcohol-associated liver disease. Cellular Signalling, 2022, 99, 110436.	1.7	2
27	Glycolate as a Biological Marker of B Vitamins. Biomarkers in Disease, 2022, , 1-16.	0.0	0
28	Glycolate as a Biological Marker of B Vitamins. Biomarkers in Disease, 2022, , 243-258.	0.0	0
29	Using human genetics to improve safety assessment of therapeutics. Nature Reviews Drug Discovery, 2023, 22, 145-162.	21.5	20
31	Identification of PCSK9-like human gene knockouts using metabolomics, proteomics, and whole-genome sequencing in a consanguineous population. Cell Genomics, 2023, 3, 100218.	3.0	4
32	Clinical practice recommendations for primary hyperoxaluria: anÂexpert consensus statement from ERKNet and OxalEurope. Nature Reviews Nephrology, 2023, 19, 194-211.	4.1	36
34	Bridging Health Disparities: a Genomics and Transcriptomics Analysis by Race in Prostate Cancer. Journal of Racial and Ethnic Health Disparities, 2024, 11, 492-504.	1.8	0
35	Plasma oxalate and glycolate concentrations in dialysis patients with and without primary hyperoxaluria type 1. Nephrology Dialysis Transplantation, 2023, 38, 1773-1775.	0.4	4
41	Metabolomic epidemiology offers insights into disease aetiology. Nature Metabolism, 2023, 5, 1656-1672.	5.1	3