A missense variant in Mitochondrial Amidoxime Reduc against liver disease

PLoS Genetics 16, e1008629

DOI: 10.1371/journal.pgen.1008629

Citation Report

#	Article	IF	Citations
1	Genetic variants that associate with cirrhosis have pleiotropic effects on human traits. Liver International, 2020, 40, 405-415.	1.9	38
2	NAFLD and cardiovascular diseases: a clinical review. Clinical Research in Cardiology, 2021, 110, 921-937.	1.5	285
3	Insights into genetic variants associated with NASH-fibrosis from metabolite profiling. Human Molecular Genetics, 2020, 29, 3451-3463.	1.4	27
4	MARC1 and HNRNPUL1: Two Novel Players in Alcohol-related Liver Disease. Gastroenterology, 2020, 159, 1231-1232.	0.6	1
5	Metabolic drivers of non-alcoholic fatty liver disease. Molecular Metabolism, 2021, 50, 101143.	3.0	99
6	Genome-Wide Association Study for Alcohol-Related Cirrhosis Identifies Risk Loci in MARC1 and HNRNPUL1. Gastroenterology, 2020, 159, 1276-1289.e7.	0.6	53
7	Genome-wide and Mendelian randomisation studies of liver MRI yield insights into the pathogenesis of steatohepatitis. Journal of Hepatology, 2020, 73, 241-251.	1.8	83
8	Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohortâ [†] t. Journal of Hepatology, 2020, 73, 505-515.	1.8	279
9	Association of Genetic Variation With Cirrhosis: A Multi-Trait Genome-Wide Association and Gene–Environment Interaction Study. Gastroenterology, 2021, 160, 1620-1633.e13.	0.6	68
10	rs641738C>T near MBOAT7 is associated with liver fat, ALT and fibrosis in NAFLD: A meta-analysis. Journal of Hepatology, 2021, 74, 20-30.	1.8	77
11	Genomeâ€wide Association Study and Metaâ€analysis on Alcoholâ€Associated Liver Cirrhosis Identifies Genetic Risk Factors. Hepatology, 2021, 73, 1920-1931.	3.6	54
14	Remodeling of Mitochondrial Plasticity: The Key Switch from NAFLD/NASH to HCC. International Journal of Molecular Sciences, 2021, 22, 4173.	1.8	23
16	Nonalcoholic Fatty Liver Disease (NAFLD). Mitochondria as Players and Targets of Therapies?. International Journal of Molecular Sciences, 2021, 22, 5375.	1.8	59
17	Mitochondria, oxidative stress and nonalcoholic fatty liver disease: A complex relationship. European Journal of Clinical Investigation, 2022, 52, e13622.	1.7	63
18	Genomeâ€wide association analysis of serum alanine and aspartate aminotransferase, and the modifying effects of BMI in 388kÂEuropean individuals. Genetic Epidemiology, 2021, 45, 664-681.	0.6	9
19	Genetic architecture of 11 organ traits derived from abdominal MRI using deep learning. ELife, 2021, 10 ,	2.8	102
20	Induced Pluripotent Stem Cell–derived Hepatocytes From Patients With Nonalcoholic Fatty Liver Disease Display a Disease-specific Gene Expression Profile. Gastroenterology, 2021, 160, 2591-2594.e6.	0.6	13
21	A Systematic Review of Animal Models of NAFLD Finds Highâ€Fat, Highâ€Fructose Diets Most Closely Resemble Human NAFLD. Hepatology, 2021, 74, 1884-1901.	3.6	80

#	ARTICLE	IF	Citations
22	Mortality in Patients With Genetic and Environmental Risk of Liver Disease. American Journal of Gastroenterology, 2021, 116, 1741-1745.	0.2	6
23	Association of Genetic Risk Score With NAFLD in An Ethnically Diverse Cohort. Hepatology Communications, 2021, 5, 1689-1703.	2.0	22
24	Genetic predisposition similarities between NASH and ASH: Identification of new therapeutic targets. JHEP Reports, 2021, 3, 100284.	2.6	28
25	Oxidative stress in obesity-associated hepatocellular carcinoma: sources, signaling and therapeutic challenges. Oncogene, 2021, 40, 5155-5167.	2.6	30
26	A genome-first approach to mortality and metabolic phenotypes in MTARC1 p.Ala165Thr (rs2642438) heterozygotes and homozygotes. Med, 2021, 2, 851-863.e3.	2.2	20
27	Insights into Nonalcoholic Fatty-Liver Disease Heterogeneity. Seminars in Liver Disease, 2021, 41, 421-434.	1.8	55
28	GWAS of serum ALT and AST reveals an association of SLC30A10 Thr95lle with hypermanganesemia symptoms. Nature Communications, 2021, 12, 4571.	5.8	26
29	Identification of 90 NAFLD GWAS loci and establishment of NAFLD PRS and causal role of NAFLD in coronary artery disease. Human Genetics and Genomics Advances, 2022, 3, 100056.	1.0	10
31	Genetics Is of the Essence to Face NAFLD. Biomedicines, 2021, 9, 1359.	1.4	30
32	Emerging Role of Genomic Analysis in Clinical Evaluation of Lean Individuals With NAFLD. Hepatology, 2021, 74, 2241-2250.	3.6	41
33	Genomeâ€Wide Association Study of NAFLD Using Electronic Health Records. Hepatology Communications, 2022, 6, 297-308.	2.0	33
34	Genetic risk scores and personalization of care in fatty liver disease. Current Opinion in Pharmacology, 2021, 61, 6-11.	1.7	13
39	Genetic predictors and pathophysiological features of non-alcoholic fat liver disease. Meditsinskiy Sovet, 2021, , 78-87.	0.1	1
40	Distinct contributions of metabolic dysfunction and genetic risk factors in the pathogenesis of non-alcoholic fatty liver disease. Journal of Hepatology, 2022, 76, 526-535.	1.8	80
41	A genetic risk score and diabetes predict development of alcohol-related cirrhosis in drinkers. Journal of Hepatology, 2022, 76, 275-282.	1.8	33
46	Electronic health record-based genome-wide meta-analysis provides insights on the genetic architecture of non-alcoholic fatty liver disease. Cell Reports Medicine, 2021, 2, 100437.	3.3	56
47	Genomic medicine for liver disease. Hepatology, 2022, 76, 860-868.	3.6	7
48	Oxidative Stress in Non-Alcoholic Fatty Liver Disease. Livers, 2022, 2, 30-76.	0.8	21

#	ARTICLE	IF	CITATIONS
49	Therapeutic RNA-silencing oligonucleotides in metabolic diseases. Nature Reviews Drug Discovery, 2022, 21, 417-439.	21.5	24
50	The role of microbiota in nonalcoholic fatty liver disease. European Journal of Clinical Investigation, 2022, 52, e13768.	1.7	22
51	Metabolic and genetic contributions to NAFLD: Really distinct and homogeneous?. Journal of Hepatology, 2022, 76, 498-500.	1.8	7
52	Human Genetics to Identify Therapeutic Targets for NAFLD: Challenges and Opportunities. Frontiers in Endocrinology, 2021, 12, 777075.	1.5	8
53	Machine learning enables new insights into genetic contributions to liver fat accumulation. Cell Genomics, 2021, 1, 100066.	3.0	34
54	MARC1 p.A165T variant is associated with decreased markers of liver injury and enhanced antioxidant capacity in autoimmune hepatitis. Scientific Reports, 2021, 11, 24407.	1.6	10
55	The rs429358 Locus in Apolipoprotein E Is Associated With Hepatocellular Carcinoma in Patients With Cirrhosis. Hepatology Communications, 2022, 6, 1213-1226.	2.0	9
56	Variants in mitochondrial amidoxime reducing component 1 and hydroxysteroid 17â€beta dehydrogenase 13 reduce severity of nonalcoholic fatty liver disease in children and suppress fibrotic pathways through distinct mechanisms. Hepatology Communications, 2022, 6, 1934-1948.	2.0	18
57	A minority of somatically mutated genes in preâ€existing fatty liver disease have prognostic importance in the development of <scp>NAFLD</scp> . Liver International, 2022, 42, 1823-1835.	1.9	3
58	Letter to the editor: The clinically relevant MTARC1 p.Ala165Thr variant impacts neither the fold nor active site architecture of the human mARC1 protein. Hepatology Communications, 2022, 6, 3277-3278.	2.0	10
59	A multiancestry genome-wide association study of unexplained chronic ALT elevation as a proxy for nonalcoholic fatty liver disease with histological and radiological validation. Nature Genetics, 2022, 54, 761-771.	9.4	68
60	Enzyme Electrode Biosensors for <i>N</i> -Hydroxylated Prodrugs Incorporating the Mitochondrial Amidoxime Reducing Component. Analytical Chemistry, 2022, 94, 9208-9215.	3.2	5
61	Germline Mutations in <i>CIDEB</i> and Protection against Liver Disease. New England Journal of Medicine, 2022, 387, 332-344.	13.9	42
62	Examination on the risk factors of cholangiocarcinoma: A Mendelian randomization study. Frontiers in Pharmacology, $0,13,.$	1.6	5
63	NAFLD: genetics and its clinical implications. Clinics and Research in Hepatology and Gastroenterology, 2022, 46, 102003.	0.7	14
64	Update on genetics and epigenetics in metabolic associated fatty liver disease. Therapeutic Advances in Endocrinology and Metabolism, 2022, 13, 204201882211321.	1.4	7
65	Association of MARC1, ADCY5, and BCO1 Variants with the Lipid Profile, Suggests an Additive Effect for Hypertriglyceridemia in Mexican Adult Men. International Journal of Molecular Sciences, 2022, 23, 11815.	1.8	2
66	Multiomics study of nonalcoholic fatty liver disease. Nature Genetics, 2022, 54, 1652-1663.	9.4	53

#	ARTICLE	IF	CITATIONS
67	Plasma phospholipid arachidonic acid in relation to non-alcoholic fatty liver disease: Mendelian randomization study. Nutrition, 2023, 106, 111910.	1.1	5
68	MTARC1 and HSD17B13 Variants Have Protective Effects on Non-Alcoholic Fatty Liver Disease in Patients Undergoing Bariatric Surgery. International Journal of Molecular Sciences, 2022, 23, 15825.	1.8	6
69	Exome-wide association analysis of CT imaging-derived hepatic fat in a medical biobank. Cell Reports Medicine, 2022, 3, 100855.	3.3	3
70	The association between sarcopenia and cirrhosis: a Mendelian randomization analysis. Hepatobiliary Surgery and Nutrition, 2023, 12, 291-293.	0.7	1
71	Genetic Markers Predisposing to Nonalcoholic Steatohepatitis. Clinics in Liver Disease, 2023, 27, 333-352.	1.0	1
72	Hepatocyte mARC1 promotes fatty liver disease. JHEP Reports, 2023, 5, 100693.	2.6	9
73	Clonal haematopoiesis and risk of chronic liver disease. Nature, 2023, 616, 747-754.	13.7	40
74	Association of Rare Protein-Truncating DNA Variants in <i>APOB</i> or <i>PCSK9</i> With Low-density Lipoprotein Cholesterol Level and Risk of Coronary Heart Disease. JAMA Cardiology, 2023, 8, 258.	3.0	10
75	Physical Activity Intensity, Genetic Predisposition, and Risk of Nonalcoholic Fatty Liver Disease: A Prospective Cohort Study. Clinical Gastroenterology and Hepatology, 2023, 21, 3444-3447.e2.	2.4	0
76	Pathogenesis of Hypertension in Metabolic Syndrome: The Role of Fructose and Salt. International Journal of Molecular Sciences, 2023, 24, 4294.	1.8	7
77	Integrative network-based analysis on multiple Gene Expression Omnibus datasets identifies novel immune molecular markers implicated in non-alcoholic steatohepatitis. Frontiers in Endocrinology, 0, 14, .	1.5	6
78	Glutathione: Pharmacological aspects and implications for clinical use in non-alcoholic fatty liver disease. Frontiers in Medicine, 0, 10, .	1.2	4
79	Membrane phospholipid remodeling modulates nonalcoholic steatohepatitis progression by regulating mitochondrial homeostasis. Hepatology, 0, Publish Ahead of Print, .	3.6	5
80	Integration of deep learning-based histopathology and transcriptomics reveals key genes associated with fibrogenesis in patients with advanced NASH. Cell Reports Medicine, 2023, 4, 101016.	3.3	2
82	Antifibrotic therapy in nonalcoholic steatohepatitis: time for a human-centric approach. Nature Reviews Gastroenterology and Hepatology, 2023, 20, 679-688.	8.2	17