Genetic and Functional Analyses Point to FAN1 as the So Disease Modifier Effects

American Journal of Human Genetics 107, 96-110 DOI: 10.1016/j.ajhg.2020.05.012

Citation Report

#	Article	IF	CITATIONS
1	Interrupting sequence variants and age of onset in Huntington's disease: clinical implications and emerging therapies. Lancet Neurology, The, 2020, 19, 930-939.	10.2	43
2	Structure-forming repeats and their impact on genome stability. Current Opinion in Genetics and Development, 2021, 67, 41-51.	3.3	34
3	Huntington's Disease Pathogenesis: Two Sequential Components. Journal of Huntington's Disease, 2021, 10, 35-51.	1.9	49
4	DNA Mismatch Repair and its Role in Huntington's Disease. Journal of Huntington's Disease, 2021, 10, 75-94.	1.9	47
5	FAN1, a DNA Repair Nuclease, as a Modifier of Repeat Expansion Disorders. Journal of Huntington's Disease, 2021, 10, 95-122.	1.9	34
6	Modifiers of Somatic Repeat Instability in Mouse Models of Friedreich Ataxia and the Fragile X-Related Disorders: Implications for the Mechanism of Somatic Expansion in Huntington's Disease. Journal of Huntington's Disease, 2021, 10, 149-163.	1.9	15
7	Modifiers of CAG/CTG Repeat Instability: Insights from Mammalian Models. Journal of Huntington's Disease, 2021, 10, 123-148.	1.9	46
8	What is the Pathogenic CAG Expansion Length in Huntington's Disease?. Journal of Huntington's Disease, 2021, 10, 175-202.	1.9	31
11	Propensity for somatic expansion increases over the course of life in Huntington disease. ELife, 2021, 10, .	6.0	42
12	Association Analysis of Chromosome X to Identify Genetic Modifiers of Huntington's Disease. Journal of Huntington's Disease, 2021, 10, 367-375.	1.9	5
13	Huntington's disease: nearly four decades of human molecular genetics. Human Molecular Genetics, 2021, 30, R254-R263.	2.9	15
14	FAN1-MLH1 interaction affects repair of DNA interstrand cross-links and slipped-CAG/CTG repeats. Science Advances, 2021, 7, .	10.3	17
15	FAN1 controls mismatch repair complex assembly via MLH1 retention to stabilize CAG repeat expansion in Huntington's disease. Cell Reports, 2021, 36, 109649.	6.4	32
16	Epigenetic regulation in Huntington's disease. Neurochemistry International, 2021, 148, 105074.	3.8	14
17	Polyglutamine diseases. Current Opinion in Neurobiology, 2022, 72, 39-47.	4.2	40
18	New developments in Huntington's disease and other triplet repeat diseases: DNA repair turns to the dark side. Neuronal Signaling, 2020, 4, NS20200010.	3.2	13
19	FAN1's protection against CGG repeat expansion requires its nuclease activity and is FANCD2-independent. Nucleic Acids Research, 2021, 49, 11643-11652.	14.5	9
21	Using insights from genomics to increase possibilities for treatment of genetic diseases. , 2022, , 309-358.		1

CITATION REPORT

#	ARTICLE	IF	CITATIONS
23	FAN1 exo- not endo-nuclease pausing on disease-associated slipped-DNA repeats: A mechanism of repeat instability. Cell Reports, 2021, 37, 110078.	6.4	19
24	Clinical and genetic characteristics of lateâ€onset Huntington's disease in a large European cohort. European Journal of Neurology, 2022, 29, 1940-1951.	3.3	3
25	Genetic modifiers of Huntington disease differentially influence motor and cognitive domains. American Journal of Human Genetics, 2022, 109, 885-899.	6.2	29
26	Exome sequencing of individuals with Huntington's disease implicates FAN1 nuclease activity in slowing CAG expansion and disease onset. Nature Neuroscience, 2022, 25, 446-457.	14.8	31
27	Stool is a sensitive and noninvasive source of DNA for monitoring expansion in repeat expansion disease mouse models. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	1
28	Both cis and trans-acting genetic factors drive somatic instability in female carriers of the FMR1 premutation. Scientific Reports, 2022, 12, .	3.3	11
29	Huntington's disease iPSC models—using human patient cells to understand the pathology caused by expanded CAG repeats. Faculty Reviews, 0, 11, .	3.9	5
30	Beyond the CAG triplet number: exploring potential predictors of delayed age of onset in Huntington's disease. Journal of Neurology, 0, , .	3.6	1
31	Replication dependent and independent mechanisms of GAA repeat instability. DNA Repair, 2022, 118, 103385.	2.8	4
32	Allele-specific silencing of the gain-of-function mutation in Huntington's disease using CRISPR/Cas9. JCI Insight, 2022, 7, .	5.0	9
33	Suppression of trinucleotide repeat expansion in spermatogenic cells in Huntington's disease. Journal of Assisted Reproduction and Genetics, 0, , .	2.5	1
34	"Mendelian Code―in the Genetic Structure of Common Multifactorial Diseases. Russian Journal of Genetics, 2022, 58, 1159-1168.	0.6	2
35	Loss of CAA interruption and intergenerational CAG instability in Chinese patients with Huntington's disease. Journal of Molecular Medicine, 0, , .	3.9	1
37	FAN1 removes triplet repeat extrusions via a PCNA- and RFC-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	2
38	Genetic modifiers of repeat expansion disorders. Emerging Topics in Life Sciences, 2023, 7, 325-337.	2.6	1
41	Modification of Huntington's disease by short tandem repeats. Brain Communications, 2024, 6, .	3.3	0
42	Cell-type-specific CAG repeat expansions and toxicity of mutant Huntingtin in human striatum and cerebellum. Nature Genetics, 2024, 56, 383-394.	21.4	3
43	The instability of the Huntington's disease CAG repeat mutation. , 2024, , 85-115.		0

#	Article	IF	Citations
44	Huntington's disease genetics: Implications for pathogenesis. , 2024, , 57-84.		0
45	Somatic CAG Repeat Stability in a Transgenic Sheep Model of Huntington's Disease. Journal of Huntington's Disease, 2024, 13, 33-40.	1.9	0

CITATION REPORT