Heart rate variability with photoplethysmography in 8 cross-sectional study

The Lancet Digital Health 2, e650-e657 DOI: 10.1016/s2589-7500(20)30246-6

Citation Report

#	Article	IF	CITATIONS
1	Changes in Short-Term and Ultra-Short Term Heart Rate, Respiratory Rate, and Time-Domain Heart Rate Variability Parameters during Sympathetic Nervous System Activity Stimulation in Elite Modern Pentathlonists—A Pilot Study. Diagnostics, 2020, 10, 1104.	1.3	6
3	Analysis of the spectral indices of the photoplethysmographic signals and their age-related dynamics for the task of screening of cardiovascular diseases. Profilakticheskaya Meditsina, 2021, 24, 73.	0.2	2
4	Computer Mouse Movements as an Indicator of Work Stress: Longitudinal Observational Field Study. Journal of Medical Internet Research, 2021, 23, e27121.	2.1	12
5	Wearable Devices for Physical Activity and Healthcare Monitoring in Elderly People: A Critical Review. Geriatrics (Switzerland), 2021, 6, 38.	0.6	53
6	Analysis of Gender Differences in HRV of Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Using Mobile-Health Technology. Sensors, 2021, 21, 3746.	2.1	5
7	Moving Beyond Disciplinary Silos Towards a Transdisciplinary Model of Wellbeing: An Invited Review. Frontiers in Psychology, 2021, 12, 642093.	1.1	37
9	It takes a village. , 2021, , .		2
10	Change in outdoor walking behavior during the coronavirus disease pandemic in Japan: A longitudinal study. Gait and Posture, 2021, 88, 42-46.	0.6	17
11	Decrease of coherence between the respiration and parasympathetic control of the heart rate with aging. Chaos, 2021, 31, 073105.	1.0	11
12	Monitoring Non-dipping Heart Rate by Consumer-Grade Wrist-Worn Devices: An Avenue for Cardiovascular Risk Assessment in Hypertension. Frontiers in Cardiovascular Medicine, 2021, 8, 711417.	1.1	3
13	Detection of Walk Tests in Free-Living Activities Using a Wrist-Worn Device. Frontiers in Physiology, 2021, 12, 706545.	1.3	11
15	Multimodal Assessment of the Pulse Rate Variability Analysis Module of a Photoplethysmography-Based Telemedicine System. Sensors, 2021, 21, 5544.	2.1	9
16	Measurement of respiratory rate using wearable devices and applications to COVID-19 detection. Npj Digital Medicine, 2021, 4, 136.	5.7	31
17	Exploring the Effect of Long Naps on Handball Performance and Heart Rate Variability. Sports Medicine International Open, 2021, 5, E73-E80.	0.3	4
18	Should We Use Activity Tracker Data From Smartphones and Wearables to Understand Population Physical Activity Patterns?. Journal for the Measurement of Physical Behaviour, 2022, 5, 3-7.	0.5	8
19	Wearable photoplethysmography devices. , 2022, , 401-439.		16
21	Synchronization of the Processes of Autonomic Control of Blood Circulation in Humans Is Different in the Awake State and in Sleep Stages. Frontiers in Neuroscience, 2021, 15, 791510.	1.4	4
22	The Impact of Wearable Technologies in Health Research: Scoping Review. JMIR MHealth and UHealth, 2022, 10, e34384.	1.8	60

CITATION REPORT

#	Article	IF	CITATIONS
24	Contribution of Cardiorespiratory Coupling to the Irregular Dynamics of the Human Cardiovascular System. Mathematics, 2022, 10, 1088.	1.1	3
25	HRV Monitoring Using Commercial Wearable Devices as a Health Indicator for Older Persons during the Pandemic. Sensors, 2022, 22, 2001.	2.1	20
26	Statistical Analysis of the Consistency of HRV Analysis Using BCG or Pulse Wave Signals. Sensors, 2022, 22, 2423.	2.1	3
27	Assessing hemodynamics from the photoplethysmogram to gain insights into vascular age: a review from VascAgeNet. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H493-H522.	1.5	35
28	Association between distinct coping styles and heart rate variability changes to an acute psychosocial stress task. Scientific Reports, 2021, 11, 24025.	1.6	5
29	The Associations of COVID-19 Lockdown Restrictions With Longer-Term Activity Levels of Working Adults With Type 2 Diabetes: Cohort Study. JMIR Diabetes, 2022, 7, e36181.	0.9	3
30	Factors Associated with Reduced Heart Rate Variability in the General Japanese Population: The Iwaki Cross-Sectional Research Study. Healthcare (Switzerland), 2022, 10, 793.	1.0	4
31	The Usefulness of Assessing Heart Rate Variability in Patients with Acute Myocardial Infarction (HeaRt-V-AMI). Sensors, 2022, 22, 3571.	2.1	2
32	Occurrence of Relative Bradycardia and Relative Tachycardia in Individuals Diagnosed With COVID-19. Frontiers in Physiology, 2022, 13, .	1.3	3
33	Continuous monitoring with wearables in multiple sclerosis reveals an association of cardiac autonomic dysfunction with disease severity. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2022, 8, 205521732211034.	0.5	6
34	Dynamic Phase Extraction: Applications in Pulse Rate Variability. Applied Psychophysiology Biofeedback, 2022, 47, 213-222.	1.0	3
35	The Complex Construct of Wellbeing and the Role of Vagal Function. Frontiers in Integrative Neuroscience, 0, 16, .	1.0	3
36	The Hybrid Excess and Decay (HED) model: an automated approach to characterising changes in the photoplethysmography pulse waveform. Wellcome Open Research, 0, 7, 214.	0.9	0
37	The Potential Role of Digital Health in Obesity Care. Advances in Therapy, 2022, 39, 4397-4412.	1.3	13
41	Self-recorded heart rate variability profiles are associated with health and lifestyle markers in young adults. Clinical Autonomic Research, 2022, 32, 507-518.	1.4	5
42	Feature Selection for HRV to Optimized Meticulous Presaging of Heart Disease Using LSTM Algorithm. Lecture Notes in Electrical Engineering, 2022, , 581-592.	0.3	0
45	The Utilization of Heart Rate Variability for Autonomic Nervous System Assessment in Healthy Pregnant Women: Systematic Review. JMIR Bioinformatics and Biotechnology, 2022, 3, e36791.	0.4	4
46	Emotion Recognition: Photoplethysmography and Electrocardiography in Comparison. Biosensors, 2022, 12, 811.	2.3	6

CITATION REPORT

#	Article	IF	CITATIONS
48	The Analysis of Transitions in Heart Rate Variability Obtained from Photo Plethysmograph – a Novel Insight into Asymmetry. , 2022, , .		0
49	Four Sessions of Combining Wearable Devices and Heart Rate Variability (HRV) Biofeedback are Needed to Increase HRV Indices and Decrease Breathing Rates. Applied Psychophysiology Biofeedback, 0, , .	1.0	1
50	Historical development of accelerometry measures and methods for physical activity and sedentary behavior research worldwide: A scoping review of observational studies of adults. PLoS ONE, 2022, 17, e0276890.	1.1	6
51	Influences of Intense Physical Effort on the Activity of the Autonomous Nervous System and Stress, as Measured with Photoplethysmography. International Journal of Environmental Research and Public Health, 2022, 19, 16066.	1.2	0
52	Problem of power spectra estimation in application to the analysis of heart rate variability. European Physical Journal: Special Topics, 0, , .	1.2	1
53	Discovery of associative patterns between workplace sound level and physiological wellbeing using wearable devices and empirical Bayes modeling. Npj Digital Medicine, 2023, 6, .	5.7	2
54	Heart rate variability during mindful breathing meditation. Frontiers in Physiology, 0, 13, .	1.3	1
55	Nitrate-rich beet juice intake on cardiovascular performance in response to exercise in postmenopausal women with arterial hypertension: study protocol for a randomized controlled trial. Trials, 2023, 24, .	0.7	2
56	Monitoring speed variation and pedestrian crossing distraction in Enna (Sicily) during different pandemic phases. Transportation Research Procedia, 2023, 69, 647-654.	0.8	0
57	Influence of Photoplethysmogram Signal Quality on Pulse Arrival Time during Polysomnography. Sensors, 2023, 23, 2220.	2.1	1
58	Humming (Simple Bhramari Pranayama) as a Stress Buster: A Holter-Based Study to Analyze Heart Rate Variability (HRV) Parameters During Bhramari, Physical Activity, Emotional Stress, and Sleep. Cureus, 2023, , .	0.2	1
62	An IoT-Based System forÂtheÂStudy ofÂNeuropathic Pain inÂSpinal Cord Injury. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2023, , 93-103.	0.2	0
66	BetriebsÃætlicher Instrumentenkoffer "Digital vernetze Arbeit" – Betreuung und Beratung von Unternehmen und BeschÃætigten. , 2023, , 279-323.		3
75	Artificial intelligence and inÂsitu exercise monitoring, modeling, and guidance. , 2024, , 225-230.		0