Treatment with allogeneic mesenchymal stromal cells for respiratory distress syndrome (START study): a random

Lancet Respiratory Medicine, the 7, 154-162

DOI: 10.1016/s2213-2600(18)30418-1

Citation Report

#	Article	IF	CITATIONS
1	In Vivo Endomicroscopy of Lung Injury and Repair in ARDS: Potential Added Value to Current Imaging. Journal of Clinical Medicine, 2019, 8, 1197.	1.0	10
2	Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nature Microbiology, 2019, 4, 1432-1442.	5.9	614
3	Cell therapy for acute respiratory distress syndrome patients: the START study. Journal of Thoracic Disease, 2019, 11, S1329-S1332.	0.6	13
4	Eicosapentaenoic acid potentiates the therapeutic effects of adipose tissue-derived mesenchymal stromal cells on lung and distal organ injury in experimental sepsis. Stem Cell Research and Therapy, 2019, 10, 264.	2.4	33
5	A Comparison of Phenotypic and Functional Properties of Mesenchymal Stromal Cells and Multipotent Adult Progenitor Cells. Frontiers in Immunology, 2019, 10, 1952.	2.2	37
6	Mesenchymal Stromal Cells Are More Effective Than Their Extracellular Vesicles at Reducing Lung Injury Regardless of Acute Respiratory Distress Syndrome Etiology. Stem Cells International, 2019, 2019, 1-15.	1.2	47
7	Lung inflammatory environments differentially alter mesenchymal stromal cell behavior. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L823-L831.	1.3	36
9	Cryopreserved mesenchymal stem cells regain functional potency following a 24-h acclimation period. Journal of Translational Medicine, 2019, 17, 297.	1.8	53
10	Role of tissue factor in the procoagulant and antibacterial effects of human adipose-derived mesenchymal stem cells during pneumosepsis in mice. Stem Cell Research and Therapy, 2019, 10, 286.	2.4	16
11	The Necrobiology of Mesenchymal Stromal Cells Affects Therapeutic Efficacy. Frontiers in Immunology, 2019, 10, 1228.	2.2	72
12	Mesenchymal Stem Cells Reconditioned in Their Own Serum Exhibit Augmented Therapeutic Properties in the Setting of Acute Respiratory Distress Syndrome. Stem Cells Translational Medicine, 2019, 8, 1092-1106.	1.6	26
13	Alternatives to antibiotics in an era of difficult-to-treat resistance: new insights. Expert Review of Clinical Pharmacology, 2019, 12, 635-642.	1.3	30
14	Pathogenesis of Acute Respiratory Distress Syndrome. Seminars in Respiratory and Critical Care Medicine, 2019, 40, 031-039.	0.8	276
15	Integrating molecular pathogenesis and clinical translation in sepsis-induced acute respiratory distress syndrome. JCl Insight, 2019, 4, .	2.3	122
16	Mesenchymal Stem Cells Increase Alveolar Differentiation in Lung Progenitor Organoid Cultures. Scientific Reports, 2019, 9, 6479.	1.6	74
17	Emerging drugs for treating the acute respiratory distress syndrome. Expert Opinion on Emerging Drugs, 2019, 24, 29-41.	1.0	44
19	Translating Basic Research into Safe and Effective Cell-based Treatments for Respiratory Diseases. Annals of the American Thoracic Society, 2019, 16, 657-668.	1.5	23
20	Acute respiratory distress syndrome. Nature Reviews Disease Primers, 2019, 5, 18.	18.1	1,364

#	Article	IF	CITATIONS
21	Update in Critical Care and Acute Respiratory Distress Syndrome 2018. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1335-1343.	2.5	2
22	Mesenchymal stem cells may ameliorate inflammation in an ex vivo model of extracorporeal membrane oxygenation. Perfusion (United Kingdom), 2019, 34, 15-21.	0.5	16
23	Precision medicine for cell therapy in acute respiratory distress syndrome – Authors' reply. Lancet Respiratory Medicine,the, 2019, 7, e14.	5.2	2
24	Precision medicine for cell therapy in acute respiratory distress syndrome. Lancet Respiratory Medicine,the, 2019, 7, e13.	5.2	8
25	Pharmacological agents for adults with acute respiratory distress syndrome. The Cochrane Library, 2019, 7, CD004477.	1.5	112
26	Lats2-Underexpressing Bone Marrow-Derived Mesenchymal Stem Cells Ameliorate LPS-Induced Acute Lung Injury in Mice. Mediators of Inflammation, 2019, 2019, 1-13.	1.4	9
27	Thawed Mesenchymal Stem Cell Product Shows Comparable Immunomodulatory Potency to Cultured Cells In Vitro and in Polymicrobial Septic Animals. Scientific Reports, 2019, 9, 18078.	1.6	26
28	Strategies to Enhance Mesenchymal Stem Cell-Based Therapies for Acute Respiratory Distress Syndrome. Stem Cells International, 2019, 2019, 1-12.	1.2	29
29	Methods and efficacy of extracellular vesicles derived from mesenchymal stromal cells in animal models of disease: a preclinical systematic review protocol. Systematic Reviews, 2019, 8, 322.	2.5	14
30	Genetically modified mesenchymal stem cell therapy for acute respiratory distress syndrome. Stem Cell Research and Therapy, 2019, 10, 386.	2.4	31
31	The efficacy of mesenchymal stem cells in bronchiolitis obliterans syndrome after allogeneic HSCT: A multicenter prospective cohort study. EBioMedicine, 2019, 49, 213-222.	2.7	19
32	Is a Part Better than the Whole for Cell-based Therapy for Acute Respiratory Distress Syndrome?. Anesthesiology, 2019, 130, 683-685.	1.3	5
33	Cell-based therapies for acute respiratory distress syndrome. Lancet Respiratory Medicine, the, 2019, 7, 105-106.	5.2	6
34	Hypercapnic acidosis induces mitochondrial dysfunction and impairs the ability of mesenchymal stem cells to promote distal lung epithelial repair. FASEB Journal, 2019, 33, 5585-5598.	0.2	34
35	Mesenchymal stem cell-derived extracellular vesicles for the treatment of acute respiratory distress syndrome. Stem Cells Translational Medicine, 2020, 9, 28-38.	1.6	119
36	Current understanding of the therapeutic benefits of mesenchymal stem cells in acute respiratory distress syndrome. Cell Biology and Toxicology, 2020, 36, 83-102.	2.4	56
37	Therapeutic potential of mesenchymal stem/stromal cell-derived secretome and vesicles for lung injury and disease. Expert Opinion on Biological Therapy, 2020, 20, 125-140.	1.4	62
38	Autologous cord blood cell infusion in preterm neonates safely reduces respiratory support duration and potentially preterm complications. Stem Cells Translational Medicine, 2020, 9, 169-176.	1.6	16

3

#	Article	lF	Citations
39	From the Lab to Patients: a Systematic Review and Meta-Analysis of Mesenchymal Stem Cell Therapy for Stroke. Translational Stroke Research, 2020, 11, 345-364.	2.3	48
40	A critical approach to personalised medicine in ARDS. Lancet Respiratory Medicine, the, 2020, 8, 218-219.	5. 2	1
41	Personalized pharmacological therapy for ARDS: a light at the end of the tunnel. Expert Opinion on Investigational Drugs, 2020, 29, 49-61.	1.9	34
42	Proinflammatory cytokines and ARDS pulmonary edema fluid induce CD40 on human mesenchymal stromal cells—A potential mechanism for immune modulation. PLoS ONE, 2020, 15, e0240319.	1.1	5
43	Mesenchymal stem cells: a new front emerges in coronavirus disease 2019 treatment. Cytotherapy, 2022, 24, 755-766.	0.3	22
44	A Peptidyl Inhibitor that Blocks Calcineurin–NFAT Interaction and Prevents Acute Lung Injury. Journal of Medicinal Chemistry, 2020, 63, 12853-12872.	2.9	9
45	<p>Challenges for Mesenchymal Stem Cell-Based Therapy for COVID-19</p> . Drug Design, Development and Therapy, 2020, Volume 14, 3995-4001.	2.0	12
46	Lung regeneration: implications of the diseased niche and ageing. European Respiratory Review, 2020, 29, 200222.	3.0	18
47	Mesenchymal stem cell immunomodulation and regeneration therapeutics as an ameliorative approach for COVID-19 pandemics. Life Sciences, 2020, 263, 118588.	2.0	32
48	Stem Cell Based Therapy Option in COVID-19: Is It Really Promising?. , 2020, 11, 1174.		13
49	A Scoping Review of Registered Clinical Trials of Cellular Therapy for COVID-19 and a Framework for Accelerated Synthesis of Trial Evidence—FAST Evidence. Transfusion Medicine Reviews, 2020, 34, 165-171.	0.9	18
50	Emerging trends in COVID-19 treatment: learning from inflammatory conditions associated with cellular therapies. Cytotherapy, 2020, 22, 474-481.	0.3	29
51	An Analysis of Mesenchymal Stem Cell-Derived Extracellular Vesicles for Preclinical Use. ACS Nano, 2020, 14, 9728-9743.	7.3	72
52	Mesenchymal Stem Cells: A New Piece in the Puzzle of COVID-19 Treatment. Frontiers in Immunology, 2020, 11, 1563.	2.2	31
53	Guidance for the management of adult patients with coronavirus disease 2019. Chinese Medical Journal, 2020, 133, 1575-1594.	0.9	20
54	Emerging pharmacological therapies for ARDS: COVID-19 and beyond. Intensive Care Medicine, 2020, 46, 2265-2283.	3.9	52
55	Safety and feasibility of umbilical cord mesenchymal stem cells in patients with COVIDâ€19 pneumonia: A pilot study. Cell Proliferation, 2020, 53, e12947.	2.4	63
56	The efficacy of mesenchymal stromal cell-derived therapies for acute respiratory distress syndromeâ€"a meta-analysis of preclinical trials. Respiratory Research, 2020, 21, 307.	1.4	10

#	ARTICLE	IF	Citations
57	A phase Ib/IIa, randomised, double-blind, multicentre trial to assess the safety and efficacy of expanded Cx611 allogeneic adipose-derived stem cells (eASCs) for the treatment of patients with community-acquired bacterial pneumonia admitted to the intensive care unit. BMC Pulmonary Medicine, 2020, 20, 309.	0.8	10
58	Therapeutic Potential of Mesenchymal Stem Cells and Their Secretome in the Treatment of SARS-CoV-2-Induced Acute Respiratory Distress Syndrome. Analytical Cellular Pathology, 2020, 2020, 1-11.	0.7	25
59	Mesenchymal Stromal Cells Attenuate Infection-Induced Acute Respiratory Distress Syndrome in Animal Experiments: A Meta-Analysis. Cell Transplantation, 2020, 29, 096368972096918.	1.2	11
60	Transplantation of Mesenchymal Stem Cells: A Potential Adjuvant Therapy for COVID-19. Frontiers in Bioengineering and Biotechnology, 2020, 8, 557652.	2.0	14
61	Mesenchymal stem cells and exosome therapy for COVID-19: current status and future perspective. Human Cell, 2020, 33, 907-918.	1.2	63
62	Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells on the Acute Cigarette Smoke-Induced Pulmonary Inflammation Model. Frontiers in Physiology, 2020, 11, 962.	1.3	6
63	The rationale of using mesenchymal stem cells in patients with COVID-19-related acute respiratory distress syndrome: What to expect. Stem Cells Translational Medicine, 2020, 9, 1287-1302.	1.6	45
64	Shattering barriers toward clinically meaningful MSC therapies. Science Advances, 2020, 6, eaba6884.	4.7	351
65	Mesenchymal stem cells: current clinical progress in ARDS and COVID-19. Stem Cell Research and Therapy, 2020, 11, 305.	2.4	66
66	The Coronavirus Pandemic (SARS-CoV-2): New Problems Demand New Solutions, the Alternative of Mesenchymal (Stem) Stromal Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 645.	1.8	11
67	Alveolar Type II Cells or Mesenchymal Stem Cells: Comparison of Two Different Cell Therapies for the Treatment of Acute Lung Injury in Rats. Cells, 2020, 9, 1816.	1.8	15
68	Mesenchymal Stromal Cells in Pediatric Hematopoietic Cell Transplantation a Review and a Pilot Study in Children Treated With Decidua Stromal Cells for Acute Graft-versus-Host Disease. Frontiers in Immunology, 2020, 11, 567210.	2.2	11
69	Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Disease 2019. ERJ Open Research, 2020, 6, 00123-2020.	1.1	2
70	Insights into the use of mesenchymal stem cells in COVID-19 mediated acute respiratory failure. Npj Regenerative Medicine, 2020, 5, 17.	2.5	48
71	The use of mesenchymal stromal cells in the treatment of coronavirus disease 2019. Journal of Translational Medicine, 2020, 18, 359.	1.8	20
72	The role of mesenchymal stromal cells in immune modulation of COVID-19: focus on cytokine storm. Stem Cell Research and Therapy, 2020, 11, 404.	2.4	53
73	Systematic review of extracellular vesicleâ€based treatments for lung injury: are EVs a potential therapy for COVIDâ€19?. Journal of Extracellular Vesicles, 2020, 9, 1795365.	5.5	66
74	Human umbilical cord-derived mesenchymal stem cell therapy in patients with COVID-19: a phase 1 clinical trial. Signal Transduction and Targeted Therapy, 2020, 5, 172.	7.1	236

#	Article	IF	CITATIONS
75	Differential effects of the cystic fibrosis lung inflammatory environment on mesenchymal stromal cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L908-L925.	1.3	20
76	Mesenchymal stromal cells for sepsis and septic shock: Lessons for treatment of COVID-19. Stem Cells Translational Medicine, 2020, 9, 1488-1494.	1.6	14
77	Pharmacological management of COVID-19 patients with ARDS (CARDS): A narrative review. Respiratory Medicine, 2020, 171, 106114.	1.3	23
78	Logistics of an advanced therapy medicinal product during COVID-19 pandemic in Italy: successful delivery of mesenchymal stromal cells in dry ice. Journal of Translational Medicine, 2020, 18, 451.	1.8	5
79	Pathophysiology and potential future therapeutic targets using preclinical models of COVID-19. ERJ Open Research, 2020, 6, 00405-2020.	1.1	12
80	Airway Redox Homeostasis and Inflammation Gone Awry: From Molecular Pathogenesis to Emerging Therapeutics in Respiratory Pathology. International Journal of Molecular Sciences, 2020, 21, 9317.	1.8	28
81	The role of mesenchymal stem/stromal cells in the acute clinical setting. American Journal of Emergency Medicine, 2021, 46, 572-578.	0.7	9
82	Coronavirus disease 2019: investigational therapies in the prevention and treatment of hyperinflammation. Expert Review of Clinical Immunology, 2020, 16, 1185-1204.	1.3	23
83	Mechanically Stretched Mesenchymal Stem Cells Can Reduce the Effects of LPS-Induced Injury on the Pulmonary Microvascular Endothelium Barrier. Stem Cells International, 2020, 2020, 1-12.	1.2	3
84	Human Umbilical Cord-Derived Mesenchymal Stem Cells for Acute Respiratory Distress Syndrome. Critical Care Medicine, 2020, 48, e391-e399.	0.4	67
85	Mesenchymal Stem Cells in Acute Respiratory Distress Syndrome Supported with Extracorporeal Membrane Oxygenation. Lost in Translational Research?. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 314-315.	2.5	1
86	Mesenchymal stromal cell therapeutic potency is dependent upon viability, route of delivery, and immune match. Blood Advances, 2020, 4, 1987-1997.	2.5	54
87	Reducing mortality and morbidity in patients with severe COVID-19 disease by advancing ongoing trials of Mesenchymal Stromal (stem) Cell (MSC) therapy — Achieving global consensus and visibility for cellular host-directed therapies. International Journal of Infectious Diseases, 2020, 96, 431-439.	1.5	43
88	Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients. Journal of Translational Medicine, 2020, 18, 203.	1.8	83
89	Acute Lung Injury: Disease Modelling and the Therapeutic Potential of Stem Cells. Advances in Experimental Medicine and Biology, 2020, 1298, 149-166.	0.8	17
90	International Society for Extracellular Vesicles and International Society for Cell and Gene Therapy statement on extracellular vesicles from mesenchymal stromal cells and other cells: considerations for potential therapeutic agents to suppress coronavirus disease-19. Cytotherapy, 2020, 22, 482-485.	0.3	94
91	Mesenchymal stem cells combined with liraglutide relieve acute lung injury through apoptotic signaling restrained by PKA/ \hat{l}^2 -catenin. Stem Cell Research and Therapy, 2020, 11, 182.	2.4	7
92	MSC Therapies for COVID-19: Importance of Patient Coagulopathy, Thromboprophylaxis, Cell Product Quality and Mode of Delivery for Treatment Safety and Efficacy. Frontiers in Immunology, 2020, 11, 1091.	2.2	128

#	Article	IF	CITATIONS
93	Can Stem Cells Beat COVID-19: Advancing Stem Cells and Extracellular Vesicles Toward Mainstream Medicine for Lung Injuries Associated With SARS-CoV-2 Infections. Frontiers in Bioengineering and Biotechnology, 2020, 8, 554.	2.0	49
94	Future Trends in Nebulized Therapies for Pulmonary Disease. Journal of Personalized Medicine, 2020, 10, 37.	1.1	36
95	Bioengineering of Pulmonary Epithelium With Preservation of the Vascular Niche. Frontiers in Bioengineering and Biotechnology, 2020, 8, 269.	2.0	6
96	Cell Therapy for Lung Disease: Current Status and Future Prospects. Current Stem Cell Reports, 2020, 6, 30-39.	0.7	10
97	Cell-based therapy to reduce mortality from COVID-19: Systematic review and meta-analysis of human studies on acute respiratory distress syndrome. Stem Cells Translational Medicine, 2020, 9, 1007-1022.	1.6	85
98	Cell-based therapies for coronavirus disease 2019: proper clinical investigations are essential. Cytotherapy, 2020, 22, 602-605.	0.3	35
99	Biophysically Preconditioning Mesenchymal Stem Cells Improves Treatment of Ventilator-Induced Lung Injury. Archivos De Bronconeumologia, 2020, 56, 179-181.	0.4	2
100	Five-Year Follow-up after Mesenchymal Stromal Cell–based Treatment of Severe Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1051-1055.	2.5	9
101	Mesenchymal stromal cells as a salvage treatment for confirmed acute respiratory distress syndrome: preliminary data from a single-arm study. Intensive Care Medicine, 2020, 46, 1944-1947.	3.9	11
102	Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics. Protein and Cell, 2020, 11, 707-722.	4.8	97
103	Umbilical cord-derived CD362+ mesenchymal stromal cells for E. coli pneumonia: impact of dose regimen, passage, cryopreservation, and antibiotic therapy. Stem Cell Research and Therapy, 2020, 11, 116.	2.4	24
104	Mesenchymal Stem Cell Therapy Can Transcend Perianal Crohn's Disease: How Colorectal Surgeons Can Help in the Coronavirus Disease 2019 Crisis. Diseases of the Colon and Rectum, 2020, 63, 874-878.	0.7	5
105	Transmission patterns of COVID-19 in the mainland of China and the efficacy of different control strategies: a data- and model-driven study. Infectious Diseases of Poverty, 2020, 9, 83.	1.5	47
106	Therapeutic targeting of metabolic alterations in acute respiratory distress syndrome. European Respiratory Review, 2020, 29, 200114.	3.0	14
107	Mesenchymal stromal cells and their secreted extracellular vesicles as therapeutic tools for COVID-19 pneumonia?. Journal of Controlled Release, 2020, 325, 135-140.	4.8	28
108	The Angiopoietin-Tie2 Pathway in Critical Illness. Critical Care Clinics, 2020, 36, 201-216.	1.0	29
110	Potential Value of Biomarker Signatures in Sepsis and Acute Respiratory Distress Syndrome in Children and Adults*. Critical Care Medicine, 2020, 48, 428-430.	0.4	0
111	Development and validation of parsimonious algorithms to classify acute respiratory distress syndrome phenotypes: a secondary analysis of randomised controlled trials. Lancet Respiratory Medicine,the, 2020, 8, 247-257.	5.2	165

#	Article	IF	CITATIONS
112	Cell therapy with intravascular administration of mesenchymal stromal cells continues to appear safe: An updated systematic review and meta-analysis. EClinicalMedicine, 2020, 19, 100249.	3.2	150
113	Applications of extracellular vesicles in tissue regeneration. Biomicrofluidics, 2020, 14, 011501.	1.2	24
114	Mesenchymal stromal cell–based therapies for acute kidney injury: progress in the last decade. Kidney International, 2020, 97, 1130-1140.	2.6	39
115	Mesenchymal stromal cells ameliorate acute lung injury induced by LPS mainly through stanniocalcin-2 mediating macrophage polarization. Annals of Translational Medicine, 2020, 8, 334-334.	0.7	27
116	Cell- and tissue-based therapies for lung disease. , 2020, , 1253-1272.		0
117	Cell therapy for the preterm infant: promise and practicalities. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2020, 105, 563-568.	1.4	8
118	Use of Autologous Cord Blood Mononuclear Cells Infusion for the Prevention of Bronchopulmonary Dysplasia in Extremely Preterm Neonates: A Study Protocol for a Placebo-Controlled Randomized Multicenter Trial [NCT03053076]. Frontiers in Pediatrics, 2020, 8, 136.	0.9	1
119	Mesenchymal stem cells as a potential treatment for critically ill patients with coronavirus disease 2019. Stem Cells Translational Medicine, 2020, 9, 813-814.	1.6	36
120	In reply. Stem Cells Translational Medicine, 2020, 9, 815-816.	1.6	0
121	Combined Mesenchymal Stromal Cell Therapy and Extracorporeal Membrane Oxygenation in Acute Respiratory Distress Syndrome. A Randomized Controlled Trial in Sheep. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 383-392.	2.5	27
122	Current status of cell-based therapies for respiratory virus infections: applicability to COVID-19. European Respiratory Journal, 2020, 55, 2000858.	3.1	193
123	Acute respiratory distress syndrome subphenotypes and therapy responsive traits among preclinical models: protocol for a systematic review and meta-analysis. Respiratory Research, 2020, 21, 81.	1.4	12
124	Developing cell therapies as drug products. British Journal of Pharmacology, 2021, 178, 262-279.	2.7	6
125	Fighting the War Against COVID-19 via Cell-Based Regenerative Medicine: Lessons Learned from 1918 Spanish Flu and Other Previous Pandemics. Stem Cell Reviews and Reports, 2021, 17, 9-32.	1.7	11
126	Mesenchymal Stem/Stromal Cells Therapy for Sepsis and Acute Respiratory Distress Syndrome. Seminars in Respiratory and Critical Care Medicine, 2021, 42, 020-039.	0.8	20
127	Treatment of COVID-19 Pneumonia: the Case for Placenta-derived Cell Therapy. Stem Cell Reviews and Reports, 2021, 17, 63-70.	1.7	5
128	Human Mesenchymal Stromal Cells Are Resistant to SARS-CoV-2 Infection under Steady-State, Inflammatory Conditions and in the Presence of SARS-CoV-2-Infected Cells. Stem Cell Reports, 2021, 16, 419-427.	2.3	34
129	Effect of human umbilical cordâ€derived mesenchymal stem cells on murine model of bronchiolitis obliterans like injury. Pediatric Pulmonology, 2021, 56, 129-137.	1.0	2

#	Article	IF	CITATIONS
130	Mechanisms of Endothelial Regeneration and Vascular Repair and Their Application to Regenerative Medicine. American Journal of Pathology, 2021, 191, 52-65.	1.9	76
131	Stem cell therapy in coronavirus disease 2019: current evidence and future potential. Cytotherapy, 2021, 23, 471-482.	0.3	11
132	Fostering mesenchymal stem cell therapy to halt cytokine storm in COVID-19. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166014.	1.8	29
133	Mesenchymal stromal cells for acute respiratory distress syndrome (ARDS), sepsis, and COVID-19 infection: optimizing the therapeutic potential. Expert Review of Respiratory Medicine, 2021, 15, 301-324.	1.0	41
134	The Coronavirus Pandemic: A Pitfall or a Fast Track for Validating Cell Therapy Products?. Stem Cells and Development, 2021, 30, 119-127.	1.1	10
135	Are mesenchymal stem cells and derived extracellular vesicles valuable to halt the COVID-19 inflammatory cascade? Current evidence and future perspectives. Thorax, 2021, 76, 196-200.	2.7	19
136	Mesenchymal stromal cells to fight SARS-CoV-2: Taking advantage of a pleiotropic therapy. Cytokine and Growth Factor Reviews, 2021, 58, 114-133.	3.2	17
137	Promising role for mesenchymal stromal cells in coronavirus infectious disease-19 (COVID-19)-related severe acute respiratory syndrome?. Blood Reviews, 2021, 46, 100742.	2.8	11
138	Coronavirus disease 2019: A tissue engineering and regenerative medicine perspective. Stem Cells Translational Medicine, 2021, 10, 27-38.	1.6	21
139	Review of Trials Currently Testing Stem Cells for Treatment of Respiratory Diseases: Facts Known to Date and Possible Applications to COVID-19. Stem Cell Reviews and Reports, 2021, 17, 44-55.	1.7	11
140	Therapeutic Applications of Stem Cells and Extracellular Vesicles in Emergency Care: Futuristic Perspectives. Stem Cell Reviews and Reports, 2021, 17, 390-410.	1.7	23
141	Neglected No More: Emerging Cellular Therapies in Traumatic Injury. Stem Cell Reviews and Reports, 2021, 17, 1194-1214.	1.7	4
143	Effectiveness and Safety of MSC Cell Therapies for Hospitalized Patients with COVID-19: A Systematic Review and Meta-Analysis. SSRN Electronic Journal, 0, , .	0.4	0
144	Cardiopulmonary Monitoring in the Patient with an Inflamed Lung. , 2021, , 729-739.		0
145	Pathogenesis of Multiple Organ Injury in COVID-19 and Potential Therapeutic Strategies. Frontiers in Physiology, 2021, 12, 593223.	1.3	113
146	Potency analysis of cellular therapies: the role of molecular assays., 2021,, 49-70.		0
147	Mesenchymal stem cells derived from perinatal tissues for treatment of critically ill COVID-19-induced ARDS patients: a case series. Stem Cell Research and Therapy, 2021, 12, 91.	2.4	141
148	Mesenchymal Stromal Cell-Based Therapy: A Promising Approach for Severe COVID-19. Cell Transplantation, 2021, 30, 096368972199545.	1.2	13

#	Article	IF	CITATIONS
149	Biomimetic Culture Strategies for the Clinical Expansion of Mesenchymal Stromal Cells. ACS Biomaterials Science and Engineering, 2023, 9, 3742-3759.	2.6	5
150	Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Lung Diseases: Current Status and Perspectives. Frontiers in Cell and Developmental Biology, 2021, 9, 600711.	1.8	51
151	Improved Differentiation Ability and Therapeutic Effect of miR-23a-3p Expressing Bone Marrow-Derived Mesenchymal Stem Cells in Mice Model with Acute Lung Injury. International Journal of Stem Cells, 2021, 14, 229-239.	0.8	3
152	Mesenchymal Stem Cell-Based Therapy for Stroke: Current Understanding and Challenges. Frontiers in Cellular Neuroscience, 2021, 15, 628940.	1.8	38
153	Mesenchymal Stem Cell-Based Therapy for COVID-19: Possibility and Potential. Current Stem Cell Research and Therapy, 2021, 16, 105-108.	0.6	6
154	Effect of human umbilical cord-derived mesenchymal stem cells on lung damage in severe COVID-19 patients: a randomized, double-blind, placebo-controlled phase 2 trial. Signal Transduction and Targeted Therapy, 2021, 6, 58.	7.1	178
155	Recent advances in dead cell clearance during acute lung injury and repair. Faculty Reviews, 2021, 10, 33.	1.7	9
156	Cellular Therapy as Promising Choice of Treatment for COVID-19., 0, , .		0
157	BMSC-derived exosomes ameliorate sulfur mustard-induced acute lung injury by regulating the GPRC5A–YAP axis. Acta Pharmacologica Sinica, 2021, 42, 2082-2093.	2.8	24
158	HGF-Modified Dental Pulp Stem Cells Mitigate the Inflammatory and Fibrotic Responses in Paraquat-Induced Acute Respiratory Distress Syndrome. Stem Cells International, 2021, 2021, 1-15.	1.2	9
159	Gene engineered mesenchymal stem cells: greater transgene expression and efficacy with minicircle vs. plasmid DNA vectors in a mouse model of acute lung injury. Stem Cell Research and Therapy, 2021, 12, 184.	2.4	17
160	Secretome of Multipotent Mesenchymal Stromal Cells as a Promising Treatment and for Rehabilitation of Patients with the Novel Coronaviral Infection. Herald of the Russian Academy of Sciences, 2021, 91, 170-175.	0.2	1
161	Stem cells and COVID-19: are the human amniotic cells a new hope for therapies against the SARS-CoV-2 virus?. Stem Cell Research and Therapy, 2021, 12, 155.	2.4	13
162	Long non-coding RNA review and implications in acute lung inflammation. Life Sciences, 2021, 269, 119044.	2.0	25
163	Mesenchymal Stem Cell Therapy for Severe COVID-19 ARDS. Journal of Intensive Care Medicine, 2021, 36, 681-688.	1.3	47
164	Between-trial heterogeneity in ARDS research. Intensive Care Medicine, 2021, 47, 422-434.	3.9	16
165	Concentrated Secretome of Adipose Stromal Cells Limits Influenza A Virus-Induced Lung Injury in Mice. Cells, 2021, 10, 720.	1.8	5
166	Mesenchymal Stem Cell-Derived Exosomes Exhibit Promising Potential for Treating SARS-CoV-2-Infected Patients. Cells, 2021, 10, 587.	1.8	34

#	Article	IF	CITATIONS
167	Human menstrual blood-derived stem cells as immunoregulatory therapy in COVID-19: A case report and review of the literature. World Journal of Clinical Cases, 2021, 9, 1705-1713.	0.3	8
168	Progress and potential of mesenchymal stromal cell therapy in acute respiratory distress syndrome., 2021,, 353-372.		1
169	Mitochondria-Rich Fraction Isolated From Mesenchymal Stromal Cells Reduces Lung and Distal Organ Injury in Experimental Sepsis*. Critical Care Medicine, 2021, 49, e880-e890.	0.4	15
170	MSCs and Inflammatory Cells Crosstalk in Regenerative Medicine: Concerted Actions for Optimized Resolution Driven by Energy Metabolism. Frontiers in Immunology, 2021, 12, 626755.	2.2	63
171	Healthy <i>versus</i> inflamed lung environments differentially affect mesenchymal stromal cells. European Respiratory Journal, 2021, 58, 2004149.	3.1	20
172	Can acute respiratory distress syndrome be treated?. Future Medicinal Chemistry, 2021, 13, 687-690.	1.1	1
173	Acceleration of Translational Mesenchymal Stromal Cell Therapy Through Consistent Quality GMP Manufacturing. Frontiers in Cell and Developmental Biology, 2021, 9, 648472.	1.8	20
174	Extracellular Vesicle Associated Non-Coding RNAs in Lung Infections and Injury. Cells, 2021, 10, 965.	1.8	13
175	Exosomes contribution in COVID-19 patients' treatment. Journal of Translational Medicine, 2021, 19, 234.	1.8	25
176	Therapeutic mechanisms of mesenchymal stem cells in acute respiratory distress syndrome reveal potentials for Covid-19 treatment. Journal of Translational Medicine, 2021, 19, 198.	1.8	15
177	Stem cell therapy in COVID-19: Pooled evidence from SARS-CoV-2, SARS-CoV, MERS-CoV and ARDS: A systematic review. Biomedicine and Pharmacotherapy, 2021, 137, 111300.	2.5	21
178	Immunomodulatory extracellular vesicles: an alternative to cell therapy for COVID-19. Expert Opinion on Biological Therapy, 2021, 21, 1551-1560.	1.4	8
179	Mesenchymal stromal cell variables influencing clinical potency: the impact of viability, fitness, route of administration and host predisposition. Cytotherapy, 2021, 23, 368-372.	0.3	45
180	Effects of mesenchymal stromal cellâ€derived extracellular vesicles in acute respiratory distress syndrome (ARDS): Current understanding and future perspectives. Journal of Leukocyte Biology, 2021, 110, 27-38.	1.5	10
181	Ischemia–Reperfusion Injury in Lung Transplantation. Cells, 2021, 10, 1333.	1.8	54
182	Advances in Mesenchymal Stem Cell Therapy for Immune and Inflammatory Diseases: Use of Cell-Free Products and Human pluripotent Stem Cell-Derived Mesenchymal Stem Cells. Stem Cells Translational Medicine, 2021, 10, 1288-1303.	1.6	52
183	Mesenchymal stromal cell secretome in liver failure: Perspectives on COVID-19 infection treatment. World Journal of Gastroenterology, 2021, 27, 1905-1919.	1.4	7
184	Treatment of COVID-19 by stage: any space left for mesenchymal stem cell therapy?. Regenerative Medicine, 2021, 16, 477-494.	0.8	2

#	Article	IF	Citations
185	Therapeutic implications of transplanted-cell death. Nature Biomedical Engineering, 2021, 5, 379-384.	11.6	27
186	The immune modulatory effects of umbilical cord-derived mesenchymal stromal cells in severe COVID-19 pneumonia. Stem Cell Research and Therapy, 2021, 12, 316.	2.4	12
187	Mesenchymal stromal cells reduce evidence of lung injury in patients with ARDS. JCI Insight, 2021, 6, .	2.3	48
188	Updates on clinical trials evaluating the regenerative potential of allogenic mesenchymal stem cells in COVID-19. Npj Regenerative Medicine, 2021, 6, 37.	2.5	31
189	Understanding the heart-brain axis response in COVID-19 patients: A suggestive perspective for therapeutic development. Pharmacological Research, 2021, 168, 105581.	3.1	26
190	Diagnosis and Treatment Guidelines for Mesenchymal Stem Cell Therapy for Coronavirus Disease 2019 (Beijing, 2021). Infectious Diseases & Immunity, 2021, 1, 68-73.	0.2	5
191	Is there a place for mesenchymal stromal cell-based therapies in the therapeutic armamentarium against COVID-19?. Stem Cell Research and Therapy, 2021, 12, 425.	2.4	15
192	The National Heart, Lung, and Blood Instituteâ€funded Production Assistance for Cellular Therapies (PACT) program: Eighteen years of cell therapy. Clinical and Translational Science, 2021, 14, 2099-2110.	1.5	1
193	The Effects of Mesenchymal Stem Cell on Colorectal Cancer. Stem Cells International, 2021, 2021, 1-14.	1.2	12
194	Mesenchymal Stem Cell-Based Therapy as an Alternative to the Treatment of Acute Respiratory Distress Syndrome: Current Evidence and Future Perspectives. International Journal of Molecular Sciences, 2021, 22, 7850.	1.8	33
195	Mesenchymal stem cells: ideal seeds for treating diseases. Human Cell, 2021, 34, 1585-1600.	1.2	13
196	The Potential Role of Extracellular Vesicles in COVID-19 Treatment: Opportunity and Challenge. Frontiers in Molecular Biosciences, 2021, 8, 699929.	1.6	23
197	Impact of differences in acute respiratory distress syndrome randomised controlled trial inclusion and exclusion criteria: systematic review and meta-analysis. British Journal of Anaesthesia, 2021, 127, 85-101.	1.5	13
198	Visualized analyses of investigations upon mesenchymal stem/stromal cell-based cytotherapy and underlying mechanisms for COVID-19 associated ARDS. Current Stem Cell Research and Therapy, 2021, 16, .	0.6	8
199	Safety of allogeneic umbilical cord blood infusions for the treatment of neurological conditions: a systematic review of clinical studies. Cytotherapy, 2022, 24, 2-9.	0.3	14
200	Mesenchymal stromal/stem cells (MSCs) and MSC-derived extracellular vesicles in COVID-19-induced ARDS: Mechanisms of action, research progress, challenges, and opportunities. International Immunopharmacology, 2021, 97, 107694.	1.7	24
201	Effectivity of mesenchymal stem cells for bleomycin-induced pulmonary fibrosis: a systematic review and implication for clinical application. Stem Cell Research and Therapy, 2021, 12, 470.	2.4	18
202	Therapeutic prospects of mesenchymal stem/stromal cells in COVID-19 associated pulmonary diseases: From bench to bedside. World Journal of Stem Cells, 2021, 13, 1058-1071.	1.3	14

#	Article	IF	Citations
203	Cellular Therapy for the Treatment of Paediatric Respiratory Disease. International Journal of Molecular Sciences, 2021, 22, 8906.	1.8	11
204	The Therapeutic Potential of Mesenchymal Stromal Cells for Regenerative Medicine: Current Knowledge and Future Understandings. Frontiers in Cell and Developmental Biology, 2021, 9, 661532.	1.8	70
205	Matrix biophysical cues direct mesenchymal stromal cell functions in immunity. Acta Biomaterialia, 2021, 133, 126-138.	4.1	16
206	CD146 controls the quality of clinical grade mesenchymal stem cells from human dental pulp. Stem Cell Research and Therapy, 2021, 12, 488.	2.4	26
207	Acute respiratory distress syndrome. Lancet, The, 2021, 398, 622-637.	6.3	426
208	Preclinical efficacy and clinical safety of clinicalâ€grade nebulized allogenic adipose mesenchymal stromal cellsâ€derived extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12134.	5.5	72
209	Mesenchymal stem cell transfusion: Possible beneficial effects in COVID-19 patients. Transfusion and Apheresis Science, 2021, 60, 103237.	0.5	1
210	Mesenchymal stromal cells: what have we learned so far about their therapeutic potential and mechanisms of action?. Emerging Topics in Life Sciences, 2021, 5, 549-562.	1.1	12
211	Mesenchymal stem cell therapy for severe COVID-19. Signal Transduction and Targeted Therapy, 2021, 6, 339.	7.1	58
212	Mesenchymal stem cells and COVID-19: What they do and what they can do. World Journal of Stem Cells, 2021, 13, 1318-1337.	1.3	5
213	Utilizing machine learning to improve clinical trial design for acute respiratory distress syndrome. Npj Digital Medicine, 2021, 4, 133.	5.7	12
214	Therapeutic Potential of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in the Prevention of Organ Injuries Induced by Traumatic Hemorrhagic Shock. Frontiers in Immunology, 2021, 12, 749659.	2.2	10
215	Effects of storage media, supplements and cryopreservation methods on quality of stem cells. World Journal of Stem Cells, 2021, 13, 1197-1214.	1.3	19
216	Core-shell hydrogel microfiber-expanded pluripotent stem cell-derived lung progenitors applicable to lung reconstruction in vivo. Biomaterials, 2021, 276, 121031.	5.7	10
217	Mesenchymal stem cell therapy efficacy in COVID-19 patients: A systematic review and meta-analysis. F1000Research, 0, 10, 956.	0.8	1
218	Engineered mesenchymal stromal cell therapy during human lung exÂvivo lung perfusion is compromised by acidic lung microenvironment. Molecular Therapy - Methods and Clinical Development, 2021, 23, 184-197.	1.8	13
219	Mesenchymal stromal cell therapy for coronavirus disease 2019: which? when? and how much?. Cytotherapy, 2021, 23, 861-873.	0.3	9
220	Current Status of Cell-Based Therapies for COVID-19: Evidence From Mesenchymal Stromal Cells in Sepsis and ARDS. Frontiers in Immunology, 2021, 12, 738697.	2.2	14

#	Article	IF	CITATIONS
221	Mesenchymal stromal cell extracellular vesicles as therapy for acute and chronic respiratory diseases: A metaâ€analysis. Journal of Extracellular Vesicles, 2021, 10, e12141.	5.5	31
222	Are mesenchymal stem cells able to manage cytokine storm in COVID-19 patients? A review of recent studies. Regenerative Therapy, 2021, 18, 152-160.	1.4	11
223	A review and update for registered clinical studies of stem cells for non-tumorous and non-hematological diseases. Regenerative Therapy, 2021, 18, 355-362.	1.4	7
224	Novel treatments and trials in COVID-19. , 2022, , 109-120.		1
225	Stem Cells and Progenitor Cells in Interstitial Lung Disease. , 2022, , 158-168.		2
226	Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, phase 1/2a, randomized controlled trial. Stem Cells Translational Medicine, 2021, 10, 660-673.	1.6	281
227	Combined Use of Tocilizumab and Mesenchymal Stromal Cells in the Treatment of Severe Covid-19: Case Report. Cell Transplantation, 2021, 30, 096368972110210.	1.2	14
228	Ischemia-reperfusion Injury in the Transplanted Lung: A Literature Review. Transplantation Direct, 2021, 7, e652.	0.8	27
229	Mesenchymal stem cell immunomodulation: In pursuit of controlling COVID-19 related cytokine storm. Stem Cells, 2021, 39, 707-722.	1.4	42
230	The Safety and Efficiency of Addressing ARDS Using Stem Cell Therapies in Clinical Trials. , 2019, , 219-238.		4
231	Preclinical Evidence for the Role of Stem/Stromal Cells in COPD. , 2019, , 73-96.		1
232	Paving the Road for Mesenchymal Stem Cell-Derived Exosome Therapy in Bronchopulmonary Dysplasia and Pulmonary Hypertension. , 2019, , 131-152.		15
233	Biophysically Preconditioning Mesenchymal Stem Cells Improves Treatment of Ventilator-Induced Lung Injury. Archivos De Bronconeumologia, 2020, 56, 179-181.	0.4	12
234	Emerging cellular and pharmacologic therapies for acute respiratory distress syndrome. Current Opinion in Critical Care, 2021, 27, 20-28.	1.6	7
236	Efficacy and safety of mesenchymal stem cells for the treatment of patients infected with COVID-19: a systematic review and meta-analysis protocol. BMJ Open, 2020, 10, e042085.	0.8	7
237	The ex vivo human lung: research value for translational science. JCI Insight, 2019, 4, .	2.3	24
238	Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS. European Respiratory Journal, 2021, 58, 2002978.	3.1	94
239	Cytokine pre-activation of cryopreserved xenogeneic-free human mesenchymal stromal cells enhances resolution and repair following ventilator-induced lung injury potentially via a KGF-dependent mechanism. Intensive Care Medicine Experimental, 2020, 8, 8.	0.9	18

#	Article	IF	CITATIONS
240	Recent advances in the understanding and management of ARDS. F1000Research, 2019, 8, 1959.	0.8	52
241	Insights into the immuno-pathogenesis of acute respiratory distress syndrome. Annals of Translational Medicine, 2019, 7, 504-504.	0.7	83
242	Mesenchymal Stem Cells Therapy for Coronavirus COVID-19 Induced ARDS: A Promising Concept. , 0, 15, 2.		1
243	Defining a Regulatory Strategy for ATMP/Aerosol Delivery Device Combinations in the Treatment of Respiratory Disease. Pharmaceutics, 2020, 12, 922.	2.0	11
244	Stem cell therapy for COVID-19 and other respiratory diseases: Global trends of clinical trials. World Journal of Stem Cells, 2020, 12, 471-480.	1.3	15
245	Mesenchymal stromal cells as potential immunomodulatory players in severe acute respiratory distress syndrome induced by SARS-CoV-2 infection. World Journal of Stem Cells, 2020, 12, 731-751.	1.3	21
246	Perspectives on mesenchymal stem/progenitor cells and their derivates as potential therapies for lung damage caused by COVID-19. World Journal of Stem Cells, 2020, 12, 1013-1022.	1.3	15
247	Senescent mesenchymal stem/stromal cells and restoring their cellular functions. World Journal of Stem Cells, 2020, 12, 966-985.	1.3	23
248	Mesenchymal stromal cells: Putative microenvironmental modulators become cell therapy. Cell Stem Cell, 2021, 28, 1708-1725.	5.2	114
249	Dissecting the relationship between antimicrobial peptides and mesenchymal stem cells. , 2022, 233, 108021.		12
250	A comparative study of mesenchymal stem cells cultured as cellâ€only aggregates and in encapsulated hydrogels. Journal of Tissue Engineering and Regenerative Medicine, 2021, , .	1.3	5
252	Mechanism and Potential of Extracellular Vesicles Derived From Mesenchymal Stem Cells for the Treatment of Infectious Diseases. Frontiers in Microbiology, 2021, 12, 761338.	1.5	12
253	COVID-19: A review of newly formed viral clades, pathophysiology, therapeutic strategies and current vaccination tasks. International Journal of Biological Macromolecules, 2021, , .	3.6	14
254	Conquering the cytokine storm in COVIDâ€19â€induced ARDS using placentaâ€derived decidua stromal cells. Journal of Cellular and Molecular Medicine, 2021, 25, 10554-10564.	1.6	20
255	Repair of acute respiratory distress syndrome by stromal cell administration (REALIST) trial: A phase 1 trial. EClinicalMedicine, 2021, 41, 101167.	3.2	22
256	An overview of the recent findings of cell-based therapies for the treatment and management of COVID-19. International Immunopharmacology, 2021, 101, 108226.	1.7	1
257	PATHOGENETIC RATIONALE FOR THE USE OF θ_i ELL THERAPY IN LUNG INJURY ASSOCIATED WITH SARS-COV-2. Innovative Medicine of Kuban, 2020, , 69-78.	0.0	1
258	Astrocytes Downregulate Inflammation in Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome: Applicability to COVID-19. Frontiers in Medicine, 2021, 8, 740071.	1.2	0

#	Article	IF	CITATIONS
259	The Inflammatory Lung Microenvironment; a Key Mediator in MSC Licensing. Cells, 2021, 10, 2982.	1.8	12
260	Current Clinical Application of Mesenchymal Stem Cells in the Treatment of Severe COVID-19 Patients: Review. Stem Cells and Cloning: Advances and Applications, 2021, Volume 14, 71-80.	2.3	1
261	Stem cell-based therapy for COVID-19 and ARDS: a systematic review. Npj Regenerative Medicine, 2021, 6, 73.	2.5	15
262	Preconditioning mesenchymal stromal cells with flagellin enhances the anti‑inflammatory ability of their secretome against lipopolysaccharide‑induced acute lung injury. Molecular Medicine Reports, 2020, 22, 2753-2766.	1.1	2
263	Umbilical Cord-derived Mesenchymal Stem Cells for COVID-19 Patients with Acute Respiratory Distress Syndrome (ARDS). CellR4, 2020, 8, .	0.5	3
265	Cellular Therapy Applications for COVID-19. , 2022, , 539-548.		0
266	Cell Therapy with the Cell or Without the Cell for Premature Infants? Time Will Tell. American Journal of Respiratory and Critical Care Medicine, $2021, \ldots$	2.5	0
267	Cell Therapy in Veterinary Medicine as a Proof-of-Concept for Human Therapies: Perspectives From the North American Veterinary Regenerative Medicine Association. Frontiers in Veterinary Science, 2021, 8, 779109.	0.9	9
268	Safety and efficacy of multipotent adult progenitor cells in acute respiratory distress syndrome (MUST-ARDS): a multicentre, randomised, double-blind, placebo-controlled phase 1/2 trial. Intensive Care Medicine, 2022, 48, 36-44.	3.9	22
269	A cellular census of human peripheral immune cells identifies novel cell states in lung diseases. Clinical and Translational Medicine, $2021, 11, e579$.	1.7	19
270	Regenerative Medicine: The Newest Cellular Therapy. , 2022, , 517-537.		1
271	Promises and challenges of personalized medicine to guide ARDS therapy. Critical Care, 2021, 25, 404.	2.5	35
272	Human mesenchymal stem cells treatment for severe COVID-19: 1-year follow-up results of a randomized, double-blind, placebo-controlled trial. EBioMedicine, 2022, 75, 103789.	2.7	60
274	Mesenchymal Stem Cell-Based COVID-19 Therapy: Bioengineering Perspectives. Cells, 2022, 11, 465.	1.8	3
275	Comparison of Single and Repeated Dosing of Anti-Inflammatory Human Umbilical Cord Mesenchymal Stromal Cells in a Mouse Model of Polymicrobial Sepsis. Stem Cell Reviews and Reports, 2022, 18, 1444-1460.	1.7	7
276	COVIDâ€19 immunopathology with emphasis on Th17 response and cellâ€based immunomodulation therapy: Potential targets and challenges. Scandinavian Journal of Immunology, 2022, 95, e13131.	1.3	19
277	Protease Activated Receptors: A Pathway to Boosting Mesenchymal Stromal Cell Therapeutic Efficacy in Acute Respiratory Distress Syndrome?. International Journal of Molecular Sciences, 2022, 23, 1277.	1.8	0
278	SARS-CoV-2 Infection and Lung Regeneration. Clinical Microbiology Reviews, 2022, 35, e0018821.	5.7	24

#	Article	IF	CITATIONS
279	Clinical efficacy and mechanism of mesenchymal stromal cells in treatment of COVID-19. Stem Cell Research and Therapy, 2022, 13, 61.	2.4	10
280	Regenerative Medicine Application of Mesenchymal Stem Cells. Advances in Experimental Medicine and Biology, 2022, , 25-42.	0.8	1
283	Treatment of COVID-19-associated ARDS with mesenchymal stromal cells: a multicenter randomized double-blind trial. Critical Care, 2022, 26, 48.	2.5	62
284	Mesenchymal stem cell-based treatments for COVID-19: status and future perspectives for clinical applications. Cellular and Molecular Life Sciences, 2022, 79, 142.	2.4	24
285	Strategies to enhance immunomodulatory properties and reduce heterogeneity in mesenchymal stromal cells during ex vivo expansion. Cytotherapy, 2022, 24, 456-472.	0.3	16
286	A Roadmap for the Production of a GMP-Compatible Cell Bank of Allogeneic Bone Marrow-Derived Clonal Mesenchymal Stromal Cells for Cell Therapy Applications. Stem Cell Reviews and Reports, 2022, 18, 2279-2295.	1.7	11
287	Cellular therapies for the treatment and prevention of SARS-CoV-2 infection. Blood, 2022, 140, 208-221.	0.6	13
288	Mesenchymal stem/stromal cell therapy for COVID-19 pneumonia: potential mechanisms, current clinical evidence, and future perspectives. Stem Cell Research and Therapy, 2022, 13, 124.	2.4	17
289	Mesenchymal Stem Cell-Secreted TGF- \hat{l}^21 Restores Treg/Th17 Skewing Induced by Lipopolysaccharide and Hypoxia Challenge via miR-155 Suppression. Stem Cells International, 2022, 2022, 1-14.	1.2	5
290	Mesenchymal Stromal Cells for Enhancing Hematopoietic Engraftment and Treatment of Graft-Versus-Host Disease, Hemorrhages and Acute Respiratory Distress Syndrome. Frontiers in Immunology, 2022, 13, 839844.	2.2	44
291	Safety and efficacy study of allogeneic human menstrual blood stromal cells secretome to treat severe COVID-19 patients: clinical trial phase I & Emp; II. Stem Cell Research and Therapy, 2022, 13, 96.	2.4	24
292	Mesenchymal stem cell treatment for COVID-19. EBioMedicine, 2022, 77, 103920.	2.7	36
293	Co-Administration of Menstrual Blood-Derived Stem Cells and Remdesivir for the Treatment of Severe Coronavirus Disease 2019 (COVID-19) Induced Pneumonia: A Research Protocol., 2022, 6, 1-12.		1
294	Safety and efficacy of autologous, adipose-derived mesenchymal stem cells in patients with rheumatoid arthritis: a phase I/IIa, open-label, non-randomized pilot trial. Stem Cell Research and Therapy, 2022, 13, 88.	2.4	16
295	A Brief Overview of Global Trends in MSC-Based Cell Therapy. Stem Cell Reviews and Reports, 2022, 18, 1525-1545.	1.7	66
296	Poly(I:C) enhances mesenchymal stem cell control of myeloid cells from COVID-19 patients. IScience, 2022, 25, 104188.	1.9	6
297	Safety of DW-MSC infusion in patients with low clinical risk COVID-19 infection: a randomized, double-blind, placebo-controlled trial. Stem Cell Research and Therapy, 2022, 13, 134.	2.4	22
298	Catching Them Early: Framework Parameters and Progress for Prenatal and Childhood Application of Advanced Therapies. Pharmaceutics, 2022, 14, 793.	2.0	4

#	Article	IF	CITATIONS
299	Molecular and Clinical Aspects of COVID-19 Vaccines and Other Therapeutic Interventions Apropos Emerging Variants of Concern. Frontiers in Pharmacology, 2021, 12, 778219.	1.6	0
300	Mesenchymal stem/stromal cell-based therapies for severe viral pneumonia: therapeutic potential and challenges. Intensive Care Medicine Experimental, 2021, 9, 61.	0.9	9
301	Current Status and Future Perspectives on Machine Perfusion: A Treatment Platform to Restore and Regenerate Injured Lungs Using Cell and Cytokine Adsorption Therapy. Cells, 2022, 11, 91.	1.8	9
302	Efficacy and Safety of Mesenchymal Stromal Cells Therapy for COVID-19 Infection: A Systematic Review and Meta-analysis. Current Stem Cell Research and Therapy, 2023, 18, 143-152.	0.6	5
304	From Vial to Vein: Crucial Gaps in Mesenchymal Stromal Cell Clinical Trial Reporting. Frontiers in Cell and Developmental Biology, 2022, 10, 867426.	1.8	7
305	Secretome of Mesenchymal Stem Cells from Consecutive Hypoxic Cultures Promotes Resolution of Lung Inflammation by Reprogramming Anti-Inflammatory Macrophages. International Journal of Molecular Sciences, 2022, 23, 4333.	1.8	5
306	Targeted Therapy for Inflammatory Diseases with Mesenchymal Stem Cells and Their Derived Exosomes: From Basic to Clinics. International Journal of Nanomedicine, 2022, Volume 17, 1757-1781.	3.3	37
307	Mesenchymal stromal cell therapy for acute respiratory distress syndrome due to coronavirus disease 2019. Cytotherapy, 2022, 24, 835-840.	0.3	4
315	Different microRNAs contribute to the protective effect of mesenchymal stem cell-derived microvesicles in LPS induced acute respiratory distress syndrome Iranian Journal of Basic Medical Sciences, 2021, 24, 1702-1708.	1.0	1
317	Efficacy and Safety of MSC Cell Therapies for Hospitalized Patients with COVID-19: A Systematic Review and Meta-Analysis. Stem Cells Translational Medicine, 2022, 11, 688-703.	1.6	13
318	An insight into the molecular mechanisms of mesenchymal stem cells and their translational approaches to combat COVID-19., 2022, , 23-46.		0
319	Impact of Cryopreservation and Freeze-Thawing on Therapeutic Properties of Mesenchymal Stromal/Stem Cells and Other Common Cellular Therapeutics. Current Stem Cell Reports, 2022, 8, 72-92.	0.7	51
320	How to Make Sense out of 75,000 Mesenchymal Stromal Cell Publications?. Cells, 2022, 11, 1419.	1.8	5
321	Repair of acute respiratory distress syndrome by stromal cell administration (REALIST): a structured study protocol for an open-label dose-escalation phase 1 trial followed by a randomised, triple-blind, allocation concealed, placebo-controlledÂphase 2 trial. Trials, 2022, 23, 401.	0.7	3
322	Nebulized exosomes derived from allogenic adipose tissue mesenchymal stromal cells in patients with severe COVID-19: a pilot study. Stem Cell Research and Therapy, 2022, 13, .	2.4	61
324	Presence of comorbidities alters management and worsens outcome of patients with acute respiratory distress syndrome: insights from the LUNG SAFE study. Annals of Intensive Care, 2022, 12, .	2.2	7
325	The Impact of Sample Size Misestimations on the Interpretation of ARDS Trials. Chest, 2022, 162, 1048-1062.	0.4	2
327	hLMSC Secretome Affects Macrophage Activity Differentially Depending on Lung-Mimetic Environments. Cells, 2022, 11, 1866.	1.8	7

#	Article	IF	CITATIONS
328	Safety, efficacy and biomarkers analysis of mesenchymal stromal cells therapy in ARDS: a systematic review and meta-analysis based on phase I and II RCTs. Stem Cell Research and Therapy, 2022, 13, .	2.4	2
329	Mesenchymal stromal cell therapy for COVID-19-induced ARDS patients: a successful phase 1, control-placebo group, clinical trial. Stem Cell Research and Therapy, 2022, 13, .	2.4	25
330	Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Disease 2021. American Journal of Physiology - Lung Cellular and Molecular Physiology, 0, , .	1.3	5
331	Mesenchymal stromal cell treatment improves outcomes in children with pneumonia post-hematopoietic stem cell transplantation: a retrospective cohort study. Stem Cell Research and Therapy, 2022, 13, .	2.4	0
332	Bone Marrow-Derived Mesenchymal Stromal Cell Therapy in Severe COVID-19: Preliminary Results of a Phase I/II Clinical Trial. Frontiers in Immunology, 0, 13, .	2.2	24
333	Exploring the Immunomodulatory Aspect of Mesenchymal Stem Cells for Treatment of Severe Coronavirus Disease 19. Cells, 2022, 11, 2175.	1.8	7
334	Gclc overexpression inhibits apoptosis of bone marrow mesenchymal stem cells through the PI3K/AKT/Foxo1 pathway to alleviate inflammation in acute lung injury. International Immunopharmacology, 2022, 110, 109017.	1.7	5
335	What Works in a Patient With Acute Respiratory Distress Syndrome?. , 2023, , 484-495.		0
336	Novel approaches for long-term lung transplant survival. Frontiers in Immunology, 0, 13, .	2.2	7
337	Human placenta-derived mesenchymal stem cells transplantation in patients with acute respiratory distress syndrome (ARDS) caused by COVID-19 (phase I clinical trial): safety profile assessment. Stem Cell Research and Therapy, 2022, 13, .	2.4	23
338	Treatment for acute respiratory distress syndrome in adults: a narrative review of phase 2 and 3 trials. Expert Opinion on Emerging Drugs, 2022, 27, 187-209.	1.0	5
339	Advances in mesenchymal stromal cell therapy for acute lung injury/acute respiratory distress syndrome. Frontiers in Cell and Developmental Biology, 0, 10 , .	1.8	2
340	Stem cell-based therapy for human diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	209
341	Pathophysiology of Sepsis and Genesis of Septic Shock: The Critical Role of Mesenchymal Stem Cells (MSCs). International Journal of Molecular Sciences, 2022, 23, 9274.	1.8	11
342	A clinically relevant model of acute respiratory distress syndrome in human-size swine. DMM Disease Models and Mechanisms, 2022, 15 , .	1.2	2
343	Cellular Imaging Analysis Algorithm-Based Assessment and Prediction of Disease in Patients with Acute Lung Injury. Contrast Media and Molecular Imaging, 2022, 2022, 1-11.	0.4	1
344	Extracellular Vesicles Derived from Mesenchymal Stem Cells: A Potential Biodrug for Acute Respiratory Distress Syndrome Treatment. BioDrugs, 2022, 36, 701-715.	2.2	9
345	Clinical efficacy analysis of mesenchymal stem cell therapy in patients with COVID-19: A systematic review. World Journal of Clinical Cases, 2022, 10, 9714-9726.	0.3	4

#	ARTICLE	IF	CITATIONS
346	Mesenchymal stromal cells alleviate acute respiratory distress syndrome through the cholinergic anti-inflammatory pathway. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	13
347	Exosome from BMMSC Attenuates Cardiopulmonary Bypass-Induced Acute Lung Injury Via YAP/β-Catenin Pathway: Downregulation of Pyroptosis. Stem Cells, 2022, 40, 1122-1133.	1.4	7
348	Rapid and Continuous Cryopreservation of Stem Cells with a 3D Micromixer. Micromachines, 2022, 13, 1516.	1.4	1
349	A Randomized Trial of Mesenchymal Stromal Cells for Moderate to Severe Acute Respiratory Distress Syndrome from COVID-19. American Journal of Respiratory and Critical Care Medicine, 2023, 207, 261-270.	2.5	25
350	Therapeutic Benefits of Mesenchymal Stem Cells in Acute Respiratory Distress Syndrome: Potential Mechanisms and Challenges. Journal of Inflammation Research, 0, Volume 15, 5235-5246.	1.6	3
351	Opportunities for improved clinical trial designs in acute respiratory distress syndrome. Lancet Respiratory Medicine, the, 2022, 10, 916-924.	5.2	15
352	Lung organoids: current strategies for generation and transplantation. Cell and Tissue Research, 2022, 390, 317-333.	1.5	6
353	Acute respiratory distress syndrome in adults: diagnosis, outcomes, long-term sequelae, and management. Lancet, The, 2022, 400, 1157-1170.	6.3	78
354	General consensus on multimodal functions and validation analysis of perinatal derivatives for regenerative medicine applications. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	6
355	The Effectiveness of Mesenchymal Stem Cell Therapy on COVID-19 Patients at Intensive Care Unit: Case Control Study. Turkish Journal of Haematology, 0, , .	0.2	0
356	Potential of Mesenchymal Stem Cell-Based Therapies for Pulmonary Fibrosis. DNA and Cell Biology, 2022, 41, 951-965.	0.9	6
357	Drugs for the prevention and treatment of COVID-19 and its complications: An update on what we learned in the past 2 years. Frontiers in Pharmacology, $0,13,13$	1.6	8
358	A Comprehensive Review on the Efficacy of Several Pharmacologic Agents for the Treatment of COVID-19. Life, 2022, 12, 1758.	1.1	9
359	MSCs interaction with the host lung microenvironment: An overlooked aspect?. Frontiers in Immunology, 0, 13 , .	2.2	2
360	Lung Extracellular Matrix Hydrogels-Derived Vesicles Contribute to Epithelial Lung Repair. Polymers, 2022, 14, 4907.	2.0	1
361	Adverse events, side effects and complications in mesenchymal stromal cell-based therapies. Stem Cell Investigation, 0, 9, 7-7.	1.3	36
362	Mesenchymal stromal cells as treatment for acute respiratory distress syndrome. Case Reports following hematopoietic cell transplantation and a review. Frontiers in Immunology, 0, 13, .	2.2	5
363	Cryopreservation does not change the performance and characteristics of allogenic mesenchymal stem cells highly over-expressing a cytoplasmic therapeutic transgene for cancer treatment. Stem Cell Research and Therapy, 2022, 13, .	2.4	3

#	Article	IF	CITATIONS
364	Nestin prevents mesenchymal stromal cells from apoptosis in LPS-induced lung injury via inhibition of unfolded protein response sensor IRE1 \hat{l}_{\pm} , 2022, 1, 359-371.		3
365	Pooled evidence from preclinical and clinical studies for stem cell-based therapy in ARDS and COVID-19. Molecular and Cellular Biochemistry, 0, , .	1.4	2
367	Advances in Treatment of Post-Infectious Bronchiolitis Obliterans in Children. Advances in Clinical Medicine, 2022, 12, 11343-11350.	0.0	0
368	Antigen-Specific T Cells and SARS-CoV-2 Infection: Current Approaches and Future Possibilities. International Journal of Molecular Sciences, 2022, 23, 15122.	1.8	1
369	Differential Effects of Cytokine Versus Hypoxic Preconditioning of Human Mesenchymal Stromal Cells in Pulmonary Sepsis Induced by Antimicrobial-Resistant Klebsiella pneumoniae. Pharmaceuticals, 2023, 16, 149.	1.7	1
370	The safety and efficacy of mesenchymal stromal cells in ARDS: a meta-analysis of randomized controlled trials. Critical Care, 2023, 27, .	2.5	13
371	Inflammatory protection and management during extracorporeal membrane oxygenation. , 2023, , 1003-1020.		0
372	Mechanisms of impaired alveolar fluid clearance. Anatomical Record, 0, , .	0.8	2
373	Safety and efficacy of clinical-grade, cryopreserved menstrual blood mesenchymal stromal cells in experimental acute respiratory distress syndrome. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	1
374	The use of mesenchymal stem cells in the treatment of severe forms of new coronavirus infection COVID-19: a prospective observational study. Alexander Saltanov Intensive Care Herald, 2023, , 71-82.	0.2	0
375	Prophylactic Administration of Mesenchymal Stromal Cells Does Not Prevent Arrested Lung Development in Extremely Premature-Born Non-Human Primates. Stem Cells Translational Medicine, 2023, 12, 97-111.	1.6	2
376	Deciphering the Heterogeneity Landscape of Mesenchymal Stem/Stromal Cellâ€Derived Extracellular Vesicles for Precise Selection in Translational Medicine. Advanced Healthcare Materials, 2023, 12, .	3.9	2
377	Key Role of Mesenchymal Stromal Cell Interaction with Macrophages in Promoting Repair of Lung Injury. International Journal of Molecular Sciences, 2023, 24, 3376.	1.8	12
378	Overexpression of FoxM1 Enhanced the Protective Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Lipopolysaccharide-Induced Acute Lung Injury through the Activation of Wnt/β-Catenin Signaling. Oxidative Medicine and Cellular Longevity, 2023, 2023, 1-13.	1.9	0
379	What is the need and why is it time for innovative models for understanding lung repair and regeneration?. Frontiers in Pharmacology, 0, 14 , .	1.6	1
380	Prevention for moderate or severe BPD with intravenous infusion of autologous cord blood mononuclear cells in very preterm infants-a prospective non-randomized placebo-controlled trial and two-year follow up outcomes. EClinicalMedicine, 2023, 57, 101844.	3.2	5
381	Cell transplantation for COVID-19 treatment: transmission of stem stomal (mesenchimal) cells. Genes and Cells, 2020, 15, 10-19.	0.2	1
382	Functional enhancement strategies to potentiate the therapeutic properties of mesenchymal stromal cells for respiratory diseases. Frontiers in Pharmacology, 0, 14, .	1.6	7

#	Article	IF	CITATIONS
383	Immunogenicity of mesenchymal stromal/stem cells. Scandinavian Journal of Immunology, 0, , .	1.3	0
384	BMSC-Derived Exosomes Alleviate Sepsis-Associated Acute Respiratory Distress Syndrome by Activating the Nrf2 Pathway to Reverse Mitochondrial Dysfunction. Stem Cells International, 2023, 2023, 1-15.	1.2	1
385	POSSIBILITIES OF USING MEDICINES AND BIOLOGICALLY ACTIVE SUBSTANCES AS CORRECTIVES FOR THE FORMATION OF PULMONARY FIBROSIS DURING SARS-COV-2 INFECTION AND IN THE POST-COVID PERIOD. Eurasian Journal of Applied Biotechnology, 2023, , 3-26.	0.0	0
386	Liver Disease and Cell Therapy: Advances Made and Remaining Challenges. Stem Cells, 2023, 41, 739-761.	1.4	3
387	The Use of Biomarkers in Pharmacovigilance: A Systematic Review of the Literature. Biomarker Insights, 2023, 18, 117727192311645.	1.0	1
388	Menstrual Blood-Derived Mesenchymal Stem Cell Therapy for Severe COVID-19 Patients. Current Stem Cell Research and Therapy, 2024, 19, 644-652.	0.6	2
389	Genetic modification and preconditioning strategies to enhance functionality of mesenchymal stromal cells: a clinical perspective. Expert Opinion on Biological Therapy, 2023, 23, 461-478.	1.4	4
395	The application of MSCs in regenerative medicine. , 2023, , 15-67.		O
416	Aus mesenchymalen Stammzellen gewonnenes Sekretom: Ein neues Heilmittel zur Behandlung von Autoimmun- und Entzündungskrankheiten. , 2023, , 67-78.		0
426	MSC-Based Cell Therapy for COVID-19-Associated ARDS and Classical ARDS: Comparative Perspectives. Current Stem Cell Reports, 0, , .	0.7	O
435	Immunomodulatory therapeutic potential of mesenchymal stem cells in COVID-19 pathogenesis. , 2024, , 343-352.		0
436	Mesenchymal stromal cells (MSCs) as a therapeutic agent of inflammatory disease and infectious COVID-19 virus: live or dead mesenchymal?. Molecular Biology Reports, 2024, 51, .	1.0	О