Slide-seq: A scalable technology for measuring genomeresolution

Science 363, 1463-1467 DOI: 10.1126/science.aaw1219

Citation Report

#	Article	IF	CITATIONS
1	Questions and (some) answers on reactive astrocytes. Glia, 2019, 67, 2221-2247.	2.5	185
2	RNA sequencing: the teenage years. Nature Reviews Genetics, 2019, 20, 631-656.	7.7	1,192
3	The Spatial and Genomic Hierarchy of Tumor Ecosystems Revealed by Single-Cell Technologies. Trends in Cancer, 2019, 5, 411-425.	3.8	44
4	The Unmixing Problem: A Guide to Applying Single-Cell RNA Sequencing to Bone. Journal of Bone and Mineral Research, 2019, 34, 1207-1219.	3.1	34
6	Computational approaches for characterizing the tumor immune microenvironment. Immunology, 2019, 158, 70-84.	2.0	30
7	Characteristics of a novel cell line ZJU-0430 established from human gallbladder carcinoma. Cancer Cell International, 2019, 19, 190.	1.8	6
8	Highly Multiplexed, Quantitative Tissue Imaging at Cellular Resolution. Current Pathobiology Reports, 2019, 7, 109-118.	1.6	2
9	The Potential of Astrocytes as Immune Modulators in Brain Tumors. Frontiers in Immunology, 2019, 10, 1314.	2.2	36
10	The evolving concept of cell identity in the single cell era. Development (Cambridge), 2019, 146, .	1.2	115
11	Multi-modal image cytometry approach – From dynamic to whole organ imaging. Cellular Immunology, 2019, 344, 103946.	1.4	3
12	Recording development with single cell dynamic lineage tracing. Development (Cambridge), 2019, 146, .	1.2	115
13	Exploring single cells in space and time during tissue development, homeostasis and regeneration. Development (Cambridge), 2019, 146, .	1.2	51
14	Immunology Driven by Large-Scale Single-Cell Sequencing. Trends in Immunology, 2019, 40, 1011-1021.	2.9	62
15	High-Throughput Mapping of Long-Range Neuronal Projection Using In Situ Sequencing. Cell, 2019, 179, 772-786.e19.	13.5	146
16	Landscape of Noncoding RNA in Prostate Cancer. Trends in Genetics, 2019, 35, 840-851.	2.9	114
17	Revisiting airway epithelial remodeling in type 2 immunity: Beyond goblet cell metaplasia. Journal of Allergy and Clinical Immunology, 2019, 144, 1158-1160.	1.5	6
18	Transcriptome profiling of brain myeloid cells revealed activation of Itgal, Trem1, and Spp1 in western diet-induced obesity. Journal of Neuroinflammation, 2019, 16, 169.	3.1	32
19	Implications for Tumor Microenvironment and Epithelial Crosstalk in the Management of Gastrointestinal Cancers. Journal of Oncology, 2019, 2019, 1-11.	0.6	2

ATION RED

#	ARTICLE	IF	Citations
20	SpatialDB: a database for spatially resolved transcriptomes. Nucleic Acids Research, 2020, 48, D233-D237.	6.5	37
21	Studying immune to non-immune cell cross-talk using single-cell technologies. Current Opinion in Systems Biology, 2019, 18, 87-94.	1.3	5
22	A single-cell view of tissue regeneration in plants. Current Opinion in Plant Biology, 2019, 52, 149-154.	3.5	24
23	A Point of Inflection and Reflection on Systems Chemical Biology. ACS Chemical Biology, 2019, 14, 2497-2511.	1.6	8
24	Pheno-seq – linking visual features and gene expression in 3D cell culture systems. Scientific Reports, 2019, 9, 12367.	1.6	16
25	Network modeling of single-cell omics data: challenges, opportunities, and progresses. Emerging Topics in Life Sciences, 2019, 3, 379-398.	1.1	48
27	Learning a Deep Representative Saliency Map With Sparse Tensors. IEEE Access, 2019, 7, 117861-117870.	2.6	2
28	A computational framework for DNA sequencing microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19282-19287.	3.3	17
29	High-definition spatial transcriptomics for in situ tissue profiling. Nature Methods, 2019, 16, 987-990.	9.0	708
30	Next-generation computational tools for interrogating cancer immunity. Nature Reviews Genetics, 2019, 20, 724-746.	7.7	131
31	Pinpointing a spatial address for RNA profiles in tissues. Nature, 2019, 569, 197-199.	13.7	2
32	Starfish enterprise: finding RNA patterns in single cells. Nature, 2019, 572, 549-551.	13.7	45
33	Generation of in situ sequencing based OncoMaps to spatially resolve gene expression profiles of diagnostic and prognostic markers in breast cancer. EBioMedicine, 2019, 48, 212-223.	2.7	29
34	Mapping human cell phenotypes to genotypes with single-cell genomics. Science, 2019, 365, 1401-1405.	6.0	71
35	Deciphering Brain Complexity Using Single-cell Sequencing. Genomics, Proteomics and Bioinformatics, 2019, 17, 344-366.	3.0	52
36	Transcribing the heart: faithfully interpreting cardiac transcriptional insights. Regenerative Medicine, 2019, 14, 805-810.	0.8	1
37	Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19490-19499.	3.3	460
38	Using High-Dimensional Approaches to Probe Monocytes and Macrophages in Cardiovascular Disease. Frontiers in Immunology, 2019, 10, 2146.	2.2	17

ARTICLE IF CITATIONS # The diversity of GABAergic neurons and neural communication elements. Nature Reviews 39 4.9 167 Neuroscience, 2019, 20, 563-572. Navigating the Depths and Avoiding the Shallows of Pancreatic Islet Cell Transcriptomes. Diabetes, 0.3 2019, 68, 1380-1393. The Human Lung Cell Atlas: A High-Resolution Reference Map of the Human Lung in Health and Disease. 41 1.4 178 American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 31-41. Droplet-based single cell RNAseq tools: a practical guide. Lab on A Chip, 2019, 19, 1706-1727. 3.1 Spatial transcriptomics coming of age. Nature Reviews Genetics, 2019, 20, 317-317. 43 7.7 213 Contribution of Single-Cell Transcriptomics to the Characterization of Human Spermatogonial Stem Cells: Toward an Application in Male Fertility Regenerative Medicine?. International Journal of 1.8 Molecular Sciences, 2019, 20, 5773. Decoding the body language of immunity: Tackling the immune system at the organism level. Current 45 1.3 6 Opinion in System's Biology, 2019, 18, 19-26. Gene expression cartography. Nature, 2019, 576, 132-137. 13.7 46 216 T and B lymphocytes in fibrosis and systemic sclerosis. Current Opinion in Rheumatology, 2019, 31, 47 2.0 31 576-581. A systematic capsid evolution approach performed in vivo for the design of AAV vectors with tailored properties and tropism. Proceedings of the National Academy of Sciences of the United States of 3.3 America, 2019, 116, 27053-27062 Theory of cell fate. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1471. 49 6.6 19 Single-cell transcriptomic profiling of the aging mouse brain. Nature Neuroscience, 2019, 22, 1696-1708. 7.1 50 432 Growth Plate Chondrocytes: Skeletal Development, Growth and Beyond. International Journal of 51 1.8 92 Molecular Sciences, 2019, 20, 6009. Toward a Common Coordinate Framework for the Human Body. Cell, 2019, 179, 1455-1467. 13.5 A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart. Cell, 53 13.5 470 2019, 179, 1647-1660.e19. New paradigms on hematopoietic stem cell differentiation. Protein and Cell, 2020, 11, 34-44. 54 123 Spatial transcriptomics: putting genome-wide expression on the map. Neuropsychopharmacology, 55 2.8 17 2020, 45, 232-233. Investigating Tumor Heterogeneity in Mouse Models. Annual Review of Cancer Biology, 2020, 4, 99-119. 2.3

#	Article	IF	CITATIONS
57	Cellular Plasticity in Musculoskeletal Development, Regeneration, and Disease. Journal of Orthopaedic Research, 2020, 38, 708-718.	1.2	4
58	The encyclopedia of maize kernel gene expression. Journal of Integrative Plant Biology, 2020, 62, 879-881.	4.1	6
59	Slide-Seq for Spatially Mapping Gene Expression. Metabolic Syndrome Exacerbates Group 2 Pulmonary Hypertension, and NAD Metabolism Is Influenced by Tissue Origin. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 112-114.	1.4	3
60	Of Molecules and Mechanisms. Journal of Neuroscience, 2020, 40, 81-88.	1.7	1
61	Time-Series Single-Cell RNA-Seq Data Reveal Auxin Fluctuation during Endocycle. Plant and Cell Physiology, 2020, 61, 243-254.	1.5	10
62	Gene Expression in Nitrogen-Fixing Symbiotic Nodule Cells in <i>Medicago truncatula</i> and Other Nodulating Plants. Plant Cell, 2020, 32, 42-68.	3.1	63
63	Single-cell multimodal omics: the power of many. Nature Methods, 2020, 17, 11-14.	9.0	277
64	Computational methods for single-cell omics across modalities. Nature Methods, 2020, 17, 14-17.	9.0	156
65	NicheNet: modeling intercellular communication by linking ligands to target genes. Nature Methods, 2020, 17, 159-162.	9.0	904
66	Identification of Distinct Immune Subtypes in Colorectal Cancer Based on the Stromal Compartment. Frontiers in Oncology, 2019, 9, 1497.	1.3	38
67	Parenting — a paradigm for investigating the neural circuit basis of behavior. Current Opinion in Neurobiology, 2020, 60, 84-91.	2.0	13
68	The microcosmos of intratumor heterogeneity: the space-time of cancer evolution. Oncogene, 2020, 39, 2031-2039.	2.6	48
69	Spatially multiplexed RNA in situ hybridization to reveal tumor heterogeneity. Nucleic Acids Research, 2020, 48, e17-e17.	6.5	23
70	Astrocyte Crosstalk in CNS Inflammation. Neuron, 2020, 108, 608-622.	3.8	423
71	An era of single-cell genomics consortia. Experimental and Molecular Medicine, 2020, 52, 1409-1418.	3.2	12
72	Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Communications Biology, 2020, 3, 565.	2.0	252
73	Reading the heart at single-cell resolution. Journal of Molecular and Cellular Cardiology, 2020, 148, 34-45.	0.9	6
74	Second-Strand Synthesis-Based Massively Parallel scRNA-Seq Reveals Cellular States and Molecular Features of Human Inflammatory Skin Pathologies. Immunity, 2020, 53, 878-894.e7.	6.6	169

	CITATION RE	PORT	
#	ARTICLE The Whole Body as the System in Systems Immunology. IScience, 2020, 23, 101509.	IF	CITATIONS
75	The whole body as the System in Systems initiatiology. Iscience, 2020, 23, 101309.	1.9	24
76	New gene discoveries highlight functional convergence in autism and related neurodevelopmental disorders. Current Opinion in Genetics and Development, 2020, 65, 195-206.	1.5	27
77	Spatial Transcriptomics Reveals Genes Associated with Dysregulated Mitochondrial Functions and Stress Signaling in Alzheimer Disease. IScience, 2020, 23, 101556.	1.9	61
78	Application of Single-Cell Sequencing to Immunotherapy. Urologic Clinics of North America, 2020, 47, 475-485.	0.8	5
79	Spatial Transcriptomics and In Situ Sequencing to Study Alzheimer's Disease. Cell, 2020, 182, 976-991.e19.	13.5	491
80	Meta-Analysis of Leukocyte Diversity in Atherosclerotic Mouse Aortas. Circulation Research, 2020, 127, 402-426.	2.0	207
81	Role of Vascular Smooth Muscle Cell Plasticity and Interactions in Vessel Wall Inflammation. Frontiers in Immunology, 2020, 11, 599415.	2.2	153
82	In vivo Perturb-Seq reveals neuronal and glial abnormalities associated with autism risk genes. Science, 2020, 370, .	6.0	155
83	Applications of Single-Cell Omics to Dissect Tumor Microenvironment. Frontiers in Genetics, 2020, 11, 548719.	1.1	18
84	In Situ Classification of Cell Types in Human Kidney Tissue Using 3D Nuclear Staining. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 99, 707-721.	1.1	15
85	Deciphering Organoids: High-Dimensional Analysis of Biomimetic Cultures. Trends in Biotechnology, 2021, 39, 774-787.	4.9	15
86	Fibrosis: from mechanisms to medicines. Nature, 2020, 587, 555-566.	13.7	746
87	Mathematical and Computational Oncology. Lecture Notes in Computer Science, 2020, , .	1.0	0
88	RNA sequencing: new technologies and applications in cancer research. Journal of Hematology and Oncology, 2020, 13, 166.	6.9	229
89	Next-generation diagnostics for precision oncology: Preanalytical considerations, technical challenges, and available technologies. Seminars in Cancer Biology, 2022, 84, 3-15.	4.3	12
90	High-Spatial-Resolution Multi-Omics Sequencing via Deterministic Barcoding in Tissue. Cell, 2020, 183, 1665-1681.e18.	13.5	423
91	Digital microfluidic isolation of single cells for -Omics. Nature Communications, 2020, 11, 5632.	5.8	85
92	High-Resolution Transcriptomic and Proteomic Profiling of Heterogeneity of Brain-Derived Microglia in Multiple Sclerosis. Frontiers in Molecular Neuroscience, 2020, 13, 583811.	1.4	18

	Сітат	tion Report	
# 93	ARTICLE Understanding the impact of controlled oxygen delivery to 3D cancer cell culture. , 2020, , 661-696.	IF	CITATIONS
94	Network Approaches for Dissecting the Immune System. IScience, 2020, 23, 101354.	1.9	28
95	Unraveling Heterogeneity in Transcriptome and Its Regulation Through Single-Cell Multi-Omics Technologies. Frontiers in Genetics, 2020, 11, 662.	1.1	18
96	Unraveling the Complexity of the Cancer Microenvironment With Multidimensional Genomic and Cytometric Technologies. Frontiers in Oncology, 2020, 10, 1254.	1.3	45
97	The changing mouse embryo transcriptome at whole tissue and single-cell resolution. Nature, 2020, 583, 760-767.	13.7	131
98	Aging and Rejuvenation of Neural Stem Cells and Their Niches. Cell Stem Cell, 2020, 27, 202-223.	5.2	118
99	Characterizing the ecological and evolutionary dynamics of cancer. Nature Genetics, 2020, 52, 759-767.	9.4	77
100	Prognostic significance of spatial immune profiles in human solid cancers. Cancer Science, 2020, 111, 3426-3434.	1.7	31
101	Genomic Cytometry and New Modalities for Deep Single ell Interrogation. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 1007-1016.	1.1	2
102	Encoding Method of Single-cell Spatial Transcriptomics Sequencing. International Journal of Biological Sciences, 2020, 16, 2663-2674.	2.6	16
103	Big Data Approaches in Heart Failure Research. Current Heart Failure Reports, 2020, 17, 213-224.	1.3	13
104	The peripheral nervous system in hematopoietic stem cell aging. Mechanisms of Ageing and Development, 2020, 191, 111329.	2.2	1
105	Heterogeneity of Neuroinflammatory Responses in Amyotrophic Lateral Sclerosis: A Challenge or an Opportunity?. International Journal of Molecular Sciences, 2020, 21, 7923.	1.8	15
106	Probing infectious disease by single-cell RNA sequencing: Progresses and perspectives. Computational and Structural Biotechnology Journal, 2020, 18, 2962-2971.	1.9	32
107	Enabling high-throughput single-animal gene-expression studies with molecular and micro-scale technologies. Lab on A Chip, 2020, 20, 4528-4538.	3.1	4
108	From whole-mount to single-cell spatial assessment of gene expression in 3D. Communications Biology, 2020, 3, 602.	2.0	82
109	Measuring and Modeling Single-Cell Heterogeneity and Fate Decision in Mouse Embryos. Annual Review of Genetics, 2020, 54, 167-187.	3.2	14
110	SpaGE: Spatial Gene Enhancement using scRNA-seq. Nucleic Acids Research, 2020, 48, e107-e107.	6.5	94

#	Article	IF	Citations
111	Resolving Neurodevelopmental and Vision Disorders Using Organoid Single-Cell Multi-omics. Neuron, 2020, 107, 1000-1013.	3.8	24
112	Genomic Cytometry Editorial. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 994-996.	1.1	0
113	A systematic evaluation of single-cell RNA-sequencing imputation methods. Genome Biology, 2020, 21, 218.	3.8	188
114	Single-cell sequencing techniques from individual to multiomics analyses. Experimental and Molecular Medicine, 2020, 52, 1419-1427.	3.2	136
115	Looking at neurodevelopment through a big data lens. Science, 2020, 369, .	6.0	28
116	Systemic Immunometabolism: Challenges and Opportunities. Immunity, 2020, 53, 496-509.	6.6	73
117	Pinpointing Cell Identity in Time and Space. Frontiers in Molecular Biosciences, 2020, 7, 209.	1.6	15
118	The Application of Single-Cell RNA Sequencing in Vaccinology. Journal of Immunology Research, 2020, 2020, 1-19.	0.9	30
119	Pre-Clinical Cell Therapeutic Approaches for Repair of Volumetric Muscle Loss. Bioengineering, 2020, 7, 97.	1.6	21
120	Experimental and computational technologies to dissect the kidney at the single-cell level. Nephrology Dialysis Transplantation, 2022, 37, 628-637.	0.4	6
121	Development of a sequencing system for spatial decoding of DNA barcode molecules at single-molecule resolution. Communications Biology, 2020, 3, 788.	2.0	3
122	Building the Border: Development of the Chordate Neural Plate Border Region and Its Derivatives. Frontiers in Physiology, 2020, 11, 608880.	1.3	22
123	Emerging Roles of Single-Cell Multi-Omics in Studying Developmental Temporal Patterning. International Journal of Molecular Sciences, 2020, 21, 7491.	1.8	8
124	Degenerative and regenerative pathways underlying Duchenne muscular dystrophy revealed by single-nucleus RNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29691-29701.	3.3	90
125	Spatially Resolved Transcriptomes—Next Generation Tools for Tissue Exploration. BioEssays, 2020, 42, e1900221.	1.2	332
126	Single-Cell Transcriptomic Analysis of Cardiac Progenitor Differentiation. Current Cardiology Reports, 2020, 22, 38.	1.3	4
127	New avenues for systematically inferring cell-cell communication: through single-cell transcriptomics data. Protein and Cell, 2020, 11, 866-880.	4.8	82
128	Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nature Biotechnology, 2020, 38, 586-599.	9.4	509

#	Article	IF	CITATIONS
129	Multiplex bioimaging of single-cell spatial profiles for precision cancer diagnostics and therapeutics. Npj Precision Oncology, 2020, 4, 11.	2.3	53
130	dotdotdot: an automated approach to quantify multiplex single molecule fluorescent in situ hybridization (smFISH) images in complex tissues. Nucleic Acids Research, 2020, 48, e66-e66.	6.5	46
131	Spatially resolved and multiplexed MicroRNA quantification from tissue using nanoliter well arrays. Microsystems and Nanoengineering, 2020, 6, 51.	3.4	21
132	Single-cell technologies in hepatology: new insights into liver biology and disease pathogenesis. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 457-472.	8.2	152
133	Improved mouse models and advanced genetic and genomic technologies for the study of neutrophils. Drug Discovery Today, 2020, 25, 1013-1025.	3.2	4
134	Tools and Concepts for Interrogating and Defining Cellular Identity. Cell Stem Cell, 2020, 26, 632-656.	5.2	24
135	Use of Single-Cell -Omic Technologies to Study the Gastrointestinal Tract and Diseases, From Single Cell Identities to Patient Features. Gastroenterology, 2020, 159, 453-466.e1.	0.6	17
136	Translating Ribosome Affinity Purification (TRAP) to Investigate Arabidopsis thaliana Root Development at a Cell Type-Specific Scale. Journal of Visualized Experiments, 2020, , .	0.2	6
137	The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies. Frontiers in Immunology, 2020, 11, 784.	2.2	339
138	The Role of Single-Cell Technology in the Study and Control of Infectious Diseases. Cells, 2020, 9, 1440.	1.8	15
139	A Dynamic Splicing Program Ensures Proper Synaptic Connections in the Developing Cerebellum. Cell Reports, 2020, 31, 107703.	2.9	25
140	Gene regulatory programmes of tissue regeneration. Nature Reviews Genetics, 2020, 21, 511-525.	7.7	99
141	Glia in neurodegeneration: Drivers of disease or along for the ride?. Neurobiology of Disease, 2020, 142, 104957.	2.1	56
142	A dot-stripe Turing model of joint patterning in the tetrapod limb. Development (Cambridge), 2020, 147,	1.2	16
143	Gene Deregulation and Underlying Mechanisms in Spinocerebellar Ataxias With Polyglutamine Expansion. Frontiers in Neuroscience, 2020, 14, 571.	1.4	18
144	Single-cell genomics and spatial transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and diseaseÂbiology. Journal of Hepatology, 2020, 73, 1219-1230.	1.8	156
145	Single ell RNA Sequencing in Hematological Diseases. Proteomics, 2020, 20, e1900228.	1.3	16
146	Reprint of "Multi-modal image cytometry approach – From dynamic to whole organ imaging― Cellular Immunology, 2020, 350, 104086.	1.4	1

#	Article	IF	Citations
147	Carpet-bombing tumors with IFN-Î ³ . Nature Cancer, 2020, 1, 270-272.	5.7	1
148	Dissecting cellular crosstalk by sequencing physically interacting cells. Nature Biotechnology, 2020, 38, 629-637.	9.4	187
149	Integrative Methods and Practical Challenges for Single-Cell Multi-omics. Trends in Biotechnology, 2020, 38, 1007-1022.	4.9	149
150	New Technologies to Image Tumors. Cancer Treatment and Research, 2020, 180, 51-94.	0.2	2
151	Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nature Reviews Cardiology, 2020, 17, 457-473.	6.1	174
152	Lineage tracing meets single-cell omics: opportunities and challenges. Nature Reviews Genetics, 2020, 21, 410-427.	7.7	354
153	Multi-scale cellular engineering: From molecules to organ-on-a-chip. APL Bioengineering, 2020, 4, 010906.	3.3	8
154	projectR: an R/Bioconductor package for transfer learning via PCA, NMF, correlation and clustering. Bioinformatics, 2020, 36, 3592-3593.	1.8	45
155	Systems analysis of benign bladder disorders: insights from omics analysis. American Journal of Physiology - Renal Physiology, 2020, 318, F901-F910.	1.3	2
156	Applying single ell technologies to clinical pathology: progress in nephropathology. Journal of Pathology, 2020, 250, 693-704.	2.1	15
157	Cell-by-Cell Deconstruction of Stem Cell Niches. Cell Stem Cell, 2020, 27, 19-34.	5.2	19
158	Midbrain Dopaminergic Neuron Development at the Single Cell Level: In vivo and in Stem Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 463.	1.8	34
159	Basic and Therapeutic Aspects of Angiogenesis Updated. Circulation Research, 2020, 127, 310-329.	2.0	251
160	3D Brain Organoids: Studying Brain Development and Disease Outside the Embryo. Annual Review of Neuroscience, 2020, 43, 375-389.	5.0	59
161	A review on histotechnology practices in COVID-19 pathology investigations. Journal of Histotechnology, 2020, 43, 153-158.	0.2	2
162	Understanding human gut diseases at single-cell resolution. Human Molecular Genetics, 2020, 29, R51-R58.	1.4	12
163	Molecular atlas of the adult mouse brain. Science Advances, 2020, 6, eabb3446.	4.7	183
164	BRICseq Bridges Brain-wide Interregional Connectivity to Neural Activity and Gene Expression in Single Animals. Cell, 2020, 182, 177-188.e27.	13.5	58

#	Article	IF	CITATIONS
165	Mass cytometry and type 1 diabetes research in the age of single-cell data science. Current Opinion in Endocrinology, Diabetes and Obesity, 2020, 27, 231-239.	1.2	6
166	Single cell genomics and developmental biology: moving beyond the generation of cell type catalogues. Current Opinion in Genetics and Development, 2020, 64, 66-71.	1.5	7
167	ZipSeq: barcoding for real-time mapping of single cell transcriptomes. Nature Methods, 2020, 17, 833-843.	9.0	91
168	Eleven grand challenges in single-cell data science. Genome Biology, 2020, 21, 31.	3.8	742
169	Computational deconvolution of transcriptomic data for the study of tumor-infiltrating immune cells. International Journal of Biological Markers, 2020, 35, 20-22.	0.7	5
170	Spatial modeling of prostate cancer metabolic gene expression reveals extensive heterogeneity and selective vulnerabilities. Scientific Reports, 2020, 10, 3490.	1.6	43
171	A Synthesis Concerning Conservation and Divergence of Cell Types across Epithelia. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035733.	2.3	6
172	Immunology in the Era of Single-Cell Technologies. Annual Review of Immunology, 2020, 38, 727-757.	9.5	57
173	CellPhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nature Protocols, 2020, 15, 1484-1506.	5.5	1,768
174	Advancing Stem Cell Research through Multimodal Single-Cell Analysis. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035725.	2.3	7
175	Techniques converge to map the developing human heart at single-cell level. Nature, 2020, 577, 629-630.	13.7	5
176	Statistical analysis of spatial expression patterns for spatially resolved transcriptomic studies. Nature Methods, 2020, 17, 193-200.	9.0	264
177	Light-mediated control of Gene expression in mammalian cells. Neuroscience Research, 2020, 152, 66-77.	1.0	24
178	Using Single-Cell and Spatial Transcriptomes to Understand Stem Cell Lineage Specification During Early Embryo Development. Annual Review of Genomics and Human Genetics, 2020, 21, 163-181.	2.5	31
179	Inspiring song: The role of respiratory circuitry in the evolution of vertebrate vocal behavior. Developmental Neurobiology, 2020, 80, 31-41.	1.5	9
180	Inferring spatial and signaling relationships between cells from single cell transcriptomic data. Nature Communications, 2020, 11, 2084.	5.8	184
181	Effective microtissue RNA extraction coupled with Smart-seq2 for reproducible and robust spatial transcriptome analysis. Scientific Reports, 2020, 10, 7083.	1.6	15
182	Single-cell omics in ageing: a young and growing field. Nature Metabolism, 2020, 2, 293-302.	5.1	67

		CITATION REPORT		
#	Article		IF	CITATIONS
183	Advancing Cancer Research and Medicine with Single-Cell Genomics. Cancer Cell, 2020), 37, 456-470.	7.7	187
184	Peripheral T cell lymphomas: from the bench to the clinic. Nature Reviews Cancer, 2020	0, 20, 323-342.	12.8	74
185	Single Cell RNA Sequencing in Atherosclerosis Research. Circulation Research, 2020, 1	26, 1112-1126.	2.0	84
186	Dissecting the Tumor–Immune Landscape in Chimeric Antigen Receptor T-cell Theraj and Opportunities for a Systems Immunology Approach. Clinical Cancer Research, 202	ру: Key Challenges Ю, 26, 3505-3513.	3.2	18
187	Computational Oncology in the Multi-Omics Era: State of the Art. Frontiers in Oncolog	y, 2020, 10, 423.	1.3	59
188	Automation of Spatial Transcriptomics library preparation to enable rapid and robust ir spatial organization of tissues. BMC Genomics, 2020, 21, 298.	nsights into	1.2	19
189	Cellular diversity and lineage trajectory: insights from mouse single cell transcriptomes Development (Cambridge), 2020, 147, .	;.	1.2	18
190	Cortical cellular diversity and development in schizophrenia. Molecular Psychiatry, 202	1, 26, 203-217.	4.1	11
191	Computational methods for the integrative analysis of single-cell data. Briefings in Bioi 2021, 22, 20-29.	nformatics,	3.2	43
192	Next Generation Sequencing Methods: Pushing the Boundaries. , 2021, , 19-46.			0
193	Uncovering an Organ's Molecular Architecture at Single-Cell Resolution by Spatiall Transcriptomics. Trends in Biotechnology, 2021, 39, 43-58.	y Resolved	4.9	145
194	Deciphering cell–cell interactions and communication from gene expression. Nature Genetics, 2021, 22, 71-88.	Reviews	7.7	575
195	The Power of Singleâ \in Cell Analysis for the Study of Liver Pathobiology. Hepatology, 20	121, 73, 437-448.	3.6	19
196	Transcriptomic Insight Into the Polygenic Mechanisms Underlying Psychiatric Disorders Psychiatry, 2021, 89, 54-64.	s. Biological	0.7	36
197	PsychENCODE and beyond: transcriptomics and epigenomics of brain development an Neuropsychopharmacology, 2021, 46, 70-85.	d organoids.	2.8	15
198	Spatial molecular profiling: platforms, applications and analysis tools. Briefings in Bioin 2021, 22, .	formatics,	3.2	28
199	Taming human brain organoids one cell at a time. Seminars in Cell and Developmental 23-31.	Biology, 2021, 111,	2.3	14
200	The Importance of Computational Modeling in Stem Cell Research. Trends in Biotechno 126-136.	blogy, 2021, 39,	4.9	26

#	Article	IF	CITATIONS
201	How to bridle a neutrophil. Current Opinion in Immunology, 2021, 68, 41-47.	2.4	9
202	Molecular Layer Interneurons: Key Elements of Cerebellar Network Computation and Behavior. Neuroscience, 2021, 462, 22-35.	1.1	32
203	The Rules of Cerebellar Learning: Around the Ito Hypothesis. Neuroscience, 2021, 462, 175-190.	1.1	23
204	Advances and opportunities in image analysis of bacterial cells and communities. FEMS Microbiology Reviews, 2021, 45, .	3.9	52
205	Molecular Heterogeneity and Evolution in Breast Cancer. Annual Review of Cancer Biology, 2021, 5, 79-94.	2.3	14
206	Applying high-dimensional single-cell technologies to the analysis of cancer immunotherapy. Nature Reviews Clinical Oncology, 2021, 18, 244-256.	12.5	138
207	Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nature Biotechnology, 2021, 39, 313-319.	9.4	569
208	Wringing Biological Insight From Polygenic Signals. Biological Psychiatry, 2021, 89, 8-10.	0.7	2
209	Bidirectional learning in upbound and downbound microzones of the cerebellum. Nature Reviews Neuroscience, 2021, 22, 92-110.	4.9	81
210	Kidney Single-cell Transcriptomes Predict Spatial Corticomedullary Gene Expression and Tissue Osmolality Gradients. Journal of the American Society of Nephrology: JASN, 2021, 32, 291-306.	3.0	18
211	Next-Generation Lineage Tracing and Fate Mapping to Interrogate Development. Developmental Cell, 2021, 56, 7-21.	3.1	69
212	Uncovering cellular networks in branching morphogenesis using single-cell transcriptomics. Current Topics in Developmental Biology, 2021, 143, 239-280.	1.0	6
213	An update on the association between traumatic brain injury and Alzheimer's disease: Focus on Tau pathology and synaptic dysfunction. Neuroscience and Biobehavioral Reviews, 2021, 120, 372-386.	2.9	22
214	Turning Nature's own processes into design strategies for living bone implant biomanufacturing: a decade of Developmental Engineering. Advanced Drug Delivery Reviews, 2021, 169, 22-39.	6.6	13
215	Diversity and dynamism in the cerebellum. Nature Neuroscience, 2021, 24, 160-167.	7.1	114
216	Tutorial: guidelines for the computational analysis of single-cell RNA sequencing data. Nature Protocols, 2021, 16, 1-9.	5.5	169
217	Harnessing Single-Cell RNA Sequencing to Better Understand How Diseased Cells Behave the Way They Do in Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 585-600.	1.1	26
218	Analysis of mutations in tumor and normal adjacent tissue via fluorescence detection. Environmental and Molecular Mutagenesis, 2021, 62, 108-123.	0.9	3

# 219	ARTICLE Single-Cell Transcriptome Analysis in Plants: Advances and Challenges. Molecular Plant, 2021, 14, 115-126.	IF 3.9	CITATIONS
220	Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nature Reviews Genetics, 2021, 22, 3-18.	7.7	228
221	Single-cell genomics to understand disease pathogenesis. Journal of Human Genetics, 2021, 66, 75-84.	1.1	26
223	Computational Stem Cell Biology: Open Questions and Guiding Principles. Cell Stem Cell, 2021, 28, 20-32.	5.2	18
224	Intravital Microscopy. , 2021, , 167-192.		1
225	Patch-seq: Past, Present, and Future. Journal of Neuroscience, 2021, 41, 937-946.	1.7	60
226	Next Generation Imaging Techniques to Define Immune Topographies in Solid Tumors. Frontiers in Immunology, 2020, 11, 604967.	2.2	12
227	Regulation of immune responses by the airway epithelial cell landscape. Nature Reviews Immunology, 2021, 21, 347-362.	10.6	209
228	mbkmeans: Fast clustering for single cell data using mini-batch k-means. PLoS Computational Biology, 2021, 17, e1008625.	1.5	36
229	Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems. Science, 2021, 371, .	6.0	197
230	DSTC: deconvoluting spatial transcriptomics data through graph-based artificial intelligence. Briefings in Bioinformatics, 2021, 22, .	3.2	109
231	Functional genomics of psychiatric disease risk using genome engineering. , 2021, , 711-734.		0
232	Smooth muscle cells in atherosclerosis: Clones but not carbon copies. JVS Vascular Science, 2021, 2, 136-148.	0.4	14
233	Deep Tumor Profiling for Molecular Tumor Boards. , 2021, , 352-360.		0
234	Single-cell RNA sequencing in cardiovascular science. , 2021, , 377-394.		0
236	Single-Cell Sequencing of Brain Cell Transcriptomes and Epigenomes. Neuron, 2021, 109, 11-26.	3.8	135
237	Spatially resolved transcriptomics in neuroscience. Nature Methods, 2021, 18, 23-25.	9.0	65
238	scMM: Mixture-of-Experts Multimodal Deep Generative Model for Single-Cell Multiomics Data Analysis. SSRN Electronic Journal, 0, , .	0.4	1

#	Article	IF	CITATIONS
239	Advances in Tumor Sampling and Sequencing in Breast Cancer and their Application in Precision Diagnostics and Therapeutics. Advances in Experimental Medicine and Biology, 2021, 1187, 215-244.	0.8	0
240	Spatial Epitope Barcoding Reveals Subclonal Tumor Patch Behaviors. SSRN Electronic Journal, 0, , .	0.4	2
242	Statistical and machine learning methods for spatially resolved transcriptomics with histology. Computational and Structural Biotechnology Journal, 2021, 19, 3829-3841.	1.9	52
243	The spatial RNA integrity number assay for in situ evaluation of transcriptome quality. Communications Biology, 2021, 4, 57.	2.0	11
244	Overcoming Expressional Drop-outs in Lineage Reconstruction from Single-Cell RNA-Sequencing Data. Cell Reports, 2021, 34, 108589.	2.9	13
246	A High-Dimensional Window into the Micro-Environment of Triple Negative Breast Cancer. Cancers, 2021, 13, 316.	1.7	16
248	Endocrinology of a Single Cell: Tools and Insights. , 2021, , 1-25.		0
249	Spatial mapping of single cells in the Drosophila embryo from transcriptomic data based on topological consistency. F1000Research, 2020, 9, 1014.	0.8	0
251	Robust decomposition of cell type mixtures in spatial transcriptomics. Nature Biotechnology, 2022, 40, 517-526.	9.4	376
252	SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Research, 2021, 49, e50-e50.	6.5	338
253	Profiling Chromatin Accessibility at Single-cell Resolution. Genomics, Proteomics and Bioinformatics, 2021, 19, 172-190.	3.0	18
254	Discovery of molecular features underlying the morphological landscape by integrating spatial transcriptomic data with deep features of tissue images. Nucleic Acids Research, 2021, 49, e55-e55.	6.5	25
255	Determinants, mechanisms, and functional outcomes of myeloid cell diversity in cancer. Immunological Reviews, 2021, 300, 220-236.	2.8	5
256	Space: the final frontier — achieving single-cell, spatially resolved transcriptomics in plants. Emerging Topics in Life Sciences, 2021, 5, 179-188.	1.1	13
257	Stem cell quiescence: the challenging path to activation. Development (Cambridge), 2021, 148, .	1.2	54
258	Single cell gene regulatory networks in plants: Opportunities for enhancing climate change stress resilience. Plant, Cell and Environment, 2021, 44, 2006-2017.	2.8	21
259	Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Science, 2021, 371, .	6.0	166
260	Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nature Neuroscience. 2021. 24. 425-436.	7.1	418

ARTICLE IF CITATIONS # Understanding axial progenitor biology <i>in vivo</i> and <i>in vitro</i>. Development (Cambridge), 1.2 57 261 2021, 148, . Spatially mapped single-cell chromatin accessibility. Nature Communications, 2021, 12, 1274. 5.8 263 Immuno-metabolic interfaces in cardiac disease and failure. Cardiovascular Research, 2022, 118, 37-52. 1.8 6 Spatially resolved transcriptomics and its applications in cancer. Current Opinion in Genetics and Development, 2021, 66, 70-77. Singleâ€cell sequencing in translational cancer research and challenges to meet clinical diagnostic 267 1.5 10 needs. Genes Chromosomes and Cancer, 2021, 60, 504-524. Profiling MicroRNAs with Associated Spatial Dynamics in Acute Tissue Slices. ACS Nano, 2021, 15, 4881-4892. 7.3 271 Immune escape mechanisms for TCRLBCL. Blood, 2021, 137, 1274-1276. 0.6 1 Advances in bulk and single-cell multi-omics approaches for systems biology and precision medicine. 3.2 Briefings in Bioinformatics, 2021, 22, . Multiplexed Immunohistochemistry and Digital Pathology as the Foundation for Next-Generation 273 Pathology in Melanoma: Methodological Comparison and Future Clinical Applications. Frontiers in 22 1.3 Oncology, 2021, 11, 636681. DEEPsc: A Deep Learning-Based Map Connecting Single-Cell Transcriptomics and Spatial Imaging Data. 1.1 Frontiers in Genetics, 2021, 12, 636743. Single-cell RNA sequencing to study vascular diversity and function. Current Opinion in Hematology, 276 4 1.2 2021, 28, 221-229. <i>sepal</i>: identifying transcript profiles with spatial patterns by diffusion-based modeling. Bioinformatics, 2021, 37, 2644-2650. 1.8 28 Single-Cell RNA Sequencing to Disentangle the Blood System. Arteriosclerosis, Thrombosis, and 278 1.1 8 Vascular Biology, 2021, 41, 1012-1018. Single-cell genomics to study developmental cell fate decisions in zebrafish. Briefings in Functional 280 1.3 Genomics, 2021, , . A multiscale model via single-cell transcriptomics reveals robust patterning mechanisms during early 281 1.5 11 mammalian embryo development. PLoS Computational Biology, 2021, 17, e1008571. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome 367 Biology, 2021, 22, 78. Graph of graphs analysis for multiplexed data with application to imaging mass cytometry. PLoS 286 1.55 Computational Biology, 2021, 17, e1008741. Barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel <i>in situ</i> 289 6.5 analyses. Nucleic Acids Research, 2021, 49, e58-e58.

		CITATION REPORT		
#	Article		IF	Citations
290	Male Sex Bias in Immune Biomarkers for Tuberculosis. Frontiers in Immunology, 2021,	12, 640903.	2.2	4
291	Imputation of spatially-resolved transcriptomes by graph-regularized tensor completion Computational Biology, 2021, 17, e1008218.	n. PLoS	1.5	23
294	Current and Prospective Methods for Assessing Anti-Tumor Immunity in Colorectal Car International Journal of Molecular Sciences, 2021, 22, 4802.	icer.	1.8	6
296	Molecular tracking devices quantify antigen distribution and archiving in the murine lyr ELife, 2021, 10, .	nph node.	2.8	18
297	Singleâ€Cell Sequencing Methodologies: From Transcriptome to Multiâ€Dimensional N Methods, 2021, 5, e2100111.	leasurement. Small	4.6	17
298	Single-Cell Transcriptomics: Current Methods and Challenges in Data Acquisition and A Frontiers in Neuroscience, 2021, 15, 591122.	nalysis.	1.4	53
299	Spatial transcriptomics for respiratory research and medicine. European Respiratory Jou 2004314.	ırnal, 2021, 58,	3.1	3
300	The Human Lung Cell Atlas: a transformational resource for cells of the respiratory syst 158-174.	em. , 2021, ,		3
301	Genomic profiling reveals heterogeneous populations of ductal carcinoma in situ of the Communications Biology, 2021, 4, 438.	e breast.	2.0	31
302	Mapping Spatial Genetic Landscapes in Tissue Sections through Microscale Integration Methodology into Genomic Workflows. Small, 2021, 17, 2007901.	of Sampling	5.2	3
303	Iterative single-cell multi-omic integration using online learning. Nature Biotechnology, 1000-1007.	2021, 39,	9.4	53
304	XYZeq: Spatially resolved single-cell RNA sequencing reveals expression heterogeneity microenvironment. Science Advances, 2021, 7, .	in the tumor	4.7	64
305	Pathogenic Role of Immune Evasion and Integration of Human Papillomavirus in Oroph Cancer. Microorganisms, 2021, 9, 891.	aryngeal	1.6	4
306	Cellular-resolution gene expression profiling in the neonatal marmoset brain reveals dy and region-specific differences. Proceedings of the National Academy of Sciences of th of America, 2021, 118, .	namic species- e United States	3.3	24
307	Integration of Transformative Platforms for the Discovery of Causative Genes in Cardio Diseases. Cardiovascular Drugs and Therapy, 2021, 35, 637-654.	vascular	1.3	2
308	Applicability of spatial transcriptional profiling to cancer research. Molecular Cell, 2021	, 81, 1631-1639.	4.5	29
309	Microglia and Central Nervous System–Associated Macrophages—From Origin to I Annual Review of Immunology, 2021, 39, 251-277.	Disease Modulation.	9.5	228
310	Recent Advances and Future Prospects in Immune Checkpoint (ICI)-Based Combination Advanced HCC. Cancers, 2021, 13, 1949.	n Therapy for	1.7	31

щ	Article	IF	Citations
#			
311	Decoding Cancer Biology One Cell at a Time. Cancer Discovery, 2021, 11, 960-970.	7.7	37
313	Spatial tissue profiling by imaging-free molecular tomography. Nature Biotechnology, 2021, 39, 968-977.	9.4	16
314	A new era for plant science: spatial single-cell transcriptomics. Current Opinion in Plant Biology, 2021, 60, 102041.	3.5	51
316	Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science, 2021, 372, .	6.0	127
317	Cell identity specification in plants: lessons from flower development. Journal of Experimental Botany, 2021, 72, 4202-4217.	2.4	16
318	Anti-bias training for (sc)RNA-seq: experimental and computational approaches to improve precision. Briefings in Bioinformatics, 2021, 22, .	3.2	8
319	The role of single-cell sequencing in studying tumour evolution. Faculty Reviews, 2021, 10, 49.	1.7	1
320	Differential spatiotemporal development of Purkinje cell populations and cerebellum-dependent sensorimotor behaviors. ELife, 2021, 10, .	2.8	21
321	Review of multi-omics data resources and integrative analysis for human brain disorders. Briefings in Functional Genomics, 2021, 20, 223-234.	1.3	19
322	Stress relief: emerging methods to mitigate dissociation-induced artefacts. Trends in Cell Biology, 2021, 31, 888-897.	3.6	20
323	Schema: metric learning enables interpretable synthesis of heterogeneous single-cell modalities. Genome Biology, 2021, 22, 131.	3.8	22
324	Altered oligodendroglia and astroglia in chronic traumatic encephalopathy. Acta Neuropathologica, 2021, 142, 295-321.	3.9	26
327	SpatialDWLS: accurate deconvolution of spatial transcriptomic data. Genome Biology, 2021, 22, 145.	3.8	140
328	Mechanisms of breast cancer metastasis. Clinical and Experimental Metastasis, 2022, 39, 117-137.	1.7	27
329	ACSAâ€⊋ and GLAST classify subpopulations of multipotent and glialâ€restricted cerebellar precursors. Journal of Neuroscience Research, 2021, 99, 2228-2249.	1.3	6
330	Single-cell Analysis Technologies for Immuno-oncology Research: from Mechanistic Delineation to Biomarker Discovery. Genomics, Proteomics and Bioinformatics, 2021, 19, 191-207.	3.0	5
331	Characterizing spatial gene expression heterogeneity in spatially resolved single-cell transcriptomic data with nonuniform cellular densities. Genome Research, 2021, 31, 1843-1855.	2.4	79
332	Clinical and research applications of multiplexed immunohistochemistry and <i>in situ</i> hybridization. Journal of Pathology, 2021, 254, 405-417.	2.1	22

#	Article	IF	Citations
333	Inferring biologically relevant molecular tissue substructures by agglomerative clustering of digitized spatial transcriptomes with multilayer. Cell Systems, 2021, 12, 694-705.e3.	2.9	18
334	Epigenetic Regulation of Temperature Responses – Past Successes and Future Challenges. Journal of Experimental Botany, 2021, , .	2.4	9
335	Clump sequencing exposes the spatial expression programs of intestinal secretory cells. Nature Communications, 2021, 12, 3074.	5.8	43
336	Integrative analysis of the human brain mural cell transcriptome. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 3052-3068.	2.4	15
337	In Vitro Glioblastoma Models: A Journey into the Third Dimension. Cancers, 2021, 13, 2449.	1.7	27
338	Inducible uniparental chromosome disomy to probe genomic imprinting at single-cell level in brain and beyond. Neurochemistry International, 2021, 145, 104986.	1.9	3
339	Bridging scales: From cell biology to physiology using in situ single-cell technologies. Cell Systems, 2021, 12, 388-400.	2.9	9
340	Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces. Nature Communications, 2021, 12, 2554.	5.8	48
341	Hotspot identifies informative gene modules across modalities of single-cell genomics. Cell Systems, 2021, 12, 446-456.e9.	2.9	78
342	Protocol for Creating Antibodies with Complex Fluorescence Spectra. Bioconjugate Chemistry, 2021, 32, 1156-1166.	1.8	2
343	<scp>microRNA</scp> â€based diagnostic and therapeutic applications in cancer medicine. Wiley Interdisciplinary Reviews RNA, 2021, 12, e1662.	3.2	55
344	Progressive immune dysfunction with advancing disease stage in renal cell carcinoma. Cancer Cell, 2021, 39, 632-648.e8.	7.7	230
345	Mechanistic models of cell-fate transitions from single-cell data. Current Opinion in Systems Biology, 2021, 26, 79-86.	1.3	8
347	SOMDE: a scalable method for identifying spatially variable genes with self-organizing map. Bioinformatics, 2021, 37, 4392-4398.	1.8	32
349	SPARK-X: non-parametric modeling enables scalable and robust detection of spatial expression patterns for large spatial transcriptomic studies. Genome Biology, 2021, 22, 184.	3.8	90
350	Integration of spatial and single-cell transcriptomics localizes epithelial cell–immune cross-talk in kidney injury. JCI Insight, 2021, 6, .	2.3	83
351	The triumphs and limitations of computational methods for scRNA-seq. Nature Methods, 2021, 18, 723-732.	9.0	133
352	Integrated analysis of multimodal single-cell data. Cell, 2021, 184, 3573-3587.e29.	13.5	5,912

#	Article	IF	CITATIONS
353	The Comprehensive "Omics―Approach from Metabolomics to Advanced Omics for Development of Immune Checkpoint Inhibitors: Potential Strategies for Next Generation of Cancer Immunotherapy. International Journal of Molecular Sciences, 2021, 22, 6932.	1.8	9
354	Applications of Single-Cell Omics in Tumor Immunology. Frontiers in Immunology, 2021, 12, 697412.	2.2	21
355	Fibroblasts and macrophages: Collaborators in tissue homeostasis. Immunological Reviews, 2021, 302, 86-103.	2.8	29
356	Spatial transcriptomics at subspot resolution with BayesSpace. Nature Biotechnology, 2021, 39, 1375-1384.	9.4	320
357	Spatio-temporal mRNA tracking in the early zebrafish embryo. Nature Communications, 2021, 12, 3358.	5.8	25
358	Current Methodological Challenges of Single-Cell and Single-Nucleus RNA-Sequencing in Glomerular Diseases. Journal of the American Society of Nephrology: JASN, 2021, 32, 1838-1852.	3.0	21
359	A convolutional neural network for common coordinate registration of high-resolution histology images. Bioinformatics, 2021, 37, 4216-4226.	1.8	6
361	A Systems Approach to Brain Tumor Treatment. Cancers, 2021, 13, 3152.	1.7	21
362	The landscape of cell–cell communication through single-cell transcriptomics. Current Opinion in Systems Biology, 2021, 26, 12-23.	1.3	97
363	Tissue damage induces a conserved stress response that initiates quiescent muscle stem cell activation. Cell Stem Cell, 2021, 28, 1125-1135.e7.	5.2	72
366	Mammary gland development from a single cell â€~omics view. Seminars in Cell and Developmental Biology, 2021, 114, 171-185.	2.3	18
367	Recent Advances in Single-Cell Profiling and Multispecific Therapeutics: Paving the Way for a New Era of Precision Medicine Targeting Cardiac Fibroblasts. Current Cardiology Reports, 2021, 23, 82.	1.3	3
368	Single-cell multi-omics sequencing: application trends, COVID-19, data analysis issues and prospects. Briefings in Bioinformatics, 2021, 22, .	3.2	14
370	Cell Tracking for Organoids: Lessons From Developmental Biology. Frontiers in Cell and Developmental Biology, 2021, 9, 675013.	1.8	9
371	Spatial transcriptome profiling by MERFISH reveals fetal liver hematopoietic stem cell niche architecture. Cell Discovery, 2021, 7, 47.	3.1	31
373	Bayesian modeling of spatial molecular profiling data via Gaussian process. Bioinformatics, 2021, 37, 4129-4136.	1.8	31
374	Microscopic examination of spatial transcriptome using Seq-Scope. Cell, 2021, 184, 3559-3572.e22.	13.5	233
375	Plasticity and heterogeneity of thermogenic adipose tissue. Nature Metabolism, 2021, 3, 751-761.	5.1	29

#	Article	IF	CITATIONS
377	Spatial transcriptomics and proteomics technologies for deconvoluting the tumor microenvironment. Biotechnology Journal, 2021, 16, e2100041.	1.8	65
378	Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nature Reviews Genetics, 2021, 22, 627-644.	7.7	423
379	Breast cancer heterogeneity through the lens of single-cell analysis and spatial pathologies. Seminars in Cancer Biology, 2022, 82, 3-10.	4.3	23
380	Deconvolution of Focal Segmental Glomerulosclerosis Pathophysiology Using Transcriptomics Techniques. Glomerular Diseases, 2021, 1, 265-276.	0.2	0
382	Embryo-scale, single-cell spatial transcriptomics. Science, 2021, 373, 111-117.	6.0	149
383	Immune cell profiling in atherosclerosis: role in research and precision medicine. Nature Reviews Cardiology, 2022, 19, 43-58.	6.1	58
384	Matisse: a MATLAB-based analysis toolbox for in situ sequencing expression maps. BMC Bioinformatics, 2021, 22, 391.	1.2	3
385	Machine learning methods to model multicellular complexity and tissue specificity. Nature Reviews Materials, 2021, 6, 717-729.	23.3	13
387	Bridging the B Cell Gap: Novel Technologies to Study Antigen-Specific Human B Cell Responses. Vaccines, 2021, 9, 711.	2.1	4
388	Differential Proteomic Analysis of Astrocytes and Astrocytes-Derived Extracellular Vesicles from Control and Rai Knockout Mice: Insights into the Mechanisms of Neuroprotection. International Journal of Molecular Sciences, 2021, 22, 7933.	1.8	7
390	An ex vivo tumor fragment platform to dissect response to PD-1 blockade in cancer. Nature Medicine, 2021, 27, 1250-1261.	15.2	159
392	Spatial Organization of Chromatin: Emergence of Chromatin Structure During Development. Annual Review of Cell and Developmental Biology, 2021, 37, 199-232.	4.0	27
394	Analyzing Modern Biomolecules: The Revolution of Nucleic-Acid Sequencing – Review. Biomolecules, 2021, 11, 1111.	1.8	14
395	High-depth spatial transcriptome analysis by photo-isolation chemistry. Nature Communications, 2021, 12, 4416.	5.8	22
396	Assessing the replicability of spatial gene expression using atlas data from the adult mouse brain. PLoS Biology, 2021, 19, e3001341.	2.6	6
397	Spatial Transcriptomics: Molecular Maps of the Mammalian Brain. Annual Review of Neuroscience, 2021, 44, 547-562.	5.0	28
398	stPlus: a reference-based method for the accurate enhancement of spatial transcriptomics. Bioinformatics, 2021, 37, i299-i307.	1.8	42
399	Patterns of Tâ€Cell Phenotypes in Rheumatic Diseases From Singleâ€Cell Studies of Tissue. ACR Open Rheumatology, 2021, 3, 601-613.	0.9	8

#	Article	IF	CITATIONS
400	High-throughput and single-cell T cell receptor sequencing technologies. Nature Methods, 2021, 18, 881-892.	9.0	133
401	Single-cell and spatial analyses of cancer cells: toward elucidating the molecular mechanisms of clonal evolution and drug resistance acquisition. Inflammation and Regeneration, 2021, 41, 22.	1.5	21
402	Spatiotemporal Immune Landscape of Colorectal Cancer Liver Metastasis at Single-Cell Level. Cancer Discovery, 2022, 12, 134-153.	7.7	286
403	The Power of Systems Biology. Rheumatic Disease Clinics of North America, 2021, 47, 335-350.	0.8	9
404	Transcriptome programs involved in the development and structure of the cerebellum. Cellular and Molecular Life Sciences, 2021, 78, 6431-6451.	2.4	9
405	mGluR1 signaling in cerebellar Purkinje cells: Subcellular organization and involvement in cerebellar function and disease. Neuropharmacology, 2021, 194, 108629.	2.0	16
407	Spatial omics and multiplexed imaging to explore cancer biology. Nature Methods, 2021, 18, 997-1012.	9.0	279
408	NovoSpaRc: flexible spatial reconstruction of single-cell gene expression with optimal transport. Nature Protocols, 2021, 16, 4177-4200.	5.5	55
409	Community-wide hackathons to identify central themes in single-cell multi-omics. Genome Biology, 2021, 22, 220.	3.8	9
410	Avances en citometrÃa de masas y aplicabilidad en patologÃa digital para estudios clÃnico-traslacionales en oncologÃa. Advances in Laboratory Medicine / Avances En Medicina De Laboratorio, 2022, 3, 17-29.	0.1	0
411	CoSTA: unsupervised convolutional neural network learning for spatial transcriptomics analysis. BMC Bioinformatics, 2021, 22, 397.	1.2	18
412	Live cell tagging tracking and isolation for spatial transcriptomics using photoactivatable cell dyes. Nature Communications, 2021, 12, 4995.	5.8	25
413	Plant single-cell solutions for energy and the environment. Communications Biology, 2021, 4, 962.	2.0	23
414	Multi-omics integration in the age of million single-cell data. Nature Reviews Nephrology, 2021, 17, 710-724.	4.1	97
416	Single cell analyses to understand the immune continuum in atherosclerosis. Atherosclerosis, 2021, 330, 85-94.	0.4	18
417	From bench to bedside: Single-cell analysis for cancer immunotherapy. Cancer Cell, 2021, 39, 1062-1080.	7.7	67
418	Singleâ€cell omics: Overview, analysis, and application in biomedical science. Journal of Cellular Biochemistry, 2021, 122, 1571-1578.	1.2	18
419	Enhancing Our Understanding of Plant Cell-to-Cell Interactions Using Single-Cell Omics. Frontiers in Plant Science, 2021, 12, 696811.	1.7	8

#	Article	IF	CITATIONS
420	Technological advances in cancer immunity: from immunogenomics to single-cell analysis and artificial intelligence. Signal Transduction and Targeted Therapy, 2021, 6, 312.	7.1	50
422	Exploring tissue architecture using spatial transcriptomics. Nature, 2021, 596, 211-220.	13.7	593
424	Fluorescent Multiplex Immunohistochemistry Coupled With Other State-Of-The-Art Techniques to Systematically Characterize the Tumor Immune Microenvironment. Frontiers in Molecular Biosciences, 2021, 8, 673042.	1.6	19
426	Generating and Using Transcriptomically Based Retinal Cell Atlases. Annual Review of Vision Science, 2021, 7, 43-72.	2.3	31
427	Mapping Gene Expression in the Spatial Dimension. Small Methods, 2021, 5, e2100722.	4.6	9
429	Multiplexed single-cell analysis of organoid signaling networks. Nature Protocols, 2021, 16, 4897-4918.	5.5	23
430	Single-cell analysis of regions of interest (SCARI) using a photosensitive tag. Nature Chemical Biology, 2021, 17, 1139-1147.	3.9	13
431	Entropy as a measure of variability and stemness in single-cell transcriptomics. Current Opinion in Systems Biology, 2021, 27, 100348.	1.3	11
432	Plant Cell Identity in the Era of Single-Cell Transcriptomics. Annual Review of Genetics, 2021, 55, 479-496.	3.2	19
433	Liver Zonation – Revisiting Old Questions With New Technologies. Frontiers in Physiology, 2021, 12, 732929.	1.3	75
434	Glial and myeloid heterogeneity in the brain tumour microenvironment. Nature Reviews Cancer, 2021, 21, 786-802.	12.8	83
435	Sphingolipid metabolism governs Purkinje cell patterned degeneration in <i>Atxn1[82Q]/+</i> mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	5
436	Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis. Nature Biotechnology, 2022, 40, 74-85.	9.4	152
437	Reconstructing developmental landscapes and trajectories from single-cell data. Current Opinion in Systems Biology, 2021, 27, 100351.	1.3	7
438	Synovial single-cell heterogeneity, zonation, and interactions: a patchwork of effectors in arthritis. Rheumatology, 2021, , .	0.9	4
439	Single-cell technologies to dissect heterogenous immune cell therapy products. Current Opinion in Biomedical Engineering, 2021, 20, 100343.	1.8	1
440	Current tools to interrogate microglial biology. Neuron, 2021, 109, 2805-2819.	3.8	30
441	Progress towards a cellularly resolved mouse mesoconnectome is empowered by data fusion and new neuroanatomy techniques. Neuroscience and Biobehavioral Reviews, 2021, 128, 569-591.	2.9	2

		LPORT	
#	Article	IF	CITATIONS
442	A single-cell tumor immune atlas for precision oncology. Genome Research, 2021, 31, 1913-1926.	2.4	87
443	A mixture-of-experts deep generative model for integrated analysis of single-cell multiomics data. Cell Reports Methods, 2021, 1, 100071.	1.4	47
444	Recent advances in tools to map the microbiome. Current Opinion in Biomedical Engineering, 2021, 19, 100289.	1.8	9
445	Tagmentation-based single-cell genomics. Genome Research, 2021, 31, 1693-1705.	2.4	17
446	Advances in spatial transcriptomic data analysis. Genome Research, 2021, 31, 1706-1718.	2.4	102
447	Single cell RNA sequencing approaches to cardiac development and congenital heart disease. Seminars in Cell and Developmental Biology, 2021, 118, 129-135.	2.3	14
448	Applications of single-cell genomics and computational strategies to study common disease and population-level variation. Genome Research, 2021, 31, 1728-1741.	2.4	11
449	Moving from in vitro to in vivo CRISPR screens. Gene and Genome Editing, 2021, 2, 100008.	1.3	25
450	Image-based cell phenotyping with deep learning. Current Opinion in Chemical Biology, 2021, 65, 9-17.	2.8	58
451	Protocol for using MULTILAYER to reveal molecular tissue substructures from digitized spatial transcriptomes. STAR Protocols, 2021, 2, 100823.	0.5	5
452	Power of Transcriptomics in Lung Biology. , 2022, , 763-772.		0
453	Spatial mapping of the tumor immune microenvironment. , 2022, , 293-329.		0
454	Advancing root developmental research through single-cell technologies. Current Opinion in Plant Biology, 2022, 65, 102113.	3.5	10
455	ã,∙ãf³ã,°ãƒ«ã,»ãƒ«è§£æžã«åŸºã¥ã循環噰病態ç"ç©¶. Journal of JCS Cardiologists, 2021, 30, 43-50.	0.1	0
456	An Instance-Specific Causal Framework for Learning Intercellular Communication Networks that Define Microenvironments OfÂIndividual Tumors. SSRN Electronic Journal, 0, , .	0.4	0
457	Method of the Year: spatially resolved transcriptomics. Nature Methods, 2021, 18, 9-14.	9.0	435
459	Elucidating the cellular dynamics of the brain with single-cell RNA sequencing. RNA Biology, 2021, 18, 1063-1084.	1.5	14
460	Single cell RNA sequencing in psychiatric disorders. , 2021, , 163-174.		0

#	Article	IF	CITATIONS
461	Microfluidic single-cell transcriptomics: moving towards multimodal and spatiotemporal omics. Lab on A Chip, 2021, 21, 3829-3849.	3.1	17
462	Are dropout imputation methods for scRNA-seq effective for scATAC-seq data?. Briefings in Bioinformatics, 2022, 23, .	3.2	5
463	Spatially resolved transcriptomics adds a new dimension to genomics. Nature Methods, 2021, 18, 15-18.	9.0	180
464	Engineered Tools to Study Intercellular Communication. Advanced Science, 2021, 8, 2002825.	5.6	39
465	Methodologies for Following EMT In Vivo at Single Cell Resolution. Methods in Molecular Biology, 2021, 2179, 303-314.	0.4	7
466	Spatial-omics: Novel approaches to probe cell heterogeneity and extracellular matrix biology. Matrix Biology, 2020, 91-92, 152-166.	1.5	47
467	Cell Atlas technologies and insights into tissue architecture. Biochemical Journal, 2020, 477, 1427-1442.	1.7	32
468	Emerging paradigms in metastasis research. Journal of Experimental Medicine, 2021, 218, .	4.2	16
469	Macrophages: an indispensable piece of ovarian health. Biology of Reproduction, 2021, 104, 527-538.	1.2	31
470	Double-negative T cells in autoimmune diseases. Current Opinion in Rheumatology, 2021, 33, 163-172.	2.0	34
532	New techniques for studying neurodevelopment. Faculty Reviews, 2020, 9, 17.	1.7	2
533	SCRINSHOT enables spatial mapping of cell states in tissue sections with single-cell resolution. PLoS Biology, 2020, 18, e3000675.	2.6	42
534	Transcriptome analysis of sevoflurane exposure effects at the different brain regions. PLoS ONE, 2020, 15, e0236771.	1.1	5
535	Reproducibility across single-cell RNA-seq protocols for spatial ordering analysis. PLoS ONE, 2020, 15, e0239711.	1.1	5
536	Mapping Cellular Coordinates through Advances in Spatial Transcriptomics Technology. Molecules and Cells, 2020, 43, 591-599.	1.0	15
537	Identification of genomic enhancers through spatial integration of singleâ€cell transcriptomics and epigenomics. Molecular Systems Biology, 2020, 16, e9438.	3.2	60
538	Tissue-specific tumour microenvironments are an emerging determinant of immunotherapy responses. Journal of Thoracic Disease, 2020, 12, 4504-4509.	0.6	3
539	Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data. Life Science Alliance, 2020, 3, e202000867.	1.3	20

#	Article	IF	CITATIONS
540	Single-cell and spatial transcriptomics approaches of cardiovascular development and disease. BMB Reports, 2020, 53, 393-399.	1.1	20
541	Endothelial heterogeneity across distinct vascular beds during homeostasis and inflammation. ELife, 2020, 9, .	2.8	209
542	SC-MEB: spatial clustering with hidden Markov random field using empirical Bayes. Briefings in Bioinformatics, 2022, 23, .	3.2	44
544	Computational tools for analyzing single-cell data in pluripotent cell differentiation studies. Cell Reports Methods, 2021, 1, 100087.	1.4	3
545	When Bigger Is Better: 3D RNA Profiling of the Developing Head in the Catshark Scyliorhinus canicula. Frontiers in Cell and Developmental Biology, 2021, 9, 744982.	1.8	3
547	A transcriptomic atlas of mouse cerebellar cortex comprehensivelyÂdefines cell types. Nature, 2021, 598, 214-219.	13.7	147
548	Cell segmentation in imaging-based spatial transcriptomics. Nature Biotechnology, 2022, 40, 345-354.	9.4	113
551	Analyzing microglial phenotypes across neuropathologies: a practical guide. Acta Neuropathologica, 2021, 142, 923-936.	3.9	65
554	High-Dimensional Single-Cell Transcriptomics in Melanoma and Cancer Immunotherapy. Genes, 2021, 12, 1629.	1.0	8
555	Single-Cell Approaches to Deconvolute the Development of HSCs. Cells, 2021, 10, 2876.	1.8	1
556	Fibroblast pathology in inflammatory diseases. Journal of Clinical Investigation, 2021, 131, .	3.9	65
556 559	Fibroblast pathology in inflammatory diseases. Journal of Clinical Investigation, 2021, 131, . Transcriptomics of the depressed and PTSD brain. Neurobiology of Stress, 2021, 15, 100408.	3.9 1.9	65 8
559	Transcriptomics of the depressed and PTSD brain. Neurobiology of Stress, 2021, 15, 100408.		8
559 562	Transcriptomics of the depressed and PTSD brain. Neurobiology of Stress, 2021, 15, 100408. Innovative Technologies for Advancement of WHO Risk Group 4 Pathogens Research. , 2019, , 437-469. Spatial mapping of single cells in the Drosophila embryo from transcriptomic data based on	1.9	8
559 562 573	 Transcriptomics of the depressed and PTSD brain. Neurobiology of Stress, 2021, 15, 100408. Innovative Technologies for Advancement of WHO Risk Group 4 Pathogens Research., 2019, , 437-469. Spatial mapping of single cells in the Drosophila embryo from transcriptomic data based on topological consistency. F1000Research, 2020, 9, 1014. SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and 	1.9 0.8	8 5 0
559 562 573 577	 Transcriptomics of the depressed and PTSD brain. Neurobiology of Stress, 2021, 15, 100408. Innovative Technologies for Advancement of WHO Risk Group 4 Pathogens Research. , 2019, , 437-469. Spatial mapping of single cells in the Drosophila embryo from transcriptomic data based on topological consistency. F1000Research, 2020, 9, 1014. SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nature Methods, 2021, 18, 1342-1351. Self-Organizing Maps for Cellular In Silico Staining and Cell Substate Classification. Frontiers in 	1.9 0.8 9.0	8 5 0 291

#	Article	IF	CITATIONS
582	Spatially resolved transcriptomics reveals the architecture of the tumor-microenvironment interface. Nature Communications, 2021, 12, 6278.	5.8	112
583	Feature Selection for Topological Proximity Prediction of Single-Cell Transcriptomic Profiles in Drosophila Embryo Using Genetic Algorithm. Genes, 2021, 12, 28.	1.0	3
584	Cellular sociology regulates the hierarchical spatial patterning and organization of cells in organisms. Open Biology, 2020, 10, 200300.	1.5	5
587	Gene regulatory circuitry of plant–environment interactions: scaling from cells to the field. Current Opinion in Plant Biology, 2022, 65, 102122.	3.5	4
588	3D-cardiomics: A spatial transcriptional atlas of the mammalian heart. Journal of Molecular and Cellular Cardiology, 2022, 163, 20-32.	0.9	16
590	Detecting Subclones from Spatially Resolved RNA-Seq Data. Lecture Notes in Computer Science, 2020, , 102-107.	1.0	0
591	Using single cell transcriptomics to study the complexity of human retina. Neural Regeneration Research, 2020, 15, 2045.	1.6	2
595	Organizing your space: The potential for integrating spatial transcriptomics and 3D imaging data in plants. Plant Physiology, 2022, 188, 703-712.	2.3	13
596	Anatomical structures, cell types and biomarkers of the Human Reference Atlas. Nature Cell Biology, 2021, 23, 1117-1128.	4.6	68
597	Advanced Technologies for Local Neural Circuits in the Cerebral Cortex. Frontiers in Neuroanatomy, 2021, 15, 757499.	0.9	3
600	Dissecting mammalian spermatogenesis using spatial transcriptomics. Cell Reports, 2021, 37, 109915.	2.9	54
608	Spatiotemporal strategies to identify aggressive biology in precancerous breast biopsies. WIREs Mechanisms of Disease, 2021, 13, e1506.	1.5	4
609	Detecting spatially co-expressed gene clusters with functional coherence by graph-regularized convolutional neural network. Bioinformatics, 2022, 38, 1344-1352.	1.8	1
610	Advances in mass cytometry and its applicability to digital pathology in clinical-translational cancer research. Advances in Laboratory Medicine / Avances En Medicina De Laboratorio, 2022, 3, 5-16.	0.1	1
613	Revisit the Cellular Transmission and Emerging Techniques in Understanding the Mechanisms of Proteinopathies. Frontiers in Neuroscience, 2021, 15, 781722.	1.4	1
615	Super-resolved spatial transcriptomics by deep data fusion. Nature Biotechnology, 2022, 40, 476-479.	9.4	61
616	Singleâ€Cell Visualization of Monogenic RNA Gâ€quadruplex and Occupied Gâ€quadruplex Ratio through a Moduleâ€Assembled Multifunctional Probes Assay (MAMPA). Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
617	Spatial mapping of cancer tissues by OMICS technologies. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188663.	3.3	4

	CITATION	CITATION REPORT		
#	Article	IF	Citations	
618	Multiplexed Single-Cell in situ RNA Profiling. Frontiers in Molecular Biosciences, 2021, 8, 775410.	1.6	8	
619	Special Issue "Microglia Heterogeneity and Its Relevance for Translational Research― International Journal of Molecular Sciences, 2021, 22, 12350.	1.8	0	
620	Maximizing statistical power to detect differentially abundant cell states with scPOST. Cell Reports Methods, 2021, 1, 100120.	1.4	2	
621	Singleâ€Cell Visualization of Monogenic RNA Gâ€quadruplex and Occupied Gâ€quadruplex Ratio through a Moduleâ€Assembled Multifunctional Probes Assay (MAMPA). Angewandte Chemie, 2022, 134, e202111132	. 1.6	1	
622	Emerging Technologies to Study the Glomerular Filtration Barrier. Frontiers in Medicine, 2021, 8, 772883.	1.2	3	
623	MCMICRO: a scalable, modular image-processing pipeline for multiplexed tissue imaging. Nature Methods, 2022, 19, 311-315.	9.0	102	
624	An <i>in situ</i> sequencing approach maps <i>PLASTOCHRON1</i> at the boundary between indeterminate and determinate cells. Plant Physiology, 2022, 188, 782-794.	2.3	24	
626	Osteoarthritis year in review: genetics, genomics, epigenetics. Osteoarthritis and Cartilage, 2022, 30, 216-225.	0.6	23	
628	Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nature Genetics, 2021, 53, 1698-1711.	9.4	238	
629	Oligodendroglia heterogeneity in the human central nervous system. Acta Neuropathologica, 2022, 143, 143-157.	3.9	22	
630	Skinâ€ny deeping: Uncovering immune cell behavior and function through imaging techniques*. Immunological Reviews, 2022, 306, 271-292.	2.8	3	
631	Neuropsychiatric disorders: An immunological perspective. Advances in Immunology, 2021, 152, 83-155.	1.1	10	
632	Novel omics technology driving translational research in precision oncology. Advances in Genetics, 2021, 108, 81-145.	0.8	3	
633	Spatial transcriptomics using combinatorial fluorescence spectral and lifetime encoding, imaging and analysis. Nature Communications, 2022, 13, 169.	5.8	31	
634	The Complicated Nature of Somatic mtDNA Mutations in Aging. Frontiers in Aging, 2022, 2, .	1.2	18	
635	New molecular techniques for exploring neuronal appetite pathways. Current Opinion in Endocrine and Metabolic Research, 2022, 22, 100309.	0.6	0	
636	Transcriptome-scale methods for uncovering subcellular RNA localization mechanisms. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119202.	1.9	5	
638	Complex biological questions being addressed using single cell sequencing technologies. SLAS Technology, 2021, , .	1.0	2	

		CITATION REPORT		
#	Article		IF	Citations
639	Analysis and Visualization of Spatial Transcriptomic Data. Frontiers in Genetics, 2021, 1	2, 785290.	1.1	23
641	Editorial: Defining the Spatial Organization of Immune Responses to Cancer and Viruses Frontiers in Immunology, 2022, 13, 847582.	s In Situ.	2.2	2
642	Temporal modelling using single-cell transcriptomics. Nature Reviews Genetics, 2022, 2	3, 355-368.	7.7	65
644	Towards Tabula Gallus. International Journal of Molecular Sciences, 2022, 23, 613.		1.8	3
645	Challenges and Opportunities for the Translation of Single-Cell RNA Sequencing Techno Dermatology. Life, 2022, 12, 67.	logies to	1.1	4
647	Untapped Neuroimaging Tools for Neuro-Oncology: Connectomics and Spatial Transcri Cancers, 2022, 14, 464.	ptomics.	1.7	9
649	Recent advances in single-cell sequencing technologies. Precision Clinical Medicine, 202	22, 5, .	1.3	44
650	Single-cell sequencing and its applications in bladder cancer. Expert Reviews in Molecul. 2022, 24, e6.	ar Medicine,	1.6	8
652	Principles of Spatial Transcriptomics Analysis: A Practical Walk-Through in Kidney Tissue Physiology, 2021, 12, 809346.	. Frontiers in	1.3	14
654	Spatial omics: Navigating to the golden era of cancer research. Clinical and Translationa 2022, 12, e696.	l Medicine,	1.7	53
656	Single-Cell Epigenomics Reveals Mechanisms of Cancer Progression. Annual Review of C 2022, 6, 167-185.	Cancer Biology,	2.3	9
658	CellDART: cell type inference by domain adaptation of single-cell and spatial transcripto Nucleic Acids Research, 2022, 50, e57-e57.	mic data.	6.5	33
659	New horizons in the stormy sea of multimodal single-cell data integration. Molecular Ce 248-259.	ll, 2022, 82,	4.5	9
660	Cell2location maps fine-grained cell types in spatial transcriptomics. Nature Biotechnolo 661-671.	ogy, 2022, 40,	9.4	335
661	Supermultiplexed vibrational imaging: From probe development to biomedical application 311-328.	ons. , 2022, ,		2
662	Clinical challenges of tissue preparation for spatial transcriptome. Clinical and Translatio Medicine, 2022, 12, e669.	bnal	1.7	13
664	Mapping transcriptomic vector fields of single cells. Cell, 2022, 185, 690-711.e45.		13.5	167
665	Single-Cell Technologies to Decipher the Immune Microenvironment in Myeloid Neoplas Perspectives and Opportunities. Frontiers in Oncology, 2021, 11, 796477.	sms:	1.3	0

#	Article	IF	CITATIONS
666	Matritecture: Mapping the extracellular matrix architecture during health and disease. Matrix Biology Plus, 2022, 14, 100102.	1.9	6
668	Spatial components of molecular tissue biology. Nature Biotechnology, 2022, 40, 308-318.	9.4	148
669	A Long Journey before Cycling: Regulation of Quiescence Exit in Adult Muscle Satellite Cells. International Journal of Molecular Sciences, 2022, 23, 1748.	1.8	7
670	Spatial transcriptomics and the kidney. Current Opinion in Nephrology and Hypertension, 2022, Publish Ahead of Print, .	1.0	5
671	SM-Omics is an automated platform for high-throughput spatial multi-omics. Nature Communications, 2022, 13, 795.	5.8	73
672	Spatially resolved isotope tracing reveals tissue metabolic activity. Nature Methods, 2022, 19, 223-230.	9.0	67
676	Intravital and high-content multiplex imaging of the immune system. Trends in Cell Biology, 2022, 32, 406-420.	3.6	12
677	Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature, 2022, 601, 85-91.	13.7	117
679	Big data: Historic advances and emerging trends in biomedical research. Current Research in Biotechnology, 2022, 4, 138-151.	1.9	12
680	The single nucleotide polymorphism rs1814521 in long non-coding RNA <i>ADCRC3</i> associates with the susceptibility to silicosis: a multi-stage study. Environmental Health and Preventive Medicine, 2022, 27, 5-5.	1.4	3
681	Multi-Omics Profiling of the Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2022, 1361, 283-326.	0.8	6
682	Perspectives on Bulk-Tissue RNA Sequencing and Single-Cell RNA Sequencing for Cardiac Transcriptomics. Frontiers in Molecular Medicine, 2022, 2, .	0.6	14
685	Statistical and machine learning methods for spatially resolved transcriptomics data analysis. Genome Biology, 2022, 23, 83.	3.8	66
686	Deciphering tissue structure and function using spatial transcriptomics. Communications Biology, 2022, 5, 220.	2.0	43
687	Museum of spatial transcriptomics. Nature Methods, 2022, 19, 534-546.	9.0	356
688	Guidelines for bioinformatics of single-cell sequencing data analysis in Alzheimer's disease: review, recommendation, implementation and application. Molecular Neurodegeneration, 2022, 17, 17.	4.4	40
689	Single-cell immunology: Past, present, and future. Immunity, 2022, 55, 393-404.	6.6	47
692	The interaction of CD4+ helper T cells with dendritic cells shapes the tumor microenvironment and immune checkpoint blockade response. Nature Cancer, 2022, 3, 303-317.	5.7	85

#	Article	IF	CITATIONS
694	Applications of Single-Cell Sequencing Technology to the Enteric Nervous System. Biomolecules, 2022, 12, 452.	1.8	3
695	Urinary Podocyte Biomarkers and Glomerular Histologic Change. Kidney360, 2022, 3, 407-409.	0.9	2
697	Singleâ€cell RNA sequencing technologies and applications: A brief overview. Clinical and Translational Medicine, 2022, 12, e694.	1.7	218
702	Recent advances in spatially resolved transcriptomics: challenges and opportunities. BMB Reports, 2022, 55, 113-124.	1.1	12
703	STRIDE: accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing. Nucleic Acids Research, 2022, 50, e42-e42.	6.5	41
705	Robust Acquisition of Spatial Transcriptional Programs in Tissues With Immunofluorescence-Guided Laser Capture Microdissection. Frontiers in Cell and Developmental Biology, 2022, 10, 853188.	1.8	3
706	Towards a deeper understanding of the vaginal microbiota. Nature Microbiology, 2022, 7, 367-378.	5.9	94
708	Precision medicine in rheumatoid arthritis. Best Practice and Research in Clinical Rheumatology, 2022, 36, 101742.	1.4	8
709	It Is Not Just Fat: Dissecting the Heterogeneity of Adipose Tissue Function. Current Diabetes Reports, 2022, 22, 177-187.	1.7	4
710	Behavioral Neuroscience in the Era of Genomics: Tools and Lessons for Analyzing High-Dimensional Datasets. International Journal of Molecular Sciences, 2022, 23, 3811.	1.8	2
711	Efficient prediction of a spatial transcriptomics profile better characterizes breast cancer tissue sections without costly experimentation. Scientific Reports, 2022, 12, 4133.	1.6	32
713	Spatial charting of single-cell transcriptomes in tissues. Nature Biotechnology, 2022, 40, 1190-1199.	9.4	72
714	Joint dimension reduction and clustering analysis of single-cell RNA-seq and spatial transcriptomics data. Nucleic Acids Research, 2022, 50, e72-e72.	6.5	26
715	Single-Cell RNA Sequencing with Spatial Transcriptomics of Cancer Tissues. International Journal of Molecular Sciences, 2022, 23, 3042.	1.8	28
717	Isolation and Profiling of Human Primary Mesenteric Arterial Endothelial Cells at the Transcriptome Level. Journal of Visualized Experiments, 2022, , .	0.2	3
718	Clinical and translational values of spatial transcriptomics. Signal Transduction and Targeted Therapy, 2022, 7, 111.	7.1	61
719	High-resolution Slide-seqV2 spatial transcriptomics enables discovery of disease-specific cell neighborhoods and pathways. IScience, 2022, 25, 104097.	1.9	32
720	A Toolkit for Profiling the Immune Landscape of Pediatric Central Nervous System Malignancies. Frontiers in Immunology, 2022, 13, 864423.	2.2	2

#	Article	IF	CITATIONS
721	Research Techniques Made Simple: Spatial Transcriptomics. Journal of Investigative Dermatology, 2022, 142, 993-1001.e1.	0.3	7
722	Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. Nature Communications, 2022, 13, 1739.	5.8	118
723	Coordinating cerebral cortical construction and connectivity: Unifying influence of radial progenitors. Neuron, 2022, 110, 1100-1115.	3.8	13
724	Decoding cellular communication – an information theoretic perspective on cytokine and endocrine signaling. Current Opinion in Endocrine and Metabolic Research, 2022, , 100351.	0.6	2
727	Recent Developments and Applications of Single-Cell RNA Sequencing Technology in Cell Classification. Journal of Biomedical Research & Environmental Sciences, 2021, 2, 1283-1290.	0.1	2
728	Quantification of tumor heterogeneity: from data acquisition to metric generation. Trends in Biotechnology, 2022, 40, 647-676.	4.9	29
729	Understanding CLL biology through mouse models of human genetics. Blood, 2021, 138, 2621-2631.	0.6	11
730	Visualizing T-Cell Responses: The T-Cell PET Imaging Toolbox. Journal of Nuclear Medicine, 2022, 63, 183-188.	2.8	10
731	External signals regulate continuous transcriptional states in hematopoietic stem cells. ELife, 2021, 10, .	2.8	10
734	Cortical Cartography: Mapping Arealization Using Single-Cell Omics Technology. Frontiers in Neural Circuits, 2021, 15, 788560.	1.4	5
735	Evolving features of human cortical development and the emerging roles of non-coding RNAs in neural progenitor cell diversity and function. Cellular and Molecular Life Sciences, 2022, 79, 1.	2.4	2
740	Interactive single-cell data analysis using Cellar. Nature Communications, 2022, 13, 1998.	5.8	11
744	3D imaging for driving cancer discovery. EMBO Journal, 2022, 41, e109675.	3.5	5
745	Global Increase in Breast Cancer Incidence: Risk Factors and Preventive Measures. BioMed Research International, 2022, 2022, 1-16.	0.9	156
747	Leveraging single cell sequencing to unravel intraâ€ŧumour heterogeneity and tumour evolution in human cancers. Journal of Pathology, 2022, , .	2.1	6
757	DestVI identifies continuums of cell types in spatial transcriptomics data. Nature Biotechnology, 2022, 40, 1360-1369.	9.4	75
758	Piezo1 regulates the regenerative capacity of skeletal muscles via orchestration of stem cell morphological states. Science Advances, 2022, 8, eabn0485.	4.7	44
759	Recent advances in spatially resolved transcriptomics: challenges and opportunities BMB Reports, 2022, , .	1.1	Ο

#	ARTICLE	IF	CITATIONS
760	Multi-omics Approaches in Insect-Plant Interactions. , 2022, , 335-368.		2
761	Machine Learning Approaches to Single-Cell Data Integration and Translation. Proceedings of the IEEE, 2022, 110, 557-576.	16.4	2
762	SpatialExperiment: infrastructure for spatially-resolvedÂtranscriptomics data in R using Bioconductor. Bioinformatics, 2022, 38, 3128-3131.	1.8	48
763	Synthetic developmental biology: New tools to deconstruct and rebuild developmental systems. Seminars in Cell and Developmental Biology, 2023, 141, 33-42.	2.3	12
765	Reference-free cellÂtype deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data. Nature Communications, 2022, 13, 2339.	5.8	68
766	Spatial determinants of CD8+ T cell differentiation in cancer. Trends in Cancer, 2022, 8, 642-654.	3.8	8
767	Spatially informed cell-type deconvolution for spatial transcriptomics. Nature Biotechnology, 2022, 40, 1349-1359.	9.4	121
768	Technological and computational advances driving high-throughput oncology. Trends in Cell Biology, 2022, 32, 947-961.	3.6	5
769	DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data. Nature Biotechnology, 2022, 40, 1467-1477.	9.4	42
770	Spatial epitranscriptomics reveals A-to-I editome specific to cancer stem cell microniches. Nature Communications, 2022, 13, 2540.	5.8	15
771	Multi-omics single-cell data integration and regulatory inference with graph-linked embedding. Nature Biotechnology, 2022, 40, 1458-1466.	9.4	153
772	Into the multiverse: advances in single-cell multiomic profiling. Trends in Genetics, 2022, 38, 831-843.	2.9	46
773	Perspectives on rigor and reproducibility in single cell genomics. PLoS Genetics, 2022, 18, e1010210.	1.5	17
774	Cell type identification in spatial transcriptomics data can be improved by leveraging cell-type-informative paired tissue images using a Bayesian probabilistic model. Nucleic Acids Research, 2022, 50, e80-e80.	6.5	6
775	High-resolution 3D spatiotemporal transcriptomic maps of developing Drosophila embryos and larvae. Developmental Cell, 2022, 57, 1271-1283.e4.	3.1	58
776	Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson's disease. Nature Neuroscience, 2022, 25, 588-595.	7.1	155
777	High-throughput single-Ñell sequencing in cancer research. Signal Transduction and Targeted Therapy, 2022, 7, 145.	7.1	39
778	Transcriptomic mapping uncovers Purkinje neuron plasticity driving learning. Nature, 2022, 605, 722-727.	13.7	24

# 779	ARTICLE Mapping and Validation of scRNA-Seq-Derived Cell-Cell Communication Networks in the Tumor Microenvironment. Frontiers in Immunology, 2022, 13, 885267.	IF 2.2	Citations
780	Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. Nature Methods, 2022, 19, 662-670.	9.0	130
781	A Cellular Resolution Spatial Transcriptomic Landscape of the Medial Structures in Postnatal Mouse Brain. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	5
782	Spatially resolved transcriptomics provide a new method for cancer research. Journal of Experimental and Clinical Cancer Research, 2022, 41, 179.	3.5	18
783	Modeling zero inflation is not necessary for spatial transcriptomics. Genome Biology, 2022, 23, 118.	3.8	23
786	Pediatric Sarcomas: The Next Generation of Molecular Studies. Cancers, 2022, 14, 2515.	1.7	Ο
789	Deciphering the Immune Complexity in Esophageal Adenocarcinoma and Pre-Cancerous Lesions With Sequential Multiplex Immunohistochemistry and Sparse Subspace Clustering Approach. Frontiers in Immunology, 2022, 13, .	2.2	6
791	Single-Cell Colocalization Analysis Using a Deep Generative Model. SSRN Electronic Journal, 0, , .	0.4	0
794	Emerging artificial intelligence applications in Spatial Transcriptomics analysis. Computational and Structural Biotechnology Journal, 2022, 20, 2895-2908.	1.9	13
796	Single cell―and spatial â€~Omics revolutionize physiology. Acta Physiologica, 2022, 235, .	1.8	8
797	De novo reconstruction of cell interaction landscapes from single-cell spatial transcriptome data with DeepLinc. Genome Biology, 2022, 23, .	3.8	10
798	Optocoder: computational decoding of spatially indexed bead arrays. NAR Genomics and Bioinformatics, 2022, 4, .	1.5	1
800	活细胞RNAå•视北技æœ⁻çš"ç"ç©¶èį›å±•. Zhejiang Da Xue Xue Bao Yi Xue Ban = Journal of Zhejiang Un	ive osi ty Me	edi o al Science
801	Microfluidics Facilitates the Development of Single-Cell RNA Sequencing. Biosensors, 2022, 12, 450.	2.3	8
802	Deciphering the Spatial Modular Patterns of Tissues by Integrating Spatial and Single-Cell Transcriptomic Data. Journal of Computational Biology, 0, , .	0.8	5
803	Enabling automated and reproducible spatially resolved transcriptomics at scale. Heliyon, 2022, 8, e09651.	1.4	5
804	Cochlear Development; New Tools and Approaches. Frontiers in Cell and Developmental Biology, 0, 10,	1.8	7
805	Advancements in Genomic and Behavioral Neuroscience Analysis for the Study of Normal and Pathological Brain Function. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	Ο

#	Article	IF	CITATIONS
806	Extracting physical characteristics of higher-order chromatin structures from 3D image data. Computational and Structural Biotechnology Journal, 2022, 20, 3387-3398.	1.9	1
807	Statistical analysis of spatially resolved transcriptomic data by incorporating multiomics auxiliary information. Genetics, 2022, 221, .	1.2	0
808	Illuminating RNA biology through imaging. Nature Cell Biology, 2022, 24, 815-824.	4.6	34
810	Historical and current perspectives on blood endothelial cell heterogeneity in the brain. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	12
811	Dissecting the Heterogeneity of Human Thoracic Aortic Aneurysms Using Single-Cell Transcriptomics. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 919-930.	1.1	12
812	Orgo-Seq integrates single-cell and bulk transcriptomic data to identify cell type specific-driver genes associated with autism spectrum disorder. Nature Communications, 2022, 13, .	5.8	11
813	The remarkable diversity of vascular smooth muscle in development and disease. , 2022, , 31-43.		1
814	The era of 3D and spatial genomics. Trends in Genetics, 2022, 38, 1062-1075.	2.9	25
816	Cell clustering for spatial transcriptomics data with graph neural networks. Nature Computational Science, 2022, 2, 399-408.	3.8	52
817	An introduction to spatial transcriptomics for biomedical research. Genome Medicine, 2022, 14, .	3.6	187
818	Single cell cancer epigenetics. Trends in Cancer, 2022, 8, 820-838.	3.8	37
819	Spatial Transcriptomics for Tumor Heterogeneity Analysis. Frontiers in Genetics, 0, 13, .	1.1	9
820	Co-dependencies in the tumor immune microenvironment. Oncogene, 2022, 41, 3821-3829.	2.6	8
821	A transcriptomic axis predicts state modulation of cortical interneurons. Nature, 2022, 607, 330-338.	13.7	56
822	Identifying multicellular spatiotemporal organization of cells with SpaceFlow. Nature Communications, 2022, 13, .	5.8	30
823	Identification of cell-type-specific spatially variable genes accounting for excess zeros. Bioinformatics, 2022, 38, 4135-4144.	1.8	4
825	The Multi-Dimensional Biomarker Landscape in Cancer Immunotherapy. International Journal of Molecular Sciences, 2022, 23, 7839.	1.8	13
827	Applications of singleâ€eell multiâ€omics sequencing in deep understanding of brain diseases. Clinical and Translational Discovery, 2022, 2, .	0.2	0

#	Article	IF	CITATIONS
829	Histologically resolved multiomics enables precise molecular profiling of human intratumor heterogeneity. PLoS Biology, 2022, 20, e3001699.	2.6	6
831	The role of single-cell genomics in human genetics. Journal of Medical Genetics, 2022, 59, 827-839.	1.5	11
832	Spatially resolved transcriptomics and the kidney: many opportunities. Kidney International, 2022, 102, 482-491.	2.6	15
833	Tissue mechanics coevolves with fibrillar matrisomes in healthy and fibrotic tissues. Matrix Biology, 2022, 111, 153-188.	1.5	11
834	Transcriptomic and epigenomic landscapes of Alzheimer's disease evidence mitochondrial-related pathways. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119326.	1.9	14
835	Spatial transcriptomics prediction from histology jointly through Transformer and graph neural networks. Briefings in Bioinformatics, 2022, 23, .	3.2	30
836	See-N-Seq: RNA sequencing of target single cells identified by microscopy via micropatterning of hydrogel porosity. Communications Biology, 2022, 5, .	2.0	1
837	Full-Length Spatial Transcriptomics Reveals the Unexplored Isoform Diversity of the Myocardium Post-MI. Frontiers in Genetics, 0, 13, .	1.1	15
840	Integration of Computational Analysis and Spatial Transcriptomics in Single-cell Studies. Genomics, Proteomics and Bioinformatics, 2023, 21, 13-23.	3.0	9
841	The emerging landscape of spatial profiling technologies. Nature Reviews Genetics, 2022, 23, 741-759.	7.7	149
842	Knowledge-graph-based cell-cell communication inference for spatially resolved transcriptomic data with SpaTalk. Nature Communications, 2022, 13, .	5.8	42
843	Single-Cell RNA Sequencing: Unravelling the Bone One Cell at a Time. Current Osteoporosis Reports, 2022, 20, 356-362.	1.5	8
846	Inference on spatial heterogeneity in tumor microenvironment using spatial transcriptomics data. Computational and Systems Oncology, 2022, 2, .	1.1	7
847	Sprod for de-noising spatially resolved transcriptomics data based on position and image information. Nature Methods, 2022, 19, 950-958.	9.0	26
850	Adaptive cellular response of the <i>substantia nigra</i> dopaminergic neurons upon ageâ€dependent iron accumulation. Aging Cell, 2022, 21, .	3.0	8
853	Diverse stem cells for periodontal tissue formation and regeneration. Genesis, 2022, 60, .	0.8	6
854	Laser Microdissection-Mediated Isolation of Butterfly Wing Tissue for Spatial Transcriptomics. Methods and Protocols, 2022, 5, 67.	0.9	1
	Sample-multiplexing approaches for single-cell sequencing. Cellular and Molecular Life Sciences,		

	CITATION RE	PORT	
#	Article	IF	CITATIONS
857	Integrating multiplex immunofluorescent and mass spectrometry imaging to map myeloid heterogeneity in its metabolic and cellular context. Cell Metabolism, 2022, 34, 1214-1225.e6.	7.2	18
858	Spatial profiling of chromatin accessibility in mouse and human tissues. Nature, 2022, 609, 375-383.	13.7	119
860	Space in cancer biology: its role and implications. Trends in Cancer, 2022, 8, 1019-1032.	3.8	3
862	The Era of Genomic Research for Lymphoma: Looking Back and Forward. Hemato, 2022, 3, 485-507.	0.2	0
863	BASS: multi-scale and multi-sample analysis enables accurate cell type clustering and spatial domain detection in spatial transcriptomic studies. Genome Biology, 2022, 23, .	3.8	28
864	Riding brain "waves―to identify human memory genes. Current Opinion in Cell Biology, 2022, 78, 102118.	2.6	1
865	Decoding the olfactory map through targeted transcriptomics links murine olfactory receptors to glomeruli. Nature Communications, 2022, 13, .	5.8	12
866	Cell type-specific inference of differential expression in spatial transcriptomics. Nature Methods, 2022, 19, 1076-1087.	9.0	40
867	Decoding the Spermatogenesis Program: New Insights from Transcriptomic Analyses. Annual Review of Genetics, 2022, 56, 339-368.	3.2	11
868	Exploring glioblastoma stem cell heterogeneity: Immune microenvironment modulation and therapeutic opportunities. Frontiers in Oncology, 0, 12, .	1.3	7
869	Engineered living bioassemblies for biomedical and functional material applications. Current Opinion in Biotechnology, 2022, 77, 102756.	3.3	2
870	The progressive application of single-cell RNA sequencing technology in cardiovascular diseases. Biomedicine and Pharmacotherapy, 2022, 154, 113604.	2.5	5
871	Recent advances in high-throughput single-cell transcriptomics and spatial transcriptomics. Lab on A Chip, 2022, 22, 4774-4791.	3.1	14
872	STtools: a comprehensive software pipeline for ultra-high-resolution spatial transcriptomics data. Bioinformatics Advances, 2022, 2, .	0.9	3
873	Transcriptomics. , 2023, , 363-371.		1
874	Enriching and Characterizing T Cell Repertoires from 3′ Barcoded Single-Cell Whole Transcriptome Amplification Products. Methods in Molecular Biology, 2022, , 159-182.	0.4	2
875	Spacemake: processing and analysis of large-scale spatial transcriptomics data. GigaScience, 2022, 11, .	3.3	14
876	Computational solutions for spatial transcriptomics. Computational and Structural Biotechnology Journal, 2022, 20, 4870-4884.	1.9	30

#	Article	IF	CITATIONS
877	Polyphony: an Interactive Transfer Learning Framework for Single-Cell Data Analysis. IEEE Transactions on Visualization and Computer Graphics, 2023, 29, 591-601.	2.9	2
878	SPROUT: spectral sparsification helps restore the spatial structure at single-cell resolution. NAR Genomics and Bioinformatics, 2022, 4, .	1.5	2
880	Tumor vessel co-option: The past & the future. Frontiers in Oncology, 0, 12, .	1.3	17
881	The landscape of aging. Science China Life Sciences, 2022, 65, 2354-2454.	2.3	110
882	The end of the beginning: application of single-cell sequencing to chronic lymphocytic leukemia. Blood, 2023, 141, 369-379.	0.6	4
883	Purkinje Cell Patterning—Insights from Single-Cell Sequencing. Cells, 2022, 11, 2918.	1.8	3
884	Clinical application of advanced multi-omics tumor profiling: Shaping precision oncology of the future. Cancer Cell, 2022, 40, 920-938.	7.7	40
885	Decoding brain memory formation by single-cell RNA sequencing. Briefings in Bioinformatics, 2022, 23,	3.2	6
889	Applying genetic technologies to combat infectious diseases in aquaculture. Reviews in Aquaculture, 2023, 15, 491-535.	4.6	11
890	Scalable in situ single-cell profiling by electrophoretic capture of mRNA using EEL FISH. Nature Biotechnology, 0, , .	9.4	28
892	Multidimensional Imaging of Breast Cancer. Cold Spring Harbor Perspectives in Medicine, 0, , a041330.	2.9	1
893	Predictive Biomarkers for Immunotherapy in Lung Cancer: Perspective From the International Association for the Study of Lung Cancer Pathology Committee. Journal of Thoracic Oncology, 2022, 17, 1335-1354.	0.5	40
895	Decoding liver fibrogenesis with single-cell technologies. , 2022, 1, 333-344.		8
896	Identification of spatially variable genes with graph cuts. Nature Communications, 2022, 13, .	5.8	12
897	CCPLS reveals cell-type-specific spatial dependence of transcriptomes in single cells. Bioinformatics, 2022, 38, 4868-4877.	1.8	1
898	Integrating Micro and Nano Technologies for Cell Engineering and Analysis: Toward the Next Generation of Cell Therapy Workflows. ACS Nano, 2022, 16, 15653-15680.	7.3	5
899	Big data in basic and translational cancer research. Nature Reviews Cancer, 2022, 22, 625-639.	12.8	67
901	Unravelling Tumour Microenvironment in Melanoma at Single-Cell Level and Challenges to Checkpoint Immunotherapy. Genes, 2022, 13, 1757.	1.0	4

#	Article	IF	CITATIONS
903	SpaceX: gene co-expression network estimation for spatial transcriptomics. Bioinformatics, 2022, 38, 5033-5041.	1.8	4
904	Vesalius: highâ€resolution <i>in silico</i> anatomization of spatial transcriptomic data using image analysis. Molecular Systems Biology, 2022, 18, .	3.2	7
905	The impact of single-cell genomics on the field of mycobacterial infection. Frontiers in Microbiology, 0, 13, .	1.5	3
906	From multitude to singularity: An up-to-date overview of scRNA-seq data generation and analysis. Frontiers in Genetics, 0, 13, .	1.1	9
907	The expanding vistas of spatial transcriptomics. Nature Biotechnology, 2023, 41, 773-782.	9.4	84
910	Revealing the heterogeneity of CD4+ T cells through single-cell transcriptomics. Journal of Allergy and Clinical Immunology, 2022, 150, 748-755.	1.5	5
911	Integrated single-cell analysis-based classification of vascular mononuclear phagocytes in mouse and human atherosclerosis. Cardiovascular Research, 2023, 119, 1676-1689.	1.8	31
913	Spatiotemporal transcriptomics reveals pathogenesis of viral myocarditis. , 2022, 1, 946-960.		14
914	Spatial transcriptomics technology in cancer research. Frontiers in Oncology, 0, 12, .	1.3	21
915	Emerging computational paradigms to address the complex role of gut microbial metabolism in cardiovascular diseases. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	1
916	De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution. Nature Communications, 2022, 13, .	5.8	16
917	A review of spatial profiling technologies for characterizing the tumor microenvironment in immuno-oncology. Frontiers in Immunology, 0, 13, .	2.2	12
918	Computational Approaches and Challenges in Spatial Transcriptomics. Genomics, Proteomics and Bioinformatics, 2023, 21, 24-47.	3.0	28
919	AntiSplodge: a neural-network-based RNA-profile deconvolution pipeline designed for spatial transcriptomics. NAR Genomics and Bioinformatics, 2022, 4, .	1.5	1
920	Elucidating tumor heterogeneity from spatially resolved transcriptomics data by multi-view graph collaborative learning. Nature Communications, 2022, 13, .	5.8	14
921	Belayer: Modeling discrete and continuous spatial variation in gene expression from spatially resolved transcriptomics. Cell Systems, 2022, 13, 786-797.e13.	2.9	6
922	DeepST: identifying spatial domains in spatial transcriptomics by deep learning. Nucleic Acids Research, 2022, 50, e131-e131.	6.5	34
923	Spatial epitope barcoding reveals clonal tumor patch behaviors. Cancer Cell, 2022, 40, 1423-1439.e11.	7.7	13

#	Article	IF	CITATIONS
926	Integrative insights and clinical applications of single-cell sequencing in cancer immunotherapy. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	11
927	Light-Seq: light-directed in situ barcoding of biomolecules in fixed cells and tissues for spatially indexed sequencing. Nature Methods, 2022, 19, 1393-1402.	9.0	27
928	Single-cell and single-nuclei RNA sequencing as powerful tools to decipher cellular heterogeneity and dysregulation in neurodegenerative diseases. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	15
929	Single-cell technologies: From research to application. Innovation(China), 2022, 3, 100342.	5.2	13
930	The industrial genomic revolution: A new era in neuroimmunology. Neuron, 2022, 110, 3429-3443.	3.8	2
932	Tools for studying human microglia: In vitro and in vivo strategies. Brain, Behavior, and Immunity, 2023, 107, 369-382.	2.0	7
933	Unravelling the landscape of skin cancer through single-cell transcriptomics. Translational Oncology, 2023, 27, 101557.	1.7	5
934	Single-cell/nucleus transcriptomic and muscle pathologies. , 2023, , 419-442.		0
935	Single-cell transcriptomics. , 2023, , 67-84.		0
937	Singleâ€cell <scp>RNA</scp> sequencing for traumatic spinal cord injury. FASEB Journal, 2022, 36, .	0.2	5
938	Reproducible and sensitive micro-tissue RNA sequencing from formalin-fixed paraffin-embedded tissues for spatial gene expression analysis. Scientific Reports, 2022, 12, .	1.6	5
939	Graph deep learning for the characterization of tumour microenvironments from spatial protein profiles in tissue specimens. Nature Biomedical Engineering, 2022, 6, 1435-1448.	11.6	33
940	Spatially resolved transcriptomics: advances and applications. Blood Science, 2023, 5, 1-14.	0.4	5
941	Pooled genetic screens with imageâ€based profiling. Molecular Systems Biology, 2022, 18, .	3.2	8
943	Modern views of machine learning for precision psychiatry. Patterns, 2022, 3, 100602.	3.1	30
944	Polony gels enable amplifiable DNA stamping and spatial transcriptomics of chronic pain. Cell, 2022, 185, 4621-4633.e17.	13.5	40
945	Assessment of spatial transcriptomics for oncology discovery. Cell Reports Methods, 2022, 2, 100340.	1.4	6

#	Article	IF	CITATIONS
947	Spatial multi-omics analyses of the tumor immune microenvironment. Journal of Biomedical Science, 2022, 29, .	2.6	30
948	Challenges in neoantigen-directed therapeutics. Cancer Cell, 2023, 41, 15-40.	7.7	27
950	Deconvolution algorithms for inference of the cell-type composition of the spatial transcriptome. Computational and Structural Biotechnology Journal, 2023, 21, 176-184.	1.9	8
951	Microfluidics-based single cell analysis: from transcriptomics to spatiotemporal multi-omics. TrAC - Trends in Analytical Chemistry, 2023, 158, 116868.	5.8	6
952	A comparative performance evaluation of imputation methods in spatially resolved transcriptomics data. Molecular Omics, 2023, 19, 162-173.	1.4	4
953	SOTIP is a versatile method for microenvironment modeling with spatial omics data. Nature Communications, 2022, 13, .	5.8	10
954	Image-seq: spatially resolved single-cell sequencing guided by in situ and in vivo imaging. Nature Methods, 2022, 19, 1622-1633.	9.0	15
957	Microfluidic singleâ€cell multiomics analysis. View, 2023, 4, .	2.7	6
958	Benchmarking cell-type clustering methods for spatially resolved transcriptomics data. Briefings in Bioinformatics, 2023, 24, .	3.2	14
959	Spatially aware dimension reduction for spatial transcriptomics. Nature Communications, 2022, 13, .	5.8	42
962	Integrated spatial analysis of gene mutation and gene expression for understanding tumor diversity in formalin-fixed paraffin-embedded lung adenocarcinoma. Frontiers in Oncology, 0, 12, .	1.3	2
963	TIST: Transcriptome and Histopathological Image Integrative Analysis for Spatial Transcriptomics. Genomics, Proteomics and Bioinformatics, 2022, 20, 974-988.	3.0	8
965	TATTOO-seq delineates spatial and cell type–specific regulatory programs in the developing limb. Science Advances, 2022, 8, .	4.7	1
967	An individualized causal framework for learning intercellular communication networks that define microenvironments of individual tumors. PLoS Computational Biology, 2022, 18, e1010761.	1.5	3
969	Single-cell and spatial multi-omics in the plant sciences: Technical advances, applications, and perspectives. Plant Communications, 2023, 4, 100508.	3.6	14
970	Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding. Nature Communications, 2022, 13, .	5.8	19
972	Massively Parallel CRISPRâ€Based Genetic Perturbation Screening at Single ell Resolution. Advanced Science, 2023, 10, .	5.6	6
973	Spatial biology of cancer evolution. Nature Reviews Genetics, 2023, 24, 295-313.	7.7	42

#	Article	IF	CITATIONS
974	SPATIAL RNA SEQUENCING METHODS SHOWED HIGH RESOLUTION OF SINGLE CELL IN CANCER METASTASIS AND THE FORMATION OF TME. Bioscience Reports, 0, , .	1.1	1
975	Single-cell transcriptomics for the assessment of cardiac disease. Nature Reviews Cardiology, 2023, 20, 289-308.	6.1	23
976	Postsynaptic plasticity of Purkinje cells in mice is determined by molecular identity. Communications Biology, 2022, 5, .	2.0	2
977	Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for Alzheimer's disease. Nature Communications, 2022, 13, .	5.8	14
978	Computational Methods for Single-cell Multi-omics Integration and Alignment. Genomics, Proteomics and Bioinformatics, 2022, 20, 836-849.	3.0	23
979	A Poisson reduced-rank regression model for association mapping in sequencing data. BMC Bioinformatics, 2022, 23, .	1.2	2
981	scCapsNet-mask: an updated version of scCapsNet with extended applicability in functional analysis related to scRNA-seq data. BMC Bioinformatics, 2022, 23, .	1.2	2
982	Spatial transcriptomics add a new dimension to our understanding of the gut. American Journal of Physiology - Renal Physiology, 2023, 324, G91-G98.	1.6	5
984	Tissue registration and exploration user interfaces in support of a human reference atlas. Communications Biology, 2022, 5, .	2.0	4
985	Spatial proteomics in three-dimensional intact specimens. Cell, 2022, 185, 5040-5058.e19.	13.5	28
986	Interdisciplinary approaches to brain organoid biology. Folia Pharmacologica Japonica, 2023, 158, 64-70.	0.1	0
988	Development, wiring and function of dopamine neuron subtypes. Nature Reviews Neuroscience, 2023, 24, 134-152.	4.9	18
991	Advances and Challenges in Spatial Transcriptomics for Developmental Biology. Biomolecules, 2023, 13, 156.	1.8	11
993	Highly Multiplexed Spatially Resolved Proteomic and Transcriptional Profiling of the Glioblastoma Microenvironment Using Archived Formalin-Fixed Paraffin-Embedded Specimens. Modern Pathology, 2023, 36, 100034.	2.9	4
994	Current and future perspectives of single-cell multi-omics technologies in cardiovascular research. , 2023, 2, 20-34.		3
995	SpiceMix enables integrative single-cell spatial modeling of cell identity. Nature Genetics, 2023, 55, 78-88.	9.4	20
996	A guidebook of spatial transcriptomic technologies, data resources and analysis approaches. Computational and Structural Biotechnology Journal, 2023, 21, 940-955.	1.9	7
997	Single-cell omics: A new direction for functional genetic research in human diseases and animal models. Frontiers in Genetics, 0, 13, .	1.1	9

#	Article	IF	CITATIONS
998	A universal sequencing read interpreter. Science Advances, 2023, 9, .	4.7	3
1000	Transcriptomic and Epigenomic Approaches for Epilepsy. , 2022, , 19-40.		0
1001	Multiomic Spatial Mapping of Myocardial Infarction and Implications for Personalized Therapy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2023, 43, 192-202.	1.1	3
1002	The Utility of Spatial Transcriptomics for Solid Organ Transplantation. Transplantation, 2023, 107, 1463-1471.	0.5	3
1003	Single-cell spatial explorer: easy exploration of spatial and multimodal transcriptomics. BMC Bioinformatics, 2023, 24, .	1.2	2
1004	Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST. Nature Communications, 2023, 14, .	5.8	24
1006	Into the multi-omics era: Progress of T cells profiling in the context of solid organ transplantation. Frontiers in Immunology, 0, 14, .	2.2	2
1008	Spatial transcriptomics for profiling the tropism of viral vectors in tissues. Nature Biotechnology, 2023, 41, 1272-1286.	9.4	17
1009	Single mRNA detection of Wnt signaling pathway in the human limbus. Experimental Eye Research, 2023, 229, 109337.	1.2	3
1010	Screening cell–cell communication in spatial transcriptomics via collective optimal transport. Nature Methods, 2023, 20, 218-228.	9.0	57
1013	Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell, 2023, 41, 404-420.	7.7	41
1014	The Neurovasculome: Key Roles in Brain Health and Cognitive Impairment: A Scientific Statement From the American Heart Association/American Stroke Association. Stroke, 2023, 54, .	1.0	28
1016	The heterogeneous cellular landscape of atherosclerosis: Implications for future research and therapies. A collaborative review from the EAS young fellows. Atherosclerosis, 2023, 372, 48-56.	0.4	3
1017	Spatial transcriptomics dimensionality reduction using wavelet bases. F1000Research, 0, 11, 1033.	0.8	0
1018	The spatial landscape of gene expression isoforms in tissue sections. Nucleic Acids Research, 2023, 51, e47-e47.	6.5	13
1019	TissUUmaps 3: Improvements in interactive visualization, exploration, and quality assessment of large-scale spatial omics data. Heliyon, 2023, 9, e15306.	1.4	8
1021	Integrative in situ mapping of single-cell transcriptional states and tissue histopathology in a mouse model of Alzheimer's disease. Nature Neuroscience, 0, , .	7.1	21
1023	Estimation of cell lineages in tumors from spatial transcriptomics data. Nature Communications, 2023, 14, .	5.8	12

#	Article	IF	CITATIONS
1024	Dissecting the immune suppressive human prostate tumor microenvironment via integrated single-cell and spatial transcriptomic analyses. Nature Communications, 2023, 14, .	5.8	33
1025	Deep learning in spatial transcriptomics: Learning from the next next-generation sequencing. Biophysics Reviews, 2023, 4, .	1.0	6
1027	The Application of Single-Cell RNA Sequencing in the Inflammatory Tumor Microenvironment. Biomolecules, 2023, 13, 344.	1.8	3
1028	Single-cell transcriptomics is revolutionizing the improvement of plant biotechnology research: recent advances and future opportunities. Critical Reviews in Biotechnology, 2024, 44, 202-217.	5.1	1
1029	Neurodegeneration cell per cell. Neuron, 2023, 111, 767-786.	3.8	8
1031	Fluorescent Light Opening New Horizons. , 2023, , 693-746.		0
1033	SODB facilitates comprehensive exploration of spatial omics data. Nature Methods, 2023, 20, 387-399.	9.0	28
1034	TACCO unifies annotation transfer and decomposition of cell identities for single-cell and spatial omics. Nature Biotechnology, 2023, 41, 1465-1473.	9.4	6
1035	Spatial transcriptomes and microbiota reveal immune mechanism that respond to pathogen infection in the posterior intestine of <i>Sebastes schlegelii</i> . Open Biology, 2023, 13, .	1.5	3
1037	<scp>Cellâ€type</scp> profiling of the sympathetic nervous system using spatial transcriptomics and spatial mapping of <scp>mRNA</scp> . Developmental Dynamics, 2023, 252, 1130-1142.	0.8	1
1038	Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST. Nature Communications, 2023, 14, .	5.8	54
1039	STEEL enables high-resolution delineation of spatiotemporal transcriptomic data. Briefings in Bioinformatics, 2023, 24, .	3.2	4
1040	In silico tissue generation and power analysis for spatial omics. Nature Methods, 2023, 20, 424-431.	9.0	13
1041	Single-Cell Molecular Barcoding to Decode Multimodal Information Defining Cell States. Molecules and Cells, 2023, 46, 74-85.	1.0	3
1042	Methods and applications for single-cell and spatial multi-omics. Nature Reviews Genetics, 2023, 24, 494-515.	7.7	192
1043	Application of spatial transcriptome technologies to neurological diseases. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	1
1045	SRTsim: spatial pattern preserving simulations for spatially resolved transcriptomics. Genome Biology, 2023, 24, .	3.8	14
1047	Microglia and macrophages in the neuro-glia-vascular unit: From identity to functions. Neurobiology of Disease, 2023, 179, 106066.	2.1	1

#	Article	IF	CITATIONS
1048	High-resolution alignment of single-cell and spatial transcriptomes with CytoSPACE. Nature Biotechnology, 2023, 41, 1543-1548.	9.4	29
1049	Improvements and challenges of tissue preparation for spatial transcriptome analysis of skull base tumors. Heliyon, 2023, 9, e14133.	1.4	3
1050	Insights into Neurodegeneration in Parkinson's Disease from Single ell and Spatial Genomics. Movement Disorders, 2023, 38, 518-525.	2.2	1
1053	Interpretable and context-free deconvolution of multi-scale whole transcriptomic data with UniCell deconvolve. Nature Communications, 2023, 14, .	5.8	10
1056	Cell-type-specific densities in mouse somatosensory cortex derived from scRNA-seq and in situ RNA hybridization. Frontiers in Neuroanatomy, 0, 17, .	0.9	1
1058	Omics-based approaches to guide the design of biomaterials. Materials Today, 2023, 64, 98-120.	8.3	5
1059	Shaping the brain vasculature in development and disease in the single-cell era. Nature Reviews Neuroscience, 2023, 24, 271-298.	4.9	20
1061	A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics. Nature Communications, 2023, 14, .	5.8	38
1062	Opportunities for High-plex Spatial Transcriptomics in Solid Organ Transplantation. Transplantation, 0, Publish Ahead of Print, .	0.5	1
1063	Multiomics Empowers Predictive Pancreatic Cancer Immunotherapy. Journal of Immunology, 2023, 210, 859-868.	0.4	3
1064	Lost in local translation: TDP-43 and FUS in axonal/neuromuscular junction maintenance and dysregulation in amyotrophic lateral sclerosis. Neuron, 2023, 111, 1355-1380.	3.8	4
1066	Spatiotemporally resolved tools for analyzing gut microbiota. CheM, 2023, 9, 1094-1117.	5.8	1
1068	Spatially resolved transcriptomics: a comprehensive review of their technological advances, applications, and challenges. Journal of Genetics and Genomics, 2023, 50, 625-640.	1.7	19
1069	IMAGE-seq and you shall find. Nature Methods, 0, , .	9.0	0
1071	Spatial Transcriptomics in Inflammation: Dissecting the Immune Response in 3D in Complex Tissues. , 2023, , 243-279.		0
1072	Single-cell protein-DNA interactomics and multiomics tools for deciphering genome regulation. , 2023, , 20220057.		0
1073	Recent advances in understanding neuronal diversity and neural circuit complexity across different brain regions using single-cell sequencing. Frontiers in Neural Circuits, 0, 17, .	1.4	3
1074	It is better to light a candle than to curse the darkness: single-cell transcriptomics sheds new light on pancreas biology and disease. Gut, 2023, 72, 1211-1219.	6.1	6

	CHATION I	LEPUKI	
#	Article	IF	CITATIONS
1075	Best practices for single-cell analysis across modalities. Nature Reviews Genetics, 2023, 24, 550-572.	7.7	128
1076	Researchers dig into cancer niches. Nature Methods, 2023, 20, 484-488.	9.0	0
1077	Lung development and regeneration: newly defined cell types and progenitor status. Cell Regeneration, 2023, 12, .	1.1	4
1079	Padlock Probe–Based Targeted In Situ Sequencing: Overview of Methods and Applications. Annual Review of Genomics and Human Genetics, 2023, 24, 133-150.	2.5	1
1081	Toward a systems-level probing of tumor clonality. IScience, 2023, 26, 106574.	1.9	1
1082	Recent advances in differential expression analysis for single-cell RNA-seq and spatially resolved transcriptomic studies. Briefings in Functional Genomics, 0, , .	1.3	1
1083	SpaDecon: cell-type deconvolution in spatial transcriptomics with semi-supervised learning. Communications Biology, 2023, 6, .	2.0	5
1084	Spatial Transcriptomics: Technical Aspects of Recent Developments and Their Applications in Neuroscience and Cancer Research. Advanced Science, 2023, 10, .	5.6	7
1085	Dissecting the brain with spatially resolved multi-omics. Journal of Pharmaceutical Analysis, 2023, 13, 694-710.	2.4	3
1086	VT3D: a visualization toolbox for 3D transcriptomic data. Journal of Genetics and Genomics, 2023, 50, 713-719.	1.7	3
1087	FISHFactor: a probabilistic factor model for spatial transcriptomics data with subcellular resolution. Bioinformatics, 2023, 39, .	1.8	6
1088	Accurate and interpretable gene expression imputation on scRNA-seq data using ICSimpute. Briefings in Bioinformatics, 2023, 24, .	3.2	2
1089	Fibrosis in Pathology of Heart and Kidney: From Deep RNA-Sequencing to Novel Molecular Targets. Circulation Research, 2023, 132, 1013-1033.	2.0	8
1090	Striosomes and Matrisomes: Scaffolds for Dynamic Coupling of Volition and Action. Annual Review of Neuroscience, 2023, 46, 359-380.	5.0	7
1091	Proximal tubule responses to injury: interrogation by single-cell transcriptomics. Current Opinion in Nephrology and Hypertension, 2023, 32, 352-358.	1.0	0
1093	Graph deep learning enabled spatial domains identification for spatial transcriptomics. Briefings in Bioinformatics, 2023, 24, .	3.2	1
1095	Size matters: the impact of nucleus size on results from spatial transcriptomics. Journal of Translational Medicine, 2023, 21, .	1.8	2
1102	Dissecting metastasis using preclinical models and methods. Nature Reviews Cancer, 2023, 23, 391-407.	12.8	11

#	Article	IF	CITATIONS
1107	Human disease models in drug development. , 2023, 1, 545-559.		18
1110	Single-cell and spatial transcriptomics: deciphering brain complexity in health and disease. Nature Reviews Neurology, 2023, 19, 346-362.	4.9	33
1117	The technological landscape and applications of single-cell multi-omics. Nature Reviews Molecular Cell Biology, 2023, 24, 695-713.	16.1	73
1119	FACS-Based Sequencing Approach to Evaluate Cell Type to Genotype Associations Using Cerebral Organoids. Methods in Molecular Biology, 2023, , 193-199.	0.4	0
1133	Applications of single-cell RNA sequencing in drug discovery and development. Nature Reviews Drug Discovery, 2023, 22, 496-520.	21.5	31
1139	scDesign3 generates realistic in silico data for multimodal single-cell and spatial omics. Nature Biotechnology, 2024, 42, 247-252.	9.4	19
1151	Microtechnologies for single-cell and spatial multi-omics. , 2023, 1, 769-784.		2
1168	Progress in single-cell multimodal sequencing and multi-omics data integration. Biophysical Reviews, 0, , .	1.5	6
1171	Advances and prospects for the Human BioMolecular Atlas Program (HuBMAP). Nature Cell Biology, 2023, 25, 1089-1100.	4.6	22
1180	Cell-level reference maps for the human body take shape. Nature, 2023, 619, 467-468.	13.7	1
1181	Spatial Domain Identification Based on Graph Attention Denoising Auto-encoder. Lecture Notes in Computer Science, 2023, , 359-367.	1.0	0
1191	Spatial transcriptomics in human biomedical research and clinical application. , 2023, 2, .		2
1209	Microglial contribution to the pathology of neurodevelopmental disorders in humans. Acta Neuropathologica, 2023, 146, 663-683.	3.9	5
1210	Bioinformatics in urology — molecular characterization of pathophysiology and response to treatment. Nature Reviews Urology, 0, , .	1.9	0
1211	Recent progress in co-detection of single-cell transcripts and proteins. Nano Research, 0, , .	5.8	1
1212	Mapping epigenetic modifications by sequencing technologies. Cell Death and Differentiation, 0, , .	5.0	2
1213	Functional genomic mechanisms of opioid action and opioid use disorder: a systematic review of animal models and human studies. Molecular Psychiatry, 2023, 28, 4568-4584.	4.1	0
1215	Spatial transcriptomics in neuroscience. Experimental and Molecular Medicine, 0, , .	3.2	О

ARTICLE IF CITATIONS Heterogeneity of the tumor immune microenvironment and clinical interventions. Frontiers of 1217 1.5 0 Medicine, 2023, 17, 617-648. Spatial transcriptomics in development and disease. Molecular Biomedicine, 2023, 4, . 1224 1.7 How Can We Study the Mechanisms of Memory-Related Oscillations Using Multimodal in Vivo and in 1227 0.1 0 Vitro Approaches?. Studies in Neuroscience, Psychology and Behavioral Economics, 2023, , 415-431. A Hands-On Guide to Generate Spatial Gene Expression Profiles by Integrating scRNA-seq and 0.4 3D-Reconstructed Microscope-Based Plant Structures. Methods in Molecular Biology, 2023, , 567-580. Identification and Localization of Cell Types in the Mouse Olfactory Bulb Using Slide-SeqV2. Methods 1236 0.4 1 in Molecular Biology, 2023, , 171-183. Spatial methods for microbiome–host interactions. Nature Biotechnology, 0, , . 9.4 Vitamin B5 supports MYC oncogenic metabolism and tumor progression in breast cancer. Nature 1276 5.1 3 Metabolism, 2023, 5, 1870-1886. Decoding the tumor microenvironment with spatial technologies. Nature Immunology, 2023, 24, 1283 1982-1993. Roles of Skeletal Muscle in Development: A Bioinformatics and Systems Biology Overview. Advances in 1292 1.0 0 Anatomy, Embryology and Cell Biology, 2023, , 21-55. Profiling joint tissues at single-cell resolution: advances and insights. Nature Reviews Rheumatology, 1304 3.5 Visualizing and Subtyping Tumor Ecosystem., 2023, , 609-636. 1309 0 Gene expression of single cells mapped in tissue sections. Nature, 2024, 625, 38-39. Discrete Representation Learning for Modeling Imaging-based Spatial Transcriptomics Data., 2023,,. 1323 0 Real-time single-molecule imaging of transcriptional regulatory networks in living cells. Nature 1328 Reviews Genetics, 2024, 25, 272-285. Human-Spa: An Online Platform Based on Spatial Transcriptome Data for Diseases of Human Systems., 1341 0 2023,,. Spatial analysis of the osteoarthritis microenvironment: techniques, insights, and applications. Bone Research, 2024, 12, .