Comprehensive comparative analysis of 5′-end RNA-

Nature Methods 15, 505-511

DOI: 10.1038/s41592-018-0014-2

Citation Report

#	Article	IF	CITATIONS
1	SLIC-CAGE: high-resolution transcription start site mapping using nanogram-levels of total RNA. Genome Research, 2018, 28, 1943-1956.	2.4	33
2	Rhythms of the Genome: Circadian Dynamics from Chromatin Topology, Tissue-Specific Gene Expression, to Behavior. Trends in Genetics, 2018, 34, 915-926.	2.9	43
3	Maximizing the Utility of Cancer Transcriptomic Data. Trends in Cancer, 2018, 4, 823-837.	3.8	32
4	NanoPARE: parallel analysis of RNA 5′ ends from low-input RNA. Genome Research, 2018, 28, 1931-1942.	2.4	56
5	Perspectives on topology of the human m $<$ sup $>$ 1 $<$ /sup $>$ A methylome at single nucleotide resolution. Rna, 2018, 24, 1437-1442.	1.6	19
6	RNA sequencing: the teenage years. Nature Reviews Genetics, 2019, 20, 631-656.	7.7	1,192
7	Computational Biology Solutions to Identify Enhancers-target Gene Pairs. Computational and Structural Biotechnology Journal, 2019, 17, 821-831.	1.9	29
8	MAPCap allows high-resolution detection and differential expression analysis of transcription start sites. Nature Communications, 2019, 10, 3219.	5.8	16
9	CAGEfightR: analysis of 5′-end data using R/Bioconductor. BMC Bioinformatics, 2019, 20, 487.	1.2	59
10	FFPEcap-seq: a method for sequencing capped RNAs in formalin-fixed paraffin-embedded samples. Genome Research, 2019, 29, 1826-1835.	2.4	9
11	NET-CAGE characterizes the dynamics and topology of human transcribed cis-regulatory elements. Nature Genetics, 2019, 51, 1369-1379.	9.4	72
12	Comprehensive profiling of the fission yeast transcription start site activity during stress and media response. Nucleic Acids Research, 2019, 47, 1671-1691.	6.5	34
13	Computation Resources for Molecular Biology: Special Issue 2019. Journal of Molecular Biology, 2019, 431, 2395-2397.	2.0	0
14	The landscape of transcription initiation across latent and lytic KSHV genomes. PLoS Pathogens, 2019, 15, e1007852.	2.1	13
15	Improved annotation of the domestic pig genome through integration of Iso-Seq and RNA-seq data. BMC Genomics, 2019, 20, 344.	1.2	80
16	Evidence that alternative transcriptional initiation is largely nonadaptive. PLoS Biology, 2019, 17, e3000197.	2.6	46
17	Discovery of gene regulatory elements through a new bioinformatics analysis of haploid genetic screens. PLoS ONE, 2019, 14, e0198463.	1.1	0
18	Update of the FANTOM web resource: expansion to provide additional transcriptome atlases. Nucleic Acids Research, 2019, 47, D752-D758.	6.5	172

#	Article	IF	CITATIONS
19	$\mbox{\ensuremath{\mbox{\sc i}}}\mbox{\sc Saccharomyces cerevisiae} \mbox{\ensuremath{\mbox{\sc i}}}\mbox{\sc i}$ displays a stable transcription start site landscape in multiple conditions. FEMS Yeast Research, 2019, 19, .	1.1	10
20	Different Plant Species Have Common Sequence Features Related to mRNA Degradation Intermediates. Plant and Cell Physiology, 2020, 61, 53-63.	1.5	8
21	High resolution biosensor to test the capping level and integrity of mRNAs. Nucleic Acids Research, 2020, 48, e129-e129.	6.5	8
22	Embryonic tissue differentiation is characterized by transitions in cell cycle dynamic-associated core promoter regulation. Nucleic Acids Research, 2020, 48, 8374-8392.	6.5	8
23	Simple and efficient profiling of transcription initiation and transcript levels with STRIPE-seq. Genome Research, 2020, 30, 910-923.	2.4	23
24	The Rubber Tree Genome. Compendium of Plant Genomes, 2020, , .	0.3	3
25	Optimized design of antisense oligomers for targeted rRNA depletion. Nucleic Acids Research, 2021, 49, e5-e5.	6.5	11
26	Changes in mRNA Degradation Efficiencies under Varying Conditions Are Regulated by Multiple Determinants in Arabidopsis thaliana. Plant and Cell Physiology, 2021, 62, 143-155.	1.5	2
27	The origin and evolution of a distinct mechanism of transcription initiation in yeasts. Genome Research, 2021, 31, 51-63.	2.4	18
28	High-Resolution Mapping of Transcription Initiation in the Asexual Stages of Toxoplasma gondii. Frontiers in Cellular and Infection Microbiology, 2020, 10, 617998.	1.8	11
30	Cross-species RNA-seq for deciphering host–microbe interactions. Nature Reviews Genetics, 2021, 22, 361-378.	7.7	52
31	Transcription initiation mapping in 31 bovine tissues reveals complex promoter activity, pervasive transcription, and tissue-specific promoter usage. Genome Research, 2021, 31, 732-744.	2.4	11
34	FINDER: an automated software package to annotate eukaryotic genes from RNA-Seq data and associated protein sequences. BMC Bioinformatics, 2021, 22, 205.	1.2	17
35	Altered visual processing in the mdx52 mouse model of Duchenne muscular dystrophy. Neurobiology of Disease, 2021, 152, 105288.	2.1	4
36	High-quality reference genome for Clonorchis sinensis. Genomics, 2021, 113, 1605-1615.	1.3	19
38	TERA-Seq: true end-to-end sequencing of native RNA molecules for transcriptome characterization. Nucleic Acids Research, 2021, 49, e115-e115.	6.5	18
39	Identifying transcript 5′Âcapped ends in <i>Plasmodium falciparum</i> . PeerJ, 2021, 9, e11983.	0.9	2
40	Current and Future Perspectives of Noncoding RNAs in Brain Function and Neuropsychiatric Disease. Biological Psychiatry, 2022, 91, 183-193.	0.7	15

#	ARTICLE	IF	CITATIONS
41	Cap analysis of gene expression (CAGE) and noncoding regulatory elements. Seminars in Immunopathology, 2022, 44, 127-136.	2.8	3
42	Global approaches for profiling transcription initiation. Cell Reports Methods, 2021, 1, 100081.	1.4	11
46	A step-by-step guide to analyzing CAGE data using R/Bioconductor. F1000Research, 2019, 8, 886.	0.8	23
47	Clinical and Translational Research Challenges in Neuroendocrine Tumours. Current Medicinal Chemistry, 2020, 27, 4823-4839.	1.2	5
54	Construction of Metatranscriptomic Libraries for $5\hat{a}\in^2$ End Sequencing of rRNAs for Microbiome Research. Methods in Molecular Biology, 2022, 2349, 137-146.	0.4	1
56	Genome-Wide Analysis of Transcription Start Sites and Core Promoter Elements in Hevea brasiliensis. Compendium of Plant Genomes, 2020, , 81-91.	0.3	0
57	Identification of high-confidence human poly(A) RNA isoform scaffolds using nanopore sequencing. Rna, 2022, 28, 162-176.	1.6	12
58	Spontaneous pulmonary emphysema in mice lacking all three nitric oxide synthase isoforms. Scientific Reports, 2021, 11, 22088.	1.6	3
59	Comprehensive determination of transcription start sites derived from all RNA polymerases using ReCappable-seq. Genome Research, 2022, 32, 162-174.	2.4	14
62	TSS-seq of Toxoplasma gondii sporozoites revealed a novel motif in stage-specific promoters. Infection, Genetics and Evolution, 2022, 98, 105213.	1.0	1
63	A comparison of experimental assays and analytical methods for genome-wide identification of active enhancers. Nature Biotechnology, 2022, 40, 1056-1065.	9.4	28
64	Nanopore ReCappable sequencing maps SARS-CoV-2 5′ capping sites and provides new insights into the structure of sgRNAs. Nucleic Acids Research, 2022, 50, 3475-3489.	6.5	12
66	Methods for detecting RNA degradation intermediates in plants. Plant Science, 2022, 318, 111241.	1.7	3
67	Exogenous artificial DNA forms chromatin structure with active transcription in yeast. Science China Life Sciences, 2021, , 1.	2.3	15
68	<i>TP53BP1</i> , a New Dual-Coding Gene, Uses Promoter Switching and Translational Reinitiation to Express a smORF Protein that Interacts With the Proteasome. SSRN Electronic Journal, 0, , .	0.4	0
69	Bookend: precise transcript reconstruction with end-guided assembly. Genome Biology, 2022, 23, .	3.8	5
72	SCAFE: a software suite for analysis of transcribed cis-regulatory elements in single cells. Bioinformatics, 2022, 38, 5126-5128.	1.8	6
73	Sequence features around cleavage sites are highly conserved among different species and a critical determinant for RNA cleavage position across eukaryotes. Journal of Bioscience and Bioengineering, 2022, 134, 450-461.	1.1	0

#	Article	IF	CITATIONS
74	Simple and accurate transcriptional start site identification using Smar2C2 and examination of conserved promoter features. Plant Journal, 2022, 112, 583-596.	2.8	8
75	FIPRESCI: droplet microfluidics based combinatorial indexing for massive-scale 5′-end single-cell RNA sequencing. Genome Biology, 2023, 24, .	3.8	4
77	Sex-chromosome mechanisms in cardiac development and disease., 2023, 2, 340-350.		1