Molecular therapies and precision medicine for hepatod

Nature Reviews Clinical Oncology 15, 599-616

DOI: 10.1038/s41571-018-0073-4

Citation Report

#	Article	IF	CITATIONS
1	Splicing alterations contributing to cancer hallmarks in the liver: central role of dedifferentiation and genome instability. Translational Gastroenterology and Hepatology, 2018, 3, 84-84.	1.5	14
2	Prognostic Value of Lactate Dehydrogenase in Patients with Hepatocellular Carcinoma: A Meta-Analysis. BioMed Research International, 2018, 2018, 1-10.	0.9	17
3	Lipid Metabolic Reprogramming in Hepatocellular Carcinoma. Cancers, 2018, 10, 447.	1.7	107
4	Autophagy is a gatekeeper of hepatic differentiation and carcinogenesis by controlling the degradation of Yap. Nature Communications, 2018, 9, 4962.	5.8	111
5	Senolytic Cocktail Dasatinib+Quercetin (D+Q) Does Not Enhance the Efficacy of Senescence-Inducing Chemotherapy in Liver Cancer. Frontiers in Oncology, 2018, 8, 459.	1.3	71
6	Current State of Immunotherapy for HCCâ€"Supporting Data and Toxicity Management. Current Hepatology Reports, 2018, 17, 434-443.	0.4	2
7	Hypoxia-Inducible Factor Prolyl 4-Hydroxylases and Metabolism. Trends in Molecular Medicine, 2018, 24, 1021-1035.	3.5	34
8	HBx regulates transcription factor PAX8 stabilization to promote the progression of hepatocellular carcinoma. Oncogene, 2019, 38, 6696-6710.	2.6	17
9	miR-450b-5p loss mediated KIF26B activation promoted hepatocellular carcinoma progression by activating PI3K/AKT pathway. Cancer Cell International, 2019, 19, 205.	1.8	28
10	Inhibition of GSK- $3\hat{l}^2$ activity suppresses HCC malignant phenotype by inhibiting glycolysis via activating AMPK/mTOR signaling. Cancer Letters, 2019, 463, 11-26.	3.2	53
11	Targeted genomic profiling identifies frequent deleterious mutations in FAT4 and TP53 genes in HBV-associated hepatocellular carcinoma. BMC Cancer, 2019, 19, 789.	1.1	12
12	Mechanistically detailed systems biology modeling of the HGF/Met pathway in hepatocellular carcinoma. Npj Systems Biology and Applications, 2019, 5, 29.	1.4	17
13	Biology and significance of alphaâ€fetoprotein in hepatocellular carcinoma. Liver International, 2019, 39, 2214-2229.	1.9	327
14	New Insight into Therapies Targeting Angiogenesis in Hepatocellular Carcinoma. Cancers, 2019, 11, 1086.	1.7	41
15	Mechanisms of hepatocellular carcinoma progression. World Journal of Gastroenterology, 2019, 25, 2279-2293.	1.4	157
16	Proteomic profiling in liver cancer: another new page. Translational Gastroenterology and Hepatology, 2019, 4, 47-47.	1.5	8
17	Combined Treatment with MEK and mTOR Inhibitors is Effective in In Vitro and In Vivo Models of Hepatocellular Carcinoma. Cancers, 2019, 11, 930.	1.7	8
18	Molecular portrait of high alpha-fetoprotein in hepatocellular carcinoma: implications for biomarker-driven clinical trials. British Journal of Cancer, 2019, 121, 340-343.	2.9	62

#	Article	IF	CITATIONS
19	Relative Efficacy of Systemic Treatments for Patients with Advanced Hepatocellular Carcinoma According to Viral Status: A Systematic Review and Network Meta-Analysis. Targeted Oncology, 2019, 14, 395-403.	1.7	10
20	Immunomodulatory TGF- \hat{l}^2 Signaling in Hepatocellular Carcinoma. Trends in Molecular Medicine, 2019, 25, 1010-1023.	3.5	157
21	Remote targeted implantation of sound-sensitive biodegradable multi-cavity microparticles with focused ultrasound. Scientific Reports, 2019, 9, 9612.	1.6	18
22	Analysis of Liver Cancer Cell Lines Identifies Agents With Likely Efficacy Against Hepatocellular Carcinoma and Markers of Response. Gastroenterology, 2019, 157, 760-776.	0.6	141
23	Identifying potential drug targets in hepatocellular carcinoma based on network analysis and one-class support vector machine. Scientific Reports, 2019, 9, 10442.	1.6	17
24	<p>MicroRNA-106b-5p promotes hepatocellular carcinoma development via modulating FOG2</p> . OncoTargets and Therapy, 2019, Volume 12, 5639-5647.	1.0	13
25	Hepatocellular Carcinoma Growth Retardation and PD-1 Blockade Therapy Potentiation with Synthetic High-density Lipoprotein. Nano Letters, 2019, 19, 5266-5276.	4.5	40
26	Modulating the site-specific oral delivery of sorafenib using sugar-grafted nanoparticles for hepatocellular carcinoma treatment. European Journal of Pharmaceutical Sciences, 2019, 137, 104978.	1.9	33
28	PYCR1 interference inhibits cell growth and survival via c-Jun N-terminal kinase/insulin receptor substrate 1 (JNK/IRS1) pathway in hepatocellular cancer. Journal of Translational Medicine, 2019, 17, 343.	1.8	42
29	Cabozantinib for the treatment of hepatocellular carcinoma. Expert Review of Anticancer Therapy, 2019, 19, 847-855.	1.1	12
30	Eradication of Hepatocellular Carcinoma by NKG2D-Based CAR-T Cells. Cancer Immunology Research, 2019, 7, 1813-1823.	1.6	85
31	An Immune Gene Expression Signature Associated With Development of Human Hepatocellular Carcinoma Identifies Mice That Respond to Chemopreventive Agents. Gastroenterology, 2019, 157, 1383-1397.e11.	0.6	62
33	<p>Genetic Biomarkers For Hepatocellular Carcinoma In The Era Of Precision Medicine</p> . Journal of Hepatocellular Carcinoma, 2019, Volume 6, 151-166.	1.8	25
34	Overview of Immune Checkpoint Inhibitors Therapy for Hepatocellular Carcinoma, and The ITA.LI.CA Cohort Derived Estimate of Amenability Rate to Immune Checkpoint Inhibitors in Clinical Practice. Cancers, 2019, 11, 1689.	1.7	44
35	Molecular targeted and immune checkpoint therapy for advanced hepatocellular carcinoma. Journal of Experimental and Clinical Cancer Research, 2019, 38, 447.	3.5	149
36	Low density lipoprotein receptor (LDLR)-targeted lipid nanoparticles for the delivery of sorafenib and Dihydroartemisinin in liver cancers. Life Sciences, 2019, 239, 117013.	2.0	45
37	Simple In-House Fabrication of Microwells for Generating Uniform Hepatic Multicellular Cancer Aggregates and Discovering Novel Therapeutics. Materials, 2019, 12, 3308.	1.3	8
38	A cis â€eQTL genetic variant in PLK4 confers high risk of hepatocellular carcinoma. Cancer Medicine, 2019, 8, 6476-6484.	1.3	11

#	Article	IF	CITATIONS
39	Râ€spondin 2 Drives Liver Tumor Development in a Yesâ€Associated Proteinâ€Dependent Manner. Hepatology Communications, 2019, 3, 1496-1509.	2.0	15
40	Targeted Drug-Loaded Chemical Probe Staining Assay to Predict Therapy Response and Function as an Independent Pathological Marker. IScience, 2019, 21, 549-561.	1.9	1
41	Sorafenib attenuated the function of natural killer cells infiltrated in HCC through inhibiting ERK1/2. International Immunopharmacology, 2019, 76, 105855.	1.7	10
42	Application of the composition of the compositio	1.0	13
43	Mechanisms of Action of Drugs Effective in Hepatocellular Carcinoma. Clinical Liver Disease, 2019, 14, 62-65.	1.0	21
44	New Drugs Effective in the Systemic Treatment of Hepatocellular Carcinoma. Clinical Liver Disease, 2019, 14, 56-61.	1.0	23
45	Diclofenac Potentiates Sorafenib-Based Treatments of Hepatocellular Carcinoma by Enhancing Oxidative Stress. Cancers, 2019, 11, 1453.	1.7	15
46	GRIM-19 over-expression represses the proliferation and invasion of orthotopically implanted hepatocarcinoma tumors associated with downregulation of Stat3 signaling. BioScience Trends, 2019, 13, 342-350.	1.1	9
47	Anti-tumoral activity of single and combined regorafenib treatments in preclinical models of liver and gastrointestinal cancers. Experimental and Molecular Medicine, 2019, 51, 1-15.	3.2	52
48	Adoptive cell transfer therapy for hepatocellular carcinoma. Frontiers of Medicine, 2019, 13, 3-11.	1.5	45
49	Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncology, The, 2019, 20, 282-296.	5.1	1,202
50	Epigenetic Mechanisms in Hepatic Stellate Cell Activation During Liver Fibrosis and Carcinogenesis. International Journal of Molecular Sciences, 2019, 20, 2507.	1.8	45
51	Liver resection versus chemoembolization for patients with multifocal hepatocellular carcinoma. Hepatobiliary Surgery and Nutrition, 2019, 8, 543-545.	0.7	0
52	Gammaâ€secretase complexâ€dependent intramembrane proteolysis of CD147 regulates the Notch1 signaling pathway in hepatocellular carcinoma. Journal of Pathology, 2019, 249, 255-267.	2.1	22
53	Fibronectin Regulation of Integrin B1 and SLUG in Circulating Tumor Cells. Cells, 2019, 8, 618.	1.8	14
54	Molecular and histological correlations in liver cancer. Journal of Hepatology, 2019, 71, 616-630.	1.8	308
55	Targeting PRMT5 Activity Inhibits the Malignancy of Hepatocellular Carcinoma by Promoting the Transcription of HNF4α. Theranostics, 2019, 9, 2606-2617.	4.6	40
56	A Phase Ib/II Study of Ramucirumab in Combination with Emibetuzumab in Patients with Advanced Cancer. Clinical Cancer Research, 2019, 25, 5202-5211.	3.2	26

#	Article	IF	CITATIONS
57	Lenvatinib-induced thyroid abnormalities in unresectable hepatocellular carcinoma. Endocrine Journal, 2019, 66, 787-792.	0.7	20
58	\hat{l}^2 -ionone inhibits nonalcoholic fatty liver disease and its association with hepatocarcinogenesis in male Wistar rats. Chemico-Biological Interactions, 2019, 308, 377-384.	1.7	5
59	î²-Catenin Activation Promotes Immune Escape and Resistance to Anti–PD-1 Therapy in Hepatocellular Carcinoma. Cancer Discovery, 2019, 9, 1124-1141.	7.7	498
60	Ramucirumab and GSK1838705A Enhance the Inhibitory Effects of Low Concentration Sorafenib and Regorafenib Combination on HCC Cell Growth and Motility. Cancers, 2019, 11, 787.	1.7	8
61	Treatment with Brivanib alaninate as a second-line monotherapy after Sorafenib failure in hepatocellular carcinoma. Medicine (United States), 2019, 98, e14823.	0.4	4
62	Evolving Landscape of Systemic Therapy for Hepatocellular Carcinoma: Breakthroughs, Toxicities, and Future Frontiers. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2019, 39, 248-260.	1.8	8
63	Liver Zonation in Health and Disease: Hypoxia and Hypoxia-Inducible Transcription Factors as Concert Masters. International Journal of Molecular Sciences, 2019, 20, 2347.	1.8	56
64	Hepatocellular carcinoma: killing one bird with two stones. Gut, 2019, 68, 1543-1544.	6.1	3
65	Clinical Pharmacokinetics and Pharmacodynamics of Transarterial Chemoembolization and Targeted Therapies in Hepatocellular Carcinoma. Clinical Pharmacokinetics, 2019, 58, 983-1014.	1.6	17
66	MALAT1 functions as a competing endogenous RNA to regulate SMAD5 expression by acting as a sponge for miR-142-3p in hepatocellular carcinoma. Cell and Bioscience, 2019, 9, 39.	2.1	23
67	Random gene sets in predicting survival of patients with hepatocellular carcinoma. Journal of Molecular Medicine, 2019, 97, 879-888.	1.7	15
69	<p>A novel theranostic gold nanorods- and Adriamycin-loaded micelle for EpCAM targeting, laser ablation, and photoacoustic imaging of cancer stem cells in hepatocellular carcinoma</p> . International Journal of Nanomedicine, 2019, Volume 14, 1877-1892.	3.3	36
70	Deleted in Liver Cancer 2 (DLC2) protein expression in hepatocellular carcinoma. European Journal of Histochemistry, 2019, 63, .	0.6	6
71	$Kr\tilde{A}^{1}\!\!/\!\!4$ ppelâ \in like factor 2 inhibits hepatocarcinogenesis through negative regulation of the Hedgehog pathway. Cancer Science, 2019, 110, 1220-1231.	1.7	23
72	Epithelial–mesenchymal transition induced cancerâ€stemâ€eellâ€ike characteristics in hepatocellular carcinoma. Journal of Cellular Physiology, 2019, 234, 18448-18458.	2.0	18
73	Expression of IL-26 predicts prognosis of patients with hepatocellular carcinoma after surgical resection. Hepatobiliary and Pancreatic Diseases International, 2019, 18, 242-248.	0.6	8
74	<p>CD24 isoform a promotes cell proliferation, migration and invasion and is downregulated by EGR1 in hepatocellular carcinoma</p> . OncoTargets and Therapy, 2019, Volume 12, 1705-1716.	1.0	23
75	Network Pharmacology and Bioinformatics Approach Reveals the Therapeutic Mechanism of Action of Baicalein in Hepatocellular Carcinoma. Evidence-based Complementary and Alternative Medicine, 2019, 2019, 1-15.	0.5	37

#	ARTICLE	IF	CITATIONS
76	Novel urokinase-plasminogen activator inhibitor SPINK13 inhibits growth and metastasis of hepatocellular carcinoma in vivo. Pharmacological Research, 2019, 143, 73-85.	3.1	29
77	KIAA1199 promotes sorafenib tolerance and the metastasis of hepatocellular carcinoma by activating the EGF/EGFR-dependent epithelial-mesenchymal transition program. Cancer Letters, 2019, 454, 78-89.	3.2	41
78	Hunting hidden pieces of signaling pathways in hepatocellular carcinoma. Hepatobiliary Surgery and Nutrition, 2019, 8, 74-76.	0.7	0
79	Hepatocellular Carcinoma. New England Journal of Medicine, 2019, 380, 1450-1462.	13.9	2,966
80	CD73 promotes hepatocellular carcinoma progression and metastasis via activating PI3K/AKT signaling by inducing Rap1-mediated membrane localization of P110 \hat{l}^2 and predicts poor prognosis. Journal of Hematology and Oncology, 2019, 12, 37.	6.9	150
81	Developing small activating RNA as a therapeutic: current challenges and promises. Therapeutic Delivery, 2019, 10, 151-164.	1.2	49
82	Identification of molecular transition of hepatocellular carcinoma: a novel method to predict the initiation of metastasis. Stem Cell Investigation, 2019, 6, 5-5.	1.3	2
83	The Potential Implication of the Autonomic Nervous System in Hepatocellular Carcinoma. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 145-148.	2.3	4
84	Dynamic edge-based biomarker non-invasively predicts hepatocellular carcinoma with hepatitis B virus infection for individual patients based on blood testing. Journal of Molecular Cell Biology, 2019, 11, 665-677.	1.5	17
85	Randomized trials and endpoints in advanced HCC: Role of PFS as a surrogate of survival. Journal of Hepatology, 2019, 70, 1262-1277.	1.8	150
86	Immunotherapy-based combination strategies for treatment of gastrointestinal cancers: current status and future prospects. Frontiers of Medicine, 2019, 13, 12-23.	1.5	14
87	Aberrant Superâ€Enhancer Landscape in Human Hepatocellular Carcinoma. Hepatology, 2019, 69, 2502-2517.	3.6	90
88	Hepatocellular carcinoma: H-Prune gene regulatory networks. EBioMedicine, 2019, 41, 21-22.	2.7	2
89	Excellent Response to Anti-PD-1 Therapy in a Patient with Hepatocellular Carcinoma Intolerant to Sorafenib. Visceral Medicine, 2019, 35, 43-46.	0.5	6
90	High Expression of ANXA2 Pseudogene ANXA2P2 Promotes an Aggressive Phenotype in Hepatocellular Carcinoma. Disease Markers, 2019, 2019, 1-11.	0.6	25
92	Systemic management for patients with hepatobiliary tumors in a multi-dimensional view. Hepatobiliary Surgery and Nutrition, 2019, 8, 626-628.	0.7	6
93	Role of regulatory T cells and checkpoint inhibition in hepatocellular carcinoma. Cancer Immunology, Immunotherapy, 2019, 68, 2055-2066.	2.0	94
94	Systemic Therapy for Primary Liver Tumors. Surgical Oncology Clinics of North America, 2019, 28, 695-715.	0.6	9

#	ARTICLE	IF	CITATIONS
95	YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma. Molecular Cancer, 2019, 18, 163.	7.9	230
96	Angiogenesis and immune checkpoint inhibitors as therapies for hepatocellular carcinoma: current knowledge and future research directions., 2019, 7, 333.		129
97	First-in-Human Phase I Study of Fisogatinib (BLU-554) Validates Aberrant FGF19 Signaling as a Driver Event in Hepatocellular Carcinoma. Cancer Discovery, 2019, 9, 1696-1707.	7.7	157
98	Efficacy of anti-PD-1 antibody SHR-1210 as second-line treatment in hepatocellular carcinoma patient with sorafenib resistance. Medicine (United States), 2019, 98, e15755.	0.4	6
99	Second-line Treatments of Advanced Hepatocellular Carcinoma. Journal of Clinical Gastroenterology, 2019, 53, 251-261.	1.1	19
100	<p>Unleashing The Potential Of Multiple-Targeted Therapies In Hepatobiliary Cancers: Two Cases, Cocktail Therapy With Nine Molecular Targeted Agents And Long-Lasting Survival</p> . OncoTargets and Therapy, 2019, Volume 12, 9941-9945.	1.0	0
101	HIF-1-miR-219-SMC4 Regulatory Pathway Promoting Proliferation and Migration of HCC under Hypoxic Condition. BioMed Research International, 2019, 2019, 1-9.	0.9	19
102	Cotreatment with sorafenib and oleanolic acid induces reactive oxygen species-dependent and mitochondrial-mediated apoptotic cell death in hepatocellular carcinoma cells. Anti-Cancer Drugs, 2019, 30, 209-217.	0.7	16
103	Targeted and Immune-Based Therapies for Hepatocellular Carcinoma. Gastroenterology, 2019, 156, 510-524.	0.6	179
104	Immune Exclusion-Wnt/CTNNB1 Class Predicts Resistance to Immunotherapies in HCC. Clinical Cancer Research, 2019, 25, 2021-2023.	3.2	152
105	Hypothyroidism in patients with hepatocellular carcinoma receiving cabozantinib: an unassessed issue. Future Oncology, 2019, 15, 563-565.	1.1	2
106	The synergistic effect of sorafenib and TNF- $\hat{l}\pm$ inhibitor on hepatocellular carcinoma. EBioMedicine, 2019, 40, 11-12.	2.7	5
107	PES1 enhances proliferation and tumorigenesis in hepatocellular carcinoma via the PI3K/AKT pathway. Life Sciences, 2019, 219, 182-189.	2.0	22
108	Medical oncologists must get more involved in systemic treatment. Annals of Oncology, 2019, 30, 6-8.	0.6	2
109	Development of a Novel Histone Deacetylase-Targeted Near-Infrared Probe for Hepatocellular Carcinoma Imaging and Fluorescence Image-Guided Surgery. Molecular Imaging and Biology, 2020, 22, 476-485.	1.3	35
110	Construction of a Plasmonic Chip for Metabolic Analysis in Cervical Cancer Screening and Evaluation. Small Methods, 2020, 4, 1900469.	4.6	55
111	Histone chaperone FACT complex mediates oxidative stress response to promote liver cancer progression. Gut, 2020, 69, 329-342.	6.1	39
112	FAM122A supports the growth of hepatocellular carcinoma cells and its deletion enhances Doxorubicin-induced cytotoxicity. Experimental Cell Research, 2020, 387, 111714.	1.2	9

#	Article	IF	CITATIONS
113	The promise of adoptive cellular immunotherapies in hepatocellular carcinoma. Oncolmmunology, 2020, 9, 1673129.	2.1	26
114	Transcriptionally Active Androgen Receptor Splice Variants Promote Hepatocellular Carcinoma Progression. Cancer Research, 2020, 80, 561-575.	0.4	27
115	Increased neutrophil extracellular traps promote metastasis potential of hepatocellular carcinoma via provoking tumorous inflammatory response. Journal of Hematology and Oncology, 2020, 13 , 3 .	6.9	163
116	UBQLN4 promotes progression of HCC via activating wnt- \hat{l}^2 -catenin pathway and is regulated by miR-370. Cancer Cell International, 2020, 20, 3.	1.8	21
117	Collaborative assembly of doxorubicin and galactosyl diblock glycopolymers for targeted drug delivery of hepatocellular carcinoma. Biomaterials Science, 2020, 8, 189-200.	2.6	20
118	Vessel co-option and resistance to anti-angiogenic therapy. Angiogenesis, 2020, 23, 55-74.	3.7	77
119	Medical oncology management of advanced hepatocellular carcinoma 2019: a reality check. Frontiers of Medicine, 2020, 14, 273-283.	1.5	9
120	Cost-effectiveness analysis of ramucirumab treatment for patients with hepatocellular carcinoma who progressed on sorafenib with α-fetoprotein concentrations of at least 400 ng/ml. Journal of Medical Economics, 2020, 23, 347-352.	1.0	12
121	Immune Therapy for Liver Cancers. Cancers, 2020, 12, 77.	1.7	49
122	Favorable radiological antitumor response at 2Âweeks after starting lenvatinib for patients with advanced hepatocellular carcinoma. Hepatology Research, 2020, 50, 374-381.	1.8	25
123	Harnessing big â€~omics' data and AI for drug discovery in hepatocellular carcinoma. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 238-251.	8.2	90
124	Tumor necrosis factor $\hat{I}\pm$ -induced protein 1 as a novel tumor suppressor through selective downregulation of CSNK2B blocks nuclear factor- \hat{I}^0 B activation in hepatocellular carcinoma. EBioMedicine, 2020, 51, 102603.	2.7	25
125	IGFBP2 upregulates ZEB1 expression and promotes hepatocellular carcinoma progression through NF-κB signaling pathway. Digestive and Liver Disease, 2020, 52, 573-581.	0.4	20
126	Correlation of molecular and morphologic effects of thermoembolization in a swine model using mass spectrometry imaging. Journal of Mass Spectrometry, 2020, 55, e4477.	0.7	1
127	Targeting adenosinergic pathway enhances the anti-tumor efficacy of sorafenib in hepatocellular carcinoma. Hepatology International, 2020, 14, 80-95.	1.9	15
128	Apolipoprotein E Peptide-Guided Disulfide-Cross-Linked Micelles for Targeted Delivery of Sorafenib to Hepatocellular Carcinoma. Biomacromolecules, 2020, 21, 716-724.	2.6	20
129	Traditional Chinese medicine as supportive care for the management of liver cancer: Past, present, and future. Genes and Diseases, 2020, 7, 370-379.	1.5	76
130	Co-targeting p53-R249S and CDK4 synergistically suppresses survival of hepatocellular carcinoma cells. Cancer Biology and Therapy, 2020, 21, 269-277.	1.5	10

#	Article	IF	Citations
131	Comprehensive characterization of tumor infiltrating natural killer cells and clinical significance in hepatocellular carcinoma based on gene expression profiles. Biomedicine and Pharmacotherapy, 2020, 121, 109637.	2.5	46
132	Functional Genomics Identifies Hepatitis-Induced STAT3–TYRO3–STAT3 Signaling as a Potential Therapeutic Target of Hepatoma. Clinical Cancer Research, 2020, 26, 1185-1197.	3.2	12
133	MicroRNAs Involved in Metastasis of Hepatocellular Carcinoma: Target Candidates, Functionality and Efficacy in Animal Models and Prognostic Relevance. Cancer Genomics and Proteomics, 2020, 17, 1-21.	1.0	23
134	Positive feedback loop of FAM83A/PI3K/AKT/c-Jun induces migration, invasion and metastasis in hepatocellular carcinoma. Biomedicine and Pharmacotherapy, 2020, 123, 109780.	2.5	42
135	The safety and efficacy of lenvatinib combined with immune checkpoint inhibitors therapy for advanced hepatocellular carcinoma. Biomedicine and Pharmacotherapy, 2020, 132, 110797.	2.5	35
136	Hepatocellular Carcinoma. Clinics in Liver Disease, 2020, 24, 591-610.	1.0	19
137	Berbamine (BBM), a Natural STAT3 Inhibitor, Synergistically Enhances the Antigrowth and Proapoptotic Effects of Sorafenib on Hepatocellular Carcinoma Cells. ACS Omega, 2020, 5, 24838-24847.	1.6	16
138	Icaritinâ€induced immunomodulatory efficacy in advanced hepatitis B virusâ€related hepatocellular carcinoma: Immunodynamic biomarkers and overall survival. Cancer Science, 2020, 111, 4218-4231.	1.7	40
139	Hepatocellular Carcinoma: Updates in Pathogenesis, Detection and Treatment. Cancers, 2020, 12, 2729.	1.7	12
140	Targeting Ca2+ Signaling in the Initiation, Promotion and Progression of Hepatocellular Carcinoma. Cancers, 2020, 12, 2755.	1.7	11
141	A comprehensive analysis of the MAGE family as prognostic and diagnostic markers for hepatocellular carcinoma. Genomics, 2020, 112, 5101-5114.	1.3	17
142	Eligibility for Second-line Therapy in Patients With Advanced Hepatocellular Carcinoma. American Journal of Clinical Oncology: Cancer Clinical Trials, 2020, 43, 788-791.	0.6	1
143	Cell-penetrating peptides in oncologic pharmacotherapy: A review. Pharmacological Research, 2020, 162, 105231.	3.1	32
144	<p>Dual-Effect of Magnetic Resonance Imaging Reporter Gene in Diagnosis and Treatment of Hepatocellular Carcinoma</p> . International Journal of Nanomedicine, 2020, Volume 15, 7235-7249.	3.3	9
145	Bismuthâ∈Based Mesoporous Nanoball Carrying Sorafenib for Computed Tomography Imaging and Synergetic Chemoradiotherapy of Hepatocellular Carcinoma. Advanced Healthcare Materials, 2020, 9, e2000650.	3.9	14
146	Immunotherapy for advanced hepatocellular carcinoma, where are we?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188441.	3.3	52
148	Clinical Significance of Adverse Events for Patients with Unresectable Hepatocellular Carcinoma Treated with Lenvatinib: A Multicenter Retrospective Study. Cancers, 2020, 12, 1867.	1.7	56
149	Design, synthesis, and biological evaluation of 5-((8-methoxy-2-methylquinolin-4-yl)amino)-1H-indole-2-carbohydrazide derivatives as novel Nur77 modulators. European Journal of Medicinal Chemistry, 2020, 204, 112608.	2.6	16

#	Article	IF	Citations
150	Development and validation of an RNA binding protein-associated prognostic model for hepatocellular carcinoma. BMC Cancer, 2020, 20, 1136.	1.1	16
151	Hepatocellular Senescence: Immunosurveillance and Future Senescence-Induced Therapy in Hepatocellular Carcinoma. Frontiers in Oncology, 2020, 10, 589908.	1.3	26
152	Hypoxia induces sorafenib resistance mediated by autophagy via activating FOXO3a in hepatocellular carcinoma. Cell Death and Disease, 2020, 11, 1017.	2.7	49
153	An Anti-MICA/B Antibody and IL-15 Rescue Altered NKG2D-Dependent NK Cell Responses in Hepatocellular Carcinoma. Cancers, 2020, 12, 3583.	1.7	16
154	Single-Cell Spatial Analysis of Tumor and Immune Microenvironment on Whole-Slide Image Reveals Hepatocellular Carcinoma Subtypes. Cancers, 2020, 12, 3562.	1.7	21
155	Development of a Predictive Immune-Related Gene Signature Associated With Hepatocellular Carcinoma Patient Prognosis. Cancer Control, 2020, 27, 107327482097711.	0.7	14
156	NF-Y Overexpression in Liver Hepatocellular Carcinoma (HCC). International Journal of Molecular Sciences, 2020, 21, 9157.	1.8	20
157	Complete Response to the Sequential Treatment with Regorafenib Followed by PD-1 Inhibitor in a Sorafenib-Refractory Hepatocellular Carcinoma Patient 13, 12477-12487.	1.0	9
158	The prognostic value of postoperative circulating cell-free DNA in operable hepatocellular carcinoma. Scandinavian Journal of Gastroenterology, 2020, 55, 1441-1446.	0.6	7
159	Animal Models: A Useful Tool to Unveil Metabolic Changes in Hepatocellular Carcinoma. Cancers, 2020, 12, 3318.	1.7	3
160	CK19-positive Hepatocellular Carcinoma is a Characteristic Subtype. Journal of Cancer, 2020, 11, 5069-5077.	1.2	55
161	A Five-Gene Signature Based on Stromal/Immune Scores in the Tumor Microenvironment and Its Clinical Implications for Liver Cancer. DNA and Cell Biology, 2020, 39, 1621-1638.	0.9	36
162	The clinical application of camrelizumab on advanced hepatocellular carcinoma. Expert Review of Gastroenterology and Hepatology, 2020, 14, 1017-1024.	1.4	14
163	2019 Chinese clinical guidelines for the management of hepatocellular carcinoma: updates and insights. Hepatobiliary Surgery and Nutrition, 2020, 9, 452-463.	0.7	267
164	Integrated Bioinformatics Analysis Reveals Key Candidate Genes and Pathways Associated With Clinical Outcome in Hepatocellular Carcinoma. Frontiers in Genetics, 2020, 11, 814.	1.1	11
165	SRXN1 stimulates hepatocellular carcinoma tumorigenesis and metastasis through modulating ROS/p65/BTG2 signalling. Journal of Cellular and Molecular Medicine, 2020, 24, 10714-10729.	1.6	28
166	Phase Ib Study of Lenvatinib Plus Pembrolizumab in Patients With Unresectable Hepatocellular Carcinoma. Journal of Clinical Oncology, 2020, 38, 2960-2970.	0.8	723
167	Epigenetics in hepatocellular carcinoma development and therapy: The tip of the iceberg. JHEP Reports, 2020, 2, 100167.	2.6	51

#	Article	IF	CITATIONS
168	Pharmacoproteomics Identifies Kinase Pathways that Drive the Epithelial-Mesenchymal Transition and Drug Resistance in Hepatocellular Carcinoma. Cell Systems, 2020, 11, 196-207.e7.	2.9	24
169	Rictor promotes cell migration and actin polymerization through regulating ABLIM1 phosphorylation in Hepatocellular Carcinoma. International Journal of Biological Sciences, 2020, 16, 2835-2852.	2.6	9
170	The miR-30a-5p/CLCF1 axis regulates sorafenib resistance and aerobic glycolysis in hepatocellular carcinoma. Cell Death and Disease, 2020, 11, 902.	2.7	62
171	Differential Proteomic Analysis of Hepatocellular Carcinomas from <i>Ppp2r5d</i> Knockout Mice and Normal (Knockout) Livers. Cancer Genomics and Proteomics, 2020, 17, 669-685.	1.0	5
172	Identification and Validation of Novel Biomarkers for Diagnosis and Prognosis of Hepatocellular Carcinoma. Frontiers in Oncology, 2020, 10, 541479.	1.3	26
173	Reactive Oxygen Species Induce Endothelial Differentiation of Liver Cancer Stem-Like Sphere Cells through the Activation of Akt/IKK Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-11.	1.9	14
174	Copy-Number Alteration Burden Differentially Impacts Immune Profiles and Molecular Features of Hepatocellular Carcinoma. Clinical Cancer Research, 2020, 26, 6350-6361.	3.2	35
175	Hepatocellular Carcinoma-associated microRNAs Induced by Hepatoma-derived Growth Factor Stimulation. In Vivo, 2020, 34, 2297-2301.	0.6	2
176	Long Non-Coding RNAs in Liver Cancer and Nonalcoholic Steatohepatitis. Non-coding RNA, 2020, 6, 34.	1.3	11
177	RFX5 promotes the progression of hepatocellular carcinoma through transcriptional activation of KDM4A. Scientific Reports, 2020, 10, 14538.	1.6	15
178	Evaluating Distribution and Prognostic Value of New Tumor-Infiltrating Lymphocytes in HCC Based on a scRNA-Seq Study With CIBERSORTx. Frontiers in Medicine, 2020, 7, 451.	1.2	15
179	Targeting signalling pathways and the immune microenvironment of cancer stem cells — a clinical update. Nature Reviews Clinical Oncology, 2020, 17, 204-232.	12.5	431
180	Functional nanostructure-loaded three-dimensional graphene foam as a non-enzymatic electrochemical sensor for reagentless glucose detection. RSC Advances, 2020, 10, 33739-33746.	1.7	45
181	The Importance of AFP in Liver Transplantation for HCC. Journal of Gastrointestinal Cancer, 2020, 51, 1127-1132.	0.6	29
182	Hepatocellular carcinoma in adult thalassemia patients: an expert opinion based on current evidence. BMC Gastroenterology, 2020, 20, 251.	0.8	9
183	Gd-EOB-DTPA-MRI Could Predict WNT/β-Catenin Mutation and Resistance to Immune Checkpoint Inhibitor Therapy in Hepatocellular Carcinoma. Liver Cancer, 2020, 9, 479-490.	4.2	42
184	Translational Considerations to Improve Response and Overcome Therapy Resistance in Immunotherapy for Hepatocellular Carcinoma. Cancers, 2020, 12, 2495.	1.7	12
185	Cancer-Testis Gene Expression in Hepatocellular Carcinoma: Identification of Prognostic Markers and Potential Targets for Immunotherapy. Technology in Cancer Research and Treatment, 2020, 19, 153303382094427.	0.8	4

#	Article	IF	CITATIONS
186	Histone deacetylase inhibitors promote epithelial-mesenchymal transition in Hepatocellular Carcinoma via AMPK-FOXO1-ULK1 signaling axis-mediated autophagy. Theranostics, 2020, 10, 10245-10261.	4.6	31
187	Real-World Efficacy and Safety of Lenvatinib in Korean Patients with Advanced Hepatocellular Carcinoma: A Multicenter Retrospective Analysis. Liver Cancer, 2020, 9, 613-624.	4.2	45
188	Development of a novel melatonin-modified near-infrared fluorescent probe for <i>in vivo</i> hepatocellular carcinoma imaging. Analytical Methods, 2020, 12, 4556-4561.	1.3	3
189	Bromo―and extraterminal domain protein inhibition improves immunotherapy efficacy in hepatocellular carcinoma. Cancer Science, 2020, 111, 3503-3515.	1.7	17
190	Butyrate-containing structured lipids inhibit RAC1 and epithelial-to-mesenchymal transition markers: a chemopreventive mechanism against hepatocarcinogenesis. Journal of Nutritional Biochemistry, 2020, 86, 108496.	1.9	8
191	Deciphering Antitumor Mechanism of Pien Tze Huang in Mice of Hepatocellular Carcinoma Based on Proteomics. Journal of Immunology Research, 2020, 2020, 1-14.	0.9	9
192	Targeting the De Novo Purine Synthesis Pathway Through Adenylosuccinate Lyase Depletion Impairs Liver Cancer Growth by Perturbing Mitochondrial Function. Hepatology, 2021, 74, 233-247.	3.6	18
193	The dichotomous role of TGF- \hat{l}^2 in controlling liver cancer cell survival and proliferation. Journal of Genetics and Genomics, 2020, 47, 497-512.	1.7	21
194	Intrahepatic Tumor Burden as a Novel Factor Influencing the Introduction of Second-line Chemotherapy for Hepatocellular Carcinoma. Anticancer Research, 2020, 40, 3953-3960.	0.5	5
195	Augmenting Anticancer Immunity Through Combined Targeting of Angiogenic and PD-1/PD-L1 Pathways: Challenges and Opportunities. Frontiers in Immunology, 2020, 11, 598877.	2.2	133
196	Cabozantinib-based combination therapy for the treatment of hepatocellular carcinoma. Gut, 2021, 70, 1746-1757.	6.1	60
197	Functional and Clinical Characterization of Tumor-Infiltrating T Cell Subpopulations in Hepatocellular Carcinoma. Frontiers in Genetics, 2020, 11, 586415.	1.1	7
199	New systemic agents for hepatocellular carcinoma: an update 2020. Current Opinion in Gastroenterology, 2020, 36, 177-183.	1.0	17
200	New insights into the pharmacological, immunological, and CAR-T-cell approaches in the treatment of hepatocellular carcinoma. Drug Resistance Updates, 2020, 51, 100702.	6.5	53
201	A Changing Paradigm for the Treatment of Intermediate-Stage Hepatocellular Carcinoma: Asia-Pacific Primary Liver Cancer Expert Consensus Statements. Liver Cancer, 2020, 9, 245-260.	4.2	172
202	<p>MicroRNA-375 Targets ATG14 to Inhibit Autophagy and Sensitize Hepatocellular Carcinoma Cells to Sorafenib</p> . OncoTargets and Therapy, 2020, Volume 13, 3557-3570.	1.0	23
203	Predictive value of hypoxia, metabolism and immune factors for prognosis in hepatocellular carcinoma: a retrospective analysis and multicenter validation study. Journal of Cancer, 2020, 11, 4145-4156.	1.2	4
204	Chimeric Antigen Receptor-Glypican-3 T-Cell Therapy for Advanced Hepatocellular Carcinoma: Results of Phase I Trials. Clinical Cancer Research, 2020, 26, 3979-3989.	3.2	184

#	Article	IF	Citations
205	Prognostic role of alpha-fetoprotein in patients with hepatocellular carcinoma treated with repeat transarterial chemoembolisation. BMC Cancer, 2020, 20, 483.	1.1	5
206	Molecular Profiling in Drug Development: Paving a Way Forward. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2020, 40, e309-e318.	1.8	5
207	The Underlying Mechanisms of Noncoding RNAs in the Chemoresistance of Hepatocellular Carcinoma. Molecular Therapy - Nucleic Acids, 2020, 21, 13-27.	2.3	29
208	Recent Advances: The Imbalance of Immune Cells and Cytokines in the Pathogenesis of Hepatocellular Carcinoma. Diagnostics, 2020, 10, 338.	1.3	14
209	Interaction of FGF9 with FGFR3â€IIIb/IIIc, a putative driver of growth and aggressive behaviour of hepatocellular carcinoma. Liver International, 2020, 40, 2279-2290.	1.9	13
210	FOXC2 is a prognostic biomarker and contributes to the growth and invasion of human hepatocellular carcinoma. Cancer Cell International, 2020, 20, 196.	1.8	9
211	Comparison of transcatheter arterial chemoembolization combined with radiofrequency ablation or microwave ablation for the treatment of unresectable hepatocellular carcinoma: a systemic review and meta-analysis. International Journal of Hyperthermia, 2020, 37, 624-633.	1.1	13
212	PRMT2 accelerates tumorigenesis of hepatocellular carcinoma by activating Bcl2 via histone H3R8 methylation. Experimental Cell Research, 2020, 394, 112152.	1.2	31
213	Lipid Metabolism in Development and Progression of Hepatocellular Carcinoma. Cancers, 2020, 12, 1419.	1.7	91
214	Biomarkers in Hepatocellular Carcinoma: Diagnosis, Prognosis and Treatment Response Assessment. Cells, 2020, 9, 1370.	1.8	256
215	Computational Analysis of Transcriptomic and Proteomic Data for Deciphering Molecular Heterogeneity and Drug Responsiveness in Model Human Hepatocellular Carcinoma Cell Lines. Genes, 2020, 11, 623.	1.0	3
216	<p>Diosmetin Inhibits Cell Proliferation, Induces Cell Apoptosis and Cell Cycle Arrest in Liver Cancer</p> . Cancer Management and Research, 2020, Volume 12, 3537-3546.	0.9	24
217	New insights on sorafenib resistance in liver cancer with correlation of individualized therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188382.	3.3	54
218	Solasonine promotes ferroptosis of hepatoma carcinoma cells via glutathione peroxidase 4-induced destruction of the glutathione redox system. Biomedicine and Pharmacotherapy, 2020, 129, 110282.	2.5	77
219	<p>OTUD4: A Potential Prognosis Biomarker for Multiple Human Cancers</p> . Cancer Management and Research, 2020, Volume 12, 1503-1512.	0.9	14
220	<p>Gluconokinase IDNK Promotes Cell Proliferation and Inhibits Apoptosis in Hepatocellular Carcinoma</p> . OncoTargets and Therapy, 2020, Volume 13, 1767-1776.	1.0	2
221	The Cancer Stem Cell in Hepatocellular Carcinoma. Cancers, 2020, 12, 684.	1.7	34
222	JAK/STAT signaling in hepatocellular carcinoma. Hepatic Oncology, 2020, 7, HEP18.	4.2	75

#	Article	IF	CITATIONS
223	Progress in hepatectomy for hepatocellular carcinoma and peri-operation management. Genes and Diseases, 2020, 7, 320-327.	1.5	10
224	USP10 Promotes Proliferation of Hepatocellular Carcinoma by Deubiquitinating and Stabilizing YAP/TAZ. Cancer Research, 2020, 80, 2204-2216.	0.4	101
225	Long Noncoding RNA MALAT1 Contributes to Sorafenib Resistance by Targeting miR-140-5p/Aurora-A Signaling in Hepatocellular Carcinoma. Molecular Cancer Therapeutics, 2020, 19, 1197-1209.	1.9	49
226	Inactivation of Transcriptional Repressor Capicua Confers Sorafenib Resistance in Human Hepatocellular Carcinoma. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 269-285.	2.3	14
227	Hypoxia-Induced IncRNA-NEAT1 Sustains the Growth of Hepatocellular Carcinoma via Regulation of miR-199a-3p/UCK2. Frontiers in Oncology, 2020, 10, 998.	1.3	33
228	The outlook for precision medicine for the treatment of chronic hepatitis C infection: challenges and opportunities. Expert Review of Precision Medicine and Drug Development, 2020, 5, 253-263.	0.4	0
229	Construction of a Comprehensive Multiomics Map of Hepatocellular Carcinoma and Screening of Possible Driver Genes. Frontiers in Genetics, 2020, 11, 634.	1.1	6
230	Recent advances in nanomaterial-enhanced biosensing methods for hepatocellular carcinoma diagnosis. TrAC - Trends in Analytical Chemistry, 2020, 130, 115965.	5.8	17
231	Comparing the efficacy and safety of second-line therapies for advanced hepatocellular carcinoma: a network meta-analysis of phase III trials. Therapeutic Advances in Gastroenterology, 2020, 13, 175628482093248.	1.4	10
232	Circulating Tumor Cell Migration Requires Fibronectin Acting through Integrin B1 or SLUG. Cells, 2020, 9, 1594.	1.8	9
233	Glucose Metabolism and Oxidative Stress in Hepatocellular Carcinoma: Role and Possible Implications in Novel Therapeutic Strategies. Cancers, 2020, 12, 1668.	1.7	54
234	Ramucirumab: A Review in Hepatocellular Carcinoma. Drugs, 2020, 80, 315-322.	4.9	38
235	Orlistat delays hepatocarcinogenesis in mice with hepatic co-activation of AKT and c-Met. Toxicology and Applied Pharmacology, 2020, 392, 114918.	1.3	14
236	Phenotypic Response and Personalized Medicine in Liver Cancer and Transplantation: Approaches to Complex Systems. Advanced Therapeutics, 2020, 3, 1900167.	1.6	2
237	Systemic treatment of hepatocellular carcinoma: standard of care in China and elsewhere. Lancet Oncology, The, 2020, 21, 479-481.	5.1	29
238	A hepatocyte differentiation model reveals two subtypes of liver cancer with different oncofetal properties and therapeutic targets. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6103-6113.	3.3	39
239	Role of Molecular Biomarkers in Liver Transplantation for Hepatocellular Carcinoma. Liver Transplantation, 2020, 26, 823-831.	1.3	25
240	Adoptive T-cell therapy for HBV-associated HCC and HBV infection. Antiviral Research, 2020, 176, 104748.	1.9	31

#	Article	IF	CITATIONS
241	Synthetic lethality: A promising therapeutic strategy for hepatocellular carcinoma. Cancer Letters, 2020, 476, 120-128.	3.2	17
242	Hepatocellular carcinomaâ€"united forces against a global killer. Annals of Oncology, 2020, 31, 449-450.	0.6	6
243	Mass Spectrometric Assay of Alpha-Fetoprotein Isoforms for Accurate Serological Evaluation. Analytical Chemistry, 2020, 92, 4807-4813.	3.2	29
244	Advances in resection and transplantation for hepatocellular carcinoma. Journal of Hepatology, 2020, 72, 262-276.	1.8	107
245	Sorafenib Inhibits Ribonucleotide Reductase Regulatory Subunit M2 (RRM2) in Hepatocellular Carcinoma Cells. Biomolecules, 2020, 10, 117.	1.8	39
246	Roles of TrkC Signaling in the Regulation of Tumorigenicity and Metastasis of Cancer. Cancers, 2020, 12, 147.	1.7	24
247	1H-NMR Based Serum Metabolomics Highlights Different Specific Biomarkers between Early and Advanced Hepatocellular Carcinoma Stages. Cancers, 2020, 12, 241.	1.7	39
248	mRECIST for HCC: Performance and novel refinements. Journal of Hepatology, 2020, 72, 288-306.	1.8	292
249	Novel patient-derived preclinical models of liver cancer. Journal of Hepatology, 2020, 72, 239-249.	1.8	41
250	Milestones in the pathogenesis and management of primary liver cancer. Journal of Hepatology, 2020, 72, 209-214.	1.8	39
251	Molecular therapies for HCC: Looking outside the box. Journal of Hepatology, 2020, 72, 342-352.	1.8	250
252	Comparison of immune profiles between hepatocellular carcinoma subtypes. Biophysics Reports, 2020, 6, 19-32.	0.2	1
253	Overcoming sorafenib treatment-resistance in hepatocellular carcinoma: A future perspective at a time of rapidly changing treatment paradigms. EBioMedicine, 2020, 52, 102644.	2.7	8
254	Long noncoding RNA TCL6 binds to miRâ€106aâ€5p to regulate hepatocellular carcinoma cells through PI3K/AKT signaling pathway. Journal of Cellular Physiology, 2020, 235, 6154-6166.	2.0	26
255	Association between Genetic and Immunological Background of Hepatocellular Carcinoma and Expression of Programmed Cell Death-1. Liver Cancer, 2020, 9, 426-439.	4.2	26
256	Serum STIP1, a Novel Indicator for Microvascular Invasion, Predicts Outcomes and Treatment Response in Hepatocellular Carcinoma. Frontiers in Oncology, 2020, 10, 511.	1.3	13
257	ACSL4 promotes hepatocellular carcinoma progression via c-Myc stability mediated by ERK/FBW7/c-Myc axis. Oncogenesis, 2020, 9, 42.	2.1	48
258	IMbrave 050: a Phase III trial of atezolizumab plus bevacizumab in high-risk hepatocellular carcinoma after curative resection or ablation. Future Oncology, 2020, 16, 975-989.	1.1	136

#	ARTICLE	IF	CITATIONS
259	Prospects and challenges of circulating tumor DNA in precision medicine of hepatocellular carcinoma. Clinical and Experimental Medicine, 2020, 20, 329-337.	1.9	12
260	DMAMCL exerts antitumor effects on hepatocellular carcinoma both in vitro and in vivo. Cancer Letters, 2020, 483, 87-97.	3.2	31
261	Synaptopodin-2 promotes hepatocellular carcinoma metastasis via calcineurin-induced nuclear-cytoplasmic translocation. Cancer Letters, 2020, 482, 8-18.	3.2	10
262	ACADL plays a tumor-suppressor role by targeting Hippo/YAP signaling in hepatocellular carcinoma. Npj Precision Oncology, 2020, 4, 7.	2.3	43
263	Immuneâ€related long noncoding RNA signature for predicting survival and immune checkpoint blockade in hepatocellular carcinoma. Journal of Cellular Physiology, 2020, 235, 9304-9316.	2.0	92
264	High FLT3 Levels May Predict Sorafenib Benefit in Hepatocellular Carcinoma. Clinical Cancer Research, 2020, 26, 4302-4312.	3.2	10
265	A superstable homogeneous lipiodol-ICG formulation for locoregional hepatocellular carcinoma treatment. Journal of Controlled Release, 2020, 323, 635-643.	4.8	58
266	Prognostic and predicted significance of Ubqln2 in patients with hepatocellular carcinoma. Cancer Medicine, 2020, 9, 4083-4094.	1.3	4
267	The role of long noncoding RNAs in hepatocellular carcinoma. Molecular Cancer, 2020, 19, 77.	7.9	310
268	Evaluation of X-Ray Repair Cross-Complementing Family Members as Potential Biomarkers for Predicting Progression and Prognosis in Hepatocellular Carcinoma. BioMed Research International, 2020, 2020, 1-11.	0.9	5
269	Targeting the E3 Ubiquitin Ligase PJA1 Enhances Tumor-Suppressing TGF \hat{l}^2 Signaling. Cancer Research, 2020, 80, 1819-1832.	0.4	17
270	Trial Design and Endpoints in Hepatocellular Carcinoma: AASLD Consensus Conference. Hepatology, 2021, 73, 158-191.	3. 6	235
271	Surgical Treatments of Hepatobiliary Cancers. Hepatology, 2021, 73, 128-136.	3.6	99
272	Immune microenvironment of hepatocellular carcinoma, intrahepatic cholangiocarcinoma and liver metastasis of colorectal adenocarcinoma: Relationship with histopathological and molecular classifications. Hepatology Research, 2021, 51, 5-18.	1.8	29
273	Prognostic Nutritional Index and Systemic Immune-Inflammation Index Predict the Prognosis of Patients with HCC. Journal of Gastrointestinal Surgery, 2021, 25, 421-427.	0.9	94
274	Current status of systemic therapy in hepatocellular cancer. Digestive and Liver Disease, 2021, 53, 397-402.	0.4	4
275	Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharmacologica Sinica, 2021, 42, 301-310.	2.8	147
276	Real-world systemic sequential therapy with sorafenib and regorafenib for advanced hepatocellular carcinoma: a multicenter retrospective study in Korea. Investigational New Drugs, 2021, 39, 260-268.	1.2	19

#	ARTICLE	IF	CITATIONS
277	Immunotherapy for advanced hepatocellular carcinoma: a focus on special subgroups. Gut, 2021, 70, 204-214.	6.1	150
278	p53 haploinsufficiency and increased mTOR signalling define a subset of aggressive hepatocellular carcinoma. Journal of Hepatology, 2021, 74, 96-108.	1.8	54
279	Associations among the mutational landscape, immune microenvironment, and prognosis in Chinese patients with hepatocellular carcinoma. Cancer Immunology, Immunotherapy, 2021, 70, 377-389.	2.0	25
280	Hepatocellular Carcinoma in Acute Hepatic Porphyrias: Results from the Longitudinal Study of the U.S. Porphyrias Consortium. Hepatology, 2021, 73, 1736-1746.	3.6	32
281	An immune-related gene signature for predicting survival and immunotherapy efficacy in hepatocellular carcinoma. Cancer Immunology, Immunotherapy, 2021, 70, 967-979.	2.0	103
282	Ubiquitin-specific protease 2a promotes hepatocellular carcinoma progression via deubiquitination and stabilization of RAB1A. Cellular Oncology (Dordrecht), 2021, 44, 329-343.	2.1	17
283	Proteomic analysis reveals critical molecular mechanisms involved in the macrophage anti-spinal tuberculosis process. Tuberculosis, 2021, 126, 102039.	0.8	1
284	Molecular subtypes based on immune-related genes predict the prognosis for hepatocellular carcinoma patients. International Immunopharmacology, 2021, 90, 107164.	1.7	15
285	Pattern of progression in advanced hepatocellular carcinoma treated with ramucirumab. Liver International, 2021, 41, 598-607.	1.9	13
286	Sophoridine suppresses lenvatinibâ€resistant hepatocellular carcinoma growth by inhibiting RAS/MEK/ERK axis via decreasing VEGFR2 expression. Journal of Cellular and Molecular Medicine, 2021, 25, 549-560.	1.6	41
287	ST6GAL1 Is a Novel Serum Biomarker for Lenvatinib-Susceptible FGF19-Driven Hepatocellular Carcinoma. Clinical Cancer Research, 2021, 27, 1150-1161.	3.2	42
288	Inhibition of SPATS2 Suppresses Proliferation and Invasion of Hepatocellular Carcinoma Cells through TRIM44-STAT3 Signaling Pathway. Journal of Cancer, 2021, 12, 89-98.	1.2	11
289	Transarterial chemoembolisation enhances programmed deathâ€1 and programmed deathâ€ligand 1 expression in hepatocellular carcinoma. Histopathology, 2021, 79, 36-46.	1.6	49
291	Liver Injury Increases the Incidence of HCC following AAV Gene Therapy in Mice. Molecular Therapy, 2021, 29, 680-690.	3.7	61
292	Reliable prediction of survival in advanced-stage hepatocellular carcinoma treated with sorafenib: comparing 1D and 3D quantitative tumor response criteria on MRI. European Radiology, 2021, 31, 2737-2746.	2.3	8
293	Nanoparticle-Loaded Polarized-Macrophages for Enhanced Tumor Targeting and Cell-Chemotherapy. Nano-Micro Letters, 2021, 13, 6.	14.4	27
294	Angiogenesis in the progression from liver fibrosis to cirrhosis and hepatocelluar carcinoma. Expert Review of Gastroenterology and Hepatology, 2021, 15, 217-233.	1.4	37
295	Modulation of antioxidant enzymes, SIRT1 and NFâ€PB by resveratrol and nicotinamide in alcoholâ€aflatoxin B1â€induced hepatocellular carcinoma. Journal of Biochemical and Molecular Toxicology, 2021, 35, e22625.	1.4	26

#	Article	IF	CITATIONS
296	A novel prognostic index of hepatocellular carcinoma based on immunogenomic landscape analysis. Journal of Cellular Physiology, 2021, 236, 2572-2591.	2.0	26
297	TM4SF1, a binding protein of DVL2 in hepatocellular carcinoma, positively regulates betaâ€catenin/TCF signalling. Journal of Cellular and Molecular Medicine, 2021, 25, 2356-2364.	1.6	14
298	Adding Sorafenib-eluting Microspheres to TACE: The Next Step in Hepatocellular Carcinoma Treatment. Radiology Imaging Cancer, 2021, 3, e200132.	0.7	0
299	Epidemiology, mutational landscape and staging of hepatocellular carcinoma. Chinese Clinical Oncology, 2021, 10, 2-2.	0.4	9
300	Three novel circRNAs upregulated in tissue and plasma from hepatocellular carcinoma patients and their regulatory network. Cancer Cell International, 2021, 21, 72.	1.8	13
301	Regorafenib inhibits migration, invasion, and vasculogenic mimicry of hepatocellular carcinoma via targeting ID1â€mediated EMT. Molecular Carcinogenesis, 2021, 60, 151-163.	1.3	13
302	Sequential Therapy for Hepatocellular Carcinoma after Failure of Atezolizumab plus Bevacizumab Combination Therapy. Liver Cancer, 2021, 10, 85-93.	4.2	22
303	Alternating Lenvatinib and Trans-Arterial Therapy Prolongs Overall Survival in Patients with Inter-Mediate Stage HepatoCellular Carcinoma: A Propensity Score Matching Study. Cancers, 2021, 13, 160.	1.7	38
304	Molecular phenotypes reveal heterogeneous engraftments of patient-derived hepatocellular carcinoma xenografts. Chinese Journal of Cancer Research: Official Journal of China Anti-Cancer Association, Beijing Institute for Cancer Research, 2021, 33, 470-479.	0.7	8
305	Nanotechnology for Hepatocellular Carcinoma: From Surveillance, Diagnosis to Management. Small, 2021, 17, e2005236.	5.2	28
306	Biochemical predictors of response to immune checkpoint inhibitors in unresectable hepatocellular carcinoma. Cancer Treatment and Research Communications, 2021, 27, 100328.	0.7	70
307	Fluorescent Ag–In–S/ZnS Quantum Dots for Tumor Drainage Lymph Node Imaging In Vivo. ACS Applied Nano Materials, 2021, 4, 1029-1037.	2.4	10
308	Hedgehog Signaling, a Critical Pathway Governing the Development and Progression of Hepatocellular Carcinoma. Cells, 2021, 10, 123.	1.8	28
309	Lenvatinib for Hepatocellular Carcinoma Patients with Nonviral Infection Who Were Unlikely to Respond to Immunotherapy: A Retrospective, Comparative Study. Oncology, 2021, 99, 641-651.	0.9	9
310	Correlation of zinc finger protein 2, a prognostic biomarker, with immune infiltrates in liver cancer. Bioscience Reports, 2021, 41, .	1.1	6
311	CLEC3B as a Potential Prognostic Biomarker in Hepatocellular Carcinoma. Frontiers in Molecular Biosciences, 2020, 7, 614034.	1.6	10
312	Multi-Disease Prediction Based on Deep Learning: A Survey. CMES - Computer Modeling in Engineering and Sciences, 2021, 128, 489-522.	0.8	123
313	Diagnostic and prognostic values of AKR1C3 and AKR1D1 in hepatocellular carcinoma. Aging, 2021, 13, 4138-4156.	1.4	12

#	Article	IF	CITATIONS
314	Research Progress in Targeted Therapy of Hepatocellular Carcinoma. Chinese Medical Sciences Journal, 2021, 36, 57-65.	0.2	2
315	Prognostic alternative splicing regulatory network of RBM25 in hepatocellular carcinoma. Bioengineered, 2021, 12, 1202-1211.	1.4	5
316	Centromere Protein F (<i>CENPF</i>) Serves as a Potential Prognostic Biomarker and Target for Human Hepatocellular Carcinoma. Journal of Cancer, 2021, 12, 2933-2951.	1.2	18
317	Comprehensive Characterization of Immunological Profiles and Clinical Significance in Hepatocellular Carcinoma. Frontiers in Oncology, 2020, 10, 574778.	1.3	4
318	Efficacy and safety of sorafenib plus vitamin K treatment for hepatocellular carcinoma: A phase II, randomized study. Cancer Medicine, 2021, 10, 914-922.	1.3	10
319	Identification of potential biomarkers of peripheral blood mononuclear cell in hepatocellular carcinoma using bioinformatic analysis. Medicine (United States), 2021, 100, e24172.	0.4	4
320	The evolving landscape of systemic treatment for advanced hepatocellular carcinoma and biliary tract cancer. Cancer Treatment and Research Communications, 2021, 27, 100360.	0.7	4
321	TAK1 Is a Novel Target in Hepatocellular Carcinoma and Contributes to Sorafenib Resistance. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1121-1143.	2.3	10
322	DLG1-AS1 is activated by MYC and drives the proliferation and migration of hepatocellular carcinoma cells through miR-497-5p/SSRP1 axis. Cancer Cell International, 2021, 21, 16.	1.8	5
323	Addition of apatinib to transarterial chemoembolization leads to improved outcome in patients with intermediate and advanced hepatocellular cancer. Annals of Translational Medicine, 2021, 9, 2-2.	0.7	0
324	The E-Twenty-Six Family in Hepatocellular Carcinoma: Moving into the Spotlight. Frontiers in Oncology, 2020, 10, 620352.	1.3	0
325	Organoids for the Study of Liver Cancer. Seminars in Liver Disease, 2021, 41, 019-027.	1.8	8
326	Long Non-Coding RNAs: Potential Biomarkers and Targets for Hepatocellular Carcinoma Therapy and Diagnosis. International Journal of Biological Sciences, 2021, 17, 220-235.	2.6	27
327	Molecular Carcinogenesis of Hepatitis B Virus-Related Hepatocellular Carcinoma. , 2021, , 123-141.		0
328	A novel immune classification reveals distinct immune escape mechanism and genomic alterations: implications for immunotherapy in hepatocellular carcinoma. Journal of Translational Medicine, 2021, 19, 5.	1.8	66
329	Long non-coding RNA-based signature for predicting prognosis of hepatocellular carcinoma. Bioengineered, 2021, 12, 673-681.	1.4	10
330	<i>Foeniculum vulgare</i> seed extract exerts anti-cancer effects on hepatocellular carcinoma. Food and Function, 2021, 12, 1482-1497.	2.1	10
331	MNS1 promotes hepatocarcinogenesis and metastasis via activating PI3K/AKT by translocating βâ€catenin and predicts poor prognosis. Liver International, 2021, 41, 1409-1420.	1.9	4

#	Article	IF	CITATIONS
332	Identification of a 14-Gene Prognostic Signature for Diffuse Large B Cell Lymphoma (DLBCL). Frontiers in Genetics, 2021, 12, 625414.	1.1	8
334	A novel multifunctional gold nanorod-mediated and tumor-targeted gene silencing of GPC-3 synergizes photothermal therapy for liver cancer. Nanotechnology, 2021, 32, 175101.	1.3	8
335	PSMC2 Regulates Cell Cycle Progression Through the p21/Cyclin D1 Pathway and Predicts a Poor Prognosis in Human Hepatocellular Carcinoma. Frontiers in Oncology, 2021, 11, 607021.	1.3	9
336	A hexokinase isoenzyme switch in human liver cancer cells promotes lipogenesis and enhances innate immunity. Communications Biology, 2021, 4, 217.	2.0	21
337	A novel hypoxia gene signature indicates prognosis and immune microenvironments characters in patients with hepatocellular carcinoma. Journal of Cellular and Molecular Medicine, 2021, 25, 3772-3784.	1.6	15
338	Role of liver sinusoidal endothelial cells in liver diseases. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 411-431.	8.2	150
339	Tumor Microenvironment Triggered Cascadeâ€Activation Nanoplatform for Synergistic and Precise Treatment of Hepatocellular Carcinoma. Advanced Healthcare Materials, 2021, 10, e2002036.	3.9	14
340	Serum alpha-fetoprotein and clinical outcomes in patients with advanced hepatocellular carcinoma treated with ramucirumab. British Journal of Cancer, 2021, 124, 1388-1397.	2.9	39
341	Tumor Immune Microenvironment Characterization in Hepatocellular Carcinoma Identifies Four Prognostic and Immunotherapeutically Relevant Subclasses. Frontiers in Oncology, 2020, 10, 610513.	1.3	17
342	LXRα activation and Raf inhibition trigger lethal lipotoxicity in liver cancer. Nature Cancer, 2021, 2, 201-217.	5.7	27
343	Balanophorin B inhibited glycolysis with the involvement of HIF-1α. Life Sciences, 2021, 267, 118910.	2.0	11
344	Understanding relevant immune mechanisms in gastrointestinal oncology. Journal of Oncology Pharmacy Practice, 2021, 27, 107815522199286.	0.5	0
345	Prognostic Nomogram for Sorafenib Benefit in Hepatitis B Virus-Related Hepatocellular Carcinoma After Partial Hepatectomy. Frontiers in Oncology, 2020, 10, 605057.	1.3	4
346	Potential therapeutic targets in the tumor microenvironment of hepatocellular carcinoma: reversing the protumor effect of tumor-associated macrophages. Journal of Experimental and Clinical Cancer Research, 2021, 40, 73.	3.5	24
347	FGF/FGFR Signaling in Hepatocellular Carcinoma: From Carcinogenesis to Recent Therapeutic Intervention. Cancers, 2021, 13, 1360.	1.7	24
348	Cell Division Cycle Associated Genes as Diagnostic and Prognostic Biomarkers in Hepatocellular Carcinoma. Frontiers in Molecular Biosciences, 2021, 8, 657161.	1.6	6
349	Lessons From Immune Checkpoint Inhibitor Trials in Hepatocellular Carcinoma. Frontiers in Immunology, 2021, 12, 652172.	2.2	21
350	Management of complex liver diseases. Minerva Gastroenterology, 2021, 67, 2-3.	0.3	2

#	Article	IF	CITATIONS
351	Overexpression of Taspase 1 Predicts Poor Prognosis in Patients with Hepatocellular Carcinoma. Cancer Management and Research, 2021, Volume 13, 2517-2537.	0.9	3
352	Long nonâ€'coding RNA ADAMTS9â€'AS2 inhibits liver cancer cell proliferation, migration and invasion. Experimental and Therapeutic Medicine, 2021, 21, 559.	0.8	14
353	LIMK1 nuclear translocation promotes hepatocellular carcinoma progression by increasing p-ERK nuclear shuttling and by activating c-Myc signalling upon EGF stimulation. Oncogene, 2021, 40, 2581-2595.	2.6	8
354	The relationship among Girdin DNA methylation, its high expression, and immune infiltration in hepatocellular carcinoma: Clues from <i>in silico</i> analysis. Bioscience Reports, 2021, 41, .	1.1	4
355	An epithelial-mesenchymal transition-related 5-gene signature predicting the prognosis of hepatocellular carcinoma patients. Cancer Cell International, 2021, 21, 166.	1.8	12
356	Stabilization of snail maintains the sorafenib resistance of hepatocellular carcinoma cells. Archives of Biochemistry and Biophysics, 2021, 699, 108754.	1.4	12
357	Hepatocellular carcinoma progression during bridging before liver transplantation. BJS Open, 2021, 5,	0.7	5
358	Nuf2 Is a Prognostic-Related Biomarker and Correlated With Immune Infiltrates in Hepatocellular Carcinoma. Frontiers in Oncology, 2021, 11, 621373.	1.3	19
359	Expression and prognostic rolesÂof PRDXs gene family in hepatocellular carcinoma. Journal of Translational Medicine, 2021, 19, 126.	1.8	4
360	Circulating Tumor Cells Undergoing the Epithelial–Mesenchymal Transition: Influence on Prognosis in Cytokeratin 19-Positive Hepatocellular Carcinoma. OncoTargets and Therapy, 2021, Volume 14, 1543-1552.	1.0	7
362	Current and future perspective on targeted agents and immunotherapies in hepatocellular carcinoma. Minerva Gastroenterology, 2021, 67, .	0.3	7
363	circFOXM1 contributes to sorafenib resistance of hepatocellular carcinoma cells by regulating MECP2 via miR-1324. Molecular Therapy - Nucleic Acids, 2021, 23, 811-820.	2.3	30
364	4-methylumbelliferone-mediated polarization of M1 macrophages correlate with decreased hepatocellular carcinoma aggressiveness in mice. Scientific Reports, 2021, 11, 6310.	1.6	13
365	Imaging features based on Gd-EOB-DTPA-enhanced MRI for predicting vessels encapsulating tumor clusters (VETC) in patients with hepatocellular carcinoma. British Journal of Radiology, 2021, 94, 20200950.	1.0	18
366	Nujiangexanthone A Inhibits Hepatocellular Carcinoma Metastasis via Down Regulation of Cofilin 1. Frontiers in Cell and Developmental Biology, 2021, 9, 644716.	1.8	4
367	Novel Ferrocene Derivatives Induce $GO/G1$ Cell Cycle Arrest and Apoptosis through the Mitochondrial Pathway in Human Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2021, 22, 3097.	1.8	6
368	Identification of immune-related IncRNA signature for predicting immune checkpoint blockade and prognosis in hepatocellular carcinoma. International Immunopharmacology, 2021, 92, 107333.	1.7	62
369	Comprehensive analysis of genomic and immunological profiles in Chinese and Western hepatocellular carcinoma populations. Aging, 2021, 13, 11564-11594.	1.4	5

#	Article	IF	Citations
370	Prediction of Prognosis for cHCC-CC Patients After Surgery: Comparison of Tumor Marker Score Based on AFP, CEA, CA19-9, and Other Clinical Stages. Annals of Surgical Oncology, 2021, 28, 7647-7660.	0.7	6
371	Abnormal Crosstalk between Endothelial Cells and Podocytes Mediates Tyrosine Kinase Inhibitor (TKI)-Induced Nephrotoxicity. Cells, 2021, 10, 869.	1.8	12
372	GSTZ1 sensitizes hepatocellular carcinoma cells to sorafenib-induced ferroptosis via inhibition of NRF2/GPX4 axis. Cell Death and Disease, 2021, 12, 426.	2.7	152
373	Suppression of Heterogeneous Nuclear Ribonucleoprotein C Inhibit Hepatocellular Carcinoma Proliferation, Migration, and Invasion via Ras/MAPK Signaling Pathway. Frontiers in Oncology, 2021, 11, 659676.	1.3	15
374	Circular RNA hsa_circ_0013958 Functions as an Oncogenic Gene Through Modulating miR-532-3p/WEE1 Axis in Hepatocellular Carcinoma. Frontiers in Oncology, 2021, 11, 585172.	1.3	1
375	From Proteomic Mapping to Invasion-Metastasis-Cascade Systemic Biomarkering and Targeted Drugging of Mutant BRAF-Dependent Human Cutaneous Melanomagenesis. Cancers, 2021, 13, 2024.	1.7	5
376	AICAR and compound C negatively modulate HCC-induced primary human hepatic stellate cell activation in vitro. American Journal of Physiology - Renal Physiology, 2021, 320, G543-G556.	1.6	5
377	Identification of Prognostic Glycolysis-Related IncRNA Signature in Tumor Immune Microenvironment of Hepatocellular Carcinoma. Frontiers in Molecular Biosciences, 2021, 8, 645084.	1.6	27
378	Current perspectives on exosomes in the diagnosis and treatment of hepatocellular carcinoma (review). Cancer Biology and Therapy, 2021, 22, 279-290.	1.5	11
379	Natural Killer Cells and Regulatory T Cells Cross Talk in Hepatocellular Carcinoma: Exploring Therapeutic Options for the Next Decade. Frontiers in Immunology, 2021, 12, 643310.	2.2	27
380	AFP-Inhibiting Fragments for Drug Delivery: The Promise and Challenges of Targeting Therapeutics to Cancers. Frontiers in Cell and Developmental Biology, 2021, 9, 635476.	1.8	9
381	Role of Alpha-Fetoprotein in Hepatocellular Carcinoma Drug Resistance. Current Medicinal Chemistry, 2021, 28, 1126-1142.	1.2	19
382	Regulatory mechanisms and therapeutic targeting of vasculogenic mimicry in hepatocellular carcinoma. Pharmacological Research, 2021, 166, 105507.	3.1	28
383	KDM5B promotes selfâ€renewal of hepatocellular carcinoma cells through the microRNAâ€448–mediated YTHDF3/ITGA6 axis. Journal of Cellular and Molecular Medicine, 2021, 25, 5949-5962.	1.6	21
384	Dysregulation of Wnt/l²â€catenin signaling by protein kinases in hepatocellular carcinoma and its therapeutic application. Cancer Science, 2021, 112, 1695-1706.	1.7	30
385	Development of biparatopic bispecific antibody possessing tetravalent scFv-Fc capable of binding to ROBO1 expressed in hepatocellular carcinoma cells. Journal of Biochemistry, 2021, 170, 307-315.	0.9	3
386	SPARC regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma. Cancer Biomarkers, 2021, 32, 425-433.	0.8	15
387	Combining tissue and circulating tumor DNA increases the detection rate of a CTNNB1 mutation in hepatocellular carcinoma. BMC Cancer, 2021, 21, 376.	1.1	7

#	Article	IF	CITATIONS
388	Immunological significance of prognostic alternative splicing signature in hepatocellular carcinoma. Cancer Cell International, 2021, 21, 190.	1.8	15
389	Prognostic factors of nivolumab in advanced hepatocellular carcinoma: a systematic review and meta-analysis. Panminerva Medica, 2021, , .	0.2	2
390	Radiomics of hepatocellular carcinoma: promising roles in patient selection, prediction, and assessment of treatment response. Abdominal Radiology, 2021, 46, 3674-3685.	1.0	16
391	Phosphodiesterase 4D Depletion/Inhibition Exerts Anti-Oncogenic Properties in Hepatocellular Carcinoma. Cancers, 2021, 13, 2182.	1.7	4
392	Amplification of DDR2 mediates sorafenib resistance through NFâ€₽B/câ€Rel signaling in hepatocellular carcinoma. Cell Biology International, 2021, 45, 1906-1916.	1.4	8
393	elF4E-elF4G complex inhibition synergistically enhances the effect of sorafenib in hepatocellular carcinoma. Anti-Cancer Drugs, 2021, 32, 822-828.	0.7	7
394	The Crosstalk Between Cancer Cells and Neutrophils Enhances Hepatocellular Carcinoma Metastasis via Neutrophil Extracellular Traps-Associated Cathepsin G Component: A Potential Therapeutic Target. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 451-465.	1.8	43
396	PHAROH IncRNA regulates Myc translation in hepatocellular carcinoma via sequestering TIAR. ELife, 2021, 10, .	2.8	18
397	Circular RNA hsa_circ_0091579 facilitates the Warburg effect and malignancy of hepatocellular carcinoma cells via the miR-624/H3F3B axis. Clinical and Translational Oncology, 2021, 23, 2280-2292.	1.2	6
398	The Endless Sources of Hepatocellular Carcinoma Heterogeneity. Cancers, 2021, 13, 2621.	1.7	15
399	Histone deacetylase inhibitor resminostat in combination with sorafenib counteracts platelet-mediated pro-tumoral effects in hepatocellular carcinoma. Scientific Reports, 2021, 11, 9587.	1.6	10
400	Trilostane, a $3\hat{l}^2$ -hydroxysteroid dehydrogenase inhibitor, suppresses growth of hepatocellular carcinoma and enhances anti-cancer effects of sorafenib. Investigational New Drugs, 2021, 39, 1493-1506.	1.2	5
401	BMP9â€ID1 signaling promotes EpCAMâ€positive cancer stem cell properties in hepatocellular carcinoma. Molecular Oncology, 2021, 15, 2203-2218.	2.1	14
402	Overexpressed DEPDC1B contributes to the progression of hepatocellular carcinoma by CDK1. Aging, 2021, 13, 20094-20115.	1.4	16
403	Inpatient Specialty-Level Palliative Care Is Delivered Late in the Course of Hepatocellular Carcinoma and Associated With Lower Hazard of Hospital Readmission. Journal of Pain and Symptom Management, 2021, 61, 940-947.e3.	0.6	10
404	Six-transmembrane epithelial antigen of the prostate 1 accelerates cell proliferation by targeting c-Myc in liver cancer cells. Oncology Letters, 2021, 22, 546.	0.8	9
405	Identification of CDC20 as an immune infiltration-correlated prognostic biomarker in hepatocellular carcinoma. Investigational New Drugs, 2021, 39, 1439-1453.	1.2	11
406	Tumor Immune Microenvironment and Immunosuppressive Therapy in Hepatocellular Carcinoma: A Review. International Journal of Molecular Sciences, 2021, 22, 5801.	1.8	182

#	Article	IF	CITATIONS
407	Texture Analysis Based on Gd-EOB-DTPA-Enhanced MRI for Identifying Vessels Encapsulating Tumor Clusters (VETC)-Positive Hepatocellular Carcinoma. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 349-359.	1.8	14
408	CD147 Monoclonal Antibody Targeted Reduction-Responsive Camptothecin Polyphosphoester Nanomedicine for Drug Delivery in Hepatocellular Carcinoma Cells. ACS Applied Bio Materials, 2021, 4, 4422-4431.	2.3	17
409	Immunological Significance of Prognostic DNA Methylation Sites in Hepatocellular Carcinoma. Frontiers in Molecular Biosciences, 2021, 8, 683240.	1.6	14
410	Diagnosis and treatment of hepatocellular carcinoma. Update of the consensus document of the AEEH, AEC, SEOM, SERAM, SERVEI, and SETH. Medicina ClÃnica (English Edition), 2021, 156, 463.e1-463.e30.	0.1	16
411	Inhibition effects of 7-phloro-eckol from Ecklonia cava on metastasis and angiogenesis induced by hypoxia through regulation of AKT/mTOR and ERK signaling pathways. Arabian Journal of Chemistry, 2021, 14, 103187.	2.3	9
412	Exploring liver cancer biology through functional genetic screens. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 690-704.	8.2	31
413	Co-amplification of genes in chromosome 8q24: a robust prognostic marker in hepatocellular carcinoma. Journal of Gastrointestinal Oncology, 2021, 12, 1086-1100.	0.6	2
414	SNHG1 knockdown upregulates miR-376a and downregulates FOXK1/Snail axis to prevent tumor growth and metastasis in HCC. Molecular Therapy - Oncolytics, 2021, 21, 264-277.	2.0	30
415	Development and validation of ferroptosis-related lncRNAs signature for hepatocellular carcinoma. PeerJ, 2021, 9, e11627.	0.9	22
416	Discovery of an Orally Efficacious MYC Inhibitor for Liver Cancer Using a GNMT-Based High-Throughput Screening System and Structure–Activity Relationship Analysis. Journal of Medicinal Chemistry, 2021, 64, 8992-9009.	2.9	5
417	Whole-transcriptome and proteome analyses identify key differentially expressed mRNAs, miRNAs, lncRNAs and circRNAs associated with HCC. Oncogene, 2021, 40, 4820-4831.	2.6	14
418	Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nature Communications, 2021, 12, 3684.	5.8	136
419	Atezolizumab in advanced hepatocellular carcinoma: good things come to those who wait. Immunotherapy, 2021, 13, 637-644.	1.0	63
420	Targeting Long Non-Coding RNAs in Hepatocellular Carcinoma: Progress and Prospects. Frontiers in Oncology, 2021, 11, 670838.	1.3	6
421	New Molecular Mechanisms and Clinical Impact of circRNAs in Human Cancer. Cancers, 2021, 13, 3154.	1.7	50
422	YTHDF1 promotes hepatocellular carcinoma progression via activating PI3K/AKT/mTOR signaling pathway and inducing epithelial-mesenchymal transition. Experimental Hematology and Oncology, 2021, 10, 35.	2.0	54
423	The therapeutic effect of IL-21 combined with IFN- \hat{I}^3 inducing CD4+CXCR5+CD57+T cells differentiation on hepatocellular carcinoma. Journal of Advanced Research, 2021, 36, 89-99.	4.4	3
424	Multi-functionalized dendrimers for targeted co-delivery of sorafenib and paclitaxel in liver cancers. Journal of Drug Delivery Science and Technology, 2021, 63, 102493.	1.4	13

#	Article	IF	CITATIONS
425	Tumor metabolism and associated serum metabolites define prognostic subtypes of Asian hepatocellular carcinoma. Scientific Reports, 2021, 11, 12097.	1.6	8
426	Revealing the Roles of Keratin 8/18-Associated Signaling Proteins Involved in the Development of Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2021, 22, 6401.	1.8	7
427	Targeting WEE1 by adavosertib inhibits the malignant phenotypes of hepatocellular carcinoma. Biochemical Pharmacology, 2021, 188, 114494.	2.0	5
428	m6A RNA Methylation Regulators Elicit Malignant Progression and Predict Clinical Outcome in Hepatocellular Carcinoma. Disease Markers, 2021, 2021, 1-12.	0.6	4
429	Multiparametric Analyses of Hepatocellular Carcinoma Somatic Mouse Models and Their Associated Tumor Microenvironment. Current Protocols, 2021, 1, e147.	1.3	5
430	Lenvatinib plus pembrolizumab: the next frontier for the treatment of hepatocellular carcinoma?. Expert Opinion on Investigational Drugs, 2022, 31, 371-378.	1.9	65
431	Identifying the biomarkers and pathways associated with hepatocellular carcinoma based on an integrated analysis approach. Liver International, 2021, 41, 2485-2498.	1.9	2
432	DNA methylation biomarkers for diagnosis of primary liver cancer and distinguishing hepatocellular carcinoma from intrahepatic cholangiocarcinoma. Aging, 2021, 13, 17592-17606.	1.4	8
433	Global analysis of gene expression signature and diagnostic/prognostic biomarker identification of hepatocellular carcinoma. Science Progress, 2021, 104, 003685042110294.	1.0	8
434	Anti-programmed cell death ligand 1-based immunotherapy in recurrent hepatocellular carcinoma with inferior vena cava tumor thrombus and metastasis: Three case reports. World Journal of Clinical Cases, 2021, 9, 5988-5998.	0.3	2
435	Cabozantinib: An evolving therapy for hepatocellular carcinoma. Cancer Treatment Reviews, 2021, 98, 102221.	3.4	43
436	Treatment of Hepatocellular Carcinoma with Immune Checkpoint Inhibitors and Applicability of First-Line Atezolizumab/Bevacizumab in a Real-Life Setting. Journal of Clinical Medicine, 2021, 10, 3201.	1.0	13
437	How May Ramucirumab Help Improve Treatment Outcome for Patients with Gastrointestinal Cancers?. Cancers, 2021, 13, 3536.	1.7	4
438	ldentification and validation of EPHX2 as a prognostic biomarker in hepatocellular carcinoma. Molecular Medicine Reports, 2021, 24, .	1.1	13
439	Characteristics and Lenvatinib Treatment Response of Unresectable Hepatocellular Carcinoma with Iso-High Intensity in the Hepatobiliary Phase of EOB-MRI. Cancers, 2021, 13, 3633.	1.7	10
440	Fuzheng Jiedu Xiaoji formulation inhibits hepatocellular carcinoma progression in patients by targeting the AKT/CyclinD1/p21/p27 pathway. Phytomedicine, 2021, 87, 153575.	2.3	41
441	Transcriptome analysis of signaling pathways targeted by Ellagic acid in hepatocellular carcinoma cells. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129911.	1.1	6
442	Prognostic role of plasma level of angiopoietin-1, angiopoietin-2, and vascular endothelial growth factor in hepatocellular carcinoma. World Journal of Gastroenterology, 2021, 27, 4453-4467.	1.4	8

#	Article	IF	CITATIONS
443	The efficacy of immune checkpoint inhibitors in advanced hepatocellular carcinoma: a meta-analysis based on 40 cohorts incorporating 3697 individuals. Journal of Cancer Research and Clinical Oncology, 2022, 148, 1195-1210.	1.2	8
444	Exploiting lipotoxicity for the treatment of liver cancer. British Journal of Cancer, 2021, 125, 1459-1461.	2.9	2
445	Prognostic Role and Potential Mechanisms of N6-methyladenosine-related Long Noncoding RNAs in Hepatocellular Carcinoma. Journal of Clinical and Translational Hepatology, 2022, 10, 308-320.	0.7	4
446	Effects of Home Care on patients with hepatocellular carcinoma treated with sorafenib. JGH Open, 2021, 5, 864-870.	0.7	1
447	High expression of PPM1G is associated with the progression and poor prognosis of hepatocellular carcinoma. Cancer Biomarkers, 2022, 34, 13-22.	0.8	4
448	Sorafenib for hepatocellular carcinoma: potential molecular targets and resistance mechanisms. Journal of Chemotherapy, 2022, 34, 286-301.	0.7	4
449	Evolving therapeutic strategies for advanced hepatocellular carcinoma. Expert Opinion on Pharmacotherapy, 2021, 22, 1-12.	0.9	2
450	Advances of Targeted Therapy for Hepatocellular Carcinoma. Frontiers in Oncology, 2021, 11, 719896.	1.3	23
451	PLEKHA8P1 Promotes Tumor Progression and Indicates Poor Prognosis of Liver Cancer. International Journal of Molecular Sciences, 2021, 22, 7614.	1.8	7
452	N2E4, a Monoclonal Antibody Targeting Neuropilin-2, Inhibits Tumor Growth and Metastasis in Pancreatic Ductal Adenocarcinoma via Suppressing FAK/Erk/HIF- $11\pm$ Signaling. Frontiers in Oncology, 2021, 11, 657008.	1.3	12
453	Tumor-Associated Macrophages in Hepatocellular Carcinoma: Friend or Foe?. Gut and Liver, 2021, 15, 500-516.	1.4	36
454	The Liver and the Hepatic Immune Response in Trypanosoma cruzi Infection, a Historical and Updated View. Pathogens, 2021, 10, 1074.	1.2	8
455	Molecular Targets of Ferroptosis in Hepatocellular Carcinoma. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 985-996.	1.8	17
456	Machine Learning to Improve Prognosis Prediction of Early Hepatocellular Carcinoma After Surgical Resection. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 913-923.	1.8	11
457	METTL3â€mediated m6A methylation of ASPM drives hepatocellular carcinoma cells growth and metastasis. Journal of Clinical Laboratory Analysis, 2021, 35, e23931.	0.9	10
458	Evaluation of Hepatocellular Carcinoma Treatment Response After Locoregional Therapy. Magnetic Resonance Imaging Clinics of North America, 2021, 29, 389-403.	0.6	3
459	Landscape of Prognostic m6A RNA Methylation Regulators in Hepatocellular Carcinoma to Aid Immunotherapy. Frontiers in Cell and Developmental Biology, 2021, 9, 669145.	1.8	8
460	MRI-Radiomics Prediction for Cytokeratin 19-Positive Hepatocellular Carcinoma: A Multicenter Study. Frontiers in Oncology, 2021, 11, 672126.	1.3	18

#	Article	IF	Citations
461	DUSP12 regulates the tumorigenesis and prognosis of hepatocellular carcinoma. PeerJ, 2021, 9, e11929.	0.9	4
462	Mild chronic hypoxia-induced HIF-2α interacts with c-MYC through competition with HIF-1α to induce hepatocellular carcinoma cell proliferation. Cellular Oncology (Dordrecht), 2021, 44, 1151-1166.	2.1	9
463	First-line immune checkpoint inhibitor-based combinations in unresectable hepatocellular carcinoma: current management and future challenges. Expert Review of Gastroenterology and Hepatology, 2021, 15, 1245-1251.	1.4	75
464	Liver Injury and Use of Contrast-Enhanced Ultrasound for Evaluating Intrahepatic Recurrence in a Case of TACE-Refractory Hepatocellular Carcinoma Receiving Atezolizumab-Bevacizumab Combination Therapy: A Case Report. Diagnostics, 2021, 11, 1394.	1.3	1
465	Comprehensive Analyses of the Infiltrating Immune Cell Landscape and Its Clinical Significance in Hepatocellular Carcinoma. International Journal of General Medicine, 2021, Volume 14, 4695-4704.	0.8	7
466	Analysis of m6A-Related IncRNAs for Prognosis Value and Response to Immune Checkpoint Inhibitors Therapy in Hepatocellular Carcinoma. Cancer Management and Research, 2021, Volume 13, 6451-6471.	0.9	16
467	N6-methyladenosine (m6A) RNA methylation regulator SNRPC is a prognostic biomarker and is correlated with immunotherapy in hepatocellular carcinoma. World Journal of Surgical Oncology, 2021, 19, 241.	0.8	13
468	Emerging treatment modalities for systemic therapy in hepatocellular carcinoma. Biomarker Research, 2021, 9, 64.	2.8	13
469	Targeting molecular signal transduction pathways in hepatocellular carcinoma and its implications for cancer therapy. Cell Biology International, 2021, 45, 2161-2177.	1.4	11
470	Intrinsic activation of \hat{l}^2 -catenin signaling by CRISPR/Cas9-mediated exon skipping contributes to immune evasion in hepatocellular carcinoma. Scientific Reports, 2021, 11, 16732.	1.6	10
471	Identification of LOXL3-associating immune infiltration landscape and prognostic value in hepatocellular carcinoma. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2021, 479, 1153-1165.	1.4	13
472	Hypoxic Hepatocellular Carcinoma Cells Acquire Arsenic Trioxide Resistance by Upregulating HIF-1 $\hat{\bf l}\pm$ Expression. Digestive Diseases and Sciences, 2021, , 1.	1.1	3
473	LncRNA CRNDE Promotes ATG4B-Mediated Autophagy and Alleviates the Sensitivity of Sorafenib in Hepatocellular Carcinoma Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 687524.	1.8	16
474	Lentinan as a natural stabilizer with bioactivities for preparation of drug–drug nanosuspensions. International Journal of Biological Macromolecules, 2021, 184, 101-108.	3.6	18
475	Identification and Validation of an Immune-related Prognostic Signature for Hepatocellular Carcinoma. Journal of Clinical and Translational Hepatology, 2021, 000, 000-000.	0.7	4
476	Higher Enhancement Intrahepatic Nodules on the Hepatobiliary Phase of Gd-EOB-DTPA-Enhanced MRI as a Poor Responsive Marker of Anti-PD-1/PD-L1 Monotherapy for Unresectable Hepatocellular Carcinoma. Liver Cancer, 2021, 10, 615-628.	4.2	31
477	Regulation Network and Prognostic Significance of Aldo-Keto Reductase (AKR) Superfamily Genes in Hepatocellular Carcinoma, 2021, Volume 8, 997-1021.	1.8	11
478	Circular RNAs: characteristics, biogenesis, mechanisms and functions in liver cancer. Journal of Hematology and Oncology, 2021, 14, 134.	6.9	70

#	Article	IF	CITATIONS
479	KIF18B as a regulator in tumor microenvironment accelerates tumor progression and triggers poor outcome in hepatocellular carcinoma. International Journal of Biochemistry and Cell Biology, 2021, 137, 106037.	1.2	3
480	YAP/TAZ Suppress Drug Penetration Into Hepatocellular Carcinoma Through Stromal Activation. Hepatology, 2021, 74, 2605-2621.	3.6	22
481	RAB27Aâ€dependent release of exosomes by liver cancer stem cells induces Nanog expression in their differentiated progenies and confers regorafenib resistance. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 3429-3437.	1.4	19
482	Natural Killer Cells and Type 1 Innate Lymphoid Cells in Hepatocellular Carcinoma: Current Knowledge and Future Perspectives. International Journal of Molecular Sciences, 2021, 22, 9044.	1.8	7
483	PD-L1, TMB, and other potential predictors of response to immunotherapy for hepatocellular carcinoma: how can they assist drug clinical trials?. Expert Opinion on Investigational Drugs, 2022, 31, 415-423.	1.9	78
484	Biocompatible zinc gallogermanate persistent luminescent nanoparticles for fast tumor drainage lymph node imaging in vivo. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111887.	2.5	4
485	AGTRAP Is a Prognostic Biomarker Correlated With Immune Infiltration in Hepatocellular Carcinoma. Frontiers in Oncology, 2021, 11, 713017.	1.3	5
486	Correlation analysis of RDM1 gene with immune infiltration and clinical prognosis of hepatocellular carcinoma. Bioscience Reports, 2021, 41, .	1.1	1
488	Advances in Multi-Omics Applications in HBV-Associated Hepatocellular Carcinoma. Frontiers in Medicine, 2021, 8, 754709.	1.2	7
489	Trans-arterial chemoembolization as a loco-regional inducer of immunogenic cell death in hepatocellular carcinoma: implications for immunotherapy , 2021, 9, e003311.		66
490	Integrated Analysis and Finding Reveal Anti–Liver Cancer Targets and Mechanisms of Pachyman (Poria) Tj ETQo	10 0 0 rgB	Г/Overlock 1
491	Phase II Trial of the Combination of Temsirolimus and Sorafenib in Advanced Hepatocellular Carcinoma with Tumor Mutation Profiling. Liver Cancer, 2021, 10, 561-571.	4.2	11
492	Xanthine dehydrogenase as a prognostic biomarker related to tumor immunology in hepatocellular carcinoma. Cancer Cell International, 2021, 21, 475.	1.8	8
493	Gadoxetic acid uptake as a molecular imaging biomarker for sorafenib resistance in patients with hepatocellular carcinoma: a post hoc analysis of the SORAMIC trial. Journal of Cancer Research and Clinical Oncology, 2021, , 1.	1.2	3
494	A novel prognostic signature based on four glycolysisâ€related genes predicts survival and clinical risk of hepatocellular carcinoma. Journal of Clinical Laboratory Analysis, 2021, 35, e24005.	0.9	10
496	Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of hepatocellular carcinoma., 2021, 9, e002794.		43
497	LncAY controls BMI1 expression and activates BMI1/Wnt/ \hat{l}^2 -catenin signaling axis in hepatocellular carcinoma. Life Sciences, 2021, 280, 119748.	2.0	20
499	Microscopic Portal Vein Invasion in Relation to Tumor Focality and Dimension in Patients with Hepatocellular Carcinoma. Journal of Gastrointestinal Surgery, 2022, 26, 333-340.	0.9	3

#	Article	IF	CITATIONS
500	Hepatocellular carcinoma (HCC): the most promising therapeutic targets in the preclinical arena based on tumor biology characteristics. Expert Opinion on Therapeutic Targets, 2021, 25, 645-658.	1.5	5
501	Toward Personalized Medicine in Radiotherapy of Hepatocellular Carcinoma: Emerging Radiomic Biomarker Candidates of Response and Toxicity. OMICS A Journal of Integrative Biology, 2021, 25, 537-544.	1.0	2
502	The Prognostic Model Based on Tumor Cell Evolution Trajectory Reveals a Different Risk Group of Hepatocellular Carcinoma. Frontiers in Cell and Developmental Biology, 2021, 9, 737723.	1.8	3
503	Clinical Application Value of Circulating Cell-free DNA in Hepatocellular Carcinoma. Frontiers in Molecular Biosciences, 2021, 8, 736330.	1.6	10
504	Sulfarotene, a synthetic retinoid, overcomes stemness and sorafenib resistance of hepatocellular carcinoma via suppressing SOS2-RAS pathway. Journal of Experimental and Clinical Cancer Research, 2021, 40, 280.	3.5	10
505	Decitabine-Loaded Gold Nanocages for Photothermal Cancer Therapy via DNA Hypermethylation Reversal. ACS Applied Nano Materials, 2021, 4, 10556-10564.	2.4	7
506	The Progress in the Treatment of Hepatocellular Carcinoma With Portal Vein Tumor Thrombus. Frontiers in Oncology, 2021, 11, 635731.	1.3	26
507	Great future or greedy venture: Precision medicine needs philosophy. Health Science Reports, 2021, 4, e376.	0.6	1
508	Deficiency of $GFR\hat{l}\pm 1$ promotes hepatocellular carcinoma progression but enhances oxaliplatin-mediated anti-tumor efficacy. Pharmacological Research, 2021, 172, 105815.	3.1	2
509	YRDC Mediates the Resistance of Lenvatinib in Hepatocarcinoma Cells via Modulating the Translation of KRAS. Frontiers in Pharmacology, 2021, 12, 744578.	1.6	13
510	Disminuyendo la heterogeneidad en hepatocarcinoma. Análisis de clúster por variables clÃnicas en pacientes atendidos en una institución de cuarto nivel de complejidad. Revista De GastroenterologÃa De México, 2021, 86, 356-362.	0.4	3
511	Deubiquitination of the repressor E2F6 by USP22 facilitates AKT activation and tumor growth in hepatocellular carcinoma. Cancer Letters, 2021, 518, 266-277.	3.2	11
512	Molecular characterisation of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. Journal of Hepatology, 2021, 75, 865-878.	1.8	111
513	Reducing the heterogeneity in hepatocellular carcinoma. A cluster analysis based on clinical variables in patients treated at a quaternary care hospital. Revista De GastroenterologÃa De México (English) Tj ETQq1	1 00718431	4 ngBT/Over
514	Peroxiredoxin 1 is essential for natamycin-triggered apoptosis and protective autophagy in hepatocellular carcinoma. Cancer Letters, 2021, 521, 210-223.	3.2	20
515	Review on combination strategy of immune checkpoint blockade, photodynamic therapy and nanomedicine against solid tumor. Materials and Design, 2021, 209, 109958.	3.3	8
516	Tadalafil enhances the therapeutic efficacy of BET inhibitors in hepatocellular carcinoma through activating Hippo pathway. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166267.	1.8	11
517	Cancer cell-intrinsic STING is associated with CD8 + T-cell infiltration and might serve as a potential immunotherapeutic target in hepatocellular carcinoma. Clinical and Translational Oncology, 2021, 23, 1314-1324.	1.2	9

#	Article	IF	CITATIONS
518	miR-126-3p contributes to sorafenib resistance in hepatocellular carcinoma via downregulating SPRED1. Annals of Translational Medicine, 2021, 9, 38-38.	0.7	14
519	Immunotherapy for targeting cancer stem cells in hepatocellular carcinoma. Theranostics, 2021, 11, 3489-3501.	4.6	35
520	PAQR4 promotes the development of hepatocellular carcinoma by activating PI3K/AKT pathway. Acta Biochimica Et Biophysica Sinica, 2021, 53, 1602-1613.	0.9	12
521	BRD7 inhibits tumor progression by positively regulating the p53 pathway in hepatocellular carcinoma. Journal of Cancer, 2021, 12, 1507-1519.	1.2	8
522	Predicting HCC Response to Multikinase Inhibitors With InÂVivo Cirrhotic Mouse Model for Personalized Therapy. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1313-1325.	2.3	12
523	Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 293-313.	8.2	428
524	Electrochemical aptasensors for the detection of hepatocellular carcinoma-related biomarkers. New Journal of Chemistry, 2021, 45, 15158-15169.	1.4	2
525	Atezolizumab plus Bevacizumab: A Novel Breakthrough in Hepatocellular Carcinoma. Clinical Cancer Research, 2021, 27, 1827-1829.	3.2	9
526	Hepatocellular carcinoma. Nature Reviews Disease Primers, 2021, 7, 6.	18.1	2,757
527	Immune Checkpoint Inhibitors in the Treatment of HCC. Frontiers in Oncology, 2020, 10, 601240.	1.3	77
527 528	Immune Checkpoint Inhibitors in the Treatment of HCC. Frontiers in Oncology, 2020, 10, 601240. Hypoxia Molecular Characterization in Hepatocellular Carcinoma Identifies One Risk Signature and Two Nomograms for Clinical Management. Journal of Oncology, 2021, 2021, 1-20.	0.6	77 26
	Hypoxia Molecular Characterization in Hepatocellular Carcinoma Identifies One Risk Signature and		
528	Hypoxia Molecular Characterization in Hepatocellular Carcinoma Identifies One Risk Signature and Two Nomograms for Clinical Management. Journal of Oncology, 2021, 2021, 1-20. Ramucirumab for Patients with Intermediate-Stage Hepatocellular Carcinoma and Elevated Alpha-Fetoprotein: Pooled Results from Two Phase 3 Studies (REACH and REACH-2). Liver Cancer, 2021,	0.6	26
528 529	Hypoxia Molecular Characterization in Hepatocellular Carcinoma Identifies One Risk Signature and Two Nomograms for Clinical Management. Journal of Oncology, 2021, 2021, 1-20. Ramucirumab for Patients with Intermediate-Stage Hepatocellular Carcinoma and Elevated Alpha-Fetoprotein: Pooled Results from Two Phase 3 Studies (REACH and REACH-2). Liver Cancer, 2021, 10, 451-460.	0.6	26 5
528 529 530	Hypoxia Molecular Characterization in Hepatocellular Carcinoma Identifies One Risk Signature and Two Nomograms for Clinical Management. Journal of Oncology, 2021, 2021, 1-20. Ramucirumab for Patients with Intermediate-Stage Hepatocellular Carcinoma and Elevated Alpha-Fetoprotein: Pooled Results from Two Phase 3 Studies (REACH and REACH-2). Liver Cancer, 2021, 10, 451-460. Internet of Things for Sustainable Human Health. Internet of Things, 2020, , 217-242. CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal	0.6 4.2 1.3	26 5 18
528 529 530	Hypoxia Molecular Characterization in Hepatocellular Carcinoma Identifies One Risk Signature and Two Nomograms for Clinical Management. Journal of Oncology, 2021, 2021, 1-20. Ramucirumab for Patients with Intermediate-Stage Hepatocellular Carcinoma and Elevated Alpha-Fetoprotein: Pooled Results from Two Phase 3 Studies (REACH and REACH-2). Liver Cancer, 2021, 10, 451-460. Internet of Things for Sustainable Human Health. Internet of Things, 2020, , 217-242. CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal Transduction and Targeted Therapy, 2020, 5, 298. MiR-139-5p influences hepatocellular carcinoma cell invasion and proliferation capacities via	0.6 4.2 1.3	26 5 18 225
528 529 530 531	Hypoxia Molecular Characterization in Hepatocellular Carcinoma Identifies One Risk Signature and Two Nomograms for Clinical Management. Journal of Oncology, 2021, 2021, 1-20. Ramucirumab for Patients with Intermediate-Stage Hepatocellular Carcinoma and Elevated Alpha-Fetoprotein: Pooled Results from Two Phase 3 Studies (REACH and REACH-2). Liver Cancer, 2021, 10, 451-460. Internet of Things for Sustainable Human Health. Internet of Things, 2020, , 217-242. CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal Transduction and Targeted Therapy, 2020, 5, 298. MiR-139-5p influences hepatocellular carcinoma cell invasion and proliferation capacities via decreasing SLITRK4 expression. Bioscience Reports, 2020, 40, . Exploration of prognostic index based on immune-related genes in patients with liver hepatocellular	0.6 4.2 1.3 7.1	26 5 18 225

#	ARTICLE	IF	CITATIONS
536	Recent Advances in Systemic Therapy for Hepatocellular Carcinoma in an Aging Society: 2020 Update. Liver Cancer, 2020, 9, 640-662.	4.2	78
537	Clinical Cancer Advances 2020: Annual Report on Progress Against Cancer From the American Society of Clinical Oncology. Journal of Clinical Oncology, 2020, 38, 1081.	0.8	101
539	Increased Expression of Serine Hydroxymethyltransferase 2 (SHMT2) is a Negative Prognostic Marker in Patients with Hepatocellular Carcinoma and is Associated with Proliferation of HepG2 Cells. Medical Science Monitor, 2019, 25, 5823-5832.	0.5	22
540	The Expression of Dynamin 1, 2, and 3 in Human Hepatocellular Carcinoma and Patient Prognosis. Medical Science Monitor, 2020, 26, e923359.	0.5	5
541	Phosphatidylinositol-3,4,5-trisphosphate dependent Rac exchange factor 1 is a diagnostic and prognostic biomarker for hepatocellular carcinoma. World Journal of Clinical Cases, 2020, 8, 3774-3785.	0.3	1
543	Tadalafil inhibits elevated glutamic oxaloacetic transaminase during alcohol aflatoxin induced hepatocellular carcinoma in rats. International Journal of Immunotherapy and Cancer Research, 2020, 6, 010-013.	0.4	3
544	CBX3/HP1 \hat{i}^3 promotes tumor proliferation and predicts poor survival in hepatocellular carcinoma. Aging, 2019, 11, 5483-5497.	1.4	45
545	New landscapes and horizons in hepatocellular carcinoma therapy. Aging, 2020, 12, 3053-3094.	1.4	37
546	RP11-295G20.2 facilitates hepatocellular carcinoma progression via the miR-6884-3p/CCNB1 pathway. Aging, 2020, 12, 14918-14932.	1.4	8
547	Alterations in TGF- \hat{l}^2 signaling leads to high HMGA2 levels potentially through modulation of PJA1/SMAD3 in HCC cells. Genes and Cancer, 2020, 11, 43-52.	0.6	8
548	Dysregulated PJA1-TGF-Î ² signaling in cancer stem cell-associated liver cancers. Oncoscience, 2020, 7, 88-95.	0.9	9
549	Secretory Clusterin as a Novel Molecular-targeted Therapy for Inhibiting Hepatocellular Carcinoma Growth. Current Medicinal Chemistry, 2020, 27, 3290-3301.	1.2	5
550	Current Translational and Clinical Challenges in Advanced Hepatocellular Carcinoma. Current Medicinal Chemistry, 2020, 27, 4789-4805.	1.2	6
551	Long Intergenic Non-Protein Coding RNA 665 Regulates Viability, Apoptosis, and Autophagy via the MiR-186-5p/MAP4K3 Axis in Hepatocellular Carcinoma. Yonsei Medical Journal, 2019, 60, 842.	0.9	51
552	Y-Box Binding Protein-1 Promotes Epithelial-Mesenchymal Transition in Sorafenib-Resistant Hepatocellular Carcinoma Cells. International Journal of Molecular Sciences, 2021, 22, 224.	1.8	22
553	Impact of national Human Development Index on liver cancer outcomes: Transition from 2008 to 2018. World Journal of Gastroenterology, 2019, 25, 4749-4763.	1.4	13
554	Role of liver biopsy in hepatocellular carcinoma. World Journal of Gastroenterology, 2019, 25, 6041-6052.	1.4	92
555	Annexin A2 promotion of hepatocellular carcinoma tumorigenesis <i>via</i> the immune microenvironment. World Journal of Gastroenterology, 2020, 26, 2126-2137.	1.4	26

#	ARTICLE	IF	CITATIONS
556	Intratumoral heterogeneity of hepatocellular carcinoma: From single-cell to population-based studies. World Journal of Gastroenterology, 2020, 26, 3720-3736.	1.4	32
557	Efficacy and safety of drugâ€'eluting beads for transarterial chemoembolization in patients with advanced hepatocellular carcinoma. Experimental and Therapeutic Medicine, 2019, 18, 4625-4630.	0.8	5
558	Lenvatinib prolongs the progression‑free survival time of patients with intermediate‑stage hepatocellular carcinoma refractory to transarterial chemoembolization: A multicenter cohort study using data mining analysis. Oncology Letters, 2020, 20, 2257-2265.	0.8	44
559	Increased fibrillarin expression is associated with tumor progression and an unfavorable prognosis in hepatocellular carcinoma. Oncology Letters, 2020, 21, 92.	0.8	14
560	Auranofin Enhances Sulforaphane-Mediated Apoptosis in Hepatocellular Carcinoma Hep3B Cells through Inactivation of the PI3K/Akt Signaling Pathway. Biomolecules and Therapeutics, 2020, 28, 443-455.	1.1	32
561	FOS-like antigen 1 is a prognostic biomarker in hepatocellular carcinoma. Saudi Journal of Gastroenterology, 2019, 25, 369-376.	0.5	11
562	Targeted agents for second-line treatment of advanced hepatocellular carcinoma. World Journal of Gastrointestinal Oncology, 2019, 11, 788-803.	0.8	8
563	Blood exosomal micro ribonucleic acid profiling reveals the complexity of hepatocellular carcinoma and identifies potential biomarkers for differential diagnosis. World Journal of Gastrointestinal Oncology, 2020, 12, 1195-1208.	0.8	7
564	Pivotal role of long non-coding ribonucleic acid-X-inactive specific transcript in regulating immune checkpoint programmed death ligand 1 through a shared pathway between miR-194-5p and miR-155-5p in hepatocellular carcinoma. World Journal of Hepatology, 2020, 12, 1211-1227.	0.8	12
565	Transcriptome analysis revealed key prognostic genes and microRNAs in hepatocellular carcinoma. Peerl, 2020, 8, e8930.	0.9	26
566	Exploring the Expression and Prognostic Value of the TCP1 Ring Complex in Hepatocellular Carcinoma and Overexpressing Its Subunit 5 Promotes HCC Tumorigenesis. Frontiers in Oncology, 2021, 11, 739660.	1.3	11
568	MRI-based Nomogram Predicts the Risk of Progression of Unresectable Hepatocellular Carcinoma After Combined Lenvatinib and anti-PD-1 Antibody Therapy. Academic Radiology, 2022, 29, 819-829.	1.3	8
569	Nutritional therapy for hepatocellular carcinoma. World Journal of Gastrointestinal Oncology, 2021, 13, 1440-1452.	0.8	14
570	Induction of Apoptosis by Isoalantolactone in Human Hepatocellular Carcinoma Hep3B Cells through Activation of the ROS-Dependent JNK Signaling Pathway. Pharmaceutics, 2021, 13, 1627.	2.0	14
571	Lenvatinib Combined with Anti-PD-1 Antibodies Plus Transcatheter Arterial Chemoembolization for Unresectable Hepatocellular Carcinoma: A Multicenter Retrospective Study. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 1233-1240.	1.8	71
572	Bi-Functional Peptides as a New Therapeutic Tool for Hepatocellular Carcinoma. Pharmaceutics, 2021, 13, 1631.	2.0	8
573	Alpelisib combination treatment as novel targeted therapy against hepatocellular carcinoma. Cell Death and Disease, 2021, 12, 920.	2.7	13
574	Engineering nanotheranostic strategies for liver cancer. World Journal of Gastrointestinal Oncology, 2021, 13, 1213-1228.	0.8	7

#	Article	IF	CITATIONS
575	Optimizing outcomes in HCC: Comment on "optimal timing of combining sorafenib with trans-arterial chemoembolization in patients with hepatocellular carcinoma: A meta-analysis―by Jiang etÂal Translational Oncology, 2021, 14, 101246.	1.7	0
577	Second-line treatment of hepatocellular carcinoma: from theory to practical issues. Meditsinskiy Sovet, 2019, , 30-36.	0.1	2
580	Advances in RNA Epigenetic Modifications in Hepatocellular Carcinoma and Potential Targeted Intervention Strategies. Frontiers in Cell and Developmental Biology, 2021, 9, 777007.	1.8	9
581	Intrinsic and Extrinsic Control of Hepatocellular Carcinoma by TAM Receptors. Cancers, 2021, 13, 5448.	1.7	5
582	Therapeutic Potential of CUDC-907 (Fimepinostat) for Hepatocarcinoma Treatment Revealed by Tumor Spheroids-Based Drug Screening. Frontiers in Pharmacology, 2021, 12, 658197.	1.6	10
583	Clinical M2 macrophages-related genes to aid therapy in pancreatic ductal adenocarcinoma. Cancer Cell International, 2021, 21, 582.	1.8	5
584	Sirtuin 7 super-enhancer drives epigenomic reprogramming in hepatocarcinogenesis. Cancer Letters, 2022, 525, 115-130.	3.2	19
585	Connective Tissue Growth Factor in Digestive System Cancers: A Review and Meta-Analysis. BioMed Research International, 2020, 2020, 1-10.	0.9	2
586	Hepatocellular carcinoma: update on treatment guidelines. Gastrointestinal Nursing, 2020, 18, S18-S26.	0.0	1
587	Three new 3-formyl-2-arylbenzofurans from <i>Itea yunnanensis</i> and their anti-hepatocellular carcinoma effects. Natural Product Research, 2022, 36, 1205-1214.	1.0	8
589	Radiolabeled Peptide Probes for Liver Cancer Imaging. Current Medicinal Chemistry, 2020, 27, 6968-6986.	1.2	8
590	WGCNA and LASSO algorithm constructed an immune infiltration-related 5-gene signature and nomogram to improve prognosis prediction of hepatocellular carcinoma. Biocell, 2022, 46, 401-415.	0.4	5
591	Successful stories of drug repurposing for cancer therapy in hepatocellular carcinoma. , 2020, , 213-229.		4
593	Recurrence of hepatocellular carcinoma following deceased donor liver transplantation: case series. Hepatoma Research, 2020, 2020, .	0.6	1
594	Rapamycin enhances the anti-tumor activity of cabozantinib in cMet inhibitor-resistant hepatocellular carcinoma. Frontiers of Medicine, 2022, 16, 467-482.	1.5	4
595	Hepatocellular Carcinoma in 2021: An Exhaustive Update. Cureus, 2021, 13, e19274.	0.2	32
596	Elevated Neddylation Pathway Promotes Th2 Cells Infiltration by Transactivating STAT5A in Hepatocellular Carcinoma. Frontiers in Oncology, 2021, 11, 709170.	1.3	6
597	CYP2C8 Suppress Proliferation, Migration, Invasion and Sorafenib Resistance of Hepatocellular Carcinoma via Pl3K/Akt/p27kip1 Axis. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 1323-1338.	1.8	12

#	Article	IF	CITATIONS
599	Evaluation of diagnostic accuracy of serum calcium channel $\hat{l}\pm2\hat{l}'1$ subunit in hepatocellular carcinoma-related cirrhosis. Egyptian Liver Journal, 2020, 10, .	0.3	0
600	Advances in Regulating Tumorigenicity and Metastasis of Cancer Through TrkB Signaling. Current Cancer Drug Targets, 2020, 20, 779-788.	0.8	10
601	EYA1 promotes cell migration and tumor metastasis in hepatocellular carcinoma. American Journal of Translational Research (discontinued), 2019, 11, 2328-2338.	0.0	5
602	New insights into autophagy in hepatocellular carcinoma: mechanisms and therapeutic strategies. American Journal of Cancer Research, 2019, 9, 1329-1353.	1.4	25
603	SPP1 functions as an enhancer of cell growth in hepatocellular carcinoma targeted by miR-181c. American Journal of Translational Research (discontinued), 2019, 11, 6924-6937.	0.0	20
604	Betulinic acid induces autophagy-mediated apoptosis through suppression of the PI3K/AKT/mTOR signaling pathway and inhibits hepatocellular carcinoma. American Journal of Translational Research (discontinued), 2019, 11, 6952-6964.	0.0	14
605	Current statuses of molecular targeted and immune checkpoint therapies in hepatocellular carcinoma. American Journal of Cancer Research, 2020, 10, 1522-1533.	1.4	4
606	Preventive effect of celecoxib in sorafenib-related hand-foot syndrome in hepatocellular carcinoma patients, a single-center, open-label, randomized, controlled clinical phase III trial. American Journal of Cancer Research, 2020, 10, 1467-1476.	1.4	1
607	BRIT1 dysfunction confers synergistic inhibition of hepatocellular carcinoma by targeting poly (ADP-ribose) polymerases and PI3K. American Journal of Cancer Research, 2020, 10, 1900-1918.	1.4	2
608	Identifying drug candidates for hepatocellular carcinoma based on differentially expressed genes. American Journal of Translational Research (discontinued), 2020, 12, 2664-2674.	0.0	0
609	Low expression of NTF3 is associated with unfavorable prognosis in hepatocellular carcinoma. International Journal of Clinical and Experimental Pathology, 2020, 13, 2280-2288.	0.5	1
610	Development and validation of a survival model based on autophagy-associated genes for predicting prognosis of hepatocellular carcinoma. American Journal of Translational Research (discontinued), 2020, 12, 6705-6722.	0.0	3
611	microRNA-219-5p targets NEK6 to inhibit hepatocellular carcinoma progression. American Journal of Translational Research (discontinued), 2020, 12, 7528-7541.	0.0	3
612	Silencing reverses acquired resistance to sorafenib in hepatocellular carcinoma. Aging, 2020, 12, 22975-23003.	1.4	0
613	A Immune-Related Signature Associated with TME Can Serve as a Potential Biomarker for Survival and Sorafenib Resistance in Liver Cancer. OncoTargets and Therapy, 2021, 14, 5065-5083.	1.0	3
614	Arsenite-loaded albumin nanoparticles for targeted synergistic chemo-photothermal therapy of HCC. Biomaterials Science, 2021, 10, 243-257.	2.6	11
615	Akt inhibitor augments anti-proliferative efficacy of a dual mTORC1/2 inhibitor by FOXO3a activation in p53 mutated hepatocarcinoma cells. Cell Death and Disease, 2021, 12, 1073.	2.7	9
616	Mitochondrial Plasticity Promotes Resistance to Sorafenib and Vulnerability to STAT3 Inhibition in Human Hepatocellular Carcinoma. Cancers, 2021, 13, 6029.	1.7	2

#	Article	IF	CITATIONS
617	Bioinformatics Analysis Identifies Precision Treatment with Paclitaxel for Hepatocellular Carcinoma Patients Harboring Mutant TP53 or Wild-Type CTNNB1 Gene. Journal of Personalized Medicine, 2021, 11, 1199.	1.1	4
618	Identification and Validation of a Tumor Microenvironment-Related Gene Signature in Hepatocellular Carcinoma Prognosis. Frontiers in Genetics, 2021, 12, 717319.	1.1	10
619	LncSNHG3 promotes hepatocellular carcinoma epithelial mesenchymal transition progression through the miR-152-3p/JAK1 pathway. Genes and Genomics, 2021, , 1.	0.5	1
620	A Combination of Blood Lymphocytes and AST Levels Distinguishes Patients with Small Hepatocellular Carcinomas from Non-cancer Patients. Journal of Gastrointestinal Cancer, 2021, 52, 1211-1216.	0.6	3
621	Wnt/ \hat{l}^2 -Catenin Signaling as a Driver of Hepatocellular Carcinoma Progression: An Emphasis on Molecular Pathways. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 1415-1444.	1.8	65
622	Immunotherapies for hepatocellular carcinoma. Nature Reviews Clinical Oncology, 2022, 19, 151-172.	12.5	643
623	Focal adhesion kinase inhibitor TAE226 combined with Sorafenib slows down hepatocellular carcinoma by multiple epigenetic effects. Journal of Experimental and Clinical Cancer Research, 2021, 40, 364.	3.5	15
624	Development and Validation of a Pyroptosis-Related Long Non-coding RNA Signature for Hepatocellular Carcinoma. Frontiers in Cell and Developmental Biology, 2021, 9, 713925.	1.8	36
625	PRRC2A Promotes Hepatocellular Carcinoma Progression and Associates with Immune Infiltration. Journal of Hepatocellular Carcinoma, 2021, Volume 8, 1495-1511.	1.8	15
626	Predictive role of the monocyte-to-lymphocyte ratio in advanced hepatocellular carcinoma patients receiving anti-PD-1 therapy. Translational Cancer Research, 2021, 11, 0-0.	0.4	5
627	Atezolizumab/Bevacizumab vs. Lenvatinib as First-Line Therapy for Unresectable Hepatocellular Carcinoma: A Real-World, Multi-Center Study. SSRN Electronic Journal, 0, , .	0.4	0
628	Exosome-based rare earth nanoparticles for targeted <i>in situ</i> and metastatic tumor imaging with chemo-assisted immunotherapy. Biomaterials Science, 2022, 10, 744-752.	2.6	5
629	Comprehensive kinomic study via a chemical proteomic approach reveals kinome reprogramming in hepatocellular carcinoma tissues. Proteomics, 2021, , 2100141.	1.3	0
630	MiRNA-124-3p.1 sensitizes hepatocellular carcinoma cells to sorafenib by regulating FOXO3a by targeting AKT2 and SIRT1. Cell Death and Disease, 2022, 13, 35.	2.7	22
631	Unresectable hepatocellular carcinoma: prospects for drug therapy with lenvatinib. Malignant Tumours, 2022, 11, 45-52.	0.1	1
632	Intracellular Reduction-Responsive Molecular Targeted Nanomedicine for Hepatocellular Carcinoma Therapy. Frontiers in Pharmacology, 2021, 12, 809125.	1.6	3
633	Silencing <italic>KIF14</italic> reverses acquired resistance to sorafenib in hepatocellular carcinoma. Aging, 2020, 12, 22975-23003.	1.4	6
634	A Immune-Related Signature Associated with TME Can Serve as a Potential Biomarker for Survival and Sorafenib Resistance in Liver Cancer. OncoTargets and Therapy, 2021, Volume 14, 5065-5083.	1.0	10

#	Article	IF	CITATIONS
635	Progress of targeted and immunotherapy for hepatocellular carcinoma and the application of next-generation sequencing. Annals of Hepatology, 2022, 27, 100677.	0.6	5
636	Long intergenic non-protein coding RNA 1273 confers sorafenib resistance in hepatocellular carcinoma via regulation of methyltransferase 3. Bioengineered, 2022, 13, 3108-3121.	1.4	20
637	Fasting improves therapeutic response in hepatocellular carcinoma through p53-dependent metabolic synergism. Science Advances, 2022, 8, eabh2635.	4.7	35
638	A Prognostic Nomogram for Hepatocellular Carcinoma Based on Wound Healing and Immune Checkpoint Genes. Journal of Clinical and Translational Hepatology, 2022, 10, 891-900.	0.7	2
639	Antitumor Effect of Regorafenib on MicroRNA Expression in Hepatocellular Carcinoma Cell Lines. International Journal of Molecular Sciences, 2022, 23, 1667.	1.8	2
640	ASF1B Serves as a Potential Therapeutic Target by Influencing Cell Cycle and Proliferation in Hepatocellular Carcinoma. Frontiers in Oncology, 2021, 11, 801506.	1.3	16
641	Enhancing anti-tumor efficacy and immune memory by combining 3p-GPC-3 siRNA treatment with PD-1 blockade in hepatocellular carcinoma. Oncolmmunology, 2022, 11 , .	2.1	2
642	Hepatocellular Carcinoma: Molecular Pathogenesis and Therapeutic Advances. Cancers, 2022, 14, 621.	1.7	34
643	Clinical Significance of the Duality of Wnt/ \hat{l}^2 -Catenin Signaling in Human Hepatocellular Carcinoma. Cancers, 2022, 14, 444.	1.7	20
644	EOGT Correlated With Immune Infiltration: A Candidate Prognostic Biomarker for Hepatocellular Carcinoma. Frontiers in Immunology, 2021, 12, 780509.	2.2	2
645	The Landscape Of Alpha Fetoprotein In Hepatocellular Carcinoma: Where Are We?. International Journal of Biological Sciences, 2022, 18, 536-551.	2.6	54
646	Demethylation at enhancer upregulates MCM2 and NUP37 expression predicting poor survival in hepatocellular carcinoma patients. Journal of Translational Medicine, 2022, 20, 49.	1.8	9
647	SHC4 promotes tumor proliferation and metastasis by activating STAT3 signaling in hepatocellular carcinoma. Cancer Cell International, 2022, 22, 24.	1.8	6
648	Hepatocellular carcinoma patients with high circulating cytotoxic T cells and intra-tumoral immune signature benefit from pembrolizumab: results from a single-arm phase 2 trial. Genome Medicine, 2022, 14, 1.	3.6	68
649	Spindle and Kinetochore-associated Family Genes are Prognostic and Predictive Biomarkers in Hepatocellular Carcinoma. Journal of Clinical and Translational Hepatology, 2022, 000, 000-000.	0.7	0
650	Galectin-1 confers resistance to doxorubicin in hepatocellular carcinoma cells through modulation of P-glycoprotein expression. Cell Death and Disease, 2022, 13, 79.	2.7	14
651	Hepatic interferon regulatory factor 8 expression suppresses hepatocellular carcinoma progression and enhances the response to anti–programmed cell death proteinâ€1 therapy. Hepatology, 2022, 76, 1602-1616.	3.6	18
652	Upregulation of TMCO3 Promoting Tumor Progression and Contributing to the Poor Prognosis of Hepatocellular Carcinoma. Journal of Clinical and Translational Hepatology, 2022, 000, 000-000.	0.7	1

#	ARTICLE	IF	CITATIONS
653	SCUBE3 downregulation modulates hepatocellular carcinoma by inhibiting CCNE1 via TGFβ/PI3K/AKT/GSK3βÂpathway. Cancer Cell International, 2022, 22, 1.	1.8	67
654	Precision Medicine for Hepatocellular Carcinoma: Clinical Perspective. Journal of Personalized Medicine, 2022, 12, 149.	1.1	14
655	Role of Exosomes in Immune Microenvironment of Hepatocellular Carcinoma. Journal of Oncology, 2022, 2022, 1-15.	0.6	16
656	Cancer Genomic Alterations Can Be Potential Biomarkers Predicting Microvascular Invasion and Early Recurrence of Hepatocellular Carcinoma. Frontiers in Oncology, 2022, 12, 783109.	1.3	3
657	The role of RNA binding proteins in hepatocellular carcinoma. Advanced Drug Delivery Reviews, 2022, 182, 114114.	6.6	9
658	The pyroptosis-related gene signature predicts prognosis and indicates immune activity in hepatocellular carcinoma. Molecular Medicine, 2022, 28, 16.	1.9	37
659	Successful conversion therapy and radical resection for huge Barcelona Clinic Liver Cancer stage C hepatocellular carcinoma: A case report. World Chinese Journal of Digestology, 2022, 30, 164-168.	0.0	0
660	Artificial intelligence predicts immune and inflammatory gene signatures directly from hepatocellular carcinoma histology. Journal of Hepatology, 2022, 77, 116-127.	1.8	40
661	Mapping oncogenic protein interactions for precision medicine. International Journal of Cancer, 2022,	2.3	6
662	Remodeling Tumorâ€Associated Neutrophils to Enhance Dendritic Cellâ€Based HCC Neoantigen Nanoâ€Vaccine Efficiency. Advanced Science, 2022, 9, e2105631.	5.6	51
663	Multiâ€omics data identified <scp>TP53</scp> and <scp>LRP1B</scp> as key regulatory gene related to immune phenotypes via <scp>EPCAM</scp> in <scp>HCC</scp> . Cancer Medicine, 2022, 11, 2145-2158.	1.3	2
664	An Unfolded Protein Response-Related mRNA Signature Predicting the Survival and Therapeutic Effect of Hepatocellular Carcinoma. Combinatorial Chemistry and High Throughput Screening, 2022, 25, 2046-2058.	0.6	2
665	AXL and MET in Hepatocellular Carcinoma: A Systematic Literature Review. Liver Cancer, 2022, 11, 94-112.	4.2	10
666	Serum gamma-glutamyl transpeptidase-to-platelet ratio (GPR) can predict the prognosis of hepatocellular carcinoma: a meta-analysis and systematic review. Translational Cancer Research, 2022, 11, 745-753.	0.4	5
667	Patient-derived functional organoids as a personalized approach for drug screening against hepatobiliary cancers. Advances in Cancer Research, 2022, , 319-341.	1.9	2
668	A novel immune checkpoint-related gene signature for hepatocellular carcinoma to predict clinical outcomes and therapeutic response. Mathematical Biosciences and Engineering, 2022, 19, 4719-4736.	1.0	1
669	LncRNA PCED1B-AS1 Upregulation in Hepatocellular Carcinoma and Regulation of the miR-10a/BCL6 Axis to Promote Cell Proliferation. Critical Reviews in Eukaryotic Gene Expression, 2022, 32, 11-20.	0.4	2
671	The synergistic antitumor effect of IL-6 neutralization with NVP-BEZ235 in hepatocellular carcinoma. Cell Death and Disease, 2022, 13, 146.	2.7	11

#	Article	IF	Citations
672	The survival strength of younger patients in BCLC stage 0-B of hepatocellular carcinoma: basing on competing risk model. BMC Cancer, 2022, 22, 185.	1.1	O
673	Comprehensive Analysis of HOX Family Members as Novel Diagnostic and Prognostic Markers for Hepatocellular Carcinoma. Journal of Oncology, 2022, 2022, 1-17.	0.6	4
674	CircRNA_0008194 functions as a ceRNA to promote invasion of hepatocellular carcinoma via inhibiting miRâ€190a/AHNAK signaling pathway. Journal of Clinical Laboratory Analysis, 2022, 36, e24286.	0.9	10
675	The Role of COL22A1 in the Pathophysiology of Hepatocellular Carcinoma: Evidence from Bioinformatics Exploration. Cancer Management and Research, 0, Volume 14, 739-750.	0.9	0
676	The Bright and the Dark Side of TGF- \hat{l}^2 Signaling in Hepatocellular Carcinoma: Mechanisms, Dysregulation, and Therapeutic Implications. Cancers, 2022, 14, 940.	1.7	16
677	Chenodeoxycholic Acid Enhances the Effect of Sorafenib in Inhibiting HepG2 Cell Growth Through EGFR/Stat3 Pathway. Frontiers in Oncology, 2022, 12, 836333.	1.3	1
678	OIT3 mediates macrophage polarization and facilitates hepatocellular carcinoma progression. Cancer Immunology, Immunotherapy, 2022, 71, 2677-2689.	2.0	7
679	Drug delivery strategy in hepatocellular carcinoma therapy. Cell Communication and Signaling, 2022, 20, 26.	2.7	21
680	Observation on the effect and effective rate of contrast-enhanced ultrasonography in interventional therapy for primary hepatocellular carcinoma. Minerva Gastroenterology, 2022, , .	0.3	0
681	Analysis of L Antigen Family Member 3 as a Potential Biomarker and Therapeutic Target Associated With the Progression of Hepatocellular Carcinoma. Frontiers in Oncology, 2022, 12, 813275.	1.3	1
682	Circulating Cell-Free DNA Captures the Intratumor Heterogeneity in Multinodular Hepatocellular Carcinoma. JCO Precision Oncology, 2022, 6, e2100335.	1.5	9
683	The Heterogeneity of Immune Cell Infiltration Landscape and Its Immunotherapeutic Implications in Hepatocellular Carcinoma. Frontiers in Immunology, 2022, 13, 861525.	2.2	11
684	Integrated Analysis Highlights the Immunosuppressive Role of TREM2+ Macrophages in Hepatocellular Carcinoma. Frontiers in Immunology, 2022, 13, 848367.	2.2	28
685	Serum TERT C228T is an important predictor of non-viral liver cancer with fatty liver disease. Hepatology International, 2022, 16, 412-422.	1.9	2
686	Anti-tumor immunity and ferroptosis of hepatocellular carcinoma are enhanced by combined therapy of sorafenib and delivering modified GO-based PD-L1 siRNAs., 2022, 136, 212761.		10
687	Pyroptosis-Related LncRNA Signature Predicts Prognosis and Is Associated With Immune Infiltration in Hepatocellular Carcinoma. Frontiers in Oncology, 2022, 12, 794034.	1.3	12
688	Advances in artificial intelligence techniques drive the application of radiomics in the clinical research of hepatocellular carcinoma., 2022, 1, 49-54.		1
690	A Novel Gene Signature Based on CDC20 and FCN3 for Prediction of Prognosis and Immune Features in Patients with Hepatocellular Carcinoma. Journal of Immunology Research, 2022, 2022, 1-15.	0.9	5

#	Article	IF	Citations
691	Exploration of a Novel Prognostic Nomogram and Diagnostic Biomarkers Based on the Activity Variations of Hallmark Gene Sets in Hepatocellular Carcinoma. Frontiers in Oncology, 2022, 12, 830362.	1.3	2
692	Atezolizumab/Bevacizumab vs. Lenvatinib as First-Line Therapy for Unresectable Hepatocellular Carcinoma: A Real-World, Multi-Center Study. Cancers, 2022, 14, 1747.	1.7	36
693	Medicaid expansion is associated with a higher likelihood of early diagnosis, resection, transplantation, and overall survival in patients with hepatocellular carcinoma. Hpb, 2022, 24, 1482-1491.	0.1	11
694	The clinical relevance of epithelialâ€mesenchymal transition and its correlations with tumorigenic immune infiltrates in hepatocellular carcinoma. Immunology, 2022, 166, 185-196.	2.0	6
695	Cabozantinib Enhances Anti-PD1 Activity and Elicits a Neutrophil-Based Immune Response in Hepatocellular Carcinoma. Clinical Cancer Research, 2022, 28, 2449-2460.	3.2	39
696	Hepatocellular carcinomaâ€infiltrating γδT cells are functionally defected and allogenic Vδ2 ⁺ γδT cell can be a promising complement. Clinical and Translational Medicine, 2022, 12, e800.	1.7	13
697	PRC1 and RACGAP1 are Diagnostic Biomarkers of Early HCC and PRC1 Drives Self-Renewal of Liver Cancer Stem Cells. Frontiers in Cell and Developmental Biology, 2022, 10, 864051.	1.8	6
698	CRISPR-Cas9-based genome-wide screening identified novel targets for treating sorafenib-resistant hepatocellular carcinoma: a cross-talk between FGF21 and the NRF2 pathway. Science China Life Sciences, 2022, 65, 1998-2016.	2.3	9
699	Gemcitabine-facilitated modulation of the tumor microenvironment and PD-1/PD-L1 blockade generate a synergistic antitumor effect in a murine hepatocellular carcinoma model. Clinics and Research in Hepatology and Gastroenterology, 2022, 46, 101853.	0.7	6
700	Sarcopenia and Systemic Inflammation Response Index Predict Response to Systemic Therapy for Hepatocellular Carcinoma and Are Associated With Immune Cells. Frontiers in Oncology, 2022, 12, 854096.	1.3	13
701	Association of the MARCO polymorphism rs6761637 with hepatocellular carcinoma susceptibility and clinical characteristics. Immunologic Research, 2022, , $1.$	1.3	2
702	Targeting tumor associated macrophages in hepatocellular carcinoma. Biochemical Pharmacology, 2022, 199, 114990.	2.0	13
703	Low expression of moonlight gene ALAD is correlated with poor prognosis in hepatocellular carcinoma. Gene, 2022, 825, 146437.	1.0	5
704	Sperm associated antigen 4 promotes SREBP1-mediated de novo lipogenesis via interaction with lamin A/C and contributes to tumor progression in hepatocellular carcinoma. Cancer Letters, 2022, 536, 215642.	3.2	9
705	An RNAâ€"RNA crosstalk network involving HMGB1 and RICTOR facilitates hepatocellular carcinoma tumorigenesis by promoting glutamine metabolism and impedes immunotherapy by PD-L1+ exosomes activity. Signal Transduction and Targeted Therapy, 2021, 6, 421.	7.1	48
706	Identification of Therapeutic Targets and Prognostic Biomarkers Among Chemokine (C-C Motif) Ligands in the Liver Hepatocellular Carcinoma Microenvironment. Frontiers in Cell and Developmental Biology, 2021, 9, 748269.	1.8	5
707	FGFR4 inhibitors for the treatment of hepatocellular carcinoma: a synopsis of therapeutic potential. Expert Opinion on Investigational Drugs, 2022, 31, 393-400.	1.9	4
708	Therapeutic efficacy of lenvatinib for hepatocellular carcinoma with iso‑high intensity in theÂhepatobiliary phase of Gd‑EOB‑DTPA‑MRI. Molecular and Clinical Oncology, 2021, 16, 53.	0.4	5

#	Article	IF	CITATIONS
709	Comparative assessment of standard and immune response criteria for evaluation of response to PD-1 monotherapy in unresectable HCC. Abdominal Radiology, 2022, 47, 969-980.	1.0	11
710	Ferroptosis-related gene signature predicts the prognosis of papillary thyroid carcinoma. Cancer Cell International, 2021, 21, 669.	1.8	20
711	An Integrated Fibrosis Signature for Predicting Survival and Immunotherapy Efficacy of Patients With Hepatocellular Carcinoma. Frontiers in Molecular Biosciences, 2021, 8, 766609.	1.6	9
712	Hepatitis B core antigen modulates exosomal miR-135a to target vesicle-associated membrane protein 2 promoting chemoresistance in hepatocellular carcinoma. World Journal of Gastroenterology, 2021, 27, 8302-8322.	1.4	12
713	Predictive Biomarkers for Checkpoint Inhibitor-Based Immunotherapy in Hepatocellular Carcinoma: Where Do We Stand?. Frontiers in Oncology, 2021, 11, 803133.	1.3	83
714	Downregulated Expression of miRNA-130a-5p Aggravates Hepatoma Progression via Targeting PTP4A2. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-12.	0.7	2
715	Cell Death in Hepatocellular Carcinoma: Pathogenesis and Therapeutic Opportunities. Cancers, 2022, 14, 48.	1.7	30
716	Abnormal Expression of Centromere Protein U Is Associated with Hepatocellular Cancer Progression. BioMed Research International, 2021, 2021, 1-14.	0.9	3
717	Hypoxia responsive nano-drug delivery system based on angelica polysaccharide for liver cancer therapy. Drug Delivery, 2022, 29, 138-148.	2.5	42
718	Construction and Validation of a Combined Ferroptosis and Hypoxia Prognostic Signature for Hepatocellular Carcinoma. Frontiers in Molecular Biosciences, 2021, 8, 809672.	1.6	12
719	Dembrolizumab as second line therapy for hepatocellular patient. Meditsinskiy Sovet, 2021, , 150-154.	0.1	0
720	Nonhepatic Cancer in the Pediatric Liver Transplant Population: Guidelines From the ILTS-SETH Consensus Conference. Transplantation, 2022, 106, e46-e51.	0.5	2
721	RPRD1A stabilizes NRF2 and aggravates HCC progression through competing with p62 for TRIM21 binding. Cell Death and Disease, 2022, 13, 6.	2.7	10
722	The Disassociation of the A20/HSP90 Complex via Downregulation of HSP90 Restores the Effect of A20 Enhancing the Sensitivity of Hepatocellular Carcinoma Cells to Molecular Targeted Agents. Frontiers in Oncology, 2021, 11, 804412.	1.3	4
723	Epigenetic and Immune-Cell Infiltration Changes in the Tumor Microenvironment in Hepatocellular Carcinoma. Frontiers in Immunology, 2021, 12, 793343.	2.2	21
724	Delta-tocotrienol enhances the anti-tumor effects of interferon alpha through reactive oxygen species and $Erk/MAPK$ signaling pathways in hepatocellular carcinoma cells. Canadian Journal of Physiology and Pharmacology, 2021, , 1-11.	0.7	1
725	hsa_circ_0003410 promotes hepatocellular carcinoma progression by increasing the ratio of M2/M1 macrophages through the miRâ€139â€3p/CCL5 axis. Cancer Science, 2022, 113, 634-647.	1.7	26
726	MicroRNA-128-3p Mediates Lenvatinib Resistance of Hepatocellular Carcinoma Cells by Downregulating c-Met. Journal of Hepatocellular Carcinoma, 2022, Volume 9, 113-126.	1.8	13

#	Article	IF	CITATIONS
727	CpG Site-Specific Methylation-Modulated Divergent Expression of PRSS3 Transcript Variants Facilitates Nongenetic Intratumor Heterogeneity in Human Hepatocellular Carcinoma. Frontiers in Oncology, 2022, 12, 831268.	1.3	2
728	Serum long non-coding RNA SCARNA10 serves as a potential diagnostic biomarker for hepatocellular carcinoma. BMC Cancer, 2022, 22, 431.	1.1	23
729	HDACs and the epigenetic plasticity of cancer cells: Target the complexity. , 2022, 238, 108190.		14
730	Which role for predictors of response to immune checkpoint inhibitors in hepatocellular carcinoma?. Expert Review of Gastroenterology and Hepatology, 2022, 16, 333-339.	1.4	65
731	MBP-11901 Inhibits Tumor Growth of Hepatocellular Carcinoma through Multitargeted Inhibition of Receptor Tyrosine Kinases. Cancers, 2022, 14, 1994.	1.7	3
732	Development an Immune-Related MicroRNA Risk Index in Hepatocellular Carcinoma. Journal of Oncology, 2022, 2022, 1-13.	0.6	0
733	Transforming primary human hepatocytes into hepatocellular carcinoma with genetically defined factors. EMBO Reports, 2022, , e54275.	2.0	5
734	Design, synthesis and biological evaluation of 3-arylisoquinoline derivatives as topoisomerase I and II dual inhibitors for the therapy of liver cancer. European Journal of Medicinal Chemistry, 2022, 237, 114376.	2.6	3
735	Prognostic and Predictive Factors in Patients with Advanced HCC and Elevated Alpha-Fetoprotein Treated with Ramucirumab in Two Randomized Phase III Trials. Clinical Cancer Research, 2022, 28, 2297-2305.	3.2	8
736	Association between Hepatic Oxidative Stress Related Factors and Activation of Wnt/β-Catenin Signaling in NAFLD-Induced Hepatocellular Carcinoma. Cancers, 2022, 14, 2066.	1.7	8
737	An immune subtype-related prognostic signature of hepatocellular carcinoma based on single-cell sequencing analysis. Aging, 2022, 14, 3276-3292.	1.4	34
738	Target Therapy for Hepatocellular Carcinoma: Beyond Receptor Tyrosine Kinase Inhibitors and Immune Checkpoint Inhibitors. Biology, 2022, 11, 585.	1.3	5
767	The combined signatures of hypoxia and cellular landscape provides a prognostic and therapeutic biomarker in hepatitis B virusâ€related hepatocellular carcinoma. International Journal of Cancer, 2022, 151, 809-824.	2.3	11
768	A simple 2-parameter blood test alert for the presence of small hepatocellular carcinomas Clinical Practice (London, England), 2021, 18, 1804-1809.	0.1	0
769	Decoding the functional role of extracellular vesicles in hepatocellular carcinoma: implications in clinical theranostics., 2022,, 301-339.		0
770	Non-Apoptotic Programmed Cell Death-Related Gene Signature Correlates With Stemness and Immune Status and Predicts the Responsiveness of Transarterial Chemoembolization in Hepatocellular Carcinoma. Frontiers in Cell and Developmental Biology, 2022, 10, 844013.	1.8	0
772	Serum Amino Acid Profiles Predict the Development of Hepatocellular Carcinoma in Patients with Chronic HBV Infection. ACS Omega, 2022, 7, 15795-15808.	1.6	7
773	Hepatocellular Carcinoma: How the Gut Microbiota Contributes to Pathogenesis, Diagnosis, and Therapy. Frontiers in Microbiology, 2022, 13, 873160.	1.5	13

#	Article	IF	Citations
774	Activity and Tissue Distribution of Antisense Oligonucleotide CT102 Encapsulated with Cytidinyl/Cationic Lipid against Hepatocellular Carcinoma. Molecular Pharmaceutics, 2022, 19, 4552-4564.	2.3	6
775	EIF4A3-induced circTOLLIP promotes the progression of hepatocellular carcinoma via the miR-516a-5p/PBX3/EMT pathway. Journal of Experimental and Clinical Cancer Research, 2022, 41, 164.	3.5	24
776	Immunotherapy and Microbiota for Targeting of Liver Tumor-Initiating Stem-like Cells. Cancers, 2022, 14, 2381.	1.7	4
777	Omega-3 Polyunsaturated Fatty Acids Provoke Apoptosis in Hepatocellular Carcinoma through Knocking Down the STAT3 Activated Signaling Pathway: In Vivo and In Vitro Study. Molecules, 2022, 27, 3032.	1.7	2
778	PI3K/AKT/mTOR Pathway-Associated Genes Reveal a Putative Prognostic Signature Correlated with Immune Infiltration in Hepatocellular Carcinoma. Disease Markers, 2022, 2022, 1-18.	0.6	1
779	Foreword. Clinical Drug Investigation, 2022, , .	1.1	0
780	Dysregulation of immune checkpoint proteins in hepatocellular carcinoma: Impact on metabolic reprogramming. Current Opinion in Pharmacology, 2022, 64, 102232.	1.7	1
781	Necroptosis modulation by cisplatin and sunitinib in hepatocellular carcinoma cell line. Life Sciences, 2022, 301, 120594.	2.0	2
782	Construction and validation of a pyroptosis-related gene signature in hepatocellular carcinoma based on RNA sequencing. Translational Cancer Research, 2021, .	0.4	1
783	Molecular pathogenesis and systemic therapies for hepatocellular carcinoma. Nature Cancer, 2022, 3, 386-401.	5.7	126
784	Identification of Context-Specific Fitness Genes Associated With Metabolic Rearrangements for Prognosis and Potential Treatment Targets for Liver Cancer. Frontiers in Genetics, 2022, 13, .	1.1	1
785	A novel hypoxia-driven gene signature that can predict the prognosis of hepatocellular carcinoma. Bioengineered, 2022, 13, 12193-12210.	1.4	6
786	DZW-310, a novel phosphoinositide 3-kinase inhibitor, attenuates the angiogenesis and growth of hepatocellular carcinoma cells via PI3K/AKT/mTOR axis. Biochemical Pharmacology, 2022, 201, 115093.	2.0	4
787	Predictors of response for hepatocellular carcinoma immunotherapy: is there anything on the horizon?. Expert Review of Precision Medicine and Drug Development, 2022, 7, 50-57.	0.4	1
788	AK2 is an AMP-sensing negative regulator of BRAF in tumorigenesis. Cell Death and Disease, 2022, 13, 469.	2.7	3
789	Effect of Atezolizumab plus Bevacizumab in Patients with Hepatocellular Carcinoma Harboring <i>CTNNB1</i> Mutation in Early Clinical Experience. Journal of Cancer, 2022, 13, 2656-2661.	1.2	6
790	Network Pharmacology-Based Strategy to Investigate the Mechanisms of Lenvatinib in the Treatment of Hepatocellular Carcinoma. Computational Intelligence and Neuroscience, 2022, 2022, 1-14.	1.1	1
791	Therapeutic efficacy of atezolizumab plus bevacizumab for hepatocellular carcinoma with WNT/β‑catenin signal activation. Oncology Letters, 2022, 24, .	0.8	8

#	Article	IF	CITATIONS
793	Molecular targeted drugs, comprehensive classification and preclinical models for the implementation of precision immune oncology in hepatocellular carcinoma. International Journal of Clinical Oncology, 0, , .	1.0	2
794	Integrative Analysis Identifies Cell-Type-Specific Genes Within Tumor Microenvironment as Prognostic Indicators in Hepatocellular Carcinoma. Frontiers in Oncology, 0, 12 , .	1.3	1
795	Comprehensive Analysis of a Cancer-Immunity Cycle $\hat{a}\in$ Based Signature for Predicting Prognosis and Immunotherapy Response in Patients With Colorectal Cancer. Frontiers in Immunology, 0, 13, .	2.2	10
796	Long nonâ€coding RNAs in virusâ€related cancers. Reviews in Medical Virology, 2022, 32, .	3.9	5
797	RECIST 1.1 versus mRECIST for assessment of tumour response to molecular targeted therapies and disease outcomes in patients with hepatocellular carcinoma: a systematic review and meta-analysis. BMJ Open, 2022, 12, e052294.	0.8	5
798	Pretreatment Metabolic Parameters Measured by 18F-FDG PET to Predict the Pathological Treatment Response of HCC Patients Treated With PD-1 Inhibitors and Lenvatinib as a Conversion Therapy in BCLC Stage C. Frontiers in Oncology, 0, 12, .	1.3	5
799	NOL12 as an Oncogenic Biomarker Promotes Hepatocellular Carcinoma Growth and Metastasis. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-17.	1.9	4
801	The Dynamic Role of NK Cells in Liver Cancers: Role in HCC and HBV Associated HCC and Its Therapeutic Implications. Frontiers in Immunology, 0, 13, .	2.2	20
802	Targeting Inhibition of Accumulation and Function of Myeloid-Derived Suppressor Cells by Artemisinin via PI3K/AKT, mTOR, and MAPK Pathways Enhances Anti-PD-L1 Immunotherapy in Melanoma and Liver Tumors. Journal of Immunology Research, 2022, 2022, 1-21.	0.9	6
804	Tissue factor promotes HCC carcinogenesis by inhibiting BCL2-dependent autophagy. Bulletin Du Cancer, 2022, , .	0.6	2
805	Imaging for better responses to immunotherapy in hepatocellular carcinoma. Hepatology, 2023, 77, 6-9.	3.6	1
807	Conventional or Drug-Eluting Beads? Randomized Controlled Study of Chemoembolization for Hepatocellular Carcinoma: JIVROSG-1302. Liver Cancer, 2022, 11, 440-450.	4.2	22
808	A Multifunctional Vanadium-Iron-Oxide Nanoparticle Eradicates Hepatocellular Carcinoma via Targeting Tumor and Endothelial Cells. ACS Applied Materials & Samp; Interfaces, 2022, 14, 28514-28526.	4.0	12
809	Knockdown of TANK-Binding Kinase 1 Enhances the Sensitivity of Hepatocellular Carcinoma Cells to Molecular-Targeted Drugs. Frontiers in Pharmacology, $0,13,.$	1.6	3
810	Nivolumab with Ipilimumab in the treatment of refractory hepatocellular carcinoma. Meditsinskiy Sovet, 2022, , 157-162.	0.1	0
811	circACTG1 Promotes Hepatocellular Carcinoma Progression by Regulating miR-940/RIF1 Axis and Activating AKT/mTOR Pathway. Journal of Immunology Research, 2022, 2022, 1-13.	0.9	2
812	L-Selenocysteine induced HepG-2 cells apoptosis through reactive oxygen species-mediated signaling pathway. Molecular Biology Reports, 2022, 49, 8381-8390.	1.0	4
813	The Therapeutic Role of PNU-74654 in Hepatocellular Carcinoma May Involve Suppression of NF-κB Signaling. Medicina (Lithuania), 2022, 58, 798.	0.8	3

#	Article	IF	CITATIONS
814	Methyltransferase 1 is required for nonhomologous end $\hat{\epsilon}_{j}$ oining repair and renders hepatocellular carcinoma resistant to radiotherapy. Hepatology, 2023, 77, 1896-1910.	3.6	17
816	Iron Oxide Nanoparticles Functionalized with Fucoidan: a Potential Theranostic Nanotool for Hepatocellular Carcinoma. ChemBioChem, 2022, 23, .	1.3	1
817	3D printed hydrogel scaffolds combining glutathione depletion-induced ferroptosis and photothermia-augmented chemodynamic therapy for efficiently inhibiting postoperative tumor recurrence. Journal of Nanobiotechnology, 2022, 20, .	4.2	25
818	Ligand-modified Nanomaterials for Specific Targeting of Hepatocellular Carcinoma. , 2022, 2, .		0
819	Down-regulation of circPTTG1IP induces hepatocellular carcinoma development via miR-16-5p/RNF125/JAK1 axis. Cancer Letters, 2022, 543, 215778.	3.2	12
820	Clinical significance and immunogenomic landscape analysis of glycolysis-associated prognostic model to guide clinical therapy in hepatocellular carcinoma. Journal of Gastrointestinal Oncology, 2022, 13, 1351-1366.	0.6	1
821	Characterization of Platelet Function-Related Gene Predicting Survival and Immunotherapy Efficacy in Gastric Cancer. Frontiers in Genetics, $0,13,.$	1.1	1
823	HMOX1 Attenuates the Sensitivity of Hepatocellular Carcinoma Cells to Sorafenib via Modulating the Expression of ABC Transporters. International Journal of Genomics, 2022, 2022, 1-12.	0.8	3
824	Fusobacterium nucleatum and Malignant Tumors of the Digestive Tract: A Mechanistic Overview. Bioengineering, 2022, 9, 285.	1.6	2
825	Role of N6-Methyladenosine Methylation Regulators in the Drug Therapy of Digestive System Tumours. Frontiers in Pharmacology, 0, 13 , .	1.6	3
826	miR-200a-3p- and miR-181-5p-Mediated HOXB5 Upregulation Promotes HCC Progression by Transcriptional Activation of EGFR. Frontiers in Oncology, 0, 12 , .	1.3	4
827	Identification and Validation of a Novel Tumor Microenvironment-Related Prognostic Signature of Patients With Hepatocellular Carcinoma. Frontiers in Molecular Biosciences, 0, 9, .	1.6	6
828	Multiomics technologies: role in disease biomarker discoveries and therapeutics. Briefings in Functional Genomics, 2023, 22, 76-96.	1.3	5
829	A miR-9-5p/FOXO1/CPEB3 Feed-Forward Loop Drives the Progression of Hepatocellular Carcinoma. Cells, 2022, 11, 2116.	1.8	4
830	Development and Verification of a Combined Immune- and Metabolism-Related Prognostic Signature for Hepatocellular Carcinoma. Frontiers in Immunology, $0,13,\ldots$	2.2	0
831	Suppressive Effects of Siegesbeckia orientalis Ethanolic Extract on Proliferation and Migration of Hepatocellular Carcinoma Cells through Promoting Oxidative Stress, Apoptosis and Inflammatory Responses. Pharmaceuticals, 2022, 15, 826.	1.7	1
832	A Novel Necroptosis-Related Gene Signature in Skin Cutaneous Melanoma Prognosis and Tumor Microenvironment. Frontiers in Genetics, 0, 13, .	1.1	14
833	Construction of a Necroptosis-Associated Long Non-Coding RNA Signature to Predict Prognosis and Immune Response in Hepatocellular Carcinoma. Frontiers in Molecular Biosciences, 0, 9, .	1.6	9

#	ARTICLE	IF	CITATIONS
834	Ets1 mediates sorafenib resistance by regulating mitochondrial ROS pathway in hepatocellular carcinoma. Cell Death and Disease, 2022, 13 , .	2.7	13
835	Eupalinolide B inhibits hepatic carcinoma by inducing ferroptosis and ROS-ER-JNK pathway. Acta Biochimica Et Biophysica Sinica, 2022, 54, 974-986.	0.9	7
836	Identification of chromosomal instability-associated genes as hepatocellular carcinoma progression-related biomarkers to guide clinical diagnosis, prognosis and therapy. Computers in Biology and Medicine, 2022, 148, 105896.	3.9	4
837	Elevated Small Nuclear Ribonucleoprotein Polypeptide an Expression Correlated With Poor Prognosis and Immune Infiltrates in Patients With Hepatocellular Carcinoma. Frontiers in Oncology, 0, 12, .	1.3	3
838	<i>Seco</i> -Lupane Triterpene Derivatives Induce Ferroptosis through GPX4/ACSL4 Axis and Target Cyclin D1 to Block the Cell Cycle. Journal of Medicinal Chemistry, 2022, 65, 10014-10044.	2.9	6
839	miR-6071 inhibits hepatocellular carcinoma progression via targeting PTPN11. Archives of Biochemistry and Biophysics, 2022, 727, 109345.	1.4	1
840	Sema3d Restrained Hepatocellular Carcinoma Progression Through Inactivating Pi $3k$ /Akt Signaling via Interaction With FLNA. Frontiers in Oncology, 0, 12, .	1.3	1
841	LINC01419 Promotes the Proliferation of Hepatoma Cells by Recruiting XRCC5 and Regulating Its Phosphorylation to Repair DNA Damage. Disease Markers, 2022, 2022, 1-10.	0.6	2
842	Comprehensive Analysis of Prognostic Value and Immune Infiltration of Ficolin Family Members in Hepatocellular Carcinoma. Frontiers in Genetics, 0, 13, .	1.1	2
843	Drug Discovery Using Evolutionary Similarities in Chemical Binding to Inhibit Patient-Derived Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2022, 23, 7971.	1.8	3
844	Necroptosis throws novel insights on patient classification and treatment strategies for hepatocellular carcinoma. Frontiers in Immunology, $0,13,.$	2.2	3
845	CD8+ T cell trajectory subtypes decode tumor heterogeneity and provide treatment recommendations for hepatocellular carcinoma. Frontiers in Immunology, 0, 13, .	2.2	14
846	Systematic Analysis of Long Non-Coding RNA Genes in Nonalcoholic Fatty Liver Disease. Non-coding RNA, 2022, 8, 56.	1.3	7
847	Long nonâ€'coding RNA PART1: dual role in cancer. Human Cell, 2022, 35, 1364-1374.	1.2	6
848	FOXM1 Is a Novel Molecular Target of AFP-Positive Hepatocellular Carcinoma Abrogated by Proteasome Inhibition. International Journal of Molecular Sciences, 2022, 23, 8305.	1.8	6
849	Frontier progress of the combination of modern medicine and traditional Chinese medicine in the treatment of hepatocellular carcinoma. Chinese Medicine, 2022, 17, .	1.6	10
850	Prognostic value of exosomal noncoding RNA in hepatocellular carcinoma: a meta-analysis. Carcinogenesis, 2022, 43, 754-765.	1.3	2
851	Indocyanine green fluorescence-guided laparoscopic hepatectomy versus conventional laparoscopic hepatectomy for hepatocellular carcinoma: A single-center propensity score matching study. Frontiers in Oncology, 0, 12, .	1.3	9

#	Article	IF	CITATIONS
852	Hepatocellular Carcinoma: Aetiology and Mechanisms of Development. A Literature Review. Kreativnaâ Hirurgiâ I Onkologiâ, 2022, 12, 139-150.	0.1	2
853	Association of hepatitis B virus DNA levels with overall survival for advanced hepatitis B virus-related hepatocellular carcinoma under immune checkpoint inhibitor therapy. Cancer Immunology, Immunotherapy, 0, , .	2.0	3
854	Ferroptosis-Related Hub Genes in Hepatocellular Carcinoma: Prognostic Signature, Immune-Related, and Drug Resistance Analysis. Frontiers in Genetics, $0,13,\ldots$	1.1	11
855	Monocarboxylate transporter upregulation in induced regulatory T cells promotes resistance to anti-PD-1 therapy in hepatocellular carcinoma patients. Frontiers in Oncology, 0, 12, .	1.3	3
856	Serine Protease Inhibitor Kazal Type 1, A Potential Biomarker for the Early Detection, Targeting, and Prediction of Response to Immune Checkpoint Blockade Therapies in Hepatocellular Carcinoma. Frontiers in Immunology, 0, 13, .	2.2	6
857	The E3 ubiquitin ligase MG53 inhibits hepatocellular carcinoma by targeting RAC1 signaling. Oncogenesis, 2022, 11, .	2.1	12
858	miR-3154 promotes hepatocellular carcinoma progression via suppressing HNF4α. Carcinogenesis, 2022, 43, 1002-1014.	1.3	6
859	Efficacy and safety of atezolizumab plus bevacizumab combined with hepatic arterial infusion chemotherapy for advanced hepatocellular carcinoma. Frontiers in Immunology, 0, 13, .	2.2	14
860	NAPSB as a predictive marker for prognosis and therapy associated with an immuno-hot tumor microenvironment in hepatocellular carcinoma. BMC Gastroenterology, 2022, 22, .	0.8	3
861	KDM5B regulates the PTEN/PI3K/Akt pathway to increase sorafenib-resistance in hepatocellular carcinoma. Anti-Cancer Drugs, 2022, 33, 840-849.	0.7	8
863	Characterization of coagulation-related gene signature to predict prognosis and tumor immune microenvironment in skin cutaneous melanoma. Frontiers in Oncology, $0,12,12$	1.3	20
864	Efficacy of transarterial chemoembolization monotherapy or combination conversion therapy in unresectable hepatocellular carcinoma: A systematic review and meta-analysis. Frontiers in Oncology, 0, 12, .	1.3	7
865	Comprehensive analysis of complement-associated molecular features in hepatocellular carcinoma. Acta Biochimica Et Biophysica Sinica, 2022, , .	0.9	0
866	<scp>DLK1</scp> â€directed chimeric antigen receptor Tâ€cell therapy for hepatocellular carcinoma. Liver International, 2022, 42, 2524-2537.	1.9	4
867	A Comprehensive Evaluation of Prognostic Value and Immune Infiltration of KDM1 Family in Hepatocellular Carcinoma. Advances in Therapy, 0 , , .	1.3	0
868	Regulation of the sensitivity of hepatocarcinoma cells by ORMDL3, to sorafenib by autophagy. , 2022, 39, .		1
870	The prognostic significance of inflammation-immunity-nutrition score on postoperative survival and recurrence in hepatocellular carcinoma patients. Frontiers in Oncology, 0, 12, .	1.3	1
871	A Cell Differentiation Trajectory-Related Signature for Predicting the Prognosis of Lung Adenocarcinoma. Genetical Research, 2022, 2022, 1-11.	0.3	2

#	ARTICLE	IF	CITATIONS
872	Up-Regulation of RACGAP1 Promotes Progressions of Hepatocellular Carcinoma Regulated by GABPA via PI3K/AKT Pathway. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-16.	1.9	6
873	Immune modulation by molecularly targeted photothermal ablation in a mouse model of advanced hepatocellular carcinoma and cirrhosis. Scientific Reports, 2022, 12, .	1.6	6
874	Prognostic and Immunological Significance of FUNDC1 in Hepatocellular Carcinoma: A Study on TCGA Mining. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-15.	0.7	3
875	microRNA-206 prevents hepatocellular carcinoma growth and metastasis via down-regulating CREB5 and inhibiting the PI3K/AKT signaling pathway. Cell Cycle, 2022, 21, 2651-2663.	1.3	3
877	EGFR blockade confers sensitivity to cabozantinib in hepatocellular carcinoma. Cell Discovery, 2022, 8, .	3.1	1
878	The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology, 2023, 77, 1773-1796.	3.6	101
879	Multi-omics analysis revealed the role of extracellular vesicles in hepatobiliary & pancreatic tumor. Journal of Controlled Release, 2022, 350, 11-25.	4.8	3
880	The pattern of expression and prognostic value of key regulators for m7G RNA methylation in hepatocellular carcinoma. Frontiers in Genetics, 0, 13 , .	1.1	6
881	Novel Nanotechnology Approaches to Overcome Drug Resistance in the Treatment of Hepatocellular Carcinoma: Glypican 3 as a Useful Target for Innovative Therapies. International Journal of Molecular Sciences, 2022, 23, 10038.	1.8	4
882	A novel cuproptosis-related prognostic lncRNA signature for predicting immune and drug therapy response in hepatocellular carcinoma. Frontiers in Immunology, $0,13,.$	2.2	20
883	pH-activated nanoplatform for visualized photodynamic and ferroptosis synergistic therapy of tumors. Journal of Controlled Release, 2022, 350, 525-537.	4.8	18
884	Wnt/ \hat{l}^2 -catenin targeting in liver carcinoma through nanotechnology-based drug repurposing: A review. Biomedicine and Pharmacotherapy, 2022, 155, 113713.	2.5	5
885	Identification of Subtypes of HCC Using Bioinformatics and the Hepatocyte Differentiation Model. Methods in Molecular Biology, 2022, , 253-258.	0.4	0
886	Construction and Evaluation of GPC3-Targeted Immunotoxins as a Novel Therapeutic Modality for Hepatocellular Carcinoma. SSRN Electronic Journal, 0, , .	0.4	0
887	Efficacy of Radiofrequency Ablation Following Transarterial Chemoembolization Combined with Sorafenib for Intermediate Stage Recurrent Hepatocellular Carcinoma. SSRN Electronic Journal, 0, , .	0.4	0
888	Identification of a novel histone phosphorylation prognostic signature in hepatocellular carcinoma based on bulk and single-cell RNA sequencing. Frontiers in Endocrinology, 0, 13, .	1.5	3
889	Anti-PD-1 antibodies plus lenvatinib in patients with unresectable hepatocellular carcinoma who progressed on lenvatinib: a retrospective cohort study of real-world patients. Journal of Gastrointestinal Oncology, 2022, 13, 1898-1906.	0.6	3
890	E2F1 as a potential prognostic and therapeutic biomarker by affecting tumor development and immune microenvironment in hepatocellular carcinoma. Translational Cancer Research, 2022, 11, 2713-2732.	0.4	1

#	Article	IF	CITATIONS
891	Farnesiferol C Exerts Antiproliferative Effects on Hepatocellular Carcinoma HepG2 Cells by Instigating ROS-Dependent Apoptotic Pathway. Pharmaceuticals, 2022, 15, 1070.	1.7	5
892	Predicting prognosis and immune responses in hepatocellular carcinoma based on N7-methylguanosine-related long noncoding RNAs. Frontiers in Genetics, 0, 13, .	1.1	0
893	Case report: Primary hepatocellular carcinoma with portal vein tumor thrombus characterized by active tumor immune microenvironment achieving a complete response following treatment of combined immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	3
894	TRIM36 inhibits tumorigenesis through the Wnt/ \hat{l}^2 -catenin pathway and promotes caspase-dependent apoptosis in hepatocellular carcinoma. Cancer Cell International, 2022, 22, .	1.8	2
895	Combination of Peglated-H1/HGFK1 Nanoparticles and TAE in the Treatment of Hepatocellular Carcinoma. Applied Biochemistry and Biotechnology, 2023, 195, 505-518.	1.4	4
896	Sorafenib-Loaded Cu2â^'xSe Nanoparticles Boost Photothermalâ€"Synergistic Targeted Therapy against Hepatocellular Carcinoma. Nanomaterials, 2022, 12, 3191.	1.9	6
897	<scp>PSMB5</scp> overexpression is correlated with tumor proliferation and poor prognosis in hepatocellular carcinoma. FEBS Open Bio, 2022, 12, 2025-2041.	1.0	7
898	Identification of the hub and prognostic genes in liver hepatocellular carcinoma via bioinformatics analysis. Frontiers in Molecular Biosciences, 0, 9, .	1.6	4
899	Comprehensive Molecular Analysis Identified an SRSF Family-Based Score for Prognosis and Therapy Efficiency Prediction in Hepatocellular Carcinoma. Cancers, 2022, 14, 4727.	1.7	0
900	Inhibition of EGFR Overcomes Acquired Lenvatinib Resistance Driven by STAT3–ABCB1 Signaling in Hepatocellular Carcinoma. Cancer Research, 2022, 82, 3845-3857.	0.4	26
901	Integrated System Pharmacology Approaches to Elucidate Multi-Target Mechanism of Solanum surattense against Hepatocellular Carcinoma. Molecules, 2022, 27, 6220.	1.7	5
902	Synergizing liver systemic treatments with interventional oncology: friend or foe?. British Journal of Radiology, 2022, 95, .	1.0	1
903	Aging-related features predict prognosis and immunotherapy efficacy in hepatocellular carcinoma. Frontiers in Immunology, 0, 13 , .	2.2	5
904	Lenvatinib plus transarterial chemoembolization with or without immune checkpoint inhibitors for unresectable hepatocellular carcinoma: A review. Frontiers in Oncology, 0, 12, .	1.3	9
905	A Novel Ferroptosis-Related Signature for Prediction of Prognosis, Immune Profiles and Drug Sensitivity in Hepatocellular Carcinoma Patients. Current Oncology, 2022, 29, 6992-7011.	0.9	2
906	Prognostic Implication of a Cuproptosis-Related miRNA Signature in Hepatocellular Carcinoma. Journal of Healthcare Engineering, 2022, 2022, 1-14.	1.1	6
907	METTL3 promotes m6A hypermethylation of RBM14 via YTHDF1 leading to the progression of hepatocellular carcinoma. Human Cell, 2022, 35, 1838-1855.	1.2	10
908	Matrix metalloproteinase 1 is a poor prognostic biomarker for patients with hepatocellular carcinoma. Clinical and Experimental Medicine, 2023, 23, 2065-2083.	1.9	8

#	Article	IF	CITATIONS
909	All Roads Lead to Cathepsins: The Role of Cathepsins in Non-Alcoholic Steatohepatitis-Induced Hepatocellular Carcinoma. Biomedicines, 2022, 10, 2351.	1.4	1
910	Adenosinergic axis and immune checkpoint combination therapy in tumor: A new perspective for immunotherapy strategy. Frontiers in Immunology, 0, 13, .	2.2	4
911	Conversion therapy for initially unresectable hepatocellular carcinoma using a combination of toripalimab, lenvatinib plus TACE: real-world study. BJS Open, 2022, 6, .	0.7	20
912	Mutational and transcriptional alterations and clinicopathological factors predict the prognosis of stage I hepatocellular carcinoma. BMC Gastroenterology, 2022, 22, .	0.8	3
913	NSUN2-Mediated mRNA m 5 C Modification Regulates the Progression of Hepatocellular Carcinoma. Genomics, Proteomics and Bioinformatics, 2023, 21, 823-833.	3.0	4
914	HGF-mediated elevation of ETV1 facilitates hepatocellular carcinoma metastasis through upregulating PTK2 and c-MET. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	3.5	11
916	Molecular Classification of Hepatocellular Carcinoma Using Wnt–Hippo Signaling Pathway-Related Genes. Cancers, 2022, 14, 4580.	1.7	3
917	Eupalinolide A induces autophagy via the ROS/ERK signaling pathway in hepatocellular carcinoma cells <i>inÂvitro</i> and <i>inÂvivo</i> lnternational Journal of Oncology, 2022, 61, .	1.4	3
918	Berberine enhances the anti-hepatocellular carcinoma effect of NK92-MI cells through inhibiting IFN-gamma-mediated PD-L1 expression. Liver Research, 2022, 6, 167-174.	0.5	0
919	Prognostic Role of Molecular and Imaging Biomarkers for Predicting Advanced Hepatocellular Carcinoma Treatment Efficacy. Cancers, 2022, 14, 4647.	1.7	1
920	Role of 5-methylcytosine in determining the prognosis, tumor microenvironment, and applicability of precision medicine in patients with hepatocellular carcinoma. Frontiers in Genetics, $0,13,1$	1.1	0
921	Preoperative radiomics model using gadobenate dimeglumine-enhanced magnetic resonance imaging for predicting \hat{l}^2 -catenin mutation in patients with hepatocellular carcinoma: A retrospective study. Frontiers in Oncology, 0, 12, .	1.3	2
922	Immunomodulatory effects of regorafenib: Enhancing the efficacy of anti-PD-1/PD-L1 therapy. Frontiers in Immunology, $0,13,13$	2.2	8
923	Popular deep learning algorithms for disease prediction: a review. Cluster Computing, 2023, 26, 1231-1251.	3.5	18
924	Mechanisms of Primary and Acquired Resistance to Immune Checkpoint Inhibitors in Patients with Hepatocellular Carcinoma. Cancers, 2022, 14, 4616.	1.7	18
925	The Systematic Analyses of RING Finger Gene Signature for Predicting the Prognosis of Patients with Hepatocellular Carcinoma. Journal of Oncology, 2022, 2022, 1-17.	0.6	6
926	Multitargeting Strategy Using Tetrathiomolybdate and Lenvatinib: Maximizing Antiangiogenesis Activity in a Preclinical Liver Cancer Model. Anti-Cancer Agents in Medicinal Chemistry, 2023, 23, 786-793.	0.9	5
927	Immunotherapy for nonalcoholic fatty liver disease-related hepatocellular carcinoma: Lights and shadows. World Journal of Gastrointestinal Oncology, 2022, 14, 1622-1636.	0.8	6

#	Article	IF	CITATIONS
928	Clinical neutrophil-associated genes as reliable predictors of hepatocellular carcinoma. Frontiers in Genetics, $0,13,1$	1.1	1
929	Identification of copper metabolism and cuproptosis-related subtypes for predicting prognosis tumor microenvironment and drug candidates in hepatocellular carcinoma. Frontiers in Immunology, 0, 13, .	2.2	4
930	Cuproptosis-related immune checkpoint gene signature: Prediction of prognosis and immune response for hepatocellular carcinoma. Frontiers in Genetics, 0, 13, .	1.1	4
931	Activation of Piezo1 contributes to matrix stiffnessâ€induced angiogenesis in hepatocellular carcinoma. Cancer Communications, 2022, 42, 1162-1184.	3.7	27
932	Development and validation of an ECM-related prognostic signature to predict the immune landscape of human hepatocellular carcinoma. BMC Cancer, 2022, 22, .	1.1	4
933	Emergent impact of lifestyle on tumor progression and response to therapy. International Review of Cell and Molecular Biology, 2022, , ix-xvii.	1.6	0
934	Nanotechnology strategies for hepatocellular carcinoma diagnosis and treatment. RSC Advances, 2022, 12, 31068-31082.	1.7	8
935	The Complement System: A Potential Therapeutic Target in Liver Cancer. Life, 2022, 12, 1532.	1.1	1
936	Hepatocellular Carcinoma Medical Therapy. Updates in Surgery Series, 2023, , 173-179.	0.0	0
937	Tumor Microenvironment in Hepatocellular Carcinoma: Key Players for Immunotherapy. Journal of Hepatocellular Carcinoma, 0, Volume 9, 1109-1125.	1.8	11
938	Real-World Comparative Effectiveness of Nivolumab versus Pembrolizumab in Patients with Unresectable Hepatocellular Carcinoma. Pharmaceutics, 2022, 14, 2263.	2.0	3
939	Interval dynamics of transplantability for hepatocellular carcinoma after primary curative resection: risk factors for nontransplantable recurrence. Hpb, 2023, 25, 218-228.	0.1	3
940	Hepatocellular carcinoma mutation landscape and its differences between Asians and Whites. Hepatobiliary Surgery and Nutrition, 2022, 11, 724-728.	0.7	1
941	MCM2 promotes the stemness and sorafenib resistance of hepatocellular carcinoma cells via hippo signaling. Cell Death Discovery, 2022, 8, .	2.0	13
942	Targeting drugs to tumours using cell membrane-coated nanoparticles. Nature Reviews Clinical Oncology, 2023, 20, 33-48.	12.5	176
943	A prognostic signature of cuproptosis and TCA-related genes for hepatocellular carcinoma. Frontiers in Oncology, $0,12,.$	1.3	7
944	Long noncoding RNA HULC regulates the NFâ€PB pathway and represents a promising prognostic biomarker in liver cancer. Cancer Medicine, 2023, 12, 5124-5136.	1.3	3
946	Prognostic Factors for Overall Survival in Patients with HCV-Related HCC Undergoing Molecular Targeted Therapies: Beyond a Sustained Virological Response. Cancers, 2022, 14, 4850.	1.7	O

#	Article	IF	CITATIONS
948	Small molecule inhibitors targeting the cancers. MedComm, 2022, 3, .	3.1	25
950	Genomeâ€Wide CRISPR/Cas9 Library Screening Revealed Dietary Restriction of Glutamine in Combination with Inhibition of Pyruvate Metabolism as Effective Liver Cancer Treatment. Advanced Science, 2022, 9,	5.6	7
951	Acteoside (Verbascoside): A prospective therapeutic alternative against Hepatocellular Carcinoma by inhibiting the expression of AXL, FGFR, BRAF, TIE2 and RAF1 targets. Combinatorial Chemistry and High Throughput Screening, 2022, 26, .	0.6	1
952	Identification of lipid metabolism-associated genes as prognostic biomarkers based on the immune microenvironment in hepatocellular carcinoma. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4
953	The Prognostic Significance of FKBP1A and Its Related Immune Infiltration in Liver Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2022, 23, 12797.	1.8	1
954	Drug-related adverse events potentially predict the efficacy of apatinib on advanced hepatocellular carcinoma. BMC Gastroenterology, 2022, 22, .	0.8	0
955	NPRL2 downâ€regulation facilitates the growth of hepatocellular carcinoma via the mTOR pathway and autophagy suppression. Hepatology Communications, 2022, 6, 3563-3577.	2.0	3
956	Discovery of 5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)-1H-indole-2-carboxamide derivatives as novel anti-cancer agents targeting Nur77. European Journal of Medicinal Chemistry, 2022, 244, 114849.	2.6	4
957	Chemokine CCL5 immune subtypes of human liver cancer with prognostic significance. International Immunopharmacology, 2022, 113, 109372.	1.7	3
958	Alcohol dehydrogenase 4 is a TP53‑associated gene signature for the prediction of prognosis in hepatocellular carcinoma. Oncology Letters, 2022, 25, .	0.8	4
959	Evolving therapeutic landscape of advanced hepatocellular carcinoma. Nature Reviews Gastroenterology and Hepatology, 2023, 20, 203-222.	8.2	113
961	Have We Found the "Holy Grail―That May Predict Response to Immunotherapy in Hepatocellular Carcinoma?. Gastroenterology, 2023, 164, 15-18.	0.6	0
962	Repurposing live attenuated trivalent MMR vaccine as cost-effective cancer immunotherapy. Frontiers in Oncology, 0, 12, .	1.3	1
964	Integrative multiomics evaluation reveals the importance of pseudouridine synthases in hepatocellular carcinoma. Frontiers in Genetics, $0,13,.$	1.1	12
965	Angiogenesis and immune checkpoint dual blockade: Opportunities and challenges for hepatocellular carcinoma therapy. World Journal of Gastroenterology, 0, 28, 6034-6044.	1.4	6
966	LINCO0839 promotes malignancy of liver cancer via binding FMNL2 under hypoxia. Scientific Reports, 2022, 12, .	1.6	2
967	Construction and validation of an IRF4 risk score to predict prognosis and response to immunotherapy in hepatocellular carcinoma. International Immunopharmacology, 2022, 113, 109411.	1.7	0
968	Construction and evaluation of GPC3-targeted immunotoxins as a novel therapeutic modality for hepatocellular carcinoma. International Immunopharmacology, 2022, 113, 109393.	1.7	2

#	Article	IF	CITATIONS
969	The roles of lncRNA functions and regulatory mechanisms in the diagnosis and treatment of hepatocellular carcinoma. Frontiers in Cell and Developmental Biology, $0,10,10$	1.8	4
970	Tremelimumab and durvalumab in the treatment of unresectable, advanced hepatocellular carcinoma. Future Oncology, 2022, 18, 3769-3782.	1.1	11
971	Mallotucin D, a Clerodane Diterpenoid from Croton crassifolius, Suppresses HepG2 Cell Growth via Inducing Autophagic Cell Death and Pyroptosis. International Journal of Molecular Sciences, 2022, 23, 14217.	1.8	7
972	Integrated analysis of transcriptomics and metabolomics in human hepatocellular carcinoma HepG2215 cells after YAP1 knockdown. Acta Histochemica, 2023, 125, 151987.	0.9	2
973	Identification and analysis of C17orf53 as a prognostic signature for hepatocellular carcinoma. Computers in Biology and Medicine, 2023, 152, 106348.	3.9	1
974	Research progress on the role of cholesterol in hepatocellular carcinoma. European Journal of Pharmacology, 2023, 938, 175410.	1.7	4
975	Galactose engineered nanocarriers: Hopes and hypes in cancer therapy. European Polymer Journal, 2023, 183, 111759.	2.6	17
976	Knockdown of PKMYT1 is associated with autophagy inhibition and apoptosis induction and suppresses tumor progression in hepatocellular carcinoma. Biochemical and Biophysical Research Communications, 2023, 640, 173-182.	1.0	3
977	First-line treatments for advanced hepatocellular carcinoma: a network meta-analysis and cost-effectiveness analysis in China and the United States. Therapeutic Advances in Gastroenterology, 2022, 15, 175628482211406.	1.4	5
978	Treatment-related adverse events of first-line immunotherapy versus sorafenib for advanced hepatocellular carcinoma: a meta-analysis. Expert Opinion on Drug Safety, 2023, 22, 323-329.	1.0	0
979	Isoformic PD-1-mediated immunosuppression underlies resistance to PD-1 blockade in hepatocellular carcinoma patients. Gut, 2023, 72, 1568-1580.	6.1	6
980	Canonical WNT Signaling Activated by WNT7B Contributes to L-HBs-Mediated Sorafenib Resistance in Hepatocellular Carcinoma by Inhibiting Mitophagy. Cancers, 2022, 14, 5781.	1.7	5
981	Second-line treatment options for hepatocellular carcinoma: current state and challenges for the future. Expert Opinion on Investigational Drugs, 2022, 31, 1151-1167.	1.9	3
982	Clinical value of identifying genes that inhibit hepatocellular carcinomas. Expert Review of Molecular Diagnostics, 2022, 22, 1009-1035.	1.5	1
983	An Elevated Neutrophil-to-Lymphocyte Ratio Predicts Poor Prognosis in Patients with Liver Cancer after Interventional Treatments. BioMed Research International, 2022, 2022, 1-8.	0.9	3
984	Combining γâ€GT, PIVKAâ€II, and AFP to Predict Longâ€Term Prognosis in Patients with Hepatocellular Carcinoma after Hepatectomy. Clinical and Experimental Pharmacology and Physiology, 0, , .	0.9	0
985	Construction of a m5C-related long non-coding RNA signature for the prognosis of hepatocellular carcinoma. Human Cell, 2023, 36, 712-724.	1.2	3
986	Transarterial chemoembolisation plus I125 seeds implantation for people with unresectable hepatocellular carcinoma. The Cochrane Library, 2022, 2022, .	1.5	O

#	Article	IF	CITATIONS
987	Hepatic artery intervention combined with immune-targeted therapy is superior to sequential therapy in BCLC-C hepatocellular carcinoma. Journal of Cancer Research and Clinical Oncology, $0, , .$	1.2	0
988	Hsa_circ_0006988 Promotes Sorafenib Resistance of Hepatocellular Carcinoma by Modulating IGF1 Using miR-15a-5p. Canadian Journal of Gastroenterology and Hepatology, 2022, 2022, 1-8.	0.8	3
989	Multi-omics characteristics and immunotherapeutic potential of EZH2 in pan-cancer. Bioscience Reports, 0 , , .	1.1	2
990	The Tumor Microenvironment of Hepatocellular Carcinoma: Untying an Intricate Immunological Network. Cancers, 2022, 14, 6151.	1.7	3
991	Anchoring super-enhancer-driven oncogenic lncRNAs for anti-tumor therapy in hepatocellular carcinoma. Molecular Therapy, 2023, 31, 1756-1774.	3.7	3
992	Distinct binding pattern of EZH2 and JARID2 on RNAs and DNAs in hepatocellular carcinoma development. Frontiers in Oncology, 0, 12 , .	1.3	1
993	Oncogenic IncRNA BBOX1-AS1 promotes PHF8-mediated autophagy and elicits sorafenib resistance in hepatocellular carcinoma. Molecular Therapy - Oncolytics, 2023, 28, 88-103.	2.0	6
994	Identification of oncogenes and tumor-suppressor genes with hepatocellular carcinoma: A comprehensive analysis based on TCGA and GEO datasets. Frontiers in Genetics, $0,13,.$	1.1	1
995	Immunotherapy in hepatocellular carcinoma: how will it reshape treatment sequencing?. Therapeutic Advances in Medical Oncology, 2023, 15, 175883592211480.	1.4	10
996	Hepatitis Virus and Hepatocellular Carcinoma: Recent Advances. Cancers, 2023, 15, 533.	1.7	25
997	Circadian regulator BMAL1::CLOCK promotes cell proliferation in hepatocellular carcinoma by controlling apoptosis and cell cycle. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	30
998	Clinical activity of regorafenib in elderly patients with recurrent glioblastoma. Molecular and Clinical Oncology, 2023, 18, .	0.4	1
999	A novel antimicrobial peptide <scp>M1</scp> â€8 targets the lysosomal pathway to inhibit autolysosome formation and promote apoptosis in liver cancer cells. Journal of Cellular and Molecular Medicine, 2023, 27, 340-352.	1.6	5
1000	Opportunities and challenges of hepatocellular carcinoma organoids for targeted drugs sensitivity screening. Frontiers in Oncology, $0,12,.$	1.3	3
1001	Efficacy of Transarterial Chemoembolization Combined with Tyrosine Kinase Inhibitors for Hepatocellular Carcinoma Patients with Portal Vein Tumor Thrombus: A Systematic Review and Meta-Analysis. Current Oncology, 2023, 30, 1243-1254.	0.9	7
1002	Engineering orthotopic tumor spheroids with organ-specific vasculatures for local chemoembolization evaluation. Biomaterials Science, 2023, 11, 2115-2128.	2.6	2
1004	Dual immune checkpoint inhibitors or combined with anti-VEGF agents in advanced, unresectable hepatocellular carcinoma. European Journal of Internal Medicine, 2023, 111, 37-46.	1.0	3
1005	Genes Modulating Butyrate Metabolism for Assessing Clinical Prognosis and Responses to Systematic Therapies in Hepatocellular Carcinoma. Biomolecules, 2023, 13, 52.	1.8	1

#	Article	IF	Citations
1006	Gelatin sponge microparticles for transarterial chemoembolization combined with regorafenib in hepatocellular carcinoma: a single-center retrospective study. Journal of Gastrointestinal Oncology, 2022, 13, 3183-3192.	0.6	2
1007	Prognostic and Immunological Potential of Ribonucleotide Reductase Subunits in Liver Cancer. Oxidative Medicine and Cellular Longevity, 2023, 2023, 1-14.	1.9	1
1008	Immunotherapy and the Combination with Targeted Therapies for Advanced Hepatocellular Carcinoma. Cancers, 2023, 15, 654.	1.7	7
1009	A High-Throughput Sequencing Data-Based Classifier Reveals the Metabolic Heterogeneity of Hepatocellular Carcinoma. Cancers, 2023, 15, 592.	1.7	2
1010	The phospholipid flippase <scp>ATP9A</scp> enhances macropinocytosis to promote nutrient starvation tolerance in hepatocellular carcinoma. Journal of Pathology, 2023, 260, 17-31.	2.1	3
1011	A multi-center retrospective study on the efficacy and safety of regorafenib vs. regorafenib combined with PD-1 inhibitors as a second-line therapy in patients with advanced hepatocellular carcinoma. Annals of Translational Medicine, 2023, 11, 109-109.	0.7	O
1013	The Effect of the Histone Chaperones HSPA8 and DEK on Tumor Immunity in Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2023, 24, 2653.	1.8	3
1014	Cellular senescence affects energy metabolism, immune infiltration and immunotherapeutic response in hepatocellular carcinoma. Scientific Reports, 2023, 13, .	1.6	2
1015	Analysis of the potential association between ferroptosis and immune in hepatocellular carcinoma and their relationship with prognosis. Frontiers in Oncology, 0, 12, .	1.3	1
1016	Radiation therapy in the era of immune treatment for hepatocellular carcinoma. Frontiers in Immunology, 0, 14 , .	2.2	5
1017	Drug Resistance in Hepatocellular Carcinoma. , 2023, , 325-348.		0
1018	Clinical Utility of Comprehensive Genomic Profiling in Patients with Unresectable Hepatocellular Carcinoma. Cancers, 2023, 15, 719.	1.7	2
1019	Upregulated SSB Is Involved in Hepatocellular Carcinoma Progression and Metastasis through the Epithelial-Mesenchymal Transition, Antiapoptosis, and Altered ROS Level Pathway. Oxidative Medicine and Cellular Longevity, 2023, 2023, 1-16.	1.9	0
1020	Does size matter for resection of giant versus non-giant hepatocellular carcinoma? A meta-analysis. World Journal of Gastrointestinal Surgery, 0, 15, 273-286.	0.8	0
1022	Repolarization of macrophages to improve sorafenib sensitivity for combination cancer therapy. Acta Biomaterialia, 2023, 162, 98-109.	4.1	5
1023	Tyrosine kinase inhibitors as potential sensitizers of adoptive T cell therapy for hepatocellular carcinoma. Frontiers in Immunology, 0, 14 , .	2.2	O
1024	Delivery of melarsoprol using folate-targeted PEGylated cyclodextrin-based nanoparticles for hepatocellular carcinoma. International Journal of Pharmaceutics, 2023, 636, 122791.	2.6	5
1025	KIFC3 regulates progression of hepatocellular carcinoma via EMT and the AKT/mTOR pathway. Experimental Cell Research, 2023, 426, 113564.	1.2	2

#	Article	IF	Citations
1026	Mechano-modulation of T cells for cancer immunotherapy. Biomaterials, 2023, 297, 122101.	5.7	5
1027	Biological functions and therapeutic potential of SHCBP1 in human cancer. Biomedicine and Pharmacotherapy, 2023, 160, 114362.	2.5	4
1030	Regorafenib enhances anti-tumor efficacy of immune checkpoint inhibitor by regulating IFN- \hat{l}^3 /NSDHL/SREBP1/TGF- \hat{l}^2 1 axis in hepatocellular carcinoma. Biomedicine and Pharmacotherapy, 2023, 159, 114254.	2.5	4
1031	Efficacy of radiofrequency ablation following transarterial chemoembolisation combined with sorafenib for intermediate stage recurrent hepatocellular carcinoma: a retrospective, multicentre, cohort study. EClinicalMedicine, 2023, 56, 101816.	3.2	2
1032	Prognosis and personalized medicine prediction by integrated whole exome and transcriptome sequencing of hepatocellular carcinoma. Frontiers in Genetics, $0,14,.$	1.1	0
1033	Gadoxetic acid–enhanced MRI with a focus on LI-RADS v2018 imaging features predicts the prognosis after radiofrequency ablation in small hepatocellular carcinoma. Frontiers in Oncology, 0, 13, .	1.3	0
1034	The Roles of Epigenetic Regulation and the Tumor Microenvironment in the Mechanism of Resistance to Systemic Therapy in Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2023, 24, 2805.	1.8	6
1035	Smart nanoparticles and microbeads for interventional embolization therapy of liver cancer: state of the art. Journal of Nanobiotechnology, 2023, 21, .	4.2	3
1036	Estrogen-related genes influence immune cell infiltration and immunotherapy response in Hepatocellular Carcinoma. Frontiers in Immunology, 0, 14 , .	2.2	0
1037	Hsa-miR-22-3p inhibits liver cancer cell EMT and cell migration/ invasion by indirectly regulating SPRY2. PLoS ONE, 2023, 18, e0281536.	1.1	3
1038	Microfluidicsâ€enabled Serial Assembly of Lipidâ€siRNAâ€sorafenib Nanoparticles for Synergetic Hepatocellular Carcinoma Therapy. Advanced Materials, 2023, 35, .	11.1	6
1039	Metabolomic biomarkers for the diagnosis and post-transplant outcomes of AFP negative hepatocellular carcinoma. Frontiers in Oncology, 0, 13, .	1.3	4
1040	Ultrasensitive quantification of trace amines based on N-phosphorylation labeling chip 2D LC-QQQ/MS. Journal of Pharmaceutical Analysis, 2023, 13, 315-322.	2.4	4
1041	Discovery of canine drug toceranib phosphate as a repurposed agent against human hepatocellular carcinoma. Liver International, 2023, 43, 928-944.	1.9	O
1042	Drug resistance mechanism of kinase inhibitors in the treatment of hepatocellular carcinoma. Frontiers in Pharmacology, 0, 14 , .	1.6	7
1043	Metabolism-related signatures is correlated with poor prognosis and immune infiltration in hepatocellular carcinoma via multi-omics analysis and basic experiments. Frontiers in Oncology, 0, 13,	1.3	3
1044	Prediction of Response to Lenvatinib Monotherapy for Unresectable Hepatocellular Carcinoma by Machine Learning Radiomics: A Multicenter Cohort Study. Clinical Cancer Research, 2023, 29, 1730-1740.	3.2	6
1045	<scp>TUBB4B /scp> is a novel therapeutic target in nonâ€alcoholic fatty liver diseaseâ€associated hepatocellular carcinoma. Journal of Pathology, 2023, 260, 71-83.</scp>	2.1	4

#	Article	IF	CITATIONS
1046	Potential oncotherapeutic effects of nutraceuticals against hepatocellular carcinoma: recent advancements. Current Functional Foods, 2023, 01, .	0.0	0
1047	A 3D Tumorâ€Mimicking In Vitro Drug Release Model of Locoregional Chemoembolization Using Deep Learningâ€Based Quantitative Analyses. Advanced Science, 2023, 10, .	5.6	2
1048	Emerging role of interaction between m6A and main ncRNAs in gastrointestinal (GI) cancers. Frontiers in Immunology, $0,14,.$	2.2	0
1049	Atezolizumabe mais Bevacizumabe como Ponte para Transplante Hep \tilde{A}_i tico no Carcinoma Hepatocelular. Brazilian Journal of Transplantation, 2023, 26, .	0.1	0
1050	Atezolizumab plus Bevacizumab as a Bridge for Liver Transplant in Hepatocellular Carcinoma. Brazilian Journal of Transplantation, 2023, 26, .	0.1	0
1051	Identification of G protein subunit alpha i2 as a promising therapeutic target of hepatocellular carcinoma. Cell Death and Disease, 2023, 14, .	2.7	1
1052	Integrated analysis of RNA-seq in hepatocellular carcinoma reveals competing endogenous RNA network composed of circRNA, lncRNA, and mRNA. Medicine (United States), 2023, 102, e32915.	0.4	1
1053	Mitochondria-Associated Endoplasmic Reticulum Membrane (MAM) Is a Promising Signature to Predict Prognosis and Therapies for Hepatocellular Carcinoma (HCC). Journal of Clinical Medicine, 2023, 12, 1830.	1.0	0
1054	MVI-TR: A Transformer-Based Deep Learning Model with Contrast-Enhanced CT for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma. Cancers, 2023, 15, 1538.	1.7	6
1055	Effectiveness of lenvatinib plus immune checkpoint inhibitors in primary advanced hepatocellular carcinoma beyond oligometastasis. Clinical and Translational Medicine, 2023, 13, .	1.7	2
1056	The correlation between hepatocellular carcinoma susceptibility and XRCC1 polymorphisms Arg194Trp, Arg280His, and Arg399Gln – A meta-analysis. , 2023, 36, 201165.		0
1057	An Immunological Perspective on the Mechanism of Drug Induced Liver Injury: Focused on Drugs for Treatment of Hepatocellular Carcinoma and Liver Transplantation. International Journal of Molecular Sciences, 2023, 24, 5002.	1.8	6
1058	Telephone followâ€up contributes to improving adherence and treatment duration in patients with hepatocellular carcinoma treated with lenvatinib. Journal of Gastroenterology and Hepatology (Australia), 2023, 38, 1140-1147.	1.4	1
1059	Gene variation profile and its potential correlation with clinical characteristics in HBV-associated HCC patients of Sichuan Han nationality in China. Asian Journal of Surgery, 2023, 46, 4371-4377.	0.2	1
1060	Phosphatase regenerating liver 3 participates in Integrin \hat{l}^21 /FAK-Src/MAPK signaling pathway and contributes to the regulation of malignant behaviors in hepatocellular carcinoma cells. Journal of Gastrointestinal Oncology, 2023, 14, 863-873.	0.6	2
1061	MYC determines lineage commitment in KRAS-driven primary liver cancer development. Journal of Hepatology, 2023, 79, 141-149.	1.8	5
1062	Systemic Therapy for Advanced Hepatocellular Carcinoma: Current Stand and Perspectives. Cancers, 2023, 15, 1680.	1.7	8
1063	Immunotherapy for HCC: limitations in patients with NASH. Annals of Hepatology, 2023, 28, 100886.	0.6	1

#	Article	IF	CITATIONS
1064	Nonalcoholic steatohepatitis-related hepatocellular carcinoma: pathogenesis and treatment. Nature Reviews Gastroenterology and Hepatology, 2023, 20, 487-503.	8.2	55
1065	Prognostic signatures of sphingolipids: Understanding the immune landscape and predictive role in immunotherapy response and outcomes of hepatocellular carcinoma. Frontiers in Immunology, 0, 14, .	2.2	20
1066	Immunotherapies for advanced hepatocellular carcinoma. Frontiers in Pharmacology, 0, 14, .	1.6	4
1067	Establishment and validation of a cuproptosis-related lncRNA signature that predicts prognosis and potential targeted therapy in hepatocellular carcinoma. Biotechnology and Genetic Engineering Reviews, 0, , 1-26.	2.4	2
1068	Immune Checkpoint Inhibitors in Hepatocellular Carcinoma: Current Strategies and Biomarkers Predicting Response and/or Resistance. Biomedicines, 2023, 11, 1020.	1.4	6
1069	JAK/STAT signaling and cellular iron metabolism in hepatocellular carcinoma: therapeutic implications. Clinical and Experimental Medicine, 2023, 23, 3147-3157.	1.9	4
1070	Machine learning integrations develop an antigen-presenting-cells and T-Cells-Infiltration derived LncRNA signature for improving clinical outcomes in hepatocellular carcinoma. BMC Cancer, 2023, 23, .	1.1	0
1071	ATF4 suppresses hepatocarcinogenesis by inducing SLC7A11 (xCT) to block stress-related ferroptosis. Journal of Hepatology, 2023, 79, 362-377.	1.8	34
1072	Suppressing circIDE/miR-19b-3p/RBMS1 axis exhibits promoting-tumour activity through upregulating GPX4 to diminish ferroptosis in hepatocellular carcinoma. Epigenetics, 2023, 18, .	1.3	12
1073	Identification of TIAM1 as a Potential Synthetic-Lethal-like Gene in a Defined Subset of Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2023, 24, 6387.	1.8	1
1074	Case Report: Solitary metastasis to the appendix after curative treatment of HCC. Frontiers in Surgery, 0, 10, .	0.6	0
1075	Nanomedicine-lipiodol formulations for transcatheter arterial chemoembolization., 2023,, 51-72.		0
1076	Identification and Experimental Validation of the Prognostic Significance and Immunological Correlation of Glycosylation-Related Signature and ST6GALNAC4 in Hepatocellular Carcinoma. Journal of Hepatocellular Carcinoma, 0, Volume 10, 531-551.	1.8	1
1077	A novel cuproptosis-related IncRNA signature predicts the prognosis and immunotherapy for hepatocellular carcinoma. Cancer Biomarkers, 2023, 37, 13-26.	0.8	2
1078	Ferroptosis in hepatocellular carcinoma: from bench to bedside. Hepatology, 0, Publish Ahead of Print, .	3.6	14
1079	The First-in-Human Whole-Body Dynamic Pharmacokinetics Study of Aptamer. Research, 2023, 6, .	2.8	8
1080	LncRNA RP11-620J15.3 promotes HCC cell proliferation and metastasis by targeting miR-326/GPI to enhance glycolysis. Biology Direct, 2023, 18 , .	1.9	2
1081	Efficacy and safety of lenvatinib plus PD-1 inhibitor with or without transarterial chemoembolization in unresectable hepatocellular carcinoma. Hepatology International, 2023, 17, 753-764.	1.9	11

#	Article	IF	Citations
1083	DDX39B facilitates the malignant progression of hepatocellular carcinoma via activation of SREBP1-mediated de novo lipid synthesis. Cellular Oncology (Dordrecht), 2023, 46, 1235-1252.	2.1	3
1084	Cellular senescence-related gene signature as a valuable predictor of prognosis in hepatocellular carcinoma. Aging, 0, , .	1.4	1
1085	Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy. Biomedicines, 2023, 11, 1166.	1.4	6
1086	Western diet unmasks transient low-level vinyl chloride-induced tumorigenesis; potential role of the (epi-)transcriptome. Toxicology and Applied Pharmacology, 2023, 468, 116514.	1.3	3
1087	Role of \hat{I}^2 -Catenin Activation in the Tumor Immune Microenvironment and Immunotherapy of Hepatocellular Carcinoma. Cancers, 2023, 15, 2311.	1.7	6
1088	Bulk and single-cell transcriptome profiling reveal extracellular matrix mechanical regulation of lipid metabolism reprograming through YAP/TEAD4/ACADL axis in hepatocellular carcinoma. International Journal of Biological Sciences, 2023, 19, 2114-2131.	2.6	8
1089	Neutrophil extracellular traps-mediated molecular subtypes characterize the hallmarks of tumor microenvironment and guide precision medicine in hepatocellular carcinoma. Journal of Radiation Research and Applied Sciences, 2023, 16, 100577.	0.7	1
1117	Cancers digestifs., 2023, , 199-205.		0
1156	Pathology of Digestive System Malignancies. , 2023, , 259-273.		0
1194	Hepatobiliary-phase gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid MRI for pretreatment prediction of efficacy-to-standard-therapies based on Barcelona Clinic Liver Cancer algorithm: an up-to-date review. European Radiology, 2023, 33, 8764-8775.	2.3	0
1252	Application of the Human Amniotic Membrane as an Adjuvant Therapy for the Treatment of Hepatocellular Carcinoma. Advances in Experimental Medicine and Biology, 2023, , .	0.8	0
1258	Liver transplantation: the recipient. , 2024, , 997-1283.		0
1284	Emerging role of RNA modification and long noncoding RNA interaction in cancer. Cancer Gene Therapy, $0, , .$	2.2	0