Developmental diversification of cortical inhibitory into

Nature 555, 457-462 DOI: 10.1038/nature25999

Citation Report

#	Article	IF	CITATIONS
1	Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnology, 2018, 36, 411-420.	9.4	8,878
2	Brain Theranostics and Radiotheranostics: Exosomes and Graphenes In Vivo as Novel Brain Theranostics. Nuclear Medicine and Molecular Imaging, 2018, 52, 407-419.	0.6	8
3	Single-Cell RNA-Seq of Mouse Olfactory Bulb Reveals Cellular Heterogeneity and Activity-Dependent Molecular Census of Adult-Born Neurons. Cell Reports, 2018, 25, 2689-2703.e3.	2.9	109
4	In vivo pulse labeling of isochronic cohorts of cells in the central nervous system using FlashTag. Nature Protocols, 2018, 13, 2297-2311.	5.5	50
5	Rbfox1 Mediates Cell-type-Specific Splicing in Cortical Interneurons. Neuron, 2018, 100, 846-859.e7.	3.8	92
6	Development and Functional Diversification of Cortical Interneurons. Neuron, 2018, 100, 294-313.	3.8	470
7	Decoding neuronal diversity in the developing cerebral cortex: from single cells to functional networks. Current Opinion in Neurobiology, 2018, 53, 146-155.	2.0	25
8	Transcriptional Convergence of Oligodendrocyte Lineage Progenitors during Development. Developmental Cell, 2018, 46, 504-517.e7.	3.1	199
9	More than one way to induce a neuron. Nature, 2018, 557, 316-317.	13.7	3
10	Developing neurons are innately inclined to learn on the job. Nature, 2018, 560, 39-40.	13.7	3
11	Homochronic Transplantation of Interneuron Precursors into Early Postnatal Mouse Brains. Journal of Visualized Experiments, 2018, , .	0.2	0
12	A mixed model of neuronal diversity. Nature, 2018, 555, 452-454.	13.7	15
13	Novel insights into the spatial and temporal complexity of hypothalamic organization through precision methods allowing nanoscale resolution. Journal of Internal Medicine, 2018, 284, 568-580.	2.7	4
14	Regulation of Neuronal Differentiation, Function, and Plasticity by Alternative Splicing. Annual Review of Cell and Developmental Biology, 2018, 34, 451-469.	4.0	108
15	Single cell transcriptomics in neuroscience: cell classification and beyond. Current Opinion in Neurobiology, 2018, 50, 242-249.	2.0	71
16	A cellular passage to the root interior. Nature, 2018, 555, 454-455.	13.7	2
17	In situ transcriptome characteristics are lost following culture adaptation of adult cardiac stem cells. Scientific Reports, 2018, 8, 12060.	1.6	30
18	Contributions of Single-Cell Approaches for Probing Heterogeneity and Dynamics of Neural Progenitors Throughout Life: Concise Review. Stem Cells, 2019, 37, 1381-1388.	1.4	5

#	Article	IF	CITATIONS
19	Genomic Resolution of DLX-Orchestrated Transcriptional Circuits Driving Development of Forebrain GABAergic Neurons. Cell Reports, 2019, 28, 2048-2063.e8.	2.9	68
20	InÂVivo Single-Cell Genotyping of Mouse Cortical Neurons Transfected with CRISPR/Cas9. Cell Reports, 2019, 28, 325-331.e4.	2.9	5
21	Genetic diversity underlying behavioral plasticity in human adaptation. Progress in Brain Research, 2019, 250, 41-58.	0.9	2
22	Tsc1 represses parvalbumin expression and fast-spiking properties in somatostatin lineage cortical interneurons. Nature Communications, 2019, 10, 4994.	5.8	39
23	Current best practices in singleâ€cell RNAâ€seq analysis: a tutorial. Molecular Systems Biology, 2019, 15, e8746.	3.2	1,322
24	Landscape of ribosome-engaged transcript isoforms reveals extensive neuronal-cell-class-specific alternative splicing programs. Nature Neuroscience, 2019, 22, 1709-1717.	7.1	89
25	scBFA: modeling detection patterns to mitigate technical noise in large-scale single-cell genomics data. Genome Biology, 2019, 20, 193.	3.8	18
26	Cell type-specific transcriptional programs in mouse prefrontal cortex during adolescence and addiction. Nature Communications, 2019, 10, 4169.	5.8	100
27	Zfhx3 is required for the differentiation of late born D1-type medium spiny neurons. Experimental Neurology, 2019, 322, 113055.	2.0	17
28	Deciphering Brain Complexity Using Single-cell Sequencing. Genomics, Proteomics and Bioinformatics, 2019, 17, 344-366.	3.0	52
29	Single-cell RNA-Sequencing in Neuroscience. Neuroforum, 2019, 25, 251-258.	0.2	2
30	Dysregulated protocadherin-pathway activity as an intrinsic defect in induced pluripotent stem cell–derived cortical interneurons from subjects with schizophrenia. Nature Neuroscience, 2019, 22, 229-242.	7.1	84
31	Droplet Barcoding-Based Single Cell Transcriptomics of Adult Mammalian Tissues. Journal of Visualized Experiments, 2019, , .	0.2	4
32	Distinct molecular programs regulate synapse specificity in cortical inhibitory circuits. Science, 2019, 363, 413-417.	6.0	153
33	Precision in the development of neocortical architecture: From progenitors to cortical networks. Progress in Neurobiology, 2019, 175, 77-95.	2.8	45
34	The diversity of GABAergic neurons and neural communication elements. Nature Reviews Neuroscience, 2019, 20, 563-572.	4.9	167
35	Subpopulation Detection and Their Comparative Analysis across Single-Cell Experiments with scPopCorn. Cell Systems, 2019, 8, 506-513.e5.	2.9	13
36	Comprehensive Integration of Single-Cell Data. Cell, 2019, 177, 1888-1902.e21.	13.5	9,755

#	Article	IF	CITATIONS
37	Emerging roles for MEF2 in brain development and mental disorders. Current Opinion in Neurobiology, 2019, 59, 49-58.	2.0	40
38	Deep Survey of GABAergic Interneurons: Emerging Insights From Gene-Isoform Transcriptomics. Frontiers in Molecular Neuroscience, 2019, 12, 115.	1.4	14
39	Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification. Neuron, 2019, 102, 1111-1126.e5.	3.8	343
40	Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science, 2019, 364, .	6.0	275
41	Transcription Factors Sp8 and Sp9 Regulate Medial Ganglionic Eminence-Derived Cortical Interneuron Migration. Frontiers in Molecular Neuroscience, 2019, 12, 75.	1.4	11
42	Neocortical Projection Neurons Instruct Inhibitory Interneuron Circuit Development in a Lineage-Dependent Manner. Neuron, 2019, 102, 960-975.e6.	3.8	51
43	Simplified Drop-seq workflow with minimized bead loss using a bead capture and processing microfluidic chip. Lab on A Chip, 2019, 19, 1610-1620.	3.1	22
44	Cell migration promotes dynamic cellular interactions to control cerebral cortex morphogenesis. Nature Reviews Neuroscience, 2019, 20, 318-329.	4.9	88
45	The bone marrow microenvironment at single-cell resolution. Nature, 2019, 569, 222-228.	13.7	624
46	Research in Computational Molecular Biology. Lecture Notes in Computer Science, 2019, , .	1.0	0
47	The accessible chromatin landscape of the murine hippocampus at single-cell resolution. Genome Research, 2019, 29, 857-869.	2.4	67
48	The single-cell transcriptional landscape of mammalian organogenesis. Nature, 2019, 566, 496-502.	13.7	2,292
49	Myc controls a distinct transcriptional program in fetal thymic epithelial cells that determines thymus growth. Nature Communications, 2019, 10, 5498.	5.8	39
50	Stalled developmental programs at the root of pediatric brain tumors. Nature Genetics, 2019, 51, 1702-1713.	9.4	136
51	Dosage dependent requirements of Magoh for cortical interneuron generation and survival. Development (Cambridge), 2019, 147, .	1.2	14
52	Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature, 2019, 574, 418-422.	13.7	496
53	Elucidating the developmental trajectories of GABAergic cortical interneuron subtypes. Neuroscience Research, 2019, 138, 26-32.	1.0	22
54	The Epigenetic Factor CBP Is Required for the Differentiation and Function of Medial Ganglionic Eminence-Derived Interneurons. Molecular Neurobiology, 2019, 56, 4440-4454.	1.9	16

#	Article	IF	CITATIONS
55	Cell-type-specific programs for activity-regulated gene expression. Current Opinion in Neurobiology, 2019, 56, 33-39.	2.0	25
56	Single-cell transcriptomic analysis of mouse neocortical development. Nature Communications, 2019, 10, 134.	5.8	199
57	Perspectives on defining cell types in the brain. Current Opinion in Neurobiology, 2019, 56, 61-68.	2.0	44
58	Modeling neuropsychiatric disorders using human induced pluripotent stem cells. Protein and Cell, 2020, 11, 45-59.	4.8	58
59	N-cadherin (Cdh2) Maintains Migration and Postmitotic Survival of Cortical Interneuron Precursors in a Cell-Type-Specific Manner. Cerebral Cortex, 2020, 30, 1318-1329.	1.6	9
60	Interneuron Types as Attractors and Controllers. Annual Review of Neuroscience, 2020, 43, 1-30.	5.0	127
61	ALK4 coordinates extracellular and intrinsic signals to regulate development of cortical somatostatin interneurons. Journal of Cell Biology, 2020, 219, .	2.3	6
62	Siah2 control of T-regulatory cells limits anti-tumor immunity. Nature Communications, 2020, 11, 99.	5.8	15
63	The emergence of transcriptional identity in somatosensory neurons. Nature, 2020, 577, 392-398.	13.7	288
64	Single cell RNA-sequencing reveals cellular heterogeneity and trajectories of lineage specification during murine embryonic limb development. Matrix Biology, 2020, 89, 1-10.	1.5	53
65	Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine. Journal of Experimental Medicine, 2020, 217, .	4.2	227
66	Recent Advances in Droplet Microfluidics. Analytical Chemistry, 2020, 92, 132-149.	3.2	189
67	Development and plasticity of the corpus callosum. Development (Cambridge), 2020, 147, .	1.2	40
68	SERGIO: A Single-Cell Expression Simulator Guided by Gene Regulatory Networks. Cell Systems, 2020, 11, 252-271.e11.	2.9	59
69	Innovations present in the primate interneuron repertoire. Nature, 2020, 586, 262-269.	13.7	206
70	Emergence of Neuronal Diversity during Vertebrate Brain Development. Neuron, 2020, 108, 1058-1074.e6.	3.8	51
71	Molecular targets for endogenous glial cell line-derived neurotrophic factor modulation in striatal parvalbumin interneurons. Brain Communications, 2020, 2, fcaa105.	1.5	13
72	Integrated Transcriptome and Network Analysis Reveals Spatiotemporal Dynamics of Calvarial Suturogenesis. Cell Reports, 2020, 32, 107871.	2.9	42

#	Article	IF	CITATIONS
73	Lessons from single cell sequencing in CNS cell specification and function. Current Opinion in Genetics and Development, 2020, 65, 138-143.	1.5	11
74	Functional maturation of neocortical inhibitory interneurons. , 2020, , 423-442.		2
75	Distinct oligodendrocyte populations have spatial preference and different responses to spinal cord injury. Nature Communications, 2020, 11, 5860.	5.8	84
76	Biological and Medical Importance of Cellular Heterogeneity Deciphered by Single-Cell RNA Sequencing. Cells, 2020, 9, 1751.	1.8	31
77	Single-cell RNA-seq analysis revealed long-lasting adverse effects of tamoxifen on neurogenesis in prenatal and adult brains. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19578-19589.	3.3	33
78	InÂVivo Chimeric Alzheimer's Disease Modeling of Apolipoprotein E4 Toxicity in Human Neurons. Cell Reports, 2020, 32, 107962.	2.9	30
79	Cell-Type Specificity of Genomic Imprinting in Cerebral Cortex. Neuron, 2020, 107, 1160-1179.e9.	3.8	33
80	Single-Cell Profiling Shows Murine Forebrain Neural Stem Cells Reacquire a Developmental State when Activated for Adult Neurogenesis. Cell Reports, 2020, 32, 108022.	2.9	40
81	Hippocampal hub neurons maintain distinct connectivity throughout their lifetime. Nature Communications, 2020, 11, 4559.	5.8	30
82	Paracrine Role for Somatostatin Interneurons in the Assembly of Perisomatic Inhibitory Synapses. Journal of Neuroscience, 2020, 40, 7421-7435.	1.7	16
83	Looking at neurodevelopment through a big data lens. Science, 2020, 369, .	6.0	28
84	A community-based transcriptomics classification and nomenclature of neocortical cell types. Nature Neuroscience, 2020, 23, 1456-1468.	7.1	183
85	Molecular design of hypothalamus development. Nature, 2020, 582, 246-252.	13.7	105
86	Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biology, 2020, 18, e3000705.	2.6	202
87	Mining the jewels of the cortex's crowning mystery. Current Opinion in Neurobiology, 2020, 63, 154-161.	2.0	22
88	Parallel RNA and DNA analysis after deep sequencing (PRDD-seq) reveals cell type-specific lineage patterns in human brain. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13886-13895.	3.3	33
89	Shedding Light on Chandelier Cell Development, Connectivity, and Contribution to Neural Disorders. Trends in Neurosciences, 2020, 43, 565-580.	4.2	28
90	Neuron–glial interactions and neurotransmitter signaling to cells of the oligodendrocyte lineage. , 2020, , 891-918.		3

#	Article	IF	CITATIONS
91	Parcellation of the striatal complex into dorsal and ventral districts. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7418-7429.	3.3	23
92	PBX1 acts as terminal selector for olfactory bulb dopaminergic neurons. Development (Cambridge), 2020, 147, .	1.2	18
93	Nf1deletion results in depletion of theLhx6transcription factor and a specific loss of parvalbumin+cortical interneurons. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6189-6195.	3.3	19
94	Developmental characterization of <i>Zswim5</i> expression in the progenitor domains and tangential migration pathways of cortical interneurons in the mouse forebrain. Journal of Comparative Neurology, 2020, 528, 2404-2419.	0.9	5
95	Mechanisms of tangential migration of interneurons in the developing forebrain. , 2020, , 345-363.		2
96	Neurogenesis in the basal ganglia. , 2020, , 399-426.		6
97	The generation of cortical interneurons. , 2020, , 461-479.		3
98	Gene regulatory networks controlling neuronal development. , 2020, , 699-730.		0
99	Generation of cerebral cortical GABAergic interneurons from pluripotent stem cells. Stem Cells, 2020, 38, 1375-1386.	1.4	14
100	Identification of a Zeb1 expressing basal stem cell subpopulation in the prostate. Nature Communications, 2020, 11, 706.	5.8	42
101	Inferring TF activation order in time series scRNA-Seq studies. PLoS Computational Biology, 2020, 16, e1007644.	1.5	9
102	The Temporal Neurogenesis Patterning of Spinal p3–V3 Interneurons into Divergent Subpopulation Assemblies. Journal of Neuroscience, 2020, 40, 1440-1452.	1.7	27
103	Cell stress in cortical organoids impairs molecular subtype specification. Nature, 2020, 578, 142-148.	13.7	387
104	MEF2C Hypofunction in Neuronal and Neuroimmune Populations Produces MEF2C Haploinsufficiency Syndrome–like Behaviors in Mice. Biological Psychiatry, 2020, 88, 488-499.	0.7	33
105	Modeling Psychiatric Disorder Biology with Stem Cells. Current Psychiatry Reports, 2020, 22, 24.	2.1	25
106	A combinatorial code of transcription factors specifies subtypes of visual motion-sensing neurons in <i>Drosophila</i> . Development (Cambridge), 2020, 147, .	1.2	17
107	Translatome Analyses Using Conditional Ribosomal Tagging in GABAergic Interneurons and Other Sparse Cell Types. Current Protocols in Neuroscience, 2020, 92, e93.	2.6	5
108	New insights into CNS development from multiomics approaches. Current Opinion in Neurobiology, 2021, 66, 116-124.	2.0	4

#	Article	IF	CITATIONS
109	Novel Therapeutic Approach for Excitatory/Inhibitory Imbalance in Neurodevelopmental and Neurodegenerative Diseases. Annual Review of Pharmacology and Toxicology, 2021, 61, 701-721.	4.2	24
110	Maternal immune activation targeted to a window of parvalbumin interneuron development improves spatial working memory: Implications for autism. Brain, Behavior, and Immunity, 2021, 91, 339-349.	2.0	21
111	Temporally Distinct Roles for the Zinc Finger Transcription Factor Sp8 in the Generation and Migration of Dorsal Lateral Ganglionic Eminence (dLGE)-Derived Neuronal Subtypes in the Mouse. Cerebral Cortex, 2021, 31, 1744-1762.	1.6	6
112	Postnatal connectomic development of inhibition in mouse barrel cortex. Science, 2021, 371, .	6.0	46
113	Genetic mapping of developmental trajectories for complex traits and diseases. Computational and Structural Biotechnology Journal, 2021, 19, 3458-3469.	1.9	1
114	Single-Cell Sequencing of Brain Cell Transcriptomes and Epigenomes. Neuron, 2021, 109, 11-26.	3.8	135
115	Immunohistological Examination of AKT Isoforms in the Brain: Cell-Type Specificity That May Underlie AKT's Role in Complex Brain Disorders and Neurological Disease. Cerebral Cortex Communications, 2021, 2, tgab036.	0.7	7
117	Transcriptional and morphological profiling of parvalbumin interneuron subpopulations in the mouse hippocampus. Nature Communications, 2021, 12, 108.	5.8	40
118	The Logic of Developing Neocortical Circuits in Health and Disease. Journal of Neuroscience, 2021, 41, 813-822.	1.7	20
119	Subcellular sequencing of single neurons reveals the dendritic transcriptome of GABAergic interneurons. ELife, 2021, 10, .	2.8	48
120	PlexinA4-Semaphorin3A-mediated crosstalk between main cortical interneuron classes is required for superficial interneuron lamination. Cell Reports, 2021, 34, 108644.	2.9	10
121	A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain. Nature Communications, 2021, 12, 463.	5.8	109
123	Exploring the secrets of brain transcriptional regulation: developing methodologies, recent significant findings, and perspectives. Brain Structure and Function, 2021, 226, 313-322.	1.2	1
124	Direct reprogramming of oligodendrocyte precursor cells into GABAergic inhibitory neurons by a single homeodomain transcription factor Dlx2. Scientific Reports, 2021, 11, 3552.	1.6	14
126	Neuronal fate acquisition and specification: time for a change. Current Opinion in Neurobiology, 2021, 66, 195-204.	2.0	27
127	Activity-dependent regulome of human GABAergic neurons reveals new patterns of gene regulation and neurological disease heritability. Nature Neuroscience, 2021, 24, 437-448.	7.1	33
128	Comprehensive analysis of single cell ATAC-seq data with SnapATAC. Nature Communications, 2021, 12, 1337.	5.8	253
129	Hyperactive MEK1 Signaling in Cortical GABAergic Neurons Promotes Embryonic Parvalbumin Neuron Loss and Defects in Behavioral Inhibition. Cerebral Cortex, 2021, 31, 3064-3081.	1.6	10

#	Article	IF	CITATIONS
130	Semaphorins and Plexins in central nervous system patterning: the key to it all?. Current Opinion in Neurobiology, 2021, 66, 224-232.	2.0	33
132	Endocannabinoid system in the neurodevelopment of GABAergic interneurons: implications for neurological and psychiatric disorders. Reviews in the Neurosciences, 2021, 32, 803-831.	1.4	5
133	Integration and transfer learning of single-cell transcriptomes via cFIT. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
135	Comprehensive characterization of migration profiles of murine cerebral cortical neurons during development using FlashTag labeling. IScience, 2021, 24, 102277.	1.9	15
136	Deep learning of gene relationships from single cell time-course expression data. Briefings in Bioinformatics, 2021, 22, .	3.2	15
137	Sevoflurane impairs m6A-mediated mRNA translation and leads to fine motor and cognitive deficits. Cell Biology and Toxicology, 2022, 38, 347-369.	2.4	19
138	Using organoids to study human brain development and evolution. Developmental Neurobiology, 2021, 81, 608-622.	1.5	5
140	Circular RNA circ_DROSHA alleviates the neural damage in a cell model of temporal lobe epilepsy through regulating miR-106b-5p/MEF2C axis. Cellular Signalling, 2021, 80, 109901.	1.7	17
142	Involvement of myocyte enhancer factor 2c in the pathogenesis of autism spectrum disorder. Heliyon, 2021, 7, e06854.	1.4	6
144	Astrocytes and neurons share region-specific transcriptional signatures that confer regional identity to neuronal reprogramming. Science Advances, 2021, 7, .	4.7	65
145	Developmental Characterization of Schizophrenia-Associated Gene Zswim6 in Mouse Forebrain. Frontiers in Neuroanatomy, 2021, 15, 669631.	0.9	4
147	Inducible uniparental chromosome disomy to probe genomic imprinting at single-cell level in brain and beyond. Neurochemistry International, 2021, 145, 104986.	1.9	3
148	The neutrotime transcriptional signature defines a single continuum of neutrophils across biological compartments. Nature Communications, 2021, 12, 2856.	5.8	149
149	Cadherin-13 is a critical regulator of GABAergic modulation in human stem-cell-derived neuronal networks. Molecular Psychiatry, 2022, 27, 1-18.	4.1	77
150	A robust method of nuclei isolation for single-cell RNA sequencing of solid tissues from the plant genus Populus. PLoS ONE, 2021, 16, e0251149.	1.1	23
151	FoxG1 regulates the formation of cortical GABAergic circuit during an early postnatal critical period resulting in autism spectrum disorder-like phenotypes. Nature Communications, 2021, 12, 3773.	5.8	30
152	Resolving organoid brain region identities by mapping single-cell genomic data to reference atlases. Cell Stem Cell, 2021, 28, 1148-1159.e8.	5.2	63
153	Transient developmental imbalance of cortical interneuron subtypes presages long-term changes in behavior. Cell Reports, 2021, 35, 109249.	2.9	11

	CHATION R	EPORT	
# 154	ARTICLE Molecular logic of cellular diversification in the mouse cerebral cortex. Nature, 2021, 595, 554-559.	lF 13.7	CITATIONS 212
155	Early role for a Na ⁺ ,K ⁺ -ATPase (<i>ATP1A3</i>) in brain development. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	20
157	Generation of excitatory and inhibitory neurons from common progenitors via Notch signaling in the cerebellum. Cell Reports, 2021, 35, 109208.	2.9	18
159	The impact of (ab)normal maternal environment on cortical development. Progress in Neurobiology, 2021, 202, 102054.	2.8	11
162	Characterization and Stage-Dependent Lineage Analysis of Intermediate Progenitors of Cortical GABAergic Interneurons. Frontiers in Neuroscience, 2021, 15, 607908.	1.4	2
163	Single-cell transcriptomics of the early developing mouse cerebral cortex disentangle the spatial and temporal components of neuronal fate acquisition. Development (Cambridge), 2021, 148, .	1.2	32
164	Transcription factor encoding of neuron subtype: Strategies that specify arbor pattern. Current Opinion in Neurobiology, 2021, 69, 149-158.	2.0	5
165	<i>Zfhx3</i> modulates retinal sensitivity and circadian responses to light. FASEB Journal, 2021, 35, e21802.	0.2	5
167	Identification of neural oscillations and epileptiform changes in human brain organoids. Nature Neuroscience, 2021, 24, 1488-1500.	7.1	112
168	Cascade diversification directs generation of neuronal diversity in the hypothalamus. Cell Stem Cell, 2021, 28, 1483-1499.e8.	5.2	24
170	Postmitotic Prox1 Expression Controls the Final Specification of Cortical VIP Interneuron Subtypes. Journal of Neuroscience, 2021, 41, 8150-8162.	1.7	7
172	Identification of Vulnerable Interneuron Subtypes in 15q13.3 Microdeletion Syndrome Using Single-Cell Transcriptomics. Biological Psychiatry, 2022, 91, 727-739.	0.7	12
173	Genetic and epigenetic coordination of cortical interneuron development. Nature, 2021, 597, 693-697.	13.7	56
174	Defining the nature of human pluripotent stem cell-derived interneurons via single-cell analysis. Stem Cell Reports, 2021, 16, 2548-2564.	2.3	5
175	Developmental programming and lineage branching of early human telencephalon. EMBO Journal, 2021, 40, e107277.	3.5	10
176	Conservation of neural progenitor identity and the emergence of neocortical neuronal diversity. Seminars in Cell and Developmental Biology, 2021, 118, 4-13.	2.3	8
177	Genetic and activity dependent-mechanisms wiring the cortex: Two sides of the same coin. Seminars in Cell and Developmental Biology, 2021, 118, 24-34.	2.3	5
178	Evolution of glutamatergic signaling and synapses. Neuropharmacology, 2021, 199, 108740.	2.0	36

#	Article	IF	CITATIONS
179	Gene regulatory networks controlling differentiation, survival, and diversification of hypothalamic Lhx6-expressing GABAergic neurons. Communications Biology, 2021, 4, 95.	2.0	26
180	Elucidating the cellular dynamics of the brain with single-cell RNA sequencing. RNA Biology, 2021, 18, 1063-1084.	1.5	14
210	Rod and cone interactions in the retina. F1000Research, 2018, 7, 657.	0.8	44
211	Recent advances in understanding neocortical development. F1000Research, 2019, 8, 1791.	0.8	29
212	Systematic Analysis of Transmitter Coexpression Reveals Organizing Principles of Local Interneuron Heterogeneity. ENeuro, 2018, 5, ENEURO.0212-18.2018.	0.9	10
213	Effect of Ionizing Radiation on Transcriptome during Neural Differentiation of Human Embryonic Stem Cells. Radiation Research, 2020, 193, 460.	0.7	5
214	Maf and Mafb control mouse pallial interneuron fate and maturation through neuropsychiatric disease gene regulation. ELife, 2020, 9, .	2.8	22
215	Activity-dependent tuning of intrinsic excitability in mouse and human neurogliaform cells. ELife, 2020, 9, .	2.8	29
216	Establishment and maintenance of motor neuron identity via temporal modularity in terminal selector function. ELife, 2020, 9, .	2.8	24
217	Folding brains: from development to disease modeling. Physiological Reviews, 2022, 102, 511-550.	13.1	28
218	How many markers are needed to robustly determine a cell's type?. IScience, 2021, 24, 103292.	1.9	14
219	Decoding molecular and cellular heterogeneity of mouse nucleus accumbens. Nature Neuroscience, 2021, 24, 1757-1771.	7.1	87
220	Neurotransmitter signaling regulates distinct phases of multimodal human interneuron migration. EMBO Journal, 2021, 40, e108714.	3.5	16
227	Genomic Resolution of DLX-Orchestrated Transcriptional Circuits Driving Development of Forebrain GABAergic Neurons. SSRN Electronic Journal, 0, , .	0.4	0
249	Interneuron origin and molecular diversity in the human fetal brain. Nature Neuroscience, 2021, 24, 1745-1756.	7.1	49
254	From Progenitors to Progeny: Shaping Striatal Circuit Development and Function. Journal of Neuroscience, 2021, 41, 9483-9502.	1.7	18
255	Identification of TGFβ signalling as a regulator of interneuron neurogenesis in a human pluripotent stem cell model. Neuronal Signaling, 2021, 5, NS20210020.	1.7	3
256	The organization and development of cortical interneuron presynaptic circuits are area specific. Cell Reports, 2021, 37, 109993.	2.9	25

#	Article	IF	CITATIONS
257	Singleâ€cell transcriptomics identifies Gadd45b as a regulator of herpesvirusâ€reactivating neurons. EMBO Reports, 2022, 23, e53543.	2.0	16
258	Sox6 expression distinguishes dorsally and ventrally biased dopamine neurons in the substantia nigra with distinctive properties and embryonic origins. Cell Reports, 2021, 37, 109975.	2.9	33
259	Transcriptional profiling of sequentially generated septal neuron fates. ELife, 2021, 10, .	2.8	12
260	Dissecting the molecular basis of human interneuron migration in forebrain assembloids from Timothy syndrome. Cell Stem Cell, 2022, 29, 248-264.e7.	5.2	61
261	Single-cell analysis of early chick hypothalamic development reveals that hypothalamic cells are induced from prethalamic-like progenitors. Cell Reports, 2022, 38, 110251.	2.9	19
262	Human cortical interneuron development unraveled. Science, 2022, 375, 383-384.	6.0	2
263	EMBEDR: Distinguishing signal from noise in single-cell omics data. Patterns, 2022, 3, 100443.	3.1	13
264	An Efficient Method for the Isolation and Cultivation of Hypothalamic Neural Stem/Progenitor Cells From Mouse Embryos. Frontiers in Neuroanatomy, 2022, 16, 711138.	0.9	5
266	Individual human cortical progenitors can produce excitatory and inhibitory neurons. Nature, 2022, 601, 397-403.	13.7	73
267	Mouse and human share conserved transcriptional programs for interneuron development. Science, 2021, 374, eabj6641.	6.0	75
268	Single-cell delineation of lineage and genetic identity in the mouse brain. Nature, 2022, 601, 404-409.	13.7	93
269	Single-cell droplet microfluidics for biomedical applications. Analyst, The, 2022, 147, 2294-2316.	1.7	33
270	Transcriptional heterogeneity of ventricular zone cells in the ganglionic eminences of the mouse forebrain. ELife, 2022, 11, .	2.8	19
271	Deciphering the Retinal Epigenome during Development, Disease and Reprogramming: Advancements, Challenges and Perspectives. Cells, 2022, 11, 806.	1.8	3
273	Guidelines for bioinformatics of single-cell sequencing data analysis in Alzheimer's disease: review, recommendation, implementation and application. Molecular Neurodegeneration, 2022, 17, 17.	4.4	40
274	The development and evolution of inhibitory neurons in primate cerebrum. Nature, 2022, 603, 871-877.	13.7	58
275	A Novel LHX6 Reporter Cell Line for Tracking Human iPSC-Derived Cortical Interneurons. Cells, 2022, 11, 853.	1.8	2
276	<i>BRN2</i> as a key gene drives the early primate telencephalon development. Science Advances, 2022, 8, eabl7263.	4.7	3

		CITATION R	EPORT	
#	Article		IF	CITATIONS
277	Evolutionarily conservative and non-conservative regulatory networks during primate in development revealed by single-cell RNA and ATAC sequencing. Cell Research, 2022, 32	nterneuron 2, 425-436.	5.7	25
278	Single cell enhancer activity distinguishes GABAergic and cholinergic lineages in embry basal ganglia. Proceedings of the National Academy of Sciences of the United States o 119, e2108760119.	onic mouse f America, 2022,	3.3	15
279	Maturation Delay of Human GABAergic Neurogenesis in Fragile X Syndrome Pluripoten Stem Cells Translational Medicine, 2022, 11, 613-629.	t Stem Cells.	1.6	9
280	Step by step: cells with multiple functions in cortical circuit assembly. Nature Reviews 2022, 23, 395-410.	Neuroscience,	4.9	14
281	Gene-Environment Interactions During the First Thousand Days Influence Childhood Ne Diagnosis. Seminars in Pediatric Neurology, 2022, 42, 100970.	eurological	1.0	6
282	Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes. Frontie Neuroscience, 2022, 16, 843794.	rs in	1.4	14
283	Single Cell Multiomic Approaches to Disentangle T Cell Heterogeneity. Immunology Le 37-51.	tters, 2022, 246,	1.1	1
284	Targeted proteoform mapping uncovers specific Neurexin-3 variants required for dend Neuron, 2022, 110, 2094-2109.e10.	itic inhibition.	3.8	18
285	Cross-species single-cell transcriptomic analysis reveals divergence of cell composition functions in mammalian ileum epithelium. Cell Regeneration, 2022, 11, 19.	and	1.1	13
287	Transcriptomic mapping uncovers Purkinje neuron plasticity driving learning. Nature, 2 722-727.	022, 605,	13.7	24
288	Machine learning sequence prioritization for cell type-specific enhancer design. ELife, 2	022, 11, .	2.8	10
289	Single-cell RNA-sequencing of mammalian brain development: insights and future direc Development (Cambridge), 2022, 149, .	tions.	1.2	12
291	Altered patterning of trisomy 21 interneuron progenitors. Stem Cell Reports, 2022, 17	, 1366-1379.	2.3	11
292	Temporal regulation of neural diversity in Drosophila and vertebrates. Seminars in Cell Developmental Biology, 2023, 142, 13-22.	and	2.3	9
293	Ketamine exerts its sustained antidepressant effects via cell-type-specific regulation of 2022, 110, 2283-2298.e9.	Kcnq2. Neuron,	3.8	40
294	Occult polyclonality of preclinical pancreatic cancer models drives in vitro evolution. No Communications, 2022, 13, .	ature	5.8	13
296	Morphological pseudotime ordering and fate mapping reveal diversification of cerebell interneurons. Nature Communications, 2022, 13, .	ar inhibitory	5.8	7
297	Generating neural diversity through spatial and temporal patterning. Seminars in Cell a Developmental Biology, 2023, 142, 54-66.	nd	2.3	7

#	Article	IF	CITATIONS
299	Origin, Development, and Synaptogenesis of Cortical Interneurons. Frontiers in Neuroscience, 0, 16, .	1.4	12
300	Identification of cortical interneuron cell markers in mouse embryos based on machine learning analysis of single-cell transcriptomics. Frontiers in Neuroscience, 0, 16, .	1.4	2
302	Applications of singleâ€cell multiâ€omics sequencing in deep understanding of brain diseases. Clinical and Translational Discovery, 2022, 2, .	0.2	0
303	Serotonergic regulation of bipolar cell survival in the developing cerebral cortex. Cell Reports, 2022, 40, 111037.	2.9	7
304	A house divided: A multilevel bibliometric review of the job search literature 1973–2020. Journal of Business Research, 2022, 151, 100-117.	5.8	3
305	An epigenome atlas of neural progenitors within the embryonic mouse forebrain. Nature Communications, 2022, 13, .	5.8	15
306	Shh activation restores interneurons and cognitive function in newborns with intraventricular haemorrhage. Brain, 2023, 146, 629-644.	3.7	2
308	Distortion-free PCA on sample space for highly variable gene detection from single-cell RNA-seq data. Frontiers of Computer Science, 2023, 17, .	1.6	1
310	Molecular and cellular evolution of the primate dorsolateral prefrontal cortex. Science, 2022, 377, .	6.0	61
312	Calcium and activity-dependent signaling in the developing cerebral cortex. Development (Cambridge), 2022, 149, .	1.2	11
314	Integrated analysis of multimodal single-cell data with structural similarity. Nucleic Acids Research, 2022, 50, e121-e121.	6.5	29
315	Loss of oligodendrocyte ErbB receptor signaling leads to hypomyelination, reduced density of parvalbuminâ $\in\!\!expressing$ interneurons, and inhibitory function in the auditory cortex. Clia, 0, , .	2.5	2
316	MTG8 interacts with LHX6 to specify cortical interneuron subtype identity. Nature Communications, 2022, 13, .	5.8	13
317	Pax6 limits the competence of developing cerebral cortical cells to respond to inductive intercellular signals. PLoS Biology, 2022, 20, e3001563.	2.6	8
318	Genesis and Migration of Cerebral Cortical Inhibitory Interneurons: An Overview. , 2022, , 291-305.		0
321	A Spacetime Odyssey of Neural Progenitors to Generate Neuronal Diversity. Neuroscience Bulletin, 2023, 39, 645-658.	1.5	3
322	Setting the programmatic agenda: A comprehensive bibliometric overview of team mechanism research. Journal of Business Research, 2023, 154, 113297.	5.8	0
323	Genetics of Cortical Development. , 2022, , .		0

#	Article	IF	CITATIONS
324	Identification of visual cortex cell types and species differences using single-cell RNA sequencing. Nature Communications, 2022, 13, .	5.8	12
326	Clustering of vomeronasal receptor genes is required for transcriptional stability but not for choice. Science Advances, 2022, 8, .	4.7	4
327	St18 specifies globus pallidus projection neuron identity in MGE lineage. Nature Communications, 2022, 13, .	5.8	0
328	Coordinated control of neuronal differentiation and wiring by sustained transcription factors. Science, 2022, 378, .	6.0	10
330	A transcription factor atlas of directed differentiation. Cell, 2023, 186, 209-229.e26.	13.5	45
332	Identifying foetal forebrain interneurons as a target for monogenic autism risk factors and the polygenic 16p11.2 microdeletion. BMC Neuroscience, 2023, 24, .	0.8	2
333	Cortical interneuron specification and diversification in the era of big data. Current Opinion in Neurobiology, 2023, 80, 102703.	2.0	0
334	Transcriptional networks of transient cell states during human prefrontal cortex development. Frontiers in Molecular Neuroscience, 0, 16, .	1.4	0
336	Generation of glutamatergic/GABAergic neuronal co-cultures derived from human induced pluripotent stem cells for characterizing E/I balance inÂvitro. STAR Protocols, 2023, 4, 101967.	0.5	5
337	Cortical Parvalbumin-Positive Interneuron Development and Function Are Altered in the APC Conditional Knockout Mouse Model of Infantile and Epileptic Spasms Syndrome. Journal of Neuroscience, 2023, 43, 1422-1440.	1.7	2
338	Developmental deficits of MGE-derived interneurons in the Cntnap2 knockout mouse model of autism spectrum disorder. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	1
339	Deciphering inhibitory neuron development: The paths to diversity. Current Opinion in Neurobiology, 2023, 79, 102691.	2.0	7
340	Basal forebrain cholinergic signalling: development, connectivity and roles in cognition. Nature Reviews Neuroscience, 2023, 24, 233-251.	4.9	17
341	Principles of neural stem cell lineage progression: Insights from developing cerebral cortex. Current Opinion in Neurobiology, 2023, 79, 102695.	2.0	4
344	RNA regulation in brain function and disease 2022 (NeuroRNA): A conference report. Frontiers in Molecular Neuroscience, 0, 16, .	1.4	0
345	Cellular complexity of the peripheral nervous system: Insights from single-cell resolution. Frontiers in Neuroscience, 0, 17, .	1.4	2
346	Cellular signaling impacts upon GABAergic cortical interneuron development. Frontiers in Neuroscience, 0, 17, .	1.4	1
347	Recent advances in understanding neuronal diversity and neural circuit complexity across different brain regions using single-cell sequencing. Frontiers in Neural Circuits, 0, 17, .	1.4	3

#	Article	IF	CITATIONS
348	Mapping human adult hippocampal neurogenesis with single-cell transcriptomics: Reconciling controversy or fueling the debate?. Neuron, 2023, 111, 1714-1731.e3.	3.8	15
349	DSCAM gene triplication causes excessive GABAergic synapses in the neocortex in Down syndrome mouse models. PLoS Biology, 2023, 21, e3002078.	2.6	7
352	Single-cell and spatial transcriptomics: deciphering brain complexity in health and disease. Nature Reviews Neurology, 2023, 19, 346-362.	4.9	33
366	Development and Developmental Disorders of the Cerebral Cortex. , 2023, , 725-891.		Ο
370	Mechanisms of Development. , 2023, , 77-169.		0
376	Human neuronal maturation comes of age: cellular mechanisms and species differences. Nature Reviews Neuroscience, 2024, 25, 7-29.	4.9	3
382	Multimodal Nature of the Single-cell Primate Brain Atlas: Morphology, Transcriptome, Electrophysiology, and Connectivity. Neuroscience Bulletin, 2024, 40, 517-532.	1.5	0
385	GROD: Joint Inference of Gene Regulatory Networks and Data Imputation in Single-Cell RNA Sequencing with Temporal Consideration. , 2023, , .		0