Common Genetic Variants Highlight the Role of Insulin Distribution in Type 2 Diabetes, Independent of Obesity

Diabetes 63, 4378-4387 DOI: 10.2337/db14-0319

Citation Report

#	Article	IF	CITATIONS
1	Genetic Evidence for a Normal-Weight "Metabolically Obese―Phenotype Linking Insulin Resistance, Hypertension, Coronary Artery Disease, and Type 2 Diabetes. Diabetes, 2014, 63, 4369-4377.	0.3	185
2	Genetics of insulin resistance in polycystic ovary syndrome. Current Opinion in Clinical Nutrition and Metabolic Care, 2015, 18, 401-406.	1.3	8
3	Evidence of a Causal Association Between Insulinemia and Endometrial Cancer: A Mendelian Randomization Analysis. Journal of the National Cancer Institute, 2015, 107, .	3.0	129
4	Lean diabetes mellitus: An emerging entity in the era of obesity. World Journal of Diabetes, 2015, 6, 613.	1.3	113
5	Associations between Potentially Modifiable Risk Factors and Alzheimer Disease: A Mendelian Randomization Study. PLoS Medicine, 2015, 12, e1001841.	3.9	153
6	BMP4 and BMP Antagonists Regulate Human White and Beige Adipogenesis. Diabetes, 2015, 64, 1670-1681.	0.3	167
7	Elevated Serum Advanced Glycation Endproducts in Obese Indicate Risk for the Metabolic Syndrome: A Link Between Healthy and Unhealthy Obesity?. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 1957-1966.	1.8	109
8	Insulin resistance and impaired adipogenesis. Trends in Endocrinology and Metabolism, 2015, 26, 193-200.	3.1	283
9	Genetic Markers of Insulin Sensitivity and Insulin Secretion Are Associated With Spontaneous Postnatal Growth and Response to Growth Hormone Treatment in Short SGA Children: the North European SGA Study (NESGAS). Journal of Clinical Endocrinology and Metabolism, 2015, 100, E503-E507.	1.8	10
10	Triglyceride-Increasing Alleles Associated with Protection against Type-2 Diabetes. PLoS Genetics, 2015, 11, e1005204.	1.5	21
11	Closing the Gap between Knowledge and Clinical Application: Challenges for Genomic Translation. PLoS Genetics, 2015, 11, e1004978.	1.5	36
12	Abdominal obesity: a marker of ectopic fat accumulation. Journal of Clinical Investigation, 2015, 125, 1790-1792.	3.9	223
13	The genetics of lipid storage and human lipodystrophies. Trends in Molecular Medicine, 2015, 21, 433-438.	3.5	53
14	The diabetes gene Zfp69 modulates hepatic insulin sensitivity in mice. Diabetologia, 2015, 58, 2403-2413.	2.9	20
15	Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nature Communications, 2015, 6, 8464.	5.8	304
16	Replacing SNAP-25b with SNAP-25a expression results in metabolic disease. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4326-35.	3.3	29
17	Protein Biomarkers for Insulin Resistance and Type 2 Diabetes Risk in Two Large Community Cohorts. Diabetes, 2016, 65, 276-284.	0.3	100
18	Polymorphism of the Transcription Factor 7-Like 2 Gene (TCF7L2) Interacts with Obesity on Type-2 Diabetes in the PREDIMED Study Emphasizing the Heterogeneity of Genetic Variants in Type-2 Diabetes Risk Prediction: Time for Obesity-Specific Genetic Risk <u>Scores. Nutrients, 2016, 8, 793.</u>	1.7	38

#	Article	IF	CITATIONS
19	Genome-Wide Interaction with Insulin Secretion Loci Reveals Novel Loci for Type 2 Diabetes in African Americans. PLoS ONE, 2016, 11, e0159977.	1.1	7
20	Type 2 diabetes: genetic data sharing to advance complex disease research. Nature Reviews Genetics, 2016, 17, 535-549.	7.7	128
21	Genetic risk scores link body fat distribution with specific cardiometabolic profiles. Obesity, 2016, 24, 1778-1785.	1.5	2
22	Characterization of the role of sphingomyelin synthase 2 in glucose metabolism in whole-body and peripheral tissues in mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 688-702.	1.2	33
23	Evaluation of type 2 diabetes genetic risk variants in Chinese adults: findings from 93,000 individuals from the China Kadoorie Biobank. Diabetologia, 2016, 59, 1446-1457.	2.9	41
24	Genetic Evidence for a Link Between Favorable Adiposity and Lower Risk of Type 2 Diabetes, Hypertension, and Heart Disease. Diabetes, 2016, 65, 2448-2460.	0.3	122
25	Genetic variation near <scp><i>IRS</i></scp> <i>1</i> is associated with adiposity and a favorable metabolic profile in <scp>U</scp> . <scp>S.</scp> <scp>H</scp> ispanics/ <scp>L</scp> atinos. Obesity, 2016, 24, 2407-2413.	1.5	5
26	Analysis of Positive Selection at Single Nucleotide Polymorphisms Associated with Body Mass Index Does Not Support the "Thrifty Gene―Hypothesis. Cell Metabolism, 2016, 24, 531-541.	7.2	46
27	The effect of lifestyle intervention in obesity on the soluble form of activated leukocyte cell adhesion molecule. BMC Endocrine Disorders, 2016, 16, 56.	0.9	2
28	Air pollution and diabetes association: Modification by type 2 diabetes genetic risk score. Environment International, 2016, 94, 263-271.	4.8	35
29	Phenotypes of prediabetes and stratification of cardiometabolic risk. Lancet Diabetes and Endocrinology,the, 2016, 4, 789-798.	5.5	164
30	Genetics of Insulin Resistance and the Metabolic Syndrome. Current Cardiology Reports, 2016, 18, 75.	1.3	195
31	Metabolic health and weight: Understanding metabolically unhealthy normal weight or metabolically healthy obese patients. Metabolism: Clinical and Experimental, 2016, 65, 73-80.	1.5	131
32	Adiposity in Children Born Small for Gestational Age Is Associated With β-Cell Function, Genetic Variants for Insulin Resistance, and Response to Growth Hormone Treatment. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 131-142.	1.8	10
33	Metabolically healthy obese individuals: Key protective factors. Nutrition, 2016, 32, 14-20.	1.1	56
34	Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels. Diabetologia, 2017, 60, 873-878.	2.9	119
35	Genetic risk scores in the prediction of plasma glucose, impaired insulin secretion, insulin resistance and incident type 2 diabetes in the METSIM study. Diabetologia, 2017, 60, 1722-1730.	2.9	26
36	Gamma-glutamyltransferase levels, prediabetes and type 2 diabetes: a Mendelian randomization study. International Journal of Epidemiology, 2017, 46, 1400-1409.	0.9	21

#	Article	IF	CITATIONS
37	Genetic Support for a Causal Role of Insulin Resistance on Circulating Branched-Chain Amino Acids and Inflammation. Diabetes Care, 2017, 40, 1779-1786.	4.3	141
38	Plasma Mannose Levels Are Associated with Incident Type 2 Diabetes and Cardiovascular Disease. Cell Metabolism, 2017, 26, 281-283.	7.2	85
39	Causes, Characteristics, and Consequences of Metabolically Unhealthy Normal Weight in Humans. Cell Metabolism, 2017, 26, 292-300.	7.2	388
40	Genetic risk of prediabetes and diabetes development in chronic myeloid leukemia patients treated with nilotinib. Experimental Hematology, 2017, 55, 71-75.	0.2	2
41	The metabolic syndrome- associated small G protein ARL15 plays a role in adipocyte differentiation and adiponectin secretion. Scientific Reports, 2017, 7, 17593.	1.6	24
42	MAP4K4 and IL-6+ Th17 cells play important roles in non-obese type 2 diabetes. Journal of Biomedical Science, 2017, 24, 4.	2.6	12
43	Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nature Genetics, 2017, 49, 17-26.	9.4	452
44	The Genetic Landscape of Renal Complications in Type 1 Diabetes. Journal of the American Society of Nephrology: JASN, 2017, 28, 557-574.	3.0	101
45	A combination of plasma phospholipid fatty acids and its association with incidence of type 2 diabetes: The EPIC-InterAct case-cohort study. PLoS Medicine, 2017, 14, e1002409.	3.9	61
46	Serum α-Hydroxybutyrate: A Candidate Marker of Insulin Resistance Is Associated with Deterioration in Anthropometric Measurements in Individuals with Low Diabetes Risk. journal of applied laboratory medicine, The, 2017, 1, 562-567.	0.6	2
47	Genetic syndromes of severe insulin resistance. Current Opinion in Genetics and Development, 2018, 50, 60-67.	1.5	55
48	Effects of bisphenol A on metabolism and evidences of a mode of action mediated through endocrine disruption. Molecular and Cellular Endocrinology, 2018, 475, 74-91.	1.6	73
49	The many faces of diabetes: addressing heterogeneity of a complex disease. Lancet Diabetes and Endocrinology,the, 2018, 6, 348-349.	5.5	17
50	Implications of publicly available genomic data resources in searching for therapeutic targets of obesity and type 2 diabetes. Experimental and Molecular Medicine, 2018, 50, 1-13.	3.2	2
51	A Common Allele in FGF21 Associated with Sugar Intake Is Associated with Body Shape, Lower Total Body-Fat Percentage, and Higher Blood Pressure. Cell Reports, 2018, 23, 327-336.	2.9	76
52	Heterogeneity in effects of genetically determined adiposity on insulin resistance and type 2 diabetes: The atherosclerosis risk in communities study. Journal of Diabetes and Its Complications, 2018, 32, 330-334.	1.2	3
53	A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes. Diabetes, 2018, 67, 1414-1427.	0.3	136
54	Diabetes and Adipocyte Dysfunction. , 2018, , 69-84.		0

#	Article	IF	CITATIONS
55	Diet-induced obesity leads to metabolic dysregulation in offspring via endoplasmic reticulum stress in a sex-specific manner. International Journal of Obesity, 2018, 42, 244-251.	1.6	20
56	Dynamic status of metabolically healthy overweight/obesity and metabolically unhealthy and normal weight and the risk of type 2 diabetes mellitus: A cohort study of a rural adult Chinese population. Obesity Research and Clinical Practice, 2018, 12, 61-71.	0.8	40
57	Epigenetic modifications of the Zfp/ZNF423 gene control murine adipogenic commitment and are dysregulated in human hypertrophic obesity. Diabetologia, 2018, 61, 369-380.	2.9	43
58	Genetic risk scores for body fat distribution attenuate weight loss in women during dietary intervention. International Journal of Obesity, 2018, 42, 370-375.	1.6	14
59	Association of Genetic Variants Related to Gluteofemoral vs Abdominal Fat Distribution With Type 2 Diabetes, Coronary Disease, and Cardiovascular Risk Factors. JAMA - Journal of the American Medical Association, 2018, 320, 2553.	3.8	152
60	Pancreatic fat deposition is increased and related to beta-cell function in women with familial partial lipodystrophy. Diabetology and Metabolic Syndrome, 2018, 10, 71.	1.2	9
61	Clinical Characteristics, Phenotype of Lipodystrophy and a Genetic Analysis of Six Diabetic Japanese Women with Familial Partial Lipodystrophy in a Diabetic Outpatient Clinic. Internal Medicine, 2018, 57, 2301-2313.	0.3	3
62	Prioritising Risk Factors for Type 2 Diabetes: Causal Inference through Genetic Approaches. Current Diabetes Reports, 2018, 18, 40.	1.7	4
63	Evidence of genetic predisposition for metabolically healthy obesity and metabolically obese normal weight. Physiological Genomics, 2018, 50, 169-178.	1.0	38
64	Impaired Adipogenesis and Dysfunctional Adipose Tissue in Human Hypertrophic Obesity. Physiological Reviews, 2018, 98, 1911-1941.	13.1	285
65	A coding and non-coding transcriptomic perspective on the genomics of human metabolic disease. Nucleic Acids Research, 2018, 46, 7772-7792.	6.5	41
66	Discordant association of the CREBRF rs373863828 A allele with increased BMI and protection from type 2 diabetes in MÄori and Pacific (Polynesian) people living in Aotearoa/New Zealand. Diabetologia, 2018, 61, 1603-1613.	2.9	61
67	Genes that make you fat, but keep you healthy. Journal of Internal Medicine, 2018, 284, 450-463.	2.7	48
68	Genomic insights into the causes of type 2 diabetes. Lancet, The, 2018, 391, 2463-2474.	6.3	110
69	Double diabetes: A distinct highâ€risk group?. Diabetes, Obesity and Metabolism, 2019, 21, 2609-2618.	2.2	65
70	Nutrigenomics and personalized nutrition for the prevention of hyperglycemia and type 2 diabetes mellitus. , 2019, , 339-352.		1
71	In search of causal pathways in diabetes: a study using proteomics and genotyping data from a cross-sectional study. Diabetologia, 2019, 62, 1998-2006.	2.9	27
72	Sex-specific Mendelian randomization study of genetically predicted insulin and cardiovascular events in the UK Biobank. Communications Biology, 2019, 2, 332.	2.0	22

#	Article	IF	CITATIONS
73	Genetic Risk Scores for Diabetes Diagnosis and Precision Medicine. Endocrine Reviews, 2019, 40, 1500-1520.	8.9	192
74	Association Between Genetic Risk and Development of Type 2 Diabetes in a General Japanese Population: The Hisayama Study. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 3213-3222.	1.8	12
75	Causal Associations in Type 2 Diabetes Development. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1313-1324.	1.8	6
76	Prevalence and relationship of hypertriglyceridaemic–waist phenotype and type 2 diabetes mellitus among a rural adult Chinese population. Public Health Nutrition, 2019, 22, 1361-1366.	1.1	5
77	Assessing the causal association of glycine with risk of cardio-metabolic diseases. Nature Communications, 2019, 10, 1060.	5.8	85
78	Impact of Supervisors' Perceived Communication Style on Subordinate's Psychological Capital and Cyberloafing. Australasian Journal of Information Systems, 0, 23, .	0.3	15
79	Recent developments in lipodystrophy. Current Opinion in Lipidology, 2019, 30, 284-290.	1.2	14
80	High genetic risk scores of SLIT3, PLEKHA5 and PPP2R2C variants increased insulin resistance and interacted with coffee and caffeine consumption in middle-aged adults. Nutrition, Metabolism and Cardiovascular Diseases, 2019, 29, 79-89.	1.1	14
81	Metabolically healthy versus metabolically unhealthy obesity. Metabolism: Clinical and Experimental, 2019, 92, 51-60.	1.5	251
82	Nutrients and Obesity. , 2019, , 113-121.		0
83	Genome-Wide and Abdominal MRI Data Provide Evidence That a Genetically Determined Favorable Adiposity Phenotype Is Characterized by Lower Ectopic Liver Fat and Lower Risk of Type 2 Diabetes, Heart Disease, and Hypertension. Diabetes, 2019, 68, 207-219.	0.3	72
84	Meta-analysis of genome-wide association studies for body fat distribution in 694Â649 individuals of European ancestry. Human Molecular Genetics, 2019, 28, 166-174.	1.4	752
85	Functional Screening of Candidate Causal Genes for Insulin Resistance in Human Preadipocytes and Adipocytes. Circulation Research, 2020, 126, 330-346.	2.0	49
86	Classification of Type 2 Diabetes Genetic Variants and a Novel Genetic Risk Score Association With Insulin Clearance. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1251-1260.	1.8	15
87	Participation of white adipose tissue dysfunction on circulating HDL cholesterol and HDL particle size in apparently healthy humans. International Journal of Obesity, 2020, 44, 920-928.	1.6	5
88	Meta-analysis investigating the role of interleukin-6 mediated inflammation in type 2 diabetes. EBioMedicine, 2020, 61, 103062.	2.7	46
89	Mendelian Randomization Study on Amino Acid Metabolism Suggests Tyrosine as Causal Trait for Type 2 Diabetes. Nutrients, 2020, 12, 3890.	1.7	8
90	Causal associations of insulin resistance with coronary artery disease and ischemic stroke: a Mendelian randomization analysis. BMJ Open Diabetes Research and Care, 2020, 8, e001217.	1.2	31

#	Article	IF	CITATIONS
91	Genetic predisposition in type 2 diabetes: A promising approach toward a personalized management of diabetes. Clinical Genetics, 2020, 98, 525-547.	1.0	33
92	Sex-specific associations of insulin resistance with chronic kidney disease and kidney function: a bi-directional Mendelian randomisation study. Diabetologia, 2020, 63, 1554-1563.	2.9	9
93	Ethnic differences in adiposity and diabetes risk – insights from genetic studies. Journal of Internal Medicine, 2020, 288, 271-283.	2.7	42
94	Causes, consequences, and treatment of metabolically unhealthy fat distribution. Lancet Diabetes and Endocrinology,the, 2020, 8, 616-627.	5.5	326
95	Review of methods for detecting glycemic disorders. Diabetes Research and Clinical Practice, 2020, 165, 108233.	1.1	108
96	A Metabolomics Analysis of Adiposity and Advanced Prostate Cancer Risk in the Health Professionals Follow-Up Study. Metabolites, 2020, 10, 99.	1.3	12
97	Risk Associated with the LEPR rs8179183 GG Genotype in a Female Korean Population with Obesity. Antioxidants, 2020, 9, 497.	2.2	1
98	Mitochondrial Dysfunction, Insulin Resistance, and Potential Genetic Implications. Endocrinology, 2020, 161, .	1.4	96
99	The interaction between gene profile and obesity in type 2 diabetes: A review. Obesity Medicine, 2020, 18, 100197.	0.5	12
100	Diabetes, BMI, and Parkinson's. Movement Disorders, 2020, 35, 201-203.	2.2	14
101	Prevalence and epidemiological determinants of metabolically obese but normal-weight in Chinese population. BMC Public Health, 2020, 20, 487.	1.2	33
102	The role of genomics in global cancer prevention. Nature Reviews Clinical Oncology, 2021, 18, 116-128.	12.5	22
103	Investigation of glycaemic traits in psychiatric disorders using Mendelian randomisation revealed a causal relationship with anorexia nervosa. Neuropsychopharmacology, 2021, 46, 1093-1102.	2.8	20
104	A Journey in Diabetes: From Clinical Physiology to Novel Therapeutics: The 2020 Banting Medal for Scientific Achievement Lecture. Diabetes, 2021, 70, 338-346.	0.3	14
105	The Impact of Macronutrient Intake on Non-alcoholic Fatty Liver Disease (NAFLD): Too Much Fat, Too Much Carbohydrate, or Just Too Many Calories?. Frontiers in Nutrition, 2021, 8, 640557.	1.6	44
106			
	Metabolically healthy obesity and metabolically obese normal weight: a review. Journal of Physiology and Biochemistry, 2021, 77, 175-189.	1.3	28
107	Metabolically healthy obesity and metabolically obese normal weight: a review. Journal of Physiology and Biochemistry, 2021, 77, 175-189. Genetic Diversity of Insulin Resistance and Metabolic Syndrome. , 0, , .	1.3	28

#	Article	IF	CITATIONS
109	Insulin resistance genetic risk score and burden of coronary artery disease in patients referred for coronary angiography. PLoS ONE, 2021, 16, e0252855.	1.1	1
110	Birth weight was associated positively with gluteofemoral fat mass and inversely with 2-h postglucose insulin concentrations, a marker of insulin resistance, in young normal-weight Japanese women. Diabetology International, 2022, 13, 375-380.	0.7	3
111	Association between Selected Polymorphisms rs12086634, rs846910, rs4844880, rs3753519 of 11Î ² -Hydroxysteroid Dehydrogenase Type 1 (HSD11B1) and the Presence of Insulin Resistance in the Polish Population of People Living in Upper Silesia. International Journal of Environmental Research and Public Health, 2021, 18, 10168.	1.2	1
112	Assessing the Causal Relationships Between Insulin Resistance and Hyperuricemia and Gout Using Bidirectional Mendelian Randomization. Arthritis and Rheumatology, 2021, 73, 2096-2104.	2.9	49
118	Lipodystrophy: A paradigm for understanding the consequences of "overloading" adipose tissue. Physiological Reviews, 2021, 101, 907-993.	13.1	35
119	Genetics Insights in the Relationship Between Type 2 Diabetes and Coronary Heart Disease. Circulation Research, 2020, 126, 1526-1548.	2.0	58
120	What lipodystrophies teach us about the metabolic syndrome. Journal of Clinical Investigation, 2019, 129, 4009-4021.	3.9	96
121	The long road to leptin. Journal of Clinical Investigation, 2016, 126, 4727-4734.	3.9	206
122	Microsatellite and Single Nucleotide Polymorphisms in the Insulin-Like Growth Factor 1 Promoter with Insulin Sensitivity and Insulin Secretion. Medical Science Monitor, 2017, 23, 3722-3736.	0.5	7
123	Effect of Insulin Resistance on Monounsaturated Fatty Acid Levels: A Multi-cohort Non-targeted Metabolomics and Mendelian Randomization Study. PLoS Genetics, 2016, 12, e1006379.	1.5	20
124	Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis. PLoS Medicine, 2016, 13, e1002179.	3.9	324
125	Adropin – Potential Link in Cardiovascular Protection for Obese Male Type 2 Diabetes Mellitus Patients Treated with Liraglutide. Acta Clinica Croatica, 2020, 59, 344-350.	0.1	12
126	A Mendelian Randomization Study on Infant Length and Type 2 Diabetes Mellitus Risk. Current Gene Therapy, 2019, 19, 224-231.	0.9	15
127	Limitation of adipose tissue by the number of embryonic progenitor cells. ELife, 2020, 9, .	2.8	4
128	The Pathophysiology of Type 2 Diabetes Mellitus in Non-obese Individuals: An Overview of the Current Understanding. Cureus, 2020, 12, e7614.	0.2	15
129	Diabetes: discovery of insulin, genetic, epigenetic and viral infection mediated regulation. Nucleus (India), 2021, , 1-15.	0.9	3
131	Adiposity and insulin resistance as mediators between age at menarche and type 2 diabetes mellitus. Menopause, 2020, 27, 579-585.	0.8	5
132_	Causes and Consequences of Polycystic Ovary Syndrome: Insights From Mendelian Randomization.	1.8	31 _

#	Article	IF	Citations
133	Could personalised risk prediction for type 2 diabetes using polygenic risk scores direct prevention, enhance diagnostics, or improve treatment?. Wellcome Open Research, 0, 5, 206.	0.9	4
134	Palmitoylated small GTPase ARL15 is translocated within Golgi network during adipogenesis. Biology Open, 2021, 10, .	0.6	9
135	<i>Astragalus hamosus</i> Acts as an Insulin Sensitizer in the Treatment of Polycystic Ovary Syndrome Rat Models by Affecting <i>IRS1</i> Expression. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2022, 22, 348-356.	0.6	3
136	Insulin at 100â€years – is rebalancing its action key to fighting obesity-related disease?. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	3
137	Lipodystrophies and Severe Insulin Resistance Syndromes. , 2022, , 2102-2106.		0
138	Achievements, prospects and challenges in precision care for monogenic insulin-deficient and insulin-resistant diabetes. Diabetologia, 2022, 65, 1782-1795.	2.9	11
139	Effects of glycemic traits on left ventricular structure and function: a mendelian randomization study. Cardiovascular Diabetology, 2022, 21, .	2.7	6
140	The Harm of Metabolically Healthy Obese and the Effect of Exercise on Their Health Promotion. Frontiers in Physiology, 0, 13, .	1.3	5
141	Obesity and chronic kidney disease: A current review. Obesity Science and Practice, 2023, 9, 61-74.	1.0	15
142	Reduced gluteofemoral (subcutaneous) fat mass in young Japanese women with family history of type 2 diabetes: an exploratory analysis. Scientific Reports, 2022, 12, .	1.6	1
143	SEPT9 Upregulation in Satellite Glial Cells Associated with Diabetic Polyneuropathy in a Type 2 Diabetes-like Rat Model. International Journal of Molecular Sciences, 2022, 23, 9372.	1.8	4
144	Multiancestry exome sequencing reveals INHBE mutations associated with favorable fat distribution and protection from diabetes. Nature Communications, 2022, 13, .	5.8	18
146	Factores asociados al fenotipo delgado metabólicamente obeso en pobladores peruanos. Medicina ClÃnica Y Social, 2022, 6, 123-131.	0.1	0
147	Current Knowledge on the Pathophysiology of Lean/Normal-Weight Type 2 Diabetes. International Journal of Molecular Sciences, 2023, 24, 658.	1.8	3
148	Coffee and metabolic phenotypes: A cross-sectional analysis of the Japan multi-institutional collaborative cohort (J-MICC) study. Nutrition, Metabolism and Cardiovascular Diseases, 2023, 33, 620-630.	1.1	0
149	Effects of Chicken Serum Metabolite Treatment on the Blood Glucose Control and Inflammatory Response in Streptozotocin-Induced Type 2 Diabetes Mellitus Rats. International Journal of Molecular Sciences, 2023, 24, 523.	1.8	0
150	Metabolically healthy obesity: Misleading phrase or healthy phenotype?. European Journal of Internal Medicine, 2023, 111, 5-20.	1.0	14
151	The Prevalence of Metabolically Unhealthy Normal Weight and Its Influence on the Risk of Diabetes. Journal of Clinical Endocrinology and Metabolism, 2023, 108, 2240-2247.	1.8	1

#	Article	IF	CITATIONS
152	Multi-trait genome-wide association study identifies a novel endometrial cancer risk locus that associates with testosterone levels. IScience, 2023, 26, 106590.	1.9	1