The coffee genome provides insight into the convergent

Science 345, 1181-1184

DOI: 10.1126/science.1255274

Citation Report

#	Article	IF	Citations
2	Evolutionary Origins and Dynamics of Octoploid Strawberry Subgenomes Revealed by Dense Targeted Capture Linkage Maps. Genome Biology and Evolution, 2014, 6, 3295-3313.	1.1	197
4	A wake-up call with coffee. Science, 2014, 345, 1124-1124.	6.0	6
6	The Widening Gulf between Genomics Data Generation and Consumption: A Practical Guide to Big Data Transfer Technology. Bioinformatics and Biology Insights, 2015, 9s1, BBI.S28988.	1.0	12
7	Genomics and Evolution in Traditional Medicinal Plants: Road to a Healthier Life. Evolutionary Bioinformatics, 2015, 11, EBO.S31326.	0.6	53
8	Syntenic block overlap multiplicities with a panel of reference genomes provide a signature of ancient polyploidization events. BMC Genomics, 2015, 16, S8.	1.2	4
9	Seed-Specific Stable Expression of the $\hat{I}\pm$ -Al1 Inhibitor in Coffee Grains and the In Vivo Implications for the Development of the Coffee Berry Borer. Tropical Plant Biology, 2015, 8, 98-107.	1.0	5
10	Coffee: Grounds for Concern?. Baylor University Medical Center Proceedings, 2015, 28, 122-123.	0.2	2
11	Identification of Putative Molecular Markers Associated with Root Traits in Coffea canephora Pierre ex Froehner. Molecular Biology International, 2015, 2015, 1-11.	1.7	9
12	Whole Genome Sequencing of Fruit Tree Species. Advances in Botanical Research, 2015, , 1-37.	0.5	13
13	It's more than stamp collecting: how genome sequencing can unify biological research. Trends in Genetics, 2015, 31, 411-421.	2.9	37
14	Assessment of genetic and epigenetic changes during cell culture ageing and relations with somaclonal variation in Coffea arabica. Plant Cell, Tissue and Organ Culture, 2015, 122, 517-531.	1.2	63
15	Evolutionary analysis of RB/Rpi-blb1 locus in the Solanaceae family. Molecular Genetics and Genomics, 2015, 290, 2173-2186.	1.0	3
16	A revolution in plant metabolism: Genome-enabled pathway discovery. Plant Physiology, 2015, 169, pp.00976.2015.	2.3	26
17	Genome-wide analysis of LTR-retrotransposons in oil palm. BMC Genomics, 2015, 16, 795.	1.2	18
18	Salicylic acid and methyljasmonate restore the transcription of caffeine biosynthetic N-methyltransferases from a transcription inhibition noticed during late endosperm maturation in coffee. Plant Gene, 2015, 4, 38-44.	1.4	16
19	A genome to unveil the mysteries of orchids. Nature Genetics, 2015, 47, 3-4.	9.4	10
20	Next generation variety development for sustainable production of arabica coffee (Coffea arabica L.): a review. Euphytica, 2015, 204, 243-256.	0.6	124
21	Genome-Wide Analysis of Adaptive Molecular Evolution in the Carnivorous Plant Utricularia gibba. Genome Biology and Evolution, 2015, 7, 444-456.	1.1	33

#	ARTICLE	IF	CITATIONS
22	The Sol Genomics Network (SGN)—from genotype to phenotype to breeding. Nucleic Acids Research, 2015, 43, D1036-D1041.	6.5	520
23	Progress, challenges and the future of crop genomes. Current Opinion in Plant Biology, 2015, 24, 71-81.	3.5	197
24	High Gene Family Turnover Rates and Gene Space Adaptation in the Compact Genome of the Carnivorous Plant Utricularia gibba. Molecular Biology and Evolution, 2015, 32, 1284-1295.	3.5	53
25	Terminal-Repeat Retrotransposons with GAG Domain in Plant Genomes: A New Testimony on the Complex World of Transposable Elements. Genome Biology and Evolution, 2015, 7, 493-504.	1.1	23
26	Aquaporins in Coffea arabica L.: Identification, expression, and impacts on plant water relations and hydraulics. Plant Physiology and Biochemistry, 2015, 95, 92-102.	2.8	30
27	The coffee genome hub: a resource for coffee genomes. Nucleic Acids Research, 2015, 43, D1028-D1035.	6.5	59
28	Regulatory Divergence between Parental Alleles Determines Gene Expression Patterns in Hybrids. Genome Biology and Evolution, 2015, 7, 1110-1121.	1.1	94
29	DNA Sequencing, Other Omics and Synthetic Biology. , 2015, , 125-140.		0
30	Large distribution and high sequence identity of a Copia-type retrotransposon in angiosperm families. Plant Molecular Biology, 2015, 89, 83-97.	2.0	10
31	New Insights on Coffea miRNAs: Features and Evolutionary Conservation. Applied Biochemistry and Biotechnology, 2015, 177, 879-908.	1.4	24
32	The Greater Phenotypic Homeostasis of the Allopolyploid <i>Coffea arabica </i> Improved the Transcriptional Homeostasis Over that of Both Diploid Parents. Plant and Cell Physiology, 2015, 56, 2035-2051.	1.5	36
33	Plant Breeding in the Omics Era. , 2015, , .		46
34	Regulation of Specialized Metabolism by WRKY Transcription Factors. Plant Physiology, 2015, 167, 295-306.	2.3	243
35	Convergent evolution and the search for biosignatures within the solar system and beyond. Acta Astronautica, 2015, 116, 394-402.	1.7	5
36	The Draft Genome of Hop (Humulus lupulus), an Essence for Brewing. Plant and Cell Physiology, 2015, 56, 428-441.	1.5	111
37	Molecular and Genomic Tools Provide Insights on Crop Domestication and Evolution. Advances in Agronomy, 2016, 135, 181-223.	2.4	4
38	Application of Genomic Technologies to the Breeding of Trees. Frontiers in Genetics, 2016, 7, 198.	1.1	45
39	Caffeine as a Gelator. Gels, 2016, 2, 9.	2.1	9

#	ARTICLE	IF	CITATIONS
40	Development of clonal seedlings of promising Conilon coffee (Coffea canephora) genotypes. Australian Journal of Crop Science, 2016, 10, 385-392.	0.1	14
41	Resistance to rootâ€knot nematodes <i>Meloidogyne</i> spp. in woody plants. New Phytologist, 2016, 211, 41-56.	3.5	70
42	Advances in genomics for the improvement of quality in coffee. Journal of the Science of Food and Agriculture, 2016, 96, 3300-3312.	1.7	40
43	Emerging Genomics of Angiosperm Trees. Plant Genetics and Genomics: Crops and Models, 2016, , 85-99.	0.3	0
45	Evolutionary origin of the NCSI gene subfamily encoding norcoclaurine synthase is associated with the biosynthesis of benzylisoquinoline alkaloids in plants. Scientific Reports, 2016, 6, 26323.	1.6	23
46	Structural Genomics of Angiosperm Trees: Genome Duplications, Ploidy, and Repeat Sequences. Plant Genetics and Genomics: Crops and Models, 2016, , 101-120.	0.3	0
47	The nuclear genome of Rhazya stricta and the evolution of alkaloid diversity in a medically relevant clade of Apocynaceae. Scientific Reports, 2016, 6, 33782.	1.6	26
48	The South Green portal: a comprehensive resource for tropical and Mediterranean crop genomics. Current Plant Biology, 2016, 7-8, 6-9.	2.3	6
49	Identification by the DArTseq method of the genetic origin of the Coffea canephora cultivated in Vietnam and Mexico. BMC Plant Biology, 2016, 16, 242.	1.6	43
50	Next-generation biology: Sequencing and data analysis approaches for non-model organisms. Marine Genomics, 2016, 30, 3-13.	0.4	164
51	Developing Single Nucleotide Polymorphism (SNP) Markers for the Identification of Coffee Germplasm. Tropical Plant Biology, 2016, 9, 82-95.	1.0	34
52	Towards integration of population and comparative genomics in forest trees. New Phytologist, 2016, 212, 338-344.	3.5	31
53	Exploiting genotyping by sequencing to characterize the genomic structure of the American cranberry through high-density linkage mapping. BMC Genomics, 2016, 17, 451.	1.2	45
54	Influence of genotype and environment on coffee quality. Trends in Food Science and Technology, 2016, 57, 20-30.	7.8	150
55	Biotechnology of Tropical Tree Crops. , 2016, , 245-295.		1
56	Partial sequencing reveals the transposable element composition of Coffea genomes and provides evidence for distinct evolutionary stories. Molecular Genetics and Genomics, 2016, 291, 1979-1990.	1.0	16
57	Understanding the Catalytic Mechanism of Xanthosine Methyltransferase in Caffeine Biosynthesis from QM/MM Molecular Dynamics and Free Energy Simulations. Journal of Chemical Information and Modeling, 2016, 56, 1755-1761.	2.5	12
58	My Way: Noncanonical Biosynthesis Pathways for Plant Volatiles. Trends in Plant Science, 2016, 21, 884-894.	4.3	77

#	Article	IF	Citations
59	Repeat Sequences in the Tomato Genome. Compendium of Plant Genomes, 2016, , 173-199.	0.3	1
60	Isolation and Characterization of Cyclotides from BrazilianPsychotria: Significance in Plant Defense and Co-occurrence with Antioxidant Alkaloids. Journal of Natural Products, 2016, 79, 3006-3013.	1.5	12
61	The genome sequence of the outbreeding globe artichoke constructed de novo incorporating a phase-aware low-pass sequencing strategy of F1 progeny. Scientific Reports, 2016, 6, 19427.	1.6	106
62	The Tomato Genome. Compendium of Plant Genomes, 2016, , .	0.3	9
63	Convergent evolution of caffeine in plants by co-option of exapted ancestral enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10613-10618.	3.3	109
64	Genome Analysis of Plants. , 2016, , 1-27.		O
65	Convergent Evolution and the Origin of Complex Phenotypes in the Age of Systems Biology. International Journal of Plant Sciences, 2016, 177, 305-318.	0.6	33
66	The effect of bean origin and temperature on grinding roasted coffee. Scientific Reports, 2016, 6, 24483.	1.6	31
67	Inter-genomic DNA Exchanges and Homeologous Gene Silencing Shaped the Nascent Allopolyploid Coffee Genome (<i>Coffee arabica</i> L.). G3: Genes, Genomes, Genetics, 2016, 6, 2937-2948.	0.8	27
68	Economic importance, taxonomic representation and scientific priority as drivers of genome sequencing projects. BMC Genomics, 2016, 17, 782.	1.2	13
69	Shift in precipitation regime promotes interspecific hybridization of introduced <i>Coffea</i> species. Ecology and Evolution, 2016, 6, 3240-3255.	0.8	15
70	Identification of candidate genes for drought tolerance in coffee by high-throughput sequencing in the shoot apex of different Coffea arabica cultivars. BMC Plant Biology, 2016, 16, 94.	1.6	48
71	Somatic Embryogenesis in Coffea spp , 2016, , 241-266.		9
72	Computational genomic identification and functional reconstitution of plant natural product biosynthetic pathways. Natural Product Reports, 2016, 33, 951-962.	5.2	77
73	Evolution of plant genome architecture. Genome Biology, 2016, 17, 37.	3.8	331
74	Epigenetic Advances in Somatic Embryogenesis in Sequenced Genome Crops., 2016,, 81-102.		9
75	Plant Fidelity in Somatic Embryogenesis-Regenerated Plants. , 2016, , 121-150.		8
76	Differentially Accumulated Proteins in <i>Coffea arabica</i> Seeds during Perisperm Tissue Development and Their Relationship to Coffee Grain Size. Journal of Agricultural and Food Chemistry, 2016, 64, 1635-1647.	2.4	9

#	Article	IF	Citations
77	New Coffee Plant-Infecting Xylella fastidiosa Variants Derived via Homologous Recombination. Applied and Environmental Microbiology, 2016, 82, 1556-1568.	1.4	63
78	Natural allelic variations of TCS1 play a crucial role in caffeine biosynthesis of tea plant and its related species. Plant Physiology and Biochemistry, 2016, 100, 18-26.	2.8	56
80	Ancestors of modern plant crops. Current Opinion in Plant Biology, 2016, 30, 134-142.	3.5	54
81	Characterization of the Promoter of the Homeobox Gene CaHB12 in Coffea arabica. Tropical Plant Biology, 2016, 9, 50-62.	1.0	6
82	Interaction of coffee compounds with serum albumins. Part II: Diterpenes. Food Chemistry, 2016, 199, 502-508.	4.2	29
83	Evidence of horizontal gene transfer between obligate leaf nodule symbionts. ISME Journal, 2016, 10, 2092-2105.	4.4	63
84	Online resources for gene discovery and biochemical research with aromatic and medicinal plants. Phytochemistry Reviews, 2016, 15, 489-510.	3.1	4
85	Caffeine: Friend or Foe?. Annual Review of Food Science and Technology, 2016, 7, 117-137.	5.1	52
86	Biogeography of the Anthropocene. Progress in Physical Geography, 2016, 40, 161-174.	1.4	15
87	Transcriptome analysis in Coffea eugenioides, an Arabica coffee ancestor, reveals differentially expressed genes in leaves and fruits. Molecular Genetics and Genomics, 2016, 291, 323-336.	1.0	26
88	Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnology Journal, 2016, 14, 1070-1085.	4.1	303
89	Active transposable elements recover species boundaries and geographic structure in Madagascan coffee species. Molecular Genetics and Genomics, 2016, 291, 155-168.	1.0	6
90	Comparative genomics reveals convergent evolution between the bamboo-eating giant and red pandas. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1081-1086.	3.3	196
91	MicroRNA annotation of plant genomes â^' Do it right or not at all. BioEssays, 2017, 39, 1600113.	1.2	50
92	Xanthine Alkaloids: Occurrence, Biosynthesis, and Function in Plants. Progress in the Chemistry of Organic Natural Products, 2017, 105, 1-88.	0.8	50
93	Genotyping-by-sequencing provides the first well-resolved phylogeny for coffee (Coffea) and insights into the evolution of caffeine content in its species. Molecular Phylogenetics and Evolution, 2017, 109, 351-361.	1.2	59
94	Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory. Nature Ecology and Evolution, 2017, 1, 59.	3.4	99
95	Novel Insights into Tree Biology and Genome Evolution as Revealed Through Genomics. Annual Review of Plant Biology, 2017, 68, 457-483.	8.6	64

#	Article	IF	CITATIONS
96	Toward a Predictive Framework for Convergent Evolution: Integrating Natural History, Genetic Mechanisms, and Consequences for the Diversity of Life. American Naturalist, 2017, 190, S1-S12.	1.0	74
97	The Tea Tree Genome Provides Insights into Tea Flavor and Independent Evolution of Caffeine Biosynthesis. Molecular Plant, 2017, 10, 866-877.	3.9	563
98	Diterpenes biochemical profile and transcriptional analysis of cytochrome P450s genes in leaves, roots, flowers, and during Coffea arabica L. fruit development. Plant Physiology and Biochemistry, 2017, 111, 340-347.	2.8	19
99	The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature, 2017, 546, 148-152.	13.7	579
100	A Novel N-Methyltransferase in Arabidopsis Appears to Feed a Conserved Pathway for Nicotinate Detoxification among Land Plants and Is Associated with Lignin Biosynthesis. Plant Physiology, 2017, 174, 1492-1504.	2.3	29
101	The Peach v2.0 release: high-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics, 2017, 18, 225.	1.2	342
102	Genomic innovation for crop improvement. Nature, 2017, 543, 346-354.	13.7	301
103	Distribution of Divo in Coffea genomes, a poorly described family of angiosperm LTR-Retrotransposons. Molecular Genetics and Genomics, 2017, 292, 741-754.	1.0	7
104	Genome sequence and genetic diversity of European ash trees. Nature, 2017, 541, 212-216.	13.7	166
105	Evolution of floral diversity: genomics, genes and <i>gamma </i> li>. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20150509.	1.8	41
106	High throughput transcriptome analysis of coffee reveals prehaustorial resistance in response to Hemileia vastatrix infection. Plant Molecular Biology, 2017, 95, 607-623.	2.0	25
107	A mixed model to multiple harvest-location trials applied to genomic prediction in Coffea canephora. Tree Genetics and Genomes, 2017, 13, 1.	0.6	23
108	Application of Data Mining Algorithms to Classify Biological Data: The Coffea canephora Genome Case. Communications in Computer and Information Science, 2017, , 156-170.	0.4	7
109	Parallel Programming in Biological Sciences, Taking Advantage of Supercomputing in Genomics. Communications in Computer and Information Science, 2017, , 627-643.	0.4	2
110	Long-read sequencing of the coffee bean transcriptome reveals the diversity of full-length transcripts. GigaScience, 2017, 6, 1-13.	3.3	90
111	Early responses of coffee immunity-related genes to root-knot nematode infection. Physiological and Molecular Plant Pathology, 2017, 100, 142-150.	1.3	7
112	Genome reconstruction in Cynara cardunculus taxa gains access to chromosome-scale DNA variation. Scientific Reports, 2017, 7, 5617.	1.6	30
113	Parallel Evolution of Chromatin Structure Underlying Metabolic Adaptation. Molecular Biology and Evolution, 2017, 34, 2870-2878.	3.5	5

#	Article	IF	CITATIONS
114	The complete chloroplast genome sequence of an economic plant <i>Coffea canephora </i> Mitochondrial DNA Part B: Resources, 2017, 2, 483-485.	0.2	7
115	Sub genome anchored physical frameworks of the allotetraploid Upland cotton (Gossypium hirsutum) Tj ETQq1 1 7, 15274.	0.784314 1.6	rgBT /Over 23
116	Population structure and genetic diversity of coffee progenies derived from CatuaÃ-and HÃbrido de Timor revealed by genome-wide SNP marker. Tree Genetics and Genomes, 2017, 13, 1.	0.6	22
117	The pomegranate (<i>Punica granatum</i> L.) genome and the genomics of punicalagin biosynthesis. Plant Journal, 2017, 91, 1108-1128.	2.8	109
118	Transcriptome analysis explores genes related to shikonin biosynthesis in Lithospermeae plants and provides insights into Boraginales' evolutionary history. Scientific Reports, 2017, 7, 4477.	1.6	26
119	Zinc supply impacts on the relative expression of a metallothionein-like gene in Coffea arabica plants. Plant and Soil, 2017, 411, 179-191.	1.8	15
120	Differential fine-tuning of gene expression regulation in coffee leaves by CcDREB1D promoter haplotypes under water deficit. Journal of Experimental Botany, 2017, 68, 3017-3031.	2.4	26
121	Caffeine Dose-Response Relationship and Behavioral Screening in Zebrafish. , 0, , .		9
122	Transcriptome Analysis of Hamelia patens (Rubiaceae) Anthers Reveals Candidate Genes for Tapetum and Pollen Wall Development. Frontiers in Plant Science, 2017, 7, 1991.	1.7	8
123	Evolutionary Analyses of GRAS Transcription Factors in Angiosperms. Frontiers in Plant Science, 2017, 8, 273.	1.7	89
124	Somatic Embryogenesis in Coffee: The Evolution of Biotechnology and the Integration of Omics Technologies Offer Great Opportunities. Frontiers in Plant Science, 2017, 8, 1460.	1.7	64
125	The Coffee Treeâ€"Genetic Diversity and Origin. , 2017, , 1-16.		12
126	Transcriptome Analysis of Leaves, Flowers and Fruits Perisperm of Coffea arabica L. Reveals the Differential Expression of Genes Involved in Raffinose Biosynthesis. PLoS ONE, 2017, 12, e0169595.	1.1	35
127	Genome-wide identification, classification and transcriptional analysis of nitrate and ammonium transporters in Coffea. Genetics and Molecular Biology, 2017, 40, 346-359.	0.6	10
128	Arabidopsis thaliana as a model host for Brevipalpus mite-transmitted viruses. Scientia Agricola, 2017, 74, 85-89.	0.6	14
130	Plant Genetic Resources., 2017,, 15-29.		1
131	Nucleotide Diversity of the Coding and Promoter Regions of DREB1D, a Candidate Gene for Drought Tolerance in Coffea Species. Tropical Plant Biology, 2018, 11, 31-48.	1.0	14
132	Use of a draft genome of coffee (C <i>offea arabica</i>) to identify <scp>SNP</scp> s associated with caffeine content. Plant Biotechnology Journal, 2018, 16, 1756-1766.	4.1	48

#	ARTICLE	IF	CITATIONS
133	Draft genome sequence of <i>Camellia sinensis</i> var. <i>sinensis</i> provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4151-E4158.	3.3	730
134	Ectopic expression of the <scp><i>Coffea canephora</i></scp> SERK1 homologâ€induced differential transcription of genes involved in auxin metabolism and in the developmental control of embryogenesis. Physiologia Plantarum, 2018, 163, 530-551.	2.6	23
135	Improving <i>Nelumbo nucifera</i> genome assemblies using highâ€resolution genetic maps and BioNano genome mapping reveals ancient chromosome rearrangements. Plant Journal, 2018, 94, 721-734.	2.8	42
136	Integrative analysis of the late maturation programme and desiccation tolerance mechanisms in intermediate coffee seeds. Journal of Experimental Botany, 2018, 69, 1583-1597.	2.4	35
137	High-throughput targeted genotyping using next-generation sequencing applied in Coffea canephora breeding. Euphytica, 2018, 214, 1.	0.6	19
138	Development of a rapid and efficient DNA-based method to detect and quantify adulterations in coffee (Arabica versus Robusta). Food Control, 2018, 88, 198-206.	2.8	34
139	Genome-wide searches and molecular analyses highlight the unique evolutionary path of flavone synthase I (FNSI) in Apiaceae. Genome, 2018, 61, 103-109.	0.9	7
140	Whole Genome Duplication in Plants: Implications for Evolutionary Analysis. Methods in Molecular Biology, 2018, 1704, 291-315.	0.4	15
141	Genome-wide association study reveals candidate genes influencing lipids and diterpenes contents in Coffea arabica L. Scientific Reports, 2018, 8, 465.	1.6	53
143	Relationship between aluminum stress and caffeine biosynthesis in suspension cells of Coffea arabica L. Journal of Inorganic Biochemistry, 2018, 181, 177-182.	1.5	11
144	Evolutionary Model for the Statistical Divergence of Paralogous and Orthologous Gene Pairs Generated by Whole Genome Duplication and Speciation. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15, 1579-1584.	1.9	9
145	Convergent adaptive evolution in marginal environments: unloading transposable elements as a common strategy among mangrove genomes. New Phytologist, 2018, 217, 428-438.	3.5	69
146	Natural product modulators of human sensations and mood: molecular mechanisms and therapeutic potential. Chemical Society Reviews, 2018, 47, 1592-1637.	18.7	28
147	Transcriptional memory contributes to drought tolerance in coffee (Coffea canephora) plants. Environmental and Experimental Botany, 2018, 147, 220-233.	2.0	47
148	Genome Assembly and Annotation of the Medicinal Plant <i>Calotropis gigantea</i> , a Producer of Anticancer and Antimalarial Cardenolides. G3: Genes, Genomes, Genetics, 2018, 8, 385-391.	0.8	38
150	Localization and transport of indole-3-acetic acid during somatic embryogenesis in Coffea canephora. Protoplasma, 2018, 255, 695-708.	1.0	44
151	Coffee Somatic Embryogenesis: How Did Research, Experience Gained and Innovations Promote the Commercial Propagation of Elite Clones From the Two Cultivated Species?. Frontiers in Plant Science, 2018, 9, 1630.	1.7	48
152	Primer design and amplification efficiencies are crucial for reliability of quantitative PCR studies of caffeine biosynthetic N-methyltransferases in coffee. 3 Biotech, 2018, 8, 467.	1.1	9

#	Article	IF	Citations
153	A simple and efficient agroinfiltration method in coffee leaves (Coffea arabica L.): assessment of factors affecting transgene expression. 3 Biotech, 2018, 8, 471.	1.1	6
154	Caffeine Extraction, Enzymatic Activity and Gene Expression of Caffeine Synthase from Plant Cell Suspensions. Journal of Visualized Experiments, 2018, , .	0.2	2
155	Genetic diversity of promising â€~conilon' coffee clones based on morpho-agronomic variables. Anais Da Academia Brasileira De Ciencias, 2018, 90, 2437-2446.	0.3	23
156	SNP in the Coffea arabica genome associated with coffee quality. Tree Genetics and Genomes, 2018, 14, 1.	0.6	19
157	Cloning of the Coffea canephora SERK1 promoter and its molecular analysis during the cell-to-embryo transition. Electronic Journal of Biotechnology, 2018, 36, 34-46.	1.2	4
158	CRISPR/Cas9-mediated efficient targeted mutagenesis has the potential to accelerate the domestication of Coffea canephora. Plant Cell, Tissue and Organ Culture, 2018, 134, 383-394.	1.2	64
159	The Integration of Metabolomics and Next-Generation Sequencing Data to Elucidate the Pathways of Natural Product Metabolism in Medicinal Plants. Planta Medica, 2018, 84, 855-873.	0.7	47
161	High-quality assembly of the reference genome for scarlet sage, Salvia splendens, an economically important ornamental plant. GigaScience, 2018, 7, .	3.3	49
162	Structure and Distribution of Centromeric Retrotransposons at Diploid and Allotetraploid Coffea Centromeric and Pericentromeric Regions. Frontiers in Plant Science, 2018, 9, 175.	1.7	31
163	Tools for Genetic Studies in Experimental Populations of Polyploids. Frontiers in Plant Science, 2018, 9, 513.	1.7	175
164	Inpactor, Integrated and Parallel Analyzer and Classifier of LTR Retrotransposons and Its Application for Pineapple LTR Retrotransposons Diversity and Dynamics. Biology, 2018, 7, 32.	1.3	21
165	Structural Variants in Ancient Genomes. Population Genomics, 2018, , 375-391.	0.2	1
166	Bioinformatics Approaches for Genomics and Post Genomics Applications of Anticancer Plants. , 2018, , 283-317.		3
167	Resolution effects in reconstructing ancestral genomes. BMC Genomics, 2018, 19, 100.	1.2	2
168	Pinning down ploidy in paleopolyploid plants. BMC Genomics, 2018, 19, 287.	1.2	10
169	Phylogenomics of the olive tree (Olea europaea) reveals the relative contribution of ancient allo- and autopolyploidization events. BMC Biology, 2018, 16, 15.	1.7	30
170	Investigation of benzylisoquinoline alkaloid biosynthetic pathway and its transcriptional regulation in lotus. Horticulture Research, 2018, 5, 29.	2.9	50
171	Genomics and Evolution of Medicinal Plants. , 2019, , 1-33.		4

#	Article	IF	CITATIONS
172	Accurate genomic prediction of Coffea canephora in multiple environments using whole-genome statistical models. Heredity, 2019, 122, 261-275.	1.2	36
173	The evolution of gene duplicates in angiosperms and the impact of protein-protein interactions and the mechanism of duplication. Genome Biology and Evolution, 2019, 11, 2292-2305.	1.1	48
174	A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Scientific Reports, 2019, 9, 11769.	1.6	179
175	Molecular Origins of Functional Diversity in Benzylisoquinoline Alkaloid Methyltransferases. Frontiers in Plant Science, 2019, 10, 1058.	1.7	25
176	Convergent biosynthetic transformations to a bacterial specialized metabolite. Nature Chemical Biology, 2019, 15, 1043-1048.	3.9	10
177	Lipid profile adjustments may contribute to warming acclimation and to heat impact mitigation by elevated [CO2] in Coffea spp. Environmental and Experimental Botany, 2019, 167, 103856.	2.0	32
178	Plant population dynamics on oceanic islands during the Late Quaternary climate changes: genetic evidence from a tree species (<i>Coffea mauritiana</i>) in Reunion Island. New Phytologist, 2019, 224, 974-986.	3.5	11
179	De novo genome assembly of the endangered Acer yangbiense, a plant species with extremely small populations endemic to Yunnan Province, China. GigaScience, 2019, 8, .	3.3	42
180	Transposable Elements Adaptive Role in Genome Plasticity, Pathogenicity and Evolution in Fungal Phytopathogens. International Journal of Molecular Sciences, 2019, 20, 3597.	1.8	50
181	Assessing Anthocyanin Biosynthesis in Solanaceae as a Model Pathway for Secondary Metabolism. Genes, 2019, 10, 559.	1.0	14
182	Convergent horizontal gene transfer and cross-talk of mobile nucleic acids in parasitic plants. Nature Plants, 2019, 5, 991-1001.	4.7	72
183	Molecular Characterization, DNA Finger Printing, and Genomics in Horticultural Crops. , 2019, , 595-618.		1
184	Comparative Genomics of Convergent Evolution. Springer Proceedings in Complexity, 2019, , 307-325.	0.2	0
185	The chromosome-scale reference genome of black pepper provides insight into piperine biosynthesis. Nature Communications, 2019, 10, 4702.	5.8	115
186	The wild sweetpotato (Ipomoea trifida) genome provides insights into storage root development. BMC Plant Biology, 2019, 19, 119.	1.6	33
187	Genome-wide analysis, transcription factor network approach and gene expression profile of GH3 genes over early somatic embryogenesis in Coffea spp. BMC Genomics, 2019, 20, 812.	1.2	12
188	The renaissance of comparative biochemistry. American Journal of Botany, 2019, 106, 3-13.	0.8	5
189	Genome sequence of (i>Malania oleifera (i>, a tree with great value for nervonic acid production. GigaScience, 2019, 8, .	3.3	36

#	Article	IF	CITATIONS
190	Early Selection Enabled by the Implementation of Genomic Selection in Coffea arabica Breeding. Frontiers in Plant Science, 2018, 9, 1934.	1.7	45
191	BDBM 1.0: A Desktop Application for Efficient Retrieval and Processing of High-Quality Sequence Data and Application to the Identification of the Putative Coffea S-Locus. Interdisciplinary Sciences, Computational Life Sciences, 2019, 11, 57-67.	2.2	13
193	Homeologous regulation of Frigida-like genes provides insights on reproductive development and somatic embryogenesis in the allotetraploid Coffea arabica. Scientific Reports, 2019, 9, 8446.	1.6	10
194	Evaluation of chloroplast genome annotation tools and application to analysis of the evolution of coffee species. PLoS ONE, 2019, 14, e0216347.	1.1	31
195	Metabolomics for a Millenniums-Old Crop: Tea Plant (<i>Camellia sinensis</i>). Journal of Agricultural and Food Chemistry, 2019, 67, 6445-6457.	2.4	32
196	Genome-Wide Identification of WRKY Genes and Their Response to Cold Stress in Coffea canephora. Forests, 2019, 10, 335.	0.9	15
197	The Carrot Nuclear Genome and Comparative Analysis. Compendium of Plant Genomes, 2019, , 187-204.	0.3	1
198	Uptake of adenine by purine permeases of Coffea canephora. Bioscience, Biotechnology and Biochemistry, 2019, 83, 1300-1305.	0.6	7
199	Tip of the trichome: evolution of acylsugar metabolic diversity in Solanaceae. Current Opinion in Plant Biology, 2019, 49, 8-16.	3.5	72
200	Improvement of phytochemical production by plant cells and organ culture and by genetic engineering. Plant Cell Reports, 2019, 38, 1199-1215.	2.8	52
201	LC-MS Metabolomics and Chemotaxonomy of Caffeine-Containing Holly (<i>llex</i>) Species and Related Taxa in the Aquifoliaceae. Journal of Agricultural and Food Chemistry, 2019, 67, 5687-5699.	2.4	25
202	Tea Plant Information Archive: a comprehensive genomics and bioinformatics platform for tea plant. Plant Biotechnology Journal, 2019, 17, 1938-1953.	4.1	220
203	Expression of DREB-Like Genes in Coffea canephora and C. arabica Subjected to Various Types of Abiotic Stress. Tropical Plant Biology, 2019, 12, 98-116.	1.0	12
204	Genetic Engineering in Coffee. , 2019, , 447-488.		5
205	Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biology, 2019, 20, 38.	3.8	542
206	An Altered Circadian Clock Coupled with a Higher Photosynthesis Efficiency Could Explain the Better Agronomic Performance of a New Coffee Clone When Compared with a Standard Variety. International Journal of Molecular Sciences, 2019, 20, 736.	1.8	11
207	Combining bioinformatics and conventional PCR optimization strategy for one-time design of high-specificity primers for WRKY gene family using unigene database. Molecular Biology Reports, 2019, 46, 3461-3475.	1.0	1
208	Genetic diversity and re-classification of coffee (Coffea canephora Pierre ex A. Froehner) from South Western Nigeria through genotyping-by-sequencing-single nucleotide polymorphism analysis. Genetic Resources and Crop Evolution, 2019, 66, 685-696.	0.8	18

#	Article	IF	CITATIONS
209	The Aquilegia genome reveals a hybrid origin of core eudicots. Genome Biology, 2019, 20, 256.	3.8	38
210	Identification and Expression Analysis of the NAC Gene Family in Coffea canephora. Agronomy, 2019, 9, 670.	1.3	19
211	Evolutionary Dynamics of Structural Variation at a Key Locus for Color Pattern Diversification in Cichlid Fishes. Genome Biology and Evolution, 2019, 11, 3452-3465.	1.1	15
212	What Should We Do About Habitual Caffeine Use in Athletes?. Sports Medicine, 2019, 49, 833-842.	3.1	64
213	To flourish or perish: evolutionary TRiPs into the sensory biology of plant-herbivore interactions. Pflugers Archiv European Journal of Physiology, 2019, 471, 213-236.	1.3	17
214	Metabolic <scp>GWAS</scp> â€based dissection of genetic bases underlying the diversity of plant metabolism. Plant Journal, 2019, 97, 91-100.	2.8	116
215	An integrated analysis of mRNA and sRNA transcriptional profiles in Coffea arabica L. roots: insights on nitrogen starvation responses. Functional and Integrative Genomics, 2019, 19, 151-169.	1.4	28
216	Decoding systems biology of plant stress for sustainable agriculture development and optimized food production. Progress in Biophysics and Molecular Biology, 2019, 145, 19-39.	1.4	15
217	Virus-induced gene silencing: empowering genetics in non-model organisms. Journal of Experimental Botany, 2019, 70, 757-770.	2.4	72
218	Development and evaluation of a genomeâ€wide Coffee 8.5K <scp>SNP</scp> array and its application for highâ€density genetic mapping and for investigating the origin of <i>Coffea arabica</i> L Plant Biotechnology Journal, 2019, 17, 1418-1430.	4.1	41
219	The first genetic linkage map for Fraxinus pennsylvanica and syntenic relationships with four related species. Plant Molecular Biology, 2019, 99, 251-264.	2.0	9
220	Identification of Hydroxypyrazine <i>O</i> -Methyltransferase Genes in <i>Coffea arabica</i> : A Potential Source of Methoxypyrazines That Cause Potato Taste Defect. Journal of Agricultural and Food Chemistry, 2019, 67, 341-351.	2.4	12
221	Chemistry of Coffee., 2019,,.		14
222	The SCJ Small Parsimony Problem for Weighted Gene Adjacencies. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16, 1364-1373.	1.9	6
223	Comparative genome/transcriptome analysis probes Boraginales' phylogenetic position, WGDs in Boraginales, and key enzyme genes in the alkannin/shikonin core pathway. Molecular Ecology Resources, 2020, 20, 228-241.	2.2	24
224	Use of genome editing technologies for genetic improvement of crops of tropical origin. Plant Cell, Tissue and Organ Culture, 2020, 140, 215-244.	1.2	13
225	Seed comparative genomics in three coffee species identify desiccation tolerance mechanisms in intermediate seeds. Journal of Experimental Botany, 2020, 71, 1418-1433.	2.4	14
226	The ancient wave of polyploidization events in flowering plants and their facilitated adaptation to environmental stress. Plant, Cell and Environment, 2020, 43, 2847-2856.	2.8	71

#	Article	IF	CITATIONS
227	TIP_finder: An HPC Software to Detect Transposable Element Insertion Polymorphisms in Large Genomic Datasets. Biology, 2020, 9, 281.	1.3	3
228	Phylogenomic analysis clarifies the evolutionary origin of <i>Coffea arabica</i> Systematics and Evolution, 2021, 59, 953-963.	1.6	16
229	Asterid Phylogenomics/Phylotranscriptomics Uncover Morphological Evolutionary Histories and Support Phylogenetic Placement for Numerous Whole-Genome Duplications. Molecular Biology and Evolution, 2020, 37, 3188-3210.	3.5	82
230	Genome assembly of <i>Chiococca alba</i> uncovers key enzymes involved in the biosynthesis of unusual terpenoids. DNA Research, 2020, 27, .	1.5	10
231	YUCCA-Mediated Biosynthesis of the Auxin IAA Is Required during the Somatic Embryogenic Induction Process in Coffea canephora. International Journal of Molecular Sciences, 2020, 21, 4751.	1.8	14
232	In Search of Herbal Anti-SARS-Cov2 Compounds. Frontiers in Plant Science, 2020, 11, 589998.	1.7	18
233	<i>N</i> -Methyltransferases of Caffeine Biosynthetic Pathway in Plants. Journal of Agricultural and Food Chemistry, 2020, 68, 15359-15372.	2.4	5
234	The oleosin gene family in coffee: Analysis of oleosomes, oleosins and lipid-related gene expression during germination of Coffea arabica seeds. Plant Gene, 2020, 24, 100263.	1.4	2
235	Elevated Temperatures Impose Transcriptional Constraints and Elicit Intraspecific Differences Between Coffee Genotypes. Frontiers in Plant Science, 2020, 11, 1113.	1.7	15
236	Accurate Differentiation of Green Beans of Arabica and Robusta Coffee Using Nanofluidic Array of Single Nucleotide Polymorphism (SNP) Markers. Journal of AOAC INTERNATIONAL, 2020, 103, 315-324.	0.7	12
237	iTRAQ-based proteomic technique provides insights into salt stress responsive proteins in Apocyni Veneti Folium (Apocynum venetum L.). Environmental and Experimental Botany, 2020, 180, 104247.	2.0	9
238	Evolutionary analysis of the Moringa oleifera genome reveals a recent burst of plastid to nucleus gene duplications. Scientific Reports, 2020, 10, 17646.	1.6	12
239	Adaptive convergence at the genomic levelâ€"prevalent, uncommon or very rare?. National Science Review, 2020, 7, 947-951.	4.6	9
240	Metabolite and Transcriptome Profiling on Xanthine Alkaloids-Fed Tea Plant (Camellia sinensis) Shoot Tips and Roots Reveal the Complex Metabolic Network for Caffeine Biosynthesis and Degradation. Frontiers in Plant Science, 2020, 11, 551288.	1.7	13
241	Genome-Wide Screening and Characterization of Non-Coding RNAs in Coffea canephora. Non-coding RNA, 2020, 6, 39.	1.3	5
242	Improving Pathogen Resistance by Exploiting Plant Susceptibility Genes in Coffee (Coffea spp.). Agronomy, 2020, 10, 1928.	1.3	8
243	Transcriptomic Leaf Profiling Reveals Differential Responses of the Two Most Traded Coffee Species to Elevated [CO2]. International Journal of Molecular Sciences, 2020, 21, 9211.	1.8	11
244	The NLR-Annotator Tool Enables Annotation of the Intracellular Immune Receptor Repertoire. Plant Physiology, 2020, 183, 468-482.	2.3	147

#	Article	IF	CITATIONS
245	Measuring Performance Metrics of Machine Learning Algorithms for Detecting and Classifying Transposable Elements. Processes, 2020, 8, 638.	1.3	25
246	Identification and Distribution of NBS-Encoding Resistance Genes of Dactylis glomerata L. and Its Expression Under Abiotic and Biotic Stress. Biochemical Genetics, 2020, 58, 824-847.	0.8	7
247	Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants. BMC Biology, 2020, 18, 63.	1.7	94
248	The honeysuckle genome provides insight into the molecular mechanism of carotenoid metabolism underlying dynamic flower coloration. New Phytologist, 2020, 227, 930-943.	3.5	68
249	Temperature Impacts the Response of Coffea canephora to Decreasing Soil Water Availability. Tropical Plant Biology, 2020, 13, 236-250.	1.0	10
250	The genome evolution and domestication of tropical fruit mango. Genome Biology, 2020, 21, 60.	3.8	104
251	Identification and characterization of N9-methyltransferase involved in converting caffeine into non-stimulatory theacrine in tea. Nature Communications, 2020, 11, 1473.	5.8	27
252	Slower development of lower canopy beans produces better coffee. Journal of Experimental Botany, 2020, 71, 4201-4214.	2.4	10
253	Computational approaches to unravel the pathways and evolution of specialized metabolism. Current Opinion in Plant Biology, 2020, 55, 38-46.	3.5	22
254	Whole-genome, transcriptome, and methylome analyses provide insights into the evolution of platycoside biosynthesis in Platycodon grandiflorus, a medicinal plant. Horticulture Research, 2020, 7, 112.	2.9	38
255	In silico guided structural and functional analysis of genes with potential involvement in resistance to coffee leaf rust: A functional marker based approach. PLoS ONE, 2020, 15, e0222747.	1.1	13
256	Complex evolutionary history of coffees revealed by full plastid genomes and 28,800 nuclear SNP analyses, with particular emphasis on Coffea canephora (Robusta coffee). Molecular Phylogenetics and Evolution, 2020, 151, 106906.	1.2	13
257	Resilient and Sensitive Key Points of the Photosynthetic Machinery of Coffea spp. to the Single and Superimposed Exposure to Severe Drought and Heat Stresses. Frontiers in Plant Science, 2020, 11, 1049.	1.7	31
258	The chloroplast genome of <i>Gardenia jasminoides</i> and related phylogenetic analysis (Rubiaceae). Mitochondrial DNA Part B: Resources, 2020, 5, 1743-1745.	0.2	2
259	Evolutionary rate variation among genes involved in galactomannan biosynthesis inCoffea canephora. Ecology and Evolution, 2020, 10, 2559-2569.	0.8	3
260	Genome sequence of the agarwood tree Aquilaria sinensis (Lour.) Spreng: the first chromosome-level draft genome in the Thymelaeceae family. GigaScience, 2020, 9, .	3.3	34
261	Resequencing 93 accessions of coffee unveils independent and parallel selection during Coffea species divergence. Plant Molecular Biology, 2020, 103, 51-61.	2.0	10
262	Temporal shotgun metagenomics of an Ecuadorian coffee fermentation process highlights the predominance of lactic acid bacteria. Current Research in Biotechnology, 2020, 2, 1-15.	1.9	42

#	Article	IF	CITATIONS
263	Transcriptome and Phytochemical Analysis Reveals the Alteration of Plant Hormones, Characteristic Metabolites, and Related Gene Expression in Tea (Camellia sinensis L.) Leaves During Withering. Plants, 2020, 9, 204.	1.6	20
264	Chromosome Engineering in Tropical Cash Crops. Agronomy, 2020, 10, 122.	1.3	3
265	Genomic analyses of a "living fossil― The endangered doveâ€tree. Molecular Ecology Resources, 2020, 20, 756-769.	2.2	26
267	Distinct Expression and Methylation Patterns for Genes with Different Fates following a Single Whole-Genome Duplication in Flowering Plants. Molecular Biology and Evolution, 2020, 37, 2394-2413.	3.5	75
268	The Reference Genome of Tea Plant and Resequencing of 81 Diverse Accessions Provide Insights into Its Genome Evolution and Adaptation. Molecular Plant, 2020, 13, 1013-1026.	3.9	257
269	Gene and genome duplications in the evolution of chemodiversity: perspectives from studies of Lamiaceae. Current Opinion in Plant Biology, 2020, 55, 74-83.	3.5	44
270	Selective efficiency of genome-wide selection in Coffea canephora breeding. Tree Genetics and Genomes, 2020, 16, 1.	0.6	24
271	Exploring plant metabolic genomics: chemical diversity, metabolic complexity in the biosynthesis and transport of specialized metabolites with the tea plant as a model. Critical Reviews in Biotechnology, 2020, 40, 667-688.	5.1	88
272	Genome-Wide Characterization and Analysis of bHLH Transcription Factors Related to Crocin Biosynthesis in <i>Gardenia jasminoides</i> Ellis (Rubiaceae). BioMed Research International, 2020, 2020, 1-11.	0.9	13
273	Photoperiod-dependent transcriptional modifications in key metabolic pathways in Coffea arabica. Tree Physiology, 2021, 41, 302-316.	1.4	4
274	The genome of Shanputao ($\langle i \rangle V$ itis amurensis $\langle i \rangle$) provides a new insight into cold tolerance of grapevine. Plant Journal, 2021, 105, 1495-1506.	2.8	52
275	Genome-Wide Identification, Evolution, and Expression Profile of Aquaporin Genes in Coffea canephora in Response to Water Deficit. Plant Molecular Biology Reporter, 2021, 39, 146-162.	1.0	4
277	Coffee cell wallsâ€"composition, influence on cup quality and opportunities for coffee improvements. Food Quality and Safety, 2021, 5, .	0.6	8
278	Coffee Bean Transcriptome. , 2021, , 627-639.		1
279	Revisiting ABR editing in the period 2006–2012 and recent developments. Advances in Botanical Research, 2021, 100, 19-40.	0.5	0
280	Chromosome-level genome assembly of Ophiorrhiza pumila reveals the evolution of camptothecin biosynthesis. Nature Communications, 2021, 12, 405.	5.8	77
281	Convergent Biochemical Pathways for Xanthine Alkaloid Production in Plants Evolved from Ancestral Enzymes with Different Catalytic Properties. Molecular Biology and Evolution, 2021, 38, 2704-2714.	3.5	6
282	A Transcriptomic Approach to Understanding the Combined Impacts of Supra-Optimal Temperatures and CO2 Revealed Different Responses in the Polyploid Coffea arabica and Its Diploid Progenitor C. canephora. International Journal of Molecular Sciences, 2021, 22, 3125.	1.8	16

#	Article	IF	Citations
283	The $\langle i \rangle$ Mitragyna speciosa $\langle i \rangle$ (Kratom) Genome: a resource for data-mining potent pharmaceuticals that impact human health. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	19
285	The absence of the caffeine synthase gene is involved in the naturally decaffeinated status of Coffea humblotiana, a wild species from Comoro archipelago. Scientific Reports, 2021, 11, 8119.	1.6	17
286	Phospholipases C and D and Their Role in Biotic and Abiotic Stresses. Plants, 2021, 10, 921.	1.6	10
287	On the Identification of Clinically Relevant Bacterial Amino Acid Changes at the Whole Genome Level Using Auto-PSS-Genome. Interdisciplinary Sciences, Computational Life Sciences, 2021, 13, 334-343.	2.2	2
288	Crosstalk of Multi-Omics Platforms with Plants of Therapeutic Importance. Cells, 2021, 10, 1296.	1.8	16
290	A high-quality genome assembly of <i>Morinda officinalis</i> , a famous native southern herb in the Lingnan region of southern China. Horticulture Research, 2021, 8, 135.	2.9	17
291	Diversity of Leaf Stomatal Traits among Coffea canephora Pierre ex A. Froehner Genotypes. Agronomy, 2021, 11, 1126.	1.3	11
292	Chromosomeâ€scale genome assembly of areca palm (<i>Areca catechu</i>). Molecular Ecology Resources, 2021, 21, 2504-2519.	2.2	20
294	Tissue-specific analysis of Coffea arabica L. transcriptome revealed potential regulatory roles of lncRNAs. Saudi Journal of Biological Sciences, 2021, 28, 6023-6029.	1.8	0
295	Genome assembly of primitive cultivated potato <i>Solanum stenotomum</i> provides insights into potato evolution. G3: Genes, Genomes, Genetics, 2021, 11 , .	0.8	5
296	Exploring the evolutionary process of alkannin/shikonin $\langle i \rangle O \langle i \rangle$ -acyltransferases by a reliable $\langle i \rangle$ Lithospermum erythrorhizon $\langle i \rangle$ genome. DNA Research, 2021, 28, .	1.5	5
297	An ancient whole-genome duplication event and its contribution to flavor compounds in the tea plant (Camellia sinensis). Horticulture Research, 2021, 8, 176.	2.9	33
298	On the inference of complex phylogenetic networks by Markov Chain Monte-Carlo. PLoS Computational Biology, 2021, 17, e1008380.	1.5	12
299	Marker-Assisted Pyramiding of Multiple Disease Resistance Genes in Coffee Genotypes (Coffea arabica). Agronomy, 2021, 11, 1763.	1.3	7
300	Genetic Diversity of Coffea arabica L.: A Genomic Approach. , 0, , .		0
301	A highâ€quality genome assembly of <i>Jasminum sambac</i> provides insight into floral trait formation and Oleaceae genome evolution. Molecular Ecology Resources, 2022, 22, 724-739.	2.2	18
302	Genome-Wide Analysis, Modeling, and Identification of Amino Acid Binding Motifs Suggest the Involvement of GH3 Genes during Somatic Embryogenesis of Coffea canephora. Plants, 2021, 10, 2034.	1.6	6
303	Large-scale prospection of genes on caffeine-free Coffea arabica plants – Discovery of novel markers associated with development and secondary metabolism. Plant Gene, 2021, 27, 100314.	1.4	3

#	Article	IF	CITATIONS
304	Genomic and transcriptomic inventory of membrane transporters in coffee: Exploring molecular mechanisms of metabolite accumulation. Plant Science, 2021, 312, 111018.	1.7	3
305	Genome and transcriptome of Papaver somniferum Chinese landrace CHM indicates that massive genome expansion contributes to high benzylisoquinoline alkaloid biosynthesis. Horticulture Research, 2021, 8, 5.	2.9	22
306	Brassicaceae transcriptomes reveal convergent evolution of super-accumulation of sinigrin. Communications Biology, 2020, 3, 779.	2.0	8
307	Improving coffee species for pathogen resistance. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , .	0.6	9
308	Intrinsic non-stomatal resilience to drought of the photosynthetic apparatus in <i>Coffea</i> spp. is strengthened by elevated air [CO2]. Tree Physiology, 2021, 41, 708-727.	1.4	40
313	Is Coffee a Useful Source of Caffeine Preexercise?. International Journal of Sport Nutrition and Exercise Metabolism, 2020, 30, 69-82.	1.0	12
314	Dramatic Number Variation of R Genes in Solanaceae Species Accounted for by a Few R Gene Subfamilies. PLoS ONE, 2016, 11, e0148708.	1.1	50
315	A genome-wide analysis of the RNA-guided silencing pathway in coffee reveals insights into its regulatory mechanisms. PLoS ONE, 2017, 12, e0176333.	1.1	16
316	Convergent evolution and topologically disruptive polymorphisms among multidrug-resistant tuberculosis in Peru. PLoS ONE, 2017, 12, e0189838.	1.1	19
317	Advances in detection of stress tolerance in plants through metabolomics approaches. Plant OMICS, 2017, 10, 153-163.	0.4	41
318	Genomic Insights into the Adaptive Convergent Evolution. Current Genomics, 2019, 20, 81-89.	0.7	16
320	Evolutionary routes to biochemical innovation revealed by integrative analysis of a plant-defense related specialized metabolic pathway. ELife, 2017, 6, .	2.8	84
321	Intrinsic cooperativity potentiates parallel cis-regulatory evolution. ELife, 2018, 7, .	2.8	19
322	A draft genome and transcriptome of common milkweed (<i>Asclepias syriaca</i>) as resources for evolutionary, ecological, and molecular studies in milkweeds and Apocynaceae. PeerJ, 2019, 7, e7649.	0.9	19
323	Transcriptome analysis of the induction of somatic embryogenesis in <i>Coffea canephora</i> and the participation of ARF and Aux/IAA genes. PeerJ, 2019, 7, e7752.	0.9	25
324	Transcriptional patterns of <i>Coffea arabica</i> L. nitrate reductase, glutamine and asparagine synthetase genes are modulated under nitrogen suppression and coffee leaf rust. PeerJ, 2020, 8, e8320.	0.9	8
325	Comparative transcriptome analysis revealed the influence of sucrose on flavor and taste quality of Coffea arabica and C. canephora varieties. Beverage Plant Research, 2021, 1, 1-9.	0.6	0
326	GreeNC 2.0: a comprehensive database of plant long non-coding RNAs. Nucleic Acids Research, 2022, 50, D1442-D1447.	6.5	33

#	Article	IF	CITATIONS
327	A chromosome-level genome sequence of Chrysanthemum seticuspe, a model species for hexaploid cultivated chrysanthemum. Communications Biology, 2021, 4, 1167.	2.0	32
328	Comparative anatomy and genetic bases of fruit development in selected Rubiaceae (Gentianales). American Journal of Botany, 2021, 108, 1838-1860.	0.8	3
329	Unravelling the genetic potential of untapped crop wild genetic resources for crop improvement. Conservation Genetics Resources, 2022, 14, 109-124.	0.4	4
330	A surface-modified silicon carbide nanoparticles based electrochemical sensor for free interferences determination of caffeine in tea and coffee. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 274, 115473.	1.7	7
331	Coffee got its buzz by a different route than tea. Nature, 0, , .	13.7	0
332	Perspective on Industrial Application of Specialized Metabolites in the Genomic Era. Mokuzai Gakkai Shi, 2015, 61, 232-237.	0.2	0
333	Zur Geschichte des Koffeinkonsums. , 2016, , 5-38.		0
334	Plant functional genomics: Approaches and applications. , 2016, , 157-186.		2
335	Rediscovery of haploid breeding in the genomics era. Journal of Plant Biotechnology, 2016, 43, 12-20.	0.1	1
336	Gene cloning and transformation of Arabidopsis plant to study the functions of the Early Responsive to Dehydration gene (ERD4) in coffee genome. Science and Technology Development Journal, 2016, 19, 53-63.	0.0	1
337	Alkaloid biosynthesis and regulation in plants. , 2016, , 85-118.		0
338	Identification and analysis of jasmonate pathway genes in Coffea canephora (robusta coffee) by in silico approach. Pharmacognosy Magazine, 2017, 13, 196.	0.3	1
341	Plant-Derived Drugs Affecting GPRCs. Learning Materials in Biosciences, 2018, , 99-120.	0.2	0
346	Truncated Non-Nuclear Transposable Elements in Grapevine: A Mini Review. Scientia Agriculturae Bohemica, 2019, 50, 219-227.	0.3	1
347	Similarity-Based Analysis of Allele Frequency Distribution among Multiple Populations Identifies Adaptive Genomic Structural Variants. Molecular Biology and Evolution, 2022, 39, .	3.5	6
348	Multi-Approach Analysis Reveals Local Adaptation in a Widespread Forest Tree of Reunion Island. Plant and Cell Physiology, 2021, 62, 280-292.	1.5	6
350	Accurate, automatic annotation of peptidases with hotpep-protease. Green Chemical Engineering, 2020, 1, 124-130.	3.3	3
351	WCSdb: a database of wild <i>Coffea</i> species. Database: the Journal of Biological Databases and Curation, 2020, 2020, .	1.4	5

#	Article	IF	Citations
352	Background and History of Tobacco Genome Resources. Compendium of Plant Genomes, 2020, , 1-19.	0.3	2
353	Gene Expression in Coffee. Progress in Botany Fortschritte Der Botanik, 2020, , 43-111.	0.1	3
354	An overview of the endogenous and environmental factors related to the <i>Coffea arabica</i> flowering process. Beverage Plant Research, 2021, 1, 1-16.	0.6	11
356	An 82 bp tandem repeat family typical of 3′ non-coding end of Gypsy/TAT LTR retrotransposons is conserved in <i>Coffea</i> spp. pericentromeres. Genome, 2022, 65, 137-151.	0.9	4
358	Understanding the Impact of Drought in Coffea Genotypes: Transcriptomic Analysis Supports a Common High Resilience to Moderate Water Deficit but a Genotype Dependent Sensitivity to Severe Water Deficit. Agronomy, 2021, 11, 2255.	1.3	18
360	In silico identification of Capsicum type III polyketide synthase genes and expression patterns in Capsicum annuum. Open Life Sciences, 2020, 15, 753-762.	0.6	2
361	Sequencing Crop Genomes: A Gateway to Improve Tropical Agriculture. Tropical Life Sciences Research, 2016, 27, 93-114.	0.5	15
362	Analysis of SSR and SNP markers. , 2022, , 131-144.		3
363	A highâ€quality reference genome for <i>Fraxinus pennsylvanica</i> for ash species restoration and research. Molecular Ecology Resources, 2022, 22, 1284-1302.	2.2	12
364	Chromosomeâ€evel assembly of the <i>Neolamarckia cadamba</i> genome provides insights into the evolution of cadambine biosynthesis. Plant Journal, 2022, 109, 891-908.	2.8	19
366	O-methyltransferases catalyze the last step of geniposide biosynthesis in Gardenia jasminoides. Industrial Crops and Products, 2022, 177, 114438.	2.5	3
367	From Genome Sequencing to CRISPR-Based Genome Editing for Climate-Resilient Forest Trees. International Journal of Molecular Sciences, 2022, 23, 966.	1.8	16
368	Next-Generation Proteomics Reveals a Greater Antioxidative Response to Drought in Coffea arabica Than in Coffea canephora. Agronomy, 2022, 12, 148.	1.3	10
369	Gramene: A Resource for Comparative Analysis of Plants Genomes and Pathways. Methods in Molecular Biology, 2022, 2443, 101-131.	0.4	23
371	The SAUR gene family in coffee: genome-wide identification and gene expression analysis during somatic embryogenesis. Molecular Biology Reports, 2022, 49, 1973-1984.	1.0	4
372	Adaptive potential of <i>Coffea canephora</i> from Uganda in response to climate change. Molecular Ecology, 2022, 31, 1800-1819.	2.0	7
374	Transcriptome Analysis Uncovers the Gene Expression Profile of Hemileia vastatrix (Race XXXIII) during the Interactions with Resistant and Susceptible Coffee. Agronomy, 2022, 12, 444.	1.3	3
375	Heterologous expression of <i>Bixa orellana</i> cleavage dioxygenase 4–3 drives crocin but not bixin biosynthesis. Plant Physiology, 2022, 188, 1469-1482.	2.3	13

#	Article	IF	CITATIONS
376	Chromosomeâ€level genome of <i>Camellia lanceoleosa</i> provides a valuable resource for understanding genome evolution and selfâ€incompatibility. Plant Journal, 2022, 110, 881-898.	2.8	29
377	New cup out of old coffee: contribution of parental gene expression legacy to phenotypic novelty in coffee beans of the allopolyploid <i>Coffee arabica</i>	1.4	3
378	Metabolite Profiling and Transcriptome Analysis Revealed the Conserved Transcriptional Regulation Mechanism of Caffeine Biosynthesis in Tea and Coffee Plants. Journal of Agricultural and Food Chemistry, 2022, 70, 3239-3251.	2.4	14
379	Convergence Analysis of Rust Fungi and Anther Smuts Reveals Their Common Molecular Adaptation to a Phytoparasitic Lifestyle. Frontiers in Genetics, 2022, 13, 863617.	1.1	2
380	The impact of tandem duplication on gene evolution in Solanaceae species. Journal of Integrative Agriculture, 2022, 21, 1004-1014.	1.7	17
381	Genetic composition and diversity of Arabica coffee in the crop's centre of origin and its impact on four major fungal diseases. Molecular Ecology, 2023, 32, 2484-2503.	2.0	4
382	Global Patterns of Subgenome Evolution in Organelle-Targeted Genes of Six Allotetraploid Angiosperms. Molecular Biology and Evolution, 2022, 39, .	3.5	17
383	Multiâ€omics reveal differentiation and maintenance of dimorphic flowers in an alpine plant on the Qinghaiâ€īibet Plateau. Molecular Ecology, 2023, 32, 1411-1424.	2.0	7
384	The chromosome-level genome assembly of $\langle i \rangle$ Gentiana dahurica $\langle i \rangle$ (Gentianaceae) provides insights into gentiopicroside biosynthesis. DNA Research, 2022, 29, .	1.5	12
385	Comparative genomics reveal the convergent evolution of CYP82D and CYP706X members related to flavone biosynthesis in Lamiaceae and Asteraceae. Plant Journal, 2022, 109, 1305-1318.	2.8	12
386	Transcriptome and carotenoid profiling of different varieties of Coffea arabica provides insights into fruit color formation. Plant Diversity, 2022, 44, 322-334.	1.8	6
387	Identification, analysis, and modeling of the <scp>YUCCA</scp> protein family genomeâ€wide in <i>Coffea canephora</i> . Proteins: Structure, Function and Bioinformatics, 2022, 90, 1005-1024.	1.5	3
388	Chromosome-level genome assembly and characterization of <i>Sophora Japonica</i> . DNA Research, 2022, 29, .	1.5	3
390	High-quality genome and methylomes illustrate features underlying evolutionary success of oaks. Nature Communications, 2022, 13, 2047.	5.8	30
413	Is the genetic integrity of wild Coffea canephora from Ivory Coast threatened by hybridization with introduced coffee trees from Central Africa?. Euphytica, 2022, 218, 1.	0.6	1
414	SNP markers identification by genome wide association study for chemical quality traits of coffee (Coffea spp.) Germplasm. Molecular Biology Reports, 2022, , 1.	1.0	1
415	The genome of <i>Corydalis</i> reveals the evolution of benzylisoquinoline alkaloid biosynthesis in Ranunculales. Plant Journal, 2022, 111, 217-230.	2.8	19
416	Changes in Morphology, Total Polyphenols, Caffeine, and Chlorogenic Acid in Beans of Arabica Coffee (<i>Coffea arabica</i>) during Roasting. Journal of the Korean Society of Food Science and Nutrition, 2022, 51, 344-351.	0.2	3

#	Article	IF	CITATIONS
417	Coffea cytogenetics: from the first karyotypes to the meeting with genomics. Planta, 2022, 255, 112.	1.6	0
418	Ecological and genomic vulnerability to climate change across native populations of Robusta coffee (<i>Coffea canephora</i>). Global Change Biology, 2022, 28, 4124-4142.	4.2	15
421	Ancestral Sequence Reconstruction of a Cytochrome P450 Family Involved in Chemical Defense Reveals the Functional Evolution of a Promiscuous, Xenobiotic-Metabolizing Enzyme in Vertebrates. Molecular Biology and Evolution, 2022, 39, .	3.5	10
422	Differential timing of gene expression and recruitment in independent origins of <scp>CAM</scp> in the Agavoideae (Asparagaceae). New Phytologist, 2022, 235, 2111-2126.	3.5	12
424	Chromosomeâ€evel genome of <i>Entada phaseoloides</i> provides insights into genome evolution and triterpenoid saponins biosynthesis. Molecular Ecology Resources, 0, , .	2.2	1
425	Allele-aware chromosome-level genome assembly of Artemisia annua reveals the correlation between ADS expansion and artemisinin yield. Molecular Plant, 2022, 15, 1310-1328.	3.9	47
426	Expansion and Diversification of the 14-3-3 Gene Family in Camellia sinensis. Journal of Molecular Evolution, 2022, 90, 296-306.	0.8	7
427	Genome sequence for the blueâ€flowered Andean shrub <i>lochroma cyaneum</i> reveals extensive discordance across the berry clade of Solanaceae. Plant Genome, 2022, 15, .	1.6	2
429	Genome-Wide Identification and Expression Analysis of Expansin Gene Family in the Storage Root Development of Diploid Wild Sweetpotato Ipomoea trifida. Genes, 2022, 13, 1043.	1.0	3
430	Molecular Approaches in Conservation and Restoration of Agrobiodiversity. , 2022, , 169-216.		1
431	Chromosome-level genome assembly of the aquatic plant $\langle i \rangle$ Nymphoides indica $\langle i \rangle$ reveals transposable element bursts and NBS-LRR gene family expansion shedding light on its invasiveness. DNA Research, 2022, 29, .	1.5	4
432	The genomes of chicory, endive, great burdock and yacon provide insights into Asteraceae palaeoâ€polyploidization history and plant inulin production. Molecular Ecology Resources, 2022, 22, 3124-3140.	2.2	19
433	Progress in Plant Genome Sequencing. , 2022, 1, 113-128.		10
434	Genome-Wide Identification, Characterization, and Comparative Analysis of NLR Resistance Genes in Coffea spp Frontiers in Plant Science, $0,13,.$	1.7	1
435	Composition and Diversity of LTR Retrotransposons in the Coffee Leaf Rust Genome (Hemileia) Tj ETQq0 0 0 rgB	3T /Oyerloc	k 10 Tf 50 18
436	A comparative analysis of genomic and phenomic predictions of growth-related traits in 3-way coffee hybrids. G3: Genes, Genomes, Genetics, 0, , .	0.8	1
437	Chromosomeâ€scale assembly of the <i>Moringa oleifera</i> Lam. genome uncovers polyploid history and evolution of secondary metabolism pathways through tandem duplication. Plant Genome, 2022, 15, .	1.6	8
438	Comparative genomic analysis of Echinococcus multilocularis with other tapeworms. , 2022, 77, 2743-2750.		0

#	Article	IF	CITATIONS
439	A chromosome-level reference genome of a Convolvulaceae species <i>Ipomoea cairica</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	6
440	The sage genome provides insight into the evolutionary dynamics of diterpene biosynthesis gene cluster in plants. Cell Reports, 2022, 40, 111236.	2.9	26
441	Genome-Wide Analysis of the NAC Family Associated with Two Paleohexaploidization Events in the Tomato. Life, 2022, 12, 1236.	1.1	2
442	Auxin-Cytokinin Cross Talk in Somatic Embryogenesis of Coffea canephora. Plants, 2022, 11, 2013.	1.6	6
443	A mechanism of gene evolution generating mucin function. Science Advances, 2022, 8, .	4.7	14
444	Comparative genomics of orobanchaceous species with different parasitic lifestyles reveals the origin and stepwise evolution of plant parasitism. Molecular Plant, 2022, 15, 1384-1399.	3.9	14
445	High-resolution shotgun proteomics reveals that increased air [CO2] amplifies the acclimation response of Coffea species to drought regarding antioxidative, energy, sugar, and lipid dynamics. Journal of Plant Physiology, 2022, 276, 153788.	1.6	6
446	Multiomics techniques for plant secondary metabolism engineering: Pathways to shape the bioeconomy., 2023,, 205-252.		0
447	Applications of omics technologies in Coffea. , 2022, , 383-426.		0
448	Omics-driven advances in plantation crops and cashew: A perspective and way forward., 2022,, 333-365.		0
449	Genome-wide identification of MAPK family genes and their response to abiotic stresses in tea plant (<i>Camellia sinensis</i>). Open Life Sciences, 2022, 17, 1064-1074.	0.6	5
450	Multifaceted roles of GRAS transcription factors in growth and stress responses in plants. IScience, 2022, 25, 105026.	1.9	16
451	How plants conquered land: evolution of terrestrial adaptation. Journal of Evolutionary Biology, 2023, 36, 5-14.	0.8	6
452	OpNAC1 transcription factor regulates the biosynthesis of the anticancer drug camptothecin by targeting loganic acid <i>O</i> ê€methyltransferase in <i>Ophiorrhiza pumila</i> Journal of Integrative Plant Biology, 2023, 65, 133-149.	4.1	9
453	<i>De novo</i> genome assembly of the medicinal plant <i>Gentiana macrophylla</i> provides insights into the genomic evolution and biosynthesis of iridoids. DNA Research, 2022, 29, .	1.5	10
455	Chromosome-level genome of a leaf vegetable <i>Glebionis coronaria </i> provides insights into the biosynthesis of monoterpenoids contributing to its special aroma. DNA Research, 2022, 29, .	1.5	3
456	A highly contiguous, scaffold-level nuclear genome assembly for the fever tree (Cinchona pubescens) Tj ETQq0 0	O rgBT /O	verlock 10 Tf
457	Expression of coffee florigen CaFT1 reveals a sustained floral induction window associated with asynchronous flowering in tropical perennials. Plant Science, 2022, 325, 111479.	1.7	9

#	Article	IF	CITATIONS
458	Current Challenges and Genomic Advances Toward the Development of Coffee Genotypes Resistant to Biotic Stress. , 2022, , 159-189.		0
459	Current Challenges and Genomic Advances Towards the Development Resilient Coffee Genotypes to Abiotic Stresses., 2022,, 41-69.		2
460	Multiplex CRISPR/Cas9-mediated knockout of the phytoene desaturase gene in Coffea canephora. Scientific Reports, 2022, 12, .	1.6	4
461	Hybridization order is not the driving factor behind biases in duplicate gene losses among the hexaploid Solanaceae. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	3
462	Purple acid phosphatases in coffeeâ€"genome-wide identification and the transcriptional profile of selected members in roots upon Pi starvation. 3 Biotech, 2022, 12, .	1.1	0
463	Dissecting the genome, secretome, and effectome repertoires of Monilinia spp.: The causal agent of brown rot disease: A comparative analysis. Postharvest Biology and Technology, 2023, 195, 112120.	2.9	8
464	Phased Genome Assemblies. Methods in Molecular Biology, 2023, , 273-286.	0.4	1
465	The Current Developments in Medicinal Plant Genomics Enabled the Diversification of Secondary Metabolites' Biosynthesis. International Journal of Molecular Sciences, 2022, 23, 15932.	1.8	15
466	Deeply functional identification of <i>TCS1</i> alleles provides efficient technical paths for low-caffeine breeding of tea plants. Horticulture Research, 2023, 10, .	2.9	2
467	Chromosome-scale genome assembly of <i>Eustoma grandiflorum</i> , the first complete genome sequence in the genus <i>Eustoma</i> . G3: Genes, Genomes, Genetics, 2023, 13, .	0.8	2
468	Genetic diversity and structure in wild Robusta coffee (Coffea canephora A. Froehner) populations in Yangambi (DR Congo) and their relation to forest disturbance. Heredity, 2023, 130, 145-153.	1,2	5
469	Biased mutations and gene losses underlying diploidization of the tetraploid broomcorn millet genome. Plant Journal, 2023, 113, 787-801.	2.8	4
470	Multi-Omics Approaches for Breeding in Medicinal Plants., 2023,, 165-191.		1
471	Molecular mechanisms of adaptive evolution in wild animals and plants. Science China Life Sciences, 2023, 66, 453-495.	2.3	22
472	Genomeâ€wide identification and characterization of exapted transposable elements in the large genome of sunflower (<i>Helianthus annuus</i>). Plant Journal, 2023, 113, 734-748.	2.8	3
473	Navigating the CoGe Online Software Suite for Polyploidy Research. Methods in Molecular Biology, 2023, , 19-45.	0.4	2
474	Analysis in silico of superoxide dismutase genes family provides insights into the evolution of this gene family in Coffea spp Journal of Crop Science and Biotechnology, 0, , .	0.7	0
475	Overexpression of Water-Responsive Genes Promoted by Elevated CO2 Reduces ROS and Enhances Drought Tolerance in Coffea Species. International Journal of Molecular Sciences, 2023, 24, 3210.	1.8	2

#	ARTICLE	IF	CITATIONS
476	Insights into the convergent evolution of fructan biosynthesis in angiosperms from the highly characteristic chicory genome. New Phytologist, 2023, 238, 1245-1262.	3.5	4
477	Genomic characterization supporting the development of new food and crop options from the Australian flora., 2023, 1, 337-347.		2
478	Comparative transcriptome analysis in peaberry and regular bean coffee to identify bean quality associated genes. BMC Genomic Data, 2023, 24, .	0.7	2
479	Unique gene duplications and conserved microsynteny potentially associated with resistance to wood decay in the Lauraceae. Frontiers in Plant Science, $0,14,.$	1.7	0
481	Diversity and structure of Coffea canephora from old seminal crops in Esp \tilde{A} rito Santo, Brazil: genetic resources for coffee breeding. Tree Genetics and Genomes, 2023, 19, .	0.6	4
482	Virus-Induced Gene Silencing (VIGS): A Powerful Tool for Crop Improvement and Its Advancement towards Epigenetics. International Journal of Molecular Sciences, 2023, 24, 5608.	1.8	11
483	Genomicâ€assisted breeding for climateâ€smart coffee. Plant Genome, 0, , .	1.6	3
484	Identification of HIR, EDS1 and PAD4 Genes Reveals Differences between Coffea Species That May Impact Disease Resistance. Agronomy, 2023, 13, 992.	1.3	O
499	Mutation Breeding in Arabica Coffee., 2023,, 3-17.		0
500	Protocol on Mutation Induction in Coffee Using In Vitro Tissue Cultures. , 2023, , 61-81.		0
509	Genetics and evolutionary insights from Solanaceae genome sequences. Plant Systematics and Evolution, 2024, 310, .	0.3	О