Genetic Variation in Human DNA Replication Timing

Cell 159, 1015-1026 DOI: 10.1016/j.cell.2014.10.025

Citation Report

#	Article	IF	CITATIONS
1	Genetic Variation Meets Replication Origins. Cell, 2014, 159, 973-974.	13.5	2
2	Assembly of Slx4 signaling complexes behind <scp>DNA</scp> replication forks. EMBO Journal, 2015, 34, 2182-2197.	3.5	40
3	DNA replication origin activation in space and time. Nature Reviews Molecular Cell Biology, 2015, 16, 360-374.	16.1	425
4	Dynamic changes in replication timing and gene expression during lineage specification of human pluripotent stem cells. Genome Research, 2015, 25, 1091-1103.	2.4	145
5	The chromatin environment shapes DNA replication origin organization and defines origin classes. Genome Research, 2015, 25, 1873-1885.	2.4	149
6	Large multiallelic copy number variations in humans. Nature Genetics, 2015, 47, 296-303.	9.4	357
8	Non-coding genetic variants in human disease: Figure 1 Human Molecular Genetics, 2015, 24, R102-R110.	1.4	466
9	Allele-specific analysis of DNA replication origins in mammalian cells. Nature Communications, 2015, 6, 7051.	5.8	40
10	T cell help controls the speed of the cell cycle in germinal center B cells. Science, 2015, 349, 643-646.	6.0	204
11	The origins, determinants, and consequences of human mutations. Science, 2015, 349, 1478-1483.	6.0	143
12	Somatic mutation in cancer and normal cells. Science, 2015, 349, 1483-1489.	6.0	996
13	Microbial growth dynamics and human disease. Science, 2015, 349, 1058-1059.	6.0	23
14	CNARA: reliability assessment for genomic copy number profiles. BMC Genomics, 2016, 17, 799.	1.2	4
15	Lymphoblastoid Cell Lines as a Tool to Study Inter-Individual Differences in the Response to Glucose. PLoS ONE, 2016, 11, e0160504.	1.1	9
16	Basic Principles of Noncoding RNAs in Epigenetics. , 2016, , 47-63.		0
17	Pooled ChIP-Seq Links Variation in Transcription Factor Binding to Complex Disease Risk. Cell, 2016, 165, 730-741.	13.5	107
18	Replication timing and transcriptional control: beyond cause and effect — part III. Current Opinion in Cell Biology, 2016, 40, 168-178.	2.6	124
20	DNA replication origins—where do we begin?. Genes and Development, 2016, 30, 1683-1697.	2.7	153

2

CITATION REPORT

#	Article	IF	CITATIONS
21	Whole genome sequencing and its applications in medical genetics. Quantitative Biology, 2016, 4, 115-128.	0.3	7
22	Fine-mapping cellular QTLs with RASQUAL and ATAC-seq. Nature Genetics, 2016, 48, 206-213.	9.4	199
23	An expanded sequence context model broadly explains variability in polymorphism levels across the human genome. Nature Genetics, 2016, 48, 349-355.	9.4	174
24	Replication origins: determinants or consequences of nuclear organization?. Current Opinion in Genetics and Development, 2016, 37, 67-75.	1.5	17
25	Insertions and Deletions Target Lineage-Defining Genes in Human Cancers. Cell, 2017, 168, 460-472.e14.	13.5	106
26	Intrinsic Molecular Processes: Impact on Mutagenesis. Trends in Cancer, 2017, 3, 357-371.	3.8	4
27	DNA replication timing during development anticipates transcriptional programs and parallels enhancer activation. Genome Research, 2017, 27, 1406-1416.	2.4	56
28	Critical points for an accurate human genome analysis. Human Mutation, 2017, 38, 912-921.	1.1	5
29	Thousands of RNA-cached copies of whole chromosomes are present in the ciliate <i>Oxytricha</i> during development. Rna, 2017, 23, 1200-1208.	1.6	17
30	DNA replication timing influences gene expression level. Journal of Cell Biology, 2017, 216, 1907-1914.	2.3	46
31	APOBEC3A/B-induced mutagenesis is responsible for 20% of heritable mutations in the TpCpW context. Genome Research, 2017, 27, 175-184.	2.4	24
32	Genomic Studies Reveal New Aspects of the Biology of DNA Damaging Agents. ChemBioChem, 2017, 18, 2368-2375.	1.3	7
33	Genome-wide Determination of Mammalian Replication Timing by DNA Content Measurement. Journal of Visualized Experiments, 2017, , .	0.2	6
34	Order from clutter: selective interactions at mammalian replication origins. Nature Reviews Genetics, 2017, 18, 101-116.	7.7	51
35	Replication Domains: Genome Compartmentalization into Functional Replication Units. Advances in Experimental Medicine and Biology, 2017, 1042, 229-257.	0.8	18
36	Regulation of Replication Origins. Advances in Experimental Medicine and Biology, 2017, 1042, 43-59.	0.8	19
37	DNA isolation protocol effects on nuclear DNA analysis by microarrays, droplet digital PCR, and whole genome sequencing, and on mitochondrial DNA copy number estimation. PLoS ONE, 2017, 12, e0180467.	1.1	27
38	Anatomy of Mammalian Replication Domains. Genes, 2017, 8, 110.	1.0	16

	Сітат	CITATION REPORT	
#	Article	IF	CITATIONS
39	Replication timing and nuclear structure. Current Opinion in Cell Biology, 2018, 52, 43-50.	2.6	23
40	Transient reduction of DNA methylation at the onset of meiosis in male mice. Epigenetics and Chromatin, 2018, 11, 15.	1.8	40
41	Analyzing Copy Number Variation with Droplet Digital PCR. Methods in Molecular Biology, 2018, 1768, 143-160.	0.4	37
42	Genome-wide analysis of replication timing by next-generation sequencing with E/L Repli-seq. Nature Protocols, 2018, 13, 819-839.	5.5	126
43	De novo mutations in regulatory elements in neurodevelopmental disorders. Nature, 2018, 555, 611-616	. 13.7	232
44	Chromatin conformation and transcriptional activity are permissive regulators of DNA replication in <i>Drosophila</i> . Genome Research, 2018, 28, 1688-1700.	2.4	29
45	Human copy number variants are enriched in regions of low mappability. Nucleic Acids Research, 2018, 46, 7236-7249.	6.5	36
46	Profiling DNA Replication Timing Using Zebrafish as an In Vivo Model System. Journal of Visualized Experiments, 2018, , .	0.2	2
47	Global characterization of copy number variants in epilepsy patients from whole genome sequencing. PLoS Genetics, 2018, 14, e1007285.	1.5	50
48	Continuous-Trait Probabilistic Model for Comparing Multi-species Functional Genomic Data. Cell Systems, 2018, 7, 208-218.e11.	2.9	20
49	Dual Roles of Poly(dA:dT) Tracts in Replication Initiation and Fork Collapse. Cell, 2018, 174, 1127-1142.e	19. 13.5	167
50	Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations. Nature, 2018, 559, 350-355.	13.7	279
51	Rapid high-resolution measurement of DNA replication timing by droplet digital PCR. Nucleic Acids Research, 2018, 46, e112-e112.	6.5	10
52	Chromosomes trapped in micronuclei are liable to segregation errors. Journal of Cell Science, 2018, 131, .	1.2	59
53	Allele-specific control of replication timing and genome organization during development. Genome Research, 2018, 28, 800-811.	2.4	63
54	Why So Variable: Can Genetic Variance in Flowering Thresholds Be Maintained by Fluctuating Selection?. American Naturalist, 2019, 194, E13-E29.	1.0	9
55	Flanking heterozygosity influences the relative probability of different base substitutions in humans. Royal Society Open Science, 2019, 6, 191018.	1.1	8
56	Control of DNA replication timing in the 3D genome. Nature Reviews Molecular Cell Biology, 2019, 20, 721-737.	16.1	198

CITATION REPORT

#	Article	IF	CITATIONS
57	The effects of manipulating levels of replication initiation factors on origin firing efficiency in yeast. PLoS Genetics, 2019, 15, e1008430.	1.5	13
58	DNA Replication Timing Enters the Single-Cell Era. Genes, 2019, 10, 221.	1.0	11
59	Replication dynamics of individual loci in single living cells reveal changes in the degree of replication stochasticity through S phase. Nucleic Acids Research, 2019, 47, 5155-5169.	6.5	16
61	Genome-wide stability of the DNA replication program in single mammalian cells. Nature Genetics, 2019, 51, 529-540.	9.4	66
62	Evaluation of Whole Genome Sequencing Data. Methods in Molecular Biology, 2019, 1956, 321-336.	0.4	6
63	Signatures of replication timing, recombination, and sex in the spectrum of rare variants on the human X chromosome and autosomes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17916-17924.	3.3	40
64	Replication timing alterations in leukemia affect clinically relevant chromosome domains. Blood Advances, 2019, 3, 3201-3213.	2.5	15
65	Identifying cis Elements for Spatiotemporal Control of Mammalian DNA Replication. Cell, 2019, 176, 816-830.e18.	13.5	144
66	Spontaneous <i>de novo</i> germline mutations in humans and mice: rates, spectra, causes and consequences. Genes and Genetic Systems, 2019, 94, 13-22.	0.2	19
67	Distinct Classes of Complex Structural Variation Uncovered across Thousands of Cancer Genome Graphs. Cell, 2020, 183, 197-210.e32.	13.5	141
68	Hotspots of Human Mutation. Trends in Genetics, 2021, 37, 717-729.	2.9	62
69	Mutational signature SBS8 predominantly arises due to late replication errors in cancer. Communications Biology, 2020, 3, 421.	2.0	34
70	Positive and Negative Regulation of DNA Replication Initiation. Trends in Genetics, 2020, 36, 868-879.	2.9	8
71	Detection of base analogs incorporated during DNA replication by nanopore sequencing. Nucleic Acids Research, 2020, 48, e88-e88.	6.5	31
72	Germline genetic factors in the pathogenesis of myeloproliferative neoplasms. Blood Reviews, 2020, 42, 100710.	2.8	16
73	The delicate relationship between DNA replication timing and gene expression. Current Opinion in Systems Biology, 2020, 19, 8-15.	1.3	1
74	Monogenic and polygenic inheritance become instruments for clonal selection. Nature, 2020, 584, 136-141.	13.7	119
75	High-resolution Repli-Seq defines the temporal choreography of initiation, elongation and termination of replication in mammalian cells. Genome Biology, 2020, 21, 76.	3.8	84

CITATION REPORT

#	Article	IF	CITATIONS
76	Evolution of the mutation rate across primates. Current Opinion in Genetics and Development, 2020, 62, 58-64.	1.5	40
77	DNA copy-number measurement of genome replication dynamics by high-throughput sequencing: the sort-seq, sync-seq and MFA-seq family. Nature Protocols, 2020, 15, 1255-1284.	5.5	24
78	De novo mutations across 1,465 diverse genomes reveal mutational insights and reductions in the Amish founder population. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2560-2569.	3.3	71
79	BAMscale: quantification of next-generation sequencing peaks and generation of scaled coverage tracks. Epigenetics and Chromatin, 2020, 13, 21.	1.8	40
80	Mutation Rate Variability across Human Y-Chromosome Haplogroups. Molecular Biology and Evolution, 2021, 38, 1000-1005.	3.5	1
81	Sites of chromosomal instability in the context of nuclear architecture and function. Cellular and Molecular Life Sciences, 2021, 78, 2095-2103.	2.4	4
82	Chromosomal coordination and differential structure of asynchronous replicating regions. Nature Communications, 2021, 12, 1035.	5.8	8
83	Human DDK rescues stalled forks and counteracts checkpoint inhibition at unfired origins to complete DNA replication. Molecular Cell, 2021, 81, 426-441.e8.	4.5	21
84	TIGER: inferring DNA replication timing from whole-genome sequence data. Bioinformatics, 2021, 37, 4001-4005.	1.8	19
88	Germline risk of clonal haematopoiesis. Nature Reviews Genetics, 2021, 22, 603-617.	7.7	48
89	Dynamics of replication origin over-activation. Nature Communications, 2021, 12, 3448.	5.8	22
91	Meiotic recombination mirrors patterns of germline replication in mice and humans. Cell, 2021, 184, 4251-4267.e20.	13.5	31
92	Replication timing analysis in polyploid cells reveals Rif1 uses multiple mechanisms to promote underreplication in Drosophila. Genetics, 2021, 219, .	1.2	4
94	Accelerated Variability of Human Genes and Transportable Elements; Genesis of Network. International Journal of Genetics and Genomics, 2021, 9, 20.	0.1	0
95	Genomic methods for measuring DNA replication dynamics. Chromosome Research, 2020, 28, 49-67.	1.0	26
108	Large-Scale Chromatin Structure–Function Relationships during the Cell Cycle and Development: Insights from Replication Timing. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 53-63.	2.0	59
115	Bioinformatic analysis reveals possible response of the Arabidopsis acetylated histone-binding protein (BRAT1) against abiotic stresses. Govarî Zankoî Germîan, 2018, 5, 349-363.	0.0	0
121	The genetic architecture of DNA replication timing in human pluripotent stem cells. Nature Communications, 2021, 12, 6746.	5.8	26

	CITATION I			
#	Article	IF	Citations	
122	Delayed DNA replication in haploid human embryonic stem cells. Genome Research, 2021, 31, 2155-2169.	2.4	5	
123	Comprehensive analysis of DNA replication timing across 184 cell lines suggests a role for <i>MCM10</i> in replication timing regulation. Human Molecular Genetics, 2022, 31, 2899-2917.	1.4	6	
127	High-throughput analysis of single human cells reveals the complex nature of DNA replication timing control. Nature Communications, 2022, 13, 2402.	5.8	12	
129	Multiple Stochastic Parameters Influence Genome Dynamics in a Heterozygous Diploid Eukaryotic Model. Journal of Fungi (Basel, Switzerland), 2022, 8, 650.	1.5	1	
130	Optimized Repli-seq: improved DNA replication timing analysis by next-generation sequencing. Chromosome Research, 0, , .	1.0	1	
133	Exploration of Tools for the Interpretation of Human Non-Coding Variants. International Journal of Molecular Sciences, 2022, 23, 12977.	1.8	5	
134	Epigenetic control of chromosome-associated lncRNA genes essential for replication and stability. Nature Communications, 2022, 13, .	5.8	5	
135	The frequency of somatic mutations in cancer predicts the phenotypic relevance of germline mutations. Frontiers in Genetics, 0, 13, .	1.1	1	
136	Genome-wide measurement of DNA replication fork directionality and quantification of DNA replication initiation and termination with Okazaki fragment sequencing. Nature Protocols, 2023, 18, 1260-1295.	5.5	1	
137	Human generation times across the past 250,000 years. Science Advances, 2023, 9, .	4.7	26	
138	Detection and characterization of constitutive replication origins defined by DNA polymerase epsilon. BMC Biology, 2023, 21, .	1.7	2	
139	The evolution of the human DNA replication timing program. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	2	