Coverage bias in the HadCRUT4 temperature series and trends

Quarterly Journal of the Royal Meteorological Society 140, 1935-1944 DOI: 10.1002/qj.2297

Citation Report

#	Article	IF	CITATIONS
1	Surface warming hiatus caused by increased heat uptake across multiple ocean basins. Geophysical Research Letters, 2014, 41, 7868-7874.	1.5	99
2	Global climate change: Anthropogenic warming versus multidecadal natural oscillations: The consequences of the hiatus. , 2014, , .		1
3	Volcanic contribution to decadal changes in tropospheric temperature. Nature Geoscience, 2014, 7, 185-189.	5.4	364
4	Reconciling warming trends. Nature Geoscience, 2014, 7, 158-160.	5.4	224
5	Solar geoengineering to limit the rate of temperature change. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20140134.	1.6	61
6	Uncertain temperature trend. Nature Geoscience, 2014, 7, 83-84.	5.4	19
7	Clouds of uncertainty. Nature, 2014, 505, 34-35.	13.7	7
8	Shortwave and longwave radiative contributions to global warming under increasing CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16700-16705.	3.3	70
9	Total volcanic stratospheric aerosol optical depths and implications for global climate change. Geophysical Research Letters, 2014, 41, 7763-7769.	1.5	159
10	Inhomogeneous forcing and transient climate sensitivity. Nature Climate Change, 2014, 4, 274-277.	8.1	134
11	Forecasting global temperatures: Missing the point? The consequences of the hiatus. , 2014, , .		0
12	Changes in global net radiative imbalance 1985–2012. Geophysical Research Letters, 2014, 41, 5588-5597.	1.5	153
13	Natural variability, radiative forcing and climate response in the recent hiatus reconciled. Nature Geoscience, 2014, 7, 651-656.	5.4	123
14	Well-estimated global surface warming in climate projections selected for ENSO phase. Nature Climate Change, 2014, 4, 835-840.	8.1	99
15	Comment on "Quantitatively evaluating the effects of CO2 emission on temperature rise― Quaternary International, 2014, 336, 176-179.	0.7	0
16	Isolating the anthropogenic component of Arctic warming. Geophysical Research Letters, 2014, 41, 3569-3576.	1.5	20
17	Artifacts in variations of ocean heat content induced by the observation system changes. Geophysical Research Letters, 2014, 41, 7276-7283.	1.5	42
18	Offsetting effects of aerosols on Arctic and global climate in the late 20th century. Atmospheric Chemistry and Physics, 2014, 14, 3969-3975.	1.9	36

#	ARTICLE	IF	CITATIONS
19	Drivers of decadal hiatus periods in the 20th and 21st centuries. Geophysical Research Letters, 2014, 41, 5978-5986.	1.5	84
20	Global and regional climate in 2013. Weather, 2014, 69, 333-338.	0.6	3
21	An inventory and topographic analysis of glaciers in the Torngat Mountains, northern Labrador, Canada. Journal of Glaciology, 2014, 60, 945-956.	1.1	17
22	The Atlantic Multidecadal Oscillation as a dominant factor of oceanic influence on climate. Geophysical Research Letters, 2014, 41, 1689-1697.	1.5	86
23	Investigating the recent apparent hiatus in surface temperature increases: 2. Comparison of model ensembles to observational estimates. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8597-8620.	1.2	14
24	Betting strategies on fluctuations in the transient response of greenhouse warming. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140463.	1.6	8
25	Investigating the recent apparent hiatus in surface temperature increases: 1. Construction of two 30â€member Earth System Model ensembles. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8575-8596.	1.2	8
26	Testing a reanalysisâ€based infilling method for areas with sparse discontinuous air temperature data in northeastern Canada. Atmospheric Science Letters, 2015, 16, 398-407.	0.8	13
27	Determining the likelihood of pauses and surges in global warming. Geophysical Research Letters, 2015, 42, 5974-5982.	1.5	41
28	On the definition and identifiability of the alleged "hiatus―in global warming. Scientific Reports, 2015, 5, 16784.	1.6	57
29	Internal climate memory in observations and models. Geophysical Research Letters, 2015, 42, 1232-1242.	1.5	33
30	Distinctive ocean interior changes during the recent warming slowdown. Scientific Reports, 2015, 5, 14346.	1.6	35
31	Spatial patterns of radiative forcing and surface temperature response. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5385-5403.	1.2	61
32	Does the climate warming hiatus exist over the Tibetan Plateau?. Scientific Reports, 2015, 5, 13711.	1.6	275
34	Eurasian winter cooling in the warming hiatus of 1998–2012. Geophysical Research Letters, 2015, 42, 8131-8139.	1.5	117
35	The waterâ€energy nexus: future water resource availability and its implications on UK thermal power generation. Water and Environment Journal, 2015, 29, 307-319.	1.0	15
36	Granger causality from changes in level of atmospheric CO ₂ to global surface temperature and the El Niño–Southern Oscillation, and a candidate mechanism in global photosynthesis. Atmospheric Chemistry and Physics, 2015, 15, 11571-11592.	1.9	14
37	ERAâ€20CM: a twentiethâ€century atmospheric model ensemble. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 2350-2375.	1.0	167

#	Article	IF	Citations
38	Arctic warming in ERAâ€Interim and other analyses. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1147-1162.	1.0	64
39	Effects of declining aerosols on projections of zonally averaged tropical precipitation. Environmental Research Letters, 2015, 10, 044018.	2.2	32
40	Change points of global temperature. Environmental Research Letters, 2015, 10, 084002.	2.2	80
41	Global and regional climate in 2014. Weather, 2015, 70, 225-232.	0.6	Ο
42	Climate and carbon cycle dynamics in a CESM simulation from 850 to 2100 CE. Earth System Dynamics, 2015, 6, 411-434.	2.7	52
43	Systematic attribution of observed Southern Hemisphere circulation trends to external forcing and internal variability. Nonlinear Processes in Geophysics, 2015, 22, 513-525.	0.6	18
44	A global empirical system for probabilistic seasonal climate prediction. Geoscientific Model Development, 2015, 8, 3947-3973.	1.3	19
45	Natural and forced air temperature variability in the Labrador region of Canada during the past century. Theoretical and Applied Climatology, 2015, 121, 413-424.	1.3	27
46	Seepage: Climate change denial and its effect on the scientific community. Global Environmental Change, 2015, 33, 1-13.	3.6	139
47	Possible artifacts of data biases in the recent global surface warming hiatus. Science, 2015, 348, 1469-1472.	6.0	551
48	An Investigation into the Impact of using Various Techniques to Estimate Arctic Surface Air Temperature Anomalies*. Journal of Climate, 2015, 28, 1743-1763.	1.2	17
49	An Evaluation of Temperature and Precipitation Surface-Based and Reanalysis Datasets for the Canadian Arctic, 1950–2010. Atmosphere - Ocean, 2015, 53, 283-303.	0.6	58
50	The impact of using different modern climate data sets in pollen-based paleoclimate reconstructions of North America. Quaternary Science Reviews, 2015, 112, 78-85.	1.4	7
51	Forcing, feedback and internal variability in global temperature trends. Nature, 2015, 517, 565-570.	13.7	155
52	Free and forced climate variations. Nature, 2015, 517, 562-563.	13.7	8
53	Status of Climate Change Research. SpringerBriefs in Environmental Science, 2015, , 43-99.	0.3	0
54	Impact of aerosol radiative effects on 2000–2010 surface temperatures. Climate Dynamics, 2015, 45, 2165-2179.	1.7	24
55	Quantifying the likelihood of a continued hiatus in global warming. Nature Climate Change, 2015, 5, 337-342.	8.1	76

<u> </u>			<u> </u>	
(15	ΓΔΤΙ	$\cap N$	Rep	OPT
			NLF	UNI

#	Article	IF	CITATIONS
56	Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 2015, 347, 988-991.	6.0	232
58	Why Does Aerosol Forcing Control Historical Global-Mean Surface Temperature Change in CMIP5 Models?. Journal of Climate, 2015, 28, 6608-6625.	1.2	44
60	From local perception to global perspective. Nature Climate Change, 2015, 5, 731-734.	8.1	59
61	Misdiagnosis of Earth climate sensitivity based on energy balance model results. Science Bulletin, 2015, 60, 1370-1377.	4.3	9
62	Robust warming projections despite the recent hiatus. Nature Climate Change, 2015, 5, 394-396.	8.1	40
63	Chances of Short-Term Cooling Estimated from a Selection of CMIP5-Based Climate Scenarios during 2006–35 over Canada. Journal of Climate, 2015, 28, 3232-3249.	1.2	4
64	Impact of the global warming hiatus on Andean temperature. Journal of Geophysical Research D: Atmospheres, 2015, 120, 3745-3757.	1.2	165
65	Contributions of atmospheric circulation variability and data coverage bias to the warming hiatus. Geophysical Research Letters, 2015, 42, 2385-2391.	1.5	24
66	Equilibrium climate sensitivity in light of observations over the warming hiatus. Nature Climate Change, 2015, 5, 449-453.	8.1	44
67	A Link between the Hiatus in Global Warming and North American Drought. Journal of Climate, 2015, 28, 3834-3845.	1.2	91
69	Climatic Changes Since 1700. Advances in Global Change Research, 2015, , 167-321.	1.6	10
70	Arctic mass, freshwater and heat fluxes: methods and modelled seasonal variability. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140169.	1.6	30
71	Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures. Geophysical Research Letters, 2015, 42, 6526-6534.	1.5	139
72	Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nature Geoscience, 2015, 8, 759-762.	5.4	433
73	Re-evaluating the role of solar variability on Northern Hemisphere temperature trends since the 19th century. Earth-Science Reviews, 2015, 150, 409-452.	4.0	57
74	Debunking the climate hiatus. Climatic Change, 2015, 133, 129-140.	1.7	44
75	Streamflow variability over the 1881–2011 period in northern Québec: comparison of hydrological reconstructions based on tree rings and geopotential height field reanalysis. Climate of the Past, 2016, 12, 1785-1804.	1.3	17
76	Effect of various climate databases on the results of dendroclimatic analysis. Earth System Dynamics, 2016, 7, 385-395.	2.7	2

#	Article	IF	CITATIONS
77	Imprints of climate forcings in global gridded temperature data. Earth System Dynamics, 2016, 7, 231-249.	2.7	6
78	Coherence among the Northern Hemisphere land, cryosphere, and ocean responses to natural variability and anthropogenic forcing during the satellite era. Earth System Dynamics, 2016, 7, 717-734.	2.7	9
79	Impact of Asian aerosol forcing on tropical Pacific circulation and the relationship to global temperature trends. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,403.	1.2	5
80	Temperatureâ€induced water stress in highâ€latitude forests in response to natural and anthropogenic warming. Global Change Biology, 2016, 22, 782-791.	4.2	37
81	Bias in the variance of gridded data sets leads to misleading conclusions about changes in climate variability. International Journal of Climatology, 2016, 36, 3413-3422.	1.5	59
82	Benefits of CMIP5 Multimodel Ensemble in Reconstructing Historical Ocean Subsurface Temperature Variations. Journal of Climate, 2016, 29, 5393-5416.	1.2	77
83	A comparative assessment of temperature data from different sources for Dehradun, Uttarakhand, India. Journal of Meteorological Research, 2016, 30, 1019-1032.	0.9	14
84	Possible recent warming hiatus on the northwestern Tibetan Plateau derived from ice core records. Scientific Reports, 2016, 6, 32813.	1.6	23
85	Predicting future uncertainty constraints on global warming projections. Scientific Reports, 2016, 6, 18903.	1.6	37
86	Prospects for a prolonged slowdown in global warming in the early 21st century. Nature Communications, 2016, 7, 13676.	5.8	44
87	Land surface temperature over global deserts: Means, variability, and trends. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,344.	1.2	39
88	Spatiotemporal Divergence of the Warming Hiatus over Land Based on Different Definitions of Mean Temperature. Scientific Reports, 2016, 6, 31789.	1.6	14
89	The Likelihood of Recent Record Warmth. Scientific Reports, 2016, 6, 19831.	1.6	41
90	Connecting Climate Model Projections of Global Temperature Change with the Real World. Bulletin of the American Meteorological Society, 2016, 97, 963-980.	1.7	61
91	Inference of Climate Sensitivity from Analysis of Earth's Energy Budget. Annual Review of Earth and Planetary Sciences, 2016, 44, 85-106.	4.6	95
92	The importance of ENSO phase during volcanic eruptions for detection and attribution. Geophysical Research Letters, 2016, 43, 2851-2858.	1.5	75
93	Global and regional climate in 2015. Weather, 2016, 71, 185-192.	0.6	9
94	The shape of impacts to come: lessons and opportunities for adaptation from uneven increases in global and regional temperatures. Climatic Change, 2016, 139, 341-349.	1.7	12

	Сітатіс	on Report	
#	ARTICLE	IF	CITATIONS
95	The global warming hiatus: Slowdown or redistribution?. Earth's Future, 2016, 4, 472-482.	2.4	134
96	The rogue nature of hiatuses in a global warming climate. Geophysical Research Letters, 2016, 43, 8169-8177.	1.5	7
97	Revisiting Whether Recent Surface Temperature Trends Agree with the CMIP5 Ensemble. Journal of Climate, 2016, 29, 8673-8687.	1.2	8
98	Seasonal constraints on inferred planetary heat content. Geophysical Research Letters, 2016, 43, 10,955.	1.5	3
99	Coldest Temperature Extreme Monotonically Increased and Hottest Extreme Oscillated over Northern Hemisphere Land during Last 114 Years. Scientific Reports, 2016, 6, 25721.	1.6	23
100	A Hiatus of the Greenhouse Effect. Scientific Reports, 2016, 6, 33315.	1.6	11
101	Problems encountered when defining Arctic amplification as a ratio. Scientific Reports, 2016, 6, 30469.	1.6	20
102	An Evaluation of HIRS Near-Surface Air Temperature Product in the Arctic with SHEBA Data. Journal of Atmospheric and Oceanic Technology, 2016, 33, 453-460.	0.5	3
103	The reliability of global and hemispheric surface temperature records. Advances in Atmospheric Sciences, 2016, 33, 269-282.	1.9	79
104	Reconciled climate response estimates from climate models and the energy budget of Earth. Nature Climate Change, 2016, 6, 931-935.	8.1	107
105	Clobal and regional surface cooling in a warming climate: a multi-model analysis. Climate Dynamics, 2016, 46, 3899-3920.	1.7	7
106	The intensification of thermal extremes in west Africa. Global and Planetary Change, 2016, 139, 66-77.	1.6	23
107	Detection and attribution of climate extremes in the observed record. Weather and Climate Extremes, 2016, 11, 17-27.	1.6	132
108	Metrological challenges for measurements of key climatological observables. Part 4: atmospheric relative humidity. Metrologia, 2016, 53, R40-R59.	0.6	21
109	Waxing and waning of observed extreme annual tropical rainfall. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 102-107.	1.0	4
110	Satellite-derived changes in the permafrost landscape of central Yakutia, 2000–2011: Wetting, drying, and fires. Global and Planetary Change, 2016, 139, 116-127.	1.6	69
111	The "Pause―in Global Warming: Turning a Routine Fluctuation into a Problem for Science. Bulletin of the American Meteorological Society, 2016, 97, 723-733.	1.7	83
112	Making sense of the early-2000s warming slowdown. Nature Climate Change, 2016, 6, 224-228.	8.1	333

#	Article	IF	CITATIONS
113	Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Weather and Climate Extremes, 2016, 11, 4-16.	1.6	292
114	Global Surface Temperatures. , 2016, , 21-35.		0
115	Long-term persistence enhances uncertainty about anthropogenic warming of Antarctica. Climate Dynamics, 2016, 46, 263-271.	1.7	59
116	A mental picture of the greenhouse effect. Theoretical and Applied Climatology, 2017, 128, 679-688.	1.3	32
117	Evidence for the role of the Atlantic multidecadal oscillation and the ocean heat uptake in hiatus prediction. Theoretical and Applied Climatology, 2017, 129, 873-880.	1.3	10
118	Estimating Changes in Global Temperature since the Preindustrial Period. Bulletin of the American Meteorological Society, 2017, 98, 1841-1856.	1.7	238
119	Observed and Projected Changes to the Precipitation Annual Cycle. Journal of Climate, 2017, 30, 4983-4995.	1.2	46
120	Sea and land surface temperatures, ocean heat content, Earth's energy imbalance and net radiative forcing over the recent years. International Journal of Climatology, 2017, 37, 218-229.	1.5	11
121	Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions. Quaternary Science Reviews, 2017, 163, 1-22.	1.4	165
122	Decadal prediction skill using a high-resolution climate model. Climate Dynamics, 2017, 49, 3527-3550.	1.7	9
123	Process-Based Decomposition of the Decadal Climate Difference between 2002–13 and 1984–95. Journal of Climate, 2017, 30, 4373-4393.	1.2	17
124	Delayed warming hiatus over the Tibetan Plateau. Earth and Space Science, 2017, 4, 128-137.	1.1	23
125	The subtle origins of surface-warming hiatuses. Nature Climate Change, 2017, 7, 336-339.	8.1	57
126	Reconciling controversies about the â€ ⁻ global warming hiatus'. Nature, 2017, 545, 41-47.	13.7	346
127	Sea Ice Trends in Climate Models Only Accurate in Runs with Biased Global Warming. Journal of Climate, 2017, 30, 6265-6278.	1.2	114
128	An empirical model for probabilistic decadal prediction: global attribution and regional hindcasts. Climate Dynamics, 2017, 48, 3115-3138.	1.7	20
129	Global temperature evolution: recent trends and some pitfalls. Environmental Research Letters, 2017, 12, 054001.	2.2	143
130	Causes of differences in model and satellite tropospheric warming rates. Nature Geoscience, 2017, 10, 478-485.	5.4	40

#	Article	IF	CITATIONS
131	Quantifying the impact of early 21st century volcanic eruptions on global-mean surface temperature. Environmental Research Letters, 2017, 12, 054010.	2.2	12
132	Briefing: Future climate projections allow engineering planning. Proceedings of the Institution of Civil Engineers: Forensic Engineering, 2017, 170, 54-57.	0.5	4
133	Distinct global warming rates tied to multiple ocean surface temperature changes. Nature Climate Change, 2017, 7, 486-491.	8.1	76
134	How accurately do we know the temperature of the surface of the earth?. Climate Dynamics, 2017, 49, 4089-4106.	1.7	7
135	Sensitivity of Attribution of Anthropogenic Near-Surface Warming to Observational Uncertainty. Journal of Climate, 2017, 30, 4677-4691.	1.2	7
136	Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events. Scientific Reports, 2017, 7, 45242.	1.6	215
137	Change of the Global Ocean Vertical Heat Transport over 1993–2010. Journal of Climate, 2017, 30, 5319-5327.	1.2	15
138	Comparison of Low-Frequency Internal Climate Variability in CMIP5 Models and Observations. Journal of Climate, 2017, 30, 4763-4776.	1.2	53
139	The Indian winter monsoon and its response to external forcing over the last two and a half centuries. Climate Dynamics, 2017, 49, 1801-1812.	1.7	10
140	Assessing recent warming using instrumentally homogeneous sea surface temperature records. Science Advances, 2017, 3, e1601207.	4.7	98
141	Challenges and perspectives for largeâ€scale temperature reconstructions of the past two millennia. Reviews of Geophysics, 2017, 55, 40-96.	9.0	103
142	Attributing Changing Rates of Temperature Record Breaking to Anthropogenic Influences. Earth's Future, 2017, 5, 1156-1168.	2.4	22
143	Continuously amplified warming in the Alaskan Arctic: Implications for estimating global warming hiatus. Geophysical Research Letters, 2017, 44, 9029-9038.	1.5	36
144	Temperature Covariance in Tree Ring Reconstructions and Model Simulations Over the Past Millennium. Geophysical Research Letters, 2017, 44, 9458-9469.	1.5	25
145	Uncertainty in regional temperatures inferred from sparse global observations: Application to a probabilistic classification of El Niño. Geophysical Research Letters, 2017, 44, 9068-9074.	1.5	15
146	Extreme Warming in the Kara Sea and Barents Sea during the Winter Period 2000–16. Journal of Climate, 2017, 30, 8913-8927.	1.2	35
147	Slowdown of global surface air temperature increase and acceleration of ice melting. Earth's Future, 2017, 5, 811-822.	2.4	8
148	Importance of the pre-industrial baseline for likelihood of exceeding Paris goals. Nature Climate Change, 2017, 7, 563-567.	8.1	93

ARTICLE IF CITATIONS Hiatusâ€like decades in the absence of equatorial Pacific cooling and accelerated global ocean heat 149 1.5 12 uptake. Geophysical Research Letters, 2017, 44, 7909-7918. Extracting and Analyzing the Warming Trend in Global and Hemispheric Temperatures. Journal of Time 23 Series Analysis, 2017, 38, 711-732. Briefing: Global surface temperature records: an update. Proceedings of the Institution of Civil 151 0.5 4 Engineers: Forensic Engineering, 2017, 170, 50-53. Prediction Markets for Science: Is the Cure Worse than the Disease?. Social Epistemology, 2017, 31, 451-467. Global and regional climate in 2016. Weather, 2017, 72, 219-225. 153 0.6 9 Transient response of the global mean warming rate and its spatial variation. Weather and Climate 1.6 Extremes, 2017, 18, 55-64. Relative Contributions of Atmospheric Energy Transport and Sea Ice Loss to the Recent Warm Arctic 155 1.2 23 Winter. Journal of Climate, 2017, 30, 7441-7450. Recently amplified arctic warming has contributed to a continual global warming trend. Nature 8.1 218 Climate Change, 2017, 7, 875-879. 157 Recent United Kingdom and global temperature variations. Weather, 2017, 72, 323-329. 0.6 9 A real-time Global Warming Index. Scientific Reports, 2017, 7, 15417. 1.6 145 Radiative and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully Coupled 159 1.2 128 CESM1(WACCM). Journal of Geophysical Research D: Atmospheres, 2017, 122, 13,061. Apparent limitations in the ability of CMIP5 climate models to simulate recent multi-decadal change in surface temperature: implications for global temperature projections. Climate Dynamics, 2017, 49, 34 53-69. Reduced North American terrestrial primary productivity linked to anomalous Arctic warming. 161 5.4 54 Nature Geoscience, 2017, 10, 572-576. A global multiproxy database for temperature reconstructions of the Common Era. Scientific Data, 2.4 268 2017, 4, 170088. A reassessment of temperature variations and trends from global reanalyses and monthly surface 163 1.0 105 climatological datasets. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 101-119. Tracking regional temperature projections from the early 1990s in light of variations in regional 164 warming, including †warming holes'. Climatic Change, 2017, 140, 307-322. Spatiotemporal Temperature Variability over the Tibetan Plateau: Altitudinal Dependence Associated 165 1.2 73 with the Global Warming Hiatus. Journal of Climate, 2017, 30, 969-984. Underestimated warming of northern Canada in the Berkeley Earth temperature product. 1.5 International Journal of Climatology, 2017, 37, 1746-1757.

#	ARTICLE	IF	CITATIONS
167	Comparing Tropospheric Warming in Climate Models and Satellite Data. Journal of Climate, 2017, 30, 373-392.	1.2	72
168	Reconciling the signal and noise of atmospheric warming on decadal timescales. Earth System Dynamics, 2017, 8, 177-210.	2.7	19
169	Deconstructing Global Temperature Anomalies: An Hypothesis. Climate, 2017, 5, 83.	1.2	4
170	Global mean sea-level rise in a world agreed upon in Paris. Environmental Research Letters, 2017, 12, 124010.	2.2	27
171	Experiments based on blue intensity for reconstructing North Pacific temperatures along the Gulf of Alaska. Climate of the Past, 2017, 13, 1007-1022.	1.3	34
172	Observationâ€based detection and attribution of 21st century climate change. Wiley Interdisciplinary Reviews: Climate Change, 2018, 9, e511.	3.6	12
173	The Impact of Recent Forcing and Ocean Heat Uptake Data on Estimates of Climate Sensitivity. Journal of Climate, 2018, 31, 6051-6071.	1.2	62
174	Influence of larval outbreaks on the climate reconstruction potential of an Arctic shrub. Dendrochronologia, 2018, 49, 36-43.	1.0	10
175	Intercomparison of the Extended Reconstructed Sea Surface Temperature v4 and v3b Datasets. Journal of Ocean University of China, 2018, 17, 209-218.	0.6	1
176	No "Slowdown―in the Story of Global Warming. Significance, 2018, 15, 24-27.	0.3	9
177	What Climate Sensitivity Index Is Most Useful for Projections?. Geophysical Research Letters, 2018, 45, 1559-1566.	1.5	40
178	Big Jump of Record Warm Global Mean Surface Temperature in 2014–2016 Related to Unusually Large Oceanic Heat Releases. Geophysical Research Letters, 2018, 45, 1069-1078.	1.5	45
179	Emergent constraint on equilibrium climate sensitivity from global temperature variability. Nature, 2018, 553, 319-322.	13.7	243
180	Evaluating biases in sea surface temperature records using coastal weather stations. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 670-681.	1.0	29
181	Cumulative carbon emissions budgets consistent with 1.5 °C global warming. Nature Climate Change, 2018, 8, 296-299.	8.1	90
182	The utility of the historical record for assessing the transient climate response to cumulative emissions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20160449.	1.6	24
183	Interpretations of the Paris climate target. Nature Geoscience, 2018, 11, 220-221.	5.4	33
184	Narrowing the surface temperature range in CMIP5 simulations over the Arctic. Theoretical and Applied Climatology, 2018, 132, 1073-1088.	1.3	2

#	Article	IF	CITATIONS
185	Quantifying air temperature evolution in the permafrost region from 1901 to 2014. International Journal of Climatology, 2018, 38, 66-76.	1.5	28
186	Evaluation of CORDEX-Arctic daily precipitation and temperature-based climate indices over Canadian Arctic land areas. Climate Dynamics, 2018, 50, 2061-2085.	1.7	35
187	A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900. Climate Dynamics, 2018, 50, 2513-2536.	1.7	56
188	Combining Written and Tree-Ring Evidence to Trace Past Food Crises: A Case Study from Finland. , 2018, , 43-66.		8
189	Diagnosing ENSO and Global Warming Tropical Precipitation Shifts Using Surface Relative Humidity and Temperature. Journal of Climate, 2018, 31, 1413-1433.	1.2	12
190	Uniform shrub growth response to June temperature across the North Slope of Alaska. Environmental Research Letters, 2018, 13, 044013.	2.2	27
191	Arctic amplification metrics. International Journal of Climatology, 2018, 38, 4384-4394.	1.5	37
192	A fluctuation in surface temperature in historical context: reassessment and retrospective on the evidence. Environmental Research Letters, 2018, 13, 123008.	2.2	23
193	The â€ [~] pause' in global warming in historical context: (II). Comparing models to observations. Environmental Research Letters, 2018, 13, 123007.	2.2	17
194	Regional Climate Sensitivity―and Historicalâ€Based Projections to 2100. Geophysical Research Letters, 2018, 45, 4248-4254.	1.5	16
195	Understanding the Recent Global Surface Warming Slowdown: A Review. Climate, 2018, 6, 82.	1.2	22
196	Distinguishing Trends and Shifts from Memory in Climate Data. Journal of Climate, 2018, 31, 9519-9543.	1.2	35
197	Statistical analysis of coverage error in simple global temperature estimators. Dynamics and Statistics of the Climate System, 2018, 3, .	0.8	11
198	Global and regional climate in 2017. Weather, 2018, 73, 382-390.	0.6	1
199	The Global Historical Climatology Network Monthly Temperature Dataset, Version 4. Journal of Climate, 2018, 31, 9835-9854.	1.2	145
200	The early 20th century warming: Anomalies, causes, and consequences. Wiley Interdisciplinary Reviews: Climate Change, 2018, 9, e522.	3.6	116
201	Global mean temperature indicators linked to warming levels avoiding climate risks. Environmental Research Letters, 2018, 13, 064015.	2.2	15
202	Identifying the early 2000s hiatus associated with internal climate variability. Scientific Reports, 2018, 8, 13602.	1.6	11

#	Article	IF	CITATIONS
203	Volcanic Radiative Forcing From 1979 to 2015. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12491-12508.	1.2	87
204	Projected changes in persistent extreme summer weather events: The role of quasi-resonant amplification. Science Advances, 2018, 4, eaat3272.	4.7	104
205	Possible Impact of Spatial and Temporal Non-Uniformity in Land Surface Temperature Data on Trend Estimation. Journal of Meteorological Research, 2018, 32, 819-828.	0.9	4
206	Detectable Impacts of the Past Halfâ€Degree Global Warming on Summertime Hot Extremes in China. Geophysical Research Letters, 2018, 45, 7130-7139.	1.5	19
207	FAIR v1.3: a simple emissions-based impulse response and carbon cycle model. Geoscientific Model Development, 2018, 11, 2273-2297.	1.3	152
208	Spatial behaviour of daily observed extreme temperatures in Northern Chile (1966–2015): data quality, warming trends, and its orographic and latitudinal effects. Stochastic Environmental Research and Risk Assessment, 2018, 32, 3503-3523.	1.9	15
209	Land Surface Air Temperature Data Are Considerably Different Among BESTâ€LAND, CRUâ€TEM4v, NASAâ€GISS, and NOAAâ€NCEI. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5881-5900.	1.2	18
210	Global temperature definition affects achievement of long-term climate goals. Environmental Research Letters, 2018, 13, 054004.	2.2	36
211	Signal detection in global mean temperatures after "Paris― an uncertainty and sensitivity analysis. Climate of the Past, 2018, 14, 139-155.	1.3	7
212	The Arctic Ocean Seasonal Cycles of Heat and Freshwater Fluxes: Observation-Based Inverse Estimates. Journal of Physical Oceanography, 2018, 48, 2029-2055.	0.7	42
213	Climate sensitivity estimates – sensitivity to radiative forcing time series and observational data. Earth System Dynamics, 2018, 9, 879-894.	2.7	21
214	A role of the Atlantic Ocean in predicting summer surface air temperature over North East Asia?. Climate Dynamics, 2018, 51, 473-491.	1.7	37
215	Episodic Arctic CO2 Limitation in the West Svalbard Shelf. Frontiers in Marine Science, 2018, 5, .	1.2	25
216	The many possible climates from the Paris Agreement's aim of 1.5 °C warming. Nature, 2018, 558, 41-49.	13.7	116
217	Causes of irregularities in trends of global mean surface temperature since the late 19th century. Science Advances, 2018, 4, eaao5297.	4.7	67
218	Decadal evolution of the surface energy budget during the fast warming and global warming hiatus periods in the ERA-interim. Climate Dynamics, 2019, 52, 2005-2016.	1.7	14
219	Can an ensemble climate simulation be used to separate climate change signals from internal unforced variability?. Climate Dynamics, 2019, 52, 3553-3573.	1.7	32
220	Persistent acceleration in global sea-level rise since the 1960s. Nature Climate Change, 2019, 9, 705-710.	8.1	206

#	Article	IF	CITATIONS
221	The link between climate and thermal energy demand on national level: A case study on Switzerland. Energy and Buildings, 2019, 202, 109372.	3.1	26
222	Estimating and tracking the remaining carbon budget for stringent climate targets. Nature, 2019, 571, 335-342.	13.7	229
223	Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nature Geoscience, 2019, 12, 643-649.	5.4	226
224	No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature, 2019, 571, 550-554.	13.7	272
225	Guidance on emissions metrics for nationally determined contributions under the Paris Agreement. Environmental Research Letters, 2019, 14, 124002.	2.2	25
226	How Daily Temperature and Precipitation Distributions Evolve With Global Surface Temperature Earth's Future, 2019, 7, 1323-1336.	2.4	13
227	The Amplified Arctic Warming in the Recent Decades may Have Been Overestimated by CMIP5 Models. Geophysical Research Letters, 2019, 46, 13338-13345.	1.5	15
228	Global and regional climate in 2018. Weather, 2019, 74, 332-340.	0.6	3
229	The Whole Atmosphere Community Climate Model Version 6 (WACCM6). Journal of Geophysical Research D: Atmospheres, 2019, 124, 12380-12403.	1.2	261
230	Quantifying the importance of interannual, interdecadal and multidecadal climate natural variabilities in the modulation of global warming rates. Climate Dynamics, 2019, 53, 6715-6727.	1.7	23
231	Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature, 2019, 573, 408-411.	13.7	340
232	Emergent constraints on Earth's transient and equilibrium response to doubled CO2 from post-1970s global warming. Nature Geoscience, 2019, 12, 902-905.	5.4	92
233	Influence and seepage: An evidence-resistant minority can affect public opinion and scientific belief formation. Cognition, 2019, 188, 124-139.	1.1	30
234	A link of China warming hiatus with the winter sea ice loss in Barents–Kara Seas. Climate Dynamics, 2019, 53, 2625-2642.	1.7	25
235	Toward a Combined Surface Temperature Data Set for the Arctic From the Alongâ€Track Scanning Radiometers. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6718-6736.	1.2	2
236	Geographical Distribution of Thermometers Gives the Appearance of Lower Historical Global Warming. Geophysical Research Letters, 2019, 46, 7654-7662.	1.5	9
237	Predicting the global temperature with the Stochastic Seasonal to Interannual Prediction System (StocSIPS). Climate Dynamics, 2019, 53, 4373-4411.	1.7	15
238	Arctic Amplification Response to Individual Climate Drivers. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6698-6717.	1.2	39

#	Article	IF	CITATIONS
239	Concurrent 2018 Hot Extremes Across Northern Hemisphere Due to Humanâ€Induced Climate Change. Earth's Future, 2019, 7, 692-703.	2.4	182
240	Improvements in the GISTEMP Uncertainty Model. Journal of Geophysical Research D: Atmospheres, 2019, 124, 6307-6326.	1.2	474
241	A Limited Role for Unforced Internal Variability in Twentieth-Century Warming. Journal of Climate, 2019, 32, 4893-4917.	1.2	68
242	The global warming hiatus has faded away: An analysis of 2014–2016 global surface air temperatures. International Journal of Climatology, 2019, 39, 4853-4868.	1.5	29
243	Recent global warming as confirmed by AIRS. Environmental Research Letters, 2019, 14, 044030.	2.2	57
244	Changes in air temperature over China in response to the recent global warming hiatus. Journal of Chinese Geography, 2019, 29, 496-516.	1.5	38
245	Global lightning activity and the hiatus in global warming. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 189, 27-34.	0.6	21
246	Is Temperature Exogenous? The Impact of Civil Conflict on the Instrumental Climate Record in Subâ€5aharan Africa. American Journal of Political Science, 2019, 63, 723-739.	2.9	26
247	Change point analysis of global temperature records. International Journal of Climatology, 2019, 39, 3679-3688.	1.5	21
248	Coherent signature of warming-induced extreme sub-continental boreal wildfire activity 4800 and 1100 years BP. Environmental Research Letters, 2019, 14, 124042.	2.2	23
249	Recommended temperature metrics for carbon budget estimates, model evaluation and climate policy. Nature Geoscience, 2019, 12, 964-971.	5.4	23
250	Regional trend changes in recent surface warming. Climate Dynamics, 2019, 52, 6463-6473.	1.7	3
251	CurrentÂfossil fuel infrastructure does not yet commit us to 1.5 °C warming. Nature Communications, 2019, 10, 101.	5.8	125
252	Estimating Transient Climate Response in a Largeâ€Ensemble Global Climate Model Simulation. Geophysical Research Letters, 2019, 46, 311-317.	1.5	14
253	Warming slowdown over the Tibetan plateau in recent decades. Theoretical and Applied Climatology, 2019, 135, 1375-1385.	1.3	20
254	Reconstructed global monthly land airÂtemperature dataset (1880–2017). Geoscience Data Journal, 2020, 7, 4-12.	1.8	2
255	Continental scale surface air temperature variations: Experience derived from the Chinese region. Earth-Science Reviews, 2020, 200, 102998.	4.0	24
256	Uncertainty Estimates for Sea Surface Temperature and Land Surface Air Temperature in NOAAGlobalTemp Version 5. Journal of Climate, 2020, 33, 1351-1379.	1.2	54

#	Article	IF	CITATIONS
257	Climate change now detectable from any single day of weather at global scale. Nature Climate Change, 2020, 10, 35-41.	8.1	154
258	Evaluating the Performance of Past Climate Model Projections. Geophysical Research Letters, 2020, 47, e2019GL085378.	1.5	103
259	Weather regimes linked to daily precipitation anomalies in Northern Chile. Atmospheric Research, 2020, 236, 104802.	1.8	10
260	Stable Isotope Evidence for Recent Global Warming Hiatus. Journal of Earth Science (Wuhan, China), 2020, 31, 419-424.	1.1	8
261	Potential Problems Measuring Climate Sensitivity from the Historical Record. Journal of Climate, 2020, 33, 2237-2248.	1.2	22
262	Comment on "The Impact of Recent Forcing and Ocean Heat Uptake Data on Estimates of Climate Sensitivity― Journal of Climate, 2020, 33, 391-396.	1.2	2
263	Reply to "Comment on â€~The Impact of Recent Forcing and Ocean Heat Uptake Data on Estimates of Climate Sensitivity'― Journal of Climate, 2020, 33, 397-404.	1.2	1
264	Complexity in crisis: The volcanic cold pulse of the 1690s and the consequences of Scotland's failure to cope. Journal of Volcanology and Geothermal Research, 2020, 389, 106746.	0.8	14
265	Absence of internal multidecadal and interdecadal oscillations in climate model simulations. Nature Communications, 2020, 11, 49.	5.8	97
266	An Assessment of Earth's Climate Sensitivity Using Multiple Lines of Evidence. Reviews of Geophysics, 2020, 58, e2019RG000678.	9.0	498
267	Comparison between observations and gridded data sets over complex terrain in the Chilean Andes: Precipitation and temperature. International Journal of Climatology, 2020, 40, 5266-5288.	1.5	23
268	Current and future global climate impacts resulting from COVID-19. Nature Climate Change, 2020, 10, 913-919.	8.1	400
269	Variability of global mean annual temperature is significantly influenced by the rhythm of ocean-atmosphere oscillations. Science of the Total Environment, 2020, 747, 141256.	3.9	24
270	Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications, 2020, 11, 4621.	5.8	201
271	Rapid worldwide growth of glacial lakes since 1990. Nature Climate Change, 2020, 10, 939-945.	8.1	235
272	Extremes become routine in an emerging new Arctic. Nature Climate Change, 2020, 10, 1108-1115.	8.1	138
273	Global and regional climate in 2019. Weather, 2020, 75, 264-271.	0.6	1
274	Using the fast impact of anthropogenic aerosols on regional land temperature to constrain aerosol forcing. Science Advances, 2020, 6, eabb5297.	4.7	6

#	Article	IF	CITATIONS
275	Fundamental Concepts of Human Thermoregulation and Adaptation to Heat: A Review in the Context of Global Warming. International Journal of Environmental Research and Public Health, 2020, 17, 7795.	1.2	25
276	The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 1999-2049.	1.0	10,272
277	How we know the Earth is warming and humans are responsible. Bulletin of the Atomic Scientists, 2020, 76, 140-144.	0.2	3
278	Crossbreeding CMIP6 Earth System Models WithÂanÂEmulator for Regionally Optimized Land Temperature Projections. Geophysical Research Letters, 2020, 47, e2019GL086812.	1.5	11
279	Environmental land-cover classification for integrated watershed studies: Cape Bounty, Melville Island, Nunavut. Arctic Science, 2020, 6, 404-422.	0.9	8
280	Past warming trend constrains future warming in CMIP6 models. Science Advances, 2020, 6, eaaz9549.	4.7	327
281	Tuning the MPlâ€ESM1.2 Global Climate Model to Improve the Match With Instrumental Record Warming by Lowering Its Climate Sensitivity. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002037.	1.3	29
282	Consistency of global warming trends strengthened since 1880s. Science Bulletin, 2020, 65, 1709-1712.	4.3	27
283	Presentation and Evaluation of the IPSL M6A‣R Climate Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002010.	1.3	541
284	Understanding and assessing uncertainty of observational climate datasets for model evaluation using ensembles. Wiley Interdisciplinary Reviews: Climate Change, 2020, 11, e654.	3.6	23
285	Observed Emergence of the Climate Change Signal: From the Familiar to the Unknown. Geophysical Research Letters, 2020, 47, e2019GL086259.	1.5	76
286	Multidecadal modulations of key metrics of global climate change. Global and Planetary Change, 2020, 188, 103149.	1.6	18
287	Long-term trends in Arctic surface temperature and potential causality over the last 100Âyears. Climate Dynamics, 2020, 55, 1443-1456.	1.7	21
288	A robust relationship between multidecadal global warming rate variations and the Atlantic Multidecadal Variability. Climate Dynamics, 2020, 55, 1945-1959.	1.7	7
289	Spatial Variability in Years of Abrupt Seasonal Temperature Changes and Warming (Cooling) Hiatuses in China from 1951–2018 and the Variation Trends before and after These Years. Atmosphere, 2020, 11, 82.	1.0	3
290	Energy budget constraints on historical radiative forcing. Nature Climate Change, 2020, 10, 313-316.	8.1	12
291	Climate Sensitivity of GFDL's CM4.0. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001838.	1.3	17
292	A global database of Holocene paleotemperature records. Scientific Data, 2020, 7, 115.	2.4	112

#	Article	IF	CITATIONS
293	Temporal variability of seasonal warming rates in China. International Journal of Climatology, 2021, 41, E1597.	1.5	7
294	The Northwestern Pacific Warming Record in August 2020 Occurred Under Anthropogenic Forcing. Geophysical Research Letters, 2021, 48, e2020GL090956.	1.5	18
295	Stringent mitigation substantially reduces risk of unprecedented near-term warming rates. Nature Climate Change, 2021, 11, 126-131.	8.1	19
296	Land Surface Air Temperature Variations Across the Globe Updated to 2019: The CRUTEM5 Data Set. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2019JD032352.	1.2	78
297	An Updated Assessment of Near‣urface Temperature Change From 1850: The HadCRUT5 Data Set. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2019JD032361.	1.2	299
298	An observation-based scaling model for climate sensitivity estimates and global projections to 2100. Climate Dynamics, 2021, 56, 1105-1129.	1.7	18
299	Assessment of Tidal Range Changes in the North Sea From 1958 to 2014. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016456.	1.0	18
300	Pacific variability reconciles observed and modelled global mean temperature increase since 1950. Climate Dynamics, 2021, 56, 613-634.	1.7	11
301	An updated evaluation of the global mean land surface air temperature and surface temperature trends based on CLSAT and CMST. Climate Dynamics, 2021, 56, 635-650.	1.7	26
302	Headline Indicators for Global Climate Monitoring. Bulletin of the American Meteorological Society, 2021, 102, E20-E37.	1.7	27
303	The Assessment of Global Surface Temperature Change from 1850s: The C-LSAT2.0 Ensemble and the CMST-Interim Datasets. Advances in Atmospheric Sciences, 2021, 38, 875-888.	1.9	22
304	Negligible Unforced Historical Pattern Effect on Climate Feedback Strength Found in HadISST-Based AMIP Simulations. Journal of Climate, 2021, 34, 39-55.	1.2	9
305	Winter Arctic Amplification at the synoptic timescale, 1979–2018, its regional variation and response to tropical and extratropical variability. Climate Dynamics, 2021, 56, 457-473.	1.7	12
306	Spatial variations in the warming trend and the transition to more severe weather in midlatitudes. Scientific Reports, 2021, 11, 145.	1.6	14
307	Making climate projections conditional on historical observations. Science Advances, 2021, 7, .	4.7	89
308	Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature, 2021, 589, 548-553.	13.7	154
309	Global surface temperatures. , 2021, , 95-109.		1
310	Increased outburst flood hazard from Lake Palcacocha due to human-induced glacier retreat. Nature Geoscience, 2021, 14, 85-90.	5.4	62

#	Article	IF	CITATIONS
311	Implementing Full Spatial Coverage in NOAA's Global Temperature Analysis. Geophysical Research Letters, 2021, 48, e2020GL090873.	1.5	18
312	Anthropogenic influence in observed regional warming trends and the implied social time of emergence. Communications Earth & Environment, 2021, 2, .	2.6	10
313	Analyzing NPP Response of Different Rangeland Types to Climatic Parameters over Mongolia. Agronomy, 2021, 11, 647.	1.3	8
314	Are Multiâ€Decadal Fluctuations in Arctic and Antarctic Surface Temperatures a Forced Response to Anthropogenic Emissions or Part of Internal Climate Variability?. Geophysical Research Letters, 2021, 48, e2020GL090631.	1.5	10
315	Arctic Warming Revealed by Multiple CMIP6 Models: Evaluation of Historical Simulations and Quantification of Future Projection Uncertainties. Journal of Climate, 2021, 34, 4871-4892.	1.2	55
316	Could CMIP6 climate models reproduce the early-2000s global warming slowdown?. Science China Earth Sciences, 2021, 64, 853-865.	2.3	7
317	Multi-model ensemble mean of global climate models fails to reproduce early twentieth century Arctic warming. Polar Science, 2021, 30, 100677.	0.5	9
318	The climate sensitivity of northern Greenland fjords is amplified through sea-ice damming. Communications Earth & Environment, 2021, 2, .	2.6	4
319	Wetter environment and increased grazing reduced the area burned in northern Eurasia from 2002 to 2016. Biogeosciences, 2021, 18, 2559-2572.	1.3	7
320	The 2000–2012 Global Warming Hiatus More Likely With a Low Climate Sensitivity. Geophysical Research Letters, 2021, 48, e2020GL091779.	1.5	13
321	Climate Field Completion via Markov Random Fields: Application to the HadCRUT4.6 Temperature Dataset. Journal of Climate, 2021, 34, 4169-4188.	1.2	6
322	A data assimilation approach to last millennium temperature field reconstruction using a limited high-sensitivity proxy network. Journal of Climate, 2021, , 1-64.	1.2	7
323	Exploiting large ensembles for a better yet simpler climate model evaluation. Climate Dynamics, 2021, 57, 2557-2580.	1.7	36
324	FaIRv2.0.0: a generalized impulse response model for climate uncertainty and future scenario exploration. Geoscientific Model Development, 2021, 14, 3007-3036.	1.3	34
325	Combining sparse observations and reanalysis data for refining spatiotemporal variability in nearâ€surface air temperature lapse rates over China. International Journal of Climatology, 0, , .	1.5	2
326	Emergent constraints on climate sensitivities. Reviews of Modern Physics, 2021, 93, .	16.4	28
327	Skeptic priors and climate consensus. Climatic Change, 2021, 166, 1.	1.7	0
328	The Benefits of Continuous Local Regression for Quantifying Global Warming. Earth and Space Science, 2021, 8, e2020EA001082.	1.1	5

#	Article	IF	CITATIONS
329	CAS FGOALS-f3-L Large-ensemble Simulations for the CMIP6 Polar Amplification Model Intercomparison Project. Advances in Atmospheric Sciences, 2021, 38, 1028-1049.	1.9	4
330	Comparison of CMIP6 historical climate simulations and future projected warming to an empirical model of global climate. Earth System Dynamics, 2021, 12, 545-579.	2.7	14
331	Warm season temperature in the Qinling Mountains (north-central China) since 1740 CE recorded by tree-ring maximum latewood density of Shensi fir. Climate Dynamics, 2021, 57, 2653-2667.	1.7	9
332	The influence of decision-making in tree ring-based climate reconstructions. Nature Communications, 2021, 12, 3411.	5.8	59
333	A GA-Based BP Artificial Neural Network for Estimating Monthly Surface Air Temperature of the Antarctic during 1960–2019. Advances in Meteorology, 2021, 2021, 1-14.	0.6	1
334	Biophysical controls of increased tundra productivity in the western Canadian Arctic. Remote Sensing of Environment, 2021, 258, 112358.	4.6	12
335	Bayesian estimation of Earth's climate sensitivity and transient climate response from observational warming and heat content datasets. Earth System Dynamics, 2021, 12, 709-723.	2.7	5
336	Spatiotemporal variations and regional differences in air temperature in the permafrost regions in the Northern Hemisphere during 1980–2018. Science of the Total Environment, 2021, 791, 148358.	3.9	27
337	Reduced Complexity Model Intercomparison Project Phase 2: Synthesizing Earth System Knowledge for Probabilistic Climate Projections. Earth's Future, 2021, 9, e2020EF001900.	2.4	28
338	Deriving Arctic 2 m air temperatures over snow and ice from satellite surface temperature measurements. Cryosphere, 2021, 15, 3035-3057.	1.5	14
339	Global mean frequency increases of daily and sub-daily heavy precipitation in ERA5. Environmental Research Letters, 2021, 16, 074035.	2.2	20
340	Energy Budget Constraints on the Time History of Aerosol Forcing and Climate Sensitivity. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033622.	1.2	25
341	Emerging new climate extremes over Europe. Climate Dynamics, 2022, 58, 487-501.	1.7	20
342	The Recent Emergence of Arctic Amplification. Geophysical Research Letters, 2021, 48, e2021GL094086.	1.5	50
343	Origins of a Relatively Tight Lower Bound on Anthropogenic Aerosol Radiative Forcing from Bayesian Analysis of Historical Observations. Journal of Climate, 2021, 34, 8777-8792.	1.2	3
344	How much has the Sun influenced Northern Hemisphere temperature trends? An ongoing debate. Research in Astronomy and Astrophysics, 2021, 21, 131.	0.7	43
345	Diverse Responses of Globalâ€Mean Surface Temperature to External Forcings and Internal Climate Variability in Observations and CMIP6 Models. Geophysical Research Letters, 2021, 48, e2021GL093194.	1.5	3
346	Permafrost dynamics and their hydrologic impacts over the Russian Arctic drainage basin. Advances in Climate Change Research, 2021, 12, 482-498.	2.1	20

#	Article	IF	CITATIONS
347	Frequency-Dependent Estimation of Effective Spatial Degrees of Freedom. Journal of Climate, 2021, 34, 7373-7388.	1.2	9
348	EC-Earth3-AerChem: a global climate model with interactive aerosols and atmospheric chemistry participating in CMIP6. Geoscientific Model Development, 2021, 14, 5637-5668.	1.3	40
349	Late twentieth century rapid increase in high Asian seasonal snow and glacier-derived streamflow tracked by tree rings of the upper Indus River basin. Environmental Research Letters, 2021, 16, 094055.	2.2	15
350	Presentation and Evaluation of the IPSL M6A‣R Ensemble of Extended Historical Simulations. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002565.	1.3	18
351	Technological opportunities for sensing of the health effects of weather and climate change: a state-of-the-art-review. International Journal of Biometeorology, 2021, 65, 779-803.	1.3	19
352	Historical Estimates of Surface Marine Temperatures. Annual Review of Marine Science, 2021, 13, 283-311.	5.1	15
353	Ocean circulation in high northern latitudes and its influence on Arctic climate through the ages. , 2021, , 79-116.		0
354	An integrated approach to quantifying uncertainties in the remaining carbon budget. Communications Earth & Environment, 2021, 2, .	2.6	52
355	Disparagement of Climate Change Research: A Double Wrong. , 2015, , 165-193.		3
356	Forecasting Global Warming. Springer Climate, 2017, , 51-113.	0.3	9
356 357	Forecasting Global Warming. Springer Climate, 2017, , 51-113. Sensitivity of Historical Climate Simulations to Uncertain Aerosol Forcing. Geophysical Research Letters, 2020, 47, e2019GL085806.	0.3 1.5	9 28
	Sensitivity of Historical Climate Simulations to Uncertain Aerosol Forcing. Geophysical Research		
357	Sensitivity of Historical Climate Simulations to Uncertain Aerosol Forcing. Geophysical Research Letters, 2020, 47, e2019GL085806. Observational constraints on the effective climate sensitivity from the historical period.	1.5	28
357 358	Sensitivity of Historical Climate Simulations to Uncertain Aerosol Forcing. Geophysical Research Letters, 2020, 47, e2019GL085806. Observational constraints on the effective climate sensitivity from the historical period. Environmental Research Letters, 2020, 15, 034043. Late 1980s abrupt cold season temperature change in Europe consistent with circulation variability	1.5 2.2	28 14
357 358 359	Sensitivity of Historical Climate Simulations to Uncertain Aerosol Forcing. Geophysical Research Letters, 2020, 47, e2019GL085806. Observational constraints on the effective climate sensitivity from the historical period. Environmental Research Letters, 2020, 15, 034043. Late 1980s abrupt cold season temperature change in Europe consistent with circulation variability and long-term warming. Environmental Research Letters, 2020, 15, 094056.	1.5 2.2	28 14 15
357 358 359 360	Sensitivity of Historical Climate Simulations to Uncertain Aerosol Forcing. Geophysical Research Letters, 2020, 47, e2019GL085806. Observational constraints on the effective climate sensitivity from the historical period. Environmental Research Letters, 2020, 15, 034043. Late 1980s abrupt cold season temperature change in Europe consistent with circulation variability and long-term warming. Environmental Research Letters, 2020, 15, 094056. Satellite observations in support of the Copernicus Climate Change Service., 2020, . The Effect of Atmospheric Transmissivity on Model and Observational Estimates of the Sea Ice Albedo	1.5 2.2 2.2	28 14 15 1
357 358 359 360 361	 Sensitivity of Historical Climate Simulations to Uncertain Aerosol Forcing. Geophysical Research Letters, 2020, 47, e2019GL085806. Observational constraints on the effective climate sensitivity from the historical period. Environmental Research Letters, 2020, 15, 034043. Late 1980s abrupt cold season temperature change in Europe consistent with circulation variability and long-term warming. Environmental Research Letters, 2020, 15, 094056. Satellite observations in support of the Copernicus Climate Change Service. , 2020, . The Effect of Atmospheric Transmissivity on Model and Observational Estimates of the Sea Ice Albedo Feedback. Journal of Climate, 2020, 33, 5743-5765. Pattern Recognition Methods to Separate Forced Responses from Internal Variability in Climate Model 	1.5 2.2 2.2 1.2	28 14 15 1

	CITATION	Report	
#	Article	IF	CITATIONS
365	Multidecadal Recession of Grinnell and Terra Nivea Ice Caps, Baffin Island, Canada. Arctic, 2015, 68, 45.	0.2	4
366	Trends in UAH Zonal Mean Lower Troposphere Temperatures. SSRN Electronic Journal, 0, , .	0.4	3
367	Global Cooling Through Blockchain to Avoid Catastrophic Climate Changes by 2050. SSRN Electronic Journal, 0, , .	0.4	20
368	On the climate sensitivity and historical warming evolution in recent coupled model ensembles. Atmospheric Chemistry and Physics, 2020, 20, 7829-7842.	1.9	87
369	Estimates of climate system properties incorporating recent climate change. Advances in Statistical Climatology, Meteorology and Oceanography, 2018, 4, 19-36.	0.6	5
371	Dating hiatuses: a statistical model of the recent slowdown in global warming and the next one. Earth System Dynamics, 2020, 11, 1123-1132.	2.7	6
372	Storylines of the 2018 Northern Hemisphere heatwave at pre-industrial and higher global warming levels. Earth System Dynamics, 2020, 11, 855-873.	2.7	31
374	A new merge of global surface temperature datasets since the start of the 20th century. Earth System Science Data, 2019, 11, 1629-1643.	3.7	30
375	The Berkeley Earth Land/Ocean Temperature Record. Earth System Science Data, 2020, 12, 3469-3479.	3.7	180
377	The West Pacific Gradient tracks ENSO and zonal Pacific sea surface temperature gradient during the last Millennium. Scientific Reports, 2021, 11, 20395.	1.6	2
378	Global Wave Height Slowdown Trend during a Recent Global Warming Slowdown. Remote Sensing, 2021, 13, 4096.	1.8	7
379	Global and regional climate inÂ2020. Weather, 2021, 76, 360-369.	0.6	0
380	Increased risk of near term global warming due to a recent AMOC weakening. Nature Communications, 2021, 12, 6108.	5.8	25
381	Robust detection of forced warming in the presence of potentially large climate variability. Science Advances, 2021, 7, eabh4429.	4.7	11
382	Climate-change â€~hiatus' disappears with new data. Nature, 0, , .	13.7	0
383	On the Preservation of Reliability. Trends in Logic, 2016, , 65-80.	0.2	1
384	Polluted Discourse: Communication and Myths in a Climate of Denial. Advances in Natural and Technological Hazards Research, 2016, , 37-54.	1.1	1
385	Globaler Klimawandel: die Grundlagen. , 2019, , 1-36.		0

#	Article	IF	CITATIONS
386	A Review on Global Warming Attribution and Hiatus Analysis. Climate Change Research Letters, 2019, 08, 421-431.	0.0	0
388	Recent Arctic Ocean Surface Air Temperatures in Atmospheric Reanalyses and Numerical Simulations. Journal of Climate, 2020, 33, 4347-4367.	1.2	8
389	The role of prior assumptions in carbon budget calculations. Earth System Dynamics, 2020, 11, 563-577.	2.7	4
390	Diagnosing Environmental Controls on Vegetation Greening and Browning Trends Over Alaska and Northwest Canada Using Complementary Satellite Observations. , 2021, , 583-613.		0
391	Structural barriers to scientific progress. Acta Crystallographica Section D: Structural Biology, 2020, 76, 908-911.	1.1	0
392	A new energy-balance approach to linear filtering for estimating effective radiative forcing from temperature time series. Advances in Statistical Climatology, Meteorology and Oceanography, 2020, 6, 91-102.	0.6	2
393	Bringing physical reasoning into statistical practice in climate-change science. Climatic Change, 2021, 169, 1.	1.7	23
395	The Pause End and Major Temperature Impacts during Super El Niños are Due to Shortwave Radiation Anomalies. Physical Science International Journal, 0, , 1-20.	0.3	3
396	Budgets for Decadal Variability in Pacific Ocean Heat Content. Journal of Climate, 2020, 33, 7663-7678.	1.2	3
397	Assessing dynamic vegetation model parameter uncertainty across Alaskan arctic tundra plant communities. Ecological Applications, 2022, 32, e02499.	1.8	3
398	Global ensemble of temperatures over 1850–2018: quantification of uncertainties in observations, coverage, and spatial modeling (GETQUOCS). Atmospheric Measurement Techniques, 2021, 14, 7103-7121.	1.2	0
399	Prospects for Detecting Accelerated Global Warming. Geophysical Research Letters, 2022, 49, e2021GL095782.	1.5	9
400	Thermal comfort in naturally ventilated dwellings in the central Mexican plateau. Building and Environment, 2022, 211, 108713.	3.0	10
401	A piecewise integration approach for model error-induced biases of greenhouse gas contribution to global warming. Climate Dynamics, 2022, 58, 3175-3186.	1.7	0
402	The fractional energy balance equation for climate projections throughÂ2100. Earth System Dynamics, 2022, 13, 81-107.	2.7	7
403	A comparison of global surface temperature variability, extremes and warming trend using reanalysis datasets and <scp>CMSTâ€Interim</scp> . International Journal of Climatology, 2022, 42, 5609-5628.	1.5	11
404	Arctic warming-induced cold damage to East Asian terrestrial ecosystems. Communications Earth & Environment, 2022, 3, .	2.6	8
405	ESC-GAN., 2022,,.		2

#	Article	IF	CITATIONS
406	Revisiting the Existence of the Global Warming Slowdown during the Early Twenty-First Century. Journal of Climate, 2022, 35, 1853-1871.	1.2	5
407	Observational Constraint on the Climate Sensitivity to Atmospheric CO2 Concentrations Changes Derived from the 1971–2017 Global Energy Budget. Journal of Climate, 2022, 35, 4469-4483.	1.2	3
408	Reassessing the relative role of anthropogenic aerosols and natural decadal variability in driving the mid-twentieth century global "coolingâ€: a focus on the latitudinal gradient of tropospheric temperature. Climate Dynamics, 2022, 59, 2655-2681.	1.7	1
409	Could detection and attribution of climate change trends be spurious regression?. Climate Dynamics, 2022, 59, 2785-2799.	1.7	1
410	A new stalagmite oxygen isotope record over the last 1350 years: Insights into spatial variation in Asian summer monsoon and temperature forcing. Quaternary Science Reviews, 2022, 284, 107499.	1.4	3
411	Large-scale emergence of regional changes in year-to-year temperature variability by the end of the 21st century. Nature Communications, 2021, 12, 7237.	5.8	12
412	Description of the China global Merged Surface Temperature version 2.0. Earth System Science Data, 2022, 14, 1677-1693.	3.7	9
413	The 1600 CE Huaynaputina eruption as a possible trigger for persistent cooling in the North Atlantic region. Climate of the Past, 2022, 18, 739-757.	1.3	11
414	Discussion on "A combined estimate of global temperature― Environmetrics, 2022, 33, .	0.6	2
416	Observationally constrained projection of Afro-Asian monsoon precipitation. Nature Communications, 2022, 13, 2552.	5.8	23
417	Predicting Slowdowns in Decadal Climate Warming Trends With Explainable Neural Networks. Geophysical Research Letters, 2022, 49, .	1.5	7
418	Inconsistent comparison of temperature reconstructions over the Common Era. Dendrochronologia, 2022, 74, 125965.	1.0	2
419	Evaluation of Sea Ice Radiative Forcing according to Surface Albedo and Skin Temperature over the Arctic from 1982–2015. Remote Sensing, 2022, 14, 2512.	1.8	4
420	Common Issues in Verification of Climate Forecasts and Projections. Climate, 2022, 10, 83.	1.2	4
421	A multi-method framework for global real-time climate attribution. Advances in Statistical Climatology, Meteorology and Oceanography, 2022, 8, 135-154.	0.6	0
422	Contributions of internal climate variability in driving global and ocean temperature variations using multi-layer perceptron neural network. Advances in Climate Change Research, 2022, 13, 459-472.	2.1	1
423	CLIMFILL v0.9: a framework for intelligently gap filling Earth observations. Geoscientific Model Development, 2022, 15, 4569-4596.	1.3	5
424	Evaluation of climate variability and change in ACCESS historical simulations for CMIP6. Journal of Southern Hemisphere Earth Systems Science, 2022, 72, 73-92.	0.7	6

#	Article	IF	CITATIONS
425	Analysing climatic variability and extremes events in the Himalayan regions focusing on mountainous urban agglomerations. Geocarto International, 2022, 37, 14148-14170.	1.7	7
426	Annual Mean Arctic Amplification 1970–2020: Observed and Simulated by CMIP6 Climate Models. Geophysical Research Letters, 2022, 49, .	1.5	71
427	Recognising bias in Common Era temperature reconstructions. Dendrochronologia, 2022, 74, 125982.	1.0	8
428	Dendroclimatology of Yellow-Cedar (Callitropsis nootkatensis) and Temperature Variability on the Western Slopes of the North Cascades in Washington State, USA, from 1333 to 2015 CE. Tree-Ring Research, 2022, 78, .	0.4	1
429	Atmospheric Contributions to the Reversal of Surface Temperature Anomalies Between Early and Late Winter Over Eurasia. Earth's Future, 2022, 10, .	2.4	13
430	Contemporary climate change velocity for near-surface temperatures over India. Climatic Change, 2022, 173, .	1.7	2
431	Changes in the global mean air temperature over land since 1980. Atmospheric Research, 2022, 279, 106392.	1.8	14
432	Aerosol processes in high-latitude environments and the effects on climate. , 2022, , 651-706.		2
433	Improvements to the Land Surface Air Temperature Reconstruction in NOAAGlobalTemp: An Artificial Neural Network Approach. , 2022, 1, .		3
434	Ocean Heat Uptake Efficiency Increase Since 1970. Geophysical Research Letters, 2022, 49, .	1.5	3
435	Constraining low-frequency variability in climate projections to predict climate on decadal to multi-decadal timescales – a poor man's initialized prediction system. Earth System Dynamics, 2022, 13, 1437-1450.	2.7	7
436	Millennial-scale climate variability over land overprinted by ocean temperature fluctuations. Nature Geoscience, 2022, 15, 899-905.	5.4	6
437	Internal variability and forcing influence model–satellite differences in the rate of tropical tropospheric warming. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
438	Detection and attribution of climate change: A deep learning and variational approach. , 2022, 1, .		0
439	Pathfinder v1.0.1: a Bayesian-inferred simple carbon–climate model to explore climate change scenarios. Geoscientific Model Development, 2022, 15, 8831-8868.	1.3	1
440	Reconstruction of Zonal Precipitation From Sparse Historical Observations Using Climate Model Information and Statistical Learning. Geophysical Research Letters, 2022, 49, .	1.5	0
441	Anthropogenic influence on extremes and risk hotspots. Scientific Reports, 2023, 13, .	1.6	7
442	Assessing ExxonMobil's global warming projections. Science, 2023, 379, .	6.0	55

#	Article	IF	CITATIONS
443	Modern temperatures in central–north Greenland warmest in past millennium. Nature, 2023, 613, 503-507.	13.7	12
444	Climate Research and Big Data. Handbooks in Philosophy, 2023, , 1-25.	0.1	0
445	An idealized sensitivity study of fine particles' impact on the urban vertical temperature structure. Urban Climate, 2023, 49, 101492.	2.4	0
446	Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change. Earth System Dynamics, 2023, 14, 81-100.	2.7	4
447	Arctic marine ecosystems face increasing climate stress. Environmental Reviews, 2023, 31, 403-451.	2.1	1
449	CMIP6 simulations with the compact Earth system model OSCAR v3.1. Geoscientific Model Development, 2023, 16, 1129-1161.	1.3	5
450	Estimating Summer Arctic Warming Amplitude Relative to Pre-Industrial Levels Using Tree Rings. Forests, 2023, 14, 418.	0.9	0
451	Australian climate warming: observed change from 1850 and global temperature targets. Journal of Southern Hemisphere Earth Systems Science, 2023, 73, 30-43.	0.7	5
452	Reduction in the Arctic Surface Warm Bias in the NCAR CAM6 by Reducing Excessive Low-Level Clouds in the Arctic. Atmosphere, 2023, 14, 522.	1.0	0
453	Newly reconstructed Arctic surface air temperatures for 1979–2021 with deep learning method. Scientific Data, 2023, 10, .	2.4	0
454	UKESM1.1: development and evaluation of an updated configuration of the UK Earth System Model. Geoscientific Model Development, 2023, 16, 1569-1600.	1.3	4
469	Climate Research and Big Data. Handbooks in Philosophy, 2023, , 125-149.	0.1	0
470	Assessing carbon cycle projections from complex and simple models under SSP scenarios. Climatic Change, 2023, 176, .	1.7	1
472	Current and Projected Climate Changes in African Subregions. , 2023, , 21-52.		0