State-of-the-art membrane based CO2 separation using overview on current status and future directions

Progress in Polymer Science 39, 817-861 DOI: 10.1016/j.progpolymsci.2014.01.003

Citation Report

#	Article	IF	CITATIONS
1	Application of Polymeric Membranes in Biohydrogen Purification and Storage. Current Biochemical Engineering, 2014, 1, 99-105.	1.3	6
2	Chemical Vapor Deposition on Chabazite (CHA) Zeolite Membranes for Effective Post-Combustion CO ₂ Capture. Environmental Science & Technology, 2014, 48, 14828-14836.	4.6	36
3	An overview: synthesis of thin films/membranes of metal organic frameworks and its gas separation performances. RSC Advances, 2014, 4, 54322-54334.	1.7	65
4	Aminosilane-functionalization of a nanoporous Y-type zeolite for application in a cellulose acetate based mixed matrix membrane for CO ₂ separation. RSC Advances, 2014, 4, 63966-63976.	1.7	89
5	High permeability hydrogel membranes of chitosan/poly ether-block-amide blends for CO2 separation. Journal of Membrane Science, 2014, 469, 198-208.	4.1	103
6	Enhanced CO ₂ Permeability of Membranes by Incorporating Polyzwitterion@CNT Composite Particles into Polyimide Matrix. ACS Applied Materials & Interfaces, 2014, 6, 13051-13060.	4.0	73
7	Polyaniline in situ modified halloysite nanotubes incorporated asymmetric mixed matrix membrane for gas separation. Separation and Purification Technology, 2014, 132, 187-194.	3.9	69
8	Ethylene vinyl acetate/poly(ethylene glycol) blend membranes for CO ₂ /N ₂ separation. , 2015, 5, 668-681.		15
9	Comparison of silica and novel functionalized silica-based cellulose acetate hybrid membranes in gas permeation study. Journal of Polymer Research, 2015, 22, 1.	1.2	18
10	Function-led design of new porous materials. Science, 2015, 348, aaa8075.	6.0	1,272
10	Function-led design of new porous materials. Science, 2015, 348, aaa8075. Constructing CO2 transport passageways in Matrimid® membranes using nanohydrogels for efficient carbon capture. Journal of Membrane Science, 2015, 474, 156-166.	6.0 4.1	1,272 45
	Constructing CO2 transport passageways in Matrimid® membranes using nanohydrogels for efficient		
11	Constructing CO2 transport passageways in Matrimid® membranes using nanohydrogels for efficient carbon capture. Journal of Membrane Science, 2015, 474, 156-166. Enhanced CO ₂ transport properties of membranes by embedding nano-porous zeolite	4.1	45
11 12	Constructing CO2 transport passageways in Matrimid® membranes using nanohydrogels for efficient carbon capture. Journal of Membrane Science, 2015, 474, 156-166. Enhanced CO ₂ transport properties of membranes by embedding nano-porous zeolite particles into Matrimid®5218 matrix. RSC Advances, 2015, 5, 8552-8565. Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for	4.1 1.7	45 98
11 12 13	Constructing CO2 transport passageways in Matrimid® membranes using nanohydrogels for efficient carbon capture. Journal of Membrane Science, 2015, 474, 156-166. Enhanced CO ₂ transport properties of membranes by embedding nano-porous zeolite particles into Matrimid®5218 matrix. RSC Advances, 2015, 5, 8552-8565. Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation. Journal of Membrane Science, 2015, 479, 1-10.	4.1 1.7 4.1	45 98 219
11 12 13 14	Constructing CO2 transport passageways in Matrimid® membranes using nanohydrogels for efficient carbon capture. Journal of Membrane Science, 2015, 474, 156-166. Enhanced CO ₂ transport properties of membranes by embedding nano-porous zeolite particles into Matrimid®5218 matrix. RSC Advances, 2015, 5, 8552-8565. Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation. Journal of Membrane Science, 2015, 479, 1-10. Enhancing gas permeability in mixed matrix membranes through tuning the nanoparticle properties. Journal of Membrane Science, 2015, 482, 49-55. Efficient CO ₂ Capture by Functionalized Graphene Oxide Nanosheets as Fillers To Fabricate Multi-Permselective Mixed Matrix Membranes. ACS Applied Materials & amp; Interfaces, 2015, 7,	4.1 1.7 4.1 4.1	45 98 219 65
11 12 13 14 15	Constructing CO2 transport passageways in Matrimid® membranes using nanohydrogels for efficient carbon capture. Journal of Membrane Science, 2015, 474, 156-166. Enhanced CO ₂ transport properties of membranes by embedding nano-porous zeolite particles into Matrimid®5218 matrix. RSC Advances, 2015, 5, 8552-8565. Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation. Journal of Membrane Science, 2015, 479, 1-10. Enhancing gas permeability in mixed matrix membranes through tuning the nanoparticle properties. Journal of Membrane Science, 2015, 482, 49-55. Efficient CO ₂ Capture by Functionalized Graphene Oxide Nanosheets as Fillers To Fabricate Multi-Permselective Mixed Matrix Membranes. ACS Applied Materials & amp; Interfaces, 2015, 7, 5528-5537. Gas permeation and sorption properties of poly(amide-12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Journal of Industrial and Engineering	 4.1 1.7 4.1 4.1 4.0 	45 98 219 65 305

#	Article	IF	CITATIONS
19	Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO ₂ capture?. Chemical Society Reviews, 2015, 44, 2421-2454.	18.7	732
20	Anionic surfactant-doped Pebax membrane with optimal free volume characteristics for efficient CO 2 separation. Journal of Membrane Science, 2015, 493, 460-469.	4.1	34
21	Preparation and characterization of Matrimid® 5218 based binary and ternary mixed matrix membranes for CO2 separation. International Journal of Greenhouse Gas Control, 2015, 39, 225-235.	2.3	65
22	The impact of water vapor on CO2 separation performance of mixed matrix membranes. Journal of Membrane Science, 2015, 492, 471-477.	4.1	29
23	Rationalizing the role of the anion in CO ₂ capture and conversion using imidazolium-based ionic liquid modified mesoporous silica. RSC Advances, 2015, 5, 64220-64227.	1.7	53
24	Effect of fixed carbon molecular sieve (CMS) loading and various di-ethanolamine (DEA) concentrations on the performance of a mixed matrix membrane for CO ₂ /CH ₄ separation. RSC Advances, 2015, 5, 60814-60822.	1.7	43
25	Improved CO ₂ separation performance of Matrimid®5218 membrane by addition of low molecular weight polyethylene glycol. , 2015, 5, 530-544.		48
26	Nickel ion coupled counter complexation and decomplexation through a modified supported liquid membrane system. RSC Advances, 2015, 5, 38424-38434.	1.7	16
27	Multifunctional lanthanide coordination polymers. Progress in Polymer Science, 2015, 48, 40-84.	11.8	176
28	The effects of aminosilane grafting on NaY zeolite–Matrimid®5218 mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 2015, 490, 364-379.	4.1	147
29	Mixed matrix membranes composed of sulfonated poly(ether ether ketone) and a sulfonated metal–organic framework for gas separation. Journal of Membrane Science, 2015, 488, 67-78.	4.1	91
30	Comparative studies on the effects of casting solvent on physicoâ€chemical and gas transport properties of dense polysulfone membrane used for CO ₂ /CH ₄ separation. Journal of Applied Polymer Science, 2015, 132, .	1.3	28
31	DFT analysis of coordination polymer ligands: unraveling the electrostatic properties and their effect on CO2 interaction. Adsorption, 2015, 21, 533-546.	1.4	9
32	Polyimide mixed matrix membranes for CO2 separations using carbon–silica nanocomposite fillers. Journal of Membrane Science, 2015, 495, 121-129.	4.1	55
33	Suppression of aging and plasticization in highly permeable polymers. Polymer, 2015, 77, 377-386.	1.8	114
34	Recent developments in membranes for efficient hydrogen purification. Journal of Membrane Science, 2015, 495, 130-168.	4.1	229
35	Separations of binary mixtures of CO2/CH4 and CO2/N2 with mixed-matrix membranes containing Zn(pyrz)2(SiF6) metal-organic framework. Journal of Membrane Science, 2015, 495, 169-175.	4.1	57
36	The density and crystallinity properties of PPO-silica mixed-matrix membranes produced via the in situ sol-gel method for H2/CO2 separation. II: Effect of thermal annealing treatment. Chemical Engineering Research and Design, 2015, 104, 319-332.	2.7	33

#	Article	IF	CITATIONS
37	High-performance composite membranes incorporated with carboxylic acid nanogels for CO2 separation. Journal of Membrane Science, 2015, 495, 72-80.	4.1	65
38	Mixed matrix membranes composed of two-dimensional metal–organic framework nanosheets for pre-combustion CO ₂ capture: a relationship study of filler morphology versus membrane performance. Journal of Materials Chemistry A, 2015, 3, 20801-20810.	5.2	121
39	Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Advances, 2015, 5, 82460-82470.	1.7	118
40	Synthesis and characterisation of MOF/ionic liquid/chitosan mixed matrix membranes for CO ₂ /N ₂ separation. RSC Advances, 2015, 5, 102350-102361.	1.7	102
41	Cellulose acetate/nanoâ€porous zeolite mixed matrix membrane for CO ₂ separation. , 2015, 5, 291-304.		38
42	Free-standing, polysilsesquioxane-based inorganic/organic hybrid membranes for gas separations. Journal of Membrane Science, 2015, 475, 384-394.	4.1	37
43	Enhanced CO2 separation properties by incorporating poly(ethylene glycol)-containing polymeric submicrospheres into polyimide membrane. Journal of Membrane Science, 2015, 473, 310-317.	4.1	47
44	Performance of PVA/NaA Mixed Matrix Membrane for Removal of Water from Ethylene Glycol Solutions by Pervaporation. Chemical Engineering Communications, 2015, 202, 316-321.	1.5	71
46	Current Status and Future Prospect ofÂPolymer‣ayered Silicate Mixedâ€Matrix Membranes for CO ₂ /CH ₄ Separation. Chemical Engineering and Technology, 2016, 39, 1393-1405.	0.9	38
47	Simulation of CO 2 absorption by solution of ammonium ionic liquid in hollow-fiber contactors. Chemical Engineering and Processing: Process Intensification, 2016, 108, 27-34.	1.8	75
48	Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: Interfacial toughening effect of ionic liquid. Journal of Membrane Science, 2016, 511, 130-142.	4.1	242
49	Poly(ionic liquid)/Ionic Liquid Ion-Gels with High "Free―Ionic Liquid Content: Platform Membrane Materials for CO ₂ /Light Gas Separations. Accounts of Chemical Research, 2016, 49, 724-732.	7.6	182
50	Advances in high permeability polymer-based membrane materials for CO ₂ separations. Energy and Environmental Science, 2016, 9, 1863-1890.	15.6	612
51	Time-dependent mathematical modeling of binary gas mixture in facilitated transport membranes (FTMs): A real condition for single-reaction mechanism. Journal of Industrial and Engineering Chemistry, 2016, 39, 48-65.	2.9	19
52	CO2 separation using surface-functionalized SiO2 nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture. Journal of Membrane Science, 2016, 515, 54-62.	4.1	81
53	Fabrication of mixed-matrix membrane containing metal–organic framework composite with task-specific ionic liquid for efficient CO ₂ separation. Journal of Materials Chemistry A, 2016, 4, 7281-7288.	5.2	142
54	Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture. Separation and Purification Technology, 2016, 166, 171-180.	3.9	150
55	Tuning the performance of CO2 separation membranes by incorporating multifunctional modified silica microspheres into polymer matrix. Journal of Membrane Science, 2016, 514, 73-85.	4.1	35

#	Article	IF	CITATIONS
56	Interfacial regions in spherical nanoparticle-doped glassy polymers: interfaces or interphases?. Polymer Chemistry, 2016, 7, 3398-3405.	1.9	6
58	Surface Modification of AMH-3 for Development of Mixed Matrix Membranes. Procedia Engineering, 2016, 148, 86-92.	1.2	5
59	Elevating the selectivity of layer-by-layer membranes by in situ bioinspired mineralization. Journal of Membrane Science, 2016, 520, 364-373.	4.1	32
60	Improved Interfacial Affinity and CO ₂ Separation Performance of Asymmetric Mixed Matrix Membranes by Incorporating Postmodified MIL-53(Al). ACS Applied Materials & Interfaces, 2016, 8, 22696-22704.	4.0	115
61	Amineâ€Appended Hierarchical Caâ€A Zeolite for Enhancing CO ₂ /CH ₄ Selectivity of Mixedâ€Matrix Membranes. ChemPhysChem, 2016, 17, 3165-3169.	1.0	29
62	Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. Journal of Membrane Science, 2016, 520, 860-868.	4.1	185
63	Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review. Green Energy and Environment, 2016, 1, 102-128.	4.7	215
64	Synthesis and characterization of high permeable PEBA membranes for CO 2 /CH 4 separation. Journal of Natural Gas Science and Engineering, 2016, 35, 980-985.	2.1	34
65	Synthesis, characterization and gas permeation study of ZIF-11/Pebax ® 2533 mixed matrix membranes. Journal of the Taiwan Institute of Chemical Engineers, 2016, 66, 414-423.	2.7	81
66	Synthesis and characterization of poly (etherâ€blockâ€amide) mixed matrix membranes incorporated by nanoporous ZSMâ€5 particles for CO ₂ /CH ₄ separation. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 522-532.	0.8	50
67	Synthesis of nanoporous PVDF membranes by controllable crystallization for selective proton permeation. Journal of Membrane Science, 2016, 517, 111-120.	4.1	20
68	A novel zeolitic imidazolate framework based mixed-matrix membrane for efficient CO 2 separation under wet conditions. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65, 427-436.	2.7	26
69	Effect of different organic amino cations on <scp>SAPO</scp> â€34 for <scp>PES</scp> / <scp>SAPO</scp> â€34 mixed matrix membranes toward <scp>CO</scp> ₂ / <scp>CH</scp> ₄ separation. Journal of Applied Polymer Science, 2016, 133, .	1.3	16
70	The morphology and gasâ€separation performance of membranes comprising multiwalled carbon nanotubes/polysulfone–Kapton. Journal of Applied Polymer Science, 2016, 133, .	1.3	30
71	Plasticization and Swelling in Polymeric Membranes in CO ₂ Removal from Natural Gas. Chemical Engineering and Technology, 2016, 39, 1604-1616.	0.9	84
72	Synthesis and gas transport properties of crosslinked poly(dimethylsiloxane) nanocomposite membranes using octatrimethylsiloxy POSS nanoparticles. Journal of Natural Gas Science and Engineering, 2016, 30, 10-18.	2.1	72
73	Current Development and Challenges of Mixed Matrix Membranes for CO ₂ /CH ₄ Separation. Separation and Purification Reviews, 2016, 45, 321-344.	2.8	107
74	Surface modification in inorganic filler of mixed matrix membrane for enhancing the gas separation performance. Reviews in Chemical Engineering, 2016, 32, .	2.3	42

# 75	ARTICLE A novel Co2+ exchanged zeolite Y/cellulose acetate mixed matrix membrane for CO2/N2 separation. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60, 403-413.	IF 2.7	CITATIONS 80
76	Mixed matrix membranes fabricated by a facile in situ biomimetic mineralization approach for efficient CO2 separation. Journal of Membrane Science, 2016, 508, 84-93.	4.1	27
77	Mixed Matrix Membranes (MMMs) Comprising Exfoliated 2D Covalent Organic Frameworks (COFs) for Efficient CO ₂ Separation. Chemistry of Materials, 2016, 28, 1277-1285.	3.2	541
78	The influence of few-layer graphene on the gas permeability of the high-free-volume polymer PIM-1. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150031.	1.6	51
79	Determination and optimization of factors affecting CO2/CH4 separation performance in poly(ionic) Tj ETQq0 C	0 rgBT /0	verlock 10 Tf 5
80	Mixed Matrix Membranes Containing UiO-66(Hf)-(OH) ₂ Metal–Organic Framework Nanoparticles for Efficient H ₂ /CO ₂ Separation. Industrial & Engineering Chemistry Research, 2016, 55, 7933-7940.	1.8	44
81	Preparation and characterization of Ag+ ion-exchanged zeolite-Matrimid®5218 mixed matrix membrane for CO2/CH4 separation. Journal of Energy Chemistry, 2016, 25, 450-462.	7.1	70
82	Comparative Study of MIL-96(Al) as Continuous Metal–Organic Frameworks Layer and Mixed-Matrix Membrane. ACS Applied Materials & Interfaces, 2016, 8, 7536-7544.	4.0	84
83	High performance cyclic olefin copolymer (COC) membranes prepared with melt processing method and using of surface modified graphitic nano-sheets for H2/CH4 and H2/CO2 separation. Chemical Engineering Research and Design, 2016, 109, 455-463.	2.7	16
84	Preparation and characterization of nanocomposite PVDF ultrafiltration membrane embedded with nanoporous SAPO-34 to improve permeability and antifouling performance. Separation and Purification Technology, 2016, 163, 300-309.	3.9	63
85	Preparation of poly(ether-block-amide)/attapulgite mixed matrix membranes for CO2/N2 separation. Journal of Membrane Science, 2016, 500, 66-75.	4.1	123
86	Permselectivity improvement in membranes for CO2/N2 separation. Separation and Purification Technology, 2016, 157, 102-111.	3.9	37
87	Dye removal using 4A-zeolite/polyvinyl alcohol mixed matrix membrane adsorbents: preparation, characterization, adsorption, kinetics, and thermodynamics. Research on Chemical Intermediates, 2016, 42, 5309-5328.	1.3	37
88	Mixed-matrix membranes of zeolitic imidazolate framework (ZIF-8)/Matrimid nanocomposite: Thermo-mechanical stability and viscoelasticity underpinning membrane separation performance. Journal of Membrane Science, 2016, 498, 276-290.	4.1	132
89	Combination of ionic liquids with membrane technology: A new approach for CO2 separation. Journal of Membrane Science, 2016, 497, 1-20.	4.1	439
90	Permeation properties of polymeric membranes for biohydrogen purification. International Journal of Hydrogen Energy, 2016, 41, 4474-4488.	3.8	27
91	Enhanced carbon dioxide separation by polyethersulfone (PES) mixed matrix membranes deposited with clay. Journal of Polymer Engineering, 2016, 36, 65-78.	0.6	18
92	Mixed Matrix Membranes for Water Purification Applications. Separation and Purification Reviews, 2017, 46, 62-80.	2.8	134

#	ARTICLE	IF	CITATIONS
93	Gas Transport Properties of Polybenzimidazole and Poly(Phenylene Oxide) Mixed Matrix Membranes Incorporated with PDA-Functionalised Titanate Nanotubes. Nanoscale Research Letters, 2017, 12, 3.	3.1	22
94	Hydrophilicity effect on CO ₂ /CH ₄ separation using carbon nanotube membranes: insights from molecular simulation. Molecular Simulation, 2017, 43, 502-509.	0.9	5
95	Pebax-based composite membranes with high gas transport properties enhanced by ionic liquids for CO ₂ separation. RSC Advances, 2017, 7, 6422-6431.	1.7	100
96	Hydrogen Purification Using Polybenzimidazole Mixedâ€Matrix Membranes with Stabilized Palladium Nanoparticles. Chemical Engineering and Technology, 2017, 40, 631-638.	0.9	14
97	Efficient CO ₂ -removal using novel mixed-matrix membranes with modified TiO ₂ nanoparticles. Journal of Materials Chemistry A, 2017, 5, 4011-4025.	5.2	87
98	Selective waterâ€permeable channels induced by polystyrene brushes within hairy nanocellulose/cellulose acetate membrane. Polymers for Advanced Technologies, 2017, 28, 1357-1365.	1.6	2
99	Extending effective medium theory to finite size systems: Theory and simulation for permeation in mixed-matrix membranes. Journal of Membrane Science, 2017, 531, 148-159.	4.1	24
100	Interfacial Design of Ternary Mixed Matrix Membranes Containing Pebax 1657/Silver-Nanopowder/[BMIM][BF ₄] for Improved CO ₂ Separation Performance. ACS Applied Materials & Interfaces, 2017, 9, 10094-10105.	4.0	92
101	Preparation and characterization of novel Ionic liquid/Pebax membranes for efficient CO 2 /light gases separation. Journal of Industrial and Engineering Chemistry, 2017, 51, 77-89.	2.9	98
102	Shear-aligned graphene oxide laminate/Pebax ultrathin composite hollow fiber membranes using a facile dip-coating approach. Journal of Materials Chemistry A, 2017, 5, 7732-7737.	5.2	61
103	Gas permeation properties of polymer membranes containing ethylene glycol monomers. High Performance Polymers, 2017, 29, 237-245.	0.8	4
104	Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Reviews, 2017, 4, 37-59.	2.6	739
105	Pervaporation performance of surface-modified zeolite/PU mixed matrix membranes for separation of phenol from water. Iranian Polymer Journal (English Edition), 2017, 26, 193-203.	1.3	13
106	Comparison of Flat and Hollowâ€Fiber Mixedâ€Matrix Composite Membranes for CO ₂ Separation with Temperature. Chemical Engineering and Technology, 2017, 40, 997-1007.	0.9	34
107	High-performance thin PVC-POEM/ZIF-8 mixed matrix membranes on alumina supports for CO2/CH4 separation. Journal of Industrial and Engineering Chemistry, 2017, 53, 127-133.	2.9	21
108	Can the addition of carbon nanoparticles to a polyimide membrane reduce plasticization?. Separation and Purification Technology, 2017, 183, 333-340.	3.9	6
109	Recent advances in the synthesis and applications of metal organic frameworks doped with ionic liquids for CO 2 adsorption. Coordination Chemistry Reviews, 2017, 351, 189-204.	9.5	110
110	Membrane process optimization for carbon capture. International Journal of Greenhouse Gas Control, 2017, 62, 1-12.	2.3	32

#	Article	IF	CITATIONS
111	Methods for the Preparation of Organic–Inorganic Nanocomposite Polymer Electrolyte Membranes for Fuel Cells. , 2017, , 311-325.		30
112	Organic-Inorganic Composite Polymer Electrolyte Membranes. , 2017, , .		10
113	Influence of Cross-Linking, Temperature, and Humidity on CO ₂ /N ₂ Separation Performance of PDMS Coated Zeolite Membranes Grown within a Porous Poly(ether sulfone) Polymer. Industrial & Engineering Chemistry Research, 2017, 56, 6065-6077.	1.8	9
114	Preparation of CO 2 selective composite membranes using Pebax/CuBTC/PEG-ran-PPG ternary system. Journal of Energy Chemistry, 2017, 26, 530-539.	7.1	22
115	H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS. International Journal of Hydrogen Energy, 2017, 42, 15211-15225.	3.8	175
116	Nanocomposite membranes based on alginate matrix and high loading of pegylated POSS for pervaporation dehydration. Journal of Membrane Science, 2017, 538, 86-95.	4.1	42
117	Enhanced PIM-1 membrane gas separation selectivity through efficient dispersion of functionalized POSS fillers. Journal of Membrane Science, 2017, 539, 178-186.	4.1	66
118	PillarÂ[5]arene/Matrimidâ,,¢ materials for high-performance methane purification membranes. Journal of Membrane Science, 2017, 539, 224-228.	4.1	40
119	Polymer rigidification in graphene based nanocomposites: Gas barrier effects and free volume reduction. Polymer, 2017, 121, 17-25.	1.8	39
120	Enhancing Mixed-Matrix Membrane Performance with Metal–Organic Framework Additives. Crystal Growth and Design, 2017, 17, 4467-4488.	1.4	123
121	Light and gas barrier properties of PLLA/metallic nanoparticles composite films. European Polymer Journal, 2017, 91, 10-20.	2.6	50
122	High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets. Chemical Communications, 2017, 53, 4254-4257.	2.2	116
123	Amineâ€functionalized CuBTC/poly(etherâ€bâ€amideâ€6) (Pebax [®] MH 1657) mixed matrix membr for CO ₂ /CH ₄ separation. Canadian Journal of Chemical Engineering, 2017, 95, 2024-2033.	anes 0.9	52
124	Perspectives on water-facilitated CO ₂ capture materials. Journal of Materials Chemistry A, 2017, 5, 6794-6816.	5.2	56
125	Hybrid systems: Combining membrane and absorption technologies leads to more efficient acid gases (CO 2 and H 2 S) removal from natural gas. Journal of CO2 Utilization, 2017, 18, 362-369.	3.3	125
126	Mixed Matrix Membranes Based on PIMs for Gas Permeation: Principles, Synthesis, and Current Status. Chemical Engineering Communications, 2017, 204, 295-309.	1.5	59
127	Widening CO2-facilitated transport passageways in SPEEK matrix using polymer brushes functionalized double-shelled organic submicrocapsules for efficient gas separation. Journal of Membrane Science, 2017, 525, 330-341.	4.1	15
128	Polysulfone membranes containing ethylene glycol monomers: synthesis, characterization, and CO2/CH4 separation. Journal of Polymer Research, 2017, 24, 1.	1.2	36

#	Article	IF	CITATIONS
129	Preparation and characterization of (Pebax 1657Â+Âsilica nanoparticle)/PVC mixed matrix composite membrane for CO2/N2 separation. Chemical Papers, 2017, 71, 803-818.	1.0	38
130	Tailoring MCM-41 mesoporous silica particles through modified sol-gel process for gas separation. AIP Conference Proceedings, 2017, , .	0.3	3
131	Highly CO ₂ Selective Microporous Metal-Imidazolate Framework-Based Mixed Matrix Membranes. ACS Applied Materials & Interfaces, 2017, 9, 35936-35946.	4.0	14
132	Investigation and comparison of mixed matrix membranes composed of polyimide matrimid with ZIF – 8, silicalite, and SAPO – 34. Journal of Membrane Science, 2017, 544, 35-46.	4.1	45
133	Quasi-dynamic modeling of dispersion-free extraction of aroma compounds using hollow fiber membrane contactor. Chemical Engineering Research and Design, 2017, 127, 52-61.	2.7	36
134	Mixed Matrix Membranes for Gas Separation Applications. , 2017, , 1-57.		6
135	Fabrication of completely water soluble graphene oxides graft poly citric acid using different oxidation methods and comparison of them. Journal of Molecular Liquids, 2017, 243, 654-663.	2.3	20
136	Recent progress of fillers in mixed matrix membranes for CO 2 separation: A review. Separation and Purification Technology, 2017, 188, 431-450.	3.9	340
137	Recent advances on mixed matrix membranes for CO2 separation. Chinese Journal of Chemical Engineering, 2017, 25, 1581-1597.	1.7	114
138	Enhanced Separation Performance for CO ₂ Gas of Mixed-Matrix Membranes Incorporated with TiO ₂ /Graphene Oxide: Synergistic Effect of Graphene Oxide and Small TiO ₂ Particles on Gas Permeability of Membranes. Industrial & amp; Engineering Chemistry Research, 2017, 56, 8981-8990.	1.8	16
139	Molecular dynamics and Monte Carlo simulation of the structural properties, diffusion and adsorption of poly (amide-6-b-ethylene oxide)/Faujasite mixed matrix membranes. Journal of Molecular Liquids, 2017, 242, 404-415.	2.3	23
140	Highly selective gas separation membrane using in situ amorphised metal–organic frameworks. Energy and Environmental Science, 2017, 10, 2342-2351.	15.6	137
141	Twoâ€Dimensional Materials as Prospective Scaffolds for Mixedâ€Matrix Membraneâ€Based CO ₂ Separation. ChemSusChem, 2017, 10, 3304-3316.	3.6	77
142	Effects of low and high molecular mass PEG incorporation into different types of poly(ether-b-amide) copolymers on the permeation properties of CO2 and CH4. Journal of Polymer Research, 2017, 24, 1.	1.2	32
143	Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nature Energy, 2017, 2, .	19.8	428
144	Enhancement of gas permeability for CH4/N2 separation membranes by blending SBS to Pebax polymers. Macromolecular Research, 2017, 25, 1007-1014.	1.0	21
145	Carbon nanotubes as potential candidate for separation of H2CO2 gas pairs. International Journal of Hydrogen Energy, 2017, 42, 29283-29299.	3.8	27
146	Study the effects of <scp>C</scp> loisite15 <scp>A</scp> nanoclay incorporation on the morphology and gas permeation properties of <scp>P</scp> ebax2533 polymer. Journal of Applied Polymer Science, 2017, 134, 45302.	1.3	26

#	Article	IF	CITATIONS
147	Effect of nanofillers on selectivity of high performance mixed matrix membranes for separating gas mixtures. Korean Journal of Chemical Engineering, 2017, 34, 2119-2134.	1.2	18
148	Hybrid membranes for pervaporation separations. Journal of Membrane Science, 2017, 541, 329-346.	4.1	174
149	Effect of mixed matrix membranes comprising a novel trinuclear zinc MOF, fumed silica nanoparticles and PES on CO2/CH4 separation. Chemical Engineering Research and Design, 2017, 125, 156-165.	2.7	16
150	Room-temperature, one-pot process for CO2 capture membranes based on PEMA-g-PPG graft copolymer. Chemical Engineering Journal, 2017, 313, 1615-1622.	6.6	19
151	Advances in polymer-inorganic hybrids as membrane materials. , 2017, , 163-206.		24
152	High speed spin coating in fabrication of Pebax 1657 based mixed matrix membrane filled with ultra-porous ZIF-8 particles for CO2/CH4 separation. Korean Journal of Chemical Engineering, 2017, 34, 440-453.	1.2	43
153	Preparation and characterization of PDMS/zeolite 4A/PAN mixed matrix thin film composite membrane for CO2/N2 and CO2/CH4 separations. Research on Chemical Intermediates, 2017, 43, 2959-2984.	1.3	19
154	Comparison of permeability performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2 and PEBAX-1074/Al2O3 nanocomposite membranes for CO2/CH4 separation. Chemical Engineering Research and Design, 2017, 117, 177-189.	2.7	115
155	Study of different titanosilicate (TS-1 and ETS-10) as fillers for Mixed Matrix Membranes for CO2/CH4 gas separation applications. Journal of Membrane Science, 2017, 523, 24-35.	4.1	53
156	CO 2 -selective mixed matrix membranes (MMMs) containing graphene oxide (GO) for enhancing sustainable CO 2 capture. International Journal of Greenhouse Gas Control, 2017, 56, 22-29.	2.3	74
157	Gas and water vapor transport properties of mixed matrix membranes containing 13X zeolite. Journal of Membrane Science, 2017, 526, 334-347.	4.1	29
158	Improved operational stability of Pebax-based gas separation membranes with ZIF-8: A comparative study of flat sheet and composite hollow fibre membranes. Journal of Membrane Science, 2017, 524, 266-279.	4.1	182
159	Thin poly(ether-block-amide)/attapulgite composite membranes with improved CO 2 permeance and selectivity for CO 2 /N 2 and CO 2 /CH 4. Chemical Engineering Science, 2017, 160, 236-244.	1.9	55
160	Mixed-matrix membranes containing inorganically surface-modified 5A zeolite for enhanced CO2/CH4 separation. Microporous and Mesoporous Materials, 2017, 237, 82-89.	2.2	62
161	Nanocellulose-based membranes for CO2 capture. Journal of Membrane Science, 2017, 522, 216-225.	4.1	90
162	Membrane separation systems. , 2017, , 187-225.		6
163	Membrane-Based Separation. , 2017, , 19-55.		1
164	Aluminum Oxide Nanoparticles for Highly Efficient Asphaltene Separation from Crude Oil Using Ceramic Membrane Technology. Oil and Gas Science and Technology, 2017, 72, 34.	1.4	20

#	Article	IF	CITATIONS
165	Comparison of ZnO nanofillers of different shapes on physical, thermal and gas transport properties of PEBA membrane: experimental testing and molecular simulation. Journal of Chemical Technology and Biotechnology, 2018, 93, 2602-2616.	1.6	11
166	Fouling-resistant membranes for water reuse. Environmental Chemistry Letters, 2018, 16, 715-763.	8.3	80
167	Mixed Matrix Membranes for Natural Gas Upgrading: Current Status and Opportunities. Industrial & Engineering Chemistry Research, 2018, 57, 4139-4169.	1.8	110
168	Accurate prediction of solubility of gases within H 2 -selective nanocomposite membranes using committee machine intelligent system. International Journal of Hydrogen Energy, 2018, 43, 6614-6624.	3.8	63
169	A strain-controlled C2N monolayer membrane for gas separation in PEMFC application. Applied Surface Science, 2018, 441, 408-414.	3.1	33
170	Effect of relative humidity on the gas transport properties of zeolite A/PTMSP mixed matrix membranes. RSC Advances, 2018, 8, 3536-3546.	1.7	21
171	Fabrication of mixedâ€matrix membranes with MOFâ€derived porous carbon for CO ₂ separation. AICHE Journal, 2018, 64, 3400-3409.	1.8	27
172	Enhancement of separation performance of nano hybrid PES –TiO2 membrane using three combination effects of ultraviolet irradiation, ethanol-acetone immersion, and thermal annealing process for CO2 removal. Journal of Environmental Chemical Engineering, 2018, 6, 2865-2873.	3.3	13
173	Tailoring CO2/CH4 separation properties of mixed-matrix membranes via combined use of two- and three-dimensional metal-organic frameworks. Journal of Membrane Science, 2018, 557, 30-37.	4.1	63
174	Experiment and simulation method to investigate the flow within porous ceramic membrane. Journal of the Australian Ceramic Society, 2018, 54, 575-586.	1.1	10
175	Evaluation of socio-economic factors on CO 2 emissions in Iran: Factorial design and multivariable methods. Journal of Cleaner Production, 2018, 189, 108-115.	4.6	46
176	CFD simulation of copper(II) extraction with TFA in non-dispersive hollow fiber membrane contactors. Environmental Science and Pollution Research, 2018, 25, 12053-12063.	2.7	38
177	Efficient CO2/N2 and CO2/CH4 separation using NH2-MIL-53(Al)/cellulose acetate (CA) mixed matrix membranes. Separation and Purification Technology, 2018, 199, 140-151.	3.9	130
178	Highâ€Flux Membranes Based on the Covalent Organic Framework COF‣ZU1 for Selective Dye Separation by Nanofiltration. Angewandte Chemie - International Edition, 2018, 57, 4083-4087.	7.2	584
179	Synergistic effects of zeolite imidazole framework@graphene oxide composites in humidified mixed matrix membranes on CO ₂ separation. RSC Advances, 2018, 8, 6099-6109.	1.7	93
180	ZIFâ€based waterâ€stable mixedâ€matrix membranes for effective CO ₂ separation from humid flue gas. Canadian Journal of Chemical Engineering, 2018, 96, 2475-2483.	0.9	14
181	Effects of nanofillers on the characteristics and performance of PEBA-based mixed matrix membranes. Reviews in Chemical Engineering, 2018, 34, 797-836.	2.3	29
182	Wasserâ€Hochflussmembranen auf Basis der kovalenten organischen Gerüststruktur COFâ€LZU1 für die Farbstoffabtrennung durch Nanofiltration. Angewandte Chemie, 2018, 130, 4147-4151.	1.6	35

#	Article	IF	CITATIONS
183	ZIFâ€11/Matrimid® mixed matrix membranes for efficient CO ₂ , CH ₄ , and H ₂ separations. , 2018, 8, 529-541.		17
184	Accelerating Membraneâ€based CO ₂ Separation by Soluble Nanoporous Polymer Networks Produced by Mechanochemical Oxidative Coupling. Angewandte Chemie - International Edition, 2018, 57, 2816-2821.	7.2	44
185	Accelerating Membraneâ€based CO ₂ Separation by Soluble Nanoporous Polymer Networks Produced by Mechanochemical Oxidative Coupling. Angewandte Chemie, 2018, 130, 2866-2871.	1.6	10
186	Enhanced C3H6/C3H8 separation performance in poly(vinyl acetate) membrane blended with ZIF-8 nanocrystals. Chemical Engineering Science, 2018, 179, 1-12.	1.9	66
187	Membrane filtration of wastewater from gas and oil production. Environmental Chemistry Letters, 2018, 16, 367-388.	8.3	129
188	"Ship-in-a-bottleâ€; a new synthesis strategy for preparing novel hybrid host–guest nanocomposites for highly selective membrane gas separation. Journal of Materials Chemistry A, 2018, 6, 1751-1771.	5.2	57
189	Concentration-dependent transport in finite sized composites: Modified effective medium theory. Journal of Membrane Science, 2018, 550, 110-125.	4.1	10
190	Grand canonical Monte Carlo and molecular dynamics simulations of the structural properties, diffusion and adsorption of hydrogen molecules through poly(benzimidazoles)/nanoparticle oxides composites. International Journal of Hydrogen Energy, 2018, 43, 2803-2816.	3.8	24
191	CFD simulation of seawater purification using direct contact membrane desalination (DCMD) system. Desalination, 2018, 443, 323-332.	4.0	82
192	Mixed Matrix Membrane Based on Cross-Linked Poly[(ethylene glycol) methacrylate] and Metal–Organic Framework for Efficient Separation of Carbon Dioxide and Methane. ACS Applied Nano Materials, 2018, 1, 2808-2818.	2.4	40
193	Enhanced CO ₂ separation performance by PVA/PEG/silica mixed matrix membrane. Journal of Applied Polymer Science, 2018, 135, 46481.	1.3	31
194	CO 2 /N 2 gas separation using Fe(BTC)-based mixed matrix membranes: A view on the adsorptive and filler properties of metal-organic frameworks. Separation and Purification Technology, 2018, 202, 174-184.	3.9	39
195	Metal-organic framework/graphene oxide composite fillers in mixed-matrix membranes for CO2 separation. Materials Chemistry and Physics, 2018, 212, 513-522.	2.0	74
196	Preparation and characterization of MWCNT-TEPA/polyurethane nanocomposite membranes for CO2/CH4 separation: Experimental and modeling. Chemical Engineering Research and Design, 2018, 133, 222-234.	2.7	19
197	Enhancing the CO2 plasticization resistance of PS mixed-matrix membrane by blunt zeolitic imidazolate framework. Journal of CO2 Utilization, 2018, 25, 79-88.	3.3	16
198	Accurate prediction of miscibility of CO2 and supercritical CO2 in ionic liquids using machine learning. Journal of CO2 Utilization, 2018, 25, 99-107.	3.3	74
199	Simulation of Nonporous Polymeric Membranes Using CFD for Bioethanol Purification. Macromolecular Theory and Simulations, 2018, 27, 1700084.	0.6	34
200	Application of polymer-based membranes containing ionic liquids in membrane separation processes: a critical review. Reviews in Chemical Engineering, 2018, 34, 341-363.	2.3	75

#	Article	IF	CITATIONS
201	Optical, mechanical, and transport studies of nanodiamonds/poly(phenylene oxide) composites. Polymer Composites, 2018, 39, 3952-3961.	2.3	8
202	Investigation into Ethanol Purification Using Polymeric Membranes and a Pervaporation Process. Chemical Engineering and Technology, 2018, 41, 278-284.	0.9	13
203	Polyurethaneâ€mesoporous silica gas separation membranes. Polymers for Advanced Technologies, 2018, 29, 874-883.	1.6	33
204	Effects of industrial gas impurities on the performance of mixed matrix membranes. Journal of Membrane Science, 2018, 549, 686-692.	4.1	17
205	Matrimid® 5218 in preparation of membranes for gas separation: Current state-of-the-art. Chemical Engineering Communications, 2018, 205, 161-196.	1.5	93
206	Continuous assembly of a polymer on a metal–organic framework (CAP on MOF): a 30 nm thick polymeric gas separation membrane. Energy and Environmental Science, 2018, 11, 544-550.	15.6	125
207	Gas permeation modeling of mixed matrix membranes: Adsorption isotherms and permeability models. Polymer Composites, 2018, 39, 4560-4568.	2.3	19
208	Block copolymer membranes based on polyetheramine and methyl-containing polyisophthalamides designed for efficient CO ₂ separation. High Performance Polymers, 2018, 30, 1064-1074.	0.8	6
209	The enhanced hydrogen separation performance of mixed matrix membranes by incorporation of two-dimensional ZIF-L into polyimide containing hydroxyl group. Journal of Membrane Science, 2018, 549, 260-266.	4.1	82
210	Water-stable ZIF-300/Ultrason® mixed-matrix membranes for selective CO 2 capture from humid post combustion flue gas. Chinese Journal of Chemical Engineering, 2018, 26, 1012-1021.	1.7	10
211	Rigorous modeling of gas permeation behavior in facilitated transport membranes (FTMs); evaluation of carrier saturation effects and doubleâ€reaction mechanism. , 2018, 8, 429-443.		16
212	High performance mixed matrix membranes (MMMs) composed of ZIF-94 filler and 6FDA-DAM polymer. Journal of Membrane Science, 2018, 550, 198-207.	4.1	95
213	Modeling of a CO2-piperazine-membrane absorption system. Chemical Engineering Research and Design, 2018, 131, 375-384.	2.7	88
214	Thermally stable polymers for advanced high-performance gas separation membranes. Progress in Energy and Combustion Science, 2018, 66, 1-41.	15.8	252
215	Mixed matrix membranes of polysulfone/polyimide reinforced with modified zeolite based filler: Preparation, properties and application. Chinese Journal of Polymer Science (English Edition), 2018, 36, 65-77.	2.0	14
216	A robust predictive tool for estimating CO 2 solubility in potassium based amino acid salt solutions. Chinese Journal of Chemical Engineering, 2018, 26, 740-746.	1.7	40
217	Surface modification of molecular sieve fillers for mixed matrix membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 333-342.	2.3	12
218	High performance composite membranes comprising Zn(pyrz) 2 (SiF 6) nanocrystals for CO 2 /CH 4 separation. Journal of Industrial and Engineering Chemistry, 2018, 60, 279-285.	2.9	45

#	Article	IF	CITATIONS
219	Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces. Journal of Materials Chemistry A, 2018, 6, 293-312.	5.2	377
220	Novel dense skin hollow fiber membrane contactor based process for CO2 removal from raw biogas using water as absorbent. Separation and Purification Technology, 2018, 193, 112-126.	3.9	28
221	Mesoporous silica based composite membrane formation by in-situ cross-linking of phenol and formaldehyde at room temperature for enhanced CO 2 separation. Microporous and Mesoporous Materials, 2018, 256, 177-189.	2.2	16
222	Hollow Fiber Porous Nanocomposite Membranes Produced via Continuous Extrusion: Morphology and Gas Transport Properties. Materials, 2018, 11, 2311.	1.3	4
223	Study of the Effect of Inorganic Particles on the Gas Transport Properties of Glassy Polyimides for Selective CO2 and H2O Separation. Membranes, 2018, 8, 128.	1.4	15
224	Facilitated transport graphene oxide based PPOdm mixed matrix membrane for CO2 separation. Materials Today: Proceedings, 2018, 5, 21818-21824.	0.9	3
225	Two-dimensional nanosheet-based gas separation membranes. Journal of Materials Chemistry A, 2018, 6, 23169-23196.	5.2	109
226	Ethylene glycol elimination in amine loop for more efficient gas conditioning. Chemistry Central Journal, 2018, 12, 120.	2.6	5
227	Gas permeation prediction through polymeric membranes using compressible regular solution theory. International Journal of Hydrogen Energy, 2018, 43, 22357-22364.	3.8	9
228	Interfacial Engineering in Metal–Organic Framework-Based Mixed Matrix Membranes Using Covalently Grafted Polyimide Brushes. Journal of the American Chemical Society, 2018, 140, 17203-17210.	6.6	204
229	Concatenation of carbonaceous nanofillers for mixed matrix membrane development. IOP Conference Series: Materials Science and Engineering, 0, 458, 012008.	0.3	3
230	Technology Evolution in Membrane-Based CCS. Energies, 2018, 11, 3153.	1.6	22
231	A Comprehensive Review on Polymeric Nano-Composite Membranes for Water Treatment. Journal of Membrane Science & Technology, 2018, 08, .	0.5	158
232	Ultrathin Metal–Organic Framework Nanosheets as a Gutter Layer for Flexible Composite Gas Separation Membranes. ACS Nano, 2018, 12, 11591-11599.	7.3	118
233	Polymeric Membrane Materials for CO2 Separations. , 2018, , 3-50.		6
234	Mixed Matrix Membranes for CO2 Separations. , 2018, , 103-153.		3
235	Ionic Liquid–Based Membranes for CO2 Separation. , 2018, , 235-260.		6
236	A Review on Recent Developments and Progress in Natural Gas Processing and Separating Using Nanoparticles Incorporated Membranes. , 2018, , .		2

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
237	Modeling Permeation through Mixed-Matrix Membranes: A Review. Processes, 2018, 6, 172.	1.3	50
238	Poly(1-trimethylsilyl-1-propyne)-Based Hybrid Membranes: Effects of Various Nanofillers and Feed Gas Humidity on CO2 Permeation. Membranes, 2018, 8, 76.	1.4	26
239	Estimating CH4 and CO2 solubilities in ionic liquids using computational intelligence approaches. Journal of Molecular Liquids, 2018, 271, 661-669.	2.3	60
240	Modeling Amorphous Microporous Polymers for CO ₂ Capture and Separations. Chemical Reviews, 2018, 118, 5488-5538.	23.0	208
241	MOF Scaffold for a Highâ€Performance Mixedâ€Matrix Membrane. Angewandte Chemie - International Edition, 2018, 57, 8597-8602.	7.2	50
242	MOF Scaffold for a Highâ€Performance Mixedâ€Matrix Membrane. Angewandte Chemie, 2018, 130, 8733-8738.	1.6	22
243	Layer-by-layer assembly of carbide derived carbon-polyamide membrane for CO2 separation from natural gas. Energy, 2018, 157, 188-199.	4.5	29
244	Molecular dynamics, grand canonical Monte Carlo and expert simulations and modeling of water–acetic acid pervaporation using polyvinyl alcohol/tetraethyl orthosilicates membrane. Journal of Molecular Liquids, 2018, 265, 53-68.	2.3	41
245	Comparison of hollow fiber and flat mixed-matrix membranes: Theory and simulation. Chemical Engineering Science, 2018, 187, 174-188.	1.9	14
246	Performance comparison of low temperature and chemical absorption carbon capture processes in response to dynamic electricity demand and price profiles. Applied Energy, 2018, 228, 577-592.	5.1	10
247	Investigation of a new co-polyimide, 6FDA-bisP and its ZIF-8 mixed matrix membranes for CO2/CH4 separation. Separation and Purification Technology, 2018, 207, 523-534.	3.9	48
248	Synthesis of Highâ€Performance Pebax®â€1074/DD3R Mixedâ€Matrix Membranes for CO ₂ /CH ₄ Separation. Chemical Engineering and Technology, 2018, 41, 1767-1775.	0.9	15
249	Carbon-Based Nanocomposite Membrane for Acidic Gas Separation. , 2018, , 233-260.		1
250	Mixed-matrix membranes containing nanocage-like hollow ZIF-8 polyhedral nanocrystals in graft copolymers for carbon dioxide/methane separation. Separation and Purification Technology, 2018, 207, 427-434.	3.9	24
251	Facilitated Transport of CO ₂ Through the Transparent and Flexible Cellulose Membrane Promoted by Fixed-Site Carrier. ACS Applied Materials & Interfaces, 2018, 10, 24930-24936.	4.0	53
252	Interfacial polymerization of facilitated transport polyamide membrane prepared from PIP and IPC for gas separation applications. Korean Journal of Chemical Engineering, 2018, 35, 1700-1709.	1.2	17
253	Graphene-Incorporated Biopolymeric Mixed-Matrix Membrane for Enhanced CO ₂ Separation by Regulating the Support Pore Filling. ACS Applied Materials & Interfaces, 2018, 10, 27810-27820.	4.0	36
254	Performance of Mixed Matrix Membranes Containing Porous Two-Dimensional (2D) and Three-Dimensional (3D) Fillers for CO2 Separation: A Review. Membranes, 2018, 8, 50.	1.4	66

#	Article	IF	CITATIONS
255	Computational Simulation of Mass Transfer in Molecular Separation Using Microporous Polymeric Membranes. Chemical Engineering and Technology, 2018, 41, 1975-1981.	0.9	8
256	The nitrogen-doped porous carbons/PIM mixed-matrix membranes for CO2 separation. Journal of Membrane Science, 2018, 564, 800-805.	4.1	28
257	Forecasting Energy-Related CO2 Emissions Employing a Novel SSA-LSSVM Model: Considering Structural Factors in China. Energies, 2018, 11, 781.	1.6	40
258	Mixed Matrix Membranes of Boron Icosahedron and Polymers of Intrinsic Microporosity (PIM-1) for Gas Separation. Membranes, 2018, 8, 1.	1.4	72
259	Performance of Nanocomposite Membranes Containing 0D to 2D Nanofillers for CO2 Separation: A Review. Membranes, 2018, 8, 24.	1.4	52
260	Progress on Incorporating Zeolites in Matrimid®5218 Mixed Matrix Membranes towards Gas Separation. Membranes, 2018, 8, 30.	1.4	57
261	Estimating CO2/N2 Permselectivity through Si/Al = 5 Small-Pore Zeolites/PTMSP Mixed Matrix Membranes: Influence of Temperature and Topology. Membranes, 2018, 8, 32.	1.4	8
262	Development and Characterization of Defect-Free Matrimid® Mixed-Matrix Membranes Containing Activated Carbon Particles for Gas Separation. Polymers, 2018, 10, 51.	2.0	47
263	CO ₂ Selective PolyActive Membrane: Thermal Transitions and Gas Permeance as a Function of Thickness. ACS Applied Materials & amp; Interfaces, 2018, 10, 26733-26744.	4.0	22
264	Organic solvent removal by pervaporation membrane technology: experimental and simulation. Environmental Science and Pollution Research, 2018, 25, 19818-19825.	2.7	20
265	Wastewaters treatment containing phenol and ammonium using aerobic submerged membrane bioreactor. Chemistry Central Journal, 2018, 12, 79.	2.6	19
266	Harnessing Filler Materials for Enhancing Biogas Separation Membranes. Chemical Reviews, 2018, 118, 8655-8769.	23.0	239
267	CFD modeling of CO2 capture by water-based nanofluids using hollow fiber membrane contactor. International Journal of Greenhouse Gas Control, 2018, 77, 88-95.	2.3	81
268	Development of hybrid models for prediction of gas permeation through FS/POSS/PDMS nanocomposite membranes. International Journal of Hydrogen Energy, 2018, 43, 17283-17294.	3.8	46
269	High Loaded Synthetic Hazardous Wastewater Treatment Using Lab-Scale Submerged Ceramic Membrane Bioreactor. Periodica Polytechnica: Chemical Engineering, 2018, 62, 299-304.	0.5	41
270	Engineering the dispersion of nanoparticles in polyurethane membranes to control membrane physical and transport properties. Chemical Engineering Science, 2018, 192, 688-698.	1.9	43
271	Separation Performance of Nanostructured Ceramic Membranes: Analytical Model Development. Journal of Non-Equilibrium Thermodynamics, 2018, 43, 245-253.	2.4	4
272	Enhanced CO2/CH4 separation performance of mixed-matrix membranes through dispersion of sorption-selective MOF nanocrystals. Journal of Membrane Science, 2018, 563, 360-370.	4.1	82

ARTICLE IF CITATIONS # Constructing robust and highly-selective hydrogel membranes by bioadhesion-inspired method for 273 4.1 11 CO2 separation. Journal of Membrane Science, 2018, 563, 229-237. 2.29 Desulfurization Materials., 2018, , 944-979. 274 Interface manipulation of CO₂â€"philic composite membranes containing designed UiO-66 275 derivatives towards highly efficient CO₂ capture. Journal of Materials Chemistry A, 2018, 5.2 150 6, 15064-15073. Mixed matrix membranes (MMMs) for ethanol purification through pervaporation: current state of the art. Reviews in Chemical Engineering, 2019, 35, 565-590. Fabrication of polyimide and covalent organic frameworks mixed matrix membranes by in situ polymerization for preliminary exploration of CO₂/CH₄ separation. High 277 0.8 18 Performance Polymers, 2019, 31, 671-678. Enhanced CO2 permeability in Matrimid® 5218 mixed matrix membranes for separating binary CO2/CH4 278 mixtures. Separation and Purification Technology, 2019, 210, 553-562. 279 Biofuel types and membrane separation. Environmental Chemistry Letters, 2019, 17, 1-18. 8.3 94 Ultra-selective ferric ion-complexed membranes composed of water-based zwitterionic comb 280 5.2 copolymers. Journal of Materials Chemistry A, 2019, 7, 20847-20853. <i>In situ</i> bottomâ€"up growth of metalâ€"organic frameworks in a crosslinked poly(ethylene oxide) 281 layer with ultrahigh loading and superior uniform distribution. Journal of Materials Chemistry A, 5.2 28 2019, 7, 20293-20301. Porous covalent triazine piperazine polymer (CTPP)/PEBAX mixed matrix membranes for CO2/N2 and 4.1 CO2/CH4 separations. Journal of Membrane Science, 2019, 591, 117348. Review of liquid nano-absorbents for enhanced CO₂capture. Nanoscale, 2019, 11, 283 2.8 87 17137-17156. Study of CO2 adsorption onto poly(1–vinylimidazole) using quartz crystal microbalance and density functional theory methods. Journal of Molecular Liquids, 2019, 291, 111288. 284 2.3 Polyvinylidene fluoride/sulfonated graphene oxide blend membrane coatedÂwith polypyrrole/platinum 285 1.6 22 electrode for ionic polymer metal composite actuator applications. Scientific Reports, 2019, 9, 9877. Adsorption, permeation, and DFT studies of PVC/PVIm blends for separation of CO2/CH4. Journal of 2.3 16 Molecular Liquids, 2019, 292, 111410. Surface modification of a cellulose acetate membrane using a nanocomposite suspension based on 287 7 2.4 magnetic particles. Cellulose, 2019, 26, 7995-8006. Aminosilane cross-linked poly ether-block-amide PEBAX 2533: Characterization and CO2 separation 34 properties. Korean Journal of Chemical Engineering, 2019, 36, 1339-1349. Separation and transport specification of a novel PEBA-1074/PEG-400/TiO2 nanocomposite membrane 289 2.37 for light gas separation: Molecular simulation study. Journal of Molecular Liquids, 2019, 291, 111268. Enhancing the CO2 separation performance of polymer membranes via the incorporation of 290 amine-functionalized HKUST-1 nanocrystals. Microporous and Mesoporous Materials, 2019, 290, 2.2 109680.

ARTICLE IF CITATIONS Surface modification effect of carbon molecular sieve (CMS) on the morphology and separation 291 2.3 12 performance of mixed matrix membranes. Polymer Testing, 2019, 80, 106152. Highâ€Throughput Screening of Metal Organic Frameworks as Fillers in Mixed Matrix Membranes for Flue Gas Separation. Advanced Theory and Simulations, 2019, 2, 1900109. 293 1.3 19 Evaluation of the Properties, Gas Permeability, and Selectivity of Mixed Matrix Membrane Based on 295 2.0 6 Polysulfone Polymer Matrix Incorporated with KIT-6 Silica. Polymers, 2019, 11, 1732. Various Techniques for Preparation of Thinâ€Film Composite Mixedâ€Matrix Membranes for 296 0.9 CO₂ Separation. Chemical Engineering and Technology, 2019, 42, 2608-2620. Promising Performance for Efficient CO₂ Separation with the <i>p</i>-<i>tert</i>-Butylcalix[4]arene/Pebax-1657 Mixed Matrix Membrane. ACS Sustainable Chemistry 297 3.2 17 and Engineering, 2019, 7, 19015-19026. Polylactic acid-lauryl functionalized nanocellulose nanocomposites: Microstructural, thermo-mechanical and gas transport properties. EXPRESS Polymer Letters, 2019, 13, 858-876. 298 1.1 Highâ€temperature CO₂ removal from CH₄ using silica membrane: experimental 299 22 and neural network modeling. , 2019, 9, 1010-1026. lonic Liquidsâ€Based Membranes for Carbon Dioxide Separation. Israel Journal of Chemistry, 2019, 59, 300 1.0 824-831. A comparative study to evaluate the role of caged hybrid frameworks in the precise dispersion of 301 titanium (IV) oxide for the development of gas separation membranes. Comptes Rendus Chimie, 2019, 22, 0.2 2 745-754. Improving CO2/CH4 separation efficiency of Pebax-1657 membrane by adding Al2O3 nanoparticles in its 2.1 matrix. Journal of Natural Gas Science and Engineering, 2019, 72, 103019. Bipyridine-based UiO-67 as novel filler in mixed-matrix membranes for CO2-selective gas separation. 303 4.1 75 Journal of Membrane Science, 2019, 576, 78-87. 3-Aminopropyltriethoxysilane-aided cross-linked chitosan membranes for gas separation: grand canonical Monte Carlo and molecular dynamics simulations. Journal of Molecular Modeling, 2019, 25, 0.8 49. Carbon dioxide separation using $\hat{I}_{\pm} \hat{a} \in \hat{a}$ lumina ceramic tube supported cellulose triacetate $\hat{a} \in \hat{a}$ lumina ceramic tube supported cellulose triacetate $\hat{a} \in \hat{a}$ 305 9 phosphate composite membrane., 2019, 9, 287-305. Electrical Properties of Sustainable Nano-Composites Containing Nano-Fillers: Dielectric Properties 306 and Electrical Conductivity., 2019,, 899-914 Functionalized Carbon Nanomaterial for Artificial Bone Replacement as Filler Material., 2019,, 307 6 783-804. Interface engineering of mixed matrix membrane via CO2-philic polymer brush functionalized graphene 308 oxide nanosheets for efficient gas separation. Journal of Membrane Science, 2019, 586, 23-33 Mass transfer through PDMS/zeolite 4A MMMs for hydrogen separation: Molecular dynamics and 309 grand canonical Monte Carlo simulations. International Communications in Heat and Mass Transfer, 2.9 25 2019, 108, 104259. Low band-gap energy photocatalytic membrane based on SrTiO3â€"Cr and PVDF substrate: BSA protein 4.1 degradation and separation application. Journal of Membrane Science, 2019, 586, 326-337.

#	Article	IF	CITATIONS
311	Permeability behavior of polyvinyl chloride-ionic liquid ionomer for CO2/CH4 separation. Separation and Purification Technology, 2019, 226, 138-145.	3.9	17
312	High Selective Mixed Membranes Based on Mesoporous MCM-41 and MCM-41-NH2 Particles in a Polysulfone Matrix. Frontiers in Chemistry, 2019, 7, 332.	1.8	40
313	Mesoporous dendritic fibrous nanosilica (DFNS) stimulating mix matrix membranes towards superior CO2 capture. Journal of Membrane Science, 2019, 586, 185-191.	4.1	42
314	Arginine/Nanocellulose Membranes for Carbon Capture Applications. Nanomaterials, 2019, 9, 877.	1.9	21
315	Fabrication of Amino-Functionalized CAU-1/Cellulose Acetate Mixed Matrix Membranes for CO ₂ /N ₂ Separation. Key Engineering Materials, 2019, 797, 39-47.	0.4	4
316	Capillary condensation mechanism for gas transport in fiber reinforced poly (ether-b-amide) membranes. Chemical Engineering Research and Design, 2019, 148, 180-190.	2.7	10
317	Investigation of Azo-COP-2 as a Photoresponsive Low-Energy CO ₂ Adsorbent and Porous Filler in Mixed Matrix Membranes for CO ₂ /N ₂ Separation. Industrial & Engineering Chemistry Research, 2019, 58, 9959-9969.	1.8	21
318	Improving the Gasâ€Separation Properties of PVAcâ€Zeolite 4A Mixedâ€Matrix Membranes through Nanoâ€Sizing and Silanation of the Zeolite. ChemPhysChem, 2019, 20, 1590-1606.	1.0	15
319	High-performance ultrathin mixed-matrix membranes based on an adhesive PGMA- <i>co</i> -POEM comb-like copolymer for CO ₂ capture. Journal of Materials Chemistry A, 2019, 7, 14723-14731.	5.2	43
320	A Brief Review of Nanocellulose Based Hybrid Membranes for CO2 Separation. Fibers, 2019, 7, 40.	1.8	47
321	A new permeation model in porous filler–based mixed matrix membranes for CO 2 separation. , 2019, 9, 719-742.		8
322	Incorporation of CollI acetylacetonate and SNW-1 nanoparticles to tailor O2/N2 separation performance of mixed-matrix membrane. Separation and Purification Technology, 2019, 223, 133-141.	3.9	44
323	A novel analytical method for prediction of gas permeation properties in ternary mixed matrix membranes: Considering an adsorption zone around the particles. Separation and Purification Technology, 2019, 225, 112-128.	3.9	14
324	Mixed matrix membranes with a thermally rearranged polymer and ZIF-8 for hydrogen separation. Journal of Membrane Science, 2019, 582, 381-390.	4.1	65
325	Prediction of Material Properties of Ceramic Composite Material by Porous Structure and Porosity Using the Finite Element Method. International Journal of Precision Engineering and Manufacturing, 2019, 20, 805-814.	1,1	6
326	Dispersion of Titanium(IV) Oxide Nanoparticles in Mixed Matrix Membrane Using Octaisobutyl Polyhedral Oligomeric Silsesquioxane for Enhanced CO2/CH4 Separation Performance. Chinese Journal of Polymer Science (English Edition), 2019, 37, 654-663.	2.0	14
327	Characterization and molecular simulation of Pebax-1657-based mixed matrix membranes incorporating MoS2 nanosheets for carbon dioxide capture enhancement. Journal of Membrane Science, 2019, 582, 358-366.	4.1	64
328	Rational matching between MOFs and polymers in mixed matrix membranes for propylene/propane separation. Chemical Engineering Science, 2019, 204, 151-160.	1.9	49

#	Article	IF	CITATIONS
329	<i>110th Anniversary:</i> Mixed Matrix Membranes with Fillers of Intrinsic Nanopores for Gas Separation. Industrial & Engineering Chemistry Research, 2019, 58, 7706-7724.	1.8	54
331	Sorption in mixed matrix membranes: Experimental and molecular dynamic simulation and Grand Canonical Monte Carlo method. Journal of Molecular Liquids, 2019, 282, 566-576.	2.3	27
332	(Cross-Linked Poly(Ionic Liquid)–Ionic Liquid–Zeolite) Mixed-Matrix Membranes for CO ₂ /CH ₄ Gas Separations Based on Curable Ionic Liquid Prepolymers. Industrial & Engineering Chemistry Research, 2019, 58, 4704-4708.	1.8	38
333	Defect-Free MOF-Based Mixed-Matrix Membranes Obtained by Corona Cross-Linking. ACS Applied Materials & Interfaces, 2019, 11, 13029-13037.	4.0	91
334	Poly(ionic liquid)-based engineered mixed matrix membranes for CO2/H2 separation. Separation and Purification Technology, 2019, 222, 168-176.	3.9	53
335	Ionic liquids combined with membrane separation processes: A review. Separation and Purification Technology, 2019, 222, 230-253.	3.9	203
336	Enhancing plasticization-resistance of mixed-matrix membranes with exceptionally high CO2/CH4 selectivity through incorporating ZSM-25 zeolite. Journal of Membrane Science, 2019, 583, 23-30.	4.1	42
337	Organic/Silica Nanocomposite Membranes Applicable to Green Chemistry. , 2019, , 629-652.		2
338	Approaches to Suppress CO2-Induced Plasticization of Polyimide Membranes in Gas Separation Applications. Processes, 2019, 7, 51.	1.3	57
339	Magnetic nanoFe ₂ O ₃ – incorporated PEBA membranes for CO ₂ /CH ₄ and CO ₂ /N ₂ separation: experimental study and grand canonical Monte Carlo and molecular dynamics simulations. , 2019, 9, 306-330.		17
340	Current Scenario of Nanocomposite Materials for Fuel Cell Applications. , 2019, , 557-592.		1
341	Polyimides in membrane gas separation: Monomer's molecular design and structural engineering. Progress in Polymer Science, 2019, 91, 80-125.	11.8	237
342	Synthesis, Characterization and Applications of Polyolefin Based Eco-Friendly Polymer Composites. , 2019, , 65-103.		3
343	Chemical Modification of Lignin and Its Environmental Application. , 2019, , 1345-1364.		3
344	Simulation of multicomponent gas transport through mixed-matrix membranes. Journal of Membrane Science, 2019, 577, 219-234.	4.1	12
345	Enhanced Water Flux by Fabrication of Polysulfone/Alumina Nanocomposite Membrane for Copper(II) Removal. Macromolecular Research, 2019, 27, 565-571.	1.0	29
346	Effect of the ZIFâ€8 Distribution in Mixedâ€Matrix Membranes Based on Matrimid® 5218â€₽EG on CO ₂ Separation. Chemical Engineering and Technology, 2019, 42, 744-752.	0.9	43
347	Enhanced CO2/CH4 selectivity and mechanical strength of mixed-matrix membrane incorporated with NiDOBDC/GO composite. Journal of Industrial and Engineering Chemistry, 2019, 74, 118-125.	2.9	38

#	Article	IF	CITATIONS
348	Complexing agents for metal removal using ultrafiltration membranes: a review. Environmental Chemistry Letters, 2019, 17, 1195-1208.	8.3	45
349	Thermal Properties of Sustainable Thermoplastics Nanocomposites Containing Nanofillers and Its Recycling Perspective. , 2019, , 915-933.		5
350	Mechanical, Thermal and Viscoelastic Properties of Polymer Composites Reinforced with Various Nanomaterials. , 2019, , 185-213.		3
351	Mechanical Techniques for Enhanced Dispersion of Cellulose Nanocrystals in Polymer Matrices. , 2019, , 437-449.		1
352	Impact of ZnO nanoparticle morphology on relaxation and transport properties of PLA nanocomposites. Polymer Testing, 2019, 75, 175-184.	2.3	24
353	Mixed-matrix membranes for CO ₂ separation: role of the third component. Journal of Materials Chemistry A, 2019, 7, 24738-24759.	5.2	104
354	A review and future prospect of polymer blend mixed matrix membrane for CO2 separation. Journal of Polymer Research, 2019, 26, 1.	1.2	44
355	CO2 absorption enhancement by water-based nanofluids of CNT and SiO2 using hollow-fiber membrane contactor. Separation and Purification Technology, 2019, 210, 920-926.	3.9	105
356	High nanoparticles loadings mixed matrix membranes via chemical bridging-crosslinking for CO2 separation. Journal of Membrane Science, 2019, 573, 455-464.	4.1	74
357	Support surface pore structures matter: Effects of support surface pore structures on the TFC gas separation membrane performance over a wide pressure range. Chinese Journal of Chemical Engineering, 2019, 27, 1807-1816.	1.7	10
358	ANFIS pattern for molecular membranes separation optimization. Journal of Molecular Liquids, 2019, 274, 470-476.	2.3	100
359	Fabrication and characterization of polyetherimide/polyvinyl acetate polymer blend membranes for CO ₂ /CH ₄ separation. Polymer Engineering and Science, 2019, 59, E293.	1.5	15
360	Cellulose Acetate Polymeric Membrane Fabrication by Nonsolvent-Induced Phase Separation Process: Determination of Velocities of Individual Components. Journal of Non-Equilibrium Thermodynamics, 2019, 44, 71-80.	2.4	3
361	Experimental Study of CO2 and CH4 Permeability Values Through PebaxⓇ-1074/Silica Mixed Matrix Membranes. Silicon, 2019, 11, 2045-2057.	1.8	21
362	CO2 absorption enhancement in graphene-oxide/MDEA nanofluid. Journal of Environmental Chemical Engineering, 2019, 7, 102782.	3.3	49
363	Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation. Journal of Membrane Science, 2019, 572, 588-595.	4.1	181
364	Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): A new horizon for efficient CO2 separation. Progress in Materials Science, 2019, 102, 222-295.	16.0	179
365	Mixed matrix membranes containing well-designed composite microcapsules for CO2 separation. Journal of Membrane Science, 2019, 572, 650-657.	4.1	38

#	Article	IF	CITATIONS
366	Global sensitivity analysis for hybrid membrane-cryogenic post combustion carbon capture process. International Journal of Greenhouse Gas Control, 2019, 81, 157-169.	2.3	18
367	Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture. Journal of Membrane Science, 2019, 572, 38-60.	4.1	210
368	Economic Framework of Membrane Technologies for Natural Gas Applications. Separation and Purification Reviews, 2019, 48, 298-324.	2.8	57
369	CO2/N2 Separation Using Polyvinyl Chloride Iso-Phthalic Acid/Aluminium Nitrate Nanocomposite Membrane. Macromolecular Research, 2019, 27, 83-89.	1.0	57
370	Constructing rapid diffusion pathways in ultrapermeable hybrid membranes by hierarchical porous nanotubes. Chemical Engineering Science, 2019, 195, 609-618.	1.9	11
371	Enhancing CO2 separation performance of Pebax® MH-1657 with aromatic carboxylic acids. Separation and Purification Technology, 2019, 212, 901-912.	3.9	38
372	A novel ternary mixed matrix membrane containing glycerol-modified poly(ether-block-amide) (Pebax) Tj ETQq0 C	0 rgBT /C 4.1	verlock 10 T 86
373	Effect of benzoic acid content on aging of 6FDA copolyimides based thin film composite (TFC) membranes in CO2/CH4 environment. Separation and Purification Technology, 2019, 210, 616-626.	3.9	11
374	Enhancing the mechanical strength and CO2/CH4 separation performance of polymeric membranes by incorporating amine-appended porous polymers. Journal of Membrane Science, 2019, 569, 149-156.	4.1	32
375	Carbon capture from natural gas using multi-walled CNTs based mixed matrix membranes. Environmental Technology (United Kingdom), 2019, 40, 843-854.	1.2	19
376	Enhanced CO2/N2 separation performance by using dopamine/polyethyleneimine-grafted TiO2 nanoparticles filled PEBA mixed-matrix membranes. Separation and Purification Technology, 2019, 214, 78-86.	3.9	47
377	ZIF-8 nanoparticles with tunable size for enhanced CO2 capture of Pebax based MMMs. Separation and Purification Technology, 2019, 214, 111-119.	3.9	109
378	Polyurethane-SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Chinese Journal of Chemical Engineering, 2019, 27, 322-334.	1.7	74
379	Application of neural networks in membrane separation. Reviews in Chemical Engineering, 2020, 36, 265-310.	2.3	32

380	Enhanced hydrogen purification by graphene - Poly(Dimethyl siloxane) membrane. International Journal of Hydrogen Energy, 2020, 45, 3549-3557.	3.8	18
381	Thermostat effect on water transport dynamics across CNT membranes. Molecular Simulation, 2020, 46, 699-705.	0.9	5
382	Amino-functional ZIF-8 nanocrystals by microemulsion based mixed linker strategy and the enhanced CO2/N2 separation. Separation and Purification Technology, 2020, 236, 116209.	3.9	65
383	Adsorption of CO2 from flue gas by novel seaweed-based KOH-activated porous biochars. Fuel, 2020, 260, 116382.	3.4	185

#	Article	IF	CITATIONS
384	Membrane functionalization using bisamideâ€based organic frameworks for molecular weight cutoff reduction. Journal of Applied Polymer Science, 2020, 137, 48327.	1.3	3
385	Pebaxâ€Based Membrane Filled with Twoâ€Dimensional Mxene Nanosheets for Efficient CO ₂ Capture. Chemistry - an Asian Journal, 2020, 15, 2364-2370.	1.7	72
386	The effect of Hydrogen sulfide oxidation with ultraviolet light and aeration on sour water treatment via membrane contactors. Separation and Purification Technology, 2020, 236, 116262.	3.9	12
387	Characterization and enhancement of the gas separation properties of mixed matrix membranes: Polyimide with nickel oxide nanoparticles. Chemical Engineering Research and Design, 2020, 153, 789-805.	2.7	30
388	Membranes for CO ₂ /CH ₄ and CO ₂ /N ₂ Gas Separation. Chemical Engineering and Technology, 2020, 43, 184-199.	0.9	71
389	The influence of cellulose acetate butyrate membrane structure on the improvement of CO2/N2 separation. Chemical Engineering Communications, 2020, 207, 1707-1718.	1.5	3
390	Pilot plants of membrane technology in industry: Challenges and key learnings. Frontiers of Chemical Science and Engineering, 2020, 14, 305-316.	2.3	19
391	Accelerating CO ₂ capture of highly permeable polymer through incorporating highly selective hollow zeolite imidazolate framework. AICHE Journal, 2020, 66, e16800.	1.8	21
392	Carbon nanotube-based mixed-matrix membranes with supramolecularly engineered interface for enhanced gas separation performance. Journal of Membrane Science, 2020, 598, 117794.	4.1	35
393	State-of-the-art modification of polymeric membranes by PEO and PEG for carbon dioxide separation: A review of the current status and future perspectives. Journal of Industrial and Engineering Chemistry, 2020, 84, 1-22.	2.9	46
394	Enhanced CO2/CH4 separation performance of BTDA-TDI/MDI (P84) copolyimide mixed-matrix membranes by incorporating submicrometer-sized [Ni3(HCOO)6] framework crystals. Journal of Natural Gas Science and Engineering, 2020, 75, 103123.	2.1	11
395	Multiscale simulation of gas transport in mixed-matrix membranes with interfacial polymer rigidification. Microporous and Mesoporous Materials, 2020, 296, 109982.	2.2	21
396	Enhanced CO2-selective behavior of Pebax-1657: A comparative study between the influence of graphene-based fillers. Polymer Testing, 2020, 81, 106264.	2.3	39
397	Pushing Rubbery Polymer Membranes To Be Economic for CO ₂ Separation: Embedment with Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets. ACS Applied Materials & Interfaces, 2020, 12, 3984-3992.	4.0	105
398	Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: A review. Chemical Engineering Journal, 2020, 391, 123475.	6.6	125
399	Effects of structural properties of fillers on performances of Matrimid® 5218 mixed matrix membranes. Separation and Purification Technology, 2020, 236, 116277.	3.9	3
400	Mixed matrix membranes consisting of ZIF-8 in rubbery amphiphilic copolymer: Simultaneous improvement in permeability and selectivity. Chemical Engineering Research and Design, 2020, 153, 175-186.	2.7	11
401	Improved gas transport properties of polyurethane–urea membranes through incorporating a cadmiumâ€based metal organic framework. Journal of Applied Polymer Science, 2020, 137, 48704.	1.3	11

#	Article	IF	CITATIONS
404	Textile waste, dyes/inorganic salts separation of cerium oxide-loaded loose nanofiltration polyethersulfone membranes. Chemical Engineering Journal, 2020, 385, 123787.	6.6	232
405	Impact of MOF-5 on Pyrrolidinium-Based Poly(ionic liquid)/Ionic Liquid Membranes for Biogas Upgrading. Industrial & Engineering Chemistry Research, 2020, 59, 308-317.	1.8	29
406	Engineering polydopamine-glued sandwich-like nanocomposites with antifouling and antibacterial properties for the development of advanced mixed matrix membranes. Separation and Purification Technology, 2020, 237, 116326.	3.9	25
407	Superhydrophilic alkynyl carbon composite nanofiltration membrane for water purification. Applied Surface Science, 2020, 508, 144788.	3.1	16
408	Superior interfacial design in ternary mixed matrix membranes to enhance the CO2 separation performance. Applied Materials Today, 2020, 18, 100491.	2.3	19
409	Polyarylate membrane with special circular microporous structure by interfacial polymerization for gas separation. Separation and Purification Technology, 2020, 251, 117370.	3.9	14
410	Impact of scale, activation solvents, and aged conditions on gas adsorption properties of UiO-66. Journal of Environmental Management, 2020, 274, 111155.	3.8	53
411	Enhancing the Gas Separation Selectivity of Mixed-Matrix Membranes Using a Dual-Interfacial Engineering Approach. Journal of the American Chemical Society, 2020, 142, 18503-18512.	6.6	86
412	Nanocomposite membrane materials. , 2020, , 21-99.		0
413	Improvement in separation performance of PEI-based nanofiltration membranes by using L-cysteine functionalized POSS-TiO2 composite nanoparticles for removal of heavy metal ion. Korean Journal of Chemical Engineering, 2020, 37, 1552-1564.	1.2	11
414	Theoretical study of strain-controlled C2X (XÂ=ÂN, O) membrane for CO2/C2H2 separation. Applied Surface Science, 2020, 530, 147250.	3.1	7
415	CO2 separation with ionic liquid membranes. , 2020, , 291-309.		5
416	Boosting gas separation performance and suppressing the physical aging of polymers of intrinsic microporosity (PIM-1) by nanomaterial blending. Nanoscale, 2020, 12, 23333-23370.	2.8	81
417	Fabrication and Characterization of PVDF/UiO-66(Zr) Mixed Matrix Membrane on Non-Woven PET Support. Materials Science Forum, 2020, 1005, 108-115.	0.3	1
418	Amino-MIL-53(Al)-Nanosheets@Nafion Composite Membranes with Improved Proton/Methanol Selectivity for Passive Direct Methanol Fuel Cells. Industrial & Engineering Chemistry Research, 2020, 59, 14825-14833.	1.8	20
419	Water Based Synthesis of ZIF-8 Assisted by Hydrogen Bond Acceptors and Enhancement of CO2 Uptake by Solvent Assisted Ligand Exchange. Crystals, 2020, 10, 599.	1.0	16
420	Surface Modifications of Nanofillers for Carbon Dioxide Separation Nanocomposite Membrane. Symmetry, 2020, 12, 1102.	1.1	12
421	Can flexible framework fillers keep breathing in mixed matrix membranes to enhance separation performance?. Journal of Membrane Science, 2020, 614, 118426.	4.1	11

#	Article	IF	CITATIONS
422	CO ₂ Separation Properties of a Ternary Mixed-Matrix Membrane Using Ultraselective Synthesized Macrocyclic Organic Compounds. ACS Sustainable Chemistry and Engineering, 2020, 8, 12775-12787.	3.2	29
423	Membrane-based gas separation accelerated by quaternary mixed matrix membranes. Journal of Natural Gas Science and Engineering, 2020, 84, 103655.	2.1	19
424	Pebax® 2533/Graphene Oxide Nanocomposite Membranes for Carbon Capture. Membranes, 2020, 10, 188.	1.4	23
425	Facilitated Transport Membranes With Ionic Liquids for CO2 Separations. Frontiers in Chemistry, 2020, 8, 637.	1.8	33
426	Effect of Water and Organic Pollutant in CO2/CH4 Separation Using Hydrophilic and Hydrophobic Composite Membranes. Membranes, 2020, 10, 405.	1.4	10
427	Development of mixed matrix membrane comprising titanium (IV) oxide dispersed with octaisobutyl polyhedral oligomeric silsesquioxane. IOP Conference Series: Materials Science and Engineering, 2020, 736, 052015.	0.3	0
428	Synthesis and structural of Cd0.5Zn0.5F2O4 nanoparticles and its influence on the structure and optical properties of polyvinyl alcohol films. Journal of Materials Science: Materials in Electronics, 2020, 31, 9666-9674.	1.1	29
429	CARBON DIOXIDE/METHANE SEPARATION PERFORMANCE BY MIXED MATRIX MEMBRANE FROM POLYSULFONE/ HALLOYSITE NANOTUBES. Jurnal Teknologi (Sciences and Engineering), 2020, 82, .	0.3	0
430	A systematic review on carbohydrate biopolymers for adsorptive remediation of copper ions from aqueous environments-part A: Classification and modification strategies. Science of the Total Environment, 2020, 738, 139829.	3.9	84
432	Superior chemical stability of UiO-66 metal-organic frameworks (MOFs) for selective dye adsorption. Chemical Engineering Journal, 2020, 399, 125346.	6.6	305
433	Enhanced gas separation performance of Pebax mixed matrix membranes by incorporating ZIF-8 in situ inserted by multiwalled carbon nanotubes. Separation and Purification Technology, 2020, 248, 117080.	3.9	49
434	Synthetic polymer-based membranes for oxygen enrichment. , 2020, , 191-216.		2
435	Synthetic polymeric membranes for gas and vapor separations. , 2020, , 217-272.		3
436	A review on recent advances in hollow spheres for hydrogen storage. International Journal of Hydrogen Energy, 2020, 45, 17583-17604.	3.8	47
437	Functionalized electrospun nanofiber membranes for water treatment: A review. Science of the Total Environment, 2020, 739, 139944.	3.9	150
439	Pebax/MWCNTsâ€NH 2 mixed matrix membranes for enhanced CO 2 /N 2 separation. , 2020, 10, 408-420.		8
440	Hydrothermal Decomposition of Strongly Acidic Cationâ€Exchange Resin to Valuable Compounds Using Subcritical Water in Alkaline Media. ChemistrySelect, 2020, 5, 3257-3265.	0.7	2
441	EFFECTS OF PEBAX COATING CONCENTRATIONS ON CO2/CH4 SEPARATION OF RGO/ZIF-8 PES MEMBRANES. Jurnal Teknologi (Sciences and Engineering), 2020, 82, .	0.3	2

ш		15	CITATION
#		IF	CITATIONS
442	Fabrication of 6FDA-based composite membranes loaded with MIL-125 (Ti) for CO2/CH4 separation. IOP Conference Series: Materials Science and Engineering, 2020, 736, 052018.	0.3	1
443	CO2 sequestration by hybrid integrative photosynthesis (CO2-SHIP): A green initiative for multi-product biorefineries. Materials Science for Energy Technologies, 2020, 3, 420-428.	1.0	6
444	Nanomaterials for the efficient abatement of wastewater contaminants by means of reverse osmosis and nanofiltration. , 2020, , 111-144.		9
445	Producing water from saline streams using membrane distillation: Modeling and optimization using CFD and design expert. International Journal of Energy Research, 2020, 44, 8841-8853.	2.2	26
446	Highly permeable polyethersulfone substrates with bicontinuous structure for composite membranes in CO2/N2 separation. Journal of Membrane Science, 2020, 612, 118443.	4.1	18
447	Metal Organic Framework — Based Mixed Matrix Membranes for Carbon Dioxide Separation: Recent Advances and Future Directions. Frontiers in Chemistry, 2020, 8, 534.	1.8	54
448	Modeling pre-combustion CO2 capture with tubular membrane contactor using ionic liquids at elevated temperatures. Separation and Purification Technology, 2020, 241, 116677.	3.9	55
449	Juglone extraction from walnut (Juglans regia L.) green husk by supercritical CO2: Process optimization using Taguchi method. Journal of Environmental Chemical Engineering, 2020, 8, 103776.	3.3	21
450	Exploration of the Synergy Between 2D Nanosheets and a Non-2D Filler in Mixed Matrix Membranes for Gas Separation. Frontiers in Chemistry, 2020, 8, 58.	1.8	22
451	High gas permeability of nanoZIF-8/polymer-based mixed matrix membranes intended for biogas purification. Journal of Polymer Engineering, 2020, 40, 459-467.	0.6	12
452	CO2 selective separation of Pebax-based mixed matrix membranes (MMMs) accelerated by silica nanoparticle organic hybrid materials (NOHMs). Separation and Purification Technology, 2020, 241, 116708.	3.9	41
453	Tuning of Nano-Based Materials for Embedding Into Low-Permeability Polyimides for a Featured Gas Separation. Frontiers in Chemistry, 2019, 7, 897.	1.8	59
454	Perspective of mixed matrix membranes for carbon capture. Frontiers of Chemical Science and Engineering, 2020, 14, 460-469.	2.3	7
455	Homogeneous preparation of aerocellulose grafted acrylamide and its CO2 adsorption properties. Cellulose, 2020, 27, 3263-3275.	2.4	10
456	Role of ionic liquids in eliminating interfacial defects in mixed matrix membranes. , 2020, , 269-309.		1
457	Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation. Microporous and Mesoporous Materials, 2020, 297, 110030.	2.2	72
458	Pair interaction energy decomposition analysis (PIEDA) and experimental approaches for investigating water interactions with hydrophilic and hydrophobic membranes. Journal of Molecular Graphics and Modelling, 2020, 96, 107540.	1.3	7
459	Incorporating nano-sized ZIF-67 to enhance selectivity of polymers of intrinsic microporosity membranes for biogas upgrading. Chemical Engineering Science, 2020, 216, 115497.	1.9	23

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
460	Interlocking a synthesized polymer and bifunctional filler containing the same polymer's monomer for conformable hybrid membrane systems. Journal of Materials Chemistry A, 2020, 8, 3942-3955.	5.2	21
461	Recent Advances of Gas Transport Channels Constructed with Different Dimensional Nanomaterials in Mixedâ€Matrix Membranes for CO ₂ Separation. Small Methods, 2020, 4, 1900749.	4.6	48
462	Preparation of high-performance and pressure-resistant mixed matrix membranes for CO2/H2 separation by modifying COF surfaces with the groups or segments of the polymer matrix. Journal of Membrane Science, 2020, 601, 117882.	4.1	61
463	Comparison of micro―and <scp>nanoâ€sized CuBTC</scp> particles on the <scp>CO₂</scp> / <scp>CH₄</scp> separation performance of <scp>PEBA</scp> mixed matrix membranes. Journal of Chemical Technology and Biotechnology, 2020, 95, 2951-2963.	1.6	11
464	Synthesis and property of novel gas mixed-matrix membrane with carbon nanotubes. Journal of Polymer Research, 2020, 27, 1.	1.2	2
465	CO2/CH4 mixed gas separation using poly(ether-b-amide)-ZnO nanocomposite membranes: Experimental and molecular dynamics study. Polymer Testing, 2020, 86, 106464.	2.3	41
466	Enhanced O2/N2 Separation of Mixed-Matrix Membrane Filled with Pluronic-Compatibilized Cobalt Phthalocyanine Particles. Membranes, 2020, 10, 75.	1.4	20
467	Activated carbon in mixed-matrix membranes. Separation and Purification Reviews, 2021, 50, 1-31.	2.8	20
468	Novel MMM using CO2 selective SSZ-16 and high-performance 6FDA-polyimide for CO2/CH4 separation. Separation and Purification Technology, 2021, 254, 117582.	3.9	64
469	Recent advances in polymer blend membranes for gas separation and pervaporation. Progress in Materials Science, 2021, 116, 100713.	16.0	177
470	Ethylenediamine-functionalized Zr-based MOF for efficient removal of heavy metal ions from water. Chemosphere, 2021, 264, 128466.	4.2	179
471	Adsorption performance of UiO-66 towards organic dyes: Effect of activation conditions. Journal of Molecular Liquids, 2021, 321, 114487.	2.3	42
472	Hydrogen-bonded polyamide 6/Zr-MOF mixed matrix membranes for efficient natural gas dehydration. Fuel, 2021, 285, 119161.	3.4	19
473	Fabrication of highly permeable PVDF loose nanofiltration composite membranes for the effective separation of dye/salt mixtures. Journal of Membrane Science, 2021, 621, 118951.	4.1	66
474	Protic/aprotic ionic liquids for effective CO2 separation using supported ionic liquid membrane. Chemosphere, 2021, 267, 128894.	4.2	33
475	MXene versus graphene oxide: Investigation on the effects of 2D nanosheets in mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2021, 620, 118850.	4.1	65
476	Comparison of different MOF fillers on CO ₂ removal performance of supported PEBA mixed matrix membranes. , 2021, 11, 128-143.		6
477	CO2/CH4 separation characteristics of poly(RTIL)-RTIL-zeolite mixed-matrix membranes evaluated under binary feeds up to 40 bar and 50°C. Journal of Membrane Science, 2021, 621, 118979.	4.1	13

#	Article	IF	CITATIONS
478	Highly CO2 selective mixed matrix membranes of polysulfone based on hetaryl modified SBA-16 particles. Separation and Purification Technology, 2021, 258, 117999.	3.9	12
479	Sorption-enhanced thin film composites with metal-organic polyhedral nanocages for CO2 separation. Journal of Membrane Science, 2021, 620, 118826.	4.1	9
480	Functionalized filler/synthesized 6FDA-Durene high performance mixed matrix membrane for CO2 separation. Journal of Industrial and Engineering Chemistry, 2021, 93, 482-494.	2.9	24
481	Mixed matrix membranes for hydrocarbons separation and recovery: a critical review. Reviews in Chemical Engineering, 2021, 37, 363-406.	2.3	32
482	Correlating MOF-808 parameters with mixed-matrix membrane (MMM) CO ₂ permeation for a more rational MMM development. Journal of Materials Chemistry A, 2021, 9, 12782-12796.	5.2	26
483	Melamine-based resins and their carbons for CO2 capture: a review. Emergent Materials, 2021, 4, 545-563.	3.2	12
484	Carbon capture Using Metal–Organic Frameworks. , 2021, , 155-204.		1
485	Aromatic polyamide nonporous membranes for gas separation application. E-Polymers, 2021, 21, 108-130.	1.3	8
486	Porous liquids – Future for CO2 capture and separation?. Current Research in Green and Sustainable Chemistry, 2021, 4, 100070.	2.9	23
487	Pebaxâ€based mixed matrix membranes loaded with graphene oxide/core shell <scp>ZIF</scp> â€8@ <scp>ZIF</scp> â€67 nanocomposites improved <scp>CO₂</scp> permeability and selectivity. Journal of Applied Polymer Science, 2021, 138, 50553.	1.3	24
488	Recent progress in the development of ionic liquidâ€based mixed matrix membrane for <scp> CO ₂ </scp> separation: A review. International Journal of Energy Research, 2021, 45, 9800-9830.	2.2	28
489	Gas transport properties of thermally rearranged (TR) polybenzoxazole –silica hybrid membranes. Polymer, 2021, 214, 123274.	1.8	6
490	A Review on Glassy and Rubbery Polymeric Membranes for Natural Gas Purification. ChemBioEng Reviews, 2021, 8, 90-109.	2.6	23
491	Perspectives for chitosanâ€based membranes in CO 2 /N 2 separation : Structureâ€property relationship. , 2021, 11, 394-408.		6
492	Preparation and high CO ₂ /CH ₄ selectivity of ZSM-5/Ethyl cellulose mixed matrix membranes. Materials Research Express, 2021, 8, 026403.	0.8	3
493	Mixed Matrix Membranes for Sustainable Electrical Energyâ€Saving Applications. ChemBioEng Reviews, 2021, 8, 27-43.	2.6	12
494	Gas Separation by Mixed Matrix Membranes with Porous Organic Polymer Inclusions within o-Hydroxypolyamides Containing m-Terphenyl Moieties. Polymers, 2021, 13, 931.	2.0	10
495	Efficient facilitated transport PETIM dendrimer-PVA-PEG/PTFE composite flat-bed membranes for selective removal of CO2. Journal of Membrane Science, 2021, 622, 119007.	4.1	7

#	Article	IF	CITATIONS
496	Metal–organic frameworks for biogas upgrading: Recent advancements, challenges, and future recommendations. Applied Materials Today, 2021, 22, 100925.	2.3	16
497	A New Perspective for Climate Change Mitigation—Introducing Carbon-Negative Hydrogen Production from Biomass with Carbon Capture and Storage (HyBECCS). Sustainability, 2021, 13, 4026.	1.6	24
498	Activated carbon and halloysite nanotubes membrane for CO ₂ and CH ₄ separation. IOP Conference Series: Materials Science and Engineering, 2021, 1142, 012012.	0.3	3
499	Effect of anion on CO2 capture in PVC–g–P[VBIm][X] ionomers: experimental and density functional theory studies. Journal of Polymer Research, 2021, 28, 1.	1.2	3
500	CO2-philic mixed matrix membranes based on low-molecular-weight polyethylene glycol and porous organic polymers. Journal of Membrane Science, 2021, 624, 119081.	4.1	26
501	Poly(sodium-p-styrenesulfonate)-grafted UiO-66 composite membranes boosting highly efficient molecular separation for environmental remediation. Advanced Composites and Hybrid Materials, 2021, 4, 562-573.	9.9	25
502	Future applications of electrospun nanofibers in pressure driven water treatment: A brief review and research update. Journal of Environmental Chemical Engineering, 2021, 9, 105107.	3.3	54
503	Ethylene vinyl acetate copolymer/Mg–Alâ€layered double hydroxide nanocomposite membranes applied in <scp>CO₂</scp> / <scp>N₂</scp> gas separation. Polymer Composites, 2021, 42, 4065-4072.	2.3	7
504	[EMIM][Tf2N]-Modified Silica as Filler in Mixed Matrix Membrane for Carbon Dioxide Separation. Membranes, 2021, 11, 371.	1.4	7
505	Miscible blend polyethersulfone/polyimide asymmetric membrane crosslinked with 1,3-diaminopropane for hydrogen separation. Journal of Polymer Engineering, 2021, .	0.6	3
506	Next generation polymers of intrinsic microporosity with tunable moieties for ultrahigh permeation and precise molecular CO2 separation. Progress in Energy and Combustion Science, 2021, 84, 100903.	15.8	43
507	A review on recent advances in CO2 separation using zeolite and zeolite-like materials as adsorbents and fillers in mixed matrix membranes (MMMs). Chemical Engineering Journal Advances, 2021, 6, 100091.	2.4	102
508	Improved Gas Permeation Properties of 6FDA-TrMPD Mixed-Matrix Membrane with SAPO-34 Crystals Toward CO ₂ Separation. Energy & Fuels, 2021, 35, 10680-10688.	2.5	5
509	Review: Mixed-Matrix Membranes with CNT for CO2 Separation Processes. Membranes, 2021, 11, 457.	1.4	17
510	Modification of CO2-selective mixed matrix membranes by a binary composition of poly(ethylene) Tj ETQq0 0 0 i	rgBT /Over 4.1	lock 10 Tf 50
511	Polymerizable metal-organic frameworks for the preparation of mixed matrix membranes with enhanced interfacial compatibility. IScience, 2021, 24, 102560.	1.9	7
512	Preparation of alumina nanotubes for incorporation into CO2 permselective Pebax-based nanocomposite membranes. Korean Journal of Chemical Engineering, 2021, 38, 1469-1486.	1.2	1
513	Advances in the Use of Nanocomposite Membranes for Carbon Capture Operations. International Journal of Chemical Engineering, 2021, 2021, 1-22.	1.4	5

#	Article	IF	CITATIONS
514	Sustainable MXenes-based membranes for highly energy-efficient separations. Renewable and Sustainable Energy Reviews, 2021, 143, 110878.	8.2	39
515	A 2D Graphiticâ€Polytriaminopyrimidine (gâ€PTAP)/Poly(etherâ€blockâ€amide) Mixed Matrix Membrane for CO ₂ Separation. Chemistry - an Asian Journal, 2021, 16, 1839-1848.	1.7	6
516	A comparative review of potential ammonia-based carbon capture systems. Journal of Environmental Management, 2021, 287, 112357.	3.8	23
517	Highly permeable and selective polymeric blend mixed matrix membranes for CO2/CH4 separation. Chemical Papers, 2021, 75, 5663-5685.	1.0	1
518	Gas-permeation properties of sandwich-like polyaniline/poly(ethylene vinyl acetate) nanocomposite membranes. Chemical Engineering Research and Design, 2021, 170, 239-247.	2.7	4
519	High-Efficiency Organic Contaminants Remover Based on Modulated Self-Assembly of Cobalt Metal–Organic Frameworks. Crystal Growth and Design, 2021, 21, 4305-4317.	1.4	8
520	High-performance 7-channel monolith supported SSZ-13 membranes for high-pressure CO2/CH4 separations. Journal of Membrane Science, 2021, 629, 119277.	4.1	27
521	A Prospective Concept on the Fabrication of Blend PES/PEG/DMF/NMP Mixed Matrix Membranes with Functionalised Carbon Nanotubes for CO2/N2 Separation. Membranes, 2021, 11, 519.	1.4	2
522	Freestanding Tough Glassy Membranes Produced by Simple Solvent Casting of Polyrotaxane Derivatives. ACS Applied Polymer Materials, 2021, 3, 4177-4183.	2.0	5
523	In-situ generation of polymer molecular sieves in polymer membranes for highly selective gas separation. Journal of Membrane Science, 2021, 630, 119302.	4.1	17
524	Recent Advances in Polymer-Inorganic Mixed Matrix Membranes for CO2 Separation. Polymers, 2021, 13, 2539.	2.0	27
525	Efficient CO ₂ Separation Using a PIMâ€PIâ€Functionalized UiOâ€66 MOF Incorporated Mixed Matrix Membrane in a PIMâ€PIâ€1 Polymer. Macromolecular Materials and Engineering, 2021, 306, 2100298.	1.7	28
526	Predicting Gas Permeability through Mixed-matrix Membranes Filled with Nanofillers of Different Shapes. Arabian Journal for Science and Engineering, 0, , 1.	1.7	4
527	Ionic Liquid Membrane for Carbon Capture and Separation. Separation and Purification Reviews, 2022, 51, 261-280.	2.8	33
528	Modified Zeolite/Polysulfone Mixed Matrix Membrane for Enhanced CO2/CH4 Separation. Membranes, 2021, 11, 630.	1.4	12
529	Enhancing polyimide-based mixed matrix membranes performance for CO2 separation containing PAF-1 and p-DCX. Separation and Purification Technology, 2021, 268, 118677.	3.9	14
530	Structure Optimization of a High-Temperature Oxygen-Membrane Module Using Finite Element Analysis. Energies, 2021, 14, 4992.	1.6	0
531	CO2/CH4 separation by mixed-matrix membranes holding functionalized NH2-MIL-101(Al) nanoparticles: Effect of amino-silane functionalization. Chemical Engineering Research and Design, 2021, 176, 49-59.	2.7	34

#	Article	IF	CITATIONS
532	A State-of-the-Art Review on Biowaste Derived Chitosan Biomaterials for Biosorption of Organic Dyes: Parameter Studies, Kinetics, Isotherms and Thermodynamics. Polymers, 2021, 13, 3009.	2.0	9
533	A review on chitosan-based membranes for sustainable CO2 separation applications: Mechanism, issues, and the way forward. Carbohydrate Polymers, 2021, 267, 118178.	5.1	16
534	Neural modeling and simulation of molecular separation using amino acid salt solutions. Journal of Molecular Liquids, 2021, 337, 116473.	2.3	1
535	Fabrication of high-performance mixed-matrix membranes via constructing an in-situ crosslinked polymer matrix for gas separations. Separation and Purification Technology, 2021, 271, 118859.	3.9	19
536	CO2 separation by mixed matrix membranes incorporated with carbon nanotubes: a review of morphological, mechanical, thermal and transport properties. Brazilian Journal of Chemical Engineering, 2021, 38, 777-810.	0.7	1
537	Development of an extended model for the permeation of environmentally hazardous CO2 gas across asymmetric hollow fiber composite membranes. Journal of Hazardous Materials, 2021, 417, 126000.	6.5	8
538	CO ₂ separation of a novel Ultemâ€based mixed matrix membrane incorporated with Ni ²⁺ â€exchanged zeolite X. , 2022, 12, 48-66.		6
539	Preparation and characterization of modified halloysite nanotubes—Pebax nanocomposite membranes for CO2/CH4 separation. Chemical Engineering Research and Design, 2021, 174, 199-212.	2.7	12
540	A review of recent trends and emerging perspectives of ionic liquid membranes for CO2 separation. Journal of Environmental Chemical Engineering, 2021, 9, 105860.	3.3	56
541	Pyrochlores: oxygen-rich moieties as ceramic fillers in uplifting the antifouling property and dye removal capacity of polymeric membranes. Separation and Purification Technology, 2021, 272, 118946.	3.9	15
542	Phosphonium ionic liquid-polyacrylate copolymer membranes for improved CO2 separations. Journal of Membrane Science, 2021, 635, 119479.	4.1	17
543	Self-crosslinking of bromomethylated 6FDA-DAM polyimide for gas separations. Journal of Membrane Science, 2021, 636, 119534.	4.1	36
544	Comparison of acidic and basic ionic liquids effects on dispersion of alumina particles in Pebax composite membranes for CO2/N2 separation: Experimental study and molecular simulation. Journal of Environmental Chemical Engineering, 2021, 9, 106116.	3.3	11
545	Fabricating compact covalent organic framework membranes with superior performance in dye separation. Journal of Membrane Science, 2021, 637, 119667.	4.1	26
546	Recent progresses in dry gas polymeric filters. Journal of Energy Chemistry, 2021, 62, 103-119.	7.1	6
547	Veiled metal organic frameworks nanofillers for mixed matrix membranes with enhanced CO2/CH4 separation performance. Separation and Purification Technology, 2021, 279, 119707.	3.9	12
548	MOF-based membranes for pervaporation. Separation and Purification Technology, 2021, 278, 119233.	3.9	40
549	Polymers of intrinsic microporosity and thermally rearranged polymer membranes for highly efficient gas separation. Separation and Purification Technology, 2021, 278, 119513.	3.9	44

Сітатіо	n Report	
	IF	Citations
dding ZIFâ€ 7 â€NH 2	1.3	13

550	Improved CO 2 / CH 4 separation performance of mixedâ€matrix membrane by adding ZIFâ€7â€NH 2 nanocrystals. Journal of Applied Polymer Science, 2021, 138, 50424.	1.3	13
551	Synthesis, Characterization, and Applications of Hemicelluloses Based Eco-friendly Polymer Composites. , 2019, , 1267-1322.		3
552	Influence of functionalized SiO2 nanoparticles on the morphology and CO2/CH4 separation efficiency of Pebax-based mixed-matrix membranes. Korean Journal of Chemical Engineering, 2020, 37, 295-306.	1.2	26
553	Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Progress in Energy and Combustion Science, 2020, 80, 100849.	15.8	235
554	Task-Specific Ionic Liquids Tuning ZIF-67/PIM-1 Mixed Matrix Membranes for Efficient CO ₂ Separation. Industrial & Engineering Chemistry Research, 2021, 60, 593-603.	1.8	28
555	Potential of adsorbents from agricultural wastes as alternative fillers in mixed matrix membrane for gas separation: A review. Green Processing and Synthesis, 2020, 9, 219-229.	1.3	6
557	Crosslinked Facilitated Transport Membranes Based on Carboxymethylated NFC and Amine-Based Fixed Carriers for Carbon Capture, Utilization, and Storage Applications. Applied Sciences (Switzerland), 2020, 10, 414.	1.3	8
558	Metal and Covalent Organic Frameworks for Membrane Applications. Membranes, 2020, 10, 107.	1.4	38
559	Membrane Technologies for Decarbonization. Membranes and Membrane Technologies, 2021, 3, 255-273.	0.6	32
560	Applications of Metal–Organic Frameworksâ€Based Membranes in Separation. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100292.	0.8	1
561	A novel high-performance facilitated transport membrane by simultaneously using semi-mobile and fixed carriers for CO2/N2 separation. Chemical Engineering Research and Design, 2021, 156, 304-314.	2.7	7
562	Recent progress on the smart membranes based on two-dimensional materials. Chinese Chemical Letters, 2022, 33, 2832-2844.	4.8	16
563	Water desalination and ion removal using mixed matrix electrospun nanofibrous membranes: A critical review. Desalination, 2022, 521, 115350.	4.0	39
564	Novel mixed matrix membranes (MMMs) based on metal–organic framework (MOF) [Mg3(BTC)2]/poly-ether sulfone (PES): preparation and application for CO2 gasAseparation. Journal of Polymer Research, 2021, 28, 1.	1.2	2
565	Nanocomposite Membranes. , 2015, , 1-3.		0
566	Gas/Vapor Transport. , 2015, , 1-13.		0
567	Preparation and Characterization of Antibacterial Sustainable Nanocomposites. , 2019, , 215-244.		1
568	Gas Permeability through Mixed Matrix Membrane of Poly(dimethylsiloxane) with Aluminosilicate Hollow Nanoparticles. Membrane Journal, 2019, 29, 51-60.	0.2	0

ARTICLE

#

#	Article	IF	CITATIONS
569	Highly-permeable Mixed Matrix Membranes Based on SBS-g-POEM Copolymer, ZIF-8 and Ionic Liquid. Membrane Journal, 2019, 29, 44-50.	0.2	3
570	High Performance Membrane for Natural Gas Sweetening Plants. Advances in Science, Technology and Innovation, 2021, , 59-72.	0.2	1
571	Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coordination Chemistry Reviews, 2022, 451, 214263.	9.5	165
572	Towards azeotropic MeOH-MTBE separation using pervaporation chitosan-based deep eutectic solvent membranes. Separation and Purification Technology, 2022, 281, 119979.	3.9	69
573	Analytical applications of graphene oxide for membrane processes as separation and concentration methods. Comprehensive Analytical Chemistry, 2020, , 99-124.	0.7	2
574	Effect of montmorillonite on PEBAX [®] 1074-based mixed matrix membranes to be used in humidifiers in proton exchange membrane fuel cells. E-Polymers, 2020, 20, 171-184.	1.3	6
575	Closing the Anthropogenic Chemical Carbon Cycle toward a Sustainable Future via CO ₂ Valorization. Advanced Energy Materials, 2021, 11, 2102767.	10.2	35
576	Polymer Materials for Membrane Separation of Gas Mixtures Containing CO2. Polymer Science - Series C, 2021, 63, 181-198.	0.8	6
577	CO2/CH4 and H2/CH4 Gas Separation Performance of CTA-TNT@CNT Hybrid Mixed Matrix Membranes. Membranes, 2021, 11, 862.	1.4	11
578	PEO-based CO2-philic mixed matrix membranes compromising N-rich ultramicroporous polyaminals for superior CO2 capture. Journal of Membrane Science, 2022, 644, 120111.	4.1	14
579	UiO-66 metal–organic frameworks in water treatment: A critical review. Progress in Materials Science, 2022, 125, 100904.	16.0	161
580	Functionalized nanodiamonds in polyurethane mixed matrix membranes for carbon dioxide separation. Results in Materials, 2022, 13, 100243.	0.9	5
581	Exploring the influence of the cation type and polymer support in bis(fluorosulfonyl)imide-based plastic crystal composite membranes for CO2/N2 separation. Journal of Materials Chemistry A, 2021, 9, 26330-26344.	5.2	5
582	Mixed matrix membranes for post-combustion carbon capture: From materials design to membrane engineering. Journal of Membrane Science, 2022, 644, 120140.	4.1	28
583	Synthesis and characterization of polymerizable MOFs for the preparation of MOF/polymer mixed matrix membranes. STAR Protocols, 2022, 3, 101039.	0.5	3
584	Current status and challenges in the heterogeneous catalysis for biodiesel production. Renewable and Sustainable Energy Reviews, 2022, 157, 112012.	8.2	114
585	Overcoming the Permeability/Selectivity Trade-Off by Controlled Grafting of Multi-Block Copolymers for CO ₂ Capture Membranes. SSRN Electronic Journal, 0, , .	0.4	0
587	Experimental investigation of polysulfone modified cellulose acetate membrane for CO2/H2 gas separation. Korean Journal of Chemical Engineering, 2022, 39, 189-197.	1.2	11

#	Article	IF	CITATIONS
588	Nanostructured polysaccharide-based materials obtained from renewable resources and uses. , 2022, , 163-200.		0
589	Preparation of polybenzimidazoleâ€based mixed matrix membranes containing modified OK â€12 mesoporous silica and evaluation of the mixedâ€gas separation performance. Polymers for Advanced Technologies, 0, , .	1.6	2
590	The Optimization of Dispersion and Application Techniques for Nanocarbon-Doped Mixed Matrix Gas Separation Membranes. Membranes, 2022, 12, 87.	1.4	6
593	Selection-Diffusion-Selection Mechanisms in Ordered Hierarchically-Porous Mof-on-Mof: Zif-8@Nh2-Mil-125 for Efficient Co2 Separation. SSRN Electronic Journal, 0, , .	0.4	0
594	A review of techniques to improve performance of metal organic framework (MOF) based mixed matrix membranes for CO2/CH4 separation. Reviews in Environmental Science and Biotechnology, 2022, 21, 539-569.	3.9	18
595	Polymeric composite membranes in carbon dioxide capture process: a review. Environmental Science and Pollution Research, 2022, 29, 38735-38767.	2.7	15
596	Nanostructured Material and its Application in Membrane Separation Technology. Micro and Nanosystems, 2023, 15, 16-27.	0.3	0
597	Fouling control and modeling in reverse osmosis for seawater desalination: A review. Computers and Chemical Engineering, 2022, 162, 107794.	2.0	26
598	Engineered graphene-based mixed matrix membranes to boost CO2 separation performance: Latest developments and future prospects. Renewable and Sustainable Energy Reviews, 2022, 160, 112294.	8.2	22
602	Produced Water Treatment with Conventional Adsorbents and MOF as an Alternative: A Review. Materials, 2021, 14, 7607.	1.3	27
603	Valuable energy resources and food-grade CO2 from biogas via membrane separation. , 2022, , 437-493.		0
604	Architecting MOFs-based mixed matrix membrane for efficient CO2 separation: Ameliorating strategies toward non-ideal interface. Chemical Engineering Journal, 2022, 443, 136290.	6.6	19
609	Membrane for CO2 separation. , 2022, , 121-159.		1
610	Two-step surface functionalization/alignment strategy to improve CO2/N2 separation from mixed matrix membranes based on PEBAX and graphene oxide. Chemical Engineering Research and Design, 2022, 163, 36-47.	2.7	6
611	Status and future trends of hollow fiber biogas separation membrane fabrication and modification techniques. Chemosphere, 2022, 303, 134959.	4.2	14
613	Removal performance, mechanisms, and influencing factors of biochar for air pollutants: a critical review. Biochar, 2022, 4, .	6.2	32
614	Hybrid cross-linked chitosan/protonated-proline:glucose DES membranes with superior pervaporation performance for ethanol dehydration. Journal of Molecular Liquids, 2022, 360, 119499.	2.3	22
615	Selection-diffusion-selection mechanisms in ordered hierarchically-porous MOF-on-MOF: ZIF-8Â@NH2-MIL-125 for efficient CO2 separation. Journal of Environmental Chemical Engineering, 2022, 10, 108029.	3.3	13

#	Article	IF	CITATIONS
616	The prospects for radiation technology in mitigating carbon footprint. Radiation Physics and Chemistry, 2022, 198, 110282.	1.4	1
617	In-Situ Growth of Zif-8 Nanoparticles in Pebax-2533 for Facile Preparation of High Co2-Selective Mixed Matrix Membranes. SSRN Electronic Journal, 0, , .	0.4	0
618	Challenges, Opportunities and Future Directions of Membrane Technology for Natural Gas Purification: A Critical Review. Membranes, 2022, 12, 646.	1.4	12
619	Annealing and TMOS coating on PSF/ZTC mixed matrix membrane for enhanced CO ₂ /CH ₄ and H ₂ /CH ₄ separation. Royal Society Open Science, 2022, 9, .	1.1	10
620	Gas Adsorption and Diffusion Behaviors in Interfacial Systems Composed of a Polymer of Intrinsic Microporosity and Amorphous Silica: A Molecular Simulation Study. Langmuir, 2022, 38, 7567-7579.	1.6	4
621	Polymeric membranes and their derivatives for H2/CH4 separation: State of the art. Separation and Purification Technology, 2022, 297, 121504.	3.9	22
622	Switching gas permeation through smart membranes by external stimuli: a review. Journal of Materials Chemistry A, 2022, 10, 16743-16760.	5.2	13
623	Controlled grafting of multi-block copolymers for improving membrane properties for CO2 separation. Polymer, 2022, 255, 125164.	1.8	4
624	Post Synthetic Modification of NH2-(Zr-MOF) via Rapid Microwave-promoted Synthesis for Effective Adsorption of Pb(II) and Cd(II). Arabian Journal of Chemistry, 2023, 16, 104122.	2.3	17
625	Submicron-thick, mixed-matrix membranes with metal-organic frameworks for CO2 separation: MIL-140C vs. UiO-67. Journal of Membrane Science, 2022, 659, 120788.	4.1	6
626	Gas permselectivity of novel polypyrrolone—Silica hybrid membranes. Journal of Applied Polymer Science, 2022, 139, .	1.3	2
627	Recent advances in Poly(ionic liquids) membranes for CO2 separation. Separation and Purification Technology, 2022, 299, 121784.	3.9	16
628	Agglomeration tendency and activated carbon concentration effects on <scp>activated carbonâ€polysulfone</scp> mixed matrix membrane performance: A design of experiment formulation study. Journal of Applied Polymer Science, 2022, 139, .	1.3	1
629	Highly efficient of CO2/CH4 separation performance via the pebax membranes with multi-functional polymer nanotubes. Microporous and Mesoporous Materials, 2022, 342, 112120.	2.2	5
630	Free Volume and Permeability of Mixed Matrix Membranes Made from a Terbutil-M-terphenyl Polyamide and a Porous Polymer Network. Polymers, 2022, 14, 3176.	2.0	4
631	Cellulose derivatives and cellulose-metal-organic frameworks for CO2 adsorption and separation. Journal of CO2 Utilization, 2022, 64, 102163.	3.3	20
632	Preparation of high performance mixed matrix membranes by one-pot synthesis of ZIF-8 nanoparticles into Pebax-2533 for CO2 separation. Chemical Engineering Research and Design, 2022, 186, 266-275.	2.7	11
633	Incorporating KAUST-7 into PIM-1 towards mixed matrix membranes with long-term stable CO2/CH4 separation performance. Journal of Membrane Science, 2022, 661, 120848.	4.1	17

#	Article	IF	CITATIONS
634	Development of highly permselective Mixed Matrix Membranes comprising of polyimide and Ln-MOF for CO2 capture. Chemosphere, 2022, 307, 136051.	4.2	7
635	Polyurethane-based gas separation membranes: A review and perspectives. Separation and Purification Technology, 2022, 301, 122067.	3.9	10
636	ZIF-filler incorporated mixed matrix membranes (MMMs) for efficient gas separation: A review. Journal of Environmental Chemical Engineering, 2022, 10, 108541.	3.3	32
637	In-Situ Growth of Zif-8 Nanoparticles in Pebax-2533 for Facile Preparation of High Co2-Selective Mixed Matrix Membranes. SSRN Electronic Journal, 0, , .	0.4	0
638	Pore engineering in covalent organic framework membrane for gas separation. , 2022, 2, 100037.		5
639	Fluorinated metal–organic frameworks for gas separation. Chemical Society Reviews, 2022, 51, 7427-7508.	18.7	76
640	Assembling ionic liquids in MOF "Monomer―based membranes to trigger CO ₂ /CH ₄ separation. Materials Chemistry Frontiers, 2022, 6, 3555-3566.	3.2	4
641	Insight into microwave-assisted synthesis of the chitosan-MOF composite: Pb(II) adsorption. Environmental Science and Pollution Research, 2023, 30, 6216-6233.	2.7	13
642	Material and Process Tests of Heterogeneous Membranes Containing ZIF-8, SiO2 and POSS-Ph. Materials, 2022, 15, 6455.	1.3	2
643	Cellulose Triacetate-Based Mixed-Matrix Membranes with MXene 2D Filler—CO2/CH4 Separation Performance and Comparison with TiO2-Based 1D and 0D Fillers. Membranes, 2022, 12, 917.	1.4	5
644	Recent Advances in Supported Ionic Liquid Membrane Technology in Gas/Organic Compounds Separations. Current Organic Chemistry, 2022, 26, 1149-1184.	0.9	3
645	Molecularly Homogenized Composite Membranes Containing Solvent-Soluble Metallocavitands for CO ₂ /CH ₄ Separation. ACS Sustainable Chemistry and Engineering, 2022, 10, 13534-13544.	3.2	2
646	Recent Progress on Pebax-Based Thin Film Nanocomposite Membranes for CO ₂ Capture: The State of the Art and Future Outlooks. Energy & Fuels, 2022, 36, 12367-12428.	2.5	5
647	Environmental remediation through various composite membranes moieties: Performances and thermomechanical properties. Chemosphere, 2022, 309, 136613.	4.2	2
648	CO2 separation of fluorinated 6FDA-based polyimides, performance-improved ZIF-incorporated mixed matrix membranes and gas permeability model evaluations. Journal of Environmental Chemical Engineering, 2022, 10, 108611.	3.3	5
649	Thin film nanocomposite membranes of superglassy PIM-1 and amine-functionalised 2D fillers for gas separation. Journal of Materials Chemistry A, 2022, 10, 23341-23351.	5.2	10
650	Thermally Rearranged Mixed Matrix Membranes from Copoly(o-hydroxyamide)s and Copoly(o-hydroxyamide-amide)s with a Porous Polymer Network as a Filler—A Comparison of Their Gas Separation Performances. Membranes, 2022, 12, 998.	1.4	3
651	Designing of Zn (II)â€based novel coordination polymer (CP): Synthesis, characterization, and heavy metal removal from water. Applied Organometallic Chemistry, 2023, 37, .	1.7	Ο

#	Article	IF	CITATIONS
652	Metalâ€Organic Frameworks and Electrospinning: A Happy Marriage for Wastewater Treatment. Advanced Functional Materials, 2022, 32, .	7.8	66
653	Novel pyrazole-based MOF synergistic polymer of intrinsic microporosity membranes for high-efficient CO2 capture. Journal of Membrane Science, 2022, 664, 121107.	4.1	12
654	Atomic layer deposition modified PIM-1 membranes for improved CO2 separation: A comparative study on the microstructure-performance relationships. Journal of Membrane Science, 2022, 664, 121103.	4.1	11
655	CFD simulation and optimization of an energy-efficient direct contact membrane distillation (DCMD) desalination system. Chemical Engineering Research and Design, 2022, 188, 655-667.	2.7	7
656	Interfacial Tailoring of Polyether Sulfone-Modified Silica Mixed Matrix Membranes for CO2 Separation. Membranes, 2022, 12, 1129.	1.4	5
657	Asymmetric oxygenâ€functionalized carbon nanotubes dispersed in polysulfone for <scp>CO₂</scp> separation. Journal of Applied Polymer Science, 2023, 140, .	1.3	3
658	In-situ growth of ZIF-8 nanoparticles in Pebax-2533 for facile preparation of high CO2-selective mixed matrix membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 659, 130747.	2.3	9
659	Challenge and promise of mixed matrix hollow fiber composite membranes for CO2 separations. Separation and Purification Technology, 2023, 308, 122876.	3.9	1
660	Recent Advances on the Fabrication of Antifouling Phase-Inversion Membranes by Physical Blending Modification Method. Membranes, 2023, 13, 58.	1.4	19
661	An eco-friendly method of extracting alizarin from Rubia tinctorum roots under supercritical carbon dioxide and its application to wool dyeing. Scientific Reports, 2023, 13, .	1.6	8
662	Construction of amphiphilic networks in blend membranes for CO2 separation. Korean Journal of Chemical Engineering, 2023, 40, 175-184.	1.2	1
663	Blending of ZnO Nanorods in Cellulose Acetate Mixed Matrix Membrane for Enhancement of CO2 Permeability. Journal of Polymers and the Environment, 2023, 31, 2549-2565.	2.4	3
664	Enhanced CO2 separation performance by incorporating KAUST-8 nanosheets into crosslinked poly(ethylene oxide) membrane. Separation and Purification Technology, 2023, 309, 123057.	3.9	5
665	Mixed matrix membranes comprising 6FDA-based polyimide blends and UiO-66 with co-continuous structures for gas separations. Separation and Purification Technology, 2023, 310, 123126.	3.9	14
666	Ionic liquid membranes for syngas purification. , 2023, , 253-271.		0
667	The Capture and Catalytic Conversion of <scp>CO₂</scp> by Dendritic Mesoporous Silicaâ∈Based Nanoparticles. Energy and Environmental Materials, 2024, 7, .	7.3	3
668	Advanced Polymeric Nanocomposite Membranes for Water and Wastewater Treatment: A Comprehensive Review. Polymers, 2023, 15, 540.	2.0	24
669	Incorporation of a pyrrolidinium-based ionic liquid/MIL-101(Cr) composite into Pebax sets a new benchmark for CO2/N2 selectivity. Separation and Purification Technology, 2023, 312, 123346.	3.9	10

	CITATION R	CITATION REPORT		
#	Article	IF	Citations	
670	Experimental and modeling study on interfacial morphology of ZIF-67/Pebax-2533 mixed matrix membranes for CO2 separation applications. Surfaces and Interfaces, 2023, 38, 102846.	1.5	2	
671	Improving CO2 separation performance of PVAm membrane by the addition of polyethylenimine-functionalized halloysite nanotubes. Journal of Membrane Science, 2023, 677, 121609.	4.1	5	
672	Covalent Organic Frameworks: The Risingâ€Star Platforms for the Design of CO ₂ Separation Membranes. Small, 2023, 19, .	5.2	21	
673	Performance tuning of chitosan-based membranes by protonated 2-Pyrrolidone-5-carboxylic acid-sulfolane DES for effective water/ethanol separation by pervaporation. Chemical Engineering Research and Design, 2023, 191, 401-413.	2.7	11	
674	Toward MOF@Polymer Core–Shell Particles: Design Principles and Potential Applications. Accounts of Chemical Research, 2023, 56, 462-474.	7.6	27	
675	Cost and Heat Integration Analysis for CO2 Removal Using Imidazolium-Based Ionic Liquid-ASPEN PLUS Modelling Study. Sustainability, 2023, 15, 3370.	1.6	1	
676	gas permeation model for mixed matrix membranes: the new renovated Maxwell model. Composite Interfaces, 2023, 30, 899-908.	1.3	0	
677	Nanohybrid Pebax/PEGDA-GPTMS membrane with semi-interpenetrating network structure for enhanced CO2 separations. Journal of Membrane Science, 2023, 674, 121516.	4.1	7	
678	Investigation of cellulose acetate and ZIF-8 mixed matrix membrane for CO ₂ separation from model biogas. Environmental Technology (United Kingdom), 0, , 1-12.	1.2	1	
679	Merging Proline:Xylitol Eutectic Solvent in Crosslinked Chitosan Pervaporation Membranes for Enhanced Water Permeation in Dehydrating Ethanol. Membranes, 2023, 13, 451.	1.4	1	
680	Properties of interfaces between metal–organic frameworks and ionic liquids. , 2024, , 776-790.		0	
690	Designing a slippery/superaerophobic hierarchical open channel for reliable and versatile underwater gas delivery. Materials Horizons, 2023, 10, 3351-3359.	6.4	9	
694	Electrospun Nanofibers for Water Purification as Catalyst. Nanostructure Science and Technology, 2023, , 123-151.	0.1	0	
709	Non-CO ₂ greenhouse gas separation using advanced porous materials. Chemical Society Reviews, 2024, 53, 2056-2098.	18.7	1	
712	Natural gas sweetening standards, policies, and regulations. , 2024, , 33-53.		0	

Natural gas sweetening standards, policies, and regulations. , 2024, , 33-53. 712