Oral ponesimod in relapsing-remitting multiple scleros

Journal of Neurology, Neurosurgery and Psychiatry 85, 1198-1208 DOI: 10.1136/jnnp-2013-307282

Citation Report

#	Article	IF	CITATIONS
1	Ponesimod—a future oral therapy for psoriasis?. Lancet, The, 2014, 384, 2006-2008.	6.3	10
2	Oral ponesimod in patients with chronic plaque psoriasis: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet, The, 2014, 384, 2036-2045.	6.3	124
3	Effects of Ethnicity and Sex on the Pharmacokinetics and Pharmacodynamics of the Selective Sphingosine-1-Phosphate Receptor 1 Modulator Ponesimod: A Clinical Study in Japanese and Caucasian Subjects. Pharmacology, 2014, 94, 223-229.	0.9	11
4	Three different up-titration regimens of ponesimod, an S1P1receptor modulator, in healthy subjects. Journal of Clinical Pharmacology, 2015, 55, 688-697.	1.0	19
5	Biocomparison of Three Formulations of the S1P1 Receptor Modulator Ponesimod in Healthy Subjects. Drugs in R and D, 2015, 15, 203-210.	1.1	8
6	Mass balance, pharmacokinetics and metabolism of the selective S1P ₁ receptor modulator ponesimod in humans. Xenobiotica, 2015, 45, 139-149.	0.5	17
7	Emerging oral drugs for psoriasis. Expert Opinion on Emerging Drugs, 2015, 20, 209-220.	1.0	19
8	Differential effects of ponesimod, a selective S1P ₁ receptor modulator, on blood-circulating human T cell subpopulations. Immunopharmacology and Immunotoxicology, 2015, 37, 103-109.	1.1	18
9	Oral drugs in multiple sclerosis therapy: an overview and a critical appraisal. Expert Review of Neurotherapeutics, 2015, 15, 803-824.	1.4	30
10	Therapeutic interference with leukocyte recirculation in multiple sclerosis. European Journal of Neurology, 2015, 22, 434-442.	1.7	9
11	Effect of Ponesimod, a Selective S1P ₁ Receptor Modulator, on the QT Interval in Healthy Individuals. Basic and Clinical Pharmacology and Toxicology, 2015, 116, 429-437.	1.2	17
12	Sphingosine 1-Phosphate Receptor Modulators in Multiple Sclerosis. CNS Drugs, 2015, 29, 565-575.	2.7	117
13	Fingolimod (Gilenya ®). , 2016, , 261-269.		0
14	Emerging Therapies for Multiple Sclerosis. , 2016, , 285-304.		0
15	Effects of multiple-dose ponesimod, a selective S1P ₁ receptor modulator, on lymphocyte subsets in healthy humans. Drug Design, Development and Therapy, 2017, Volume11, 123-131.	2.0	12
16	The Immunobiology of Multiple Sclerosis. , 2016, , 180-191.		2
17	Sphingosine kinase 2 deficient mice exhibit reduced experimental autoimmune encephalomyelitis: Resistance to FTY720 but not ST-968 treatments. Neuropharmacology, 2016, 105, 341-350.	2.0	20
18	Discovery and structure–activity relationship studies of quinolinone derivatives as potent IL-2 suppressive agents. Bioorganic and Medicinal Chemistry, 2016, 24, 5357-5367.	1.4	6

ITATION REDO

	CITATION REF	ORT	
#	Article	IF	CITATIONS
19	Safety and efficacy of amiselimod in relapsing multiple sclerosis (MOMENTUM): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurology, The, 2016, 15, 1148-1159.	4.9	52
20	To fingolimod and beyond: The rich pipeline of drug candidates that target S1P signaling. Pharmacological Research, 2016, 113, 521-532.	3.1	50
21	Effect of Hepatic or Renal Impairment on the Pharmacokinetics, Safety, and Tolerability of Ponesimod, a Selective S1P ₁ Receptor Modulator. Basic and Clinical Pharmacology and Toxicology, 2016, 118, 356-368.	1.2	5
22	Ozanimod (RPC1063) is a potent sphingosineâ€1â€phosphate receptorâ€1 (S1P ₁) and receptorâ€5 (S1P ₅) agonist with autoimmune diseaseâ€modifying activity. British Journal of Pharmacology, 2016, 173, 1778-1792.	2.7	215
23	Clinical pharmacology, efficacy, and safety aspects of sphingosine-1-phosphate receptor modulators. Expert Opinion on Drug Metabolism and Toxicology, 2016, 12, 879-895.	1.5	49
24	Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway: Therapeutic Targets in Autoimmunity and Inflammation. Drugs, 2016, 76, 1067-1079.	4.9	142
25	Population pharmacokinetics of ponesimod and its primary metabolites in healthy and organ-impaired subjects. European Journal of Pharmaceutical Sciences, 2016, 89, 83-93.	1.9	3
26	Ponesimod, a selective S1P1 receptor modulator: a potential treatment for multiple sclerosis and other immune-mediated diseases. Therapeutic Advances in Chronic Disease, 2016, 7, 18-33.	1.1	81
27	Safety and efficacy of the selective sphingosine 1-phosphate receptor modulator ozanimod in relapsing multiple sclerosis (RADIANCE): a randomised, placebo-controlled, phase 2 trial. Lancet Neurology, The, 2016, 15, 373-381.	4.9	150
28	Ozanimod: a better or just another S1P receptor modulator?. Lancet Neurology, The, 2016, 15, 345-347.	4.9	11
29	The Use of Oral Disease-Modifying Therapies in Multiple Sclerosis. Current Neurology and Neuroscience Reports, 2016, 16, 38.	2.0	18
30	Absolute Bioavailability of Ponesimod, a Selective S1P1 Receptor Modulator, in Healthy Male Subjects. European Journal of Drug Metabolism and Pharmacokinetics, 2017, 42, 129-134.	0.6	8
31	Modulation of sphingosine-1-phosphate in inflammatory bowel disease. Autoimmunity Reviews, 2017, 16, 495-503.	2.5	113
32	Modeling the Effect of the Selective S1P1 Receptor Modulator Ponesimod on Subsets of Blood Lymphocytes. Pharmaceutical Research, 2017, 34, 599-609.	1.7	11
33	Novel targets in the treatment of chronic graft-versus-host disease. Leukemia, 2017, 31, 543-554.	3.3	47
34	Targeting sphingosine-1-phosphate signaling for cancer therapy. Science China Life Sciences, 2017, 60, 585-600.	2.3	23
35	Modulators of Sphingosine-1-phosphate Pathway Biology: Recent Advances of Sphingosine-1-phosphate Receptor 1 (S1P ₁) Agonists and Future Perspectives. Journal of Medicinal Chemistry, 2017, 60, 5267-5289.	2.9	48
36	Fingolimod hydrochloride for the treatment of relapsing remitting multiple sclerosis. Expert Opinion on Pharmacotherapy, 2017, 18, 1649-1660.	0.9	44

ARTICLE IF CITATIONS # Benefitâ€"Risk Profile of Sphingosine-1-Phosphate Receptor Modulators in Relapsing and Secondary 37 4.9 49 Progressive Multiple Sclerosis. Drugs, 2017, 77, 1755-1768. Agreement of MSmetrix with established methods for measuring cross-sectional and longitudinal 1.4 brain atrophy. NeuroImage: Clinical, 2017, 15, 843-853. Therapeutic Strategies and Pharmacological Tools Influencing S1P Signaling and Metabolism. 39 5.0 17 Medicinal Research Reviews, 2017, 37, 3-51. Mitigation of Initial Cardiodynamic Effects of the S1P₁ Receptor Modulator Ponesimod Using a Novel Upâ€Titration Regimen. Journal of Clinical Pharmacology, 2017, 57, 401-410. Impact of Demographics, Organ Impairment, Disease, Formulation, and Food on the Pharmacokinetics of the Selective S1P1 Receptor Modulator Ponesimod Based on 13 Clinical Studies. Clinical 41 1.6 9 Pharmacokinetics, 2017, 56, 395-408. Pharmacokinetics, Pharmacodynamics, Tolerability, and Food Effect of Cenerimod, a Selective S1P1 Receptor Modulator in Healthy Subjects. International Journal of Molecular Sciences, 2017, 18, 2636. 1.8 Sphingosine 1-Phosphate Receptor 1 Signaling in Mammalian Cells. Molecules, 2017, 22, 344. 43 1.7 64 Spotlight on siponimod and its potential in the treatment of secondary progressive multiple 44 2.0 29 sclerosis: the evidence to date. Drug Design, Development and Therapy, 2017, Volume 11, 3153-3157. Sphingosine 1-Phosphate Receptor Modulators and Drug Discovery. Biomolecules and Therapeutics, 45 1.1 96 2017, 25, 80-90. Evolution of Small-Molecule Immunology Researchâ€"Changes Since CMC II., 2017, , 395-419. Investigational immunosuppressants in early-stage clinical trials for the treatment of multiple 47 3 1.9 sclerosis. Expert Opinion on Investigational Drugs, 2018, 27, 273-286. Modeling clinical efficacy of the S1P receptor modulator ponesimod in psoriasis. Journal of 1.0 Dermatological Science, 2018, 89, 136-145. Modeling Tolerance Development for the Effect on Heart Rate of the Selective S1P₁ 49 2.3 15 Receptor Modulator Ponesimod. Clinical Pharmacology and Therapeutics, 2018, 103, 1083-1092. Cardiac Safety of Ozanimod, a Novel Sphingosineâ€1â€Phosphate Receptor Modulator: Results of a 0.8 44 Thorough QT/QTc Study. Clinical Pharmacology in Drug Development, 2018, 7, 263-276. Ozanimod for the treatment of relapsing remitting multiple sclerosis. Expert Opinion on 51 0.9 34 Pharmacotherapy, 2018, 19, 2073-2086. An update on sphingosine-1-phosphate receptor 1 modulators. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3585-3591. 1.0 28 Efficacy and safety of ozanimod in multiple sclerosis: Dose-blinded extension of a randomized phase II 53 1.4 37 study. Multiple Sclerosis Journal, 2019, 25, 1255-1262. ASP1126, a Novel Sphingosine-1-Phosphate–Selective Agonist With a Favorable Safety Profile, Prolongs 54 Allograft Survival in Rats and Nonhuman Primates in Combination With Tacrolimus With a Broad Safety Margin for Bradycardia. Transplantation Proceedings, 2019, 51, 2081-2098.

#	Article	IF	CITATIONS
55	Therapeutic Approaches toward Multiple Sclerosis: Where Do We Stand and Where Are We Headed?. Advanced Therapeutics, 2019, 2, 1900070.	1.6	2
56	Cardiodynamic Interactions between Two S1P1 Receptor Modulators in an Experimental Clinical Setting: Different Pharmacokinetic Properties as an Opportunity to Mitigate First-Dose Heart Rate Effects. International Journal of Molecular Sciences, 2019, 20, 3232.	1.8	7
57	Progressive multiple sclerosis: latest therapeutic developments and future directions. Therapeutic Advances in Neurological Disorders, 2019, 12, 175628641987832.	1.5	45
58	Placebo-Controlled Trial of an Oral BTK Inhibitor in Multiple Sclerosis. New England Journal of Medicine, 2019, 380, 2406-2417.	13.9	219
59	Sphingosine-1-phosphate signalling drives an angiogenic transcriptional programme in diffuse large B cell lymphoma. Leukemia, 2019, 33, 2884-2897.	3.3	26
60	Secrets and lyase: Control of sphingosine 1â€phosphate distribution. Immunological Reviews, 2019, 289, 173-185.	2.8	21
61	Current therapeutic landscape in multiple sclerosis: an evolving treatment paradigm. Current Opinion in Neurology, 2019, 32, 365-377.	1.8	73
62	Modelling and sample size reestimation for longitudinal count data with incomplete follow up. Statistical Methods in Medical Research, 2019, 28, 117-133.	0.7	7
63	Oral Therapies for Multiple Sclerosis. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a032011.	2.9	29
64	Efficacy and Safety of Etrasimod in a Phase 2 Randomized Trial of Patients With Ulcerative Colitis. Gastroenterology, 2020, 158, 550-561.	0.6	144
65	Mechanism of action of s1p receptor modulators in multiple sclerosis: The double requirement. Revue Neurologique, 2020, 176, 100-112.	0.6	11
66	Ponesimod for the treatment of relapsing multiple sclerosis. Expert Opinion on Pharmacotherapy, 2020, 21, 1955-1964.	0.9	15
67	Advances in oral immunomodulating therapies in relapsing multiple sclerosis. Lancet Neurology, The, 2020, 19, 336-347.	4.9	90
68	Finding a Way Out: S1P Signaling and Immune Cell Migration. Annual Review of Immunology, 2020, 38, 759-784.	9.5	65
69	The safety and pharmacokinetics of a novel, selective S1P1R modulator in healthy participants. Expert Opinion on Investigational Drugs, 2020, 29, 411-422.	1.9	4
70	Second-generation immunotherapeutics in multiple sclerosis: can we discard their precursors?. Drug Discovery Today, 2021, 26, 416-428.	3.2	16
71	Sphingosine 1-phosphate Receptor Modulator Therapy for Multiple Sclerosis: Differential Downstream Receptor Signalling and Clinical Profile Effects. Drugs, 2021, 81, 207-231.	4.9	81
72	Phospholipids Lysophospholipid Receptors. , 2021, , 545-551.		0

#	Article	IF	CITATIONS
73	Efficacy and acceptability of the S1P receptor in the treatment of multiple sclerosis: a meta-analysis. Neurological Sciences, 2021, 42, 1687-1695.	0.9	12
74	Safety of S1P Modulators in Patients with Immune-Mediated Diseases: A Systematic Review and Meta-Analysis. Drug Safety, 2021, 44, 645-660.	1.4	15
75	Effect of Ponesimod Exposure on Total Lymphocyte Dynamics in Patients with Multiple Sclerosis. Clinical Pharmacokinetics, 2021, 60, 1239-1250.	1.6	5
76	Sphingosine 1-Phosphate Receptor Modulators for Multiple Sclerosis. CNS Drugs, 2021, 35, 385-402.	2.7	50
77	An Exposure-Response Analysis of the Clinical Efficacy of Ponesimod in a Randomized Phase II Study in Patients with Multiple Sclerosis. Clinical Pharmacokinetics, 2021, 60, 1227-1237.	1.6	5
78	Ponesimod Compared With Teriflunomide in Patients With Relapsing Multiple Sclerosis in the Active-Comparator Phase 3 OPTIMUM Study. JAMA Neurology, 2021, 78, 558.	4.5	132
79	An Overview of the Efficacy and Safety of Ozanimod for the Treatment of Relapsing Multiple Sclerosis. Drug Design, Development and Therapy, 2021, Volume 15, 1993-2004.	2.0	15
80	Ponesimod: First Approval. Drugs, 2021, 81, 957-962.	4.9	20
81	Ozanimod for the treatment of relapsing forms of multiple sclerosis. Neurodegenerative Disease Management, 2021, 11, 207-220.	1.2	3
82	Ozanimod in relapsing multiple sclerosis: Pooled safety results from the clinical development program. Multiple Sclerosis and Related Disorders, 2021, 51, 102844.	0.9	19
83	Ponesimod modulates the Th1/Th17/Treg cell balance and ameliorates disease in experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2021, 356, 577583.	1.1	8
84	Ponesimod protects against neuronal death by suppressing the activation of A1 astrocytes in early brain injury after experimental subarachnoid hemorrhage. Journal of Neurochemistry, 2021, 158, 880-897.	2.1	28
85	Lessons from S1P receptor targeting in multiple sclerosis. , 2022, 230, 107971.		9
86	Emerging small-molecule treatments for multiple sclerosis: focus on B cells. F1000Research, 2019, 8, 245.	0.8	15
87	S1P signaling: new therapies and opportunities. F1000prime Reports, 2014, 6, 109.	5.9	90
88	Sphingosine-1-phosphate Receptor Modulators in Multiple Sclerosis. European Neurological Review, 2018, 13, 25.	0.5	3
89	Current and Future Therapies Targeting the Immune System in Multiple Sclerosis. Current Pharmaceutical Biotechnology, 2014, 15, 276-296.	0.9	33
90	Role of sphingosine 1-phosphate (S1P) and effects of fingolimod, an S1P receptor 1 functional antagonist in lymphocyte circulation and autoimmune diseases. AIMS Molecular Science, 2014, 1, 162-182.	0.3	6

#	Article	IF	CITATIONS
91	Ozanimod in Multiple Sclerosis. European Neurological Review, 2019, 14, 73.	0.5	0
92	Disease-Modifying Agents. Current Clinical Neurology, 2020, , 137-157.	0.1	0
94	The Latest Innovations in the Drug Pipeline for Multiple Sclerosis. American Health and Drug Benefits, 2015, 8, 448-53.	0.5	12
95	Promising Multiple Sclerosis Agents In Late-Stage Development. P and T, 2018, 43, 750-772.	1.0	0
96	Therapeutic Potential of Ponesimod Alone and in Combination with Dimethyl Fumarate in Experimental Models of Multiple Sclerosis. Innovations in Clinical Neuroscience, 2019, 16, 22-30.	0.1	3
97	Abuse and dependence potential of sphingosine-1-phosphate (S1P) receptor modulators used in the treatment of multiple sclerosis: a review of literature and public data. Psychopharmacology, 2022, 239, 1-13.	1.5	2
98	Singleâ€dose of LC51â€0255, a selective S1P ₁ receptor modulator, showed doseâ€dependent and reversible reduction of absolute lymphocyte count in humans. Clinical and Translational Science, 2022, 15, 1074-1083.	1.5	4
99	Ponesimod in the Treatment of Relapsing Forms of Multiple Sclerosis: An Update on the Emerging Clinical Data. Degenerative Neurological and Neuromuscular Disease, 2022, Volume 12, 61-73.	0.7	8
100	Sphingosine-1-phosphate receptor modulators versus interferon beta for the treatment of relapsing–remitting multiple sclerosis: findings from randomized controlled trials. Neurological Sciences, 2022, 43, 3565-3581.	0.9	2
101	Long-term efficacy and safety of siponimod in patients with secondary progressive multiple sclerosis: Analysis of EXPAND core and extension data up to >5 years. Multiple Sclerosis Journal, 2022, 28, 1591-1605.	1.4	19
102	Review article: the sphingosine 1 phosphate/sphingosine 1 phosphate receptor axis ―a unique therapeutic target in inflammatory bowel disease. Alimentary Pharmacology and Therapeutics, 2022, 55, 277-291.	1.9	19
103	Safety and Monitoring of the Treatment with Disease-Modifying Therapies (DMTs) for Multiple Sclerosis (MS). Current Reviews in Clinical and Experimental Pharmacology, 2023, 18, 39-50.	0.4	3
104	Ponesimod for the treatment of relapsingâ€remitting multiple sclerosis. Progress in Neurology and Psychiatry, 2022, 26, 18-19.	0.4	0
105	Multiple Sclerosis: Therapeutic Strategies on the Horizon. Cureus, 2022, , .	0.2	4
106	Clinical Evaluation of Siponimod for the Treatment of Secondary Progressive Multiple Sclerosis: Pathophysiology, Efficacy, Safety, Patient Acceptability and Adherence. Patient Preference and Adherence, 0, Volume 16, 1307-1319.	0.8	4
107	Comparative Efficacy of Relapsing Multiple Sclerosis Therapies: Model-Based Meta-Analyses for Confirmed Disability Accumulation and Annualized Relapse Rate. Multiple Sclerosis and Related Disorders, 2022, , 103908.	0.9	1
108	Long-term Treatment With Ponesimod in Relapsing-Remitting Multiple Sclerosis. Neurology, 2022, 99, .	1.5	6
109	Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway Modulators, from Current Insights to Future Perspectives. Cells, 2022, 11, 2058.	1.8	35

#	Article	IF	CITATIONS
110	Efficacy and Safety of Multiple Sclerosis Drugs Approved Since 2018 and Future Developments. CNS Drugs, 2022, 36, 803-817.	2.7	9
111	Comparative efficacy and safety of disease-modifying therapies in patients with relapsing multiple sclerosis: A systematic review and network meta-analysis. Journal of the American Pharmacists Association: JAPhA, 2023, 63, 8-22.e23.	0.7	12
112	Efficacy and Safety of Ponesimod in Relapsing Multiple Sclerosis: A Systematic Review. Neurology and Clinical Neuroscience, 0, , .	0.2	0
113	Sphingosine 1-phosphate receptor modulators for the treatment of inflammatory bowel disease and other immune-mediated diseases. Medicinal Chemistry Research, 2022, 31, 2074-2088.	1.1	1
114	An exposureâ€response analysis of ponesimod clinical efficacy in a randomized phase III study in patients with relapsing multiple sclerosis. CPT: Pharmacometrics and Systems Pharmacology, 0, , .	1.3	3
115	N-Heterocycles as Privileged Scaffolds in FDA Approved Different NMEs of 2021: A Review. Letters in Organic Chemistry, 2023, 20, 287-299.	0.2	3
116	Current status and new developments in sphingosine-1-phosphate receptor antagonism: fingolimod and more. Expert Opinion on Drug Metabolism and Toxicology, 2022, 18, 675-693.	1.5	7
117	Ponesimod: An Oral Second-Generation Selective Sphingosine 1-Phosphate Receptor Modulator for the Treatment of Multiple Sclerosis. Annals of Pharmacotherapy, 2023, 57, 956-965.	0.9	5
118	Pharmacokineticâ€Pharmacodynamic Modeling of the Ponesimod Effect on Heart Rate in Patients With Multiple Sclerosis. Clinical Pharmacology and Therapeutics, 2023, 113, 692-703.	2.3	1
119	2-Aminobenzoxazole Derivatives as Potent Inhibitors of the Sphingosine-1-Phosphate Transporter Spinster Homolog 2 (Spns2). Journal of Medicinal Chemistry, 2023, 66, 5873-5891.	2.9	4
120	S1PR1 modulators in multiple sclerosis: Efficacy, safety, comparison, and chemical structure insights. European Journal of Medicinal Chemistry, 2023, 250, 115182.	2.6	1
121	An update on the use of sphingosine 1-phosphate receptor modulators for the treatment of relapsing multiple sclerosis. Expert Opinion on Pharmacotherapy, 2023, 24, 495-509.	0.9	12
124	Clinical Pharmacokinetics of Ponesimod, a Selective S1P1 Receptor Modulator, in the Treatment of Multiple Sclerosis. Clinical Pharmacokinetics, 2023, 62, 1533-1550.	1.6	0
128	Astrocyte Activation and Drug Target in Pathophysiology of Multiple Sclerosis. Methods in Molecular Biology, 2024, , 431-455.	0.4	0