Effects of uric acid-lowering therapy on renal outcomes meta-analysis

Nephrology Dialysis Transplantation 29, 406-413 DOI: 10.1093/ndt/gft378

Citation Report

#	Article	IF	CITATIONS
1	Drug–Nutrient Interactions in Renal Failure. , 2013, , 729-738.		0
2	Serum Uric Acid Is Associated with Incident Chronic Kidney Disease in Middle-Aged Populations: A Meta-Analysis of 15 Cohort Studies. PLoS ONE, 2014, 9, e100801.	2.5	108
3	Uric Acid Promotes Apoptosis in Human Proximal Tubule Cells by Oxidative Stress and the Activation of NADPH Oxidase NOX 4. PLoS ONE, 2014, 9, e115210.	2.5	101
4	Effects of Allopurinol on Endothelial Dysfunction: A Meta-Analysis. American Journal of Nephrology, 2014, 39, 348-356.	3.1	42
5	Hyperuricemia and chronic kidney disease: an enigma yet to be solved. Renal Failure, 2014, 36, 1351-1359.	2.1	36
6	Urate-Lowering Therapy: Current Options and Future Prospects for Elderly Patients with Gout. Drugs and Aging, 2014, 31, 777-786.	2.7	20
7	Protein restriction: a revisited old strategy with new opportunities?. Nephrology Dialysis Transplantation, 2014, 29, 1624-1627.	0.7	8
8	Uric acid: association with rate of renal function decline and time until start of dialysis in incident pre-dialysis patients. BMC Nephrology, 2014, 15, 91.	1.8	22
9	ls hyperuricemia an independent risk factor for new-onset chronic kidney disease?: a systematic review and meta-analysis based on observational cohort studies. BMC Nephrology, 2014, 15, 122.	1.8	267
10	Serum uric acid and the risk of mortality during 23 years follow-up in the Scottish Heart Health Extended Cohort Study. Atherosclerosis, 2014, 233, 623-629.	0.8	52
11	Relationship between Serum Uric Acid Levels and Chronic Kidney Disease in a Japanese Cohort with Normal or Mildly Reduced Kidney Function. PLoS ONE, 2015, 10, e0137449.	2.5	24
12	Urate lowering therapy to improve renal outcomes in patients with chronic kidney disease: systematic review and meta-analysis. BMC Nephrology, 2015, 16, 58.	1.8	140
13	Biomarkers of Cardiometabolic Risk, Inflammation and Disease. , 2015, , .		4
14	Gout and risk of chronic kidney disease and nephrolithiasis: meta-analysis of observational studies. Arthritis Research and Therapy, 2015, 17, 90.	3.5	137
15	EGF Receptor Inhibition Alleviates Hyperuricemic Nephropathy. Journal of the American Society of Nephrology: JASN, 2015, 26, 2716-2729.	6.1	94
16	Management of Chronic Kidney Disease: The Relationship Between Serum Uric Acid and Development of Nephropathy. Advances in Therapy, 2015, 32, 1177-1191.	2.9	41
17	Drug therapies to delay the progression of chronic kidney disease. Clinical Medicine, 2015, 15, 550-557.	1.9	10
18	Plasma Urate and Risk of a Hospital Stay with AKI. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 776-783.	4.5	11

TATION REDO

#	Article	IF	CITATIONS
19	Diabetes and Kidney Disease in American Indians: Potential Role of Sugar-Sweetened Beverages. Mayo Clinic Proceedings, 2015, 90, 813-823.	3.0	19
20	Soluble monosodium urate, but not its crystal, induces toll like receptor 4-dependent immune activation in renal mesangial cells. Molecular Immunology, 2015, 66, 310-318.	2.2	48
21	The Relationship Between Uric Acid, Allopurinol, Cardiovascular Events, and Kidney Disease Progression: A Step Forward. American Journal of Kidney Diseases, 2015, 65, 525-527.	1.9	18
22	Prevalence and correlates of gout in a large cohort of patients with chronic kidney disease: the German Chronic Kidney Disease (GCKD) study. Nephrology Dialysis Transplantation, 2015, 30, 613-621.	0.7	85
23	Prevalence of chronic kidney disease and its association with cardio-metabolic risk factors in the adult Romanian population: the PREDATORR study. International Urology and Nephrology, 2015, 47, 1831-1838.	1.4	18
24	Emerging Liver–Kidney Interactions in Nonalcoholic Fatty Liver Disease. Trends in Molecular Medicine, 2015, 21, 645-662.	6.7	96
25	A Pharmacist-Staffed, Virtual Gout Management Clinic for Achieving Target Serum Uric Acid Levels: A Randomized Clinical Trial. , 2016, 20, 15-234.		47
26	Uric Acid and Cardiovascular Disease: An Update. European Cardiology Review, 2016, 11, 54.	2.2	82
27	Association of Serum Uric Acid Concentration with Diabetic Retinopathy and Albuminuria in Taiwanese Patients with Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 2016, 17, 1248.	4.1	38
28	Effects of xanthine oxidase inhibition with febuxostat on the development of nephropathy in experimental type 2 diabetes. British Journal of Pharmacology, 2016, 173, 2573-2588.	5.4	32
29	A Randomized Controlled Trial of the Effects of Febuxostat Therapy on Adipokines and Markers of Kidney Fibrosis in Asymptomatic Hyperuricemic Patients With Diabetic Nephropathy. Canadian Journal of Kidney Health and Disease, 2016, 3, 205435811667534.	1.1	39
30	An Evidence-Based Approach to Conducting Systematic Reviews on CKD. Advances in Chronic Kidney Disease, 2016, 23, 355-362.	1.4	Ο
31	Effects of uric-acid-lowering therapy on renal outcomes: the future looks promising. Hypertension Research, 2016, 39, 578-580.	2.7	0
32	Effects of xanthine oxidase inhibitors on renal function and blood pressure in hypertensive patients with hyperuricemia. Hypertension Research, 2016, 39, 593-597.	2.7	29
33	Non-alcoholic fatty liver disease and dyslipidemia: An update. Metabolism: Clinical and Experimental, 2016, 65, 1109-1123.	3.4	363
34	Hyperuricemia and the Prognosis of Hypertensive Patients: A Systematic Review and Metaâ€Analysis. Journal of Clinical Hypertension, 2016, 18, 1268-1278.	2.0	31
35	Xanthine oxidoreductase and its inhibitors: relevance for gout. Clinical Science, 2016, 130, 2167-2180.	4.3	31
36	Allopurinol et fonction rénale. Revue Du Rhumatisme (Edition Francaise), 2016, 83, 328-333.	0.0	О

#	Article	IF	CITATIONS
37	Serum uric acid and mortality in chronic kidney disease: A systematic review and meta-analysis. Metabolism: Clinical and Experimental, 2016, 65, 1326-1341.	3.4	69
38	Effect of xanthine oxidase inhibitors on the renal clearance of uric acid and creatinine. Clinical Rheumatology, 2016, 35, 2375-2376.	2.2	2
39	Allopurinol hypersensitivity: investigating the cause and minimizing the risk. Nature Reviews Rheumatology, 2016, 12, 235-242.	8.0	139
40	Time-dependent risk factors associated with the decline of estimated GFR in CKD patients. Clinical and Experimental Nephrology, 2016, 20, 58-70.	1.6	27
41	Allopurinol and kidney function: An update. Joint Bone Spine, 2016, 83, 19-24.	1.6	31
42	Time to target uric acid to retard CKD progression. Clinical and Experimental Nephrology, 2017, 21, 182-192.	1.6	71
43	Hyperuricemia increases the risk of acute kidney injury: a systematic review and meta-analysis. BMC Nephrology, 2017, 18, 27.	1.8	70
44	Folic acid therapy reduces serum uric acid in hypertensive patients: a substudy of the China Stroke Primary Prevention Trial (CSPPT). American Journal of Clinical Nutrition, 2017, 105, 882-889.	4.7	43
45	Clinical Effects of Topiroxostat on Renal and Endothelial Function in A Patient with Chronic Kidney Disease and Hyperuricemic Arteriolopathy: A Case Report. Drugs in R and D, 2017, 17, 97-101.	2.2	5
46	Qi-Zhu-Xie-Zhuo-Fang reduces serum uric acid levels and ameliorates renal fibrosis in hyperuricemic nephropathy rats. Biomedicine and Pharmacotherapy, 2017, 91, 358-365.	5.6	22
47	Treatment of asymptomatic hyperuricemia in chronic kidney disease: A new target in an old enemy – A review. Journal of Advanced Research, 2017, 8, 551-554.	9.5	22
48	Management of Gout and Hyperuricemia in CKD. American Journal of Kidney Diseases, 2017, 70, 422-439.	1.9	119
49	Uric Acid and Decline in Renal Function-Partners in Crime. American Journal of Nephrology, 2017, 45, 327-329.	3.1	2
50	Effect of Uric Acid Lowering on Renin-Angiotensin-System Activation and Ambulatory BP: A Randomized Controlled Trial. Clinical Journal of the American Society of Nephrology: CJASN, 2017, 12, 807-816.	4.5	82
51	Allopurinol: insights from studies of dose–response relationships. Expert Opinion on Drug Metabolism and Toxicology, 2017, 13, 449-462.	3.3	21
52	2016 updated EULAR evidence-based recommendations for the management of gout. Annals of the Rheumatic Diseases, 2017, 76, 29-42.	0.9	1,096
53	Association Between Hyperuricemia and Major Adverse Cardiac Events in Patients with Acute Myocardial Infarction. Metabolic Syndrome and Related Disorders, 2017, 15, 18-25.	1.3	18
54	Uric acid lowering therapies for preventing or delaying the progression of chronic kidney disease. The Cochrane Library, 2017, 2017, CD009460.	2.8	46

#	Article	IF	CITATIONS
56	Association of Kidney Function and Waist Circumference with Uric Acid Levels in South Africans. Metabolic Syndrome and Related Disorders, 2017, 15, 500-506.	1.3	3
57	The grey zone of Hyperuricemia in chronic kidney disease. Journal of Advanced Research, 2017, 8, 549-550.	9.5	1
58	Comparative effectiveness of allopurinol versus febuxostat for preventing incident renal disease in older adults: an analysis of Medicare claims data. Annals of the Rheumatic Diseases, 2017, 76, 1669-1678.	0.9	16
59	Effect of uric acid-lowering therapy on blood pressure: systematic review and meta-analysis. Annals of Medicine, 2017, 49, 142-156.	3.8	63
60	Comparative effectiveness of allopurinol, febuxostat and benzbromarone on renal function in chronic kidney disease patients with hyperuricemia: a 13-year inception cohort study. Nephrology Dialysis Transplantation, 2018, 33, 1620-1627.	0.7	43
61	Serum uric acid levels and multiple health outcomes: umbrella review of evidence from observational studies, randomised controlled trials, and Mendelian randomisation studies. BMJ: British Medical Journal, 2017, 357, j2376.	2.3	243
62	Relationship between uric acid levels and risk of chronic kidney disease in a retrospective cohort of Brazilian workers. Brazilian Journal of Medical and Biological Research, 2017, 50, e6048.	1.5	14
63	Xanthine Oxidase Inhibitors for Improving Renal Function in Chronic Kidney Disease Patients: An Updated Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 2017, 18, 2283.	4.1	41
64	Podocyte Injury and Albuminuria in Experimental Hyperuricemic Model Rats. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-14.	4.0	27
65	Correlation between Serum Uric Acid Level and Microalbuminuria in Type-2 Diabetic Nephropathy. Pakistan Journal of Medical Sciences, 2017, 33, 1371-1375.	0.6	9
66	Effects of uric acid-lowering therapy in patients with chronic kidney disease: A meta-analysis. PLoS ONE, 2017, 12, e0187550.	2.5	65
67	Renoprotective effects of febuxostat compared with allopurinol in patients with hyperuricemia: A systematic review and meta-analysis. Kidney Research and Clinical Practice, 2017, 36, 274-281.	2.2	41
68	NLRP3 inflammasome inhibition ameliorates tubulointerstitial injury in the remnant kidney model. Laboratory Investigation, 2018, 98, 773-782.	3.7	45
69	Relation of uric acid level to rapid kidney function decline and development of kidney disease: The Jackson Heart Study. Journal of Clinical Hypertension, 2018, 20, 775-783.	2.0	29
70	Are Doctors the Best People to Manage Gout? Is There a Role for Nurses and Pharmacists?. Current Rheumatology Reports, 2018, 20, 14.	4.7	3
71	Does Altered Uric Acid Metabolism Contribute to Diabetic Kidney Disease Pathophysiology?. Current Diabetes Reports, 2018, 18, 18.	4.2	13
72	Urate-Lowering Agents in Asymptomatic Hyperuricemia: Role of Urine Sediment Analysis and Musculoskeletal Ultrasound. Kidney and Blood Pressure Research, 2018, 43, 606-615.	2.0	22
73	Drug repurposing in kidney disease. Kidney International, 2018, 94, 40-48.	5.2	41

#	Article	IF	CITATIONS
74	Effects of uric acid-lowering therapy on the progression of chronic kidney disease: a systematic review and meta-analysis. Renal Failure, 2018, 40, 289-297.	2.1	79
75	Uric Acid: The Unknown Uremic Toxin. Contributions To Nephrology, 2018, 192, 25-33.	1.1	16
76	Time to Target Uric Acid to Retard Chronic Kidney Disease Progression. Contributions To Nephrology, 2018, 192, 56-68.	1.1	15
77	Significance of Hyperuricemia among Community-Based Screening Participants. Contributions To Nephrology, 2018, 192, 41-47.	1.1	4
78	Treatment of Hyperuricemia in Chronic Kidney Disease. Contributions To Nephrology, 2018, 192, 135-146.	1.1	27
79	Uric acid predicts adverse outcomes in chronic kidney disease: a novel insight from trajectory analyses. Nephrology Dialysis Transplantation, 2018, 33, 231-241.	0.7	41
80	Managing Gout in the Patient with Renal Impairment. Drugs and Aging, 2018, 35, 263-273.	2.7	10
81	Augmented Association Between Blood Pressure and Proteinuria in Hyperuricemic Patients With Nonnephrotic Chronic Kidney Disease. American Journal of Hypertension, 2018, 31, 480-485.	2.0	7
82	Among markers of risk, uric acid remains a two-faced Janus awaiting definitive framing. Atherosclerosis, 2018, 272, 219-221.	0.8	4
83	Cardiovascular Risk Factors in End-Stage Renal Disease Patients: The Impact of Conventional Dialysis versus Online-Hemodiafiltration. , 2018, , .		0
84	Urate-Lowering Therapy for Preventing Kidney Disease Progression: Are We There Yet?. American Journal of Kidney Diseases, 2018, 72, 776-778.	1.9	9
85	Association of Chronic Kidney Disease With Allopurinol Use in Gout Treatment. JAMA Internal Medicine, 2018, 178, 1526.	5.1	47
86	Association between circulating tumor necrosis factor-related biomarkers and estimated glomerular filtration rate in type 2 diabetes. Scientific Reports, 2018, 8, 15302.	3.3	30
87	Cardiovascular Disease in Dialysis Patients. , 0, , .		2
88	Febuxostat Therapy for Patients With Stage 3 CKD and Asymptomatic Hyperuricemia: A Randomized Trial. American Journal of Kidney Diseases, 2018, 72, 798-810.	1.9	244
89	The Role of Oxidative Stress and Systemic Inflammation in Kidney Disease and Its Associated Cardiovascular Risk. , 0, , .		3
90	Safety and Efficacy of Benzbromarone and Febuxostat in Hyperuricemia Patients with Chronic Kidney Disease: A Prospective Pilot Study. Clinical and Experimental Nephrology, 2018, 22, 1324-1330.	1.6	26
91	Physiology of Hyperuricemia and Urate-Lowering Treatments. Frontiers in Medicine, 2018, 5, 160.	2.6	176

#	Article	IF	CITATIONS
92	Clinical Studies of Interventions to Mitigate Cardiovascular Risk in Peritoneal Dialysis Patients. Seminars in Nephrology, 2018, 38, 277-290.	1.6	24
93	Uric acid and progression of chronic kidney disease. Pediatric Nephrology, 2019, 34, 801-809.	1.7	24
94	The case for uric acid-lowering treatment in patients with hyperuricaemia and CKD. Nature Reviews Nephrology, 2019, 15, 767-775.	9.6	122
95	Combinational effect of angiotensin receptor blocker and folic acid therapy on uric acid and creatinine level in hyperhomocysteinemiaâ€associated hypertension. Biotechnology and Applied Biochemistry, 2019, 66, 715-719.	3.1	19
96	Urate-lowering agents for asymptomatic hyperuricemia in stage 3 – 4 chronic kidney disease: Controversial role of kidney function. PLoS ONE, 2019, 14, e0218510.	2.5	11
97	Hyperuricemia has increased the risk of progression of chronic kidney disease: propensity score matching analysis from the KNOW-CKD study. Scientific Reports, 2019, 9, 6681.	3.3	76
98	Gout is associated with a higher risk of chronic renal disease in older adults: a retrospective cohort study of U.S. Medicare population. BMC Nephrology, 2019, 20, 93.	1.8	32
99	Febuxostat for Cerebral and CaRdiorenovascular Events PrEvEntion StuDy. European Heart Journal, 2019, 40, 1778-1786.	2.2	148
100	Effect of Uric Acid Control on Serum Creatinine. Journal of Clinical Rheumatology, 2019, 25, 279-283.	0.9	6
101	Effects of febuxostat on renal function in patients with chronic kidney disease. Medicine (United) Tj ETQq1 1 0.7		
101		′84314 rgt 1.0	37 37
101	Gout Management in Chronic Kidney Disease: Pearls and Pitfalls. Current Treatment Options in Rheumatology, 2019, 5, 326-335.	/84314 rgt 1.0	0
	Gout Management in Chronic Kidney Disease: Pearls and Pitfalls. Current Treatment Options in	1.0	
102	Gout Management in Chronic Kidney Disease: Pearls and Pitfalls. Current Treatment Options in Rheumatology, 2019, 5, 326-335. Protection of the kidney with sodium–glucose cotransporter 2 inhibitors: potential mechanisms raised by the large-scaled randomized control trials. Clinical and Experimental Nephrology, 2019, 23,	1.4	0
102 103	Gout Management in Chronic Kidney Disease: Pearls and Pitfalls. Current Treatment Options in Rheumatology, 2019, 5, 326-335. Protection of the kidney with sodium–glucose cotransporter 2 inhibitors: potential mechanisms raised by the large-scaled randomized control trials. Clinical and Experimental Nephrology, 2019, 23, 304-312.	1.4	0
102 103 104	Gout Management in Chronic Kidney Disease: Pearls and Pitfalls. Current Treatment Options in Rheumatology, 2019, 5, 326-335. Protection of the kidney with sodium–glucose cotransporter 2 inhibitors: potential mechanisms raised by the large-scaled randomized control trials. Clinical and Experimental Nephrology, 2019, 23, 304-312. Treatment Guidelines., 2019,, 141-153.	1.4	0 15 1
102 103 104 105	Gout Management in Chronic Kidney Disease: Pearls and Pitfalls. Current Treatment Options in Rheumatology, 2019, 5, 326-335. Protection of the kidney with sodium–glucose cotransporter 2 inhibitors: potential mechanisms raised by the large-scaled randomized control trials. Clinical and Experimental Nephrology, 2019, 23, 304-312. Treatment Guidelines., 2019,, 141-153. Uric Acid Metabolism and the Kidney., 2020,, 689-701.	1.4	0 15 1
102 103 104 105 106	Gout Management in Chronic Kidney Disease: Pearls and Pitfalls. Current Treatment Options in Rheumatology, 2019, 5, 326-335. Protection of the kidney with sodium–glucose cotransporter 2 inhibitors: potential mechanisms raised by the large-scaled randomized control trials. Clinical and Experimental Nephrology, 2019, 23, 304-312. Treatment Guidelines., 2019,, 141-153. Uric Acid Metabolism and the Kidney., 2020,, 689-701. Uric acid in CKD: has the jury come to the verdict?. Journal of Nephrology, 2020, 33, 715-724. Impact of serum uric acid on renal function after bariatric surgery: aÂretrospective study. Surgery for	1.4 1.6 2.0	0 15 1 0 44

#	Article	IF	CITATIONS
110	Rationale and design for Lowering-hyperUricaemia treatment on cardiovascular outcoMes In peritoNeal diAlysis patients: a prospective, multicentre, double-blind, randomised controlled trial (LUMINA). BMJ Open, 2020, 10, e037842.	1.9	1
111	Renoprotection with SGLT2 inhibitors in type 2 diabetes over a spectrum of cardiovascular and renal risk. Cardiovascular Diabetology, 2020, 19, 196.	6.8	52
112	Pathophysiology of hyperuricemia and its clinical significance – aÂnarrative review. Reumatologia, 2020, 58, 312-323.	1.1	40
113	Management of Hyperuricemia in Patients with Chronic Kidney Disease: a Focus on Renal Protection. Current Hypertension Reports, 2020, 22, 102.	3.5	46
114	Effects of Uric Acid-Lowering Treatment on Glycemia: A Systematic Review and Meta-Analysis. Frontiers in Endocrinology, 2020, 11, 577.	3.5	15
115	Allopurinol does not affect chronic kidney care progression. Journal of Kidney Care, 2020, 5, 198-198.	0.1	0
116	Effects of Allopurinol on the Progression of Chronic Kidney Disease. New England Journal of Medicine, 2020, 382, 2504-2513.	27.0	281
117	<p>Treatment with a PPAR-γ Agonist Protects Against Hyperuricemic Nephropathy in a Rat Model</p> . Drug Design, Development and Therapy, 2020, Volume 14, 2221-2233.	4.3	20
118	Hyperuricemia as a trigger of immune response in hypertension and chronic kidney disease. Kidney International, 2020, 98, 1149-1159.	5.2	89
119	Management of asymptomatic hyperuricemia: Integrated Diabetes & Endocrine Academy (IDEA) consensus statement. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2020, 14, 93-100.	3.6	21
120	Synergistic interaction of hyperuricemia and hypertension on reduced eGFR: insights from a general Chinese population. Postgraduate Medicine, 2020, 132, 263-269.	2.0	6
121	Febuxostat as a renoprotective agent for treatment of hyperuricaemia: a metaâ€analysis of randomised controlled trials. Internal Medicine Journal, 2021, 51, 752-762.	0.8	11
122	The effect of baseline serum uric acid on chronic kidney disease in normotensive, normoglycemic, and non-obese individuals: A health checkup cohort study. PLoS ONE, 2021, 16, e0244106.	2.5	9
123	Asymptomatic hyperuricemia: secret relationships, invisible effects and potential complications. Nauchno-Prakticheskaya Revmatologiya, 2021, 58, 725-733.	1.0	1
124	Hyperuricemia, urate-lowering therapy, and kidney outcomes: a systematic review and meta-analysis. Therapeutic Advances in Musculoskeletal Disease, 2021, 13, 1759720X2110166.	2.7	15
125	Pharmacologic Targeting of BET Proteins Attenuates Hyperuricemic Nephropathy in Rats. Frontiers in Pharmacology, 2021, 12, 636154.	3.5	10
126	Different clinical impact of hyperuricemia according to etiologies of chronic kidney disease: Gonryo Study. PLoS ONE, 2021, 16, e0249240.	2.5	3
127	Recent evidence on the effect of urate-lowering treatment on the progression of kidney disease. Current Opinion in Nephrology and Hypertension, 2021, 30, 346-352.	2.0	6

#	Article	IF	CITATIONS
128	The Pattern of Allopurinol Prescription Among Chronic Kidney Disease Patients in a Tertiary Care Centre: A Single-Centre Experience. International Journal of General Medicine, 2021, Volume 14, 1141-1146.	1.8	1
129	Long-term impact of baseline serum uric acid levels on living kidney donors: a retrospective study. BMC Nephrology, 2021, 22, 89.	1.8	1
130	Allopurinol: Good for Gout But Not for Preventing Loss of Kidney Function. American Journal of Kidney Diseases, 2021, 77, 459-461.	1.9	4
131	Pleiotropic Effects of Sodium-Glucose Cotransporter-2 Inhibitors: Renoprotective Mechanisms beyond Glycemic Control. International Journal of Molecular Sciences, 2021, 22, 4374.	4.1	18
132	Prevalence of Musculoskeletal Manifestations in Adult Kidney Transplant's Recipients: A Systematic Review. Medicina (Lithuania), 2021, 57, 525.	2.0	1
133	Relationship between uric acid and kidney function in adults at risk for tumor lysis syndrome. Leukemia and Lymphoma, 2021, 62, 1-8.	1.3	1
134	Molecular Biological and Clinical Understanding of the Pathophysiology and Treatments of Hyperuricemia and Its Association with Metabolic Syndrome, Cardiovascular Diseases and Chronic Kidney Disease. International Journal of Molecular Sciences, 2021, 22, 9221.	4.1	148
135	Effectiveness of Drug Treatments for Lowering Uric Acid on Renal Function in Patients With Chronic Kidney Disease and Hyperuricemia: A Network Meta-Analysis of Randomized Controlled Trials. Frontiers in Pharmacology, 2021, 12, 690557.	3.5	9
136	Effect of uric acid-lowering therapy on renal function in patients with chronic kidney disease: a systematic review and meta-analysis. Renal Replacement Therapy, 2021, 7, .	0.7	0
137	Hyperuricemia and Progression of Chronic Kidney Disease: A Review from Physiology and Pathogenesis to the Role of Urate-Lowering Therapy. Diagnostics, 2021, 11, 1674.	2.6	25
138	Hypocitraturia is present when renal function is impaired in diverse nephropathies and is not related with serum bicarbonate levels. International Urology and Nephrology, 2022, 54, 1261-1269.	1.4	1
139	Allopurinol and Renal Outcomes in Adults With and Without Type 2 Diabetes: A Retrospective, Population-Based Cohort Study and Propensity Score Analysis. Canadian Journal of Diabetes, 2021, 45, 641-649.e4.	0.8	3
140	Medications for gout and its comorbidities: mutual benefits?. Current Opinion in Rheumatology, 2021, 33, 145-154.	4.3	2
141	High urinary excretion rate of glucose attenuates serum uric acid level in type 2 diabetes with normal renal function. Journal of Endocrinological Investigation, 2021, 44, 1981-1988.	3.3	11
142	Asymptomatic hyperuricemia and chronic kidney disease: Narrative review of a treatment controversial. Journal of Advanced Research, 2017, 8, 555-560.	9.5	55
143	Targeting Uric Acid and the Inhibition of Progression to End-Stage Renal Disease—A Propensity Score Analysis. PLoS ONE, 2015, 10, e0145506.	2.5	47
144	Serum Uric Acid and Progression of Kidney Disease: A Longitudinal Analysis and Mini-Review. PLoS ONE, 2017, 12, e0170393.	2.5	118
145	Cardiovascular safety of febuxostat. Analysis of the CARES study. Sovremennaya Revmatologiya, 2018, 12, 42-46.	0.5	10

#	Article	IF	CITATIONS
146	SGLT-2 inhibitors in Diabetic Kidney Disease: What Lies Behind their Renoprotective Properties?. Current Medicinal Chemistry, 2019, 26, 5564-5578.	2.4	5
147	Gout, cardiovascular risks and cardiovascular diseases: crystal confusion. Hypertension, 2019, .	0.2	1
148	The potential renoprotection of xanthine oxidase inhibitors: Febuxostat versus allopurinol. Kidney Research and Clinical Practice, 2017, 36, 207-208.	2.2	1
149	Hyperuricemia as a Predictor of Progression of Chronic Kidney Disease: A Matched Cohort Analysis. International Journal of Clinical Medicine, 2017, 08, 178-197.	0.2	1
150	Asymptomatic hyperuricemia following renal transplantation. World Journal of Nephrology, 2015, 4, 324.	2.0	14
151	Slowing Chronic Kidney Disease Progression. , 2022, , 51-68.		0
154	Kidney Disease and Gout: The Role of the Innate Immune System. The Open Urology & Nephrology Journal, 2016, 9, 12-21.	0.2	4
155	Uric Acid and its Role in the Progression of Chronic Kidney Disease: Do We Know Enough?. PoÄki, 2016, .	0.4	0
156	Hyperuricemia — an independent factor for the progression of chronic kidney disease. PoÄki, 2017, 6, 94-98.	0.4	1
157	Hyperuricemia - As a Pathogenetic and Independent Risk Factor in Relation to the Metabolic Syndrome. Romanian Journal of Diabetes Nutrition and Metabolic Diseases, 2018, 25, 335-341.	0.3	0
158	Pharmacologic Renal Protection. , 2019, , 101-112.		0
159	6. Treatment for Hyperuricemia to Aim at Renal Protection in CKD. The Journal of the Japanese Society of Internal Medicine, 2019, 108, 540-546.	0.0	0
161	Crystal Arthropathy in the Elderly Population. , 2020, , 229-248.		0
162	Drug–nutrient interactions in renal failure. , 2022, , 921-933.		0
163	Elevated uric acid level: the chicken or the egg?. Journal of Geriatric Cardiology, 2016, 13, 367-8.	0.2	0
164	Major Cardiovascular Events in Patients with Gout and Associated Cardiovascular Disease or Heart Failure and Chronic Kidney Disease Initiating a Xanthine Oxidase Inhibitor. American Health and Drug Benefits, 2017, 10, 393-401.	0.5	34
165	Uric acid lowering for slowing CKD progression after the CKD-FIX trial: a solved question or still a dilemma?. CKJ: Clinical Kidney Journal, 2022, 15, 1666-1674.	2.9	5
166	Uric Acid and Oxidative Stress—Relationship with Cardiovascular, Metabolic, and Renal Impairment. International Journal of Molecular Sciences, 2022, 23, 3188.	4.1	81

#	Article	IF	CITATIONS
167	Prospective randomized comparison of effect on coronary endothelial and renal function between febuxostat and benzbromarone in hyperuricemic patients with coronary artery disease: EFEF study. Health Science Reports, 2022, 5, e563.	1.5	2
170	Hyperuricemia—a serious complication among patients with chronic kidney disease: a systematic review and meta-analysis. Exploration of Medicine, 0, , 249-259.	1.5	20
171	Exercise Training Ameliorates Renal Oxidative Stress in Rats with Chronic Renal Failure. Metabolites, 2022, 12, 836.	2.9	2
172	Chronic Kidney Disease Stage G4 in a Diabetic Patient Improved by Multi-Disciplinary Treatments Based Upon Literature Search for Therapeutic Evidence. Cardiology Research, 2022, 13, 309-314.	1.1	3
173	Association between serum uric acid level and systemic lupus erythematosus kidney outcome: An observational study in Southern Chinese population and a meta-analysis. Lupus, 2023, 32, 83-93.	1.6	1
174	Uric Acid in Chronic Kidney Disease: A Clinical Appraisal. , 0, , 78-83.		1
175	Uric acid and risk of pre-eclampsia: results from a large case–control study and meta-analysis of prospective studies. Scientific Reports, 2023, 13, .	3.3	2
176	The Singapore Experience With Uncontrolled Gout: Unmet Needs in the Management of Patients. Cureus, 2023, , .	0.5	0
177	Computational biomedical modeling and screening for prediction of molecular mechanisms of Simiao Pill against hyperuricemia. Journal of Molecular Liquids, 2023, 381, 121827.	4.9	2
178	Comparison of benzbromarone and allopurinol on the risk of chronic kidney disease in people with asymptomatic hyperuricemia. European Journal of Internal Medicine, 2023, 113, 91-97.	2.2	2
179	Urate-lowering drugs for chronic kidney disease with asymptomatic hyperuricemia and hypertension: a randomized trial. Journal of Hypertension, 0, Publish Ahead of Print, .	0.5	1
180	Sodium–Glucose Cotransporter 2 Inhibitors to Decrease the Uric Acid Concentration—A Novel Mechanism of Action. Journal of Cardiovascular Development and Disease, 2023, 10, 268.	1.6	4
181	Effect of Dietary Counseling on Patients with Asymptomatic Hyperuricemia. Journal of Medical Investigation, 2023, 70, 34-40.	0.5	0
182	Chronic kidney disease of unknown aetiology: A comprehensive review of a global public health problem. Tropical Medicine and International Health, 2023, 28, 588-600.	2.3	3
183	The Impact of Uric Acid on Human Health: Beyond Gout and Kidney Stones. Ibnosina Journal of Medicine and Biomedical Sciences, 2023, 15, 110-116.	0.2	1
184	Principles of urate-lowering therapy: eight steps to success. Sovremennaya Revmatologiya, 2023, 17, 104-110.	0.5	0
185	Hyperuricaemia and Chronic Kidney Disease. , 2023, , 81-97.		0
186	Narrative review investigating the nephroprotective mechanisms of sodium glucose cotransporter type 2 inhibitors in diabetic and nondiabetic patients with chronic kidney disease. Frontiers in Findocrinology 0, 14	3.5	0

#	Article	IF	CITATIONS
187	Relationship between hyperuricemia and the risk of cardiovascular events and chronic kidney disease in both the general population and hypertensive patients: A systematic review and meta-analysis. International Journal of Cardiology, 2024, 399, 131779.	1.7	0
188	Impact of urate-lowering therapy on the course of chronic kidney disease in patients with asymptomatic hyperuricemia: a meta-analysis of randomized controlled trials. HERALD of North-Western State Medical University Named After I I Mechnikov, 2024, 15, 5-18.	0.2	1
189	Hyperuricemia: An Intriguing Connection to Metabolic Syndrome, Diabetes, Kidney Disease, and Hypertension. Current Hypertension Reports, 0, , .	3.5	2
190	New-onset metabolic syndrome is associated with accelerated renal function decline partially through elevated uric acid: an epidemiological cohort study. Frontiers in Endocrinology, 0, 15, .	3.5	0
191	The effect of metabolic factors on the association between hyperuricemia and chronic kidney disease: a retrospective cohort mediation analysis. International Urology and Nephrology, 0, , .	1.4	0