Mutations in PAX2 Associate with Adult-Onset FSGS

Journal of the American Society of Nephrology: JASN 25, 1942-1953 DOI: 10.1681/asn.2013070686

Citation Report

#	Article	IF	CITATIONS
1	Diagnosing kidney disease in the genetic era. Current Opinion in Nephrology and Hypertension, 2015, 24, 1.	1.0	8
2	One hundred ways to kill a podocyte: FIGUREÂ1:. Nephrology Dialysis Transplantation, 2015, 30, 1266-1271.	0.4	32
3	Evaluation of Genetic Renal Diseases in Potential Living Kidney Donors. Current Transplantation Reports, 2015, 2, 1-14.	0.9	12
4	Genes in FSGS: Diagnostic and Management Strategies in Children. Current Pediatrics Reports, 2015, 3, 78-90.	1.7	0
5	Focal segmental glomerulosclerosis: molecular genetics and targeted therapies. BMC Nephrology, 2015, 16, 101.	0.8	45
6	Podocytes. F1000Research, 2016, 5, 114.	0.8	133
7	Pathogenesis of Focal Segmental Glomerulosclerosis. Journal of Pathology and Translational Medicine, 2016, 50, 405-410.	0.4	49
8	The expanding phenotypic spectra of kidney diseases: insights from genetic studies. Nature Reviews Nephrology, 2016, 12, 472-483.	4.1	61
9	Diverse Renal Phenotypes Observed in a Single Family with a Genetic Mutation in Paired Box Protein 2. Case Reports in Nephrology and Dialysis, 2016, 6, 61-69.	0.3	12
10	Biological characterization of sheep kidney-derived mesenchymal stem cells. Experimental and Therapeutic Medicine, 2016, 12, 3963-3971.	0.8	17
11	Primary glomerulonephritides. Lancet, The, 2016, 387, 2036-2048.	6.3	202
12	Hereditary Podocytopathies in Adults: The Next Generation. Kidney Diseases (Basel, Switzerland), 2017, 3, 50-56.	1.2	13
13	<i>PAX7</i> mutation in a syndrome of failure to thrive, hypotonia, and global neurodevelopmental delay. Human Mutation, 2017, 38, 1671-1683.	1.1	12
14	Genetic basis of adult-onset nephrotic syndrome and focal segmental glomerulosclerosis. Frontiers of Medicine, 2017, 11, 333-339.	1.5	20
15	Whole-exome sequencing in the molecular diagnosis of individuals with congenital anomalies of the kidney and urinary tract and identification of a new causative gene. Genetics in Medicine, 2017, 19, 412-420.	1.1	73
16	Patient Engagement in Kidney Research: Opportunities and Challenges Ahead. Canadian Journal of Kidney Health and Disease, 2017, 4, 205435811774058.	0.6	12
17	Three Novel Heterozygous COL4A4 Mutations Result in Three Different Collagen Type IV Kidney Disease Phenotypes. Cytogenetic and Genome Research, 2018, 154, 30-36.	0.6	2
18	Activation of podocyte Notch mediates early Wt1 glomerulopathy. Kidney International, 2018, 93, 903-920.	2.6	30

#	Article	IF	CITATIONS
19	Genomic medicine for kidney disease. Nature Reviews Nephrology, 2018, 14, 83-104.	4.1	102
20	Whole exome sequencing: a state-of-the-art approach for defining (and exploring!) genetic landscapes in pediatric nephrology. Pediatric Nephrology, 2018, 33, 745-761.	0.9	8
21	Application of next-generation sequencing technology to diagnosis and treatment of focal segmental glomerulosclerosis. Clinical and Experimental Nephrology, 2018, 22, 491-500.	0.7	11
22	Steroid-resistentes nephrotisches Syndrom. Medizinische Genetik, 2018, 30, 410-421.	0.1	3
23	Generation of two isogenic iPS cell lines (IRFMNi002-A and IRFMNi002-B) from a patient affected by Focal Segmental Glomerulosclerosis carrying a heterozygous c.565G>A mutation in PAX2 gene. Stem Cell Research, 2018, 33, 175-179.	0.3	0
24	Identification of genetic causes for sporadic steroid-resistant nephrotic syndrome in adults. Kidney International, 2018, 94, 1013-1022.	2.6	51
25	A kidney-disease gene panel allows a comprehensive genetic diagnosis of cystic andÂglomerular inherited kidney diseases. Kidney International, 2018, 94, 363-371.	2.6	109
26	Could the interaction between LMX1B and PAX2 influence the severity of renal symptoms?. European Journal of Human Genetics, 2018, 26, 1708-1712.	1.4	6
27	Engineered Kidney Tubules for Modeling Patient-Specific Diseases and Drug Discovery. EBioMedicine, 2018, 33, 253-268.	2.7	27
28	Cellular and molecular mechanisms of kidney fibrosis. Molecular Aspects of Medicine, 2019, 65, 16-36.	2.7	289
29	Genetic Variations of Ultraconserved Elements in the Human Genome. OMICS A Journal of Integrative Biology, 2019, 23, 549-559.	1.0	13
30	Importance of Genetic Diagnostics in Adult-Onset Focal Segmental Glomerulosclerosis. Nephron, 2019, 142, 351-358.	0.9	10
31	Diverse phenotypes in children with <i>PAX2</i> â€related disorder. Molecular Genetics & Genomic Medicine, 2019, 7, e701.	0.6	25
32	Dominant PAX2 mutations may cause steroid-resistant nephrotic syndrome and FSGS in children. Pediatric Nephrology, 2019, 34, 1607-1613.	0.9	31
33	CRISPR-Cas9-Mediated Correction of the G189R-PAX2 Mutation in Induced Pluripotent Stem Cells from a Patient with Focal Segmental Glomerulosclerosis. CRISPR Journal, 2019, 2, 108-120.	1.4	4
34	Genetics and the heart rate response to exercise. Cellular and Molecular Life Sciences, 2019, 76, 2391-2409.	2.4	34
35	Value of renal gene panel diagnostics in adults waiting for kidney transplantation due to undetermined end-stage renal disease. Kidney International, 2019, 96, 222-230.	2.6	47
36	First identification of <i>PODXL</i> nonsense mutations in autosomal dominant focal segmental glomerulosclerosis. Clinical Science, 2019, 133, 9-21.	1.8	10

#	Article	IF	CITATIONS
37	Integration of Genetic Testing and Pathology for the Diagnosis of Adults with FSGS. Clinical Journal of the American Society of Nephrology: CJASN, 2019, 14, 213-223.	2.2	100
38	Genetic Causes of Chronic Kidney Disease. , 2019, , 105-119.e7.		Ο
39	A novel truncating PAX2 mutation in a boy with renal coloboma syndrome with focal segmental glomerulosclerosis causing rapid progression to end-stage kidney disease. CEN Case Reports, 2020, 9, 19-23.	0.5	8
40	A no-nonsense approach to hereditary kidney disease. Pediatric Nephrology, 2020, 35, 2031-2042.	0.9	3
41	Clinical Genetic Screening in Adult Patients with Kidney Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 1497-1510.	2.2	53
42	Look Alike, Sound Alike: Phenocopies in Steroid-Resistant Nephrotic Syndrome. International Journal of Environmental Research and Public Health, 2020, 17, 8363.	1.2	10
43	Rare genetic causes of complex kidney and urological diseases. Nature Reviews Nephrology, 2020, 16, 641-656.	4.1	27
44	Initial experience from a renal genetics clinic demonstrates a distinct role in patient management. Genetics in Medicine, 2020, 22, 1025-1035.	1.1	45
45	The genetics of steroid-resistant nephrotic syndrome in adults. Nephrology Dialysis Transplantation, 2021, 36, 1600-1602.	0.4	0
46	Autosomal Dominant Tubulointerstitial Kidney Disease—Uromodulin Misclassified as Focal Segmental Glomerulosclerosis or Hereditary Clomerular Disease. Kidney International Reports, 2020, 5, 519-529.	0.4	14
47	A Primer on Congenital Anomalies of the Kidneys and Urinary Tracts (CAKUT). Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 723-731.	2.2	91
48	"lt's In Your Genesâ€: Clinical Journal of the American Society of Nephrology: CJASN, 2020, 15, 10-12.	2.2	2
49	Clinical Integration of Genome Diagnostics for Congenital Anomalies of the Kidney and Urinary Tract. Clinical Journal of the American Society of Nephrology: CJASN, 2021, 16, 128-137.	2.2	37
50	<i>PAX2</i> variant associated with bilateral kidney agenesis and broad intrafamilial disease variability. CKJ: Clinical Kidney Journal, 2021, 14, 704-706.	1.4	4
51	Next-generation sequencing in patients with familial FSGS: first report of collagen gene mutations in Tunisian patients. Journal of Human Genetics, 2021, 66, 795-803.	1.1	5
52	FSGS in Chinese twins with a de novo PAX2 mutation: a case report and review of the literature. Journal of Nephrology, 2021, 34, 2155-2158.	0.9	4
53	Urine-Derived Epithelial Cells as Models for Genetic Kidney Diseases. Cells, 2021, 10, 1413.	1.8	10
54	An accessible insight into genetic findings for transplantation recipients with suspected genetic kidney disease. Npj Genomic Medicine, 2021, 6, 57.	1.7	3

#	Article	IF	CITATIONS
55	Case Report: A Novel Heterozygous Mutation of CD2AP in a Chinese Family With Proteinuria Leads to Focal Segmental Glomerulosclerosis. Frontiers in Pediatrics, 2021, 9, 687455.	0.9	3
56	BAZ1B the Protean Protein. Genes, 2021, 12, 1541.	1.0	7
57	Clinical and genetic characterization of a cohort of proteinuric patients with biallelic <i>CUBN</i> variants. Nephrology Dialysis Transplantation, 2022, 37, 1906-1915.	0.4	8
58	Genetic Basis of Nephrotic Syndrome. , 2021, , 1-24.		0
59	Endometrial Development and Its Fine Structure. , 2020, , 1-32.		1
60	Idiopathic Nephrotic Syndrome in Children: Genetic Aspects. , 2016, , 805-837.		4
61	Association of PAX2 and Other Gene Mutations with the Clinical Manifestations of Renal Coloboma Syndrome. PLoS ONE, 2015, 10, e0142843.	1.1	40
62	Genetic tests in children with steroid-resistant nephrotic syndrome. Kidney Research and Clinical Practice, 2020, 39, 7-16.	0.9	15
63	The hereditary nephrotic syndrome in children and adults. Nephrology (Saint-Petersburg), 2020, 24, 15-27.	0.1	3
64	Phenotypic spectrum and genetics of PAX2-related disorder in the Chinese cohort. BMC Medical Genomics, 2021, 14, 250.	0.7	6
65	Idiopathic Nephrotic Syndrome in Children: Genetic Aspects. , 2015, , 1-38.		0
66	Genetic and Epigenetic Regulation of Nephron Number in the Human. , 2016, , 95-102.		2
67	é²ä¼æ€§è…Žç−¾æ,£ã¨è…Žä¸ů…¨. Nihon Toseki Igakkai Zasshi, 2016, 49, 645-648.	0.2	0
68	Mutation-Related Oligomeganephronia in a Young Adult Patient. Case Reports in Nephrology and Dialysis, 2020, 10, 163-173.	0.3	1
69	Unravelling the Role of PAX2 Mutation in Human Focal Segmental Glomerulosclerosis. Biomedicines, 2021, 9, 1808.	1.4	2
70	Identification of of a PAX2 mutation from maternal mosaicism causes recurrent renal disorder in siblings. Clinica Chimica Acta, 2022, 525, 23-28.	0.5	0
71	<i>PAX2</i> Mutation-Related Oligomeganephronia in a Young Adult Patient. Case Reports in Nephrology and Dialysis, 2021, 10, 163-173.	0.3	5
72	The genetic basis of congenital anomalies of the kidney and urinary tract. Pediatric Nephrology, 2022, 37, 2231-2243.	0.9	22

#	Article	IF	CITATIONS
74	Podocyte-specific Transcription Factors: Could MafB become a Therapeutic Target for Kidney Disease?. Internal Medicine, 2022, , .	0.3	2
75	The K ID NEYCODE program: Diagnostic yield and clinical features of individuals with chronic kidney disease. Kidney360, 0, , 10.34067/KID.0004162021.	0.9	7
76	Detection of De Novo PAX2 Variants and Phenotypes in Chinese Population: A Single-Center Study. Frontiers in Genetics, 2022, 13, 799562.	1.1	2
77	Results From the WACR Syndrome Patient Registry: Characterization of WAGR Spectrum and Recommendations for Care Management. Frontiers in Pediatrics, 2021, 9, 733018.	0.9	13
78	Concordant nephrotic syndrome in twins with PAX2 and MYO1E mutations. Clinical Nephrology Case Studies, 2022, 10, 37-41.	0.3	2
79	Diverse molecular causes of unsolved autosomal dominant tubulointerstitial kidney diseases. Kidney International, 2022, 102, 405-420.	2.6	10
80	Monogenic focal segmental glomerulosclerosis: A conceptual framework for identification and management of a heterogeneous disease. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2022, 190, 377-398.	0.7	10
81	Genetic Basis of Nephrotic Syndrome. , 2022, , 261-283.		2
82	Clinical Aspects of Genetic Forms of Nephrotic Syndrome. , 2022, , 301-325.		2
84	PAX2 and CAKUT Phenotypes: Report on Two New Variants and a Review of Mutations from the Leiden Open Variation Database. International Journal of Molecular Sciences, 2023, 24, 4165.	1.8	1
85	Disorders of Kidney Formation. , 2023, , 257-285.		0
92	Hidden genetics behind glomerular scars: an opportunity to understand the heterogeneity of focal segmental glomerulosclerosis?. Pediatric Nephrology, 0, , .	0.9	1
94	Familial focal segmental glomerulosclerosis with Alport-like glomerular basement changes caused by paired box protein 2 gene variant. CEN Case Reports, 0, , .	0.5	0