The microbiome-gut-brain axis during early life regulat system in a sex-dependent manner

Molecular Psychiatry 18, 666-673

DOI: 10.1038/mp.2012.77

Citation Report

#	Article	IF	Citations
1	Gut microbial communities modulating brain development and function. Gut Microbes, 2012, 3, 366-373.	9.8	85
2	Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience, 2012, 13, 701-712.	10.2	3,237
3	Psychobiotics: A Novel Class of Psychotropic. Biological Psychiatry, 2013, 74, 720-726.	1.3	917
4	The Gut Microbiome: A New Frontier in Autism Research. Current Psychiatry Reports, 2013, 15, 337.	4.5	218
5	Towards a †systems†level understanding of the nervous system and its disorders. Trends in Neurosciences, 2013, 36, 674-684.	8.6	38
6	Melancholic microbes: a link between gut microbiota and depression?. Neurogastroenterology and Motility, 2013, 25, 713-719.	3.0	337
7	Experimental gastritis leads to anxiety- and depression-like behaviors in female but not male rats. Behavioral and Brain Functions, 2013, 9, 46.	3.3	31
8	Nutrimetabonomics:Applications for Nutritional Sciences, with Specific Reference to Gut Microbial Interactions. Annual Review of Food Science and Technology, 2013, 4, 381-399.	9.9	45
9	Gut–brain axis: how the microbiome influences anxiety and depression. Trends in Neurosciences, 2013, 36, 305-312.	8.6	1,773
10	Molecular signatures for the dynamic process of establishing intestinal host–microbial homeostasis. Current Opinion in Gastroenterology, 2013, 29, 621-627.	2.3	10
11	Environmental factors acting during development to influence MS risk: insights from animal studies. Multiple Sclerosis Journal, 2013, 19, 1684-1689.	3.0	14
12	Hot topics in gut microbiota. United European Gastroenterology Journal, 2013, 1, 311-318.	3.8	50
13	Perinatal nutrition programs neuroimmune function long-term: mechanisms and implications. Frontiers in Neuroscience, 2013, 7, 144.	2.8	28
14	Gut Microbiome and Brain-Gut Axis in Autism â€" Aberrant Development of Gut-Brain Communication and Reward Circuitry. , 2013, , .		1
15	Commentary: Gut Microbiota and Brain Function: A New Target for Brain Diseases?. CNS and Neurological Disorders - Drug Targets, 2014, 13, 733-735.	1.4	3
16	Friends with social benefits: host-microbe interactions as a driver of brain evolution and development?. Frontiers in Cellular and Infection Microbiology, 2014, 4, 147.	3.9	118
17	Immune modulation of the brain-gut-microbe axis. Frontiers in Microbiology, 2014, 5, 146.	3.5	125
18	The microbiota-gut-brain axis in functional gastrointestinal disorders. Gut Microbes, 2014, 5, 419-429.	9.8	112

#	Article	IF	CITATIONS
19	Metabolic tinkering by the gut microbiome. Gut Microbes, 2014, 5, 369-380.	9.8	105
20	Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Molecular Neurodegeneration, 2014, 9, 36.	10.8	250
21	The Impact of Microbiota on Brain and Behavior: Mechanisms & Experimental Medicine and Biology, 2014, 817, 373-403.	1.6	247
22	The gastrointestinal tract microbiome, probiotics, and mood. Inflammopharmacology, 2014, 22, 333-339.	3.9	28
23	Microbiome, HPA Axis and Production of Endocrine Hormones in the Gut. Advances in Experimental Medicine and Biology, 2014, 817, 177-194.	1.6	94
24	Psychobiotics. Holistic Nursing Practice, 2014, 28, 329-333.	0.7	4
25	Obsessive–compulsive-like behaviors in house mice are attenuated by a probiotic (Lactobacillus) Tj ETQq0 0 0	rgBT/Ove	rlock 10 Tf 50
26	Irritable bowel syndrome: A microbiome-gut-brain axis disorder?. World Journal of Gastroenterology, 2014, 20, 14105.	3.3	249
27	Psychobiotics and Their Involvement in Mental Health. Journal of Molecular Microbiology and Biotechnology, 2014, 24, 211-214.	1.0	16
28	The role of microbiome in central nervous system disorders. Brain, Behavior, and Immunity, 2014, 38, 1-12.	4.1	629
29	Priming for health: gut microbiota acquired in early life regulates physiology, brain and behaviour. Acta Paediatrica, International Journal of Paediatrics, 2014, 103, 812-819.	1.5	146
30	The microbiome: stress, health and disease. Mammalian Genome, 2014, 25, 49-74.	2.2	361
31	Gut Microbes and the Brain: Paradigm Shift in Neuroscience. Journal of Neuroscience, 2014, 34, 15490-15496.	3.6	719
32	Genomics of schizophrenia: time to consider the gut microbiome?. Molecular Psychiatry, 2014, 19, 1252-1257.	7.9	163
33	Noninvasive molecular fingerprinting of host–microbiome interactions in neonates. FEBS Letters, 2014, 588, 4112-4119.	2.8	32
34	<i><scp>B</scp>ifidobacteria</i> exert strainâ€specific effects on stressâ€related behavior and physiology in <scp>BALB</scp> /c mice. Neurogastroenterology and Motility, 2014, 26, 1615-1627.	3.0	337
35	Microbiota-Gut-Brain Axis and Cognitive Function. Advances in Experimental Medicine and Biology, 2014, 817, 357-371.	1.6	125
36	Bacterial Neuroactive Compounds Produced by Psychobiotics. Advances in Experimental Medicine and Biology, 2014, 817, 221-239.	1.6	245

#	ARTICLE	IF	Citations
37	Neuropeptides and the Microbiota-Gut-Brain Axis. Advances in Experimental Medicine and Biology, 2014, 817, 195-219.	1.6	321
38	Microbial genes, brain & behaviour–Âepigenetic regulation of the gut–brain axis. Genes, Brain and Behavior, 2014, 13, 69-86.	2.2	495
39	Minireview: Gut Microbiota: The Neglected Endocrine Organ. Molecular Endocrinology, 2014, 28, 1221-1238.	3.7	835
40	Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats. Neuroscience, 2014, 277, 885-901.	2.3	222
41	Discovery and Characterization of Gut Microbiota Decarboxylases that Can Produce the Neurotransmitter Tryptamine. Cell Host and Microbe, 2014, 16, 495-503.	11.0	473
42	Gut microbiota, the pharmabiotics they produce and host health. Proceedings of the Nutrition Society, 2014, 73, 477-489.	1.0	126
43	Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology, 2014, 42, 207-217.	2.7	472
44	Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advances in Experimental Medicine and Biology, 2014, , .	1.6	59
45	Microbiota and neurodevelopmental windows: implications for brain disorders. Trends in Molecular Medicine, 2014, 20, 509-518.	6.7	852
46	Sex hormones in the modulation of irritable bowel syndrome. World Journal of Gastroenterology, 2014, 20, 2433.	3.3	188
47	Autonomous or Integrated Immune System is Right for Biology?. Advances in Neuroimmune Biology, 2014, 5, 133-148.	0.7	0
49	Brain–Gut Axis and Gut Microbiota: Possible Role of Gut Microbiota in Childhood Mental Health and Diseases. Journal of Pediatric Biochemistry, 2015, 05, 077-080.	0.2	1
50	The microbiome and childhood diseases: Focus on brainâ€gut axis. Birth Defects Research Part C: Embryo Today Reviews, 2015, 105, 296-313.	3.6	34
51	Escherichia coli Nissle 1917 enhances bioavailability of serotonin in gut tissues through modulation of synthesis and clearance. Scientific Reports, 2015, 5, 17324.	3.3	74
52	Early Life Experience and Gut Microbiome. Advances in Neonatal Care, 2015, 15, 314-323.	1.1	66
53	The Intestinal Microbiota in Acute Anorexia Nervosa and During Renourishment. Psychosomatic Medicine, 2015, 77, 969-981.	2.0	237
54	Towards large-cohort comparative studies to define the factors influencing the gut microbial community structure of ASD patients. Microbial Ecology in Health and Disease, 2015, 26, 26555.	3.5	16
55	The Impact of Diet and Lifestyle on Gut Microbiota and Human Health. Nutrients, 2015, 7, 17-44.	4.1	1,108

#	ARTICLE	IF	Citations
56	Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Frontiers in Cellular Neuroscience, 2015, 9, 392.	3.7	757
57	The Gut-Brain Axis: The Missing Link in Depression. Clinical Psychopharmacology and Neuroscience, 2015, 13, 239-244.	2.0	245
58	Gut Dysbiosis in Patients with Anorexia Nervosa. PLoS ONE, 2015, 10, e0145274.	2.5	179
59	Modulation of Hippocampal Neural Plasticity by Glucose-Related Signaling. Neural Plasticity, 2015, 2015, 1-10.	2.2	67
60	Host microbiota modulates development of social preference in mice. Microbial Ecology in Health and Disease, 2015, 26, 29719.	3.5	124
61	n-3 PUFAs have beneficial effects on anxiety and cognition in female rats: Effects of early life stress. Psychoneuroendocrinology, 2015, 58, 79-90.	2.7	63
62	Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience, 2015, 18, 965-977.	14.8	2,340
63	Collective unconscious: How gut microbes shape human behavior. Journal of Psychiatric Research, 2015, 63, 1-9.	3.1	410
64	Gut/brain axis and the microbiota. Journal of Clinical Investigation, 2015, 125, 926-938.	8. 2	1,010
65	Shared Symptoms and Putative Biological Mechanisms in Chronic Liver Disease. Biological Research for Nursing, 2015, 17, 222-229.	1.9	4
66	Environment, dysbiosis, immunity and sex-specific susceptibility: A translational hypothesis for regressive autism pathogenesis. Nutritional Neuroscience, 2015, 18, 145-161.	3.1	57
67	Antenatal Microbiome. Nursing Research, 2015, 64, 306-319.	1.7	9
68	The role of the microbiota in ageing: current state and perspectives. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2015, 7, 131-138.	6.6	14
70	Gut Microbiota Interacts With Brain Microstructure and Function. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 4505-4513.	3. 6	130
71	Gut Microbiome and Stress. Microbiology Monographs, 2015, , 223-255.	0.6	1
72	Visceral Pain and Psychiatric Disorders. Modern Problems of Pharmacopsychiatry, 2015, 30, 103-119.	2.5	15
73	Gut microbiome composition is associated with temperament during early childhood. Brain, Behavior, and Immunity, 2015, 45, 118-127.	4.1	148
74	Metabolic Profiling and Phenotyping of Central Nervous System Diseases: Metabolites Bring Insights into Brain Dysfunctions. Journal of NeuroImmune Pharmacology, 2015, 10, 402-424.	4.1	40

#	Article	IF	CITATIONS
75	Adult Hippocampal Neurogenesis Is Regulated by the Microbiome. Biological Psychiatry, 2015, 78, e7-e9.	1.3	363
76	Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiology Reviews, 2015, 39, 509-521.	8.6	439
77	Stress and the Commensal Microbiota: Importance in Parturition and Infant Neurodevelopment. Frontiers in Psychiatry, 2015, 6, 5.	2.6	53
78	Microbiota and host determinants of behavioural phenotype in maternally separated mice. Nature Communications, 2015, 6, 7735.	12.8	372
79	Exacerbation of autoimmune neuroinflammation by dietary sodium is genetically controlled and sex specific. FASEB Journal, 2015, 29, 3446-3457.	0.5	59
80	MIR137: big impacts from small changes. Nature Neuroscience, 2015, 18, 931-933.	14.8	4
81	Go with your gut: microbiota meet microglia. Nature Neuroscience, 2015, 18, 930-931.	14.8	34
82	Microbes & amp; neurodevelopment – Absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala. Brain, Behavior, and Immunity, 2015, 50, 209-220.	4.1	210
83	Loss of T cells influences sex differences in behavior and brain structure. Brain, Behavior, and Immunity, 2015, 46, 249-260.	4.1	33
84	Epigenetic and transgenerational reprogramming of brain development. Nature Reviews Neuroscience, 2015, 16, 332-344.	10.2	398
85	A novel role for maternal stress and microbial transmission in early life programming and neurodevelopment. Neurobiology of Stress, 2015, 1, 81-88.	4.0	120
86	Control of Brain Development, Function, and Behavior by the Microbiome. Cell Host and Microbe, 2015, 17, 565-576.	11.0	815
87	Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behavioural Brain Research, 2015, 287, 59-72.	2.2	296
88	Microbiome Disturbances and Autism Spectrum Disorders. Drug Metabolism and Disposition, 2015, 43, 1557-1571.	3.3	191
89	The gut microbiome and diet in psychiatry. Current Opinion in Psychiatry, 2015, 28, 1-6.	6.3	301
90	Microbiota Regulation of the Mammalian Gut–Brain Axis. Advances in Applied Microbiology, 2015, 91, 1-62.	2.4	207
91	The intestinal microbiome and skeletal fitness: Connecting bugs and bones. Clinical Immunology, 2015, 159, 163-169.	3.2	55
92	Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell, 2015, 161, 264-276.	28.9	2,423

#	Article	IF	CITATIONS
93	Tuning the Brain-Gut Axis in Health and Disease. Current Stem Cell Reports, 2015, 1, 60-66.	1.6	0
94	Gut Microbiota: The Conductor in the Orchestra of Immune–Neuroendocrine Communication. Clinical Therapeutics, 2015, 37, 954-967.	2.5	163
95	Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain, Behavior, and Immunity, 2015, 48, 165-173.	4.1	572
96	Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience, 2015, 310, 561-577.	2.3	507
97	Use of the second-generation antipsychotic, risperidone, and secondary weight gain are associated with an altered gut microbiota in children. Translational Psychiatry, 2015, 5, e652-e652.	4.8	154
98	Microbes on the mind. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9143-9145.	7.1	12
99	Eco-Evo-Devo: developmental symbiosis and developmental plasticity as evolutionary agents. Nature Reviews Genetics, 2015, 16, 611-622.	16.3	281
100	Gut brain axis: diet microbiota interactions and implications for modulation of anxiety and depression. Current Opinion in Biotechnology, 2015, 32, 35-41.	6.6	240
101	Adding fuel to the fire: the impact of stress on the ageing brain. Trends in Neurosciences, 2015, 38, 13-25.	8.6	107
102	Faster, better, stronger: Towards new antidepressant therapeutic strategies. European Journal of Pharmacology, 2015, 753, 32-50.	3.5	77
103	Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural Brain Research, 2015, 277, 32-48.	2.2	1,320
104	Autoimmune diseases, gastrointestinal disorders and the microbiome in schizophrenia: more than a gut feeling. Schizophrenia Research, 2016, 176, 23-35.	2.0	188
105	Consequences of Gut Dysbiosis on the Human Brain. , 0, , .		1
106	17. Mechanismen der Mikrobiom-Darm-Gehirn- Interaktion und Implikationen f $\tilde{A}^{1}\!\!/\!\!4$ r psychische Krankheiten. , 2016, , 245-260.		0
107	Germ-Free Animals. , 2016, , 109-140.		1
108	Gut Microbiota-brain Axis. Chinese Medical Journal, 2016, 129, 2373-2380.	2.3	301
109	Xenobiotic Receptor-Mediated Regulation of Intestinal Barrier Function and Innate Immunity. Nuclear Receptor Research, $2016, 3, .$	2.5	32
110	Altering the Gut Microbiome for Cognitive Benefit?. , 2016, , 319-337.		3

#	Article	IF	CITATIONS
111	Mental Health Disorders Associated with Foodborne Pathogens. Journal of Food Protection, 2016, 79, 2005-2017.	1.7	17
112	Importance of the Microbiota in Early Life and Influence on Future Health., 2016,, 159-184.		5
113	A Review of Fermented Foods with Beneficial Effects on Brain and Cognitive Function. Preventive Nutrition and Food Science, 2016, 21, 297-309.	1.6	81
114	Gastrointestinal disorders associated with migraine: A comprehensive review. World Journal of Gastroenterology, 2016, 22, 8149.	3.3	107
115	Probiotics as an Adjuvant Therapy in Major Depressive Disorder. Current Neuropharmacology, 2016, 14, 952-958.	2.9	44
116	Neuroprotection. , 2016, , 258-275.		0
117	Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases. Journal of Neurogastroenterology and Motility, 2016, 22, 201-212.	2.4	197
118	The Influence of Diet and the Gut Microbiota in Schizophrenia. , 2016, , 339-362.		1
119	The Hypothalamic-Pituitary-Adrenal Axis and Gut Microbiota., 2016,, 293-304.		9
120	Gut microbiota in autism and mood disorders. World Journal of Gastroenterology, 2016, 22, 361.	3.3	300
121	Gut Microbiota: The Brain Peacekeeper. Frontiers in Microbiology, 2016, 7, 345.	3.5	140
122	Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients, 2016, 8, 56.	4.1	527
123	Association between Polycystic Ovary Syndrome and Gut Microbiota. PLoS ONE, 2016, 11, e0153196.	2.5	215
124	Adult microbiotaâ€deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus. European Journal of Neuroscience, 2016, 44, 2654-2666.	2.6	263
125	A gut (microbiome) feeling about the brain. Current Opinion in Gastroenterology, 2016, 32, 96-102.	2.3	150
126	Obesity and overweight: Impact on maternal and milk microbiome and their role for infant health and nutrition. Molecular Nutrition and Food Research, 2016, 60, 1865-1875.	3.3	53
127	Modulating adult neurogenesis through dietary interventions. Nutrition Research Reviews, 2016, 29, 163-171.	4.1	23
128	"WHAT'S BUGGING THE GUT IN OCD?―A REVIEW OF THE GUT MICROBIOME IN OBSESSIVE-COMPULSIVE DISORDER. Depression and Anxiety, 2016, 33, 171-178.	4.1	60

#	Article	IF	CITATIONS
129	Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease. Cell, 2016, 167, 1469-1480.e12.	28.9	2,399
130	Olfactory epithelium changes in germfree mice. Scientific Reports, 2016, 6, 24687.	3.3	49
131	Sepsis in preterm infants causes alterations in mucosal gene expression and microbiota profiles compared to non-septic twins. Scientific Reports, 2016, 6, 25497.	3.3	38
132	The Gastrointestinal Microbiome. , 2016, , 126-137.		1
133	Exercise-induced stress behavior, gut-microbiota-brain axis and diet: a systematic review for athletes. Journal of the International Society of Sports Nutrition, 2016, 13, 43.	3.9	338
134	Irritable Bowel Syndrome: Pathophysiology and Current Therapeutic Approaches. Handbook of Experimental Pharmacology, 2016, 239, 75-113.	1.8	25
136	Neuropeptides, Microbiota, and Behavior. International Review of Neurobiology, 2016, 131, 67-89.	2.0	41
137	Exercise and Prebiotics Produce Stress Resistance. International Review of Neurobiology, 2016, 131, 165-191.	2.0	9
138	Probiotic modulation of the microbiota-gut-brain axis and behaviour in zebrafish. Scientific Reports, 2016, 6, 30046.	3.3	165
139	Impact of the gut microbiota on the neuroendocrine and behavioural responses to stress in rodents. OCL - Oilseeds and Fats, Crops and Lipids, 2016, 23, D116.	1.4	6
140	Regulation of prefrontal cortex myelination by the microbiota. Translational Psychiatry, 2016, 6, e774-e774.	4.8	459
141	Fetal, neonatal, and infant microbiome: Perturbations and subsequent effects on brain development and behavior. Seminars in Fetal and Neonatal Medicine, 2016, 21, 410-417.	2.3	152
142	Alteration of behavior and monoamine levels attributable to Lactobacillus plantarum PS128 in germ-free mice. Behavioural Brain Research, 2016, 298, 202-209.	2.2	189
143	Prolonged maternal separation induces undernutrition and systemic inflammation with disrupted hippocampal development in mice. Nutrition, 2016, 32, 1019-1027.	2.4	28
144	Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the hostâ \in^{TM} s metabolism. Molecular Psychiatry, 2016, 21, 786-796.	7.9	1,397
145	From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Molecular Psychiatry, 2016, 21, 738-748.	7.9	683
146	Reframing the Teenage Wasteland: Adolescent Microbiota-Gut-Brain Axis. Canadian Journal of Psychiatry, 2016, 61, 214-221.	1.9	41
147	Early-life enteric infections: relation between chronic systemic inflammation and poor cognition in children. Nutrition Reviews, 2016, 74, 374-386.	5.8	73

#	Article	IF	CITATIONS
148	Microbiome in brain function and mental health. Trends in Food Science and Technology, 2016, 57, 289-301.	15.1	39
149	The Brain-Gut-Microbiome Axis: What Role Does it Play in Autism Spectrum Disorder?. Current Developmental Disorders Reports, 2016, 3, 75-81.	2.1	48
150	Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat. Neuroscience, 2016, 339, 463-477.	2.3	196
151	Immune-to-Brain Communication Pathways in Inflammation-Associated Sickness and Depression. Current Topics in Behavioral Neurosciences, 2016, 31, 73-94.	1.7	136
152	Impact of maternal nutrition in pregnancy and lactation on offspring gut microbial composition and function. Gut Microbes, 2016, 7, 459-470.	9.8	144
153	Engineering Human Microbiota: Influencing Cellular and Community Dynamics for Therapeutic Applications. International Review of Cell and Molecular Biology, 2016, 324, 67-124.	3.2	12
154	Signals from the gut microbiota to distant organs in physiology and disease. Nature Medicine, 2016, 22, 1079-1089.	30.7	952
155	The Gut Microbiome as Therapeutic Target in Central Nervous System Diseases: Implications for Stroke. Neurotherapeutics, 2016, 13, 762-774.	4.4	89
156	Microbes and the mind: emerging hallmarks of the gut microbiota-brain axis. Cellular Microbiology, 2016, 18, 632-644.	2.1	113
157	Stress and the Microbiota–Gut–Brain Axis in Visceral Pain: Relevance to Irritable Bowel Syndrome. CNS Neuroscience and Therapeutics, 2016, 22, 102-117.	3.9	262
158	The gut microbiota: A treasure for human health. Biotechnology Advances, 2016, 34, 1210-1224.	11.7	158
159	Inulinâ€Type Oligosaccharides Extracted from Yacon Produce Antidepressantâ€Like Effects in Behavioral Models of Depression. Phytotherapy Research, 2016, 30, 1937-1942.	5.8	13
160	Gnotobiotic mouse model's contribution to understanding host–pathogen interactions. Cellular and Molecular Life Sciences, 2016, 73, 3961-3969.	5.4	11
161	The Gut-Brain Axis, BDNF, NMDA and CNS Disorders. Neurochemical Research, 2016, 41, 2819-2835.	3.3	172
162	Alzheimer's disease and gut microbiota. Science China Life Sciences, 2016, 59, 1006-1023.	4.9	254
163	Thinking with your stomach? Gut feelings on microbiome modulation of brain structure and function (Commentary on Luczynski <i>etÂal</i>). European Journal of Neuroscience, 2016, 44, 2652-2653.	2.6	3
164	Interactions between inflammation, sex steroids, and Alzheimer's disease risk factors. Frontiers in Neuroendocrinology, 2016, 43, 60-82.	5.2	81
165	May the Force Be With You: The Light and Dark Sides of the Microbiota–Gut–Brain Axis in Neuropsychiatry. CNS Drugs, 2016, 30, 1019-1041.	5.9	218

#	Article	IF	CITATIONS
166	Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. Journal of Psychiatric Research, 2016, 82, 109-118.	3.1	1,130
167	Gut dysbiosis impairs recovery after spinal cord injury. Journal of Experimental Medicine, 2016, 213, 2603-2620.	8.5	236
168	Microbiota Modulates Behavior and Protein Kinase C mediated cAMP response element-binding protein Signaling. Scientific Reports, 2016, 6, 29998.	3.3	51
169	Structural and functional analogies and differences between histidine decarboxylase and aromatic l-amino acid decarboxylase molecular networks: Biomedical implications. Pharmacological Research, 2016, 114, 90-102.	7.1	5
170	Alterations of the Host Microbiome Affect Behavioral Responses to Cocaine. Scientific Reports, 2016, 6, 35455.	3.3	208
171	Preface. International Review of Neurobiology, 2016, 131, xv-xxiii.	2.0	0
172	The Central Nervous System and the Gut Microbiome. Cell, 2016, 167, 915-932.	28.9	985
173	Gut Microbiome and Behavior. International Review of Neurobiology, 2016, 131, 49-65.	2.0	36
174	The Influence of Prebiotics on Neurobiology and Behavior. International Review of Neurobiology, 2016, 131, 21-48.	2.0	32
175	What's bugging your teen?—The microbiota and adolescent mental health. Neuroscience and Biobehavioral Reviews, 2016, 70, 300-312.	6.1	44
176	Serotonin Activates Bacterial Quorum Sensing and Enhances the Virulence of Pseudomonas aeruginosa in the Host. EBioMedicine, 2016, 9, 161-169.	6.1	86
177	Inflammation and the microbiome: implications for depressive disorders. Current Opinion in Pharmacology, 2016, 29, 42-46.	3.5	30
178	The gut microbiome as a virtual endocrine organ with implications for farm and domestic animal endocrinology. Domestic Animal Endocrinology, 2016, 56, S44-S55.	1.6	42
179	Probiotic supplementation can positively affect anxiety and depressive symptoms: a systematic review of randomized controlled trials. Nutrition Research, 2016, 36, 889-898.	2.9	204
180	Microbial modulation of behavior and stress responses in zebrafish larvae. Behavioural Brain Research, 2016, 311, 219-227.	2.2	113
181	The joint power of sex and stress to modulate brain–gut–microbiota axis and intestinal barrier homeostasis: implications for irritable bowel syndrome. Neurogastroenterology and Motility, 2016, 28, 463-486.	3.0	62
182	The brain's Geppettoâ€"microbes as puppeteers of neural function and behaviour?. Journal of NeuroVirology, 2016, 22, 14-21.	2.1	32
183	Earlyâ€life exercise may promote lasting brain and metabolic health through gut bacterial metabolites. Immunology and Cell Biology, 2016, 94, 151-157.	2.3	42

#	Article	IF	CITATIONS
185	New Trends and Perspectives in the Evolution of Neurotransmitters in Microbial, Plant, and Animal Cells. Advances in Experimental Medicine and Biology, 2016, 874, 25-77.	1.6	96
186	Microbiota-gut-brain signalling in Parkinson's disease: Implications for non-motor symptoms. Parkinsonism and Related Disorders, 2016, 27, 1-8.	2.2	148
187	Stress and the Microbiota-Gut-Brain Axis. Canadian Journal of Psychiatry, 2016, 61, 201-203.	1.9	20
188	Cellular and molecular mechanisms of sexual differentiation in the mammalian nervous system. Frontiers in Neuroendocrinology, 2016, 40, 67-86.	5.2	61
189	Can attention to the intestinal microbiota improve understanding and treatment of anorexia nervosa?. Expert Review of Gastroenterology and Hepatology, 2016, 10, 565-569.	3.0	33
190	Western diet-induced anxiolytic effects in mice are associated with alterations in tryptophan metabolism. Nutritional Neuroscience, 2016, 19, 337-345.	3.1	12
191	Sex differences in the gut microbiome–brain axis across the lifespan. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150122.	4.0	211
192	Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior. International Journal of Neuropsychopharmacology, 2016, 19, pyw020.	2.1	419
193	Nonalcoholic Components of Wine and Atherosclerotic Cardiovascular Disease., 2016,, 83-99.		0
194	Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. Brain, Behavior, and Immunity, 2016, 56, 140-155.	4.1	500
195	Gut microbiota impact on stroke outcome: Fad or fact?. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 891-898.	4.3	58
196	The microbiome: A key regulator of stress and neuroinflammation. Neurobiology of Stress, 2016, 4, 23-33.	4.0	399
197	Brain-gut-microbiota axis: challenges for translation in psychiatry. Annals of Epidemiology, 2016, 26, 366-372.	1.9	157
198	Gut microbiota regulates key modulators of social behavior. European Neuropsychopharmacology, 2016, 26, 78-91.	0.7	59
199	Microbiome to Brain: Unravelling the Multidirectional Axes of Communication. Advances in Experimental Medicine and Biology, 2016, 874, 301-336.	1.6	50
201	Structural & Struc	2.7	247
202	Regulation of body fat mass by the gut microbiota: Possible mediation by the brain. Peptides, 2016, 77, 54-59.	2.4	20
203	Early-life adversity and brain development: Is the microbiome a missing piece of the puzzle?. Neuroscience, 2017, 342, 37-54.	2.3	155

#	Article	IF	CITATIONS
204	Microbes, Immunity, and Behavior: Psychoneuroimmunology Meets the Microbiome. Neuropsychopharmacology, 2017, 42, 178-192.	5.4	174
205	Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology, 2017, 112, 399-412.	4.1	424
206	Effects of gut microbiota on the microRNA and mRNA expression in the hippocampus of mice. Behavioural Brain Research, 2017, 322, 34-41.	2.2	77
207	The mucosal immune system: master regulator of bidirectional gut–brain communications. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 143-159.	17.8	256
208	Mechanism of development of depression and probiotics as adjuvant therapy for its prevention and management. Mental Health and Prevention, 2017, 5, 40-51.	1.3	18
209	Food matters: how the microbiome and gut–brain interaction might impact the development and course of anorexia nervosa. European Child and Adolescent Psychiatry, 2017, 26, 1031-1041.	4.7	91
210	Microbes and mental health: A review. Brain, Behavior, and Immunity, 2017, 66, 9-17.	4.1	314
211	Human intestinal microbiota: Role in development and functioning of the nervous system. Microbiology, 2017, 86, 1-18.	1.2	30
212	Untargeted metabolomics of colonic digests reveals kynurenine pathway metabolites, dityrosine and 3-dehydroxycarnitine as red versus white meat discriminating metabolites. Scientific Reports, 2017, 7, 42514.	3.3	71
213	Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice. Biological Psychiatry, 2017, 82, 472-487.	1.3	661
215	A psychology of the human brain–gut–microbiome axis. Social and Personality Psychology Compass, 2017, 11, e12309.	3.7	121
216	Gastrointestinal Pharmacology. Handbook of Experimental Pharmacology, 2017, , .	1.8	13
217	The influence of a probiotic supplementation on memory in quail suggests a role of gut microbiota on cognitive abilities in birds. Behavioural Brain Research, 2017, 331, 47-53.	2.2	38
218	Involvement of a gut–retina axis in protection against dietary glycemia-induced age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4472-E4481.	7.1	179
219	The Microbiota, the Gut and the Brain in Eating and Alcohol Use Disorders: A  Ménage à Trois'?. Alcohol and Alcoholism, 2017, 52, 403-413.	1.6	66
220	The Human Microbiome and Understanding the 16S rRNA Gene in Translational Nursing Science. Nursing Research, 2017, 66, 184-197.	1.7	30
221	The Microbiome in Neurogastroenterology. , 2017, , 53-70.		0
222	Early-Life Sugar Consumption Affects the Rat Microbiome Independently of Obesity. Journal of Nutrition, 2017, 147, 20-28.	2.9	93

#	Article	IF	CITATIONS
223	Review paper. Gluten-related disorders and schizophrenia - potential linking mechanisms, diagnostic and therapeutic challenge. Current Problems of Psychiatry, 2017, 18, 9-24.	0.2	3
224	Application of 1 H NMR spectroscopy to the metabolic phenotyping of rodent brain extracts: A metabonomic study of gut microbial influence on host brain metabolism. Journal of Pharmaceutical and Biomedical Analysis, 2017, 143, 141-146.	2.8	24
225	Feeding Systems and the Gut Microbiome: Gut-Brain Interactions With Relevance to Psychiatric Conditions. Psychosomatics, 2017, 58, 574-580.	2.5	21
226	Microbiota in Neuropsychiatry, Part 3. Holistic Nursing Practice, 2017, 31, 270-273.	0.7	4
227	Stress & Stress amp; the gut-brain axis: Regulation by the microbiome. Neurobiology of Stress, 2017, 7, 124-136.	4.0	736
228	The gut microbiota as a key regulator of visceral pain. Pain, 2017, 158, S19-S28.	4.2	63
229	The Gut Microbiota and Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 58, 1-15.	2.6	624
230	Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nature Communications, 2017, 8, 15062.	12.8	329
231	Intervention strategies for cesarean section–induced alterations in the microbiota-gut-brain axis. Nutrition Reviews, 2017, 75, 225-240.	5.8	73
233	Gut-Brain Axis and Behavior. Nestle Nutrition Institute Workshop Series, 2017, 88, 45-54.	0.1	47
234	Gut microbiota and attention deficit hyperactivity disorder: new perspectives for a challenging condition. European Child and Adolescent Psychiatry, 2017, 26, 1081-1092.	4.7	108
235	The Microbiome and Host Behavior. Annual Review of Neuroscience, 2017, 40, 21-49.	10.7	394
236	The Host Microbiome Regulates and Maintains Human Health: A Primer and Perspective for Non-Microbiologists. Cancer Research, 2017, 77, 1783-1812.	0.9	270
237	Prenatal stress affects placental cytokines and neurotrophins, commensal microbes, and anxiety-like behavior in adult female offspring. Brain, Behavior, and Immunity, 2017, 64, 50-58.	4.1	144
238	The Role of the Gastrointestinal Microbiota in Visceral Pain. Handbook of Experimental Pharmacology, 2017, 239, 269-287.	1.8	47
239	Brain–gut–microbiota axis — mood, metabolism and behaviour. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 69-70.	17.8	252
240	The Brain-Gut Axis Contributes to Neuroprogression in Stress-Related Disorders. Modern Problems of Pharmacopsychiatry, 2017, 31, 152-161.	2.5	17
241	Nutritional psychiatry: the present state of the evidence. Proceedings of the Nutrition Society, 2017, 76, 427-436.	1.0	229

#	Article	IF	CITATIONS
242	You Need Guts to Make New Neurons. Current Behavioral Neuroscience Reports, 2017, 4, 353-360.	1.3	1
243	Postinfection Irritable Bowel Syndrome. Journal of Clinical Gastroenterology, 2017, 51, 869-877.	2.2	31
244	Microbial colonization is required for normal neurobehavioral development in zebrafish. Scientific Reports, 2017, 7, 11244.	3.3	91
245	The Role of the Indigenous Gut Microbiota in Human Health and Disease. Advances in Environmental Microbiology, 2017, , 75-104.	0.3	1
246	Role of Gut Microbiome in Neuromodulation. , 2017, , 105-122.		1
247	Innovative biomarkers in psychiatric disorders: a major clinical challenge in psychiatry. Expert Review of Proteomics, 2017, 14, 809-824.	3.0	36
248	Microbial regulation of hippocampal miRNA expression: Implications for transcription of kynurenine pathway enzymes. Behavioural Brain Research, 2017, 334, 50-54.	2.2	44
249	With a Little Help from My Friends: Microbial Partners in Integrative and Comparative Biologyâ€"An Introduction to the Symposium. Integrative and Comparative Biology, 2017, 57, 669-673.	2.0	0
250	Close association between intestinal microbiota and irritable bowel syndrome. European Journal of Clinical Microbiology and Infectious Diseases, 2017, 36, 2303-2317.	2.9	16
251	Animal inflammation-based models of depression and their application to drug discovery. Expert Opinion on Drug Discovery, 2017, 12, 995-1009.	5.0	57
252	Neuroendocrine disruption in animal models due to exposure to bisphenol A analogues. Frontiers in Neuroendocrinology, 2017, 47, 123-133.	5.2	85
253	Gut microbiota and body composition in anorexia nervosa inpatients in comparison to athletes, overweight, obese, and normal weight controls. International Journal of Eating Disorders, 2017, 50, 1421-1431.	4.0	119
254	Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cellular and Molecular Life Sciences, 2017, 74, 3769-3787.	5.4	362
255	Microbiota-Gut-Brain Axis, Part 1. Holistic Nursing Practice, 2017, 31, 133-136.	0.7	5
256	Anxiogenic effects of a Lactobacillus, inulin and the synbiotic on healthy juvenile rats. Neuroscience, 2017, 359, 18-29.	2.3	28
257	The Microbiome in Posttraumatic Stress Disorder and Trauma-Exposed Controls: An Exploratory Study. Psychosomatic Medicine, 2017, 79, 936-946.	2.0	153
258	Eating Disorders and the Intestinal Microbiota: Mechanisms of Energy Homeostasis and Behavioral Influence. Current Psychiatry Reports, 2017, 19, 51.	4.5	51
259	Depressed gut? The microbiota-diet-inflammation trialogue in depression. Current Opinion in Psychiatry, 2017, 30, 369-377.	6.3	94

#	Article	IF	CITATIONS
260	Brain Structure and Response to Emotional Stimuli as Related to Gut Microbial Profiles in Healthy Women. Psychosomatic Medicine, 2017, 79, 905-913.	2.0	158
261	The microbiome and disorders of the central nervous system. Pharmacology Biochemistry and Behavior, 2017, 160, 1-13.	2.9	47
262	Gut Dysbiosis and Neurobehavioral Alterations in Rats Exposed to Silver Nanoparticles. Scientific Reports, 2017, 7, 2822.	3.3	91
263	Human Oral Buccal Microbiomes Are Associated with Farmworker Status and Azinphos-Methyl Agricultural Pesticide Exposure. Applied and Environmental Microbiology, 2017, 83, .	3.1	33
264	The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior. Molecular Psychiatry, 2017, 22, 257-266.	7.9	208
265	A new pathway for the gut microbiota to modulate the brain: activation of pattern-recognition receptors by microbial products. Molecular Psychiatry, 2017, 22, 162-163.	7.9	9
266	Probiotics and Subclinical Psychological Symptoms in Healthy Participants: A Systematic Review and Meta-Analysis. Journal of Alternative and Complementary Medicine, 2017, 23, 249-258.	2.1	87
267	Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Translational Research, 2017, 179, 223-244.	5.0	351
268	Communicating systems in the body: how microbiota and microglia cooperate. Immunology, 2017, 150, 7-15.	4.4	130
269	Emerging Roles for the Gut Microbiome in Autism Spectrum Disorder. Biological Psychiatry, 2017, 81, 411-423.	1.3	418
270	Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. Journal of Affective Disorders, 2017, 208, 22-32.	4.1	187
271	Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. Journal of Physiology, 2017, 595, 489-503.	2.9	520
272	Food-grade cationic antimicrobial $\hat{l}\mu$ -polylysine transiently alters the gut microbial community and predicted metagenome function in CD-1 mice. Npj Science of Food, 2017, 1, 8.	5.5	31
273	The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health1,2. Journal of Animal Science, 2017, 95, 3225-3246.	0.5	84
274	Dietary capsaicin and antibiotics act synergistically to reduce non-alcoholic fatty liver disease induced by high fat diet in mice. Oncotarget, 2017, 8, 38161-38175.	1.8	21
276	Behavioral Changes in Mice Lacking Interleukin-33. ENeuro, 2017, 4, ENEURO.0147-17.2017.	1.9	25
278	The role of microbiota in the pathogenesis of schizophrenia and major depressive disorder and the possibility of targeting microbiota as a treatment option. Oncotarget, 2017, 8, 100899-100907.	1.8	47
279	The Role of the Brain–Gut–Microbiome in Mental Health and Mental Disorders. , 2017, , 389-397.		0

#	Article	IF	CITATIONS
280	Insight into role of microbiota-gut-brain peptides as a target for biotechnology innovations. Frontiers in Bioscience - Elite, 2017, 9, 76-88.	1.8	4
281	The Gut Microbiome Feelings of the Brain: A Perspective for Non-Microbiologists. Microorganisms, 2017, 5, 66.	3.6	71
282	Parental and Early Developmental Stress Impact on Neurodevelopmental and Neuropsychiatric Disorders., 2017,, 117-132.		0
283	The Gut Microbiota and Autism Spectrum Disorders. Frontiers in Cellular Neuroscience, 2017, 11, 120.	3.7	311
284	A Review of the Benefits of Nature Experiences: More Than Meets the Eye. International Journal of Environmental Research and Public Health, 2017, 14, 864.	2.6	212
285	Gut–CNS-Axis as Possibility to Modulate Inflammatory Disease Activity—Implications for Multiple Sclerosis. International Journal of Molecular Sciences, 2017, 18, 1526.	4.1	37
286	Gut Dysbiosis in Animals Due to Environmental Chemical Exposures. Frontiers in Cellular and Infection Microbiology, 2017, 7, 396.	3.9	166
287	Exploring the Association between Alzheimer's Disease, Oral Health, Microbial Endocrinology and Nutrition. Frontiers in Aging Neuroscience, 2017, 9, 398.	3.4	76
288	Gut Microbiota: A Potential Regulator of Neurodevelopment. Frontiers in Cellular Neuroscience, 2017, 11, 25.	3.7	120
289	Cross Talk: The Microbiota and Neurodevelopmental Disorders. Frontiers in Neuroscience, 2017, 11, 490.	2.8	194
290	Microbiome–Gut–Brain Axis: A Pathway for Improving Brainstem Serotonin Homeostasis and Successful Autoresuscitation in SIDS—A Novel Hypothesis. Frontiers in Pediatrics, 2016, 4, 136.	1.9	7
291	Epigenetic Matters: The Link between Early Nutrition, Microbiome, and Long-term Health Development. Frontiers in Pediatrics, 2017, 5, 178.	1.9	170
292	Microbiota regulates visceral pain in the mouse. ELife, 2017, 6, .	6.0	117
293	Microbiome. , 2017, , 569-583.		9
294	The Gut-Brain Axis in Healthy Females: Lack of Significant Association between Microbial Composition and Diversity with Psychiatric Measures. PLoS ONE, 2017, 12, e0170208.	2.5	41
295	Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biology, 2017, 15, e2000862.	5.6	251
296	The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLoS ONE, 2017, 12, e0178426.	2.5	175
297	Microbial regulation of microRNA expression in the amygdala and prefrontal cortex. Microbiome, 2017, 5, 102.	11.1	133

#	Article	IF	CITATIONS
298	Intestinal microbiota, metabolome and gender dimorphism in autism spectrum disorders. Research in Autism Spectrum Disorders, 2018, 49, 65-74.	1.5	10
299	Human Gut Microbiota in Health and Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 62, 549-560.	2.6	63
300	Simultaneous determination of tryptophan and its 31 catabolites in mouse tissues by polarity switching UHPLC-SRM-MS. Analytica Chimica Acta, 2018, 1037, 200-210.	5.4	27
301	Gut Microbes and Health: A Focus on the Mechanisms Linking Microbes, Obesity, and Related Disorders. Obesity, 2018, 26, 792-800.	3.0	141
302	The Brain-Gut-Microbiome Axis. Cellular and Molecular Gastroenterology and Hepatology, 2018, 6, 133-148.	4.5	735
303	Effect of nisin on microbiome-brain-gut axis neurochemicals by Escherichia coli -induced diarrhea in mice. Microbial Pathogenesis, 2018, 119, 65-71.	2.9	30
304	Perinatal selective serotonin reuptake inhibitor (SSRI) effects on body weight at birth and beyond: A review of animal and human studies. Reproductive Toxicology, 2018, 77, 109-121.	2.9	27
305	Gut microbiome and depression: what we know and what we need to know. Reviews in the Neurosciences, 2018, 29, 629-643.	2.9	219
306	Gut Microbiota and the Neuroendocrine System. Neurotherapeutics, 2018, 15, 5-22.	4.4	295
307	Microbiota Signaling Pathways that Influence Neurologic Disease. Neurotherapeutics, 2018, 15, 135-145.	4.4	127
308	Searching for the gut microbial contributing factors to social behavior in rodent models of autism spectrum disorder. Developmental Neurobiology, 2018, 78, 474-499.	3.0	45
309	The vagus nerve modulates BDNF expression and neurogenesis in the hippocampus. European Neuropsychopharmacology, 2018, 28, 307-316.	0.7	86
310	Overview and systematic review of studies of microbiome in schizophrenia and bipolar disorder. Journal of Psychiatric Research, 2018, 99, 50-61.	3.1	151
312	Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes. Journal of Vascular Surgery, 2018, 68, 1552-1562.e7.	1.1	105
313	Use of Proton Pump Inhibitors and Risk of Major Depressive Disorder: A Nationwide Population-Based Study. Psychotherapy and Psychosomatics, 2018, 87, 62-64.	8.8	21
314	A Brief Guide to Studying Fear in Developing Rodents: Important Considerations and Common Pitfalls.	2.6	10
	Current Protocols in Neuroscience, 2018, 83, e44.		
315	Current Protocols in Neuroscience, 2018, 83, e44. Alcohol, microbiome, and their effect on psychiatric disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 85, 105-115.	4.8	61

#	Article	IF	CITATIONS
317	Relationship between diet, the gut microbiota, and brain function. Nutrition Reviews, 2018, 76, 603-617.	5.8	47
318	A systematic review of studies on the faecal microbiota in anorexia nervosa: future research may need to include microbiota from the small intestine. Eating and Weight Disorders, 2018, 23, 399-418.	2.5	33
319	Interactions Between Stress and Sex in Microbial Responses Within the Microbiota-Gut-Brain Axis in a Mouse Model. Psychosomatic Medicine, 2018, 80, 361-369.	2.0	23
320	The microbiome regulates amygdala-dependent fear recall. Molecular Psychiatry, 2018, 23, 1134-1144.	7.9	146
321	The microbiome-gut-brain axis: implications for schizophrenia and antipsychotic induced weight gain. European Archives of Psychiatry and Clinical Neuroscience, 2018, 268, 3-15.	3.2	67
323	Infant Gut Microbiome Associated With CognitiveÂDevelopment. Biological Psychiatry, 2018, 83, 148-159.	1.3	362
324	Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cellular and Molecular Life Sciences, 2018, 75, 129-148.	5 . 4	190
325	Inflammatory Mediators in Mood Disorders: Therapeutic Opportunities. Annual Review of Pharmacology and Toxicology, 2018, 58, 411-428.	9.4	82
326	Sex-dependent alterations in motor and anxiety-like behavior of aged bacterial peptidoglycan sensing molecule 2 knockout mice. Brain, Behavior, and Immunity, 2018, 67, 345-354.	4.1	35
327	Effects of obesity on depression: A role for inflammation and the gut microbiota. Brain, Behavior, and Immunity, 2018, 69, 1-8.	4.1	148
328	Harnessing Gut Microbes for Mental Health: Getting From Here to There. Biological Psychiatry, 2018, 83, 214-223.	1.3	129
329	Intestinal microbiome-gut-brain axis and irritable bowel syndrome. Wiener Medizinische Wochenschrift, 2018, 168, 62-66.	1.1	63
330	The microbiota influences cell death and microglial colonization in the perinatal mouse brain. Brain, Behavior, and Immunity, 2018, 67, 218-229.	4.1	54
331	Gut Microbiota Are Disease-Modifying Factors After Traumatic Spinal Cord Injury. Neurotherapeutics, 2018, 15, 60-67.	4.4	91
332	Poor cognitive ageing: Vulnerabilities, mechanisms and the impact of nutritional interventions. Ageing Research Reviews, 2018, 42, 40-55.	10.9	136
333	Finding the needle in the haystack: systematic identification of psychobiotics. British Journal of Pharmacology, 2018, 175, 4430-4438.	5.4	79
334	Neuromicrobiology: How Microbes Influence the Brain. ACS Chemical Neuroscience, 2018, 9, 141-150.	3. 5	50
335	Gutsy Moves: The Amygdala as a Critical Node in Microbiota to Brain Signaling. BioEssays, 2018, 40, 1700172.	2.5	80

#	Article	IF	CITATIONS
336	Serotonin: A mediator of the gut–brain axis in multiple sclerosis. Multiple Sclerosis Journal, 2018, 24, 1144-1150.	3.0	43
337	Anxiety, Depression, and the Microbiome: A Role for Gut Peptides. Neurotherapeutics, 2018, 15, 36-59.	4.4	358
338	The Gut Microbiome and Mental Health: Implications for Anxiety- and Trauma-Related Disorders. OMICS A Journal of Integrative Biology, 2018, 22, 90-107.	2.0	110
339	Recent developments in understanding the role of the gut microbiota in brain health and disease. Annals of the New York Academy of Sciences, 2018, 1420, 5-25.	3.8	227
340	Without a bug's life: Germ-free rodents to interrogate microbiota-gut-neuroimmune interactions. Drug Discovery Today: Disease Models, 2018, 28, 79-93.	1.2	14
341	Neurodevelopment, Intestinal Function, and Autism. Neonatal and Pediatric Medicine, 2018, 04, .	0.1	0
342	Leveraging translational neuroscience to inform early intervention and addiction prevention for children exposed to early life stress. Neurobiology of Stress, 2018, 9, 231-240.	4.0	15
343	Investigating Sex-Specific Characteristics of Nicotine Addiction Using Metabolic and Structural Magnetic Resonance Imaging. European Addiction Research, 2018, 24, 267-277.	2.4	6
344	The Role of Microbiome in Insomnia, Circadian Disturbance and Depression. Frontiers in Psychiatry, 2018, 9, 669.	2.6	155
345	Outside in: Unraveling the Role of Neuroinflammation in the Progression of Parkinson's Disease. Frontiers in Neurology, 2018, 9, 860.	2.4	130
346	Microorganisms' Footprint in Neurodegenerative Diseases. Frontiers in Cellular Neuroscience, 2018, 12, 466.	3.7	42
347	Ketamine interactions with gut-microbiota in rats: relevance to its antidepressant and anti-inflammatory properties. BMC Microbiology, 2018, 18, 222.	3.3	82
348	Bidirectional gut-brain-microbiota axis as a potential link between inflammatory bowel disease and ischemic stroke. Journal of Neuroinflammation, 2018, 15, 339.	7.2	82
349	What Is Your Gut Telling You? Exploring the Role of the Microbiome in Gut–Brain Signaling. Environmental Health Perspectives, 2018, 126, 062001.	6.0	1
350	Microbiota and Aging. Advances in Experimental Medicine and Biology, 2018, 1086, 141-156.	1.6	9
351	Revisiting Inbred Mouse Models to Study the Developing Brain: The Potential Role of Intestinal Microbiota. Frontiers in Human Neuroscience, 2018, 12, 358.	2.0	7
352	The Gut Microbiota and Dysbiosis in Autism Spectrum Disorders. Current Neurology and Neuroscience Reports, 2018, 18, 81.	4.2	155
353	The combined effects of yogurt and exercise in healthy adults: Implications for biomarkers of depression and cardiovascular diseases. Food Science and Nutrition, 2018, 6, 1968-1974.	3.4	7

#	Article	IF	CITATIONS
354	Do Obese Bacteria Make us "Want them� Intestinal Microbiota, Mesocorticolimbic Circuit and Non-Homeostatic Feeding. Current Behavioral Neuroscience Reports, 2018, 5, 211-217.	1.3	3
355	Metabolic and Microbiota Measures as Peripheral Biomarkers in Major Depressive Disorder. Frontiers in Psychiatry, 2018, 9, 513.	2.6	29
356	Defining Dysbiosis in Disorders of Movement and Motivation. Journal of Neuroscience, 2018, 38, 9414-9422.	3.6	17
357	Leaky Gut, Leaky Brain?. Microorganisms, 2018, 6, 107.	3.6	153
358	Le microbiote intestinal gouverne-t-il notre cerveauÂ?. Annales Medico-Psychologiques, 2018, 176, 824-830.	0.4	0
359	Immobilization stress-induced Escherichia coli causes anxiety by inducing NF-κB activation through gut microbiota disturbance. Scientific Reports, 2018, 8, 13897.	3.3	84
360	Aging and Aging-Related Diseases. Advances in Experimental Medicine and Biology, 2018, , .	1.6	15
361	Neuropsychiatric Disorders: Influence of Gut Microbe to Brain Signalling. Diseases (Basel,) Tj ETQq1 1 0.784314	rgBT_/Ove	logk 10 Tf 5
362	Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus. Translational Psychiatry, 2018, 8, 187.	4.8	174
363	A Microbial Signature of Psychological Distress in Irritable Bowel Syndrome. Psychosomatic Medicine, 2018, 80, 698-709.	2.0	75
364	The Neuroendocrinology of the Microbiota-Gut-Brain Axis: A Behavioural Perspective. Frontiers in Neuroendocrinology, 2018, 51, 80-101.	5.2	218
365	Emerging literature in the Microbiota-Brain Axis and Perinatal Mood and Anxiety Disorders. Psychoneuroendocrinology, 2018, 95, 86-96.	2.7	54
366	Drug-Abuse Nanotechnology: Opportunities and Challenges. ACS Chemical Neuroscience, 2018, 9, 2288-2298.	3.5	7
367	Infant colic: mechanisms and management. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 479-496.	17.8	81
368	The gut microbiota and the brain–gut–kidney axis in hypertension and chronic kidney disease. Nature Reviews Nephrology, 2018, 14, 442-456.	9.6	413
369	Gut Dysbiosis and Muscle Aging: Searching for Novel Targets against Sarcopenia. Mediators of Inflammation, 2018, 2018, 1-15.	3.0	104
370	Social interaction-induced activation of RNA splicing in the amygdala of microbiome-deficient mice. ELife, 2018, 7, .	6.0	73
371	Nanotechnological approaches to colon-specific drug delivery for modulating the quorum sensing of gut-associated pathogens., 2018,, 325-377.		1

#	Article	IF	CITATIONS
373	Sex differences in gut microbiota in patients with major depressive disorder. Neuropsychiatric Disease and Treatment, 2018, Volume 14, 647-655.	2.2	193
374	Enteric Microbiota–Gut–Brain Axis from the Perspective of Nuclear Receptors. International Journal of Molecular Sciences, 2018, 19, 2210.	4.1	21
375	Gut Microbes: The Miniscule Laborers in the Human Body. , 2018, , 1-31.		1
376	Interplay Between Peripheral and Central Inflammation in Autism Spectrum Disorders: Possible Nutritional and Therapeutic Strategies. Frontiers in Physiology, 2018, 9, 184.	2.8	48
377	Absence of Gut Microbiota Reduces Emotional Reactivity in Japanese Quails (Coturnix japonica). Frontiers in Physiology, 2018, 9, 603.	2.8	25
378	Gut–Brain Axis and Mood Disorder. Frontiers in Psychiatry, 2018, 9, 223.	2.6	74
379	Microbiome and Diseases: Neurological Disorders. , 2018, , 295-310.		3
380	Pharmacological Effects and Regulatory Mechanisms of Tobacco Smoking Effects on Food Intake and Weight Control. Journal of NeuroImmune Pharmacology, 2018, 13, 453-466.	4.1	20
381	The Drosophila microbiome has a limited influence on sleep, activity, and courtship behaviors. Scientific Reports, 2018, 8, 10646.	3.3	39
382	Gut microbiota, dietary intakes and intestinal permeability reflected by serum zonulin in women. European Journal of Nutrition, 2018, 57, 2985-2997.	3.9	106
383	Microbiota influence the development of the brain and behaviors in C57BL/6J mice. PLoS ONE, 2018, 13, e0201829.	2.5	107
384	Of Microbes and Minds: A Narrative Review on the Second Brain Aging. Frontiers in Medicine, 2018, 5, 53.	2.6	71
385	Interplay Between the Gut-Brain Axis, Obesity and Cognitive Function. Frontiers in Neuroscience, 2018, 12, 155.	2.8	185
386	Indole, a Signaling Molecule Produced by the Gut Microbiota, Negatively Impacts Emotional Behaviors in Rats. Frontiers in Neuroscience, 2018, 12, 216.	2.8	179
387	Early-life sickness may predispose Siberian hamsters to behavioral changes following alterations of the gut microbiome in adulthood. Brain, Behavior, and Immunity, 2018, 73, 571-583.	4.1	12
388	Microbiota affects the expression of genes involved in HPA axis regulation and local metabolism of glucocorticoids in chronic psychosocial stress. Brain, Behavior, and Immunity, 2018, 73, 615-624.	4.1	76
389	The Mycobiome: A Neglected Component in the Microbiota-Gut-Brain Axis. Microorganisms, 2018, 6, 22.	3.6	73
390	Long-Term Diet Supplementation with Lactobacillus paracasei K71 Prevents Age-Related Cognitive Decline in Senescence-Accelerated Mouse Prone 8. Nutrients, 2018, 10, 762.	4.1	46

#	Article	IF	CITATIONS
391	Role of Microbiota and Tryptophan Metabolites in the Remote Effect of Intestinal Inflammation on Brain and Depression. Pharmaceuticals, 2018, 11, 63.	3.8	113
393	Probiotics for the treatment of depressive symptoms: An anti-inflammatory mechanism?. Brain, Behavior, and Immunity, 2018, 73, 115-124.	4.1	90
394	Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. Frontiers in Cellular and Infection Microbiology, 2018, 8, 13.	3.9	770
395	The role of the microbiome for human health: from basic science to clinical applications. European Journal of Nutrition, 2018, 57, 1-14.	3.9	664
396	Transcriptome analysis in whole blood reveals increased microbial diversity in schizophrenia. Translational Psychiatry, 2018, 8, 96.	4.8	92
397	Sex Hormones Determine Immune Response. Frontiers in Immunology, 2018, 9, 1931.	4.8	375
398	The gut microbiome as a driver of individual variation in cognition and functional behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170286.	4.0	98
399	Development of the Pediatric Gut Microbiome: Impact on Health and Disease. American Journal of the Medical Sciences, 2018, 356, 413-423.	1.1	109
400	Postnatal colonization with human "infant-type" Bifidobacterium species alters behavior of adult gnotobiotic mice. PLoS ONE, 2018, 13, e0196510.	2.5	66
401	Evidence for interplay among antibacterial-induced gut microbiota disturbance, neuro-inflammation, and anxiety in mice. Mucosal Immunology, 2018, 11, 1386-1397.	6.0	146
402	The effects of repeated antibiotic administration to juvenile BALB/c mice on the microbiota status and animal behavior at the adult age. Heliyon, 2018, 4, e00644.	3.2	63
403	The Microbiome in Psychology and Cognitive Neuroscience. Trends in Cognitive Sciences, 2018, 22, 611-636.	7.8	148
404	Neurotransmitter modulation by the gut microbiota. Brain Research, 2018, 1693, 128-133.	2.2	808
405	Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host and Microbe, 2018, 23, 716-724.	11.0	1,442
406	Dysbiosis of the Microbiota: Therapeutic Strategies Utilizing Dietary Modification, Pro- and Prebiotics and Fecal Transplant Therapies in Promoting Normal Balance and Local GI Functions., 2018,, 381-419.		3
407	Gut Microbiota in Brain Development and Disorders of the CNS: Therapeutic Strategies Involving Dietary Modification, Pro- and Prebiotic Intervention, and Fecal Microbiota Transplantation (FMT) Therapy., 2018,, 517-594.		0
408	Linking the Gut Microbiota to a Brain Neurotransmitter. Trends in Neurosciences, 2018, 41, 413-414.	8.6	56
409	Earlyâ€life stress leads to sexâ€dependent changes in pubertal timing in rats that are reversed by a probiotic formulation. Developmental Psychobiology, 2019, 61, 679-687.	1.6	47

#	Article	IF	CITATIONS
410	Prenatal stress disrupts social behavior, cortical neurobiology and commensal microbes in adult male offspring. Behavioural Brain Research, 2019, 359, 886-894.	2.2	82
411	Programming Bugs: Microbiota and the Developmental Origins of Brain Health and Disease. Biological Psychiatry, 2019, 85, 150-163.	1.3	146
412	Making Sense of $\hat{a} \in \ \mid$ the Microbiome in Psychiatry. International Journal of Neuropsychopharmacology, 2019, 22, 37-52.	2.1	142
413	Effects of Phytoestrogens on the Developing Brain, Gut Microbiota, and Risk for Neurobehavioral Disorders. Frontiers in Nutrition, 2019, 6, 142.	3.7	29
414	Host Microbiota Regulates Central Nervous System Serotonin Receptor 2C Editing in Rodents. ACS Chemical Neuroscience, 2019, 10, 3953-3960.	3.5	8
415	Dietary Supplementation with Omega-3 Polyunsaturated Fatty Acids Reduces Opioid-Seeking Behaviors and Alters the Gut Microbiome. Nutrients, 2019, 11, 1900.	4.1	28
416	Short chain fatty acids as epigenetic and metabolic regulators of neurocognitive health and disease., 2019,, 381-397.		6
417	Microbiota, the brain and epigenetics. , 2019, , 423-443.		0
418	Association between fecal microbiota and generalized anxiety disorder: Severity and early treatment response. Journal of Affective Disorders, 2019, 259, 56-66.	4.1	127
419	Monocyte mobilisation, microbiota & mental illness. Brain, Behavior, and Immunity, 2019, 81, 74-91.	4.1	35
420	Outcomes of a Multidisciplinary Clinic in Evaluating Recurrent Clostridioides difficile Infection Patients for Fecal Microbiota Transplant: A Retrospective Cohort Analysis. Journal of Clinical Medicine, 2019, 8, 1036.	2.4	10
421	Reply to the Letter to the Editor: Gut microbiota composition is associated with temperament traits in infants. Brain, Behavior, and Immunity, 2019, 81, 671-672.	4.1	1
422	The Role of the Gut-Brain Axis in Attention-Deficit/Hyperactivity Disorder. Gastroenterology Clinics of North America, 2019, 48, 407-431.	2.2	41
423	Stress-induced disturbances along the gut microbiota-immune-brain axis and implications for mental health: Does sex matter?. Frontiers in Neuroendocrinology, 2019, 54, 100772.	5.2	60
424	The microbiome and mental health: Hope or hype?. Journal of Psychiatry and Neuroscience, 2019, 44, 219-222.	2.4	17
425	Nutrigenomics as a Strategy for Neuronal Health. Healthy Ageing and Longevity, 2019, , 167-187.	0.2	1
426	Microorganisms, Tryptophan Metabolism, and Kynurenine Pathway: A Complex Interconnected Loop Influencing Human Health Status. International Journal of Tryptophan Research, 2019, 12, 117864691985299.	2.3	129
427	Mood and Microbes. Gastroenterology Clinics of North America, 2019, 48, 389-405.	2.2	47

#	Article	IF	CITATIONS
428	Can we  seize' the gut microbiota to treat epilepsy?. Neuroscience and Biobehavioral Reviews, 2019, 107, 750-764.	6.1	60
429	Gut Vibes in Parkinson's Disease: The Microbiotaâ€Gutâ€Brain Axis. Movement Disorders Clinical Practice, 2019, 6, 639-651.	1.5	65
430	Focus on the essentials: tryptophan metabolism and the microbiome-gut-brain axis. Current Opinion in Pharmacology, 2019, 48, 137-145.	3. 5	119
431	An infection of Enterobacter ludwigii affects development and causes age-dependent neurodegeneration in Drosophila melanogaster. Invertebrate Neuroscience, 2019, 19, 13.	1.8	11
432	The Gut Microbiota Links Dietary Polyphenols With Management of Psychiatric Mood Disorders. Frontiers in Neuroscience, 2019, 13, 1196.	2.8	61
433	Gut microbiota mediated allostasis prevents stress-induced neuroinflammatory risk factors of Alzheimer's disease. Progress in Molecular Biology and Translational Science, 2019, 168, 147-181.	1.7	21
434	Supplementation of Sesamin Alleviates Stress-Induced Behavioral and Psychological Disorders via Reshaping the Gut Microbiota Structure. Journal of Agricultural and Food Chemistry, 2019, 67, 12441-12451.	5.2	42
435	Microbiota and the social brain. Science, 2019, 366, .	12.6	279
436	The sex-specific interaction of the microbiome in neurodegenerative diseases. Brain Research, 2019, 1724, 146385.	2.2	29
437	The Microbiota-Gut-Brain Axis. Physiological Reviews, 2019, 99, 1877-2013.	28.8	2,304
438	Viral Hormones: Expanding Dimensions in Endocrinology. Endocrinology, 2019, 160, 2165-2179.	2.8	28
439	Global research trends in microbiome-gut-brain axis during 2009–2018: a bibliometric and visualized study. BMC Gastroenterology, 2019, 19, 158.	2.0	45
440	The role of the gut microbiome in mediating neurotoxic outcomes to PCB exposure. NeuroToxicology, 2019, 75, 30-40.	3.0	15
441	The Plasma [Kynurenine]/[Tryptophan] Ratio and Indoleamine 2,3-Dioxygenase: Time for Appraisal. International Journal of Tryptophan Research, 2019, 12, 117864691986897.	2.3	134
442	Tryptophan Dietary Impacts Gut Barrier and Metabolic Diseases. Frontiers in Immunology, 2019, 10, 2113.	4.8	130
443	Gut microbiome in serious mental illnesses: A systematic review and critical evaluation. Schizophrenia Research, 2021, 234, 24-40.	2.0	47
444	Urinary metabolite signature in bipolar disorder patients during depressive episode. Aging, 2019, 11, 1008-1018.	3.1	32
445	Small talk: microbial metabolites involved in the signaling from microbiota to brain. Current Opinion in Pharmacology, 2019, 48, 99-106.	3.5	69

#	Article	IF	CITATIONS
446	The Gut Microbiome Derived From Anorexia Nervosa Patients Impairs Weight Gain and Behavioral Performance in Female Mice. Endocrinology, 2019, 160, 2441-2452.	2.8	72
447	Repeated mild traumatic brain injury affects microbial diversity in rat jejunum. Journal of Biosciences, 2019, 44, 1.	1.1	23
448	Bacterial peptidoglycans as novel signaling molecules from microbiota to brain. Current Opinion in Pharmacology, 2019, 48, 107-113.	3.5	34
449	Geographical location influences the composition of the gut microbiota in wild house mice (Mus) Tj ETQq $1\ 1\ 0.78$	34314 rgB 2.5	T /Qverlock
450	Editorial overview: CNS diseases and the microbiome. Current Opinion in Pharmacology, 2019, 48, x-xii.	3.5	2
451	Microbial regulation of microRNA expression in the brain–gut axis. Current Opinion in Pharmacology, 2019, 48, 120-126.	3.5	16
452	Metabolomics and proteomics as tools to advance the understanding of exercise responses: The emerging role of gut microbiota in athlete health and performance., 2019,, 433-459.		1
453	Absence of gut microbiota affects lipid metabolism in the prefrontal cortex of mice. Neurological Research, 2019, 41, 1104-1112.	1.3	24
454	Eating Disorders: An Evolutionary Psychoneuroimmunological Approach. Frontiers in Psychology, 2019, 10, 2200.	2.1	44
455	Effects of early life NICU stress on the developing gut microbiome. Developmental Psychobiology, 2019, 61, 650-660.	1.6	31
456	Exploration of microbiota targets for major depressive disorder and mood related traits. Journal of Psychiatric Research, 2019, 111, 74-82.	3.1	105
457	The Impact of Starvation on the Microbiome and Gut-Brain Interaction in Anorexia Nervosa. Frontiers in Endocrinology, 2019, 10, 41.	3.5	46
458	Systematic Review of Gut Microbiota and Major Depression. Frontiers in Psychiatry, 2019, 10, 34.	2.6	368
459	Exercise influence on the microbiome–gut–brain axis. Gut Microbes, 2019, 10, 555-568.	9.8	92
460	Is adolescence the missing developmental link in Microbiome–Gut–Brain axis communication?. Developmental Psychobiology, 2019, 61, 783-795.	1.6	24
461	Potential Role for the Gut Microbiota in Modulating Host Circadian Rhythms and Metabolic Health. Microorganisms, 2019, 7, 41.	3.6	191
462	Dietary emulsifiers consumption alters anxiety-like and social-related behaviors in mice in a sex-dependent manner. Scientific Reports, 2019, 9, 172.	3.3	60
463	Maternal Antibody and ASD: Clinical Data and Animal Models. Frontiers in Immunology, 2019, 10, 1129.	4.8	14

#	ARTICLE	IF	CITATIONS
464	The Role of the Microbiota in the Diabetic Peripheral Artery Disease. Mediators of Inflammation, 2019, 2019, 1-16.	3.0	15
465	Mechanisms Underlying the Anti-Depressive Effects of Regular Tea Consumption. Nutrients, 2019, 11, 1361.	4.1	89
466	Gut microbiota depletion from early adolescence alters adult immunological and neurobehavioral responses in a mouse model of multiple sclerosis. Neuropharmacology, 2019, 157, 107685.	4.1	55
467	Microbiota and Neurodevelopmental Trajectories: Role of Maternal and Early-Life Nutrition. Annals of Nutrition and Metabolism, 2019, 74, 16-27.	1.9	47
468	Gut microbiota composition is associated with temperament traits in infants. Brain, Behavior, and Immunity, 2019, 80, 849-858.	4.1	91
469	Fecal microbiota transplantation from chronic unpredictable mild stress mice donors affects anxiety-like and depression-like behavior in recipient mice via the gut microbiota-inflammation-brain axis. Stress, 2019, 22, 592-602.	1.8	165
470	The role of inflammation and the gut microbiome in depression and anxiety. Journal of Neuroscience Research, 2019, 97, 1223-1241.	2.9	261
471	Role of Tryptophan in Microbiota-Induced Depressive-Like Behavior: Evidence From Tryptophan Depletion Study. Frontiers in Behavioral Neuroscience, 2019, 13, 123.	2.0	62
472	Towards bioinspired <i>in vitro </i> models of intestinal mucus. RSC Advances, 2019, 9, 15887-15899.	3.6	32
473	Positive effects of a <i>Clostridium butyricum</i> -based compound probiotic on growth performance, immune responses, intestinal morphology, hypothalamic neurotransmitters, and colonic microbiota in weaned piglets. Food and Function, 2019, 10, 2926-2934.	4.6	73
474	The gut microbiome and pharmacology: a prescription for therapeutic targeting of the gut–brain axis. Current Opinion in Pharmacology, 2019, 49, 17-23.	3 . 5	16
475	Effects of regulating intestinal microbiota on anxiety symptoms: A systematic review. Annals of General Psychiatry, 2019, 32, e100056.	3.1	79
476	Microbiota Alterations in Alzheimer's Disease: Involvement of the Kynurenine Pathway and Inflammation. Neurotoxicity Research, 2019, 36, 424-436.	2.7	32
477	Child compound Endothelium corneum attenuates gastrointestinal dysmotility through regulating the homeostasis of brain-gut-microbiota axis in functional dyspepsia rats. Journal of Ethnopharmacology, 2019, 240, 111953.	4.1	21
478	The Gut Microbiota–Brain Axis Expands Neurologic Function: A Nervous Rapport. BioEssays, 2019, 41, 1800268.	2.5	12
479	Do your gut microbes affect your brain dopamine?. Psychopharmacology, 2019, 236, 1611-1622.	3.1	91
480	Gut microbial diversity increases with social rank in the African cichlid fish, Astatotilapia burtoni. Animal Behaviour, 2019, 152, 79-91.	1.9	7
481	Maternal supplementation with Lactobacillus paracasei DTA 83 alters emotional behavior in Swiss mice offspring. PharmaNutrition, 2019, 8, 100148.	1.7	10

#	Article	IF	CITATIONS
482	Persons, Selves, and Wellbeing. , 2019, , 107-138.		0
483	Increasing carbohydrate availability in the hindgut promotes hypothalamic neurotransmitter synthesis: aromatic amino acids linking the microbiota–brain axis. Journal of Neurochemistry, 2019, 149, 641-659.	3.9	58
484	Using fish models to investigate the links between microbiome and social behaviour: The next step for translational microbiome research?. Fish and Fisheries, 2019, 20, 640-652.	5.3	22
485	Intestinal dysbacteriosis mediates the reference memory deficit induced by anaesthesia/surgery in aged mice. Brain, Behavior, and Immunity, 2019, 80, 605-615.	4.1	54
486	Exposure to antibiotics in the first 24Âmonths of life and neurocognitive outcomes at 11Âyears of age. Psychopharmacology, 2019, 236, 1573-1582.	3.1	71
487	Microbe and host interaction in gastrointestinal homeostasis. Psychopharmacology, 2019, 236, 1623-1640.	3.1	22
488	The scent of symbiosis: gut bacteria may affect social interactions in leaf-cutting ants. Animal Behaviour, 2019, 150, 239-254.	1.9	31
489	From isoniazid to psychobiotics: the gut microbiome as a new antidepressant target. British Journal of Hospital Medicine (London, England: 2005), 2019, 80, 139-145.	0.5	20
490	The gut microbiota promotes the pathogenesis of schizophrenia via multiple pathways. Biochemical and Biophysical Research Communications, 2019, 512, 373-380.	2.1	51
491	Manipulation of gut microbiota blunts the ventilatory response to hypercapnia in adult rats. EBioMedicine, 2019, 44, 618-638.	6.1	37
492	Glutamatergic Signaling Along The Microbiota-Gut-Brain Axis. International Journal of Molecular Sciences, 2019, 20, 1482.	4.1	183
493	Paternal Programming of Liver Function and Lipid Profile Induced by a Paternal Pre-Conceptional Unhealthy Diet: Potential Association with Altered Gut Microbiome Composition. Kidney and Blood Pressure Research, 2019, 44, 133-148.	2.0	26
494	Sema3A - mediated modulation of NR1D1 expression may be involved in the regulation of axonal guidance signaling by the microbiota. Life Sciences, 2019, 223, 54-61.	4.3	19
495	The gut-brain relationship: Investigating the effect of multispecies probiotics on anxiety in a randomized placebo-controlled trial of healthy young adults Journal of Affective Disorders, 2019, 252, 271-277.	4.1	56
496	Probiotics in Extraintestinal Diseases: Current Trends and New Directions. Nutrients, 2019, 11, 788.	4.1	48
497	Antidepressants affect gut microbiota and Ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior. Translational Psychiatry, 2019, 9, 133.	4.8	159
498	Absence of gut microbiota during early life affects anxiolytic Behaviors and monoamine neurotransmitters system in the hippocampal of mice. Journal of the Neurological Sciences, 2019, 400, 160-168.	0.6	33
499	Serum level of sex steroid hormone is associated with diversity and profiles of human gut microbiome. Research in Microbiology, 2019, 170, 192-201.	2.1	175

#	Article	IF	CITATIONS
500	The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Science Advances, 2019, 5, eaau8317.	10.3	446
501	Current Understanding of Gut Microbiota in Mood Disorders: An Update of Human Studies. Frontiers in Genetics, 2019, 10, 98.	2.3	160
502	The Emerging Role of Microbiome–Gut–Brain Axis in Functional Gastrointestinal Disorders. , 2019, , 251-264.		0
503	Impact of the Gut Microbiome on Behavior and Emotions. , 2019, , 379-390.		1
504	Reviews on Biomarker Studies in Psychiatric and Neurodegenerative Disorders. Advances in Experimental Medicine and Biology, 2019, , .	1.6	6
505	Role of the Gut Microbiome in Autism Spectrum Disorders. Advances in Experimental Medicine and Biology, 2019, 1118, 253-269.	1.6	98
506	The Role of Biomarkers in Psychiatry. Advances in Experimental Medicine and Biology, 2019, 1118, 135-162.	1.6	29
507	Neuroprotection of Fasting Mimicking Diet on MPTP-Induced Parkinson's Disease Mice via Gut Microbiota and Metabolites. Neurotherapeutics, 2019, 16, 741-760.	4.4	121
508	Characterization of the intestinal microbiota of the sea cucumber Holothuria glaberrima. PLoS ONE, 2019, 14, e0208011.	2.5	42
509	More Than a Gut Feeling: Emerging Roles of the Microbiome in the Pathophysiology and Treatment of Depression. , 2019, , 137-145.		0
510	Man and the Microbiome: A New Theory of Everything?. Annual Review of Clinical Psychology, 2019, 15, 371-398.	12.3	65
511	A role for the microbiome in mother–infant interaction and perinatal depression. International Review of Psychiatry, 2019, 31, 280-294.	2.8	12
512	Dysbiosis of the Microbiota in Anorexia Nervosa: Pathophysiological Implications. , 2019, , .		0
513	Influence of Gut Microbiota on Behavior and Its Disturbances. , 0, , .		7
514	Gut microbial metabolites in depression: understanding the biochemical mechanisms. Microbial Cell, 2019, 6, 454-481.	3.2	161
515	International Society of Sports Nutrition Position Stand: Probiotics. Journal of the International Society of Sports Nutrition, 2019, 16, 62.	3.9	134
516	Gut Microbiome and Modulation of <scp>CNS</scp> Function., 2019, 10, 57-72.		40
517	Stress, Dietary Patterns and Cardiovascular Disease: A Mini-Review. Frontiers in Neuroscience, 2019, 13, 1226.	2.8	27

#	ARTICLE	IF	Citations
518	The Potential Influence of the Bacterial Microbiome on the Development and Progression of ADHD. Nutrients, 2019, 11, 2805.	4.1	57
519	Interactions Between Gut Microbiota and Acute Restraint Stress in Peripheral Structures of the Hypothalamic–Pituitary–Adrenal Axis and the Intestine of Male Mice. Frontiers in Immunology, 2019, 10, 2655.	4.8	43
520	Gut-Brain Axis and Stress Regulation. Holistic Nursing Practice, 2019, 33, 312-315.	0.7	O
521	Early-Life Contributors to Child Well-Being. Annals of Nutrition and Metabolism, 2019, 74, 5-6.	1.9	O
522	Psychobiotics as treatment for anxiety, depression, and related symptoms: a systematic review. Nutritional Neuroscience, 2021, 24, 963-977.	3.1	34
523	Probiotics reduce risk-taking behavior in the Elevated Plus Maze in the Flinders Sensitive Line rat model of depression. Behavioural Brain Research, 2019, 359, 755-762.	2.2	23
524	Microbiota-gut-brain research: A critical analysis. Behavioral and Brain Sciences, 2019, 42, e60.	0.7	49
525	Antibiotics and the nervous system: More than just the microbes?. Brain, Behavior, and Immunity, 2019, 77, 7-15.	4.1	46
526	Cross-species examination of single- and multi-strain probiotic treatment effects on neuropsychiatric outcomes. Neuroscience and Biobehavioral Reviews, 2019, 99, 160-197.	6.1	12
527	Connection between gut microbiome and brain development in preterm infants. Developmental Psychobiology, 2019, 61, 739-751.	1.6	77
528	Second-generation antipsychotics and metabolism alterations: a systematic review of the role of the gut microbiome. Psychopharmacology, 2019, 236, 1491-1512.	3.1	72
529	Gut microbiome and brain functional connectivity in infants-a preliminary study focusing on the amygdala. Psychopharmacology, 2019, 236, 1641-1651.	3.1	91
530	Microbial regulation of organismal energy homeostasis. Nature Metabolism, 2019, 1, 34-46.	11.9	354
531	What can the gut microbiome teach us about the connections between child physical and mental health? A systematic review. Developmental Psychobiology, 2019, 61, 700-713.	1.6	9
532	Microbiome and Inflammation in Eating Disorders. , 2019, , 87-92.		1
533	Frontiers of Serotonin Beyond the Brain. Pharmacological Research, 2019, 140, 1-6.	7.1	8
534	Old Friends, immunoregulation, and stress resilience. Pflugers Archiv European Journal of Physiology, 2019, 471, 237-269.	2.8	45
535	Resilience priming: Translational models for understanding resiliency and adaptation to early life adversity. Developmental Psychobiology, 2019, 61, 350-375.	1.6	53

#	Article	IF	CITATIONS
536	A systematic review of gutâ€immuneâ€brain mechanisms in Autism Spectrum Disorder. Developmental Psychobiology, 2019, 61, 752-771.	1.6	29
537	The contribution of the gut microbiome to neurodevelopment and neuropsychiatric disorders. Pediatric Research, 2019, 85, 216-224.	2.3	104
538	Mass spectrometryâ€based metabolomics: Targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders. Mass Spectrometry Reviews, 2019, 38, 22-33.	5.4	131
539	A neuroscience perspective of the gut theory of Parkinson's disease. European Journal of Neuroscience, 2019, 49, 817-823.	2.6	16
540	Dietary polydextrose and galactooligosaccharide increase exploratory behavior, improve recognition memory, and alter neurochemistry in the young pig. Nutritional Neuroscience, 2019, 22, 499-512.	3.1	46
541	Moodâ€related central and peripheral clocks. European Journal of Neuroscience, 2020, 51, 326-345.	2.6	36
542	Fermented foods, the gut and mental health: a mechanistic overview with implications for depression and anxiety. Nutritional Neuroscience, 2020, 23, 659-671.	3.1	95
543	Microbiome profiling reveals gut dysbiosis in a transgenic mouse model of Huntington's disease. Neurobiology of Disease, 2020, 135, 104268.	4.4	118
544	The Effects of Probiotics on Symptoms of Depression: Protocol for a Double-Blind Randomized Placebo-Controlled Trial. Neuropsychobiology, 2020, 79, 108-116.	1.9	28
545	Gut microbiota and dietary patterns in children with attention-deficit/hyperactivity disorder. European Child and Adolescent Psychiatry, 2020, 29, 287-297.	4.7	87
546	Mind and gut: Associations between mood and gastrointestinal distress in children exposed to adversity. Development and Psychopathology, 2020, 32, 309-328.	2.3	48
547	Supplementation of dietary non-digestible oligosaccharides from birth onwards improve social and reduce anxiety-like behaviour in male BALB/c mice. Nutritional Neuroscience, 2020, 23, 896-910.	3.1	27
548	Anorexia nervosa: Gut microbiota-immune-brain interactions. Clinical Nutrition, 2020, 39, 676-684.	5.0	66
549	Depression's Unholy Trinity: Dysregulated Stress, Immunity, and the Microbiome. Annual Review of Psychology, 2020, 71, 49-78.	17.7	152
550	Interstitial Pregnancy after Ipsilateral Salpingectomy: Analysis of 46 Cases and a Literature Review. Journal of Minimally Invasive Gynecology, 2020, 27, 613-617.	0.6	13
551	Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice. Molecular Psychiatry, 2020, 25, 2905-2918.	7.9	202
552	Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes, 2020, 11, 135-157.	9.8	320
553	Maternal separation in rodents: a journey from gut to brain and nutritional perspectives. Proceedings of the Nutrition Society, 2020, 79, 113-132.	1.0	33

#	Article	IF	Citations
554	Microbiota-Gut-Brain Axis: New Therapeutic Opportunities. Annual Review of Pharmacology and Toxicology, 2020, 60, 477-502.	9.4	227
555	Reconciling Hygiene and Cleanliness: A New Perspective from Human Microbiome. Indian Journal of Microbiology, 2020, 60, 37-44.	2.7	10
556	Does the gut microbiota contribute to the oligodendrocyte progenitor niche?. Neuroscience Letters, 2020, 715, 134574.	2.1	6
557	The Gut Microbiome in Bipolar Disorder and Pharmacotherapy Management. Neuropsychobiology, 2020, 79, 43-49.	1.9	38
558	The Gut Microbiota Affects Host Pathophysiology as an Endocrine Organ: A Focus on Cardiovascular Disease. Nutrients, 2020, 12, 79.	4.1	52
559	Neuro-hormonal Regulation Is a Better Indicator of Human Cognitive Abilities Than Brain Anatomy: The Need for a New Paradigm. Frontiers in Neuroanatomy, 2019, 13, 101.	1.7	7
560	Altered microbiota composition reflects enhanced communication in 15q11-13 CNV mice. Neuroscience Research, 2020, 161, 59-67.	1.9	8
561	Gut Microbiota: A Perspective for Psychiatrists. Neuropsychobiology, 2020, 79, 50-62.	1.9	87
562	The gut microbiome in neurological disorders. Lancet Neurology, The, 2020, 19, 179-194.	10.2	669
563	The microbiota-gut-brain axis: An emerging role for the epigenome. Experimental Biology and Medicine, 2020, 245, 138-145.	2.4	31
564	Gut and brain interactions. , 2020, , 17-30.		2
565	Microbiota are critical for vascular physiology: Germ-free status weakens contractility and induces sex-specific vascular remodeling in mice. Vascular Pharmacology, 2020, 125-126, 106633.	2.1	24
566	The connection between microbiome and schizophrenia. Neuroscience and Biobehavioral Reviews, 2020, 108, 712-731.	6.1	50
567	Autoimmune diseases and immunosuppressive therapy in relation to the risk of glioma. Cancer Medicine, 2020, 9, 1263-1275.	2.8	11
568	Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain. Advances in Nutrition, 2020, 11, 709-723.	6.4	319
569	Annual Research Review: Critical windows – the microbiota–gut–brain axis in neurocognitive development. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2020, 61, 353-371.	5.2	103
570	Decoding Microbiome Research for Clinical Psychiatry. Canadian Journal of Psychiatry, 2020, 65, 19-20.	1.9	5
571	The role of the microbiota in acute stress-induced myeloid immune cell trafficking. Brain, Behavior, and Immunity, 2020, 84, 209-217.	4.1	25

#	Article	IF	CITATIONS
572	You've got male: Sex and the microbiota-gut-brain axis across the lifespan. Frontiers in Neuroendocrinology, 2020, 56, 100815.	5.2	128
573	The potential mechanism of postoperative cognitive dysfunction in older people. Experimental Gerontology, 2020, 130, 110791.	2.8	142
574	Potential Determinants of Gastrointestinal Dysfunction in Autism Spectrum Disorders. Review Journal of Autism and Developmental Disorders, 2020, 7, 182-196.	3.4	2
575	Strain specific stress-modulating effects of candidate probiotics: A systematic screening in a mouse model of chronic restraint stress. Behavioural Brain Research, 2020, 379, 112376.	2.2	41
576	Exploring interactions between xenobiotics, microbiota, and neurotoxicity in zebrafish. NeuroToxicology, 2020, 76, 235-244.	3.0	37
577	BANANA PEEL FLAKES ALLEVIATE BLOOD GLUCOSE AND STRESS IN A DOSE-DEPENDENT MANNER. International Journal of Pharmacy and Pharmaceutical Sciences, 0, , 75-81.	0.3	3
578	Gut microbial molecules in behavioural and neurodegenerative conditions. Nature Reviews Neuroscience, 2020, 21, 717-731.	10.2	167
580	A novel role for the pineal gland: Regulating seasonal shifts in the gut microbiota of Siberian hamsters. Journal of Pineal Research, 2020, 69, e12696.	7.4	12
581	DJ-1 (Park7) affects the gut microbiome, metabolites and the development of innate lymphoid cells (ILCs). Scientific Reports, 2020, 10, 16131.	3.3	16
582	Aryl hydrocarbon receptor ligand production by the gut microbiota is decreased in celiac disease leading to intestinal inflammation. Science Translational Medicine, 2020, 12, .	12.4	98
583	Swine gut microbiota and its interaction with host nutrient metabolism. Animal Nutrition, 2020, 6, 410-420.	5.1	41
585	Nested sensitive periods: how plasticity across the microbiota-gut-brain axis interacts to affect the development of learning and memory. Current Opinion in Behavioral Sciences, 2020, 36, 55-62.	3.9	10
586	Alterations of brain endocannabinoidome signaling in germ-free mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158786.	2.4	23
587	Sex-dependent associations between addiction-related behaviors and the microbiome in outbred rats. EBioMedicine, 2020, 55, 102769.	6.1	36
588	Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. Molecular Neurodegeneration, 2020, 15, 40.	10.8	438
589	The Gut Microbiome as a Component of the Gut–Brain Axis in Cognitive Health. Biological Research for Nursing, 2020, 22, 485-494.	1.9	17
590	Bugs, breathing and blood pressure: microbiota–gut–brain axis signalling in cardiorespiratory control in health and disease. Journal of Physiology, 2020, 598, 4159-4179.	2.9	18
592	The Gut Microbiota, Kynurenine Pathway, and Immune System Interaction in the Development of Brain Cancer. Frontiers in Cell and Developmental Biology, 2020, 8, 562812.	3.7	37

#	Article	IF	CITATIONS
593	Gut Microbiota-Bile Acid Crosstalk in Diarrhea-Irritable Bowel Syndrome. BioMed Research International, 2020, 2020, 1-16.	1.9	42
594	You Talking to Me? Says the Enteric Nervous System (ENS) to the Microbe. How Intestinal Microbes Interact with the ENS. Journal of Clinical Medicine, 2020, 9, 3705.	2.4	42
596	Microbial metabolites and immune regulation: New targets for major depressive disorder. Brain, Behavior, & Immunity - Health, 2020, 9, 100169.	2.5	14
597	Microbiotaâ€immune alterations in adolescents following early life adversity: A proof of concept study. Developmental Psychobiology, 2021, 63, 851-863.	1.6	17
598	The roles of the gut microbiota–miRNA interaction in the host pathophysiology. Molecular Medicine, 2020, 26, 101.	4.4	45
599	Hands-On Ecological Restoration as a Nature-Based Health Intervention: Reciprocal Restoration for People and Ecosystems. Ecopsychology, 2020, 12, 195-202.	1.4	22
600	Microbial involvement in Alzheimer disease development and progression. Molecular Neurodegeneration, 2020, 15, 42.	10.8	56
601	The Microbiota-Gut-Immune-Glia (MGIG) Axis in Major Depression. Molecular Neurobiology, 2020, 57, 4269-4295.	4.0	49
602	Opposing effects of antibiotics and germ-free status on neuropeptide systems involved in social behaviour and pain regulation. BMC Neuroscience, 2020, 21, 32.	1.9	18
603	Crosstalk between the microbiota-gut-brain axis and depression. Heliyon, 2020, 6, e04097.	3.2	90
604	Identifying Microbiome-Mediated Behaviour in Wild Vertebrates. Trends in Ecology and Evolution, 2020, 35, 972-980.	8.7	53
605	Investigating the potential of fish oil as a nutraceutical in an animal model of early life stress. Nutritional Neuroscience, 2022, 25, 356-378.	3.1	20
606	Perinatal depression: Heterogeneity of disease and in animal models. Frontiers in Neuroendocrinology, 2020, 59, 100854.	5. 2	17
607	Neurological and cognitive significance of probiotics: a holy grail deciding individual personality. Future Microbiology, 2020, 15, 1059-1074.	2.0	10
608	Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek, 2020, 113, 2019-2040.	1.7	473
610	<p>The Impact of Gut Microbiota Disorders on the Blood–Brain Barrier</p> . Infection and Drug Resistance, 2020, Volume 13, 3351-3363.	2.7	56
611	Gut-Brain Axis in the Early Postnatal Years of Life: A Developmental Perspective. Frontiers in Integrative Neuroscience, 2020, 14, 44.	2.1	48
612	Microbial regulation of a lincRNA–miRNA–mRNA network in the mouse hippocampus. Epigenomics, 2020, 12, 1377-1387.	2.1	13

#	Article	IF	CITATIONS
615	Gestational Factors throughout Fetal Neurodevelopment: The Serotonin Link. International Journal of Molecular Sciences, 2020, 21, 5850.	4.1	45
616	Exploring the Role of Gut Microbiota in Major Depressive Disorder and in Treatment Resistance to Antidepressants. Biomedicines, 2020, 8, 311.	3.2	34
617	Gut Microbiome Composition is Associated with Age and Memory Performance in Pet Dogs. Animals, 2020, 10, 1488.	2.3	24
619	Integrated Label-Free and 10-Plex DiLeu Isobaric Tag Quantitative Methods for Profiling Changes in the Mouse Hypothalamic Neuropeptidome and Proteome: Assessment of the Impact of the Gut Microbiome. Analytical Chemistry, 2020, 92, 14021-14030.	6.5	11
620	Nutritional Therapy to Modulate Tryptophan Metabolism and Aryl Hydrocarbon-Receptor Signaling Activation in Human Diseases. Nutrients, 2020, 12, 2846.	4.1	35
621	Role of the Gut Microbiota in the Pathophysiology of Autism Spectrum Disorder: Clinical and Preclinical Evidence. Microorganisms, 2020, 8, 1369.	3.6	33
622	Early Life Stress and the Development of the Infant Gut Microbiota: Implications for Mental Health and Neurocognitive Development. Current Psychiatry Reports, 2020, 22, 61.	4.5	17
623	Gut Microbiota: A Key Factor in the Host Health Effects Induced by Pesticide Exposure?. Journal of Agricultural and Food Chemistry, 2020, 68, 10517-10531.	5.2	42
624	Biological Consequences of Psychological Distress in Caregivers of Children with Autism Spectrum Disorder and its Potential Relevance to Other Chronic Diseases Including Cancer. Current Epidemiology Reports, 2020, 7, 139-148.	2.4	5
625	Residential green space and child intelligence and behavior across urban, suburban, and rural areas in Belgium: A longitudinal birth cohort study of twins. PLoS Medicine, 2020, 17, e1003213.	8.4	67
626	Gut microbiota regulates neuropathic pain: potential mechanisms and therapeutic strategy. Journal of Headache and Pain, 2020, 21, 103.	6.0	56
627	The Gut-Brain Axis: How Microbiota and Host Inflammasome Influence Brain Physiology and Pathology. Frontiers in Immunology, 2020, 11, 604179.	4.8	337
628	Psychobiotics: Mechanisms of Action, Evaluation Methods and Effectiveness in Applications with Food Products. Nutrients, 2020, 12, 3896.	4.1	66
629	Nattokinase mitigated dextran sulfate sodium-induced chronic colitis by regulating microbiota and suppressing tryptophan metabolism via inhibiting IDO-1. Journal of Functional Foods, 2020, 75, 104251.	3.4	7
630	Diet induces parallel changes to the gut microbiota and problem solving performance in a wild bird. Scientific Reports, 2020, 10, 20783.	3.3	34
631	Bacterial Metabolites of Human Gut Microbiota Correlating with Depression. International Journal of Molecular Sciences, 2020, 21, 9234.	4.1	74
632	The microbiota-gut-brain axis: Focus on the fundamental communication pathways. Progress in Molecular Biology and Translational Science, 2020, 176, 43-110.	1.7	35
633	The gut microbiome and psycho-cognitive traits. Progress in Molecular Biology and Translational Science, 2020, 176, 123-140.	1.7	1

#	Article	IF	CITATIONS
634	Enduring Behavioral Effects Induced by Birth by Caesarean Section in the Mouse. Current Biology, 2020, 30, 3761-3774.e6.	3.9	65
635	The potential of human milk oligosaccharides to impact the microbiota-gut-brain axis through modulation of the gut microbiota. Journal of Functional Foods, 2020, 74, 104176.	3.4	31
636	Evidence supporting the microbiota–gut–brain axis in a songbird. Biology Letters, 2020, 16, 20200430.	2.3	14
637	Nutrition, Microbiota and Role of Gut-Brain Axis in Subjects with Phenylketonuria (PKU): A Review. Nutrients, 2020, 12, 3319.	4.1	20
638	Gut Biofactoryâ€"Neurocompetent Metabolites within the Gastrointestinal Tract. A Scoping Review. Nutrients, 2020, 12, 3369.	4.1	22
639	Gut Microbiota Dysbiosis Associated With Altered Production of Short Chain Fatty Acids in Children With Neurodevelopmental Disorders. Frontiers in Cellular and Infection Microbiology, 2020, 10, 223.	3.9	98
640	Distinct actions of the fermented beverage kefir on host behaviour, immunity and microbiome gut-brain modules in the mouse. Microbiome, 2020, 8, 67.	11.1	55
641	The role of the microbiome in the neurobiology of social behaviour. Biological Reviews, 2020, 95, 1131-1166.	10.4	72
642	Gutâ€brain axis serotonergic responses to acute stress exposure are microbiomeâ€dependent. Neurogastroenterology and Motility, 2020, 32, e13881.	3.0	30
643	Altered behavior in mice overexpressing soluble ST2. Molecular Brain, 2020, 13, 74.	2.6	11
644	Host–microbiome interactions: the aryl hydrocarbon receptor as a critical node in tryptophan metabolites to brain signaling. Gut Microbes, 2020, 11, 1203-1219.	9.8	61
645	The Dual Role of Serotonin in Colorectal Cancer. Trends in Endocrinology and Metabolism, 2020, 31, 611-625.	7.1	39
646	Gut Feelings Begin in Childhood: the Gut Metagenome Correlates with Early Environment, Caregiving, and Behavior. MBio, 2020, 11 , .	4.1	40
647	Curdlan Prevents the Cognitive Deficits Induced by a High-Fat Diet in Mice via the Gut-Brain Axis. Frontiers in Neuroscience, 2020, 14, 384.	2.8	25
648	Effects of ecologically relevant concentrations of cadmium on locomotor activity and microbiota in zebrafish. Chemosphere, 2020, 257, 127220.	8.2	31
649	Ethnic diversity in infant gut microbiota is apparent before the introduction of complementary diets. Gut Microbes, 2020, 11, 1362-1373.	9.8	34
650	Dietary delivery of acetate to the colon using acylated starches as a carrier exerts anxiolytic effects in mice. Physiology and Behavior, 2020, 223, 113004.	2.1	12
651	Review article: bugs, inflammation and mood—a microbiotaâ€based approach to psychiatric symptoms in inflammatory bowel diseases. Alimentary Pharmacology and Therapeutics, 2020, 52, 247-266.	3.7	26

#	Article	IF	CITATIONS
652	Fecal metabonomics study of raw and bran-fried Atractylodis Rhizoma in spleen-deficiency rats. Journal of Pharmaceutical and Biomedical Analysis, 2020, 189, 113416.	2.8	6
653	Microbes and mental health: Can the microbiome help explain clinical heterogeneity in psychiatry?. Frontiers in Neuroendocrinology, 2020, 58, 100849.	5.2	12
654	Disrupted Neurogenesis in Germ-Free Mice: Effects of Age and Sex. Frontiers in Cell and Developmental Biology, 2020, 8, 407.	3.7	39
655	Bacterial Peptidoglycans from Microbiota in Neurodevelopment and Behavior. Trends in Molecular Medicine, 2020, 26, 729-743.	6.7	43
656	Prenatal stress causes intrauterine inflammation and serotonergic dysfunction, and long-term behavioral deficits through microbe- and CCL2-dependent mechanisms. Translational Psychiatry, 2020, 10, 191.	4.8	50
657	The sociability spectrum: evidence from reciprocal genetic copy number variations. Molecular Autism, 2020, 11, 50.	4.9	10
658	Interaction between Tea Polyphenols and Intestinal Microbiota in Host Metabolic Diseases from the Perspective of the Gut–Brain Axis. Molecular Nutrition and Food Research, 2020, 64, e2000187.	3.3	24
659	The critical role of Faecalibacterium prausnitzii in human health: An overview. Microbial Pathogenesis, 2020, 149, 104344.	2.9	102
660	Circadian misalignment: A biological basis for mood vulnerability in shift work. European Journal of Neuroscience, 2020, 52, 3846-3850.	2.6	23
661	Changes in Gut Microbiota by Chronic Stress Impair the Efficacy of Fluoxetine. Cell Reports, 2020, 30, 3682-3690.e6.	6.4	63
662	Impact of host and environmental factors on \hat{l}^2 -glucuronidase enzymatic activity: implications for gastrointestinal serotonin. American Journal of Physiology - Renal Physiology, 2020, 318, G816-G826.	3.4	25
663	The Role of the Gut Microbiota in Dietary Interventions for Depression and Anxiety. Advances in Nutrition, 2020, 11, 890-907.	6.4	104
664	Targeting Gut Microbiota Dysbiosis: Potential Intervention Strategies for Neurological Disorders. Engineering, 2020, 6, 415-423.	6.7	26
665	LC-APCI+-MS/MS method for the analysis of ten hormones and two endocannabinoids in plasma and hair from the mice with different gut microbiota. Journal of Pharmaceutical and Biomedical Analysis, 2020, 185, 113223.	2.8	17
666	Composition of Gut Microbiota in Children with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Nutrients, 2020, 12, 792.	4.1	174
667	The role of the gut microbiome in opioid use. Behavioural Pharmacology, 2020, 31, 113-121.	1.7	38
668	Prenatal antidepressant exposures and gastrointestinal complaints in childhood: A gut–brain axis connection?. Developmental Psychobiology, 2020, 62, 816-828.	1.6	14
669	Extracellular Matrix and Oxidative Phosphorylation: Important Role in the Regulation of Hypothalamic Function by Gut Microbiota. Frontiers in Genetics, 2020, 11, 520.	2.3	16

#	Article	IF	CITATIONS
670	Gut dysbiosis may be associated with hyperemesis gravidarum. Journal of Maternal-Fetal and Neonatal Medicine, 2022, 35, 2041-2045.	1.5	3
671	Metabolomic Biomarkers in Anxiety Disorders. International Journal of Molecular Sciences, 2020, 21, 4784.	4.1	28
672	Postbiotic-Enabled Targeting of the Host-Microbiota-Pathogen Interface: Hints of Antibiotic Decline?. Pharmaceutics, 2020, 12, 624.	4.5	20
673	Prenatal exposure to the probiotic Lactococcus lactis decreases anxiety-like behavior and modulates cortical cytoarchitecture in a sex specific manner PLoS ONE, 2020, 15, e0223395.	2.5	10
674	Glycated milk protein fermented with <i>Lactobacillus rhamnosus</i> ameliorates the cognitive health of mice under mild-stress condition. Gut Microbes, 2020, 11, 1643-1661.	9.8	29
675	Sex dependent effects of post-natal penicillin on brain, behavior and immune regulation are prevented by concurrent probiotic treatment. Scientific Reports, 2020, 10, 10318.	3.3	11
676	Gut microbiota and brain development: A review. , 2020, , 423-444.		2
677	Considering the Microbiome in Stress-Related and Neurodevelopmental Trajectories to Schizophrenia. Frontiers in Psychiatry, 2020, 11, 629.	2.6	15
678	Epigallocatechinâ€3â€Oâ€gallate modulates the diversity of gut microbiota in ovariectomized rats. Food Science and Nutrition, 2020, 8, 1295-1302.	3.4	5
679	Indole Tryptophan Metabolism and Cytokine S100B in Children with Attention-Deficit/Hyperactivity Disorder: Daily Fluctuations, Responses to Methylphenidate, and Interrelationship with Depressive Symptomatology. Journal of Child and Adolescent Psychopharmacology, 2020, 30, 177-188.	1.3	7
680	When Rhythms Meet the Blues: Circadian Interactions with the Microbiota-Gut-Brain Axis. Cell Metabolism, 2020, 31, 448-471.	16.2	101
681	Fucose Ameliorates Tryptophan Metabolism and Behavioral Abnormalities in a Mouse Model of Chronic Colitis. Nutrients, 2020, 12, 445.	4.1	25
682	Gut-brain Axis and migraine headache: a comprehensive review. Journal of Headache and Pain, 2020, 21, 15.	6.0	179
683	Irritable Bowel Syndrome between Molecular Approach and Clinical Expertise—Searching for Gap Fillers in the Oxidative Stress Way of Thinking. Medicina (Lithuania), 2020, 56, 38.	2.0	19
684	Serotonin neurobiology in cocaine use disorder. Handbook of Behavioral Neuroscience, 2020, 31, 745-802.	0.7	5
685	Serotonin and 5-HT2B receptors in microglia control of behavior. Handbook of Behavioral Neuroscience, 2020, 31, 589-599.	0.7	4
686	Organ-On-A-Chip in vitro Models of the Brain and the Blood-Brain Barrier and Their Value to Study the Microbiota-Gut-Brain Axis in Neurodegeneration. Frontiers in Bioengineering and Biotechnology, 2019, 7, 435.	4.1	73
687	Gastrointestinal symptoms are predictive of trajectories of cognitive functioning in de novo Parkinson's disease. Parkinsonism and Related Disorders, 2020, 72, 7-12.	2.2	40

#	Article	IF	Citations
688	The progress of gut microbiome research related to brain disorders. Journal of Neuroinflammation, 2020, 17, 25.	7.2	252
689	Commentary: Microbial panaceas: does development have the answer? – reflections on Cowan, Dinan, & Louis (2020). Journal of Child Psychology and Psychiatry and Allied Disciplines, 2020, 61, 372-375.	5.2	1
690	Microbial colonization history modulates anxiety-like and complex social behavior in mice. Neuroscience Research, 2021, 168, 64-75.	1.9	7
691	Gut microbiota changes in children with autism spectrum disorder: a systematic review. Gut Pathogens, 2020, 12, 6.	3.4	83
692	Gut Microbial Signatures Can Discriminate Unipolar from Bipolar Depression. Advanced Science, 2020, 7, 1902862.	11.2	99
693	A multidisciplinary approach to mental illness: do inflammation, telomere length and microbiota form a loop? A protocol for a cross-sectional study on the complex relationship between inflammation, telomere length, gut microbiota and psychiatric disorders. BMJ Open, 2020, 10, e032513.	1.9	10
694	Dysregulation of synaptic pruning as a possible link between intestinal microbiota dysbiosis and neuropsychiatric disorders. Journal of Neuroscience Research, 2020, 98, 1335-1369.	2.9	45
695	The diet-microbiome tango: how nutrients lead the gut brain axis. Current Opinion in Neurobiology, 2020, 62, 122-132.	4.2	53
696	Polyphenols selectively reverse early-life stress-induced behavioural, neurochemical and microbiota changes in the rat. Psychoneuroendocrinology, 2020, 116, 104673.	2.7	49
697	The Skin Microbiota and Itch: Is There a Link?. Journal of Clinical Medicine, 2020, 9, 1190.	2.4	20
698	The role of the gut microbiome in the development of schizophrenia. Schizophrenia Research, 2021, 234, 4-23.	2.0	60
699	Microbiota Metabolites in Health and Disease. Annual Review of Immunology, 2020, 38, 147-170.	21.8	138
700	Intestinal microbiota regulates tryptophan metabolism following oral infection with <i>Toxoplasma gondii</i> . Parasite Immunology, 2020, 42, e12720.	1.5	5
701	Probiotics and fructo-oligosaccharide intervention modulate the microbiota-gut brain axis to improve autism spectrum reducing also the hyper-serotonergic state and the dopamine metabolism disorder. Pharmacological Research, 2020, 157, 104784.	7.1	135
702	Gut microbiota from persons with attention-deficit/hyperactivity disorder affects the brain in mice. Microbiome, 2020, 8, 44.	11.1	86
703	The Gut Microbiome and Schizophrenia: The Current State of the Field and Clinical Applications. Frontiers in Psychiatry, 2020, 11, 156.	2.6	86
704	Gut-brain axis: A matter of concern in neuropsychiatric disorders…!. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 104, 110051.	4.8	42
705	Mom's diet matters: Maternal prebiotic intake in mice reduces anxiety and alters brain gene expression and the fecal microbiome in offspring. Brain, Behavior, and Immunity, 2021, 91, 230-244.	4.1	20

#	ARTICLE	IF	CITATIONS
706	Targeting the microbiome-gut-brain axis for improving cognition in schizophrenia and major mood disorders: A narrative review. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 105, 110130.	4.8	35
707	Infants exposed to antibiotics after birth have altered recognition memory responses at one month of age. Pediatric Research, 2021, 89, 1500-1507.	2.3	12
708	The gut microbiota–brain axis in behaviour and brain disorders. Nature Reviews Microbiology, 2021, 19, 241-255.	28.6	864
709	Metabolomic analysis to detect urinary molecular changes associated with bipolar depression. Neuroscience Letters, 2021, 742, 135515.	2.1	10
710	The impact of the microbiota-gut-brain axis on Alzheimer's disease pathophysiology. Pharmacological Research, 2021, 164, 105314.	7.1	144
711	A preliminary study of gut microbiome variation and HPA axis reactivity in healthy infants. Psychoneuroendocrinology, 2021, 124, 105046.	2.7	21
712	Possible use of fermented foods in rehabilitation of anorexia nervosa: the gut microbiota as a modulator. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 107, 110201.	4.8	18
713	Healing autism spectrum disorder with cannabinoids: a neuroinflammatory story. Neuroscience and Biobehavioral Reviews, 2021, 121, 128-143.	6.1	14
714	Age-related changes in endogenous glucocorticoids, gonadal steroids, endocannabinoids and their ratios in plasma and hair from the male C57BL/6 mice. General and Comparative Endocrinology, 2021, 301, 113651.	1.8	8
715	Analysis of gut microbiota and intestinal integrity markers of inpatients with major depressive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 106, 110076.	4.8	41
716	Gut microbiota, kynurenine pathway and mental disorders – Review. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 106, 110145.	4.8	39
717	The role of the gut-brain axis in depression: endocrine, neural, and immune pathways. Hormones, 2021, 20, 1-12.	1.9	41
718	Microbiota modulation as preventative and therapeutic approach in Alzheimer's disease. FEBS Journal, 2021, 288, 2836-2855.	4.7	60
719	Human-Derived Bifidobacterium dentium Modulates the Mammalian Serotonergic System and Gut–Brain Axis. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 221-248.	4.5	73
720	Gut microbiota–brain axis in depression: The role of neuroinflammation. European Journal of Neuroscience, 2021, 53, 222-235.	2.6	118
721	Dysbiosis of Gut Microbiota and Activity of KYN Pathway as Potential Biomarkers in Patients With Major Depressive Disorder. SSRN Electronic Journal, 0, , .	0.4	0
722	The gut microbiota–brain axis and role of probiotics. , 2021, , 175-191.		1
723	The Microbiome-Gut-Brain Axis in Neurocognitive Development and Decline. Modern Trends in Psychiatry, 2021, 32, 12-25.	1.9	6

#	Article	IF	CITATIONS
724	Psychobiotics: Evolution of Novel Antidepressants. Modern Trends in Psychiatry, 2021, 32, 134-143.	1.9	10
725	The Role of Gut Microbiota in the High-Risk Construct of Severe Mental Disorders: A Mini Review. Frontiers in Psychiatry, 2020, 11, 585769.	2.6	13
726	The role of serotonin and its pathways in gastrointestinal disorders. , 2021, , 67-94.		1
727	The microbiota-gut-brain axis and bipolar disorder. , 2021, , 275-284.		O
729	The Microbiome-Gut-Brain Axis: A New Window to View the Impact of Prenatal Stress on Early Neurodevelopment., 2021,, 165-191.		1
730	Introduction. Modern Trends in Psychiatry, 2021, 32, 1-11.	1.9	O
731	Evolution of the Human Diet and Its Impact on Gut Microbiota, Immune Responses, and Brain Health. Nutrients, 2021, 13, 196.	4.1	57
732	Regionâ€specific sex modulation of central oxytocin receptor by gut microbiota: An ontogenic study. Developmental Neurobiology, 2021, 81, 149-163.	3.0	5
733	An <i>in vitro</i> screening method for probiotics with antidepressant-like effect using the enterochromaffin cell model. Food and Function, 2021, 12, 646-655.	4.6	12
734	Production of Psychoactive Metabolites by Gut Bacteria. Modern Trends in Psychiatry, 2021, 32, 74-99.	1.9	16
735	Gut Microbiota and Parkinson's Disease: Implications for Faecal Microbiota Transplantation Therapy. ASN Neuro, 2021, 13, 175909142110162.	2.7	19
736	Early Life Events With Microbiota Mediated Effects on Brain Functions., 2021,, 39-39.		O
737	Bacteroides-dominant gut microbiome of late infancy is associated with enhanced neurodevelopment. Gut Microbes, 2021, 13, 1-17.	9.8	74
738	Gut microbiota and depression. , 2021, , 463-472.		2
739	Is Anxiety Associated with the Gut Microbiota?. Modern Trends in Psychiatry, 2021, 32, 68-73.	1.9	4
740	Microbiome changes in aging. , 2021, , 367-389.		1
741	Involvement of the microbiota-gut-brain axis in chronic restraint stress: disturbances of the kynurenine metabolic pathway in both the gut and brain. Gut Microbes, 2021, 13, 1-16.	9.8	117
742	Vancomycin-Induced Changes in Host Immunity and Behavior: Comparative Genomic and Metagenomic Analysis in C57BL/6 and BALB/c Mice. Digestive Diseases and Sciences, 2021, 66, 3776-3791.	2.3	15

#	Article	IF	CITATIONS
743	Alterations in short-chain fatty acids and serotonin in irritable bowel syndrome: a systematic review and meta-analysis. BMC Gastroenterology, 2021, 21, 14.	2.0	22
744	Microbiotaâ€gutâ€brain axis as a regulator of reward processes. Journal of Neurochemistry, 2021, 157, 1495-1524.	3.9	60
745	The interactions between gut and brain in psychiatric and neurological disorders., 2021,, 49-65.		0
746	The Gut Microbiota, Nutrition, and Long-Term Disease Risk: A Mother and Child Perspective. , 2022, , 289-307.		1
747	Gut Microbiota-Controlled Tryptophan Metabolism Improves D-Gal/LPS-Induced Acute Liver Failure in C57BL/6 Mice. Engineering, 2022, 14, 134-146.	6.7	18
748	Microbial memories: Sexâ€dependent impact of the gut microbiome on hippocampal plasticity. European Journal of Neuroscience, 2021, 54, 5235-5244.	2.6	30
749	Interplay of Good Bacteria and Central Nervous System: Cognitive Aspects and Mechanistic Considerations. Frontiers in Neuroscience, 2021, 15, 613120.	2.8	32
750	Effect of a Synbiotic Supplement on Fear Response and Memory Assessment of Broiler Chickens Subjected to Heat Stress. Animals, 2021, 11, 427.	2.3	17
751	When a Neonate Is Born, So Is a Microbiota. Life, 2021, 11, 148.	2.4	33
752	The microbiota–gut–brain axis: A novel nutritional therapeutic target for growth retardation. Critical Reviews in Food Science and Nutrition, 2022, 62, 4867-4892.	10.3	12
754	Early-Life Stress Modulates Gut Microbiota and Peripheral and Central Inflammation in a Sex-Dependent Manner. International Journal of Molecular Sciences, 2021, 22, 1899.	4.1	31
755	The intervention of unique plant polysaccharides - Dietary fiber on depression from the gut-brain axis. International Journal of Biological Macromolecules, 2021, 170, 336-342.	7.5	24
756	The Role of Gut Bacterial Metabolites in Brain Development, Aging and Disease. Nutrients, 2021, 13, 732.	4.1	90
757	HUMAN ADAPTATION TO THE CONDITIONS OF THE FAR NORTH: EMPHASIS ON THE CORRECTION OF THE MICROBIALÂ-TISSUE COMPLEX OF THE GASTROINTESTINAL TRACT. Ekologiya Cheloveka (Human Ecology), 2021, , 4-12.	0.7	0
758	The Volatile Oil of Zanthoxylum bungeanum Pericarp Improved the Hypothalamic-Pituitary-Adrenal Axis and Gut Microbiota to Attenuate Chronic Unpredictable Stress-Induced Anxiety Behavior in Rats. Drug Design, Development and Therapy, 2021, Volume 15, 769-786.	4.3	9
759	Of bowels, brain and behavior: A role for the gut microbiota in psychiatric comorbidities in irritable bowel syndrome. Neurogastroenterology and Motility, 2021, 33, e14095.	3.0	21
760	Altered Gut Microbiota Related to Inflammatory Responses in Patients With Huntington's Disease. Frontiers in Immunology, 2020, 11, 603594.	4.8	53
761	Regulation of Gut Microbiota Disrupts the Glucocorticoid Receptor Pathway and Inflammation-related Pathways in the Mouse Hippocampus. Experimental Neurobiology, 2021, 30, 59-72.	1.6	1

#	Article	IF	Citations
762	Differences in the Gut Microbiome of Women With and Without Hypoactive Sexual Desire Disorder: Case Control Study. Journal of Medical Internet Research, 2021, 23, e25342.	4.3	7
763	Therapeutic interventions and mechanisms associated with gut microbiota-mediated modulation of immune checkpoint inhibitor responses. Microbes and Infection, 2021, 23, 104804.	1.9	5
764	Neurodevelopmental Outcomes and Gut Bifidobacteria in Term Infants Fed an Infant Formula Containing High sn-2 Palmitate: A Cluster Randomized Clinical Trial. Nutrients, 2021, 13, 693.	4.1	18
765	Understanding the Connection Between the Gut–Brain Axis and Stress/Anxiety Disorders. Current Psychiatry Reports, 2021, 23, 22.	4.5	22
766	Brain Neurotransmitter Modulation by Gut Microbiota in Anxiety and Depression. Frontiers in Cell and Developmental Biology, 2021, 9, 649103.	3.7	71
767	Dietary Influences on the Microbiota–Gut–Brain Axis. International Journal of Molecular Sciences, 2021, 22, 3502.	4.1	37
768	Role of the gut microbiome in Alzheimer's disease. Reviews in the Neurosciences, 2021, 32, 767-789.	2.9	6
769	Serotonin Pathway in Neuroimmune Network. , 0, , .		2
770	Intestinal mycobiota in health and diseases: from a disrupted equilibrium to clinical opportunities. Microbiome, 2021, 9, 60.	11.1	68
771	Microbiome and substances of abuse. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2021, 105, 110113.	4.8	20
772	Gut microbiota dysbiosis in depressed women: The association of symptom severity and microbiota function. Journal of Affective Disorders, 2021, 282, 391-400.	4.1	41
773	Diet and the Microbiota–Gut–Brain Axis: Sowing the Seeds of Good Mental Health. Advances in Nutrition, 2021, 12, 1239-1285.	6.4	125
774	Gut Microbiota Interaction with the Central Nervous System throughout Life. Journal of Clinical Medicine, 2021, 10, 1299.	2.4	47
775	The Role of the Gut Microbiota in the Gut–Brain Axis in Obesity: Mechanisms and Future Implications. International Journal of Molecular Sciences, 2021, 22, 2993.	4.1	26
776	Tryptophan Metabolism and Gut-Brain Homeostasis. International Journal of Molecular Sciences, 2021, 22, 2973.	4.1	144
777	The Microbiome-Gut-Brain Axis and Resilience to Developing Anxiety or Depression under Stress. Microorganisms, 2021, 9, 723.	3.6	50
778	Developmental exposure to silver nanoparticles leads to long term gut dysbiosis and neurobehavioral alterations. Scientific Reports, 2021, 11, 6558.	3.3	22
779	Transcriptional markers of excitation-inhibition balance in germ-free mice show region-specific dysregulation and rescue after bacterial colonization. Journal of Psychiatric Research, 2021, 135, 248-255.	3.1	9

#	Article	IF	CITATIONS
780	Genetic Approaches Using Zebrafish to Study the Microbiota–Gut–Brain Axis in Neurological Disorders. Cells, 2021, 10, 566.	4.1	26
781	The gut microbiome influences the bioavailability of olanzapine in rats. EBioMedicine, 2021, 66, 103307.	6.1	38
782	Fecal Microbiome Transplantation from Children with Autism Spectrum Disorder Modulates Tryptophan and Serotonergic Synapse Metabolism and Induces Altered Behaviors in Germ-Free Mice. MSystems, 2021, 6, .	3.8	49
783	A Mediation Analysis to Identify Links between Gut Bacteria and Memory in Context of Human Milk Oligosaccharides. Microorganisms, 2021, 9, 846.	3.6	6
784	Does the human microbiome tell us something about race?. Humanities and Social Sciences Communications, 2021, 8, .	2.9	16
786	Molecular Mechanisms Underlying the Beneficial Effects of Exercise on Brain Function and Neurological Disorders. International Journal of Molecular Sciences, 2021, 22, 4052.	4.1	35
787	The Gut Microbiota Affects Corticosterone Production in the Murine Small Intestine. International Journal of Molecular Sciences, 2021, 22, 4229.	4.1	15
789	Effect of Akkermansia muciniphila, Faecalibacterium prausnitzii, and Their Extracellular Vesicles on the Serotonin System in Intestinal Epithelial Cells. Probiotics and Antimicrobial Proteins, 2021, 13, 1546-1556.	3.9	22
790	Schizophrenia and intestinal microbiome. Psychiatrie Pro Praxi, 2021, 22, 12-16.	0.1	0
791	Maternal immune activation alters adult behavior, intestinal integrity, gut microbiota and the gut inflammation. Brain and Behavior, 2021, 11, e02133.	2.2	20
792	Examining the Role of Microbiota in Emotional Behavior: Antibiotic Treatment Exacerbates Anxiety in High Anxiety-Prone Male Rats. Neuroscience, 2021, 459, 179-197.	2.3	11
793	The Oral-Gut-Brain AXIS: The Influence of Microbes in Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2021, 15, 633735.	3.7	45
794	A Healthy Gut for a Healthy Brain: Preclinical, Clinical and Regulatory Aspects. Current Neuropharmacology, 2021, 19, 610-628.	2.9	15
795	Maternal antibiotic administration during a critical developmental window has enduring neurobehavioural effects in offspring mice. Behavioural Brain Research, 2021, 404, 113156.	2.2	26
796	Intermittent fasting contributes to aligned circadian rhythms through interactions with the gut microbiome. Beneficial Microbes, 2021, 12, 147-161.	2.4	20
797	Gut-brain axis and immunoneuroendocrine modulation in neurological and psychiatric disorders: A systematic review. Research, Society and Development, 2021, 10, e28110414185.	0.1	1
798	The Microbiota-Gut-Brain Axis: From Motility to Mood. Gastroenterology, 2021, 160, 1486-1501.	1.3	356
799	The Potential Impact of Selected Bacterial Strains on the Stress Response. Healthcare (Switzerland), 2021, 9, 494.	2.0	6

#	Article	IF	CITATIONS
800	Prebiotics mannan-oligosaccharides accelerate sexual maturity in rats: A randomized preclinical study. Veterinary World, 2021, 14, 1210-1219.	1.7	7
801	Infant Gut Microbiota Associated with Fine Motor Skills. Nutrients, 2021, 13, 1673.	4.1	19
802	Gut microbiota depletion affects nutritional and behavioral responses to activity-based anorexia model in a sex-dependent manner. Clinical Nutrition, 2021, 40, 2734-2744.	5.0	14
803	How we decide what to eat: Toward an interdisciplinary model of gut–brain interactions. Wiley Interdisciplinary Reviews: Cognitive Science, 2022, 13, e1562.	2.8	9
804	Supplementation of Lactobacillus early in life alters attention bias to threat in piglets. Scientific Reports, 2021, 11, 10130.	3.3	10
805	Roles for the gut microbiota in regulating neuronal feeding circuits. Journal of Clinical Investigation, 2021, 131, .	8.2	26
806	The Role of the Microbiome-Gut-Brain Axis in Schizophrenia and Clozapine-Induced Weight Gain. Biological Psychiatry, 2021, 89, S342.	1.3	0
807	Sex differences in gut microbiota modulation of aversive conditioning, open field activity, and basolateral amygdala dendritic spine density. Journal of Neuroscience Research, 2021, 99, 1780-1801.	2.9	12
808	Oral Administration of Brain Protein Combined With Probiotics Induces Immune Tolerance Through the Tryptophan Pathway. Frontiers in Molecular Neuroscience, 2021, 14, 634631.	2.9	13
809	More than a gut feeling: What is the role of the gastrointestinal tract in female athlete health?. European Journal of Sport Science, 2022, 22, 755-764.	2.7	16
810	Dietary tryptophan depletion alters the faecal bacterial community structure of compulsive drinker rats in schedule-induced polydipsia. Physiology and Behavior, 2021, 233, 113356.	2.1	5
811	Blood microbiota and metabolomic signature of major depression before and after antidepressant treatment: a prospective case–control study. Journal of Psychiatry and Neuroscience, 2021, 46, E358-E368.	2.4	21
812	Microbiota regulate social behaviour via stress response neurons in the brain. Nature, 2021, 595, 409-414.	27.8	142
813	Infant gut microbiome composition is associated with non-social fear behavior in a pilot study. Nature Communications, 2021, 12, 3294.	12.8	36
814	Neuro-Signals from Gut Microbiota: Perspectives for Brain Glioma. Cancers, 2021, 13, 2810.	3.7	14
815	The influence of gut microbiome on bone health and related dietary strategies against bone dysfunctions. Food Research International, 2021, 144, 110331.	6.2	11
816	The Neuroprotective Effect of Tea Polyphenols on the Regulation of Intestinal Flora. Molecules, 2021, 26, 3692.	3.8	24
817	Host genetic control of gut microbiome composition. Mammalian Genome, 2021, 32, 263-281.	2.2	35

#	ARTICLE	IF	CITATIONS
819	\hat{l}^2 -Elemene Suppresses Obesity-Induced Imbalance in the Microbiota-Gut-Brain Axis. Biomedicines, 2021, 9, 704.	3.2	8
820	Sex-related patterns of the gut-microbiota-brain axis in the neuropsychiatric conditions. Brain Research Bulletin, 2021, 171, 196-208.	3.0	15
821	Probiotics, prebiotics, synbiotics, and fecal microbiota transplantation in the treatment of behavioral symptoms of autism spectrum disorder: A systematic review. Autism Research, 2021, 14, 1820-1836.	3.8	57
822	Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients, 2021, 13, 2099.	4.1	230
823	First Encounters: Effects of the Microbiota on Neonatal Brain Development. Frontiers in Cellular Neuroscience, 2021, 15, 682505.	3.7	13
824	Development of the infant gut microbiome predicts temperament across the first year of life. Development and Psychopathology, 2022, 34, 1914-1925.	2.3	10
825	Gut microbiota signature in treatment-na \tilde{A} ve attention-deficit/hyperactivity disorder. Translational Psychiatry, 2021, 11, 382.	4.8	25
826	Melatonin Ameliorates Corticosterone-Mediated Oxidative Stress-Induced Colitis in Sleep-Deprived Mice Involving Gut Microbiota. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-24.	4.0	15
827	Gut Microbiota in Depression: A Focus on Ketamine. Frontiers in Behavioral Neuroscience, 2021, 15, 693362.	2.0	15
828	Amino Acid Trp: The Far Out Impacts of Host and Commensal Tryptophan Metabolism. Frontiers in Immunology, 2021, 12, 653208.	4.8	45
829	Neurotransmitter Profiles Are Altered in the Gut and Brain of Mice Mono-Associated with Bifidobacterium dentium. Biomolecules, 2021, 11, 1091.	4.0	17
830	Bidirectional communication between mast cells and the gut-brain axis in neurodegenerative diseases: Avenues for therapeutic intervention. Brain Research Bulletin, 2021, 172, 61-78.	3.0	14
831	Aryl hydrocarbon receptor activation by Lactobacillus reuteri tryptophan metabolism alleviates Escherichia coli-induced mastitis in mice. PLoS Pathogens, 2021, 17, e1009774.	4.7	55
832	Gut microorganisms and neurological disease perspectives. Future Neurology, 2021, 16, .	0.5	8
833	The effect of multispecies probiotics on cognitive reactivity to sad mood in patients with Crohn's disease. Journal of Functional Foods, 2021, 82, 104431.	3.4	9
834	Effect of gut microbiota early in life on aggressive behavior in mice. Neuroscience Research, 2021, 168, 95-99.	1.9	16
835	Contributions of neuroimmune and gut-brain signaling to vulnerability of developing substance use disorders. Neuropharmacology, 2021, 192, 108598.	4.1	21
836	Direct and indirect effects of microbiota-derived metabolites on neuroinflammation in multiple sclerosis. Microbes and Infection, 2021, 23, 104814.	1.9	11

#	Article	IF	CITATIONS
837	The Microbiota-Gut-Brain Axis in Health and Disease and Its Implications for Translational Research. Frontiers in Cellular Neuroscience, 2021, 15, 698172.	3.7	50
838	Neurocognitive Impairment After Hematopoietic Stem Cell Transplant for Hematologic Malignancies: Phenotype and Mechanisms. Oncologist, 2021, 26, e2021-e2033.	3.7	11
839	Role of microbes in the pathogenesis of neuropsychiatric disorders. Frontiers in Neuroendocrinology, 2021, 62, 100917.	5.2	8
840	From gut microbiota to host appetite: gut microbiota-derived metabolites as key regulators. Microbiome, 2021, 9, 162.	11.1	110
841	Roles of Sex Hormones and Gender in the Gut Microbiota. Journal of Neurogastroenterology and Motility, 2021, 27, 314-325.	2.4	98
842	Hidden Role of Gut Microbiome Dysbiosis in Schizophrenia: Antipsychotics or Psychobiotics as Therapeutics?. International Journal of Molecular Sciences, 2021, 22, 7671.	4.1	37
843	The Microbiota-Gut-Brain Axis: A New Direction in Research on Depression. Journal of Student Research, 2021, 10, .	0.1	0
844	Interactions between maternal fluoxetine exposure, the maternal gut microbiome and fetal neurodevelopment in mice. Behavioural Brain Research, 2021, 410, 113353.	2.2	7
845	Tryptophan metabolites modulate inflammatory bowel disease and colorectal cancer by affecting immune system. International Reviews of Immunology, 2022, 41, 326-345.	3.3	42
846	The Microbiota/Microbiome and the Gut–Brain Axis: How Much Do They Matter in Psychiatry?. Life, 2021, 11, 760.	2.4	12
847	Behavioral disorders caused by nonylphenol and strategies for protection. Chemosphere, 2021, 275, 129973.	8.2	16
848	Xenoestrogen effects on the gut microbiome. Current Opinion in Endocrine and Metabolic Research, 2021, 19, 41-45.	1.4	6
849	Fecal Transplant and Bifidobacterium Treatments Modulate Gut Clostridium Bacteria and Rescue Social Impairment and Hippocampal BDNF Expression in a Rodent Model of Autism. Brain Sciences, 2021, 11, 1038.	2.3	37
850	Intestinal microbiota modulates adrenomedullary response through Nod1 sensing in chromaffin cells. IScience, 2021, 24, 102849.	4.1	7
851	Gut Microbiota and Neuroplasticity. Cells, 2021, 10, 2084.	4.1	22
852	The self-serving benefits of being a good host: A role for our micro-inhabitants in shaping opioids' function. Neuroscience and Biobehavioral Reviews, 2021, 127, 284-295.	6.1	3
853	Neuropathy in COVID-19 associated with dysbiosis-related inflammation. Turkish Journal of Biology, 2021, 45, 390-403.	0.8	6
854	A Microbiome-Driven Approach to Combating Depression During the COVID-19 Pandemic. Frontiers in Nutrition, 2021, 8, 672390.	3.7	11

#	Article	IF	Citations
855	Helicobacter pylori Infection and Extragastric Diseases—A Focus on the Central Nervous System. Cells, 2021, 10, 2191.	4.1	30
856	Sex and brain regionâ€specific regulation of serotonin transporter activity in synaptosomes in guanine nucleotideâ€binding protein G(q) alpha knockout mice. Journal of Neurochemistry, 2021, 159, 156-171.	3.9	8
857	Lactobacillus paracasei Supplementation Prevents Early Life Stress-Induced Anxiety and Depressive-Like Behavior in Maternal Separation Model-Possible Involvement of Microbiota-Gut-Brain Axis in Differential Regulation of MicroRNA124a/132 and Glutamate Receptors. Frontiers in Neuroscience, 2021, 15, 719933.	2.8	29
859	Probiotics: Potential novel therapeutics for microbiota-gut-brain axis dysfunction across gender and lifespan., 2022, 231, 107978.		37
860	Microbiome-Gut-Brain Interactions in Neurodevelopmental Disorders: Focus on Autism and Schizophrenia., 2021,, 258-291.		0
861	Dietary fibre and the gut–brain axis: microbiota-dependent and independent mechanisms of action. Gut Microbiome, 2021, 2, .	3.2	12
862	Stress and the Role of the Gut–Brain Axis in the Pathogenesis of Schizophrenia: A Literature Review. International Journal of Molecular Sciences, 2021, 22, 9747.	4.1	11
863	Tryptophan: From Diet to Cardiovascular Diseases. International Journal of Molecular Sciences, 2021, 22, 9904.	4.1	24
864	The gut, its microbiome, and the brain: connections and communications. Journal of Clinical Investigation, 2021, 131, .	8.2	59
865	Prenatal stress-induced disruptions in microbial and host tryptophan metabolism and transport. Behavioural Brain Research, 2021, 414, 113471.	2.2	16
866	The Role of Gut Microbiota and Gut–Brain Interplay in Selected Diseases of the Central Nervous System. International Journal of Molecular Sciences, 2021, 22, 10028.	4.1	41
867	Gut microbiome in adolescent depression. Journal of Affective Disorders, 2021, 292, 500-507.	4.1	22
868	Gastrointestinal disorders in hyperkinetic movement disorders and ataxia. Parkinsonism and Related Disorders, 2021, 90, 125-133.	2.2	3
869	Emerging Role of the Gut Microbiome in Irritable Bowel Syndrome. Gastroenterology Clinics of North America, 2021, 50, 523-545.	2.2	19
870	Postnatal prebiotic supplementation in rats affects adult anxious behaviour, hippocampus, electrophysiology, metabolomics, and gut microbiota. IScience, 2021, 24, 103113.	4.1	7
871	The role of NADPH oxidase in chronic intermittent hypoxia-induced respiratory plasticity in adult male mice. Respiratory Physiology and Neurobiology, 2021, 292, 103713.	1.6	5
872	Effect of microbiota metabolites on the progression of chronic hepatitis B virus infection. Hepatology International, 2021, 15, 1053-1067.	4.2	7
873	Alterations of kynurenine pathway in alcohol use disorder and abstinence: a link with gut microbiota, peripheral inflammation and psychological symptoms. Translational Psychiatry, 2021, 11, 503.	4.8	32

#	Article	IF	CITATIONS
874	Stress and the Gut-Brain Axis: Implications for Cancer, Inflammation and Sepsis. Journal of Surgical Research, 2021, 266, 336-344.	1.6	9
875	The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacological Research, 2021, 172, 105840.	7.1	201
876	Kefir ameliorates specific microbiota-gut-brain axis impairments in a mouse model relevant to autism spectrum disorder. Brain, Behavior, and Immunity, 2021, 97, 119-134.	4.1	19
877	Antibiotic-induced gut microbiota depletion from early adolescence exacerbates spatial but not recognition memory impairment in adult male C57BL/6 mice with Alzheimer-like disease. Brain Research Bulletin, 2021, 176, 8-17.	3.0	15
878	Gut microbiota and neuropsychiatric disorders: Implications for neuroendocrine-immune regulation. Pharmacological Research, 2021, 173, 105909.	7.1	16
879	Behavioural adaptations after antibiotic treatment in male mice are reversed by activation of the aryl hydrocarbon receptor. Brain, Behavior, and Immunity, 2021, 98, 317-329.	4.1	10
880	The gut microbiome: implications for neurogenesis and neurological diseases. Neural Regeneration Research, 2022, 17, 53.	3.0	14
881	Microbiota-Brain-Gut Axis and Neurodegenerative Disorders. , 2022, , 412-422.		1
882	The Role of Gut Microbiota in Circadian Stress. , 2022, , 238-238.		0
883	Gut microbiota and the immune system and inflammation. , 2021, , 311-333.		0
884	Nutritional Support of Neurodevelopment and Cognitive Function in Infants and Young Childrenâ€"An Update and Novel Insights. Nutrients, 2021, 13, 199.	4.1	40
885	Diet, Microbiota and the Gut-Brain Axis. , 2021, , .		4
886	The gut–liver–brain axis: dietary and therapeutic interventions. , 2021, , 205-236.		2
887	The gut microbiome in neurodegenerative disorders. , 2021, , 101-121.		0
888	Bibliometric and Visual Analysis of Research on the Links Between the Gut Microbiota and Depression From 1999 to 2019. Frontiers in Psychiatry, 2020, 11, 587670.	2.6	55
889	Gut microbiota and brain function and pathophysiology. , 2021, , 335-354.		0
890	Microbiota-Gut-Brain Axis., 2021,, 423-423.		0
891	Interaction of the Microbiota With the Host's Gastro-Intestinal, Nervous and Immune System in Terms of Network Organization., 2021,, 280-280.		1

#	Article	IF	CITATIONS
892	The Gut Microbiome Affects Human Mood and Behavior., 2021,, 541-565.		1
893	Microbiome–Gut–Brain Axis. , 2013, , 1-14.		1
894	Microbes in Pharmaceutical Industry. , 2020, , 259-299.		11
895	Immune-Kynurenine Pathways and the Gut Microbiota-Brain Axis in Anxiety Disorders. Advances in Experimental Medicine and Biology, 2020, 1191, 155-167.	1.6	24
896	Nutrition and the ageing brain: Moving towards clinical applications. Ageing Research Reviews, 2020, 62, 101079.	10.9	56
897	Microbial communities modulating brain functioning and behaviors in zebrafish: A mechanistic approach. Microbial Pathogenesis, 2020, 145, 104251.	2.9	18
898	Peripheral and cerebral abnormalities of the tryptophan metabolism in the depression-like rats induced by chronic unpredicted mild stress. Neurochemistry International, 2020, 138, 104771.	3.8	20
899	Inter-individual variation shapes the human microbiome. Behavioral and Brain Sciences, 2019, 42, .	0.7	6
900	The gut microbiome and neuropsychiatric disorders: implications for attention deficit hyperactivity disorder (ADHD). Journal of Medical Microbiology, 2020, 69, 14-24.	1.8	40
906	Interactions between the gut microbiome and the central nervous system and their role in schizophrenia, bipolar disorder and depression. Archives of Psychiatry and Psychotherapy, 2016, 18, 5-11.	0.3	8
907	Gut Microbiome Developmental Patterns in Early Life of Preterm Infants: Impacts of Feeding and Gender. PLoS ONE, 2016, 11, e0152751.	2.5	184
908	Maternal obese-type gut microbiota differentially impact cognition, anxiety and compulsive behavior in male and female offspring in mice. PLoS ONE, 2017, 12, e0175577.	2.5	57
909	Advances in understanding and treating mental. Journal of Psychiatry and Neuroscience, 2017, 42, 353-358.	2.4	1
910	Early genistein exposure of California mice and effects on the gut microbiota–brain axis. Journal of Endocrinology, 2019, 242, 139-157.	2.6	21
912	Microbiome, gut dysbiosis and inflammatory bowel disease: That moment when the function is more important than taxonomy. Alʹmanah KliniÄeskoj Mediciny, 2018, 46, 396-425.	0.3	26
913	Prenatal Stress and Maternal Immune Dysregulation in Autism Spectrum Disorders: Potential Points for Intervention. Current Pharmaceutical Design, 2020, 25, 4331-4343.	1.9	24
914	Microbiota and Alcohol Use Disorder: Are Psychobiotics a Novel Therapeutic Strategy?. Current Pharmaceutical Design, 2020, 26, 2426-2437.	1.9	19
915	Vitamin D and N-Acetyl Cysteine Supplementation in Treatment-Resistant Depressive Disorder Patients: A General Review. Current Pharmaceutical Design, 2020, 26, 2442-2459.	1.9	7

#	ARTICLE	IF	CITATIONS
916	The Relationship Between the Serotonin Metabolism, Gut-Microbiota and the Gut-Brain Axis. Current Drug Metabolism, 2019, 20, 646-655.	1.2	67
917	The Effects of Probiotics and Prebiotics on Mental Disorders: A Review on Depression, Anxiety, Alzheimer, and Autism Spectrum Disorders. Current Pharmaceutical Biotechnology, 2020, 21, 555-565.	1.6	101
918	Effects of Stress on the Mucus-microbial Interactions in the Gut. Current Protein and Peptide Science, 2018, 20, 155-163.	1.4	11
919	The Microbiota-Gut-Brain Axis in Neuropsychiatric Disorders: Pathophysiological Mechanisms and Novel Treatments. Current Neuropharmacology, 2018, 16, 559-573.	2.9	147
920	Vitamin D and Depression in Women: A Mini-review. Current Neuropharmacology, 2020, 18, 288-300.	2.9	12
921	Gut Emotions - Mechanisms of Action of Probiotics as Novel Therapeutic Targets for Depression and Anxiety Disorders. CNS and Neurological Disorders - Drug Targets, 2015, 13, 1770-1786.	1.4	52
922	Neural Mechanisms of Exercise: Effects on Gut Miccrobiota and Depression. CNS and Neurological Disorders - Drug Targets, 2015, 14, 1312-1314.	1.4	10
923	Psychobiotics and Brain-Gut Microbiota Axis. Iranian Journal of Medical Microbiology, 2019, 13, 1-13.	0.6	1
924	The "systems approach―to treating the brain: opportunities in developmental psychopharmacology. Dialogues in Clinical Neuroscience, 2019, 21, 211-215.	3.7	2
925	Harnessing the microbiota to treat neurological diseases. Dialogues in Clinical Neuroscience, 2019, 21, 159-165.	3.7	4
927	Control of T-Cell Activation and Signaling by Amino-Acid Catabolizing Enzymes. Frontiers in Cell and Developmental Biology, 2020, 8, 613416.	3.7	16
928	The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Frontiers in Endocrinology, 2020, 11, 25.	3.5	1,235
929	Antidepressive Mechanisms of Probiotics and Their Therapeutic Potential. Frontiers in Neuroscience, 2019, 13, 1361.	2.8	106
930	The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality. Frontiers in Integrative Neuroscience, 2013, 7, 70.	2.1	274
931	The Role of Microbiomes in Pregnant Women and Offspring: Research Progress of Recent Years. Frontiers in Pharmacology, 2020, 11, 643.	3.5	28
932	An Actual Natural Setting Improves Mood Better Than Its Virtual Counterpart: A Meta-Analysis of Experimental Data. Frontiers in Psychology, 2020, 11, 2200.	2.1	89
933	Iron Dysregulation and Inflammagens Related to Oral and Gut Health Are Central to the Development of Parkinson's Disease. Biomolecules, 2021, 11, 30.	4.0	13
934	The Brain–Gut–Microbiome Axis in Psychiatry. International Journal of Molecular Sciences, 2020, 21, 7122.	4.1	28

#	Article	IF	Citations
935	Microbiota-host interactions in irritable bowel syndrome: epithelial barrier, immune regulation and brain-gut interactions. World Journal of Gastroenterology, 2014, 20, 8859-66.	3.3	87
936	Polyphenols-gut microbiota interplay and brain neuromodulation. Neural Regeneration Research, 2018, 13, 2055.	3.0	142
937	Social Buffering Prevents Stress-Induced Decreases in Dendritic Length, Branching in Dentate Granule Cells and Hippocampus-Related Memory Performance. Neuropsychiatry, 2018, 08, .	0.4	1
938	Alteration of Gut Microbiota in Autism Spectrum Disorder: An Overview. Soa¡\$ceongso'nyeon Jeongsin Yihag, 2020, 31, 131-145.	0.5	20
939	<i>Lactobacillus johnsonii</i> BS15 improves intestinal environment against fluoride-induced memory impairment in miceâ€"a study based on the gutâ€"brain axis hypothesis. PeerJ, 2020, 8, e10125.	2.0	18
940	Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls. PeerJ, 2015, 3, e1140.	2.0	222
941	Gut and Brain: Investigating Physiological and Pathological Interactions Between Microbiota and Brain to Gain New Therapeutic Avenues for Brain Diseases. Frontiers in Neuroscience, 2021, 15, 753915.	2.8	18
942	Microbiota-brain interactions: Moving toward mechanisms in model organisms. Neuron, 2021, 109, 3930-3953.	8.1	54
943	Microbiomics in Collusion with the Nervous System in Carcinogenesis: Diagnosis, Pathogenesis and Treatment. Microorganisms, 2021, 9, 2129.	3.6	3
944	Gut Reactions: How Far Are We from Understanding and Manipulating the Microbiota Complexity and the Interaction with Its Host? Lessons from Autism Spectrum Disorder Studies. Nutrients, 2021, 13, 3492.	4.1	6
945	Gut-microbiota derived bioactive metabolites and their functions in host physiology. Biotechnology and Genetic Engineering Reviews, 2021, 37, 105-153.	6.2	18
946	Gut microbiota and its metabolites: Bridge of dietary nutrients and obesity-related diseases. Critical Reviews in Food Science and Nutrition, 2023, 63, 3236-3253.	10.3	18
947	The Future of Prebiotics and Probiotics. , 2013, , 464-493.		0
948	Microbiome–Gut–Brain Axis. , 2015, , 425-437.		0
949	Role of Symbionts in Evolutionary Processes. , 2016, , 67-77.		0
950	Gut Microbiota, a Key Factor Relating Diet and Inflammation with the Progression of Cognitive Impairment in Older People. Journal of Nutritional Health & Food Engineering, 2017, 6, .	0.5	1
951	Chapter 12 The association between intestinal microbiota and infant crying and behaviour. , 2017, , 219-243.		3
952	Chapter 8 The interplay between the microbiota and the central nervous system during neurodevelopment., 2017,, 151-162.		1

#	Article	IF	Citations
955	Şizofreni Etyolojisinde Mikrobiyotanın Rolü. Current Approaches in Psychiatry, 2018, 10, 255-268.	0.4	1
956	The syndrome of increased intestinal permeability: a focus on microbiota. Modern Gastroenterology, 2018, .	0.1	O
957	Selected risk factors for schizophrenia: between the diversity of aetiological models and personalised psychiatry. Psychiatria I Psychologia Kliniczna, 2018, 18, 388-398.	0.2	1
958	Bacteriaâ€"Human Interactions: Leads for Personalized Medicine. Europeanization and Globalization, 2019, , 89-98.	0.1	0
959	Anorexia nervosa and gut microbiota. Psihiatru Ro, 2019, 2, 32.	0.0	0
960	ROLE OF MICROBIOTA IN MAINTAINING THE HOMEOSTASIS IN THE HUMAN BODY. Postepy Mikrobiologii, 2019, 57, 5-11.	0.1	3
964	Progress in Research on Brain Development and Function of Mice During Weaning. Current Protein and Peptide Science, 2019, 20, 705-712.	1.4	2
967	Microbiota e neurosviluppo. Pnei Review, 2019, , 92-102.	0.1	0
968	Physical activity regulates the intestinal microbiota composition. Annales Kinesiologiae, 2020, 10, 99-114.	0.1	0
969	The Social Brain: Implications for Therapeutic and Preventive Protocols in Psychiatry., 2020, , 123-137.		0
970	Eixo intestino-cérebro: relação entre a microbiota intestinal e desordens mentais. Research, Society and Development, 2020, 9, e499974303.	0.1	4
972	Influence of diet on the gut microbiota. Journal of Education, Health and Sport, 2020, 10, 33.	0.1	1
973	ARE THEY ALSO MIND COLONIZERS? EXPLORING THE ASSOCIATION BETWEEN GUT MICROBIOTA AND DEPRESSION. FUDMA Journal of Sciences, 2020, 4, 168-177.	0.2	0
974	The Complex Molecular Picture of Gut and Oral Microbiota–Brain-Depression System: What We Know and What We Need to Know. Frontiers in Psychiatry, 2021, 12, 722335.	2.6	19
976	Relação entre microbiota intestinal e depressão. Research, Society and Development, 2020, 9, e42191211158.	0.1	0
977	Changes in the Serum Metabolome of Patients Treated With Broad-Spectrum Antibiotics. Pathogens and Immunity, 2020, 5, 382.	3.1	2
978	Impact of Gut Microbiota on Host byÂExploring Proteomics. , 2020, , 229-250.		1
979	Research Progress on the Relationship between Intestinal Flora and Mental and Psychological Diseases. Advances in Microbiology, 2020, 10, 295-305.	0.6	4

#	Article	IF	CITATIONS
980	Cognitive Impairment in Obesity and Diabetes. , 2020, , 399-414.		1
982	The Potential Utility of Prebiotics to Modulate Alzheimer's Disease: A Review of the Evidence. Microorganisms, 2021, 9, 2310.	3.6	15
983	Gut feelings: the microbiota-gut-brain axis on steroids. American Journal of Physiology - Renal Physiology, 2022, 322, G1-G20.	3.4	9
984	Microbes, metabolites and (synaptic) malleability, oh my! <scp>T</scp> he effect of the microbiome on synaptic plasticity. Biological Reviews, 2022, 97, 582-599.	10.4	13
985	Crosstalk Between Intestinal Serotonergic System and Pattern Recognition Receptors on the Microbiota–Gut–Brain Axis. Frontiers in Endocrinology, 2021, 12, 748254.	3.5	17
986	Gut Microbiota Regulation and Their Implication in the Development of Neurodegenerative Disease. Microorganisms, 2021, 9, 2281.	3.6	22
987	Development of the Korean Form of the Premonitory Urge for Tics Scale: A Reliability and Validity Study. Soa \hat{A}_i \$ceongso'nyeon Jeongsin Yihag, 2020, 31, 146-153.	0.5	3
989	The Gut-Brain Axis and Its Role in Depression. Cureus, 2020, 12, e10280.	0.5	6
992	Gut feelings: bacteria and the brain. Cerebrum: the Dana Forum on Brain Science, 2013, 2013, 9.	0.1	9
993	The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Annals of Gastroenterology, 2015, 28, 203-209.	0.6	1,000
994	Effects of Embryo Transfer on Emotional Behaviors in C57BL/6 Mice. Journal of the American Association for Laboratory Animal Science, 2016, 55, 510-9.	1.2	8
995	Advances in understanding and treating mental illness: proceedings of the 40th Canadian College of Neuropsychopharmacology Annual Meeting Symposia. Journal of Psychiatry and Neuroscience, 2017, 42, 353-358.	2.4	1
996	The Gut-Brain Axis: Influence of Microbiota on Mood and Mental Health. Integrative Medicine, 2018, 17, 28-32.	0.1	21
997	THE SKIN MICROBIOTA AND ITCH: Is There a Link?. Journal of Clinical and Aesthetic Dermatology, 2020, 13, S39-S46.	0.1	1
998	Proteomic Profiling of Lysine Acetylation Indicates Mitochondrial Dysfunction in the Hippocampus of Gut Microbiota-Absent Mice. Frontiers in Molecular Neuroscience, 2021, 14, 594332.	2.9	1
999	Diet and microbiota-gut-brain axis in relation to tail biting in pigs: A review. Applied Animal Behaviour Science, 2022, 246, 105514.	1.9	13
1000	Production of Lactobacillus brevis ProGA28 attenuates stress-related sleep disturbance and modulates the autonomic nervous system and the motor response in anxiety/depression behavioral tests in Wistar–Kyoto rats. Life Sciences, 2022, 288, 120165.	4.3	6
1001	Dietary tryptophan, tyrosine, and phenylalanine depletion induce reduced food intake and behavioral alterations in mice. Physiology and Behavior, 2022, 244, 113653.	2.1	7

#	Article	IF	CITATIONS
1002	Proteomic Profiling of Lysine Acetylation Indicates Mitochondrial Dysfunction in the Hippocampus of Gut Microbiota-Absent Mice. Frontiers in Molecular Neuroscience, 2021, 14, 594332.	2.9	13
1003	A High-Tryptophan Diet Reduces Seizure-Induced Respiratory Arrest and Alters the Gut Microbiota in DBA/1 Mice. Frontiers in Neurology, 2021, 12, 762323.	2.4	10
1004	Implications of Gut Microbiota in Complex Human Diseases. International Journal of Molecular Sciences, 2021, 22, 12661.	4.1	20
1005	Disturbances of the Gut Microbiota, Sleep Architecture, and mTOR Signaling Pathway in Patients with Severe Obstructive Sleep Apnea-Associated Hypertension. International Journal of Hypertension, 2021, 2021, 1-12.	1.3	9
1006	Microbiota links to neural dynamics supporting threat processing. Human Brain Mapping, 2022, 43, 733-749.	3.6	12
1007	Functional gastrointestinal disorders. Overlap syndrome Clinical guidelines of the Russian Scientific Medical Society of Internal Medicine and Gastroenterological Scientific Society of Russia. Eksperimental naya I Klinicheskaya Gastroenterologiya, 2021, , 5-117.	0.4	15
1008	The Zonulin-transgenic mouse displays behavioral alterations ameliorated via depletion of the gut microbiota. Tissue Barriers, 2022, 10, 2000299.	3.2	7
1009	Gut microbiota depletion from early adolescence alters anxiety and depression-related behaviours in male mice with Alzheimer-like disease. Scientific Reports, 2021, 11, 22941.	3.3	21
1010	The Kynurenine Pathway in Acute Kidney Injury and Chronic Kidney Disease. American Journal of Nephrology, 2021, 52, 771-787.	3.1	27
1011	Sex-Specific Effects of Synbiotic Exposure in Mice on Addictive-Like Behavioral Alterations Induced by Chronic Alcohol Intake Are Associated With Changes in Specific Gut Bacterial Taxa and Brain Tryptophan Metabolism. Frontiers in Nutrition, 2021, 8, 750333.	3.7	14
1012	Synchronizing our clocks as we age: the influence of the brain-gut-immune axis on the sleep-wake cycle across the lifespan. Sleep, 2022, 45, .	1.1	13
1013	Bifidobacterium breve CCFM1025 attenuates major depression disorder via regulating gut microbiome and tryptophan metabolism: A randomized clinical trial. Brain, Behavior, and Immunity, 2022, 100, 233-241.	4.1	95
1014	Gut-brain mechanisms underlying changes in disordered eating behaviour after bariatric surgery: a review. Reviews in Endocrine and Metabolic Disorders, 2021, , 1.	5.7	5
1017	Modulation of intestinal barrier function by glucocorticoids: Lessons from preclinical models. Pharmacological Research, 2022, 177, 106056.	7.1	16
1018	Modeling dopamine dysfunction in autism spectrum disorder: From invertebrates to vertebrates. Neuroscience and Biobehavioral Reviews, 2022, 133, 104494.	6.1	10
1019	From Alpha Diversity to Zzz: Interactions among sleep, the brain, and gut microbiota in the first year of life. Progress in Neurobiology, 2022, 209, 102208.	5.7	20
1020	The role of serotonin within the microbiota-gut-brain axis in the development of Alzheimer's disease: A narrative review. Ageing Research Reviews, 2022, 75, 101556.	10.9	44
1021	Oral-Gut-Brain Axis in Experimental Models of Periodontitis: Associating Gut Dysbiosis With Neurodegenerative Diseases. Frontiers in Aging, 2021, 2, .	2.6	21

#	Article	IF	CITATIONS
1022	Emerging effects of tryptophan pathway metabolites and intestinal microbiota on metabolism and intestinal function. Amino Acids, 2022, 54, 57-70.	2.7	34
1023	Effects of Different Ammonia Concentrations on Pulmonary Microbial Flora, Lung Tissue Mucosal Morphology, Inflammatory Cytokines, and Neurotransmitters of Broilers. Animals, 2022, 12, 261.	2.3	2
1024	Advances in Microbiota-Gut-Brain Axis and Alcohol Dependence Syndrome. Open Journal of Natural Science, 2022, 10, 70-78.	0.0	0
1025	Probiotics and the gut-brain axis. , 2022, , 451-466.		O
1026	Microbiome mediation of animal life histories <i>via</i> metabolites and insulinâ€like signalling. Biological Reviews, 2022, 97, 1118-1130.	10.4	10
1027	Brain-derived neurotrophic factor in Alzheimer's disease and its pharmaceutical potential. Translational Neurodegeneration, 2022, 11, 4.	8.0	117
1028	Opioid Use, Gut Dysbiosis, Inflammation, and the Nervous System. Journal of NeuroImmune Pharmacology, 2022, 17, 76-93.	4.1	16
1029	Maternal and early life exposures and their potential to influence development of the microbiome. Genome Medicine, 2022, 14, 4.	8.2	31
1030	How Microbes Affect Depression: Underlying Mechanisms via the Gut–Brain Axis and the Modulating Role of Probiotics. International Journal of Molecular Sciences, 2022, 23, 1172.	4.1	36
1031	The Microbiota-Gut Axis in Premature Infants: Physio-Pathological Implications. Cells, 2022, 11, 379.	4.1	18
1032	One Giant Leap from Mouse to Man: The Microbiota–Gut–Brain Axis in Mood Disorders and Translational Challenges Moving towards Human Clinical Trials. Nutrients, 2022, 14, 568.	4.1	13
1033	The Gut–Brain Axis. Annual Review of Medicine, 2022, 73, 439-453.	12.2	163
1036	Therapeutic Interventions of Gut-Brain Axis as Novel Strategies for Treatment of Alcohol Use Disorder Associated Cognitive and Mood Dysfunction. Frontiers in Neuroscience, 2022, 16, 820106.	2.8	3
1037	Gut microbiome-brain axis and inflammation in temperament, personality and psychopathology. Current Opinion in Behavioral Sciences, 2022, 44, 101101.	3.9	14
1038	Crosstalk between adipose tissue and the microbiota-gut-brain axis in metabolic diseases. International Journal of Biological Sciences, 2022, 18, 1706-1723.	6.4	5
1039	Multispecies probiotic administration reduces emotional salience and improves mood in subjects with moderate depression: a randomised, double-blind, placebo-controlled study. Psychological Medicine, 2023, 53, 3437-3447.	4.5	15
1040	Homeostatic regulation of neuronal excitability by probiotics in male germâ€free mice. Journal of Neuroscience Research, 2022, 100, 444-460.	2.9	2
1041	Gut Microbiota Extracellular Vesicles as Signaling Molecules Mediating Host-Microbiota Communications. International Journal of Molecular Sciences, 2021, 22, 13166.	4.1	14

#	Article	IF	CITATIONS
1042	Repeated mild traumatic brain injury affects microbial diversity in rat jejunum. Journal of Biosciences, $2019,44,.$	1.1	7
1043	è,é•°å³¼®ç"Ÿç‰©ï¼šè§£æžç¥žç»ç²¾ç¥žç−¾ç—…çš"æ−°è§†çª—. Scientia Sinica Vitae, 2022, , .	0.3	0
1044	Gut microbiota-derived metabolites in host physiology. , 2022, , 515-534.		1
1045	Modulation of Gut Microbial Diversity through Non-Pharmaceutical Approaches to Treat Schizophrenia. International Journal of Molecular Sciences, 2022, 23, 2625.	4.1	10
1046	Metformin Alleviates Autistic-Like Behaviors Elicited by High-Fat Diet Consumption and Modulates the Crosstalk Between Serotonin and Gut Microbiota in Mice. Behavioural Neurology, 2022, 2022, 1-15.	2.1	13
1047	Microbiota and Pain: Save Your Gut Feeling. Cells, 2022, 11, 971.	4.1	14
1048	Gut-Microbiome Implications in Opioid Use Disorder and Related Behaviors. Advances in Drug and Alcohol Research, 0, 2, .	2.5	4
1049	Probiotics ameliorates LPS induced neuroinflammation injury on Aβ 1–42, APP, γ-β secretase and BDNF levels in maternal gut microbiota and fetal neurodevelopment processes. Metabolic Brain Disease, 2022, 37, 1387-1399.	2.9	14
1050	Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS. EBioMedicine, 2022, 77, 103908.	6.1	80
1051	Bacteroides ovatus colonization influences the abundance of intestinal short chain fatty acids and neurotransmitters. IScience, 2022, 25, 104158.	4.1	41
1052	Influence of the Microbiota-Gut-Brain Axis on Cognition in Alzheimer's Disease. Journal of Alzheimer's Disease, 2022, 87, 17-31.	2.6	22
1053	Potential Roles of Enterochromaffin Cells in Early Life Stress-Induced Irritable Bowel Syndrome. Frontiers in Cellular Neuroscience, 2022, 16, 837166.	3.7	6
1054	No Guts About It: Captivity, But Not Neophobia Phenotype, Influences the Cloacal Microbiome of House Sparrows (<i>Passer domesticus</i>). Integrative Organismal Biology, 2022, 4, obac010.	1.8	6
1055	Mapping the Influence of the Gut Microbiota on Small Molecules across the Microbiome Gut Brain Axis. Journal of the American Society for Mass Spectrometry, 2022, 33, 649-659.	2.8	6
1056	The Role of the Gut Microbiota in the Development of Ischemic Stroke. Frontiers in Immunology, 2022, 13, 845243.	4.8	14
1057	Probiotics: The Next Dietary Strategy against Brain Aging. Preventive Nutrition and Food Science, 2022, 27, 1-13.	1.6	7
1058	The Role of MicroRNA and Microbiota in Depression and Anxiety. Frontiers in Behavioral Neuroscience, 2022, 16, 828258.	2.0	16
1059	Interactive relationship between Trp metabolites and gut microbiota: The impact on human pathology of disease. Journal of Applied Microbiology, 2022, 132, 4186-4207.	3.1	4

#	ARTICLE	IF	CITATIONS
1060	Potential of Probiotics as an Adjunct for Patients with Major Depressive Disorder. Molecular Nutrition and Food Research, 2022, 66, e2101057.	3.3	3
1061	The Developing Microbiome From Birth to 3 Years: The Gut-Brain Axis and Neurodevelopmental Outcomes. Frontiers in Pediatrics, 2022, 10, 815885.	1.9	35
1062	Microbe-Immune Crosstalk: Evidence That T Cells Influence the Development of the Brain Metabolome. International Journal of Molecular Sciences, 2022, 23, 3259.	4.1	7
1063	Mucosal fungi promote gut barrier function and social behavior via Type 17 immunity. Cell, 2022, 185, 831-846.e14.	28.9	133
1064	Sexâ€dependent impact of microbiota status on cerebral μâ€opioid receptor density in fischer rats. European Journal of Neuroscience, 2022, 55, 1917-1933.	2.6	3
1065	A randomized controlled trial into the effects of probiotics on electroencephalography in preschoolers with autism. Autism, 2023, 27, 117-132.	4.1	10
1066	Colitis-associated microbiota drives changes in behaviour in male mice in the absence of inflammation. Brain, Behavior, and Immunity, 2022, 102, 266-278.	4.1	19
1067	Stress induced microglial activation contributes to depression. Pharmacological Research, 2022, 179, 106145.	7.1	36
1068	Treating autism spectrum disorder by intervening with gut microbiota. Journal of Medical Microbiology, 2021, 70, .	1.8	5
1069	Toward Elucidating the Human Gut Microbiota–Brain Axis: Molecules, Biochemistry, and Implications for Health and Diseases. Biochemistry, 2022, 61, 2806-2821.	2.5	6
1070	Gender Was Associated with Depression but Not with Gastrointestinal Dysfunction in Patients with Parkinson's Disease. Parkinson's Disease, 2021, 2021, 1-8.	1.1	2
1071	Gut Homeostasis; Microbial Cross Talks in Health and Disease Management. Current Research in Nutrition and Food Science, 2021, 9, 1017-1045.	0.8	0
1072	Clinical implications of preterm infant gut microbiome development. Nature Microbiology, 2022, 7, 22-33.	13.3	50
1073	Dietary Supplementation throughout Life with Non-Digestible Oligosaccharides and/or n-3 Poly-Unsaturated Fatty Acids in Healthy Mice Modulates the Gut–Immune System–Brain Axis. Nutrients, 2022, 14, 173.	4.1	4
1074	Pre- and Post-treatment Levels of Plasma Metabolites in Patients With Bipolar Depression. Frontiers in Psychiatry, 2021, 12, 747595.	2.6	6
1075	Determinants of Leaky Gut and Gut Microbiota Differences in Children With Autism Spectrum Disorder and Their Siblings. Journal of Autism and Developmental Disorders, 2023, 53, 2703-2716.	2.7	6
1076	Understanding the Role of the Gut Microbiome in Brain Development and Its Association With Neurodevelopmental Psychiatric Disorders. Frontiers in Cell and Developmental Biology, 2022, 10, 880544.	3.7	39
1077	Bifidobacterium longum CCFM1077 Ameliorated Neurotransmitter Disorder and Neuroinflammation Closely Linked to Regulation in the Kynurenine Pathway of Autistic-like Rats. Nutrients, 2022, 14, 1615.	4.1	15

#	Article	IF	CITATIONS
1078	Mechanistic Insights into the Link between Gut Dysbiosis and Major Depression: An Extensive Review. Cells, 2022, 11, 1362.	4.1	40
1103	Microbiota-derived tryptophan metabolites in vascular inflammation and cardiovascular disease. Amino Acids, 2022, 54, 1339-1356.	2.7	50
1104	Alcohol use history increases the likelihood of suicide behavior among male chronic patients with schizophrenia in a Chinese population. Suicide and Life-Threatening Behavior, 2022, 52, 716-724.	1.9	4
1106	Superior cervical ganglionectomy alters gut microbiota in rats American Journal of Translational Research (discontinued), 2022, 14, 2037-2050.	0.0	0
1107	Microbiome-Based Interventions: A New Prospect in Post-Stroke Rehabilitation. , 0, , .		0
1108	Influence of 2′-Fucosyllactose and Bifidobacterium longum Subspecies infantis Supplementation on Cognitive and Structural Brain Development in Young Pigs. Frontiers in Neuroscience, 2022, 16, 860368.	2.8	7
1109	The Influence of Nutrition on Intestinal Permeability and the Microbiome in Health and Disease. Frontiers in Nutrition, 2022, 9, 718710.	3.7	27
1110	Combinational Approaches Targeting Various Aspects Involved in Intestinal Barrier Dysfunction-Induced Anxiety. Current Drug Targets, 2022, 23, 1085-1098.	2.1	1
1111	A Review on Autism Spectrum Disorder: Pathogenesis, Biomarkers, Pharmacological and Non-Pharmacological Interventions. CNS and Neurological Disorders - Drug Targets, 2023, 22, 659-677.	1.4	4
1112	Clinical and Preclinical Studies of Fermented Foods and Their Effects on Alzheimer's Disease. Antioxidants, 2022, 11, 883.	5.1	21
1113	Associations between self-reported psychological symptom severity and gut microbiota: further support for the microgenderome. BMC Psychiatry, 2022, 22, 307.	2.6	3
1114	The Brain Research Hotspot Database (BRHD): A Panoramic Database of the Latest Hotspots in Brain Research. Brain Sciences, 2022, 12, 638.	2.3	0
1115	Effects of Chang-Kang-Fang Formula on the Microbiota-Gut-Brain Axis in Rats With Irritable Bowel Syndrome. Frontiers in Pharmacology, 2022, 13, .	3.5	3
1116	The gut microbiome and adult hippocampal neurogenesis: A new focal point for epilepsy?. Neurobiology of Disease, 2022, 170, 105746.	4.4	7
1117	The Kynurenine Pathway and Polycystic Ovary Syndrome: Inflammation as a Common Denominator. International Journal of Tryptophan Research, 2022, 15, 117864692210992.	2.3	6
1118	The Microbiota–Gut–Brain Axis: Gut Microbiota Modulates Conspecific Aggression in Diversely Selected Laying Hens. Microorganisms, 2022, 10, 1081.	3.6	6
1119	Role of gut microbiota in neuropathy and neuropathic pain states: A systematic preclinical review. Neurobiology of Disease, 2022, 170, 105773.	4.4	15
1120	Making Sense of Quorum Sensing at the Intestinal Mucosal Interface. Cells, 2022, 11, 1734.	4.1	10

#	Article	IF	CITATIONS
1121	Spinal cord injury and the gut microbiota. , 2022, , 435-444.		0
1122	Gut Microbial Dysbiosis and Cognitive Impairment in Bipolar Disorder: Current Evidence. Frontiers in Pharmacology, 0, 13, .	3.5	9
1123	Phlorizin alleviates cholinergic memory impairment and regulates gut microbiota in d-galactose induced mice. Experimental Gerontology, 2022, 165, 111863.	2.8	7
1124	Ischemic stroke and intestinal flora: an insight into brain–gut axis. European Journal of Medical Research, 2022, 27, .	2.2	16
1125	Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Marine Drugs, 2022, 20, 362.	4.6	14
1126	Exposure to a Virtual Environment Induces Biological and Microbiota Changes in Onset-of-Lay Hens. Frontiers in Virtual Reality, 0, 3, .	3.7	0
1127	The Gut Microbiota-Brain Axis: A New Frontier on Neuropsychiatric Disorders. Frontiers in Psychiatry, 2022, 13, .	2.6	10
1129	Probiotics and gut-brain axis modulation. , 2022, , 373-410.		0
1130	Dopamine Level Affects Social Interaction and Color Preference Possibly Through Intestinal Microbiota in Zebrafish. Zebrafish, 2022, 19, 81-93.	1.1	2
1131	Intriguing Role of Gut-Brain Axis on Cognition with an Emphasis on Interaction with Papez Circuit. CNS and Neurological Disorders - Drug Targets, 2023, 22, 1146-1163.	1.4	3
1132	Effects of different probiotic strains B. lactis, L. rhamnosus and L. reuteri on brain-intestinal axis immunomodulation in an endotoxin-induced inflammation. Molecular Neurobiology, 2022, 59, 5168-5178.	4.0	4
1133	Traumatic Brain Injury and Gut Brain Axis: The Disruption of an Alliance. Reviews on Recent Clinical Trials, 2022, 17, 268-279.	0.8	9
1134	Microbial-derived metabolites as a risk factor of age-related cognitive decline and dementia. Molecular Neurodegeneration, 2022, 17, .	10.8	59
1135	The function of gut microbiota in immune-related neurological disorders: a review. Journal of Neuroinflammation, 2022, 19, .	7.2	32
1136	The Gut Microbiome–Brain Crosstalk in Neurodegenerative Diseases. Biomedicines, 2022, 10, 1486.	3.2	20
1137	Alteration of Gut Microbiota in Alzheimer's Disease and Their Relation to the Cognitive Impairment. Journal of Alzheimer's Disease, 2022, 88, 1103-1114.	2.6	18
1138	GW4064 Alters Gut Microbiota Composition and Counteracts Autism-Associated Behaviors in BTBR T+tf/J Mice. Frontiers in Cellular and Infection Microbiology, 0, 12, .	3.9	3
1139	The Role of Gut Microbiotaâ€"Gutâ€"Brain Axis in Perioperative Neurocognitive Dysfunction. Frontiers in Pharmacology, 0, 13, .	3.5	6

#	ARTICLE	IF	CITATIONS
1141	Intestinesâ€"Inflammatory and digestive system. , 2022, , 213-230.		0
1142	Intersections of the microbiome and early neurodevelopment. International Review of Neurobiology, 2022, , .	2.0	2
1143	Gut Bless Your Painâ€"Roles of the Gut Microbiota, Sleep, and Melatonin in Chronic Orofacial Pain and Depression. Biomedicines, 2022, 10, 1528.	3.2	10
1144	Influence of the Gut Microbiome on Feed Intake of Farm Animals. Microorganisms, 2022, 10, 1305.	3.6	3
1145	Pathways of atopic disease and neurodevelopmental impairment: assessing the evidence for infant antibiotics. Expert Review of Clinical Immunology, 2022, 18, 901-922.	3.0	5
1146	The Efficacy of S-Adenosyl Methionine and Probiotic Supplementation on Depression: A Synergistic Approach. Nutrients, 2022, 14, 2751.	4.1	14
1147	Modulation of Gut Microbiota by Essential Oils and Inorganic Nanoparticles: Impact in Nutrition and Health. Frontiers in Nutrition, 0, 9, .	3.7	8
1148	Antibiotics and mental health: The good, the bad and the ugly. Journal of Internal Medicine, 2022, 292, 858-869.	6.0	25
1149	Comparative analysis of gut microbiota and fecal metabolome features among multiple depressive animal models. Journal of Affective Disorders, 2022, 314, 103-111.	4.1	10
1150	Microbiota in anorexia nervosa: potential for treatment. Nutrition Research Reviews, 2023, 36, 372-391.	4.1	4
1151	Moxibustion exhibits therapeutic effects on spinal cord injury via modulating microbiota dysbiosis and macrophage polarization. Aging, 2022, 14, 5800-5811.	3.1	6
1152	Potential roles of gut microbial tryptophan metabolites in the complex pathogenesis of acne vulgaris. Frontiers in Microbiology, $0,13,.$	3.5	6
1153	Placental dysfunction: The core mechanism for poor neurodevelopmental outcomes in the offspring of preeclampsia pregnancies. Placenta, 2022, 126, 224-232.	1.5	9
1155	Material Engineering in Gut Microbiome and Human Health. Research, 2022, 2022, .	5.7	3
1156	Gut microbiota dysbiosis: The potential mechanisms by which alcohol disrupts gut and brain functions. Frontiers in Microbiology, 0, 13, .	3.5	6
1157	Neuroprotective Natural Products' Regulatory Effects on Depression via Gut–Brain Axis Targeting Tryptophan. Nutrients, 2022, 14, 3270.	4.1	13
1158	Gut-Brain Axis and Neurological Disorders-How Microbiomes Affect our Mental Health. CNS and Neurological Disorders - Drug Targets, 2023, 22, 1008-1030.	1.4	4
1159	Age-dependent effects of gut microbiota metabolites on brain resident macrophages. Frontiers in Cellular Neuroscience, 0, 16 , .	3.7	7

#	Article	IF	CITATIONS
1160	Host-microbiota interactions: The aryl hydrocarbon receptor in the acute and chronic phases of cerebral ischemia. Frontiers in Immunology, $0,13,\ldots$	4.8	4
1161	Dysbiosis and Migraine Headaches in Adults With Celiac Disease. Cureus, 2022, , .	0.5	3
1162	Evaluation of the intestinal microbiota in operational staff of the Russian EMERCOM working in the Arctic zone of Russia. Medico-Biological and Socio-Psychological Issues of Safety in Emergency Situations, 2022, , 72-81.	0.3	0
1163	Tenets in Microbial Endocrinology: A New Vista in Teleost Reproduction. Frontiers in Physiology, 0, 13,	2.8	2
1164	The Role of a Gut Microbial-Derived Metabolite, Trimethylamine N-Oxide (TMAO), in Neurological Disorders. Molecular Neurobiology, 2022, 59, 6684-6700.	4.0	24
1166	The effects of ruminant milk treatments on hippocampal, striatal, and prefrontal cortex gene expression in pigs as a model for the human infant. Frontiers in Neuroscience, 0, 16, .	2.8	2
1167	Synthesis of Biogenic Amines by Lactic Acid Bacteria on Media of Plant and Animal Origin. Microbiology, 2022, 91, 378-394.	1.2	0
1168	Interferon and HPA Axis: Impact on Neuroimmunological Perturbations. , 0, , .		0
1169	The role of the gut microbiota in multiple sclerosis. Nature Reviews Neurology, 2022, 18, 544-558.	10.1	44
1170	Remodeling of microbiota gut-brain axis using psychobiotics in depression. European Journal of Pharmacology, 2022, 931, 175171.	3.5	18
1171	Substance use, microbiome and psychiatric disorders. Pharmacology Biochemistry and Behavior, 2022, 219, 173432.	2.9	5
1172	Depression and antidepressant effects of ketamine and its metabolites: The pivotal role of gut microbiota. Neuropharmacology, 2022, 220, 109272.	4.1	17
1173	Microbiome-gut-brain axis in brain development, cognition and behavior during infancy and early childhood. Developmental Review, 2022, 66, 101038.	4.7	7
1174	What do experimental animal models of mood disorders tell clinicians about influence of probiotics on the gut-brain axis?. Postepy Higieny I Medycyny Doswiadczalnej, 2022, 76, 380-394.	0.1	0
1175	Microbiome influences on neuro-immune interactions in neurodegenerative disease. International Review of Neurobiology, 2022, , 25-57.	2.0	6
1176	Role of Gut Microbiota through Gut–Brain Axis in Epileptogenesis: A Systematic Review of Human and Veterinary Medicine. Biology, 2022, 11, 1290.	2.8	2
1177	Intestinal Epithelial Toll-like Receptor 4 Deficiency Modifies the Response to the Activity-Based Anorexia Model in a Sex-Dependent Manner: A Preliminary Study. Nutrients, 2022, 14, 3607.	4.1	3
1178	Stress and the Gut-Brain Axis. Ukraïnsʹkij žurnal Medicini Bìologìï Ta Sportu, 2022, 7, 137-146.	0.2	O

#	Article	IF	CITATIONS
1179	Diet-microbiome-gut-brain nexus in acute and chronic brain injury. Frontiers in Neuroscience, 0, 16, .	2.8	7
1180	Repeated early-life exposure to anaesthesia and surgery causes subsequent anxiety-like behaviour and gut microbiota dysbiosis in juvenile rats. British Journal of Anaesthesia, 2023, 130, 191-201.	3.4	5
1181	Gut Microbiota Regulation of AHR Signaling in Liver Disease. Biomolecules, 2022, 12, 1244.	4.0	9
1182	Experimental Evidence of Buyang Huanwu Decoction and Related Modern Preparations (Naoxintong) Tj ETQq1 1 Transcriptomics in Rats. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-15.	0.784314 1.2	rgBT /Overl
1183	Infant nutrition affects the microbiota-gut-brain axis: Comparison of human milk vs. infant formula feeding in the piglet model. Frontiers in Nutrition, 0, 9 , .	3.7	5
1184	Tryptophan metabolites in depression: Modulation by gut microbiota. Frontiers in Behavioral Neuroscience, 0, 16, .	2.0	18
1185	Gut Bacteria and Neurotransmitters. Microorganisms, 2022, 10, 1838.	3.6	63
1186	Microbiota-Gut-Brain Axis Regulation of Adult Hippocampal Neurogenesis. Brain Plasticity, 2022, 8, 97-119.	3.5	21
1187	Microbiota- Brain-Gut-Axis Relevance to Parkinson's Disease: Potential Therapeutic Effects of Probiotics. Current Pharmaceutical Design, 2022, 28, 3049-3067.	1.9	3
1188	Prenatal exposure to titanium dioxide nanoparticles induces persistent neurobehavioral impairments in maternal mice that is associated with microbiota-gut-brain axis. Food and Chemical Toxicology, 2022, 169, 113402.	3.6	5
1189	Flavonoids bridging the gut and the brain: Intestinal metabolic fate, and direct or indirect effects of natural supporters against neuroinflammation and neurodegeneration. Biochemical Pharmacology, 2022, 205, 115257.	4.4	8
1190	Updates in the Role of Pre- and Probiotics in Health and Disease: Where Do We Stand Today?. European Medical Journal Gastroenterology, 0, , 4-16.	0.0	O
1191	Maternal Obesity and Gut Microbiota Are Associated with Fetal Brain Development. Nutrients, 2022, 14, 4515.	4.1	6
1192	Association between Gut Microbiota and Emotional-Behavioral Symptoms in Children with Attention-Deficit/Hyperactivity Disorder. Journal of Personalized Medicine, 2022, 12, 1634.	2.5	3
1193	Gut microbiota in anxiety and depression: Pathogenesis and therapeutics. , 0, 1, .		1
1194	Microbiome in Anxiety and Other Psychiatric Disorders. Medical Clinics of North America, 2022, , .	2.5	O
1195	Changes and significance of gut microbiota in children with focal epilepsy before and after treatment. Frontiers in Cellular and Infection Microbiology, $0,12,12$	3.9	5
1196	The microbiota promotes social behavior by modulating microglial remodeling of forebrain neurons. PLoS Biology, 2022, 20, e3001838.	5.6	16

#	Article	IF	CITATIONS
1197	Plant-derived bioactive components regulate gut microbiota to prevent depression and depressive-related neurodegenerative diseases: Focus on neurotransmitters. Trends in Food Science and Technology, 2022, 129, 581-590.	15.1	3
1198	Connecting gut microbiomes and short chain fatty acids with the serotonergic system and behavior in Gallus gallus and other avian species. Frontiers in Physiology, $0,13,.$	2.8	3
1199	Gut microbial response to host metabolic phenotypes. Frontiers in Nutrition, 0, 9, .	3.7	3
1200	Gut microbiome metabolites as key actors in atherosclerosis co-depression disease. Frontiers in Microbiology, 0, 13 , .	3.5	1
1201	Metabonomics reveals that entomopathogenic nematodes mediate tryptophan metabolites that kill host insects. Frontiers in Microbiology, 0, 13 , .	3.5	3
1202	In vitro evaluation of antidiabetic, antidementia, and antioxidant activity of Artemisia capillaris fermented by Leuconostoc spp. LWT - Food Science and Technology, 2022, 172, 114163.	5.2	6
1203	Deciphering the role of gut metabolites in non-alcoholic fatty liver disease. Critical Reviews in Microbiology, 2023, 49, 815-833.	6.1	6
1204	Mapping trends and hotspot regarding gastrointestinal microbiome and neuroscience: A bibliometric analysis of global research (2002–2022). Frontiers in Neuroscience, 0, 16, .	2.8	7
1205	Gut microbiota-derived metabolites and their importance in neurological disorders. Molecular Biology Reports, 2023, 50, 1663-1675.	2.3	17
1206	Chronische Immunaktivierung. , 2022, , 141-243.		0
1207	The modulatory effect of encapsulated bioactives and probiotics on gut microbiota: improving health status through functional food. Food and Function, 2023, 14, 32-55.	4.6	7
1208	Critical windows of early-life microbiota disruption on behaviour, neuroimmune function, and neurodevelopment. Brain, Behavior, and Immunity, 2023, 108, 309-327.	4.1	24
1209	Serum metabolomic profiling revealed potential diagnostic biomarkers in patients with panic disorder. Journal of Affective Disorders, 2023, 323, 461-471.	4.1	2
1210	Alteration of oral microbiome composition in children living with pesticide-exposed farm workers. International Journal of Hygiene and Environmental Health, 2023, 248, 114090.	4.3	0
1211	Seeking the Psilocybiome: Psychedelics meet the microbiota-gut-brain axis. International Journal of Clinical and Health Psychology, 2023, 23, 100349.	5.1	6
1212	The microbiota-gut-brain axis in pathogenesis of depression: A narrative review. Physiology and Behavior, 2023, 260, 114056.	2.1	7
1213	Gut microbiota: A new target for traditional Chinese medicine in the treatment of depression. Journal of Ethnopharmacology, 2023, 303, 116038.	4.1	7
1214	Effects of early postnatal life nutritional interventions on immune-microbiome interactions in the gastrointestinal tract and implications for brain development and function. Frontiers in Microbiology, 0, 13, .	3. 5	1

#	Article	IF	CITATIONS
1215	Advances in the mechanisms of polysaccharides in alleviating depression and its complications. Phytomedicine, 2023, 109, 154566.	5. 3	16
1216	Gut microbiome-wide association study of depressive symptoms. Nature Communications, 2022, 13, .	12.8	95
1217	The Role of the Gut Microbiome in Psychiatric Disorders. Microorganisms, 2022, 10, 2436.	3.6	11
1218	Involvement of Intestinal Microbiota in Adult Neurogenesis and the Expression of Brain-Derived Neurotrophic Factor. International Journal of Molecular Sciences, 2022, 23, 15934.	4.1	5
1219	Parasite infections, neuroinflammation, and potential contributions of gut microbiota. Frontiers in lmmunology, $0,13,.$	4.8	4
1220	Cognitive, Emotional, Behavioral and Physiological Evaluation of the Relationship Between Brain and Gut Microbiota. Current Approaches in Psychiatry, 2022, 14, 446-459.	0.4	0
1221	Modulation of adipose tissue metabolism by microbial-derived metabolites. Frontiers in Microbiology, 0, 13, .	3.5	4
1222	An Altered Skin and Gut Microbiota Are Involved in the Modulation of Itch in Atopic Dermatitis. Cells, 2022, 11, 3930.	4.1	14
1223	The Role of Gut Dysbiosis in the Pathophysiology of Neuropsychiatric Disorders. Cells, 2023, 12, 54.	4.1	25
1224	Psychobiotics and Elderly Health. Current Approaches in Psychiatry, 2022, 14, 469-476.	0.4	0
1225	The microbiota-gut-hippocampus axis. Frontiers in Neuroscience, 0, 16, .	2.8	5
1226	Serotonin system in the human placenta $\hat{a} \in \text{``the knowns and unknowns. Frontiers in Endocrinology, 0, 13, .}$	3.5	6
1227	Linking the gut microbiome to microglial activation in opioid use disorder. Frontiers in Neuroscience, 0, 16, .	2.8	0
1228	Gut Microbiota Peculiarities in Aged HIV-Infected Individuals: Molecular Understanding and Therapeutic Perspectives. Healthy Ageing and Longevity, 2023, , 415-439.	0.2	0
1229	Microbiota of the gastrointestinal tract: Friend or foe?. World Journal of Gastroenterology, 0, 29, 19-42.	3.3	16
1231	Chlamydia trachomatis relies on the scavenger role of aryl hydrocarbon receptor with detyrosinated tubulin for its intracellular growth, but this is impaired by excess indole. Microbes and Infection, 2023, 25, 105097.	1.9	2
1232	The Microbiome in Neurogastroenterology. , 2022, , 73-93.		0
1233	New Concepts of the Interplay Between the Gut Microbiota and the Enteric Nervous System in the Control of Motility. Advances in Experimental Medicine and Biology, 2022, , 55-69.	1.6	3

#	Article	IF	CITATIONS
1234	Gastrointestinal Disturbances in Autism Spectrum Disorder., 2022, , 381-387.		0
1235	Gut microbiota in brain tumors: An emerging crucial player. CNS Neuroscience and Therapeutics, 2023, 29, 84-97.	3.9	4
1236	Feasibility, Acceptability, and Safety of Faecal Microbiota Transplantation in the Treatment of Major Depressive Disorder: A Pilot Randomized Controlled Trial. Canadian Journal of Psychiatry, 2023, 68, 315-326.	1.9	7
1237	The Gut–Vascular Barrier as a New Protagonist in Intestinal and Extraintestinal Diseases. International Journal of Molecular Sciences, 2023, 24, 1470.	4.1	14
1238	The Association of the Oral Microbiota with the Effects of Acid Stress Induced by an Increase of Brain Lactate in Schizophrenia Patients. Biomedicines, 2023, 11, 240.	3.2	5
1239	The â€~Whey' to good health: Whey protein and its beneficial effect on metabolism, gut microbiota and mental health. Trends in Food Science and Technology, 2023, 133, 1-14.	15.1	14
1240	Neuromicrobiology, an emerging neurometabolic facet of the gut microbiome?. Frontiers in Microbiology, 0, 14 , .	3.5	17
1241	Prophylactic Effect of Bovine Colostrum on Intestinal Microbiota and Behavior in Wild-Type and Zonulin Transgenic Mice. Biomedicines, 2023, 11, 91.	3.2	5
1242	Chronic Immune System Activation. , 2023, , 135-231.		0
1243	Early life stress, depression and epigenetics. Vitamins and Hormones, 2023, , .	1.7	0
1244	Altered gut microbiota in patients with idiopathic Parkinson's disease: an age–sex matched case–control study. Acta Neurologica Belgica, 2023, 123, 999-1009.	1.1	1
1245	Influence of the Gut Microbiota on Neuroendocrine-Immune Interactions. Masterclass in Neuroendocrinology, 2023, , 279-320.	0.1	0
1246	Sex Differences in Tryptophan Metabolism: A Systematic Review Focused on Neuropsychiatric Disorders. International Journal of Molecular Sciences, 2023, 24, 6010.	4.1	5
1247	The microbiome–gut–brain axis in epilepsy: pharmacotherapeutic target from bench evidence for potential bedside applications. European Journal of Neurology, 2023, 30, 3557-3567.	3.3	6
1248	Alterations in gut microbiota and urine metabolomics in infants with yin-deficiency constitution aged $0\hat{a}\in$ 2 years. Heliyon, 2023, 9, e14684.	3.2	1
1249	Perturbation of maternal gut microbiota in mice during a critical perinatal window influences early neurobehavioral outcomes in offspring. Neuropharmacology, 2023, 229, 109479.	4.1	9
1250	The gut-brain connection: Exploring the influence of the gut microbiota on neuroplasticity and neurodevelopmental disorders. Neuropharmacology, 2023, 231, 109491.	4.1	12
1251	The microbiota-gut-brain axis in stress and depression. Frontiers in Neuroscience, 0, 17, .	2.8	6

#	Article	IF	CITATIONS
1252	The Serotonergic System and Amyotrophic Lateral Sclerosis: A Review of Current Evidence. Cellular and Molecular Neurobiology, 2023, 43, 2387-2414.	3.3	1
1253	The importance of gut-brain axis and use of probiotics as a treatment strategy for multiple sclerosis. Multiple Sclerosis and Related Disorders, 2023, 71, 104547.	2.0	14
1254	Gut Microbiota and Metabolites may Play a Crucial Role in Sea Cucumber Apostichopus Japonicus Aestivation. Microorganisms, 2023, 11, 416.	3.6	6
1255	Limosilactobacillus reuteri administration alters the gut-brain-behavior axis in a sex-dependent manner in socially monogamous prairie voles. Frontiers in Microbiology, $0,14,.$	3.5	2
1256	Decoding the neurocircuitry of gut feelings: Region-specific microbiome-mediated brain alterations. Neurobiology of Disease, 2023, 179, 106033.	4.4	14
1257	Microbes, oxytocin and stress: Converging players regulating eating behavior. Journal of Neuroendocrinology, 2023, 35, .	2.6	3
1258	Administration Time and Dietary Patterns Modified the Effect of Inulin on CUMSâ€Induced Anxiety and Depression. Molecular Nutrition and Food Research, 2023, 67, .	3.3	4
1259	The Gut-Brain Axis and the Microbiome in Anxiety Disorders, Post-Traumatic Stress Disorder and Obsessive-Compulsive Disorder. Current Neuropharmacology, 2024, 22, 866-883.	2.9	6
1260	Revealing the importance of prenatal gut microbiome in offspring neurodevelopment in humans. EBioMedicine, 2023, 90, 104491.	6.1	9
1262	Bioactive nutraceuticals oligo-lactic acid and fermented soy extract alleviate cognitive decline in mice in part via anti-neuroinflammation and modulation of gut microbiota. Frontiers in Nutrition, 0, 10 , .	3.7	4
1263	The Tryptophan and Kynurenine Pathway Involved in the Development of Immune-Related Diseases. International Journal of Molecular Sciences, 2023, 24, 5742.	4.1	12
1264	Mechanisms of Maternal Diet-Induced Obesity Affecting the Offspring Brain and Development of Affective Disorders. Metabolites, 2023, 13, 455.	2.9	5
1265	Physiological Mechanisms Underpinning Heightened Perception of Visceral Afferent Signalling in Irritable Bowel Syndrome., 2023,, 129-142.		0
1266	<i>Acanthopanax senticosus</i> extract alleviates radiationâ€induced learning and memory impairment based on neurotransmitterâ€gut microbiota communication. CNS Neuroscience and Therapeutics, 2023, 29, 129-145.	3.9	1
1267	Influence of food-derived bioactives on gut microbiota compositions and their metabolites by focusing on neurotransmitters. Food Science and Biotechnology, 2023, 32, 1019-1027.	2.6	2
1268	Effects of sulforaphane on breast cancer based on metabolome and microbiome. Food Science and Nutrition, 2023, 11, 2277-2287.	3.4	3
1269	Dysbiosis of the Gut Microbiota and Kynurenine (Kyn) Pathway Activity as Potential Biomarkers in Patients with Major Depressive Disorder. Nutrients, 2023, 15, 1752.	4.1	3
1270	Role of Hydroxytyrosol and Oleuropein in the Prevention of Aging and Related Disorders: Focus on Neurodegeneration, Skeletal Muscle Dysfunction and Gut Microbiota. Nutrients, 2023, 15, 1767.	4.1	4

#	Article	IF	CITATIONS
1271	Maternal Inflammation with Elevated Kynurenine Metabolites Is Related to the Risk of Abnormal Brain Development and Behavioral Changes in Autism Spectrum Disorder. Cells, 2023, 12, 1087.	4.1	5
1272	Tryptophan intake, not always the more the better. Frontiers in Nutrition, 0, 10, .	3.7	6
1273	Epigenetic Alterations of Brain Non-Neuronal Cells in Major Mental Diseases. Genes, 2023, 14, 896.	2.4	6
1274	Prebiotic and Probiotic Modulation of the Microbiota–Gut–Brain Axis in Depression. Nutrients, 2023, 15, 1880.	4.1	10
1275	Probiotics for the treatment of depression and its comorbidities: A systemic review. Frontiers in Cellular and Infection Microbiology, 0, 13, .	3.9	5
1276	cFOS expression in the prefrontal cortex correlates with altered cerebral metabolism in developing germ-free mice. Frontiers in Molecular Neuroscience, $0,16,.$	2.9	1
1277	Graves' disease as a driver of depression: a mechanistic insight. Frontiers in Endocrinology, 0, 14, .	3.5	2
1278	Microbiome: Impact of sex on function and characteristics of gut microbiome. , 2023, , 313-329.		0
1279	Probiotics for Neurodegenerative Diseases: A Systemic Review. Microorganisms, 2023, 11, 1083.	3.6	8
1280	Probiotics and Commensal Bacteria Metabolites Trigger Epigenetic Changes in the Gut and Influence Beneficial Mood Dispositions. Microorganisms, 2023, 11, 1334.	3.6	1
1281	Impact of the mother's gut microbiota on infant microbiome and brain development. Neuroscience and Biobehavioral Reviews, 2023, 150, 105195.	6.1	40
1282	Gut microbiota changes require vagus nerve integrity to promote depressive-like behaviors in mice. Molecular Psychiatry, 2023, 28, 3002-3012.	7.9	20
1283	Brain effects of gestating germ-free persist in mouse neonates despite acquisition of a microbiota at birth. Frontiers in Neuroscience, 0, 17, .	2.8	3
1284	The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets: A Report from the 23rd Annual Harvard Nutrition Obesity Symposium. American Journal of Clinical Nutrition, 2023, 118, 314-328.	4.7	2
1285	Gut Microbiome–Brain Alliance: A Landscape View into Mental and Gastrointestinal Health and Disorders. ACS Chemical Neuroscience, 2023, 14, 1717-1763.	3.5	24
1286	Astragalus polysaccharide ameliorated complex factor-induced chronic fatigue syndrome by modulating the gut microbiota and metabolites in mice. Biomedicine and Pharmacotherapy, 2023, 163, 114862.	5.6	7
1287	Early life adversity as a risk factor for cognitive impairment and Alzheimer's disease. Translational Neurodegeneration, 2023, 12, .	8.0	10
1288	Microbiome and immuno-metabolic dysregulation in patients with major depressive disorder with atypical clinical presentation. Neuropharmacology, 2023, 235, 109568.	4.1	3

#	Article	IF	CITATIONS
1289	Regulation of host immune responses by Lactobacillus through aryl hydrocarbon receptors. Medicine in Microecology, 2023, 16, 100081.	1.6	2
1290	Hair cortisol, cortisone and DHEA concentrations and the composition of microbiota in toddlers. Psychoneuroendocrinology, 2023, 154, 106309.	2.7	0
1291	Microbiome therapeutics in psychological disorders. , 2023, , 163-196.		0
1292	Neuroprotective effect of Vitamin K2 against gut dysbiosis associated cognitive decline. Physiology and Behavior, 2023, 269, 114252.	2.1	1
1293	Microbiota and its therapeutic implications in reproductive health and diseases., 2023, , 355-386.		0
1294	Influence of gut microbiota on chronic pain syndrome. Russian Journal of Pain, 2023, 21, 50.	0.5	0
1295	The role of gut microbiota in depression: an analysis of the gut-brain axis. Frontiers in Behavioral Neuroscience, 0, 17, .	2.0	4
1296	Interconnection between Microbiota–Gut–Brain Axis and Autism Spectrum Disorder Comparing Therapeutic Options: A Scoping Review. Microorganisms, 2023, 11, 1477.	3.6	0
1297	A perspective on green, blue, and grey spaces, biodiversity, microbiota, and human health. Science of the Total Environment, 2023, 892, 164772.	8.0	5
1298	The role of the microbiome on fish mucosal immunity under changing environments. Fish and Shellfish Immunology, 2023, 139, 108877.	3.6	3
1299	Effects of urbanization and lifestyle habits on the intestinal microbiota of adolescents in eastern China. Frontiers in Microbiology, $0,14,.$	3.5	0
1300	A systematic review on the impact of gastrointestinal microbiota composition and function on cognition in healthy infants and children. Frontiers in Neuroscience, 0, 17, .	2.8	5
1301	Making migraine easier to stomach: the role of the gutâ^'brainâ^'immune axis in headache disorders. European Journal of Neurology, 2023, 30, 3605-3621.	3.3	6
1302	The role of gut microbiota in cerebrovascular disease and related dementia. British Journal of Pharmacology, 2024, 181, 816-839.	5.4	2
1303	Gut microbes influence the development of central nervous system disorders through epigenetic inheritance. Microbiological Research, 2023, 274, 127440.	5.3	0
1304	Investigation of Microflora-Mediated Effect of Nutrition Frequency and Food Choice on General Affective State. Gýmýşhane Üniversitesi Sağlık Bilimleri Dergisi, 2023, 12, 719-726.	0.4	0
1305	Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Frontiers in Endocrinology, 0, 14 , .	3.5	14
1306	Modulation of immunity by tryptophan microbial metabolites. Frontiers in Nutrition, $0,10,1$	3.7	3

#	Article	IF	CITATIONS
1307	Tryptophan metabolism in health and disease. Cell Metabolism, 2023, 35, 1304-1326.	16.2	40
1308	Leveraging the microbiome to understand clinical heterogeneity in depression: findings from the T-RAD study. Translational Psychiatry, 2023, 13, .	4.8	5
1309	Pulsatilla chinensis saponins ameliorated murine depression by inhibiting intestinal inflammation mediated IDO1 overexpression and rebalancing tryptophan metabolism. Phytomedicine, 2023, 116, 154852.	5.3	6
1310	Emerging epigenetic dynamics in gut-microglia brain axis: experimental and clinical implications for accelerated brain aging in schizophrenia. Frontiers in Cellular Neuroscience, 0, 17, .	3.7	6
1312	Antibiotic-induced socio-sexual behavioral deficits are reversed via cecal microbiota transplantation but not androgen treatment. Brain, Behavior, & Immunity - Health, 2023, 30, 100637.	2.5	1
1313	Fecal microbiota transplantation confirmed that 919 Syrup reduced the ratio of erucamide to 5-AVAB in hippocampus to alleviate postpartum depression by regulating gut microbes. Frontiers in Immunology, 0, 14, .	4.8	0
1314	Effects of gut microbiota on neurodegenerative diseases. Frontiers in Aging Neuroscience, 0, 15, .	3.4	7
1315	Neglected gut microbiome: interactions of the non-bacterial gut microbiota with enteric pathogens. Gut Microbes, 2023, 15 , .	9.8	8
1316	Phage Interactions with the Nervous System in Health and Disease. Cells, 2023, 12, 1720.	4.1	2
1317	Current Understanding of the Roles of Gut–Brain Axis in the Cognitive Deficits Caused by Perinatal Stress Exposure. Cells, 2023, 12, 1735.	4.1	2
1318	Maternal microbiome disturbance induces deficits in the offspring's behaviors: a systematic review and meta-analysis. Gut Microbes, 2023, 15, .	9.8	2
1319	The Contribution of the Gut-Brain-Microbiota Axis to Brain Health Throughout the Lifespan. , 2023, , 1-25.		0
1320	Exploring the alteration of gut microbiota and brain function in gender-specific Parkinson's disease based on metagenomic sequencing. Frontiers in Aging Neuroscience, 0, 15, .	3.4	0
1321	Alcohol drinking in male patients with chronic schizophrenia: prevalence and its relationship to clinical symptoms. Frontiers in Psychiatry, 0, 14 , .	2.6	3
1322	Gegen-Qinlian decoction alleviates anxiety-like behaviors in methamphetamine-withdrawn mice by regulating Akkermansia and metabolism in the colon. Chinese Medicine, 2023, 18, .	4.0	0
1323	Microbial-Derived Tryptophan Metabolites and Their Role in Neurological Disease: Anthranilic Acid and Anthranilic Acid Derivatives. Microorganisms, 2023, 11, 1825.	3.6	1
1324	Perturbations in Microbiota Composition as a Novel Mediator in Neuropsychiatric, Neurological and Mental Disorders: Preventive and Therapeutic Complementary Therapies to Balance the Change. Current Alzheimer Research, 2023, 20, 213-223.	1.4	2
1325	The Gut-Heart Axis: Updated Review for The Roles of Microbiome in Cardiovascular Health. Korean Circulation Journal, 0, 53, .	1.9	3

#	Article	IF	CITATIONS
1326	Mapping Research Trends and Hotspots in the Link between Alzheimer's Disease and Gut Microbes over the Past Decade: A Bibliometric Analysis. Nutrients, 2023, 15, 3203.	4.1	0
1327	Platelets bridging the gap between gut dysbiosis and neuroinflammation in stress-linked disorders: A narrative review. Journal of Neuroimmunology, 2023, 382, 578155.	2.3	0
1328	New perspectives on sex differences in learning and memory. Trends in Endocrinology and Metabolism, 2023, 34, 526-538.	7.1	7
1329	Vitamin D may alleviate irritable bowel syndrome by modulating serotonin synthesis: a hypothesis based on recent literature. Frontiers in Physiology, $0,14,.$	2.8	2
1330	The long-term gut bacterial signature of a wild primate is associated with a timing effect of pre- and postnatal maternal glucocorticoid levels. Microbiome, 2023, 11 , .	11.1	1
1331	The impact of neonatal intensive care unit antibiotics on gut bacterial microbiota of preterm infants: a systematic review., 0, 2, .		1
1332	The gut microbiota–brain axis in neurological disorder. Frontiers in Neuroscience, 0, 17, .	2.8	8
1333	Early-life gut microbiota and neurodevelopment in preterm infants: a narrative review. Frontiers in Nutrition, 0, 10, .	3.7	4
1334	Untargeted metabonomic analysis of a cerebral stroke model in rats: a study based on UPLC–MS/MS. Frontiers in Neuroscience, 0, 17, .	2.8	0
1335	Emerging therapeutic role of gut microbial extracellular vesicles in neurological disorders. Frontiers in Neuroscience, 0, 17 , .	2.8	3
1336	Infant Saliva Microbiome Activity Modulates Nutritional Impacts on Neurodevelopment. Microorganisms, 2023, 11, 2111.	3.6	1
1337	Major depressive disorder. Nature Reviews Disease Primers, 2023, 9, .	30.5	19
1338	Gut Microbiome Dysbiosis as a Potential Risk Factor for Idiopathic Toe-Walking in Children: A Review. International Journal of Molecular Sciences, 2023, 24, 13204.	4.1	0
1339	Daily Early-Life Exposures to Diet Soda and Aspartame Are Associated with Autism in Males: A Case-Control Study. Nutrients, 2023, 15, 3772.	4.1	6
1340	The Impact of Maternal Gut Microbiota during Pregnancy on Fetal Gut–Brain Axis Development and Life-Long Health Outcomes. Microorganisms, 2023, 11, 2199.	3.6	1
1341	Attention Deficit Hyperactivity Disorder (ADHD) and the gut microbiome: An ecological perspective. PLoS ONE, 2023, 18, e0273890.	2.5	1
1342	Cellular and Molecular Roles of Immune Cells in the Gut-Brain Axis in Migraine. Molecular Neurobiology, 2024, 61, 1202-1220.	4.0	1
1343	The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota–gut–brain axis perspective. Journal of Physiology, 2023, 601, 4491-4538.	2.9	6

#	Article	IF	Citations
1344	The role of gut microbiota in the pathogenesis and treatment of postpartum depression. Annals of General Psychiatry, 2023, 22, .	2.7	2
1345	Overview of the Gut Microbiome. Seminars in Neurology, 2023, 43, 518-529.	1.4	0
1346	The crosstalk of the pathophysiologic models in fibromyalgia. Clinical Rheumatology, 2023, 42, 3177-3187.	2.2	2
1347	Implication of microbiota gut-brain axis in the manifestation of obsessive-compulsive disorder: Preclinical and clinical evidence. European Journal of Pharmacology, 2023, 957, 176014.	3.5	3
1348	Akkermansia muciniphila Improves Depressive-Like Symptoms by Modulating the Level of 5-HT Neurotransmitters in the Gut and Brain of Mice. Molecular Neurobiology, 2024, 61, 821-834.	4.0	1
1349	The emerging role of the gut microbiome in posttraumatic stress disorder. Brain, Behavior, and Immunity, 2023, 114, 360-370.	4.1	1
1350	Preventive effect of peptides derived from fermented milk on chronic stress-induced brain damage and intestinal dysfunction in mice. Journal of Dairy Science, 2023, 106, 8287-8298.	3.4	0
1352	The effects of whole grain cereals on tryptophan metabolism and intestinal barrier function: underlying factors of health impact. Proceedings of the Nutrition Society, 0, , 1-13.	1.0	1
1353	Physical Exercise as Disease-Modifying Alternative against Alzheimer's Disease: A Gut–Muscle–Brain Partnership. International Journal of Molecular Sciences, 2023, 24, 14686.	4.1	2
1354	The Role of the Adrenal–Gut–Brain Axis on Comorbid Depressive Disorder Development in Diabetes. Biomolecules, 2023, 13, 1504.	4.0	1
1355	Holobiont Development: Embryology and Ecological Succession. Human Development, 2023, 67, 257-272.	2.0	1
1356	Microbiome composition and central serotonergic activity in patients with depression and type 1 diabetes. European Archives of Psychiatry and Clinical Neuroscience, 0 , , .	3.2	2
1357	Microbiota and the Immune System, Part 1. Holistic Nursing Practice, 2023, 37, 363-365.	0.7	0
1358	Discrete interplay of gut microbiota L-tryptophan metabolites in host biology and disease. Molecular and Cellular Biochemistry, 0, , .	3.1	0
1359	Microbiota-derived tryptophan metabolism: Impacts on health, aging, and disease. Experimental Gerontology, 2023, 183, 112319.	2.8	2
1360	Neural control of redox response and microbiota-triggered inflammation in Drosophila gut. Frontiers in Immunology, 0, 14, .	4.8	0
1361	Melatonin disturbed rumen microflora structure and metabolic pathways <i>in vitro</i> Microbiology Spectrum, 2023, 11, .	3.0	0
1362	Effect of 25 hydroxyvitamin D on attention deficit and hyperactivity in school-age children with ADHD. Medicine (United States), 2023, 102, e35728.	1.0	O

#	ARTICLE	IF	CITATIONS
1363	Butterflies in the gut: the interplay between intestinal microbiota and stress. Journal of Biomedical Science, 2023, 30, .	7.0	1
1364	Association Between Migraine and Gastrointestinal Disease in Pediatric Patients: A Propensity Score Weighting Approach. Neuropsychiatric Disease and Treatment, 0, Volume 19, 2607-2615.	2.2	0
1365	Optimizing the Gut Microbiota for Individualized Performance Development in Elite Athletes. Biology, 2023, 12, 1491.	2.8	0
1366	The development of an ingestible biosensor for the characterization of gut metabolites related to major depressive disorder: hypothesis and theory. Frontiers in Systems Biology, 0, 3, .	0.7	0
1367	Stressed to the Core: Inflammation and Intestinal Permeability Link Stress-Related Gut Microbiota Shifts to Mental Health Outcomes. Biological Psychiatry, 2024, 95, 339-347.	1.3	1
1368	Ecosystems and Nature-Based Solutions (NbS) for Health Protection and Epidemic Resilience. Disaster Resilience and Green Growth, 2023, , 343-349.	0.2	0
1370	The importance of the intestinal microbiota in humans and dogs in the neonatal period. Animal Reproduction, 2023, 20, .	1.0	0
1371	Intestinal Microbiota Is a Key Target for Load Swimming to Improve Anxiety Behavior and Muscle Strength in Shank 3-/- Rats. Molecular Neurobiology, 0, , .	4.0	0
1372	Infant gut microbiota and negative and fear reactivity. Development and Psychopathology, 0 , , 1 - 16 .	2.3	1
1373	Intricate role of intestinal microbe and metabolite in schizophrenia. BMC Psychiatry, 2023, 23, .	2.6	1
1374	Microbiota intestinal y modulaci \tilde{A}^3 n central del s \tilde{A} ndrome dolor - depresi \tilde{A}^3 n. \hat{A}_{ξ} Mito o realidad?. , 2021, 14, 18-30.		0
1375	Dietary supplementation with 1â€kestose induces altered locomotor activity and increased striatal dopamine levels with a change in gut microbiota in male mice. Physiological Reports, 2023, 11, .	1.7	0
1376	Novel Multi-Strain E3 Probiotic Formulation Improved Mental Health Symptoms and Sleep Quality in Hong Kong Chinese. Nutrients, 2023, 15, 5037.	4.1	1
1377	INTESTINAL MICROBIOME. EPILEPSY AND THE POSSIBILITY OF EXPANDING ALTERNATIVE THERAPIES. , 2023, 24, 107-121.		0
1378	Molecular Insights Into the Role of Gut Microbiota in Antibiotic Therapy Selection and Resistance Mitigation. Cureus, 2023, , .	0.5	0
1379	Gut Microbiota Modulation and Its Implications on Neuropathic Pain: A Comprehensive Literature Review. Pain and Therapy, 2024, 13, 33-51.	3.2	1
1380	Gut-brain axis and Alzheimer's disease: Therapeutic interventions and strategies. Journal of Functional Foods, 2024, 112, 105915.	3.4	1
1381	Dose-dependent action of cordycepin on the microbiome-gut-brain-adipose axis in mice exposed to stress. Biomedicine and Pharmacotherapy, 2023, 168, 115796.	5.6	1

#	Article	IF	CITATIONS
1382	The Maternal Microbiome as a Map to Understanding the Impact of Prenatal Stress on Offspring Psychiatric Health. Biological Psychiatry, 2024, 95, 300-309.	1.3	2
1383	Autism spectrum disorders and the gastrointestinal tract: insights into mechanisms and clinical relevance. Nature Reviews Gastroenterology and Hepatology, 2024, 21, 142-163.	17.8	1
1385	tHIS way to cognitive development. Cell Host and Microbe, 2023, 31, 1947-1949.	11.0	0
1386	Specific gut microbiota may increase the risk of erectile dysfunction: a two-sample Mendelian randomization study. Frontiers in Endocrinology, 0, 14, .	3.5	0
1387	The many faces of microbiota-gut-brain axis in autism spectrum disorder. Life Sciences, 2024, 337, 122357.	4.3	1
1388	Co-exposure of nanoplastics and arsenic causes neurotoxicity in zebrafish (Danio rerio) through disrupting homeostasis of microbiota–intestine–brain axis. Science of the Total Environment, 2023, , 169430.	8.0	0
1389	The Role of Stress in the Progression of Motor Neuron Disease: Mechanisms and Implications for Treatment. Stress and Brain, 2023, 3, 159-178.	0.7	0
1390	Mechanism of Iron Ion Homeostasis in Intestinal Immunity and Gut Microbiota Remodeling. International Journal of Molecular Sciences, 2024, 25, 727.	4.1	0
1391	Interaction between Per- and Polyfluorinated Substances (PFAS) and Acetaminophen in Disease Exacerbation—Focusing on Autism and the Gut–Liver–Brain Axis. Toxics, 2024, 12, 39.	3.7	0
1392	The importance of the gut microbiome and its signals for a healthy nervous system and the multifaceted mechanisms of neuropsychiatric disorders. Frontiers in Neuroscience, $0,17,.$	2.8	2
1393	Tryptophan metabolites and gut microbiota play an important role in pediatric migraine diagnosis. Journal of Headache and Pain, 2024, 25, .	6.0	0
1394	Bridging the gap: associations between gut microbiota and psychiatric disorders. Middle East Current Psychiatry, 2024, 31, .	1.2	0
1395	Germ-Free Animals. , 2024, , 401-454.		0
1396	The Influence of Gut Microbiota in Psychosis. , 2024, , 161-199.		0
1397	Kynurenines, Neuronal Excitotoxicity, and Mitochondrial Oxidative Stress: Role of the Intestinal Flora. International Journal of Molecular Sciences, 2024, 25, 1698.	4.1	0
1398	Fasting diets: what are the impacts on eating behaviors, sleep, mood, and well-being?. Frontiers in Nutrition, $0,10,10$	3.7	0
1399	Molecular Mechanisms of Reelin in the Enteric Nervous System and the Microbiota–Gut–Brain Axis: Implications for Depression and Antidepressant Therapy. International Journal of Molecular Sciences, 2024, 25, 814.	4.1	0
1400	Sex differences in a mouse model of diet-induced obesity: the role of the gut microbiome. Biology of Sex Differences, 2024, 15 , .	4.1	2

#	Article	IF	CITATIONS
1401	The regulation of intestinal microbiota and the intervention of Chinese herbal medicine in the treatment of ulcerative colitis. Pharmacological Research Modern Chinese Medicine, 2024, 10, 100356.	1.2	0
1402	Ascomycetes yeasts: The hidden part of human microbiome. WIREs Mechanisms of Disease, 2024, 16, .	3.3	0
1403	Altering the Gut Microbiome for Cognitive Benefit. , 2024, , 117-144.		0
1404	Metabolomics and the Gut–Brain Axis. , 2024, , 455-484.		O
1405	Effect of altered gene expression in lipid metabolism on cognitive improvement in patients with Alzheimer's dementia following fecal microbiota transplantation: a preliminary study. Therapeutic Advances in Neurological Disorders, 2024, 17, .	3.5	O
1406	Pediatric Nutrition., 2024, , 307-340.		0
1407	Role of probiotics in brain health. , 2024, , 173-198.		0
1408	Relationships among the gut microbiome, brain networks, and symptom severity in schizophrenia patients: A mediation analysis. Neurolmage: Clinical, 2024, 41, 103567.	2.7	0
1409	Importance of the Microbiota in Early Life and Influence on Future Health., 2024,, 37-76.		0
1410	Gut microbes in central nervous system development and related disorders. Frontiers in Immunology, 0, 14, .	4.8	0
1411	Cognitive Disorders Around Surgery and Its Prevention Strategies. Archives of Pharmacy Practice, 2024, 15, 33-39.	1.3	0
1412	Antibiotic-induced gut dysbiosis elicits gut-brain axis relevant multi-omic signatures and behavioral and neuroendocrine changes in a nonhuman primate model. Gut Microbes, 2024, 16, .	9.8	0
1413	Depression-associated gut microbes, metabolites and clinical trials. Frontiers in Microbiology, 0, 15, .	3.5	0
1414	Potential causal association between gut microbiome and posttraumatic stress disorder. Translational Psychiatry, 2024, 14, .	4.8	0
1415	Microbiota modulates the steroid response to acute immune stress in male mice. Frontiers in Immunology, 0, 15 , .	4.8	0
1416	Microbiota–gut–brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduction and Targeted Therapy, 2024, 9, .	17.1	0
1417	Diosgenin alleviates alcohol-mediated escalation of social defeat stress and the neurobiological sequalae. Psychopharmacology, 2024, 241, 785-803.	3.1	1
1418	Mood and microbes: a comprehensive review of intestinal microbiotaâ $\in^{\mathbb{T}}$ s impact on depression. Frontiers in Psychiatry, 0, 15, .	2.6	0

#	Article	IF	CITATIONS
1419	Exploring environmental exposomes and the gut-brain nexus: Unveiling the impact of pesticide exposure. Environmental Research, 2024, 250, 118441.	7. 5	0
1420	Associations between gut microbiota and adverse neurodevelopmental outcomes in preterm infants: a two-sample Mendelian randomization study. Frontiers in Neuroscience, 0, 18 , .	2.8	0
1421	Pogostemon cablin essential oil affects anxiety- and depressive-like behaviors and the gut microbiota in chronic unpredictable mild stress model rats. Frontiers in Nutrition, $0,11,1$	3.7	0
1422	Gut Microbes: The Gut Brain Connection. , 2023, , 33-59.		0
1423	A causal relationship between gut microbiota and subcortical brain structures contributes to the microbiota–gut–brain axis: a Mendelian randomization study. Cerebral Cortex, 2024, 34, .	2.9	0
1424	Exploring gender differences in the relationship between gut microbiome and depression - a scoping review. Frontiers in Psychiatry, 0, 15 , .	2.6	0
1425	Microbiota influence behavior—Work in animal models. , 2024, , 83-107.		0
1426	Microbiota–brain interactions in aging and neurodegeneration. , 2024, , 175-193.		0
1427	Microbiota in psychiatry. , 2024, , 147-174.		0
1428	The gut-brain axis. , 2024, , 1-15.		0
1429	Microbiota-related biomarkers for precision medicine and drug discovery., 2024,, 245-254.		0
1430	Microbiota to brain communication. , 2024, , 63-82.		0
1431	The Gut Microbiota and NDG: What Is the Interplay. , 2024, , 1-34.		0
1432	Association between Intestinal Microbiota in Infants and their Neurodevelopment: Systematic Literature Review on Scoping Review Methodology. Voprosy Sovremennoi Pediatrii - Current Pediatrics, 2024, 23, 13-20.	0.4	0
1433	Exploring the complex interplay: gut microbiome, stress, and leptospirosis. Frontiers in Microbiology, 0, 15, .	3.5	0
1434	Progress in the study of intestinal microbiota involved in morphine tolerance. Heliyon, 2024, 10, e27187.	3.2	0
1436	Microbiota, Tryptophan and Aryl Hydrocarbon Receptors as the Target Triad in Parkinson's Disease—A Narrative Review. International Journal of Molecular Sciences, 2024, 25, 2915.	4.1	0
1437	The Role of the Gut Microbiome in Neurological Diseases. , 2024, , .		0

#	Article	IF	CITATIONS
1438	Microglia in Microbiota-Gut-Brain Axis: A Hub in Epilepsy. Molecular Neurobiology, 0, , .	4.0	0
1439	Tryptophan metabolites and the microbiome-gut-brain axis in major gut disorders. , 0, , .		O
1440	Gut microbiome and its association with psychiatric disorders, specially schizophrenia., 2023, 28, 98-109.		0
1441	The Role of Gut Microbiota in Neuromyelitis Optica Spectrum Disorder. International Journal of Molecular Sciences, 2024, 25, 3179.	4.1	O
1442	Stress in the microbiome-immune crosstalk. Gut Microbes, 2024, 16, .	9.8	0
1443	A gut (microbiome) feeling about addiction: Interactions with stress and social systems. Neurobiology of Stress, 2024, 30, 100629.	4.0	O
1444	Recent Advances in Current Uptake Situation, Metabolic and Nutritional Characteristics, Health, and Safety of Dietary Tryptophan. Journal of Agricultural and Food Chemistry, 2024, 72, 6787-6802.	5.2	0
1445	Causal effects of gut microbiota on autism spectrum disorder: A two-sample mendelian randomization study. Medicine (United States), 2024, 103, e37284.	1.0	0