Linkage of gut microbiome with cognition in hepatic en

American Journal of Physiology - Renal Physiology 302, G168-G175

DOI: 10.1152/ajpgi.00190.2011

Citation Report

#	Article	IF	Citations
1	The intestinal microbiome and the leaky gut as therapeutic targets in alcoholic liver disease. Frontiers in Physiology, 2012, 3, 402.	1.3	86
2	The Intestinal Microbiota and Liver Disease. American Journal of Gastroenterology Supplements (Print), 2012, 1, 9-14.	0.7	46
3	Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. American Journal of Physiology - Renal Physiology, 2012, 303, G675-G685.	1.6	462
4	Methanogenesis in Irritable Bowel Syndrome: A Lot of Hot Air?. Digestive Diseases and Sciences, 2012, 57, 3045-3046.	1.1	3
5	Second infections independently increase mortality in hospitalized patients With cirrhosis: the north american consortium for the study of end-stage liver disease (NACSELD) experience. Hepatology, 2012, 56, 2328-2335.	3.6	357
6	Ammonia-Lowering Strategies for the Treatment of Hepatic Encephalopathy. Clinical Pharmacology and Therapeutics, 2012, 92, 321-331.	2.3	94
7	The interplay between the intestinal microbiota and the brain. Nature Reviews Microbiology, 2012, 10, 735-742.	13.6	1,249
8	Liver repercussions of defective gut surveillance. Hepatology, 2012, 56, 1174-1177.	3.6	2
9	Answers to Multiple Choice Questions. Journal of Clinical and Experimental Hepatology, 2012, 2, 200-205.	0.4	0
10	Gut Microbiota, Inflammation and Hepatic Encephalopathy: A Puzzle with a Solution in Sight. Journal of Clinical and Experimental Hepatology, 2012, 2, 207-210.	0.4	22
11	Answers to Multiple Choice Questions. Journal of Clinical and Experimental Hepatology, 2012, 2, 401-406.	0.4	0
12	Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature, 2012, 482, 179-185.	13.7	2,026
13	Gut Microbiota Drives Metabolic Disease in Immunologically Altered Mice. Advances in Immunology, 2012, 116, 93-112.	1.1	40
14	Management of Covert Hepatic Encephalopathy. Clinics in Liver Disease, 2012, 16, 91-93.	1.0	8
15	A longitudinal systems biology analysis of lactulose withdrawal in hepatic encephalopathy. Metabolic Brain Disease, 2012, 27, 205-215.	1.4	88
16	Large-Scale Survey of Gut Microbiota Associated With MHE Via 16S rRNA-Based Pyrosequencing. American Journal of Gastroenterology, 2013, 108, 1601-1611.	0.2	149
17	The Intestinal Microbiota in Chronic Liver Disease. Advances in Immunology, 2013, 117, 73-97.	1.1	48
18	Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. Journal of Hepatology, 2013, 58, 949-955.	1.8	613

#	Article	IF	CITATIONS
19	The gut microbiota and the liver. Pathophysiological and clinical implications. Journal of Hepatology, 2013, 58, 1020-1027.	1.8	119
20	Correlation between interleukin-6 and ammonia in patients with overt hepatic encephalopathy due to cirrhosis. Clinics and Research in Hepatology and Gastroenterology, 2013, 37, 384-390.	0.7	26
21	Role of the intestinal microbiome in liver disease. Journal of Autoimmunity, 2013, 46, 66-73.	3.0	172
22	Role of the gut microbiota in human nutrition and metabolism. Journal of Gastroenterology and Hepatology (Australia), 2013, 28, 9-17.	1.4	365
23	Fecal transplant: A safe and sustainable clinical therapy for restoring intestinal microbial balance in human disease?. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2013, 27, 127-137.	1.0	89
24	The gut microbiota and the liver: implications for clinical practice. Expert Review of Gastroenterology and Hepatology, 2013, 7, 723-732.	1.4	17
25	Effects of <i>N</i> à€acetylcysteine on cytokines in nonâ€acetaminophen acute liver failure: potential mechanism of improvement in transplantâ€free survival. Liver International, 2013, 33, 1324-1331.	1.9	59
26	Gut microbiota, immune development and function. Pharmacological Research, 2013, 69, 87-113.	3.1	200
27	Inflammation and hepatic encephalopathy. Archives of Biochemistry and Biophysics, 2013, 536, 189-196.	1.4	114
28	Integrative inflammasome activity in the regulation of intestinal mucosal immune responses. Mucosal Immunology, 2013, 6, 4-13.	2.7	82
29	Intestinal epithelial barrier function in liver cirrhosis: an extensive review of the literature. Liver International, 2013, 33, 1457-1469.	1.9	101
30	Gut microbiota and hepatic encephalopathy. Metabolic Brain Disease, 2013, 28, 321-326.	1.4	50
31	Effects of probiotics on gut microbiota: mechanisms of intestinal immunomodulation and neuromodulation. Therapeutic Advances in Gastroenterology, 2013, 6, 39-51.	1.4	716
32	Current pathogenetic aspects of hepatic encephalopathy and noncirrhotic hyperammonemic encephalopathy. World Journal of Gastroenterology, 2013, 19, 26.	1.4	73
33	Cirrhosis, bile acids and gut microbiota. Gut Microbes, 2013, 4, 382-387.	4.3	276
34	A Multi-Omic Systems-Based Approach Reveals Metabolic Markers of Bacterial Vaginosis and Insight into the Disease. PLoS ONE, 2013, 8, e56111.	1.1	122
35	Probiotics and Liver Disease., 2013, 17, 62-67.		41
36	Microbiome Composition by Pyrosequencing in Mesenteric Lymph Nodes of Rats with CCI ₄ -Induced Cirrhosis. Journal of Innate Immunity, 2014, 6, 263-271.	1.8	19

#	Article	IF	Citations
37	Commentary: probing probiotics in cirrhosis – a template for future studies?. Alimentary Pharmacology and Therapeutics, 2014, 39, 1334-1335.	1.9	2
38	Microbial Therapy in Liver Disease: Probiotics Probe the Microbiome–Gut–Liver–Brain Axis. Gastroenterology, 2014, 147, 1216-1218.	0.6	15
39	The Gut Microbiome and the Brain. Journal of Medicinal Food, 2014, 17, 1261-1272.	0.8	498
40	New avenues to treatment of liver cirrhosis. Science China Life Sciences, 2014, 57, 1049-1050.	2.3	2
41	Functional gene arrays-based analysis of fecal microbiomes in patients with liver cirrhosis. BMC Genomics, 2014, 15, 753.	1.2	36
42	Cerebral protection. Current Opinion in Anaesthesiology, 2014, 27, 89-97.	0.9	96
43	Bile acids and the gut microbiome. Current Opinion in Gastroenterology, 2014, 30, 332-338.	1.0	990
44	Modulation of Intestinal Microbiota by the Probiotic VSL#3 Resets Brain Gene Expression and Ameliorates the Age-Related Deficit in LTP. PLoS ONE, 2014, 9, e106503.	1.1	175
45	The role of microbiota in hepatic encephalopathy. Gut Microbes, 2014, 5, 397-403.	4.3	157
46	Irritable bowel syndrome: A microbiome-gut-brain axis disorder?. World Journal of Gastroenterology, 2014, 20, 14105.	1.4	249
47	Hepatic Encephalopathy Involves Interactions Among the Microbiota, Gut, Brain. Clinical Gastroenterology and Hepatology, 2014, 12, 1009-1011.	2.4	11
48	Treatment Options for Covert Hepatic Encephalopathy. Current Treatment Options in Gastroenterology, 2014, 12, 229-241.	0.3	0
49	The role of microbiome in central nervous system disorders. Brain, Behavior, and Immunity, 2014, 38, 1-12.	2.0	629
50	Interactions Between the Intestinal Microbiome and Liver Diseases. Gastroenterology, 2014, 146, 1513-1524.	0.6	806
51	Review article: evidence for the role of gut microbiota in irritable bowel syndrome and its potential influence on therapeutic targets. Alimentary Pharmacology and Therapeutics, 2014, 39, 1033-1042.	1.9	154
52	Altered profile of human gut microbiome is associated with cirrhosis and its complications. Journal of Hepatology, 2014, 60, 940-947.	1.8	873
53	Cognitive decline, dietary factors and gut–brain interactions. Mechanisms of Ageing and Development, 2014, 136-137, 59-69.	2.2	150
54	Covert Hepatic Encephalopathy Is Independently Associated With Poor Survival and Increased Risk of Hospitalization. American Journal of Gastroenterology, 2014, 109, 1757-1763.	0.2	150

#	ARTICLE	IF	Citations
55	Probiotic VSL#3 Reduces Liver Disease Severity and Hospitalization in Patients With Cirrhosis: A Randomized, Controlled Trial. Gastroenterology, 2014, 147, 1327-1337.e3.	0.6	287
56	Microbiota-Gut-Brain Axis and Cognitive Function. Advances in Experimental Medicine and Biology, 2014, 817, 357-371.	0.8	125
57	Randomised clinical trial: Lactobacillus GG modulates gut microbiome, metabolome and endotoxemia in patients with cirrhosis. Alimentary Pharmacology and Therapeutics, 2014, 39, 1113-1125.	1.9	234
58	Large intestine permeability is increased in patients with compensated liver cirrhosis. American Journal of Physiology - Renal Physiology, 2014, 306, G147-G153.	1.6	40
59	Colonic inflammation and secondary bile acids in alcoholic cirrhosis. American Journal of Physiology - Renal Physiology, 2014, 306, G929-G937.	1.6	151
60	Microbiota-liver axis in hepatic disease. Hepatology, 2014, 59, 328-339.	3.6	272
61	Gut microbiota-related complications in cirrhosis. World Journal of Gastroenterology, 2014, 20, 15624.	1.4	46
62	Early Life Experience and Gut Microbiome. Advances in Neonatal Care, 2015, 15, 314-323.	0.5	66
63	Gut dysbiosis in acuteâ€onâ€chronic liver failure and its predictive value for mortality. Journal of Gastroenterology and Hepatology (Australia), 2015, 30, 1429-1437.	1.4	131
64	Dysbiosis. Journal of Clinical Gastroenterology, 2015, 49, S20-S24.	1.1	23
65	Gut microbiota and liver diseases. World Journal of Gastroenterology, 2015, 21, 1691.	1.4	136
66	Gut Microbiota and Host Reaction in Liver Diseases. Microorganisms, 2015, 3, 759-791.	1.6	47
67	Inflammation: A novel target of current therapies for hepatic encephalopathy in liver cirrhosis. World Journal of Gastroenterology, 2015, 21, 11815.	1.4	45
68	Dietary <i>trans</i> -10, <i>cis</i> -12-conjugated linoleic acid alters fatty acid metabolism and microbiota composition in mice. British Journal of Nutrition, 2015, 113, 728-738.	1.2	89
69	Gut Microbiota, Cirrhosis, and Alcohol Regulate Bile Acid Metabolism in the Gut. Digestive Diseases, 2015, 33, 338-345.	0.8	90
70	Microbiome and complications of liver disease. Clinical Liver Disease, 2015, 5, 96-99.	1.0	3
71	Alcoholic Liver Disease: The Gut Microbiome and Liver Cross Talk. Alcoholism: Clinical and Experimental Research, 2015, 39, 763-775.	1.4	226
72	Recent advances in the treatment of hyperammonemia. Advanced Drug Delivery Reviews, 2015, 90, 55-68.	6.6	87

#	ARTICLE	IF	Citations
73	Gut microbiota and the development of pediatric diseases. Journal of Gastroenterology, 2015, 50, 720-726.	2.3	41
74	Salivary microbiota reflects changes in gut microbiota in cirrhosis with hepatic encephalopathy. Hepatology, 2015, 62, 1260-1271.	3.6	272
75	Clinical and Pathophysiological Consequences of Alterations in the Microbiome in Cirrhosis. American Journal of Gastroenterology, 2015, 110, 1399-1410.	0.2	33
76	Decompensated cirrhosis and microbiome interpretation. Nature, 2015, 525, E1-E2.	13.7	90
77	Qin et al. reply. Nature, 2015, 525, E2-E3.	13.7	3
78	Gut Microbiota: Its Role in Hepatic Encephalopathy. Journal of Clinical and Experimental Hepatology, 2015, 5, S29-S36.	0.4	128
79	Management of Covert Hepatic Encephalopathy. Journal of Clinical and Experimental Hepatology, 2015, 5, S75-S81.	0.4	17
80	Effect of probiotic <scp>VSL</scp> #3 in the treatment of minimal hepatic encephalopathy: A nonâ€inferiority randomized controlled trial. Hepatology Research, 2015, 45, 880-889.	1.8	41
81	Obese-type Gut Microbiota Induce Neurobehavioral Changes in the Absence of Obesity. Biological Psychiatry, 2015, 77, 607-615.	0.7	421
82	Hepatic encephalopathy in patients with acute decompensation of cirrhosis and acute-on-chronic liver failure. Journal of Hepatology, 2015, 62, 437-447.	1.8	196
83	Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behavioural Brain Research, 2015, 277, 32-48.	1.2	1,320
84	Intestinal permeability in a patient with liver cirrhosis. Therapeutics and Clinical Risk Management, 2016, Volume 12, 1729-1748.	0.9	33
85	Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Frontiers in Immunology, 2016, 7, 290.	2.2	93
86	The Microbiome and Cancer. Cancer Nursing, 2016, 39, E56-E62.	0.7	20
87	The Intestinal Microbiome and the Liver Transplant Recipient. Transplantation, 2016, 100, 61-68.	0.5	42
88	Revealing the combined effects of lactulose and probiotic enterococci on the swine faecal microbiota using 454 pyrosequencing. Microbial Biotechnology, 2016, 9, 486-495.	2.0	44
89	The features of mucosaâ€essociated microbiota in primary sclerosing cholangitis. Alimentary Pharmacology and Therapeutics, 2016, 43, 790-801.	1.9	112
90	Microbiota and Liver. , 2016, , 25-34.		1

#	ARTICLE	IF	CITATIONS
91	Gut microbiota drive the development of neuroinflammatory response in cirrhosis in mice. Hepatology, 2016, 64, 1232-1248.	3.6	83
92	Microbiome and bacterial translocation in cirrhosis. GastroenterologÃa Y HepatologÃa (English) Tj ETQq1 1 0.784	1314 rgBT 0.0	/Qverlock <mark>1</mark> 0
93	Modulation of Hallmarks of Brain Aging by Environmental Enrichment. Oxidative Stress in Applied Basic Research and Clinical Practice, 2016, , 303-319.	0.4	0
94	Elderly patients have an altered gut-brain axis regardless of the presence of cirrhosis. Scientific Reports, 2016, 6, 38481.	1.6	54
95	Antibiotics as deep modulators of gut microbiota: between good and evil. Gut, 2016, 65, 1906-1915.	6.1	463
96	Foodomics as part of the host-microbiota-exposome interplay. Journal of Proteomics, 2016, 147, 3-20.	1.2	46
97	Probiotics in management of hepatic encephalopathy. Metabolic Brain Disease, 2016, 31, 1295-1301.	1.4	32
98	Signals from the gut microbiota to distant organs in physiology and disease. Nature Medicine, 2016, 22, 1079-1089.	15.2	952
99	The gut microbiota: A treasure for human health. Biotechnology Advances, 2016, 34, 1210-1224.	6.0	158
100	Rifaximin Exerts Beneficial Effects Independent of its Ability to Alter Microbiota Composition. Clinical and Translational Gastroenterology, 2016, 7, e187.	1.3	75
101	Gut microbiota are linked to increased susceptibility to hepatic steatosis in low-aerobic-capacity rats fed an acute high-fat diet. American Journal of Physiology - Renal Physiology, 2016, 311, G166-G179.	1.6	32
102	Acute-on-chronic liver failure in cirrhosis. Nature Reviews Disease Primers, 2016, 2, 16041.	18.1	320
103	Impaired Gut-Liver-Brain Axis in Patients with Cirrhosis. Scientific Reports, 2016, 6, 26800.	1.6	163
104	The digestive tract as the origin of systemic inflammation. Critical Care, 2016, 20, 279.	2.5	92
105	Altered Fecal Microbiota Correlates with Liver Biochemistry in Nonobese Patients with Non-alcoholic Fatty Liver Disease. Scientific Reports, 2016, 6, 32002.	1.6	260
106	Impact of De Novo and Preexisting Inflammatory Bowel Disease on the Outcome of Orthotopic Liver Transplantation. Inflammatory Bowel Diseases, 2016, 22, 1670-1678.	0.9	12
107	Changes of Intestinal Functions in Liver Cirrhosis. Inflammatory Intestinal Diseases, 2016, 1, 24-40.	0.8	4,709
108	Human Microbiome and its Association With Health and Diseases. Journal of Cellular Physiology, 2016, 231, 1688-1694.	2.0	98

#	Article	IF	Citations
109	Microbioma y traslocación bacteriana en la cirrosis. GastroenterologÃa Y HepatologÃa, 2016, 39, 687-696.	0.2	16
110	ATTIRE: Albumin To prevenT Infection in chronic liveR failurE: study protocol for a single-arm feasibility trial. BMJ Open, 2016, 6, e010132.	0.8	7
111	Mediterranean Diet and Neurodegenerative Diseases. , 2016, , 153-164.		3
112	RiMINI – the influence of rifaximin on minimal hepatic encephalopathy (MHE) and on the intestinal microbiome in patients with liver cirrhosis: study protocol for a randomized controlled trial. Trials, 2016, 17, 111.	0.7	14
113	What we know: the inflammatory basis of hepatic encephalopathy. Metabolic Brain Disease, 2016, 31, 1239-1247.	1.4	9
114	The Gut Microbiome and Cirrhosis: Basic Aspects. , 2016, , 139-168.		1
115	The Gut Microbiome and Cirrhosis: Clinical Aspects. , 2016, , 169-184.		0
116	Gut microbiota regulates key modulators of social behavior. European Neuropsychopharmacology, 2016, 26, 78-91.	0.3	59
117	Clinical science workshop: targeting the gut-liver-brain axis. Metabolic Brain Disease, 2016, 31, 1327-1337.	1.4	23
118	Serum Bile Acids Are Associated with Pathological Progression of Hepatitis B-Induced Cirrhosis. Journal of Proteome Research, 2016, 15, 1126-1134.	1.8	78
119	Gut Microbiota and Complications of Liver Disease. Gastroenterology Clinics of North America, 2017, 46, 155-169.	1.0	73
120	Revisiting Metchnikoff: Age-related alterations in microbiota-gut-brain axis in the mouse. Brain, Behavior, and Immunity, 2017, 65, 20-32.	2.0	158
121	Liver transplant modulates gut microbial dysbiosis and cognitive function in cirrhosis. Liver Transplantation, 2017, 23, 907-914.	1.3	99
122	Bacterial infections and hepatic encephalopathy in liver cirrhosis–prophylaxis and treatment. Advances in Medical Sciences, 2017, 62, 345-356.	0.9	23
123	The gut microbiota: A new potential driving force in liver cirrhosis and hepatocellular carcinoma. United European Gastroenterology Journal, 2017, 5, 944-953.	1.6	55
124	The Human Gut Microbiome in Liver Diseases. Seminars in Liver Disease, 2017, 37, 128-140.	1.8	30
125	Microbiome and NAFLD: potential influence of aerobic fitness and lifestyle modification. Physiological Genomics, 2017, 49, 385-399.	1.0	31
126	The Gut Microbiota, Tumorigenesis, and Liver Diseases. Engineering, 2017, 3, 110-114.	3.2	13

#	Article	IF	CITATIONS
127	Effect of different treatments and alcohol addiction on gut microbiota in minimal hepatic encephalopathy patients. Experimental and Therapeutic Medicine, 2017, 14, 4887-4895.	0.8	14
128	Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: A randomized clinical trial. Hepatology, 2017, 66, 1727-1738.	3.6	454
129	We Are Not Alone: The iMOP Initiative and Its Roles in a Biology- and Disease-Driven Human Proteome Project. Journal of Proteome Research, 2017, 16, 4273-4280.	1.8	8
131	The Impact of Gut Microbiota on Liver Injury. , 2017, , 251-283.		O
132	Evaluating the contribution of gut microbiome to the variance of porcine serum glucose and lipid concentration. Scientific Reports, 2017, 7, 14928.	1.6	15
133	Preliminary Evidence for an Association Between the Composition of the Gut Microbiome and Cognitive Function in Neurologically Healthy Older Adults. Journal of the International Neuropsychological Society, 2017, 23, 700-705.	1.2	77
134	Effects of Medium- and Long-Chain Triacylglycerols on Lipid Metabolism and Gut Microbiota Composition in C57BL/6J Mice. Journal of Agricultural and Food Chemistry, 2017, 65, 6599-6607.	2.4	66
135	Serum bile acids as marker for acute decompensation and acuteâ€onâ€chronic liver failure in patients with nonâ€cholestatic cirrhosis. Liver International, 2017, 37, 224-231.	1.9	47
136	Lactulose reduces bacterial <scp>DNA</scp> translocation, which worsens neurocognitive shape in cirrhotic patients with minimal hepatic encephalopathy. Liver International, 2017, 37, 212-223.	1.9	28
137	Gut microbiome and liver disease. Translational Research, 2017, 179, 49-59.	2.2	78
138	Gut to Brain Dysbiosis: Mechanisms Linking Western Diet Consumption, the Microbiome, and Cognitive Impairment. Frontiers in Behavioral Neuroscience, 2017, 11, 9.	1.0	216
139	Faecal bacterial microbiota in patients with cirrhosis and the effect of lactulose administration. BMC Gastroenterology, 2017, 17, 125.	0.8	37
140	Gut Microbiome-based Therapeutics in Liver Cirrhosis: Basic Consideration for the Next Step. Journal of Clinical and Translational Hepatology, 2017, 5, 249-260.	0.7	41
141	Rethinking the bile acid/gut microbiome axis in cancer. Oncotarget, 2017, 8, 115736-115747.	0.8	34
142	Nouveautés dans l'encéphalopathie hépatiqueÂ: de l'encéphalopathie hépatique minimale Ã l'encéphalopathie hépatique clinique. Pratique Neurologique - FMC, 2018, 9, 1-12.	0.1	0
143	Antibioticâ€Associated Disruption of Microbiota Composition and Function in Cirrhosis Is Restored by Fecal Transplant. Hepatology, 2018, 68, 1549-1558.	3.6	108
144	Effects of Alcohol on the Brain in Cirrhosis: Beyond Hepatic Encephalopathy. Alcoholism: Clinical and Experimental Research, 2018, 42, 660-667.	1.4	29
145	Overview and systematic review of studies of microbiome in schizophrenia and bipolar disorder. Journal of Psychiatric Research, 2018, 99, 50-61.	1.5	151

#	Article	IF	CITATIONS
146	Microbiota and the liver. Liver Transplantation, 2018, 24, 539-550.	1.3	33
147	Altered gut microbiome promotes proteinuria in mice induced by Adriamycin. AMB Express, 2018, 8, 31.	1.4	20
148	Gut–liver axis, cirrhosis and portal hypertension: the chicken and the egg. Hepatology International, 2018, 12, 24-33.	1.9	149
149	Immunoglobulin A and liver diseases. Journal of Gastroenterology, 2018, 53, 691-700.	2.3	38
150	The circulating microbiome signature and inferred functional metagenomics in alcoholic hepatitis. Hepatology, 2018, 67, 1284-1302.	3.6	134
151	Gut microbiota changes in the extreme decades of human life: a focus on centenarians. Cellular and Molecular Life Sciences, 2018, 75, 129-148.	2.4	190
152	Microbiota, Liver Diseases, and Alcohol. Microbiology Spectrum, 2017, 5, .	1,2	18
153	Efficacy and safety of rifaximin in Japanese patients with hepatic encephalopathy: A phase II/III, multicenter, randomized, evaluatorâ€blinded, activeâ€controlled trial and a phase III, multicenter, open trial. Hepatology Research, 2018, 48, 411-423.	1.8	36
154	Xenobiotic and endobiotic handling by the mucosal immune system. Current Opinion in Gastroenterology, 2018, 34, 404-412.	1.0	6
155	ATTIRE: Albumin To prevenT Infection in chronic liveR failurE: study protocol for an interventional randomised controlled trial. BMJ Open, 2018, 8, e023754.	0.8	22
156	Intestinal Microbiome and the Liver. , 2018, , 37-65.e6.		0
157	Preliminary experience with single fecal microbiota transplant for treatment of recurrent overt hepatic encephalopathyâ€"A case series. Indian Journal of Gastroenterology, 2018, 37, 559-562.	0.7	34
158	A randomized clinical trial examining the impact of LGG probiotic supplementation on psychological status in middle-aged and older adults. Contemporary Clinical Trials Communications, 2018, 12, 192-197.	0.5	17
159	An Investigation Into Physical Frailty as a Link Between the Gut Microbiome and Cognitive Health. Frontiers in Aging Neuroscience, 2018, 10, 398.	1.7	51
160	Biological Activities of Lactose-Derived Prebiotics and Symbiotic with Probiotics on Gastrointestinal System. Medicina (Lithuania), 2018, 54, 18.	0.8	26
161	Astrocyte Pathophysiology in Liver Disease. , 0, , .		0
162	Modulation of gut microbiome in nonalcoholic fatty liver disease: pro-, pre-, syn-, and antibiotics. Journal of Microbiology, 2018, 56, 855-867.	1.3	28
163	Clinical impact of microbiome in patients with decompensated cirrhosis. World Journal of Gastroenterology, 2018, 24, 3813-3820.	1.4	27

#	Article	IF	Citations
164	Gut microbiota, cognitive frailty and dementia in older individuals: a systematic review. Clinical Interventions in Aging, 2018, Volume 13, 1497-1511.	1.3	143
165	Microbiota, Liver Diseases, and Alcohol. , 2018, , 187-212.		2
166	Bacterial translocation in patients with liver cirrhosis: physiology, clinical consequences, and practical implications. Expert Review of Gastroenterology and Hepatology, 2018, 12, 641-656.	1.4	95
167	Pathophysiology: Gut Liver Axis Changes. , 2018, , 31-45.		0
168	Combining amplicon sequencing and metabolomics in cirrhotic patients highlights distinctive microbiota features involved in bacterial translocation, systemic inflammation and hepatic encephalopathy. Scientific Reports, 2018, 8, 8210.	1.6	63
169	Corticosteroids, nutrition, pentoxifylline, or fecal microbiota transplantation for severe alcoholic hepatitis. Indian Journal of Gastroenterology, 2018, 37, 215-225.	0.7	84
170	Splenectomy Leads to Amelioration of Altered Gut Microbiota and Metabolome in Liver Cirrhosis Patients. Frontiers in Microbiology, 2018, 9, 963.	1.5	38
171	Different Sex-Based Responses of Gut Microbiota During the Development of Hepatocellular Carcinoma in Liver-Specific Tsc1-Knockout Mice. Frontiers in Microbiology, 2018, 9, 1008.	1.5	52
172	Harnessing the Power of Microbiome Assessment Tools as Part of Neuroprotective Nutrition and Lifestyle Medicine Interventions. Microorganisms, 2018, 6, 35.	1.6	21
173	Gut Microbiota and Relevant Metabolites Analysis in Alcohol Dependent Mice. Frontiers in Microbiology, 2018, 9, 1874.	1.5	46
174	Proton Pump Inhibitor Initiation and Withdrawal affects Gut Microbiota and Readmission Risk in Cirrhosis. American Journal of Gastroenterology, 2018, 113, 1177-1186.	0.2	98
175	Determinación de la microbiota intestinal en pacientes cirróticos de población mestizo-mexicana. Revista De GastroenterologÃa De México, 2019, 84, 26-35.	0.4	4
176	Circulating levels of 3â€hydroxymyristate, a direct quantification of endotoxaemia in noninfected cirrhotic patients. Liver International, 2019, 39, 106-114.	1.9	8
177	Making Sense of … the Microbiome in Psychiatry. International Journal of Neuropsychopharmacology, 2019, 22, 37-52.	1.0	142
178	Improved hemodynamic and liver function in portal hypertensive cirrhotic rats after administration of B. pseudocatenulatum CECT 7765. European Journal of Nutrition, 2019, 58, 1647-1658.	1.8	13
179	Fecal metabonomics combined with 16S rRNA gene sequencing to analyze the changes of gut microbiota in rats with kidney-yang deficiency syndrome and the intervention effect of You-gui pill. Journal of Ethnopharmacology, 2019, 244, 112139.	2.0	53
180	The role of the gut microbiome in chronic liver disease: the clinical evidence revised. JHEP Reports, 2019, 1, 214-226.	2.6	96
181	Management of Hepatic Encephalopathy in the Neurocritical Care Unit. , 2019, , 370-381.		0

#	Article	IF	CITATIONS
182	Microbiome and Cognitive Impairment: Can Any Diets Influence Learning Processes in a Positive Way?. Frontiers in Aging Neuroscience, 2019, 11, 170.	1.7	46
183	The acidic pathway of bile acid synthesis: Not just an alternative pathway. Liver Research, 2019, 3, 88-98.	0.5	88
184	Role of Gut Dysbiosis in Liver Diseases: What Have We Learned So Far?. Diseases (Basel, Switzerland), 2019, 7, 58.	1.0	84
185	Steatosis and gut microbiota dysbiosis induced by high-fat diet are reversed by 1-week chow diet administration. Nutrition Research, 2019, 71, 72-88.	1.3	17
186	The Microbiota-Gut-Brain Axis. Physiological Reviews, 2019, 99, 1877-2013.	13.1	2,304
187	Posttraumatic stress disorder is associated with altered gut microbiota that modulates cognitive performance in veterans with cirrhosis. American Journal of Physiology - Renal Physiology, 2019, 317, G661-G669.	1.6	47
188	Lactulose improves cognition, quality of life, and gut microbiota in minimal hepatic encephalopathy: A multicenter, randomized controlled trial. Journal of Digestive Diseases, 2019, 20, 547-556.	0.7	57
189	Dietary approach and gut microbiota modulation for chronic hepatic encephalopathy in cirrhosis. World Journal of Hepatology, 2019, 11, 489-512.	0.8	34
190	Lactulose drives a reversible reduction and qualitative modulation of the faecal microbiota diversity in healthy dogs. Scientific Reports, 2019, 9, 13350.	1.6	11
191	Advanced Organ-on-a-Chip Devices to Investigate Liver Multi-Organ Communication: Focus on Gut, Microbiota and Brain. Bioengineering, 2019, 6, 91.	1.6	26
192	The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cellular and Molecular Life Sciences, 2019, 76, 1541-1558.	2.4	333
193	Comprehensive characterization of ureagenesis in the <i>spf</i> ^{<i>ash</i>} mouse, a model of human ornithine transcarbamylase deficiency, reveals ageâ€dependency of ammonia detoxification. Journal of Inherited Metabolic Disease, 2019, 42, 1064-1076.	1.7	9
194	Predicting Clinical Outcomes of Cirrhosis Patients With Hepatic Encephalopathy From the Fecal Microbiome. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 301-318.e2.	2.3	76
195	Possible Metabolic Pathway of a Novel Bioactive Polysaccharide Extracted from <i>Dendrobium aphyllum</i> : An <i>In Vivo</i> Study. Journal of Food Science, 2019, 84, 1216-1223.	1.5	5
196	Fecal Microbial Transplant Capsules Are Safe in Hepatic Encephalopathy: A Phase 1, Randomized, Placeboâ€Controlled Trial. Hepatology, 2019, 70, 1690-1703.	3.6	196
197	Precision Nutrition and the Microbiome, Part I: Current State of the Science. Nutrients, 2019, 11, 923.	1.7	220
198	Role of the intestinal microbiome in liver fibrosis development and new treatment strategies. Translational Research, 2019, 209, 22-38.	2.2	51
199	Influence of proton pump inhibitors on microbiota in chronic liver disease patients. Hepatology International, 2019, 13, 234-244.	1.9	27

#	Article	IF	CITATIONS
200	Specific Gut and Salivary Microbiota Patterns Are Linked With Different Cognitive Testing Strategies in Minimal Hepatic Encephalopathy. American Journal of Gastroenterology, 2019, 114, 1080-1090.	0.2	50
201	Altered Microbiome in Patients With Cirrhosis and Complications. Clinical Gastroenterology and Hepatology, 2019, 17, 307-321.	2.4	105
202	Rifaximinâ€altered gut microbiota components associated with liver/neuropsychological functions in patients with hepatic encephalopathy: An exploratory data analysis of phase II/III clinical trials. Hepatology Research, 2019, 49, 404-418.	1.8	28
203	Is treating the gut microbiome the key to achieving better outcomes in cirrhosis?. Expert Review of Gastroenterology and Hepatology, 2019, 13, 1-2.	1.4	22
204	Alcohol, liver disease and the gut microbiota. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 235-246.	8.2	421
205	Microbiome as a therapeutic target in alcohol-related liver disease. Journal of Hepatology, 2019, 70, 260-272.	1.8	170
206	Gut microbiota: novel therapeutic target for nonalcoholic fatty liver disease. Expert Review of Gastroenterology and Hepatology, 2019, 13, 193-204.	1.4	82
207	What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 2019, 7, 14.	1.6	1,796
208	Bile Acid 7α-Dehydroxylating Gut Bacteria Secrete Antibiotics that Inhibit Clostridium difficile: Role of Secondary Bile Acids. Cell Chemical Biology, 2019, 26, 27-34.e4.	2.5	134
209	Intestinal microbiota assessment in cirrhotic patients from a Mexican mestizo population. Revista De GastroenterologÃa De México (English Edition), 2019, 84, 26-35.	0.1	0
210	The antibody/microbiota interface in health and disease. Mucosal Immunology, 2020, 13, 3-11.	2.7	48
211	Ambient temperature alters body size and gut microbiota of Xenopus tropicalis. Science China Life Sciences, 2020, 63, 915-925.	2.3	20
212	Lower gut microbiome diversity and higher abundance of proinflammatory genus <i>Collinsella</i> are associated with biopsy-proven nonalcoholic steatohepatitis. Gut Microbes, 2020, 11, 569-580.	4.3	125
213	Role of gut microbiota in liver disease. American Journal of Physiology - Renal Physiology, 2020, 318, G84-G98.	1.6	78
214	Hepatic Encephalopathy and Nutrition Influences: A Narrative Review. Nutrition in Clinical Practice, 2020, 35, 36-48.	1.1	11
215	Gut microbiota in nonâ€alcoholic fatty liver disease and alcoholâ€related liver disease: Current concepts and perspectives. Hepatology Research, 2020, 50, 407-418.	1.8	35
216	Dominant and Subordinate Relationship Formed by Repeated Social Encounters Alters Gut Microbiota in Greater Long-Tailed Hamsters. Microbial Ecology, 2020, 79, 998-1010.	1.4	5
217	Evaluation of a Dual-Acting Antibacterial Agent, TNP-2092, on Gut Microbiota and Potential Application in the Treatment of Gastrointestinal and Liver Disorders. ACS Infectious Diseases, 2020, 6, 820-831.	1.8	12

#	Article	IF	CITATIONS
218	Cannabinoids and the Microbiota–Gut–Brain Axis: Emerging Effects of Cannabidiol and Potential Applications to Alcohol Use Disorders. Alcoholism: Clinical and Experimental Research, 2020, 44, 340-353.	1.4	20
219	Manipulation of microbiota with probiotics as an alternative for treatment of hepatic encephalopathy. Nutrition, 2020, 73, 110693.	1.1	12
220	Low dose of propranolol treatment is associated with better survival in cirrhotic patients with hepatic encephalopathy. European Journal of Gastroenterology and Hepatology, 2020, 32, 365-372.	0.8	2
221	Intestinal <i>Clostridioides difficile</i> Can Cause Liver Injury through the Occurrence of Inflammation and Damage to Hepatocytes. BioMed Research International, 2020, 2020, 1-11.	0.9	3
222	Dendropanax morbifera Leaf Extracts Improved Alcohol Liver Injury in Association with Changes in the Gut Microbiota of Rats. Antioxidants, 2020, 9, 911.	2.2	12
223	Crosstalk between the microbiota-gut-brain axis and depression. Heliyon, 2020, 6, e04097.	1.4	90
224	Gut dysbiosis in Huntington's disease: associations among gut microbiota, cognitive performance and clinical outcomes. Brain Communications, 2020, 2, fcaa110.	1.5	98
225	Non-Lactulose Medication Therapies for the Management of Hepatic Encephalopathy: A Literature Review. Journal of Pharmacy Practice, 2021, 34, 922-933.	0.5	5
226	Cathelicidinâ€related antimicrobial peptide alleviates alcoholic liver disease through inhibiting inflammasome activation. Journal of Pathology, 2020, 252, 371-383.	2.1	17
227	Alcohol Addiction, Gut Microbiota, and Alcoholism Treatment: A Review. International Journal of Molecular Sciences, 2020, 21, 6413.	1.8	71
228	The Influence of Small Intestinal Bacterial Overgrowth in Digestive and Extra-Intestinal Disorders. International Journal of Molecular Sciences, 2020, 21, 3531.	1.8	37
229	Major Lipids, Apolipoproteins, and Alterations of Gut Microbiota. Journal of Clinical Medicine, 2020, 9, 1589.	1.0	21
230	Contribution of the Intestinal Microbiome and Gut Barrier to Hepatic Disorders. Gastroenterology, 2020, 159, 849-863.	0.6	202
231	A story of liver and gut microbes: how does the intestinal flora affect liver disease? A review of the literature. American Journal of Physiology - Renal Physiology, 2020, 318, G889-G906.	1.6	83
232	Novel Therapies in Hepatic Encephalopathy. Clinics in Liver Disease, 2020, 24, 303-315.	1.0	12
233	Microbiome. Clinics in Liver Disease, 2020, 24, 493-520.	1.0	6
234	The Current Hepatic Encephalopathy Pipeline. Journal of Clinical and Experimental Hepatology, 2020, 10, 377-385.	0.4	9
235	Nonpharmacologic Management of Hepatic Encephalopathy. Clinics in Liver Disease, 2020, 24, 243-261.	1.0	5

#	ARTICLE	IF	CITATIONS
236	Disease severity and proton pump inhibitor use impact strongest on faecal microbiome composition in liver cirrhosis. Liver International, 2020, 40, 866-877.	1.9	13
237	Microbiota changes and intestinal microbiota transplantation in liver diseases and cirrhosis. Journal of Hepatology, 2020, 72, 1003-1027.	1.8	123
238	Antipsychotics and the microbiota. Current Opinion in Psychiatry, 2020, 33, 225-230.	3.1	20
239	Alterations of gut microbiota and serum bile acids are associated with parenteral nutrition-associated liver disease. Journal of Pediatric Surgery, 2021, 56, 738-744.	0.8	14
240	Impact of a yeastâ€based dietary supplement on the intestinal microbiome of rainbow trout, <i>Oncorhynchus mykiss</i>). Aquaculture Research, 2021, 52, 1594-1604.	0.9	11
241	Gut Ruminococcaceae Levels Correlate with Risk of Antibiotic-Associated Diarrhea. SSRN Electronic Journal, 0, , .	0.4	0
242	The gut microbiota in hepatic encephalopathy. , 2021, , 187-204.		0
243	A Comprehensive Review Evaluating the Impact of Protein Source (Vegetarian vs. Meat Based) in Hepatic Encephalopathy. Nutrients, 2021, 13, 370.	1.7	7
244	Probiotics improve the neurometabolic profile of rats with chronic cholestatic liver disease. Scientific Reports, 2021, 11, 2269.	1.6	19
245	Gut Microbiota Modulation and Fecal Transplantation: An Overview on Innovative Strategies for Hepatic Encephalopathy Treatment. Journal of Clinical Medicine, 2021, 10, 330.	1.0	33
246	Towards multi-label classification: Next step of machine learning for microbiome research. Computational and Structural Biotechnology Journal, 2021, 19, 2742-2749.	1.9	10
247	The role of gut microbiota in health and diseases. Qanun Medika: Jurnal Kedokteran Fakultas Kedokteran Universitas Muhammadiyah Surabaya, 2021, 5, 19.	0.1	0
248	Alterations in intestinal microbiota diversity, composition, and function in patients with sarcopenia. Scientific Reports, 2021, 11, 4628.	1.6	69
249	Fecal microbiota transplantation in hepatic encephalopathy: a review of the current evidence and future perspectives. Acta Gastro-Enterologica Belgica, 2021, 84, 87-90.	0.4	4
250	New Insights into Stroke Prevention and Treatment: Gut Microbiome. Cellular and Molecular Neurobiology, 2022, 42, 455-472.	1.7	15
251	Effects of the antibiotic rifaximin on cortical functional connectivity are mediated through insular cortex. Scientific Reports, 2021, 11, 4479.	1.6	3
252	Gut Microbiome. Journal of Pediatric Gastroenterology and Nutrition, 2021, 72, 184-193.	0.9	15
253	Gut Microbiota at the Intersection of Alcohol, Brain, and the Liver. Journal of Clinical Medicine, 2021, 10, 541.	1.0	18

#	Article	IF	CITATIONS
254	Preliminary evidence for an influence of exposure to polycyclic aromatic hydrocarbons on the composition of the gut microbiota and neurodevelopment in three-year-old healthy children. BMC Pediatrics, 2021, 21, 86.	0.7	14
255	Novel Insights Into Pathogenesis and Therapeutic Strategies of Hepatic Encephalopathy, From the Gut Microbiota Perspective. Frontiers in Cellular and Infection Microbiology, 2021, 11, 586427.	1.8	9
256	Gut Microbiota Interaction with the Central Nervous System throughout Life. Journal of Clinical Medicine, 2021, 10, 1299.	1.0	47
257	Streptococcus, the Predominant Bacterium to Predict the Severity of Liver Injury in Alcoholic Liver Disease. Frontiers in Cellular and Infection Microbiology, 2021, 11, 649060.	1.8	24
259	Impact of sugar beet pulp and wheat bran on serum biochemical profile, inflammatory responses and gut microbiota in sows during late gestation and lactation. Journal of Animal Science and Biotechnology, 2021, 12, 54.	2.1	35
260	A Healthy Gut for a Healthy Brain: Preclinical, Clinical and Regulatory Aspects. Current Neuropharmacology, 2021, 19, 610-628.	1.4	15
261	PCSK9 and the Gut-Liver-Brain Axis: A Novel Therapeutic Target for Immune Regulation in Alcohol Use Disorder. Journal of Clinical Medicine, 2021, 10, 1758.	1.0	13
262	Altered Gut Microbiota in a Fragile X Syndrome Mouse Model. Frontiers in Neuroscience, 2021, 15, 653120.	1.4	16
263	The Role of the Microbiome in Liver Cancer. Cancers, 2021, 13, 2330.	1.7	16
264	Intestinal Permeability Is a Mechanical Rheostat in the Pathogenesis of Liver Cirrhosis. International Journal of Molecular Sciences, 2021, 22, 6921.	1.8	16
265	Role of bile acids in liver diseases mediated by the gut microbiome. World Journal of Gastroenterology, 2021, 27, 3010-3021.	1.4	27
266	Gastrointestinal microbiome, what is behind faecal microbiota transplantation?. New Microbes and New Infections, 2021, 42, 100898.	0.8	4
267	The microbiota in cirrhosis and its role in hepatic decompensation. Journal of Hepatology, 2021, 75, S67-S81.	1.8	107
268	Clinical Application and Progress of Fecal Microbiota Transplantation in Liver Diseases: A Review. Seminars in Liver Disease, 2021, 41, 495-506.	1.8	10
269	The Interplay between Gut Microbiota and the Immune System in Liver Transplant Recipients and Its Role in Infections. Infection and Immunity, 2021, 89, e0037621.	1.0	13
270	Intestinal virome and therapeutic potential of bacteriophages in liver disease. Journal of Hepatology, 2021, 75, 1465-1475.	1.8	28
271	Butyryl/Caproyl-CoA:Acetate CoA-transferase: cloning, expression and characterization of the key enzyme involved in medium-chain fatty acid biosynthesis. Bioscience Reports, 2021, 41, .	1.1	9
272	Impact of Antibiotic Resistance Genes in Gut Microbiome of Patients With Cirrhosis. Gastroenterology, 2021, 161, 508-521.e7.	0.6	33

#	Article	IF	CITATIONS
273	Leaky Gut and Gut-Liver Axis in Liver Cirrhosis: Clinical Studies Update. Gut and Liver, 2021, 15, 666-676.	1.4	54
274	Fecal Microbiota Transplantation as a Tool for Therapeutic Modulation of Non-gastrointestinal Disorders. Frontiers in Medicine, 2021, 8, 665520.	1.2	9
276	Diversity of the gut-microbiome related to cognitive behavioral outcomes in healthy older adults. Archives of Gerontology and Geriatrics, 2021, 96, 104464.	1.4	15
277	Rifaximin-α reduces gut-derived inflammation and mucin degradation in cirrhosis and encephalopathy: RIFSYS randomised controlled trial. Journal of Hepatology, 2022, 76, 332-342.	1.8	79
278	Deep stool microbiome analysis in cirrhosis reveals an association between short-chain fatty acids and hepatic encephalopathy. Annals of Hepatology, 2021, 25, 100333.	0.6	18
279	Gut Microbiota and Microbiota-Related Metabolites as Possible Biomarkers of Cognitive Aging. Advances in Experimental Medicine and Biology, 2019, 1178, 129-154.	0.8	29
280	Neurologic Consequences of Liver Disease. , 2018, , 203-219.e6.		1
284	PopPhy-CNN: A Phylogenetic Tree Embedded Architecture for Convolutional Neural Networks to Predict Host Phenotype From Metagenomic Data. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2993-3001.	3.9	55
285	Microbiota, cirrhosis, and the emerging oral-gut-liver axis. JCI Insight, 2017, 2, .	2.3	163
286	Recent advances in understanding and managing hepatic encephalopathy in chronic liver disease. F1000Research, 2020, 9, 312.	0.8	13
287	Probiotic mixture VSL#3: An overview of basic and clinical studies in chronic diseases. World Journal of Clinical Cases, 2020, 8, 1361-1384.	0.3	69
288	Gut Microbiota Composition Is Correlated to Grid Floor Induced Stress and Behavior in the BALB/c Mouse. PLoS ONE, 2012, 7, e46231.	1.1	254
289	Modulation of the Metabiome by Rifaximin in Patients with Cirrhosis and Minimal Hepatic Encephalopathy. PLoS ONE, 2013, 8, e60042.	1.1	340
290	Lactobacillus casei-01 Facilitates the Ameliorative Effects of Proanthocyanidins Extracted from Lotus Seedpod on Learning and Memory Impairment in Scopolamine-Induced Amnesia Mice. PLoS ONE, 2014, 9, e112773.	1.1	33
291	Quorum Sensing Peptides Selectively Penetrate the Blood-Brain Barrier. PLoS ONE, 2015, 10, e0142071.	1.1	42
292	Maternal obese-type gut microbiota differentially impact cognition, anxiety and compulsive behavior in male and female offspring in mice. PLoS ONE, 2017, 12, e0175577.	1.1	57
293	Effect of IRT5 probiotics on dry eye in the experimental dry eye mouse model. PLoS ONE, 2020, 15, e0243176.	1.1	17
294	Immune Dysfunction in Cirrhosis. Journal of Clinical and Translational Hepatology, 2017, XX, 1-9.	0.7	99

#	Article	IF	CITATIONS
295	Fecal Microbiota Transplantation for Treating Hepatic Encephalopathy: Experimental and Clinical Evidence and Possible Underlying Mechanisms. Journal of Exploratory Research in Pharmacology, 2018, 3, 105-110.	0.2	3
296	Gut Microbiome-Brain Communications Regulate Host Physiology and Behavior. Journal of Nutritional Health & Food Science, 2015, 3, .	0.3	3
298	The Microbiota-Gut-Brain Axis in Neuropsychiatric Disorders: Pathophysiological Mechanisms and Novel Treatments. Current Neuropharmacology, 2018, 16, 559-573.	1.4	147
299	Implication of Gut Microbiota in Human Health. CNS and Neurological Disorders - Drug Targets, 2014, 13, 1325-1333.	0.8	18
300	Gut Microbiome: Lactation, Childbirth, Lung Dysbiosis, Animal Modeling, Stem Cell Treatment, and CNS Disorders. CNS and Neurological Disorders - Drug Targets, 2020, 18, 687-694.	0.8	7
301	Microbiota, a key player in alcoholic liver disease. Clinical and Molecular Hepatology, 2018, 24, 100-107.	4.5	70
302	Intestinal Epithelial Cell-Derived Extracellular Vesicles Modulate Hepatic Injury via the Gut-Liver Axis During Acute Alcohol Injury. Frontiers in Pharmacology, 2020, 11, 603771.	1.6	17
303	Prevention and treatment of hepatic encephalopathy: Focusing on gut microbiota. World Journal of Gastroenterology, 2012, 18, 6693.	1.4	46
304	Risk factors and outcome of bacterial infections in cirrhosis. World Journal of Gastroenterology, 2014, 20, 2542.	1.4	102
305	Microbiota and the gut-liver axis: Bacterial translocation, inflammation and infection in cirrhosis. World Journal of Gastroenterology, 2014, 20, 16795.	1.4	187
306	Effect of rifaximin on gut microbiota composition in advanced liver disease and its complications. World Journal of Gastroenterology, 2015, 21, 12322.	1.4	65
307	Rifaximin ameliorates hepatic encephalopathy and endotoxemia without affecting the gut microbiome diversity. World Journal of Gastroenterology, 2017, 23, 8355-8366.	1.4	85
308	Intestinal permeability in the pathogenesis of liver damage: From non-alcoholic fatty liver disease to liver transplantation. World Journal of Gastroenterology, 2019, 25, 4814-4834.	1.4	101
309	Chinese guidelines on management of hepatic encephalopathy in cirrhosis. World Journal of Gastroenterology, 2019, 25, 5403-5422.	1.4	28
310	Probiotic and glutamine treatments attenuate alcoholic liver disease in a rat model. Experimental and Therapeutic Medicine, 2019, 18, 4733-4739.	0.8	22
311	Intestinal barrier dysfunction in cirrhosis: Current concepts in pathophysiology and clinical implications. World Journal of Hepatology, 2015, 7, 2058.	0.8	54
312	Gut-liver axis in liver cirrhosis: How to manage leaky gut and endotoxemia. World Journal of Hepatology, 2015, 7, 425.	0.8	141
313	Implication of the intestinal microbiome in complications of cirrhosis. World Journal of Hepatology, 2016, 8, 1128.	0.8	25

#	Article	IF	CITATIONS
314	Gut microbiota modulation in cirrhosis: A new frontier in hepatology. Turkish Journal of Gastroenterology, 2014, 25, 126-126.	0.4	3
315	Gut Ruminococcaceae Levels Correlate with Risk of Antibiotic-Associated Diarrhea. SSRN Electronic Journal, 0, , .	0.4	0
316	The Effect of Trans Fatty Acids on Human Health: Regulation and Consumption Patterns. Foods, 2021, 10, 2452.	1.9	49
317	Recent Update in Fecal Microbiota Transplantation. Korean Journal of Microbiology, 2014, 50, 265-274.	0.2	1
318	Use of Complementary and Alternative Therapies in Hepatic Disorders. , 2015, , 375-396.		0
319	Probiotiques, what else�. HEGEL - HEpato-GastroEntérologie Libérale, 2016, N° 2, 185b-186.	0.0	0
320	16 Use of Complementary and Alternative Therapies in Hepatic Disorders., 2017,, 375-396.		0
321	Ghrelin Levels in Elderly, Diabetic Patients with Mild Cognitive Impairment. Neuropsychiatry, 2018, 08, .	0.4	0
322	Microbiome in Liver Cirrhosis., 2019,, 79-91.		0
323	Diversity of intestinal microflora in tibetan patients with liver cirrhosis based on high-throughput sequencing. World Chinese Journal of Digestology, 2019, 27, 1142-1148.	0.0	O
324	Chronic Liver Failure and Acute-on-Chronic Liver Failure. , 2020, , 381-394.		0
325	The Role of Gut Dysbiosis in Acute-on-Chronic Liver Failure. International Journal of Molecular Sciences, 2021, 22, 11680.	1.8	7
326	The Microbiota-Gut-Liver Axis: Implications for the Pathophysiology of Liver Disease. , 2020, , 125-137.		0
329	THE ROLE OF THE GUT-LIVER AXIS IN LIVER CIRRHOSIS PATHOGENESIS AND COMPLICATIONS. Hepatology and Gastroenterology, 2020, 4, 151-154.	0.1	O
330	Comparative analysis of the composition of intestinal microbiome in patients with liver diseases. ScienceRise Biological Science, 2020, .	0.1	0
331	Red light exaggerated sepsis-induced learning impairments and anxiety-like behaviors. Aging, 2020, 12, 23739-23760.	1.4	10
332	Multistrain probiotic and lactulose in the treatment of minimal hepatic encephalopathy. Journal of Research in Medical Sciences, 2014, 19, 703-8.	0.4	15
333	Protective effects of synbiotic soymilk fortified with whey protein concentrate and zinc sulfate against bile duct ligated-induced hepatic encephalopathy. Gastroenterology and Hepatology From Bed To Bench, 2020, 13, 64-76.	0.6	O

#	ARTICLE	IF	CITATIONS
334	Gut Microbes and Hepatic Encephalopathy: From the Old Concepts to New Perspectives. Frontiers in Cell and Developmental Biology, 2021, 9, 748253.	1.8	11
335	GUT MICROBIOTA IN THE PATHOLOGY AND PREVENTION OF LIVER DISEASE. Bulletin of Problems Biology and Medicine, 2021, 3, 81.	0.0	0
336	Hepatic Encephalopathy: A Review. European Medical Journal Hepatology, 0, , 89-97.	1.0	2
337	Gut Ruminococcaceae levels at baseline correlate with risk of antibiotic-associated diarrhea. IScience, 2022, 25, 103644.	1.9	28
339	Chronic exposure to ambient traffic-related air pollution (TRAP) alters gut microbial abundance and bile acid metabolism in a transgenic rat model of Alzheimer's disease. Toxicology Reports, 2022, 9, 432-444.	1.6	7
340	Dietary Supplementation With Fine-Grinding Wheat Bran Improves Lipid Metabolism and Inflammatory Response via Modulating the Gut Microbiota Structure in Pregnant Sow. Frontiers in Microbiology, 2022, 13, 835950.	1.5	5
341	Effect of a specific <i>Escherichia coli Nissle 1917</i> strain on minimal/mild hepatic encephalopathy treatment. World Journal of Hepatology, 2022, 14, 634-646.	0.8	14
342	Effects of Konjaku Flour on the Gut Microbiota of Obese Patients. Frontiers in Cellular and Infection Microbiology, 2022, 12, 771748.	1.8	12
343	Fecal microbiota transplant improves cognition in hepatic encephalopathy and its effect varies by donor and recipient. Hepatology Communications, 2022, 6, 2079-2089.	2.0	22
344	Restoration of the gut microbiota is associated with a decreased risk of hepatic encephalopathy after TIPS. JHEP Reports, 2022, 4, 100448.	2.6	7
355	Gut Microbiota and Subjective Memory Complaints in Older Women. Journal of Alzheimer's Disease, 2022, , 1-12.	1.2	3
356	The Role of Gut Microbiota in Mice With Bile Duct Ligation-Evoked Cholestatic Liver Disease-Related Cognitive Dysfunction. Frontiers in Microbiology, 2022, 13, .	1.5	8
357	Fecal microbiota transplantation is associated with improved aspects of mental health of patients with recurrent Clostridioides difficile infections. Journal of Affective Disorders Reports, 2022, 9, 100355.	0.9	3
358	Construction and comprehensive analysis of a lncRNA–mRNA interactive network to reveal a potential lncRNA for hepatic encephalopathy development. Human Cell, 2022, , .	1.2	3
359	Nutrition Assessment and Management in Patients with Cirrhosis and Cognitive Impairment: A Comprehensive Review of Literature. Journal of Clinical Medicine, 2022, 11, 2842.	1.0	4
360	Trust Your Gut: The Association of Gut Microbiota and Liver Disease. Microorganisms, 2022, 10, 1045.	1.6	20
361	The Role of Bile Acids in the Human Body and in the Development of Diseases. Molecules, 2022, 27, 3401.	1.7	9
362	Gut Microbial Dysbiosis and Cognitive Impairment in Bipolar Disorder: Current Evidence. Frontiers in Pharmacology, $0,13,.$	1.6	9

#	Article	IF	CITATIONS
363	Gut microbiota combined with metabolomics reveal the mechanism of curcumol on liver fibrosis in mice. Biomedicine and Pharmacotherapy, 2022, 152, 113204.	2.5	14
364	Microbial-derived metabolites as a risk factor of age-related cognitive decline and dementia. Molecular Neurodegeneration, 2022, 17, .	4.4	59
365	Identification and Characterization of Major Bile Acid $7\hat{l}_{\pm}$ -Dehydroxylating Bacteria in the Human Gut. MSystems, 2022, 7, .	1.7	12
366	Escherichia/Shigella, SCFAs, and Metabolic Pathwaysâ€"The Triad That Orchestrates Intestinal Dysbiosis in Patients with Decompensated Alcoholic Cirrhosis from Western Mexico. Microorganisms, 2022, 10, 1231.	1.6	22
367	The Role of the Gut Microbiota in the Effects of Early-Life Stress and Dietary Fatty Acids on Later-Life Central and Metabolic Outcomes in Mice. MSystems, 2022, 7, .	1.7	4
368	Orthopedic Surgery Causes Gut Microbiome Dysbiosis and Intestinal Barrier Dysfunction in Prodromal Alzheimer Disease Patients. Annals of Surgery, 2022, 276, 270-280.	2.1	11
369	Gut microbiota-modulating agents in alcoholic liver disease: Links between host metabolism and gut microbiota. Frontiers in Medicine, $0, 9, .$	1.2	6
370	Gut microbiota alteration and modulation in hepatitis B virus-related fibrosis and complications: Molecular mechanisms and therapeutic inventions. World Journal of Gastroenterology, 2022, 28, 3555-3572.	1.4	5
371	Altered gut microbiota is associated with sleep disturbances in patients with minimal hepatic encephalopathy caused by hepatitis B-related liver cirrhosis. Expert Review of Gastroenterology and Hepatology, 2022, 16, 797-807.	1.4	3
372	The Link between Gut Microbiota and Hepatic Encephalopathy. International Journal of Molecular Sciences, 2022, 23, 8999.	1.8	18
373	SCNIC: Sparse correlation network investigation for compositional data. Molecular Ecology Resources, 2023, 23, 312-325.	2.2	13
374	Acetate reprograms gut microbiota during alcohol consumption. Nature Communications, 2022, 13, .	5.8	34
375	Structure, functions, and diversity of the healthy human microbiome. Progress in Molecular Biology and Translational Science, 2022, , 53-82.	0.9	10
376	Lactulose in Liver Cirrhosis. , 2022, , 223-240.		0
377	The connection between diet, gut microbes, and cognitive decline., 2022,, 265-271.		0
378	The gut microbiota \hat{a} "bile acid axis: A potential therapeutic target for liver fibrosis. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	11
379	Current approaches to hepatic encephalopathy. Annals of Hepatology, 2022, 27, 100757.	0.6	6
381	Gut metagenomeâ€derived signature predicts hepatic decompensation and mortality in NAFLDâ€related cirrhosis. Alimentary Pharmacology and Therapeutics, 0, , .	1.9	3

#	Article	IF	CITATIONS
382	Sarcopenia-related gut microbial changes are associated with the risk of complications in people with cirrhosis. JHEP Reports, 2023, 5, 100619.	2.6	5
383	Hepatic Encephalopathy in Cirrhotic Patients and Risk of Small Intestinal Bacterial Overgrowth: A Systematic Review and Meta-Analysis. BioMed Research International, 2022, 2022, 1-8.	0.9	4
384	Detrimental Effects of Alcohol-Induced Inflammation on Brain Health: From Neurogenesis to Neurodegeneration. Cellular and Molecular Neurobiology, 2023, 43, 1885-1904.	1.7	7
385	Role of gut microbiota in the pathogenesis and therapeutics of minimal hepatic encephalopathy <i>via </i> the gut-liver-brain axis. World Journal of Gastroenterology, 0, 29, 144-156.	1.4	7
386	Current Progress of Bioinformatics for Human Health. Translational Bioinformatics, 2023, , 145-162.	0.0	0
387	A double blind randomized controlled trial to assess efficacy of nutritional therapy for prevention of recurrence of hepatic encephalopathy in patients with cirrhosis. Journal of Gastroenterology and Hepatology (Australia), 2023, 38, 433-440.	1.4	5
388	Microbiome Alterations in Alcohol Use Disorder and Alcoholic Liver Disease. International Journal of Molecular Sciences, 2023, 24, 2461.	1.8	8
389	Intestinal dysbiosis and probiotic use: its place in hepatic encephalopathy in cirrhosis. Annals of Gastroenterology, 2023, , .	0.4	0
390	The shaping of gut immunity in cirrhosis. Frontiers in Immunology, 0, 14, .	2.2	3
391	Old and New Precipitants in Hepatic Encephalopathy: A New Look at a Field in Continuous Evolution. Journal of Clinical Medicine, 2023, 12, 1187.	1.0	4
392	Cellular Pathogenesis of Hepatic Encephalopathy: An Update. Biomolecules, 2023, 13, 396.	1.8	7
393	Hepatic encephalopathy – recent advances in treatment and diagnosis. Expert Review of Gastroenterology and Hepatology, 2023, 17, 225-235.	1.4	4
394	Gut microbiome-brain-cirrhosis axis. Hepatology, O, Publish Ahead of Print, .	3.6	10
395	Intestinal flora plays a role in the progression of hepatitis-cirrhosis-liver cancer. Frontiers in Cellular and Infection Microbiology, $0,13,.$	1.8	6
396	Prediction and prevention of the first episode of overt hepatic encephalopathy in patients with cirrhosis. Hepatology Communications, 2023, 7, .	2.0	6
397	Lactobacillus paracasei CNCM I-5220-derived postbiotic protects from the leaky-gut. Frontiers in Microbiology, 0, 14, .	1.5	5
398	Acute-on-chronic liver failure: Terminology, mechanisms and management. Clinical and Molecular Hepatology, 2023, 29, 670-689.	4.5	6
399	Modulation of duodenal and jejunal microbiota by rifaximin in mice with CCl4-induced liver fibrosis. Gut Pathogens, 2023, 15, .	1.6	0

#	Article	IF	Citations
400	Comparison of the effects of probiotics, rifaximin, and lactulose in the treatment of minimal hepatic encephalopathy and gut microbiota. Frontiers in Microbiology, $0,14,.$	1.5	5
401	Gut Microbiota and Its Role in Anti-aging Phenomenon: Evidence-Based Review. Applied Biochemistry and Biotechnology, 2023, 195, 6809-6823.	1.4	1
402	Impact of Gut Microbiota in Brain Ageing: Polyphenols as Beneficial Modulators. Antioxidants, 2023, 12, 812.	2.2	4
403	Oral supplementation of nicotinamide riboside alters intestinal microbial composition in rats and mice, but not humans., 2023, 9, .		5
404	Kernel-based genetic association analysis for microbiome phenotypes identifies host genetic drivers of beta-diversity. Microbiome, 2023, 11 , .	4.9	1
409	Microbiome therapeutics in psychological disorders. , 2023, , 163-196.		0
428	Microbiota and Alcohol-Related Liver Disease. , 2023, , 1185-1193.		0