Parkinson†st disease-linked LRRK2 is expressed in circ upregulated following recognition of microbial structur

Journal of Neural Transmission 118, 795-808 DOI: 10.1007/s00702-011-0653-2

Citation Report

#	Article	IF	CITATIONS
1	Human leucine-rich repeat kinase 1 and 2: intersecting or unrelated functions?. Biochemical Society Transactions, 2012, 40, 1095-1101.	3.4	20
2	LRRK2 Inhibition Attenuates Microglial Inflammatory Responses. Journal of Neuroscience, 2012, 32, 1602-1611.	3.6	386
3	The role of LRRK2 in inflammatory bowel disease. Cell Research, 2012, 22, 1092-1094.	12.0	42
4	G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization. Human Molecular Genetics, 2012, 21, 4201-4213.	2.9	147
5	Programmed Cell Death in Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009365-a009365.	6.2	196
6	Inflammation in Parkinson's Disease. Advances in Protein Chemistry and Structural Biology, 2012, 88, 69-132.	2.3	154
7	The NAMPT inhibitor FK866 reverts the damage in spinal cord injury. Journal of Neuroinflammation, 2012, 9, 66.	7.2	57
8	LRRK2 kinase inhibition prevents pathological microglial phagocytosis in response to HIV-1 Tat protein. Journal of Neuroinflammation, 2012, 9, 261.	7.2	77
9	Parkinson's disease and immune system: is the culprit LRRKing in the periphery?. Journal of Neuroinflammation, 2012, 9, 94.	7.2	34
10	Cellular effects of LRRK2 mutations. Biochemical Society Transactions, 2012, 40, 1070-1073.	3.4	20
11	A link between LRRK2, autophagy and NAADP-mediated endolysosomal calcium signalling. Biochemical Society Transactions, 2012, 40, 1140-1146.	3.4	26
12	Evolution of Neurodegeneration. Current Biology, 2012, 22, R753-R761.	3.9	18
13	Inflammation and neurodegeneration: the story â€~retolled'. Trends in Pharmacological Sciences, 2012, 33, 542-551.	8.7	57
14	An emerging role for LRRK2 in the immune system. Biochemical Society Transactions, 2012, 40, 1134-1139.	3.4	36
15	Viral and Inflammatory Triggers of Neurodegenerative Diseases. Science Translational Medicine, 2012, 4, 121ps3.	12.4	77
16	A Link between Autophagy and the Pathophysiology of LRRK2 in Parkinson's Disease. Parkinson's Disease, 2012, 2012, 1-9.	1.1	21
17	The Role of Autophagy in Crohn's Disease. Cells, 2012, 1, 492-519.	4.1	26
18	Considerations Regarding the Etiology and Future Treatment of Autosomal Recessive Versus Idiopathic Parkinson Disease. Current Treatment Options in Neurology, 2012, 14, 230-240.	1.8	21

#	Article	IF	CITATIONS
19	Digesting the genetics of inflammatory bowel disease: Insights from studies of autophagy risk genes. Inflammatory Bowel Diseases, 2012, 18, 782-792.	1.9	38
20	Neuroinflammation and Non-motor Symptoms: The Dark Passenger of Parkinson's Disease?. Current Neurology and Neuroscience Reports, 2012, 12, 350-358.	4.2	68
21	The role of α-synuclein in neurodegeneration $\hat{a} \in$ " An update. Translational Neuroscience, 2012, 3, .	1.4	16
22	Inhibition of LRRK2 kinase activity stimulates macroautophagy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2900-2910.	4.1	124
23	Commentary: Progressive inflammation as a contributing factor to early development of Parkinson's disease. Experimental Neurology, 2013, 241, 148-155.	4.1	34
24	Unlocking the secrets of LRRK2 function with selective kinase inhibitors. Future Neurology, 2013, 8, 347-357.	0.5	4
25	The role of inflammation in sporadic and familial Parkinson's disease. Cellular and Molecular Life Sciences, 2013, 70, 4259-4273.	5.4	153
26	The LRRK2 G2019S mutation in a series of Argentinean patients with Parkinson's disease: Clinical and demographic characteristics. Neuroscience Letters, 2013, 537, 1-5.	2.1	41
27	Acute spinal cord injury could cause activation of autophagy in dorsal root ganglia. Spinal Cord, 2013, 51, 679-682.	1.9	17
28	LRRK2: Cause, Risk, and Mechanism. Journal of Parkinson's Disease, 2013, 3, 85-103.	2.8	128
28 30	LRRK2: Cause, Risk, and Mechanism. Journal of Parkinson's Disease, 2013, 3, 85-103. Measurement of LRRK2 and Ser910/935 Phosphorylated LRRK2 in Peripheral Blood Mononuclear Cells from Idiopathic Parkinson's Disease Patients. Journal of Parkinson's Disease, 2013, 3, 145-152.	2.8 2.8	128 44
	Measurement of LRRK2 and Ser910/935 Phosphorylated LRRK2 in Peripheral Blood Mononuclear Cells		
30	Measurement of LRRK2 and Ser910/935 Phosphorylated LRRK2 in Peripheral Blood Mononuclear Cells from Idiopathic Parkinson's Disease Patients. Journal of Parkinson's Disease, 2013, 3, 145-152. The Role of Innate and Adaptive Immunity in Parkinson's Disease. Journal of Parkinson's Disease, 2013, 3,	2.8	44
30 31	Measurement of LRRK2 and Ser910/935 Phosphorylated LRRK2 in Peripheral Blood Mononuclear Cells from Idiopathic Parkinson's Disease Patients. Journal of Parkinson's Disease, 2013, 3, 145-152. The Role of Innate and Adaptive Immunity in Parkinson's Disease. Journal of Parkinson's Disease, 2013, 3, 493-514. LRRK2 and RIPK2 Variants in the NOD 2-Mediated Signaling Pathway Are Associated with Susceptibility	2.8 2.8	44 249
30 31 32	Measurement of LRRK2 and Ser910/935 Phosphorylated LRRK2 in Peripheral Blood Mononuclear Cells from Idiopathic Parkinson's Disease Patients. Journal of Parkinson's Disease, 2013, 3, 145-152. The Role of Innate and Adaptive Immunity in Parkinson's Disease. Journal of Parkinson's Disease, 2013, 3, 493-514. LRRK2 and RIPK2 Variants in the NOD 2-Mediated Signaling Pathway Are Associated with Susceptibility to Mycobacterium leprae in Indian Populations. PLoS ONE, 2013, 8, e73103. LRRK-2 as a Key Molecule Bridging Inflammation to Parkinson's Disease. Advances in Neuroimmune	2.8 2.8 2.5	44 249 45
30 31 32 33	 Measurement of LRRK2 and Ser910/935 Phosphorylated LRRK2 in Peripheral Blood Mononuclear Cells from Idiopathic Parkinson's Disease Patients. Journal of Parkinson's Disease, 2013, 3, 145-152. The Role of Innate and Adaptive Immunity in Parkinson's Disease. Journal of Parkinson's Disease, 2013, 3, 493-514. LRRK2 and RIPK2 Variants in the NOD 2-Mediated Signaling Pathway Are Associated with Susceptibility to Mycobacterium leprae in Indian Populations. PLoS ONE, 2013, 8, e73103. LRRK-2 as a Key Molecule Bridging Inflammation to Parkinson's Disease. Advances in Neuroimmune Biology, 2013, 4, 205-215. Surfactant Secretion in LRRK2 Knock-Out Rats: Changes in Lamellar Body Morphology and Rate of 	2.8 2.8 2.5 0.7	44 249 45 0
30 31 32 33 34	Measurement of LRRK2 and Ser910/935 Phosphorylated LRRK2 in Peripheral Blood Mononuclear Cells from Idiopathic Parkinson's Disease Patients. Journal of Parkinson's Disease, 2013, 3, 145-152. The Role of Innate and Adaptive Immunity in Parkinson's Disease. Journal of Parkinson's Disease, 2013, 3, 493-514. LRRK2 and RIPK2 Variants in the NOD 2-Mediated Signaling Pathway Are Associated with Susceptibility to Mycobacterium leprae in Indian Populations. PLoS ONE, 2013, 8, e73103. LRRK-2 as a Key Molecule Bridging Inflammation to Parkinson's Disease. Advances in Neuroimmune Biology, 2013, 4, 205-215. Surfactant Secretion in LRRK2 Knock-Out Rats: Changes in Lamellar Body Morphology and Rate of Exocytosis. PLoS ONE, 2014, 9, e84926. Original article Low prevalence of most frequent pathogenic variants of six PARK genes in sporadic	2.8 2.8 2.5 0.7 2.5	44 249 45 0 42

#	Article	IF	CITATIONS
38	Unique Functional and Structural Properties of the LRRK2 Protein ATP-binding Pocket. Journal of Biological Chemistry, 2014, 289, 32937-32951.	3.4	26
39	Modeling LRRK2 Pathobiology in Parkinson's Disease: From Yeast to Rodents. Current Topics in Behavioral Neurosciences, 2014, 22, 331-368.	1.7	18
40	<scp>LRRK</scp> 2: dropping (kinase) inhibitions and seeking an (immune) response. Journal of Neurochemistry, 2014, 129, 895-897.	3.9	4
41	Changes in matrix metalloprotease activity and progranulin levels may contribute to the pathophysiological function of mutant leucineâ€rich repeat kinase 2. Glia, 2014, 62, 1075-1092.	4.9	15
42	Alphaâ€synuclein in the appendiceal mucosa of neurologically intact subjects. Movement Disorders, 2014, 29, 991-998.	3.9	107
43	The role of the LRRK2 gene in Parkinsonism. Molecular Neurodegeneration, 2014, 9, 47.	10.8	180
44	LRRK2 and neuroinflammation: partners in crime in Parkinson's disease?. Journal of Neuroinflammation, 2014, 11, 52.	7.2	148
45	Hypothesis: A role for EBV-induced molecular mimicry in Parkinson's disease. Parkinsonism and Related Disorders, 2014, 20, 685-694.	2.2	52
46	Molecular basis of Parkinsons's disease linked to LRRK2 mutations. Molecular Biology, 2014, 48, 1-10.	1.3	9
47	Membrane recruitment of endogenous LRRK2 precedes its potent regulation of autophagy. Human Molecular Genetics, 2014, 23, 4201-4214.	2.9	197
48	Evidence that the LRRK2 ROC domain Parkinson's diseaseâ€associated mutants A1442P and R1441C exhibit increased intracellular degradation. Journal of Neuroscience Research, 2014, 92, 506-516.	2.9	21
49	Interferonâ€Î³ induces leucineâ€rich repeat kinase <scp>LRRK</scp> 2 via extracellular signalâ€regulated kinase <scp>ERK</scp> 5 in macrophages. Journal of Neurochemistry, 2014, 129, 980-987.	3.9	58
50	Genetic, Structural, and Molecular Insights into the Function of Ras of Complex Proteins Domains. Chemistry and Biology, 2014, 21, 809-818.	6.0	20
51	Peptidoglycan recognition protein genes and risk of Parkinson's disease. Movement Disorders, 2014, 29, 1171-1180.	3.9	47
52	Microglia in Health and Disease. , 2014, , .		19
54	Primary Effusion Lymphoma. American Journal of Pathology, 2014, 184, 618-630.	3.8	14
55	LRRK2, a puzzling protein: Insights into Parkinson's disease pathogenesis. Experimental Neurology, 2014, 261, 206-216.	4.1	82
56	The Neurobiology of LRRK2 and its Role in the Pathogenesis of Parkinson's Disease. Neurochemical Research, 2014, 39, 576-592.	3.3	61

	Article	IF	CITATIONS
57	Cellular processes associated with <scp>LRRK</scp> 2 function and dysfunction. FEBS Journal, 2015, 282, 2806-2826.	4.7	144
58	Leucine-rich repeat kinase 2 positively regulates inflammation and down-regulates NF-κB p50 signaling in cultured microglia cells. Journal of Neuroinflammation, 2015, 12, 230.	7.2	99
59	Neuroinflammation in Parkinson's disease and its potential as therapeutic target. Translational Neurodegeneration, 2015, 4, 19.	8.0	608
60	Function and dysfunction of leucine-rich repeat kinase 2 (LRRK2): Parkinson's disease and beyond. BMB Reports, 2015, 48, 243-248.	2.4	36
61	Behavioral Neurobiology of Huntington's Disease and Parkinson's Disease. Current Topics in Behavioral Neurosciences, 2015, , .	1.7	13
62	Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease. Autophagy, 2015, 11, 1443-1457.	9.1	217
63	New insights on Parkinson's disease genes: the link between mitochondria impairment and neuroinflammation. Journal of Neural Transmission, 2015, 122, 1409-1419.	2.8	24
64	Leucineâ€rich repeat kinase 2â€sensitive Na + /Ca 2+ exchanger activity in dendritic cells. FASEB Journal, 2015, 29, 1701-1710.	0.5	16
65	The G2019S LRRK2 mutation increases myeloid cell chemotactic responses and enhances LRRK2 binding to actin-regulatory proteins. Human Molecular Genetics, 2015, 24, 4250-4267.	2.9	58
66	TCF-1 and LEF-1 help launch the TFH program. Nature Immunology, 2015, 16, 900-901.	14.5	8
67	LRRK2 and Nod2 promote lysozyme sorting in Paneth cells. Nature Immunology, 2015, 16, 898-900.	14.5	26
67 68	LRRK2 and Nod2 promote lysozyme sorting in Paneth cells. Nature Immunology, 2015, 16, 898-900. Neuroinflammation in Parkinson's disease: role in neurodegeneration and tissue repair. International Journal of Neuroscience, 2015, 125, 717-725.	14.5 1.6	26 138
	Neuroinflammation in Parkinson's disease: role in neurodegeneration and tissue repair. International		
68	Neuroinflammation in Parkinson's disease: role in neurodegeneration and tissue repair. International Journal of Neuroscience, 2015, 125, 717-725.	1.6	138
68 69	Neuroinflammation in Parkinson's disease: role in neurodegeneration and tissue repair. International Journal of Neuroscience, 2015, 125, 717-725. Inflammation is genetically implicated in Parkinson's disease. Neuroscience, 2015, 302, 89-102. The complex relationships between microglia, alpha-synuclein, and LRRK2 in Parkinson's disease.	1.6 2.3	138 182
68 69 70	Neuroinflammation in Parkinson's disease: role in neurodegeneration and tissue repair. International Journal of Neuroscience, 2015, 125, 717-725. Inflammation is genetically implicated in Parkinson's disease. Neuroscience, 2015, 302, 89-102. The complex relationships between microglia, alpha-synuclein, and LRRK2 in Parkinson's disease. Neuroscience, 2015, 302, 74-88. The Role of LRRK2 in the Regulation of Monocyte Adhesion to Endothelial Cells. Journal of Molecular	1.6 2.3 2.3	138 182 110
68 69 70 71	Neuroinflammation in Parkinson's disease: role in neurodegeneration and tissue repair. International Journal of Neuroscience, 2015, 125, 717-725. Inflammation is genetically implicated in Parkinson's disease. Neuroscience, 2015, 302, 89-102. The complex relationships between microglia, alpha-synuclein, and LRRK2 in Parkinson's disease. Neuroscience, 2015, 302, 74-88. The Role of LRRK2 in the Regulation of Monocyte Adhesion to Endothelial Cells. Journal of Molecular Neuroscience, 2015, 55, 233-239. Inflammatory profile in LRRK2-associated prodromal and clinical PD. Journal of Neuroinflammation,	1.6 2.3 2.3 2.3	138 182 110 22

#	Article	IF	CITATIONS
75	LRRK2 contributes to monocyte dysregulation in Parkinson's disease. Acta Neuropathologica Communications, 2016, 4, 123.	5.2	29
76	Association Between Parkinson's Disease and Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2016, 22, 1049-1055.	1.9	154
77	The role of autophagy in modulation of neuroinflammation in microglia. Neuroscience, 2016, 319, 155-167.	2.3	148
78	Inflammatory profile discriminates clinical subtypes in <i>LRRK2</i> â€associated Parkinson's disease. European Journal of Neurology, 2017, 24, 427.	3.3	56
79	LRRK2 in peripheral and central nervous system innate immunity: its link to Parkinson's disease. Biochemical Society Transactions, 2017, 45, 131-139.	3.4	72
80	LRRK2: An Emerging New Molecule in the Enteric Neuronal System That Quantitatively Regulates Neuronal Peptides and IgA in the Gut. Digestive Diseases and Sciences, 2017, 62, 903-912.	2.3	17
81	Leucine-Rich Repeat Kinase 2 (Lrrk2)-Sensitive Na+/K+ ATPase Activity in Dendritic Cells. Scientific Reports, 2017, 7, 41117.	3.3	5
82	LRRK2 levels in immune cells are increased in Parkinson's disease. Npj Parkinson's Disease, 2017, 3, 11.	5.3	177
83	Holocranohistochemistry enables the visualization of α-synuclein expression in the murine olfactory system and discovery of its systemic anti-microbial effects. Journal of Neural Transmission, 2017, 124, 721-738.	2.8	42
	,21,30		
84	LRRK2 and the Immune System. Advances in Neurobiology, 2017, 14, 123-143.	1.8	42
84 85		1.8 1.8	42
	LRRK2 and the Immune System. Advances in Neurobiology, 2017, 14, 123-143.		
85	LRRK2 and the Immune System. Advances in Neurobiology, 2017, 14, 123-143. LRRK2 Phosphorylation. Advances in Neurobiology, 2017, 14, 51-70.		16
85 87	LRRK2 and the Immune System. Advances in Neurobiology, 2017, 14, 123-143. LRRK2 Phosphorylation. Advances in Neurobiology, 2017, 14, 51-70. LRRK2., 2017, , 107-116. Development of LRRK2 Inhibitors for the Treatment of Parkinson's Disease. Progress in Medicinal	1.8	16
85 87 88	LRRK2 and the Immune System. Advances in Neurobiology, 2017, 14, 123-143. LRRK2 Phosphorylation. Advances in Neurobiology, 2017, 14, 51-70. LRRK2., 2017, , 107-116. Development of LRRK2 Inhibitors for the Treatment of Parkinson's Disease. Progress in Medicinal Chemistry, 2017, 56, 37-80. Selective LRRK2 kinase inhibition reduces phosphorylation of endogenous Rab10 and Rab12 in human	1.8	16 1 17
85 87 88 89	LRRK2 and the Immune System. Advances in Neurobiology, 2017, 14, 123-143. LRRK2 Phosphorylation. Advances in Neurobiology, 2017, 14, 51-70. LRRK2., 2017, , 107-116. Development of LRRK2 Inhibitors for the Treatment of Parkinson's Disease. Progress in Medicinal Chemistry, 2017, 56, 37-80. Selective LRRK2 kinase inhibition reduces phosphorylation of endogenous Rab10 and Rab12 in human peripheral mononuclear blood cells. Scientific Reports, 2017, 7, 10300. Parkinson disease–associated <i>LRRK2 G2019S</i>	1.8 10.4 3.3	16 1 17 88
85 87 88 89 90	LRRK2 and the Immune System. Advances in Neurobiology, 2017, 14, 123-143. LRRK2 Phosphorylation. Advances in Neurobiology, 2017, 14, 51-70. LRRK2., 2017, , 107-116. Development of LRRK2 Inhibitors for the Treatment of Parkinson's Disease. Progress in Medicinal Chemistry, 2017, 56, 37-80. Selective LRRK2 kinase inhibition reduces phosphorylation of endogenous Rab10 and Rab12 in human peripheral mononuclear blood cells. Scientific Reports, 2017, 7, 10300. Parkinson disease–associated <i>LRRK2 G2019S</i> ransgene disrupts marrow myelopoiesis and peripheral Th17 response. Journal of Leukocyte Biology, 2017, 102, 1093-1102.	1.8 10.4 3.3 3.3	16 1 17 88 28

#	Article	IF	CITATIONS
94	Discovering New Benefits From Old Drugs With Big Data—Promise for Parkinson Disease. JAMA Neurology, 2018, 75, 917.	9.0	5
95	Role of LRRK2 in manganese-induced neuroinflammation and microglial autophagy. Biochemical and Biophysical Research Communications, 2018, 498, 171-177.	2.1	50
96	LRRK2 Phosphorylation: Behind the Scenes. Neuroscientist, 2018, 24, 486-500.	3.5	17
97	Mutant LRRK2 mediates peripheral and central immune responses leading to neurodegeneration in vivo. Brain, 2018, 141, 1753-1769.	7.6	106
98	Differential contribution of microglia and monocytes in neurodegenerative diseases. Journal of Neural Transmission, 2018, 125, 809-826.	2.8	84
99	The impact of murine LRRK2 G2019S transgene overexpression on acute responses to inflammatory challenge. Brain, Behavior, and Immunity, 2018, 67, 246-256.	4.1	14
100	Immune system responses in Parkinson's disease: Early and dynamic. European Journal of Neuroscience, 2019, 49, 364-383.	2.6	104
101	Brain injury induces HIF-1α-dependent transcriptional activation of LRRK2 that exacerbates brain damage. Cell Death and Disease, 2018, 9, 1125.	6.3	39
102	LRRK2 is a negative regulator of <i>Mycobacterium tuberculosis</i> phagosome maturation in macrophages. EMBO Journal, 2018, 37, .	7.8	140
103	Regulation of myeloid cell phagocytosis by LRRK2 via WAVE2 complex stabilization is altered in Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5164-E5173.	7.1	83
104	LRRK 2 gene mutations in the pathophysiology of the ROCO domain and therapeutic targets for Parkinson's disease: a review. Journal of Biomedical Science, 2018, 25, 52.	7.0	29
105	Leucine-Rich Repeat Kinase 2 Controls the Ca2+/Nuclear Factor of Activated T Cells/IL-2 Pathway during Aspergillus Non-Canonical Autophagy in Dendritic Cells. Frontiers in Immunology, 2018, 9, 210.	4.8	16
106	The kinase LRRK2 is differently expressed in chronic rhinosinusitis with and without nasal polyps. Clinical and Translational Allergy, 2018, 8, 8.	3.2	13
107	A role for viral infections in Parkinson's etiology?. Neuronal Signaling, 2018, 2, NS20170166.	3.2	37
108	An increase in LRRK2 suppresses autophagy and enhances Dectin-1–induced immunity in a mouse model of colitis. Science Translational Medicine, 2018, 10, .	12.4	98
109	Lipid and immune abnormalities causing age-dependent neurodegeneration and Parkinson's disease. Journal of Neuroinflammation, 2019, 16, 153.	7.2	76
110	Inflammatory Bowel Diseases and Parkinson's Disease. Journal of Parkinson's Disease, 2019, 9, S331-S344.	2.8	81
111	Enhanced NLRP3 and DEFA1B Expression During the Active Stage of Parenchymal Neuro-Behçet's Disease. In Vivo, 2019, 33, 1493-1497.	1.3	8

#	Article	IF	CITATIONS
112	<i>Lrrk2</i> alleles modulate inflammation during microbial infection of mice in a sex-dependent manner. Science Translational Medicine, 2019, 11, .	12.4	67
113	Are we listening to everything the PARK genes are telling us?. Journal of Comparative Neurology, 2019, 527, 1527-1540.	1.6	13
114	Shared Molecular Signatures Across Neurodegenerative Diseases and Herpes Virus Infections Highlights Potential Mechanisms for Maladaptive Innate Immune Responses. Scientific Reports, 2019, 9, 8795.	3.3	29
115	α-Synuclein pathology in Parkinson's disease and related α-synucleinopathies. Neuroscience Letters, 2019, 709, 134316.	2.1	177
116	A secret that underlies Parkinson's disease: The damaging cycle. Neurochemistry International, 2019, 129, 104484.	3.8	21
117	Recent Developments in LRRK2-Targeted Therapy for Parkinson's Disease. Drugs, 2019, 79, 1037-1051.	10.9	48
118	Leucineâ€rich repeat kinase 2 regulates mouse dendritic cell migration by ORAI2. FASEB Journal, 2019, 33, 9775-9784.	0.5	12
119	Potential twoâ€step proteomic signature for Parkinson's disease: Pilot analysis in the Harvard Biomarkers Study. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11, 374-382.	2.4	20
120	LRRK2 links genetic and sporadic Parkinson's disease. Biochemical Society Transactions, 2019, 47, 651-661.	3.4	148
121	The Parkinson's disease-linked Leucine-rich repeat kinase 2 (LRRK2) is required for insulin-stimulated translocation of GLUT4. Scientific Reports, 2019, 9, 4515.	3.3	22
122	Peripheral-Central Neuroimmune Crosstalk in Parkinson's Disease: What Do Patients and Animal Models Tell Us?. Frontiers in Neurology, 2019, 10, 232.	2.4	48
123	Roco Proteins: GTPases with a Baroque Structure and Mechanism. International Journal of Molecular Sciences, 2019, 20, 147.	4.1	31
124	Geochemical Characteristics of Oil from Oligocene Lower Ganchaigou Formation Oil Sand in Northern Qaidam Basin, China. Natural Resources Research, 2019, 28, 1521-1546.	4.7	1
125	Autophagy and LRRK2 in the Aging Brain. Frontiers in Neuroscience, 2019, 13, 1352.	2.8	44
126	Single Inflammatory Trigger Leads to Neuroinflammation in LRRK2 Rodent Model without Degeneration of Dopaminergic Neurons. Journal of Parkinson's Disease, 2019, 9, 121-139.	2.8	17
127	Dielectrophoretic characterization and separation of monocytes and macrophages using 3D carbonâ€electrodes. Electrophoresis, 2019, 40, 315-321.	2.4	22
128	The key role of T cells in Parkinson's disease pathogenesis and therapy. Parkinsonism and Related Disorders, 2019, 60, 25-31.	2.2	32
129	The unlikely partnership between <scp>LRRK</scp> 2 and αâ€synuclein in Parkinson's disease. European Journal of Neuroscience, 2019, 49, 339-363.	2.6	35

#	ARTICLE Joint-Connectivity-Based Sparse Canonical Correlation Analysis of Imaging Genetics for Detecting	IF	CITATIONS
130 131	Biomarkers of Parkinson's Disease. IEEE Transactions on Medical Imaging, 2020, 39, 23-34. Innate and adaptive immune responses in Parkinson's disease. Progress in Brain Research, 2020, 252, 169-216.	8.9	39 64
132	If <scp>LRRK2</scp> Set the Fire, Can Nonsteroidal Antiâ€inflammatory Drugs Wet the Flames?. Movement Disorders, 2020, 35, 1727-1730.	3.9	4
133	Roles of lysosomotropic agents on LRRK2 activation and Rab10 phosphorylation. Neurobiology of Disease, 2020, 145, 105081.	4.4	49
134	Interferon-Î ³ signaling synergizes with LRRK2 in neurons and microglia derived from human induced pluripotent stem cells. Nature Communications, 2020, 11, 5163.	12.8	60
135	Nonsteroidal <scp>Antiâ€inflammatory</scp> Use and <scp><i>LRRK2</i></scp> Parkinson's Disease Penetrance. Movement Disorders, 2020, 35, 1755-1764.	3.9	57
136	Profiling Non-motor Symptoms in Monogenic Parkinson's Disease. Frontiers in Aging Neuroscience, 2020, 12, 591183.	3.4	13
137	Oral P. gingivalis impairs gut permeability and mediates immune responses associated with neurodegeneration in LRRK2 R1441G mice. Journal of Neuroinflammation, 2020, 17, 347.	7.2	41
138	Comprehensive Genomic Analysis Reveals the Prognostic Role of LRRK2 Copy-Number Variations in Human Malignancies. Genes, 2020, 11, 846.	2.4	3
139	Pharmacodynamic Biomarkers for Emerging LRRK2 Therapeutics. Frontiers in Neuroscience, 2020, 14, 807.	2.8	17
140	Exosome markers of LRRK2 kinase inhibition. Npj Parkinson's Disease, 2020, 6, 32.	5.3	15
141	LRRK2 Is Recruited to Phagosomes and Co-recruits RAB8 and RAB10 in Human Pluripotent Stem Cell-Derived Macrophages. Stem Cell Reports, 2020, 14, 940-955.	4.8	65
142	Multiple-Hit Hypothesis in Parkinson's Disease: LRRK2 and Inflammation. Frontiers in Neuroscience, 2020, 14, 376.	2.8	43
143	Microglia depletion prior to lipopolysaccharide and paraquat treatment differentially modulates behavioral and neuronal outcomes in wild type and G2019S LRRK2 knock-in mice. Brain, Behavior, & Immunity - Health, 2020, 5, 100079.	2.5	9
144	Quantitative Measurements of LRRK2 in Human Cerebrospinal Fluid Demonstrates Increased Levels in G2019S Patients. Frontiers in Neuroscience, 2020, 14, 526.	2.8	19
145	Crohn's and Parkinson's Disease-Associated LRRK2 Mutations Alter Type II Interferon Responses in Human CD14+ Blood Monocytes Ex Vivo. Journal of NeuroImmune Pharmacology, 2020, 15, 794-800.	4.1	15
146	Leucine-rich repeat kinase-2 (LRRK2) modulates microglial phenotype and dopaminergic neurodegeneration. Neurobiology of Aging, 2020, 91, 45-55.	3.1	33
147	Leucine Rich Repeat Kinase 2 and Innate Immunity. Frontiers in Neuroscience, 2020, 14, 193.	2.8	36

#	Article	IF	CITATIONS
148	Leucine-Rich Repeat Kinase 2 Controls Inflammatory Cytokines Production through NF-ήB Phosphorylation and Antigen Presentation in Bone Marrow-Derived Dendritic Cells. International Journal of Molecular Sciences, 2020, 21, 1890.	4.1	7
149	The gut microbiome in Parkinson's disease: A culprit or a bystander?. Progress in Brain Research, 2020, 252, 357-450.	1.4	70
150	Neuroprotection by the Immunomodulatory Drug Pomalidomide in the Drosophila LRRK2WD40 Genetic Model of Parkinson's Disease. Frontiers in Aging Neuroscience, 2020, 12, 31.	3.4	13
151	Lysosome and Inflammatory Defects in <i>GBA1</i> â€Mutant Astrocytes Are Normalized by LRRK2 Inhibition. Movement Disorders, 2020, 35, 760-773.	3.9	79
152	Leucine-rich repeat kinase 2 inhibitors: a patent review (2014-present). Expert Opinion on Therapeutic Patents, 2020, 30, 275-286.	5.0	29
153	<scp>SARSâ€CoV</scp> â€2: At the Crossroad Between Aging and Neurodegeneration. Movement Disorders, 2020, 35, 716-720.	3.9	114
154	Genetic and Environmental Factors in <scp>P</scp> arkinson's Disease Converge on Immune Function and Inflammation. Movement Disorders, 2021, 36, 25-36.	3.9	69
155	ls LRRK2 the missing link between inflammatory bowel disease and Parkinson's disease?. Npj Parkinson's Disease, 2021, 7, 26.	5.3	46
156	The Contribution of Microglia to Neuroinflammation in Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 4676.	4.1	114
157	miR-335 Targets LRRK2 and Mitigates Inflammation in Parkinson's Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 661461.	3.7	18
158	Targeting of Lysosomal Pathway Genes for Parkinson's Disease Modification: Insights From Cellular and Animal Models. Frontiers in Neurology, 2021, 12, 681369.	2.4	10
159	Abrogation of LRRK2 dependent Rab10 phosphorylation with TLR4 activation and alterations in evoked cytokine release in immune cells. Neurochemistry International, 2021, 147, 105070.	3.8	18
160	LRRK2 Targeting Strategies as Potential Treatment of Parkinson's Disease. Biomolecules, 2021, 11, 1101.	4.0	19
161	Age-related LRRK2 G2019S Mutation Impacts Microglial Dopaminergic Fiber Refinement and Synaptic Pruning Involved in Abnormal Behaviors. Journal of Molecular Neuroscience, 2022, 72, 527-543.	2.3	5
162	Modelling the functional genomics of Parkinson's disease in <i>Caenorhabditis elegans</i> : <i>LRRK2</i> and beyond. Bioscience Reports, 2021, 41, .	2.4	8
163	Inflammatory Diseases Among Norwegian LRRK2 Mutation Carriers. A 15-Years Follow-Up of a Cohort. Frontiers in Neuroscience, 2021, 15, 634666.	2.8	3
164	Neuroinflammation and Parkinson's Disease. , 2014, , 885-912.		1
165	Enrichment of risk SNPs in regulatory regions implicate diverse tissues in Parkinson's disease etiology. Scientific Reports, 2016, 6, 30509.	3.3	53

#	Article	IF	CITATIONS
166	LRRK2 regulation of immune-pathways and inflammatory disease. Biochemical Society Transactions, 2019, 47, 1581-1595.	3.4	97
171	The IkappaB Kinase Family Phosphorylates the Parkinson's Disease Kinase LRRK2 at Ser935 and Ser910 during Toll-Like Receptor Signaling. PLoS ONE, 2012, 7, e39132.	2.5	183
172	Leucine-Rich α2-Glycoprotein Is a Novel Biomarker of Neurodegenerative Disease in Human Cerebrospinal Fluid and Causes Neurodegeneration in Mouse Cerebral Cortex. PLoS ONE, 2013, 8, e74453.	2.5	49
173	Leucine-Rich Repeat Kinase 2 (Lrrk2) Deficiency Diminishes the Development of Experimental Autoimmune Uveitis (EAU) and the Adaptive Immune Response. PLoS ONE, 2015, 10, e0128906.	2.5	20
174	Leucine-Rich Repeat Kinase 2 Influences Fate Decision of Human Monocytes Differentiated from Induced Pluripotent Stem Cells. PLoS ONE, 2016, 11, e0165949.	2.5	18
175	Immunogenetics of Parkinson's Disease. , 0, , 27-44.		3
176	The Role of LRRK2 in Neurodegeneration of Parkinson Disease. Current Neuropharmacology, 2018, 16, 1348-1357.	2.9	95
177	LRRK2 at the Interface Between Peripheral and Central Immune Function in Parkinson's. Frontiers in Neuroscience, 2020, 14, 443.	2.8	47
178	HDAC Inhibition by Valproic Acid Induces Neuroprotection and Improvement of PD-like Behaviors in LRRK2 R1441G Transgenic Mice. Experimental Neurobiology, 2019, 28, 504-515.	1.6	31
179	Role of the Innate and Adaptive Immune System in the Pathogenesis of PD. , 2014, , 75-103.		14
181	Changes in the Immune System in Parkinson's Disease. , 2018, , 1-21.		0
182	Changes in the Immune System in Parkinson's Disease. , 2019, , 2353-2373.		0
185	Analysis of a precision medicine approach to treating Parkinson's disease: Analysis of the DATATOP study. Parkinsonism and Related Disorders, 2022, 94, 15-21.	2.2	3
186	High-Throughput Sequencing Haplotype Analysis Indicates in LRRK2 Gene a Potential Risk Factor for Endemic Parkinsonism in Southeastern Moravia, Czech Republic. Life, 2022, 12, 121.	2.4	1
188	Infectious Agents as Potential Drivers of αâ€5ynucleinopathies. Movement Disorders, 2022, 37, 464-477.	3.9	7
189	Significant modulations of linc001128 and linc0938 with miR-24-3p and miR-30c-5p in Parkinson disease. Scientific Reports, 2022, 12, 2569.	3.3	12
190	Mutant LRRK2 in lymphocytes regulates neurodegeneration via IL-6 in an inflammatory model of Parkinson's disease. Npj Parkinson's Disease, 2022, 8, 24.	5.3	14
191	Effect of LRRK2 protein and activity on stimulated cytokines in human monocytes and macrophages. Npj Parkinson's Disease, 2022, 8, 34.	5.3	18

#	Article	IF	CITATIONS
192	Structure-Guided Discovery of Aminoquinazolines as Brain-Penetrant and Selective LRRK2 Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 838-856.	6.4	25
193	LRRK2 as a target for modulating immune system responses. Neurobiology of Disease, 2022, 169, 105724.	4.4	11
197	The Double-Faceted Role of Leucine-Rich Repeat Kinase 2 in the Immunopathogenesis of Parkinson's Disease. Frontiers in Aging Neuroscience, 2022, 14, .	3.4	6
198	Therapeutic potential of leucine-rich repeat kinase 2 inhibitors for Parkinson's disease treatment. , 2022, , 623-655.		0
199	Neuroinflammation and Immune Changes in Prodromal Parkinson's Disease and Other Synucleinopathies. Journal of Parkinson's Disease, 2022, 12, S149-S163.	2.8	15
200	WHOPPA Enables Parallel Assessment of Leucine-Rich Repeat Kinase 2 and Glucocerebrosidase Enzymatic Activity in Parkinson's Disease Monocytes. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	13
201	The role of LRRK2 in the periphery: link with Parkinson's disease and inflammatory diseases. Neurobiology of Disease, 2022, 172, 105806.	4.4	7
202	G2019S LRRK2 Mutation Enhances MPP+-Induced Inflammation of Human Induced Pluripotent Stem Cells-Differentiated Dopaminergic Neurons. Frontiers in Neuroscience, 0, 16, .	2.8	1
203	Structural Insights and Development of LRRK2 Inhibitors for Parkinson's Disease in the Last Decade. Genes, 2022, 13, 1426.	2.4	4
204	Autophagic response to exercise in peripheral blood mononuclear cells from young men is intensity-dependent and is altered by exposure to environmental heat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 323, R467-R482.	1.8	4
207	Unraveling Parkinson's Disease Neurodegeneration: Does Aging Hold the Clues?. Journal of Parkinson's Disease, 2022, 12, 2321-2338.	2.8	9
208	<scp>LRRK2</scp> expression in normal and pathologic human gut and in rodent enteric neural cell lines. Journal of Neurochemistry, 2023, 164, 193-209.	3.9	7
209	LRRK2 protects immune cells against erastin-induced ferroptosis. Neurobiology of Disease, 2022, 175, 105917.	4.4	12
211	Characterization of Lipopolysaccharide Effects on LRRK2 Signaling in RAW Macrophages. International Journal of Molecular Sciences, 2023, 24, 1644.	4.1	3
212	Electroacupuncture alleviates neuropathic pain caused by spared nerve injury by promoting AMPK/mTOR-mediated autophagy in dorsal root ganglion macrophage. Annals of Translational Medicine, 2022, 10, 1341-1341.	1.7	3
213	The interplay between monocytes, α-synuclein and LRRK2 in Parkinson's disease. Biochemical Society Transactions, 2023, 51, 747-758.	3.4	1
214	<scp>LRRK2</scp> and Parkinson's disease: from genetics to targeted therapy. Annals of Clinical and Translational Neurology, 2023, 10, 850-864.	3.7	5
215	Mutant LRRK2 exacerbates immune response and neurodegeneration in a chronic model of experimental colitis. Acta Neuropathologica, 2023, 146, 245-261.	7.7	10

#	Article	IF	CITATIONS
216	Quantitative proteomics and phosphoproteomics of urinary extracellular vesicles define putative diagnostic biosignatures for Parkinson's disease. Communications Medicine, 2023, 3, .	4.2	12
217	Correlation of Protumor Effects of Leucine-Rich Repeat Kinase 2 with Interleukin-10 Expression in Lung Squamous Cell Carcinoma. Korean Journal of Clinical Laboratory Science, 2023, 55, 105-112.	0.3	0
218	Different pieces of the same puzzle: a multifaceted perspective on the complex biological basis of Parkinson's disease. Npj Parkinson's Disease, 2023, 9, .	5.3	5
220	LRRK2 suppresses lysosome degradative activity in macrophages and microglia through MiT-TFE transcription factor inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	12
221	Are LRRK2 mysteries lurking in the gut?. American Journal of Physiology - Renal Physiology, 0, , .	3.4	0
222	Relevance of tissue-resident memory CD8 T cells in the onset of Parkinson's disease and examination of its possible etiologies: infectious or autoimmune?. Neurobiology of Disease, 2023, 187, 106308.	4.4	0
224	Leucine-rich repeat kinase 2 promotes the development of experimental severe acute pancreatitis. Clinical and Experimental Immunology, 2023, 214, 182-196.	2.6	1
225	ASO-mediated knockdown or kinase inhibition of G2019S-Lrrk2 modulates lysosomal tubule-associated antigen presentation in macrophages. Molecular Therapy - Nucleic Acids, 2023, 34, 102064.	5.1	1
226	Discovery of MK-1468: A Potent, Kinome-Selective, Brain-Penetrant Amidoisoquinoline LRRK2 Inhibitor for the Potential Treatment of Parkinson's Disease. Journal of Medicinal Chemistry, 2023, 66, 14912-14927.	6.4	1
227	The intensity-dependent effects of exercise and superimposing environmental heat stress on autophagy in peripheral blood mononuclear cells from older men. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2024, 326, R29-R42.	1.8	0
228	Preclinical Evaluation of Novel Positron Emission Tomography (PET) Probes for Imaging Leucine-Rich Repeat Kinase 2 (LRRK2). Journal of Medicinal Chemistry, 2024, 67, 2559-2569.	6.4	0
229	Blocking IL-6 signaling prevents astrocyte-induced neurodegeneration in an iPSC-based model of Parkinson's disease. JCI Insight, 2024, 9, .	5.0	0
230	Peripheral immune cell traits and Parkinson's disease: A Mendelian randomization study. PLoS ONE, 2024, 19, e0299026.	2.5	0