Highly Efficient Reprogramming to Pluripotency and D Cells with Synthetic Modified mRNA

Cell Stem Cell 7, 618-630 DOI: 10.1016/j.stem.2010.08.012

Citation Report

#	Article	IF	CITATIONS
2	Chimeric Receptor mRNA Transfection as a Tool to Generate Antineoplastic Lymphocytes. Human Gene Therapy, 2009, 20, 51-61.	2.7	48
3	Faithful reprogramming to pluripotency in mammals - what does nuclear transfer teach us?. International Journal of Developmental Biology, 2010, 54, 1609-1621.	0.6	8
4	Natural and artificial routes to pluripotency. International Journal of Developmental Biology, 2010, 54, 1545-1564.	0.6	13
5	Applications of Patient-Specific Induced Pluripotent Stem Cells; Focused on Disease Modeling, Drug Screening and Therapeutic Potentials for Liver Disease. International Journal of Biological Sciences, 2010, 6, 796-805.	6.4	90
6	Exploring refined conditions for reprogramming cells by recombinant Oct4 protein. International Journal of Developmental Biology, 2010, 54, 1713-1721.	0.6	61
7	Genetic instability in human induced pluripotent stem cells: Classification of causes and possible safeguards. Cell Cycle, 2010, 9, 4603-4604.	2.6	42
8	Tinkering with Transcription Factors Uncovers Plasticity of Somatic Cells. Genes and Cancer, 2010, 1, 1089-1099.	1.9	6
9	The Stem Cell "Tunnel―Effect. Molecular Therapy, 2010, 18, 2043-2044.	8.2	Ο
10	Liver Regeneration From Induced Pluripotent Stem Cells. Molecular Therapy, 2010, 18, 2044-2045.	8.2	2
11	Stem cell ping-pong: the politics of science. Translational Research, 2010, 156, 315-316.	5.0	1
12	Synthetic mRNAs: Powerful Tools for Reprogramming and Differentiation of Human Cells. Cell Stem Cell, 2010, 7, 549-550.	11.1	22
13	Extinction of Xist Improves Cloning. Cell Stem Cell, 2010, 7, 550-552.	11.1	1
14	Induced pluripotency: history, mechanisms, and applications. Genes and Development, 2010, 24, 2239-2263.	5.9	678
15	Cell fate conversion by mRNA. Stem Cell Research and Therapy, 2011, 2, 5.	5.5	21
16	Induced pluripotent stem cells: progress towards a biomedical application. Expert Review of Cardiovascular Therapy, 2011, 9, 1265-1269.	1.5	2
17	Early Senescence Is Not an Inevitable Fate of Human-Induced Pluripotent Stem-Derived Cells. Cellular Reprogramming, 2011, 13, 361-370.	0.9	13
18	Induced pluripotent stem cells for modelling human diseases. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2274-2285.	4.0	70
19	The biology of aging: 1985–2010 and beyond. FASEB Journal, 2011, 25, 3756-3762.	0.5	66

	CITATION R		
# 20	ARTICLE Finding the niche for human somatic cell nuclear transfer. Nature Biotechnology, 2011, 29, 701-705.	IF 17.5	Citations 9
21	The business of exploiting induced pluripotent stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2323-2328.	4.0	23
22	The Science and Ethics of Induced Pluripotency: What Will Become of Embryonic Stem Cells?. Mayo Clinic Proceedings, 2011, 86, 634-640.	3.0	48
23	Induced pluripotent stem cells and regenerative medicine. Journal of Clinical Gerontology and Geriatrics, 2011, 2, 1-6.	0.7	8
24	Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape. Cell Research, 2011, 21, 486-501.	12.0	165
25	Human Pluripotent Stem Cell-Based Approaches for Myocardial Repair: From the Electrophysiological Perspective. Molecular Pharmaceutics, 2011, 8, 1495-1504.	4.6	48
26	Chemical Strategies for Stem Cell Biology and Regenerative Medicine. Annual Review of Biomedical Engineering, 2011, 13, 73-90.	12.3	61
27	Induced pluripotent stem cells — opportunities for disease modelling and drug discovery. Nature Reviews Drug Discovery, 2011, 10, 915-929.	46.4	417
28	Generation of transgene-free human induced pluripotent stem cells with an excisable single polycistronic vector. Nature Protocols, 2011, 6, 1251-1273.	12.0	67
29	MicroRNA Cluster 302–367 Enhances Somatic Cell Reprogramming by Accelerating a Mesenchymal-to-Epithelial Transition. Journal of Biological Chemistry, 2011, 286, 17359-17364.	3.4	231
30	Human pluripotent stem cells for genetic disease modeling and drug screening. Regenerative Medicine, 2011, 6, 607-622.	1.7	4
31	Cellular Dynamics of RNA Modification. Accounts of Chemical Research, 2011, 44, 1380-1388.	15.6	98
32	Novel paths towards neural cellular products for neurological disorders. Regenerative Medicine, 2011, 6, 25-30.	1.7	8
34	iPS cells: five years later. Science-Business EXchange, 2011, 4, 588-588.	0.0	0
35	Human pluripotent stem cells in pharmacological and toxicological screening: new perspectives for personalized medicine. Personalized Medicine, 2011, 8, 347-364.	1.5	8
36	Reference Maps of Human ES and iPS Cell Variation Enable High-Throughput Characterization of Pluripotent Cell Lines. Cell, 2011, 144, 439-452.	28.9	899
37	Impact of induced pluripotent stem cells on the study of central nervous system disease. Current Opinion in Genetics and Development, 2011, 21, 354-361.	3.3	33
38	Induced pluripotent stem cells: A new technology to study human diseases. International Journal of Biochemistry and Cell Biology, 2011, 43, 843-846.	2.8	37

ARTICLE IF CITATIONS # The road to biological pacing. Nature Reviews Cardiology, 2011, 8, 656-666. 39 13.7 109 Direct lineage conversions: unnatural but useful?. Nature Biotechnology, 2011, 29, 892-907. 17.5 240 41 Synthetic Biology Moving into the Clinic. Science, 2011, 333, 1248-1252. 12.6 348 Bright and stable near-infrared fluorescent protein for in vivo imaging. Nature Biotechnology, 2011, 634 29, 757-761. Pluripotent stem cell models of cardiac disease and their implication for drug discovery and 43 6.7 117 development. Trends in Molecular Medicine, 2011, 17, 475-484. Development of Defective and Persistent Sendai Virus Vector. Journal of Biological Chemistry, 2011, 3.4 312 286, 4760-4771. Choreographing pluripotency and cell fate with transcription factors. Biochimica Et Biophysica Acta -45 1.9 15 Gene Regulatory Mechanisms, 2011, 1809, 337-349. iPS cells: A source of cardiac regeneration. Journal of Molecular and Cellular Cardiology, 2011, 50, 1.9 46 327-332. Small molecule Wnt inhibitors enhance the efficiency of BMP-4-directed cardiac differentiation of 47 1.9 135 human pluripotent stem cells. Journal of Molecular and Cellular Cardiology, 2011, 51, 280-287. Human embryonic stem cell-derived vascular smooth muscle cells in therapeutic neovascularisation. Journal of Molecular and Cellular Cardiology, 2011, 51, 651-664. Biomimetic Platforms for Human Stem Cell Research. Cell Stem Cell, 2011, 8, 252-261. 49 11.1 133 Highly Efficient miRNA-Mediated Reprogramming of Mouse and Human Somatic Cells to Pluripotency. 50 11.1 1,121 Cell Stem Cell, 2011, 8, 376-388. Reprogramming of Mouse and Human Cells to Pluripotency Using Mature MicroRNAs. Cell Stem Cell, 51 11.1 684 2011, 8, 633-638. Small RNAs Loom Large During Reprogramming. Cell Stem Cell, 2011, 8, 599-601. 11.1 The Value of Connections. Cell Stem Cell, 2011, 8, 595-596. 53 11.1 0 Large-Scale Analysis Reveals Acquisition of Lineage-Specific Chromosomal Aberrations in Human Adult 54 11.1 218 Stem Cells. Cell Stem Cell, 2011, 9, 97-102. Solubility partner IF2 Domain I enables high yield synthesis of transducible transcription factors in 55 1.39 Escherichia coli. Protein Expression and Purification, 2011, 80, 145-151. Constructing and Deconstructing Stem Cell Models of Neurological Disease. Neuron, 2011, 70, 8.1 141 626-644.

#	Article	IF	CITATIONS
57	Induced pluripotent stem cells: A new tool to confront the challenge of neuropsychiatric disorders. Neuropharmacology, 2011, 60, 1355-1363.	4.1	46
58	Generation of Induced Pluripotent Stem Cells from Urine. Journal of the American Society of Nephrology: JASN, 2011, 22, 1221-1228.	6.1	362
59	Current Progress and Potential Practical Application for Human Pluripotent Stem Cells. International Review of Cell and Molecular Biology, 2011, 292, 153-196.	3.2	10
60	Direct reprogramming of mouse fibroblasts to neural progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7838-7843.	7.1	555
61	Liveâ€Cell Immunofluorescence Staining of Human Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 2011, 19, Unit 1C.12.	3.0	12
62	Induced pluripotent stem cell technology for generating photoreceptors. Regenerative Medicine, 2011, 6, 469-479.	1.7	26
63	Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18283-18288.	7.1	224
64	Cellular Therapy for Fanconi Anemia: The Past, Present, and Future. Biology of Blood and Marrow Transplantation, 2011, 17, S109-S114.	2.0	24
65	Embryonic Stem Cells and iPS Cells: Sources and Characteristics. Veterinary Clinics of North America Equine Practice, 2011, 27, 233-242.	0.7	26
66	Inducing iPSCs to Escape the Dish. Cell Stem Cell, 2011, 9, 103-111.	11.1	65
67	Efficient myogenic reprogramming of adult white fat stem cells and bone marrow stem cells by freshly isolated skeletal muscle fibers. Translational Research, 2011, 158, 334-343.	5.0	3
68	Induced Pluripotent Stem Cells as Human Disease Models. Annual Reports in Medicinal Chemistry, 2011, 46, 369-383.	0.9	4
69	Embryonic Stem Cells and the Germ Cell Lineage. , 2011, , .		4
70	Stem cell toxicity?. European Journal of Cardio-thoracic Surgery, 2011, 40, 1037-1038.	1.4	1
71	Human Pluripotent Stem Cells in Cardiovascular Research and Regenerative Medicine. , 2011, , .		0
72	Hepatic Differentiation of Murine Disease-Specific Induced Pluripotent Stem Cells Allows Disease ModellingIn Vitro. Stem Cells International, 2011, 2011, 1-11.	2.5	6
73	Technical Challenges in the Derivation of Human Pluripotent Cells. Stem Cells International, 2011, 2011, 1-7.	2.5	6
74	Induced Pluripotent Stem Cells in Cardiovascular Medicine. Stem Cells International, 2011, 2011, 1-7.	2.5	22

#	Article	IF	CITATIONS
75	Patient-Specific Pluripotent Stem Cells in Neurological Diseases. Stem Cells International, 2011, 2011, 1-17.	2.5	34
76	Induced pluripotent stem cells and personalized medicine: current progress and future perspectives. Anatomy and Cell Biology, 2011, 44, 245.	1.0	68
77	Induced Pluripotent Stem Cells and Their Application to Personalized Therapy. , 2011, , 377-388.		0
78	A Network of Regulations by Small Non-Coding RNAs: The P-TEFb Kinase in Development and Pathology. Frontiers in Genetics, 2011, 2, 95.	2.3	13
79	Generation of Induced Pluripotent Stem (iPS) Cells by Nuclear Reprogramming. Stem Cells International, 2011, 2011, 1-11.	2.5	16
80	Trends and clinical application of induced pluripotent stem cells. Journal of the Korean Medical Association, 2011, 54, 502.	0.3	2
81	Efficient Feeder-Free Episomal Reprogramming with Small Molecules. PLoS ONE, 2011, 6, e17557.	2.5	194
82	A Universal System for Highly Efficient Cardiac Differentiation of Human Induced Pluripotent Stem Cells That Eliminates Interline Variability. PLoS ONE, 2011, 6, e18293.	2.5	363
83	Transgene Excision Has No Impact on In Vivo Integration of Human iPS Derived Neural Precursors. PLoS ONE, 2011, 6, e24687.	2.5	17
84	Integration-Free iPS Cells Engineered Using Human Artificial Chromosome Vectors. PLoS ONE, 2011, 6, e25961.	2.5	66
85	Efficient Generation of Fully Reprogrammed Human iPS Cells via Polycistronic Retroviral Vector and a New Cocktail of Chemical Compounds. PLoS ONE, 2011, 6, e26592.	2.5	41
86	Derivation, Characterization, and Stable Transfection of Induced Pluripotent Stem Cells from Fischer344 Rats. PLoS ONE, 2011, 6, e27345.	2.5	26
87	Efficient Culturing and Genetic Manipulation of Human Pluripotent Stem Cells. PLoS ONE, 2011, 6, e27495.	2.5	24
88	Quality, patient safety, and culture: †We have met the enemy and he is us'—Pogo (Walt Kelly, 1971)*. Critical Care Medicine, 2011, 39, 1196-1197.	0.9	3
90	Passing the bug—Translocation, bacteremia, and sepsis in the intensive care unit patient: Is intestinal decontamination the answer?*. Critical Care Medicine, 2011, 39, 1202-1203.	0.9	19
91	Palliative care makes intensive care units intensive care and intensive caring units*. Critical Care Medicine, 2011, 39, 1204-1205.	0.9	2
92	Biomarkers in fever and neutropenia: A solution in search of a problem?*. Critical Care Medicine, 2011, 39, 1205-1206.	0.9	3
93	The family experience with intensive care unit care: More than mere satisfaction*. Critical Care Medicine, 2011, 39, 1207-1208.	0.9	2

#	Article	IF	CITATIONS
94	Making progress with the egress*. Critical Care Medicine, 2011, 39, 1208-1209.	0.9	1
95	Providing a good death*. Critical Care Medicine, 2011, 39, 1235-1236.	0.9	2
96	Page the critical care epidemiologist, STAT!*. Critical Care Medicine, 2011, 39, 1219-1220.	0.9	0
97	Do-not-resuscitate orders in evolution: Matching medical interventions with patient goals*. Critical Care Medicine, 2011, 39, 1213-1214.	0.9	4
98	From mice to men: Treating sepsis with heparin*. Critical Care Medicine, 2011, 39, 1225-1226.	0.9	4
99	Induced pluripotent stem cell-derived cardiomyocytes as models for genetic cardiovascular disorders. Current Opinion in Cardiology, 2011, 26, 223-229.	1.8	32
100	Opening the lungs: Do it slowly, please*. Critical Care Medicine, 2011, 39, 1221-1222.	0.9	0
101	The brain boggles the mind*. Critical Care Medicine, 2011, 39, 1224.	0.9	0
102	Putting intensive care unit data into the public domain—And using it effectively*. Critical Care Medicine, 2011, 39, 1200-1201.	0.9	0
103	Has extracorporeal membrane oxygenation finally arrived for resuscitation and stabilization of critically ill patients?*. Critical Care Medicine, 2011, 39, 1218-1219.	0.9	2
104	Beta-blockers: Essential heart failure therapy*. Critical Care Medicine, 2011, 39, 1198-1199.	0.9	0
105	Ten years later, still "gene in a haystack?â€*. Critical Care Medicine, 2011, 39, 1231-1232.	0.9	0
106	Yes, SIRS—I think we have come full circle*. Critical Care Medicine, 2011, 39, 1232-1233.	0.9	1
107	Pulmonary morbidity of catheter-related pediatric venous thromboembolism: Old problem, new worry*. Critical Care Medicine, 2011, 39, 1234-1235.	0.9	0
108	Surviving fulminant myocarditis: Is the head the heart of the matter?*. Critical Care Medicine, 2011, 39, 1211-1213.	0.9	0
109	Mortality prediction in adult respiratory distress syndrome: Get real*. Critical Care Medicine, 2011, 39, 1210-1211.	0.9	0
110	Stemming electrical outage in myocardial infarction*. Critical Care Medicine, 2011, 39, 1222-1223.	0.9	0
111	From the bedside to the bench: How to improve the care of critically ill pregnant patients with influenza*. Critical Care Medicine, 2011, 39, 1199-1200.	0.9	2

7

#	Article	IF	CITATIONS
113	Visualizing the cortical microcirculation in patients with stroke*. Critical Care Medicine, 2011, 39, 1228-1230.	0.9	1
114	Management of Liver Failure: From Transplantation to Cell-Based Therapy. Cell Medicine, 2011, 2, 9-26.	5.0	3
115	The Year in Regenerative Medicine. Regenerative Medicine, 2011, 6, 21-30.	1.7	4
116	Experimental studies on ischemic neuroprotection: Criteria for translational significance*. Critical Care Medicine, 2011, 39, 1230-1231.	0.9	0
117	"Sepsis—lt ain't so much what you don't know that gets you into trouble, it's what you know for s that just ain't so.â€â€"with apologies to Mark Twain*. Critical Care Medicine, 2011, 39, 1214-1215.	ure 0.9	0
118	Enteric nervous system neuropathy: repair and restoration. Current Opinion in Gastroenterology, 2011, 27, 106-111.	2.3	24
119	iPS cells for transplantation. Current Opinion in Organ Transplantation, 2011, 16, 96-100.	1.6	8
120	Targeted temperature management: The jury returns with a verdict*. Critical Care Medicine, 2011, 39, 1226-1228.	0.9	0
121	Stem cell-derived islet cells for transplantation. Current Opinion in Organ Transplantation, 2011, 16, 76-82.	1.6	26
122	Development Unchained: How Cellular Reprogramming is Redefining Our View of Cell Fate and Identity. Science Progress, 2011, 94, 298-322.	1.9	5
123	Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease–mediated safe harbor targeting. Blood, 2011, 117, 5561-5572.	1.4	232
124	Reprogramming of EBV-immortalized B-lymphocyte cell lines into induced pluripotent stem cells. Blood, 2011, 118, 1801-1805.	1.4	84
125	In vitro pathological modelling using patient-specific induced pluripotent stem cells: the case of progeria. Biochemical Society Transactions, 2011, 39, 1775-1779.	3.4	13
126	Will Cell Reprogramming Resolve the Embryonic Stem Cell Controversy? A Narrative Review. Annals of Internal Medicine, 2011, 155, 114.	3.9	18
127	Promises and Challenges of Stem Cell Research for Regenerative Medicine. Annals of Internal Medicine, 2011, 155, 706.	3.9	18
128	Mesenchymal stem cells in the dental tissues: perspectives for tissue regeneration. Brazilian Dental Journal, 2011, 22, 91-98.	1.1	131
129	ls a regenerative approach viable for the treatment of COPD?. British Journal of Pharmacology, 2011, 163, 106-115.	5.4	25
130	From skin to the treatment of diseases - the possibilities of iPS cell research in dermatology. Experimental Dermatology, 2011, 20, 523-528.	2.9	27

#	Article	IF	CITATIONS
131	Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPSÂcells. Nature Cell Biology, 2011, 13, 541-549.	10.3	529
132	A more efficient method to generate integration-free human iPS cells. Nature Methods, 2011, 8, 409-412.	19.0	1,736
134	Faster generation of hiPSCs by coupling high-titer lentivirus and column-based positive selection. Nature Protocols, 2011, 6, 701-714.	12.0	24
135	The tumorigenicity of human embryonic and induced pluripotent stem cells. Nature Reviews Cancer, 2011, 11, 268-277.	28.4	785
136	Methods for making induced pluripotent stem cells: reprogramming à la carte. Nature Reviews Genetics, 2011, 12, 231-242.	16.3	415
137	Turning straw into gold: directing cell fate for regenerative medicine. Nature Reviews Genetics, 2011, 12, 243-252.	16.3	253
138	Progress in understanding reprogramming to the induced pluripotent state. Nature Reviews Genetics, 2011, 12, 253-265.	16.3	257
139	Disease Correction the iPSC Way: Advances in iPSC-Based Therapy. Clinical Pharmacology and Therapeutics, 2011, 89, 746-749.	4.7	24
140	iPS Cells in Type 1 Diabetes Research and Treatment. Clinical Pharmacology and Therapeutics, 2011, 89, 750-753.	4.7	27
141	iPSC Technology: Platform for Drug Discovery. Clinical Pharmacology and Therapeutics, 2011, 89, 639-641.	4.7	30
142	Human Induced Pluripotent Stem Cells: The Past, Present, and Future. Clinical Pharmacology and Therapeutics, 2011, 89, 741-745.	4.7	30
143	The Use of Induced Pluripotent Stem Cells in Drug Development. Clinical Pharmacology and Therapeutics, 2011, 89, 655-661.	4.7	213
144	Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Research, 2011, 21, 518-529.	12.0	420
145	Transcriptome asymmetry within mouse zygotes but not between early embryonic sister blastomeres. EMBO Journal, 2011, 30, 1841-1851.	7.8	46
146	Induced pluripotent stem cells as a next-generation biomedical interface. Laboratory Investigation, 2011, 91, 972-977.	3.7	29
147	Somatic coding mutations in human induced pluripotent stem cells. Nature, 2011, 471, 63-67.	27.8	1,147
148	Copy number variation and selection during reprogramming to pluripotency. Nature, 2011, 471, 58-62.	27.8	870
149	Heart regeneration. Nature, 2011, 473, 326-335.	27.8	1,112

#	Article	IF	CITATIONS
150	Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nature Biotechnology, 2011, 29, 154-157.	17.5	622
151	The New York Stem Cell Foundation: Fifth Annual Translational Stem Cell Research Conference. Annals of the New York Academy of Sciences, 2011, 1226, 1-13.	3.8	1
152	Lonely death dance of human pluripotent stem cells: ROCKing between metastable cell states. Trends in Cell Biology, 2011, 21, 274-282.	7.9	71
153	Epigenetic factors influencing resistance to nuclear reprogramming. Trends in Genetics, 2011, 27, 516-525.	6.7	92
154	Regulation of innate immunity through RNA structure and the protein kinase PKR. Current Opinion in Structural Biology, 2011, 21, 119-127.	5.7	118
155	Induced pluripotent stem cells: a new revolution for clinical neurology?. Lancet Neurology, The, 2011, 10, 383-394.	10.2	97
156	Selection of alkaline phosphatase-positive induced pluripotent stem cells from human amniotic fluid-derived cells by feeder-free system. Experimental Cell Research, 2011, 317, 1895-1903.	2.6	31
157	Signaling cue presentation and cell delivery to promote nerve regeneration. Current Opinion in Biotechnology, 2011, 22, 741-746.	6.6	19
158	The generation of iPS cells using non-viral magnetic nanoparticlebased transfection. Biomaterials, 2011, 32, 6683-6691.	11.4	88
159	Regenerative Medicine for Skin Diseases: iPS Cells to the Rescue. Journal of Investigative Dermatology, 2011, 131, 812-814.	0.7	24
160	Immunological Applications of Stem Cells in Type 1 Diabetes. Endocrine Reviews, 2011, 32, 725-754.	20.1	125
161	New approaches for the generation of induced pluripotent stem cells. Expert Opinion on Biological Therapy, 2011, 11, 569-579.	3.1	24
162	Embryonic stem cell extracts: use in differentiation and reprogramming. Regenerative Medicine, 2011, 6, 215-227.	1.7	3
163	Stem cell gene therapy: the risks of insertional mutagenesis and approaches to minimize genotoxicity. Frontiers of Medicine, 2011, 5, 356-371.	3.4	90
164	Induced pluripotent stem cells (iPSCs) and neurological disease modeling: progress and promises. Human Molecular Genetics, 2011, 20, R109-R115.	2.9	165
165	The challenges and promises of blood engineered from human pluripotent stem cells. Advanced Drug Delivery Reviews, 2011, 63, 331-341.	13.7	13
166	Induced pluripotent stem cells for regenerative cardiovascular therapies and biomedical discovery. Advanced Drug Delivery Reviews, 2011, 63, 324-330.	13.7	27
167	Promises of stem cell therapy for retinal degenerative diseases. Graefe's Archive for Clinical and Experimental Ophthalmology, 2011, 249, 1439-1448.	1.9	35

#	Article	IF	CITATIONS
168	Stem cell-based therapies in Parkinson's disease: future hope or current treatment option?. Journal of Neurology, 2011, 258, 346-353.	3.6	11
169	Tissue engineering and cell-based therapy toward integrated strategy with artificial organs. Journal of Artificial Organs, 2011, 14, 171-177.	0.9	8
170	Immunological Barriers to Stem-Cell Based Cardiac Repair. Stem Cell Reviews and Reports, 2011, 7, 315-325.	5.6	26
171	A Cyclic AMP Analog, 8-Br-cAMP, Enhances the Induction of Pluripotency in Human Fibroblast Cells. Stem Cell Reviews and Reports, 2011, 7, 331-341.	5.6	54
172	A Comparison of Stem Cells for Therapeutic Use. Stem Cell Reviews and Reports, 2011, 7, 782-796.	5.6	24
173	Cardiac Cell Therapy: The Next (Re)Generation. Stem Cell Reviews and Reports, 2011, 7, 1018-1030.	5.6	28
174	Functional Myogenic Engraftment from Mouse iPS Cells. Stem Cell Reviews and Reports, 2011, 7, 948-957.	5.6	106
175	Mechanism and methods to induce pluripotency. Protein and Cell, 2011, 2, 792-799.	11.0	13
176	Human Pluripotent Stem Cell Therapy for Huntington's Disease: Technical, Immunological, and Safety Challenges. Neurotherapeutics, 2011, 8, 562-576.	4.4	27
177	A novel strategy to derive iPS cells from porcine fibroblasts. Science China Life Sciences, 2011, 54, 553-559.	4.9	28
178	Stem cell biology and drug discovery. BMC Biology, 2011, 9, 42.	3.8	39
179	Concise Review: Stem Cells for the Treatment of Cerebellar-Related Disorders. Stem Cells, 2011, 29, 564-569.	3.2	7
180	Concise Review: Non-cell Autonomous Reprogramming: A Nucleic Acid-Free Approach to Induction of Pluripotency. Stem Cells, 2011, 29, 1013-1020.	3.2	9
181	Concise Review: Managing Genotoxicity in the Therapeutic Modification of Stem Cells. Stem Cells, 2011, 29, 1479-1484.	3.2	40
182	In Situ Genetic Correction of the Sickle Cell Anemia Mutation in Human Induced Pluripotent Stem Cells Using Engineered Zinc Finger Nucleases. Stem Cells, 2011, 29, 1717-1726.	3.2	289
183	Site-Specific Recombinase Strategy to Create Induced Pluripotent Stem Cells Efficiently with Plasmid DNA. Stem Cells, 2011, 29, 1696-1704.	3.2	37
184	Concise Review: Alchemy of Biology: Generating Desired Cell Types from Abundant and Accessible Cells. Stem Cells, 2011, 29, 1933-1941.	3.2	41
185	Turning skin into brain: Using patientâ€derived cells to model Xâ€linked adrenoleukodystrophy. Annals of Neurology, 2011, 70, 350-352.	5.3	3

#	Article	IF	CITATIONS
186	Differentiation of induced pluripotent stem cells into functional oligodendrocytes. Glia, 2011, 59, 882-892.	4.9	118
187	Regeneration of the heart. EMBO Molecular Medicine, 2011, 3, 701-712.	6.9	129
188	Optimal reprogramming factor stoichiometry increases colony numbers and affects molecular characteristics of murine induced pluripotent stem cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79A, 426-435.	1.5	61
189	Regenerative Chemical Biology: Current Challenges and Future Potential. Chemistry and Biology, 2011, 18, 413-424.	6.0	25
190	Intracellular reactivation of transcription factors fused with protein transduction domain. Journal of Biotechnology, 2011, 154, 298-303.	3.8	6
191	iPSCs: Unstable Origins?. Molecular Therapy, 2011, 19, 1188-1190.	8.2	9
192	Functional Multipotency of Stem Cells: A Conceptual Review of Neurotrophic Factor-Based Evidence and Its Role in Translational Research. Current Neuropharmacology, 2011, 9, 574-585.	2.9	45
193	Global update: USA. Regenerative Medicine, 2011, 6, 136-139.	1.7	1
194	Therapeutic Delivery of mRNA: The Medium Is the Message. Molecular Therapy, 2011, 19, 822-823.	8.2	37
195	The Future of Induced Pluripotent Stem Cells for Cardiac Therapy and Drug Development. Current Pharmaceutical Design, 2011, 17, 3258-3270.	1.9	21
196	Induced pluripotent stem cells: opportunities and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2198-2207.	4.0	225
197	Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8797-8802.	7.1	252
198	Dissecting the Oncogenic and Tumorigenic Potential of Differentiated Human Induced Pluripotent Stem Cells and Human Embryonic Stem Cells. Cancer Research, 2011, 71, 5030-5039.	0.9	94
199	Reprogramming of cells using modified mRNA. , 2011, , .		1
200	Feline Bone Marrow-Derived Mesenchymal Stem Cells Express Several Pluripotent and Neural Markers and Easily Turn into Neural-Like Cells by Manipulation with Chromatin Modifying Agents and Neural Inducing Factors. Cellular Reprogramming, 2011, 13, 385-390.	0.9	15
201	Grafted human-induced pluripotent stem-cell–derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16825-16830.	7.1	473
202	The evolving biology of cell reprogramming. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2183-2197.	4.0	28
203	Using stem cells to study and possibly treat type 1 diabetes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2307-2311.	4.0	22

#	Article	IF	CITATIONS
204	Modelling familial dysautonomia in human induced pluripotent stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2286-2296.	4.0	34
205	Landmark Approach to Generating Human Stem Cells. Circulation Research, 2011, 108, 161-163.	4.5	2
206	Cell-based therapeutics for liver disorders. British Medical Bulletin, 2011, 100, 157-172.	6.9	39
207	Modeling neurological diseases using patient-derived induced pluripotent stem cells. Future Neurology, 2011, 6, 363-373.	0.5	37
208	Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain. Development (Cambridge), 2011, 138, 4853-4865.	2.5	69
209	Transcriptome transfer provides a model for understanding the phenotype of cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11918-11923.	7.1	31
210	Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Research, 2011, 39, e142-e142.	14.5	586
211	Lentiviral Vector Design and Imaging Approaches to Visualize the Early Stages of Cellular Reprogramming. Molecular Therapy, 2011, 19, 782-789.	8.2	224
212	The Rejection Barrier to Induced Pluripotent Stem Cells. Journal of the American Society of Nephrology: JASN, 2011, 22, 1583-1586.	6.1	0
213	Endothelial Cells Derived From Human iPSCS Increase Capillary Density and Improve Perfusion in a Mouse Model of Peripheral Arterial Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, e72-9.	2.4	230
214	The Commons Science and Technology Committee Inquiry into Hybrid Embryo Research 2007: Credible, Reliable and Objective?. Human Reproduction and Genetic Ethics, 2011, 17, 84-109.	0.1	1
215	Regeneration of Hair Cells: Making Sense of All the Noise. Pharmaceuticals, 2011, 4, 848-879.	3.8	24
216	Cellular Systems for Studying Human Oral Squamous Cell Carcinomas. Advances in Experimental Medicine and Biology, 2011, 720, 27-38.	1.6	8
217	Hematopoietic cells as sources for patient-specific iPSCs and disease modeling. Cell Cycle, 2011, 10, 2840-2844.	2.6	9
218	Pharmacological response of human cardiomyocytes derived from virus-free induced pluripotent stem cells. Cardiovascular Research, 2011, 91, 577-586.	3.8	88
219	The role of induced pluripotent stem cells in regenerative medicine: neurodegenerative diseases. Stem Cell Research and Therapy, 2011, 2, 32.	5.5	25
220	Amniocytes can serve a dual function as a source of iPS cells and feeder layers. Human Molecular Genetics, 2011, 20, 962-974.	2.9	50
221	Derivation of Human Induced Pluripotent Stem Cells for Cardiovascular Disease Modeling. Circulation Research, 2011, 108, 1146-1156.	4.5	64

#	Article	IF	CITATIONS
222	Developmental and Regenerative Biology of Multipotent Cardiovascular Progenitor Cells. Circulation Research, 2011, 108, 353-364.	4.5	77
223	Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6537-6542.	7.1	150
224	Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells. Blood, 2011, 117, e109-e119.	1.4	231
225	Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14234-14239.	7.1	524
226	Modeling Neurological Disorders by Human Induced Pluripotent Stem Cells. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-11.	3.0	12
227	Experimental Limitations Using Reprogrammed Cells for Hematopoietic Differentiation. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-7.	3.0	4
228	Molecular Insights into Reprogramming-Initiation Events Mediated by the OSKM Gene Regulatory Network. PLoS ONE, 2011, 6, e24351.	2.5	64
229	Postmyocardial Infarct Remodeling and Heart Failure: Potential Contributions from Pro- and Antiaging Factors. Cardiology Research and Practice, 2011, 2011, 1-9.	1.1	9
230	Culture Environment-Induced Pluripotency of SACK-Expanded Tissue Stem Cells. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-12.	3.0	5
231	Biology of the Mi-2/NuRD Complex in SLAC (Stemness, Longevity/Ageing, and Cancer). Gene Regulation and Systems Biology, 2011, 5, GRSB.S6510.	2.3	19
232	Histone Deacetylases in Neural Stem Cells and Induced Pluripotent Stem Cells. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-6.	3.0	28
233	Foamy Virus Biology and Its Application for Vector Development. Viruses, 2011, 3, 561-585.	3.3	76
234	Reprogramming, transdifferentiation and the shifting landscape of cellular identity. Cell Cycle, 2011, 10, 1886-1887.	2.6	4
235	Generation of Transplantable Beta Cells for Patient-Specific Cell Therapy. International Journal of Endocrinology, 2012, 2012, 1-7.	1.5	2
236	Nonhuman Primate Induced Pluripotent Stem Cells in Regenerative Medicine. Stem Cells International, 2012, 2012, 1-7.	2.5	26
237	New Treatment Modalities by Disease-Specific and Patient-Specific Induced Pluripotent Stem Cells. , 2012, , 199-225.		0
238	Advances in MicroRNA-Mediated Reprogramming Technology. Stem Cells International, 2012, 2012, 1-4.	2.5	16
239	Prospects and Challenges of Reprogrammed Cells in Hematology and Oncology. Pediatric Hematology and Oncology, 2012, 29, 507-528.	0.8	7

#	Article	IF	CITATIONS
240	Meeting the Need for Regenerative Therapies I: Target-Based Incidence and Its Relationship to U.S. Spending, Productivity, and Innovation. Tissue Engineering - Part B: Reviews, 2012, 18, 139-154.	4.8	11
241	Human Pluripotent Stem Cells: Applications and Challenges in Neurological Diseases. Frontiers in Physiology, 2012, 3, 267.	2.8	35
242	Drug Discovery Models and Toxicity Testing Using Embryonic and Induced Pluripotent Stem-Cell-Derived Cardiac and Neuronal Cells. Stem Cells International, 2012, 2012, 1-9.	2.5	40
243	Reprogramming of Human Hair Follicle Dermal Papilla Cells into Induced Pluripotent Stem Cells. Journal of Investigative Dermatology, 2012, 132, 1725-1727.	0.7	27
244	Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Research, 2012, 40, 5023-5033.	14.5	793
245	Adrenarche: a cell biological perspective. Journal of Endocrinology, 2012, 214, 113-119.	2.6	18
246	A Practical and Efficient Cellular Substrate for the Generation of Induced Pluripotent Stem Cells from Adults: Blood-Derived Endothelial Progenitor Cells. Stem Cells Translational Medicine, 2012, 1, 855-865.	3.3	54
247	Novel Molecular Therapies for Heritable Skin Disorders. Journal of Investigative Dermatology, 2012, 132, 820-828.	0.7	57
248	Sources of Mesenchymal Stem Cells: Current and Future Clinical Use. Advances in Biochemical Engineering/Biotechnology, 2012, 130, 267-286.	1.1	5
249	Basic principles in generating induced pluripotent stem cells. , 2012, , 49-63.		1
250	Transgene-Free Disease-Specific Induced Pluripotent Stem Cells from Patients with Type 1 and Type 2 Diabetes. Stem Cells Translational Medicine, 2012, 1, 451-461.	3.3	76
251	â€~Shovel-Ready' applications of stem cell advances for pediatric heart disease. Current Opinion in Pediatrics, 2012, 24, 577-583.	2.0	7
252	Targeting Serous Epithelial Ovarian Cancer with Designer Zinc Finger Transcription Factors. Journal of Biological Chemistry, 2012, 287, 29873-29886.	3.4	38
253	Specimen Collection for Induced Pluripotent Stem Cell Research: Harmonizing the Approach to Informed Consent. Stem Cells Translational Medicine, 2012, 1, 409-421.	3.3	53
254	Pluripotent Stem Cells in Research and Treatment of Hemoglobinopathies. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a011841-a011841.	6.2	11
255	The pluripotency factor LIN28 in monkey and human testes: a marker for spermatogonial stem cells?. Molecular Human Reproduction, 2012, 18, 477-488.	2.8	64
256	Steering a New Course for Stem Cell Research: NIH's Intramural Center for Regenerative Medicine. Stem Cells Translational Medicine, 2012, 1, 15-17.	3.3	13
257	Novel Target Identification Technologies for the Personalised Therapy of Type II Diabetes and Obesity. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2012, 12, 183-207.	0.5	4

	CITATION REL	PORT	
#	ARTICLE	IF	Citations
258	mRNA as a Versatile Tool for Exogenous Protein Expression. Current Gene Therapy, 2012, 12, 347-361. Converting Scar to Muscle in the Injured Heart. Molecular Therapy, 2012, 20, 1294-1296.	2.0	57
259 260	Pushing the Reset Button: Chemical-Induced Conversion of Amniotic Fluid Stem Cells Into a Pluripotent State. Molecular Therapy, 2012, 20, 1839-1841.	8.2	5
261	Normal Collagen and Bone Production by Gene-targeted Human Osteogenesis Imperfecta iPSCs. Molecular Therapy, 2012, 20, 204-213.	8.2	74
262	Developing mRNA-vaccine technologies. RNA Biology, 2012, 9, 1319-1330.	3.1	412
263	Rat Embryonic Fibroblasts Improve Reprogramming of Human Keratinocytes into Induced Pluripotent Stem Cells. Stem Cells and Development, 2012, 21, 965-976.	2.1	58
264	EDITORIAL $\hat{a} \in$ "NOBEL PRIZE HIGHLIGHT: SOMATIC CELL REPROGRAMMING AND THE CURRENT CLINICAL GRADE CHALLENGE. Gene Therapy and Regulation, 2012, 07, 1230001.	0.3	0
265	Genome-wide profiling reveals transcriptional repression of MYC as a core component of NR4A tumor suppression in acute myeloid leukemia. Oncogenesis, 2012, 1, e19-e19.	4.9	33
266	Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells. Cell Research, 2012, 22, 321-332.	12.0	169
267	Generation of CD34 ⁺ Cells from CCR5-Disrupted Human Embryonic and Induced Pluripotent Stem Cells. Human Gene Therapy, 2012, 23, 238-242.	2.7	55
268	NUCLEAR REPROGRAMMING AND THE CURRENT CHALLENGES IN ADVANCING PERSONALIZED PLURIPOTENT STEM CELL-BASED THERAPIES. Gene Therapy and Regulation, 2012, 07, 1230002.	0.3	3
269	Engineering bone tissue from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8705-8709.	7.1	153
270	A short adaptive path from DNA to RNA polymerases. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8067-8072.	7.1	93
271	Induced Pluripotent Stem Cell Clones Reprogrammed via Recombinant Adeno-Associated Virus-Mediated Transduction Contain Integrated Vector Sequences. Journal of Virology, 2012, 86, 4463-4467.	3.4	18
272	Generating Cells from Stem CellsThe Story So Far. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a007674-a007674.	6.2	33
273	Concise Review: Pancreas Regeneration: Recent Advances and Perspectives. Stem Cells Translational Medicine, 2012, 1, 150-159.	3.3	64
274	How microRNAs facilitate reprogramming to pluripotency. Journal of Cell Science, 2012, 125, 4179-87.	2.0	39
275	Methods of Cell Purification: A Critical Juncture for Laboratory Research and Translational Science. Cells Tissues Organs, 2012, 195, 26-40.	2.3	27

#	Article	IF	CITATIONS
276	Smooth Muscle and Other Cell Sources for Human Blood Vessel Engineering. Cells Tissues Organs, 2012, 195, 15-25.	2.3	30
277	Reprogramming of Human Huntington Fibroblasts Using mRNA. , 2012, 2012, 1-12.		13
278	The Promise of Human Induced Pluripotent Stem Cells in Dental Research. Stem Cells International, 2012, 2012, 1-10.	2.5	12
279	The Stability of the Induced Epigenetic Programs. Comparative and Functional Genomics, 2012, 2012, 1-9.	2.0	3
280	Emerging Stem Cell Therapies: Treatment, Safety, and Biology. Stem Cells International, 2012, 2012, 1-9.	2.5	36
281	Cellular Reprogramming Employing Recombinant Sox2 Protein. Stem Cells International, 2012, 2012, 1-10.	2.5	43
282	Generation of Human-Induced Pluripotent Stem Cells by a Nonintegrating RNA Sendai Virus Vector in Feeder-Free or Xeno-Free Conditions. Stem Cells International, 2012, 2012, 1-9.	2.5	69
283	The Potential of iPS Cells in Synucleinopathy Research. Stem Cells International, 2012, 2012, 1-6.	2.5	6
284	Neurobiology meets genomic science: The promise of human-induced pluripotent stem cells. Development and Psychopathology, 2012, 24, 1443-1451.	2.3	6
285	Genetic correction of β-thalassemia patient-specific iPS cells and its use in improving hemoglobin production in irradiated SCID mice. Cell Research, 2012, 22, 637-648.	12.0	97
286	Inhibition of glycogen synthase kinase-3 promotes efficient derivation of pluripotent stem cells from neonatal mouse testis. Human Reproduction, 2012, 27, 2312-2324.	0.9	11
287	Selecting and Isolating Colonies of Human Induced Pluripotent Stem Cells Reprogrammed from Adult Fibroblasts. Journal of Visualized Experiments, 2012, , .	0.3	8
288	In vitro Transcription and Capping of Gaussia Luciferase mRNA Followed by HeLa Cell Transfection. Journal of Visualized Experiments, 2012, , .	0.3	10
289	A novel platform to enable the high-throughput derivation and characterization of feeder-free human iPSCs. Scientific Reports, 2012, 2, 213.	3.3	57
290	Induced Pluripotent Stem Cells as a Disease Modeling and Drug Screening Platform. Journal of Cardiovascular Pharmacology, 2012, 60, 408-416.	1.9	190
291	microRNA-based cancer cell reprogramming technology. Experimental and Therapeutic Medicine, 2012, 4, 8-14.	1.8	11
292	Hematopoietic stem cell engineering at a crossroads. Blood, 2012, 119, 1107-1116.	1.4	67
294	Towards regenerative therapy for cardiac disease. Lancet, The, 2012, 379, 933-942.	13.7	214

#	Article	IF	CITATIONS
295	Cell sources for trachea tissue engineering: past, present and future. Regenerative Medicine, 2012, 7, 851-863.	1.7	16
296	Targeted gene therapies: tools, applications, optimization. Critical Reviews in Biochemistry and Molecular Biology, 2012, 47, 264-281.	5.2	30
297	Cardiomyocytes derived from human induced pluripotent stem cells as models for normal and diseased cardiac electrophysiology and contractility. Progress in Biophysics and Molecular Biology, 2012, 110, 166-177.	2.9	56
298	Pluripotent stem cell-derived pancreatic β-cells: potential for regenerative medicine in diabetes. Regenerative Medicine, 2012, 7, 583-593.	1.7	8
299	Differentiating human stem cells into neurons and glial cells for neural repair. Frontiers in Bioscience - Landmark, 2012, 17, 65.	3.0	40
300	Prospects and challenges of induced pluripotent stem cells as a source of hematopoietic stem cells. Annals of the New York Academy of Sciences, 2012, 1266, 179-188.	3.8	9
301	Pluripotent Stem Cell–Based Cancer Therapy: Promise and Challenges. Science Translational Medicine, 2012, 4, 127ps9.	12.4	49
302	A Combinatorial Library of Unsaturated Lipidoids for Efficient Intracellular Gene Delivery. ACS Synthetic Biology, 2012, 1, 403-407.	3.8	50
303	From cellular therapies to tissue reprogramming and regenerative strategies in the treatment of diabetes. Regenerative Medicine, 2012, 7, 41-48.	1.7	15
304	A poor imitation of a natural process. Cell Cycle, 2012, 11, 4536-4544.	2.6	13
304 305	A poor imitation of a natural process. Cell Cycle, 2012, 11, 4536-4544. Residual Undifferentiated Cells During Differentiation of Induced Pluripotent Stem Cells In Vitro and In Vivo. Stem Cells and Development, 2012, 21, 521-529.	2.6 2.1	13 43
	Residual Undifferentiated Cells During Differentiation of Induced Pluripotent Stem Cells In Vitro and		
305	Residual Undifferentiated Cells During Differentiation of Induced Pluripotent Stem Cells In Vitro and In Vivo. Stem Cells and Development, 2012, 21, 521-529. Identification of Oct4-activating compounds that enhance reprogramming efficiency. Proceedings of	2.1	43
305 306	Residual Undifferentiated Cells During Differentiation of Induced Pluripotent Stem Cells In Vitro and In Vivo. Stem Cells and Development, 2012, 21, 521-529. Identification of Oct4-activating compounds that enhance reprogramming efficiency. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20853-20858. Induced Pluripotent Stem Cell Consensus Genes: Implication for the Risk of Tumorigenesis and	2.1	43 62
305 306 307	Residual Undifferentiated Cells During Differentiation of Induced Pluripotent Stem Cells In Vitro and In Vivo. Stem Cells and Development, 2012, 21, 521-529. Identification of Oct4-activating compounds that enhance reprogramming efficiency. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20853-20858. Induced Pluripotent Stem Cell Consensus Genes: Implication for the Risk of Tumorigenesis and Cancers in Induced Pluripotent Stem Cell Therapy. Stem Cells and Development, 2012, 21, 955-964. Cellular reprogramming: a small molecule perspective. Current Opinion in Cell Biology, 2012, 24,	2.1 7.1 2.1	43 62 47
305 306 307 308	Residual Undifferentiated Cells During Differentiation of Induced Pluripotent Stem Cells In Vitro and In Vivo. Stem Cells and Development, 2012, 21, 521-529. Identification of Oct4-activating compounds that enhance reprogramming efficiency. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20853-20858. Induced Pluripotent Stem Cell Consensus Genes: Implication for the Risk of Tumorigenesis and Cancers in Induced Pluripotent Stem Cell Therapy. Stem Cells and Development, 2012, 21, 955-964. Cellular reprogramming: a small molecule perspective. Current Opinion in Cell Biology, 2012, 24, 784-792. Recent developments in transposon-mediated gene therapy. Expert Opinion on Biological Therapy, 2012,	2.1 7.1 2.1 5.4	43 62 47 40
305 306 307 308 309	Residual Undifferentiated Cells During Differentiation of Induced Pluripotent Stem Cells In Vitro and In Vivo. Stem Cells and Development, 2012, 21, 521-529. Identification of Oct4-activating compounds that enhance reprogramming efficiency. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20853-20858. Induced Pluripotent Stem Cell Consensus Genes: Implication for the Risk of Tumorigenesis and Cancers in Induced Pluripotent Stem Cell Therapy. Stem Cells and Development, 2012, 21, 955-964. Cellular reprogramming: a small molecule perspective. Current Opinion in Cell Biology, 2012, 24, 784-792. Recent developments in transposon-mediated gene therapy. Expert Opinion on Biological Therapy, 2012, 12, 841-858. Dopaminergic differentiation using pluripotent stem cells. Journal of Cellular Biochemistry, 2012, 113,	2.1 7.1 2.1 5.4 3.1	43 62 47 40 47

#	Article	IF	CITATIONS
313	A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells. Journal of Molecular and Cellular Cardiology, 2012, 53, 323-332.	1.9	193
314	Induced pluripotent stem cells as a disease model for studying inherited arrhythmias: promises and hurdles. Drug Discovery Today: Disease Models, 2012, 9, e199-e207.	1.2	5
315	Epigenetic modulations of induced pluripotent stem cells: novel therapies and disease models. Drug Discovery Today: Disease Models, 2012, 9, e153-e160.	1.2	9
316	The use of human induced pluripotent stem cells (hiPSC) for modeling blood disorders. Drug Discovery Today: Disease Models, 2012, 9, e185-e188.	1.2	1
317	Generation of rabbit pluripotent stem cell lines. Theriogenology, 2012, 78, 1774-1786.	2.1	19
319	Challenges to the clinical application of pluripotent stem cells: towards genomic and functional stability. Genome Medicine, 2012, 4, 55.	8.2	36
320	Induced pluripotent stem cell technology for disease modeling and drug screening with emphasis on lysosomal storage diseases. Stem Cell Research and Therapy, 2012, 3, 34.	5.5	17
321	Investigating cellular identity and manipulating cell fate using induced pluripotent stem cells. Stem Cell Research and Therapy, 2012, 3, 8.	5.5	8
322	Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13793-13798.	7.1	235
323	Feeder-Free and Serum-Free Production of Hepatocytes, Cholangiocytes, and Their Proliferating Progenitors from Human Pluripotent Stem Cells: Application to Liver-Specific Functional and Cytotoxic Assays. Cellular Reprogramming, 2012, 14, 171-185.	0.9	40
324	A kinase inhibitor screen identifies small-molecule enhancers of reprogramming and iPS cell generation. Nature Communications, 2012, 3, 1085.	12.8	88
325	Allogeneic cellular and autologous stem cell therapy for sickle cell disease: â€~whom, when and how'. Bone Marrow Transplantation, 2012, 47, 1489-1498.	2.4	18
326	Generation of Multipotent Lung and Airway Progenitors from Mouse ESCs and Patient-Specific Cystic Fibrosis iPSCs. Cell Stem Cell, 2012, 10, 385-397.	11.1	312
327	Human ES- and iPS-Derived Myogenic Progenitors Restore DYSTROPHIN and Improve Contractility upon Transplantation in Dystrophic Mice. Cell Stem Cell, 2012, 10, 610-619.	11.1	411
328	Direct Reprogramming of Fibroblasts into Neural Stem Cells by Defined Factors. Cell Stem Cell, 2012, 10, 465-472.	11.1	511
329	Background Mutations in Parental Cells Account for Most of the Genetic Heterogeneity of Induced Pluripotent Stem Cells. Cell Stem Cell, 2012, 10, 570-582.	11.1	199
330	Direct Conversion of Fibroblasts into Stably Expandable Neural Stem Cells. Cell Stem Cell, 2012, 10, 473-479.	11.1	473
331	Molecular Signatures of Human Induced Pluripotent Stem Cells Highlight Sex Differences and Cancer Genes. Cell Stem Cell, 2012, 11, 75-90.	11.1	143

		REPORT	
#	ARTICLE Induced Pluripotent Stem Cells: Past, Present, and Future. Cell Stem Cell, 2012, 10, 678-684.	IF 11.1	CITATIONS
002		11.1	092
333	Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nature Methods, 2012, 9, 805-807.	19.0	283
334	Generation of Neuronal Progenitor Cells and Neurons from Mouse Sleeping Beauty Transposon–Generated Induced Pluripotent Stem Cells. Cellular Reprogramming, 2012, 14, 390-397.	0.9	16
335	Advances and applications of induced pluripotent stem cells. Canadian Journal of Physiology and Pharmacology, 2012, 90, 317-325.	1.4	12
336	Genetic and epigenetic stability of human pluripotent stem cells. Nature Reviews Genetics, 2012, 13, 732-744.	16.3	211
337	Induced pluripotent stem cells for cardiac repair. Cellular and Molecular Life Sciences, 2012, 69, 3285-3299.	5.4	37
338	Feeder-Free Derivation of Human Induced Pluripotent Stem Cells with Messenger RNA. Scientific Reports, 2012, 2, 657.	3.3	132
339	Induced pluripotent stem cells: the new patient?. Nature Reviews Molecular Cell Biology, 2012, 13, 713-726.	37.0	377
340	Human Amniotic Mesenchymal Stem Cell-Derived Induced Pluripotent Stem Cells May Generate a Universal Source of Cardiac Cells. Stem Cells and Development, 2012, 21, 2798-2808.	2.1	42
341	Biosensor technology in aging research and age-related diseases. Ageing Research Reviews, 2012, 11, 1-9.	10.9	6
343	Derivation of autism spectrum disorder-specific induced pluripotent stem cells from peripheral blood mononuclear cells. Neuroscience Letters, 2012, 516, 9-14.	2.1	64
344	Life in the Fast Lane: Mammalian Disease Models in the Genomics Era. Cell, 2012, 148, 1099-1109.	28.9	70
345	Induced Pluripotent Stem Cells: Progress and Future Perspectives in the Stem Cell World. Cellular Reprogramming, 2012, 14, 459-470.	0.9	8
346	Generation of Induced Pluripotent Stem Cells from Mouse Cancer Cells. Cancer Biotherapy and Radiopharmaceuticals, 2012, 27, 694-700.	1.0	9
347	Assessing iPSC reprogramming methods for their suitability in translational medicine. Journal of Cellular Biochemistry, 2012, 113, 3061-3068.	2.6	96
348	Concise Review: Human Pluripotent Stem Cells in the Treatment of Spinal Cord Injury. Stem Cells, 2012, 30, 1787-1792.	3.2	47
349	Cells derived from murine induced pluripotent stem cells (iPSC) by treatment with members of TGF-beta family give rise to osteoblasts differentiation and form bone in vivo. BMC Cell Biology, 2012, 13, 35.	3.0	43
350	Progress and bottleneck in induced pluripotency. Cell Regeneration, 2012, 1, 1:5.	2.6	4

# 351	ARTICLE The new drug circuit. Nature Medicine, 2012, 18, 1452-1454.	IF 30.7	CITATIONS
352	Jak/Stat3 Signaling Promotes Somatic Cell Reprogramming by Epigenetic Regulation. Stem Cells, 2012, 30, 2645-2656.	3.2	76
353	Cellular reprogramming: a new approach to modelling Parkinson's disease. Biochemical Society Transactions, 2012, 40, 1152-1157.	3.4	21
354	Nanoparticles for Gene Delivery into Stem Cells and Embryos. Advances in Polymer Science, 2012, , 51-85.	0.8	5
355	Derivation, expansion and differentiation of induced pluripotent stem cells in continuous suspension cultures. Nature Methods, 2012, 9, 509-516.	19.0	98
356	Small molecules, big roles – the chemical manipulation of stem cell fate and somatic cell reprogramming. Journal of Cell Science, 2012, 125, 5609-5620.	2.0	142
357	Generation of Induced Pluripotent Stem Cells from Somatic Cells. Progress in Molecular Biology and Translational Science, 2012, 111, 1-26.	1.7	17
358	Functional cardiac tissue engineering. Regenerative Medicine, 2012, 7, 187-206.	1.7	98
359	Reprogramming of Somatic Cells. Progress in Molecular Biology and Translational Science, 2012, 111, 51-82.	1.7	14
360	Mouse-Induced Pluripotent Stem Cells. Results and Problems in Cell Differentiation, 2012, 55, 395-411.	0.7	0
361	Bone scaffold architecture modulates the development of mineralized bone matrix by human embryonic stem cells. Biomaterials, 2012, 33, 8329-8342.	11.4	88
362	A cell state splitter and differentiation wave working-model for embryonic stem cell development and somatic cell epigenetic reprogramming. BioSystems, 2012, 109, 390-396.	2.0	14
363	A fluorescent screening platform for the rapid evaluation of chemicals in cellular reprogramming. Stem Cell Research, 2012, 9, 185-191.	0.7	18
364	Generation of integration-free human induced pluripotent stem cells from postnatal blood mononuclear cells by plasmid vector expression. Nature Protocols, 2012, 7, 2013-2021.	12.0	142
365	Induced Pluripotent Stem Cells (iPSCs). SpringerBriefs in Stem Cells, 2012, , 11-19.	0.1	0
368	Urine as a Source of Stem Cells. Advances in Biochemical Engineering/Biotechnology, 2012, 129, 19-32.	1.1	16
369	Advances in Induced Pluripotent Stem Cell Biology. , 2012, , 67-84.		0
370	Role of Induced Pluripotent Stem Cells in Regenerative Medicine. Stem Cells and Cancer Stem Cells, 2012, , 13-26.	0.1	0

ARTICLE IF CITATIONS # From cell culture to a cure: pancreatic \hat{l}^2 -cell replacement strategies for diabetes mellitus. 371 1.7 3 Regenerative Medicine, 2012, 7, 685-695. Efficient Reprogramming of Human Cord Blood CD34+ Cells Into Induced Pluripotent Stem Cells With 8.2 OCT4 and SOX2 Alone. Molecular Therapy, 2012, 20, 408-416. 373 Strategies of Regenerative Medicine., 2012, , 229-260. 0 Reprogramming Human Somatic Cells into Induced Pluripotent Stem Cells (iPSCs) Using Retroviral 374 0.3 Vector with GFP. Journal of Visualized Experiments, 2012, , . Human-Induced Pluripotent Stem Cells: In Quest of Clinical Applications. Molecular Biotechnology, 375 2.4 27 2012, 52, 193-203. In Vitro Uses of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Journal of Cardiovascular 2.4 Translational Research, 2012, 5, 581-592. Embryonic Template-Based Generation and Purification of Pluripotent Stem Cell-Derived 377 2.4 18 Cardiomyocytes for Heart Repair. Journal of Cardiovascular Translational Research, 2012, 5, 566-580. Regenerative Therapy Using Blood-Derived Stem Cells., 2012, , . 380 381 Neural Development and Stem Cells., 2012, , . 0 Pluripotency of induced pluripotent stem cells. Journal of Animal Science and Biotechnology, 2012, 3, 5.3 5. Valproic Acid Confers Functional Pluripotency to Human Amniotic Fluid Stem Cells in a 383 8.2 145 Transgene-free Approach. Molecular Therapy, 2012, 20, 1953-1967. Voltage controlled nano-injection system for single-cell surgery. Nanoscale, 2012, 4, 5843. 384 5.6 Human Amniotic Epithelial Cells are Reprogrammed More Efficiently by Induced Pluripotency than 385 0.9 34 Adult Fibroblasts. Cellular Reprogramming, 2012, 14, 193-203. Stem Cells and Cancer Stem Cells, Volume 4., 2012, , . Neural Regeneration. Current Topics in Microbiology and Immunology, 2012, 367, 163-191. 387 1.1 34 Stem Cells and Cancer Stem Cells, Volume 3., 2012, , . 389 Life Before Nkx2.5. Current Topics in Developmental Biology, 2012, 100, 1-31. 2.2 21 Programming human pluripotent stem cells into white and brown adipocytes. Nature Cell Biology, 390 209 2012, 14, 209-219.

#	Article	IF	CITATIONS
391	Characterization and criteria of embryonic stem and induced pluripotent stem cells for a dopamine replacement therapy. Progress in Brain Research, 2012, 200, 265-276.	1.4	14
392	Reprogramming of Mouse, Rat, Pig, and Human Fibroblasts into iPS Cells. Current Protocols in Molecular Biology, 2012, 97, Unit-23.15	2.9	13
393	CD117 ⁺ amniotic fluid stem cells. Organogenesis, 2012, 8, 77-88.	1.2	79
394	Establishment of transgene-free induced pluripotent stem cells reprogrammed from human stem cells of apical papilla for neural differentiation. Stem Cell Research and Therapy, 2012, 3, 43.	5.5	33
395	Generation of disease-specific induced pluripotent stem cells from patients with different karyotypes of Down syndrome. Stem Cell Research and Therapy, 2012, 3, 14.	5.5	42
396	Development of an All-in-One Inducible Lentiviral Vector for Gene Specific Analysis of Reprogramming. PLoS ONE, 2012, 7, e41007.	2.5	30
397	Nucleic Acid and Non-Nucleic Acid-Based Reprogramming of Adult Limbal Progenitors to Pluripotency. PLoS ONE, 2012, 7, e46734.	2.5	8
398	Bioluminescence Imaging of Stem Cell-Based Therapeutics for Vascular Regeneration. Theranostics, 2012, 2, 346-354.	10.0	31
399	Technological Progress in Generation of Induced Pluripotent Stem Cells for Clinical Applications. Scientific World Journal, The, 2012, 2012, 1-10.	2.1	12
400	X-Chromosome Inactivation in Rett Syndrome Human Induced Pluripotent Stem Cells. Frontiers in Psychiatry, 2012, 3, 24.	2.6	41
401	State of the Art in Stem Cell Research: Human Embryonic Stem Cells, Induced Pluripotent Stem Cells, and Transdifferentiation. Journal of Blood Transfusion, 2012, 2012, 1-10.	3.3	14
402	Translating 2A Research into Practice. , 0, , .		2
403	Generation of Human β-thalassemia Induced Pluripotent Stem Cells from Amniotic Fluid Cells Using a Single Excisable Lentiviral Stem Cell Cassette. Journal of Reproduction and Development, 2012, 58, 404-409.	1.4	43
404	Genetically modified stem cells for the treatment of neurological diseases. Frontiers in Bioscience - Elite, 2012, E4, 1170.	1.8	12
405	Genetic Modification of Domestic Animals for Agriculture and Biomedical Applications. , 2012, , .		2
406	Recent Patents on MicroRNA-Induced Pluripotent Stem Cell Generation. Recent Patents on Regenerative Medicine, 2012, 3, 5-16.	0.4	0
407	Advances in Stem Cell Therapies. , 0, , .		1
409	A New Class of Stem Cells in South Africa: Introducing Induced Pluripotent Stem cells (iPS cells). South African Medical Journal, 2012, 103, 16.	0.6	3

#	Article	IF	CITATIONS
410	The gene expression profiles of induced pluripotent stem cells (iPSCs) generated by a non-integrating method are more similar to embryonic stem cells than those of iPSCs generated by an integrating method. Genetics and Molecular Biology, 2012, 35, 693-700.	1.3	15
411	Differentiation Efficiency of Induced Pluripotent Stem Cells Depends on the Number of Reprogramming Factors. Stem Cells, 2012, 30, 570-579.	3.2	60
412	Concise Review: Genomic Stability of Human Induced Pluripotent Stem Cells. Stem Cells, 2012, 30, 22-27.	3.2	113
413	Concise Review: Human Cell Engineering: Cellular Reprogramming and Genome Editing. Stem Cells, 2012, 30, 75-81.	3.2	36
414	Concise Review: The Magic Act of Generating Induced Pluripotent Stem Cells: Many Rabbits in the Hat. Stem Cells, 2012, 30, 28-32.	3.2	16
415	Concise Review: A Chemical Approach to Control Cell Fate and Function. Stem Cells, 2012, 30, 61-68.	3.2	88
416	The Role of Human Leukocyte Antigen Matching in the Development of Multiethnic "Haplobank―of Induced Pluripotent Stem Cell Lines. Stem Cells, 2012, 30, 180-186.	3.2	137
417	Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature, 2012, 485, 599-604.	27.8	1,044
418	The Path from Skin to Brain: Generation of Functional Neurons from Fibroblasts. Molecular Neurobiology, 2012, 45, 586-595.	4.0	36
419	Stem Cell Sources for Vascular Tissue Engineering and Regeneration. Tissue Engineering - Part B: Reviews, 2012, 18, 405-425.	4.8	81
420	Generation of Induced Pluripotent Stem Cells from Human Renal Proximal Tubular Cells with Only Two Transcription Factors, Oct4 and Sox2. Journal of Biological Chemistry, 2012, 287, 24131-24138.	3.4	59
421	Regenerating functional heart tissue for myocardial repair. Cellular and Molecular Life Sciences, 2012, 69, 2635-2656.	5.4	48
422	Human induced pluripotent stem cells—from mechanisms to clinical applications. Journal of Molecular Medicine, 2012, 90, 735-745.	3.9	51
423	Efficient Cell Reprogramming Using Bioengineered Surfaces. Advanced Healthcare Materials, 2012, 1, 177-182.	7.6	9
424	Pluripotent stem cellâ€based heart regeneration: From the developmental and immunological perspectives. Birth Defects Research Part C: Embryo Today Reviews, 2012, 96, 98-108.	3.6	9
425	Somatic cell reprogramming for regenerative medicine: SCNT vs. iPS cells. BioEssays, 2012, 34, 472-476.	2.5	15
426	Methods for iPS cell generation for basic research and clinical applications. Biotechnology Journal, 2012, 7, 789-797.	3.5	24
427	The emerging functions of the p53-miRNA network in stem cell biology. Cell Cycle, 2012, 11, 2063-2072.	2.6	39

#	Article	IF	CITATIONS
428	Delineating nuclear reprogramming. Protein and Cell, 2012, 3, 329-345.	11.0	3
429	From Pluripotency to Distinct Cardiomyocyte Subtypes. Physiology, 2012, 27, 119-129.	3.1	22
430	Gene, Stem Cell, and Future Therapies for Orphan Diseases. Clinical Pharmacology and Therapeutics, 2012, 92, 182-192.	4.7	19
431	The promise of induced pluripotent stem cells in research and therapy. Nature, 2012, 481, 295-305.	27.8	976
432	Potential of Pluripotent Stem Cells for Diabetes Therapy. Current Diabetes Reports, 2012, 12, 490-498.	4.2	13
433	Non-viral iPSCs: a safe way for therapy?. Protein and Cell, 2012, 3, 241-245.	11.0	3
434	Comparing the reprogramming efficiency of mouse embryonic fibroblasts, mouse bone marrow mesenchymal stem cells and bone marrow mononuclear cells to iPSCs. In Vitro Cellular and Developmental Biology - Animal, 2012, 48, 236-243.	1.5	5
435	Redefining Parkinson's Disease Research Using Induced Pluripotent Stem Cells. Current Neurology and Neuroscience Reports, 2012, 12, 392-398.	4.2	17
436	Induced Pluripotent Stem Cells: Fundamentals and Applications of the Reprogramming Process and its Ramifications on Regenerative Medicine. Stem Cell Reviews and Reports, 2012, 8, 100-115.	5.6	52
437	Promise and challenges of human iPSC-based hematologic disease modeling and treatment. International Journal of Hematology, 2012, 95, 601-609.	1.6	14
438	Cell-based transplantation strategies to promote plasticity following spinal cord injury. Experimental Neurology, 2012, 235, 78-90.	4.1	127
439	Activation of pluripotency-associated genes in mouse embryonic fibroblasts by non-viral transfection with inÂvitro-derived mRNAs encoding Oct4, Sox2, Klf4 and cMyc. Biomaterials, 2012, 33, 412-417.	11.4	47
440	The cytotoxic and immunogenic hurdles associated with non-viral mRNA-mediated reprogramming of human fibroblasts. Biomaterials, 2012, 33, 4059-4068.	11.4	41
441	Reprogramming of somatic cells via TAT-mediated protein transduction of recombinant factors. Biomaterials, 2012, 33, 5047-5055.	11.4	70
442	Reprogramming of human fibroblasts into multipotent cells with a single ECM proteoglycan, fibromodulin. Biomaterials, 2012, 33, 5821-5831.	11.4	55
443	Using human pluripotent stem cells to study post-transcriptional mechanisms of neurodegenerative diseases. Brain Research, 2012, 1462, 129-138.	2.2	4
444	Bioartificial Lung Engineering. American Journal of Transplantation, 2012, 12, 283-288.	4.7	40
445	Perspectives on cell reprogramming with RNA. Trends in Biotechnology, 2012, 30, 243-249.	9.3	9

 ARTICLE Development of pluripotent stem cells for vascular therapy. Vascular Pharmacology, 2012, 56, 288-296. Reprogramming of gastrointestinal cancer cells. Cancer Science, 2012, 103, 393-399. Human pluripotent stem cells for disease modelling and drug screening. BioEssays, 2012, 34, 61-71. Cellular Reprogramming: A New Technology Frontier in Pharmaceutical Research. Pharmaceutical Research, 2012, 29, 35-52. Derivation and cardiomyocyte differentiation of induced pluripotent stem cells from heart failure patients. European Heart Journal, 2013, 34, 1575-1586. 	IF 2.1 3.9 2.5 3.5 2.2 5.9	CITATIONS 29 10 56 10 70 122
 Reprogramming of gastrointestinal cancer cells. Cancer Science, 2012, 103, 393-399. Human pluripotent stem cells for disease modelling and drug screening. BioEssays, 2012, 34, 61-71. Cellular Reprogramming: A New Technology Frontier in Pharmaceutical Research. Pharmaceutical Research, 2012, 29, 35-52. Derivation and cardiomyocyte differentiation of induced pluripotent stem cells from heart failure patients. European Heart Journal, 2013, 34, 1575-1586. 	 3.9 2.5 3.5 2.2 5.9 	10 56 10 70
 Human pluripotent stem cells for disease modelling and drug screening. BioEssays, 2012, 34, 61-71. Cellular Reprogramming: A New Technology Frontier in Pharmaceutical Research. Pharmaceutical Research, 2012, 29, 35-52. Derivation and cardiomyocyte differentiation of induced pluripotent stem cells from heart failure patients. European Heart Journal, 2013, 34, 1575-1586. 	2.5 3.5 2.2 5.9	56 10 70
 Cellular Reprogramming: A New Technology Frontier in Pharmaceutical Research. Pharmaceutical Research, 2012, 29, 35-52. Derivation and cardiomyocyte differentiation of induced pluripotent stem cells from heart failure patients. European Heart Journal, 2013, 34, 1575-1586. 	3.5 2.2 5.9	10 70
 Research, 2012, 29, 35-52. Derivation and cardiomyocyte differentiation of induced pluripotent stem cells from heart failure patients. European Heart Journal, 2013, 34, 1575-1586. 	2.2 5.9	70
450 patients. European Heart Journal, 2013, 34, 1575-1586.	5.9	
		122
451 Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming. Oncogene, 2013, 32, 2249-2260.	4 9	
Making \hat{l}^2 Cells from Adult Cells Within the Pancreas. Current Diabetes Reports, 2013, 13, 695-703.	7,4	45
Efficient Generation of Human iPSCs by a Synthetic Self-Replicative RNA. Cell Stem Cell, 2013, 13, 246-254.	11.1	253
BAY11 enhances OCT4 synthetic mRNA expression in adult human skin cells. Stem Cell Research and Therapy, 2013, 4, 15.	5.5	13
⁴⁵⁵ Induced pluripotent stem cells and hepatic differentiation. Journal of the Chinese Medical Association, 2013, 76, 599-605.	1.4	13
New Perspectives in Regeneration. Current Topics in Microbiology and Immunology, 2013, 367, v-vii.	1.1	5
457 Cellular Cardiomyoplasty. Methods in Molecular Biology, 2013, , .	0.9	5
Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nature Medicine, 2013, 19, 998-1004.	30.7	559
459 Gene therapy clinical trials worldwide to 2012 – an update. Journal of Gene Medicine, 2013, 15, 65-77.	2.8	1,057
460 MicroRNA Protocols. Methods in Molecular Biology, 2013, , .	0.9	2
461 Concise Review: Engineering Myocardial Tissue: The Convergence of Stem Cells Biology and Tissue Engineering Technology. Stem Cells, 2013, 31, 2587-2598.	3.2	40
462 Evolution of energy metabolism, stem cells and cancer stem cells: how the Warburg and Barker hypothesis might be linked. BMC Proceedings, 2013, 7, K8.	1.6	4
Pluripotent Stem Cells. Methods in Molecular Biology, 2013, , .	0.9	5

#	Article	IF	CITATIONS
464	Induced Pluripotent Stem Cells from Human Hair Follicle Mesenchymal Stem Cells. Stem Cell Reviews and Reports, 2013, 9, 451-460.	5.6	54
465	Induced Pluripotent Stem Cell Technology and Direct Conversion: New Possibilities to Study and Treat Parkinson's Disease. Stem Cell Reviews and Reports, 2013, 9, 505-513.	5.6	11
466	Cell-Based Therapy for the Deficient Urinary Sphincter. Current Urology Reports, 2013, 14, 476-487.	2.2	13
467	Generation of Human-Induced Pluripotent Stem Cells to Model Spinocerebellar Ataxia Type 2 In vitro. Journal of Molecular Neuroscience, 2013, 51, 237-248.	2.3	50
468	RNA-Based Tools for Nuclear Reprogramming and Lineage-Conversion: Towards Clinical Applications. Journal of Cardiovascular Translational Research, 2013, 6, 956-968.	2.4	53
469	The morphofunctional properties of induced pluripotent stem cells derived from human skin fibroblasts and differentiated to dopaminergic neurons. Neurochemical Journal, 2013, 7, 207-214.	0.5	5
470	Is aging a barrier to reprogramming? Lessons from induced pluripotent stem cells. Biogerontology, 2013, 14, 591-602.	3.9	16
471	Induction of Pluripotency. Advances in Experimental Medicine and Biology, 2013, 786, 5-25.	1.6	0
472	Stem Cells and Cancer Stem Cells, Volume 10. , 2013, , .		0
473	The Potential for Stem Cells in Cerebral Palsy—Piecing Together the Puzzle. Seminars in Pediatric Neurology, 2013, 20, 146-153.	2.0	13
474	Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnology Advances, 2013, 31, 1600-1623.	11.7	80
475	Design and Application of Synthetic Biology Devices for Therapy. , 2013, , 159-181.		1
476	Myocardial regeneration of the failing heart. Heart Failure Reviews, 2013, 18, 815-833.	3.9	18
478	Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nature Biotechnology, 2013, 31, 898-907.	17.5	528
479	The promise of stem cells for age-related macular degeneration and other retinal degenerative diseases. Drug Discovery Today: Therapeutic Strategies, 2013, 10, e25-e33.	0.5	6
480	Microenvironment-evoked cell lineage conversion: Shifting the focus from internal reprogramming to external forcing. Ageing Research Reviews, 2013, 12, 29-38.	10.9	3
481	Integration-free Methods for Generating Induced Pluripotent Stem Cells. Genomics, Proteomics and Bioinformatics, 2013, 11, 284-287.	6.9	76
482	Identification of Transcription Factors for Lineage-Specific ESC Differentiation. Stem Cell Reports, 2013, 1, 545-559.	4.8	76

#	ARTICLE Development of a novel two-dimensional directed differentiation system for generation of	IF	CITATIONS
483	cardiomyocytes from human pluripotent stem cells. International Journal of Čardiology, 2013, 168, 41-52.	1.7	14
484	Generation of Induced Pluripotent Stem Cells with High Efficiency from Human Umbilical Cord Blood Mononuclear Cells. Genomics, Proteomics and Bioinformatics, 2013, 11, 304-311.	6.9	39
485	Use of Induced Pluripotent Stem Cells to Recapitulate Pulmonary Alveolar Proteinosis Pathogenesis. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 183-193.	5.6	51
486	Super-luminous supernovae on the rise. Nature, 2013, 502, 310-312.	27.8	1
487	Reprogramming in situ. Nature, 2013, 502, 309-310.	27.8	11
488	Synthetic Messenger RNA and Cell Metabolism Modulation. Methods in Molecular Biology, 2013, , .	0.9	6
489	Will Brain Cells Derived From Induced Pluripotent Stem Cells or Directly Converted From Somatic Cells (iNs) Be Useful for Schizophrenia Research?. Schizophrenia Bulletin, 2013, 39, 948-954.	4.3	2
491	Improved Hepatic Differentiation Strategies for Human Induced Pluripotent Stem Cells. Current Molecular Medicine, 2013, 13, 842-855.	1.3	30
492	Human iPSC-Based Modeling of Late-Onset Disease via Progerin-Induced Aging. Cell Stem Cell, 2013, 13, 691-705.	11.1	613
493	Induced pluripotent stem cells: origins, applications, and future perspectives. Journal of Zhejiang University: Science B, 2013, 14, 1059-1069.	2.8	25
494	Mesenchymal Stem Cells - Basics and Clinical Application II. Advances in Biochemical Engineering/Biotechnology, 2013, , .	1.1	2
495	Hypoxia Supports Reprogramming of Mesenchymal Stromal Cells Via Induction of Embryonic Stem Cell–Specific microRNA-302 Cluster and Pluripotency-Associated Genes. Cellular Reprogramming, 2013, 15, 68-79.	0.9	25
496	Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells. International Journal of Cardiology, 2013, 168, 5277-5286.	1.7	155
497	How to make a functional \hat{l}^2 -cell. Development (Cambridge), 2013, 140, 2472-2483.	2.5	200
498	Induced Pluripotent Stem Cells Are Sensitive to DNA Damage. Genomics, Proteomics and Bioinformatics, 2013, 11, 320-326.	6.9	16
499	Generation and characterization of transgene-free human induced pluripotent stem cells and conversion to putative clinical-grade status. Stem Cell Research and Therapy, 2013, 4, 87.	5.5	43
500	Deterministic direct reprogramming of somatic cells to pluripotency. Nature, 2013, 502, 65-70.	27.8	471
501	A Hierarchy in Reprogramming Capacity in Different Tissue Microenvironments: What We Know and What We Need to Know. Stem Cells and Development, 2013, 22, 695-706.	2.1	22

	CITATION	N REPORT	
#	Article	IF	Citations
502	Characterizing 5-methylcytosine in the mammalian epitranscriptome. Genome Biology, 2013, 14, 215.	9.6	204
503	Human pluripotent stem cell-derived cardiomyocytes for heart regeneration, drug discovery and disease modeling: from the genetic, epigenetic, and tissue modeling perspectives. Stem Cell Research and Therapy, 2013, 4, 97.	5.5	31
504	Multipotent (adult) and pluripotent stem cells for heart regeneration: what are the pros and cons?. Stem Cell Research and Therapy, 2013, 4, 151.	5.5	26
505	mRNA-engineered mesenchymal stem cells for targeted delivery of interleukin-10 to sites of inflammation. Blood, 2013, 122, e23-e32.	1.4	169
506	Characteristics of stem cells. , 2013, , 1-32.		0
507	Modeling Timothy Syndrome with iPS Cells. Journal of Cardiovascular Translational Research, 2013, 6, 1-9.	2.4	53
508	Reprogrammed Cells for Disease Modeling and Regenerative Medicine. Annual Review of Medicine, 2013, 64, 277-290.	12.2	124
509	A TALEN Genome-Editing System for Generating Human Stem Cell-Based Disease Models. Cell Stem Cell, 2013, 12, 238-251.	11.1	464
510	Systemic Delivery of Modified mRNA Encoding Herpes Simplex Virus 1 Thymidine Kinase for Targeted Cancer Gene Therapy. Molecular Therapy, 2013, 21, 358-367.	8.2	164
511	Cellular reprogramming and cancer development. International Journal of Cancer, 2013, 132, 1240-1248.	5.1	38
512	Transfection efficiency and transgene expression kinetics of mRNA delivered in naked and nanoparticle format. Journal of Controlled Release, 2013, 166, 227-233.	9.9	123
513	Pluripotent Stem Cell–Derived Hepatocytes: Potential and Challenges in Pharmacology. Annual Review of Pharmacology and Toxicology, 2013, 53, 147-159.	9.4	48
514	The evolving field of induced pluripotency: Recent progress and future challenges. Journal of Cellular Physiology, 2013, 228, 267-275.	4.1	43
515	Tissue Engineering and Regenerative Medicine: Recent Innovations and the Transition to Translation. Tissue Engineering - Part B: Reviews, 2013, 19, 1-13.	4.8	216
516	Application of Mesenchymal Stem Cells in Amyotrophic Lateral Sclerosis. , 2013, , 217-239.		0
517	An ECM-based culture system for the generation and maintenance of xeno-free human iPS cells. Biomaterials, 2013, 34, 1041-1050.	11.4	29
518	Assessing the Risks of Genotoxicity in the Therapeutic Development of Induced Pluripotent Stem Cells. Molecular Therapy, 2013, 21, 272-281.	8.2	44
519	Modeling Schizophrenia Using Induced Pluripotent Stem Cell–Derived and Fibroblast-Induced Neurons. Schizophrenia Bulletin, 2013, 39, 4-10.	4.3	24

#	ARTICLE Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in	IF	CITATIONS
520 521	vitro. European Heart Journal, 2013, 34, 1134-1146. MicroRNA Expression Profiling of Human-Induced Pluripotent and Embryonic Stem Cells. Methods in Molecular Biology, 2013, 936, 247-256.	2.2 0.9	180
522	Pluripotent stem cells and gene therapy. Translational Research, 2013, 161, 284-292.	5.0	36
523	Steps Toward Safe Cell Therapy Using Induced Pluripotent Stem Cells. Circulation Research, 2013, 112, 523-533.	4.5	371
524	Stem Cell Models for Drug Discovery and Toxicology Studies. Journal of Biochemical and Molecular Toxicology, 2013, 27, 17-27.	3.0	67
525	Clinical Grade iPS Cells: Need for Versatile Small Molecules and Optimal Cell Sources. Chemistry and Biology, 2013, 20, 1311-1322.	6.0	27
526	Analysis of Induced Pluripotent Stem Cells from a BRCA1 Mutant Family. Stem Cell Reports, 2013, 1, 336-349.	4.8	40
528	Using human induced pluripotent stem cells to treat retinal disease. Progress in Retinal and Eye Research, 2013, 37, 163-181.	15.5	65
529	Effects of specific and prolonged expression of zebrafish growth factors, Fgf2 and Lif in primordial germ cells in vivo. Biochemical and Biophysical Research Communications, 2013, 430, 347-351.	2.1	10
530	Generation of induced pluripotent stem cells from human foetal fibroblasts using the Sleeping Beauty transposon gene delivery system. Differentiation, 2013, 86, 30-37.	1.9	43
531	Pluripotency of Induced Pluripotent Stem Cells. Genomics, Proteomics and Bioinformatics, 2013, 11, 299-303.	6.9	12
532	Driving vascular endothelial cell fate of human multipotent Isl1+ heart progenitors with VEGF modified mRNA. Cell Research, 2013, 23, 1172-1186.	12.0	89
533	Quantitative and simultaneous translational control of distinct mammalian mRNAs. Nucleic Acids Research, 2013, 41, e135-e135.	14.5	37
534	Detection and quantification of maternal-effect gene transcripts in mouse second polar bodies: potential markers of embryo developmental competence. Fertility and Sterility, 2013, 99, 2055-2061.	1.0	8
535	Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes. Stem Cell Research, 2013, 11, 1335-1347.	0.7	95
536	mRNA transfection-based, feeder-free, induced pluripotent stem cells derived from adipose tissue of a 50-year-old patient. Metabolic Engineering, 2013, 18, 9-24.	7.0	41
537	Ontogenic development of cardiomyocytes derived from transgene-free human induced pluripotent stem cells and its homology with human heart. Life Sciences, 2013, 92, 63-71.	4.3	13
538	The Cellular Memory Disc of Reprogrammed Cells. Stem Cell Reviews and Reports, 2013, 9, 190-209.	5.6	4

#	Article	IF	CITATIONS
539	MicroRNAs in somatic cell reprogramming. Current Opinion in Cell Biology, 2013, 25, 208-214.	5.4	43
540	Induction of pluripotency in bone marrow mononuclear cells via polyketal nanoparticle-mediated delivery of mature microRNAs. Biomaterials, 2013, 34, 4235-4241.	11.4	39
541	N6-methyl-adenosine modification in messenger and long non-coding RNA. Trends in Biochemical Sciences, 2013, 38, 204-209.	7.5	181
542	In Vitro Transcription of Long RNA Containing Modified Nucleosides. Methods in Molecular Biology, 2013, 969, 29-42.	0.9	130
543	Microcarrier Suspension Cultures for High-Density Expansion and Differentiation of Human Pluripotent Stem Cells to Neural Progenitor Cells. Tissue Engineering - Part C: Methods, 2013, 19, 166-180.	2.1	95
544	Stem Cells and Mitochondria. , 2013, , 183-201.		0
545	The effect of forced growth of cells into 3D spheres using low attachment surfaces on the acquisition of stemness properties. Biomaterials, 2013, 34, 3215-3222.	11.4	74
546	How induced pluripotent stem cells are redefining personalized medicine. Gene, 2013, 520, 1-6.	2.2	51
547	Therapeutic Transdifferentiation. Circulation Research, 2013, 112, 748-750.	4.5	18
548	Progress in the Reprogramming of Somatic Cells. Circulation Research, 2013, 112, 562-574.	4.5	107
549	DNA Repair Mechanisms in Huntington's Disease. Molecular Neurobiology, 2013, 47, 1093-1102.	4.0	14
550	Current Methods for Inducing Pluripotency in Somatic Cells. Advanced Materials, 2013, 25, 2765-2771.	21.0	10
551	Generation of Transgene-free Induced Pluripotent Stem Cells with Non-viral Methods. Chinese Medical Sciences Journal, 2013, 28, 50-54.	0.4	3
552	A Review of the Methods for Human iPSC Derivation. Methods in Molecular Biology, 2013, 997, 23-33.	0.9	266
553	Epigenetic Reprogramming Without Genetic Modification: Use of Sendai Virus Vectors for Generating Safe Induced Pluripotent Stem Cells. , 2013, , 59-69.		0
554	Induced Pluripotent Stem Cells. , 2013, , 197-218.		0
555	The cell cycle and pluripotency. Biochemical Journal, 2013, 451, 135-143.	3.7	71
556	Patient-Specific Pluripotent Stem Cells. , 2013, , 381-390.		0

#	Article	IF	CITATIONS
557	Development of human embryonic stem cell therapies for age-related macular degeneration. Trends in Neurosciences, 2013, 36, 385-395.	8.6	150
558	Expanded complexity of unstable repeat diseases. BioFactors, 2013, 39, 164-175.	5.4	17
560	Generation of Transgene-Free iPSC Lines from Human Normal and Neoplastic Blood Cells Using Episomal Vectors. Methods in Molecular Biology, 2013, 997, 163-176.	0.9	23
561	Delivery of reprogramming factors into fibroblasts for generation of non-genetic induced pluripotent stem cells using a cationic bolaamphiphile as a non-viral vector. Biomaterials, 2013, 34, 5336-5343.	11.4	48
562	Mastermind-like transcriptional co-activator-mediated Notch signaling is indispensable for maintaining conjunctival epithelial identity. Development (Cambridge), 2013, 140, 594-605.	2.5	35
563	Strategies to Generate Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2013, 1029, 77-92.	0.9	15
565	Nonâ€Viral Coâ€Delivery of the Four Yamanaka Factors for Generation of Human Induced Pluripotent Stem Cells via Calcium Phosphate Nanocomposite Particles. Advanced Functional Materials, 2013, 23, 5403-5411.	14.9	35
566	Integrating Human Pluripotent Stem Cells into Drug Development. Cell Stem Cell, 2013, 12, 669-677.	11.1	123
567	Chemical warfare agent and biological toxin-induced pulmonary toxicity: could stem cells provide potential therapies?. Inhalation Toxicology, 2013, 25, 37-62.	1.6	9
568	HPLC Purification of In Vitro Transcribed Long RNA. Methods in Molecular Biology, 2013, 969, 43-54.	0.9	130
569	Large Volume Flow Electroporation of mRNA: Clinical Scale Process. Methods in Molecular Biology, 2013, 969, 127-138.	0.9	21
570	Reprogramming to Pluripotency and Differentiation of Cells with Synthetic mRNA. Methods in Molecular Biology, 2013, 969, 221-233.	0.9	6
571	Induced pluripotency and direct reprogramming: a new window for treatment of neurodegenerative diseases. Protein and Cell, 2013, 4, 415-424.	11.0	5
572	Mapping and significance of the <scp>mRNA</scp> methylome. Wiley Interdisciplinary Reviews RNA, 2013, 4, 397-422.	6.4	93
573	New Frontier in Regenerative Medicine: Site-Specific Gene Correction in Patient-Specific Induced Pluripotent Stem Cells. Human Gene Therapy, 2013, 24, 571-583.	2.7	32
574	Direct conversion of fibroblasts into neural progenitor-like cells by forced growth into 3D spheres on low attachment surfaces. Biomaterials, 2013, 34, 5897-5906.	11.4	41
575	Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT–MET mechanism for optimal reprogramming. Nature Cell Biology, 2013, 15, 829-838.	10.3	201
576	Induced neural stem cells (iNSCs) in neurodegenerative diseases. Journal of Neural Transmission, 2013, 120, 19-25.	2.8	28

# 577	ARTICLE Stem cells in retinal regeneration: past, present and future. Development (Cambridge), 2013, 140, 2576-2585.	IF 2.5	Citations 213
579	Current Challenges in Nucleic Acid Synthesis. Israel Journal of Chemistry, 2013, 53, 326-349.	2.3	15
580	Remodeling Neurodegeneration: Somatic Cell Reprogramming-Based Models of Adult Neurological Disorders. Neuron, 2013, 78, 957-969.	8.1	54
581	Potential therapeutic applications of RNA cap analogs. Future Medicinal Chemistry, 2013, 5, 1141-1172.	2.3	62
583	Realistic control of network dynamics. Nature Communications, 2013, 4, 1942.	12.8	304
584	Disease modeling and drug screening for neurological diseases using human induced pluripotent stem cells. Acta Pharmacologica Sinica, 2013, 34, 755-764.	6.1	59
585	Induced pluripotent stem (iPS) cells from human fetal stem cells (hFSCs). Organogenesis, 2013, 9, 101-110.	1.2	25
586	Embryonic Stem Cell Immunobiology. Methods in Molecular Biology, 2013, , .	0.9	3
587	Reprogramming human fibroblasts to pluripotency using modified mRNA. Nature Protocols, 2013, 8, 568-582.	12.0	180
588	Embryonic Stem Cells: A Signalling Perspective. , 2013, , 49-68.		1
589	Generation of Antigen-Specific T Lymphocytes from Induced Pluripotent Stem Cells for Adoptive Immunotherapy. , 2013, , 105-121.		0
590	Cell Engineering with Synthetic Messenger RNA. Methods in Molecular Biology, 2013, 969, 3-28.	0.9	13
591	A Novel Model of Urinary Tract Differentiation, Tissue Regeneration, and Disease: Reprogramming Human Prostate and Bladder Cells into Induced Pluripotent Stem Cells. European Urology, 2013, 64, 753-761.	1.9	73
592	Peering into the Black Box of Reprogramming to the Pluripotent State. Current Pathobiology Reports, 2013, 1, 129-136.	3.4	2
593	Potential therapeutic applications of differentiated induced pluripotent stem cells (iPSCs) in the treatment of neurodegenerative diseases. Neuroscience, 2013, 228, 47-59.	2.3	16
594	Toward pluripotency by reprogramming: mechanisms and application. Protein and Cell, 2013, 4, 820-832.	11.0	21
595	The ubiquitin–proteasome system regulates the stability and activity of the glucose sensor glucokinase in pancreatic β-cells. Biochemical Journal, 2013, 456, 173-184.	3.7	22
596	A simple method for deriving functional MSCs and applied for osteogenesis in 3D scaffolds. Scientific Reports, 2013, 3, 2243.	3.3	108

#	Article	IF	CITATIONS
597	Efficient Induction of Pluripotent Stem Cells from Menstrual Blood. Stem Cells and Development, 2013, 22, 1147-1158.	2.1	21
598	Induced Pluripotent Stem Cell Reprogramming by Integration-Free Sendai Virus Vectors from Peripheral Blood of Patients with Craniometaphyseal Dysplasia. Cellular Reprogramming, 2013, 15, 503-513.	0.9	46
599	Resetting epigenetic signatures to induce somatic cell reprogramming. Cellular and Molecular Life Sciences, 2013, 70, 1413-1424.	5.4	6
600	Learning the molecular mechanisms of the reprogramming factors: let's start from microRNAs. Molecular BioSystems, 2013, 9, 10-17.	2.9	31
601	Recent advances in the development of new transgenic animal technology. Cellular and Molecular Life Sciences, 2013, 70, 815-828.	5.4	32
602	Differentiation of Human Induced Pluripotent Stem Cells into a Keratinocyte Lineage. Methods in Molecular Biology, 2013, 1195, 1-12.	0.9	32
603	Pharmacoelectrophysiology of Viral-Free Induced Pluripotent Stem Cell–Derived Human Cardiomyocytes. Toxicological Sciences, 2013, 131, 458-469.	3.1	55
604	Comparative Analysis of Targeted Differentiation of Human Induced Pluripotent Stem Cells (hiPSCs) and Human Embryonic Stem Cells Reveals Variability Associated With Incomplete Transgene Silencing in Retrovirally Derived hiPSC Lines. Stem Cells Translational Medicine, 2013, 2, 83-93.	3.3	64
605	Blood Cell-Derived Induced Pluripotent Stem Cells Free of Reprogramming Factors Generated by Sendai Viral Vectors. Stem Cells Translational Medicine, 2013, 2, 558-566.	3.3	60
606	Sleeping Beauty transposon-based system for cellular reprogramming and targeted gene insertion in in in induced pluripotent stem cells. Nucleic Acids Research, 2013, 41, 1829-1847.	14.5	75
607	Modeling to Optimize Terminal Stem Cell Differentiation. Scientifica, 2013, 2013, 1-20.	1.7	1
608	Nonxenogeneic Growth and Retinal Differentiation of Human Induced Pluripotent Stem Cells. Stem Cells Translational Medicine, 2013, 2, 255-264.	3.3	51
609	Distinct iPS Cells Show Different Cardiac Differentiation Efficiency. Stem Cells International, 2013, 2013, 1-11.	2.5	14
610	Implantation site-dependent differences for tracheal regeneration with induced pluripotent stem cells (iPS cells). Acta Oto-Laryngologica, 2013, 133, 405-411.	0.9	4
611	Nonviral Methods for Inducing Pluripotency to Cells. BioMed Research International, 2013, 2013, 1-6.	1.9	15
612	Dedifferentiated adipocyte-derived progeny cells (DFAT cells). Adipocyte, 2013, 2, 122-127.	2.8	18
613	Systematic Review of Induced Pluripotent Stem Cell Technology as a Potential Clinical Therapy for Spinal Cord Injury. Cell Transplantation, 2013, 22, 571-617.	2.5	49
614	Generating β-cells in vitro. Current Opinion in Endocrinology, Diabetes and Obesity, 2013, 20, 112-117.	2.3	14

#	Article	IF	Citations
615	Transformation of somatic cells into stem cellâ€ŀike cells under a stromal niche. FASEB Journal, 2013, 27, 2644-2656.	0.5	9
616	Synthetic Biology and Personalized Medicine. Medical Principles and Practice, 2013, 22, 209-219.	2.4	267
617	Advances in the understanding of <scp>B</scp> arth syndrome. British Journal of Haematology, 2013, 161, 330-338.	2.5	21
618	Circulation Research Thematic Synopsis. Circulation Research, 2013, 112, .	4.5	0
619	Calcium signalling of human pluripotent stem cellâ€derived cardiomyocytes. Journal of Physiology, 2013, 591, 5279-5290.	2.9	70
620	Disease modelling using induced pluripotent stem cells: Status and prospects. BioEssays, 2013, 35, 271-280.	2.5	16
621	Stem cellâ€derived hepatocytes as a predictive model for drugâ€induced liver injury: are we there yet?. British Journal of Clinical Pharmacology, 2013, 75, 885-896.	2.4	68
622	Sustained Knockdown of a Disease-Causing Gene in Patient-Specific Induced Pluripotent Stem Cells Using Lentiviral Vector-Based Gene Therapy. Stem Cells Translational Medicine, 2013, 2, 641-654.	3.3	36
623	AstraZeneca juggernaut heads for Cambridge. Nature Biotechnology, 2013, 31, 476-477.	17.5	3
624	Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12774-12779.	7.1	137
625	Geneâ€based therapies of neuromuscular disorders: an update and the pivotal role of patient organizations in their discovery and implementation. Journal of Gene Medicine, 2013, 15, 397-413.	2.8	13
626	The Pharmacology of Regenerative Medicine. Pharmacological Reviews, 2013, 65, 1091-1133.	16.0	48
627	Potential of Herpesvirus Saimiri-Based Vectors To Reprogram a Somatic Ewing's Sarcoma Family Tumor Cell Line. Journal of Virology, 2013, 87, 7127-7139.	3.4	2
628	Feederâ€Free Reprogramming of Human Fibroblasts with Messenger RNA. Current Protocols in Stem Cell Biology, 2013, 27, Unit 4A.6	3.0	18
629	Somatic cell transformation into stem cell-like cells induced by different microenvironments. Organogenesis, 2013, 9, 245-248.	1.2	6
630	Chemical approaches to studying stem cell biology. Cell Research, 2013, 23, 81-91.	12.0	32
631	Sumoylation of Krüppel-like Factor 4 Inhibits Pluripotency Induction but Promotes Adipocyte Differentiation. Journal of Biological Chemistry, 2013, 288, 12791-12804.	3.4	39
632	MicroRNAs in regulation of pluripotency and somatic cell reprogramming. RNA Biology, 2013, 10, 1255-1261.	3.1	24

#	Article	IF	CITATIONS
633	Stem Cell Therapy to Cure Type 1 Diabetes: From Hype to Hope. Stem Cells Translational Medicine, 2013, 2, 328-336.	3.3	128
634	Engineering bone tissue substitutes from human induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8680-8685.	7.1	196
635	Pulse my heart. Science-Business EXchange, 2013, 6, 1212-1212.	0.0	0
636	Nucleofection induces transient elF2α phosphorylation by GCN2 and PERK. Gene Therapy, 2013, 20, 136-142.	4.5	18
637	Biomimetic materials in regenerative medicine. , 2013, , 3-45.		7
638	mir-17–92 Cluster Is Required for and Sufficient to Induce Cardiomyocyte Proliferation in Postnatal and Adult Hearts. Circulation Research, 2013, 112, 1557-1566.	4.5	348
640	Structural Immaturity of Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Circulation Journal, 2013, 77, 1154-1155.	1.6	1
641	Induced Pluripotent Stem Cells. , 2013, , 1-19.		0
642	Cellular Properties of Mesenchymal Cells Derived from the Decidua of Human Term Placenta and Their Applications in Regenerative Medicine. , 2013, , 240-260.		1
643	In vivo Reprogramming of Adult Somatic Cells to Pluripotency by Overexpression of Yamanaka Factors. Journal of Visualized Experiments, 2013, , e50837.	0.3	10
645	Gene expression dynamics during human embryonic development. , 0, , 76-83.		0
646	Modulating the biochemical and biophysical culture environment to enhance osteogenic differentiation and maturation of human pluripotent stem cell-derived mesenchymal progenitors. Stem Cell Research and Therapy, 2013, 4, 106.	5.5	24
647	Induced Pluripotent Stem Cell Labeling Using Quantum Dots. Cell Medicine, 2013, 6, 83-90.	5.0	16
648	Peripheral Mononuclear Cell Rejuvenation for Senescence Surveillance in Alzheimer Disease. Current Pharmaceutical Design, 2013, 19, 1720-1726.	1.9	10
649	Small Molecules in Stem Cell Research. Current Pharmaceutical Biotechnology, 2013, 14, 36-45.	1.6	0
650	Induced Pluripotent Stem Cells and Their Potential for Basic and Clinical Sciences. Current Cardiology Reviews, 2013, 9, 63-72.	1.5	40
652	Identifying Candidate Oocyte Reprogramming Factors Using Cross-Species Global Transcriptional Analysis. Cellular Reprogramming, 2013, 15, 126-133.	0.9	30
653	Therapeutic Transdifferentiation: Can we Generate Cardiac Tissue Rather Than Scar after Myocardial Injury?. Methodist DeBakey Cardiovascular Journal, 2013, 9, 210-212.	1.0	5

#	Article	IF	CITATIONS
654	Stem Cell Technologies Based on Hemangioblast Technology Focusing on Human Blood Cells. Recent Patents on Drug Delivery and Formulation, 2013, 7, 4-8.	2.1	2
655	Evaluation of the Use of Induced Pluripotent Stem Cells (iPSCs) for the Regeneration of Tracheal Cartilage. Cell Transplantation, 2013, 22, 341-353.	2.5	33
656	Stem Cell-Based Therapy for Spinal Cord Injury. Cell Transplantation, 2013, 22, 1309-1323.	2.5	47
657	Status of human germ cell differentiation from pluripotent stem cells. Reproduction, Fertility and Development, 2013, 25, 396.	0.4	2
658	Novel Insights into Disease Modeling Using Induced Pluripotent Stem Cells. Biological and Pharmaceutical Bulletin, 2013, 36, 182-188.	1.4	33
659	Evaluating the potential of poly(beta-amino ester) nanoparticles for reprogramming human fibroblasts to become induced pluripotent stem cells. International Journal of Nanomedicine, 2013, 8, 4641.	6.7	34
660	Induced pluripotent stem cellsÂ: from history to applications. Hematologie, 2013, 19, 20-32.	0.0	0
661	Cell Replacement Therapy in Type 1 Diabetes. , 0, , .		1
662	Technological Overview of iPS Induction from Human Adult Somatic Cells. Current Gene Therapy, 2013, 13, 73-92.	2.0	94
663	Multiple Paths to Reprogramming. , 2013, , .		0
663 664	Multiple Paths to Reprogramming. , 2013, , . An Overview of Pluripotent Stem Cells. , 2013, , .		0
		6.0	
664	An Overview of Pluripotent Stem Cells. , 2013, , . Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells.	6.0 2.5	5
664 665	An Overview of Pluripotent Stem Cells. , 2013, , . Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells. ELife, 2013, 2, e00940. In Vivo Cell Reprogramming towards Pluripotency by Virus-Free Overexpression of Defined Factors.		5 135
664 665 666	An Overview of Pluripotent Stem Cells. , 2013, , . Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells. ELife, 2013, 2, e00940. In Vivo Cell Reprogramming towards Pluripotency by Virus-Free Overexpression of Defined Factors. PLoS ONE, 2013, 8, e54754. AAV-Mediated Gene Therapy for Choroideremia: Preclinical Studies in Personalized Models. PLoS ONE,	2.5	5 135 39
664 665 666	An Overview of Pluripotent Stem Cells. , 2013, , . Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells. ELife, 2013, 2, e00940. In Vivo Cell Reprogramming towards Pluripotency by Virus-Free Overexpression of Defined Factors. PLoS ONE, 2013, 8, e54754. AAV-Mediated Gene Therapy for Choroideremia: Preclinical Studies in Personalized Models. PLoS ONE, 2013, 8, e61396. Efficient and Reproducible Myogenic Differentiation from Human iPS Cells: Prospects for Modeling	2.5 2.5	5 135 39 71
 664 665 666 667 668 	An Overview of Pluripotent Stem Cells. , 2013, , . Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells. ELife, 2013, 2, e00940. In Vivo Cell Reprogramming towards Pluripotency by Virus-Free Overexpression of Defined Factors. PLoS ONE, 2013, 8, e54754. AAV-Mediated Gene Therapy for Choroideremia: Preclinical Studies in Personalized Models. PLoS ONE, 2013, 8, e61396. Efficient and Reproducible Myogenic Differentiation from Human iPS Cells: Prospects for Modeling Miyoshi Myopathy In Vitro. PLoS ONE, 2013, 8, e61540. Generating a Non-Integrating Human Induced Pluripotent Stem Cell Bank from Urine-Derived Cells.	2.5 2.5 2.5	5 135 39 71 188

ARTICLE IF CITATIONS # Reprogramming resistant genes: in-depth comparison of gene expressions among iPS, ES, and somatic 672 2.8 11 cells. Frontiers in Physiology, 2013, 4, 7. RNA pathogenesis via Toll-like receptor-activated inflammation in expanded repeat neurodegenerative diseases. Frontiers in Molecular Neuroscience, 2013, 6, 25. 674 Induced pluripotent stem cells., 0, , 19-33. 0 Thinking outside the liver: Induced pluripotent stem cells for hepatic applications. World Journal of Gastroenterology, 2013, 19, 3385. Stem cells made with near-perfect efficiency. Nature, 2013, , . 676 27.8 0 Induced Pluripotent Stem Cells: Current and Emerging Technologies., 0, , . 678 Human Pluripotent Stem Cells Modeling Neurodegenerative Diseases., 2013,,. 2 Disease Models for the Genetic Cardiac Diseases., 0,,. 679 680 Stem and Progenitor Cells in Regenerative Pharmacology., 2013, , 75-126. 3 Gene Therapy for Erythroid Metabolic Inherited Diseases., 2013, , . Recent technological updates and clinical applications of induced pluripotent stem cells. Korean 682 32 1.7 Journal of Internal Medicine, 2014, 29, 547. Rapid and Efficient Conversion of Integration-Free Human Induced Pluripotent Stem Cells to 2.5 GMP-Grade Culture Conditions. PLoS ÖNE, 2014, 9, e94231. Direct Reprogramming of Human Fibroblasts to Hepatocyte-Like Cells by Synthetic Modified mRNAs. 684 2.5 73 PLoS ONĖ, 2014, 9, e100134. A Systemic Evaluation of Cardiac Differentiation from mRNA Reprogrammed Human Induced Pluripotent Stem Cells. PLoS ONE, 2014, 9, e103485. 2.5 28 Myocardial Reprogramming Medicine: The Development, Application, and Challenge of Induced 686 1.0 2 Pluripotent Stem Cells. New Journal of Science, 2014, 2014, 1-22. Direct reprogramming of adult cells: avoiding the pluripotent state. Stem Cells and Cloning: Advances 53 and Applications, 2014, 7, 19. The Use of Patient-Specific Induced Pluripotent Stem Cells (iPSCs) to Identify Osteoclast Defects in 688 2.4 9 Rare Genetic Bone Disorders. Journal of Clinical Medicine, 2014, 3, 1490-1510. Generation of pluripotent stem cells via protein transduction. International Journal of 689 Developmental Biology, 2014, 58, 21-27.

		CITATION RE	PORT	
#	Article		IF	CITATIONS
690	Reprogramming fibroblasts to pluripotency using arginine-terminated polyamidoamine nan based non-viral gene delivery system. International Journal of Nanomedicine, 2014, 9, 5837	oparticles '.	6.7	21
691	Enhancing RPE Cell-Based Therapy Outcomes for AMD: The Role of Bruch's Membrane. Tran Vision Science and Technology, 2014, 3, 4.	nslational	2.2	17
692	Towards a Treatment of Stress Urinary Incontinence: Application of Mesenchymal Stromal Regeneration of the Sphincter Muscle. Journal of Clinical Medicine, 2014, 3, 197-215.	Cells for	2.4	15
693	Design and Production of mRNA-based Gene Vectors for Therapeutic Reprogramming of Ce Technology, 2014, 04, .	ell Fate. Gene	0.5	1
694	Biological Pacing. , 2014, , 253-263.			0
695	Generation and Maintenance of iPSCs From CD34+Cord Blood Cells on Artificial Cell Attacl Substrate. , 2014, , .	nment		0
697	Gene- and Cell-Based Therapy for Cardiovascular Disease. , 2014, , 783-833.			0
698	Mitochondrial Disease-Specific Induced Pluripotent Stem Cell Models: Generation and Characterization. Methods in Molecular Biology, 2014, 1353, 323-342.		0.9	3
699	Footprint-Free Human Induced Pluripotent Stem Cells From Articular Cartilage With Rediffe Capacity: A First Step Toward a Clinical-Grade Cell Source. Stem Cells Translational Medicin 433-447.		3.3	58
701	Cloning of Rabbits. , 2014, , 227-244.			1
703	Pseudouridine: Still mysterious, but never a fake (uridine)!. RNA Biology, 2014, 11, 1540-1	554.	3.1	158
704	Tuning cell fate. Organogenesis, 2014, 10, 231-240.		1.2	9
705	MicroRNA-mediated regulation of extracellular matrix formation modulates somatic cell reprogramming. Rna, 2014, 20, 1900-1915.		3.5	23
706	The WNT receptor FZD7 is required for maintenance of the pluripotent state in human emb cells. Proceedings of the National Academy of Sciences of the United States of America, 20 1409-1414.	pryonic stem 14, 111,	7.1	111
707	Reprogramming and Carcinogenesis—Parallels and Distinctions. International Review of C Molecular Biology, 2014, 308, 167-203.	Cell and	3.2	48
708	Generation of induced pluripotent stem cells by using a mammalian artificial chromosome system. Acta Biologica Hungarica, 2014, 65, 331-345.	expression	0.7	2
709	Induced Pluripotent Stem Cells. , 2014, , 581-594.			6
710	Lymphoid Cells. , 2014, , 1075-1115.			0

#	Article	IF	Citations
711	Protumorigenic effects of mir-145 loss in malignant pleural mesothelioma. Oncogene, 2014, 33, 5319-5331.	5.9	67
712	Induced pluripotent stem cells: From derivation to application in biochemical and biomedical research. Biochemistry (Moscow), 2014, 79, 1425-1441.	1.5	8
713	Stem Cell Transcriptional Networks. Methods in Molecular Biology, 2014, , .	0.9	6
716	Regenerative Biology of the Eye. Pancreatic Islet Biology, 2014, , .	0.3	4
717	Excision of viral reprogramming cassettes by Cre protein transduction enables rapid, robust and efficient derivation of transgene-free human induced pluripotent stem cells. Stem Cell Research and Therapy, 2014, 5, 47.	5.5	28
718	Advances in Pluripotent and Adult Stem Cells for Eye Research. Pancreatic Islet Biology, 2014, , 101-119.	0.3	0
719	Stem Cells: The Pursuit of Genomic Stability. International Journal of Molecular Sciences, 2014, 15, 20948-20967.	4.1	27
720	Induced Pluripotent Stem Cell-Derived Models for mtDNA Diseases. Methods in Enzymology, 2014, 547, 399-415.	1.0	4
721	Epigenetic Landscapes Explain Partially Reprogrammed Cells and Identify Key Reprogramming Genes. PLoS Computational Biology, 2014, 10, e1003734.	3.2	100
722	Spinal Cord Injury and Regeneration: A Critical Evaluation of Current and Future Therapeutic Strategies. , 2014, , 593-638.		1
723	Induced Pluripotent Stem Cells: Challenges and Opportunities for Cancer Immunotherapy. Frontiers in Immunology, 2014, 5, 176.	4.8	35
725	Endogenous WNT Signaling Regulates hPSC-Derived Neural Progenitor Cell Heterogeneity and Specifies Their Regional Identity. Stem Cell Reports, 2014, 3, 1015-1028.	4.8	59
726	Reprogramming Adipose Tissue-Derived Mesenchymal Stem Cells into Pluripotent Stem Cells by a Mutant Adeno-Associated Viral Vector. Human Gene Therapy Methods, 2014, 25, 72-82.	2.1	10
727	Using Human Induced Pluripotent Stem Cells to Model Skeletal Diseases. Methods in Molecular Biology, 2014, 1353, 101-118.	0.9	18
728	Laserâ€Assisted Generation of Human Induced Pluripotent Stem Cells. Current Protocols in Stem Cell Biology, 2014, 31, 4A.7.1-15.	3.0	3
729	Cardiovascular regenerative therapeutics via synthetic paracrine factor modified mRNA. Stem Cell Research, 2014, 13, 693-704.	0.7	26
730	Generation of Patient-Specific induced Pluripotent Stem Cell from Peripheral Blood Mononuclear Cells by Sendai Reprogramming Vectors. Methods in Molecular Biology, 2014, 1353, 1-11.	0.9	5
731	Cell sheet engineering for cardiac repair and regeneration. , 2014, , 225-247.		0

#	Article	IF	CITATIONS
732	Nuclear reprogramming and induced pluripotent stem cells: a review for surgeons. ANZ Journal of Surgery, 2014, 84, 417-423.	0.7	5
733	Skeletal Tissue Engineering. , 2014, , 1289-1302.		2
734	Human Stem Cells for Craniomaxillofacial Reconstruction. Stem Cells and Development, 2014, 23, 1437-1451.	2.1	9
735	Somatic Cell Reprogramming into Cardiovascular Lineages. Journal of Cardiovascular Pharmacology and Therapeutics, 2014, 19, 340-349.	2.0	8
736	Vectorology and Factor Delivery in Induced Pluripotent Stem Cell Reprogramming. Stem Cells and Development, 2014, 23, 1301-1315.	2.1	48
737	Proneural Transcription Factor Atoh1 Drives Highly Efficient Differentiation of Human Pluripotent Stem Cells Into Dopaminergic Neurons. Stem Cells Translational Medicine, 2014, 3, 888-898.	3.3	35
738	A Site-Specific Genetic Modification for Induction of Pluripotency and Subsequent Isolation of Derived Lung Alveolar Epithelial Type II Cells. Stem Cells, 2014, 32, 402-413.	3.2	14
739	Neural Stem Cells Differentiated From iPS Cells Spontaneously Regain Pluripotency. Stem Cells, 2014, 32, 2596-2604.	3.2	52
740	Control of Cellular Function by Reversible Photoregulation of Translation. ChemBioChem, 2014, 15, 2652-2655.	2.6	32
741	Biotherapies of neuromuscular disorders. Revue Neurologique, 2014, 170, 799-807.	1.5	0
742	Chapter 8. Utility of Human Stem Cells for Drug Discovery. RSC Drug Discovery Series, 2014, , 162-193.	0.3	2
743	The RNA-Editing Enzyme ADAR1 Controls Innate Immune Responses to RNA. Cell Reports, 2014, 9, 1482-1494.	6.4	508
745	Pluripotent State Induction in Mouse Embryonic Fibroblast Using mRNAs of Reprogramming Factors. International Journal of Molecular Sciences, 2014, 15, 21840-21864.	4.1	9
746	Induced pluripotent stem cells from human revertant keratinocytes for the treatment of epidermolysis bullosa. Science Translational Medicine, 2014, 6, 264ra164.	12.4	108
747	Reprogramming the Cardiac Field. Circulation Research, 2014, 114, 409-411.	4.5	2
748	Recellularization of organs. Current Opinion in Organ Transplantation, 2014, 19, 603-609.	1.6	31
749	Disease-in-a-Dish. American Journal of Physical Medicine and Rehabilitation, 2014, 93, S155-S168.	1.4	18
750	Generation of neural progenitors from induced Bama miniature pig pluripotent cells. Reproduction, 2014, 147, 65-72.	2.6	21

#	Article	IF	CITATIONS
751	iPS Cell–Derived Cardiogenicity is Hindered by Sustained Integration of Reprogramming Transgenes. Circulation: Cardiovascular Genetics, 2014, 7, 667-676.	5.1	10
752	Persistent Integration of Reprogramming Factors Impairs the In Vitro Cardiogenic Potential of Induced Pluripotent Stem Cells. Circulation: Cardiovascular Genetics, 2014, 7, 571-572.	5.1	0
753	DELIVERY OF THERAPEUTIC RNAs INTO TARGET CELLS <i>IN VIVO</i> . Cosmos, 2014, 10, 3-8.	0.4	0
754	Pluripotent stem cell-derived neural stem cells: From basic research to applications. World Journal of Stem Cells, 2014, 6, 651.	2.8	6
755	iPS Cells for Modelling and Treatment of Retinal Diseases. Journal of Clinical Medicine, 2014, 3, 1511-1541.	2.4	19
756	A Comparative View on Human Somatic Cell Sources for iPSC Generation. Stem Cells International, 2014, 2014, 1-12.	2.5	181
757	Reprogramming for cardiac regeneration. Global Cardiology Science & Practice, 2014, 2014, 44.	0.4	4
758	Human Pluripotent Stem Cell-Derived Cardiomyocytes as Research and Therapeutic Tools. BioMed Research International, 2014, 2014, 1-14.	1.9	48
759	Nuclease-mediated gene editing by homologous recombination of the human globin locus. Nucleic Acids Research, 2014, 42, 1365-1378.	14.5	90
760	Pluripotent Reprogramming and Lineage Reprogramming: Promises and Challenges in Cardiovascular Regeneration. Tissue Engineering - Part B: Reviews, 2014, 20, 304-313.	4.8	7
761	Make no bones about it: cells could soon be reprogrammed to grow replacement bones?. Expert Opinion on Biological Therapy, 2014, 14, 1-5.	3.1	17
762	Reprogramming of buffalo (Bubalus bubalis) foetal fibroblasts with avian egg extract for generation of pluripotent stem cells. Research in Veterinary Science, 2014, 96, 292-298.	1.9	8
763	Modeling Heterogeneous Patients With a Clinical Diagnosis of Schizophrenia With Induced Pluripotent Stem Cells. Biological Psychiatry, 2014, 75, 936-944.	1.3	53
764	The utility of patient specific induced pluripotent stem cells for the modelling of Autistic Spectrum Disorders. Psychopharmacology, 2014, 231, 1079-1088.	3.1	43
765	Generation of Mouse Induced Pluripotent Stem Cells by Protein Transduction. Tissue Engineering - Part C: Methods, 2014, 20, 383-392.	2.1	35
766	The Current Status of iPS Cells in Cardiac Research and Their Potential for Tissue Engineering and Regenerative Medicine. Stem Cell Reviews and Reports, 2014, 10, 177-190.	5.6	53
767	Comparative Gene Expression Signature of Pig, Human and Mouse Induced Pluripotent Stem Cell Lines Reveals Insight into Pig Pluripotency Gene Networks. Stem Cell Reviews and Reports, 2014, 10, 162-176.	5.6	35
768	In vitro neurogenesis: development and functional implications of iPSC technology. Cellular and Molecular Life Sciences, 2014, 71, 1623-1639.	5.4	39

#	Article	IF	Citations
# 769	Differential Effects of Epigenetic Modifiers on the Expansion and Maintenance of Human Cord Blood	1r 2.0	41
709	Stem/Progenitor Cells. Biology of Blood and Marrow Transplantation, 2014, 20, 480-489.	2.0	41
770	Neuroprotection and Regeneration of the Spinal Cord. , 2014, , .		2
771	Reprogramming antitumor immunity. Trends in Immunology, 2014, 35, 178-185.	6.8	39
772	Simple Derivation of Transgene-Free iPS Cells by a Dual Recombinase Approach. Molecular Biotechnology, 2014, 56, 697-713.	2.4	2
773	ONSL and OSKM cocktails act synergistically in reprogramming human somatic cells into induced pluripotent stem cells. Molecular Human Reproduction, 2014, 20, 538-549.	2.8	10
774	The use of small molecules in somatic-cell reprogramming. Trends in Cell Biology, 2014, 24, 179-187.	7.9	60
775	Micro-management of pluripotent stem cells. Protein and Cell, 2014, 5, 36-47.	11.0	16
776	iPSC for Dental Tissue Regeneration. Current Oral Health Reports, 2014, 1, 9-15.	1.6	7
777	Induced Pluripotent Stem Cells as a Source of Hepatocytes. Current Pathobiology Reports, 2014, 2, 11-20.	3.4	49
778	Heart Regeneration: Opportunities and Challenges for Drug Discovery with Novel Chemical and Therapeutic Methods or Agents. Angewandte Chemie - International Edition, 2014, 53, 4056-4075.	13.8	36
779	On the road to bioartificial organs. Pflugers Archiv European Journal of Physiology, 2014, 466, 1847-1857.	2.8	20
780	iPSCs, aging and age-related diseases. New Biotechnology, 2014, 31, 411-421.	4.4	24
781	Brief Report: Importance of SOX8 for In Vitro Chondrogenic Differentiation of Human Mesenchymal Stromal Cells. Stem Cells, 2014, 32, 1629-1635.	3.2	25
782	Advancements in Induced Pluripotent Stem Cell Technology for Cardiac Regenerative Medicine. Journal of Cardiovascular Pharmacology and Therapeutics, 2014, 19, 330-339.	2.0	6
783	Generation of transgene-free mouse induced pluripotent stem cells using an excisable lentiviral system. Experimental Cell Research, 2014, 322, 335-344.	2.6	10
784	Human artificial chromosome-based gene delivery vectors for biomedicine and biotechnology. Expert Opinion on Drug Delivery, 2014, 11, 517-535.	5.0	57
785	Pleiotropic functions of magnetic nanoparticles for ex vivo gene transfer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1165-1174.	3.3	20
786	Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nature Medicine, 2014, 20, 616-623.	30.7	733

#	Article	IF	CITATIONS
787	Pluripotent Stem Cell Derived Cardiomyocytes for Cardiac Repair. Current Treatment Options in Cardiovascular Medicine, 2014, 16, 319.	0.9	33
788	Bioengineering tools to elucidate and control the fate of transplanted stem cells. Biochemical Society Transactions, 2014, 42, 679-687.	3.4	12
789	Principles of Stem Cell Biology. , 2014, , 39-55.		1
790	iPSC-derived neurons as a higher-throughput readout for autism: promises and pitfalls. Trends in Molecular Medicine, 2014, 20, 91-104.	6.7	42
791	Mouse Embryonic Stem Cells Have Underdeveloped Antiviral Mechanisms That Can Be Exploited for the Development of mRNA-Mediated Gene Expression Strategy. Stem Cells and Development, 2014, 23, 594-604.	2.1	15
792	Stem Cells and Cell Therapy. Cell Engineering, 2014, , .	0.4	4
793	An Experimental Approach to the Generation of Human Embryonic Stem Cells Equivalents. Molecular Biotechnology, 2014, 56, 12-37.	2.4	5
794	Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nature Reviews Genetics, 2014, 15, 82-92.	16.3	403
795	Myogenic Differentiation of Muscular Dystrophy-Specific Induced Pluripotent Stem Cells for Use in Drug Discovery. Stem Cells Translational Medicine, 2014, 3, 149-160.	3.3	100
796	β-Aminoisobutyric Acid Induces Browning of White Fat and Hepatic β-Oxidation and Is Inversely Correlated with Cardiometabolic Risk Factors. Cell Metabolism, 2014, 19, 96-108.	16.2	489
797	The let-7/LIN-41 Pathway Regulates Reprogramming to Human Induced Pluripotent Stem Cells by Controlling Expression of Prodifferentiation Genes. Cell Stem Cell, 2014, 14, 40-52.	11.1	200
798	Induced neural stem cells: Methods of reprogramming and potential therapeutic applications. Progress in Neurobiology, 2014, 114, 15-24.	5.7	39
799	Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nature Biotechnology, 2014, 32, 84-91.	17.5	497
800	Human Somatic Cell Reprogramming: Does the Egg Know Best?. Cell Stem Cell, 2014, 15, 531-532.	11.1	4
801	Generation of Human β-Thalassemia Induced Pluripotent Cell Lines by Reprogramming of Bone Marrow–Derived Mesenchymal Stromal Cells Using Modified mRNA. Cellular Reprogramming, 2014, 16, 447-455.	0.9	17
802	Expanding the synthetic ribonucleoprotein world in cells. Nature Methods, 2014, 11, 1105-1106.	19.0	1
803	Genome Editing for Human Gene Therapy. Methods in Enzymology, 2014, 546, 273-295.	1.0	17
804	Induced Pluripotent Stem Cells in Dermatology: Potentials, Advances, and Limitations. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a015164-a015164.	6.2	20

#	Article	IF	Citations
805	Derivation and Long-Term Culture of Transgene-Free Human Induced Pluripotent Stem Cells on Synthetic Substrates. Stem Cells Translational Medicine, 2014, 3, 1410-1417.	3.3	14
806	Poking cells for efficient vector-free intracellular delivery. Nature Communications, 2014, 5, 4466.	12.8	104
807	Quantification of nanowire penetration into living cells. Nature Communications, 2014, 5, 3613.	12.8	129
808	Your Heart on a Chip: iPSC-Based Modeling of Barth-Syndrome-Associated Cardiomyopathy. Cell Stem Cell, 2014, 15, 9-11.	11.1	15
809	Can Pluripotent Stem Cells Be Used in Cell-Based Therapy?. Cellular Reprogramming, 2014, 16, 98-107.	0.9	20
810	All Roads Lead to Induced Pluripotent Stem Cells: The Technologies of iPSC Generation. Stem Cells and Development, 2014, 23, 1285-1300.	2.1	87
811	"Footprint-Free―Human Induced Pluripotent Stem Cell-Derived Astrocytes for In Vivo Cell-Based Therapy. Stem Cells and Development, 2014, 23, 2626-2636.	2.1	31
812	The aging signature: a hallmark of induced pluripotent stem cells?. Aging Cell, 2014, 13, 2-7.	6.7	77
813	Widespread genome transcription: New possibilities for RNA therapies. Biochemical and Biophysical Research Communications, 2014, 452, 294-301.	2.1	37
814	Emerging trends and new developments in regenerative medicine: a scientometric update (2000 – 2014). Expert Opinion on Biological Therapy, 2014, 14, 1295-1317.	3.1	503
815	Messenger RNA- Versus Retrovirus-Based Induced Pluripotent Stem Cell Reprogramming Strategies: Analysis of Genomic Integrity. Stem Cells Translational Medicine, 2014, 3, 686-691.	3.3	30
816	The potential of alternate sources of cells for neural grafting in Parkinson's and Huntington's disease. Neurodegenerative Disease Management, 2014, 4, 297-307.	2.2	6
818	Biomaterials and cells for cardiac tissue engineering. , 2014, , 127-179.		7
819	The Application of Induced Pluripotent Stem Cells for Bone Regeneration: Current Progress and Prospects. Tissue Engineering - Part B: Reviews, 2014, 20, 328-339.	4.8	26
820	Enhanced Lung Epithelial Specification of Human Induced Pluripotent Stem Cells on Decellularized Lung Matrix. Annals of Thoracic Surgery, 2014, 98, 1721-1729.	1.3	117
821	Concise Review: Pluripotent Stem Cell-Based Regenerative Applications for Failing <i>β</i> -Cell Function. Stem Cells Translational Medicine, 2014, 3, 653-661.	3.3	22
822	Efficient germ-line transmission obtained with transgene-free induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10678-10683.	7.1	21
823	Efficient Generation of Myelinating Oligodendrocytes from Primary Progressive Multiple Sclerosis Patients by Induced Pluripotent Stem Cells. Stem Cell Reports, 2014, 3, 250-259.	4.8	266

ARTICLE IF CITATIONS # Selection Via Pluripotency-Related Transcriptional Screen Minimizes the Influence of Somatic Origin 824 3.2 10 on iPSC Differentiation Propensity. Stem Cells, 2014, 32, 2350-2359. Genome-wide Functional Analysis Reveals Factors Needed at the Transition Steps of Induced 6.4 Reprogramming. Cell Reports, 2014, 8, 327-337. Clinical potentials of human pluripotent stem cells in lung diseases. Clinical and Translational 827 4.0 10 Medicine, 2014, 3, 15. Advances in understanding the cell types and approaches used for generating induced pluripotent stem cells. Journal of Hematology and Oncology, 2014, 7, 50. mRNA-based therapeutics $\hat{a} \in \mathcal{C}$ developing a new class of drugs. Nature Reviews Drug Discovery, 2014, 13, 829 46.4 1,501 759-780. Improved differentiation of umbilical cord blood-derived mesenchymal stem cells into 830 insulin-producing cells by PDX-1 mRNA transfection. Differentiation, 2014, 87, 200-208. Critical differences in toxicity mechanisms in induced pluripotent stem cell-derived hepatocytes, 831 4.2 72 hepatic cell lines and primary hepatocytes. Archives of Toxicology, 2014, 88, 1427-1437. OCT4: A penetrant pluripotency inducer. Cell Regeneration, 2014, 3, 3:6. 2.6 10 833 Bone tissue engineering: state of the union. Drug Discovery Today, 2014, 19, 781-786. 6.4 187 Telomere Biology in Stem Cells and Reprogramming. Progress in Molecular Biology and Translational 834 1.7 Science, 2014, 125, 67-88. Footprint- and xeno-free human iPSCs derived from urine cells using extracellular matrix-based 835 22 11.4 culture conditions. Biomaterials, 2014, 35, 8330-8338. Neural Retinal Regeneration with Pluripotent Stem Cells. Developments in Ophthalmology, 2014, 53, 0.1 97-110. A modified piggybac transposon system mediated by exogenous mRNA to perform gene delivery in 837 2.6 1 bovine mammary epithelial cells. Biotechnology and Bioprocess Engineering, 2014, 19, 350-362. Nonviral delivery for reprogramming to pluripotency and differentiation. Archives of Pharmacal Research, 2014, 37, 107-119. 6.3 Transitions between epithelial and mesenchymal states during cell fate conversions. Protein and Cell, 839 11.0 44 2014, 5, 580-591. Optimized conditions for successful transfection of human endothelial cells with in vitro synthesized and modified mRNA for induction of protein expression. Journal of Biological 840 Engineering, 2014, 8, 8. Induced Pluripotent Stem Cells for Regenerative Medicine. Annual Review of Biomedical Engineering, 841 12.3 123 2014, 16, 277-294. Generating Human Neurons In Vitro and Using Them to Understand Neuropsychiatric Disease. Annual 842 58 Review of Neuroscience, 2014, 37, 479-501.

#	Article	IF	CITATIONS
843	Reprogramming human umbilical cord mesenchymal stromal cells to islet-like cells with the use of in vitro –synthesized pancreatic-duodenal homebox 1 messenger RNA. Cytotherapy, 2014, 16, 1519-1527.	0.7	16
844	The fate of cell reprogramming. Nature Methods, 2014, 11, 1006-1008.	19.0	22
845	Human-induced pluripotent stem cells: potential for neurodegenerative diseases. Human Molecular Genetics, 2014, 23, R17-R26.	2.9	101
846	Strategies for Whole Lung Tissue Engineering. IEEE Transactions on Biomedical Engineering, 2014, 61, 1482-1496.	4.2	49
847	Embryonic Stem Cells and Induced Pluripotent Stem Cells for Skeletal Regeneration. Tissue Engineering - Part B: Reviews, 2014, 20, 381-391.	4.8	29
848	Molecular and Cellular Regulation of Skeletal Myogenesis. Current Topics in Developmental Biology, 2014, 110, 1-73.	2.2	155
849	Multifaceted Regulation of Somatic Cell Reprogramming by mRNA Translational Control. Cell Stem Cell, 2014, 14, 606-616.	11.1	39
850	Small Molecule Screening in Human Induced Pluripotent Stem Cell-derived Terminal Cell Types. Journal of Biological Chemistry, 2014, 289, 4562-4570.	3.4	37
851	Export and Expression: mRNAs Deliver New Messages for Controlling Pluripotency. Cell Stem Cell, 2014, 14, 549-550.	11.1	4
852	3D InÂVitro Model of a Functional Epidermal Permeability Barrier from Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Stem Cell Reports, 2014, 2, 675-689.	4.8	97
853	Platform for Induction and Maintenance of Transgene-free hiPSCs Resembling Ground State Pluripotent Stem Cells. Stem Cell Reports, 2014, 2, 366-381.	4.8	142
854	From "ES-like―cells to induced pluripotent stem cells: A historical perspective in domestic animals. Theriogenology, 2014, 81, 103-111.	2.1	58
855	A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. Therapeutic Advances in Vaccines, 2014, 2, 10-31.	2.7	77
856	Induced pluripotent stem cells for modeling of pediatric neurological disorders. Biotechnology Journal, 2014, 9, 871-891.	3.5	13
857	Nucleic acid vaccines: prospects for non-viral delivery of mRNA vaccines. Expert Opinion on Drug Delivery, 2014, 11, 885-899.	5.0	129
858	Induced Pluripotent Stem Cells for Post–Myocardial Infarction Repair. Circulation Research, 2014, 114, 1328-1345.	4.5	119
859	Reprogramming Approaches in Cardiovascular Regeneration. Current Treatment Options in Cardiovascular Medicine, 2014, 16, 327.	0.9	5
860	A promising approach to iPSC-based cell therapy for diabetic wound treatment: Direct lineage reprogramming. Molecular and Cellular Endocrinology, 2014, 393, 8-15,	3.2	11

#	Article	IF	CITATIONS
861	Nuclear reprogramming and induced pluripotent stem cells: a review for surgeons. ANZ Journal of Surgery, 2014, 84, E1-E11.	0.7	3
862	Induced Pluripotent Stem Cell Potential in Medicine, Specifically Focused on Reproductive Medicine. Frontiers in Surgery, 2014, 1, 5.	1.4	9
863	Cell and Gene Therapy. Developments in Ophthalmology, 2014, 53, 167-177.	0.1	10
864	In Vitro Synthesis of Modified mRNA for Induction of Protein Expression in Human Cells. Journal of Visualized Experiments, 2014, , e51943.	0.3	25
869	Application of Induced Pluripotent Stem Cells in Liver Diseases. Cell Medicine, 2014, 7, 1-13.	5.0	15
870	Integration-Free Human Induced Pluripotent Stem Cells from type 1 Diabetes Patient Skin Fibroblasts Show Increased Abundance of Pancreas-Specific microRNAs. Cell Medicine, 2014, 7, 15-24.	5.0	13
871	Induced pluripotent stem cells: Landscape for studying and treating hereditary hearing loss. Journal of Otology, 2014, 9, 151-155.	1.0	5
872	Generation of integration-free induced hepatocyte-like cells from mouse fibroblasts. Scientific Reports, 2015, 5, 15706.	3.3	23
873	Development of â€~enhanced' potency immunotherapy products using nonviral approaches. Pharmaceutical Bioprocessing, 2015, 3, 463-470.	0.8	0
875	Enhancement of the in vivo persistence and antitumor efficacy of CD19 chimeric antigen receptor T cells through the delivery of modified TERT mRNA. Cell Discovery, 2015, 1, 15040.	6.7	50
876	Stem Cells: New Hope For Spinal Cord Injury. Serbian Journal of Experimental and Clinical Research, 2015, 16, 3-8.	0.1	0
877	Messenger RNA-based therapeutics for the treatment of apoptosis-associated diseases. Scientific Reports, 2015, 5, 15810.	3.3	80
878	Reprogramming and transdifferentiation for cardiovascular development and regenerative medicine: where do we stand?. EMBO Molecular Medicine, 2015, 7, 1090-1103.	6.9	38
879	Partial Somatic to Stem Cell Transformations Induced By Cell-Permeable Reprogramming Factors. Scientific Reports, 2014, 4, 4361.	3.3	34
880	TRIM32 modulates pluripotency entry and exit by directly regulating Oct4 stability. Scientific Reports, 2015, 5, 13456.	3.3	16
881	In vivo reprogrammed pluripotent stem cells from teratomas share analogous properties with their in vitro counterparts. Scientific Reports, 2015, 5, 13559.	3.3	10
882	A cost-effective and efficient reprogramming platform for large-scale production of integration-free human induced pluripotent stem cells in chemically defined culture. Scientific Reports, 2015, 5, 11319.	3.3	96
883	An Atypical Human Induced Pluripotent Stem Cell Line With a Complex, Stable, and Balanced Genomic Rearrangement Including a Large De Novo 1q Uniparental Disomy. Stem Cells Translational Medicine, 2015, 4, 224-229.	3.3	6

#	Article	IF	CITATIONS
884	Restoration of Physiologically Responsive Low-Density Lipoprotein Receptor-Mediated Endocytosis in Genetically Deficient Induced Pluripotent Stem Cells. Scientific Reports, 2015, 5, 13231.	3.3	22
885	N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. Journal of Controlled Release, 2015, 217, 337-344.	9.9	365
886	Understanding the molecular basis of autism in a dish using hiPSCs-derived neurons from ASD patients. Molecular Brain, 2015, 8, 57.	2.6	14
887	Human Induced Pluripotent Stem Cell and Nanotechnology-Based Therapeutics. Cell Transplantation, 2015, 24, 2185-2195.	2.5	15
888	From "Directed Differentiation―to "Neuronal Induction― Modeling Neuropsychiatric Disease. Biomarker Insights, 2015, 10s1, BMI.S20066.	2.5	24
889	Direct reprogramming of somatic cells: an update. Biomedical Research and Therapy, 2015, 2, .	0.6	2
890	Recombinant messenger RNA technology and its application in cancer immunotherapy, transcript replacement therapies, pluripotent stem cell induction, and beyond. Wiley Interdisciplinary Reviews RNA, 2015, 6, 471-499.	6.4	65
891	Practical Integrationâ€Free Episomal Methods for Generating Human Induced Pluripotent Stem Cells. Current Protocols in Human Genetics, 2015, 87, 21.2.1-21.2.21.	3.5	13
892	Growth kinetics and validation of nearâ€physiologically synchronized HEK293S Cultures. Engineering in Life Sciences, 2015, 15, 509-518.	3.6	9
893	An <scp>EBV</scp> â€based plasmid can replicate and maintain in stem cells. Biotechnology Progress, 2015, 31, 1579-1585.	2.6	2
894	Attenuated Innate Immunity in Embryonic Stem Cells and Its Implications in Developmental Biology and Regenerative Medicine. Stem Cells, 2015, 33, 3165-3173.	3.2	34
895	Generation of induced pluripotent stem cells from renal tubular cells of a patient with Alport syndrome. International Journal of Nephrology and Renovascular Disease, 2015, 8, 101.	1.8	12
896	No Detection of Potential Cancer Risk for Free-Viral Reprogrammed Stem Cell-Derived Dopaminergic Neurons from Adult Mice Fibroblasts. Journal of Stem Cell Research & Therapy, 2015, 05, .	0.3	0
897	Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals. World Journal of Stem Cells, 2015, 7, 315.	2.8	40
898	SCNT versus iPSCs: proteins and small molecules in reprogramming. International Journal of Developmental Biology, 2015, 59, 179-186.	0.6	11
899	Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells. International Journal of Nanomedicine, 2015, 10, 1841.	6.7	35
900	Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives. Stem Cells and Cloning: Advances and Applications, 2015, 8, 125.	2.3	73
901	Review Molecular mechanisms of induced pluripotency. Wspolczesna Onkologia, 2015, 1A, 22-29.	1.4	10

#	Article	IF	Citations
902	Bioinformatics Study on Zaire Ebolavirus (EBOV) Protein for Better Understanding the Vaccine Development. International Journal of Applied Sciences and Biotechnology, 2015, 2, 544-552.	0.8	1
903	Induced Pluripotent Stem Cells: Next Generation Stem Cells to Clinical Applications. Hanyang Medical Reviews, 2015, 35, 190.	0.4	1
904	The Potential for iPS-Derived Stem Cells as a Therapeutic Strategy for Spinal Cord Injury: Opportunities and Challenges. Journal of Clinical Medicine, 2015, 4, 37-65.	2.4	21
905	Generation of skeletal muscle cells from pluripotent stem cells: advances and challenges. Frontiers in Cell and Developmental Biology, 2015, 3, 29.	3.7	18
906	Cardiovascular Disease Modeling Using Patient-Specific Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2015, 16, 18894-18922.	4.1	41
907	Induced Pluripotency and Gene Editing in Disease Modelling: Perspectives and Challenges. International Journal of Molecular Sciences, 2015, 16, 28614-28634.	4.1	19
908	Tapping Stem Cells to Target AMD: Challenges and Prospects. Journal of Clinical Medicine, 2015, 4, 282-303.	2.4	21
909	Using iPS Cells toward the Understanding of Parkinson's Disease. Journal of Clinical Medicine, 2015, 4, 548-566.	2.4	47
910	Patient-Specific iPSC-Derived RPE for Modeling of Retinal Diseases. Journal of Clinical Medicine, 2015, 4, 567-578.	2.4	26
911	Screening of mRNA Chemical Modification to Maximize Protein Expression with Reduced Immunogenicity. Pharmaceutics, 2015, 7, 137-151.	4.5	76
912	Myogenic Precursors from iPS Cells for Skeletal Muscle Cell Replacement Therapy. Journal of Clinical Medicine, 2015, 4, 243-259.	2.4	26
913	A Comprehensive Library of Familial Human Amyotrophic Lateral Sclerosis Induced Pluripotent Stem Cells. PLoS ONE, 2015, 10, e0118266.	2.5	45
914	Effects of Integrating and Non-Integrating Reprogramming Methods on Copy Number Variation and Genomic Stability of Human Induced Pluripotent Stem Cells. PLoS ONE, 2015, 10, e0131128.	2.5	57
915	Generation of Functional Cardiomyocytes from Efficiently Generated Human iPSCs and a Novel Method of Measuring Contractility. PLoS ONE, 2015, 10, e0134093.	2.5	22
916	Non-Viral Methods For Generating Integration-Free, Induced Pluripotent Stem Cells. Current Stem Cell Research and Therapy, 2015, 10, 153-158.	1.3	50
917	Business: The billion-dollar biotech. Nature, 2015, 522, 26-28.	27.8	13
918	Reprogramming with Small Molecules instead of Exogenous Transcription Factors. Stem Cells International, 2015, 2015, 1-11.	2.5	63
919	Applications of Induced Pluripotent Stem Cells in Studying the Neurodegenerative Diseases. Stem Cells International, 2015, 2015, 1-11.	2.5	30

#	Article	IF	CITATIONS
920	Methods of induced pluripotent stem cells for clinical application. World Journal of Stem Cells, 2015, 7, 116.	2.8	60
921	Research on Skeletal Muscle Diseases Using Pluripotent Stem Cells. , 0, , .		0
922	Correction of human phospholamban R14del mutation associated with cardiomyopathy using targeted nucleases and combination therapy. Nature Communications, 2015, 6, 6955.	12.8	155
923	Genetic cell reprogramming: A new technology for basic research and applied usage. Russian Journal of Genetics, 2015, 51, 386-396.	0.6	8
924	Efficient Detection and Purification of Cell Populations Using Synthetic MicroRNA Switches. Cell Stem Cell, 2015, 16, 699-711.	11.1	191
925	Reprogramming fibroblasts toward cardiomyocytes, neural stem cells and hepatocytes by cell activation and signaling-directed lineage conversion. Nature Protocols, 2015, 10, 959-973.	12.0	46
926	Lung Stem Cells in the Epithelium and Vasculature. Pancreatic Islet Biology, 2015, , .	0.3	1
927	Biology and mechanoâ€response of tendon cells: Progress overview and perspectives. Journal of Orthopaedic Research, 2015, 33, 785-792.	2.3	21
928	Induced Pluripotent Stem-Cell-Derived Neural Cell Types in Treatment of Stroke. , 2015, , 147-172.		1
929	Functional differentiation of human pluripotent stem cells on a chip. Nature Methods, 2015, 12, 637-640.	19.0	122
931	Concise Review: Workshop Review: Understanding and Assessing the Risks of Stem Cell-Based Therapies. Stem Cells Translational Medicine, 2015, 4, 389-400.	3.3	98
932	From substitution of insulin to replacement of insulin producing cells: New therapeutic opportunities from research on pancreas development and stem cell differentiation. Best Practice and Research in Clinical Endocrinology and Metabolism, 2015, 29, 815-820.	4.7	1
933	Studying Lineage Decision-Making In Vitro: Emerging Concepts and Novel Tools. Annual Review of Cell and Developmental Biology, 2015, 31, 317-345.	9.4	41
934	Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Research and Therapy, 2015, 6, 144.	5.5	93
935	Hepatocyte-Like Cells Derived from Pluripotent Stem Cells. , 2015, , 267-278.		0
936	Generation of clinical-grade human induced pluripotent stem cells in Xeno-free conditions. Stem Cell Research and Therapy, 2015, 6, 223.	5.5	49
937	Development of a Safeguard System Using an Episomal Mammalian Artificial Chromosome for Gene and Cell Therapy. Molecular Therapy - Nucleic Acids, 2015, 4, e272.	5.1	7
938	Modified mRNA as a new therapeutic option for pediatric respiratory diseases and hemoglobinopathies. Molecular and Cellular Pediatrics, 2015, 2, 11.	1.8	19

#	Article	IF	CITATIONS
939	Stem cell reprogramming: Basic implications and future perspective for movement disorders. Movement Disorders, 2015, 30, 301-312.	3.9	5
940	Gene delivery in tissue engineering and regenerative medicine. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1679-1699.	3.4	22
941	Generating iPSCs: Translating Cell Reprogramming Science into Scalable and Robust Biomanufacturing Strategies. Cell Stem Cell, 2015, 16, 13-17.	11.1	60
942	Induced myogenic commitment of human chondrocytes via non-viral delivery of minicircle DNA. Journal of Controlled Release, 2015, 200, 212-221.	9.9	7
943	Non-genetic engineering of cells for drug delivery and cell-based therapy. Advanced Drug Delivery Reviews, 2015, 91, 125-140.	13.7	190
944	Transcription factorâ€mediated reprogramming: epigenetics and therapeutic potential. Immunology and Cell Biology, 2015, 93, 284-289.	2.3	18
945	Epigenetic-Mediated Reprogramming of Pancreatic Endocrine Cells. Antioxidants and Redox Signaling, 2015, 22, 1483-1495.	5.4	2
946	Generation of Mouse Pluripotent Stem Cell–Derived Proliferating Myeloid Cells as an Unlimited Source of Functional Antigen-Presenting Cells. Cancer Immunology Research, 2015, 3, 668-677.	3.4	19
947	Enhanced MyoD-Induced Transdifferentiation to a Myogenic Lineage by Fusion to a Potent Transactivation Domain. ACS Synthetic Biology, 2015, 4, 689-699.	3.8	30
948	The Future of Cord Blood Banks. , 2015, , 291-307.		1
949	Biobanks for Induced Pluripotent Stem Cells and Reprogrammed Tissues. , 2015, , 179-194.		0
950	Cord Blood Content. , 2015, , 9-26.		0
951	Novel codon-optimized mini-intronic plasmid for efficient, inexpensive and xeno-free induction of pluripotency. Scientific Reports, 2015, 5, 8081.	3.3	51
952	Pluripotent Stem Cells and Gene Therapy. , 2015, , 11-26.		1
953	Human Adipose-Derived Stem Cells (ASC): Their Efficacy in Clinical Applications. , 2015, , 135-149.		2
954	Induced pluripotent stem cell-derived vascular smooth muscle cells: methods and application. Biochemical Journal, 2015, 465, 185-194.	3.7	53
955	Cartilage Regeneration Using Induced Pluripotent Stem Cell Technologies. Mechanical Engineering Series, 2015, , 85-98.	0.2	0
956	Inducing pluripotency <i>in vitro</i> : recent advances and highlights in induced pluripotent stem cells generation and pluripotency reprogramming. Cell Proliferation, 2015, 48, 140-156.	5.3	34

		CITATION REPORT		
#	Article		IF	CITATIONS
957	Role of Nanotechnology in Epigenetic Reprogramming. Stem Cells and Development, 2	015, 24, 535-549.	2.1	4
958	Concise Review: Cell Therapies for Hereditary Metabolic Liver Diseases—Concepts, Cli and Future Developments. Stem Cells, 2015, 33, 1055-1062.	nical Results,	3.2	34
959	Metabolic restructuring and cell fate conversion. Cellular and Molecular Life Sciences, 2 1759-1777.	:015, 72,	5.4	31
960	Lipid-based mRNA vaccine delivery systems. Expert Review of Vaccines, 2015, 14, 221-2	234.	4.4	165
961	Synthetic biology devices and circuits for RNA-based â€~smart vaccines': a proposit Review of Vaccines, 2015, 14, 313-331.	ional review. Expert	4.4	33
962	Synthetic Chemically Modified mRNA-Based Delivery of Cytoprotective Factor Promote Cardiomyocyte Survival Post-Acute Myocardial Infarction. Molecular Pharmaceutics, 20	s Early 15, 12, 991-996.	4.6	54
963	Transcription factorâ€mediated reprogramming toward hematopoietic stem cells. EMB 34, 694-709.	O Journal, 2015,	7.8	32
964	Programming and reprogramming a human heartÂcell. EMBO Journal, 2015, 34, 710-73	88.	7.8	96
965	Control of Pluripotency and Reprogramming. , 2015, , 47-75.			0
966	Glial Precursor Cell Transplantation-Mediated Regeneration after Spinal Cord Injury Rep 321-335.	air. , 2015, ,		0
967	Bone tissue engineering via human induced pluripotent, umbilical cord and bone marro stem cells in rat cranium. Acta Biomaterialia, 2015, 18, 236-248.	w mesenchymal	8.3	116
968	Nuclear Architecture and Transcriptional Regulation of MicroRNAs. , 2015, , 1129-1158			0
969	Dual Optical Recordings for Action Potentials and Calcium Handling in Induced Pluripot Models of Cardiac Arrhythmias Using Genetically Encoded Fluorescent Indicators. Stem Translational Medicine, 2015, 4, 468-475.		3.3	36
970	Generation of vascular endothelial and smooth muscle cells from human pluripotent sto Nature Cell Biology, 2015, 17, 994-1003.	em cells.	10.3	463
971	Generating induced pluripotent stem cell derived endothelial cells and induced endothe cardiovascular disease modelling and therapeutic angiogenesis. International Journal of 2015, 197, 116-122.	lial cells for Cardiology,	1.7	37
972	Automated, high-throughput derivation, characterization and differentiation of inducec stem cells. Nature Methods, 2015, 12, 885-892.	l pluripotent	19.0	214
973	The safety of human pluripotent stem cells in clinical treatment. Annals of Medicine, 20	15, 47, 370-380.	3.8	72
974	RNA <i>N</i> ⁶ -methyladenosine methylation in post-transcriptional gene regulation. Genes and Development, 2015, 29, 1343-1355.	expression	5.9	727

#	Article	IF	CITATIONS
975	Two new routes to make blood: Hematopoietic specification from pluripotent cell lines versus reprogramming of somatic cells. Experimental Hematology, 2015, 43, 756-759.	0.4	5
976	From One-Cell to Tissue: Reprogramming, Cell Differentiation and Tissue Engineering. BioScience, 2015, 65, 468-475.	4.9	10
977	Induced Pluripotent Stem Cells and Their Use in Cardiac and Neural Regenerative Medicine. International Journal of Molecular Sciences, 2015, 16, 4043-4067.	4.1	20
978	Regenerative Therapy and Immune Modulation Using Umbilical Cord Blood–Derived Cells. Biology of Blood and Marrow Transplantation, 2015, 21, 1545-1554.	2.0	40
979	<i>In Vitro</i> Evaluation of a Novel mRNA-Based Therapeutic Strategy for the Treatment of Patients Suffering from Alpha-1-Antitrypsin Deficiency. Nucleic Acid Therapeutics, 2015, 25, 235-244.	3.6	13
980	The Hope for iPSC in Lung Stem Cell Therapy and Disease Modeling. Pancreatic Islet Biology, 2015, , 113-143.	0.3	1
981	Direct Reprogramming of Human Primordial Germ Cells into Induced Pluripotent Stem Cells: Efficient Generation of Genetically Engineered Germ Cells. Stem Cells and Development, 2015, 24, 2634-2648.	2.1	21
982	Multiple sclerosis: getting personal with induced pluripotent stem cells. Cell Death and Disease, 2015, 6, e1806-e1806.	6.3	17
983	A chemically defined substrate for the expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells. Stem Cell Research, 2015, 15, 75-87.	0.7	18
984	Layered polymeric capsules inhibiting the activity of RNases for intracellular delivery of messenger RNA. Journal of Materials Chemistry B, 2015, 3, 5842-5848.	5.8	35
985	Cardiomyopathy in a Dish: Using Human Inducible Pluripotent Stem Cells to Model Inherited Cardiomyopathies. Journal of Cardiac Failure, 2015, 21, 761-770.	1.7	28
986	KLF4 N-Terminal Variance Modulates Induced Reprogramming to Pluripotency. Stem Cell Reports, 2015, 4, 727-743.	4.8	35
987	Forward engineering neuronal diversity using direct reprogramming. EMBO Journal, 2015, 34, 1445-1455.	7.8	43
988	Cell-Based Screening: Extracting Meaning from Complex Data. Neuron, 2015, 86, 160-174.	8.1	37
989	Advances in Reprogramming-Based Study of Neurologic Disorders. Stem Cells and Development, 2015, 24, 1265-1283.	2.1	20
990	PDX-1 mRNA-induced reprogramming of mouse pancreas-derived mesenchymal stem cells into insulin-producing cells in vitro. Clinical and Experimental Medicine, 2015, 15, 501-509.	3.6	16
991	Cellular reprogramming and its application in regenerative medicine. Tissue Engineering and Regenerative Medicine, 2015, 12, 80-89.	3.7	11
992	Engineering Cardiovascular Regeneration. Current Stem Cell Reports, 2015, 1, 67-78.	1.6	0

#	Article	IF	CITATIONS
993	Rho kinase inhibitor Y-27632 promotes the differentiation of human bone marrow mesenchymal stem cells into keratinocyte-like cells in xeno-free conditioned medium. Stem Cell Research and Therapy, 2015, 6, 17.	5.5	30
994	Toward stem cell-based phenotypic screens for neurodegenerative diseases. Nature Reviews Neurology, 2015, 11, 339-350.	10.1	65
995	Prospects for clinical use of reprogrammed cells for autologous treatment of macular degeneration. Fibrogenesis and Tissue Repair, 2015, 8, 9.	3.4	21
996	Human Embryonic and Induced Pluripotent Stem Cell Research Trends: Complementation and Diversification of the Field. Stem Cell Reports, 2015, 4, 914-925.	4.8	31
997	Ectopic expression of <i>DAZL</i> gene in goat bone marrowâ€derived mesenchymal stem cells enhances the transâ€differentiation to putative germ cells compared to the exogenous treatment of retinoic acid or bone morphogenetic protein 4 signalling molecules. Cell Biology International, 2015, 39, 74-83.	3.0	21
999	Preimplantation Embryo Development and Primordial Germ Cell Lineage Specification. , 2015, , 233-265.		3
1000	Application of biomaterials to advance induced pluripotent stem cell research and therapy. EMBO Journal, 2015, 34, 987-1008.	7.8	84
1001	Efficient Delivery and Functional Expression of Transfected Modified mRNA in Human Embryonic Stem Cell-derived Retinal Pigmented Epithelial Cells. Journal of Biological Chemistry, 2015, 290, 5661-5672.	3.4	22
1002	Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Frontiers in Cell and Developmental Biology, 2015, 3, 2.	3.7	307
1003	Toward beta cell replacement for diabetes. EMBO Journal, 2015, 34, 841-855.	7.8	40
1004	Overcoming the hurdles for a reproducible generation of human functionally mature reprogrammed neurons. Experimental Biology and Medicine, 2015, 240, 787-794.	2.4	10
1005	Progress and challenges in generating functional hematopoietic stem/progenitor cells from human pluripotent stem cells. Cytotherapy, 2015, 17, 344-358.	0.7	12
1006	Direct lineage conversion of astrocytes to induced neural stem cells or neurons. Neuroscience Bulletin, 2015, 31, 357-367.	2.9	21
1007	Derivation and Characterization of Bovine Induced Pluripotent Stem Cells by Transposon-Mediated Reprogramming. Cellular Reprogramming, 2015, 17, 131-140.	0.9	70
1008	Present and future challenges of induced pluripotent stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140367.	4.0	118
1009	Methods of Reprogramming to Induced Pluripotent Stem Cell Associated with Chromosomal Integrity and Delineation of a Chromosome 5q Candidate Region for Growth Advantage. Stem Cells and Development, 2015, 24, 2032-2040.	2.1	20
1010	Current status of pluripotent stem cells: moving the first therapies to the clinic. Nature Reviews Drug Discovery, 2015, 14, 681-692.	46.4	226
1011	Induced Pluripotent Stem Cells and Periodontal Regeneration. Current Oral Health Reports, 2015, 2, 257-265.	1.6	16

#	Article	IF	CITATIONS
1012	Defining Optimized Properties of Modified mRNA to Enhance Virus- and DNA- Independent Protein Expression in Adult Stem Cells and Fibroblasts. Cellular Physiology and Biochemistry, 2015, 35, 1360-1371.	1.6	12
1013	Using human induced pluripotent stem cells to model cerebellar disease: Hope and hype. Journal of Neurogenetics, 2015, 29, 95-102.	1.4	10
1014	Concise Review: Cardiac Disease Modeling Using Induced Pluripotent Stem Cells. Stem Cells, 2015, 33, 2643-2651.	3.2	39
1015	Directed Myogenic Differentiation of Human Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2015, 1353, 89-99.	0.9	36
1016	Correction of Down syndrome and Edwards syndrome aneuploidies in human cell cultures. DNA Research, 2015, 22, 331-342.	3.4	24
1017	Vascular diseases await translation of blood vessels engineered from stem cells. Science Translational Medicine, 2015, 7, 309rv6.	12.4	24
1018	Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals. Molecular Therapy, 2015, 23, 1456-1464.	8.2	366
1019	Knocking down disease: a progress report on siRNA therapeutics. Nature Reviews Genetics, 2015, 16, 543-552.	16.3	669
1020	Genome-wide RNA-Seq of Human Motor Neurons Implicates Selective ER Stress Activation in Spinal Muscular Atrophy. Cell Stem Cell, 2015, 17, 569-584.	11.1	108
1021	Derivation of Non-Integration Induced Pluripotent Stem Cells from Fibroblast of Severe Deafness Patients with GJB2 Mutation. Journal of Genetics and Genomics, 2015, 42, 455-458.	3.9	1
1022	Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration. Biomaterials, 2015, 73, 51-59.	11.4	25
1023	miR-128 represses L1 retrotransposition by binding directly to L1 RNA. Nature Structural and Molecular Biology, 2015, 22, 824-831.	8.2	66
1024	RNA-Mediated Reprogramming of Primary Adult Human Dermal Fibroblasts into c-kit ⁺ Cardiac Progenitor Cells. Stem Cells and Development, 2015, 24, 2622-2633.	2.1	7
1025	Diagnosis and Acute Management of Spinal Cord Injury: Current Best Practices and Emerging Therapies. Current Trauma Reports, 2015, 1, 169-181.	1.3	7
1026	Generation of Human Induced Pluripotent Stem Cells Using RNA-Based Sendai Virus System and Pluripotency Validation of the Resulting Cell Population. Methods in Molecular Biology, 2015, 1353, 285-307.	0.9	13
1027	THERAPY OF ENDOCRINE DISEASE: Islet transplantation for type 1 diabetes: so close and yet so far away. European Journal of Endocrinology, 2015, 173, R165-R183.	3.7	43
1028	Efficient Reprogramming of Human Fibroblasts and Blood-Derived Endothelial Progenitor Cells Using Nonmodified RNA for Reprogramming and Immune Evasion. Human Gene Therapy, 2015, 26, 751-766.	2.7	61
1029	Targeted Disruption of the <i>β</i> 2-Microglobulin Gene Minimizes the Immunogenicity of Human Embryonic Stem Cells. Stem Cells Translational Medicine, 2015, 4, 1234-1245.	3.3	132

#	Article	IF	CITATIONS
1030	Induced Pluripotency and Epigenetic Reprogramming. Cold Spring Harbor Perspectives in Biology, 2015, 7, a019448.	5.5	84
1031	Combined negative effect of donor age and time in culture on the reprogramming efficiency into induced pluripotent stem cells. Stem Cell Research, 2015, 15, 254-262.	0.7	64
1032	A Facile Method to Establish Human Induced Pluripotent Stem Cells From Adult Blood Cells Under Feeder-Free and Xeno-Free Culture Conditions: A Clinically Compliant Approach. Stem Cells Translational Medicine, 2015, 4, 320-332.	3.3	71
1033	Reprogramming of endometrial adult stromal cells in the presence of a ROCK inhibitor, thiazovivin, could obtain more efficient iPSCs. Cell Biology International, 2015, 39, 515-518.	3.0	5
1034	A comparison of non-integrating reprogramming methods. Nature Biotechnology, 2015, 33, 58-63.	17.5	424
1035	Pluripotent Stem Cells for Schwann Cell Engineering. Stem Cell Reviews and Reports, 2015, 11, 205-218.	5.6	33
1036	Signalling Through Retinoic Acid Receptors is Required for Reprogramming of Both Mouse Embryonic Fibroblast Cells and Epiblast Stem Cells to Induced Pluripotent Stem Cells. Stem Cells, 2015, 33, 1390-1404.	3.2	22
1037	mRNA delivery using non-viral PCL nanoparticles. Biomaterials Science, 2015, 3, 144-151.	5.4	39
1038	7q11.23 dosage-dependent dysregulation in human pluripotent stem cells affects transcriptional programs in disease-relevant lineages. Nature Genetics, 2015, 47, 132-141.	21.4	108
1039	Pluripotent stem cell energy metabolism: an update. EMBO Journal, 2015, 34, 138-153.	7.8	187
1040	Combining TGF-Î ² signal inhibition and connexin43 silencing for iPSC induction from mouse cardiomyocytes. Scientific Reports, 2015, 4, 7323.	3.3	1
1041	Atlas of Human Pluripotent Stem Cells in Culture. , 2015, , .		5
1042	miRNA and Methylation: A Multifaceted Liaison. ChemBioChem, 2015, 16, 195-203.	2.6	85
1045	Reprint of "iPSCs, aging and age-related diseases― New Biotechnology, 2015, 32, 169-179.	4.4	5
1046	Bladder tissue engineering: A literature review. Advanced Drug Delivery Reviews, 2015, 82-83, 31-37.	13.7	44
1047	Synthetic mRNAs for manipulating cellular phenotypes: an overview. New Biotechnology, 2015, 32, 229-235.	4.4	39
1048	Generation of pluripotent stem cells without the use of genetic material. Laboratory Investigation, 2015, 95, 26-42.	3.7	62
1049	Identification of Small Activating RNAs that Enhance Endogenous <i>OCT4</i> Expression in Human Mesenchymal Stem Cells. Stem Cells and Development, 2015, 24, 345-353.	2.1	15

#	Article	IF	CITATIONS
1050	WNT3A promotes myogenesis of human embryonic stem cells and enhances in vivo engraftment. Scientific Reports, 2014, 4, 5916.	3.3	34
1051	The Combination of Tet1 with Oct4 Generates High-Quality Mouse-Induced Pluripotent Stem Cells. Stem Cells, 2015, 33, 686-698.	3.2	39
1052	Neurodegenerative diseases in a dish: the promise of iPSC technology in disease modeling and therapeutic discovery. Neurological Sciences, 2015, 36, 21-27.	1.9	18
1054	Drug and cell delivery for cardiac regeneration. Advanced Drug Delivery Reviews, 2015, 84, 85-106.	13.7	170
1055	Synthetic Chemically Modified mRNA (modRNA): Toward a New Technology Platform for Cardiovascular Biology and Medicine. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a014035-a014035.	6.2	45
1056	An AAVS1-Targeted Minigene Platform for Correction of iPSCs From All Five Types of Chronic Granulomatous Disease. Molecular Therapy, 2015, 23, 147-157.	8.2	63
1057	iPS cell technologies and cartilage regeneration. Bone, 2015, 70, 48-54.	2.9	110
1058	Stem Cell Therapies for Cervical Spinal Cord Injury. , 2016, , .		2
1059	Pluripotent Stem Cells: Differentiation Potential and Therapeutic Efficacy for Cartilage Repair. , 2016, ,		1
1060	Direct Comparison of DNA versus mRNA on the Efficiency of Induced Pluripotent Stem Cells Generation from Human Primary Fibroblasts. Cellular & Molecular Medicine: Open Access, 2016, 02, .	0.4	1
1061	Pluripotent Stem Cells and Their Dynamic Niche. , 2016, , .		4
1062	Induced Pluripotent Stem Cells inÂHuntington's Disease Research: ProgressÂand Opportunity. Journal of Huntington's Disease, 2016, 5, 99-131.	1.9	32
1063	Stem Cell Therapy and Immunological Rejection in Animal Models. Current Molecular Pharmacology, 2016, 9, 284-288.	1.5	36
1064	Current status of stem cell therapy: opportunities and limitations. Turkish Journal of Biology, 2016, 40, 955-967.	0.8	10
1065	Induced Pluripotent Stem (iPS) Cells in Dentistry: A Review. International Journal of Stem Cells, 2016, 9, 176-185.	1.8	24
1066	hiPSC Models Relevant to Schizophrenia. Handbook of Behavioral Neuroscience, 2016, , 391-406.	0.7	0
1067	Induced pluripotent stem cells: methods, disease modeling, and microenvironment for drug discovery and screening. Turkish Journal of Biology, 2016, 40, 998-1011.	0.8	0
1068	A review of Rett syndrome (RTT) with induced pluripotent stem cells. Stem Cell Investigation, 2016, 3, 52-52.	3.0	15

#	Article	IF	CITATIONS
1069	Survivin Improves Reprogramming Efficiency of Human Neural Progenitors by Single Molecule OCT4. Stem Cells International, 2016, 2016, 1-11.	2.5	11
1070	Extracellular Matrix-Dependent Generation of Integration- and Xeno-Free iPS Cells Using a Modified mRNA Transfection Method. Stem Cells International, 2016, 2016, 1-11.	2.5	7
1071	Biomedical Application of Dental Tissue-Derived Induced Pluripotent Stem Cells. Stem Cells International, 2016, 2016, 1-7.	2.5	11
1072	Modeling Alzheimer's Disease with Induced Pluripotent Stem Cells: Current Challenges and Future Concerns. Stem Cells International, 2016, 2016, 1-12.	2.5	17
1073	The Use of Stem Cells to Model Amyotrophic Lateral Sclerosis and Frontotemporal Dementia: From Basic Research to Regenerative Medicine. Stem Cells International, 2016, 2016, 1-9.	2.5	16
1074	The Progress of Induced Pluripotent Stem Cells as Models of Parkinson's Disease. Stem Cells International, 2016, 2016, 1-6.	2.5	19
1075	The Importance of Ubiquitination and Deubiquitination in Cellular Reprogramming. Stem Cells International, 2016, 2016, 1-14.	2.5	73
1076	Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors. Stem Cells International, 2016, 2016, 1-6.	2.5	5
1077	Pluripotent Stem Cells: Current Understanding and Future Directions. Stem Cells International, 2016, 2016, 1-20.	2.5	111
1078	Can Human Pluripotent Stem Cell-Derived Cardiomyocytes Advance Understanding of Muscular Dystrophies?. Journal of Neuromuscular Diseases, 2016, 3, 309-332.	2.6	13
1079	Transformation to Inducible Pluripotent Stem Cells. , 2016, , 243-265.		0
1080	A Compendium of Preparation and Application of Stem Cells in Parkinson's Disease: Current Status and Future Prospects. Frontiers in Aging Neuroscience, 2016, 8, 117.	3.4	20
1081	The Enemy within: Innate Surveillance-Mediated Cell Death, the Common Mechanism of Neurodegenerative Disease. Frontiers in Neuroscience, 2016, 10, 193.	2.8	30
1082	Utility of Induced Pluripotent Stem Cells for the Study and Treatment of Genetic Diseases: Focus on Childhood Neurological Disorders. Frontiers in Molecular Neuroscience, 2016, 9, 78.	2.9	29
1083	Stem Cell Therapies for Treatment of Liver Disease. Biomedicines, 2016, 4, 2.	3.2	34
1084	iPS Cells—The Triumphs and Tribulations. Dentistry Journal, 2016, 4, 19.	2.3	8
1085	An Overview of Direct Somatic Reprogramming: The Ins and Outs of iPSCs. International Journal of Molecular Sciences, 2016, 17, 141.	4.1	32
1086	Recent Advances in Disease Modeling and Drug Discovery for Diabetes Mellitus Using Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2016, 17, 256.	4.1	29

#	Article	IF	CITATIONS
1087	Induced Pluripotent Stem Cell Therapies for Cervical Spinal Cord Injury. International Journal of Molecular Sciences, 2016, 17, 530.	4.1	36
1088	Induced Pluripotent Stem Cells for Clinical Use. , 2016, , .		1
1089	Report from IPITA-TTS Opinion Leaders Meeting on the Future of β-Cell Replacement. Transplantation, 2016, 100, S1-S44.	1.0	66
1090	Review: Induced pluripotent stem cell models of frontotemporal dementia. Neuropathology and Applied Neurobiology, 2016, 42, 497-520.	3.2	8
1091	Glycoengineering of E-Selectin Ligands by Intracellular versus Extracellular Fucosylation Differentially Affects Osteotropism of Human Mesenchymal Stem Cells. Stem Cells, 2016, 34, 2501-2511.	3.2	48
1092	Stepwise Differentiation of Retinal Ganglion Cells from Human Pluripotent Stem Cells Enables Analysis of Glaucomatous Neurodegeneration. Stem Cells, 2016, 34, 1553-1562.	3.2	118
1093	Key regulators of skeletal myogenesis. Molecular Biology, 2016, 50, 169-192.	1.3	5
1094	Recent Improvements and Emerging Issues in iPSC Generation for the Modeling of Disease. , 2016, , 1-9.		0
1095	Human Pluripotent Stem Cells: Advances in Chondrogenic Differentiation and Articular Cartilage Regeneration. Current Molecular Biology Reports, 2016, 2, 113-122.	1.6	13
1096	10th anniversary of iPS cells: the challenges that lie ahead. Journal of Biochemistry, 2016, 160, 121-129.	1.7	28
1097	Viral and Synthetic RNA Vector Technologies and Applications. Molecular Therapy, 2016, 24, 1513-1527.	8.2	62
1098	Converting cell fates: generating hematopoietic stem cells <i>de novo</i> via transcription factor reprogramming. Annals of the New York Academy of Sciences, 2016, 1370, 24-35.	3.8	14
1101	Pluripotent stem cells: the last 10 years. Regenerative Medicine, 2016, 11, 831-847.	1.7	34
1102	Transient ectopic expression of the histone demethylase JMJD3 accelerates the differentiation of human pluripotent stem cells. Development (Cambridge), 2016, 143, 3674-3685.	2.5	41
1103	Generating Blood from iPS Cells. , 2016, , 399-420.		1
1104	Mesenchymal Stem Cells: An Optimistic Cell Source in Tissue Engineering for Bone Regeneration. Stem Cells in Clinical Applications, 2016, , 205-243.	0.4	1
1105	Effects of the Post-Spinal Cord Injury Microenvironment on the Differentiation Capacity of Human Neural Stem Cells Derived from Induced Pluripotent Stem Cells. Cell Transplantation, 2016, 25, 1833-1852.	2.5	30
1106	Bioethical and legal perspectives on cell reprogramming technologies. Medical Law International, 2016, 16, 206-228.	1.1	0

#	Article	IF	CITATIONS
1107	Creation of a library of induced pluripotent stem cells from Parkinsonian patients. Npj Parkinson's Disease, 2016, 2, 16009.	5.3	74
1108	RNAs Containing Modified Nucleotides Fail To Trigger RIG-I Conformational Changes for Innate Immune Signaling. MBio, 2016, 7, .	4.1	178
1109	MicroRNA-302 switch to identify and eliminate undifferentiated human pluripotent stem cells. Scientific Reports, 2016, 6, 32532.	3.3	82
1110	Human cellular CYBA UTR sequences increase mRNA translation without affecting the half-life of recombinant RNA transcripts. Scientific Reports, 2016, 6, 39149.	3.3	27
1111	Gramâ€5cale Chemical Synthesis of Baseâ€Modified Ribonucleosideâ€5′―O â€Triphosphates. Current Protoc in Nucleic Acid Chemistry, 2016, 67, 13.15.1-13.15.10.	$_{0.5}^{\rm cols}$	1
1112	Messenger RNA delivery of a cartilage-anabolic transcription factor as a disease-modifying strategy for osteoarthritis treatment. Scientific Reports, 2016, 6, 18743.	3.3	99
1113	Human iPS Cells in Disease Modelling. , 2016, , .		0
1114	Regenerative strategies for kidney engineering. FEBS Journal, 2016, 283, 3303-3324.	4.7	34
1115	Human induced pluripotent stem cells: A disruptive innovation. Current Research in Translational Medicine, 2016, 64, 91-96.	1.8	18
1116	Synthetic mRNA: Production, Introduction into Cells, and Physiological Consequences. Methods in Molecular Biology, 2016, 1428, 3-27.	0.9	9
1118	Reprogramming of Pancreatic Exocrine Cells AR42J Into Insulin-producing Cells Using mRNAs for Pdx1, Ngn3, and MafA Transcription Factors. Molecular Therapy - Nucleic Acids, 2016, 5, e320.	5.1	24
1119	Label-free analysis of mRNA capping efficiency using RNase H probes and LC-MS. Analytical and Bioanalytical Chemistry, 2016, 408, 5021-5030.	3.7	47
1120	Efficient Derivation of Human Induced Pluripotent Stem Cells with a c-Myc-Free Non-Integrating Episomal Vector. Journal of Genetics and Genomics, 2016, 43, 161-164.	3.9	1
1121	2′Fluoro Modification Differentially Modulates the Ability of RNAs to Activate Pattern Recognition Receptors. Nucleic Acid Therapeutics, 2016, 26, 173-182.	3.6	45
1122	Integration-Free Reprogramming of Lamina Propria Progenitor Cells. Journal of Dental Research, 2016, 95, 882-888.	5.2	1
1123	Generation of human induced pluripotent stem cells using non-synthetic mRNA. Stem Cell Research, 2016, 16, 662-672.	0.7	30
1124	High-efficiency cellular reprogramming with microfluidics. Nature Methods, 2016, 13, 446-452.	19.0	86
1125	PTEN-mRNA engineered mesenchymal stem cell-mediated cytotoxic effects on U251 glioma cells. Oncology Letters, 2016, 11, 2733-2740.	1.8	18

#	Article	IF	Citations
1126	Cell Programming for Future Regenerative Medicine. , 2016, , 389-424.		0
1127	Induced Pluripotent Stem Cells in Regenerative Medicine. , 2016, , 51-75.		2
1128	Translation of Human-Induced PluripotentÂStem Cells. Journal of the American College of Cardiology, 2016, 67, 2161-2176.	2.8	209
1129	Chemical-only reprogramming to pluripotency. Frontiers in Biology, 2016, 11, 75-84.	0.7	6
1130	Chemical transdifferentiation: closer to regenerative medicine. Frontiers of Medicine, 2016, 10, 152-165.	3.4	10
1131	Induced Pluripotent Stem Cells Meet Genome Editing. Cell Stem Cell, 2016, 18, 573-586.	11.1	398
1132	Regenerative Medicine - from Protocol to Patient. , 2016, , .		2
1133	An Efficient Protection-Free One-Pot Chemical Synthesis of Modified Nucleoside-5′-Triphosphates. Nucleosides, Nucleotides and Nucleic Acids, 2016, 35, 356-362.	1.1	15
1134	Generation and characterization of integration-free induced pluripotent stem cells from patients with autoimmune disease. Experimental and Molecular Medicine, 2016, 48, e232-e232.	7.7	29
1135	Delivery of RNA-based molecules to human hematopoietic stem and progenitor cells for modulation of gene expression. Experimental Hematology, 2016, 44, 991-1001.	0.4	4
1136	Overcoming the Specific Toxicity of Large Plasmids Electrotransfer in Primary Cells In Vitro. Molecular Therapy - Nucleic Acids, 2016, 5, e291.	5.1	74
1137	Dedifferentiation Effects of Rabbit Regenerating Tissue on Partially Differentiated Cells. Cellular Reprogramming, 2016, 18, 333-343.	0.9	0
1138	Differential effects of toll-like receptor stimulation on mRNA-driven myogenic conversion of human and mouse fibroblasts. Biochemical and Biophysical Research Communications, 2016, 478, 1484-1490.	2.1	7
1139	Genetic Correction of Induced Pluripotent Stem Cells From a Deaf Patient With <i>MYO7A</i> Mutation Results in Morphologic and Functional Recovery of the Derived Hair Cell-Like Cells. Stem Cells Translational Medicine, 2016, 5, 561-571.	3.3	67
1140	Efficacy and immunogenicity of unmodified and pseudouridine-modified mRNA delivered systemically with lipid nanoparticles inÂvivo. Biomaterials, 2016, 109, 78-87.	11.4	137
1141	In vitro and ex vivo strategies for intracellular delivery. Nature, 2016, 538, 183-192.	27.8	662
1144	Concise Review: Advances in Generating Hepatocytes from Pluripotent Stem Cells for Translational Medicine. Stem Cells, 2016, 34, 1421-1426.	3.2	36
1145	Induced pluripotent stem cells and Parkinson's disease: modelling and treatment. Cell Proliferation, 2016, 49, 14-26.	5.3	13

#	Article	IF	CITATIONS
1146	hi <scp>PSC</scp> â€derived <scp>iMSC</scp> s: NextGen <scp>MSC</scp> s as an advanced therapeutically active cell resource for regenerative medicine. Journal of Cellular and Molecular Medicine, 2016, 20, 1571-1588.	3.6	86
1147	βâ€Cell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas. Journal of Diabetes Investigation, 2016, 7, 286-296.	2.4	36
1148	Deciphering the epitranscriptome: A green perspective. Journal of Integrative Plant Biology, 2016, 58, 822-835.	8.5	36
1149	Concise Review: Patient-Derived Stem Cell Research for Monogenic Disorders. Stem Cells, 2016, 34, 44-54.	3.2	12
1150	Induced Pluripotent Stem Cell Differentiation and Three-Dimensional Tissue Formation Attenuate Clonal Epigenetic Differences in Trichohyalin. Stem Cells and Development, 2016, 25, 1366-1375.	2.1	10
1151	The Effect of Fetal Bovine Serum (FBS) on Efficacy of Cellular Reprogramming for Induced Pluripotent Stem Cell (iPSC) Generation. Cell Transplantation, 2016, 25, 1025-1042.	2.5	29
1152	Potential Strategies to Address the Major Clinical Barriers Facing Stem Cell Regenerative Therapy for Cardiovascular Disease. JAMA Cardiology, 2016, 1, 953.	6.1	97
1153	V-Maf Musculoaponeurotic Fibrosarcoma Oncogene Homolog A Synthetic Modified mRNA Drives Reprogramming of Human Pancreatic Duct-Derived Cells Into Insulin-Secreting Cells. Stem Cells Translational Medicine, 2016, 5, 1525-1537.	3.3	13
1155	Pieter Cullis' quest for a lipid-based, fusogenic delivery system for nucleic acid therapeutics: success with siRNA so what about mRNA?. Journal of Drug Targeting, 2016, 24, 774-779.	4.4	14
1157	Studying the pathophysiologic connection between cardiovascular and nervous systems using stem cells. Journal of Neuroscience Research, 2016, 94, 1499-1510.	2.9	11
1158	Solid organ fabrication: comparison of decellularization to 3D bioprinting. Biomaterials Research, 2016, 20, 27.	6.9	77
1159	Making β(â€like)â€cells from exocrine pancreas. Diabetes, Obesity and Metabolism, 2016, 18, 144-151.	4.4	1
1160	mRNA-based therapeutics–Advances and perspectives. Biochemistry (Moscow), 2016, 81, 709-722.	1.5	49
1161	Concise Review: Recent Advances in the In Vitro Derivation of Blood Cell Populations. Stem Cells Translational Medicine, 2016, 5, 1330-1337.	3.3	19
1162	In Vivo Generation of Neural Stem Cells Through Teratoma Formation. Stem Cells and Development, 2016, 25, 1311-1317.	2.1	10
1163	Anti-Aging Strategies Based on Cellular Reprogramming. Trends in Molecular Medicine, 2016, 22, 725-738.	6.7	63
1165	Fibroblast Growth Requires CT10 Regulator of Kinase (Crk) and Crk-like (CrkL). Journal of Biological Chemistry, 2016, 291, 26273-26290.	3.4	18
1167	cGMP Generation of Human Induced Pluripotent Stem Cells with Messenger RNA. Current Protocols in Stem Cell Biology, 2016, 39, 4A.6.1-4A.6.25.	3.0	5

#	Article	IF	Citations
1168	Stem cell markers in glioma progression and recurrence. International Journal of Oncology, 2016, 49, 1899-1910.	3.3	41
1169	Cell Line Macroarray. Journal of Histochemistry and Cytochemistry, 2016, 64, 739-751.	2.5	11
1171	New Trends in Clinical Applications of Induced Pluripotent Stem Cells. Stem Cells in Clinical Applications, 2016, , 77-98.	0.4	0
1172	Polymer nanotechnology for nucleic acid delivery. Drug Delivery System, 2016, 31, 44-53.	0.0	1
1173	Urine-derived induced pluripotent stem cells as a modeling tool to study rare human diseases. Intractable and Rare Diseases Research, 2016, 5, 192-201.	0.9	25
1174	Single Cell Transfection through Precise Microinjection with Quantitatively Controlled Injection Volumes. Scientific Reports, 2016, 6, 24127.	3.3	84
1175	Making new kidneys. Current Opinion in Organ Transplantation, 2016, 21, 574-580.	1.6	7
1176	The Use of Induced Pluripotent Stem Cells for the Study and Treatment of Liver Diseases. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2016, 67, 14.13.1-14.13.27.	1.1	29
1177	Genetic Modification of Human Pancreatic Progenitor Cells Through Modified mRNA. Methods in Molecular Biology, 2016, 1428, 307-317.	0.9	2
1178	RNA therapeutics – The potential treatment for myocardial infarction. Regenerative Therapy, 2016, 4, 83-91.	3.0	5
1179	Efficient mRNA delivery with graphene oxide-polyethylenimine for generation of footprint-free human induced pluripotent stem cells. Journal of Controlled Release, 2016, 235, 222-235.	9.9	99
1180	Human Induced Pluripotent Stem Cells as a Platform for Personalized and Precision Cardiovascular Medicine. Physiological Reviews, 2016, 96, 1093-1126.	28.8	93
1181	Full biological characterization of human pluripotent stem cells will open the door to translational research. Archives of Toxicology, 2016, 90, 2173-2186.	4.2	7
1182	Dissecting microRNA-mediated regulation of stemness, reprogramming, and pluripotency. Cell Regeneration, 2016, 5, 5:2.	2.6	25
1183	Cellular reprogramming in farm animals: an overview of iPSC generation in the mammalian farm animal species. Journal of Animal Science and Biotechnology, 2016, 7, 10.	5.3	57
1184	From the RNA world to the clinic. Science, 2016, 352, 1417-1420.	12.6	225
1185	Dental and Craniofacial Tissue Stem Cells: Sources and Tissue Engineering Applications. Pancreatic Islet Biology, 2016, , 1-27.	0.3	0
1186	Biomaterials control of pluripotent stem cell fate for regenerative therapy. Progress in Materials Science, 2016, 82, 234-293.	32.8	40

#	Article	IF	CITATIONS
1187	Generation of cleidocranial dysplasia-specific human induced pluripotent stem cells in completely serum-, feeder-, and integration-free culture. In Vitro Cellular and Developmental Biology - Animal, 2016, 52, 252-264.	1.5	15
1188	Long noncoding RNAs: Central to nervous system development. International Journal of Developmental Neuroscience, 2016, 55, 109-116.	1.6	34
1189	mRNA capping: biological functions and applications. Nucleic Acids Research, 2016, 44, 7511-7526.	14.5	539
1190	Current advances in the generation of human iPS cells: implications in cell-based regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 893-907.	2.7	44
1191	Highly efficient delivery of functional cargoes by the synergistic effect of GAG binding motifs and cell-penetrating peptides. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E291-9.	7.1	88
1192	Fibromodulin reprogrammed cells: A novel cell source for bone regeneration. Biomaterials, 2016, 83, 194-206.	11.4	29
1193	Recent approaches and challenges in iPSCs: modeling and cell-based therapy of Alzheimer's disease. Reviews in the Neurosciences, 2016, 27, 457-464.	2.9	4
1194	Genomic stability during cellular reprogramming: Mission impossible?. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2016, 788, 12-16.	1.0	15
1195	Cell-Based Therapy for Degenerative Retinal Disease. Trends in Molecular Medicine, 2016, 22, 115-134.	6.7	128
1196	Pros and cons of pDNA and mRNA transfection to study mRNA translation in mammalian cells. Gene, 2016, 578, 1-6.	2.2	20
1197	Co-expression networks in generation of induced pluripotent stem cells. Biology Open, 2016, 5, 300-310.	1.2	3
1198	Induced pluripotent stem cells: at the heart of cardiovascular precision medicine. Nature Reviews Cardiology, 2016, 13, 333-349.	13.7	152
1199	Robust Differentiation of mRNA-Reprogrammed Human Induced Pluripotent Stem Cells Toward a Retinal Lineage. Stem Cells Translational Medicine, 2016, 5, 417-426.	3.3	39
1200	Using human pluripotent stem cells to study Friedreich ataxia cardiomyopathy. International Journal of Cardiology, 2016, 212, 37-43.	1.7	5
1201	A decade of transcription factor-mediated reprogramming to pluripotency. Nature Reviews Molecular Cell Biology, 2016, 17, 183-193.	37.0	684
1202	Deterministic transfection drives efficient nonviral reprogramming and uncovers reprogramming barriers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 399-409.	3.3	37
1203	Transposons and Retrotransposons. Methods in Molecular Biology, 2016, , .	0.9	5
1204	Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell, 2016, 164, 668-680.	28.9	209

		CITATION REPORT		
#	Article		IF	CITATIONS
1205	Pluripotent stem cells and livestock genetic engineering. Transgenic Research, 2016, 2	5, 289-306.	2.4	46
1206	Apoptosis and failure of checkpoint kinase 1 activation in human induced pluripotent s replication stress. Stem Cell Research and Therapy, 2016, 7, 17.	tem cells under	5.5	34
1207	Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells with Sleeping Transposon-Based Stable Gene Delivery. Methods in Molecular Biology, 2016, 1400, 41		0.9	12
1208	Use of human stem cells in Huntington disease modeling and translational research. Ex Neurology, 2016, 278, 76-90.	perimental	4.1	30
1209	Modulation of human allogeneic and syngeneic pluripotent stem cells and immunologic implications for transplantation. Transplantation Reviews, 2016, 30, 61-70.	cal	2.9	19
1210	Cell type of origin influences iPSC generation and differentiation to cells of the hemato lineage. Cell and Tissue Research, 2016, 365, 101-112.	endothelial	2.9	33
1211	The potential of induced pluripotent stem cell derived hepatocytes. Journal of Hepatolo 182-199.	ıgy, 2016, 65,	3.7	80
1212	Techniques of Human Embryonic Stem Cell and Induced Pluripotent Stem Cell Derivatio Immunologiae Et Therapiae Experimentalis, 2016, 64, 349-370.	on. Archivum	2.3	28
1213	A Broad Overview and Review of CRISPR-Cas Technology and Stem Cells. Current Stem 2016, 2, 9-20.	Cell Reports,	1.6	33
1214	Role of Nurr1 in the Generation and Differentiation of Dopaminergic Neurons from Ster Neurotoxicity Research, 2016, 30, 14-31.	n Cells.	2.7	20
1215	Strategies for modulating innate immune activation and protein production of in vitro t mRNAs. Journal of Materials Chemistry B, 2016, 4, 1619-1632.	transcribed	5.8	17
1216	Overview of Chemistry, Manufacturing, and Controls (CMC) for Pluripotent Stem Cell-E Therapies. Pancreatic Islet Biology, 2016, , 157-203.	Based	0.3	1
1217	A self-setting iPSMSC-alginate-calcium phosphate paste for bone tissue engineering. De 2016, 32, 252-263.	ental Materials,	3.5	70
1218	Current reprogramming systems in regenerative medicine: from somatic cells to induce stem cells. Regenerative Medicine, 2016, 11, 105-32.	rd pluripotent	1.7	14
1220	Build to understand: synthetic approaches to biology. Integrative Biology (United Kingo 394-408.	dom), 2016, 8,	1.3	26
1221	Induced Pluripotent Stem Cells for Cardiac Regeneration. Pancreatic Islet Biology, 2016	5, , 31-43.	0.3	0
1222	Mesenchymal stem cells engineered to express selectin ligands and IL-10 exert enhance efficacy in murine experimental autoimmune encephalomyelitis. Biomaterials, 2016, 77		11.4	76
1223	Erase and Rewind: Epigenetic Conversion of Cell Fate. Stem Cell Reviews and Reports, 2	2016, 12, 163-170.	5.6	5

	CHATION R		
#	ARTICLE	IF	CITATIONS
1224	Heart regeneration. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1749-1759.	4.1	25
1225	Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1728-1748.	4.1	235
1226	Making a Hematopoietic Stem Cell. Trends in Cell Biology, 2016, 26, 202-214.	7.9	51
1227	Bioengineering Human Myocardium on Native Extracellular Matrix. Circulation Research, 2016, 118, 56-72.	4.5	280
1229	Pluripotent stem cell based gene therapy for hematological diseases. Critical Reviews in Oncology/Hematology, 2016, 97, 238-246.	4.4	15
1230	Choices for Induction of Pluripotency: Recent Developments in Human Induced Pluripotent Stem Cell Reprogramming Strategies. Stem Cell Reviews and Reports, 2016, 12, 54-72.	5.6	70
1231	Synthetically modified mRNA for efficient and fast human iPS cell generation and direct transdifferentiation to myoblasts. Biochemical and Biophysical Research Communications, 2016, 473, 743-751.	2.1	30
1232	Inactivation of the p53–KLF4–CEBPA Axis in Acute Myeloid Leukemia. Clinical Cancer Research, 2016, 22, 746-756.	7.0	40
1233	Initial embryology and pluripotent stem cells in the pig—The quest for establishing the pig as a model for cell therapy. Theriogenology, 2016, 85, 162-171.	2.1	10
1234	Evading innate immunity in nonviral mRNA delivery: don't shoot the messenger. Drug Discovery Today, 2016, 21, 11-25.	6.4	89
1235	Three-dimensional cardiac tissue fabrication based on cell sheet technology. Advanced Drug Delivery Reviews, 2016, 96, 103-109.	13.7	75
1236	Derivation, Expansion, and Motor Neuron Differentiation of Human-Induced Pluripotent Stem Cells with Non-Integrating Episomal Vectors and a Defined Xenogeneic-free Culture System. Molecular Neurobiology, 2016, 53, 1589-1600.	4.0	24
1237	The therapeutic potential of cell identity reprogramming for the treatment of aging-related neurodegenerative disorders. Progress in Neurobiology, 2017, 157, 212-229.	5.7	25
1238	Modeling Huntington× ³ s disease with patient-derived neurons. Brain Research, 2017, 1656, 76-87.	2.2	31
1239	Studying human disease using human neurons. Brain Research, 2017, 1656, 40-48.	2.2	21
1240	Progress in stem cellâ€based therapy for liver disease. Hepatology Research, 2017, 47, 127-141.	3.4	32
1241	Stem Cell Therapy in Neurological and Neurodegenerative Disease. Stem Cells in Clinical Applications, 2017, , 1-12.	0.4	0
1242	Human Induced Pluripotent Stem (hiPS) Cells from Urine Samples: A Nonâ€Integrative and Feederâ€Free Reprogramming Strategy. Current Protocols in Human Genetics, 2017, 92, 21.7.1-21.7.22.	3.5	14

	Сітат	ION REPORT	
#	Article	IF	CITATIONS
1243	Stem Cells and Neurogenesis for Brain Development, Degeneration and Therapy. , 2017, , 217-243.		0
1244	Perspectives and Challenges of Pluripotent Stem Cells in Cardiac Arrhythmia Research. Current Cardiology Reports, 2017, 19, 23.	2.9	10
1245	Human neural progenitors derived from integration-free iPSCs for SCI therapy. Stem Cell Research, 2017, 19, 55-64.	0.7	37
1246	A biomaterial approach to cell reprogramming and differentiation. Journal of Materials Chemistry B, 2017, 5, 2375-2389.	5.8	25
1247	Rapid differentiation of human pluripotent stem cells into functional neurons by mRNAs encoding transcription factors. Scientific Reports, 2017, 7, 42367.	3.3	83
1248	Reprogramming cell fates by small molecules. Protein and Cell, 2017, 8, 328-348.	11.0	82
1249	Inducing goat pluripotent stem cells with four transcription factor mRNAs that activate endogenous promoters. BMC Biotechnology, 2017, 17, 11.	3.3	24
1250	Retinoic Acid Inducible Gene 1 Protein (RIG1)-Like Receptor Pathway Is Required for Efficient Nuclear Reprogramming. Stem Cells, 2017, 35, 1197-1207.	3.2	27
1251	Inhibition of miRNA-212/132 improves the reprogramming of fibroblasts into induced pluripotent stem cells by de-repressing important epigenetic remodelling factors. Stem Cell Research, 2017, 20, 70-75.	0.7	20
1252	The 'anti-hype' vaccine. Nature Biotechnology, 2017, 35, 193-197.	17.5	33
1253	p53 switches off pluripotency on differentiation. Stem Cell Research and Therapy, 2017, 8, 44.	5.5	34
1254	New Modalities for Challenging Targets in Drug Discovery. Angewandte Chemie - International Edition, 2017, 56, 10294-10323.	13.8	275
1255	Gene Editing With CRISPR/Cas9 RNA-Directed Nuclease. Circulation Research, 2017, 120, 876-894.	4.5	61
1256	A feeder- and xeno-free human induced pluripotent stem cell line obtained from primary human dermal fibroblasts with epigenetic repression of reprogramming factors expression: GPCCi001-A. Stem Cell Research, 2017, 20, 34-37.	0.7	10
1257	Generation of human induced pluripotent stem cell lines from human dermal fibroblasts using a modified RNA system. Stem Cell Research, 2017, 24, 148-150.	0.7	2
1258	A comparison of the pro-angiogenic potential of human induced pluripotent stem cell derived endothelial cells and induced endothelial cells in a murine model of peripheral arterial disease. International Journal of Cardiology, 2017, 234, 81-89.	1.7	33
1259	Biophysical regulation of cell reprogramming. Current Opinion in Chemical Engineering, 2017, 15, 95-101.	7.8	26
1260	Neue ModalitÃ t en f¼r schwierige Zielstrukturen in der Wirkstoffentwicklung. Angewandte Chemie, 2017, 129, 10428-10459.	2.0	39

#	Article	IF	CITATIONS
1261	N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density. Nucleic Acids Research, 2017, 45, 6023-6036.	14.5	173
1262	Transactivator protein: An alternative for delivery of recombinant proteins for safer reprogramming of induced Pluripotent Stem Cell. Virus Research, 2017, 235, 106-114.	2.2	19
1263	Pluripotent stem cells to hepatocytes, the journey so far. Biomedical Reports, 2017, 6, 367-373.	2.0	39
1264	microRNAs: important regulators of stem cells. Stem Cell Research and Therapy, 2017, 8, 110.	5.5	122
1265	Efficient direct conversion of human fibroblasts into myogenic lineage induced by co-transduction with MYCL and MYOD1. Biochemical and Biophysical Research Communications, 2017, 488, 368-373.	2.1	15
1266	Physico-electrochemical Characterization of Pluripotent Stem Cells during Self-Renewal or Differentiation by a Multi-modal Monitoring System. Stem Cell Reports, 2017, 8, 1329-1339.	4.8	9
1267	Targeting LRRK2 in Parkinson's disease: an update on recent developments. Expert Opinion on Therapeutic Targets, 2017, 21, 601-610.	3.4	39
1268	Transdifferentiation and reprogramming: Overview of the processes, their similarities and differences. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 1359-1369.	4.1	68
1269	Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses. Molecular Therapy, 2017, 25, 1316-1327.	8.2	489
1270	Characterizing exogenous mRNA delivery, trafficking, cytoplasmic release and RNA–protein correlations at the level of single cells. Nucleic Acids Research, 2017, 45, e113-e113.	14.5	52
1271	Clinical potential of human-induced pluripotent stem cells. Cell Biology and Toxicology, 2017, 33, 99-112.	5.3	31
1272	Lipidoid mRNA Nanoparticles for Myocardial Delivery in Rodents. Methods in Molecular Biology, 2017, 1521, 153-166.	0.9	15
1273	Modified <scp>mRNA</scp> as a therapeutic tool to induce cardiac regeneration in ischemic heart disease. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2017, 9, e1367.	6.6	32
1274	Sensing Self and Foreign Circular RNAs by Intron Identity. Molecular Cell, 2017, 67, 228-238.e5.	9.7	346
1275	Guided differentiation and tissue regeneration of induced pluripotent stem cells using biomaterials. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77, 41-53.	5.3	11
1276	Cell-type-specific genome editing with a microRNA-responsive CRISPR–Cas9 switch. Nucleic Acids Research, 2017, 45, e118-e118.	14.5	88
1277	Synthetic mRNA devices that detect endogenous proteins and distinguish mammalian cells. Nucleic Acids Research, 2017, 45, e117-e117.	14.5	42
1278	"Disease in a Dish―Modeling of Retinal Diseases. , 2017, , 107-115.		0

#	Article	IF	CITATIONS
1279	Human heart disease: lessons from human pluripotent stem cell-derived cardiomyocytes. Cellular and Molecular Life Sciences, 2017, 74, 3711-3739.	5.4	51
1280	Understanding neurodevelopmental disorders using human pluripotent stem cellâ€derived neurons. Brain Pathology, 2017, 27, 508-517.	4.1	6
1281	Modeling Parkinson's disease with induced pluripotent stem cells harboring αâ€synuclein mutations. Brain Pathology, 2017, 27, 545-551.	4.1	21
1282	Efficient method to create integration-free, virus-free, <i>Myc</i> and <i>Lin28</i> -free human induced pluripotent stem cells from adherent cells. Future Science OA, 2017, 3, FSO211.	1.9	9
1283	Digital logic circuits in yeast with CRISPR-dCas9 NOR gates. Nature Communications, 2017, 8, 15459.	12.8	175
1284	Induced pluripotent stem cell models of lysosomal storage disorders. DMM Disease Models and Mechanisms, 2017, 10, 691-704.	2.4	23
1285	An update on stem cell biology and engineering for brain development. Molecular Psychiatry, 2017, 22, 808-819.	7.9	27
1286	l̃"133p53 represses p53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells. Cell Death and Differentiation, 2017, 24, 1017-1028.	11.2	49
1287	The establishment of appropriate methods for egg-activation by human PLCZ1 RNA injection into human oocyte. Cell Calcium, 2017, 65, 22-30.	2.4	31
1288	iPS cell technologies and their prospect for bone regeneration and disease modeling: A mini review. Journal of Advanced Research, 2017, 8, 321-327.	9.5	60
1289	Spinal cord injuries: how could cell therapy help?. Expert Opinion on Biological Therapy, 2017, 17, 529-541.	3.1	64
1290	Messenger RNA as a Novel Therapeutic Approach. Topics in Medicinal Chemistry, 2017, , 237-253.	0.8	8
1291	Derivation of Transgene-Free Rat Induced Pluripotent Stem Cells Approximating the Quality of Embryonic Stem Cells. Stem Cells Translational Medicine, 2017, 6, 340-351.	3.3	5
1292	Effect of small molecules on cell reprogramming. Molecular BioSystems, 2017, 13, 277-313.	2.9	19
1293	Synthesis of Modified mRNA for Myocardial Delivery. Methods in Molecular Biology, 2017, 1521, 127-138.	0.9	20
1294	The potential of induced pluripotent stem cells as a tool to study skeletal dysplasias and cartilage-related pathologic conditions. Osteoarthritis and Cartilage, 2017, 25, 616-624.	1.3	17
1295	Direct Reprogramming of Human Dermal Fibroblasts Into Endothelial Cells Using ER71/ETV2. Circulation Research, 2017, 120, 848-861.	4.5	90
1296	Induced pluripotent stem cell technology: a decade of progress. Nature Reviews Drug Discovery, 2017, 16, 115-130.	46.4	1,076

#	Article	IF	CITATIONS
1297	RNA Vaccines. Methods in Molecular Biology, 2017, , .	0.9	5
1298	The expanding horizon of MicroRNAs in cellular reprogramming. Progress in Neurobiology, 2017, 148, 21-39.	5.7	37
1299	Specific Cell (Re-)Programming: Approaches and Perspectives. Advances in Biochemical Engineering/Biotechnology, 2017, 163, 71-115.	1.1	3
1300	Nonintegrating Human Somatic Cell Reprogramming Methods. Advances in Biochemical Engineering/Biotechnology, 2017, 163, 1-21.	1.1	6
1301	Comparative performance analysis of human iPSC-derived and primary neural progenitor cells (NPC) grown as neurospheres in vitro. Stem Cell Research, 2017, 25, 72-82.	0.7	61
1302	Transcriptomic and epigenomic differences in human induced pluripotent stem cells generated from six reprogramming methods. Nature Biomedical Engineering, 2017, 1, 826-837.	22.5	38
1303	Reprogramming Mouse Fibroblasts with <i>piggyBac</i> Transposons. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot092627.	0.3	7
1304	Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR–Cas9 genome editing. Nature Biomedical Engineering, 2017, 1, 878-888.	22.5	83
1306	RSV glycoprotein and genomic RNA dynamics reveal filament assembly prior to the plasma membrane. Nature Communications, 2017, 8, 667.	12.8	31
1307	To D(e)rive or Reverse: The Challenge and Choice of Pluripotent Stem Cells for Regenerative Medicine. , 2017, , 99-111.		0
1308	Induced Pluripotent Stem Cells from Ovarian Tissue. Current Protocols in Human Genetics, 2017, 95, 21.10.1-21.10.22.	3.5	1
1309	Stem cells and heart disease - Brake or accelerator?. Advanced Drug Delivery Reviews, 2017, 120, 2-24.	13.7	29
1310	Human induced pluripotent stem cell-derived vascular smooth muscle cells: differentiation and therapeutic potential. Cardiovascular Research, 2017, 113, 1282-1293.	3.8	31
1311	Gene regulation in the immune system by long noncoding RNAs. Nature Immunology, 2017, 18, 962-972.	14.5	611
1312	Quality control towards the application of induced pluripotent stem cells. Current Opinion in Genetics and Development, 2017, 46, 164-169.	3.3	4
1313	Efficient Targeting and Activation of Antigen-Presenting Cells InÂVivo after Modified mRNA Vaccine Administration in Rhesus Macaques. Molecular Therapy, 2017, 25, 2635-2647.	8.2	244
1314	Derivation of Human Induced Pluripotent Stem Cell (iPSC) Lines and Mechanism of Pluripotency: Historical Perspective and Recent Advances. Stem Cell Reviews and Reports, 2017, 13, 757-773.	5.6	25
1315	Improvement of <i>In Vivo</i> Expression of Genes Delivered by Self-Amplifying RNA Using Vaccinia Virus Immune Evasion Proteins. Human Gene Therapy, 2017, 28, 1138-1146.	2.7	43

#	Article	IF	CITATIONS
1316	Tools for translation: non-viral materials for therapeutic mRNA delivery. Nature Reviews Materials, 2017, 2, .	48.7	504
1317	Engineering Concepts in Stem Cell Research. Biotechnology Journal, 2017, 12, 1700066.	3.5	9
1318	(Re-)programming of subtype specific cardiomyocytes. Advanced Drug Delivery Reviews, 2017, 120, 142-167.	13.7	13
1319	Transflammation: Innate immune signaling in nuclear reprogramming. Advanced Drug Delivery Reviews, 2017, 120, 133-141.	13.7	13
1320	Protein-driven RNA nanostructured devices that function in vitro and control mammalian cell fate. Nature Communications, 2017, 8, 540.	12.8	40
1321	Induced Pluripotent Stem Cell-Derived Neural Stem Cell Therapy Enhances Recovery in an Ischemic Stroke Pig Model. Scientific Reports, 2017, 7, 10075.	3.3	82
1322	Integration Free Derivation of Human Induced Pluripotent Stem Cells Using Laminin 521 Matrix. Journal of Visualized Experiments, 2017, , .	0.3	4
1323	Recent Advances in Retinal Stem Cell Therapy. Current Molecular Biology Reports, 2017, 3, 172-182.	1.6	29
1324	Efficient Generation of Dopamine Neurons by Synthetic Transcription Factor mRNAs. Molecular Therapy, 2017, 25, 2028-2037.	8.2	6
1325	Footprint-free human fetal foreskin derived iPSCs: A tool for modeling hepatogenesis associated gene regulatory networks. Scientific Reports, 2017, 7, 6294.	3.3	9
1326	Future Challenges in the Generation of Hepatocyte-Like Cells From Human Pluripotent Stem Cells. Current Pathobiology Reports, 2017, 5, 301-314.	3.4	1
1327	Engineering-derived approaches for iPSC preparation, expansion, differentiation and applications. Biofabrication, 2017, 9, 032001.	7.1	26
1328	Establishment of an induced pluripotent stem cell line ZZUi003-A from a 65-year-old male with sporadic Parkinson's disease. Stem Cell Research, 2017, 23, 119-121.	0.7	2
1329	Development of one control and one tumor-specific induced pluripotent stem cell line from laryngeal carcinoma patient. Stem Cell Research, 2017, 25, 283-285.	0.7	0
1330	The Differentiation Stage of Transplanted Stem Cells Modulates Nerve Regeneration. Scientific Reports, 2017, 7, 17401.	3.3	50
1331	Prospects of Pluripotent and Adult Stem Cells for Rare Diseases. Advances in Experimental Medicine and Biology, 2017, 1031, 371-386.	1.6	2
1332	Modern approaches for identification of modified nucleotides in RNA. Biochemistry (Moscow), 2017, 82, 1217-1233.	1.5	11
1334	Gene and Cell Therapy for β-Thalassemia and Sickle Cell Disease with Induced Pluripotent Stem Cells (iPSCs): The Next Frontier. Advances in Experimental Medicine and Biology, 2017, 1013, 219-240.	1.6	5

#	Article	IF	CITATIONS
1335	Preparation, characterization, and banking of clinical-grade cells for neural transplantation. Progress in Brain Research, 2017, 230, 133-150.	1.4	7
1336	Gene and Cell Therapies for Beta-Globinopathies. Advances in Experimental Medicine and Biology, 2017, ,	1.6	4
1337	Differentiation and Use of Induced Pluripotent Stem Cells for Cardiovascular Therapy and Tissue Engineering. Cardiac and Vascular Biology, 2017, , 107-122.	0.2	1
1338	5-Methylcytosine RNA Methylation in Arabidopsis Thaliana. Molecular Plant, 2017, 10, 1387-1399.	8.3	181
1339	Advances in Adult Stem Cell Differentiation and Cellular Reprogramming to Enhance Chondrogenesis. Current Molecular Biology Reports, 2017, 3, 276-287.	1.6	0
1340	Modular, Step-Efficient Palladium-Catalyzed Cross-Coupling Strategy To Access C6-Heteroaryl 2-Aminopurine Ribonucleosides. Organic Letters, 2017, 19, 3759-3762.	4.6	14
1341	Identification of transcription factors that promote the differentiation of human pluripotent stem cells into lacrimal gland epithelium-like cells. Npj Aging and Mechanisms of Disease, 2017, 3, 1.	4.5	38
1342	Modeling schizophrenia pathogenesis using patient-derived induced pluripotent stem cells (iPSCs). Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2382-2387.	3.8	23
1343	Current challenges in the therapeutic use of induced pluripotent stem cells (iPSCs) in cancer therapy. Applied Cancer Research, 2017, 37, .	1.0	4
1344	Direct Reprogramming of Human Suspension Cells into Mesodermal Cell Lineages via Combined Magnetic Targeting and Photothermal Stimulation by Magnetic Graphene Oxide Complexes. Small, 2017, 13, 1700703.	10.0	11
1345	Induced pluripotent stem cell-based therapy for age-related macular degeneration. Expert Opinion on Biological Therapy, 2017, 17, 1113-1126.	3.1	26
1346	Rhoâ€kinase inhibitor Yâ€27632 facilitates the proliferation, migration and pluripotency of human periodontal ligament stem cells. Journal of Cellular and Molecular Medicine, 2017, 21, 3100-3112.	3.6	60
1347	Insulin-Like Growth Factor 1 Receptor-Dependent Pathway Drives Epicardial Adipose Tissue Formation After Myocardial Injury. Circulation, 2017, 135, 59-72.	1.6	74
1348	A robust vitronectin-derived peptide for the scalable long-term expansion and neuronal differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (hNPCs). Acta Biomaterialia, 2017, 48, 120-130.	8.3	18
1349	Generation of Integrationâ€Free Induced Neurons Using Graphene Oxideâ€Polyethylenimine. Small, 2017, 13, 1601993.	10.0	32
1350	Reprogramming Enhancers in Somatic Cell Nuclear Transfer, iPSC Technology, and Direct Conversion. Stem Cell Reviews and Reports, 2017, 13, 24-34.	5.6	20
1351	Hepatocyte-like cells derived from induced pluripotent stem cells. Hepatology International, 2017, 11, 54-69.	4.2	37
1352	Concise Review: Application of In Vitro Transcribed Messenger RNA for Cellular Engineering and Reprogramming: Progress and Challenges. Stem Cells, 2017, 35, 68-79.	3.2	56

#	Article	IF	Citations
1353	Genomic Instability of iPSCs: Challenges Towards Their Clinical Applications. Stem Cell Reviews and Reports, 2017, 13, 7-16.	5.6	198
1354	The notorious R.N.A. in the spotlight - drug or target for the treatment of disease. RNA Biology, 2017, 14, 651-668.	3.1	27
1355	Translating the epitranscriptome. Wiley Interdisciplinary Reviews RNA, 2017, 8, e1375.	6.4	38
1356	Induction of pluripotency in long-term cryopreserved human neonatal fibroblasts in feeder-free condition. Cell and Tissue Banking, 2017, 18, 45-52.	1.1	2
1357	Stem Cell Biology. , 2017, , 54-75.e5.		0
1358	RNAâ€Generated and Geneâ€Edited Induced Pluripotent Stem Cells for Disease Modeling and Therapy. Journal of Cellular Physiology, 2017, 232, 1262-1269.	4.1	11
1359	Na ⁺ /H ⁺ exchange via the <i>Drosophila</i> vesicular glutamate transporter mediates activityâ€induced acid efflux from presynaptic terminals. Journal of Physiology, 2017, 595, 805-824.	2.9	19
1360	A Few RNA Success Stories. , 2017, , 697-706.		0
1361	Using low-risk factors to generate non-integrated human induced pluripotent stem cells from urine-derived cells. Stem Cell Research and Therapy, 2017, 8, 245.	5.5	26
1362	Current and Future Perspectives of Stem Cell Therapy in Dermatology. Annals of Dermatology, 2017, 29, 667.	0.9	20
1363	Induced Pluripotent Stem Cells: Advances in the Quest for Genetic Stability during Reprogramming Process. International Journal of Molecular Sciences, 2017, 18, 1952.	4.1	45
1364	Genetic Epilepsy Modeling With Human Pluripotent Stem Cells. , 2017, , 247-260.		0
1365	Exploiting Self-organization in Bioengineered Systems: A Computational Approach. Frontiers in Bioengineering and Biotechnology, 2017, 5, 27.	4.1	2
1366	Induced Pluripotent Stem Cells for Traumatic Spinal Cord Injury. Frontiers in Cell and Developmental Biology, 2016, 4, 152.	3.7	56
1367	May I Cut in? Gene Editing Approaches in Human Induced Pluripotent Stem Cells. Cells, 2017, 6, 5.	4.1	38
1368	Reprogramming Methods Do Not Affect Gene Expression Profile of Human Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2017, 18, 206.	4.1	24
1369	The Epigenetics of Noncoding RNA. , 2017, , 47-59.		2
1370	Skeletal Muscle Cell Induction from Pluripotent Stem Cells. Stem Cells International, 2017, 2017, 1-16.	2.5	61

ARTICLE IF CITATIONS # Epigenetic Manipulation Facilitates the Generation of Skeletal Muscle Cells from Pluripotent Stem 1371 2.5 5 Cells. Stem Cells International, 2017, 2017, 1-8. Induced Pluripotent Stem Cell for the Study and Treatment of Sickle Cell Anemia. Stem Cells 1372 2.5 International, 2017, 2017, 1-30. Recombinant Vaccinia virus-coded interferon inhibitor B18R: Expression, refolding and a use in a 1373 2.5 23 mammalian expression system with a RNA-vector. PLoS ONE, 2017, 12, e0189308. Enhanced generation of iPSCs from older adult human cells by a synthetic five-factor self-replicative 1374 RNA. PLoS ONE, 2017, 12, e0182018. Differentiation of RPE cells from integration-free iPS cells and their cell biological characterization. 1375 5.5 52 Stem Cell Research and Therapy, 2017, 8, 217. Human iPSC Models in Drug Discovery: Opportunities and Challenges., 2017, , 48-73. Ips Progression a Decade Devoted. Journal of Cell Science & Therapy, 2017, 08, . 1377 0.3 0 Cellular Reprogramming Using Protein and Cell-Penetrating Peptides. International Journal of 4.1 Molecular Sciences, 2017, 18, 552. Regenerative Medicine in Liver Cirrhosis: Promises and Pitfalls., 2017,,. 1379 1 In vitro transcription and validation of human pancreatic transcription factors' mRNAs. Turkish 0.8 Journal of Biology, 2017, 41, 708-718. Stem cells in regenerative medicine – from laboratory to clinical application – the eye. 1381 1.2 9 Central-European Journal of Immunology, 2017, 2, 173-180. The generation and functional characterization of induced pluripotent stem cells from human 1.8 intervertebral disc nucleus pulposus cells. Oncotarget, 2017, 8, 42700-42711. High-efficiency RNA-based reprogramming of human primary fibroblasts. Nature Communications, 2018, 1383 12.8 117 9, 745. The role of the reprogramming method and pluripotency state in gamete differentiation from 1384 2.8 14 patient-specific human pluripotent stem cells. Molecular Human Reproduction, 2018, 24, 173-184. RNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem 1385 122 21.4 cells. Nature Genetics, 2018, 50, 443-451. Tapping the RNA world for therapeutics. Nature Structural and Molecular Biology, 2018, 25, 357-364. 147 Modulation of mRNA Translation and Cell Viability by Influenza A Virus Derived Nonstructural 1387 3.6 7 Protein 1. Nucleic Acid Therapeutics, 2018, 28, 200-208. Pluripotent stem cell-based therapy for Parkinson's disease: Current status and future prospects. 1388 84 Progress in Neurobiology, 2018, 168, 1-20.

#	Article	IF	CITATIONS
1389	Multigene delivery in mammalian cells: Recent advances and applications. Biotechnology Advances, 2018, 36, 871-879.	11.7	10
1390	Localization of transcripts, translation, and degradation for spatiotemporal sarcomere maintenance. Journal of Molecular and Cellular Cardiology, 2018, 116, 16-28.	1.9	50
1391	Concise Review: Assessing the Genome Integrity of Human Induced Pluripotent Stem Cells: What Quality Control Metrics?. Stem Cells, 2018, 36, 814-821.	3.2	51
1392	Autologous stem cell therapy for inherited and acquired retinal disease. Regenerative Medicine, 2018, 13, 89-96.	1.7	10
1393	Biological Bases of Cardiac Function and the Pro-regenerative Potential of Stem Cells in the Treatment of Myocardial Disorder. , 2018, , 79-108.		1
1394	Induced Pluripotent Stem Cells for Cardiovascular Disease Modeling and Precision Medicine: A Scientific Statement From the American Heart Association. Circulation Genomic and Precision Medicine, 2018, 11, e000043.	3.6	159
1395	Induced Pluripotent Stem Cells in Disease Modeling and Gene Identification. Methods in Molecular Biology, 2018, 1706, 17-38.	0.9	32
1396	Using intracellular markers to identify a novel set of surface markers for live cell purification from a heterogeneous hIPSC culture. Scientific Reports, 2018, 8, 804.	3.3	14
1397	Efficient differentiation of human pluripotent stem cells into skeletal muscle cells by combining RNA-based MYOD1-expression and POU5F1-silencing. Scientific Reports, 2018, 8, 1189.	3.3	27
1398	Modificaomics: deciphering the functions of biomolecule modifications. Science China Chemistry, 2018, 61, 381-392.	8.2	38
1400	Manipulating cell fate while confronting reproducibility concerns. Biochemical Pharmacology, 2018, 151, 144-156.	4.4	6
1401	Quasi-Stem Cells Derived from Human Somatic Cells by Chemically Modified Carbon Nanotubes. ACS Applied Materials & Interfaces, 2018, 10, 8417-8425.	8.0	4
1402	Regenerative Medicine/Cardiac Cell Therapy: Pluripotent Stem Cells. Thoracic and Cardiovascular Surgeon, 2018, 66, 053-062.	1.0	13
1403	mRNA Vaccine with Antigen-Specific Checkpoint Blockade Induces an Enhanced Immune Response against Established Melanoma. Molecular Therapy, 2018, 26, 420-434.	8.2	132
1404	Generation of Induced Pluripotent Stem Cells from Patients with COL3A1 Mutations and Differentiation to Smooth Muscle Cells for ECM-Surfaceome Analyses. Methods in Molecular Biology, 2018, 1722, 261-302.	0.9	3
1405	In Vitro Tissueâ€Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease. Advanced Healthcare Materials, 2018, 7, e1701498.	7.6	84
1406	Current Status of Messenger RNA Delivery Systems. Nucleic Acid Therapeutics, 2018, 28, 158-165.	3.6	22
1407	De Novo Synthesis of Elastin by Exogenous Delivery of Synthetic Modified mRNA into Skin and Elastin-Deficient Cells. Molecular Therapy - Nucleic Acids, 2018, 11, 475-484.	5.1	32

#	Article	IF	CITATIONS
1408	Application of induced pluripotency in cancer studies. Reports of Practical Oncology and Radiotherapy, 2018, 23, 207-214.	0.6	14
1409	Premyogenic progenitors derived from human pluripotent stem cells expand in floating culture and differentiate into transplantable myogenic progenitors. Scientific Reports, 2018, 8, 6555.	3.3	32
1410	Optimized Mitochondrial Targeting of Proteins Encoded by Modified mRNAs Rescues Cells Harboring Mutations in mtATP6. Cell Reports, 2018, 22, 2818-2826.	6.4	29
1411	Optimization of mRNA untranslated regions for improved expression of therapeutic mRNA. RNA Biology, 2018, 15, 1-7.	3.1	62
1412	mRNA transfection retrofits cell-based assays with xenobiotic metabolism. Journal of Pharmacological and Toxicological Methods, 2018, 92, 77-94.	0.7	31
1413	Gene therapy clinical trials worldwide to 2017: An update. Journal of Gene Medicine, 2018, 20, e3015.	2.8	612
1415	Delivery systems of current biologicals for the treatment of chronic cutaneous wounds and severe burns. Advanced Drug Delivery Reviews, 2018, 129, 219-241.	13.7	83
1416	Stem Cells for Skeletal Muscle Tissue Engineering. Tissue Engineering - Part B: Reviews, 2018, 24, 373-391.	4.8	64
1417	Optimization of Synthetic mRNA for Highly Efficient Translation and its Application in the Generation of Endothelial and Hematopoietic Cells from Human and Primate Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2018, 14, 525-534.	5.6	28
1418	An origin of the immunogenicity of in vitro transcribed RNA. Nucleic Acids Research, 2018, 46, 5239-5249.	14.5	123
1419	Stem cells and their potential clinical applications in psychiatric disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 80, 3-9.	4.8	5
1420	Human stem cell modeling in neurofibromatosis type 1 (NF1). Experimental Neurology, 2018, 299, 270-280.	4.1	20
1421	Stem cell contributions to neurological disease modeling and personalized medicine. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 80, 54-62.	4.8	15
1422	Reconstituting Mouse Lungs with Conditionally Reprogrammed Human Bronchial Epithelial Cells. Tissue Engineering - Part A, 2018, 24, 559-568.	3.1	18
1423	Immunity to CRISPR Cas9 and Cas12a therapeutics. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10, e1408.	6.6	96
1424	Emergence of synthetic mRNA: InÂvitro synthesis of mRNA and its applications in regenerative medicine. Biomaterials, 2018, 156, 172-193.	11.4	122
1425	Cardiac Cell Culture Technologies. , 2018, , .		2
1426	Transcription factors: Time to deliver. Journal of Controlled Release, 2018, 269, 24-35.	9.9	27

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
1427	Design, Assembly, Production, and Transfection of Synthetic Modified mRNA. Methods	s, 2018, 133, 29-43.	3.8	32
1428	FPLD2 LMNA mutation R482W dysregulates iPSC-derived adipocyte function and lipid Biochemical and Biophysical Research Communications, 2018, 495, 254-260.	metabolism.	2.1	27
1429	OBSOLETE: Cardiac and Induced Pluripotent Stem Cells. , 2018, , .			0
1430	Cell Biology and Translational Medicine, Volume 4. Advances in Experimental Medicine 2018, , .	and Biology,	1.6	4
1431	Myocardial Repair. , 2018, , 425-439.			0
1432	OBSOLETE: Myocardial Repair. , 2018, , .			Ο
1433	Nucleotide Modifications Decrease Innate Immune Response Induced by Synthetic Ana and snoRNAs. Genes, 2018, 9, 531.	alogs of snRNAs	2.4	45
1435	RNA-based Reprogramming of Human Primary Fibroblasts into Induced Pluripotent Ste of Visualized Experiments, 2018, , .	m Cells. Journal	0.3	12
1436	Advances in Functional Restoration of the Lacrimal Glands. , 2018, 59, DES174.			10
1437	mRNA therapeutics deliver a hopeful message. Nano Today, 2018, 23, 16-39.		11.9	90
1438	Studying and modulating schizophrenia-associated dysfunctions of oligodendrocytes v patient-specific cell systems. NPJ Schizophrenia, 2018, 4, 23.	with	3.6	31
1439	Generation of transgene-free porcine intermediate type induced pluripotent stem cells 2018, 17, 2547-2563.	. Cell Cycle,	2.6	22
1440	Generation of pancreatic \hat{l}^2 cells for treatment of diabetes: advances and challenges. S Research and Therapy, 2018, 9, 355.	tem Cell	5.5	90
1441	Induced Pluripotent Stem Cells for Duchenne Muscular Dystrophy Modeling and Thera 7, 253.	py. Cells, 2018,	4.1	31
1442	Conversion of adult human fibroblasts into neural precursor cells using chemically mod Heliyon, 2018, 4, e00918.	dified mRNA.	3.2	27
1443	Patient-Derived Induced Pluripotent Stem Cells and Organoids for Modeling Alpha Syn Propagation in Parkinson's Disease. Frontiers in Cellular Neuroscience, 2018, 12, 413.	uclein	3.7	9
1444	Notch Ligands in Hematopoietic Stem Cell Production. , 2018, , 313-332.			0
1445	Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ, 2018, 6, e43		2.0	129

		CITATION R	EPORT	
#	Article		IF	Citations
1446	Advancing cell therapies for intervertebral disc regeneration from the lab to the clinic: Recommendations of the ORS spine section. JOR Spine, 2018, 1, e1036.		3.2	74
1447	Urine-derived cells provide a readily accessible cell type for feeder-free mRNA reprogram Scientific Reports, 2018, 8, 14363.	ming.	3.3	39
1449	Future Therapeutic Approaches for Alagille Syndrome. , 2018, , 167-193.			0
1450	Alagille Syndrome. , 2018, , .			2
1451	Nanotechnology in Generation and Biomedical Application of Induced Pluripotent Stem LIFE, 2018, 08, 1841002.	Cells. Nano	0.9	1
1452	Time-course transcriptome analysis of human cellular reprogramming from multiple cell reveals the drastic change occurs between the mid phase and the late phase. BMC Geno	types pmics, 2018, 19, 9.	2.8	9
1453	Disease Modeling and Drug Development with DM1 Patient-Derived iPS Cells. , 2018, , 1	189-201.		0
1454	Generation of Progesterone-Responsive Endometrial Stromal Fibroblasts from Human Ir Pluripotent Stem Cells: Role of the WNT/CTNNB1 Pathway. Stem Cell Reports, 2018, 11		4.8	50
1455	Improving Immunotherapy Through Glycodesign. Frontiers in Immunology, 2018, 9, 248	35.	4.8	49
1456	Efficient Generation of Non-Integration and Feeder-Free Induced Pluripotent Stem Cells Peripheral Blood Cells by Sendai Virus. Cellular Physiology and Biochemistry, 2018, 50, 1		1.6	26
1457	Establishment of a rapid and footprint-free protocol for differentiation of human embryo cells into pancreatic endocrine cells with synthetic mRNAs encoding transcription factor Research and Therapy, 2018, 9, 277.	onic stem rs. Stem Cell	5.5	12
1458	Modern Approaches to Tissue Engineering of the Spinal Cord: Analytical Review. Curren Medicine, 2018, 7, 3-32.	t Regenerative	0.0	0
1459	Cardiac Regeneration with Human Pluripotent Stem Cell-Derived Cardiomyocytes. Korea Journal, 2018, 48, 974.	an Circulation	1.9	21
1460	Improving the Angiogenic Potential of EPCs via Engineering with Synthetic Modified mR Therapy - Nucleic Acids, 2018, 13, 387-398.	NAs. Molecular	5.1	22
1461	Human Cortical Neuron Generation Using Cell Reprogramming: A Review of Recent Adv Cells and Development, 2018, 27, 1674-1692.	ances. Stem	2.1	14
1462	Generation of Human Neural Stem Cells by Direct Phenotypic Conversion. Results and P Differentiation, 2018, 66, 103-121.	roblems in Cell	0.7	4
1463	Restoration of tumour-growth suppression in vivo via systemic nanoparticle-mediated d PTEN mRNA. Nature Biomedical Engineering, 2018, 2, 850-864.	elivery of	22.5	214
1464	Regenerating the Cardiovascular System Through Cell Reprogramming; Current Approad Look Into the Future. Frontiers in Cardiovascular Medicine, 2018, 5, 109.	ches and a	2.4	7

#	Article	IF	Citations
1465	Epigenetic Regulation of Skin Development and Regeneration. Pancreatic Islet Biology, 2018, , .	0.3	0
1466	Cell Therapies: New Frontier for the Management of Diabetic Foot Ulceration. Contemporary Diabetes, 2018, , 219-235.	0.0	0
1467	Human Neural Stem Cells. Results and Problems in Cell Differentiation, 2018, , .	0.7	3
1468	Epigenetic-scale comparison of human iPSCs generated by retrovirus, Sendai virus or episomal vectors. Regenerative Therapy, 2018, 9, 71-78.	3.0	16
1469	Modelling inherited cardiac disease using human induced pluripotent stem cell-derived cardiomyocytes: progress, pitfalls, and potential. Cardiovascular Research, 2018, 114, 1828-1842.	3.8	40
1470	Aging in a Dish: iPSC-Derived and Directly Induced Neurons for Studying Brain Aging and Age-Related Neurodegenerative Diseases. Annual Review of Genetics, 2018, 52, 271-293.	7.6	206
1471	RNA Methylation in theÂControl of Stem Cell Activity and Epidermal Differentiation. Contributions To Management Science, 2018, , 215-229.	0.5	1
1472	On the Viability and Potential Value of Stem Cells for Repair and Treatment of Central Neurotrauma: Overview and Speculations. Frontiers in Neurology, 2018, 9, 602.	2.4	15
1473	Modeling Parkinson's Disease Using Patient-specific Induced Pluripotent Stem Cells. Journal of Parkinson's Disease, 2018, 8, 479-493.	2.8	34
1474	Using Human Induced Neural Precursor Cells to Define Early Neurodevelopmental Defects in Syndromic and Idiopathic Autism. Current Pharmacology Reports, 2018, 4, 422-435.	3.0	2
1475	Do Induced Pluripotent Stem Cell Characteristics Correlate with Efficient In Vitro Smooth Muscle Cell Differentiation? A Comparison of Three Patient-Derived Induced Pluripotent Stem Cell Lines. Stem Cells and Development, 2018, 27, 1438-1448.	2.1	6
1476	An integrated biomanufacturing platform for the large-scale expansion and neuronal differentiation of human pluripotent stem cell-derived neural progenitor cells. Acta Biomaterialia, 2018, 74, 168-179.	8.3	9
1477	Pluripotent stem cells: induction and self-renewal. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170213.	4.0	28
1478	Combining Induced Pluripotent Stem Cells and Genome Editing Technologies for Clinical Applications. Cell Transplantation, 2018, 27, 379-392.	2.5	30
1479	Site-Specific Gene Editing of Human Hematopoietic Stem Cells for X-Linked Hyper-IgM Syndrome. Cell Reports, 2018, 23, 2606-2616.	6.4	119
1480	Cellular Models: HD Patient-Derived Pluripotent Stem Cells. Methods in Molecular Biology, 2018, 1780, 41-73.	0.9	7
1481	Reduction of Fibrosis and Scar Formation by Partial Reprogramming In Vivo. Stem Cells, 2018, 36, 1216-1225.	3.2	50
1482	High-Level Precise Knockin of iPSCs by Simultaneous Reprogramming and Genome Editing of Human Peripheral Blood Mononuclear Cells. Stem Cell Reports, 2018, 10, 1821-1834.	4.8	21

#	Article	IF	CITATIONS
1483	Induced pluripotent stem cells (iPSCs) as model to study inherited defects of neurotransmission in in inborn errors of metabolism. Journal of Inherited Metabolic Disease, 2018, 41, 1103-1116.	3.6	3
1484	Direct Cardiac Reprogramming: Progress and Promise. Stem Cells International, 2018, 2018, 1-10.	2.5	19
1485	Adult Neural Stem Cells: Basic Research and Production Strategies for Neurorestorative Therapy. Stem Cells International, 2018, 2018, 1-18.	2.5	16
1486	Direct Control of Stem Cell Behavior Using Biomaterials and Genetic Factors. Stem Cells International, 2018, 2018, 1-17.	2.5	13
1487	Current Therapeutic Strategies for Stem Cell-Based Cartilage Regeneration. Stem Cells International, 2018, 2018, 1-20.	2.5	69
1488	Cell Transplantation for Spinal Cord Injury: Tumorigenicity of Induced Pluripotent Stem Cell-Derived Neural Stem/Progenitor Cells. Stem Cells International, 2018, 2018, 1-7.	2.5	57
1489	Pluripotent Stem Cell Banks. , 2018, , 337-367.		0
1490	<i>In Vitro</i> Transcribed mRNA Vaccines with Programmable Stimulation of Innate Immunity. Bioconjugate Chemistry, 2018, 29, 3072-3083.	3.6	21
1491	Parkinson's disease: what the model systems have taught us so far. Journal of Genetics, 2018, 97, 729-751.	0.7	15
1492	Biomedical applications of mRNA nanomedicine. Nano Research, 2018, 11, 5281-5309.	10.4	86
1493	MicroRNA Regulation Along the Course of Cellular Reprogramming to Pluripotency. Current Molecular Medicine, 2018, 18, 58-64.	1.3	2
1494	The march of pluripotent stem cells in cardiovascular regenerative medicine. Stem Cell Research and Therapy, 2018, 9, 201.	5.5	32
1495	CAR T Cells in Solid Tumors: Blueprints for Building Effective Therapies. Frontiers in Immunology, 2018, 9, 1740.	4.8	155
1496	A Simple Bioreactor-Based Method to Generate Kidney Organoids fromÂPluripotent Stem Cells. Stem Cell Reports, 2018, 11, 470-484.	4.8	181
1497	Lower genomic stability of induced pluripotent stem cells reflects increased nonâ€homologous end joining. Cancer Communications, 2018, 38, 1-22.	9.2	24
1498	Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chemical Reviews, 2018, 118, 7409-7531.	47.7	490
1499	Induced Pluripotent Stem Cells and Induced Pluripotent Cancer Cells in Cancer Disease Modeling. Advances in Experimental Medicine and Biology, 2018, 1119, 169-183.	1.6	12
1500	Optimizing the method for generation of integration-free induced pluripotent stem cells from human peripheral blood. Stem Cell Research and Therapy, 2018, 9, 163.	5.5	27

#	Article	IF	CITATIONS
1501	Global Transcriptional Response to CRISPR/Cas9-AAV6-Based Genome Editing in CD34+ Hematopoietic Stem and Progenitor Cells. Molecular Therapy, 2018, 26, 2431-2442.	8.2	97
1502	Induced Tissue-Specific Stem Cells and Epigenetic Memory in Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2018, 19, 930.	4.1	48
1503	Incorporation of Synthetic mRNA in Injectable Chitosan-Alginate Hybrid Hydrogels for Local and Sustained Expression of Exogenous Proteins in Cells. International Journal of Molecular Sciences, 2018, 19, 1313.	4.1	25
1504	Bioprocesses for Cell Therapies. , 2018, , 899-930.		5
1505	Cell reprogramming approaches in gene- and cell-based therapies for Parkinson's disease. Journal of Controlled Release, 2018, 286, 114-124.	9.9	21
1506	Topological Characterization of Human and Mouse m ⁵ C Epitranscriptome Revealed by Bisulfite Sequencing. International Journal of Genomics, 2018, 2018, 1-19.	1.6	17
1507	Stem Cell Applications in Spinal Cord Injury: A Primer. , 2018, , 43-72.		2
1508	Modeling Neuropsychiatric and Neurodegenerative Diseases With Induced Pluripotent Stem Cells. Frontiers in Pediatrics, 2018, 6, 82.	1.9	16
1509	Neural stem cell therapy—Brief review. Clinical Neurology and Neurosurgery, 2018, 173, 8-14.	1.4	77
1510	Human cellular models of medium spiny neuron development and Huntington disease. Life Sciences, 2018, 209, 179-196.	4.3	19
1511	Generation of Human Induced Pluripotent Stem Cells Using a Defined, Feederâ€Free Reprogramming System. Current Protocols in Stem Cell Biology, 2018, 45, e48.	3.0	12
1512	Somatic Cell Reprogramming Informed by the Oocyte. Stem Cells and Development, 2018, 27, 871-887.	2.1	10
1513	Stem Cell Therapy in Heart Diseases – Cell Types, Mechanisms and Improvement Strategies. Cellular Physiology and Biochemistry, 2018, 48, 2607-2655.	1.6	159
1514	Uridine Depletion and Chemical Modification Increase Cas9 mRNA Activity and Reduce Immunogenicity without HPLC Purification. Molecular Therapy - Nucleic Acids, 2018, 12, 530-542.	5.1	178
1515	Induced pluripotent stem cells as a tool to study brain circuits in autism-related disorders. Stem Cell Research and Therapy, 2018, 9, 226.	5.5	24
1516	Introduction of Exogenous HSV-TK Suicide Gene Increases Safety of Keratinocyte-Derived Induced Pluripotent Stem Cells by Providing Genetic "Emergency Exit―Switch. International Journal of Molecular Sciences, 2018, 19, 197.	4.1	30
1517	Investigating pediatric disorders with induced pluripotent stem cells. Pediatric Research, 2018, 84, 499-508.	2.3	9
1518	Making HSCs in vitro: don't forget the hemogenic endothelium. Blood, 2018, 132, 1372-1378.	1.4	18

#	Article	IF	CITATIONS
1519	RNA-Based dCas9–VP64 System Improves the Viability of Cryopreserved Mammalian Cells. Nano LIFE, 2018, 08, 1850004.	0.9	1
1520	Ribonucleases as Drug Targets. Trends in Pharmacological Sciences, 2018, 39, 855-866.	8.7	11
1522	Induced Pluripotent Stem Cells. Cell Transplantation, 2018, 27, 1588-1602.	2.5	26
1523	Generation of Hepatocytes by Transdifferentiation. , 2018, , 103-114.		Ο
1524	Optimization of culture conditions for the derivation and propagation of baboon (Papio anubis) induced pluripotent stem cells. PLoS ONE, 2018, 13, e0193195.	2.5	12
1525	Induced pluripotent stem cells to generate skin tissue models. , 2018, , 399-419.		2
1526	Lipid Nanoparticle-Delivered Chemically Modified mRNA Restores Chloride Secretion in Cystic Fibrosis. Molecular Therapy, 2018, 26, 2034-2046.	8.2	184
1527	Single-Factor SOX2 Mediates Direct Neural Reprogramming of Human Mesenchymal Stem Cells via Transfection of <i>In Vitro</i> Transcribed mRNA. Cell Transplantation, 2018, 27, 1154-1167.	2.5	23
1528	Induced Pluripotent Stem Cells. , 2019, , 169-180.		0
1529	Dedifferentiation, transdifferentiation and cell fusion: <i>inÂvivo</i> reprogramming strategies for regenerative medicine. FEBS Journal, 2019, 286, 1074-1093.	4.7	39
1530	Purification of mRNA Encoding Chimeric Antigen Receptor Is Critical for Generation of a Robust T-Cell Response. Human Gene Therapy, 2019, 30, 168-178.	2.7	81
1531	An Improved, Chemically Modified RNA Encoding BMP-2 Enhances Osteogenesis <i>In Vitro</i> and <i>In Vivo</i> . Tissue Engineering - Part A, 2019, 25, 131-144.	3.1	36
1532	RNA-based therapy for osteogenesis. International Journal of Pharmaceutics, 2019, 569, 118594.	5.2	21
1533	Crosstalk between stem cell and spinal cord injury: pathophysiology and treatment strategies. Stem Cell Research and Therapy, 2019, 10, 238.	5.5	89
1534	Realâ€īme Quantification of Cell Internalization Kinetics by Functionalized Bioluminescent Nanoprobes. Advanced Materials, 2019, 31, e1902469.	21.0	10
1535	Cell-mediated delivery of VEGF modified mRNA enhances blood vessel regeneration and ameliorates murine critical limb ischemia. Journal of Controlled Release, 2019, 310, 103-114.	9.9	33
1536	Integrated Biologics Manufacturing in Stirred-Suspension Bioreactor: A Stem Cell Perspective. , 0, , .		0
1537	Exploring induced pluripotency in human fibroblasts via construction, validation, and application of a gene regulatory network. PLoS ONE, 2019, 14, e0220742.	2.5	1

#	Article	IF	CITATIONS
1538	A â€~poly-transfection' method for rapid, one-pot characterization and optimization of genetic systems. Nucleic Acids Research, 2019, 47, e106-e106.	14.5	26
1539	Messenger RNA translation enhancement by immune evasion proteins: a comparative study between EKB (vaccinia virus) and NS1 (influenza A virus). Scientific Reports, 2019, 9, 11972.	3.3	14
1540	Alzheimer's in a dish – induced pluripotent stem cell-based disease modeling. Translational Neurodegeneration, 2019, 8, 21.	8.0	23
1541	Proteomics in the World of Induced Pluripotent Stem Cells. Cells, 2019, 8, 703.	4.1	10
1542	m5C Methylation Guides Systemic Transport of Messenger RNA over Graft Junctions in Plants. Current Biology, 2019, 29, 2465-2476.e5.	3.9	149
1543	Osteopetrotic induced pluripotent stem cells derived from patients with different disease-associated mutations by non-integrating reprogramming methods. Stem Cell Research and Therapy, 2019, 10, 211.	5.5	10
1544	Efficient exogenous DNA-free reprogramming with suicide gene vectors. Experimental and Molecular Medicine, 2019, 51, 1-12.	7.7	14
1545	Robust and highly efficient hiPSC generation from patient non-mobilized peripheral blood-derived CD34+ cells using the auto-erasable Sendai virus vector. Stem Cell Research and Therapy, 2019, 10, 185.	5.5	28
1546	Generation of iPSCs by Nonintegrative RNA-Based Reprogramming Techniques: Benefits of Self-Replicating RNA versus Synthetic mRNA. Stem Cells International, 2019, 2019, 1-16.	2.5	25
1547	MiR-499 Responsive Lethal Construct for Removal of Human Embryonic Stem Cells after Cardiac Differentiation. Scientific Reports, 2019, 9, 14490.	3.3	8
1548	Human iPSC banking: barriers and opportunities. Journal of Biomedical Science, 2019, 26, 87.	7.0	142
1549	Pluripotent Cell Models for Gonadal Research. International Journal of Molecular Sciences, 2019, 20, 5495.	4.1	7
1550	MicroRNA-Based Separation of Cortico-Fugal Projection Neuron-Like Cells Derived From Embryonic Stem Cells. Frontiers in Neuroscience, 2019, 13, 1141.	2.8	3
1551	Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. Journal of Controlled Release, 2019, 316, 404-417.	9.9	111
1552	Generation of Stable Induced Pluripotent Stem-like Cells from Adult Zebra Fish Fibroblasts. International Journal of Biological Sciences, 2019, 15, 2340-2349.	6.4	22
1553	Experimental Research and Theoretical Analysis of the Seismic Behavior of Prefabricated Semirigid Steel Frame with X-Shaped Braces. Advances in Civil Engineering, 2019, 2019, 1-14.	0.7	0
1554	Application of iPSC to Modelling of Respiratory Diseases. Advances in Experimental Medicine and Biology, 2019, 1237, 1-16.	1.6	14
1555	Numerical operations in living cells by programmable RNA devices. Science Advances, 2019, 5, eaax0835.	10.3	14

#	Article	IF	CITATIONS
1556	Guide RNA modification as a way to improve CRISPR/Cas9-based genome-editing systems. Biochimie, 2019, 167, 49-60.	2.6	45
1557	Reprogramming of Urine-Derived Renal Epithelial Cells into iPSCs Using srRNA and Consecutive Differentiation into Beating Cardiomyocytes. Molecular Therapy - Nucleic Acids, 2019, 17, 907-921.	5.1	26
1558	mRNA-Driven Generation of Transgene-Free Neural Stem Cells from Human Urine-Derived Cells. Cells, 2019, 8, 1043.	4.1	8
1559	Aberrant mitochondrial function in patient-derived neural cells from CDKL5 deficiency disorder and Rett syndrome. Human Molecular Genetics, 2019, 28, 3625-3636.	2.9	19
1560	Bioceramic akermanite enhanced vascularization and osteogenic differentiation of human induced pluripotent stem cells in 3D scaffolds in vitro and vivo. RSC Advances, 2019, 9, 25462-25470.	3.6	17
1561	Nucleotide Modification Alters MicroRNA-Dependent Silencing of MicroRNA Switches. Molecular Therapy - Nucleic Acids, 2019, 14, 339-350.	5.1	20
1562	Transposon mediated reprogramming of buffalo fetal fibroblasts to induced pluripotent stem cells in feeder free culture conditions. Research in Veterinary Science, 2019, 123, 252-260.	1.9	11
1563	Primitive Cancer Cell States: A Target for Drug Screening?. Trends in Pharmacological Sciences, 2019, 40, 161-171.	8.7	10
1564	Induction of human pluripotent stem cells into kidney tissues by synthetic mRNAs encoding transcription factors. Scientific Reports, 2019, 9, 913.	3.3	40
1565	Reprogramming of bone marrow derived mesenchymal stromal cells to human induced pluripotent stem cells from pediatric patients with hematological diseases using a commercial mRNA kit. Blood Cells, Molecules, and Diseases, 2019, 76, 32-39.	1.4	6
1566	iPSC model of CHRFAM7A effect on α7 nicotinic acetylcholine receptor function in the human context. Translational Psychiatry, 2019, 9, 59.	4.8	25
1567	Measles vector as a multigene delivery platform facilitating iPSC reprogramming. Gene Therapy, 2019, 26, 151-164.	4.5	13
1568	Inhibition of the Inflammatory Pathway Enhances Both the <i>in Vitro</i> and <i>in Vivo</i> Transfection Activity of Exogenous <i>in Vitro</i> -Transcribed mRNAs Delivered by Lipid Nanoparticles. Biological and Pharmaceutical Bulletin, 2019, 42, 299-302.	1.4	18
1569	On Mammalian Totipotency: What Is the Molecular Underpinning for the Totipotency of Zygote?. Stem Cells and Development, 2019, 28, 897-906.	2.1	10
1570	Generation and comprehensive characterization of induced pluripotent stem cells for translational research. Regenerative Medicine, 2019, 14, 505-524.	1.7	1
1571	Emerging modes-of-action in drug discovery. MedChemComm, 2019, 10, 1550-1568.	3.4	22
1572	Modeling blood diseases with human induced pluripotent stem cells. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	23
1573	Establishment of induced pluripotent stem cells from common marmoset fibroblasts by RNA-based reprogramming. Biochemical and Biophysical Research Communications, 2019, 515, 593-599.	2.1	17

# 1574	ARTICLE Reprogramming of Keratinocytes as Donor or Target Cells Holds Great Promise for Cell Therapy and Regenerative Medicine. Stem Cell Reviews and Reports, 2019, 15, 680-689.	IF 3.8	CITATIONS
1575	Recent Updates on Induced Pluripotent Stem Cells in Hematological Disorders. Stem Cells International, 2019, 2019, 1-15.	2.5	25
1576	Improved translation efficiency of therapeutic mRNA. Gene, 2019, 707, 231-238.	2.2	37
1577	Highly efficient induction of primate iPS cells by combining RNA transfection and chemical compounds. Genes To Cells, 2019, 24, 473-484.	1.2	19
1578	Human induced pluripotent stem cell models for the study and treatment of Duchenne and Becker muscular dystrophies. Therapeutic Advances in Neurological Disorders, 2019, 12, 175628641983347.	3.5	32
1579	How Does Reprogramming to Pluripotency Affect Genomic Imprinting?. Frontiers in Cell and Developmental Biology, 2019, 7, 76.	3.7	40
1580	Efficient reduction of synthetic mRNA induced immune activation by simultaneous delivery of B18R encoding mRNA. Journal of Biological Engineering, 2019, 13, 40.	4.7	11
1581	mRNA Reprogramming of T8993G Leigh's Syndrome Fibroblast Cells to Create Induced Pluripotent Stem Cell Models for Mitochondrial Disorders. Stem Cells and Development, 2019, 28, 846-859.	2.1	15
1582	Generation of iPSCs from Jaw Periosteal Cells Using Self-Replicating RNA. International Journal of Molecular Sciences, 2019, 20, 1648.	4.1	13
1583	Nanostraw membrane stamping for direct delivery of molecules into adhesive cells. Scientific Reports, 2019, 9, 6806.	3.3	15
1584	Exogenous Delivery of Link N mRNA into Chondrocytes and MSCs—The Potential Role in Increasing Anabolic Response. International Journal of Molecular Sciences, 2019, 20, 1716.	4.1	8
1585	Tissue Engineering in Pediatric Bladder Reconstruction—The Road to Success. Frontiers in Pediatrics, 2019, 7, 91.	1.9	33
1586	Two decades of embryonic stem cells: a historical overview. Human Reproduction Open, 2019, 2019, hoy024.	5.4	59
1587	Concise Review: Application of Chemically Modified mRNA in Cell Fate Conversion and Tissue Engineering. Stem Cells Translational Medicine, 2019, 8, 833-843.	3.3	28
1588	Somatic cell reprogramming as a tool for neurodegenerative diseases. Biomedicine and Pharmacotherapy, 2019, 112, 108663.	5.6	9
1590	Effects on hepatic lipid metabolism in human hepatoma cells following overexpression of TGFÎ ² induced factor homeobox 1 or 2. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 756-762.	2.4	3
1591	iPS-Cell Technology and the Problem of Genetic Instability—Can It Ever Be Safe for Clinical Use?. Journal of Clinical Medicine, 2019, 8, 288.	2.4	54
1592	Genome-Scale CRISPRa Screen Identifies Novel Factors for Cellular Reprogramming. Stem Cell Reports, 2019, 12, 757-771.	4.8	45

#	Article	IF	CITATIONS
1593	Unchain My Heart: Integrins at the Basis of iPSC Cardiomyocyte Differentiation. Stem Cells International, 2019, 2019, 1-20.	2.5	20
1594	Progress in the Use of Induced Pluripotent Stem Cell-Derived Neural Cells for Traumatic Spinal Cord Injuries in Animal Populations: Meta-Analysis and Review. Stem Cells Translational Medicine, 2019, 8, 681-693.	3.3	26
1595	The molecular pathogenesis of superoxide dismutase 1-linked ALS is promoted by low oxygen tension. Acta Neuropathologica, 2019, 138, 85-101.	7.7	18
1596	Hepatocyte Transplantation: Quo Vadis?. International Journal of Radiation Oncology Biology Physics, 2019, 103, 922-934.	0.8	15
1597	Diversity of dermal fibroblasts as major determinant of variability in cell reprogramming. Journal of Cellular and Molecular Medicine, 2019, 23, 4256-4268.	3.6	36
1598	Lipid nanoparticles for delivery of messenger RNA to the back of the eye. Journal of Controlled Release, 2019, 303, 91-100.	9.9	134
1599	Recent Developments in mRNA-Based Protein Supplementation Therapy to Target Lung Diseases. Molecular Therapy, 2019, 27, 803-823.	8.2	60
1600	Non-viral Delivery of Zinc Finger Nuclease mRNA Enables Highly Efficient InÂVivo Genome Editing of Multiple Therapeutic Gene Targets. Molecular Therapy, 2019, 27, 866-877.	8.2	64
1601	Lipid-mRNA Nanoparticle Designed to Enhance Intracellular Delivery Mediated by Shock Waves. ACS Applied Materials & Interfaces, 2019, 11, 10481-10491.	8.0	32
1602	Reducible Branched Ester-Amine Quadpolymers (rBEAQs) Codelivering Plasmid DNA and RNA Oligonucleotides Enable CRISPR/Cas9 Genome Editing. ACS Applied Materials & Interfaces, 2019, 11, 10472-10480.	8.0	48
1603	How mRNA therapeutics are entering the monoclonal antibody field. Journal of Translational Medicine, 2019, 17, 54.	4.4	113
1604	Microfluidic reprogramming to pluripotency of human somatic cells. Nature Protocols, 2019, 14, 722-737.	12.0	30
1605	Neural stem cell therapy for stroke: A multimechanistic approach to restoring neurological function. Brain and Behavior, 2019, 9, e01214.	2.2	62
1606	Human Pluripotent Stem Cells: Applications and Challenges for Regenerative Medicine and Disease Modeling. Advances in Biochemical Engineering/Biotechnology, 2019, 171, 189-224.	1.1	2
1607	Induced Pluripotent Stem Cells as Vasculature Forming Entities. Journal of Clinical Medicine, 2019, 8, 1782.	2.4	11
1608	Episomal Induced Pluripotent Stem Cells: Functional and Potential Therapeutic Applications. Cell Transplantation, 2019, 28, 112S-131S.	2.5	15
1610	Efficient Production of Cell-permeable Oct4 Protein Using 30Kc19 Protein Originating from Silkworm. Biotechnology and Bioprocess Engineering, 2019, 24, 964-971.	2.6	5
1611	Nanomaterials for Regenerative Medicine. Pancreatic Islet Biology, 2019, , .	0.3	1

# 1612	ARTICLE Efficient Induction of T Cells against Conserved HIV-1 Regions by Mosaic Vaccines Delivered as Self-Amplifying mRNA. Molecular Therapy - Methods and Clinical Development, 2019, 12, 32-46.	IF 4.1	Citations
1613	mRNA-Based Genetic Reprogramming. Molecular Therapy, 2019, 27, 729-734.	8.2	56
1614	Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics. Nature Cell Biology, 2019, 21, 275-286.	10.3	70
1615	Influence of Cell Morphology on Mesenchymal Stem Cell Transfection. ACS Applied Materials & Interfaces, 2019, 11, 1932-1941.	8.0	26
1616	An Insight into DNA-free Reprogramming Approaches to Generate Integration-free Induced Pluripotent Stem Cells for Prospective Biomedical Applications. Stem Cell Reviews and Reports, 2019, 15, 286-313.	5.6	56
1617	Special issue on stem cell and tissue engineering in development, disease, and repair. Developmental Dynamics, 2019, 248, 7-9.	1.8	0
1618	Comparison of the characteristics of mesenchymal stem-like cells derived by integration-free induced pluripotent stem cells in different single-cell culture media under feeder-free conditions. Medical Molecular Morphology, 2019, 52, 147-155.	1.0	1
1619	Modern Ways of Obtaining Stem Cells. , 2019, , 17-36.		3
1620	Delivery of mRNA Therapeutics for the Treatment of Hepatic Diseases. Molecular Therapy, 2019, 27, 794-802.	8.2	72
1621	iPSCs as a Platform for Disease Modeling, Drug Screening, and Personalized Therapy in Muscular Dystrophies. Cells, 2019, 8, 20.	4.1	40
1622	Branchedâ€∓ail Lipid Nanoparticles Potently Deliver mRNA In Vivo due to Enhanced Ionization at Endosomal pH. Small, 2019, 15, e1805097.	10.0	159
1623	Improving mRNA-Based Therapeutic Gene Delivery by Expression-Augmenting 3′ UTRs Identified by Cellular Library Screening. Molecular Therapy, 2019, 27, 824-836.	8.2	191
1624	Bone Tissue Engineering Using Human Cells: A Comprehensive Review on Recent Trends, Current Prospects, and Recommendations. Applied Sciences (Switzerland), 2019, 9, 174.	2.5	58
1625	Treatment of Parkinson's Disease through Personalized Medicine and Induced Pluripotent Stem Cells. Cells, 2019, 8, 26.	4.1	82
1626	Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiological Reviews, 2019, 99, 79-114.	28.8	230
1627	Pluripotent stem cell-derived cochlear cells: a challenge in constant progress. Cellular and Molecular Life Sciences, 2019, 76, 627-635.	5.4	28
1628	Progress in Dopaminergic Cell Replacement and Regenerative Strategies for Parkinson's Disease. ACS Chemical Neuroscience, 2019, 10, 839-851.	3.5	24
1629	Modeling Disease with Human Inducible Pluripotent Stem Cells. Annual Review of Pathology: Mechanisms of Disease, 2019, 14, 449-468.	22.4	17

#	Article	IF	CITATIONS
1630	Synthetic mRNAs Drive Highly Efficient iPS Cell Differentiation to Dopaminergic Neurons. Stem Cells Translational Medicine, 2019, 8, 112-123.	3.3	39
1631	Retinal Degeneration. Methods in Molecular Biology, 2019, , .	0.9	5
1632	Application of induced pluripotent stem cell technology for the investigation of hematological disorders. Advances in Biological Regulation, 2019, 71, 19-33.	2.3	6
1633	Cell-Based Therapy for Retinal Disease: The New Frontier. Methods in Molecular Biology, 2019, 1834, 367-381.	0.9	21
1634	Nuclear localized Akt limits skeletal muscle derived fibrotic signaling. Biochemical and Biophysical Research Communications, 2019, 508, 838-843.	2.1	0
1635	New Technologies To Enhance In Vivo Reprogramming for Regenerative Medicine. Trends in Biotechnology, 2019, 37, 604-617.	9.3	23
1636	Reversibility of irreversible aging. Ageing Research Reviews, 2019, 49, 104-114.	10.9	27
1637	Highly regio- and stereoselective Michael addition of pseudouridine with propiolates: An efficient method for the synthesis of (E)-pseudouridine-N1-acrylate. Tetrahedron Letters, 2019, 60, 157-160.	1.4	2
1638	Functional characterization of the Sox2 , câ€Myc , and Oct4 promoters. Journal of Cellular Biochemistry, 2019, 120, 332-342.	2.6	9
1639	Implications of human induced pluripotent stem cells in metabolic disorders: from drug discovery toward precision medicine. Drug Discovery Today, 2019, 24, 334-341.	6.4	13
1640	Messenger RNA Delivery for Tissue Engineering and Regenerative Medicine Applications. Tissue Engineering - Part A, 2019, 25, 91-112.	3.1	68
1641	Generation of induced pluripotent stem cells using elastin like polypeptides as a non-viral gene delivery system. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165405.	3.8	13
1642	Human pluripotent stem cell–derived models and drug screening in CNS precision medicine. Annals of the New York Academy of Sciences, 2020, 1471, 18-56.	3.8	54
1643	Using induced pluripotent stem cell neuronal models to study neurodegenerative diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165431.	3.8	22
1644	mRNA Transfection into CHOâ€Cells Reveals Production Bottlenecks. Biotechnology Journal, 2020, 15, 1900198.	3.5	9
1645	RNA therapeutics: Identification of novel targets leading to drug discovery. Journal of Cellular Biochemistry, 2020, 121, 898-929.	2.6	29
1646	Non-transmissible MV Vector with Segmented RNA Genome Establishes Different Types of iPSCs from Hematopoietic Cells. Molecular Therapy, 2020, 28, 129-141.	8.2	6
1647	Transgenic Mouse. Methods in Molecular Biology, 2020, , .	0.9	2

#	Article	IF	Citations
1649	Stem cell-based therapies for Duchenne muscular dystrophy. Experimental Neurology, 2020, 323, 113086.	4.1	74
1650	TSC patient-derived isogenic neural progenitor cells reveal altered early neurodevelopmental phenotypes and rapamycin-induced MNK-eIF4E signaling. Molecular Autism, 2020, 11, 2.	4.9	29
1651	Cell sources and methods for producing organotypic in vitro human tissue models. , 2020, , 13-45.		1
1652	Essential Current Concepts in Stem Cell Biology. Learning Materials in Biosciences, 2020, , .	0.4	2
1653	Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Reviews and Reports, 2020, 16, 3-32.	3.8	292
1654	A critical look: Challenges in differentiating human pluripotent stem cells into desired cell types and organoids. Wiley Interdisciplinary Reviews: Developmental Biology, 2020, 9, e368.	5.9	27
1655	Synthetic biology technologies for beta cell generation. , 2020, , 407-420.		0
1656	Human-induced pluripotent stem cells (iPSC) as a source of insulin-producing cells. , 2020, , 381-396.		0
1657	Induction of integration-free human-induced pluripotent stem cells under serum- and feeder-free conditions. In Vitro Cellular and Developmental Biology - Animal, 2020, 56, 85-95.	1.5	12
1658	Modelling multiple sclerosis using induced pluripotent stem cells. Journal of Neuroimmunology, 2020, 349, 577425.	2.3	7
1659	Long Non-coding RNA CCAT1 Acts as an Oncogene and Promotes Sunitinib Resistance in Renal Cell Carcinoma. Frontiers in Oncology, 2020, 10, 516552.	2.8	10
1660	Synthetic mRNA Encoding VEGF-A in Patients Undergoing Coronary Artery Bypass Grafting: Design of a Phase 2a Clinical Trial. Molecular Therapy - Methods and Clinical Development, 2020, 18, 464-472.	4.1	76
1661	Latest Advances for the <i>Sleeping Beauty</i> Transposon System: 23 Years of Insomnia but Prettier than Ever. BioEssays, 2020, 42, e2000136.	2.5	29
1662	Targeting cell plasticity for regeneration: From in vitro to in vivo reprogramming. Advanced Drug Delivery Reviews, 2020, 161-162, 124-144.	13.7	8
1663	Human Induced Pluripotent Stem Cell Models of Neurodegenerative Disorders for Studying the Biomedical Implications of Autophagy. Journal of Molecular Biology, 2020, 432, 2754-2798.	4.2	15
1664	Cancer cells undergoing epigenetic transition show short-term resistance and are transformed into cells with medium-term resistance by drug treatment. Experimental and Molecular Medicine, 2020, 52, 1102-1115.	7.7	10
1665	Advances in Development of mRNA-Based Therapeutics. Current Topics in Microbiology and Immunology, 2020, , 1.	1.1	6
1666	Humanâ€Induced Pluripotent Stem Cell Culture Methods Under cGMP Conditions. Current Protocols in Stem Cell Biology, 2020, 54, e117.	3.0	33

#	Article	IF	CITATIONS
1667	Insulin/Glucose-Responsive Cells Derived from Induced Pluripotent Stem Cells: Disease Modeling and Treatment of Diabetes. Cells, 2020, 9, 2465.	4.1	17
1668	Chromosomal aberration arises during somatic reprogramming to pluripotent stem cells. Cell Division, 2020, 15, 12.	2.4	16
1669	Human adipose-derived stem cells enriched with VEGF-modified mRNA promote angiogenesis and long-term graft survival in a fat graft transplantation model. Stem Cell Research and Therapy, 2020, 11, 490.	5.5	31
1670	Genetic and epigenetic modification of human primary NK cells for enhanced antitumor activity. Seminars in Hematology, 2020, 57, 201-212.	3.4	17
1671	Human Pluripotent Stem Cells-Based Therapies for Neurodegenerative Diseases: Current Status and Challenges. Cells, 2020, 9, 2517.	4.1	45
1672	Cell-Based Therapy Manufacturing in Stirred Suspension Bioreactor: Thoughts for cGMP Compliance. Frontiers in Bioengineering and Biotechnology, 2020, 8, 599674.	4.1	18
1673	Mitochondria interaction networks show altered topological patterns in Parkinson's disease. Npj Systems Biology and Applications, 2020, 6, 38.	3.0	7
1674	Strategies for simultaneous and successive delivery of RNA. Journal of Molecular Medicine, 2020, 98, 1767-1779.	3.9	8
1675	Induced Pluripotent Stem Cells: Hope in the Treatment of Diseases, including Muscular Dystrophies. International Journal of Molecular Sciences, 2020, 21, 5467.	4.1	9
1676	Application of induced pluripotent stem cells in epilepsy. Molecular and Cellular Neurosciences, 2020, 108, 103535.	2.2	13
1677	Hydrojet-based delivery of footprint-free iPSC-derived cardiomyocytes into porcine myocardium. Scientific Reports, 2020, 10, 16787.	3.3	4
1678	From Hair to iPSCs—A Guide on How to Reprogram Keratinocytes and Why. Current Protocols in Stem Cell Biology, 2020, 55, e121.	3.0	6
1679	Reprogramming Urineâ€Derived Cells Using Commercially Available Selfâ€Replicative RNA and a Single Electroporation. Current Protocols in Stem Cell Biology, 2020, 55, e124.	3.0	6
1680	Nanomedicine-Based Approaches for mRNA Delivery. Molecular Pharmaceutics, 2020, 17, 3654-3684.	4.6	88
1681	Tumorigenic and Immunogenic Properties of Induced Pluripotent Stem Cells: a Promising Cancer Vaccine. Stem Cell Reviews and Reports, 2020, 16, 1049-1061.	3.8	25
1682	Double sperm cloning (DSC) is a promising strategy in mammalian genetic engineering and stem cell research. Stem Cell Research and Therapy, 2020, 11, 388.	5.5	6
1683	Stem cell therapies for retinal diseases: from bench to bedside. Journal of Molecular Medicine, 2020, 98, 1347-1368.	3.9	12
1684	Behavioral Changes in Stem-Cell Potency by HepG2-Exhausted Medium. Cells, 2020, 9, 1890.	4.1	7

#	Article	IF	CITATIONS
1685	CHRFAM7A: A human specific fusion gene, accounts for the translational gap for cholinergic strategies in Alzheimer's disease. EBioMedicine, 2020, 59, 102892.	6.1	20
1686	Prospects of Directly Reprogrammed Adult Human Neurons for Neurodegenerative Disease Modeling and Drug Discovery: iN vs. iPSCs Models. Frontiers in Neuroscience, 2020, 14, 546484.	2.8	11
1687	Uncovering the genetic blueprint of the <i>C. elegans</i> nervous system. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33570-33577.	7.1	23
1688	iPSC-Derived Microglia for Modeling Human-Specific DAMP and PAMP Responses in the Context of Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 9668.	4.1	14
1689	Chemically modified mRNA nucleofection of primary human T cells. Journal of Immunological Methods, 2020, 487, 112878.	1.4	1
1690	The combination of dibenzazepine and a DOT1L inhibitor enables a stable maintenance of human naÃ-ve-state pluripotency in non-hypoxic conditions. Regenerative Therapy, 2020, 15, 161-168.	3.0	5
1691	Protocol for Large-Scale Production of Kidney Organoids from Human Pluripotent Stem Cells. STAR Protocols, 2020, 1, 100150.	1.2	18
1692	Small Molecule Epigenetic Modulators in Pure Chemical Cell Fate Conversion. Stem Cells International, 2020, 2020, 1-12.	2.5	9
1693	The StemCellFactory: A Modular System Integration for Automated Generation and Expansion of Human Induced Pluripotent Stem Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 580352.	4.1	28
1694	Optimized Approaches for the Induction of Putative Canine Induced Pluripotent Stem Cells from Old Fibroblasts Using Synthetic RNAs. Animals, 2020, 10, 1848.	2.3	4
1695	TheÂAlzheimer Disease-Causing Presenilin-1 L435F Mutation Causes Increased Production of Soluble Aβ43 Species in Patient-Derived iPSC-Neurons, Closely Mimicking Matched Patient Brain Tissue. Journal of Neuropathology and Experimental Neurology, 2020, 79, 592-604.	1.7	10
1696	Formulation and Delivery Technologies for mRNA Vaccines. Current Topics in Microbiology and Immunology, 2020, , 71-110.	1.1	107
1697	m6A Modification Prevents Formation of Endogenous Double-Stranded RNAs and Deleterious Innate Immune Responses during Hematopoietic Development. Immunity, 2020, 52, 1007-1021.e8.	14.3	99
1698	The transcriptional regulator ZNF398 mediates pluripotency and epithelial character downstream of TGF-beta in human PSCs. Nature Communications, 2020, 11, 2364.	12.8	20
1699	The Role of P2X7 Receptor in Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2020, 13, 94.	2.9	44
1700	Extracellular matrix mechanics regulate transfection and SOX9-directed differentiation of mesenchymal stem cells. Acta Biomaterialia, 2020, 110, 153-163.	8.3	36
1701	Restoring aged stem cell functionality: Current progress and future directions. Stem Cells, 2020, 38, 1060-1077.	3.2	25
1702	Induced pluripotent stem cells for the treatment of liver diseases: challenges and perspectives from a clinical viewpoint. Annals of Translational Medicine, 2020, 8, 566-566.	1.7	16

ARTICLE IF CITATIONS Kidney Organoids and Tubuloids. Cells, 2020, 9, 1326. 1703 4.1 52 Induction of Skeletal Muscle Progenitors and Stem Cells from human induced Pluripotent Stem Cells. 1704 2.6 Journal of Neuromuscular Diseases, 2020, 7, 395-405. Selfâ€Degradable Lipidâ€Like Materials Based on "Hydrolysis accelerated by the intraâ€Particle Enrichment 1705 14.9 65 of Reactant (HyPER)†for Messenger RNA Delivery. Advanced Functional Materials, 2020, 30, 1910575. mRNA-Based Reprogramming Under Xeno-Free and Feeder-Free Conditions. Methods in Molecular 1706 0.9 Biology, 2020, , 1. A Potent Branched-Tail Lipid Nanoparticle Enables Multiplexed mRNA Delivery and Gene Editing <i>In 1707 9.1 72 Vivo</i>. Nano Letters, 2020, 20, 5167-5175. Generation of HIV-1-infected patients' gene-edited induced pluripotent stem cells using feeder-free culture conditions. Aids, 2020, 34, 1127-1139. 1708 2.2 Generation of Otic Lineages from Integration-Free Human-Induced Pluripotent Stem Cells 1709 2.5 15 Reprogrammed by mRNAs. Stem Cells International, 2020, 2020, 1-10. Caliciviral protein-based artificial translational activator for mammalian gene circuits with RNA-only 1710 12.8 20 delivery. Nature Communications, 2020, 11, 1297. mRNA Transfection-Induced Activation of Primary Human Monocytes and Macrophages: Dependence on 1711 3.3 33 Carrier System and Nucleotide Modification. Sciéntific Reports, 2020, 10, 4181. Sweat gland regeneration: Current strategies and future opportunities. Biomaterials, 2020, 255, 1712 11.4 120201 Single-dose mRNA therapy via biomaterial-mediated sequestration of overexpressed proteins. Science 1713 10.324 Advances, 2020, 6, . Reprogramming and transdifferentiation - two key processes for regenerative medicine. European 1714 3.5 Journal of Pharmacology, 2020, 882, 173202. Neural In Vitro Models for Studying Substances Acting on the Central Nervous System. Handbook of 1715 1.8 11 Experimental Pharmacology, 2020, 265, 111-141. Isolation of Adult Human Dermal Fibroblasts from Abdominal Skin and Generation of Induced 1716 0.3 Pluripotent Stem Cells Using a Non-Integrating Method. Journal of Visualized Experiments, 2020, , . Using human induced pluripotent stem cells (hiPSCs) to investigate the mechanisms by which Apolipoprotein E (APOE) contributes to Alzheimer's disease (AD) risk. Neurobiology of Disease, 2020, 1717 23 4.4 138, 104788. N 1-Methylpseudouridine substitution enhances the performance of synthetic mRNA switches in cells. 1718 14.5 Nucleic Acids Research, 2020, 48, e35-e35. Nanomedicines to Deliver mRNA: State of the Art and Future Perspectives. Nanomaterials, 2020, 10, 364. 1719 4.1 138 Dysregulations of Functional RNA Modifications in Cancer, Cancer Stemness and Cancer Therapeutics.

CITATION REPORT

Theranostics, 2020, 10, 3164-3189.

ARTICLE IF CITATIONS <p>Informatics Approaches for Harmonized Intelligent Integration of Stem Cell 1721 2.3 5 Research</p>. Stem Cells and Cloning: Advances and Applications, 2020, Volume 13, 1-20. The challenge and prospect of mRNA therapeutics landscape. Biotechnology Advances, 2020, 40, 107534. 11.7 221 Neuroregeneration: Regulation in Neurodegenerative Diseases and Aging. Biochemistry (Moscow), 1723 1.5 13 2020, 85, 108-130. Generation of two genomic-integration-free DMD iPSC lines with mutations affecting all dystrophin 1724 isoforms and potentially amenable to exon-skipping. Stem Cell Research, 2020, 43, 101688. Synthetic Biology and Tissue Engineering: Toward Fabrication of Complex and Smart Cellular 1725 14.9 19 Constructs. Advanced Functional Materials, 2020, 30, 1909882. Reporter Assays for Ebola Virus Nucleoprotein Oligomerization, Virion-Like Particle Budding, and Minigenome Activity Reveal the Importance of Nucleoprotein Amino Acid Position 111. Viruses, 2020, 12, 3.3 Non-viral reprogramming and induced pluripotent stem cells for cardiovascular therapy. 1727 1.9 2 Differentiation, 2020, 112, 58-66. Long-term development of human iPSC-derived pyramidal neurons quantified after transplantation 2.0 into the neonatal mouse cortex. Developmental Biology, 2020, 461, 86-95. Establishment of porcine nuclear transfer-derived embryonic stem cells using induced pluripotent 1729 1.4 1 stem cells as donor nuclei. Journal of Reproduction and Development, 2020, 66, 163-174. Engineering Biomaterials with Micro/Nanotechnologies for Cell Reprogramming. ACS Nano, 2020, 14, 14.6 39 1296-1318 Urine-Derived Induced Pluripotent Stem Cells in Cardiovascular Disease. Cardiology Research and 1732 1.1 1 Practice, 2020, 2020, 1-8. Induced Pluripotent Stem Cells: Reprogramming Platforms and Applications in Cell Replacement 2.6 50 Therapy. BioResearch Open Access, 2020, 9, 121-136. All roads lead to Rome: the many ways to pluripotency. Journal of Assisted Reproduction and 1734 2.5 7 Genetics, 2020, 37, 1029-1036. Tissue engineering: current status and future perspectives., 2020, , 1-35. 1736 Applications for stem cells., 2020, , 445-455. 0 Skeletal tissue engineering., 2020, , 1007-1021. Co-delivery of NS1 and BMP2 mRNAs to murine pluripotent stem cells leads to enhanced BMP-2 1738 8.3 9 expression and osteogenic differentiation. Acta Biomaterialia, 2020, 108, 337-346. mRNA-activated matrices encoding transcription factors as primers of cell differentiation in tissue 1739 11.4 engineering. Biomaterials, 2020, 247, 120016.

#	Article	IF	CITATIONS
1740	RNA-based CRISPR-Mediated Loss-of-Function Mutagenesis in Human Pluripotent Stem Cells. Journal of Molecular Biology, 2020, 432, 3956-3964.	4.2	3
1741	Impaired mitochondrial–endoplasmic reticulum interaction and mitophagy in Miro1-mutant neurons in Parkinson's disease. Human Molecular Genetics, 2020, 29, 1353-1364.	2.9	37
1742	Long-term expansion of directly reprogrammed keratinocyte-like cells and in vitro reconstitution of human skin. Journal of Biomedical Science, 2020, 27, 56.	7.0	2
1743	Induced Pluripotent Stem Cells in Dental and Nondental Tissue Regeneration: A Review of an Unexploited Potential. Stem Cells International, 2020, 2020, 1-24.	2.5	12
1744	Naturally occurring modified ribonucleosides. Wiley Interdisciplinary Reviews RNA, 2020, 11, e1595.	6.4	108
1745	Modeling Parkinson's Disease Using Induced Pluripotent Stem Cells. Stem Cells International, 2020, 2020, 1-15.	2.5	18
1746	Optimization of 5′ Untranslated Region of Modified mRNA for Use in Cardiac or Hepatic Ischemic Injury. Molecular Therapy - Methods and Clinical Development, 2020, 17, 622-633.	4.1	26
1747	Vascular Tissue Engineering: Advanced Techniques and Gene Editing in Stem Cells for Graft Generation. Tissue Engineering - Part B: Reviews, 2021, 27, 14-28.	4.8	17
1748	Redox and Epigenetics in Human Pluripotent Stem Cells Differentiation. Antioxidants and Redox Signaling, 2021, 34, 335-349.	5.4	16
1750	Nanoplatforms for mRNA Therapeutics. Advanced Therapeutics, 2021, 4, .	3.2	62
1751	Materials control of the epigenetics underlying cell plasticity. Nature Reviews Materials, 2021, 6, 69-83.	48.7	49
1752	Viral pathogen-induced mechanisms to antagonize mammalian interferon (IFN) signaling pathway. Cellular and Molecular Life Sciences, 2021, 78, 1423-1444.	5.4	49
1753	Identification of an epigenetic signature in human induced pluripotent stem cells using a linear machine learning model. Human Cell, 2021, 34, 99-110.	2.7	8
1754	The epitranscriptome beyond m6A. Nature Reviews Genetics, 2021, 22, 119-131.	16.3	353
1755	Reprogramming of Fibroblasts to Human iPSCs by CRISPR Activators. Methods in Molecular Biology, 2021, 2239, 175-198.	0.9	4
1757	Special review series on 3D organotypic culture models: Introduction and historical perspective. In Vitro Cellular and Developmental Biology - Animal, 2021, 57, 95-103.	1.5	15
1758	Physicochemical Properties in 3D Hydrogel Modulate Cellular Reprogramming into Induced Pluripotent Stem Cells. Advanced Functional Materials, 2021, 31, 2007041.	14.9	9
1759	Human stem cell models of polyglutamine diseases: Sources for disease models and cell therapy. Experimental Neurology, 2021, 337, 113573.	4.1	5

#	Article	IF	CITATIONS
1760	Great Expectations: Induced pluripotent stem cell technologies in neurodevelopmental impairments. International Journal of Medical Sciences, 2021, 18, 459-473.	2.5	7
1761	A Concise Review on Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Personalized Regenerative Medicine. Stem Cell Reviews and Reports, 2021, 17, 748-776.	3.8	13
1762	Recent advances in chemical modifications of guide RNA, mRNA and donor template for CRISPR-mediated genome editing. Advanced Drug Delivery Reviews, 2021, 168, 246-258.	13.7	39
1763	Regulatory considerations for developing a phase I investigational new drug application for autologous induced pluripotent stem cells-based therapy product. Stem Cells Translational Medicine, 2021, 10, 198-208.	3.3	30
1765	iPSCs and cell therapy for Parkinson's disease. , 2021, , 23-47.		0
1766	An alternative in vivo model to evaluate pluripotency of patient-specific iPSCs_suppl. ALTEX: Alternatives To Animal Experimentation, 0, , .	1.5	0
1767	Pluripotent Stem Cells for Disease Modeling and Drug Discovery in Niemann-Pick Type C1. International Journal of Molecular Sciences, 2021, 22, 710.	4.1	8
1768	Induced pluripotent stem cell derivation from myoblasts. , 2021, , 37-55.		3
1769	An overview of reprogramming approaches to derive integration-free induced pluripotent stem cells for prospective biomedical applications. , 2021, , 231-287.		21
1770	Reprograming Fibroblasts for Cardiomyocytes and Progenitors. , 2021, , 293-312.		0
1771	Lentiviral vectors as the delivery vehicles for transduction into iPSCs. , 2021, , 79-100.		0
1772	Induced pluripotent stem cells in species conservation: advantages, applications, and the road ahead. , 2021, , 221-245.		2
1773	Cell-Type-Specific CRISPR-Cas9 System with miRNAs. Springer Protocols, 2021, , 265-279.	0.3	0
1774	Looking at induced pluripotent stem cell (iPSC) differentiation through the lens of the noncoding genome. , 2021, , 23-62.		0
1775	Expression of Recombinant Human Octamer-Binding Transcription Factor 4 in Rice Suspension Cells. International Journal of Molecular Sciences, 2021, 22, 1409.	4.1	3
1776	Considerations in using human pluripotent stem cell–derived pancreatic beta cells to treat type 1 diabetes. , 2021, , 173-203.		0
1777	Induced pluripotent stem cells as tools to investigate the neurobiology of bipolar disorder and advance novel therapeutic discovery. , 2021, , 155-173.		0
1778	Induced pluripotent stem cell derived from postmortem tissue in neurodegenerative disease research. , 2021, , 221-249.		1

#	Article	IF	CITATIONS
1779	An alternative in vivo model to evaluate pluripotency of patient-specific iPSCs. ALTEX: Alternatives To Animal Experimentation, 2021, 38, 442-450.	1.5	3
1780	Regulation of RNA Methylation by TET Enzymes. RNA Technologies, 2021, , 423-433.	0.3	0
1781	Mechanisms and Clinical Applications of RNA Pseudouridylation. RNA Technologies, 2021, , 505-526.	0.3	3
1782	InÂvitro T lymphopoiesis. , 2021, , 23-53.		0
1783	Repair and Regeneration After Important Visceral Injury. , 2021, , 193-282.		0
1784	Loss of the fragile X syndrome protein FMRP results in misregulation of nonsense-mediated mRNA decay. Nature Cell Biology, 2021, 23, 40-48.	10.3	23
1785	Induced pluripotent stem cells versus embryonic stem cells. , 2021, , 289-307.		0
1786	Stem Cells and Gene Therapy in Progressive Hearing Loss: the State of the Art. JARO - Journal of the Association for Research in Otolaryngology, 2021, 22, 95-105.	1.8	15
1787	Induced pluripotent stem cells for modeling of Rett Syndrome. , 2021, , 171-216.		0
1788	The Use of Human Pluripotent Stem Cells (hPSCs) and CRISPR-Mediated Gene Editing in Retinal Diseases. Essentials in Ophthalmology, 2021, , 455-466.	0.1	0
1789	From Embryo to Adult: One Carbon Metabolism in Stem Cells. Current Stem Cell Research and Therapy, 2021, 16, 175-188.	1.3	1
1790	NGN2 mmRNA-Based Transcriptional Programming in Microfluidic Guides hiPSCs Toward Neural Fate With Multiple Identities. Frontiers in Cellular Neuroscience, 2021, 15, 602888.	3.7	9
1791	Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics. Cell, 2021, 184, 881-898.	28.9	56
1792	Cap 1 Messenger RNA Synthesis with Coâ€transcriptional CleanCap [®] Analog by In Vitro Transcription. Current Protocols, 2021, 1, e39.	2.9	103
1793	Delivery of transcription factors as modulators of cell differentiation. Drug Delivery and Translational Research, 2021, 11, 426-444.	5.8	10
1794	iPSCs in Modeling and Therapy of Osteoarthritis. Biomedicines, 2021, 9, 186.	3.2	15
1795	A double-edged sword of immuno-microenvironment in cardiac homeostasis and injury repair. Signal Transduction and Targeted Therapy, 2021, 6, 79.	17.1	95
1796	Autologous Induced Pluripotent Stem Cell–Based Cell Therapies: Promise, Progress, and Challenges. Current Protocols, 2021, 1, e88.	2.9	48

		CITATION R	EPORT	
#	Article		IF	Citations
1797	Self-assembled mRNA vaccines. Advanced Drug Delivery Reviews, 2021, 170, 83-112.		13.7	248
1798	A Synthetic mRNA Cell Reprogramming Method Using <i>CYCLIN D1</i> Promotes DN Generating Improved Genetically Stable Human Induced Pluripotent Stem Cells. Stem 0 866-881.	A rEpair, Cells, 2021, 39,	3.2	14
1799	Genome editing using CRISPR/Cas9 to treat hereditary hematological disorders. Gene 1 207-216.	⁻ herapy, 2022, 29,	4.5	10
1800	smiFISH and embryo segmentation for single-cell multi-gene RNA quantification in arth Communications Biology, 2021, 4, 352.	ropods.	4.4	20
1801	The Immunomodulatory Capacity of Induced Pluripotent Stem Cells in the Post-stroke Frontiers in Cell and Developmental Biology, 2021, 9, 647415.	Environment.	3.7	4
1802	Perspectives on RNA Vaccine Candidates for COVID-19. Frontiers in Molecular Bioscien 635245.	ces, 2021, 8,	3.5	44
1803	Induced pluripotent stem cell technology: trends in molecular biology, from genetics to Epigenomics, 2021, 13, 631-647.) epigenetics.	2.1	12
1804	Modifications in an Emergency: The Role of N1-Methylpseudouridine in COVID-19 Vacc Science, 2021, 7, 748-756.	ines. ACS Central	11.3	196
1805	The Potential of Induced Pluripotent Stem Cells to Test Gene Therapy Approaches for N and Motor Neuron Disorders. Frontiers in Cell and Developmental Biology, 2021, 9, 66	leuromuscular 2837.	3.7	5
1807	Recent advances in the induced pluripotent stem cellâ€based skin regeneration. Woun Regeneration, 2021, 29, 697-710.	d Repair and	3.0	9
1809	Induced Tissue-Specific Stem Cells (iTSCs): Their Generation and Possible Use in Regen Pharmaceutics, 2021, 13, 780.	erative Medicine.	4.5	3
1811	Potential of Induced Pluripotent Stem Cells for Use in Gene Therapy: History, Molecular Medical Perspectives. Biomolecules, 2021, 11, 699.	^r Bases, and	4.0	6
1812	Construction and Immunogenicity of Modified mRNA-Vaccine Variants Encoding Influe Antigens. Vaccines, 2021, 9, 452.	nza Virus	4.4	16
1813	Novel cell sources for bone regeneration. MedComm, 2021, 2, 145-174.		7.2	10
1815	Stem Cells as a Source of Pancreatic Cells for Production of 3D Bioprinted Bionic Pancr Treatment of Type 1 Diabetes. Cells, 2021, 10, 1544.	eas in the	4.1	11
1816	iPSC Preparation and Epigenetic Memory: Does the Tissue Origin Matter?. Cells, 2021,	10, 1470.	4.1	39
1817	An Overview on Promising Somatic Cell Sources Utilized for the Efficient Generation of Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2021, 17, 1954-1974.	Induced	3.8	26
1819	Direct Reprogramming of Cardiac Fibroblasts to Repair the Injured Heart. Journal of Car Development and Disease, 2021, 8, 72.	diovascular	1.6	9

#	Article	IF	CITATIONS
1820	Hydrogelâ€Induced Cell Membrane Disruptions Enable Direct Cytosolic Delivery of Membraneâ€Impermeable Cargo. Advanced Materials, 2021, 33, e2008054.	21.0	13
1821	MYOD modified mRNA drives direct on-chip programming of human pluripotent stem cells into skeletal myocytes. Biochemical and Biophysical Research Communications, 2021, 560, 139-145.	2.1	6
1822	Sustained release of PKR inhibitor C16 from mesoporous silica nanoparticles significantly enhances mRNA translation and anti-tumor vaccination. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 179-187.	4.3	13
1823	mRNA Delivery by a pHâ€Responsive DNA Nanoâ€Hydrogel. Small, 2021, 17, e2101224.	10.0	52
1824	Induced Pluripotent Stem Cells (iPSCs) Provide a Potentially Unlimited T Cell Source for CAR-T Cell Development and Off-the-Shelf Products. Pharmaceutical Research, 2021, 38, 931-945.	3.5	18
1825	Recent trends in stem cell-based therapies and applications of artificial intelligence in regenerative medicine. World Journal of Stem Cells, 2021, 13, 521-541.	2.8	16
1826	An overview of rational design of mRNA-based therapeutics and vaccines. Expert Opinion on Drug Discovery, 2021, 16, 1307-1317.	5.0	37
1827	Emerging hiPSC Models for Drug Discovery in Neurodegenerative Diseases. International Journal of Molecular Sciences, 2021, 22, 8196.	4.1	9
1828	Application of Modified mRNA in Somatic Reprogramming to Pluripotency and Directed Conversion of Cell Fate. International Journal of Molecular Sciences, 2021, 22, 8148.	4.1	16
1829	Non-viral approaches for somatic cell reprogramming into cardiomyocytes. Seminars in Cell and Developmental Biology, 2022, 122, 28-36.	5.0	4
1830	Mouse Pluripotent Stem Cell Differentiation Under Physiological Oxygen Reduces Residual Teratomas. Cellular and Molecular Bioengineering, 2021, 14, 555-567.	2.1	2
1831	The Use of Stem Cell-Derived Organoids in Disease Modeling: An Update. International Journal of Molecular Sciences, 2021, 22, 7667.	4.1	34
1832	The Application of Induced Pluripotent Stem Cells Against Liver Diseases: An Update and a Review. Frontiers in Medicine, 2021, 8, 644594.	2.6	5
1833	Retinal Protection by Sustained Nanoparticle Delivery of Oncostatin M and Ciliary Neurotrophic Factor Into Rodent Models of Retinal Degeneration. Translational Vision Science and Technology, 2021, 10, 6.	2.2	11
1834	Induced endothelial cells from peripheral arterial disease patients and neonatal fibroblasts have comparable angiogenic properties. PLoS ONE, 2021, 16, e0255075.	2.5	1
1835	Interplays of different types of epitranscriptomic mRNA modifications. RNA Biology, 2021, 18, 19-30.	3.1	9
1836	How RNA modifications regulate the antiviral response. Immunological Reviews, 2021, 304, 169-180.	6.0	17
1838	Lipid nanoparticles for mRNA delivery. Nature Reviews Materials, 2021, 6, 1078-1094.	48.7	1,256

#	Article	IF	CITATIONS
1839	Cytidine acetylation yields a hypoinflammatory synthetic messenger RNA. Cell Chemical Biology, 2022, 29, 312-320.e7.	5.2	14
1840	Current status and future directions of clinical applications using iPS cells—focus on Japan. FEBS Journal, 2022, 289, 7274-7291.	4.7	13
1841	Inter-regulatory role of microRNAs in interaction between viruses and stem cells. World Journal of Stem Cells, 2021, 13, 985-1004.	2.8	4
1842	Method Optimization of Skin Biopsy-Derived Fibroblast Culture for Reprogramming Into Induced Pluripotent Stem Cells. Biopreservation and Biobanking, 2021, , .	1.0	2
1844	An mRNA assay system demonstrates proteasomal-specific degradation contributes to cardiomyopathic phospholamban null mutation. Molecular Medicine, 2021, 27, 102.	4.4	1
1845	Immunological aspects of RPE cell transplantation. Progress in Retinal and Eye Research, 2021, 84, 100950.	15.5	39
1846	Industrially Compatible Transfusable iPSC-Derived RBCs: Progress, Challenges and Prospective Solutions. International Journal of Molecular Sciences, 2021, 22, 9808.	4.1	9
1847	Synthetic modified Fezf2 mRNA (modRNA) with concurrent small molecule SIRT1 inhibition enhances refinement of cortical subcerebral/corticospinal neuron identity from mouse embryonic stem cells. PLoS ONE, 2021, 16, e0254113.	2.5	3
1848	Strategies for controlling the innate immune activity of conventional and self-amplifying mRNA therapeutics: Getting the message across. Advanced Drug Delivery Reviews, 2021, 176, 113900.	13.7	59
1849	The tangled history of mRNA vaccines. Nature, 2021, 597, 318-324.	27.8	268
1850	Induced Pluripotent Stem Cells to Model Juvenile Myelomonocytic Leukemia: New Perspectives for Preclinical Research. Cells, 2021, 10, 2335.	4.1	5
1851	Hepatic Regeneration in Cirrhosis. Journal of Clinical and Experimental Hepatology, 2022, 12, 603-616.	0.9	6
1852	Synthetic modified messenger RNA for therapeutic applications. Acta Biomaterialia, 2021, 131, 1-15.	8.3	34
1853	Delivering the message: How a novel technology enabled the rapid development of effective vaccines. Cell, 2021, 184, 5271-5274.	28.9	5
1854	Transdifferentiation of goat ear fibroblasts into lactating mammary epithelial cells induced by small molecule compounds. Biochemical and Biophysical Research Communications, 2021, 573, 55-61.	2.1	2
1855	Master regulators of skeletal muscle lineage development and pluripotent stem cells differentiation.	0.4	26
	Cell Regeneration, 2021, 10, 31.	2.6	
1856	Cell Regeneration, 2021, 10, 31. Advances in mRNA non-viral delivery approaches. Advanced Drug Delivery Reviews, 2021, 177, 113930.	13.7	57

#	Article	IF	CITATIONS
1858	Advances in mRNA 5-methylcytosine modifications: Detection, effectors, biological functions, and clinical relevance. Molecular Therapy - Nucleic Acids, 2021, 26, 575-593.	5.1	37
1859	Nanog in iPS cells and during reprogramming. , 2022, , 319-348.		1
1860	Induced pluripotency and intrinsic reprogramming factors. , 2022, , 117-145.		0
1861	pDNA and mRNA vaccines. , 2022, , 157-205.		1
1862	System biology and synthetic biology. , 2021, , 329-344.		0
1863	Rabbit induced pluripotent stem cells: the challenges. , 2021, , 187-203.		0
1864	Human Induced Pluripotent Stem Cell (iPSC) Handling Protocols: Maintenance, Expansion, and Cryopreservation. Methods in Molecular Biology, 2021, , 1-15.	0.9	6
1865	Vaccinia Virus Protein B18R: Influence on mRNA Immunogenicity and Translation upon Non-Viral Delivery in Different Ocular Cell Types. Pharmaceutics, 2021, 13, 74.	4.5	4
1866	Muse cells as a robust source of induced pluripotent stem cells. , 2021, , 137-161.		2
1867	mRNA-Enhanced Cell Therapy and Cardiovascular Regeneration. Cells, 2021, 10, 187.	4.1	16
1868	Genome editing of hPSCs: Recent progress in hPSC-based disease modeling for understanding disease mechanisms. Progress in Molecular Biology and Translational Science, 2021, 181, 271-287.	1.7	1
1869	Xeno-free cultivation of human induced pluripotent stem cells for clinical applications. , 2021, , 309-341.		0
1870	Current reprogramming methods to generate high-quality iPSCs. , 2021, , 1-36.		0
1871	Generation of Induced Pluripotent Stem Cells and Applications in Regenerative Medicine. UludaÄŸ Üniversitesi Tıp Fakültesi Dergisi, 2021, 47, 117-126.	0.3	2
1872	Manufacture of complex heart tissues: technological advancements and future directions. AIMS Bioengineering, 2021, 8, 73-92.	1.1	0
1873	Advances in pluripotent stem cell-derived natural killer cells for cancer immunotherapy. , 2021, , 165-181.		0
1874	Excision of a Viral Reprogramming Cassette by Delivery of Synthetic Cre mRNA. Current Protocols in Stem Cell Biology, 2012, 21, Unit4A.5.	3.0	17
1875	In Vitro-Transcribed (IVT)-mRNA CAR Therapy Development. Methods in Molecular Biology, 2020, 2086, 87-117.	0.9	20

#	Article	IF	Citations
1876	Efficient RNA-Based Reprogramming of Disease-Associated Primary Human Fibroblasts into Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2020, 2117, 271-284.	0.9	4
1877	The Role of RNA Editing in the Immune Response. Methods in Molecular Biology, 2021, 2181, 287-307.	0.9	8
1878	Reprogramming Somatic Cells into Pluripotent Stem Cells Using miRNAs. Methods in Molecular Biology, 2014, 1150, 273-281.	0.9	1
1879	Integration-Free Reprogramming of Human Somatic Cells to Induced Pluripotent Stem Cells (iPSCs) Without Viral Vectors, Recombinant DNA, and Genetic Modification. Methods in Molecular Biology, 2014, 1151, 75-94.	0.9	18
1880	Second Generation Codon Optimized Minicircle (CoMiC) for Nonviral Reprogramming of Human Adult Fibroblasts. Methods in Molecular Biology, 2014, 1181, 1-13.	0.9	7
1881	Stem Cells: Are We Ready for Therapy?. Methods in Molecular Biology, 2014, 1213, 3-21.	0.9	4
1882	Synthetic mRNA Reprogramming of Human Fibroblast Cells. Methods in Molecular Biology, 2015, 1330, 17-28.	0.9	8
1883	RNActive® Technology: Generation and Testing of Stable and Immunogenic mRNA Vaccines. Methods in Molecular Biology, 2017, 1499, 89-107.	0.9	43
1884	Reprogramming of Primary Human Cells to Induced Pluripotent Stem Cells Using Sendai Virus. Methods in Molecular Biology, 2020, 2066, 217-234.	0.9	1
1885	Generation of Human iPSCs from Human Peripheral Blood Mononuclear Cells Using Non-integrative Sendai Virus in Chemically Defined Conditions. Methods in Molecular Biology, 2013, 1036, 81-88.	0.9	72
1886	Cell Therapy for Degenerative Retinal Disease: Special Focus on Cell Fusion-Mediated Regeneration. Pancreatic Islet Biology, 2019, , 217-244.	0.3	1
1887	Utility of Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium for an In Vitro Model of Proliferative Vitreoretinopathy. Advances in Experimental Medicine and Biology, 2019, 1186, 33-53.	1.6	6
1888	CRISPR/Cas9 Editing in Induced Pluripotent Stem Cells: A Way Forward for Treating Cystic Fibrosis?. , 2019, , 153-178.		2
1889	Nanomaterials for Regenerative Medicine. Pancreatic Islet Biology, 2019, , 1-45.	0.3	3
1890	Potential Clinical Applications of Stem Cells in Regenerative Medicine. Advances in Experimental Medicine and Biology, 2019, 1201, 1-22.	1.6	63
1891	Genomic Instability of iPSCs and Challenges in Their Clinical Applications. Advances in Experimental Medicine and Biology, 2019, 1201, 23-47.	1.6	40
1892	Induced Pluripotent Stem Cell-Derived Vascular Smooth Muscle Cells for Vascular Regeneration. , 2021, , 199-219.		1
1893	In Vitro Modeling of Complex Neurological Diseases. Research and Perspectives in Neurosciences, 2017, , 1-19.	0.4	3

#	Article	IF	Citations
1894	Interspecies Mixtures and the Status of Humanity. , 2011, , 129-155.		1
1895	Induction of Human Pluripotent Stem Cells by the Sendai Virus Vector: Establishment of a Highly Efficient and Footprint-Free System. , 2013, , 171-183.		1
1896	Fertilization Failure. , 2018, , 7-17.		1
1900	Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nature Neuroscience, 2019, 22, 374-385.	14.8	511
1902	Enhancing RPE Cell-Based Therapy Outcomes for AMD: The Role of Bruch's Membrane. Translational Vision Science and Technology, 2014, 3, 11.	2.2	20
1903	Human NK cell deficiency as a result of biallelic mutations in MCM10. Journal of Clinical Investigation, 2020, 130, 5272-5286.	8.2	44
1904	A mark of disease: how mRNA modifications shape genetic and acquired pathologies. Rna, 2021, 27, 367-389.	3.5	24
1905	Resolving clinical hurdles for autologous pluripotent stem cell-based therapies. OA Stem Cells, 2013, 1, .	0.2	4
1906	Myocardial bioprosthesis: Mimicking nature. Drugs of the Future, 2013, 38, 475.	0.1	3
1907	Enhanced Reprogramming Efficiency and Kinetics of Induced Pluripotent Stem Cells Derived from Human Duchenne Muscular Dystrophy. PLOS Currents, 2015, 7, .	1.4	4
1908	Activation of Pluripotency Genes in Human Fibroblast Cells by a Novel mRNA Based Approach. PLoS ONE, 2010, 5, e14397.	2.5	90
1909	Growth Factor-Activated Stem Cell Circuits and Stromal Signals Cooperatively Accelerate Non-Integrated iPSC Reprogramming of Human Myeloid Progenitors. PLoS ONE, 2012, 7, e42838.	2.5	32
1910	Characterization and Therapeutic Potential of Induced Pluripotent Stem Cell-Derived Cardiovascular Progenitor Cells. PLoS ONE, 2012, 7, e45603.	2.5	33
1911	Efficient Generation of Virus-Free iPS Cells Using Liposomal Magnetofection. PLoS ONE, 2012, 7, e45812.	2.5	40
1912	In Vivo Messenger RNA Introduction into the Central Nervous System Using Polyplex Nanomicelle. PLoS ONE, 2013, 8, e56220.	2.5	107
1913	Attenuation of Hind-Limb Ischemia in Mice with Endothelial-Like Cells Derived from Different Sources of Human Stem Cells. PLoS ONE, 2013, 8, e57876.	2.5	55
1914	Few Single Nucleotide Variations in Exomes of Human Cord Blood Induced Pluripotent Stem Cells. PLoS ONE, 2013, 8, e59908.	2.5	31
1915	A Robust Strategy for Negative Selection of Cre-LoxP Recombination-Based Excision of Transgenes in Induced Pluripotent Stem Cells. PLoS ONE, 2013, 8, e64342.	2.5	16

#	Article	IF	CITATIONS
1916	Efficient Generation of Integration-Free iPS Cells from Human Adult Peripheral Blood Using BCL-XL Together with Yamanaka Factors. PLoS ONE, 2013, 8, e64496.	2.5	78
1917	Characterization of Transcription Factor Phenotypes within Antigen-Specific CD4+ T Cells Using Qualitative Multiplex Single-Cell RT-PCR. PLoS ONE, 2013, 8, e74946.	2.5	16
1918	Efficient Production of Retroviruses Using PLGA/bPEI-DNA Nanoparticles and Application for Reprogramming Somatic Cells. PLoS ONE, 2013, 8, e76875.	2.5	10
1919	A Systematic Evaluation of Integration Free Reprogramming Methods for Deriving Clinically Relevant Patient Specific Induced Pluripotent Stem (iPS) Cells. PLoS ONE, 2013, 8, e81622.	2.5	57
1920	mRNA Transfection of Mouse and Human Neural Stem Cell Cultures. PLoS ONE, 2013, 8, e83596.	2.5	27
1921	Human Fibroblast Reprogramming to Pluripotent Stem Cells Regulated by the miR19a/b-PTEN Axis. PLoS ONE, 2014, 9, e95213.	2.5	22
1922	Recombinase-Mediated Reprogramming and Dystrophin Gene Addition in mdx Mouse Induced Pluripotent Stem Cells. PLoS ONE, 2014, 9, e96279.	2.5	26
1923	Genome Editing in Mouse Spermatogonial Stem/Progenitor Cells Using Engineered Nucleases. PLoS ONE, 2014, 9, e112652.	2.5	18
1924	Non-Viral Generation of Marmoset Monkey iPS Cells by a Six-Factor-in-One-Vector Approach. PLoS ONE, 2015, 10, e0118424.	2.5	39
1925	MEK and TGF-beta Inhibition Promotes Reprogramming without the Use of Transcription Factor. PLoS ONE, 2015, 10, e0127739.	2.5	7
1926	Derivation of Patient Specific Pluripotent Stem Cells Using Clinically Discarded Cumulus Cells. PLoS ONE, 2016, 11, e0165715.	2.5	2
1927	Differentiation of spontaneously contracting cardiomyocytes from non-virally reprogrammed human amniotic fluid stem cells. PLoS ONE, 2017, 12, e0177824.	2.5	23
1928	Synthetic mRNA is a more reliable tool for the delivery of DNA-targeting proteins into the cell nucleus than fusion with a protein transduction domain. PLoS ONE, 2017, 12, e0182497.	2.5	6
1929	Stem Cell Strategies to Evaluate Idiosyncratic Drug-induced Liver Injury. Journal of Clinical and Translational Hepatology, 2014, 2, 143-52.	1.4	8
1930	Proliferative and chondrogenic potential of mesenchymal stromal cells from pluripotent and bone marrow cells. Histology and Histopathology, 2020, 35, 1415-1426.	0.7	4
1931	The Clinical Use of Stem Cell Research in Chronic Obstructive Pulmonary Disease: A Critical Analysis of Current Policies. Journal of Clinical Medicine Research, 2018, 10, 671-678.	1.2	7
1932	Reprogrammed Pluripotent Stem Cells from Somatic Cells. International Journal of Stem Cells, 2011, 4, 1-8.	1.8	33
1933	Evolution of Energy Metabolism, Stem Cells and Cancer Stem Cells: How the Warburg and Barker Hypotheses Might Be Linked. International Journal of Stem Cells, 2012, 5, 39-56.	1.8	28

#	Article	IF	Citations
1934	Delivering Factors for Reprogramming a Somatic Cell to Pluripotency. International Journal of Stem Cells, 2012, 5, 6-11.	1.8	8
1935	Cell-Penetrating Peptides as a Tool to Deliver Biologically Active Recombinant Proteins to Generate Transgene-Free Induced Pluripotent Stem Cells. Studies on Stem Cells Research and Therapy, 2017, 3, 006-015.	0.0	19
1936	Soluble expression of recomb inant cMyc, Klf4, Oct4, and Sox2 proteins in bacteria and transduction into living cells. International Journal of Ophthalmology, 2017, 10, 560-566.	1.1	4
1937	Aging in iPS cells. Aging, 2014, 6, 246-247.	3.1	15
1938	The application of mRNA-based gene transfer in mesenchymal stem cell-mediated cytotoxicity of glioma cells. Oncotarget, 2016, 7, 55529-55542.	1.8	13
1939	Intraperitoneal immunotherapy with T cells stably and transiently expressing anti-EpCAM CAR in xenograft models of peritoneal carcinomatosis. Oncotarget, 2017, 8, 13545-13559.	1.8	84
1940	Genomic landscape analyses of reprogrammed cells using integrative and non-integrative methods reveal variable cancer-associated alterations. Oncotarget, 2019, 10, 2693-2708.	1.8	2
1941	Nuclear delivery of recombinant OCT4 by chitosan nanoparticles for transgene-free generation of protein-induced pluripotent stem cells. Oncotarget, 2016, 7, 37728-37739.	1.8	19
1942	The New Generation of Beta-Cells: Replication, Stem Cell Differentiation, and the Role of Small Molecules. Review of Diabetic Studies, 2010, 7, 93-104.	1.3	19
1943	Mountain high and valley deep: epigenetic controls of pluripotency and cell fate. Animal Reproduction, 2017, 14, 61-68.	1.0	1
1944	Reprogramming Cancer Cells in Endocrine-Related Tumors: Open Issues. Current Medicinal Chemistry, 2014, 21, 1146-1151.	2.4	7
1945	Transposon-Mediated Gene Transfer into Adult and Induced Pluripotent Stem Cells. Current Gene Therapy, 2011, 11, 406-413.	2.0	24
1946	Embryonic Stem Cells or Induced Pluripotent Stem Cells? A DNA Integrity Perspective. Current Gene Therapy, 2013, 13, 93-98.	2.0	47
1947	Pluripotency-Regulating Networks Provide Basis for Reprogramming. Current Molecular Medicine, 2013, 13, 695-706.	1.3	6
1948	Development of Patient-Specific Hematopoietic Stem and Progenitor Cell Grafts from Pluripotent Stem Cells, In Vitro. Current Molecular Medicine, 2013, 13, 815-820.	1.3	11
1949	Disease-Specific iPS Cell Models in Neuroscience. Current Molecular Medicine, 2013, 13, 832-841.	1.3	29
1950	Stem Cells in Skeletal Tissue Engineering: Technologies and Models. Current Stem Cell Research and Therapy, 2016, 11, 453-474.	1.3	11
1951	Recent Progress on Chemical Biology of Pluripotent Stem Cell Selfrenewal, Reprogramming and Cardiomyogenesis. Recent Patents on Regenerative Medicine, 2011, 1, 263-274.	0.4	8

		CITATION REPORT		
#	Article		IF	CITATIONS
1952	A bibliometric analysis of publications on pluripotent stem cell research. Cell Journal, 20)15, 17, 59-70.	0.2	32
1953	Generated Hepatocyte-Like Cells: A Novel Tool in Regenerative Medicine and Drug Disc Journal, 2017, 19, 204-217.	overy. Cell	0.2	16
1954	Rational Development of A Polycistronic Plasmid with A CpG-Free Bacterial Backbone a Tool for Direct Reprogramming. Cell Journal, 2017, 18, 565-581.	s A Potential	0.2	1
1955	Metabolomics and Cell Therapy in Diabetes Mellitus. International Journal of Molecular Medicine, 2019, 8, 41-48.	and Cellular	1.1	8
1956	Perspectivas e desafios regulatórios no uso de célulastronco em métodos alterna animais. Vigilância SanitA¡ria Em Debate: Sociedade, Ciência & Tecnologia, 2018, 6, 9		0.1	1
1957	Toward using iPS cells to treat spinal cord injury: Their safety and therapeutic efficacy. I and Regeneration, 2011, 31, 2-9.	nflammation	3.7	1
1958	Disease-associated iPS cell lines representing hematological and immunological disorde Inflammation and Regeneration, 2012, 32, 171-177.	rs.	3.7	1
1959	JIP2 haploinsufficiency contributes to neurodevelopmental abnormalities in human plur cellâ \in derived neural progenitors and cortical neurons. Life Science Alliance, 2018, 1, e	ipotent stem 201800094.	2.8	6
1960	Human Induced Pluripotent Stem Cells : Clinical Significance and Applications in Neuro Journal of Korean Neurosurgical Society, 2019, 62, 493-501.	logic Diseases.	1.2	20
1961	Future of liver transplantation: Non-human primates for patient-specific organs from in- pluripotent stem cells. World Journal of Gastroenterology, 2011, 17, 3684.	duced	3.3	17
1962	Present and future cell therapies for pancreatic beta cell replenishment. World Journal o Gastroenterology, 2012, 18, 6876.	of	3.3	18
1963	Stem cell-based regenerative opportunities for the liver: State of the art and beyond. W of Gastroenterology, 2015, 21, 12334.	/orld Journal	3.3	57
1964	Stem cell-based therapies for neurological disorders. AIMS Cell and Tissue Engineering,	2018, 2, 24-46.	0.4	1
1965	Modeling neuromuscular junctions in vitro : A review of the curre employing human induced pluripotent stem cells. AIMS Cell and Tissue Engineering, 20		0.4	5
1966	Reprogramming Cancer Stem Cells. Journal of Cancer Science & Therapy, 2012, 04, .		1.7	6
1967	Patient-specific Induced Pluripotent Stem Cells as a Platform for Disease Modeling, Dru and Precision Personalized Medicine. Journal of Stem Cell Research & Therapy, 2012, 02	g Discovery I, .	0.3	9
1968	Pluripotent Stem Cells and Repair of Myocardial Infarction. Tropical Medicine & Surgery	v, 2015, 03, .	0.1	1
1969	Temporal epigenetic modifications differentially regulate ES cell-like colony formation a maturation. Stem Cell Discovery, 2012, 02, 45-57.	nd	0.5	11

#	Article	IF	CITATIONS
1970	Genomic integrity of human induced pluripotent stem cells: Reprogramming, differentiation and applications. World Journal of Stem Cells, 2019, 11, 729-747.	2.8	19
1971	Induced pluripotent stem cells throughout the animal kingdom: Availability and applications. World Journal of Stem Cells, 2019, 11, 491-505.	2.8	44
1972	Inducing human induced pluripotent stem cell differentiation through embryoid bodies: A practical and stable approach. World Journal of Stem Cells, 2020, 12, 25-34.	2.8	22
1973	Potential of transposon-mediated cellular reprogramming towards cell-based therapies. World Journal of Stem Cells, 2020, 12, 527-544.	2.8	14
1974	Human induced pluripotent stem cells for monogenic disease modelling and therapy. World Journal of Stem Cells, 2016, 8, 118.	2.8	27
1975	Cellular models for human cardiomyopathy: What is the best option?. World Journal of Cardiology, 2019, 11, 221-235.	1.5	15
1976	iPS cells generation: an overview of techniques and methods. Journal of Stem Cells and Regenerative Medicine, 2013, 9, 2-8.	2.2	9
1977	The Role of microRNAs in Embryonic and Induced Pluripotency. Journal of Stem Cells and Regenerative Medicine, 2018, 14, 3-9.	2.2	8
1978	Comparative Analysis of Oct4 in Different Histological Subtypes of Esophageal Squamous Cell Carcinomas in Different Clinical Conditions. Asian Pacific Journal of Cancer Prevention, 2014, 15, 3519-3524.	1.2	18
1979	Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells. ELife, 2015, 4, .	6.0	25
1980	Tunable protein synthesis by transcript isoforms in human cells. ELife, 2016, 5, .	6.0	238
1981	Combinatorial programming of human neuronal progenitors using magnetically-guided stoichiometric mRNA delivery. ELife, 2018, 7, .	6.0	6
1982	Gammaretroviral vector encoding a fluorescent marker to facilitate detection of reprogrammed human fibroblasts during iPSC generation. PeerJ, 2013, 1, e224.	2.0	5
1984	Immunology of SARS-CoV-2 infections and vaccines. Advances in Immunology, 2021, 151, 49-97.	2.2	12
1985	Development of multifunctional nanopipettes for controlled intracellular delivery and single-entity detection. Faraday Discussions, 2021, 233, 315-335.	3.2	2
1986	Delivery of synthetic mRNAs for tissue regeneration. Advanced Drug Delivery Reviews, 2021, 179, 114007.	13.7	18
1987	Concentration of Na+-taurocholate-cotransporting polypeptide expressed after in vitro-transcribed mRNA transfection determines susceptibility of hepatoma cells for hepatitis B virus. Scientific Reports, 2021, 11, 19799.	3.3	6
1988	Dissecting single-cell genomes through the clonal organoid technique. Experimental and Molecular Medicine, 2021, 53, 1503-1511.	7.7	9

# 1989	ARTICLE mRNA – A game changer in regenerative medicine, cell-based therapy and reprogramming strategies. Advanced Drug Delivery Reviews, 2021, 179, 114002.	IF 13.7	Citations 25
1990	Gene-editing, immunological and iPSCs based therapeutics for muscular dystrophy. European Journal of Pharmacology, 2021, 912, 174568.	3.5	2
1991	Generation and clinical application of human T cell-derived induced pluripotent stem cells. Inflammation and Regeneration, 2011, 31, 393-398.	3.7	0
1992	Breakthrough in Stem Cell Research? The Reprogramming of Somatic Cells to Pluripotent Stem Cells: Overview and Outlook. , 2011, , 7-24.		0
1993	Current Status of Induced Pluripotent Stem Cells. , 2011, , 39-52.		0
1994	Nuclear reprogramming to treat retinal degenerative diseases. Inflammation and Regeneration, 2011, 31, 33-49.	3.7	3
1995	Chemical Biology of Pluripotent Stem Cells: Focus on Cardiomyogenesis. , 0, , .		1
1996	Associated Adeno Virus Vector for Producing Induced Pluripotent Stem Cells (IPS) for Human Somatic Cells. , 0, , .		1
1997	Induced Pluripotent Stem Cells from Blood. , 2012, , 87-95.		0
1998	Applications of Human Induced Pluripotent Stem Cell Derived Hepatocytes. , 2012, , 213-220.		0
1999	Human Induced Pluripotent Stem Cells: Role in Patient-Specific Drug Discovery. , 2012, , 257-263.		0
2001	Modeling Disease in a Dish. SpringerBriefs in Stem Cells, 2012, , 33-49.	0.1	0
2002	Induced Pluripotent Stem Cell Production and Characterization: An Overview of Somatic Cell Reprogramming. , 2012, , 125-137.		0
2003	iPS Cells: Born-Again Stem Cells for Biomedical Applications. , 0, , .		0
2004	Pluripotent stem cells and reprogramming in human and farm animals. Acta Agriculturae Slovenica, 2012, 100, .	0.3	0
2005	Transdifferentiation in the Nervous System. , 2012, , 245-264.		0
2006	iPS Cells: New Applications for Metabolic Liver Diseases. , 2012, , 85-95.		0
2007	Updated Information on Stem Cells for the Neonatologist. , 2012, , 1-13.		0

#	Article	IF	CITATIONS
2008	Application of iPS Cell Technology for Cardiac Disease Modeling and Repair. Journal of Clinical & Experimental Cardiology, 2012, 03, .	0.0	0
2009	Generation of Patient Specific Stem Cells: A Human Model System. , 0, , .		1
2010	Role of Pluripotent Stem Cells in Regenerative Medicine. , 2012, , 21-37.		0
2011	Stem Cell Technology and Cell Based Therapies. , 2012, , 115-137.		0
2013	Pancreatic Reprogramming. , 2013, , 155-168.		0
2014	Current Ex-Vivo Gene Therapy Technologies and Future Developments. , 2013, , 153-170.		0
2015	Modeling of Human Genetic Diseases Via Cellular, Reprogramming. Journal of Genetic Medicine, 2012, 9, 67-72.	0.2	0
2016	Generate Induced Pluripotent Stem Cells by Three Factors under Feeder-Free Condition with Higher Efficiencies. Journal of Animal and Veterinary Advances, 2012, 11, 2110-2115.	0.1	0
2017	Genetically Modified Stem Cells for Transplantation. , 2013, , 119-146.		0
2018	Alternative Future Therapies for Lysosomal Storage Diseases: Embryonic Stem Cell- and Induced Pluripotent Stem Cell Therapy. Pancreatic Islet Biology, 2013, , 139-158.	0.3	0
2019	Stem Cells and Diabetes. , 2013, , 419-426.		0
2020	Dental Pulp Stem Cells: A Promising Tool for Tissue Regeneration. IOSR Journal of Dental and Medical Sciences, 2013, 12, 40-45.	0.0	0
2021	Induced Pluripotent Stem (iPS) Cells for the Regeneration of Trachea and Larynx. Koutou (the LARYNX) Tj ETQqO	00rgBT	Overlock 10
2022	iPS Cell Technology and Disease Research: Issues To Be Resolved. Research and Perspectives in Neurosciences, 2013, , 1-7.	0.4	0
2023	hiPSCs: Reprogramming towards cell-based therapies. Open Journal of Regenerative Medicine, 2013, 02, 61-73.	0.9	1
2024	Primary evaluation of induced pluripotent stem cells using flow cytometry. Inflammation and Regeneration, 2013, 33, 003-012.	3.7	0
2025	Induced Pluripotent Stem Cells: New Advances in Cardiac Regenerative Medicine. , 2013, , 225-249.		0
2026	Cell-Based Therapy for Cardiovascular Injury. , 2013. , 207-224.		0

# 2027	ARTICLE Human-Induced Pluripotent Stem Cells, Embryonic Stem Cells, and Their Cardiomyocyte Derivatives: An Overview. , 2013, , 321-345.	IF	Citations 0
2028	Disease Modeling and Drug Discovery Using Human Pluripotent Stem Cells. Pancreatic Islet Biology, 2013, , 317-340.	0.3	0
2029	Neuron Regeneration Using iPS Cells. , 2013, , 315-332.		0
2030	Reprogramming and Regenerative Medicine. , 2013, , 35-58.		0
2031	Human iPS Cell Generation Methods for Clinical Usage. , 2013, , 20-34.		0
2032	Vascular Stem Cell Therapy. Cell Engineering, 2014, , 49-69.	0.4	0
2034	Cancer Gene Therapy Potential of Neural Stem Cells Derived from Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Stem Cells and Cancer Stem Cells, 2014, , 51-63.	0.1	0
2036	Pluripotent Stem Cells. , 2014, , 287-303.		0
2037	Reprogrammed Cells: How Far Away from the Clinical Use?. Cloning & Transgenesis, 2014, 03, .	0.1	1
2038	Use of Induced Pluripotent Stem Cells in Drug Toxicity Screening. Methods in Pharmacology and Toxicology, 2014, , 335-350.	0.2	1
2040	Regenerative Medicine for Spinal Cord Injury Utilizing iPS Cells. , 2014, , 229-245.		0
2041	Advances in Stem Cell Research for Parkinson Disease. , 2014, , 653-690.		0
2042	Stem Cell Therapy for Neurological Disorders: From Bench to Bedside. , 2014, , 41-70.		0
2043	The Future Challenges for the Clinical Application of Reprogrammed Cells. , 2014, 04, .		0
2044	Identification of Candidate Porcine miRNA-302/367 Cluster and Its Function in Somatic Cell Reprogramming. Reproductive & Developmental Biology, 2014, 38, 79-84.	0.1	0
2047	Derivation of Induced Pluripotent Stem Cells. , 2015, , 149-165.		0
2048	Direct Reprogramming of Somatic Cells into Induced Neuronal Cells: Where We Are and Where We Want to Go. Pancreatic Islet Biology, 2015, , 175-195.	0.3	0
2049	Impact of New Genome Editing Tools on Ips Cell Based Therapies. International Journal of Stem Cell Research and Therapy, 2014, 1, .	1.0	1

# 2050	ARTICLE Technological Development for Regeneration of Trachea and Larynx with Induced Pluripotent Stem (iPS) Cells. Nihon Kikan Shokudoka Gakkai Kaiho, 2015, 66, 123-125.	IF 0.0	CITATIONS
2051	Epithelial Regeneration of the Trachea and Larynx with Induced Pluripotent Stem Cells ï¼^iPS)Cells. Koutou (the LARYNX JAPAN), 2015, 27, 59-61.	0.1	0
2052	Induced Pluripotent Stem-cell Lines in the Clinic - Still a Long Road Ahead. Journal of Human Virology & Retrovirology, 2015, 2, .	0.2	0
2055	Hematological Disorders. , 2016, , 69-81.		0
2057	Fetal Cell Reprogramming and Transformation. Pancreatic Islet Biology, 2016, , 101-130.	0.3	0
2058	Actual strategies in human induced pluripotent stem cells (hiPSCs) differentiation – perspectives and challenges. Diagnostyka Laboratoryjna I WiadomoÅvci PTDL, 2016, 52, 123-136.	0.1	0
2059	Advances in Umbilical Cord Blood Therapy: Hematopoietic Stem Cell Transplantation and Beyond. Pancreatic Islet Biology, 2017, , 139-168.	0.3	1
2060	Use of Stem Cells in Toxicology. , 2017, , 177-194.		0
2061	Pluripotent Stem Cells and Skeletal Muscle Differentiation: Challenges and Immediate Applications. , 2017, , 1-35.		0
2062	Diabetes Mellitus: Can Stem Cells be the Answer?. Biotechnology Journal International, 2017, 18, 1-12.	0.2	0
2063	Induced Pluripotent Stem Cells (iPSCs) and Nuclear Reprogramming. , 2017, , 71-91.		0
2064	9 Role of Induced Pluripotent Stem Cells in Urological Disease Modeling and Repair. , 2017, , 177-194.		0
2065	1 Human-Induced Pluripotent Stem Cells: Derivation. , 2017, , 1-22.		0
2067	The prospect of pluripotent stem cells for diabetes mellitus treatment. World Journal of Personalized Medicine, 2017, 1, 13-17.	0.3	2
2070	Gene Therapy and Biological Pacing. , 2018, , 236-245.		0
2073	Cardiac and Induced Pluripotent Stem Cells. , 2018, , 384-393.		0
2074	Cell-Based Therapy for Retinal Degenerative Disease. , 2018, , 73-85.		0
2077	Just the messenger. Nature Medicine, 2018, 24, 1297-1300.	30.7	0

# 2080	ARTICLE Degenerative Retinal Diseases: Cell Sources for Cell-Based Therapy. Pancreatic Islet Biology, 2019, , 53-80.	IF 0.3	CITATIONS
2087	Generation of Human Induced Pluripotent Stem Cells and Differentiation into Cardiomyocytes. Methods in Molecular Biology, 2021, 2158, 125-139.	0.9	4
2088	Somatic Reprogramming—Above and Beyond Pluripotency. Cells, 2021, 10, 2888.	4.1	11
2089	Epigenetics of Somatic Cell Reprogramming. Learning Materials in Biosciences, 2020, , 137-157.	0.4	0
2090	Non-integrating Methods to Produce Induced Pluripotent Stem Cells for Regenerative Medicine: An Overview. , 0, , .		2
2091	Differentiation of Human Induced Pluripotent Stem Cells (hiPSCs) into Osteoclasts. Bio-protocol, 2020, 10, e3854.	0.4	6
2092	Naturwissenschaftliche Grundlagen im Kontext einer klinischen Anwendung von humanen induzierten pluripotenten Stammzellen. VerĶffentlichungen Des Instituts Fļr Deutsches, EuropĤches Und Internationales Medizinrecht, Gesundheitsrecht Und Bioethik Der UniversitĤen Heidelberg Und Mannheim, 2020, , 19-127.	0.2	4
2093	Chapter 14. Classes, Modes of Action and Selection of New Modalities in Drug Discovery. RSC Drug Discovery Series, 2020, , 277-316.	0.3	0
2094	Induced Pluripotent Stem Cells. Learning Materials in Biosciences, 2020, , 123-136.	0.4	1
2095	Induced pluripotent stem cells and derivative photoreceptor precursors as therapeutic cells for retinal degenerations. Tzu Chi Medical Journal, 2020, 32, 101.	1.1	2
2096	iPSCs for modeling Duchenne muscular dystrophy. , 2020, , 103-129.		0
2097	Induced Pluripotent Stem Cells. , 2020, , 439-455.		0
2100	Cell Therapy for Neurological Disorders: The Perspective of Promising Cells. Biology, 2021, 10, 1142.	2.8	7
2101	Human Induced Pluripotent Stem Cell-Derived Vascular Cells: Recent Progress and Future Directions. Journal of Cardiovascular Development and Disease, 2021, 8, 148.	1.6	8
2102	A library of induced pluripotent stem cells from clinically well-characterized, diverse healthy human individuals. Stem Cell Reports, 2021, 16, 3036-3049.	4.8	14
2103	The Critical Contribution of Pseudouridine to mRNA COVID-19 Vaccines. Frontiers in Cell and Developmental Biology, 2021, 9, 789427.	3.7	100
2104	A layperson encounter, on the $\hat{a}\in \infty$ modified $\hat{a}\in RNA$ world. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	2
2105	A mini review on production of pluripotency factors (Oct4, Sox2, Klf4 and c-Myc) through recombinant protein technology. Communications in Science and Technology, 2020, 5, 1-4.	0.8	1

#	Article		CITATIONS
2107	Generation of Human iPSCs by Reprogramming with the Unmodified Synthetic mRNA. Methods in Molecular Biology, 2021, 2239, 163-174.	0.9	2
2108	Generation of Human iPSCs by Episomal Reprogramming of Skin Fibroblasts and Peripheral Blood Mononuclear Cells. Methods in Molecular Biology, 2021, 2239, 135-151.	0.9	7
2109	Molecular mechanisms of induced pluripotency. Acta Naturae, 2012, 4, 12-22.	1.7	6
2111	Stem cell-based bone repair. American Journal of Stem Cells, 2012, 1, 106-13.	0.4	2
2112	No factor left behind: generation of transgene-free induced pluripotent stem cells. American Journal of Stem Cells, 2012, 1, 75-80.	0.4	9
2114	Generation of iPS Cells from Human Hair Follice Dermal Papilla Cells. Acta Naturae, 2014, 6, 45-53.	1.7	8
2115	Research on induced pluripotent stem cells and the application in ocular tissues. International Journal of Ophthalmology, 2015, 8, 818-25.	1.1	1
2116	The oral and craniofacial relevance of chemically modified RNA therapeutics. Discovery Medicine, 2016, 21, 35-9.	0.5	6
2117	Induced pluripotent stem cells in dentistry. Journal of Pharmacy and Bioallied Sciences, 2016, 8, S23-S27.	0.6	2
2120	Pluripotent Stem Cells: Embryonic/Fetal Stem Cells and Induced Pluripotent Stem Cells. , 2022, , 371-381.		1
2121	Induced pluripotent stem cells-derived mesothelial progenitors; implications in cell-based regenerative medicine. , 2022, , 91-110.		0
2122	Neuromuscular Development and Disease: Learning From in vitro and in vivo Models. Frontiers in Cell and Developmental Biology, 2021, 9, 764732.	3.7	15
2123	The Potential of Induced Pluripotent Stem Cells to Advance the Treatment of Pancreatic Ductal Adenocarcinoma. Cancers, 2021, 13, 5789.	3.7	2
2124	RNA-seq of buffalo fibroblasts over-expressed pluripotent-related genes to investigate characteristics of its preliminarily reprogrammed stage. Research in Veterinary Science, 2022, 144, 164-174.	1.9	3
2126	Simultaneous high-efficiency base editing and reprogramming of patient fibroblasts. Stem Cell Reports, 2021, 16, 3064-3075.	4.8	8
2127	Modulating intracellular pathways to improve non-viral delivery of RNA therapeutics. Advanced Drug Delivery Reviews, 2022, 181, 114041.	13.7	26
2128	Developing nociceptor-selective treatments for acute and chronic pain. Science Translational Medicine, 2021, 13, eabj9837.	12.4	22
2129	Induced Pluripotent Stem Cells as a Tool for Modeling Hematologic Disorders and as a Potential Source for Cell-Based Therapies. Cells, 2021, 10, 3250.	4.1	12

#	Article	IF	CITATIONS
2131	Non-liver mRNA Delivery. Accounts of Chemical Research, 2022, 55, 13-23.	15.6	61
2133	Edaravone activates the GDNF/RET neurotrophic signaling pathway and protects mRNA-induced motor neurons from iPS cells. Molecular Neurodegeneration, 2022, 17, 8.	10.8	10
2134	Human Induced Pluripotent Stem Cell as a Disease Modeling and Drug Development Platform—A Cardiac Perspective. Cells, 2021, 10, 3483.	4.1	7
2135	CRISPR activation enables high-fidelity reprogramming into human pluripotent stem cells. Stem Cell Reports, 2022, 17, 413-426.	4.8	13
2136	Applications for induced pluripotent stem cells in reproductive medicine. , 2022, , 225-273.		0
2137	Applications of 3D Bioprinting Technology in Induced Pluripotent Stem Cells-Based Tissue Engineering. Micromachines, 2022, 13, 155.	2.9	8
2138	Synthetic mRNA for exÂvivo therapeutic applications. Drug Metabolism and Pharmacokinetics, 2022, 44, 100447.	2.2	4
2139	An update on clinical applications of iPSCs from a genomic point of view. , 2022, , 147-175.		0
2140	RNA circles with minimized immunogenicity as potent PKR inhibitors. Molecular Cell, 2022, 82, 420-434.e6.	9.7	52
2141	RNA-Based Strategies for Cell Reprogramming toward Pluripotency. Pharmaceutics, 2022, 14, 317.	4.5	7
2142	Non-viral delivery of the CRISPR/Cas system: DNA <i>versus</i> RNA <i>versus</i> RNP. Biomaterials Science, 2022, 10, 1166-1192.	5.4	40
2143	Recent advances of biomaterials in stem cell therapies. Nanotechnology, 2022, 33, 132501.	2.6	5
2144	Current Status and Challenges of Human Induced Pluripotent Stem Cell-Derived Liver Models in Drug Discovery. Cells, 2022, 11, 442.	4.1	14
2145	Stem Cell Transplantation Therapy and Neurological Disorders: Current Status and Future Perspectives. Biology, 2022, 11, 147.	2.8	36
2146	Delivery of modified mRNA to damaged myocardium by systemic administration of lipid nanoparticles. Journal of Controlled Release, 2022, 343, 207-216.	9.9	30
2148	p53 directs leader cell behavior, migration, and clearance during epithelial repair. Science, 2022, 375, eabl8876.	12.6	32
2149	Parkinson's disease: what the model systems have taught us so far. Journal of Genetics, 2018, 97, 729-751.	0.7	4
2150	An Omic's Data-Driven Approach Towards Engineering Mammalian Cell Factories and Bioprocesses for Biopharmaceutical Production. Cell Engineering, 2021, , 93-128.	0.4	2

#	Article		CITATIONS
2153	Translational perspective. , 2022, , 537-573.		0
2154	Cardiovascular Regeneration via Stem Cells and Direct Reprogramming: A Review. Korean Circulation Journal, 2022, 52, 341-353.	1.9	4
2155	Stronger together for in-cell translation: natural and unnatural base modified mRNA. Chemical Science, 2022, 13, 4753-4761.	7.4	20
2156	Deconvoluting the Cells of the Human Heart with iPSC Technology: Cell Types, Protocols, and Uses. Current Cardiology Reports, 2022, 24, 487-496.	2.9	4
2158	Intratumoral heterogeneity of MYC drives medulloblastoma metastasis and angiogenesis. Neuro-Oncology, 2022, 24, 1509-1523.	1.2	12
2159	Fast and Efficient Mouse Pluripotency Reprogramming Using a Chemically-Defined Medium. Methods and Protocols, 2022, 5, 28.	2.0	0
2160	DNA methylation–independent long-term epigenetic silencing with dCRISPR/Cas9 fusion proteins. Life Science Alliance, 2022, 5, e202101321.	2.8	3
2161	Pluripotent stem cell-based cell therapies: Current applications and future prospects. Current Opinion in Biomedical Engineering, 2022, 22, 100390.	3.4	6
2162	Biological roles of RNA m5C modification and its implications in Cancer immunotherapy. Biomarker Research, 2022, 10, 15.	6.8	57
2163	Celebrating scientific excellence and global health impact: The 2022 Canada Gairdner Awards. Cell, 2022, , .	28.9	0
2164	Toward in Vitro Production of Platelet from Induced Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2022, , 1.	3.8	1
2165	Derivation and Differentiation of Human Pluripotent Stem Cells in Microfluidic Devices. Annual Review of Biomedical Engineering, 2022, 24, 231-248.	12.3	9
2166	Generation of a heterozygous FUS-Q290X knock in human embryonic stem cell line (WAe009-A-83) using CRISPR/Cas9 system. Stem Cell Research, 2022, 60, 102734.	0.7	1
2167	Derivation of Stem Cell-like Cells From Spherical Culture of Astrocytes for Enhanced Neural Repair After Middle Cerebral Artery Occlusion. Frontiers in Bioengineering and Biotechnology, 2022, 10, 875514.	4.1	1
2168	Skeletal muscle differentiation of human iPSCs meets bioengineering strategies: perspectives and challenges. Npj Regenerative Medicine, 2022, 7, 23.	5.2	33
2169	Changing Fate: Reprogramming Cells via Engineered Nanoscale Delivery Materials. Advanced Materials, 2022, 34, e2108757.	21.0	9
2170	Synthetic RNA-based post-transcriptional expression control methods and genetic circuits. Advanced Drug Delivery Reviews, 2022, 184, 114196.	13.7	9
2171	iPSC Therapy for Myocardial Infarction in Large Animal Models: Land of Hope and Dreams. Biomedicines, 2021, 9, 1836.	3.2	9

#	Article	IF	CITATIONS
2172	Somatic Lineage Reprogramming. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040808.	5.5	9
2173	Using Microfluidics to Generate Human NaÃ ⁻ ve and Primed Pluripotent Stem Cells. Methods in Molecular Biology, 2022, 2416, 53-71.	0.9	2
2174	Modified mRNA-Based Vaccines Against Coronavirus Disease 2019. Cell Transplantation, 2022, 31, 096368972210902.	2.5	3
2175	An Up-To-Date Overview of Dental Tissue Regeneration Using Dental Origin Mesenchymal Stem Cells: Challenges and Road Ahead. Frontiers in Bioengineering and Biotechnology, 2022, 10, 855396.	4.1	7
2176	mRNA vaccines: the most recent clinical applications of synthetic mRNA. Archives of Pharmacal Research, 2022, 45, 245-262.	6.3	27
2177	Optogenetic Reporters Delivered as mRNA Facilitate Repeatable Action Potential and Calcium Handling Assessment in Human iPSC-Derived Cardiomyocytes. Stem Cells, 2022, 40, 655-668.	3.2	3
2178	Generation of an induced pluripotent stem cell line (ZZUi034-A) from a 65Âyear old Chinese female donor with sendai virus reprogramming protocol. Stem Cell Research, 2022, 62, 102788.	0.7	2
2196	Engineering a living cardiac pump on a chip using high-precision fabrication. Science Advances, 2022, 8, eabm3791.	10.3	30
2197	Translational recoding by chemical modification of non-AUG start codon ribonucleotide bases. Science Advances, 2022, 8, eabm8501.	10.3	3
2199	Induced pluripotent stem cells in dentistry. Journal of Pharmacy and Bioallied Sciences, 2016, 8, 23.	0.6	9
2201	Differentiation of Human Induced Pluripotent Stem Cells into Cortical Neurons to Advance Precision Medicine. Methods in Molecular Biology, 2022, 2429, 143-174.	0.9	2
2203	Promising Developments in the Use of Induced Pluripotent Stem Cells in Research of ADHD. Current Topics in Behavioral Neurosciences, 2022, , .	1.7	1
2204	Manufacturing clinicalâ€grade human induced pluripotent stem cellâ€derived beta cells for diabetes treatment. Cell Proliferation, 2022, 55, e13232.	5.3	5
2205	Factors Regulating or Regulated by Myogenic Regulatory Factors in Skeletal Muscle Stem Cells. Cells, 2022, 11, 1493.	4.1	26
2206	Instructing durable humoral immunity for COVID-19 and other vaccinable diseases. Immunity, 2022, 55, 945-964.	14.3	32
2207	Assessing gene function in human B cells: CRISPR/Cas9â€based gene editing and mRNAâ€based gene expression in healthy and tumor cells. European Journal of Immunology, 2022, 52, 1362-1365.	2.9	2
2208	Scalable manufacturing of clinicalâ€grade differentiated cardiomyocytes derived from humanâ€induced pluripotent stem cells for regenerative therapy. Cell Proliferation, 2022, 55, e13248.	5.3	6
2209	The paradigm shift in treatment from Covid-19 to oncology with mRNA vaccines. Cancer Treatment Reviews, 2022, 107, 102405.	7.7	28

#	Article		CITATIONS
2210	Dental applications of induced pluripotent stem cells and their derivatives. Japanese Dental Science Review, 2022, 58, 162-171.	5.1	2
2212	mRNA-based therapies: Preclinical and clinical applications. International Review of Cell and Molecular Biology, 2022, , 1-54.	3.2	7
2213	Blocking phospholamban with VHH intrabodies enhances contractility and relaxation in heart failure. Nature Communications, 2022, 13, .	12.8	7
2214	Modeling hypertrophic cardiomyopathy with human cardiomyocytes derived from induced pluripotent stem cells. Stem Cell Research and Therapy, 2022, 13, .	5.5	8
2215	Pluripotency of Induced Pluripotent Stem Cells. Journal of Animal Science and Biotechnology, 2012, 3, 5.	5.3	0
2216	Purification of human iPSC-derived cells at large scale using microRNA switch and magnetic-activated cell sorting. Stem Cell Reports, 2022, 17, 1772-1785.	4.8	9
2217	Research progress and application prospects of stable porcine pluripotent stem cells. Biology of Reproduction, 2022, 107, 226-236.	2.7	5
2218	Aptamerâ€Arrayâ€Guided Protein Assembly Enhances Synthetic mRNA Switch Performance. Angewandte Chemie, 0, , .	2.0	1
2219	Human pluripotent stem cells for the modelling of retinal pigment epithelium homeostasis and disease: A review. Clinical and Experimental Ophthalmology, 2022, 50, 667-677.	2.6	2
2220	Aptamerâ€Arrayâ€Guided Protein Assembly Enhances Synthetic mRNA Switch Performance. Angewandte Chemie - International Edition, 2022, 61, .	13.8	5
2221	Using liver models generated from human-induced pluripotent stem cells (iPSCs) for evaluating chemical-induced modifications and disease across liver developmental stages. Toxicology in Vitro, 2022, 83, 105412.	2.4	3
2222	mRNA delivery technologies: Toward clinical translation. International Review of Cell and Molecular Biology, 2022, , 207-293.	3.2	5
2223	Robotic cell injection. , 2022, , 51-105.		0
2225	Huntington's disease iPSC models—using human patient cells to understand the pathology caused by expanded CAG repeats. Faculty Reviews, 0, 11, .	3.9	5
2226	Advances in RNA Viral Vector Technology to Reprogram Somatic Cells: The Paramyxovirus Wave. Molecular Diagnosis and Therapy, 2022, 26, 353-367.	3.8	2
2227	"Cutting the Mustard―with Induced Pluripotent Stem Cells: An Overview and Applications in Healthcare Paradigm. Stem Cell Reviews and Reports, 2022, 18, 2757-2780.	3.8	5
2228	Optimization of Lipid Nanoformulations for Effective mRNA Delivery. International Journal of Nanomedicine, 0, Volume 17, 2893-2905.	6.7	13
2229	The Pivotal Role of Chemical Modifications in mRNA Therapeutics. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	15

# 2230	ARTICLE Molecular Regulation of Skeletal Muscle Stem Cells. , 2022, , .	IF	CITATIONS 0
2231	Self-amplifying mRNA vaccines: Mode of action, design, development and optimization. Drug Discovery Today, 2022, 27, 103341.	6.4	7
2232	Material Design for Next-Generation mRNA Vaccines Using Lipid Nanoparticles. Polymer Reviews, 2023, 63, 394-436.	10.9	5
2233	Motor neuron-derived induced pluripotent stem cells as a drug screening platform for amyotrophic lateral sclerosis. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	1
2234	hiPSC-derived bone marrow milieu identifies a clinically actionable driver of niche-mediated treatment resistance in leukemia. Cell Reports Medicine, 2022, 3, 100717.	6.5	11
2235	The Epigenetics of Noncoding RNA. , 2023, , 55-71.		0
2236	In Vitro-Transcribed mRNAs as a New Generation of Therapeutics in the Dawn of Twenty-First Century: Exploitation of Peptides as Carriers for Their Intracellular Delivery. RNA Technologies, 2022, , 209-235.	0.3	2
2237	Regenerative Medicine in Dentistry. , 2022, , 263-284.		0
2238	Messenger RNA Therapeutics: Start of a New Era in Medicine. RNA Technologies, 2022, , 41-71.	0.3	0
2239	High-Yield Monocyte, Macrophage, and Dendritic Cell Differentiation From Induced Pluripotent Stem Cells. SSRN Electronic Journal, 0, , .	0.4	0
2240	Anti-Inflammatory Therapy for Temporomandibular Joint Osteoarthritis Using mRNA Medicine Encoding Interleukin-1 Receptor Antagonist. Pharmaceutics, 2022, 14, 1785.	4.5	5
2241	Exploring the epitranscriptome by native RNA sequencing. Rna, 2022, 28, 1430-1439.	3.5	21
2242	Synthesis of point-modified mRNA. Nucleic Acids Research, 2022, 50, e115-e115.	14.5	8
2243	Diseased, differentiated and difficult: Strategies for improved engineering of in vitro neurological systems. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	2
2245	An Alternate Approach to Generate Induced Pluripotent Stem Cells with Precise CRISPR/Cas9 Tool. Stem Cells International, 2022, 2022, 1-17.	2.5	0
2246	Clinical Trial-Ready Patient Cohorts for Multiple System Atrophy: Coupling Biospecimen and iPSC Banking to Longitudinal Deep-Phenotyping. Cerebellum, 2024, 23, 31-51.	2.5	1
2247	Establishment of human induced trophoblast stem cells via reprogramming of fibroblasts. Nature Protocols, 2022, 17, 2739-2759.	12.0	12
2249	Rapid differentiation of hiPSCs into functional oligodendrocytes using an OLIG2 synthetic modified messenger RNA. Communications Biology, 2022, 5, .	4.4	1

		CITATION R	EPORT	
# 2250	ARTICLE Pluripotent stem cell strategies for rebuilding the human brain. Frontiers in Aging Neurosci 14, .	ence, O,	IF 3.4	CITATIONS
2251	MSCs vs. iPSCs: Potential in therapeutic applications. Frontiers in Cell and Developmental 10, .	Biology, O,	3.7	16
2252	Unlocking the promise of mRNA therapeutics. Nature Biotechnology, 2022, 40, 1586-1600).	17.5	107
2253	Cytidine-containing tails robustly enhance and prolong protein production of synthetic mR and inÂvivo. Molecular Therapy - Nucleic Acids, 2022, 30, 300-310.	NA in cell	5.1	14
2254	iPSC culture. , 2023, , 3-24.			0
2255	Human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte modelling of cardiova diseases for natural compound discovery. Biomedicine and Pharmacotherapy, 2023, 157, 1	scular 13970.	5.6	5
2256	Nonlysosomal Route of mRNA Delivery and Combining with Epigenetic Regulation Optimiz Immunoprophylactic Efficacy. Advanced Healthcare Materials, 2023, 12, .	ed Antitumor	7.6	5
2258	iPSC Technology: An Innovative Tool for Developing Clean Meat, Livestock, and Frozen Ark 2022, 12, 3187.	. Animals,	2.3	1
2259	A few RNA success stories. , 2023, , 759-779.			0
2260	mRNA therapy for myocardial infarction: A review of targets and delivery vehicles. Frontiers Bioengineering and Biotechnology, 0, 10, .	in	4.1	3
2261	Nurturing Deep Tech to Solve Social Problems: Learning from COVID-19 mRNA Vaccine De Pathogens, 2022, 11, 1469.	velopment.	2.8	4
2262	Recent Emerging Trend in Stem Cell Therapy Risk Factors. Current Stem Cell Research and 2023, 18, 1076-1089.	Therapy,	1.3	2
2263	MicroRNA-dependent suppression of biological pacemaker activity induced by TBX18. Cell Medicine, 2022, 3, 100871.	Reports	6.5	1
2264	Synthetic circular RNA switches and circuits that control protein expression in mammalian Nucleic Acids Research, 2023, 51, e24-e24.	cells.	14.5	16
2265	Matrices Activated with Messenger RNA. Journal of Functional Biomaterials, 2023, 14, 48.		4.4	1
2267	Induced Pluripotent Stem Cells: Advances and Applications in Regenerative Medicine. Bioc	nemistry, 0, , .	1.2	0
2268	mRNAâ€"From COVID-19 Treatment to Cancer Immunotherapy. Biomedicines, 2023, 11, 3	.08.	3.2	3
2269	Ionizable lipid nanoparticles deliver mRNA to pancreatic \hat{I}^2 cells via macrophage-mediated g Science Advances, 2023, 9, .	gene transfer.	10.3	35

#	Article		CITATIONS
2270	Controllable self-replicating RNA vaccine delivered intradermally elicits predominantly cellular immunity. IScience, 2023, 26, 106335.	4.1	5
2271	Local generation and efficient evaluation of numerous drug combinations in a single sample. ELife, 0, 12, .	6.0	2
2272	Development and applications of mRNA treatment based on lipid nanoparticles. Biotechnology Advances, 2023, 65, 108130.	11.7	10
2274	Versatile strategy using vaccinia virus-capping enzyme to synthesize functional 5′ cap-modified mRNAs. Nucleic Acids Research, 2023, 51, e34-e34.	14.5	8
2275	Transition from Animal-Based to Human Induced Pluripotent Stem Cells (iPSCs)-Based Models of Neurodevelopmental Disorders: Opportunities and Challenges. Cells, 2023, 12, 538.	4.1	1
2276	IL-10 modified mRNA monotherapy prolongs survival after composite facial allografting through the induction of mixed chimerism. Molecular Therapy - Nucleic Acids, 2023, 31, 610-627.	5.1	0
2277	mRNA Vaccine - A New Cancer Treatment Strategy. Current Cancer Drug Targets, 2023, 23, 669-681.	1.6	4
2278	Modified mRNA as a Treatment for Myocardial Infarction. International Journal of Molecular Sciences, 2023, 24, 4737.	4.1	3
2280	Application of Human Stem Cells to Model Genetic Sensorineural Hearing Loss and Meniere Disease. Cells, 2023, 12, 988.	4.1	1
2281	ETV2/ER71, the key factor leading the paths to vascular regeneration and angiogenic reprogramming. Stem Cell Research and Therapy, 2023, 14, .	5.5	5
2282	Stem cells in the treatment of Alzheimer's disease – Promises and pitfalls. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2023, 1869, 166712.	3.8	1
2283	Endothelial cell direct reprogramming: Past, present, and future. Journal of Molecular and Cellular Cardiology, 2023, 180, 22-32.	1.9	1
2284	Generation of stable integrationâ€free pig induced pluripotent stem cells under chemically defined culture condition. Cell Proliferation, 0, , .	5.3	0
2285	mRNA Vaccine Platform: mRNA Production and Delivery. Russian Journal of Bioorganic Chemistry, 2023, 49, 220-235.	1.0	1
2286	New Therapeutic Chemical Modalities: Compositions, Modes-of-action, and Drug Discovery. , 2023, , 911-961.		0
2288	RT-IVT method allows multiplex real-time quantification of in vitro transcriptional mRNA production. Communications Biology, 2023, 6, .	4.4	1
2289	Induced pluripotent stem cells in companion animals: how can we move the field forward?. Frontiers in Veterinary Science, 0, 10, .	2.2	0
2291	Enhanced adipose-derived stem cells with IGF-1-modified mRNA promote wound healing following corneal injury. Molecular Therapy, 2023, 31, 2454-2471.	8.2	9

#	Article	IF	CITATIONS
2292	Control of Pluripotency and Reprogramming. , 2015, , 49-77.		0
2293	Nuclear Architecture and Transcriptional Regulation of MicroRNAs. , 2023, , 973-1006.		0
2294	Synthetic Biology–Engineering Tomorrow's Medicines. , 2017, , 216-240.		0
2295	Simple and efficient differentiation of human iPSCs into contractible skeletal muscles for muscular disease modeling. Scientific Reports, 2023, 13, .	3.3	1
2296	Design principles and applications of synthetic selfâ€replicating <scp>RNAs</scp> . Wiley Interdisciplinary Reviews RNA, 0, , .	6.4	0
2297	Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	17
2298	Reversible 2′-OH acylation enhances RNA stability. Nature Chemistry, 2023, 15, 1296-1305.	13.6	7
2299	Messenger RNA-Based Therapeutics and Vaccines: What's beyond COVID-19?. ACS Pharmacology and Translational Science, 2023, 6, 943-969.	4.9	10
2300	Human Endometrium Derived Induced Pluripotent Stem Cells Are Amenable to Directed Erythroid Differentiation. Tissue Engineering and Regenerative Medicine, 0, , .	3.7	0
2301	Induced Pluripotent Stem Cells for Tissue-Engineered Skeletal Muscles. International Journal of Molecular Sciences, 2023, 24, 11520.	4.1	1
2302	Induced pluripotent stem cells for modeling physiological and pathological striated muscle complexity. Journal of Neuromuscular Diseases, 2023, , 1-16.	2.6	0
2303	Recent Advances in Messenger Ribonucleic Acid (mRNA) Vaccines and Their Delivery Systems: A Review. Clinical Pharmacology: Advances and Applications, 0, Volume 15, 77-98.	1.2	1
2304	The mRNA Vaccine Revolution: COVID-19 Has Launched the Future of Vaccinology. ACS Nano, 2023, 17, 15231-15253.	14.6	8
2306	Transgene-free direct conversion of murine fibroblasts into functional muscle stem cells. Npj Regenerative Medicine, 2023, 8, .	5.2	4
2307	Chemical reprogramming for cell fate manipulation: Methods, applications, and perspectives. Cell Stem Cell, 2023, 30, 1130-1147.	11.1	5
2308	Pervasive transcriptome interactions of protein-targeted drugs. Nature Chemistry, 2023, 15, 1374-1383.	13.6	7
2309	Induced pluripotent stem cells: ex vivo models for human diseases due to mitochondrial DNA mutations. Journal of Biomedical Science, 2023, 30, .	7.0	1
2310	Placental growth factor exerts a dual function for cardiomyogenesis and vasculogenesis during heart development. Nature Communications, 2023, 14, .	12.8	Ο

#	Article	IF	CITATIONS
2311	Circular RNA vaccine in disease prevention and treatment. Signal Transduction and Targeted Therapy, 2023, 8, .	17.1	3
2312	The roles of natural compounds in somatic reprogramming. , 2021, 2, 320-325.		0
2313	Mechanisms and research advances in mRNA antibody drug-mediated passive immunotherapy. Journal of Translational Medicine, 2023, 21, .	4.4	2
2315	Application of Induced Pluripotent Stem Cells in Malignant Solid Tumors. Stem Cell Reviews and Reports, 2023, 19, 2557-2575.	3.8	0
2316	Effect of mRNA-LNP components of two globally-marketed COVID-19 vaccines on efficacy and stability. Npj Vaccines, 2023, 8, .	6.0	11
2317	Entwicklung von Stammzellen in der kardio-regenerativen Therapie. , 2023, , 103-130.		0
2318	eIF3i promotes colorectal cancer cell survival via augmenting PHGDH translation. Journal of Biological Chemistry, 2023, 299, 105177.	3.4	2
2320	The Safety and Effectiveness of mRNA Vaccines Against SARS-CoV-2. Cureus, 2023, , .	0.5	0
2321	Recent advances in the application of induced pluripotent stem cell technology to the study of myeloid malignancies. Advances in Biological Regulation, 2024, 91, 100993.	2.3	0
2322	mRNA incorporation of C(5)-halogenated pyrimidine ribonucleotides and induced high expression of corresponding protein for the development of mRNA vaccine. Bioorganic Chemistry, 2023, 141, 106897.	4.1	0
2323	Engineered mRNA Delivery Systems for Biomedical Applications. Advanced Materials, 0, , .	21.0	0
2324	Reprogramming Cell Identity: Past Lessons, Challenges, and Future Directions. Cellular Reprogramming, 2023, 25, 183-186.	0.9	0
2325	Multifaceted Role of Induced Pluripotent Stem Cells in Preclinical Cardiac Regeneration Research. , 2023, , 1-61.		0
2326	mRNA and Adenoviral Vector Vaccine Platforms Utilized in COVID-19 Vaccines: Technologies, Ecosystem, and Future Directions. Vaccines, 2023, 11, 1737.	4.4	1
2327	Adiposeâ€derived stem cells enriched with therapeutic mRNA TGFâ€Î²3 and ILâ€10 synergistically promote scarâ€less wound healing in preclinical models. Bioengineering and Translational Medicine, 2024, 9, .	7.1	0
2328	The Emerging Role of Induced Pluripotent Stem Cells as Adoptive Cellular Immunotherapeutics. Biology, 2023, 12, 1419.	2.8	0
2329	Toward low-cost gene therapy: mRNA-based therapeutics for treatment of inherited retinal diseases. Trends in Molecular Medicine, 2024, 30, 136-146.	6.7	1
2330	Cell-based mechanisms and strategies of co-culture system both in vivo and vitro for bone tissue engineering. Biomedicine and Pharmacotherapy, 2023, 169, 115907.	5.6	0

#	Article	IF	CITATIONS
2331	Stem cell heterogeneity, plasticity, and regulation. Life Sciences, 2023, 334, 122240.	4.3	0
2332	Role of Stem Cells in the Delivery of Essential Pharmaceuticals. , 2023, , 859-876.		0
2333	Cell Therapy Approaches for Articular Cartilage Regeneration. Organogenesis, 2023, 19, .	1.2	1
2334	Reprogramming of Human Pancreatic Organoid Cells into Insulin-Producing Î ² -Like Cells by Small Molecules and in Vitro Transcribed Modified mRNA Encoding Neurogenin 3 Transcription Factor. Folia Biologica, 2019, 65, 109-123.	0.6	3
2335	Synthetic genetic circuits to uncover the OCT4 trajectories of successful reprogramming of human fibroblasts. Science Advances, 2023, 9, .	10.3	0
2336	Reprogramming and multi-lineage transdifferentiation attenuate the tumorigenicity of colorectal cancer cells. Journal of Biological Chemistry, 2024, 300, 105534.	3.4	0
2337	Combination of melt-electrospun poly-ε-caprolactone scaffolds and hepatocyte-like cells from footprint-free hiPSCs to create 3D biohybrid constructs for liver tissue engineering. Scientific Reports, 2023, 13, .	3.3	0
2338	Programming human cell fate: overcoming challenges and unlocking potential through technological breakthroughs. Development (Cambridge), 2023, 150, .	2.5	0
2339	Generation of highly pure pluripotent stem cell-derived myogenic progenitor cells and myotubes. Stem Cell Reports, 2024, 19, 84-99.	4.8	0
2340	Cell Reprogramming and Differentiation Utilizing Messenger RNA for Regenerative Medicine. Journal of Developmental Biology, 2024, 12, 1.	1.7	0
2341	Immune rejection: current understanding and new solutions. , 0, 66, 217-227.		0
2342	ZSCAN4-binding motif—TGCACAC is conserved and enriched in CA/TG microsatellites in both mouse and human genomes. DNA Research, 2024, 31, .	3.4	0
2343	Comparison of the calcium signaling alterations in GABA-ergic medium spiny neurons produced from iPSCs of different origins. Biochimie, 2024, 222, 63-71.	2.6	0
2344	Stem Cell-Based Strategies: The Future Direction of Bioartificial Liver Development. Stem Cell Reviews and Reports, 2024, 20, 601-616.	3.8	0
2345	A comprehensive review on the role of mesenchymal stromal/stem cells in the management of rheumatoid arthritis. Expert Review of Clinical Immunology, 2024, 20, 463-484.	3.0	0
2346	Endothelial dysfunction and cardiovascular diseases: The role of human induced pluripotent stem cells and tissue engineering. Journal of Biomedical Materials Research - Part A, 0, , .	4.0	0
2347	Messenger RNA Therapy for Female Reproductive Health. Molecular Pharmaceutics, 2024, 21, 393-409.	4.6	0
2348	Avian iPSC Derivation to Recover Threatened Wild Species: A Comprehensive Review in Light of Well-Established Protocols. Animals, 2024, 14, 220.	2.3	0

#	Article	IF	CITATIONS
2349	hiPSC-derived cardiomyocytes as a model to study the role of small-conductance Ca2+-activated K+ (SK) ion channel variants associated with atrial fibrillation. Frontiers in Cell and Developmental Biology, 0, 12, .	3.7	0
2350	Epigenetic OCT4 regulatory network: stochastic analysis of cellular reprogramming. Npj Systems Biology and Applications, 2024, 10, .	3.0	0
2351	Cellular models in autoinflammatory disease research. Clinical and Translational Immunology, 2024, 13, .	3.8	0
2352	Engineered T cells from induced pluripotent stem cells: from research towards clinical implementation. Frontiers in Immunology, 0, 14, .	4.8	0
2353	Computational approaches for hematopoietic stem cells. , 2024, , 331-346.		0
2354	Differentiation of pluripotent stem cells to skeletal muscle for cultivated meat applications. , 2024, , 203-214.		0
2355	Induced pluripotent stem cell models as a tool to investigate and test fluid biomarkers in <scp>Alzheimer's</scp> disease and frontotemporal dementia. Brain Pathology, 0, , .	4.1	0
2356	RNA therapeutics for regenerative medicine. Progress in Molecular Biology and Translational Science, 2024, , 163-176.	1.7	0
2357	Integration-free induced pluripotent stem cells from three endangered Southeast Asian non-human primate species. Scientific Reports, 2024, 14, .	3.3	0
2358	Human-Induced Pluripotent Stem Cells in Plastic and Reconstructive Surgery. International Journal of Molecular Sciences, 2024, 25, 1863.	4.1	0
2359	Comparative analysis of lipid Nanoparticle-Mediated delivery of CRISPR-Cas9 RNP versus mRNA/sgRNA for gene editing in vitro and in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 2024, 196, 114207.	4.3	0
2360	"Time Is out of Joint―in Pluripotent Stem Cells: How and Why. International Journal of Molecular Sciences, 2024, 25, 2063.	4.1	0
2361	Induced Pluripotent Stem Cells in Drug Discovery and Neurodegenerative Disease Modelling. International Journal of Molecular Sciences, 2024, 25, 2392.	4.1	0
2362	Application Prospect of Induced Pluripotent Stem Cells in Organoids and Cell Therapy. International Journal of Molecular Sciences, 2024, 25, 2680.	4.1	0
2363	Comparing stem cells, transdifferentiation and brain organoids as tools for psychiatric research. Translational Psychiatry, 2024, 14, .	4.8	0
2364	Gonadal androgens are associated with decreased type I interferon production by plasmacytoid dendritic cells and increased IgG titres to BNT162b2 following co-vaccination with live attenuated influenza vaccine in adolescents. Frontiers in Immunology, 0, 15, .	4.8	0
2365	Oct4 is a gatekeeper of epithelial identity by regulating cytoskeletal organization in skin keratinocytes. Cell Reports, 2024, 43, 113859.	6.4	0
2366	RNA Switches Using Cas Proteins. Methods in Molecular Biology, 2024, , 177-192.	0.9	0

		CITATION REPORT		
#	Article		IF	CITATIONS
2367	Fibroblast function recovery through rejuvenation effect of nanovesicles extracted from human adipose-derived stem cells irradiated with red light. Journal of Controlled Release, 2024, 368, 453-4	1 65.	9.9	0
2368	Biodegradable Lipid-Modified Poly(Guanidine Thioctic Acid)s: A Fortifier of Lipid Nanoparticles to Promote the Efficacy and Safety of mRNA Cancer Vaccines. Journal of the American Chemical Socie 2024, 146, 11679-11693.	ety,	13.7	0