Mesenchymal Stem Cells Reduce Inflammation while E Improving Survival in Sepsis

American Journal of Respiratory and Critical Care Medicine 182, 1047-1057

DOI: 10.1164/rccm.201001-0010oc

Citation Report

#	Article	IF	CITATIONS
2	Animal Models of Vogt-Koyanagi-Harada Disease (Sympathetic Ophthalmia). Ophthalmic Research, 2008, 40, 129-135.	1.0	16
3	Stem cells in sepsis and acute lung injury. Critical Care Medicine, 2010, 38, 2379-2385.	0.4	64
4	Intestinal Mesenchymal Cells. Current Gastroenterology Reports, 2010, 12, 310-318.	1.1	82
5	Defining human mesenchymal stem cell efficacy in vivo. Journal of Inflammation, 2010, 7, 51.	1.5	67
6	Antibacterial Effect of Human Mesenchymal Stem Cells Is Mediated in Part from Secretion of the Antimicrobial Peptide LL-37. Stem Cells, 2010, 28, 2229-2238.	1.4	672
7	Therapeutic Potential of Mesenchymal Stem Cells for Severe Acute Lung Injury. Chest, 2010, 138, 965-972.	0.4	151
8	Advances and challenges in translating stem cell therapies for clinical diseases. Translational Research, 2010, 156, 107-111.	2.2	17
9	Female stem cells are superior to males in preserving myocardial function following endotoxemia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R1506-R1514.	0.9	24
10	Mesenchymal Stem Cells and Acute Lung Injury. Critical Care Clinics, 2011, 27, 719-733.	1.0	80
12	Les cellules souches en pneumologie: de la thérapie cellulaire au bio-engineering du poumon. Revue Des Maladies Respiratoires Actualites, 2011, 3, 466-472.	0.0	0
14	Cell-Based Therapies for Lung Vascular Diseases: Lessons for the Future. Proceedings of the American Thoracic Society, 2011, 8, 535-540.	3.5	27
15	Immunomodulatory therapy for severe influenza. Expert Review of Anti-Infective Therapy, 2011, 9, 807-822.	2.0	109
16	Human Bone Marrow Derived Mesenchymal Stem Cells Regulate Leukocyte-Endothelial Interactions and Activation of Transcription Factor NF-Kappa B. Journal of Tissue Science & Engineering, 2011, 01, 001.	0.2	13
17	Involvement of Mesenchymal Stem Cells in Breast Cancer Progression. , 0, , .		3
18	Stem Cells in Sepsis and Acute Lung Injury. American Journal of the Medical Sciences, 2011, 341, 325-332.	0.4	21
19	Acute respiratory distress syndrome and multiple organ failure. Current Opinion in Critical Care, 2011, 17, 1-6.	1.6	75
20	Endothelial activation, dysfunction and permeability during severe infections. Current Opinion in Hematology, 2011, 18, 191-196.	1.2	106
21	Bone Marrow-Derived Stem Cells and Respiratory Disease. Chest, 2011, 140, 205-211.	0.4	34

#	Article	IF	CITATIONS
22	Battling Inflammation in Acute Lung Injury and Acute Respiratory Distress Syndrome: Stem Cell-Based Therapy Targeting the Root Cause of Acute Lung Injury. Journal of Pulmonary & Respiratory Medicine, 2011, 01, .	0.1	0
23	Early and late effects of bone marrow-derived mononuclear cell therapy on lung and distal organs in experimental sepsis. Respiratory Physiology and Neurobiology, 2011, 178, 304-314.	0.7	25
24	Mesenchymal stem cells hold promise for regenerative medicine. Frontiers of Medicine, 2011, 5, 372-378.	1.5	60
25	Stem cell-based therapies in ischemic heart diseases: a focus on aspects of microcirculation and inflammation. Basic Research in Cardiology, 2011, 106, 317-324.	2.5	54
26	Death and inflammation following somatic cell transplantation. Seminars in Immunopathology, 2011, 33, 535-550.	2.8	46
27	Mechanisms of cellular therapy in respiratory diseases. Intensive Care Medicine, 2011, 37, 1421-1431.	3.9	61
28	Wharton's Jelly Mesenchymal Stem Cells as Candidates for Beta Cells Regeneration: Extending the Differentiative and Immunomodulatory Benefits of Adult Mesenchymal Stem Cells for the Treatment of Type 1 Diabetes. Stem Cell Reviews and Reports, 2011, 7, 342-363.	5.6	135
29	Intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells attenuates Escherichia coli-induced acute lung injury in mice. Respiratory Research, 2011, 12, 108.	1.4	122
30	Concise Review: Mesenchymal Stem Cells for Acute Lung Injury: Role of Paracrine Soluble Factors. Stem Cells, 2011, 29, 913-919.	1.4	355
31	Update in Acute Lung Injury and Critical Care 2010. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 1147-1152.	2.5	21
32	The Pharmacology of Acute Lung Injury in Sepsis. Advances in Pharmacological Sciences, 2011, 2011, 1-7.	3.7	34
33	Intrapulmonary Delivery of Human Umbilical Cord Mesenchymal Stem Cells Attenuates Acute Lung Injury by Expanding CD4 ⁺ CD25 ⁺ Forkhead Boxp3 (FOXP3) ⁺ Regulatory T Cells and Balancing Anti- and Pro-inflammatory Factors. Cellular Physiology and Biochemistry. 2011, 27, 587-596.	1.1	93
34	Mesenchymal stem cells and carcinoma-associated fibroblasts sensitize breast cancer cells in 3D cultures to kinase inhibitors. International Journal of Oncology, 2011, 39, 689-96.	1.4	17
35	Toll-Like Receptors as Modulators of Mesenchymal Stem Cells. Frontiers in Immunology, 2012, 3, 182.	2.2	150
36	Future Roles for Stem Cells in Respiratory Medicine. Clinical Pulmonary Medicine, 2012, 19, 34-38.	0.3	1
38	What is next in sepsis: current trials in sepsis. Expert Review of Anti-Infective Therapy, 2012, 10, 859-862.	2.0	4
39	The acute respiratory distress syndrome. Journal of Clinical Investigation, 2012, 122, 2731-2740.	3.9	1,434
40	Mesenchymal stem cells enhance survival and bacterial clearance in murine <i>Escherichia coli</i> pneumonia. Thorax, 2012, 67, 533-539.	2.7	307

#	Article	IF	Citations
41	Preclinical Studies. ICU Director, 2012, 3, 166-171.	0.2	1
42	Mesenchymal stromal cells. Critical Care Medicine, 2012, 40, 1373-1375.	0.4	7
43	Update on Cancer Related Issues of Mesenchymal Stem Cell-Based Therapies. Current Stem Cell Research and Therapy, 2012, 7, 370-380.	0.6	10
44	Clinical review: Stem cell therapies for acute lung injury/acute respiratory distress syndrome - hope or hype?. Critical Care, 2012, 16, 205.	2.5	85
45	Concise Review: Role of Mesenchymal Stem Cells in Wound Repair. Stem Cells Translational Medicine, 2012, 1, 142-149.	1.6	620
46	Stem Cells and Regenerative Medicine in Lung Biology and Diseases. Molecular Therapy, 2012, 20, 1116-1130.	3.7	74
47	Mesenchymal Stem/Stromal Cells (MSCs): Role as Guardians of Inflammation. Molecular Therapy, 2012, 20, 14-20.	3.7	702
48	Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L1003-L1013.	1.3	278
49	Advances in Mesenchymal Stem Cell Research in Sepsis. Journal of Surgical Research, 2012, 173, 113-126.	0.8	58
50	Human Mesenchymal Stem/Stromal Cells Cultured as Spheroids are Selfâ€activated to Produce Prostaglandin E2 that Directs Stimulated Macrophages into an Antiâ€inflammatory Phenotype. Stem Cells, 2012, 30, 2283-2296.	1.4	348
51	Impact of apoptotic adipose-derived mesenchymal stem cells on attenuating organ damage and reducing mortality in Rat sepsis syndrome induced by cecal puncture and ligation. Journal of Translational Medicine, 2012, 10, 244.	1.8	101
52	Cell-Based Therapies. , 2012, , 591-602.		0
53	Network Analysis of Transcriptional Responses Induced by Mesenchymal Stem Cell Treatment of Experimental Sepsis. American Journal of Pathology, 2012, 181, 1681-1692.	1.9	76
54	Cell therapy in critical limb ischemia: current developments and future progress. Cytotherapy, 2012, 14, 902-916.	0.3	36
55	Mesenchymal Stem Cells: Complex Players in Lung Repair and Injury. Stem Cells and Cancer Stem Cells, 2012, , 145-154.	0.1	0
56	Immune Aspects of Sepsis and Hope for New Therapeutics. Current Infectious Disease Reports, 2012, 14, 474-483.	1.3	7
57	Role of Stem Cells in Neonatal Lung Injury. , 2012, , 197-215.		0
58	Novel Therapeutic Targets for Sepsis: Regulation of Exaggerated Inflammatory Responses. Journal of Nippon Medical School, 2012, 79, 4-18.	0.3	63

#	Article	IF	CITATIONS
59	Emerging roles for multipotent, bone marrow–derived stromal cells in host defense. Blood, 2012, 119, 1801-1809.	0.6	98
60	Multipotent mesenchymal stromal cells and the innate immune system. Nature Reviews Immunology, 2012, 12, 383-396.	10.6	811
61	Medical therapies with adult stem/progenitor cells (MSCs): A backward journey from dramatic results in vivo to the cellular and molecular explanations. Journal of Cellular Biochemistry, 2012, 113, 1460-1469.	1.2	101
62	Mesenchymal stem cells and the stem cell niche: a new chapter. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L1147-L1149.	1.3	16
63	A therapeutic role for mesenchymal stem cells in acute lung injury independent of hypoxiaâ€induced mitogenic factor. Journal of Cellular and Molecular Medicine, 2012, 16, 376-385.	1.6	21
64	Year in review 2011: Acute lung injury, interstitial lung diseases, physiology, sleep and lung cancer. Respirology, 2012, 17, 554-562.	1.3	1
65	IL-27 is Elevated in Acute Lung Injury and Mediates Inflammation. Journal of Clinical Immunology, 2013, 33, 1257-1268.	2.0	28
66	Therapeutic Effects of Human Mesenchymal Stem Cells in <i>Ex Vivo</i> Human Lungs Injured with Live Bacteria. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 751-760.	2.5	313
67	Harnessing the beneficial properties of adipogenic microbes for improving human health. Obesity Reviews, 2013, 14, 721-735.	3.1	13
70	Apoptotic adipose-derived mesenchymal stem cell therapy protects against lung and kidney injury in sepsis syndrome caused by cecal ligation puncture in rats. Stem Cell Research and Therapy, 2013, 4, 155.	2.4	65
71	Bone marrow-derived progenitor cells in end-stage lung disease patients. BMC Pulmonary Medicine, 2013, 13, 48.	0.8	11
72	Uncovering the secretes of mesenchymal stem cells. Biochimie, 2013, 95, 2212-2221.	1.3	154
73	Therapeutic implications of mesenchymal stem cells in acute lung injury/acute respiratory distress syndrome. Stem Cell Research and Therapy, 2013, 4, 45.	2.4	27
74	The potential of cell-based therapy in lung diseases. Expert Opinion on Biological Therapy, 2013, 13, 1429-1440.	1.4	17
75	Mesenchymal Stromal Cells Improve Survival During Sepsis in the Absence of Heme Oxygenase-1: The Importance of Neutrophils. Stem Cells, 2013, 31, 397-407.	1.4	148
76	MSCs and Innate Immune Responses: A Balancing Act. , 2013, , 135-143.		0
77	Chemical warfare agent and biological toxin-induced pulmonary toxicity: could stem cells provide potential therapies?. Inhalation Toxicology, 2013, 25, 37-62.	0.8	9
78	The effect of mesenchymal stem cells on dynamic changes of T cell subsets in experimental autoimmune uveoretinitis. Clinical and Experimental Immunology, 2013, 173, 28-37.	1.1	51

		15	0
#	ARTICLE Mesenchymal stem cells: A revolution in therapeutic strategies of age-related diseases. Ageing	IF	CITATIONS
79	Research Reviews, 2013, 12, 103-115.	5.0	20
81	Regulation and Repair of the Alveolar-Capillary Barrier in Acute Lung Injury. Annual Review of Physiology, 2013, 75, 593-615.	5.6	266
82	Microbes and obesity—interrelationship between infection, adipose tissue and the immune system. Clinical Microbiology and Infection, 2013, 19, 314-320.	2.8	68
83	Improvement of ventilator-induced lung injury by IPS cell-derived conditioned medium via inhibition of PI3K/Akt pathway and IP-10-dependent paracrine regulation. Biomaterials, 2013, 34, 78-91.	5.7	40
84	12 Mesenchymal stem cells in chronic lung diseases: COPD and lung fibrosis. , 0, , .		1
86	Insult-dependent effect of bone marrow cell therapy on inflammatory response in a murine model of extrapulmonary acute respiratory distress syndrome. Stem Cell Research and Therapy, 2013, 4, 123.	2.4	17
87	A Perspective on Mesenchymal Stromal Cell Transplantation in the Treatment of Sepsis. Shock, 2013, 40, 352-357.	1.0	43
88	Emerging therapeutic strategies to prevent infection-related microvascular endothelial activation and dysfunction. Virulence, 2013, 4, 572-582.	1.8	50
89	Mesenchymal Stem Cells in Tissue Repair. Frontiers in Immunology, 2013, 4, 201.	2.2	365
90	Lung Stem and Progenitor Cells. Respiration, 2013, 85, 89-95.	1.2	19
91	Mesenchymal Stem Cells: A Promising Therapy for the Acute Respiratory Distress Syndrome. Respiration, 2013, 85, 267-278.	1.2	39
92	Mesenchymal stem cells in acute lung injury: are they ready for translational medicine?. Journal of Cellular and Molecular Medicine, 2013, 17, 927-935.	1.6	39
93	Adult stem cells for acute lung injury: Remaining questions and concerns. Respirology, 2013, 18, 744-756.	1.3	38
94	Paracrine Effects and Heterogeneity of Marrow-Derived Stem/Progenitor Cells: Relevance for the Treatment of Respiratory Diseases. Cells Tissues Organs, 2013, 197, 445-473.	1.3	44
95	Targeted Delivery of Genes to Endothelial Cells and Cell- and Gene-Based Therapy in Pulmonary Vascular Diseases. , 2013, 3, 1749-1779.		15
96	Cell Therapy for Lung Disease. Chest, 2013, 143, 1525-1527.	0.4	4
97	Paracrine activity of stem cells in therapy for acute lung injury and adult respiratory distress syndrome. Journal of Trauma and Acute Care Surgery, 2013, 74, 1351-1356.	1.1	5
98	Effects of Mesenchymal Stem Cell Therapy on the Time Course of Pulmonary Remodeling Depend on the Etiology of Lung Injury in Mice. Critical Care Medicine, 2013, 41, e319-e333.	0.4	58

#	ARTICLE	IF	Citations
99	The Therapeutic Effect of Human Adult Stem Cells Derived from Adipose Tissue in Endotoxemic Rat Model. International Journal of Medical Sciences, 2013, 10, 8-18.	1.1	57
100	Paracrine activity of stem cells in therapy for acute lung injury and adult respiratory distress syndrome. Journal of Trauma and Acute Care Surgery, 2013, 74, 1351-1356.	1.1	0
101	An Increase in CD3+CD4+CD25+ Regulatory T Cells after Administration of Umbilical Cord-Derived Mesenchymal Stem Cells during Sepsis. PLoS ONE, 2014, 9, e110338.	1.1	78
103	Gender differences in sepsis. Virulence, 2014, 5, 12-19.	1.8	233
104	Therapeutic effect of lung mixed culture-derived epithelial cells on lung fibrosis. Laboratory Investigation, 2014, 94, 1247-1259.	1.7	11
105	Activity of mesenchymal stem cells in therapies for chronic skin wound healing. Organogenesis, 2014, 10, 29-37.	0.4	145
106	Long-Term Volumetric Retention of Autologous Fat Grafting Processed With Closed-Membrane Filtration. Aesthetic Surgery Journal, 2014, 34, 985-994.	0.9	79
107	HCAP Not Busy Being Born Is Busy Dying. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 365-366.	2.5	5
108	Phase-directed therapy: TSG-6 targeted to early inflammation improves bleomycin-injured lungs. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L120-L131.	1.3	53
109	Mesenchymal Stromal (Stem) Cell Therapy: An Emerging Immunomodulatory Strategy for the Adjunctive Treatment of Sepsis. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 363-364.	2.5	4
110	Intranasal versus Intraperitoneal Delivery of Human Umbilical Cord Tissue–Derived Cultured Mesenchymal Stromal Cells in a Murine Model of Neonatal Lung Injury. American Journal of Pathology, 2014, 184, 3344-3358.	1.9	53
111	Persistent Neutrophil Dysfunction and Suppression of Acute Lung Injury in Mice following Cecal Ligation and Puncture Sepsis. Journal of Innate Immunity, 2014, 6, 695-705.	1.8	32
112	Histological study of the effect of bone marrow-derived mesenchymal stem cells on healing of skin defect in adult male albino rats. Egyptian Journal of Histology, 2014, 37, 186-196.	0.0	0
113	Autologous and allogeneic mesenchymal stem cells in organ transplantation. Current Opinion in Organ Transplantation, 2014, 19, 65-72.	0.8	69
114	Cell-based therapies for the acute respiratory distress syndrome. Current Opinion in Critical Care, 2014, 20, 122-131.	1.6	31
115	Lymph node fibroblastic reticular cell transplants show robust therapeutic efficacy in high-mortality murine sepsis. Science Translational Medicine, 2014, 6, 249ra109.	5.8	39
116	Do Mesenchymal Stem Cells Have a Role to Play in Cutaneous Wound Healing?. Cell & Tissue Transplantation & Therapy, 2014, , 11.	0.0	3
117	Reply: Mesenchymal Stromal (Stem) Cell Therapy: An Emerging Immunomodulatory Strategy for the Adjunctive Treatment of Sepsis. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 364-365.	2.5	6

#	Article	IF	CITATIONS
118	Mesenchymal Stem Cells Ameliorate Sepsis-associated Acute Kidney Injury in Mice. Shock, 2014, 41, 123-129.	1.0	95
119	Marrow mesenchymal stromal cells reduce methicillin-resistant Staphylococcus aureus infection in rat models. Cytotherapy, 2014, 16, 56-63.	0.3	40
120	Mesenchymal stromal cell injection protects against oxidative stress in Escherichia coli–induced acute lung injury in mice. Cytotherapy, 2014, 16, 764-775.	0.3	56
121	Adult stem cells: potential implications for perioperative medicine. Canadian Journal of Anaesthesia, 2014, 61, 299-305.	0.7	Ο
122	Mesenchymal stromal (stem) cells suppress pro-inflammatory cytokine production but fail to improve survival in experimental staphylococcal toxic shock syndrome. BMC Immunology, 2014, 15, 1.	0.9	48
123	Mesenchymal Stem Cell Trials for Pulmonary Diseases. Journal of Cellular Biochemistry, 2014, 115, 1023-1032.	1.2	73
124	Septic shock: desperately seeking treatment. Clinical Science, 2014, 126, 31-39.	1.8	36
125	Influenza causes prolonged disruption of the alveolar-capillary barrier in mice unresponsive to mesenchymal stem cell therapy. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L395-L406.	1.3	84
126	Endogenous and Exogenous Cell-Based Pathways for Recovery from Acute Respiratory Distress Syndrome. Clinics in Chest Medicine, 2014, 35, 797-809.	0.8	7
127	Endothelial FoxM1 Mediates Bone Marrow Progenitor Cell-Induced Vascular Repair and Resolution of Inflammation following Inflammatory Lung Injury. Stem Cells, 2014, 32, 1855-1864.	1.4	33
128	Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet Respiratory Medicine,the, 2014, 2, 1016-1026.	5.2	222
129	The mesenchymal stromal cell magic bullet finds yet another target. Stem Cell Research and Therapy, 2014, 5, 82.	2.4	1
130	Human Mesenchymal Stem Cell Microvesicles for Treatment of <i>Escherichia coli</i> Endotoxin-Induced Acute Lung Injury in Mice. Stem Cells, 2014, 32, 116-125.	1.4	550
132	Diverse macrophage populations mediate acute lung inflammation and resolution. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L709-L725.	1.3	456
133	Design and implementation of the START (STem cells for ARDS Treatment) trial, a phase 1/2 trial of human mesenchymal stem/stromal cells for the treatment of moderate-severe acute respiratory distress syndrome. Annals of Intensive Care, 2014, 4, 22.	2.2	53
134	Efficacy and safety of mesenchymal stromal cells in preclinical models of acute lung injury: a systematic review protocol. Systematic Reviews, 2014, 3, 48.	2.5	32
135	A novel 1,2â€benzenediamine derivative <scp>FC</scp> â€99 suppresses <scp>TLR3</scp> expression and ameliorates disease symptoms in a mouse model of sepsis. British Journal of Pharmacology, 2014, 171, 4866-4878.	2.7	12
136	Gastrointestinal Microbes Interact with Canine Adipose-Derived Mesenchymal Stem Cells In Vitro and Enhance Immunomodulatory Functions. Stem Cells and Development, 2014, 23, 1831-1843.	1.1	55

ARTICLE IF CITATIONS # The Toll-like Receptor 3 Ligand, Poly(I:C), Improves Immunosuppressive Function and Therapeutic Effect 137 1.4 117 of Mesenchymal Stem Cells on Sepsis via Inhibiting MiR-143. Stem Cells, 2014, 32, 521-533. Human mesenchymal stromal cells can uptake and release ciprofloxacin, acquiring in vitro 0.3 19 anti-bacterial activity. Cytotherapy, 2014, 16, 181-190. Autologous mesenchymal stromal cell infusion as adjunct treatment in patients with multidrug and extensively drug-resistant tuberculosis: an open-label phase 1 safety trial. Lancet Respiratory 139 5.2 115 Medicine, the, 2014, 2, 108-122. Use of mesenchymal stem cells for cutaneous repair and skin substitute elaboration. Pathologie Et 140 Biologie, 2014, 62, 108-117. Mesenchymal stromal cells in the antimicrobial host response of hematopoietic stem cell recipients 141 3.3 26 with graft-versus-host diseaseâ€"friends or foes?. Leukemia, 2014, 28, 1941-1948. Immunomodulatory properties of dental tissueâ€derived mesenchymal stem cells. Oral Diseases, 2014, 20, 1.5 25-34. Transient Receptor Potential Melastatin 2 Protects Mice against Polymicrobial Sepsis by Enhancing 143 1.3 45 Bacterial Clearance. Anesthesiology, 2014, 121, 336-351. Cell-based Therapy for Acute Organ Injury. Anesthesiology, 2014, 121, 1099-1121. 144 1.3 197 145 Mesenchymal Stromal Cell-Based Therapies for Lung Diseases and Critical Illnesses., 2015, , 399-433. 0 Regenerative therapy for the management of a large skin wound in a dog. Clinical Case Reports 146 0.2 (discontinued), 2015, 3, 598-603. Do oral bacteria alter the regenerative potential of stem cells? AÂconcise review. Journal of Cellular 147 22 1.6 and Molecular Medicine, 2015, 19, 2067-2074. Bone marrowâ€derived mesenchymal stem cells enhance autophagy <i>via </i><scp>PI</scp>3K/<scp>AKT</scp> signalling to reduce the severity of ischaemia/reperfusionâ€induced lung injury. Journal of Cellular and Molecular Medicine, 2015, 19, 2341-2351. 1.6 Non-cultured dermal-derived mesenchymal cells attenuate sepsis induced by cecal ligation and 149 1.6 17 puncture in mice. Scientific Reports, 2015, 5, 16973. Exosomal miR-223 Contributes to Mesenchymal Stem Cell-Elicited Cardioprotection in Polymicrobial 1.6 242 Sepsis. Scientific Reports, 2015, 5, 13721. Autologous Peripheral Blood Mononuclear Cells as Treatment in Refractory Acute Respiratory 151 1.2 12 Distress Syndrome. Respiration, 2015, 90, 481-492. Expanded endothelial progenitor cells mitigate lung injury in septic mice. Stem Cell Research and 2.4 24 Therapy, 2015, 6, 230. Combination therapy of menstrual derived mesenchymal stem cells and antibiotics ameliorates 153 2.4 129 survival in sepsis. Stem Cell Research and Therapy, 2015, 6, 199. Oral Mucosal Lamina Propria-Progenitor Cells Exert Antibacterial Properties via the Secretion of 154 Osteoprotegerin and Haptoglobin. Stem Cells Translational Medicine, 2015, 4, 1283-1293.

#	Article	IF	CITATIONS
155	Therapeutic Efficacy of Human Mesenchymal Stromal Cells in the Repair of Established Ventilator-induced Lung Injury in the Rat. Anesthesiology, 2015, 122, 363-373.	1.3	57
156	Mesenchymal stromal cells for treatment of the acute respiratory distress syndrome: The beginning of the story. Journal of the Intensive Care Society, 2015, 16, 320-329.	1.1	4
157	Mesenchymal stromal cell therapy attenuated lung and kidney injury but not brain damage in experimental cerebral malaria. Stem Cell Research and Therapy, 2015, 6, 102.	2.4	22
158	Mesenchymal stromal cells are more effective than the MSC secretome in diminishing injury and enhancing recovery following ventilator-induced lung injury. Intensive Care Medicine Experimental, 2015, 3, 29.	0.9	64
159	Adipose Tissue-Derived Mesenchymal Stem Cells Attenuate Pulmonary Infection Caused by <i>Pseudomonas aeruginosa</i> via Inhibiting Overproduction of Prostaglandin E2. Stem Cells, 2015, 33, 2331-2342.	1.4	65
160	Mesenchymal Stem Cell Therapy for Acute Respiratory Distress Syndrome. Anesthesiology, 2015, 122, 238-240.	1.3	12
161	Mesenchymal stem cells attenuate acute ischemia-reperfusion injury in a rat model. Experimental and Therapeutic Medicine, 2015, 10, 2131-2137.	0.8	20
162	Mesenchymal stem cell–based therapy for nonhealing wounds: today and tomorrow. Wound Repair and Regeneration, 2015, 23, 465-482.	1.5	39
163	Mesenchymal stem cells reverse bone marrow dysfunction following injury and stress. Journal of Trauma and Acute Care Surgery, 2015, 79, 602-608.	1.1	5
164	Mesenchymal Stem Cells — Their Antimicrobial Effects and Their Promising Future Role as Novel Therapies of Infectious Complications in High Risk Patients. , 0, , .		8
165	Biomimetic extracellular matrix mediated somatic stem cell differentiation: applications in dental pulp tissue regeneration. Frontiers in Physiology, 2015, 6, 118.	1.3	30
166	Management of severe sepsis: advances, challenges, and current status. Drug Design, Development and Therapy, 2015, 9, 2079.	2.0	70
167	Mesenchymal Stromal Cells Affect Disease Outcomes via Macrophage Polarization. Stem Cells International, 2015, 2015, 1-11.	1.2	67
168	Mesenchymal stem cells and infectious diseases: Smarter than drugs. Immunology Letters, 2015, 168, 208-214.	1.1	71
169	Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat. Thorax, 2015, 70, 625-635.	2.7	163
170	Emerging therapies for the prevention of acute respiratory distress syndrome. Therapeutic Advances in Respiratory Disease, 2015, 9, 173-187.	1.0	26
171	Therapeutic Effects of Human Mesenchymal Stem Cell–derived Microvesicles in Severe Pneumonia in Mice. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 324-336.	2.5	392
172	Study of Bone Marrow and Embryonic Stem Cell-Derived Human Mesenchymal Stem Cells for Treatment of <i>Escherichia coli</i> Endotoxin-Induced Acute Lung Injury in Mice. Stem Cells Translational Medicine, 2015, 4, 832-840.	1.6	56

#	Article	IF	Citations
 173	Sepsis induces long-term metabolic and mitochondrial muscle stem cell dysfunction amenable by	5.8	158
	mesenchymal stem cell therapy. Nature Communications, 2015, 6, 10145.		
174	Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respiratory Medicine,the, 2015, 3, 24-32.	5.2	614
175	Bone marrow mesenchymal stem cells protect alveolar macrophages from lipopolysaccharideâ€induced apoptosis partially by inhibiting the Wnt/βâ€catenin pathway. Cell Biology International, 2015, 39, 192-200.	1.4	55
176	Microencapsulated human mesenchymal stem cells decrease liver fibrosis in mice. Journal of Hepatology, 2015, 62, 634-641.	1.8	126
177	Wound management of chronic diabetic foot ulcers. Prosthetics and Orthotics International, 2015, 39, 29-39.	0.5	84
178	Mesenchymal Stromal/Stem Cell and Minocycline-Loaded Hydrogels Inhibit the Growth of Staphylococcus aureus that Evades Immunomodulation of Blood-Derived Leukocytes. AAPS Journal, 2015, 17, 620-630.	2.2	15
179	Human Mesenchymal Stem (Stromal) Cells Promote the Resolution of Acute Lung Injury in Part through Lipoxin A4. Journal of Immunology, 2015, 195, 875-881.	0.4	132
180	Therapeutic Potential of Mesenchymal Stromal Cells for Acute Respiratory Distress Syndrome. Annals of the American Thoracic Society, 2015, 12, S54-S57.	1.5	37
181	Regenerative Skin Wound Healing in Mammals: State-of-the-Art on Growth Factor and Stem Cell Based Treatments. Cellular Physiology and Biochemistry, 2015, 36, 1-23.	1.1	159
182	Could cancer and infection be adverse effects of mesenchymal stromal cell therapy?. World Journal of Stem Cells, 2015, 7, 408.	1.3	28
183	The Immunomodulatory and Therapeutic Effects of Mesenchymal Stromal Cells for Acute Lung Injury and Sepsis. Journal of Cellular Physiology, 2015, 230, 2606-2617.	2.0	81
184	Corneal Epithelial Wound Healing and Bactericidal Effect of Conditioned Medium From Human Uterine Cervical Stem Cells. Investigative Ophthalmology and Visual Science, 2015, 56, 983-992.	3.3	77
185	Stem cells for respiratory failure. Current Opinion in Critical Care, 2015, 21, 42-49.	1.6	8
186	Mesenchymal stromal cell implantation for stimulation of long bone healing aggravates Staphylococcus aureus induced osteomyelitis. Acta Biomaterialia, 2015, 21, 165-177.	4.1	34
187	Percutaneous injection of bone marrow mesenchymal stem cells for ankle non-unions decreases complications in patients with diabetes. International Orthopaedics, 2015, 39, 1639-1643.	0.9	68
188	Using Stem Cells to Promote Wound Healing: An Emerging Solution for a Clinical Problem. Pancreatic Islet Biology, 2015, , 173-196.	0.1	0
189	Osteopontin is associated with inflammation and mortality in a mouse model of polymicrobial sepsis. Acta Anaesthesiologica Scandinavica, 2015, 59, 170-175.	0.7	12
191	In Vivo Effects of Mesenchymal Stromal Cells in Two Patients With Severe Acute Respiratory Distress Syndrome. Stem Cells Translational Medicine, 2015, 4, 1199-1213.	1.6	131

#	ARTICLE Effect of adipose tissue-derived mesenchymal stem cell treatment on oxidative stress and	IF	CITATIONS
192	inflammatory response following Escherichia coli lipopolysaccharide. Comparative Clinical Pathology, 2015, 24, 343-358.	0.3	3
194	Living cell products as wound healing biomaterials. , 2016, , 201-225.		2
195	Mesenchymal Stem Cells after Polytrauma: Actor and Target. Stem Cells International, 2016, 2016, 1-10.	1.2	15
196	Insight into Reepithelialization: How Do Mesenchymal Stem Cells Perform?. Stem Cells International, 2016, 2016, 1-9.	1.2	39
197	Evaluating mesenchymal stem cell therapy for sepsis with preclinical meta-analyses prior to initiating a first-in-human trial. ELife, 2016, 5, .	2.8	73
198	Regeneration and Repair in Endodontics—A Special Issue of the Regenerative Endodontics—A New Era in Clinical Endodontics. Dentistry Journal, 2016, 4, 3.	0.9	32
199	Stem cells and chronic wound healing: state of the art. Chronic Wound Care Management and Research, 0, , 7.	0.4	6
200	Comparison of bone marrow tissue- and adipose tissue-derived mesenchymal stem cells in the treatment of sepsis in a murine model of lipopolysaccharide-induced sepsis. Molecular Medicine Reports, 2016, 14, 3862-3870.	1.1	24
201	System-Wide Mapping of Activated Circuitry in Experimental Systemic Inflammatory Response Syndrome. Shock, 2016, 45, 148-156.	1.0	12
202	Bone Marrow Mesenchymal Stem Cells Suppress Acute Lung Injury Induced by Lipopolysaccharide Through Inhibiting the TLR2, 4/NF-κB Pathway in Rats with Multiple Trauma. Shock, 2016, 45, 641-646.	1.0	21
208	Effects of bone marrow mesenchymal stem cells on the cardiac function and immune system of mice with endotoxemia. Molecular Medicine Reports, 2016, 13, 5317-5325.	1.1	4
209	Mustard vesicant-induced lung injury: Advances in therapy. Toxicology and Applied Pharmacology, 2016, 305, 1-11.	1.3	34
210	Human amniotic fluid stem cells labeled with up-conversion nanoparticles for imaging-monitored repairing of acute lung injury. Biomaterials, 2016, 100, 91-100.	5.7	36
211	Prospects and progress in cell therapy for acute respiratory distress syndrome. Expert Opinion on Biological Therapy, 2016, 16, 1353-1360.	1.4	30
212	Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS. Stem Cells, 2016, 34, 2210-2223.	1.4	401
213	The clinical application of mesenchymal stromal cells in hematopoietic stem cell transplantation. Journal of Hematology and Oncology, 2016, 9, 46.	6.9	91
214	Combined Therapy With Adipose-Derived Mesenchymal Stem Cells and Ciprofloxacin Against Acute Urogenital Organ Damage in Rat Sepsis Syndrome Induced by Intrapelvic Injection of Cecal Bacteria. Stem Cells Translational Medicine, 2016, 5, 782-792.	1.6	33
215	Intravenous transplantation of mesenchymal stromal cells has therapeutic effects in a sepsis mouse model through inhibition of septic natural killer cells. International Journal of Biochemistry and Cell Biology, 2016, 79, 93-103.	1.2	17

#	ARTICLE	IF	CITATIONS
216	Advances in Stem Cell and Cell-Based Gene Therapy Approaches for Experimental Acute Lung Injury: A Review of Preclinical Studies. Human Gene Therapy, 2016, 27, 802-812.	1.4	18
217	Treatment With Human Wharton's Jelly-Derived Mesenchymal Stem Cells Attenuates Sepsis-Induced Kidney Injury, Liver Injury, and Endothelial Dysfunction. Stem Cells Translational Medicine, 2016, 5, 1048-1057.	1.6	73
218	Endothelial bioreactor system ameliorates multiple organ dysfunction in septic rats. Intensive Care Medicine Experimental, 2016, 4, 23.	0.9	1
219	GEF-H1 is necessary for neutrophil shear stress–induced migration during inflammation. Journal of Cell Biology, 2016, 215, 107-119.	2.3	36
220	Type I CRISPR-Cas targets endogenous genes and regulates virulence to evade mammalian host immunity. Cell Research, 2016, 26, 1273-1287.	5.7	99
221	Bone Marrow–Derived Mesenchymal Stem Cells Enhance Bacterial Clearance and Preserve Bioprosthetic Integrity in a Model of Mesh Infection. Plastic and Reconstructive Surgery - Global Open, 2016, 4, e751.	0.3	12
222	Could stem cells be the future therapy for sepsis?. Blood Reviews, 2016, 30, 439-452.	2.8	11
223	Effectiveness of a novel cellular therapy to treat multidrug-resistant tuberculosis. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 2016, 4, 21-27.	0.6	21
224	Stem/progenitor cells in endogenous repairing responses: new toolbox for the treatment of acute lung injury. Journal of Translational Medicine, 2016, 14, 47.	1.8	15
225	Muscle regeneration after sepsis. Critical Care, 2016, 20, 131.	2.5	13
226	Tendon-Derived Stem Cells for Rotator Cuff Repair. Operative Techniques in Orthopaedics, 2016, 26, 147-154.	0.2	3
227	Stem Cells in Wound Healing: The Future of Regenerative Medicine? A Mini-Review. Gerontology, 2016, 62, 216-225.	1.4	226
228	Immunomodulatory effect of mesenchymal stem cells on the immune response of macrophages stimulated by <i>Aspergillus fumigatus</i> conidia. Medical Mycology, 2016, 54, 377-383.	0.3	10
229	Sepsis: in search of cure. Inflammation Research, 2016, 65, 587-602.	1.6	51
230	Time-Series Expression of Toll-Like Receptor 4 Signaling in Septic Mice Treated with Mesenchymal Stem Cells. Shock, 2016, 45, 634-640.	1.0	23
231	Mesenchymal Stem Cells Attenuate NADPH Oxidase-Dependent High Mobility Group Box 1 Production and Inhibit Abdominal Aortic Aneurysms. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 908-918.	1.1	42
232	Blast Injury Science and Engineering. , 2016, , .		11
233	Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opinion on Biological Therapy, 2016, 16, 859-871.	1.4	156

#	Article	IF	CITATIONS
234	Mitochondria in mesenchymal stem cell biology and cell therapy: From cellular differentiation to mitochondrial transfer. Seminars in Cell and Developmental Biology, 2016, 52, 119-131.	2.3	136
235	Pretreatment with bone marrow–derived mesenchymal stromal cell–conditioned media confers pulmonary ischemic tolerance. Journal of Thoracic and Cardiovascular Surgery, 2016, 151, 841-849.	0.4	27
236	Hypoxic conditioned medium of placenta-derived mesenchymal stem cells protects against scar formation. Life Sciences, 2016, 149, 51-57.	2.0	27
237	Emerging drugs for the treatment of sepsis. Expert Opinion on Emerging Drugs, 2016, 21, 27-37.	1.0	24
238	Treatment of Mature Permanent Teeth with Necrotic Pulps and Apical Periodontitis Using Regenerative Endodontic Procedures: A Case Series. Journal of Endodontics, 2016, 42, 57-65.	1.4	83
239	hucMSC Exosome-Derived GPX1 Is Required for the Recovery of Hepatic Oxidant Injury. Molecular Therapy, 2017, 25, 465-479.	3.7	238
240	Concise Review: Mesenchymal Stromal Cell-Based Approaches for the Treatment of Acute Respiratory Distress and Sepsis Syndromes. Stem Cells Translational Medicine, 2017, 6, 1141-1151.	1.6	64
241	Guanylate-binding protein 1 (GBP1) contributes to the immunity of human mesenchymal stromal cells against <i>Toxoplasma gondii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1365-1370.	3.3	70
242	The use of mesenchymal stromal cells in treatment of lung disorders. Regenerative Medicine, 2017, 12, 203-216.	0.8	8
243	Mesenchymal stem cells in alleviating sepsis-induced mice cardiac dysfunction via inhibition of mTORC1-p70S6K signal pathway. Cell Death Discovery, 2017, 3, 16097.	2.0	10
244	Mesenchymal stem cells cannot affect mRNA expression of toll-like receptors in different tissues during sepsis. Inflammation Research, 2017, 66, 547-551.	1.6	4
245	Intersecting Worlds of Transfusion and Transplantation Medicine: An International Symposium Organized by the Canadian Blood Services Centre for Innovation. Transfusion Medicine Reviews, 2017, 31, 183-192.	0.9	4
246	Granulocyte and monocyte adsorptive apheresis ameliorates sepsis in rats. Intensive Care Medicine Experimental, 2017, 5, 18.	0.9	9
247	Human Umbilical Cord Mesenchymal Stromal Cells Improve Survival and Bacterial Clearance in Neonatal Sepsis in Rats. Stem Cells and Development, 2017, 26, 1054-1064.	1.1	38
248	A novel paradigm links mitochondrial dysfunction with muscle stem cell impairment in sepsis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2546-2553.	1.8	17
249	Stem Cells and Their Immunomodulatory Potential for the Treatment of ARDS. , 2017, , 273-290.		0
251	Mesenchymal Stromal Cells Modulate Macrophages in Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1275-1286.	2.5	517
252	Cryopreserved, Xeno-Free Human Umbilical Cord Mesenchymal Stromal Cells Reduce Lung Injury Severity and Bacterial Burden in Rodent Escherichia coli–Induced Acute Respiratory Distress Syndrome. Critical Care Medicine, 2017, 45, e202-e212.	0.4	67

	Сітатіо	n Report	
#	ARTICLE	IF	CITATIONS
253	Microencapsulation of Lefty-secreting engineered cells for pulmonary fibrosis therapy in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L741-L747.	1.3	2
254	Mesenchymal Stem Cell Microvesicles Attenuate Acute Lung Injury in Mice Partly Mediated by <i>Ang-1</i> mRNA. Stem Cells, 2017, 35, 1849-1859.	1.4	154
255	Mesenchymal Stem/Stromal Cells for Sepsis. Annual Update in Intensive Care and Emergency Medicine, 2017, , 41-51.	0.1	0
256	Annual Update in Intensive Care and Emergency Medicine 2017. Annual Update in Intensive Care and Emergency Medicine, 2017, , .	0.1	0
258	Regenerative Potential of Mesenchymal Stem Cells: Therapeutic Applications in Lung Disorders. Stem Cells in Clinical Applications, 2017, , 77-117.	0.4	1
259	Therapeutic potentials of umbilical cord–derived mesenchymal stromal cells for ischemic-type biliary lesions following liver transplantation. Cytotherapy, 2017, 19, 194-199.	0.3	47
260	Evaluation of a Novel Hybrid Viable Bioprosthetic Mesh in a Model of Mesh Infection. Plastic and Reconstructive Surgery - Global Open, 2017, 5, e1418.	0.3	4
261	Concise Review: Mesenchymal Stromal/Stem Cells: A New Treatment for Sepsis and Septic Shock?. Stem Cells, 2017, 35, 2331-2339.	1.4	68
262	Activated Mesenchymal Stem Cells Interact with Antibiotics and Host Innate Immune Responses to Control Chronic Bacterial Infections. Scientific Reports, 2017, 7, 9575.	1.6	102
263	Stem Cell–based Therapies for Sepsis. Anesthesiology, 2017, 127, 1017-1034.	1.3	49
264	Effect of Mesenchymal Stromal Cells on T Cells in a Septic Context: Immunosuppression or Immunostimulation?. Stem Cells and Development, 2017, 26, 1477-1489.	1.1	17
265	BMSCs ameliorate septic coagulopathy through suppressing inflammation in cecal ligation and puncture induced sepsis. Journal of Cell Science, 2018, 131, .	1.2	10
266	Mesenchymal stromal cells as a resource for regeneration of damaged skin. Biology Bulletin Reviews, 2017, 7, 333-343.	0.3	0
267	Data against a Common Assumption: Xenogeneic Mouse Models Can Be Used to Assay Suppression of Immunity by Human MSCs. Molecular Therapy, 2017, 25, 1748-1756.	3.7	26
268	Adipose-derived mesenchymal stem cells modulate CD14++CD16+ expression on monocytes from sepsis patients in vitro via prostaglandin E2. Stem Cell Research and Therapy, 2017, 8, 97.	2.4	25
269	DJ-1/PARK7 Impairs Bacterial Clearance in Sepsis. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 889-905.	2.5	55
270	Concise Review: Mesenchymal Stem (Stromal) Cells: Biology and Preclinical Evidence for Therapeutic Potential for Organ Dysfunction Following Trauma or Sepsis. Stem Cells, 2017, 35, 316-324.	1.4	130
271	Potential of Stem Cells as Regenerative Medicine: From Preface to Advancements. Critical Reviews in Eukaryotic Gene Expression, 2017, 27, 1-17.	0.4	1

		Citation R	EPORT	
#	Article		IF	Citations
272	Mesenchymal stem cells in idiopathic pulmonary fibrosis. Oncotarget, 2017, 8, 10260	0-102616.	0.8	59
273	Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regene International Journal of Molecular Sciences, 2017, 18, 1852.	erative Medicine.	1.8	842
274	In vitro Culture of NaÃ ⁻ ve Human Bone Marrow Mesenchymal Stem Cells: A Stemness Frontiers in Cell and Developmental Biology, 2017, 5, 69.	Based Approach.	1.8	38
275	Antimicrobial Activity of Mesenchymal Stem Cells: Current Status and New Perspective Antimicrobial Peptide-Based Therapies. Frontiers in Immunology, 2017, 8, 339.	es of	2.2	191
276	Alveolar Fluid Clearance in Pathologically Relevant Conditions: In Vitro and In Vivo Moo Respiratory Distress Syndrome. Frontiers in Immunology, 2017, 8, 371.	lels of Acute	2.2	55
277	Effects of Bone Marrow Mesenchymal Stromal Cell Therapy in Experimental Cutaneous in BALB/c Mice Induced by Leishmania amazonensis. Frontiers in Immunology, 2017, 8	s Leishmaniasis , 893.	2.2	21
278	Perinatal Brain Injury As a Consequence of Preterm Birth and Intrauterine Inflammatior Targeted Stem Cell Therapies. Frontiers in Neuroscience, 2017, 11, 200.	1: Designing	1.4	59
279	Advances of Stem Cell Therapeutics in Cutaneous Wound Healing and Regeneration. N Inflammation, 2017, 2017, 1-14.	Aediators of	1.4	153
280	Mesenchymal stem cells decrease lung inflammation during sepsis, acting through inh MAPK pathway. Stem Cell Research and Therapy, 2017, 8, 289.	ibition of the	2.4	41
281	Assessment of safety and efficacy of mesenchymal stromal cell therapy in preclinical m myocardial infarction: a systematic review protocol. Systematic Reviews, 2017, 6, 226	iodels of acute	2.5	8
282	Analysis of Mitochondrial Transfer in Direct Co-cultures of Human Monocyte-derived M (MDM) and Mesenchymal Stem Cells (MSC). Bio-protocol, 2017, 7, .	1acrophages	0.2	47
283	Cell therapy for the treatment of sepsis and acute respiratory distress syndrome. Anna Translational Medicine, 2017, 5, 446-446.	ls of	0.7	30
284	Immunomodulatory oligonucleotide IMT504: Effects on mesenchymal stem cells as a f immunoprotective/immunoregenerative therapy. World Journal of Stem Cells, 2017, 9		1.3	8
285	Induced Pluripotent Stem Cell-Derived Hematopoietic Embryoid Bodies Secrete Sphingosine-1-Phosphate and Revert Endothelial Injury. Bulletin of Experimental Biolog 2018, 164, 775-779.	y and Medicine,	0.3	2
286	The TLR4-PAR1 Axis Regulates Bone Marrow Mesenchymal Stromal Cell Survival and Th Capacity in Experimental Bacterial Pneumonia. Stem Cells, 2018, 36, 796-806.	ierapeutic	1.4	24
287	Effect of bone marrow mesenchymal stem cells on the polarization of macrophages. M Medicine Reports, 2018, 17, 4449-4459.	lolecular	1.1	27
288	Chorioamnionitis, ILâ€17A, and fetal origins of neurologic disease. American Journal of Immunology, 2018, 79, e12803.	Reproductive	1.2	26
289	Mesenchymal stromal cells and macrophages in sepsis: new insights. European Respira 2018, 51, 1800510.	itory Journal,	3.1	15

#	Article	IF	CITATIONS
290	Delivery systems of current biologicals for the treatment of chronic cutaneous wounds and severe burns. Advanced Drug Delivery Reviews, 2018, 129, 219-241.	6.6	83
291	Mesenchymal stem cells enhance NOX2-dependent reactive oxygen species production and bacterial killing in macrophages during sepsis. European Respiratory Journal, 2018, 51, 1702021.	3.1	53
292	Impaired Immunosuppressive Effect of Bronchoalveolar Mesenchymal Stem Cells in Hypersensitivity Pneumonitis: Preliminary Findings. Cytometry Part B - Clinical Cytometry, 2018, 94, 363-368.	0.7	3
294	Interleukin-10-Overexpressing Mesenchymal Stromal Cells Induce a Series of Regulatory Effects in the Inflammatory System and Promote the Survival of Endotoxin-Induced Acute Lung Injury in Mice Model. DNA and Cell Biology, 2018, 37, 53-61.	0.9	44
295	Bone marrow derived mesenchymal stem cells transplantation rescues premature ovarian insufficiency induced by chemotherapy. Gynecological Endocrinology, 2018, 34, 320-326.	0.7	39
296	Cell-based Therapy in Sepsis. A Step Closer. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 280-281.	2.5	9
297	Cellular Immunotherapy for Septic Shock. A Phase I Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 337-347.	2.5	115
298	The promise of mesenchymal stem cell therapy for acute respiratory distress syndrome. Journal of Trauma and Acute Care Surgery, 2018, 84, 183-191.	1.1	31
299	Sepsis Management: Non-antibiotic Treatment of Sepsis and Septic Shock. , 2018, , 117-133.		0
300	Bone Marrow Mesenchymal Stem Cells Combat Lipopolysaccharide-Induced Sepsis in Rats via Amendment of P38-MAPK Signaling Cascade. Inflammation, 2018, 41, 541-554.	1.7	13
301	Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome*. Critical Care Medicine, 2018, 46, e132-e140.	0.4	59
302	The Role of TNF-α induced MSCs on Suppressive Inflammation by Increasing TGF-β and IL-10. Open Access Macedonian Journal of Medical Sciences, 2018, 6, 1779-1783.	0.1	81
303	Cell therapy in acute respiratory distress syndrome. Journal of Thoracic Disease, 2018, 10, 5607-5620.	0.6	46
304	Syndecan-2–positive, Bone Marrow–derived Human Mesenchymal Stromal Cells Attenuate Bacterial-induced Acute Lung Injury and Enhance Resolution of Ventilator-induced Lung Injury in Rats. Anesthesiology, 2018, 129, 502-516.	1.3	45
305	Clinical-grade mesenchymal stem cells derived from umbilical cord improve septic shock in pigs. Intensive Care Medicine Experimental, 2018, 6, 24.	0.9	25
306	Basic and clinical research progress in acute lung injury/acute respiratory distress syndrome. Infection International, 2018, 7, 38-43.	0.1	7
307	Sepsis and Nosocomial Infection: Patient Characteristics, Mechanisms, and Modulation. Frontiers in Immunology, 2018, 9, 2446.	2.2	62
308	Novel non-angiogenic role for mesenchymal stem cell-derived vascular endothelial growth factor on keratinocytes during wound healing. Cytokine and Growth Factor Reviews, 2018, 44, 69-79.	3.2	40

#	Article	IF	CITATIONS
309	Mesenchymal Stem Cells Shift Mitochondrial Dynamics and Enhance Oxidative Phosphorylation in Recipient Cells. Frontiers in Physiology, 2018, 9, 1572.	1.3	35
310	Safety and Efficacy of Adult Stem Cell Therapy for Acute Myocardial Infarction and Ischemic Heart Failure (SafeCell Heart): A Systematic Review and Meta-Analysis. Stem Cells Translational Medicine, 2018, 7, 857-866.	1.6	99
311	Sepsis Therapies: Insights from Population Health to Cellular Therapies and Genomic Medicine. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 1570-1572.	2.5	2
312	Modulatory and regenerative potential of transplanted bone marrow-derived mesenchymal stem cells on rifampicin-induced kidney toxicity. Regenerative Therapy, 2018, 9, 100-110.	1.4	7
313	Function and Therapeutic Potential of Mesenchymal Stem Cells and Their Acellular Derivatives on Non-Healing Chronic Skin Ulcers. Journal of Stem Cell Research & Therapy, 2018, 08, .	0.3	1
314	Umbilical cord-derived mesenchymal stem (stromal) cells for treatment of severe sepsis: aphase 1 clinical trial. Translational Research, 2018, 199, 52-61.	2.2	42
315	A Novel Mechanism of Mesenchymal Stromal Cell-Mediated Protection against Sepsis: Restricting Inflammasome Activation in Macrophages by Increasing Mitophagy and Decreasing Mitochondrial ROS. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-15.	1.9	40
316	Expression profile of microRNAs following bone marrowâ€derived mesenchymal stem cell treatment in lipopolysaccharideâ€induced acute lung injury. Experimental and Therapeutic Medicine, 2018, 15, 5495-5502.	0.8	20
317	Mesenchymal stromal cell-derived extracellular vesicles: regenerative and immunomodulatory effects and potential applications in sepsis. Cell and Tissue Research, 2018, 374, 1-15.	1.5	104
318	Allogeneic mesenchymal stem cells improve the wound healing process of sheep skin. BMC Veterinary Research, 2018, 14, 202.	0.7	50
319	Therapeutic effects of adipose-tissue-derived mesenchymal stromal cells and their extracellular vesicles in experimental silicosis. Respiratory Research, 2018, 19, 104.	1.4	44
320	Intravenous Infusion of Human Adipose Mesenchymal Stem Cells Modifies the Host Response to Lipopolysaccharide in Humans: A Randomized, Single-Blind, Parallel Group, Placebo Controlled Trial. Stem Cells, 2018, 36, 1778-1788.	1.4	70
321	Stabilization of Hypoxia-Inducible Factor-1 Alpha Augments the Therapeutic Capacity of Bone Marrow-Derived Mesenchymal Stem Cells in Experimental Pneumonia. Frontiers in Medicine, 2018, 5, 131.	1.2	12
322	Eicosapentaenoic Acid Enhances the Effects of Mesenchymal Stromal Cell Therapy in Experimental Allergic Asthma. Frontiers in Immunology, 2018, 9, 1147.	2.2	36
323	Recent Updates on Treatment of Ocular Microbial Infections by Stem Cell Therapy: A Review. International Journal of Molecular Sciences, 2018, 19, 558.	1.8	12
324	Acceleration of Diabetic Wound Regeneration using an In Situ–Formed Stemâ€Cellâ€Based Skin Substitute. Advanced Healthcare Materials, 2018, 7, e1800432.	3.9	56
325	Inflammation in cystic fibrosis: An update. Pediatric Pulmonology, 2018, 53, S30-S50.	1.0	187
326	Exosome-mediated amplification of endogenous brain repair mechanisms and brain and systemic organ interaction in modulating neurological outcome after stroke. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 2165-2178.	2.4	51

ARTICLE IF CITATIONS # Therapeutic effects of human mesenchymal stem cell microvesicles in an ex vivo perfused human lung 327 2.7 166 injured with severe <i>E. coli </i> pneumonia. Thorax, 2019, 74, 43-50. Review of preclinical and clinical studies of using cellâ€based therapy for secondary lymphedema. 0.8 Journal of Surgical Oncology, 2020, 121, 109-120. Mesenchymal stromal cell-derived nanovesicles ameliorate bacterial outer membrane vesicle-induced 329 2.4 83 sepsis via IL-10. Stem Cell Research and Therapy, 2019, 10, 231. The Role of Electrospun Fiber Scaffolds in Stem Cell Therapy for Skin Tissue Regeneration. Med One, 2019, 4, e190002. Mesenchymal Stromal Cells Anno 2019: Dawn of the Therapeutic Era? Concise Review. Stem Cells 331 1.6 114 Translational Medicine, 2019, 8, 1126-1134. <p>The regenerative potential of skin and the immune system</p>. Clinical, Cosmetic and Investigational Dermatology, 2019, Volume 12, 519-532. 0.8 Bone marrow vs Wharton's jelly mesenchymal stem cells in experimental sepsis: a comparative study. 333 2.4 39 Stem Cell Research and Therapy, 2019, 10, 192. Advances in Stem Cell Research in Sepsis., 2019, , 305-330. 334 335 Multipotent Stromal Cells in a Tumor Microenvironment., 2019, , . 0 Stem cell therapy for chronic skin wounds in the era of personalized medicine: From bench to bedside. 1.5 Genes and Diseases, 2019, 6, 342-358. Differential effects of extracellular vesicles from aging and young mesenchymal stem cells in acute 337 92 1.4 lung injury. Aging, 2019, 11, 7996-8014. Effect of Preconditioned Mesenchymal Stromal Cells on Early Microvascular Disturbance in a Mouse 1.1 Sepsis Model. Stem Cells and Development, 2019, 28, 1595-1606. Serum haptoglobin levels are associated with renal function decline in type 2 diabetes mellitus 339 1.1 4 patients in a Chinese Han population. Diabetes Research and Clinical Practice, 2019, 156, 107865. Tracking of GFP-labeled unrestricted somatic stem cells transplanted in the sepsis mouse model. Tissue and Cell, 2019, 60, 33-37. 340 1.0 Eicosapentaenoic acid potentiates the therapeutic effects of adipose tissue-derived mesenchymal 341 stromal cells on lung and distal organ injury in experimental sepsis. Stem Cell Research and Therapy, 33 2.4 2019, 10, 264. A Comparison of Phenotypic and Functional Properties of Mesenchymal Stromal Cells and 342 2.2 Multipotent Adult Progenitor Cells. Frontiers in Immunology, 2019, 10, 1952. Mesenchymal Stromal Cells Are More Effective Than Their Extracellular Vesicles at Reducing Lung Injury Regardless of Acute Respiratory Distress Syndrome Etiology. Stem Cells International, 2019, 343 1.2 47 2019, 1-Ĭ5. Role of tissue factor in the procoagulant and antibacterial effects of human adipose-derived 344 2.4 mesenchymal stem cells during pneumosepsis in mice. Stem Cell Research and Therapy, 2019, 10, 286.

#	Article	IF	CITATIONS
346	Adipose-derived mesenchymal stem cells ameliorate acute liver injury in rat model of CLP induced-sepsis via sTNFR1. Experimental Cell Research, 2019, 383, 111465.	1.2	26
347	Perspectives of the International Society for Cell & Gene Therapy Gastrointestinal Scientific Committee on the Intravenous Use of Mesenchymal Stromal Cells in Inflammatory Bowel Disease (PeMeGi). Cytotherapy, 2019, 21, 824-839.	0.3	12
348	Stem Cell-Based Therapies for Acute Lung Injury and Acute Respiratory Distress Syndrome. , 2019, , 331-343.		1
349	IL-1β-Mediated Activation of Adipose-Derived Mesenchymal Stromal Cells Results in PMN Reallocation and Enhanced Phagocytosis: A Possible Mechanism for the Reduction of Osteoarthritis Pathology. Frontiers in Immunology, 2019, 10, 1075.	2.2	16
350	Latent stem cell-stimulating therapy for regeneration of chronic tympanic membrane perforations using IGFBP2-releasing chitosan patch scaffolds. Journal of Biomaterials Applications, 2019, 34, 198-207.	1.2	15
351	Recent Advances in Non-Conventional Antimicrobial Approaches for Chronic Wound Biofilms: Have We Found the â€~Chink in the Armor'?. Biomedicines, 2019, 7, 35.	1.4	52
352	Pathogenesis of Acute Respiratory Distress Syndrome. Seminars in Respiratory and Critical Care Medicine, 2019, 40, 031-039.	0.8	276
353	Human Adipose-Derived Mesenchymal Stem Cells Modify Lung Immunity and Improve Antibacterial Defense in Pneumosepsis Caused by <i>Klebsiella pneumoniae</i> . Stem Cells Translational Medicine, 2019, 8, 785-796.	1.6	30
354	Bovine fetal mesenchymal stem cells exert antiproliferative effect against mastitis causing pathogen Staphylococcus aureus. Veterinary Research, 2019, 50, 25.	1.1	25
355	The therapeutic effects of bone marrow-derived mesenchymal stromal cells in the acute lung injury induced by sulfur mustard. Stem Cell Research and Therapy, 2019, 10, 90.	2.4	21
356	microRNAâ€30a inhibits the liver cell proliferation and promotes cell apoptosis through the JAK/STAT signaling pathway by targeting SOCSâ€1 in rats with sepsis. Journal of Cellular Physiology, 2019, 234, 17839-17853.	2.0	24
357	Cell therapy for ARDS: efficacy of endobronchial versus intravenous administration and biodistribution of MAPCs in a large animal model. BMJ Open Respiratory Research, 2019, 6, e000308.	1.2	43
358	Exploring the roles of MSCs in infections: focus on bacterial diseases. Journal of Molecular Medicine, 2019, 97, 437-450.	1.7	46
359	Bone marrow mesenchymal stem cells protect lungs from smoke inhalation injury by differentiating into alveolar epithelial cells via Notch signaling. Journal of Biosciences, 2019, 44, 1.	0.5	7
360	Adiposeâ€derived mesenchymal stem cells ameliorate the inflammatory reaction in CLPâ€induced septic acute lung injury rats via sTNFR1. Journal of Cellular Physiology, 2019, 234, 16582-16591.	2.0	10
361	Antimicrobial Effects of Conditioned Medium From Amniotic Progenitor Cells in vitro and in vivo: Toward Tissue Regenerative Therapies for Bovine Mastitis. Frontiers in Veterinary Science, 2019, 6, 443.	0.9	13
362	Mesenchymal stem cell–gut microbiota interaction in the repair of inflammatory bowel disease: an enhanced therapeutic effect. Clinical and Translational Medicine, 2019, 8, 31.	1.7	50
363	A Human Umbilical Cord Mesenchymal Stem Cell-Conditioned Medium/Chitosan/Collagen/ <i>β</i> -Glycerophosphate Thermosensitive Hydrogel Promotes Burn Injury Healing in Mice. BioMed Research International, 2019, 2019, 1-14.	0.9	38

#	ARTICLE	IF	CITATIONS
365	Thawed Mesenchymal Stem Cell Product Shows Comparable Immunomodulatory Potency to Cultured Cells In Vitro and in Polymicrobial Septic Animals. Scientific Reports, 2019, 9, 18078.	1.6	26
366	MSC-secreted TGF-β regulates lipopolysaccharide-stimulated macrophage M2-like polarization via the Akt/FoxO1 pathway. Stem Cell Research and Therapy, 2019, 10, 345.	2.4	168
367	Efficacy of Mesenchymal Stem/Stromal Cell Infusion in Septic Patients Is a Puzzle Worthy of Attention. Critical Care Medicine, 2019, 47, 1001-1002.	0.4	0
368	The efficacy of mesenchymal stem cells in bronchiolitis obliterans syndrome after allogeneic HSCT: A multicenter prospective cohort study. EBioMedicine, 2019, 49, 213-222.	2.7	19
369	Effects of Mesenchymal Stem Cell Treatment on Systemic Cytokine Levels in a Phase 1 Dose Escalation Safety Trial of Septic Shock Patients*. Critical Care Medicine, 2019, 47, 918-925.	0.4	58
370	Transcriptome Meta-Analysis Deciphers a Dysregulation in Immune Response-Associated Gene Signatures during Sepsis. Genes, 2019, 10, 1005.	1.0	26
371	Lung-Resident Mesenchymal Stem Cells Promote Repair of LPS-Induced Acute Lung Injury via Regulating the Balance of Regulatory T cells and Th17 cells. Inflammation, 2019, 42, 199-210.	1.7	38
372	Stem cells in burn wound healing: A systematic review of the literature. Burns, 2019, 45, 1014-1023.	1.1	31
373	Compromised Antibacterial Function of Multipotent Stromal Cells in Diabetes. Stem Cells and Development, 2019, 28, 268-277.	1.1	4
374	Therapeutic potential of mesenchymal stromal cells in the treatment of ARDS. Transfusion, 2019, 59, 869-875.	0.8	16
375	Multiple Organ Dysfunction. , 2019, , 205-208.e2.		2
376	Human Adipose Tissue-Derived Stromal Cells Attenuate the Multiple Organ Injuries Induced by Sepsis and Mechanical Ventilation in Mice. Inflammation, 2019, 42, 485-495.	1.7	11
377	Bone marrow-derived mesenchymal stem cells ameliorate liver injury in a rat model of sepsis by activating Nrf2 signaling. Histochemistry and Cell Biology, 2019, 151, 249-262.	0.8	8
378	Role of the immune system in regeneration and its dynamic interplay with adult stem cells. Seminars in Cell and Developmental Biology, 2019, 87, 160-168.	2.3	49
379	Bone Marrow Cells Transplant in Septic Mice Modulates Systemic Inflammatory Response via Cell–Cell Contact. Shock, 2019, 51, 381-388.	1.0	3
380	Phagocytosis by Fibrocytes as a Mechanism to Decrease Bacterial Burden and Increase Survival in Sepsis. Shock, 2019, 51, 464-471.	1.0	4
381	Current understanding of the therapeutic benefits of mesenchymal stem cells in acute respiratory distress syndrome. Cell Biology and Toxicology, 2020, 36, 83-102.	2.4	56
382	Antibacterial and antibiofilm activity of bone marrow-derived human mesenchymal stem cells secretome against Vibrio cholerae. Microbial Pathogenesis, 2020, 139, 103867.	1.3	12

#	Article	IF	CITATIONS
383	Protein kinase Câ€delta inhibition is organâ€protective, enhances pathogen clearance, and improves survival in sepsis. FASEB Journal, 2020, 34, 2497-2510.	0.2	9
384	Human Umbilical Cord Mesenchymal Stromal Cells Attenuate Systemic Sepsis in Part by Enhancing Peritoneal Macrophage Bacterial Killing <i>via</i> Heme Oxygenase-1 Induction in Rats. Anesthesiology, 2020, 132, 140-154.	1.3	16
385	Toll-like receptor bioactivity in endothelial progenitor cells. Cell and Tissue Research, 2020, 379, 223-230.	1.5	15
386	Lights and Shadows in the Use of Mesenchymal Stem Cells in Lung Inflammation, a Poorly Investigated Topic in Cystic Fibrosis. Cells, 2020, 9, 20.	1.8	16
387	Mesenchymal stem cell therapies for COVID-19: Current status and mechanism of action. Life Sciences, 2020, 262, 118493.	2.0	41
388	Immunosuppressive effects of mesenchymal stem cells on lung B cell gene expression in LPS-induced acute lung injury. Stem Cell Research and Therapy, 2020, 11, 418.	2.4	22
389	Prophylactic therapy with human amniotic fluid stem cells improved survival in a rat model of lipopolysaccharide-induced neonatal sepsis through immunomodulation via aggregates with peritoneal macrophages. Stem Cell Research and Therapy, 2020, 11, 300.	2.4	20
390	Genetically Modified Mesenchymal Stromal/Stem Cells: Application in Critical Illness. Stem Cell Reviews and Reports, 2020, 16, 812-827.	1.7	26
391	Exosomes from adipose tissue-derived mesenchymal stem cells ameliorate histone-induced acute lung injury by activating the PI3K/Akt pathway in endothelial cells. Stem Cell Research and Therapy, 2020, 11, 508.	2.4	41
392	Umbilical Cord-Derived CD362+ Mesenchymal Stromal Cells Attenuate Polymicrobial Sepsis Induced by Caecal Ligation and Puncture. International Journal of Molecular Sciences, 2020, 21, 8270.	1.8	10
393	The Mechanisms Involved in Mesenchymal Stem Cell Alleviation of Sepsis-Induced Acute Lung Injury in Mice: A Pilot Study. Current Therapeutic Research, 2020, 93, 100593.	0.5	8
394	Effects of Human Umbilical Cord-Derived Mesenchymal Stem Cells on the Acute Cigarette Smoke-Induced Pulmonary Inflammation Model. Frontiers in Physiology, 2020, 11, 962.	1.3	6
395	Approaching coronavirus disease 2019: Mechanisms of action of repurposed drugs with potential activity against SARS-CoV-2. Biochemical Pharmacology, 2020, 180, 114169.	2.0	26
396	The Coronavirus Pandemic (SARS-CoV-2): New Problems Demand New Solutions, the Alternative of Mesenchymal (Stem) Stromal Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 645.	1.8	11
397	Regulation of inflammatory microenvironment using a self-healing hydrogel loaded with BM-MSCs for advanced wound healing in rat diabetic foot ulcers. Journal of Tissue Engineering, 2020, 11, 204173142094724.	2.3	75
398	Alveolar Type II Cells or Mesenchymal Stem Cells: Comparison of Two Different Cell Therapies for the Treatment of Acute Lung Injury in Rats. Cells, 2020, 9, 1816.	1.8	15
399	Antibacterial Fusion Protein BPI21/LL-37 Modification Enhances the Therapeutic Efficacy of hUC-MSCs in Sepsis. Molecular Therapy, 2020, 28, 1806-1817.	3.7	8
400	Autologous transplantation of adipose-derived stromal cells combined with sevoflurane ameliorates acute lung injury induced by cecal ligation and puncture in rats. Scientific Reports, 2020, 10, 13760.	1.6	3

#	Article	IF	CITATIONS
401	Combined therapy with adipose tissue-derived mesenchymal stromal cells and meglumine antimoniate controls lesion development and parasite load in murine cutaneous leishmaniasis caused by Leishmania amazonensis. Stem Cell Research and Therapy, 2020, 11, 374.	2.4	5
402	Overexpressing TGF-Î ² 1 in mesenchymal stem cells attenuates organ dysfunction during CLP-induced septic mice by reducing macrophage-driven inflammation. Stem Cell Research and Therapy, 2020, 11, 378.	2.4	20
403	Therapeutic Effects of Hyaluronic Acid in Peritonitis-Induced Sepsis in Mice. Shock, 2020, 54, 488-497.	1.0	11
404	The Neutrophil: Constant Defender and First Responder. Frontiers in Immunology, 2020, 11, 571085.	2.2	62
405	Can intravenous oxytocin infusion counteract hyperinflammation in COVID-19 infected patients?. World Journal of Biological Psychiatry, 2021, 22, 387-398.	1.3	30
406	Adipose-derived mesenchymal stem cells attenuate acute lung injury and improve the gut microbiota in septic rats. Stem Cell Research and Therapy, 2020, 11, 384.	2.4	29
407	Dental Pulp Mesenchymal Stem Cells as a Treatment for Periodontal Disease in Older Adults. Stem Cells International, 2020, 2020, 1-12.	1.2	15
408	Mesenchymal stromal cells for sepsis and septic shock: Lessons for treatment of COVID-19. Stem Cells Translational Medicine, 2020, 9, 1488-1494.	1.6	14
409	Comparison of freshly cultured versus freshly thawed (cryopreserved) mesenchymal stem cells in preclinical in vivo models of inflammation: a protocol for a preclinical systematic review and meta-analysis. Systematic Reviews, 2020, 9, 188.	2.5	3
410	The efficacy of mesenchymal stem cell therapy in experimental sepsis induced by carbapenem-resistant K. pneumoniae in neutropenic mice model. European Journal of Clinical Microbiology and Infectious Diseases, 2020, 39, 1739-1744.	1.3	3
411	Stem cell derived exosomes-based therapy for acute lung injury and acute respiratory distress syndrome: A novel therapeutic strategy. Life Sciences, 2020, 254, 117766.	2.0	27
412	Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients. Journal of Translational Medicine, 2020, 18, 203.	1.8	83
413	Lung-resident mesenchymal stromal cells are tissue-specific regulators of lung homeostasis. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L197-L210.	1.3	27
414	The Role of MSCs in the Tumor Microenvironment and Tumor Progression. Anticancer Research, 2020, 40, 3039-3047.	0.5	37
415	Efficacy of mesenchymal stem cell therapy for sepsis: a meta-analysis of preclinical studies. Stem Cell Research and Therapy, 2020, 11, 214.	2.4	30
416	Mesenchymal stromal/stem cells modulate response to experimental sepsis-induced lung injury via regulation of miR-27a-5p in recipient mice. Thorax, 2020, 75, 556-567.	2.7	17
417	Expression of Stromal Cell–Derived Factor-1 by Mesenchymal Stromal Cells Impacts Neutrophil Function During Sepsis. Critical Care Medicine, 2020, 48, e409-e417.	0.4	11
418	Metabolomic Analysis of the Effects of Adipose-Derived Mesenchymal Stem Cell Treatment on Rats With Sepsis-Induced Acute Lung Injury. Frontiers in Pharmacology, 2020, 11, 902.	1.6	21

#	Article	IF	CITATIONS
419	Umbilical cord-derived CD362+ mesenchymal stromal cells for E. coli pneumonia: impact of dose regimen, passage, cryopreservation, and antibiotic therapy. Stem Cell Research and Therapy, 2020, 11, 116.	2.4	24
420	MSC Based Therapies—New Perspectives for the Injured Lung. Journal of Clinical Medicine, 2020, 9, 682.	1.0	118
421	Mesenchymal Stromal Cells Protect the Blood-Brain Barrier, Reduce Astrogliosis, and Prevent Cognitive and Behavioral Alterations in Surviving Septic Mice. Critical Care Medicine, 2020, 48, e290-e298.	0.4	27
422	Evaluation of Mesenchymal Stem Cell Therapy for Sepsis: A Randomized Controlled Porcine Study. Frontiers in Immunology, 2020, 11, 126.	2.2	22
423	Current Status of Stem Cell Therapy for Sepsis and Acute Respiratory Distress Syndrome. , 2020, , .		2
424	Combinational therapy with antibiotics and antibiotic-loaded adipose-derived stem cells reduce abscess formation in implant-related infection in rats. Scientific Reports, 2020, 10, 11182.	1.6	15
425	Mesenchymal stromal cells and their secreted extracellular vesicles as therapeutic tools for COVID-19 pneumonia?. Journal of Controlled Release, 2020, 325, 135-140.	4.8	28
426	In vivo monitoring of dynamic interaction between neutrophil and human umbilical cord blood-derived mesenchymal stem cell in mouse liver during sepsis. Stem Cell Research and Therapy, 2020, 11, 44.	2.4	22
427	Immunoregulatory properties of mesenchymal stem cells and their application in immunotherapy. , 2020, , 17-43.		0
428	The Potential of Mesenchymal Stem Cells to Treat Systemic Inflammation in Horses. Frontiers in Veterinary Science, 2019, 6, 507.	0.9	34
429	Cell therapy with intravascular administration of mesenchymal stromal cells continues to appear safe: An updated systematic review and meta-analysis. EClinicalMedicine, 2020, 19, 100249.	3.2	150
430	Mesenchymal stromal cell–based therapies for acute kidney injury: progress in the last decade. Kidney International, 2020, 97, 1130-1140.	2.6	39
431	Medicinal signaling cells: A potential antimicrobial drug store. Journal of Cellular Physiology, 2020, 235, 7731-7746.	2.0	18
432	Immunomodulatory and Tissue-preserving Effects of Human Dental Follicle Stem Cells in a Rat Cecal Ligation and Perforation Sepsis Model. Archives of Medical Research, 2020, 51, 397-405.	1.5	5
433	Current status of potential therapeutic candidates for the COVID-19 crisis. Brain, Behavior, and Immunity, 2020, 87, 59-73.	2.0	239
434	Mesenchymal Stem Cells Enhance Pulmonary Antimicrobial Immunity and Prevent Following Bacterial Infection. Stem Cells International, 2020, 2020, 1-11.	1.2	12
435	Mesenchymal Stem/Stromal Cells Therapy for Sepsis and Acute Respiratory Distress Syndrome. Seminars in Respiratory and Critical Care Medicine, 2021, 42, 020-039.	0.8	20
436	Enhanced protection against lipopolysaccharideâ€induced acute lung injury by autologous transplantation of adiposeâ€derived stromal cells combined with low tidal volume ventilation in rats. Journal of Cellular Physiology, 2021, 236, 1295-1308.	2.0	1

#	Article	IF	CITATIONS
437	Mechanisms of Endothelial Regeneration and Vascular Repair and Their Application to Regenerative Medicine. American Journal of Pathology, 2021, 191, 52-65.	1.9	76
438	Coâ€transplantation of bone marrowâ€derived mesenchymal stem cells with hematopoietic stem cells does not improve transplantation outcome in class III betaâ€thalassemia major: A prospective cohort study with longâ€term followâ€up. Pediatric Transplantation, 2021, 25, e13905.	0.5	3
439	Stem cell therapy in coronavirus disease 2019: current evidence and future potential. Cytotherapy, 2021, 23, 471-482.	0.3	11
440	Mesenchymal stromal cells for acute respiratory distress syndrome (ARDS), sepsis, and COVID-19 infection: optimizing the therapeutic potential. Expert Review of Respiratory Medicine, 2021, 15, 301-324.	1.0	41
441	Mesenchymal stromal cells to fight SARS-CoV-2: Taking advantage of a pleiotropic therapy. Cytokine and Growth Factor Reviews, 2021, 58, 114-133.	3.2	17
442	Promising role for mesenchymal stromal cells in coronavirus infectious disease-19 (COVID-19)-related severe acute respiratory syndrome?. Blood Reviews, 2021, 46, 100742.	2.8	11
443	Review of Trials Currently Testing Stem Cells for Treatment of Respiratory Diseases: Facts Known to Date and Possible Applications to COVID-19. Stem Cell Reviews and Reports, 2021, 17, 44-55.	1.7	11
444	Regen med therapeutic opportunities for fighting COVID-19. Stem Cells Translational Medicine, 2021, 10, 5-13.	1.6	12
445	Autologous mesenchymal stem cells application in post-burn scars treatment: a preliminary study. Cell and Tissue Banking, 2021, 22, 39-46.	0.5	7
446	Recent advancements of nanomaterial-based therapeutic strategies toward sepsis: bacterial eradication, anti-inflammation, and immunomodulation. Nanoscale, 2021, 13, 10726-10747.	2.8	17
447	Progress toward the Clinical Application of Mesenchymal Stromal Cells and Other Disease-Modulating Regenerative Therapies: Examples from the Field of Nephrology. Kidney360, 2021, 2, 542-557.	0.9	12
448	Mesenchymal stromal cells expressing a dominant-negative high mobility group A1 transgene exhibit improved function during sepsis. Journal of Leukocyte Biology, 2021, 110, 711-722.	1.5	4
449	Perinatal Cells: A Promising COVID-19 Therapy?. Frontiers in Bioengineering and Biotechnology, 2020, 8, 619980.	2.0	3
450	A Role for Extracellular Vesicles in SARS-CoV-2 Therapeutics and Prevention. Journal of NeuroImmune Pharmacology, 2021, 16, 270-288.	2.1	30
451	Immunophenotypic characterization and therapeutics effects of human bone marrow- and umbilical cord-derived mesenchymal stromal cells in an experimental model of sepsis. Experimental Cell Research, 2021, 399, 112473.	1.2	10
452	Murine Myeloid Progenitors Attenuate Immune Dysfunction Induced by Hemorrhagic Shock. Stem Cell Reports, 2021, 16, 324-336.	2.3	6
453	Hypoxic Preconditioning of Human Umbilical Cord Mesenchymal Stem Cells Is an Effective Strategy for Treating Acute Lung Injury. Stem Cells and Development, 2021, 30, 128-134.	1.1	8
454	MSCs derived from amniotic fluid and umbilical cord require different administration schemes and exert different curative effects on different tissues in rats with CLP-induced sepsis. Stem Cell Research and Therapy, 2021, 12, 164.	2.4	7

#	Article	IF	CITATIONS
455	Mesenchymal Stem Cells as a Cornerstone in a Galaxy of Intercellular Signals: Basis for a New Era of Medicine. International Journal of Molecular Sciences, 2021, 22, 3576.	1.8	43
456	Efficacy of mesenchymal stromal cells and cellular products in improvement of symptoms for COVIDâ€19 and similar lung diseases. Biotechnology and Bioengineering, 2021, 118, 2168-2183.	1.7	3
457	Mesenchymal stromal cells for the treatment of ocular autoimmune diseases. Progress in Retinal and Eye Research, 2021, 85, 100967.	7.3	16
458	α1-Antitrypsin: Key Player or Bystander in Acute Respiratory Distress Syndrome?. Anesthesiology, 2021, 134, 792-808.	1.3	6
459	Intra-vital imaging of mesenchymal stromal cell kinetics in the pulmonary vasculature during infection. Scientific Reports, 2021, 11, 5265.	1.6	31
460	Roles and mechanisms of stem cell in wound healing. Stem Cell Investigation, 2021, 8, 4-4.	1.3	22
461	Progress and potential of mesenchymal stromal cell therapy in acute respiratory distress syndrome. , 2021, , 353-372.		1
462	Impact of Three Different Serum Sources on Functional Properties of Equine Mesenchymal Stromal Cells. Frontiers in Veterinary Science, 2021, 8, 634064.	0.9	8
463	Exosomal lncRNA-p21 derived from mesenchymal stem cells protects epithelial cells during LPS-induced acute lung injury by sponging miR-181. Acta Biochimica Et Biophysica Sinica, 2021, 53, 748-757.	0.9	26
464	Tollâ€like receptor activation of equine mesenchymal stromal cells to enhance antibacterial activity and immunomodulatory cytokine secretion. Veterinary Surgery, 2021, 50, 858-871.	0.5	20
465	Priming With Toll-Like Receptor 3 Agonist Poly(I:C) Enhances Content of Innate Immune Defense Proteins but Not MicroRNAs in Human Mesenchymal Stem Cell-Derived Extracellular Vesicles. Frontiers in Cell and Developmental Biology, 2021, 9, 676356.	1.8	21
466	The Macrophage Response Is Driven by Mesenchymal Stem Cell-Mediated Metabolic Reprogramming. Frontiers in Immunology, 2021, 12, 624746.	2.2	25
467	Mesenchymal stromal (stem) cell therapy modulates miR-193b-5p expression to attenuate sepsis-induced acute lung injury. European Respiratory Journal, 2022, 59, 2004216.	3.1	36
468	Adipose-Derived Stromal Cells Seeded in Pullulan-Collagen Hydrogels Improve Healing in Murine Burns. Tissue Engineering - Part A, 2021, 27, 844-856.	1.6	31
469	Nanotherapeutics in the treatment of acute respiratory distress syndrome. Life Sciences, 2021, 276, 119428.	2.0	12
470	Mesenchymal Stem Cell-Based Therapy as an Alternative to the Treatment of Acute Respiratory Distress Syndrome: Current Evidence and Future Perspectives. International Journal of Molecular Sciences, 2021, 22, 7850.	1.8	33
471	Is Regular Probiotic Practice Safe for Management of Sepsis?. Chinese Journal of Integrative Medicine, 2022, 28, 185-192.	0.7	5
472	Overexpression of HOXB4 Promotes Protection of Bone Marrow Mesenchymal Stem Cells Against Lipopolysaccharide-Induced Acute Lung Injury Partially Through the Activation of Wnt/β-Catenin Signaling Journal of Inflammation Research, 2021, Volume 14, 3637-3649	1.6	5

#	Article	IF	CITATIONS
473	The Potential Role of Extracellular Vesicles in COVID-19 Treatment: Opportunity and Challenge. Frontiers in Molecular Biosciences, 2021, 8, 699929.	1.6	23
474	Gingival-Derived Mesenchymal Stem Cells Protect Against Sepsis and Its Complications. Infection and Drug Resistance, 2021, Volume 14, 3341-3355.	1.1	3
475	Mesenchymal stromal cellâ€derived syndecanâ€⊋ regulates the immune response during sepsis to foster bacterial clearance and resolution of inflammation. FEBS Journal, 2022, 289, 417-435.	2.2	8
476	IL-1β primed mesenchymal stromal cells moderate hemorrhagic shock-induced organ injuries. Stem Cell Research and Therapy, 2021, 12, 438.	2.4	11
477	Host Defense against <i>Klebsiella pneumoniae</i> Pneumonia Is Augmented by Lung-Derived Mesenchymal Stem Cells. Journal of Immunology, 2021, 207, 1112-1127.	0.4	4
478	Immune System Disequilibrium—Neutrophils, Their Extracellular Traps, and COVID-19-Induced Sepsis. Frontiers in Medicine, 2021, 8, 711397.	1.2	6
479	Anti-inflammatory Effects of Mesenchymal Stem Cells and their Secretomes in Pneumonia. Current Pharmaceutical Biotechnology, 2022, 23, 1153-1167.	0.9	4
480	Current therapeutic strategies for respiratory diseases using mesenchymal stem cells. MedComm, 2021, 2, 351-380.	3.1	15
481	Mesenchymal Stem Cells in the Treatment of COVID-19, a Promising Future. Cells, 2021, 10, 2588.	1.8	8
482	Current Status of Cell-Based Therapies for COVID-19: Evidence From Mesenchymal Stromal Cells in Sepsis and ARDS. Frontiers in Immunology, 2021, 12, 738697.	2.2	14
483	Human mesenchymal stromal cells small extracellular vesicles attenuate sepsis-induced acute lung injury in a mouse model: the role of oxidative stress and the mitogen-activated protein kinase/nuclear factor kappa B pathway. Cytotherapy, 2021, 23, 918-930.	0.3	21
484	Comparison of quantitative and qualitative scoring approaches for radiation-induced pulmonary fibrosis as applied to a preliminary investigation into the efficacy of mesenchymal stem cell delivery methods in a rat model. BJR Open, 2021, 3, 20210006.	0.4	0
485	microRNA-27b shuttled by mesenchymal stem cell-derived exosomes prevents sepsis by targeting JMJD3 and downregulating NF-lºB signaling pathway. Stem Cell Research and Therapy, 2021, 12, 14.	2.4	38
486	How severe RNA virus infections such as SARS-CoV-2 disrupt tissue and organ barriers—Reconstitution by mesenchymal stem cell-derived exosomes. , 2021, , 95-113.		0
487	Stem Cells in Wound Healing. Pancreatic Islet Biology, 2013, , 175-197.	0.1	1
488	Stem Cell Therapies for Tissue Regeneration and Wound Healing: Strategies to Enhance Therapeutic Effectiveness. , 2019, , 187-199.		2
489	Preclinical Evidence for the Role of Stem/Stromal Cells in Targeting ARDS. , 2019, , 199-217.		3
490	The Potential of Factors Released from Mesenchymal Stromal Cells as Therapeutic Agents in the Lung. , 2019, , 57-70.		1

ARTICLE IF CITATIONS Primary Blast Lung Injury. , 2016, , 275-280. 491 1 Mesenchymal stem cells significantly improved treatment effects of Linezolid on severe pneumonia in 1.1 a rabbit model. Bioscience Reports, 2019, 39, . 493 Cell-based Therapy for Acute Lung Injury. Anesthesiology, 2012, 116, 1189-1191. 1.3 8 Carbon Monoxide Improves Efficacy of Mesenchymal Stromal Cells During Sepsis by Production of 494 Specialized Proresolving Lipid Mediators*. Critical Care Medicine, 2016, 44, e1236-e1245. Mesenchymal Stem/Stromal Cells Increase Cardiac MIR-187-3P Expression in Polymicrobial Animal 495 1.0 12 Model of Sepsis. Shock, 2020, Publish Ahead of Print, 133-141. Acute Respiratory Distress Syndrome: The Role of Mesenchymal Stem Cells and Arising Complications 498 Due to an Aging Lung. , 2016, , 181-196. Cytokine pre-activation of cryopreserved xenogeneic-free human mesenchymal stromal cells enhances 499 resolution and repair following ventilator-induced lung injury potentially via a KGF-dependent 0.9 18 mechanism. Intensive Care Medicine Experimental, 2020, 8, 8. Intraperitoneal but Not Intravenous Cryopreserved Mesenchymal Stromal Cells Home to the Inflamed 500 1.1 Colon and Ameliorate Experimental Colitis. PLoS ONE, 2012, 7, e33360. Activation of Regulatory T Cells during Inflammatory Response Is Not an Exclusive Property of Stem 501 1.1 13 Cells. PLoS ONE, 2012, 7, e35512. Safety of Cell Therapy with Mesenchymal Stromal Cells (SafeCell): A Systematic Review and 1.1 Meta-Analysis of Clinical Trials. PLoS ONE, 2012, 7, e47559. Mesenchymal Stromal (Stem) Cell Therapy Fails to Improve Outcomes in Experimental Severe Influenza. 503 1.1 53 PLoS ONÉ, 2013, 8, e71761. Anaerobic Co-Culture of Mesenchymal Stem Cells and Anaerobic Pathogens - A New In Vitro Model 1.1 System. PLoS ONE, 2013, 8, e78226. Efficacy of Mesenchymal Stromal Cell Therapy for Acute Lung Injury in Preclinical Animal Models: A 505 1.1 108 Systematic Review. PLoS ONE, 2016, 11, e0147170. Stemness specificity of epithelial cells $\hat{a} \in$ application of cell and tissue technology in regenerative medicine. Medical Journal of Cell Biology (discontinued), 2018, 6, 114-119. 0.2 HISTOPATHOLOGICAL STUDY OF SEPSIS EXPERIMENTALLY INDUCED BY CECAL LIGATION AND PUNCTURE IN 508 2 0.1 RATS. Basrah Journal of Veterinary Research, 2013, 12, 104-115. VEGF: Potential therapy for renal regeneration. F1000 Medicine Reports, 2012, 4, 2. 509 Acute respiratory distress syndrome: new definition, current and future therapeutic options. Journal 510 0.6 166 of Thoracic Disease, 2013, 5, 326-34. Cell based therapy aides in infection and inflammation resolution in the murine model of cystic fibrosis lung disease. Stem Cell Discovery, 2013, 03, 139-153.

	CHAIDNE		
#	Article	IF	Citations
512	Mesenchymal stem cells as a therapeutic tool to treat sepsis. World Journal of Stem Cells, 2015, 7, 368.	1.3	89
513	Anti-inflammatory Role of Mesenchymal Stem Cells in an Acute Lung Injury Mouse Model. Acute and Critical Care, 2018, 33, 154-161.	0.6	10
514	Exosomes Derived from miR-146a-5p-Enriched Mesenchymal Stem Cells Protect the Cardiomyocytes and Myocardial Tissues in the Polymicrobial Sepsis through Regulating MYBL1. Stem Cells International, 2021, 2021, 1-17.	1.2	7
515	Erythropoietin improves effects of mesenchymal stem cells in an experimental model of sepsis. Journal of Clinical Practice, 2012, 3, 4-12.	0.2	0
516	Dissecting the relationship between antimicrobial peptides and mesenchymal stem cells. , 2022, 233, 108021.		12
517	Mesenchymal Stromal Cells: an Antimicrobial and Host-Directed Therapy for Complex Infectious Diseases. Clinical Microbiology Reviews, 2021, 34, e0006421.	5.7	13
518	MSC-Derived Extracellular Vesicles in Tumors and Therapy. Cancers, 2021, 13, 5212.	1.7	35
519	Combination therapy of iPSCâ€derived conditioned medium with ceftriaxone alleviates bacteriaâ€induced lung injury by targeting the NLRP3 inflammasome. Journal of Cellular Physiology, 2022, 237, 1299-1314.	2.0	5
520	Stem Cells in Infectious Diseases. , 0, , .		1
521	MSCs for Treatment of Acute Lung Injury. , 2013, , 561-570.		0
522	Mesenchymal Stem/Stromal Cells: Opportunities and Obstacles in ARDS. , 2013, , 467-480.		0
523	Stem Cells in Acute and Chronic Lung Injury: Building Evidence for Therapeutic Use. , 2013, , 481-495.		0
524	Pediatric Diseases and Stem Cells: Recent Advances and Challenges. Pancreatic Islet Biology, 2013, , 125-158.	0.1	0
525	Stem Cells in Infection and Sepsis. Pancreatic Islet Biology, 2014, , 251-263.	0.1	0
526	Challenges of Cell Therapy for Lung Diseases and Critical Illnesses. Pancreatic Islet Biology, 2015, , 93-112.	0.1	0
527	Immunomodulators. , 2015, , 581-590.e4.		0
528	Bone-Marrow-Derived Cell Therapies in Stroke: Immunomodulatory Effects. Springer Series in Translational Stroke Research, 2018, , 181-195.	0.1	0
529	Clinical Application of Stem/Stromal Cells in Cystic Fibrosis. , 2019, , 179-198.		0

#	Article	IF	CITATIONS
530	Off-the-shelf mesenchymal stem cells from human umbilical cord tissue can significantly improve symptoms in COVID-19 patients: An analysis of evidential relations. World Journal of Stem Cells, 2020, 12, 721-730.	1.3	3
531	The impact of mesenchymal stem cells on host immunity and disease outcome in bacterial lung infection. Clinical Medicine, 2020, 20, s117-s118.	0.8	1
532	Immunomodulatory effects of mesenchymal stem cell-conditioned media on lipopolysaccharide of Vibrio cholerae as a vaccine candidate. Stem Cell Research and Therapy, 2021, 12, 564.	2.4	3
533	Venous Foot and Leg Ulcers. , 2021, , 173-198.		0
534	Stem cell therapy in chronic obstructive pulmonary disease. How far is it to the clinic?. American Journal of Stem Cells, 2018, 7, 56-71.	0.4	10
535	Fresh and Cryopreserved Human Umbilical-Cord-Derived Mesenchymal Stromal Cells Attenuate Injury and Enhance Resolution and Repair following Ventilation-Induced Lung Injury. International Journal of Molecular Sciences, 2021, 22, 12842.	1.8	9
536	Mesenchymal Stromal Cells for the Treatment of Interstitial Lung Disease in Children: A Look from Pediatric and Pediatric Surgeon Viewpoints. Cells, 2021, 10, 3270.	1.8	7
537	COVID-19 Tedavisinde Mezenkimal Kök Hücrelerin Potansiyel Kullanımı Üzerine Kapsamlı Bir İncelem 2021, 4, 31-65.	1e.,	0
538	Effect of Bone Marrow Mesenchymal Stromal Cell Therapies in Rodent Models of Sepsis: A Meta-Analysis. Frontiers in Immunology, 2021, 12, 792098.	2.2	2
539	Protease Activated Receptors: A Pathway to Boosting Mesenchymal Stromal Cell Therapeutic Efficacy in Acute Respiratory Distress Syndrome?. International Journal of Molecular Sciences, 2022, 23, 1277.	1.8	0
540	Direct comparison of different therapeutic cell types susceptibility to inflammatory cytokines associated with COVID-19 acute lung injury. Stem Cell Research and Therapy, 2022, 13, 20.	2.4	7
541	Bone marrow mesenchymal stem cells protect lungs from smoke inhalation injury by differentiating into alveolar epithelial cells via Notch signaling. Journal of Biosciences, 2019, 44, .	0.5	4
543	Mesenchymal stem/stromal cell therapy for COVID-19 pneumonia: potential mechanisms, current clinical evidence, and future perspectives. Stem Cell Research and Therapy, 2022, 13, 124.	2.4	17
544	Exosomes from Human Placenta Choriodecidual Membrane-Derived Mesenchymal Stem Cells Mitigate Endoplasmic Reticulum Stress, Inflammation, and Lung Injury in Lipopolysaccharide-Treated Obese Mice. Antioxidants, 2022, 11, 615.	2.2	3
545	Arthroscopic Rotator Cuff Repair Augmentation With Autologous Microfragmented Lipoaspirate Tissue Is Safe and Effectively Improves Short-term Clinical and Functional Results: A Prospective Randomized Controlled Trial With 24-Month Follow-up. American Journal of Sports Medicine, 2022, 50, 1344-1357.	1.9	12
546	Extracellular Vesicles, New Players in Sepsis and Acute Respiratory Distress Syndrome. Frontiers in Cellular and Infection Microbiology, 2022, 12, 853840.	1.8	5
547	Mesenchymal Stem Cell-Derived Extracellular Vesicles in the Management of COVID19-Associated Lung Injury: A Review on Publications, Clinical Trials and Patent Landscape. Tissue Engineering and Regenerative Medicine, 2022, 19, 659-673.	1.6	11
548	Extracellular vesicles derived from human umbilical cord mesenchymal stem cells relieves diabetic retinopathy through a microRNA-30c-5p-dependent mechanism. Diabetes Research and Clinical Practice, 2022, 190, 109861.	1.1	8

#	ARTICLE	IF	Citations
549	Molecular and Clinical Aspects of COVID-19 Vaccines and Other Therapeutic Interventions Apropos Emerging Variants of Concern. Frontiers in Pharmacology, 2021, 12, 778219.	1.6	0
567	Dental follicle cellsâ€derived small extracellular vesicles inhibit pathogenicity of <i>Porphyromonas gingivalis</i> . Oral Diseases, 2023, 29, 2297-2309.	1.5	5
568	The Effect of Mesenchymal Stromal Cells on the Mortality of Patients with Sepsis and Septic Shock: A Promising Therapy. Emergency Medicine International, 2022, 2022, 1-9.	0.3	8
569	Activated Mesenchymal Stromal Cell Therapy for Treatment of Multi-Drug Resistant Bacterial Infections in Dogs. Frontiers in Veterinary Science, 0, 9, .	0.9	9
570	Clinical progress in MSC-based therapies for the management of severe COVID-19. Cytokine and Growth Factor Reviews, 2022, 68, 25-36.	3.2	10
571	Comparison of freshly cultured versus cryopreserved mesenchymal stem cells in animal models of inflammation: A pre-clinical systematic review. ELife, 0, 11, .	2.8	7
572	Oxytocin: An Old Hormone, a Novel Psychotropic Drug and its Possible Use in Treating Psychiatric Disorders. Current Medicinal Chemistry, 2022, 29, 5615-5687.	1.2	6
573	Protective and Immunomodulatory Effects of Mesenchymal Stem Cells on Multiorgan Injury in Rats with Heatstroke. SSRN Electronic Journal, 0, , .	0.4	0
574	Extracellular Vesicles Derived from Mesenchymal Stem Cells: A Potential Biodrug for Acute Respiratory Distress Syndrome Treatment. BioDrugs, 2022, 36, 701-715.	2.2	9
575	Mesenchymal Stem Cells Therapeutic Applications in Lung Disorders. , 2022, , 279-296.		1
576	Mesenchymal Stem Cells Therapeutic Applications in Gastrointestinal Disorders. , 2022, , 247-278.		1
577	Down-Regulation of CXCR4 in Mesenchymal Stem Cells by Septic Serum. Indian Journal of Hematology and Blood Transfusion, 0, , .	0.3	1
578	Therapeutic Benefits of Mesenchymal Stem Cells in Acute Respiratory Distress Syndrome: Potential Mechanisms and Challenges. Journal of Inflammation Research, 0, Volume 15, 5235-5246.	1.6	3
579	Headway and the remaining hurdles of mesenchymal stem cells therapy for bronchopulmonary dysplasia. Clinical Respiratory Journal, 2022, 16, 629-645.	0.6	4
580	Study of immunomodulatory effects of mesenchymal stem cell-derived exosomes in a mouse model of LPS induced systemic inflammation. Life Sciences, 2022, 310, 120938.	2.0	13
581	TLR-activated mesenchymal stromal cell therapy and antibiotics to treat multi-drug resistant Staphylococcal septic arthritis in an equine model. Annals of Translational Medicine, 2022, 10, 1157-1157.	0.7	6
583	Homing of radiolabelled xenogeneic equine peripheral blood-derived MSCs towards a joint lesion in a dog. Frontiers in Veterinary Science, 0, 9, .	0.9	3
584	Lipopolysaccharide alters VEGF-A secretion of mesenchymal stem cells via the integrin β3-PI3K-AKT pathway. Molecular and Cellular Toxicology, 2024, 20, 59-66.	0.8	2

#	Article	IF	Citations
585	Alteration of transcriptomic profile and anti-septic efficacy of adipose-derived mesenchymal stromal/stem cells under different culture conditions. Stem Cells and Development, 0, , .	1.1	0
586	Vertebral Bone Marrow Clot towards the Routine Clinical Scenario in Spine Surgeries: What about the Antimicrobial Properties?. International Journal of Molecular Sciences, 2023, 24, 1744.	1.8	1
587	The novel treatments based on tissue engineering, cell therapy and nanotechnology for cutaneous leishmaniasis. International Journal of Pharmaceutics, 2023, 633, 122615.	2.6	7
588	Therapeutic role of mesenchymal stem cells seeded dermal matrix versus acellular dermal matrix in healing of skin defect. Journal of Stem Cell Research & Therapeutics, 2019, 5, 13-21.	0.1	0
589	Mechanisms of impaired alveolar fluid clearance. Anatomical Record, 0, , .	0.8	2
590	Reply: Mesenchymal stromal (stem) cell therapy modulates miR-193b-5p expression to attenuate sepsis-induced acute lung injury. European Respiratory Journal, 2023, 61, 2200886.	3.1	0
591	Overexpression of FoxM1 Enhanced the Protective Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Lipopolysaccharide-Induced Acute Lung Injury through the Activation of Wnt/β-Catenin Signaling. Oxidative Medicine and Cellular Longevity, 2023, 2023, 1-13.	1.9	0
592	Dose-specific efficacy of adipose-derived mesenchymal stem cells in septic mice. Stem Cell Research and Therapy, 2023, 14, .	2.4	1
593	DJ-1 Deficiency Protects against Sepsis-Induced Myocardial Depression. Antioxidants, 2023, 12, 561.	2.2	1
594	Advanced Therapies for Patients with COVID-19. , 2023, , 77-92.		0
595	Functional enhancement strategies to potentiate the therapeutic properties of mesenchymal stromal cells for respiratory diseases. Frontiers in Pharmacology, 0, 14, .	1.6	7
596	Superior protective effects of PGE2 priming mesenchymal stem cells against LPS-induced acute lung injury (ALI) through macrophage immunomodulation. Stem Cell Research and Therapy, 2023, 14, .	2.4	9
597	PGE2 Produced by Exogenous MSCs Promotes Immunoregulation in ARDS Induced by Highly Pathogenic Influenza A through Activation of the Wnt-β-Catenin Signaling Pathway. International Journal of Molecular Sciences, 2023, 24, 7299.	1.8	2
598	In vivo immunomodulatory effect and safety of MSC-derived secretome. F1000Research, 0, 12, 421.	0.8	1