Cathepsin D expression level affects alpha-synuclein pr in vivo

Molecular Brain 2, 5 DOI: 10.1186/1756-6606-2-5

Citation Report

#	Article	IF	CITATIONS
1	Expansion of the Parkinson disease-associated SNCA- Rep1 allele upregulates human α-synuclein in transgenic mouse brain. Human Molecular Genetics, 2009, 18, 3274-3285.	1.4	101
2	Genetic modifiers of degeneration in the cathepsin D deficient Drosophila model for neuronal ceroid lipofuscinosis. Neurobiology of Disease, 2009, 36, 488-493.	2.1	10
3	Recent advances in our understanding of neurodegeneration. Journal of Neural Transmission, 2009, 116, 1111-1162.	1.4	235
4	Formation and development of Lewy pathology: a critical update. Journal of Neurology, 2009, 256, 270-279.	1.8	179
5	Activation of cathepsin D by glycosaminoglycans. FEBS Journal, 2009, 276, 7343-7352.	2.2	22
6	Manganese-Induced Dopaminergic Neurodegeneration: Insights into Mechanisms and Genetics Shared with Parkinson's Disease. Chemical Reviews, 2009, 109, 4862-4884.	23.0	114
7	Lessons learnt from animal models: pathophysiology of neuropathic lysosomal storage disorders. Journal of Inherited Metabolic Disease, 2010, 33, 363-371.	1.7	27
8	VPS41, a protein involved in lysosomal trafficking, is protective in Caenorhabditis elegans and mammalian cellular models of Parkinson's disease. Neurobiology of Disease, 2010, 37, 330-338.	2.1	70
9	Astrocytic expression of Parkinson's disease-related A53T α-synuclein causes neurodegeneration in mice. Molecular Brain, 2010, 3, 12.	1.3	263
10	Basic mechanisms of neurodegeneration: a critical update. Journal of Cellular and Molecular Medicine, 2010, 14, 457-487.	1.6	330
11	Ferroportin1 and hephaestin overexpression attenuate ironâ€induced oxidative stress in MES23.5 dopaminergic cells. Journal of Cellular Biochemistry, 2010, 110, 1063-1072.	1.2	26
13	Lysosomal function in macromolecular homeostasis and bioenergetics in Parkinson's disease. Molecular Neurodegeneration, 2010, 5, 14.	4.4	49
14	Lowâ€dose bafilomycin attenuates neuronal cell death associated with autophagyâ€lysosome pathway dysfunction. Journal of Neurochemistry, 2010, 114, 1193-1204.	2.1	57
15	Selective Molecular Alterations in the Autophagy Pathway in Patients with Lewy Body Disease and in Models of α-Synucleinopathy. PLoS ONE, 2010, 5, e9313.	1.1	327
16	Lack of interleukin-1 type 1 receptor enhances the accumulation of mutant huntingtin in the striatum and exacerbates the neurological phenotypes of Huntington's disease mice. Molecular Brain, 2010, 3, 33.	1.3	6
17	Pathophysiological functions of cathepsin D: Targeting its catalytic activity versus its protein binding activity?. Biochimie, 2010, 92, 1635-1643.	1.3	80
18	NMR evidence of GM1-induced conformational change of Substance P using isotropic bicelles. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 127-139.	1.4	37
19	Genetic analysis of lysosomal alpha-galactosidase A gene in sporadic Parkinson's disease. Neuroscience Letters, 2011, 500, 31-35.	1.0	11

#	Article	IF	CITATIONS
20	Mitochondria and Parkinson's Disease. Parkinson's Disease, 2011, 2011, 1-2.	0.6	3
21	Mitochondrial Dysfunction in Parkinson's Disease: Pathogenesis and Neuroprotection. Parkinson's Disease, 2011, 2011, 1-18.	0.6	47
22	<i>α</i> -Synuclein Transgenic <i>Drosophila</i> As a Model of Parkinson's Disease and Related Synucleinopathies. Parkinson's Disease, 2011, 2011, 1-7.	0.6	29
23	Drosophila Models of Parkinson's Disease: Discovering Relevant Pathways and Novel Therapeutic Strategies. Parkinson's Disease, 2011, 2011, 1-14.	0.6	59
24	Morphologic and Functional Correlates of Synaptic Pathology in the Cathepsin D Knockout Mouse Model of Congenital Neuronal Ceroid Lipofuscinosis. Journal of Neuropathology and Experimental Neurology, 2011, 70, 1089-1096.	0.9	30
25	Parkinson's disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures. Journal of Neural Transmission, 2011, 118, 795-808.	1.4	230
26	NACP-Rep1 relates to Beck Depression Inventory Scores in Healthy Humans. Journal of Molecular Neuroscience, 2011, 44, 41-47.	1.1	4
27	Reduction of mutant huntingtin accumulation and toxicity by lysosomal cathepsins D and B in neurons. Molecular Neurodegeneration, 2011, 6, 37.	4.4	58
28	Lysosomal storage disorders and Parkinson's disease: Gaucher disease and beyond. Movement Disorders, 2011, 26, 1593-1604.	2.2	141
29	Acid βâ€glucosidase mutants linked to gaucher disease, parkinson disease, and lewy body dementia alter αâ€synuclein processing. Annals of Neurology, 2011, 69, 940-953.	2.8	276
30	Cyclin-G-associated kinase modifies Â-synuclein expression levels and toxicity in Parkinson's disease: results from the GenePD Study. Human Molecular Genetics, 2011, 20, 1478-1487.	1.4	60
31	Systems biology of the autophagy-lysosomal pathway. Autophagy, 2011, 7, 477-489.	4.3	116
32	LYSOSOME STORAGE DISORDERS ON THE BRAIN: THE AUTOPHAGY LYSOSOME PATHWAY CONTRIBUTES TO DISEASE PATHOPHYSIOLOGY AND MAY BE UTILIZED FOR THERAPEUTIC BENEFIT. , 2012, , 331-354.		0
33	Exacerbated neuronal ceroid lipofuscinosis phenotype in <i>Cln1/5</i> double knock-out mice. DMM Disease Models and Mechanisms, 2013, 6, 342-57.	1.2	26
34	Excess α-synuclein worsens disease in mice lacking ubiquitin carboxy-terminal hydrolase L1. Scientific Reports, 2012, 2, 262.	1.6	18
35	Glucocerebrosidase Mutations alter the endoplasmic reticulum and lysosomes in Lewy body disease. Journal of Neurochemistry, 2012, 123, 298-309.	2.1	58
36	Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochemical Journal, 2012, 441, 523-540.	1.7	1,243
37	Clinicopathological significance of cathepsin D expression in non-small cell lung cancer is conditional on apoptosis-associated protein phenotype: an immunohistochemistry study. Tumor Biology, 2012, 33, 1045-1052.	0.8	9

#	Article	IF	Citations
38	Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Human Molecular Genetics, 2012, 21, 2646-2650.	1.4	231
39	Genetically engineered mouse models of Parkinson's disease. Brain Research Bulletin, 2012, 88, 13-32.	1.4	42
40	Lysosomeâ€dependent pathways as a unifying theme in Parkinson's disease. Movement Disorders, 2012, 27, 1364-1369.	2.2	103
41	α-Synuclein in human cerebrospinal fluid is principally derived from neurons of the central nervous system. Journal of Neural Transmission, 2012, 119, 739-746.	1.4	63
42	Autophagy in Dementias. Brain Pathology, 2012, 22, 99-109.	2.1	55
43	The role of α-synuclein in neurodegeneration $\hat{a} \in$ " An update. Translational Neuroscience, 2012, 3, .	0.7	16
44	Autophagy and mitophagy in cellular damage control. Redox Biology, 2013, 1, 19-23.	3.9	173
45	Alpha-synuclein and Protein Degradation Systems: a Reciprocal Relationship. Molecular Neurobiology, 2013, 47, 537-551.	1.9	222
46	A Neurodegeneration-Specific Gene-Expression Signature of Acutely Isolated Microglia from an Amyotrophic Lateral Sclerosis Mouse Model. Cell Reports, 2013, 4, 385-401.	2.9	552
47	NCL disease mechanisms. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1882-1893.	1.8	96
48	Lysosomal impairment in Parkinson's disease. Movement Disorders, 2013, 28, 725-732.	2.2	270
49	Cathepsin D deficiency induces cytoskeletal changes and affects cell migration pathways in the brain. Neurobiology of Disease, 2013, 50, 107-119.	2.1	23
50	Chronic intranasal deferoxamine ameliorates motor defects and pathology in the α-synuclein rAAV Parkinson's model. Experimental Neurology, 2013, 247, 45-58.	2.0	53
51	Protein Truncation as a Common Denominator of Human Neurodegenerative Foldopathies. Molecular Neurobiology, 2013, 48, 516-532.	1.9	14
52	Design of a Highly Selective and Potent Class of Nonâ€planar Estrogen Receptor β Agonists. ChemMedChem, 2013, 8, 1283-1294.	1.6	9
53	The pallidopyramidal syndromes. Current Opinion in Neurology, 2013, 26, 381-394.	1.8	25
54	Genetic Variations of GAK in Two Chinese Parkinson's Disease Populations: A Case-Control Study. PLoS ONE, 2013, 8, e67506.	1.1	18
55	Protein Transmission, Seeding and Degradation: Key Steps for α-Synuclein Prion-Like Propagation. Experimental Neurobiology, 2014, 23, 324-336.	0.7	45

#	Article	IF	CITATIONS
56	The genetics of Parkinson's disease: review of current and emerging candidates. Journal of Parkinsonism and Restless Legs Syndrome, 2014, , 63.	0.8	1
57	Accumulation of α-synuclein in dementia with Lewy bodies is associated with decline in the α-synuclein-degrading enzymes kallikrein-6 and calpain-1. Acta Neuropathologica Communications, 2014, 2, 164.	2.4	13
58	Oxidative Stress, Hypoxia, and Autophagy in the Neovascular Processes of Age-Related Macular Degeneration. BioMed Research International, 2014, 2014, 1-7.	0.9	195
59	Overâ€expression of an inactive mutant cathepsin D increases endogenous alphaâ€synuclein and cathepsin B activity in <scp>SH</scp> â€ <scp>SY</scp> 5Y cells. Journal of Neurochemistry, 2014, 128, 950-961.	2.1	37
60	Targeting α-Synuclein as a Parkinson's Disease Therapeutic. Topics in Medicinal Chemistry, 2014, , 43-109.	0.4	0
61	Corynoxine, a Natural Autophagy Enhancer, Promotes the Clearance of Alpha-Synuclein via Akt/mTOR Pathway. Journal of NeuroImmune Pharmacology, 2014, 9, 380-387.	2.1	78
62	Glucocerebrosidase is shaking up the synucleinopathies. Brain, 2014, 137, 1304-1322.	3.7	128
63	Reduced glucocerebrosidase is associated with increased α-synuclein in sporadic Parkinson's disease. Brain, 2014, 137, 834-848.	3.7	397
64	The Vps35 <scp>D620N</scp> Mutation Linked to Parkinson's Disease Disrupts the Cargo Sorting Function of Retromer. Traffic, 2014, 15, 230-244.	1.3	186
65	VPS35 dysfunction impairs lysosomal degradation of α-synuclein and exacerbates neurotoxicity in a Drosophila model of Parkinson's disease. Neurobiology of Disease, 2014, 71, 1-13.	2.1	158
66	Enhanced ubiquitin-dependent degradation by Nedd4 protects against α-synuclein accumulation and toxicity in animal models of Parkinson's disease. Neurobiology of Disease, 2014, 64, 79-87.	2.1	71
67	Molecular neuropathology of the synapse in sheep with <scp>CLN</scp> 5 Batten disease. Brain and Behavior, 2015, 5, e00401.	1.0	28
68	Comprehensive functional characterization of murine infantile Batten disease including Parkinson-like behavior and dopaminergic markers. Scientific Reports, 2015, 5, 12752.	1.6	28
69	Interaction between SNCA, LRRK2 and GAK increases susceptibility to Parkinson's disease in a Chinese population. ENeurologicalSci, 2015, 1, 3-6.	0.5	9
70	The Potential Role of the Proteases Cathepsin D and Cathepsin L in the Progression and Metastasis of Epithelial Ovarian Cancer. Biomolecules, 2015, 5, 3260-3279.	1.8	55
71	Quantitative assessment of the association between GAK rs1564282 C/T polymorphism and the risk of Parkinson's disease. Journal of Clinical Neuroscience, 2015, 22, 1077-1080.	0.8	9
72	The Interplay between Alpha-Synuclein Clearance and Spreading. Biomolecules, 2015, 5, 435-471.	1.8	79
73	New Roles of Glycosaminoglycans in α-Synuclein Aggregation in a Cellular Model of Parkinson Disease. PLoS ONE, 2015, 10, e0116641.	1.1	41

#	Article	IF	CITATIONS
74	Cathepsin D and its newly identified transport receptor Sez6l2 can modulate neurite outgrowth. Journal of Cell Science, 2016, 129, 557-68.	1.2	46
75	Solid microparticles based on chitosan or methyl-β-cyclodextrin: A first formulative approach to increase the nose-to-brain transport of deferoxamine mesylate. Journal of Controlled Release, 2015, 201, 68-77.	4.8	116
76	The endosomal pathway in Parkinson's disease. Molecular and Cellular Neurosciences, 2015, 66, 21-28.	1.0	71
77	Sustained Systemic Glucocerebrosidase Inhibition Induces Brain α-Synuclein Aggregation, Microglia and Complement C1q Activation in Mice. Antioxidants and Redox Signaling, 2015, 23, 550-564.	2.5	118
78	Cysteine cathepsins are essential in lysosomal degradation of α-synuclein. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9322-9327.	3.3	170
79	Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Experimental and Molecular Medicine, 2015, 47, e147-e147.	3.2	650
80	α-Synuclein-Independent Histopathological and Motor Deficits in Mice Lacking the Endolysosomal Parkinsonism Protein Atp13a2. Journal of Neuroscience, 2015, 35, 5724-5742.	1.7	87
81	Haploinsufficiency of cathepsin D leads to lysosomal dysfunction and promotes cell-to-cell transmission of \hat{I}_{\pm} -synuclein aggregates. Cell Death and Disease, 2015, 6, e1901-e1901.	2.7	58
82	Bridging NCL research gaps. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2324-2328.	1.8	3
83	D620N mutation in the VPS35 gene and R1205H mutation in the EIF4G1 gene are uncommon in the Greek population. Neuroscience Letters, 2015, 606, 113-116.	1.0	7
84	Lysosomal enzyme cathepsin B enhances the aggregate forming activity of exogenous α-synuclein fibrils. Neurobiology of Disease, 2015, 73, 244-253.	2.1	53
85	Rotenone impairs autophagic flux and lysosomal functions in Parkinson's disease. Neuroscience, 2015, 284, 900-911.	1.1	90
86	Genetic Convergence of Parkinson's Disease and Lysosomal Storage Disorders. Molecular Neurobiology, 2015, 51, 1554-1568.	1.9	22
87	Role of the Retromer Complex in Neurodegenerative Diseases. Frontiers in Aging Neuroscience, 2016, 8, 42.	1.7	20
88	Mannose 6-Phosphate Receptor Is Reduced in -Synuclein Overexpressing Models of Parkinsons Disease. PLoS ONE, 2016, 11, e0160501.	1.1	19
89	Mild <scp>MPP</scp> ⁺ exposure impairs autophagic degradation through a novel lysosomal acidityâ€independent mechanism. Journal of Neurochemistry, 2016, 139, 294-308.	2.1	28
90	The Role of Cathepsin D in the Pathogenesis of Human Neurodegenerative Disorders. Medicinal Research Reviews, 2016, 36, 845-870.	5.0	109
91	Parkinson Disease-linked Vps35 R524W Mutation Impairs the Endosomal Association of Retromer and Induces α-Synuclein Aggregation. Journal of Biological Chemistry, 2016, 291, 18283-18298.	1.6	68

#	Article	IF	CITATIONS
92	NADPH oxidase promotes Parkinsonian phenotypes by impairing autophagic flux in an mTORC1-independent fashion in a cellular model of Parkinson's disease. Scientific Reports, 2016, 6, 22866.	1.6	42
93	Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Research Reviews, 2016, 32, 22-37.	5.0	280
94	Sorting out release, uptake and processing of alphaâ€synuclein during prionâ€like spread of pathology. Journal of Neurochemistry, 2016, 139, 275-289.	2.1	77
95	Genetics in Parkinson disease: Mendelian versus nonâ€Mendelian inheritance. Journal of Neurochemistry, 2016, 139, 59-74.	2.1	390
96	Endolysosomal dysfunction in Parkinson's disease: Recent developments and future challenges. Movement Disorders, 2016, 31, 1433-1443.	2.2	34
97	Lysosomal Dysfunction and αâ€6ynuclein Aggregation in Parkinson's Disease: Diagnostic Links. Movement Disorders, 2016, 31, 791-801.	2.2	125
98	Genes associated with Parkinson's disease: regulation of autophagy and beyond. Journal of Neurochemistry, 2016, 139, 91-107.	2.1	88
99	What lysosomes actually tell us about Parkinson's disease?. Ageing Research Reviews, 2016, 32, 140-149.	5.0	19
100	Discovery and functional prioritization of Parkinson's disease candidate genes from large-scale whole exome sequencing. Genome Biology, 2017, 18, 22.	3.8	96
101	Endothelinâ€converting enzymes degrade αâ€synuclein and are reduced in dementia with Lewy bodies. Journal of Neurochemistry, 2017, 141, 275-286.	2.1	7
102	The emerging role of retromer in neuroprotection. Current Opinion in Cell Biology, 2017, 47, 72-82.	2.6	54
103	Haplodeficiency of <i>Cathepsin D</i> does not affect cerebral amyloidosis and autophagy in <scp>APP</scp> / <scp>PS</scp> 1 transgenic mice. Journal of Neurochemistry, 2017, 142, 297-304.	2.1	13
104	Selective imaging of internalized proteopathic α-synuclein seeds in primary neurons reveals mechanistic insight into transmission of synucleinopathies. Journal of Biological Chemistry, 2017, 292, 13482-13497.	1.6	131
105	Axonal dystrophy in the brain of mice with Sanfilippo syndrome. Experimental Neurology, 2017, 295, 243-255.	2.0	32
106	The Transcellular Propagation and Intracellular Trafficking of α-Synuclein. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a024380.	2.9	28
107	Role of the VPS35 D620N mutation in Parkinson's disease. Parkinsonism and Related Disorders, 2017, 36, 10-18.	1.1	24
108	Cerebrospinal fluid βâ€glucocerebrosidase activity is reduced in parkinson's disease patients. Movement Disorders, 2017, 32, 1423-1431.	2.2	132
109	Lysosomal defects in ATP13A2 and GBA associated familial Parkinson's disease. Journal of Neural Transmission, 2017, 124, 1395-1400.	1.4	14

#	Article	IF	CITATIONS
110	Polo-like kinase 2 modulates α-synuclein protein levels by regulating its mRNA production. Neurobiology of Disease, 2017, 106, 49-62.	2.1	21
111	α-synuclein aggregation and its modulation. International Journal of Biological Macromolecules, 2017, 100, 37-54.	3.6	106
112	Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease. Brain, 2017, 140, 3191-3203.	3.7	323
113	Long-Term Assessment of AAV-Mediated Zinc Finger Nuclease Expression in the Mouse Brain. Frontiers in Molecular Neuroscience, 2017, 10, 142.	1.4	7
114	The Coordinated Action of Calcineurin and Cathepsin D Protects Against α-Synuclein Toxicity. Frontiers in Molecular Neuroscience, 2017, 10, 207.	1.4	22
115	Lysosomal response in relation to \hat{I}_{\pm} -synuclein pathology differs between Parkinson's disease and multiple system atrophy. Neurobiology of Disease, 2018, 114, 140-152.	2.1	13
116	Role of proteoglycans in neuro-inflammation and central nervous system fibrosis. Matrix Biology, 2018, 68-69, 589-601.	1.5	42
117	Mitochondrial function and autophagy: integrating proteotoxic, redox, and metabolic stress in Parkinson's disease. Journal of Neurochemistry, 2018, 144, 691-709.	2.1	58
118	The emerging role of Rab GTPases in the pathogenesis of Parkinson's disease. Movement Disorders, 2018, 33, 196-207.	2.2	55
119	Proteomic differences between focal and diffuse traumatic brain injury in human brain tissue. Scientific Reports, 2018, 8, 6807.	1.6	37
120	Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. Journal of Drug Delivery Science and Technology, 2018, 43, 295-310.	1.4	86
121	Absence of association of the Ala58Val (rs17571) CTSD gene variant with Parkinson's disease or amyotrophic lateral sclerosis in a Han Chinese population. Neuroscience Letters, 2018, 662, 181-184.	1.0	2
122	Familial knockin mutation of LRRK2 causes lysosomal dysfunction and accumulation of endogenous insoluble α-synuclein in neurons. Neurobiology of Disease, 2018, 111, 26-35.	2.1	108
123	The functional roles of retromer in Parkinson's disease. FEBS Letters, 2018, 592, 1096-1112.	1.3	23
124	Parkinson's disease: experimental models and reality. Acta Neuropathologica, 2018, 135, 13-32.	3.9	89
125	Effects and Mechanisms of Rapamycin Action on Experimental Neurodegeneration. Neurochemical Journal, 2018, 12, 347-358.	0.2	5
126	Timeâ€Resolved NMR Analysis of Proteolytic αâ€6ynuclein Processing in vitro and in cellulo. Proteomics, 2018, 18, e1800056.	1.3	19
127	Upregulation of PSMB8 and cathepsins in the human brains of dementia with Lewy bodies. Neuroscience Letters, 2018, 678, 131-137.	1.0	4

#	Article	IF	CITATIONS
128	The Retromer Complex and Sorting Nexins in Neurodegenerative Diseases. Frontiers in Aging Neuroscience, 2018, 10, 79.	1.7	55
129	Modeling Parkinson's Disease in Drosophila: What Have We Learned for Dominant Traits?. Frontiers in Neurology, 2018, 9, 228.	1.1	66
130	Pathophysiological Consequences of Neuronal α-Synuclein Overexpression: Impacts on Ion Homeostasis, Stress Signaling, Mitochondrial Integrity, and Electrical Activity. Frontiers in Molecular Neuroscience, 2018, 11, 49.	1.4	22
131	Midazolam Enhances Mutant Huntingtin Protein Accumulation via Impairment of Autophagic Degradation In Vitro. Cellular Physiology and Biochemistry, 2018, 48, 683-691.	1.1	5
132	Characterization of Brain Lysosomal Activities in GBA-Related and Sporadic Parkinson's Disease and Dementia with Lewy Bodies. Molecular Neurobiology, 2019, 56, 1344-1355.	1.9	97
133	Exploring the putative role of kallikreinâ€6, calpainâ€1 and cathepsinâ€D in the proteolytic degradation of αâ€synuclein in multiple system atrophy. Neuropathology and Applied Neurobiology, 2019, 45, 347-360.	1.8	16
134	A Cleaning Crew: The Pursuit of Autophagy in Parkinson's Disease. ACS Chemical Neuroscience, 2019, 10, 3914-3926.	1.7	25
135	Clial αâ€synuclein promotes neurodegeneration characterized by a distinct transcriptional program in vivo. Glia, 2019, 67, 1933-1957.	2.5	27
136	Imidazoline 2 binding sites reflecting astroglia pathology in Parkinson's disease: an in vivo11C-BU99008 PET study. Brain, 2019, 142, 3116-3128.	3.7	73
137	Lysosomes as a therapeutic target. Nature Reviews Drug Discovery, 2019, 18, 923-948.	21.5	413
137 138	Lysosomes as a therapeutic target. Nature Reviews Drug Discovery, 2019, 18, 923-948. <i>Lrrk2</i> alleles modulate inflammation during microbial infection of mice in a sex-dependent manner. Science Translational Medicine, 2019, 11, .	21.5 5.8	413 67
	<i>Lrrk2</i> alleles modulate inflammation during microbial infection of mice in a sex-dependent		
138	<i>Lrrk2</i> alleles modulate inflammation during microbial infection of mice in a sex-dependent manner. Science Translational Medicine, 2019, 11, .	5.8	67
138 139	<i>Lrrk2</i> alleles modulate inflammation during microbial infection of mice in a sex-dependent manner. Science Translational Medicine, 2019, 11, . How is alphaâ€synuclein cleared from the cell?. Journal of Neurochemistry, 2019, 150, 577-590.	5.8 2.1	67 113
138 139 140	<i>Lrrk2</i> alleles modulate inflammation during microbial infection of mice in a sex-dependent manner. Science Translational Medicine, 2019, 11, . How is alphaâ€synuclein cleared from the cell?. Journal of Neurochemistry, 2019, 150, 577-590. Dysfunction of Cellular Proteostasis in Parkinson's Disease. Frontiers in Neuroscience, 2019, 13, 457. <i>Anxa2</i> à€-and <i>Ctsd</i> à€knockout CHO cell lines to diminish the risk of contamination with host	5.8 2.1 1.4	67 113 95
138 139 140 141	 <i>Lrrk2 </i> alleles modulate inflammation during microbial infection of mice in a sex-dependent manner. Science Translational Medicine, 2019, 11, . How is alphaâ€synuclein cleared from the cell?. Journal of Neurochemistry, 2019, 150, 577-590. Dysfunction of Cellular Proteostasis in Parkinson's Disease. Frontiers in Neuroscience, 2019, 13, 457. <i>Anxa2</i>à€-and <i>Ctsd</i>â€knockout CHO cell lines to diminish the risk of contamination with host cell proteins. Biotechnology Progress, 2019, 35, e2820. Lysosomal enzyme activities as possible CSF biomarkers of synucleinopathies. Clinica Chimica Acta, 	5.8 2.1 1.4 1.3	67 113 95 16
138 139 140 141 142	 <i>Lrrk2</i> alleles modulate inflammation during microbial infection of mice in a sex-dependent manner. Science Translational Medicine, 2019, 11, . How is alphaâ€synuclein cleared from the cell?. Journal of Neurochemistry, 2019, 150, 577-590. Dysfunction of Cellular Proteostasis in Parkinson's Disease. Frontiers in Neuroscience, 2019, 13, 457. <i>Anxa2</i>à€-and <i>Ctsd</i>à€knockout CHO cell lines to diminish the risk of contamination with host cell proteins. Biotechnology Progress, 2019, 35, e2820. Lysosomal enzyme activities as possible CSF biomarkers of synucleinopathies. Clinica Chimica Acta, 2019, 495, 13-24. 	5.8 2.1 1.4 1.3 0.5	 67 113 95 16 18

#	Article	IF	CITATIONS
146	LRRK2 inhibition prevents endolysosomal deficits seen in human Parkinson's disease. Neurobiology of Disease, 2020, 134, 104626.	2.1	73
147	The Vicious Cycle Between α ‣ynuclein Aggregation and Autophagic‣ysosomal Dysfunction. Movement Disorders, 2020, 35, 34-44.	2.2	77
148	Glucocerebrosidase activity, cathepsin D and monomeric α-synuclein interactions in a stem cell derived neuronal model of a PD associated GBA1 mutation. Neurobiology of Disease, 2020, 134, 104620.	2.1	42
149	The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165614.	1.8	22
150	Mitochondria–Lysosome Crosstalk: From Physiology to Neurodegeneration. Trends in Molecular Medicine, 2020, 26, 71-88.	3.5	165
151	Alpha Synuclein Connects the Gut-Brain Axis in Parkinson's Disease Patients – A View on Clinical Aspects, Cellular Pathology and Analytical Methodology. Frontiers in Cell and Developmental Biology, 2020, 8, 573696.	1.8	43
152	Toxic Metamorphosis—How Changes from Lysosomal to Cytosolic pH Modify the Alpha-Synuclein Aggregation Pattern. Biomacromolecules, 2020, 21, 4673-4684.	2.6	14
153	Current Evidence for a Bidirectional Loop Between the Lysosome and Alpha-Synuclein Proteoforms. Frontiers in Cell and Developmental Biology, 2020, 8, 598446.	1.8	18
154	The Emerging Role of the Lysosome in Parkinson's Disease. Cells, 2020, 9, 2399.	1.8	63
155	The Parkinson's Disease Protein LRRK2 Interacts with the GARP Complex to Promote Retrograde Transport to the trans-Golgi Network. Cell Reports, 2020, 31, 107614.	2.9	49
156	Synucleinopathies: Where we are and where we need to go. Journal of Neurochemistry, 2020, 153, 433-454.	2.1	62
157	The biochemical basis of interactions between Glucocerebrosidase and alphaâ€synuclein in <i>GBA</i> 1 mutation carriers. Journal of Neurochemistry, 2020, 154, 11-24.	2.1	10
158	Protein Quality Control Pathways at the Crossroad of Synucleinopathies. Journal of Parkinson's Disease, 2020, 10, 369-382.	1.5	21
159	The function of lysosomes and their role in Parkinson's disease. Neuroforum, 2020, 26, 43-51.	0.2	2
160	Pathways of protein synthesis and degradation in PD pathogenesis. Progress in Brain Research, 2020, 252, 217-270.	0.9	5
161	Identification of BAG2 and Cathepsin D as Plasma Biomarkers for Parkinson's Disease. Clinical and Translational Science, 2021, 14, 606-616.	1.5	16
162	Formation of retromer transport carriers is disrupted by the Parkinson diseaseâ€ŀinked Vps35 <scp>D620N</scp> variant. Traffic, 2021, 22, 123-136.	1.3	21
163	Lipids, lysosomes and mitochondria: insights into Lewy body formation from rare monogenic disorders. Acta Neuropathologica, 2021, 141, 511-526.	3.9	31

#	Article	IF	CITATIONS
164	Putative second hit rare genetic variants in families with seemingly GBA-associated Parkinson's disease. Npj Genomic Medicine, 2021, 6, 2.	1.7	11
165	A Proteomics Analysis of Calmodulin-Binding Proteins in Dictyostelium discoideum during the Transition from Unicellular Growth to Multicellular Development. International Journal of Molecular Sciences, 2021, 22, 1722.	1.8	Ο
166	Cathepsin D Variants Associated With Neurodegenerative Diseases Show Dysregulated Functionality and Modified α-Synuclein Degradation Properties. Frontiers in Cell and Developmental Biology, 2021, 9, 581805.	1.8	27
167	Rheumatoid arthritis decreases risk for Parkinson's disease: a Mendelian randomization study. Npj Parkinson's Disease, 2021, 7, 17.	2.5	28
168	Proteolytic α-Synuclein Cleavage in Health and Disease. International Journal of Molecular Sciences, 2021, 22, 5450.	1.8	15
169	Neurodegenerative Disease Risk in Carriers of Autosomal Recessive Disease. Frontiers in Neurology, 2021, 12, 679927.	1.1	6
170	Targeting of Lysosomal Pathway Genes for Parkinson's Disease Modification: Insights From Cellular and Animal Models. Frontiers in Neurology, 2021, 12, 681369.	1.1	10
171	Molecular Communication Between Neuronal Networks and Intestinal Epithelial Cells in Gut Inflammation and Parkinson's Disease. Frontiers in Medicine, 2021, 8, 655123.	1.2	11
172	Exploring the Role of Autophagy Dysfunction in Neurodegenerative Disorders. Molecular Neurobiology, 2021, 58, 4886-4905.	1.9	18
173	Alpha-Synuclein and the Endolysosomal System in Parkinson's Disease: Guilty by Association. Biomolecules, 2021, 11, 1333.	1.8	21
174	Cathepsins in neuronal plasticity. Neural Regeneration Research, 2021, 16, 26.	1.6	18
175	Cathepsin D in the Tumor Microenvironment of Breast and Ovarian Cancers. Advances in Experimental Medicine and Biology, 2020, 1259, 1-16.	0.8	17
176	Cathepsins: Getting in Shape for Lysosomal Proteolysis. , 2013, , 127-173.		7
177	Neuropathology of Movement Disorders. , 2011, , 871-898.		2
178	The possible involvement of mitochondrial dysfunctions in Lewy body dementia: a systematic review. Functional Neurology, 2015, 30, 151-8.	1.3	18
179	Genetic Regulation of α-Synuclein mRNA Expression in Various Human Brain Tissues. PLoS ONE, 2009, 4, e7480.	1.1	77
180	Proteolytic Characteristics of Cathepsin D Related to the Recognition and Cleavage of Its Target Proteins. PLoS ONE, 2013, 8, e65733.	1.1	36
181	Yeast as a tool to explore cathepsin D function. Microbial Cell, 2015, 2, 225-234.	1.4	8

#	Article	IF	CITATIONS
182	Evidence Linking Protein Misfolding to Quality Control in Progressive Neurodegenerative Diseases. Current Topics in Medicinal Chemistry, 2020, 20, 2025-2043.	1.0	18
183	Alpha-synuclein truncation and disease. Health, 2012, 04, 1167-1177.	0.1	6
184	Proteolytic truncation of human transthyretin linked to amyloidosis is mediated by a trypsin like enzyme: In vitro demonstration using model peptides. Biochemical Compounds, 2016, 4, 5.	0.7	0
185	Genes involved in the development of Parkinson. , 2017, 1, 039-051.		1
186	Disease-specific glycosaminoglycan patterns in the extracellular matrix of human lung and brain. Carbohydrate Research, 2022, 511, 108480.	1.1	5
187	Glycosphingolipid metabolism and its role in ageing and Parkinson's disease. Glycoconjugate Journal, 2022, 39, 39-53.	1.4	18
188	The regulatory mechanism between lysosomes and mitochondria in the aetiology of cardiovascular diseases. Acta Physiologica, 2022, 234, e13757.	1.8	5
189	Progranulin as a therapeutic target in neurodegenerative diseases. Trends in Pharmacological Sciences, 2022, 43, 641-652.	4.0	72
190	A Matrigel-based 3D construct of SH-SY5Y cells models the α-synuclein pathologies of Parkinson's disease. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	8
191	Potential Tear Biomarkers for the Diagnosis of Parkinson's Disease—A Pilot Study. Proteomes, 2022, 10, 4.	1.7	8
192	Lysosomal peptidases—intriguing roles in cancer progression and neurodegeneration. FEBS Open Bio, 2022, , .	1.0	9
193	Neuroinflammation in Gaucher disease, neuronal ceroid lipofuscinosis, and commonalities with Parkinson's disease. Brain Research, 2022, 1780, 147798.	1.1	8
194	Mass spectrometry-based proteomics in neurodegenerative lysosomal storage disorders. Molecular Omics, 2022, 18, 256-278.	1.4	3
195	Recombinant pro-CTSD (cathepsin D) enhances SNCA/α-Synuclein degradation in α-Synucleinopathy models. Autophagy, 2022, 18, 1127-1151.	4.3	20
196	Cathepsin D as biomarker in cerebrospinal fluid of nusinersenâ€ŧreated patients with spinal muscular atrophy. European Journal of Neurology, 2022, 29, 2084-2096.	1.7	13
197	The role of lysosomal cathepsins in neurodegeneration: Mechanistic insights, diagnostic potential and therapeutic approaches. Biochimica Et Biophysica Acta - Molecular Cell Research, 2022, 1869, 119243.	1.9	26
198	VPS35, the core component of the retromer complex, and Parkinson's disease. , 2021, 7, 318-324.		2
200	The Role of Extracellular Matrix Components in the Spreading of Pathological Protein Aggregates. Frontiers in Cellular Neuroscience, 2022, 16, 844211.	1.8	7

#	Article	IF	CITATIONS
201	Safeguarding Lysosomal Homeostasis by DNAJC5/CSPα-Mediated Unconventional Protein Secretion and Endosomal Microautophagy. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	3
202	<i>C9ORF72</i> -derived poly-GA DPRs undergo endocytic uptake in iAstrocytes and spread to motor neurons. Life Science Alliance, 2022, 5, e202101276.	1.3	6
203	Alpha-Synuclein Aggregation Pathway in Parkinson's Disease: Current Status and Novel Therapeutic Approaches. Cells, 2022, 11, 1732.	1.8	37
204	Novel molecular targets and mechanisms for neuroprotective modulation in neurodegenerative disorders. Central Nervous System Agents in Medicinal Chemistry, 2022, 22, .	0.5	1
205	Parkinson's disease-risk protein TMEM175 is a proton-activated proton channel in lysosomes. Cell, 2022, 185, 2292-2308.e20.	13.5	69
206	Restoration of Cathepsin D Level via L-Serine Attenuates PPA-Induced Lysosomal Dysfunction in Neuronal Cells. International Journal of Molecular Sciences, 2022, 23, 10613.	1.8	3
208	Saposin C, Key Regulator in the Alpha-Synuclein Degradation Mediated by Lysosome. International Journal of Molecular Sciences, 2022, 23, 12004.	1.8	0
209	Inflammatory rheumatic diseases and the risk of Parkinson's disease: A systematic review and meta-analysis. Frontiers in Neurology, 0, 13, .	1.1	2
210	From Lysosomal Storage Disorders to Parkinson's Disease – Challenges and Opportunities. Journal of Molecular Biology, 2023, 435, 167932.	2.0	3
211	Role of Ceramides and Sphingolipids in Parkinson's Disease. Journal of Molecular Biology, 2023, 435, 168000.	2.0	4
212	Role of VPS39, a key tethering protein for endolysosomal trafficking and mitochondria–lysosome crosstalk, in health and disease. Journal of Cellular Biochemistry, 0, , .	1.2	1
218	Stages, pathogenesis, clinical management and advancements in therapies of age-related macular degeneration. International Ophthalmology, 2023, 43, 3891-3909.	0.6	1
221	Protein–Protein Interactions in Neurodegenerative Diseases. , 2023, , 101-169.		0
226	The Mechanistic Approach Involved in the Progression of Neurodegenerative Disorders. , 2023, , 33-56.		0