Targeted disruption of serine racemase affects glutamas behavior

Molecular Psychiatry 14, 719-727

DOI: 10.1038/mp.2008.130

Citation Report

#	Article	IF	Citations
1	NR1 knockdown mice as a representative model of the glutamate hypothesis of schizophrenia. Progress in Brain Research, 2009, 179, 51-58.	0.9	38
2	Novel Therapies for Schizophrenia: Understanding the Glutamatergic Synapse and Potential Targets for Altering N-methyl-D-aspartate Neurotransmission. Recent Patents on CNS Drug Discovery, 2009, 4, 220-238.	0.9	12
3	Glutamatergic regulation of serine racemase via reversal of PIP2 inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2921-2926.	3.3	60
4	Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Human Molecular Genetics, 2009, 18, 3227-3243.	1.4	160
5	Phenotypic characterization of mice heterozygous for a null mutation of glutamate carboxypeptidase II. Synapse, 2009, 63, 625-635.	0.6	25
6	Mice mutant for genes associated with schizophrenia: Common phenotype or distinct endophenotypes?. Behavioural Brain Research, 2009, 204, 258-273.	1.2	54
7	ENU-induced mutant mice for a next-generation gene-targeting system. Progress in Brain Research, 2009, 179, 29-34.	0.9	4
8	ENU-Based Gene-Driven Mutagenesis in the Mouse: A Next-Generation Gene-Targeting System. Experimental Animals, 2010, 59, 537-548.	0.7	32
9	Metabolism of the neuromodulator d-serine. Cellular and Molecular Life Sciences, 2010, 67, 2387-2404.	2.4	106
10	Phosphorylation of mouse serine racemase regulates <scp>d</scp> â€serine synthesis. FEBS Letters, 2010, 584, 2937-2941.	1.3	35
11	Dâ€serine is distributed in neurons in the brain of the sea lamprey. Journal of Comparative Neurology, 2010, 518, 1688-1710.	0.9	8
12	Serine Racemase Knockout Mice. Chemistry and Biodiversity, 2010, 7, 1573-1578.	1.0	28
13	The involvement of the NMDA receptor d-serine/glycine site in the pathophysiology and treatment of schizophrenia. Neuroscience and Biobehavioral Reviews, 2010, 34, 351-372.	2.9	111
14	The Glycerophospho Metabolome and Its Influence on Amino Acid Homeostasis Revealed by Brain Metabolomics of GDE1(â^'/â^') Mice. Chemistry and Biology, 2010, 17, 831-840.	6.2	34
15	Analysis of strainâ€dependent prepulse inhibition points to a role for <i>Shmt1</i> (<i>SHMT1</i>) in mice and in schizophrenia. Journal of Neurochemistry, 2010, 115, 1374-1385.	2.1	15
16	AMPA receptor mediated <scp>d</scp> â€serine release from retinal glial cells. Journal of Neurochemistry, 2010, 115, 1681-1689.	2.1	29
17	The neurobiology of D-amino acid oxidase and its involvement in schizophrenia. Molecular Psychiatry, 2010, 15, 122-137.	4.1	144
18	The Structure of Mammalian Serine Racemase. Journal of Biological Chemistry, 2010, 285, 12873-12881.	1.6	76

#	ARTICLE	IF	CITATIONS
19	Neuronal release of Dâ€serine: a physiological pathway controlling extracellular Dâ€serine concentration. FASEB Journal, 2010, 24, 2951-2961.	0.2	113
20	Brain-specific Phgdh Deletion Reveals a Pivotal Role for l-Serine Biosynthesis in Controlling the Level of d-Serine, an N-methyl-d-aspartate Receptor Co-agonist, in Adult Brain. Journal of Biological Chemistry, 2010, 285, 41380-41390.	1.6	110
21	Serine Racemase Deletion Protects Against Cerebral Ischemia and Excitotoxicity. Journal of Neuroscience, 2010, 30, 1413-1416.	1.7	91
22	Advancing a functional genomics for schizophrenia: Psychopathological and cognitive phenotypes in mutants with gene disruption. Brain Research Bulletin, 2010, 83, 162-176.	1.4	31
23	N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: The final common pathway on the road to schizophrenia?. Brain Research Bulletin, 2010, 83, 108-121.	1.4	340
24	l-Serine synthesis in the central nervous system: A review on serine deficiency disorders. Molecular Genetics and Metabolism, 2010, 99, 256-262.	0.5	167
25	Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharmacological Reviews, 2010, 62, 405-496.	7.1	2,973
26	Mouse Mutagenesis and Disease Models for Neuropsychiatric Disorders. Current Topics in Behavioral Neurosciences, 2011, 7, 1-35.	0.8	9
27	Serine racemase and the serine shuttle between neurons and astrocytes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 1558-1566.	1.1	123
28	d-Amino acid metabolism in mammals: Biosynthesis, degradation and analytical aspects of the metabolic study. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 3162-3168.	1.2	72
29	Analysis of free d-serine in mammals and its biological relevance. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2011, 879, 3169-3183.	1.2	126
30	Levels of d-serine in the brain and peripheral organs of serine racemase (Srr) knock-out mice. Neurochemistry International, 2011, 59, 853-859.	1.9	87
31	Failure of NMDA receptor hypofunction to induce a pathological reduction in PV-positive GABAergic cell markers. Neuroscience Letters, 2011, 488, 267-271.	1.0	29
32	Reduced serine racemase expression contributes to age-related deficits in hippocampal cognitive function. Neurobiology of Aging, 2011, 32, 1495-1504.	1.5	75
33	Inhibition of Human Serine Racemase, an Emerging Target for Medicinal Chemistry. Current Drug Targets, 2011, 12, 1037-1055.	1.0	46
34	Protein kinase C activity regulates d-serine availability in the brain. Journal of Neurochemistry, 2011, 116, 281-290.	2.1	30
35	Serine racemase deletion disrupts memory for order and alters cortical dendritic morphology. Genes, Brain and Behavior, 2011, 10, 210-222.	1.1	103
36	The Association of Schizophrenia Risk D-Amino Acid Oxidase Polymorphisms With Sensorimotor Gating, Working Memory and Personality in Healthy Males. Neuropsychopharmacology, 2011, 36, 1677-1688.	2.8	34

#	Article	IF	CITATIONS
37	Serine racemase deletion abolishes lightâ€evoked NMDA receptor currents in retinal ganglion cells. Journal of Physiology, 2011, 589, 5997-6006.	1.3	19
38	Glutamate receptor composition of the post-synaptic density is altered in genetic mouse models of NMDA receptor hypo- and hyperfunction. Brain Research, 2011, 1392, 1-7.	1.1	32
39	d-Serine: The right or wrong isoform?. Brain Research, 2011, 1401, 104-117.	1.1	32
40	Discordant behavioral effects of psychotomimetic drugs in mice with altered NMDA receptor function. Psychopharmacology, 2011, 213, 143-153.	1.5	13
41	Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia. Neuroscience and Biobehavioral Reviews, 2011, 35, 848-870.	2.9	147
42	Susceptibility Genes for Schizophrenia: Mutant Models, Endophenotypes and Psychobiology. Current Topics in Behavioral Neurosciences, 2011, 12, 209-250.	0.8	5
43	Aβ Oligomers Induce Glutamate Release from Hippocampal Neurons. Current Alzheimer Research, 2011, 8, 552-562.	0.7	88
44	Translating Glutamate: From Pathophysiology to Treatment. Science Translational Medicine, 2011, 3, 102mr2.	5.8	147
45	D-Serine Influences Synaptogenesis in a P19 Cell Model. JIMD Reports, 2012, 6, 47-53.	0.7	4
46	Generation of mouse mutants as tools in dissecting the molecular clock. Progress in Brain Research, 2012, 199, 247-265.	0.9	1
47	Altered Acquisition and Extinction of Amphetamine-Paired Context Conditioning in Genetic Mouse Models of Altered NMDA Receptor Function. Neuropsychopharmacology, 2012, 37, 2496-2504.	2.8	20
48	D-Serine Production, Degradation, and Transport in ALS: Critical Role of Methodology. Neurology Research International, 2012, 2012, 1-8.	0.5	10
49	<scp>d</scp> -Amino acid oxidase controls motoneuron degeneration through <scp>d</scp> -serine. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 627-632.	3.3	186
50	D-Serine Ameliorates Neonatal PolyI:C Treatment^ ^ndash;Induced Emotional and Cognitive Impairments in Adult Mice. Journal of Pharmacological Sciences, 2012, 120, 213-227.	1.1	16
51	Plasma levels of D-serine in Brazilian individuals with schizophrenia. Schizophrenia Research, 2012, 142, 83-87.	1.1	69
52	Synaptic and Extrasynaptic NMDA Receptors Are Gated by Different Endogenous Coagonists. Cell, 2012, 150, 633-646.	13.5	597
53	Contributions of the d-serine pathway to schizophrenia. Neuropharmacology, 2012, 62, 1484-1503.	2.0	99
54	<scp>d</scp> -serine and schizophrenia: an update. Expert Review of Neurotherapeutics, 2012, 12, 801-812.	1.4	27

#	ARTICLE	IF	CITATIONS
55	Alteration of intrinsic amounts of d-serine in the mice lacking serine racemase and d-amino acid oxidase. Amino Acids, 2012, 43, 1919-1931.	1.2	43
56	Reversal of ageâ€related oxidative stress prevents hippocampal synaptic plasticity deficits by protecting <scp>d</scp> â€serineâ€dependent NMDA receptor activation. Aging Cell, 2012, 11, 336-344.	3.0	88
57	Neuronal d-serine regulates dendritic architecture in the somatosensory cortex. Neuroscience Letters, 2012, 517, 77-81.	1.0	44
58	Functional roles of endogenous d-serine in the chronic pain-induced plasticity of NMDAR-mediated synaptic transmission in the central amygdala of mice. Neuroscience Letters, 2012, 520, 57-61.	1.0	4
59	Serine racemase: an unconventional enzyme for an unconventional transmitter. Amino Acids, 2012, 43, 1895-1904.	1.2	59
60	d-Amino acids in brain neurotransmission and synaptic plasticity. Amino Acids, 2012, 43, 1851-1860.	1.2	90
61	Metal ion dependency of serine racemase from Dictyostelium discoideum. Amino Acids, 2012, 43, 1567-1576.	1.2	21
62	Unnatural Amino Acids. Methods in Molecular Biology, 2012, , .	0.4	52
63	d-Amino acids in the brain and mutant rodents lacking d-amino-acid oxidase activity. Amino Acids, 2012, 43, 1811-1821.	1.2	47
64	Role of Serine Racemase in Behavioral Sensitization in Mice after Repeated Administration of Methamphetamine. PLoS ONE, 2012, 7, e35494.	1.1	19
66	Cell Selective Conditional Null Mutations of Serine Racemase Demonstrate a Predominate Localization in Cortical Glutamatergic Neurons. Cellular and Molecular Neurobiology, 2012, 32, 613-624.	1.7	126
67	Glial D-Serine Gates NMDA Receptors at Excitatory Synapses in Prefrontal Cortex. Cerebral Cortex, 2012, 22, 595-606.	1.6	154
68	Crossâ€linking of serine racemase dimer by reactive oxygen species and reactive nitrogen species. Journal of Neuroscience Research, 2012, 90, 1218-1229.	1.3	12
69	Association study of <i>GRIK1</i> gene polymorphisms in schizophrenia: case–control and familyâ€based studies. Human Psychopharmacology, 2012, 27, 345-351.	0.7	14
70	Paradoxical roles of serine racemase and <scp>d</scp> â€serine in the G93A mSOD1 mouse model of amyotrophic lateral sclerosis. Journal of Neurochemistry, 2012, 120, 598-610.	2.1	28
71	Timing-dependent reduction in ethanol sedation and drinking preference by NMDA receptor co-agonist d-serine. Alcohol, 2012, 46, 389-400.	0.8	12
72	Type 1 diabetes mellitus in mice increases hippocampal d-serine in the acute phase after streptozotocin injection. Brain Research, 2012, 1466, 167-176.	1.1	19
73	The NMDA receptor co-agonists, d-serine and glycine, regulate neuronal dendritic architecture in the somatosensory cortex. Neurobiology of Disease, 2012, 45, 671-682.	2.1	81

#	Article	IF	Citations
74	Glutamate signaling in the pathophysiology and therapy of schizophrenia. Pharmacology Biochemistry and Behavior, 2012, 100, 665-677.	1.3	132
75	Proteins linked to spatial memory formation of CD1 mice in the multiple Tâ€maze. Hippocampus, 2012, 22, 1075-1086.	0.9	8
76	D-Serine in Glia and Neurons Derives from 3-Phosphoglycerate Dehydrogenase. Journal of Neuroscience, 2013, 33, 12464-12469.	1.7	100
77	Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2400-9.	3.3	184
78	Serine racemase as a prime target for ageâ€related memory deficits. European Journal of Neuroscience, 2013, 37, 1931-1938.	1.2	29
79	The serine shuttle between glia and neurons: implications for neurotransmission and neurodegeneration. Biochemical Society Transactions, 2013, 41, 1546-1550.	1.6	65
80	Decreased levels of free d-aspartic acid in the forebrain of serine racemase (Srr) knock-out mice. Neurochemistry International, 2013, 62, 843-847.	1.9	26
81	Behavioral effects of alpha-alkylated amino acid analogs in the C57BL/6J mouse. Behavioural Brain Research, 2013, 252, 432-438.	1.2	1
82	Identity of endogenous NMDAR glycine site agonist in amygdala is determined by synaptic activity level. Nature Communications, 2013, 4, 1760.	5.8	69
83	TRPA1 Channels Are Regulators of Astrocyte Basal Calcium Levels and Long-Term Potentiation via Constitutive D-Serine Release. Journal of Neuroscience, 2013, 33, 10143-10153.	1.7	264
84	Pathogenic disruption of DISC1-serine racemase binding elicits schizophrenia-like behavior via D-serine depletion. Molecular Psychiatry, 2013, 18, 557-567.	4.1	133
85	Neuronal d-Serine and Glycine Release Via the Asc-1 Transporter Regulates NMDA Receptor-Dependent Synaptic Activity. Journal of Neuroscience, 2013, 33, 3533-3544.	1.7	186
86	A role for bioenergetic abnormalities in the pathophysiology of schizophrenia. Journal of Microbiology and Biotechnology, 2013, 23, 289-293.	0.9	0
87	Neonatal Disruption of Serine Racemase Causes Schizophrenia-Like Behavioral Abnormalities in Adulthood: Clinical Rescue by D-Serine. PLoS ONE, 2013, 8, e62438.	1.1	27
88	Effects of Chronic D-Serine Elevation on Animal Models of Depression and Anxiety-Related Behavior. PLoS ONE, 2013, 8, e67131.	1.1	49
89	Ischemic Acute Kidney Injury Perturbs Homeostasis of Serine Enantiomers in the Body Fluid in Mice: Early Detection of Renal Dysfunction Using the Ratio of Serine Enantiomers. PLoS ONE, 2014, 9, e86504.	1.1	57
90	Increased Sensitivity to Inflammatory Pain Induced by Subcutaneous Formalin Injection in Serine Racemase Knock-Out Mice. PLoS ONE, 2014, 9, e105282.	1.1	11
91	Glix 13, a New Drug Acting on Glutamatergic Pathways in Children and Animal Models of Autism Spectrum Disorders. BioMed Research International, 2014, 2014, 1-5.	0.9	15

#	Article	IF	Citations
92	D-Serine in Neuropsychiatric Disorders: New Advances. Advances in Psychiatry, 2014, 2014, 1-16.	0.4	17
93	Cell-type specific mechanisms of D-serine uptake and release in the brain. Frontiers in Synaptic Neuroscience, 2014, 6, 12.	1.3	84
94	Activity of D-amino acid oxidase is widespread in the human central nervous system. Frontiers in Synaptic Neuroscience, 2014, 6, 14.	1.3	40
95	Effects of lead exposure on d-serine metabolism in the hippocampus of mice at the early developmental stages. Toxicology, 2014, 325, 189-199.	2.0	11
96	FBXO22 Protein Is Required for Optimal Synthesis of the N-Methyl-d-Aspartate (NMDA) Receptor Coagonist d-Serine. Journal of Biological Chemistry, 2014, 289, 33904-33915.	1.6	13
97	Novel human <scp>D</scp> -amino acid oxidase inhibitors stabilize an active-site lid-open conformation. Bioscience Reports, 2014, 34, .	1.1	28
98	Cellular Origin and Regulation of <scp>D</scp> -and <scp>L</scp> -Serine in <i>in Vitro</i> and <i>in Vivo</i> Models of Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1928-1935.	2.4	18
99	Cortical synaptic NMDA receptor deficits in $\hat{l}\pm7$ nicotinic acetylcholine receptor gene deletion models: Implications for neuropsychiatric diseases. Neurobiology of Disease, 2014, 63, 129-140.	2.1	55
100	d-Serine and Serine Racemase are Localized to Neurons in the Adult Mouse and Human Forebrain. Cellular and Molecular Neurobiology, 2014, 34, 419-435.	1.7	107
101	Astroglial d-serine is the endogenous co-agonist at the presynaptic NMDA receptor in rat entorhinal cortex. Neuropharmacology, 2014, 83, 118-127.	2.0	8
102	Serine Racemase Regulated by Binding to Stargazin and PSD-95. Journal of Biological Chemistry, 2014, 289, 29631-29641.	1.6	41
103	Disrupted-In-Schizophrenia-1 (DISC1) interactome and mental disorders: Impact of mouse models. Neuroscience and Biobehavioral Reviews, 2014, 45, 271-294.	2.9	46
104	d-serine prevents cognitive deficits induced by acute stress. Neuropharmacology, 2014, 86, 1-8.	2.0	32
105	The Postnatal Development of <scp>d</scp> -Serine in the Retinas of Two Mouse Strains, Including a Mutant Mouse with a Deficiency in <scp>d</scp> -Amino Acid Oxidase and a Serine Racemase Knockout Mouse. ACS Chemical Neuroscience, 2014, 5, 848-854.	1.7	15
106	D-serine deficiency attenuates the behavioral and cellular effects induced by the hallucinogenic 5-HT2A receptor agonist DOI. Behavioural Brain Research, 2014, 259, 242-246.	1.2	7
107	Chronic D-serine reverses arc expression and partially rescues dendritic abnormalities in a mouse model of NMDA receptor hypofunction. Neurochemistry International, 2014, 75, 76-78.	1.9	37
108	Enantioselective Two-Dimensional High-Performance Liquid Chromatographic Determination of Amino Acids; Analysis and Physiological Significance of D-Amino Acids in Mammals. Chromatography, 2014, 35, 49-57.	0.8	56
109	D-Serine in Neurobiology: CNS Neurotransmission and Neuromodulation. Canadian Journal of Neurological Sciences, 2014, 41, 164-176.	0.3	19

#	Article	IF	CITATIONS
110	<scp>d</scp> â€amino acid oxidase knockout (<i>Dao</i> ^{â^'/â^'}) mice show enhanced shortâ€term memory performance and heightened anxiety, but no sleep or circadian rhythm disruption. European Journal of Neuroscience, 2015, 41, 1167-1179.	1.2	30
111	Time and space profiling of <scp>NMDA</scp> receptor coâ€agonist functions. Journal of Neurochemistry, 2015, 135, 210-225.	2.1	72
112	<i>N</i> -methyl- <scp>d</scp> -aspartate receptor coagonist <scp>d</scp> -serine suppresses intake of high-preference food. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R561-R575.	0.9	17
113	Functional alterations of astrocytes in mental disorders: pharmacological significance as a drug target. Frontiers in Cellular Neuroscience, 2015, 9, 261.	1.8	38
114	Availability of N-Methyl-d-Aspartate Receptor Coagonists Affects Cocaine-Induced Conditioned Place Preference and Locomotor Sensitization: Implications for Comorbid Schizophrenia and Substance Abuse. Journal of Pharmacology and Experimental Therapeutics, 2015, 353, 465-470.	1.3	16
115	Subchronic pharmacological and chronic genetic NMDA receptor hypofunction differentially regulate the Akt signaling pathway and Arc expression in juvenile and adult mice. Schizophrenia Research, 2015, 162, 216-221.	1.1	13
116	d-Serine in the aging hippocampus. Journal of Pharmaceutical and Biomedical Analysis, 2015, 116, 18-24.	1.4	32
117	Nuclear Compartmentalization of Serine Racemase Regulates d-Serine Production. Journal of Biological Chemistry, 2015, 290, 31037-31050.	1.6	22
118	The NMDA receptor â€~glycine modulatory site' in schizophrenia: d-serine, glycine, and beyond. Current Opinion in Pharmacology, 2015, 20, 109-115.	1.7	173
119	d-Aspartate: An endogenous NMDA receptor agonist enriched in the developing brain with potential involvement in schizophrenia. Journal of Pharmaceutical and Biomedical Analysis, 2015, 116, 7-17.	1.4	52
120	Glycolytic flux controls <scp>d</scp> -serine synthesis through glyceraldehyde-3-phosphate dehydrogenase in astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2217-24.	3.3	41
121	Neuronal serine racemase regulates extracellular d-serine levels in the adult mouse hippocampus. Journal of Neural Transmission, 2015, 122, 1099-1103.	1.4	25
122	Closing the translational gap between mutant mouse models and the clinical reality of psychotic illness. Neuroscience and Biobehavioral Reviews, 2015, 58, 19-35.	2.9	30
123	In vivo magnetic resonance studies reveal neuroanatomical and neurochemical abnormalities in the serine racemase knockout mouse model of schizophrenia. Neurobiology of Disease, 2015, 73, 269-274.	2.1	27
125	D-Serine and Serine Racemase Are Associated with PSD-95 and Glutamatergic Synapse Stability. Frontiers in Cellular Neuroscience, 2016, 10, 34.	1.8	43
126	Control of Appetite and Food Preference by NMDA Receptor and Its Co-Agonist d-Serine. International Journal of Molecular Sciences, 2016, 17, 1081.	1.8	13
127	D-Serine and Glycine Differentially Control Neurotransmission during Visual Cortex Critical Period. PLoS ONE, 2016, 11, e0151233.	1.1	31
128	D-Serine Is a Substrate for Neutral Amino Acid Transporters ASCT1/SLC1A4 and ASCT2/SLC1A5, and Is Transported by Both Subtypes in Rat Hippocampal Astrocyte Cultures. PLoS ONE, 2016, 11, e0156551.	1.1	48

#	Article	IF	Citations
129	Serine racemase is involved in d-aspartate biosynthesis. Journal of Biochemistry, 2016, 160, 345-353.	0.9	58
130	Hydroxysafflor Yellow A Protects Neurons From Excitotoxic Death through Inhibition of NMDARs. ASN Neuro, 2016, 8, 175909141664234.	1.5	26
131	Abnormal d-Serine Metabolism in Amyotrophic Lateral Sclerosis. , 2016, , 137-149.		2
132	The NMDA Receptor and Schizophrenia. Advances in Pharmacology, 2016, 76, 351-382.	1.2	213
133	The Rise and Fall of the d-Serine-Mediated Gliotransmission Hypothesis. Trends in Neurosciences, 2016, 39, 712-721.	4.2	157
134	Endogenous co-agonists of the NMDA receptor modulate contextual fear in trace conditioning. Neurobiology of Learning and Memory, 2016, 136, 244-250.	1.0	6
135	Serine racemase inhibition induces nitric oxide-mediated neurovascular protection during cerebral ischemia. Neuroscience, 2016, 339, 139-149.	1.1	18
136	Effects of environmental enrichment on anxiety-like behavior, sociability, sensory gating, and spatial learning in male and female C57BL/6J mice. Behavioural Brain Research, 2016, 314, 215-225.	1.2	63
137	D-Amino Acids., 2016,,.		8
138	Serine racemase is expressed in islets and contributes to the regulation of glucose homeostasis. Islets, 2016, 8, 195-206.	0.9	28
139	d-Serine and the Pathophysiology of Schizophrenia. , 2016, , 101-118.		3
140	Ultimate Translation. Advances in Pharmacology, 2016, 76, 257-309.	1.2	7
141	Physiological Roles of d-Serine in the Central Nervous System. , 2016, , 27-50.		1
142	Role for neonatal D-serine signaling: prevention of physiological and behavioral deficits in adult Pick1 knockout mice. Molecular Psychiatry, 2016, 21, 386-393.	4.1	15
143	An mGlu5-Positive Allosteric Modulator Rescues the Neuroplasticity Deficits in a Genetic Model of NMDA Receptor Hypofunction in Schizophrenia. Neuropsychopharmacology, 2016, 41, 2052-2061.	2.8	60
144	Cortico-Striatal GABAergic and Glutamatergic Dysregulations in Subjects at Ultra-High Risk for Psychosis Investigated with Proton Magnetic Resonance Spectroscopy. International Journal of Neuropsychopharmacology, 2016, 19, pyv105.	1.0	66
145	d-Aspartate, an Atypical Amino Acid with NMDA Receptor Agonist Features: Involvement in Schizophrenia., 2017,, 83-101.		1
146	Heterogeneity of D-Serine Distribution in the Human Central Nervous System. ASN Neuro, 2017, 9, 175909141771390.	1.5	28

#	Article	IF	CITATIONS
147	Translating advances in the molecular basis of schizophrenia into novel cognitive treatment strategies. British Journal of Pharmacology, 2017, 174, 3173-3190.	2.7	17
148	Phenylglycine analogs are inhibitors of the neutral amino acid transporters ASCT1 and ASCT2 and enhance NMDA receptor-mediated LTP in rat visual cortex slices. Neuropharmacology, 2017, 126, 70-83.	2.0	21
149	Intraperitoneal injection of d -serine inhibits high-fat diet intake and preference in male mice. Appetite, 2017, 118, 120-128.	1.8	6
150	Body fluid levels of neuroactive amino acids in autism spectrum disorders: a review of the literature. Amino Acids, 2017, 49, 57-65.	1.2	64
151	Evidence for Tonic Control by the GABAA Receptor of Extracellular D-Serine Concentrations in the Medial Prefrontal Cortex of Rodents. Frontiers in Molecular Neuroscience, 2017, 10, 240.	1.4	10
152	The Neurobiology of d -Serine Signaling. Advances in Pharmacology, 2018, 82, 325-348.	1.2	48
153	Nâ€methylâ€∢scp>dâ€aspartate receptor dysfunction in the prefrontal cortex of strokeâ€prone spontaneously hypertensive rat/Ezo as a rat model of attention deficit/hyperactivity disorder. Neuropsychopharmacology Reports, 2018, 38, 61-66.	1.1	6
154	Deletion of serine racemase confers D-serine $\hat{a} \in \text{``dependent'}$ resilience to chronic social defeat stress. Neurochemistry International, 2018, 116, 43-51.	1.9	18
155	Serine Racemase and D-serine in the Amygdala Are Dynamically Involved in Fear Learning. Biological Psychiatry, 2018, 83, 273-283.	0.7	32
156	InÂVivo Brain Glycine and Glutamate Concentrations in Patients With First-Episode Psychosis Measured by Echo Time–Averaged Proton Magnetic Resonance Spectroscopy at 4T. Biological Psychiatry, 2018, 83, 484-491.	0.7	34
157	Altered CREB Binding to Activity-Dependent Genes in Serine Racemase Deficient Mice, a Mouse Model of Schizophrenia. ACS Chemical Neuroscience, 2018, 9, 2205-2209.	1.7	2
158	Design, synthesis, and evaluation of novel inhibitors for wild-type human serine racemase. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 441-445.	1.0	9
159	The research domain criteria framework in drug discovery for neuropsychiatric diseases: focus on negative valence. Brain and Neuroscience Advances, 2018, 2, 239821281880403.	1.8	10
160	Changes in Serine Racemase-Dependent Modulation of NMDA Receptor: Impact on Physiological and Pathological Brain Aging. Frontiers in Molecular Biosciences, 2018, 5, 106.	1.6	15
161	Excitotoxicity., 2018,, 70-100.		0
162	The Emerging Role of Altered d-Aspartate Metabolism in Schizophrenia: New Insights From Preclinical Models and Human Studies. Frontiers in Psychiatry, 2018, 9, 559.	1.3	31
163	ASCT1 (Slc1a4) transporter is a physiologic regulator of brain <scp>d</scp> -serine and neurodevelopment. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9628-9633.	3.3	77
164	The Role of Serine Racemase in the Pathophysiology of Brain Disorders. Advances in Pharmacology, 2018, 82, 35-56.	1.2	36

#	Article	IF	CITATIONS
165	Potential and Challenges for the Clinical Use of d-Serine As a Cognitive Enhancer. Frontiers in Psychiatry, 2018, 9, 14.	1.3	46
166	Emerging Role of D-Amino Acid Metabolism in the Innate Defense. Frontiers in Microbiology, 2018, 9, 933.	1.5	60
167	Dissociated Role of D-Serine in Extinction During Consolidation vs. Reconsolidation of Context Conditioned Fear. Frontiers in Molecular Neuroscience, 2018, 11, 161.	1.4	12
168	Amperometric Self-Referencing Ceramic Based Microelectrode Arrays for D-Serine Detection. Biosensors, 2018, 8, 20.	2.3	10
169	Distinctive Roles of D-Amino Acids in the Homochiral World: Chirality of Amino Acids Modulates Mammalian Physiology and Pathology. Keio Journal of Medicine, 2018, 68, 1-16.	0.5	31
170	Hippocampal Dysfunction in Schizophrenia and Aberrant Hippocampal Synaptic Plasticity in Rodent Model Psychosis: a Selective Review. Pharmacopsychiatry, 2023, 56, 57-63.	1.7	3
171	Therapeutic potential and underlying mechanism of sarcosine (N-methylglycine) in N-methyl-D-aspartate (NMDA) receptor hypofunction models of schizophrenia. Journal of Psychopharmacology, 2019, 33, 1288-1302.	2.0	10
172	Genetic Control of Expression and Splicing in Developing Human Brain Informs Disease Mechanisms. Cell, 2019, 179, 750-771.e22.	13.5	174
173	Sociality deficits in serine racemase knockout mice. Brain and Behavior, 2019, 9, e01383.	1.0	12
174	d-amino Acids in Health and Disease: A Focus on Cancer. Nutrients, 2019, 11, 2205.	1.7	103
175	The NMDA receptor activation by $\langle scp \rangle d \langle scp \rangle$ -serine and glycine is controlled by an astrocytic Phgdh-dependent serine shuttle. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20736-20742.	3.3	89
176	Investigating brain <scp>d</scp> â€serine: Advocacy for good practices. Acta Physiologica, 2019, 226, e13257.	1.8	25
177	Glutamate hypothesis in schizophrenia. Psychiatry and Clinical Neurosciences, 2019, 73, 204-215.	1.0	229
178	Neurotoxic astrocytes express the d-serine synthesizing enzyme, serine racemase, in Alzheimer's disease. Neurobiology of Disease, 2019, 130, 104511.	2.1	49
179	D-Serine made by serine racemase in Drosophila intestine plays a physiological role in sleep. Nature Communications, 2019, 10, 1986.	5.8	58
180	The Role of the N-Methyl-D-Aspartate Receptors in Social Behavior in Rodents. International Journal of Molecular Sciences, 2019, 20, 5599.	1.8	16
181	Neuronal serine racemase associates with Disrupted-In-Schizophrenia-1 and DISC1 agglomerates: Implications for schizophrenia. Neuroscience Letters, 2019, 692, 107-114.	1.0	8
182	The origin of NMDA receptor hypofunction in schizophrenia. , 2020, 205, 107426.		139

#	Article	IF	Citations
183	Effects of arsenic exposure on d-serine metabolism in the hippocampus of offspring mice at different developmental stages. Archives of Toxicology, 2020, 94, 77-87.	1.9	13
184	Translational neurophysiological biomarkers of N-methyl-d-aspartate receptor dysfunction in serine racemase knockout mice. Biomarkers in Neuropsychiatry, 2020, 2, 100019.	0.7	8
185	D-Serine Signaling and NMDAR-Mediated Synaptic Plasticity Are Regulated by System A-Type of Glutamine/D-Serine Dual Transporters. Journal of Neuroscience, 2020, 40, 6489-6502.	1.7	22
186	Fifty Years of Research on Schizophrenia: The Ascendance of the Glutamatergic Synapse. American Journal of Psychiatry, 2020, 177, 1119-1128.	4.0	34
187	Cardiorenal metabolic biomarkers link early life stress to risk of non-communicable diseases and adverse mental health outcomes. Scientific Reports, 2020, 10, 13295.	1.6	20
188	Serine Racemase Deletion Affects the Excitatory/Inhibitory Balance of the Hippocampal CA1 Network. International Journal of Molecular Sciences, 2020, 21, 9447.	1.8	10
189	Auditory cognitive training improves prepulse inhibition in serine racemase mutant mice. Psychopharmacology, 2020, 237, 2499-2508.	1.5	0
190	d-Serine as the gatekeeper of NMDA receptor activity: implications for the pharmacologic management of anxiety disorders. Translational Psychiatry, 2020, 10, 184.	2.4	36
191	d-Serine, the Shape-Shifting NMDA Receptor Co-agonist. Neurochemical Research, 2020, 45, 1344-1353.	1.6	33
192	Electroretinographic Abnormalities and Sex Differences Detected with Mesopic Adaptation in a Mouse Model of Schizophrenia: A and B Wave Analysis. , 2020, 61, 16.		5
193	Factors regulating serine racemase and d-amino acid oxidase expression in the mouse striatum. Brain Research, 2021, 1751, 147202.	1.1	3
194	d-serine in physiological and pathological brain aging. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140542.	1.1	21
195	l-Serine links metabolism with neurotransmission. Progress in Neurobiology, 2021, 197, 101896.	2.8	44
196	Mammalian D-Cysteine is a Physiologic Down Regulator of Insulin Promoter Methylation. SSRN Electronic Journal, 0, , .	0.4	1
197	d-Aspartate consumption selectively promotes intermediate-term spatial memory and the expression of hippocampal NMDA receptor subunits. Scientific Reports, 2021, 11, 6166.	1.6	2
198	Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg. Symmetry, 2021, 13, 455.	1.1	9
200	Altered neural oscillations and behavior in a genetic mouse model of NMDA receptor hypofunction. Scientific Reports, 2021, 11, 9031.	1.6	15
201	Forebrain expression of serine racemase during postnatal development. Neurochemistry International, 2021, 145, 104990.	1.9	3

#	Article	IF	Citations
202	Not Just a Bystander: The Emerging Role of Astrocytes and Research Tools in Studying Cognitive Dysfunctions in Schizophrenia. International Journal of Molecular Sciences, 2021, 22, 5343.	1.8	12
203	Reduced D-Serine Release May Contribute to Impairment of Long-Term Potentiation by Corticosterone in the Perforant Path-Dentate Gyrus. Neurochemical Research, 2021, 46, 2359-2375.	1.6	3
204	Oral administration of d-serine prevents the onset and progression of colitis in mice. Journal of Gastroenterology, 2021, 56, 732-745.	2.3	12
205	Dopaminergic neuromodulation of prefrontal cortex activity requires the NMDA receptor coagonist $\langle scp \rangle d \langle scp \rangle$ -serine. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
207	NMDARs, Coincidence Detectors of Astrocytic and Neuronal Activities. International Journal of Molecular Sciences, 2021, 22, 7258.	1.8	11
208	Increased excitation-inhibition balance and loss of GABAergic synapses in the serine racemase knockout model of NMDA receptor hypofunction. Journal of Neurophysiology, 2021, 126, 11-27.	0.9	13
209	Directly and Indirectly Targeting the Glycine Modulatory Site to Modulate NMDA Receptor Function to Address Unmet Medical Needs of Patients With Schizophrenia. Frontiers in Psychiatry, 2021, 12, 742058.	1.3	19
211	An Enzymatic-HPLC Assay to Monitor Endogenous d-Serine Release from Neuronal Cultures. Methods in Molecular Biology, 2012, 794, 291-297.	0.4	9
212	Electrophysiological Analysis of the Modulation of NMDA-Receptors Function by d-Serine and Glycine in the Central Nervous System. Methods in Molecular Biology, 2012, 794, 299-312.	0.4	17
213	Assay of Amino Acid Racemases. Methods in Molecular Biology, 2012, 794, 367-379.	0.4	2
214	Serine Racemase Knockout Mice: Neurotoxicity, Epilepsy, and Schizophrenia., 2016, , 119-136.		3
215	Serine Racemase Expression by Striatal Neurons. Cellular and Molecular Neurobiology, 2022, 42, 279-289.	1.7	7
218	<i>N</i> â€Methylâ€ <scp>d</scp> â€aspartate receptor coâ€agonist availability affects behavioral and neurochemical responses to cocaine: insights into comorbid schizophrenia and substance abuse. Addiction Biology, 2019, 24, 40-50.	1.4	16
219	Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacological Reviews, 2021, 73, 1469-1658.	7.1	237
220	AMPA receptor-dependent, light-evoked d-serine release acts on retinal ganglion cell NMDA receptors. Journal of Neurophysiology, 2012, 108, 1044-1051.	0.9	18
221	A MusD Retrotransposon Insertion in the Mouse Slc6a5 Gene Causes Alterations in Neuromuscular Junction Maturation and Behavioral Phenotypes. PLoS ONE, 2012, 7, e30217.	1.1	18
222	Postsynaptic Serine Racemase Regulates NMDA Receptor Function. Journal of Neuroscience, 2020, 40, 9564-9575.	1.7	29
223	Role of Neurochemicals in Schizophrenia. Current Psychopharmacology, 2020, 9, 144-161.	0.1	7

#	Article	lF	Citations
224	Beyond the dopamine receptor: novel therapeutic targets for treating schizophrenia. Dialogues in Clinical Neuroscience, 2010, 12, 359-382.	1.8	62
225	Co-agonists differentially tune GluN2B-NMDA receptor trafficking at hippocampal synapses. ELife, 2017, 6, .	2.8	76
226	d-Amino Acids and pLG72 in Alzheimer's Disease and Schizophrenia. International Journal of Molecular Sciences, 2021, 22, 10917.	1.8	14
227	Inhibition of Glycine Transporter-1 Improves the Functional Outcome of Schizophrenia., 2010,, 577-610.		1
228	CHAPTER 7. Disrupted-in-Schizophrenia-1 (DISC1) Interactome and Schizophrenia. RSC Drug Discovery Series, 2015, , 141-172.	0.2	0
230	Neuromodulatory Activity of d-Aspartate in Mammals. , 2016, , 219-237.		0
231	Serine Racemase., 2016,, 283-291.		0
232	Biological Roles of D-Amino Acids in Mammals: Amino Acid Chirality Shapes Biology in the Mirror. Kagaku To Seibutsu, 2019, 57, 340-345.	0.0	0
234	Site of Ketamine Action on the NMDA Receptor., 2020, , 47-67.		0
235	Schizophrenia and drug addiction comorbidity: recent advances in our understanding of behavioural susceptibility and neural mechanisms. Neuroanatomy and Behaviour, 2020, 2, e10-e10.	1.5	11
238	Timing of maternal immune activation and sex influence schizophrenia-relevant cognitive constructs and neuregulin and GABAergic pathways. Brain, Behavior, and Immunity, 2022, 100, 70-82.	2.0	18
239	A Rationally and Computationally Designed Fluorescent Biosensor for <scp>d</scp> -Serine. ACS Sensors, 2021, 6, 4193-4205.	4.0	8
241	Physiopathological Relevance of D-Serine in the Mammalian Cochlea. Frontiers in Cellular Neuroscience, 2021, 15, 733004.	1.8	6
242	Effects of D-amino acids on sleep in Drosophila. Biochemical and Biophysical Research Communications, 2022, 589, 180-185.	1.0	5
243	Glycine-induced NMDA receptor internalization provides neuroprotection and preserves vasculature following ischemic stroke. IScience, 2022, 25, 103539.	1.9	9
244	Binding and Dynamics Demonstrate the Destabilisation of Ligand Binding for the S688Y Mutation in the <i>N</i> -Methyl-D-Aspartate Receptor GluN1 Subunit. SSRN Electronic Journal, 0, , .	0.4	0
246	Chiral resolution of plasma amino acids reveals enantiomer-selective associations with organ functions. Amino Acids, 2022, 54, 421-432.	1.2	10
247	SLC38A10 Regulate Glutamate Homeostasis and Modulate the AKT/TSC2/mTOR Pathway in Mouse Primary Cortex Cells. Frontiers in Cell and Developmental Biology, 2022, 10, 854397.	1.8	7

#	Article	IF	CITATIONS
248	D-serine metabolism in the medial prefrontal cortex, but not the hippocampus, is involved in AD/HD-like behaviors in SHRSP/Ezo. European Journal of Pharmacology, 2022, 923, 174930.	1.7	3
249	Ion flux-independent NMDA receptor signaling. Neuropharmacology, 2022, 210, 109019.	2.0	14
250	Mammalian Dâ€eysteine: A novel regulator of neural progenitor cell proliferation. BioEssays, 2022, 44, e2200002.	1.2	11
251	Subcortical control of the default mode network: Role of the basal forebrain and implications for neuropsychiatric disorders. Brain Research Bulletin, 2022, 185, 129-139.	1.4	8
252	Effects of Quinolinate-Induced Lesion of the Medial Prefrontal Cortex on Prefrontal and Striatal Concentrations of d-Serine in the Rat. Neurochemical Research, 0, , .	1.6	0
253	Reduced d-serine levels drive enhanced non-ionotropic NMDA receptor signaling and destabilization of dendritic spines in a mouse model for studying schizophrenia. Neurobiology of Disease, 2022, 170, 105772.	2.1	8
255	Astrocytic <scp>d</scp> â€amino acid oxidase degrades <scp>d</scp> â€serine in the hindbrain. FEBS Letters, 2022, 596, 2889-2897.	1.3	5
257	GluN3A excitatory glycine receptors control adult cortical and amygdalar circuits. Neuron, 2022, 110, 2438-2454.e8.	3.8	20
258	Rational and Translational Implications of D-Amino Acids for Treatment-Resistant Schizophrenia: From Neurobiology to the Clinics. Biomolecules, 2022, 12, 909.	1.8	15
259	Deletion of serine racemase reverses neuronal insulin signaling inhibition by amyloidâ€Î² oligomers. Journal of Neurochemistry, 2022, 163, 8-25.	2.1	2
260	The neurobiology of schizophrenia. , 2023, , 843-860.		0
261	Pathway-specific contribution of parvalbumin interneuron NMDARs to synaptic currents and thalamocortical feedforward inhibition. Molecular Psychiatry, 2022, 27, 5124-5134.	4.1	4
262	D-Serine: Basic Aspects with a Focus on Psychosis. , 2022, , 495-523.		0
263	Endogenous d-serine exists in the mammalian brain independent of synthesis by serine racemase. Biochemical and Biophysical Research Communications, 2023, 641, 186-191.	1.0	4
264	Improved NMDA Receptor Activation by the Secreted Amyloid-Protein Precursor-α in Healthy Aging: A Role for D-Serine?. International Journal of Molecular Sciences, 2022, 23, 15542.	1.8	1
265	SELENBP1 overexpression in the prefrontal cortex underlies negative symptoms of schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	1
266	Mammals sustain amino acid homochirality against chiral conversion by symbiotic microbes. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	3
267	In Silico and In Vitro Screening of Serine Racemase Agonist and In Vivo Efficacy on Alzheimer's Disease Drosophila melanogaster. Pharmaceuticals, 2023, 16, 280.	1.7	0

CITATION REPORT

#	Article	IF	CITATIONS
268	Hypothalamic Menin regulates systemic aging and cognitive decline. PLoS Biology, 2023, 21, e3002033.	2.6	8
269	Detection and analysis of chiral molecules as disease biomarkers. Nature Reviews Chemistry, 2023, 7, 355-373.	13.8	27
270	Viral vector-mediated upregulation of serine racemase expression in medial prefrontal cortex improves learning and synaptic function in middle age rats. Aging, 2023, 15, 2433-2449.	1.4	0
278	Cross species review of the physiological role of d-serine in translationally relevant behaviors. Amino Acids, 0, , .	1.2	0