Autocrine regulation of <i>mda</i> -7/IL-24 mediates ca

Proceedings of the National Academy of Sciences of the Unite 105, 9763-9768

DOI: 10.1073/pnas.0804089105

Citation Report

#	Article	IF	CITATIONS
1	Historical perspective and recent insights into our understanding of the molecular and biochemical basis of the antitumor properties of mda-7/IL-24. Cancer Biology and Therapy, 2009, 8, 402-411.	1.5	81
2	lLâ€24 protects against <i>Salmonella typhimurium</i> infection by stimulating early neutrophil Th1 cytokine production, which in turn activates CD8 ⁺ T cells. European Journal of Immunology, 2009, 39, 3357-3368.	1.6	40
3	Ceramide plays a prominent role in MDAâ€7/ILâ€24â€induced cancerâ€specific apoptosis. Journal of Cellular Physiology, 2010, 222, 546-555.	2.0	54
4	Potent Antitumor Effect of Interleukin-24 Gene in the Survivin Promoter and Retinoblastoma Double-Regulated Oncolytic Adenovirus. Human Gene Therapy, 2009, 20, 818-830.	1.4	32
5	MDA-7/IL-24 as a cancer therapeutic: from bench to bedside. Anti-Cancer Drugs, 2010, 21, 725-731.	0.7	48
6	Dichloroacetate (DCA) enhances tumor cell death in combination with oncolytic adenovirus armed with MDA-7/IL-24. Molecular and Cellular Biochemistry, 2010, 340, 31-40.	1.4	25
7	The development of MDA-7/IL-24 as a cancer therapeutic. , 2010, 128, 375-384.		54
8	Roles of GRP78 in physiology and cancer. Journal of Cellular Biochemistry, 2010, 110, 1299-1305.	1.2	151
9	Embryonic stem cell (ESC)-mediated transgene delivery induces growth suppression, apoptosis and radiosensitization, and overcomes temozolomide resistance in malignant gliomas. Cancer Gene Therapy, 2010, 17, 664-674.	2.2	29
10	Recombinant adenovirus IL-24-Bax promotes apoptosis of hepatocellular carcinoma cells in vitro and in vivo. Cancer Gene Therapy, 2010, 17, 771-779.	2.2	10
11	mda-7/IL-24 induces apoptosis in human GBC-SD gallbladder carcinoma cells via mitochondrial apoptotic pathway. Oncology Reports, 2010, 25, .	1.2	6
12	The antitumor efficacy of IL-24 mediated by E1A and E1B triple regulated oncolytic adenovirus. Cancer Biology and Therapy, 2010, 10, 242-250.	1.5	7
13	Cisplatin Enhances Protein Kinase R-Like Endoplasmic Reticulum Kinase- and CD95-Dependent Melanoma Differentiation-Associated Gene-7/Interleukin-24–Induced Killing in Ovarian Carcinoma Cells. Molecular Pharmacology, 2010, 77, 298-310.	1.0	33
14	Biomarkers: The Useful and the Not So Useful—An Assessment of Molecular Prognostic Markers for Cutaneous Melanoma. Journal of Investigative Dermatology, 2010, 130, 1971-1987.	0.3	47
15	Mechanism by Which Mcl-1 Regulates Cancer-Specific Apoptosis Triggered by mda-7/IL-24, an IL-10–Related Cytokine. Cancer Research, 2010, 70, 5034-5045.	0.4	66
16	OSU-03012 enhances Ad.7-induced GBM cell killing via ER stress and autophagy and by decreasing expression of mitochondrial protective proteins. Cancer Biology and Therapy, 2010, 9, 526-536.	1.5	42
17	Eradication of Therapy-resistant Human Prostate Tumors Using an Ultrasound-guided Site-specific Cancer Terminator Virus Delivery Approach. Molecular Therapy, 2010, 18, 295-306.	3.7	67
18	Anticancer genes: inducers of tumour-specific cell death signalling. Trends in Molecular Medicine, 2010, 16, 88-96.	3.5	27

#	Article	IF	CITATIONS
19	mda-7/IL-24: A unique member of the IL-10 gene family promoting cancer-targeted toxicity. Cytokine and Growth Factor Reviews, 2010, 21, 381-391.	3.2	95
20	Inhibition of Multiple Protective Signaling Pathways and Ad.5/3 Delivery Enhances mda-7/IL-24 Therapy of Malignant Glioma. Molecular Therapy, 2010, 18, 1130-1142.	3.7	40
21	Mechanism of Autophagy to Apoptosis Switch Triggered in Prostate Cancer Cells by Antitumor Cytokine Melanoma Differentiation-Associated Gene 7/Interleukin-24. Cancer Research, 2010, 70, 3667-3676.	0.4	109
22	Gene-Based Therapies for Cancer. , 2010, , .		0
23	Interleukins, from 1 to 37, and interferon-Î ³ : Receptors, functions, and roles in diseases. Journal of Allergy and Clinical Immunology, 2011, 127, 701-721.e70.	1.5	650
24	Targeting Mcl-1 for the therapy of cancer. Expert Opinion on Investigational Drugs, 2011, 20, 1397-1411.	1.9	173
25	Interleukin 24 as a novel potential cytokine immunotherapy for the treatment of Mycobacterium tuberculosis infection. Microbes and Infection, 2011, 13, 1099-1110.	1.0	43
26	The non-steroidal anti-inflammatory drugs Sulindac sulfide and Diclofenac induce apoptosis and differentiation in human acute myeloid leukemia cells through an AP-1 dependent pathway. Apoptosis: an International Journal on Programmed Cell Death, 2011, 16, 889-901.	2.2	41
27	The potential of virus-based gene therapies for treatment of metastatic kidney cancer. Expert Review of Anticancer Therapy, 2011, 11, 809-811.	1.1	1
28	Novel Functions for <i>mda-7</i> /IL-24 and IL-24 delE5: Regulation of Differentiation of Acute Myeloid Leukemic Cells. Molecular Cancer Therapeutics, 2011, 10, 615-625.	1.9	23
29	A Serotype 5/3 Adenovirus Expressing MDA-7/IL-24 Infects Renal Carcinoma Cells and Promotes Toxicity of Agents That Increase Ros and Ceramide Levels. Molecular Pharmacology, 2011, 79, 368-380.	1.0	28
30	Synergistic antitumor effect of TRAIL and IL-24 with complete eradication of hepatoma in the CTGVT-DG strategy. Acta Biochimica Et Biophysica Sinica, 2012, 44, 535-543.	0.9	15
31	Selected Approaches for Rational Drug Design and High Throughput Screening to Identify Anti-Cancer Molecules. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12, 1143-1155.	0.9	19
32	Adenovirus-Based Immunotherapy of Cancer: Promises to Keep. Advances in Cancer Research, 2012, 115, 147-220.	1.9	16
33	A First-Generation Multi-Functional Cytokine for Simultaneous Optical Tracking and Tumor Therapy. PLoS ONE, 2012, 7, e40234.	1.1	31
34	<i>mdaâ€7</i> /ILâ€24 differentially regulates soluble and nuclear clusterin in prostate cancer. Journal of Cellular Physiology, 2012, 227, 1805-1813.	2.0	33
35	The novel compound OSI-461 induces apoptosis and growth arrest in human acute myeloid leukemia cells. Annals of Hematology, 2012, 91, 173-181.	0.8	3
36	Enhanced prostate cancer gene transfer and therapy using a novel serotype chimera cancer terminator virus (Ad.5/3- <i>CTV</i>). Journal of Cellular Physiology, 2013, 229, n/a-n/a.	2.0	21

#	Article	IF	CITATIONS
37	Sigma 1 Receptor plays a prominent role in IL-24-induced cancer-specific apoptosis. Biochemical and Biophysical Research Communications, 2013, 439, 215-220.	1.0	29
38	Interleukin-24 mediates apoptosis in human B-cells through early activation of cell cycle arrest followed by late induction of the mitochondrial apoptosis pathway. Leukemia and Lymphoma, 2013, 54, 587-597.	0.6	13
39	MicroRNA-205 Directly Regulates the Tumor Suppressor, Interleukin-24, in Human KB Oral Cancer Cells. Molecules and Cells, 2013, 35, 17-24.	1.0	47
40	Stabilization of MDA-7/IL-24 for colon cancer therapy. Cancer Letters, 2013, 335, 421-430.	3.2	36
41	IL-24 sensitizes tumor cells to TLR3-mediated apoptosis. Cell Death and Differentiation, 2013, 20, 823-833.	5.0	25
42	Targeting breast cancer-initiating/stem cells with melanoma differentiation-associated gene-7/interleukin-24. International Journal of Cancer, 2013, 133, n/a-n/a.	2.3	36
43	Estrogen promotes the growth of decidual stromal cells in human early pregnancy. Molecular Human Reproduction, 2013, 19, 655-664.	1.3	11
44	Combining histone deacetylase inhibitors with MDA-7/IL-24 enhances killing of renal carcinoma cells. Cancer Biology and Therapy, 2013, 14, 1039-1049.	1.5	21
45	<i>mda-</i> 7/IL-24 Expression Inhibits Breast Cancer through Upregulation of Growth Arrest-Specific Gene 3 (<i>gas3</i>) and Disruption of β1 Integrin Function. Molecular Cancer Research, 2013, 11, 593-603.	1.5	16
46	Histone Deacetylase Inhibitors Interact with Melanoma Differentiation Associated-7/Interleukin-24 to Kill Primary Human Glioblastoma Cells. Molecular Pharmacology, 2013, 84, 171-181.	1.0	21
47	MDA-7/IL-24 inhibits Nrf2-mediated antioxidant response through activation of p38 pathway and inhibition of ERK pathway involved in cancer cell apoptosis. Cancer Gene Therapy, 2014, 21, 416-426.	2.2	24
48	Novel Mechanism of MDA-7/IL-24 Cancer-Specific Apoptosis through SARI Induction. Cancer Research, 2014, 74, 563-574.	0.4	41
50	Anticancer Gene Transfer for Cancer Gene Therapy. Advances in Experimental Medicine and Biology, 2014, 818, 255-280.	0.8	6
51	MDA-7/IL-24: Multifunctional Cancer Killing Cytokine. Advances in Experimental Medicine and Biology, 2014, 818, 127-153.	0.8	104
52	A novel human interleukin-24 peptide created by computer-guided design contributes to suppression of proliferation in esophageal squamous cell carcinoma Eca-109 cells. Oncology Reports, 2015, 33, 193-200.	1.2	4
53	Prokaryotically and eukaryotically expressed interleukin-24 induces breast cancer growth suppression via activation of apoptosis and inhibition of tumor angiogenesis. Molecular Medicine Reports, 2015, 11, 3673-3681.	1.1	4
54	Expression and effect of serum interleukin-24 level on bone marrow mononuclear cells in children with acute leukemia. Genetics and Molecular Research, 2015, 14, 17281-17288.	0.3	4
55	Soluble expression, rapid purification, and characterization of human interleukin-24 (IL-24) using a MBP-SUMO dual fusion system in Escherichia coli. Applied Microbiology and Biotechnology, 2015, 99, 6705-6713.	1.7	21

# 56	ARTICLE Reversing Translational Suppression and Induction of Toxicity in Pancreatic Cancer Cells Using a Chemoprevention Gene Therapy Approach. Molecular Pharmacology, 2015, 87, 286-295.	IF 1.0	Citations 8
57	Interleukin-1 Superfamily and Cancer. , 2015, , 17-61.		0
58	Gene Therapies for Cancer: Strategies, Challenges and Successes. Journal of Cellular Physiology, 2015, 230, 259-271.	2.0	179
59	Interleukin-10 Superfamily and Cancer. , 2015, , 147-222.		0
60	Mechanism of Action and Applications of Interleukin 24 in Immunotherapy. International Journal of Molecular Sciences, 2016, 17, 869.	1.8	59
61	Loss of tumorigenic potential upon transdifferentiation from keratinocytic into melanocytic lineage. Scientific Reports, 2016, 6, 28891.	1.6	7
62	Secreted recombinant human IL-24 protein inhibits the proliferation of esophageal squamous cell carcinoma Eca-109 cells in vitro and in vivo. Oncology Reports, 2016, 35, 2681-2690.	1.2	16
63	Cellâ€penetrating and endoplasmic reticulumâ€locating TATâ€lLâ€24â€KDEL fusion protein induces tumor apoptosis. Journal of Cellular Physiology, 2016, 231, 84-93.	2.0	26
64	Macrophages promote the growth and invasion of endometrial stromal cells by downregulating IL-24 in endometriosis. Reproduction, 2016, 152, 673-682.	1.1	39
65	elF2α Phosphorylation Mediates IL24-Induced Apoptosis through Inhibition of Translation. Molecular Cancer Research, 2017, 15, 1117-1124.	1.5	10
66	<i>mda-7/IL-24</i> Mediates Cancer Cell–Specific Death via Regulation of miR-221 and the Beclin-1 Axis. Cancer Research, 2017, 77, 949-959.	0.4	47
67	Enhanced tumor growth inhibition by mesenchymal stem cells derived from iPSCs with targeted integration of interleukin24 into rDNA loci. Oncotarget, 2017, 8, 40791-40803.	0.8	20
68	The Enigma of miRNA Regulation in Cancer. Advances in Cancer Research, 2017, 135, 25-52.	1.9	37
69	Effect of RGD coupled MDA-7/IL-24 on apoptosis induction in a hepatocellular carcinoma cell line. Molecular Medicine Reports, 2017, 15, 495-501.	1.1	13
70	Expression, Purification and Functional Assessment of Smallest Isoform of Human Interleukin-24 in Escherichia coli. Brazilian Archives of Biology and Technology, 2017, 60, .	0.5	3
71	Enhancing the apoptotic effect of IL-24/mda-7 on the human hepatic stellate cell through RGD peptide modification. Immunological Investigations, 2018, 47, 335-350.	1.0	5
72	Cancer terminator viruses (<i>CTV</i>): A better solution for viralâ€based therapy of cancer. Journal of Cellular Physiology, 2018, 233, 5684-5695.	2.0	13
73	Iron-induced calcification in human aortic vascular smooth muscle cells through interleukin-24 (IL-24), with/without TNF-alpha. Scientific Reports, 2018, 8, 658.	1.6	32

#	Article	IF	CITATIONS
74	New Insights Into Beclin-1: Evolution and Pan-Malignancy Inhibitor Activity. Advances in Cancer Research, 2018, 137, 77-114.	1.9	19
75	Role of MDA-7/IL-24 a Multifunction Protein in Human Diseases. Advances in Cancer Research, 2018, 138, 143-182.	1.9	38
76	Recombinant MDA-7/IL24 Suppresses Prostate Cancer Bone Metastasis through Downregulation of the Akt/Mcl-1 Pathway. Molecular Cancer Therapeutics, 2018, 17, 1951-1960.	1.9	23
77	Eukaryotic Translation Initiation Factor 4A Down-Regulation Mediates Interleukin-24-Induced Apoptosis through Inhibition of Translation. Cancers, 2018, 10, 153.	1.7	8
78	MicroRNA-4719 and microRNA-6756-5p Correlate with Castration-Resistant Prostate Cancer Progression through Interleukin-24 Regulation. Non-coding RNA, 2019, 5, 10.	1.3	7
79	Role of interleukinâ€24 in the tumorâ€suppressive effects of interferonâ€Î² on melanoma. Experimental Dermatology, 2019, 28, 836-844.	1.4	7
80	MDA-7/IL-24 regulates the miRNA processing enzyme DICER through downregulation of MITF. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5687-5692.	3.3	24
81	HIVâ€1 infection modulates ILâ€24 expression which contributes to cell apoptosis in vitro. Cell Biology International, 2019, 43, 574-579.	1.4	4
82	MDA-7/interleukin 24 (IL-24) in tumor gene therapy: application of tumor penetrating/homing peptides for improvement of the effects. Expert Opinion on Biological Therapy, 2019, 19, 211-223.	1.4	11
83	Recent insights into apoptosis and toxic autophagy: The roles of MDA-7/IL-24, a multidimensional anti-cancer therapeutic. Seminars in Cancer Biology, 2020, 66, 140-154.	4.3	45
84	Mesenchymal stem cells derived from iPSCs expressing interleukin-24 inhibit the growth of melanoma in the tumor-bearing mouse model. Cancer Cell International, 2020, 20, 33.	1.8	14
86	Theranostic Tripartite Cancer Terminator Virus for Cancer Therapy and Imaging. Cancers, 2021, 13, 857.	1.7	4
87	Engineering T Cells to Express Tumoricidal MDA-7/IL24 Enhances Cancer Immunotherapy. Cancer Research, 2021, 81, 2429-2441.	0.4	5
88	Mesenchymal Stem Cells Cultured in 3D System Inhibit Non-Small Cell Lung Cancer Cells through p38 MAPK and CXCR4/AKT Pathways by IL-24 Regulating. Molecular Biology, 2021, 55, 589-603.	0.4	2
89	The expression, purification, and functional evaluation of the novel tumor suppressor fusion protein IL-24-CN. Applied Microbiology and Biotechnology, 2021, 105, 7889-7898.	1.7	2
90	The Role of Th2-Mediated Anti-Tumor Immunity in Tumor Surveillance and Clearance. , 2010, , 255-275.		5
91	Cancer Terminator Viruses and Approaches for Enhancing Therapeutic Outcomes. Advances in Cancer Research, 2012, 115, 1-38.	1.9	26
92	The p38 MAPK Regulates IL-24 Expression by Stabilization of the 3′ UTR of IL-24 mRNA. PLoS ONE, 2010, 5, e8671.	1.1	35

#	Article	IF	CITATIONS
93	Clinical applications of mouse models for breast cancer engaging HER2/neu. Integrative Cancer Science and Therapeutics, 2016, 3, 593-603.	0.1	19
94	Mechanism of internalization of MDA-7/IL-24 protein and its cognate receptors following ligand-receptor docking. Oncotarget, 2019, 10, 5103-5117.	0.8	6
95	Therapy of prostate cancer using a novel cancer terminator virus and a small molecule BH-3 mimetic. Oncotarget, 2015, 6, 10712-10727.	0.8	27
96	Suppression of Her2/Neu mammary tumor development in <i>mda-7/IL-24</i> transgenic mice. Oncotarget, 2015, 6, 36943-36954.	0.8	14
97	MDA-7/IL-24 functions as a tumor suppressor gene <i>in vivo</i> in transgenic mouse models of breast cancer. Oncotarget, 2015, 6, 36928-36942.	0.8	34
98	TAT-IL-24-KDEL-induced apoptosis is inhibited by survivin but restored by the small molecular survivin inhibitor, YM155, in cancer cells. Oncotarget, 2016, 7, 37030-37042.	0.8	7
99	Interleukin-24 Gene Therapy for Melanoma. , 2010, , 181-202.		0
100	Differential expression pattern of genes involved in oxygen metabolism in epithelial oviductal cells during primary in vitro culture. Medical Journal of Cell Biology (discontinued), 2019, 7, 66-76.	0.2	0
101	Interleukin-24 inhibits the phenotype and tumorigenicity of cancer stem cell in osteosarcoma via downregulation Notch and Wnt/l²-catenin signaling. Journal of Bone Oncology, 2021, 31, 100403.	1.0	4
103	Developing an effective gene therapy for prostate cancer: New technologies with potential to translate from the laboratory into the clinic. Discovery Medicine, 2011, 11, 46-56.	0.5	23
104	Construction of expressing vectors including melanoma differentiation-associated gene-7 (mda-7) fused with the RGD sequences for better tumor targeting. Iranian Journal of Basic Medical Sciences, 2015, 18, 780-7.	1.0	4
105	Combined Inhibition of G9a and EZH2 Suppresses Tumor Growth via Synergistic Induction of IL24-Mediated Apoptosis. Cancer Research, 2022, 82, 1208-1221.	0.4	8
106	Enhanced Cancer Therapy Using an Engineered Designer Cytokine Alone and in Combination With an Immune Checkpoint Inhibitor. Frontiers in Oncology, 2022, 12, 812560.	1.3	2
107	Integrative analysis of genomic and transcriptomic data of normal, tumour, and coâ€occurring leukoplakia tissue triads drawn from patients with gingivobuccal oral cancer identifies signatures of tumour initiation and progression. Journal of Pathology, 2022, 257, 593-606.	2.1	13
108	Induction of <i>IL19</i> expression through JNK and cGAS-STING modulates DNA damage–induced cytokine production. Science Signaling, 2021, 14, eaba2611.	1.6	1
109	Insights into the Mechanisms of Action of MDA-7/IL-24: A Ubiquitous Cancer-Suppressing Protein. International Journal of Molecular Sciences, 2022, 23, 72.	1.8	5
110	Interleukin 24 promotes cell death in renal epithelial cells and is associated with acute renal injury. American Journal of Transplantation, 0, , .	2.6	3