A Competitive Inhibitor Traps LeuT in an Open-to-Out

Science 322, 1655-1661 DOI: 10.1126/science.1166777

Citation Report

#	Article	IF	CITATIONS
2	An Almost-Complete Movie. Science, 2008, 322, 1644-1645.	6.0	35
3	The Rocking Bundle: A Mechanism for Ion-Coupled Solute Flux by Symmetrical Transporters. Physiology, 2009, 24, 377-386.	1.6	253
4	Location of the Antidepressant Binding Site in the Serotonin Transporter. Journal of Biological Chemistry, 2009, 284, 10276-10284.	1.6	105
5	Ligand Effects on Cross-linking Support a Conformational Mechanism for Serotonin Transport. Journal of Biological Chemistry, 2009, 284, 33807-33814.	1.6	16
6	Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor-bound conformation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5563-5568.	3.3	184
7	Extracellular Loops 2 and 4 of GLYT2 Are Required for N-Arachidonylglycine Inhibition of Glycine Transport. Journal of Biological Chemistry, 2009, 284, 36424-36430.	1.6	27
8	Fluoxetine (Prozac) Binding to Serotonin Transporter Is Modulated by Chloride and Conformational Changes. Journal of Neuroscience, 2009, 29, 9635-9643.	1.7	84
9	Structure and function of Na+-symporters with inverted repeats. Current Opinion in Structural Biology, 2009, 19, 425-432.	2.6	198
10	The role of the neutral amino acid transporter B ⁰ AT1 (SLC6A19) in Hartnup disorder and protein nutrition. IUBMB Life, 2009, 61, 591-599.	1.5	202
11	Molecular physiology of the insect Kâ€activated amino acid transporter 1 (KAAT1) and cationâ€anion activated amino acid transporter/channel 1 (CAATCH1) in the light of the structure of the homologous protein LeuT. Insect Molecular Biology, 2009, 18, 265-279.	1.0	15
12	Convergent evolution and orphan genes in the Fur4pâ€like family and characterization of a general nucleoside transporter in <i>Aspergillus nidulans</i> . Molecular Microbiology, 2009, 73, 43-57.	1.2	40
13	Unlocking the molecular secrets of sodium-coupled transporters. Nature, 2009, 459, 347-355.	13.7	308
15	Antidepressant specificity of serotonin transporter suggested by three LeuT–SSRI structures. Nature Structural and Molecular Biology, 2009, 16, 652-657.	3.6	239
16	Basis of substrate binding and conservation of selectivity in the CLC family of channels and transporters. Nature Structural and Molecular Biology, 2009, 16, 1294-1301.	3.6	106
17	NMR Characterization of Membrane Proteinâ^'Detergent Micelle Solutions by Use of Microcoil Equipment. Journal of the American Chemical Society, 2009, 131, 18450-18456.	6.6	27
18	Transmembrane Topology of the Mammalian Slc11a2 Iron Transporter. Biochemistry, 2009, 48, 8422-8434.	1.2	43
19	Modelling and mutational evidence identify the substrate binding site and functional elements in APC amino acid transporters. Molecular Membrane Biology, 2009, 26, 356-370.	2.0	23
20	Substrate–Na+ complex formation: Coupling mechanism for γ-aminobutyrate symporters. Biochemical and Biophysical Research Communications, 2009, 385, 210-214.	1.0	12

ATION RED

ARTICLE IF CITATIONS # Alternating Access in Maltose Transporter Mediated by Rigid-Body Rotations. Molecular Cell, 2009, 33, 22 4.5 218 528-536. Ion-Releasing State of a Secondary Membrane Transporter. Biophysical Journal, 2009, 97, L29-L31. 0.2 58 Recent advances in the understanding of the interaction of antidepressant drugs with serotonin and 24 2.2 95 norepinephrine transporters. Chemical Communications, 2009, , 3677. Structure and Mechanism of a Na ⁺ -Independent Amino Acid Transporter. Science, 2009, 299 325, 1010-1014. Assessing Structure, Function and Druggability of Major Inhibitory Neurotransmitter 1.2 26 14 γ-Aminobutyrate Symporter Subtypes. Current Medicinal Chemistry, 2010, 17, 2203-2213. New Tools for Membrane Protein Research. Current Protein and Peptide Science, 2010, 11, 156-165. Reassessment of Models of Facilitated Transport and Cotransport. Journal of Membrane Biology, 2010, 28 1.0 20 234, 75-112. Shape-dependent global deformation modes of large protein structures. Journal of Molecular 20 1.8 Structure, 2010, 972, 41-50. 30 Substrate and drug binding sites in LeuT. Current Opinion in Structural Biology, 2010, 20, 415-422. 2.6 39 Emerging structure–function relationships defining monoamine NSS transporter substrate and ligand affinity. Biochemical Pharmacology, 2010, 79, 1083-1091. Homology Modelling of the GABA Transporter and Analysis of Tiagabine Binding. ChemMedChem, 2010, 32 1.6 50 5,986-1000. Comparison of human solute carriers. Protein Science, 2010, 19, 412-428. 3.1 99 Molecular dynamics of leucine and dopamine transporter proteins in a model cell membrane lipid 34 1.5 33 bilayer. Proteins: Structure, Function and Bioinformatics, 2010, 78, 797-811. The reverse operation of Na⁺/Cl^{â[^]'}â€coupled neurotransmitter transporters – 2.1 why amphetamines take two to tango. Journal of Neurochemistry, 2010, 112, 340-355. Bivalent phenethylamines as novel dopamine transporter inhibitors: evidence for multiple 36 2.1 33 substrateâ€binding sites in a single transporter. Journal of Neurochemistry, 2010, 112, 1605-1618. The BCCT family of carriers: from physiology to crystal structure. Molecular Microbiology, 2010, 78, 150 13-34. Crystal structure of the carnitine transporter and insights into the antiport mechanism. Nature 38 3.6 71 Structural and Molecular Biology, 2010, 17, 492-496. Ion/substrate-dependent conformational dynamics of a bacterial homolog of 39 neurotransmitter:sodium symporters. Nature Structural and Molecular Biology, 2010, 17, 822-829.

#	Article	IF	CITATIONS
40	Single-molecule dynamics of gating in a neurotransmitter transporter homologue. Nature, 2010, 465, 188-193.	13.7	239
41	The mechanism of sodium and substrate release from the binding pocket of vSGLT. Nature, 2010, 468, 988-991.	13.7	197
42	Neurotransmitter/sodium symporter orthologue LeuT has a single high-affinity substrate site. Nature, 2010, 468, 1129-1132.	13.7	117
43	Transporter in the spotlight. Nature, 2010, 465, 171-172.	13.7	2
44	Controlled nanotube reactions. Nature, 2010, 465, 172-173.	13.7	44
45	The High-Affinity Binding Site for Tricyclic Antidepressants Resides in the Outer Vestibule of the Serotonin Transporter. Molecular Pharmacology, 2010, 78, 1026-1035.	1.0	71
46	Membrane Cholesterol Modulates the Outward Facing Conformation of the Dopamine Transporter and Alters Cocaine Binding. Journal of Biological Chemistry, 2010, 285, 32616-32626.	1.6	130
47	Localization of the Substrate-binding Site in the Homodimeric Mannitol Transporter, Ellmtl, of Escherichia coli. Journal of Biological Chemistry, 2010, 285, 25324-25331.	1.6	11
48	Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. Journal of the Royal Society Interface, 2010, 7, 373-395.	1.5	265
49	Mutational Mapping and Modeling of the Binding Site for (S)-Citalopram in the Human Serotonin Transporter. Journal of Biological Chemistry, 2010, 285, 2051-2063.	1.6	91
50	Structural Analysis of the Extracellular Entrance to the Serotonin Transporter Permeation Pathway. Journal of Biological Chemistry, 2010, 285, 15369-15379.	1.6	10
51	Transmembrane Domain 6 of the Human Serotonin Transporter Contributes to an Aqueously Accessible Binding Pocket for Serotonin and the Psychostimulant 3,4-Methylene Dioxymethamphetamine. Journal of Biological Chemistry, 2010, 285, 11270-11280.	1.6	31
52	Structural insights into the activation mechanism of melibiose permease by sodium binding. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22078-22083.	3.3	36
53	Binding and Orientation of Tricyclic Antidepressants within the Central Substrate Site of the Human Serotonin Transporter. Journal of Biological Chemistry, 2010, 285, 8363-8374.	1.6	85
54	Modeling and Dynamics of the Inward-Facing State of a Na+/Clâ^' Dependent Neurotransmitter Transporter Homologue. PLoS Computational Biology, 2010, 6, e1000905.	1.5	85
55	GATMD: Â-Aminobutyric Acid Transporter Mutagenesis Database. Database: the Journal of Biological Databases and Curation, 2010, 2010, baq028-baq028.	1.4	10
56	Transmembrane Helix I and Periplasmic Loop 1 ofEscherichia coliProP Are Involved in Osmosensing and Osmoprotectant Transport. Biochemistry, 2010, 49, 8847-8856.	1.2	21
57	Dynamic Elements at Both Cytoplasmically and Extracellularly Facing Sides of the UapA Transporter Selectively Control the Accessibility of Substrates to Their Translocation Pathway. Journal of Molecular Biology, 2010, 397, 1132-1143.	2.0	33

#	ARTICLE	IF	CITATIONS
58	Transporters, channels, or simple diffusion? Dogmas, atypical roles and complexity in transport systems. International Journal of Biochemistry and Cell Biology, 2010, 42, 857-868.	1.2	32
59	Structural perspectives on secondary active transporters. Trends in Pharmacological Sciences, 2010, 31, 418-426.	4.0	148
60	Molecular Basis of Alternating Access Membrane Transport by the Sodium-Hydantoin Transporter Mhp1. Science, 2010, 328, 470-473.	6.0	283
61	Mechanism of substrate recognition and transport by an amino acid antiporter. Nature, 2010, 463, 828-832.	13.7	196
62	Structureâ^'Activity Relationships for a Novel Series of Citalopram (1-(3-(Dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile) Analogues at Monoamine Transporters. Journal of Medicinal Chemistry, 2010, 53, 6112-6121.	2.9	39
63	The sodium/galactose symporter crystal structure is a dynamic, not so occluded state. Molecular BioSystems, 2010, 6, 1040.	2.9	26
64	Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, NET. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15810-15815.	3.3	120
65	The mechanism of substrate release by the aspartate transporter Glt _{Ph} : insights from simulations. Molecular BioSystems, 2011, 7, 832-842.	2.9	44
66	The Role of Local Hydration and Hydrogen-Bonding Dynamics in Ion and Solute Release from Ion-Coupled Secondary Transporters. Biochemistry, 2011, 50, 1848-1856.	1.2	51
68	Cytoplasmic Permeation Pathway of Neurotransmitter Transporters. Biochemistry, 2011, 50, 7462-7475.	1.2	29
69	Sodium-coupled Secondary Transporters: Insights from Structure-based Computations. , 2011, , 199-229.		2
72	Crystal Structure of the Maltose Transporter in a Pretranslocation Intermediate State. Science, 2011, 332, 1202-1205.	6.0	192
73	From Coarse Grained to Atomistic: A Serial Multiscale Approach to Membrane Protein Simulations. Journal of Chemical Theory and Computation, 2011, 7, 1157-1166.	2.3	240
74	Discovery of Novel Selective Serotonin Reuptake Inhibitors through Development of a Protein-Based Pharmacophore. Journal of Chemical Information and Modeling, 2011, 51, 2417-2426.	2.5	27
75	Amino acid derivatives are substrates or non-transported inhibitors of the amino acid transporter PAT2 (slc36a2). Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 260-270.	1.4	25
76	The B°AT1 amino acid transporter from rat kidney reconstituted in liposomes: Kinetics and inactivation by methylmercury. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 2551-2558.	1.4	15
77	Profiling of a Prescription Drug Library for Potential Renal Drug–Drug Interactions Mediated by the Organic Cation Transporter 2. Journal of Medicinal Chemistry, 2011, 54, 4548-4558.	2.9	141
78	The binding sites for benztropines and dopamine in the dopamine transporter overlap. Neuropharmacology, 2011, 60, 182-190.	2.0	57

#	ARTICLE	IF	CITATIONS
79	Natural and engineered coding variation in antidepressant-sensitive serotonin transporters. Neuroscience, 2011, 197, 28-36.	1.1	21
80	Plant Sucrose Transporters from a Biophysical Point of View. Molecular Plant, 2011, 4, 395-406.	3.9	70
81	Hydrogen Exchange Mass Spectrometry of Bacteriorhodopsin Reveals Light-Induced Changes in the Structural Dynamics of a Biomolecular Machine. Journal of the American Chemical Society, 2011, 133, 20237-20244.	6.6	19
82	The Atypical Stimulant and Nootropic Modafinil Interacts with the Dopamine Transporter in a Different Manner than Classical Cocaine-Like Inhibitors. PLoS ONE, 2011, 6, e25790.	1.1	106
83	Substrate-modulated gating dynamics in a Na+-coupled neurotransmitter transporter homologue. Nature, 2011, 474, 109-113.	13.7	276
84	The structural basis of secondary active transport mechanisms. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 167-188.	0.5	360
85	SLC6 Neurotransmitter Transporters: Structure, Function, and Regulation. Pharmacological Reviews, 2011, 63, 585-640.	7.1	702
86	A short update on the structure of drug binding sites on neurotransmitter transporters. BMC Research Notes, 2011, 4, 559.	0.6	5
87	Atomistic Models for Free Energy Evaluation of Drug Binding to Membrane Proteins. Current Medicinal Chemistry, 2011, 18, 2601-2611.	1.2	18
88	Mechanism of anion selectivity and stoichiometry of the Na ⁺ /I ⁻ symporter (NIS). Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17933-17938.	3.3	55
89	Reconstructing a Chloride-binding Site in a Bacterial Neurotransmitter Transporter Homologue. Journal of Biological Chemistry, 2011, 286, 2834-2842.	1.6	29
90	Transport activity–dependent intracellular sorting of the yeast general amino acid permease. Molecular Biology of the Cell, 2011, 22, 1919-1929.	0.9	36
91	Templates and Models of Monoamine Transporter Proteins. Current Medicinal Chemistry, 2011, 18, 4651-4658.	1.2	0
92	Surprising Substrate Versatility in SLC5A6. Journal of Biological Chemistry, 2011, 286, 131-137.	1.6	57
93	To be, or not to be two sites: that is the question about LeuT substrate binding. Journal of General Physiology, 2011, 138, 467-471.	0.9	15
94	Role of Asp187 and Gln190 in the Na+/proline symporter (PutP) of Escherichia coli. Journal of Biochemistry, 2011, 150, 395-402.	0.9	4
95	Molecular determinants for selective recognition of antidepressants in the human serotonin and norepinephrine transporters. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12137-12142.	3.3	69
96	Unbiased Simulations Reveal the Inward-Facing Conformation of the Human Serotonin Transporter and Na+ Ion Release. PLoS Computational Biology, 2011, 7, e1002246.	1.5	54

#	Article	IF	CITATIONS
97	Using lithium to probe sequential cation interactions with GAT1. American Journal of Physiology - Cell Physiology, 2012, 302, C1661-C1675.	2.1	17
98	A Second Extracellular Site Is Required for Norepinephrine Transport by the Human Norepinephrine Transporter. Molecular Pharmacology, 2012, 82, 898-909.	1.0	18
99	Insights into transport mechanism from LeuT engineered to transport tryptophan. EMBO Journal, 2012, 31, 228-235.	3.5	45
100	Mutations in the GlyT2 Gene (SLC6A5) Are a Second Major Cause of Startle Disease. Journal of Biological Chemistry, 2012, 287, 28975-28985.	1.6	84
101	Structures of LeuT in bicelles define conformation and substrate binding in a membrane-like context. Nature Structural and Molecular Biology, 2012, 19, 212-219.	3.6	103
102	Probing Binding Pocket of Serotonin Transporter by Single Molecular Force Spectroscopy on Living Cells. Journal of Biological Chemistry, 2012, 287, 105-113.	1.6	63
103	Interaction of Antidepressants with the Serotonin and Norepinephrine Transporters. Journal of Biological Chemistry, 2012, 287, 43694-43707.	1.6	73
104	Loop Diuretic and Ion-binding Residues Revealed by Scanning Mutagenesis of Transmembrane Helix 3 (TM3) of Na-K-Cl Cotransporter (NKCC1). Journal of Biological Chemistry, 2012, 287, 17308-17317.	1.6	68
105	Topologically Conserved Residues Direct Heme Transport in HRG-1-related Proteins. Journal of Biological Chemistry, 2012, 287, 4914-4924.	1.6	55
106	A Conformational Switch in a Partially Unwound Helix Selectively Determines the Pathway for Substrate Release from the Carnitine/γ-Butyrobetaine Antiporter CaiT. Journal of Biological Chemistry, 2012, 287, 31823-31832.	1.6	17
107	LeuT Conformational Sampling Utilizing Accelerated Molecular Dynamics and Principal Component Analysis. Biophysical Journal, 2012, 103, L1-L3.	0.2	28
108	Fluorescent stilbazolium dyes as probes of the norepinephrine transporter: structural insights into substrate binding. Organic and Biomolecular Chemistry, 2012, 10, 8710.	1.5	19
109	Experimental conditions can obscure the second high-affinity site in LeuT. Nature Structural and Molecular Biology, 2012, 19, 207-211.	3.6	84
110	The Mechanistic Basis for Noncompetitive Ibogaine Inhibition of Serotonin and Dopamine Transporters. Journal of Biological Chemistry, 2012, 287, 18524-18534.	1.6	105
111	Modeling, Substrate Docking, and Mutational Analysis Identify Residues Essential for the Function and Specificity of a Eukaryotic Purine-Cytosine NCS1 Transporter. Journal of Biological Chemistry, 2012, 287, 36792-36803.	1.6	39
112	Molecular basis for differential glycine transporters sensitivity to sanguinarine. Toxicology Letters, 2012, 212, 262-267.	0.4	2
113	Conformational Dynamics of a Membrane Transport Protein Probed by H/D Exchange and Covalent Labeling: The Glycerol Facilitator. Journal of Molecular Biology, 2012, 416, 400-413.	2.0	45
114	A gate-free pathway for substrate release from the inward-facing state of the Na+-galactose transporter. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 263-271.	1.4	22

#	Article	IF	CITATIONS
115	Atomistic models of ion and solute transport by the sodium-dependent secondary active transporters. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 337-347.	1.4	21
116	Role of a conserved glycine triplet in the NSS amino acid transporter KAAT1. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1737-1744.	1.4	8
118	Simulated annealing reveals the kinetic activity of SGLT1, a member of the LeuT structural family. Journal of General Physiology, 2012, 140, 361-374.	0.9	8
119	High Selectivity of the γ-Aminobutyric Acid Transporter 2 (GAT-2, SLC6A13) Revealed by Structure-based Approach. Journal of Biological Chemistry, 2012, 287, 37745-37756.	1.6	49
120	8.12 Membrane Proteins for Secondary Active Transport and their Molecular Mechanisms. , 2012, , 265-288.		2
121	Ion-Controlled Conformational Dynamics in the Outward-Open Transition from an Occluded State of LeuT. Biophysical Journal, 2012, 103, 878-888.	0.2	80
122	Insights from molecular dynamics: The binding site of cocaine in the dopamine transporter and permeation pathways of substrates in the leucine and dopamine transporters. Journal of Molecular Graphics and Modelling, 2012, 38, 1-12.	1.3	19
123	Substrate binds in the S1 site of the F253A mutant of LeuT, a neurotransmitter sodium symporter homologue. EMBO Reports, 2012, 13, 861-866.	2.0	39
124	Monoamine Transporter Structure, Function, Dynamics, and Drug Discovery: A Computational Perspective. AAPS Journal, 2012, 14, 820-831.	2.2	39
125	Towards an understanding of the psychostimulant action of amphetamine and cocaine. , 2012, , 183-203.		1
126	X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature, 2012, 481, 469-474.	13.7	488
127	9.7 Molecular Modeling and Simulations of Transporter Proteins – The Transmembrane Allosteric Machinery. , 2012, , 105-122.		2
128	Molecular Modeling and Simulation of Membrane Transport Proteins. , 0, , .		0
129	Identifying continuous pores in protein structures with PROPORES by computational repositioning of gating residues. Proteins: Structure, Function and Bioinformatics, 2012, 80, 421-432.	1.5	10
130	Molecular mechanism of serotonin transporter inhibition elucidated by a new flexible docking protocol. European Journal of Medicinal Chemistry, 2012, 47, 24-37.	2.6	26
131	Synthesis, inÂvitro binding studies and docking of long-chain arylpiperazine nitroquipazine analogues, as potential serotonin transporter inhibitors. European Journal of Medicinal Chemistry, 2012, 49, 200-210.	2.6	5
132	Substrate binding and translocation of the serotonin transporter studied by docking and molecular dynamics simulations. Journal of Molecular Modeling, 2012, 18, 1073-1085.	0.8	30
133	Implications of Aberrant Temperature-Sensitive Clucose Transport Via the Glucose Transporter Deficiency Mutant (GLUT1DS) T295M for the Alternate-Access and Fixed-Site Transport Models. Journal of Membrane Biology, 2013, 246, 495-511.	1.0	12

#	Article	IF	CITATIONS
134	A comparative study of structures and structural transitions of secondary transporters with the LeuT fold. European Biophysics Journal, 2013, 42, 181-197.	1.2	21
135	Neurotransmitter transporters in schistosomes: Structure, function and prospects for drug discovery. Parasitology International, 2013, 62, 629-638.	0.6	29
136	How do transporters couple solute movements?. Molecular Membrane Biology, 2013, 30, 355-359.	2.0	18
137	Identification of an allosteric modulator of the serotonin transporter with novel mechanism of action. Neuropharmacology, 2013, 72, 282-290.	2.0	33
138	SLC6 transporters: Structure, function, regulation, disease association and therapeutics. Molecular Aspects of Medicine, 2013, 34, 197-219.	2.7	232
139	Structural basis for action by diverse antidepressants on biogenic amine transporters. Nature, 2013, 503, 141-145.	13.7	125
140	X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature, 2013, 503, 85-90.	13.7	549
141	The Membrane Protein LeuT in Micellar Systems: Aggregation Dynamics and Detergent Binding to the S2 Site. Journal of the American Chemical Society, 2013, 135, 14266-14275.	6.6	32
142	Visualizing Functional Motions of Membrane Transporters with Molecular Dynamics Simulations. Biochemistry, 2013, 52, 569-587.	1.2	46
143	Comparative Modeling of the Human Monoamine Transporters: Similarities in Substrate Binding. ACS Chemical Neuroscience, 2013, 4, 295-309.	1.7	59
144	Neurotransmitter Transporters: Structure Meets Function. Structure, 2013, 21, 694-705.	1.6	52
145	Coupled Global and Local Changes Direct Substrate Translocation byÂNeurotransmitter-Sodium Symporter Ortholog LeuT. Biophysical Journal, 2013, 105, 630-639.	0.2	65
146	The cost of living in the membrane: A case study of hydrophobic mismatch for the multi-segment protein LeuT. Chemistry and Physics of Lipids, 2013, 169, 27-38.	1.5	41
147	Oleoylâ€ <scp>l</scp> â€earnitine inhibits glycine transport by <scp>G</scp> ly <scp>T</scp> 2. British Journal of Pharmacology, 2013, 168, 891-902.	2.7	30
148	Novel Mannich Bases, 5â€Arylimidazolidineâ€2,4â€dione Derivatives with Dual 5â€HT _{1A} Receptor and Serotonin Transporter Affinity. Archiv Der Pharmazie, 2013, 346, 98-109.	2.1	15
149	Common Folds and Transport Mechanisms of Secondary Active Transporters. Annual Review of Biophysics, 2013, 42, 51-72.	4.5	266
150	Combining Structureâ€Based Pharmacophore and <i>In Silico</i> Approaches to Discover Novel Selective Serotonin Reuptake Inhibitors. Chemical Biology and Drug Design, 2013, 82, 705-717.	1.5	9
151	Combinatorial Pharmacophore Modeling of Organic Cation Transporter 2 (OCT2) Inhibitors: Insights into Multiple Inhibitory Mechanisms. Molecular Pharmaceutics, 2013, 10, 4611-4619.	2.3	21

#	ARTICLE	IF	CITATIONS
152	A virtual high-throughput screening approach to the discovery of novel inhibitors of the bacterial leucine transporter, LeuT. Molecular Membrane Biology, 2013, 30, 184-194.	2.0	3
153	Mutational Analysis of the High-Affinity Zinc Binding Site Validates a Refined Human Dopamine Transporter Homology Model. PLoS Computational Biology, 2013, 9, e1002909.	1.5	60
154	Chloride binding site of neurotransmitter sodium symporters. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8489-8494.	3.3	85
155	Nonclassical Pharmacology of the Dopamine Transporter: Atypical Inhibitors, Allosteric Modulators, and Partial Substrates. Journal of Pharmacology and Experimental Therapeutics, 2013, 346, 2-10.	1.3	97
156	Synthesis, Antidepressant Evaluation and Docking Studies of Longâ€Chain Alkylnitroquipazines as Serotonin Transporter Inhibitors. Chemical Biology and Drug Design, 2013, 81, 695-706.	1.5	10
158	Ligand Induced Conformational Changes of the Human Serotonin Transporter Revealed by Molecular Dynamics Simulations. PLoS ONE, 2013, 8, e63635.	1.1	49
159	GlyT-1 Inhibitors: From Hits to Clinical Candidates. Topics in Medicinal Chemistry, 2014, , 51-99.	0.4	9
160	Systematic Comparison of Molecular Conformations of H+,K+-ATPase Reveals an Important Contribution of the A-M2 Linker for the Luminal Gating. Journal of Biological Chemistry, 2014, 289, 30590-30601.	1.6	9
161	A Conserved Salt Bridge between Transmembrane Segments 1 and 10 Constitutes an Extracellular Gate in the Dopamine Transporter. Journal of Biological Chemistry, 2014, 289, 35003-35014.	1.6	18
162	Conformational dynamics of ligand-dependent alternating access in LeuT. Nature Structural and Molecular Biology, 2014, 21, 472-479.	3.6	136
163	Complete Mapping of Substrate Translocation Highlights the Role of LeuT N-terminal Segment in Regulating Transport Cycle. PLoS Computational Biology, 2014, 10, e1003879.	1.5	71
164	NbIT - A New Information Theory-Based Analysis of Allosteric Mechanisms Reveals Residues that Underlie Function in the Leucine Transporter LeuT. PLoS Computational Biology, 2014, 10, e1003603.	1.5	89
165	Understanding transporter specificity and the discrete appearance of channel-like gating domains in transporters. Frontiers in Pharmacology, 2014, 5, 207.	1.6	61
166	Teaching students to read the primary literature using pogil activities. Biochemistry and Molecular Biology Education, 2014, 42, 165-173.	0.5	40
167	Structural dynamics of the monoamine transporter homolog LeuT from accelerated conformational sampling and channel analysis. Proteins: Structure, Function and Bioinformatics, 2014, 82, 2289-2302.	1.5	4
168	Characterizing the Structure, Function, and Evolution of Human Solute Carrier (SLC) Transporters Using Computational Approaches. Springer Series in Biophysics, 2014, , 23-57.	0.4	2
169	Functional mapping and implications of substrate specificity of the yeast high-affinity leucine permease Bap2. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1719-1729.	1.4	19
170	Conformational changes in dopamine transporter intracellular regions upon cocaine binding and dopamine translocation. Neurochemistry International, 2014, 73, 4-15.	1.9	13

#	Article	IF	CITATIONS
171	How LeuT shapes our understanding of the mechanisms of sodium oupled neurotransmitter transporters. Journal of Physiology, 2014, 592, 863-869.	1.3	96
172	Extracellular loop 3 of the noradrenaline transporter contributes to substrate and inhibitor selectivity. Naunyn-Schmiedeberg's Archives of Pharmacology, 2014, 387, 95-107.	1.4	2
173	Novel di-aryl-substituted isoxazoles act as noncompetitive inhibitors of the system <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:msubsup><mml:mrow><mml:mtext>x</mml:mtext></mml:mrow><mml:r cystine/glutamate exchanger. Neurochemistry International, 2014, 73, 132-138.</mml:r </mml:msubsup></mml:mrow></mml:math 	nrow> <m< td=""><td>ml:mtext>c<!--</td--></td></m<>	ml:mtext>c </td
174	Membrane Transport Mechanism. Springer Series in Biophysics, 2014, , .	0.4	2
175	PRIMSIPLR: Prediction of innerâ€membrane situated poreâ€lining residues for alphaâ€helical transmembrane proteins. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1503-1511.	1.5	4
176	The Two Na+ Sites in the Human Serotonin Transporter Play Distinct Roles in the Ion Coupling and Electrogenicity of Transport. Journal of Biological Chemistry, 2014, 289, 1825-1840.	1.6	37
177	Antagonist-induced conformational changes in dopamine transporter extracellular loop two involve residues in a potential salt bridge. Neurochemistry International, 2014, 73, 16-26.	1.9	7
178	A mechanism for intracellular release of Na+ by neurotransmitter/sodium symporters. Nature Structural and Molecular Biology, 2014, 21, 1006-1012.	3.6	159
179	The Na+/lâ^' Symporter (NIS): Mechanism and Medical Impact. Endocrine Reviews, 2014, 35, 106-149.	8.9	228
180	The Second Sodium Site in the Dopamine Transporter Controls Cation Permeation and Is Regulated by Chloride. Journal of Biological Chemistry, 2014, 289, 25764-25773.	1.6	42
181	Computational and Biochemical Docking of the Irreversible Cocaine Analog RTI 82 Directly Demonstrates Ligand Positioning in the Dopamine Transporter Central Substrate-binding Site. Journal of Biological Chemistry, 2014, 289, 29712-29727.	1.6	24
182	Identification of Novel Serotonin Transporter Compounds by Virtual Screening. Journal of Chemical Information and Modeling, 2014, 54, 933-943.	2.5	32
183	Specific analogues uncouple transport, signalling, oligoâ€ubiquitination and endocytosis in the yeast <scp>G</scp> ap1 amino acid transceptor. Molecular Microbiology, 2014, 93, 213-233.	1.2	38
184	Stereoselective inhibition of serotonin transporters by antimalarial compounds. Neurochemistry International, 2014, 73, 98-106.	1.9	9
185	Nimesulide binding site in the BOAT1 (SLC6A19) amino acid transporter. Mechanism of inhibition revealed by proteoliposome transport assay and molecular modelling. Biochemical Pharmacology, 2014, 89, 422-430.	2.0	27
186	Functional and structural dynamics of NhaA, a prototype for Na+ and H+ antiporters, which are responsible for Na+ and H+ homeostasis in cells. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1047-1062.	0.5	64
187	Radioligand Binding to Nanodisc-Reconstituted Membrane Transporters Assessed by the Scintillation Proximity Assay. Biochemistry, 2014, 53, 4-6.	1.2	26
188	Molecular mechanism of ligand recognition by membrane transport protein, Mhp1. EMBO Journal, 2014, 33, 1831-1844.	3.5	79

#	Article	IF	CITATIONS
189	Modelling and mutational analysis of <i>Aspergillus nidulans</i> UreA, a member of the subfamily of urea/H ⁺ transporters in fungi and plants. Open Biology, 2014, 4, 140070.	1.5	13
190	Novel Molecular Targets of Dezocine and Their Clinical Implications. Anesthesiology, 2014, 120, 714-723.	1.3	77
191	Combinatorial Pharmacophore Modeling of Multidrug and Toxin Extrusion Transporter 1 Inhibitors: a Theoretical Perspective for Understanding Multiple Inhibitory Mechanisms. Scientific Reports, 2015, 5, 13684.	1.6	15
192	Energy landscape of LeuT from molecular simulations. Journal of Chemical Physics, 2015, 143, 243134.	1.2	34
193	Computational modeling of the N-terminus of the human dopamine transporter and its interaction with PIP ₂ -containing membranes. Proteins: Structure, Function and Bioinformatics, 2015, 83, 952-969.	1.5	47
194	Insights into the Modulation of Dopamine Transporter Function by Amphetamine, Orphenadrine, and Cocaine Binding. Frontiers in Neurology, 2015, 6, 134.	1.1	64
195	Insights to ligand binding to the monoamine transporters—from homology modeling to LeuBAT and dDAT. Frontiers in Pharmacology, 2015, 6, 208.	1.6	23
196	Designing modulators of monoamine transporters using virtual screening techniques. Frontiers in Pharmacology, 2015, 6, 223.	1.6	17
197	Monoamine transporters: insights from molecular dynamics simulations. Frontiers in Pharmacology, 2015, 6, 235.	1.6	60
198	Microseconds Simulations Reveal a New Sodium-binding Site and the Mechanism of Sodium-coupled Substrate Uptake by LeuT. Journal of Biological Chemistry, 2015, 290, 544-555.	1.6	48
199	Triple reuptake inhibitors as potential next-generation antidepressants: a new hope?. Future Medicinal Chemistry, 2015, 7, 2385-2406.	1.1	35
200	Molecular Mechanism of HIV-1 Tat Interacting with Human Dopamine Transporter. ACS Chemical Neuroscience, 2015, 6, 658-665.	1.7	41
201	Simulating the Distance Distribution between Spin-Labels Attached to Proteins. Journal of Physical Chemistry B, 2015, 119, 3901-3911.	1.2	46
202	A Binding Mode Hypothesis of Tiagabine Confirms Liothyronine Effect on Î ³ -Aminobutyric Acid Transporter 1 (GAT1). Journal of Medicinal Chemistry, 2015, 58, 2149-2158.	2.9	44
203	Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter. Drug and Alcohol Dependence, 2015, 147, 1-19.	1.6	116
204	Identification of a Second Substrate-binding Site in Solute-Sodium Symporters. Journal of Biological Chemistry, 2015, 290, 127-141.	1.6	18
205	The Aspergillus nidulans Proline Permease as a Model for Understanding the Factors Determining Substrate Binding and Specificity of Fungal Amino Acid Transporters. Journal of Biological Chemistry, 2015, 290, 6141-6155.	1.6	16
206	Molecular dynamics simulations of Na+ and leucine transport by LeuT. Biochemical and Biophysical Research Communications, 2015, 464, 281-285.	1.0	5

#	Article	IF	CITATIONS
207	Importance of the Extracellular Loop 4 in the Human Serotonin Transporter for Inhibitor Binding and Substrate Translocation. Journal of Biological Chemistry, 2015, 290, 14582-14594.	1.6	8
208	Properties of an Inward-Facing State of LeuT: Conformational Stability andÂSubstrate Release. Biophysical Journal, 2015, 108, 1390-1399.	0.2	26
209	Membrane Composition Variation and Underdamped Mechanics near Transmembrane Proteins and Coats. Physical Review Letters, 2015, 114, 098101.	2.9	14
210	Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature, 2015, 521, 322-327.	13.7	357
211	Biophysical Approaches to the Study of LeuT, a Prokaryotic Homolog of Neurotransmitter Sodium Symporters. Methods in Enzymology, 2015, 557, 167-198.	0.4	10
212	Functional mechanisms of neurotransmitter transporters regulated by lipid–protein interactions of their terminal loops. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1765-1774.	1.4	29
213	Substrate-induced Unlocking of the Inner Gate Determines the Catalytic Efficiency of a Neurotransmitter:Sodium Symporter. Journal of Biological Chemistry, 2015, 290, 26725-26738.	1.6	32
214	Spontaneous Inward Opening of the Dopamine Transporter Is Triggered by PIP ₂ -Regulated Dynamics of the N-Terminus. ACS Chemical Neuroscience, 2015, 6, 1825-1837.	1.7	95
215	Mechanism of the Association between Na+ Binding and Conformations at the Intracellular Gate in Neurotransmitter:Sodium Symporters. Journal of Biological Chemistry, 2015, 290, 13992-14003.	1.6	58
216	Molecular Mechanism of Dopamine Transport by Human Dopamine Transporter. Structure, 2015, 23, 2171-2181.	1.6	81
217	Substrate and Inhibitor–Specific Conformational Changes in the Human Serotonin Transporter Revealed by Voltage-Clamp Fluorometry. Molecular Pharmacology, 2015, 88, 676-688.	1.0	6
218	YjeH Is a Novel Exporter of <scp>l</scp> -Methionine and Branched-Chain Amino Acids in Escherichia coli. Applied and Environmental Microbiology, 2015, 81, 7753-7766.	1.4	29
219	The use of LeuT as a model in elucidating binding sites for substrates and inhibitors in neurotransmitter transporters. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 500-510.	1.1	37
220	Fluorescent Neurotransmitter Analogs. , 2016, , 393-408.		0
221	The Environment Shapes the Inner Vestibule of LeuT. PLoS Computational Biology, 2016, 12, e1005197.	1.5	16
222	Different Binding Modes of Small and Large Binders of GAT1. ChemMedChem, 2016, 11, 509-518.	1.6	26
223	Role of Histidine 547 of Human Dopamine Transporter in Molecular Interaction with HIV-1 Tat and Dopamine Uptake. Scientific Reports, 2016, 6, 27314.	1.6	15
224	X-ray structures and mechanism of the human serotonin transporter. Nature, 2016, 532, 334-339.	13.7	527

#	Article	IF	CITATIONS
225	Synthesis and inhibitory evaluation of 3-linked imipramines for the exploration of the S2 site of the human serotonin transporter. Bioorganic and Medicinal Chemistry, 2016, 24, 2725-2738.	1.4	16
226	Cell permeability beyond the rule of 5. Advanced Drug Delivery Reviews, 2016, 101, 42-61.	6.6	196
227	Tracer Flux Measurements to Study Outward Transport by Monoamine Neurotransmitter Transporters. Neuromethods, 2016, , 23-40.	0.2	4
228	Effect of External Electric Field on Substrate Transport of a Secondary Active Transporter. Journal of Chemical Information and Modeling, 2016, 56, 1539-1546.	2.5	5
229	Conformational Dynamics on the Extracellular Side of LeuT Controlled by Na+ and K+ Ions and the Protonation State of Glu290. Journal of Biological Chemistry, 2016, 291, 19786-19799.	1.6	22
230	Dissection of Transporter Function: From Genetics to Structure. Trends in Genetics, 2016, 32, 576-590.	2.9	42
231	Combining <i>in Vitro</i> Folding with Cell Free Protein Synthesis for Membrane Protein Expression. Biochemistry, 2016, 55, 4212-4219.	1.2	36
232	Computational modeling of human dopamine transporter structures, mechanism and its interaction with HIV-1 transactivator of transcription. Future Medicinal Chemistry, 2016, 8, 2077-2089.	1.1	17
233	A conserved leucine occupies the empty substrate site of LeuT in the Na+-free return state. Nature Communications, 2016, 7, 11673.	5.8	58
234	Comprehensive assessment and performance improvement of effector protein predictors for bacterial secretion systems III, IV and VI. Briefings in Bioinformatics, 2018, 19, bbw100.	3.2	51
235	Mechanism of Paroxetine (Paxil) Inhibition of the Serotonin Transporter. Scientific Reports, 2016, 6, 23789.	1.6	43
236	Exploring the Inhibitory Mechanism of Approved Selective Norepinephrine Reuptake Inhibitors and Reboxetine Enantiomers by Molecular Dynamics Study. Scientific Reports, 2016, 6, 26883.	1.6	46
237	Genetically encoded photocrosslinkers locate the high-affinity binding site of antidepressant drugs in the human serotonin transporter. Nature Communications, 2016, 7, 11261.	5.8	51
238	The external gate of the human and Drosophila serotonin transporters requires a basic/acidic amino acid pair for 3,4-methylenedioxymethamphetamine (MDMA) translocation and the induction of substrate efflux. Biochemical Pharmacology, 2016, 120, 46-55.	2.0	3
239	Identification of essential arginine residues of <i>Escherichia coli</i> DedA/Tvp38 family membrane proteins YqjA and YghB. FEMS Microbiology Letters, 2016, 363, fnw133.	0.7	17
240	Structure and Dynamics Study of LeuT Using the Markov State Model and Perturbation Response Scanning Reveals Distinct Ion Induced Conformational States. Journal of Physical Chemistry B, 2016, 120, 8361-8368.	1.2	3
241	7TM X-ray structures for class C GPCRs as new drug-discovery tools. 1. mGluR5. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 484-494.	1.0	6
242	Identification of the inhibitory mechanism of FDA approved selective serotonin reuptake inhibitors: an insight from molecular dynamics simulation study. Physical Chemistry Chemical Physics, 2016, 18, 3260-3271.	1.3	66

#	Article	IF	CITATIONS
243	Two Na+ Sites Control Conformational Change in a Neurotransmitter Transporter Homolog. Journal of Biological Chemistry, 2016, 291, 1456-1471.	1.6	65
244	Shared Molecular Mechanisms of Membrane Transporters. Annual Review of Biochemistry, 2016, 85, 543-572.	5.0	389
245	SLC transporters: structure, function, and drug discovery. MedChemComm, 2016, 7, 1069-1081.	3.5	152
246	Computational approaches to detect allosteric pathways in transmembrane molecular machines. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1652-1662.	1.4	58
247	Allosteric Mechanisms of Molecular Machines at the Membrane: Transport by Sodium-Coupled Symporters. Chemical Reviews, 2016, 116, 6552-6587.	23.0	71
248	Development of Highly Potent GAT1 Inhibitors: Synthesis of Nipecotic Acid Derivatives with <i>N</i> â€Arylalkynyl Substituents. ChemMedChem, 2017, 12, 362-371.	1.6	16
249	Conformational dynamics of a neurotransmitter:sodium symporter in a lipid bilayer. Proceedings of the United States of America, 2017, 114, E1786-E1795.	3.3	76
250	Potentiating SLC transporter activity: Emerging drug discovery opportunities. Biochemical Pharmacology, 2017, 135, 1-11.	2.0	47
252	The Isomeric Preference of an Atypical Dopamine Transporter Inhibitor Contributes to Its Selection of the Transporter Conformation. ACS Chemical Neuroscience, 2017, 8, 1735-1746.	1.7	31
253	Recent advances in nanodisc technology for membrane protein studies (2012–2017). FEBS Letters, 2017, 591, 2057-2088.	1.3	69
254	Allosteric modulation of human dopamine transporter activity under conditions promoting its dimerization. Journal of Biological Chemistry, 2017, 292, 12471-12482.	1.6	23
255	The role of transmembrane segment 5 (TM5) in Na2 release and the conformational transition of neurotransmitter:sodium symporters toward the inward-open state. Journal of Biological Chemistry, 2017, 292, 7372-7384.	1.6	21
257	Ligand Binding in the Extracellular Vestibule of the Neurotransmitter Transporter Homologue LeuT. ACS Chemical Neuroscience, 2017, 8, 619-628.	1.7	10
258	Structure–Activity Relationship, Pharmacological Characterization, and Molecular Modeling of Noncompetitive Inhibitors of the Betaine/γ-Aminobutyric Acid Transporter 1 (BGT1). Journal of Medicinal Chemistry, 2017, 60, 8834-8846.	2.9	16
259	Inhibitor mechanisms in the S1 binding site of the dopamine transporter defined by multi-site molecular tethering of photoactive cocaine analogs. Biochemical Pharmacology, 2017, 142, 204-215.	2.0	4
260	Overview of Monoamine Transporters. Current Protocols in Pharmacology, 2017, 79, 12.16.1-12.16.17.	4.0	68
261	Structural biology of solute carrier (SLC) membrane transport proteins. Molecular Membrane Biology, 2017, 34, 1-32.	2.0	126
262	Interaction of Cocaine Analogue RTI82 With the Dopamine Transporter. , 2017, , 527-535.		Ο

#	Article	IF	CITATIONS
263	Flipped Phenyl Ring Orientations of Dopamine Binding with Human and Drosophila Dopamine Transporters: Remarkable Role of Three Nonconserved Residues. ACS Chemical Neuroscience, 2018, 9, 1426-1431.	1.7	2
264	Molecular and functional characterization of the Gulf toadfish serotonin transporter (SERT;) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf
265	A partially-open inward-facing intermediate conformation of LeuT is associated with Na+ release and substrate transport. Nature Communications, 2018, 9, 230.	5.8	40
266	Lipid bilayer composition modulates the unfolding free energy of a knotted α-helical membrane protein. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1799-E1808.	3.3	38
267	Structural basis for recognition of diverse antidepressants by the human serotonin transporter. Nature Structural and Molecular Biology, 2018, 25, 170-175.	3.6	114
268	Latch and trigger role for R445 in DAT transport explains molecular basis of DTDS. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 470-475.	1.0	6
269	Resculpting the binding pocket of APC superfamily LeuT-fold amino acid transporters. Cellular and Molecular Life Sciences, 2018, 75, 921-938.	2.4	21
270	The role of human dopamine transporter in NeuroAIDS. , 2018, 183, 78-89.		20
271	Molecular Determinants for Substrate Interactions with the Glycine Transporter GlyT2. ACS Chemical Neuroscience, 2018, 9, 603-614.	1.7	30
272	The dopamine transporter role in psychiatric phenotypes. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 211-231.	1.1	51
273	Drug Transporters. , 2018, , 331-348.		0
274	ADME Processes in Pharmaceutical Sciences. , 2018, , .		16
275	Modification of a Putative Third Sodium Site in the Glycine Transporter GlyT2 Influences the Chloride Dependence of Substrate Transport. Frontiers in Molecular Neuroscience, 2018, 11, 347.	1.4	14
276	Structure, Function, and Modulation of Î ³ -Aminobutyric Acid Transporter 1 (GAT1) in Neurological Disorders: A Pharmacoinformatic Prospective. Frontiers in Chemistry, 2018, 6, 397.	1.8	29
277	In silico Description of LAT1 Transport Mechanism at an Atomistic Level. Frontiers in Chemistry, 2018, 6, 350.	1.8	13
278	Structural elements required for coupling ion and substrate transport in the neurotransmitter transporter homolog LeuT. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8854-E8862.	3.3	28
279	Linked Open Data: Ligand-Transporter Interaction Profiling and Beyond. Methods in Pharmacology and Toxicology, 2018, , 405-417.	0.1	0
280	Amino acid transporters revisited: New views in health and disease. Trends in Biochemical Sciences, 2018, 43, 752-789.	3.7	308

#	Article	IF	CITATIONS
281	Substrate-modulated unwinding of transmembrane helices in the NSS transporter LeuT. Science Advances, 2018, 4, eaar6179.	4.7	47
282	Exploring Substrate Binding in the Extracellular Vestibule of MhsT by Atomistic Simulations and Markov Models. Journal of Chemical Information and Modeling, 2018, 58, 1244-1252.	2.5	4
283	Dopamine transporter oligomerization involves the scaffold domain, but spares the bundle domain. PLoS Computational Biology, 2018, 14, e1006229.	1.5	20
284	Thermostabilization and purification of the human dopamine transporter (hDAT) in an inhibitor and allosteric ligand bound conformation. PLoS ONE, 2018, 13, e0200085.	1.1	18
285	Transporters Through the Looking Glass: An Insight into the Mechanisms of Ion-Coupled Transport and Methods That Help Reveal Them. Journal of the Indian Institute of Science, 2018, 98, 283-300.	0.9	9
286	Development of New Photoswitchable Azobenzene Based Î ³ -Aminobutyric Acid (GABA) Uptake Inhibitors with Distinctly Enhanced Potency upon Photoactivation. Journal of Medicinal Chemistry, 2018, 61, 6211-6235.	2.9	15
287	The LeuT-fold neurotransmitter:sodium symporter MhsT has two substrate sites. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7924-E7931.	3.3	21
288	Molecular Mechanisms of Amphetamines. Handbook of Experimental Pharmacology, 2019, 258, 265-297.	0.9	27
289	A structural model of the human serotonin transporter in an outward-occluded state. PLoS ONE, 2019, 14, e0217377.	1.1	17
290	Serotonin transport in the 21st century. Journal of General Physiology, 2019, 151, 1248-1264.	0.9	48
291	Insights into Membrane Protein–Lipid Interactions from Free Energy Calculations. Journal of Chemical Theory and Computation, 2019, 15, 5727-5736.	2.3	70
292	Structural basis for substrate binding and specificity of a sodium–alanine symporter AgcS. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2086-2090.	3.3	14
293	Derivatives of a new heterocyclic system – pyrano[3,4- <i>c</i>][1,2,4]triazolo[4,3- <i>a</i>]pyridines: synthesis, docking analysis and neurotropic activity. MedChemComm, 2019, 10, 1399-1411.	3.5	8
294	Structures of human ENT1 in complex with adenosine reuptake inhibitors. Nature Structural and Molecular Biology, 2019, 26, 599-606.	3.6	65
295	Feedback adaptation of synaptic excitability via Glu:Na+ symport driven astrocytic GABA and Gln release. Neuropharmacology, 2019, 161, 107629.	2.0	12
296	Structural and molecular aspects of betaine-GABA transporter 1 (BGT1) and its relation to brain function. Neuropharmacology, 2019, 161, 107644.	2.0	25
297	Serotonin transporter–ibogaine complexes illuminate mechanisms of inhibition and transport. Nature, 2019, 569, 141-145.	13.7	187
298	L amino acid transporter structure and molecular bases for the asymmetry of substrate interaction. Nature Communications, 2019, 10, 1807.	5.8	57

#	Article	IF	CITATIONS
299	Predicted dynamical couplings of protein residues characterize catalysis, transport and allostery. Bioinformatics, 2019, 35, 4971-4978.	1.8	13
300	Insights into the mechanism and pharmacology of neurotransmitter sodium symporters. Current Opinion in Structural Biology, 2019, 54, 161-170.	2.6	42
301	Structural, functional, and behavioral insights of dopamine dysfunction revealed by a deletion in <i>SLC6A3</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3853-3862.	3.3	35
302	Locking Two Rigid-body Bundles in an Outward-Facing Conformation: The Ion-coupling Mechanism in a LeuT-fold Transporter. Scientific Reports, 2019, 9, 19479.	1.6	12
303	The allosteric mechanism of substrate-specific transport in SLC6 is mediated by a volumetric sensor. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15947-15956.	3.3	23
304	Modeling and Simulation of hGAT1: A Mechanistic Investigation of the GABA Transport Process. Computational and Structural Biotechnology Journal, 2019, 17, 61-69.	1.9	4
305	Computation-guided analysis of paroxetine binding to hSERT reveals functionally important structural elements and dynamics. Neuropharmacology, 2019, 161, 107411.	2.0	21
306	Identification of the benztropine analog [125I]GA II 34 binding site on the human dopamine transporter. Neurochemistry International, 2019, 123, 34-45.	1.9	4
307	Recent Advances and Challenges of the Drugs Acting on Monoamine Transporters. Current Medicinal Chemistry, 2020, 27, 3830-3876.	1.2	24
308	Native IM-Orbitrap MS: Resolving what was hidden. TrAC - Trends in Analytical Chemistry, 2020, 124, 115533.	5.8	33
309	System Xâ^'c Antiporter Inhibitors: Azo-Linked Amino-Naphthyl-Sulfonate Analogues of Sulfasalazine. Neurochemical Research, 2020, 45, 1375-1386.	1.6	12
310	Identification of a New Allosteric Binding Site for Cocaine in Dopamine Transporter. Journal of Chemical Information and Modeling, 2020, 60, 3958-3968.	2.5	10
311	Molecular Dynamic Simulations to Probe Stereoselectivity of Tiagabine Binding with Human GAT1. Molecules, 2020, 25, 4745.	1.7	5
312	Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. Advances in Experimental Medicine and Biology, 2020, 21, 13-127.	0.8	29
313	Transporters of glucose and other carbohydrates in bacteria. Pflugers Archiv European Journal of Physiology, 2020, 472, 1129-1153.	1.3	76
314	Novel Chemical Scaffolds to Inhibit the Neutral Amino Acid Transporter B0AT1 (SLC6A19), a Potential Target to Treat Metabolic Diseases. Frontiers in Pharmacology, 2020, 11, 140.	1.6	25
315	Structure and mechanism of a redesigned multidrug transporter from the Major Facilitator Superfamily. Scientific Reports, 2020, 10, 3949.	1.6	9
316	Mapping of Ion and Substrate Binding Sites in Human Sodium Iodide Symporter (hNIS). Journal of Chemical Information and Modeling, 2020, 60, 1652-1665.	2.5	8

#	ARTICLE	IF	CITATIONS
317	The mechanism of a high-affinity allosteric inhibitor of the serotonin transporter. Nature Communications, 2020, 11, 1491.	5.8	30
318	X-ray structure of LeuT in an inward-facing occluded conformation reveals mechanism of substrate release. Nature Communications, 2020, 11, 1005.	5.8	34
319	The Amino Terminus of LeuT Changes Conformation in an Environment Sensitive Manner. Neurochemical Research, 2020, 45, 1387-1398.	1.6	2
320	Hexose transport in Torulaspora delbrueckii: identification of lgt1, a new dual-affinity transporter. FEMS Yeast Research, 2020, 20, .	1.1	9
321	The fine art of preparing membrane transport proteins for biomolecular simulations: Concepts and practical considerations. Methods, 2021, 185, 3-14.	1.9	6
322	Toward a Molecular Basis of Cellular Nucleoside Transport in Humans. Chemical Reviews, 2021, 121, 5336-5358.	23.0	19
323	SLC6 transporter oligomerization. Journal of Neurochemistry, 2021, 157, 919-929.	2.1	24
324	Highlighting membrane protein structure and function: AÂcelebration of the Protein Data Bank. Journal of Biological Chemistry, 2021, 296, 100557.	1.6	42
325	Structural insights into the inhibition of glycine reuptake. Nature, 2021, 591, 677-681.	13.7	69
326	Chloride-dependent conformational changes in the GlyT1 glycine transporter. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
327	Structural basis of norepinephrine recognition and transport inhibition in neurotransmitter transporters. Nature Communications, 2021, 12, 2199.	5.8	24
328	Serotonin Transporter Ala276 Mouse: Novel Model to Assess the Neurochemical and Behavioral Impact of Thr276 Phosphorylation In Vivo. Neurochemical Research, 2022, 47, 37-60.	1.6	3
329	Singleâ€Molecule FRET of Membrane Transport Proteins. ChemBioChem, 2021, 22, 2657-2671.	1.3	21
330	Structural Determinants of the Neuronal Glycine Transporter 2 for the Selective Inhibitors ALX1393 and ORG25543. ACS Chemical Neuroscience, 2021, 12, 1860-1872.	1.7	4
331	Synthesis and Neurotropic Activity of New Heterocyclic Systems: Pyridofuro[3,2-d]pyrrolo[1,2-a]pyrimidines, Pyridofuro[3,2-d]pyrido[1,2-a]pyrimidines and Pyridofuro[3′,2′:4,5]pyrimido[1,2-a]azepines. Molecules, 2021, 26, 3320.	1.7	8
332	Functional Characterization of the Dopaminergic Psychostimulant Sydnocarb as an Allosteric Modulator of the Human Dopamine Transporter. Biomedicines, 2021, 9, 634.	1.4	9
333	The Lepidopteran KAAT1 and CAATCH1: Orthologs to Understand Structure–Function Relationships in Mammalian SLC6 Transporters. Neurochemical Research, 2022, 47, 111-126.	1.6	5
335	Development of Refined Homology Models: Adding the Missing Information to the Medically Relevant Neurotransmitter Transporters. Springer Series in Biophysics, 2014, , 99-120.	0.4	2

ARTICLE IF CITATIONS A current view of serotonin transporters. F1000Research, 2016, 5, 1884. 340 0.8 13 The Substrate-Driven Transition to an Inward-Facing Conformation in the Functional Mechanism of 341 1.1 the Dopamine Transporter. PLoS ONE, 2011, 6, e16350. A Steered Molecular Dynamics Study of Binding and Translocation Processes in the GABA Transporter. 342 1.1 26 PLoS ONE, 2012, 7, e39360. Homology Modeling of Human Î³-Butyric Acid Transporters and the Binding of Pro-Drugs 5-Aminolevulinic Acid and Methyl Aminolevulinic Acid Used in Photodynamic Therapy. PLoS ONE, 2013, 8, 343 1.1 e65200. Molecular Modeling and Ligand Docking for Solute Carrier (SLC) Transporters. Current Topics in 344 1.0 85 Medicinal Chemistry, 2013, 13, 843-856. Diseases Associated with General Amino Acid Transporters of the Solute Carrier 6 Family (SLC6). Current Molecular Pharmacology, 2013, 6, 74-87. Direct assessment of substrate binding to the Neurotransmitter:Sodium Symporter LeuT by solid state 346 2.8 15 NMR. ELife, 2017, 6, . Gat1. The AFCS-nature Molecule Pages, 0, , . 347 0.2 348 SERT. The AFCS-nature Molecule Pages, 0, , . 0.2 0 Membrane-Protein Crystallography and Potentiality for Drug Design-An Example from 349 Neurotransmitter Transporter Homolog LeuT. Nihon Kessho Gakkaishi, 2010, 52, 76-80. Molecular Basis of Alternating Access Membrane Transport by the Sodium-hydantoin Transporter 350 0.0 0 Mhp1. Seibutsu Butsuri, 2011, 51, 004-009. Immunocytochemical Approaches to the Identification of Membrane Topology of the Na+/Cl--Dependent Neurotrańsmitter Transporters., 0,,. 352 Directed Mutagenesis in Structure Activity Studies of Neurotransmitter Transporters., 0,,. 0 Thiazide-Sensitive NaCl Cotransporter., 2016, , 401-435. 353 HIV-Associated Neurocognitive Disorder. Advances in Healthcare Information Systems and 355 0.2 0 Administration Book Series, 2018, , 171-205. Thiazide-Sensitive NaCl Cotransporter. Physiology in Health and Disease, 2020, , 57-92. A nonâ€helical region in transmembrane helix 6 of hydrophobic amino acid transporter MhsT mediates 369 3.518 substrate recognition. EMBO Journal, 2021, 40, e105164. Probing the Impact of Temperature and Substrates on the Conformational Dynamics of the 371 Neurotransmitter:Sodium symporter LeuT. Journal of Molecular Biology, 2022, 434, 167356.

#	Article	IF	CITATIONS
372	Dormant spores sense amino acids through the B subunits of their germination receptors. Nature Communications, 2021, 12, 6842.	5.8	22
373	Molecular basis for redox control by the human cystine/glutamate antiporter system xcâ^. Nature Communications, 2021, 12, 7147.	5.8	65
374	Novel Insights into Membrane Transport from Computational Methodologies. Chemical Biology, 2017, , 247-280.	0.1	1
393	è°få^¶é‡'属有机框架èŠ,ç,¹æ‹"扑构型用于ä¿f进苯èfºé«~̃效å,¬åŒ–氧化. Scientia Sinica C	hin o i <i>c</i> a, 20	220,.
394	Sialic Acid Derivatives Inhibit SiaT Transporters and Delay Bacterial Growth. ACS Chemical Biology, 2022, 17, 1890-1900.	1.6	7
395	Structure of the human cation–chloride cotransport KCC1 in an outward-open state. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
396	Structural insights into <scp>GABA</scp> transport inhibition using an engineered neurotransmitter transporter. EMBO Journal, 2022, 41, .	3.5	14
397	Analysis of Binding Determinants for Different Classes of Competitive and Noncompetitive Inhibitors of Clycine Transporters. International Journal of Molecular Sciences, 2022, 23, 8050.	1.8	5
398	Determining Ligand and Ion-Induced Conformational Changes in Serotonin Transporter with Its Fluorescent Substrates. International Journal of Molecular Sciences, 2022, 23, 10919.	1.8	2
399	Achieving High Photo/Thermocatalytic Product Selectivity and Conversion via Thorium Clusters with Switchable Functional Ligands. Journal of the American Chemical Society, 2022, 144, 18586-18594.	6.6	30
400	Reshaping the Binding Pocket of the Neurotransmitter:Solute Symporter (NSS) Family Transporter SLC6A14 (ATB0,+) Selectively Reduces Access for Cationic Amino Acids and Derivatives. Biomolecules, 2022, 12, 1404.	1.8	3
401	Analysis of Different Binding Modes for Tiagabine within the GAT-1 Transporter. Biomolecules, 2022, 12, 1663.	1.8	0
402	New Bicyclic Pyridine-Based Hybrids Linked to the 1,2,3-Triazole Unit: Synthesis via Click Reaction and Evaluation of Neurotropic Activity and Molecular Docking. Molecules, 2023, 28, 921.	1.7	0
404	Taurine and Creatine Transporters as Potential Drug Targets in Cancer Therapy. International Journal of Molecular Sciences, 2023, 24, 3788.	1.8	3
405	Discovery and Development of Monoamine Transporter Ligands. Advances in Neurobiology, 2023, , 101-129.	1.3	1
406	Homology Modeling of Transporter Proteins. Methods in Molecular Biology, 2023, , 247-264.	0.4	1
416	Post-translational mechanisms in psychostimulant-induced neurotransmitter efflux. Advances in Pharmacology, 2024, , 1-33.	1.2	0
417	Molecular mechanisms of dopaminergic transmission in NeuroHIV. , 2024, , 379-398.		Ο

ARTICLE

IF CITATIONS