Mitochondrial alterations in Parkinsonâ€5[™]disease: new

Journal of Neurochemistry 107, 317-328 DOI: 10.1111/j.1471-4159.2008.05604.x

Citation Report

#	Article	IF	CITATIONS
1	RNA analysis in neuronal dendrites: insights into Parkinson's disease. Expert Review of Neurotherapeutics, 2008, 8, 1775-1777.	2.8	0
2	Parkin protects mitochondrial genome integrity and supports mitochondrial DNA repair. Human Molecular Genetics, 2009, 18, 3832-3850.	2.9	162
3	Commitment of 1-Methyl-4-phenylpyrinidinium Ion-induced Neuronal Cell Death by Proteasome-mediated Degradation of p35 Cyclin-dependent Kinase 5 Activator. Journal of Biological Chemistry, 2009, 284, 26029-26039.	3.4	27
4	The mitochondrial death pathway: a promising therapeutic target in diseases. Journal of Cellular and Molecular Medicine, 2009, 13, 1004-1033.	3.6	211
5	Recent advances in our understanding of neurodegeneration. Journal of Neural Transmission, 2009, 116, 1111-1162.	2.8	235
6	Mitochondria in neurodegenerative disorders: regulation of the redox state and death signaling leading to neuronal death and survival. Journal of Neural Transmission, 2009, 116, 1371-1381.	2.8	66
7	A comparative analysis of the cell biology of senescence and aging. Cellular and Molecular Life Sciences, 2009, 66, 2503-2524.	5.4	155
8	Reduced axonal transport in Parkinson's disease cybrid neurites is restored by light therapy. Molecular Neurodegeneration, 2009, 4, 26.	10.8	95
9	Neuroprotective effect of <scp>l</scp> â€dopa on dopaminergic neurons is comparable to pramipexol in MPTPâ€treated animal model of Parkinson's disease: a direct comparison study. Journal of Neurochemistry, 2009, 111, 1042-1050.	3.9	46
10	Mitochondria and reactive oxygen and nitrogen species in neurological disorders and stroke: Therapeutic implicationsâ~†. Advanced Drug Delivery Reviews, 2009, 61, 1299-1315.	13.7	93
11	Calcium homeostasis, selective vulnerability and Parkinson's disease. Trends in Neurosciences, 2009, 32, 249-256.	8.6	197
12	Oxidative Stress: Emerging Mitochondrial and Cellular Themes and Variations in Neuronal Injury. Journal of Alzheimer's Disease, 2010, 20, S453-S473.	2.6	129
13	Mitochondrial dysfunction in some oxidative stress-related genetic diseases: Ataxia-Telangiectasia, Down Syndrome, Fanconi Anaemia and Werner Syndrome. Biogerontology, 2010, 11, 401-419.	3.9	106
14	Licofelone attenuates MPTP-induced neuronal toxicity: behavioral, biochemical and cellular evidence. Inflammopharmacology, 2010, 18, 223-232.	3.9	9
15	Calcium, cellular aging, and selective neuronal vulnerability in Parkinson's disease. Cell Calcium, 2010, 47, 175-182.	2.4	184
16	N-Acetyl-L-Methionyl-L-Dopa-Methyl Ester as a dual acting drug that relieves L-Dopa-induced oxidative toxicity. Free Radical Biology and Medicine, 2010, 49, 31-39.	2.9	16
17	Basic mechanisms of neurodegeneration: a critical update. Journal of Cellular and Molecular Medicine, 2010, 14, 457-487.	3.6	330
18	Apoptosisâ€inducing factor deficiency sensitizes dopaminergic neurons to parkinsonian neurotoxins. Annals of Neurology, 2010, 68, 184-192.	5.3	48

#	Article	IF	CITATIONS
19	Network generation enhances interpretation of proteomic data from induced apoptosis. Proteomics, 2010, 10, 1307-1315.	2.2	20
20	Missing pieces in the Parkinson's disease puzzle. Nature Medicine, 2010, 16, 653-661.	30.7	621
21	Unraveling Environmental Effects on Mitochondria. Environmental Health Perspectives, 2010, 118, .	6.0	18
22	Parkin Is Protective against Proteotoxic Stress in a Transgenic Zebrafish Model. PLoS ONE, 2010, 5, e11783.	2.5	44
23	Mitochondrial viability in mouse and human postmortem brain. FASEB Journal, 2010, 24, 3590-3599.	0.5	39
24	The Transgenic Overexpression of α-Synuclein and Not Its Related Pathology Associates with Complex I Inhibition. Journal of Biological Chemistry, 2010, 285, 7334-7343.	3.4	96
25	Differential Effects of Wild-Type and A53T Mutant Isoform of Alpha-Synuclein on the Mitochondrial Proteome of Differentiated SH-SY5Y Cells. Journal of Proteome Research, 2010, 9, 2390-2401.	3.7	30
26	Prosurvival role of JAK/STAT and Akt signaling pathways in MPP+-induced apoptosis in neurons. Neurochemistry International, 2010, 57, 774-782.	3.8	14
27	Mitochondrial dysfunction in Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 29-44.	3.8	481
28	Pathogenic Lysosomal Depletion in Parkinson's Disease. Journal of Neuroscience, 2010, 30, 12535-12544.	3.6	681
29	Mutant A53T α-Synuclein Induces Neuronal Death by Increasing Mitochondrial Autophagy. Journal of Biological Chemistry, 2011, 286, 10814-10824.	3.4	226
31	Targeting oxidative stress, mitochondrial dysfunction and neuroinflammatory signaling by selective cyclooxygenase (COX)-2 inhibitors mitigates MPTP-induced neurotoxicity in mice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 974-981.	4.8	27
32	Transcriptional profile of Parkinson blood mononuclear cells with LRRK2 mutation. Neurobiology of Aging, 2011, 32, 1839-1848.	3.1	83
33	The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson's disease. Neuroscience, 2011, 198, 221-231.	2.3	192
34	Mitochondrial dysfunction and Down's syndrome: Is there a role for coenzyme Q ₁₀ ?. BioFactors, 2011, 37, 386-392.	5.4	41
35	The Mitochondrial Chaperone Protein TRAP1 Mitigates α-Synuclein Toxicity. PLoS Genetics, 2012, 8, e1002488.	3.5	120
36	Sustained expression of PGC-1Â in the rat nigrostriatal system selectively impairs dopaminergic function. Human Molecular Genetics, 2012, 21, 1861-1876.	2.9	105
37	Mitochondrial dynamics and autophagy aid in removal of persistent mitochondrial DNA damage in Caenorhabditis elegans. Nucleic Acids Research, 2012, 40, 7916-7931.	14.5	113

CITATION REPORT

#	Article	IF	Citations
38	Differential Impairment of Catecholaminergic Cell Maturation and Survival by Genetic Mitochondrial Complex II Dysfunction. Molecular and Cellular Biology, 2012, 32, 3347-3357.	2.3	48
39	Neurotoxin-based models of Parkinson's disease. Neuroscience, 2012, 211, 51-76.	2.3	425
40	Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences. EMBO Journal, 2012, 31, 3038-3062.	7.8	487
41	Biophysics of α-synuclein membrane interactions. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 162-171.	2.6	168
42	Interaction of α-synuclein with vesicles that mimic mitochondrial membranes. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 512-519.	2.6	85
43	Neuroprotective potential of atorvastatin and simvastatin (HMG-CoA reductase inhibitors) against 6-hydroxydopamine (6-OHDA) induced Parkinson-like symptoms. Brain Research, 2012, 1471, 13-22.	2.2	79
44	Molecular Insights into Parkinson's Disease. Progress in Molecular Biology and Translational Science, 2012, 107, 125-188.	1.7	83
45	Oxidative Stress and Mitochondrial Dysfunction in Down Syndrome. Advances in Experimental Medicine and Biology, 2012, 724, 291-299.	1.6	100
46	Mitochondria and Programmed Cell Death in Parkinson's Disease: Apoptosis and Beyond. Antioxidants and Redox Signaling, 2012, 16, 883-895.	5.4	137
47	Mitochondrial Biology and Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009332-a009332.	6.2	232
48	Mitochondrial Gene Expression and Dysfunction in Model Protozoa. , 2012, , 241-269.		1
49	Calcium channels as therapeutic targets. Environmental Sciences Europe, 2012, 1, 433-451.	5.5	15
50	Tauroursodeoxycholic Acid Prevents MPTP-Induced Dopaminergic Cell Death in a Mouse Model of Parkinson's Disease. Molecular Neurobiology, 2012, 46, 475-486.	4.0	119
51	The role of \hat{I}_{\pm} -synuclein in neurodegeneration $\hat{a} \in \hat{I}$ An update. Translational Neuroscience, 2012, 3, .	1.4	16
52	Parkin, PINK1 and mitochondrial integrity: emerging concepts of mitochondrial dysfunction in Parkinson's disease. Acta Neuropathologica, 2012, 123, 173-188.	7.7	118
53	Betaine Protects Against Rotenone-Induced Neurotoxicity in PC12 Cells. Cellular and Molecular Neurobiology, 2013, 33, 625-635.	3.3	34
54	UVCâ€Induced Mitochondrial Degradation via Autophagy Correlates with mtDNA Damage Removal in Primary Human Fibroblasts. Journal of Biochemical and Molecular Toxicology, 2013, 27, 28-41.	3.0	34
55	Genetics and iron in the systems biology of Parkinson's disease and some related disorders. Neurochemistry International, 2013, 62, 637-652.	3.8	56

CITATION REPORT

CITATION REPOR	Т

#	Article	IF	CITATIONS
56	Synergistical neuroprotection of rofecoxib and statins against malonic acid induced Huntington's disease like symptoms and related cognitive dysfunction in rats. European Journal of Pharmacology, 2013, 709, 1-12.	3.5	21
57	N-acetylcysteine Boosts Brain and Blood Glutathione in Gaucher and Parkinson Diseases. Clinical Neuropharmacology, 2013, 36, 103-106.	0.7	165
58	Effects of mutations in mitochondrial dynamics-related genes on the mitochondrial response to ultraviolet C radiation in developing <i><i>Caenorhabditis elegansWorm, 2013, 2, e23763.</i></i>	1.0	21
59	Mitochondrial function in human brains is affected by <i>preâ€</i> and <i>post mortem</i> factors. Neuropathology and Applied Neurobiology, 2013, 39, 298-315.	3.2	38
60	Upstream deregulation of calcium signaling in Parkinsonââ,¬â"¢s disease. Frontiers in Molecular Neuroscience, 2014, 7, 53.	2.9	34
61	Identification and transcription profiling of NDUFS8 in Aedes taeniorhynchus (Diptera: Culicidae): developmental regulation and environmental response. Open Access Insect Physiology, 2014, , 1.	0.8	0
62	Neuroprotective effects of mesenchymal stem cells through autophagy modulation in a parkinsonian model. Neurobiology of Aging, 2014, 35, 1920-1928.	3.1	63
63	Silibinin pretreatment attenuates biochemical and behavioral changes induced by intrastriatal MPP+ injection in rats. Pharmacology Biochemistry and Behavior, 2014, 117, 92-103.	2.9	57
64	Molecular basis of Parkinsons's disease linked to LRRK2 mutations. Molecular Biology, 2014, 48, 1-10.	1.3	9
65	Deficiency of Trim27 protects dopaminergic neurons from apoptosis in the neurotoxin model of Parkinson× ³ s disease. Brain Research, 2014, 1588, 17-24.	2.2	16
66	Parkinson's disease and mitochondrial gene variations: A review. Journal of the Neurological Sciences, 2014, 346, 11-19.	0.6	26
67	Parkinson's Protein α-Synuclein Binds Efficiently and with a Novel Conformation to Two Natural Membrane Mimics. PLoS ONE, 2015, 10, e0142795.	2.5	8
68	Mitochondrial Alterations by PARKIN in Dopaminergic Neurons Using PARK2 Patient-Specific and PARK2 Knockout Isogenic iPSC Lines. Stem Cell Reports, 2015, 4, 847-859.	4.8	128
69	α-Synuclein Shows High Affinity Interaction with Voltage-dependent Anion Channel, Suggesting Mechanisms of Mitochondrial Regulation and Toxicity in Parkinson Disease. Journal of Biological Chemistry, 2015, 290, 18467-18477.	3.4	157
70	Autophagy in DNA Damage Response. International Journal of Molecular Sciences, 2015, 16, 2641-2662.	4.1	123
71	Vinpocetine attenuates MPTP-induced motor deficit and biochemical abnormalities in Wistar rats. Neuroscience, 2015, 286, 393-403.	2.3	38
72	Escin, a Novel Triterpene, Mitigates Chronic MPTP/p-Induced Dopaminergic Toxicity by Attenuating Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis. Journal of Molecular Neuroscience, 2015, 55, 184-197.	2.3	34
73	Converging roles of ion channels, calcium, metabolic stress, and activity pattern of <i>Substantia nigra</i> dopaminergic neurons in health and Parkinson's disease. Journal of Neurochemistry, 2016, 139, 156-178.	3.9	128

#	Article	IF	CITATIONS
74	Direct Activation of Bax Protein for Cancer Therapy. Medicinal Research Reviews, 2016, 36, 313-341.	10.5	160
75	Mitochondrial permeability transition pore: a promising target for the treatment of Parkinson's disease. Protoplasma, 2017, 254, 33-42.	2.1	55
76	Postmortem studies on mitochondria in schizophrenia. Schizophrenia Research, 2017, 187, 17-25.	2.0	71
77	TMEM175 deficiency impairs lysosomal and mitochondrial function and increases α-synuclein aggregation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2389-2394.	7.1	164
78	Novel insights into the antioxidant role of tauroursodeoxycholic acid in experimental models of Parkinson's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2171-2181.	3.8	54
79	Mitochondrial-Targeted Catalase. Progress in Molecular Biology and Translational Science, 2017, 146, 203-241.	1.7	55
80	Valproic Acid Protects Primary Dopamine Neurons from MPP ⁺ -Induced Neurotoxicity: Involvement of GSK3 <i>β</i> Phosphorylation by Akt and ERK through the Mitochondrial Intrinsic Apoptotic Pathway. BioMed Research International, 2017, 2017, 1-12.	1.9	14
81	ER–mitochondria signaling in Parkinson's disease. Cell Death and Disease, 2018, 9, 337.	6.3	118
82	Tauroursodeoxycholic Acid Improves Motor Symptoms in a Mouse Model of Parkinson's Disease. Molecular Neurobiology, 2018, 55, 9139-9155.	4.0	55
83	Glia Maturation Factor Dependent Inhibition of Mitochondrial PGC-1α Triggers Oxidative Stress-Mediated Apoptosis in N27 Rat Dopaminergic Neuronal Cells. Molecular Neurobiology, 2018, 55, 7132-7152.	4.0	30
84	Defective trafficking of Kv2.1 channels in MPTPâ€induced nigrostriatal degeneration. Journal of Neurochemistry, 2018, 144, 483-497.	3.9	17
85	Oxidative stress and aging: Learning from yeast lessons. Fungal Biology, 2018, 122, 514-525.	2.5	38
86	Phenylalanine hydroxylase: A biomarker of disease susceptibility in Parkinson's disease and Amyotrophic lateral sclerosis. Medical Hypotheses, 2018, 118, 29-33.	1.5	4
87	An investigation into closed-loop treatment of neurological disorders based on sensing mitochondrial dysfunction. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 8.	4.6	10
88	Reduction of <scp>PINK</scp> 1 or <scp>DJ</scp> â€1 impair mitochondrial motility in neurites and alter <scp>ER</scp> â€mitochondria contacts. Journal of Cellular and Molecular Medicine, 2018, 22, 5439-5449.	3.6	34
89	Endoplasmic reticulum–mitochondria crosstalk: from junction to function across neurological disorders. Annals of the New York Academy of Sciences, 2019, 1457, 41-60.	3.8	64
90	Silencing of TRIM10 alleviates apoptosis in cellular model of Parkinson's disease. Biochemical and Biophysical Research Communications, 2019, 518, 451-458.	2.1	15
91	CKD autophagy activation and skeletal muscle atrophy—a preliminary study of mitophagy and inflammation. European Journal of Clinical Nutrition, 2019, 73, 950-960.	2.9	25

CITATION REPORT

	CHARC		
#	Article	IF	CITATIONS
92	Cellular calcium signaling in the aging brain. Journal of Chemical Neuroanatomy, 2019, 95, 95-114.	2.1	40
93	α-Synuclein fibrillation products trigger the release of hexokinase I from mitochondria: Protection by curcumin, and possible role in pathogenesis of Parkinson's disease. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183251.	2.6	17
94	Pretreatment with Human Lactoferrin Had a Positive Effect on the Dynamics of Mouse Nigrostriatal System Recovery after Acute MPTP Exposure. Biology, 2021, 10, 24.	2.8	14
96	Morphological Heterogeneity of the Endoplasmic Reticulum within Neurons and Its Implications in Neurodegeneration. Cells, 2021, 10, 970.	4.1	11
97	New Neuroprotective Effect of Lemon IntegroPectin on Neuronal Cellular Model. Antioxidants, 2021, 10, 669.	5.1	22
98	Low-Intensity Pulsed Ultrasound Enhances Neurotrophic Factors and Alleviates Neuroinflammation in a Rat Model of Parkinson's Disease. Cerebral Cortex, 2021, 32, 176-185.	2.9	21
99	A study on the interaction of the amyloid fibrils of α-synuclein and hen egg white lysozyme with biological membranes. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183776.	2.6	8
100	Rotenone Susceptibility Phenotype in Olfactory Derived Patient Cells as a Model of Idiopathic Parkinson's Disease. PLoS ONE, 2016, 11, e0154544.	2.5	13
101	Genetic Screening of the Mitochondrial Rho GTPases MIRO1 and MIRO2 in Parkinson's Disease. The Open Neurology Journal, 2012, 6, 1-5.	0.4	10
102	Noninvasive Ultrasound Deep Brain Stimulation for the Treatment of Parkinson's Disease Model Mouse. Research, 2019, 2019, 1748489.	5.7	49
103	Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regeneration Research, 2013, 8, 2003-14.	3.0	600
105	Plant-derived compounds, vitagens, vitagenes and mitochondrial function. PharmaNutrition, 2022, 19, 100287.	1.7	2
106	Current understandings and perspectives of petroleum hydrocarbons in Alzheimer's disease and Parkinson's disease: a global concern. Environmental Science and Pollution Research, 2022, 29, 10928-10949.	5.3	9
107	Autophagy-Related Signatures as Prognostic Indicators for Hepatocellular Carcinoma. Frontiers in Oncology, 2022, 12, 654449.	2.8	9
108	Age-related tolerance to paraquat-induced parkinsonism in Drosophila melanogaster. Toxicology Letters, 2022, 361, 43-53.	0.8	7
109	Mitochondrial Dysfunction Contributes To Zinc-induced Neurodegeneration: a Link with NADPH Oxidase. Journal of Molecular Neuroscience, 2022, 72, 1413-1427.	2.3	1
110	A penetratin-derived peptide reduces the membrane permeabilization and cell toxicity of α-synuclein oligomers. Journal of Biological Chemistry, 2022, 298, 102688.	3.4	5
111	NLRP3 Inflammasome-Mediated Neuroinflammation and Related Mitochondrial Impairment in Parkinson's Disease. Neuroscience Bulletin, 2023, 39, 832-844.	2.9	11

#	Article	IF	CITATIONS
112	Induced Coma, Death, and Organ Transplantation: A Physiologic, Genetic, and Theological Perspective. International Journal of Molecular Sciences, 2023, 24, 5744.	4.1	1
113	Pharmacological Regulation of Endoplasmic Reticulum Structure and Calcium Dynamics: Importance for Neurodegenerative Diseases. Pharmacological Reviews, 2023, 75, 959-978.	16.0	4
114	Senolytic and senomorphic secondary metabolites as therapeutic agents in Drosophila melanogaster models of Parkinson's disease. Frontiers in Neurology, 0, 14, .	2.4	0