De novo identification of repeat families in large genom

Bioinformatics 21, i351-i358

DOI: 10.1093/bioinformatics/bti1018

Citation Report

#	Article	IF	CITATIONS
1	Combined Evidence Annotation of Transposable Elements in Genome Sequences. PLoS Computational Biology, 2005, 1, e22.	1.5	347
2	Orthologous repeats and mammalian phylogenetic inference. Genome Research, 2005, 15, 998-1006.	2.4	37
3	Discovery of Repetitive Patterns in DNA with Accurate Boundaries. , 0, , .		8
4	Comparison of dot chromosome sequences from D. melanogaster and D. virilisreveals an enrichment of DNA transposon sequences in heterochromatic domains. Genome Biology, 2006, 7, R15.	3.8	50
5	Identifying repeat domains in large genomes. Genome Biology, 2006, 7, R7.	13.9	31
6	Cluster and Grid Based Classification of Transposable Elements in Eukaryotic Genomes. , 2006, , .		6
7	Novel porcine repetitive elements. BMC Genomics, 2006, 7, 304.	1.2	7
8	Morphological Characters from the Genome: SINE Insertion Polymorphism and Phylogenies. Genome Dynamics and Stability, 2006, , 45-75.	1.1	2
9	PLOTREP: a web tool for defragmentation and visual analysis of dispersed genomic repeats. Nucleic Acids Research, 2006, 34, W708-W713.	6.5	17
10	DECOMPOSITION OF OVERLAPPING PATTERNS BY CUMULATIVE LOCAL CROSS-CORRELATION. Journal of Bioinformatics and Computational Biology, 2006, 04, 571-587.	0.3	0
11	Microinversions in mammalian evolution. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19824-19829.	3.3	36
12	Domain organization within repeated DNA sequences: application to the study of a family of transposable elements. Bioinformatics, 2006, 22, 1948-1954.	1.8	12
13	HomologMiner: looking for homologous genomic groups in whole genomes. Bioinformatics, 2007, 23, 917-925.	1.8	7
14	Repseek, a tool to retrieve approximate repeats from large DNA sequences. Bioinformatics, 2007, 23, 119-121.	1.8	69
15	Discovering and detecting transposable elements in genome sequences. Briefings in Bioinformatics, 2007, 8, 382-392.	3.2	189
16	Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. Genome Research, 2007, 17, 992-1004.	2.4	137
17	A study of the repetitive structure and distribution of short motifs in human genomic sequences. International Journal of Bioinformatics Research and Applications, 2007, 3, 523.	0.1	5
18	Dothideomycete–Plant Interactions Illuminated by Genome Sequencing and EST Analysis of the Wheat Pathogen <i>Stagonospora nodorum</i> . Plant Cell, 2007, 19, 3347-3368.	3.1	235

ARTICLE IF CITATIONS # A Multiscale Model for Efficient Simulation of a Membrane Bound Viral Fusion Peptide., 2007,,. 19 2 Micro-repetitive Structure of Genomic Sequences and the Identification of Ancient Repeat Elements., 2007,,. 21 Genome Assembly, Rearrangement, and Repeats. Chemical Reviews, 2007, 107, 3391-3406. 23.0 23 Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nature 648 Genetics, 2007, 39, 839-847. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. 23 13.7 3,384 Nature, 2007, 449, 463-467. RepSeq – A database of amino acid repeats present in lower eukaryotic pathogens. BMC Bioinformatics, 2007, 8, 122. 1.2 Diversity and structure of PIF/Harbinger-like elements in the genome of Medicago truncatula. BMC 25 1.2 25 Genomics, 2007, 8, 409. De novo identification of LTR retrotransposons in eukaryotic genomes. BMC Genomics, 2007, 8, 90. 1.2 26 Schistosoma mansoni genome: Closing in on a final gene set. Experimental Parasitology, 2007, 117, 27 0.5 41 225-228. Computational Approaches and Tools Used in Identification of Dispersed Repetitive DNA Sequences. 1.0 Tropical Plant Biology, 2008, 1, 85-96. Genome-Wide Analysis of Repetitive Elements in Papaya. Tropical Plant Biology, 2008, 1, 191-201. 29 1.0 24 An automated, high-throughput sequence read classification pipeline for preliminary genome characterization. Analytical Biochemistry, 2008, 373, 78-87. 1.1 Identification of repeat structure in large genomes using repeat probability clouds. Analytical $\mathbf{31}$ 1.1 51 Biochemistry, 2008, 380, 77-83. The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature, 2008, 452, 991-996. 13.7 964 RIPCAL: a tool for alignment-based analysis of repeat-induced point mutations in fungal genomic 33 1.2 151 sequences. BMC Bioinformatics, 2008, 9, 478. Discovering relationships among dispersed repeats using spatial association rule mining. BMC 1.2 Bioinformatics, 2008, 9, . Analysis of 90 Mb of the potato genome reveals conservation of gene structures and order with 35 1.2 37 tomato but divergence in repetitive sequence composition. BMC Genomics, 2008, 9, 286. A new method to compute K-mer frequencies and its application to annotate large repetitive plant 1.2 214 genomes. BMC Genomics, 2008, 9, 517.

#	Article	IF	CITATIONS
37	Insights into the Musa genome: Syntenic relationships to rice and between Musa species. BMC Genomics, 2008, 9, 58.	1.2	105
38	Genome wide survey, discovery and evolution of repetitive elements in three Entamoeba species. BMC Genomics, 2008, 9, 595.	1.2	53
39	Analysis of repetitive DNA distribution patterns in the Tribolium castaneum genome. Genome Biology, 2008, 9, R61.	13.9	50
40	Empirical comparison of ab initio repeat finding programs. Nucleic Acids Research, 2008, 36, 2284-2294.	6.5	265
41	TEnest: Automated Chronological Annotation and Visualization of Nested Plant Transposable Elements. Plant Physiology, 2008, 146, 45-59.	2.3	61
42	Enredo and Pecan: Genome-wide mammalian consistency-based multiple alignment with paralogs. Genome Research, 2008, 18, 1814-1828.	2.4	249
43	A Snapshot of the Emerging Tomato Genome Sequence. Plant Genome, 2009, 2, .	1.6	73
44	Evolutionary Conservation of Orthoretroviral Long Terminal Repeats (LTRs) and ab initio Detection of Single LTRs in Genomic Data. PLoS ONE, 2009, 4, e5179.	1.1	28
45	An Adaptive Suffix Tree Based Algorithm for Repeats Recognition in a DNA Sequence. , 2009, , .		3
46	Characterization and distribution of retrotransposons and simple sequence repeats in the bovine genome. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12855-12860.	3.3	108
47	Finding genes in Schistosoma japonicum: annotating novel genomes with help of extrinsic evidence. Nucleic Acids Research, 2009, 37, e52-e52.	6.5	13
48	Exploring Repetitive DNA Landscapes Using REPCLASS, a Tool That Automates the Classification of Transposable Elements in Eukaryotic Genomes. Genome Biology and Evolution, 2009, 1, 205-220.	1.1	102
49	RepPop: a database for repetitive elements in Populus trichocarpa. BMC Genomics, 2009, 10, 14.	1.2	30
50	Genome-wide profiling of Populus small RNAs. BMC Genomics, 2009, 10, 620.	1.2	90
51	The Schistosoma japonicum genome reveals features of host–parasite interplay. Nature, 2009, 460, 345-351.	13.7	635
52	The genome of the blood fluke Schistosoma mansoni. Nature, 2009, 460, 352-358.	13.7	945
53	The genome of the cucumber, Cucumis sativus L. Nature Genetics, 2009, 41, 1275-1281.	9.4	1,317
54	Genesis, effects and fates of repeats in prokaryotic genomes. FEMS Microbiology Reviews, 2009, 33, 539-571.	3.9	137

#	Article	IF	CITATIONS
55	TEclass—a tool for automated classification of unknown eukaryotic transposable elements. Bioinformatics, 2009, 25, 1329-1330.	1.8	254
56	The DAWGPAWS pipeline for the annotation of genes and transposable elements in plant genomes. Plant Methods, 2009, 5, 8.	1.9	21
57	Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens. Genome Biology, 2009, 10, R51.	13.9	370
58	A Novel Heuristic for Local Multiple Alignment of Interspersed DNA Repeats. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2009, 6, 180-189.	1.9	14
59	High tandem repeat content in the genome of the short-lived annual fish Nothobranchius furzeri: a new vertebrate model for aging research. Genome Biology, 2009, 10, R16.	13.9	87
60	Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences. Current Protocols in Bioinformatics, 2009, 25, Unit 4.10.	25.8	1,548
61	An algorithm for the reconstruction of consensus sequences of ancient segmental duplications and transposon copies in eukaryotic genomes. International Journal of Bioinformatics Research and Applications, 2010, 6, 147.	0.1	3
62	ModuleOrganizer: detecting modules in families of transposable elements. BMC Bioinformatics, 2010, 11, 474.	1.2	6
63	Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs. Heredity, 2010, 104, 520-533.	1.2	194
64	Draft genome sequence of the oilseed species Ricinus communis. Nature Biotechnology, 2010, 28, 951-956.	9.4	449
65	PiggyBac-ing on a Primate Genome: Novel Elements, Recent Activity and Horizontal Transfer. Genome Biology and Evolution, 2010, 2, 293-303.	1.1	32
66	Evolution of a Distinct Genomic Domain in Drosophila: Comparative Analysis of the Dot Chromosome in <i>Drosophila melanogaster</i> and <i>Drosophila virilis</i> . Genetics, 2010, 185, 1519-1534.	1.2	34
67	Scaffolding a <i>Caenorhabditis</i> nematode genome with RNA-seq. Genome Research, 2010, 20, 1740-1747.	2.4	83
68	Whole-Genome and Chromosome Evolution Associated with Host Adaptation and Speciation of the Wheat Pathogen Mycosphaerella graminicola. PLoS Genetics, 2010, 6, e1001189.	1.5	142
69	Multi-Platform Next-Generation Sequencing of the Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis. PLoS Biology, 2010, 8, e1000475.	2.6	348
70	RepFrag. , 2010, , .		0
71	Human endogenous retrovirus K14C drove genomic diversification of the Y chromosome during primate evolution. Journal of Human Genetics, 2010, 55, 717-725.	1.1	8
72	The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility. Cell, 2010, 140, 631-642.	13.5	399

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
73	Genomic characterization of the Yersinia genus. Genome Biology, 2010, 11, R1.		13.9	103
74	Population genomic sequencing of <i>Coccidioides</i> fungi reveals recent hybridizati transposon control. Genome Research, 2010, 20, 938-946.	on and	2.4	166
75	Identification and quantification of abundant species from pyrosequences of 16S rRNA alignment. , 2010, 2010, 153-157.	, by consensus		83
76	The complexity of Rhipicephalus (Boophilus) microplus genome characterised through analysis of two BAC clones. BMC Research Notes, 2011, 4, 254.	detailed	0.6	6
77	9 Genomic and Comparative Analysis of the Class Dothideomycetes. , 2011, , 205-229			5
78	The draft genome of the carcinogenic human liver fluke Clonorchis sinensis. Genome B R107.	iology, 2011, 12,	13.9	183
79	Genome sequence of the stramenopile Blastocystis, a human anaerobic parasite. Geno 12, R29.	me Biology, 2011,	13.9	159
80	A cost-effective and universal strategy for complete prokaryotic genome sequencing p computer simulation. Genome Biology, 2011, 12, .	roposed by	13.9	1
81	Endophytic Life Strategies Decoded by Genome and Transcriptome Analyses of the Mu Symbiont Piriformospora indica. PLoS Pathogens, 2011, 7, e1002290.	tualistic Root	2.1	361
82	Considering Transposable Element Diversification in De Novo Annotation Approaches. 6, e16526.	PLoS ONE, 2011,	1.1	477
83	Discovery of Highly Divergent Repeat Landscapes in Snake Genomes Using High-Throu Sequencing. Genome Biology and Evolution, 2011, 3, 641-653.	ghput	1.1	87
84	The Evolution and Diversity of DNA Transposons in the Genome of the Lizard Anolis ca Genome Biology and Evolution, 2011, 3, 1-14.	olinensis.	1.1	39
85	MINING APPROXIMATE REPEATING PATTERNS FROM SEQUENCE DATA WITH GAP CON Computational Intelligence, 2011, 27, 336-362.	ISTRAINTS.	2.1	5
86	Full-length transcriptome assembly from RNA-Seq data without a reference genome. N Biotechnology, 2011, 29, 644-652.	ature	9.4	17,264
87	Mutation detection in plasmidâ€based biopharmaceuticals. Biotechnology Journal, 202	1, 6, 378-391.	1.8	4
88	Ascaris suum draft genome. Nature, 2011, 479, 529-533.		13.7	246
89	Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes. Research, 2011, 19, 787-808.	Chromosome	1.0	49
90	Identification, variation and transcription of pneumococcal repeat sequences. BMC Ge 120.	nomics, 2011, 12,	1.2	48

#	Article	IF	CITATIONS
91	Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences. BMC Genomics, 2011, 12, 188.	1.2	56
92	Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin. BMC Genomics, 2011, 12, 424.	1.2	118
93	RNA-Seq improves annotation of protein-coding genes in the cucumber genome. BMC Genomics, 2011, 12, 540.	1.2	232
94	In search of lost trajectories. Mobile Genetic Elements, 2011, 1, 151-154.	1.8	4
95	Discovery of the First Insect Nidovirus, a Missing Evolutionary Link in the Emergence of the Largest RNA Virus Genomes. PLoS Pathogens, 2011, 7, e1002215.	2.1	169
96	The genome of the leaf-cutting ant <i>Acromyrmex echinatior</i> suggests key adaptations to advanced social life and fungus farming. Genome Research, 2011, 21, 1339-1348.	2.4	210
97	Restless Genomes. Advances in Genetics, 2011, 73, 219-262.	0.8	19
98	Applied Genomics: Data Mining Reveals Species-Specific Malaria Diagnostic Targets More Sensitive than 18S rRNA. Journal of Clinical Microbiology, 2011, 49, 2411-2418.	1.8	74
99	Progress towards a reference genome for sunflower. Botany, 2011, 89, 429-437.	0.5	67
100	Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont <i>Grosmannia clavigera</i> , a lodgepole pine pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2504-2509.	3.3	218
101	Short- and Long-term Evolutionary Dynamics of Bacterial Insertion Sequences: Insights from Wolbachia Endosymbionts. Genome Biology and Evolution, 2011, 3, 1175-1186.	1.1	55
102	The Genome Sequence of the Leaf-Cutter Ant Atta cephalotes Reveals Insights into Its Obligate Symbiotic Lifestyle. PLoS Genetics, 2011, 7, e1002007.	1.5	231
103	Repetitive Elements May Comprise Over Two-Thirds of the Human Genome. PLoS Genetics, 2011, 7, e1002384.	1.5	907
104	Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes Fungi. PLoS Pathogens, 2012, 8, e1003037.	2.1	595
105	Anonymous nuclear loci in non-model organisms: making the most of high-throughput genome surveys. Bioinformatics, 2012, 28, 1807-1810.	1.8	21
106	Draft Genome Sequence of Salt-Tolerant Yeast Debaryomyces hansenii var. hansenii MTCC 234. Eukaryotic Cell, 2012, 11, 961-962.	3.4	17
107	Slow DNA Loss in the Gigantic Genomes of Salamanders. Genome Biology and Evolution, 2012, 4, 1340-1348.	1.1	55
108	Identification of transposable elements of the giant panda (Ailuropoda melanoleuca) genome. , 2012, , .		0

# 109	ARTICLE Transposon-Derived and Satellite-Derived Repetitive Sequences Play Distinct Functional Roles in	IF 0.6	CITATIONS
110	Rapid divergence and expansion of the X chromosome in papaya. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13716-13721.	3.3	52
111	Sequencing of the smallest Apicomplexan genome from the human pathogen Babesia microtiâ€. Nucleic Acids Research, 2012, 40, 9102-9114.	6.5	179
112	LTR Retrotransposons Contribute to Genomic Gigantism in Plethodontid Salamanders. Genome Biology and Evolution, 2012, 4, 168-183.	1.1	152
113	Roadmap for Annotating Transposable Elements in Eukaryote Genomes. Methods in Molecular Biology, 2012, 859, 53-68.	0.4	15
114	The genome of flax (<i>Linum usitatissimum</i>) assembled <i>de novo</i> from short shotgun sequence reads. Plant Journal, 2012, 72, 461-473.	2.8	415
115	A Living Fossil in the Genome of a Living Fossil: Harbinger Transposons in the Coelacanth Genome. Molecular Biology and Evolution, 2012, 29, 985-993.	3.5	36
117	Evolution of three Pyrenophora cereal pathogens: Recent divergence, speciation and evolution of non-coding DNA. Fungal Genetics and Biology, 2012, 49, 825-829.	0.9	53
118	Transposable Elements and Their Identification. Methods in Molecular Biology, 2012, 855, 337-359.	0.4	26
119	Scaling metagenome sequence assembly with probabilistic de Bruijn graphs. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13272-13277.	3.3	219
120	6–10× pyrosequencing is a practical approach for whole prokaryote genome studies. Gene, 2012, 494, 57-64.	1.0	10
121	A non-LTR retroelement extinction in Spermophilus tridecemlineatus. Gene, 2012, 500, 47-53.	1.0	28
122	Genomic characterization of the conditionally dispensable chromosome in Alternaria arborescens provides evidence for horizontal gene transfer. BMC Genomics, 2012, 13, 171.	1.2	81
123	Comparative genomic analysis of human infective Trypanosoma cruzi lineages with the bat-restricted subspecies T. cruzi marinkellei. BMC Genomics, 2012, 13, 531.	1.2	57
124	Identification, characterization and distribution of transposable elements in the flax (Linum) Tj ETQq0 0 0 rgBT /O	verlock 10 1.2	Ţf 50 182 T
125	Complete genome sequence of Enterococcus faecium strain TX16 and comparative genomic analysis of Enterococcus faecium genomes. BMC Microbiology, 2012, 12, 135.	1.3	126
126	Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nature Biotechnology, 2012, 30, 83-89.	9.4	788

127Transposable Element Annotation in Completely Sequenced Eukaryote Genomes. Topics in Current0.716127Genetics, 2012, , 17-39.0.716

#	Article	IF	CITATIONS
128	Comparative Genomics of Plant-Associated Pseudomonas spp.: Insights into Diversity and Inheritance of Traits Involved in Multitrophic Interactions. PLoS Genetics, 2012, 8, e1002784.	1.5	578
129	Comparing Fungal Genomes: Insight into Functional and Evolutionary Processes. Methods in Molecular Biology, 2012, 835, 531-548.	0.4	7
131	Design of a tobacco exon array with application to investigate the differential cadmium accumulation property in two tobacco varieties. BMC Genomics, 2012, 13, 674.	1.2	18
132	Sequence Composition and Gene Content of the Short Arm of Rye (Secale cereale) Chromosome 1. PLoS ONE, 2012, 7, e30784.	1.1	20
133	The Genome of Ganderma lucidum Provide Insights into Triterpense Biosynthesis and Wood Degradation. PLoS ONE, 2012, 7, e36146.	1.1	78
134	Survey of Endosymbionts in the Diaphorina citri Metagenome and Assembly of a Wolbachia wDi Draft Genome. PLoS ONE, 2012, 7, e50067.	1.1	77
135	Transposable Elements: From DNA Parasites to Architects of Metazoan Evolution. Genes, 2012, 3, 409-422.	1.0	26
136	The predominantly selfing plant Arabidopsis thaliana experienced a recent reduction in transposable element abundance compared to its outcrossing relative Arabidopsis lyrata. Mobile DNA, 2012, 3, 2.	1.3	50
137	A beginner's guide to eukaryotic genome annotation. Nature Reviews Genetics, 2012, 13, 329-342.	7.7	553
138	Insect Transposable Elements. , 2012, , 57-89.		3
138 139	Insect Transposable Elements. , 2012, , 57-89. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012, 30, 549-554.	9.4	3 636
138 139 140	Insect Transposable Elements., 2012, , 57-89. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012, 30, 549-554. The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties. International Journal of Food Microbiology, 2012, 157, 202-209.	9.4	3 636 102
138 139 140 141	Insect Transposable Elements., 2012, 57-89. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012, 30, 549-554. The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties. International Journal of Food Microbiology, 2012, 157, 202-209. EVIDENCE OF ADAPTATION FROM ANCESTRAL VARIATION IN YOUNG POPULATIONS OF BEACH MICE. Evolution; International Journal of Organic Evolution, 2012, 66, 3209-3223.	9.4 2.1 1.1	3 636 102 64
138 139 140 141	Insect Transposable Elements. , 2012, , 57-89. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012, 30, 549-554. The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties. International Journal of Food Microbiology, 2012, 157, 202-209. EVIDENCE OF ADAPTATION FROM ANCESTRAL VARIATION IN YOUNG POPULATIONS OF BEACH MICE. Evolution; International Journal of Organic Evolution, 2012, 66, 3209-3223. The eroded genome of a <i> Psychotria</i> leaf symbiont: hypotheses about lifestyle and interactions with its plant host. Environmental Microbiology, 2012, 14, 2757-2769.	9.4 2.1 1.1 1.8	3 636 102 64 60
 138 139 140 141 142 143 	Insect Transposable Elements. , 2012, , 57-89. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012, 30, 549-554. The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties. International Journal of Food Microbiology, 2012, 157, 202-209. EVIDENCE OF ADAPTATION FROM ANCESTRAL VARIATION IN YOUNG POPULATIONS OF BEACH MICE. Evolution; International Journal of Organic Evolution, 2012, 66, 3209-3223. The eroded genome of a <i>Psychotria</i> leaf symbiont: hypotheses about lifestyle and interactions with its plant host. Environmental Microbiology, 2012, 14, 2757-2769. A cost-effective and universal strategy for complete prokaryotic genomic sequencing proposed by computer simulation. BMC Research Notes, 2012, 5, 80.	9.4 2.1 1.1 1.8 0.6	3 636 102 64 60 4
 138 139 140 141 142 143 144 	Insect Transposable Elements., 2012, , 57-89. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012, 30, 549-554. The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties. International Journal of Food Microbiology, 2012, 157, 202-209. EVIDENCE OF ADAPTATION FROM ANCESTRAL VARIATION IN YOUNG POPULATIONS OF BEACH MICE. Evolution; International Journal of Organic Evolution, 2012, 66, 3209-3223. The eroded genome of a <i>Psychotria</i> leaf symbiont: hypotheses about lifestyle and interactions with its plant host. Environmental Microbiology, 2012, 14, 2757-2769. A cost-effective and universal strategy for complete prokaryotic genomic sequencing proposed by computer simulation. BMC Research Notes, 2012, 5, 80. Characterizing the walnut genome through analyses of BAC end sequences. Plant Molecular Biology, 2012, 78, 95-107.	9.4 2.1 1.1 1.8 0.6 2.0	3 636 102 64 60 4
 138 139 140 141 142 143 144 145 	Insect Transposable Elements. , 2012, , 57-89. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nature Biotechnology, 2012, 30, 549-554. The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties. International Journal of Food Microbiology, 2012, 157, 202-209. EVIDENCE OF ADAPTATION FROM ANCESTRAL VARIATION IN YOUNG POPULATIONS OF BEACH MICE. Evolution; International Journal of Organic Evolution, 2012, 66, 3209-3223. The eroded genome of a <i>Psychotria</i> leaf symbiont: hypotheses about lifestyle and interactions with its plant host. Environmental Microbiology, 2012, 14, 2757-2769. A cost-effective and universal strategy for complete prokaryotic genomic sequencing proposed by computer simulation. BMC Research Notes, 2012, 5, 80. Characterizing the walnut genome through analyses of BAC end sequences. Plant Molecular Biology, 2013, 14, R60. Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biology, 2013, 14, R60.	9.4 2.1 1.1 1.8 0.6 2.0 3.8	3 636 102 64 60 4 27 192

#	Article	IF	Citations
147	Detection of a novel active transposable element in Caldicellulosiruptor hydrothermalis and a new search for elements in this genus. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 517-521.	1.4	9
148	Decoding the Ascaris suum Genome using Massively Parallel Sequencing and Advanced Bioinformatic Methods – Unprecedented Prospects for Fundamental and Applied Research. , 2013, , 287-314.		1
149	The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nature Communications, 2013, 4, 1424.	5.8	268
150	The miniature genome of a carnivorous plant Genlisea aurea contains a low number of genes and short non-coding sequences. BMC Genomics, 2013, 14, 476.	1.2	58
151	KONAGAbase: a genomic and transcriptomic database for the diamondback moth, Plutella xylostella. BMC Genomics, 2013, 14, 464.	1.2	47
152	Insights into the evolution of Darwin's finches from comparative analysis of the Geospiza magnirostris genome sequence. BMC Genomics, 2013, 14, 95.	1.2	38
153	Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology, 2013, 31, 240-246.	9.4	1,049
154	Overview of Repeat Annotation and De Novo Repeat Identification. Methods in Molecular Biology, 2013, 1057, 275-287.	0.4	12
155	Sequence organization and evolutionary dynamics of Brachypodium-specific centromere retrotransposons. Chromosome Research, 2013, 21, 507-521.	1.0	14
156	The sacred lotus genome provides insights into the evolution of flowering plants. Plant Journal, 2013, 76, 557-567.	2.8	75
157	A draft genome sequence of the pulse crop chickpea (<i><scp>C</scp>icer arietinum</i> ÂL.). Plant Journal, 2013, 74, 715-729.	2.8	382
158	Adaptive Evolution of Multiple Traits Through Multiple Mutations at a Single Gene. Science, 2013, 339, 1312-1316.	6.0	277
159	Genome-wide survey of repetitive DNA elements in the button mushroom Agaricus bisporus. Fungal Genetics and Biology, 2013, 55, 6-21.	0.9	37
160	A heterozygous moth genome provides insights into herbivory and detoxification. Nature Genetics, 2013, 45, 220-225.	9.4	472
161	The genome of the hydatid tapeworm Echinococcus granulosus. Nature Genetics, 2013, 45, 1168-1175.	9.4	260
162	Identification of both copy number variation-type and constant-type core elements in a large segmental duplication region of the mouse genome. BMC Genomics, 2013, 14, 455.	1.2	6
163	Developing molecular tools and insights into the Penstemon genome using genomic reduction and next-generation sequencing. BMC Genetics, 2013, 14, 66.	2.7	14
164	The genome of Romanomermis culicivorax: revealing fundamental changes in the core developmental genetic toolkit in Nematoda. BMC Genomics, 2013, 14, 923.	1.2	43

CITATION REPORT IF ARTICLE CITATIONS A BAC based physical map and genome survey of the rice false smut fungus Villosiclava virens. BMC 165 1.2 10 Genomics, 2013, 14, 883. Tips and tricks for the assembly of a <i><scp>C</scp>orynebacterium pseudotuberculosis</i> genome using a semiconductor sequencer. Microbial Biotechnology, 2013, 6, 150-156. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. 167 9.4 731 Nature Genetics, 2013, 45, 51-58. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nature Genetics, 2013, 45, 701-706. 409

The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys) Tj ETQq0 0 0 rgBT /Qverlock 10, Tf 50 582 169

170	The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nature Genetics, 2013, 45, 487-494.	9.4	1,031
171	Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of <i>Colletotrichum</i> fungi. New Phytologist, 2013, 197, 1236-1249.	3.5	332
172	Comparative Genomics Analysis of <i>Trichoderma reesei</i> Strains. Industrial Biotechnology, 2013, 9, 352-367.	0.5	34
173	Deciphering the Cryptic Genome: Genome-wide Analyses of the Rice Pathogen Fusarium fujikuroi Reveal Complex Regulation of Secondary Metabolism and Novel Metabolites. PLoS Pathogens, 2013, 9, e1003475.	2.1	406
174	Genomic Mechanisms Accounting for the Adaptation to Parasitism in Nematode-Trapping Fungi. PLoS Genetics, 2013, 9, e1003909.	1.5	97
175	Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Research, 2013, 23, 1271-1282.	2.4	338
176	Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens. PLoS Genetics, 2013, 9, e1003233.	1.5	232
177	Functional and Evolutionary Analysis of the Genome of an Obligate Fungal Symbiont. Genome Biology and Evolution, 2013, 5, 891-904.	1.1	54
178	PRAP: an ab initio software package for automated genome-wide analysis of DNA repeats for prokaryotes. Bioinformatics, 2013, 29, 2683-2689.	1.8	11
179	The genome and developmental transcriptome of the strongylid nematode Haemonchus contortus. Genome Biology, 2013, 14, R89.	13.9	192
180	Functional characterization of <i>piggyBat</i> from the bat <i>Myotis lucifugus</i> unveils an active mammalian DNA transposon. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 234-239.	3.3	73
181	Draft genome sequence of the mulberry tree Morus notabilis. Nature Communications, 2013, 4, 2445.	5.8	277
182	The Genome of the Anaerobic Fungus Orpinomyces sp. Strain C1A Reveals the Unique Evolutionary History of a Remarkable Plant Biomass Degrader. Applied and Environmental Microbiology, 2013, 79, 4620-4634.	1.4	224

#

	CHAIION	REPORT	
#	Article	IF	CITATIONS
183	Draft genome of the kiwifruit Actinidia chinensis. Nature Communications, 2013, 4, 2640.	5.8	423
184	Genomics of Loa loa, a Wolbachia-free filarial parasite of humans. Nature Genetics, 2013, 45, 495-500.	9.4	173
185	Improving prokaryotic transposable elements identification using a combination of de novo and profile HMM methods. BMC Genomics, 2013, 14, 700.	1.2	19
186	The genome sequence of the colonial chordate, Botryllus schlosseri. ELife, 2013, 2, e00569.	2.8	209
187	Students' perspective on genomics: from sample to sequence using the case study of blueberry. Frontiers in Genetics, 2013, 4, 245.	1.1	4
188	Genome Re-Sequencing of Semi-Wild Soybean Reveals a Complex Soja Population Structure and Deep Introgression. PLoS ONE, 2014, 9, e108479.	1.1	26
189	Genomic takeover by transposable elements in the Strawberry poison frog. Molecular Biology and Evolution, 2014, 35, 2913-2927.	3.5	45
190	BengaSaVex: A new computational genetic sequence extraction tool for DNA repeats. African Journal of Biotechnology, 2014, 13, 2103-2112.	0.3	2
191	Fungal Genomics. Advances in Botanical Research, 2014, , 1-52.	0.5	25
192	The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment. Genome Biology, 2014, 15, 468.	3.8	86
193	The genome of Eimeria falciformisv - reduction and specialization in a single host apicomplexan parasite. BMC Genomics, 2014, 15, 696.	1.2	44
194	Rapid Evolution of piRNA Pathway in the Teleost Fish: Implication for an Adaptation to Transposon Diversity. Genome Biology and Evolution, 2014, 6, 1393-1407.	1.1	46
195	Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biology, 2014, 15, 521.	3.8	404
196	Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nature Genetics, 2014, 46, 253-260.	9.4	685
197	Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli. PLoS Neglected Tropical Diseases, 2014, 8, e3176.	1.3	72
198	Genome Sequencing and Comparative Genomics of the Broad Host-Range Pathogen Rhizoctonia solani AG8. PLoS Genetics, 2014, 10, e1004281.	1.5	145
199	Big data challenges for estimating genome assembler quality. , 2014, , .		1
200	Complete Plastome Sequences from <i>Glycine syndetika</i> and Six Additional Perennial Wild Relatives of Soybean. G3: Genes, Genomes, Genetics, 2014, 4, 2023-2033.	0.8	26

#	Article	IF	CITATIONS
201	ADe NovoGenome Assembly Algorithm for Repeats and Nonrepeats. BioMed Research International, 2014, 2014, 1-16.	0.9	3
202	Single Nucleus Genome Sequencing Reveals High Similarity among Nuclei of an Endomycorrhizal Fungus. PLoS Genetics, 2014, 10, e1004078.	1.5	238
203	Mining hidden polymorphic sequence motifs from divergent plant <i>helitrons</i> . Mobile Genetic Elements, 2014, 4, 1-5.	1.8	0
204	Sequence-Based Analysis of Structural Organization and Composition of the Cultivated Sunflower (Helianthus annuus L.) Genome. Biology, 2014, 3, 295-319.	1.3	16
205	The Draft Genome and Transcriptome of Amaranthus hypochondriacus: A C4 Dicot Producing High-Lysine Edible Pseudo-Cereal. DNA Research, 2014, 21, 585-602.	1.5	52
206	Molecular tracing of the emergence, diversification, and transmission of <i>S. aureus</i> sequence type 8 in a New York community. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6738-6743.	3.3	176
207	Deep Investigation of Arabidopsis thaliana Junk DNA Reveals a Continuum between Repetitive Elements and Genomic Dark Matter. PLoS ONE, 2014, 9, e94101.	1.1	62
208	The landscape of transposable elements in the finished genome of the fungal wheat pathogen Mycosphaerella graminicola. BMC Genomics, 2014, 15, 1132.	1.2	65
209	Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC Genomics, 2014, 15, 549.	1.2	262
210	Draft Genome Sequence of Eggplant (Solanum melongena L.): the Representative Solanum Species Indigenous to the Old World. DNA Research, 2014, 21, 649-660.	1.5	254
211	Random non-coding fragments of lizard DNA: anonymous nuclear loci for the Australian skink, Tiliqua rugosa, and their utility in other Egernia-group species. Australian Journal of Zoology, 2014, 62, 515.	0.6	2
212	The complex jujube genome provides insights into fruit tree biology. Nature Communications, 2014, 5, 5315.	5.8	251
213	The complete sequence of the chloroplast genome of the green microalga <i>Lobosphaera</i> (<i>Parietochloris</i>) <i>incisa</i> . Mitochondrial DNA, 2016, 27, 1-3.	0.6	3
214	Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science, 2014, 346, 1254449.	6.0	300
215	Rolling-Circle Transposons Catalyze Genomic Innovation in a Mammalian Lineage. Genome Biology and Evolution, 2014, 6, 2595-2610.	1.1	53
216	Draft Sequences of the Radish (Raphanus sativus L.) Genome. DNA Research, 2014, 21, 481-490.	1.5	165
217	TEMP: a computational method for analyzing transposable element polymorphism in populations. Nucleic Acids Research, 2014, 42, 6826-6838.	6.5	124
218	Comparative Genomic and Transcriptomic Analysis of <i>Wangiella dermatitidis</i> , A Major Cause of Phaeohyphomycosis and a Model Black Yeast Human Pathogen. G3: Genes, Genomes, Genetics, 2014, 4, 561-578.	0.8	58

#	Article	IF	CITATIONS
219	Hellbender Genome Sequences Shed Light on Genomic Expansion at the Base of Crown Salamanders. Genome Biology and Evolution, 2014, 6, 1818-1829.	1.1	57
220	ChiloDB: a genomic and transcriptome database for an important rice insect pest Chilo suppressalis. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau065-bau065.	1.4	50
221	Ancestral repeats have shaped epigenome and genome composition for millions of years in Arabidopsis thaliana. Nature Communications, 2014, 5, 4104.	5.8	74
222	Gene Loss Rather Than Gene Gain Is Associated with a Host Jump from Monocots to Dicots in the Smut Fungus Melanopsichium pennsylvanicum. Genome Biology and Evolution, 2014, 6, 2034-2049.	1.1	146
223	Finding the missing honey bee genes: lessons learned from a genome upgrade. BMC Genomics, 2014, 15, 86.	1.2	375
224	Genome sequence of Anopheles sinensis provides insight into genetics basis of mosquito competence for malaria parasites. BMC Genomics, 2014, 15, 42.	1.2	56
225	The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nature Communications, 2014, 5, 3657.	5.8	814
226	Genome Sequence of the Tsetse Fly (<i>Glossina morsitans</i>): Vector of African Trypanosomiasis. Science, 2014, 344, 380-386.	6.0	254
227	The tobacco genome sequence and its comparison with those of tomato and potato. Nature Communications, 2014, 5, 3833.	5.8	503
228	Population Genomics Reveal Recent Speciation and Rapid Evolutionary Adaptation in Polar Bears. Cell, 2014, 157, 785-794.	13.5	363
229	Stick Insect Genomes Reveal Natural Selection's Role in Parallel Speciation. Science, 2014, 344, 738-742.	6.0	386
230	Papaya Repeat Database. , 2014, , 225-240.		1
231	Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nature Structural and Molecular Biology, 2014, 21, 198-206.	3.6	565
232	The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature, 2014, 505, 546-549.	13.7	569
233	Minke whale genome and aquatic adaptation in cetaceans. Nature Genetics, 2014, 46, 88-92.	9.4	227
234	Rapid diversification of five <i>Oryza</i> AA genomes associated with rice adaptation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4954-62.	3.3	145
235	Evolutionary active transposable elements in the genome of the coelacanth. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 322-333.	0.6	22
236	Comparative genome sequencing reveals genomic signature of extreme desiccation tolerance in the anhydrobiotic midge. Nature Communications, 2014, 5, 4784.	5.8	118

#	ARTICLE		CITATIONS
237	Endogenous florendoviruses are major components of plant genomes and hallmarks of virus evolution. Nature Communications, 2014, 5, 5269.		99
238	RepARK—de novo creation of repeat libraries from whole-genome NGS reads. Nucleic Acids Research, 2014, 42, e80-e80.	6.5	67
239	Genome and transcriptome of the porcine whipworm Trichuris suis. Nature Genetics, 2014, 46, 701-706.	9.4	93
240	The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science, 2014, 345, 1181-1184.	6.0	520
241	The genome sequence of African rice (Oryza glaberrima) and evidence for independent domestication. Nature Genetics, 2014, 46, 982-988.	9.4	342
242	The genome of the white-rot fungus Pycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown. BMC Genomics, 2014, 15, 486.	1.2	91
243	Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes. BMC Genomics, 2014, 15, 582.	1.2	134
244	The genome sequence of the biocontrol fungus Metarhizium anisopliae and comparative genomics of Metarhizium species. BMC Genomics, 2014, 15, 660.	1.2	59
245	DINE-1, the highest copy number repeats in Drosophila melanogaster are non-autonomous endonuclease-encoding rolling-circle transposable elements (Helentrons). Mobile DNA, 2014, 5, 18.	1.3	32
246	The Architecture of a Scrambled Genome Reveals Massive Levels of Genomic Rearrangement during Development. Cell, 2014, 158, 1187-1198.	13.5	152
247	Heterochromatin Controls \hat{I}^3 H2A Localization in Neurospora crassa. Eukaryotic Cell, 2014, 13, 990-1000.	3.4	26
248	OMIGA: Optimized Maker-Based Insect Genome Annotation. Molecular Genetics and Genomics, 2014, 289, 567-573.	1.0	24
249	Genome sequence of the cultivated cotton Gossypium arboreum. Nature Genetics, 2014, 46, 567-572.	9.4	883
250	Billions of basepairs of recently expanded, repetitive sequences are eliminated from the somatic genome during copepod development. BMC Genomics, 2014, 15, 186.	1.2	34
251	Accumulation of interspersed and sex-specific repeats in the non-recombining region of papaya sex chromosomes. BMC Genomics, 2014, 15, 335.	1.2	28
252	Evolution of gene structure in the conifer Picea glauca: a comparative analysis of the impact of intron size. BMC Plant Biology, 2014, 14, 95.	1.6	46
253	Genetic parameters and response to selection in blue mussel (Mytilus galloprovincialis) using a SNP-based pedigree. Aquaculture, 2014, 420-421, 295-301.	1.7	61
254	The heterothallic sugarbeet pathogen Cercospora beticola contains exon fragments of both MAT genes that are homogenized by concerted evolution. Fungal Genetics and Biology, 2014, 62, 43-54.	0.9	15

	Сіта	tion Report	
#	Article	IF	CITATIONS
255	Mobile elements and mitochondrial genome expansion in the soil fungus and potato pathogen <i>Rhizoctonia solani</i> AG-3. FEMS Microbiology Letters, 2014, 352, 165-173.	0.7	143
256	Analysis of the leaf methylomes of parents and their hybrids provides new insight into hybrid vigor in Populus deltoides. BMC Genetics, 2014, 15, S8.	2.7	16
257	Feature frequency profiles for automatic sample identification using PySpark. , 2015, , .		0
258	An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.). Scientific Reports, 2015 5, 12806.	5, 1.6	114
259	<i>Helitrons</i> , the Eukaryotic Rolling-circle Transposable Elements. Microbiology Spectrum, 2015, 3, .	1.2	81
260	Sequencing of plant genomes – a review. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2015, 39, 361-376.	0.8	20
261	Repbase Update, a database of repetitive elements in eukaryotic genomes. Mobile DNA, 2015, 6, 11.	1.3	2,243
262	Draft genome sequences of Chrysoporthe austroafricana, Diplodia scrobiculata, Fusarium nygamai, Leptographium lundbergii, Limonomyces culmigenus, Stagonosporopsis tanaceti, and Thielaviopsis punctulata. IMA Fungus, 2015, 6, 233-248.	1.7	46
263	MnTEdb, a collective resource for mulberry transposable elements. Database: the Journal of Biological Databases and Curation, 2015, 2015, .	1.4	25
264	Clobal identification and analysis of long non-coding RNAs in diploid strawberry Fragaria vesca during flower and fruit development. BMC Genomics, 2015, 16, 815.	1.2	106
265	Predicting DNA mutations during cancer evolution. International Journal of Bioinformatics Research and Applications, 2015, 11, 200.	0.1	1
266	An Introduction to Genome Annotation. Current Protocols in Bioinformatics, 2015, 52, 4.1.1-4.1.17.	25.8	4
267	Genome sequence of the plant growth promoting endophytic yeast Rhodotorula graminis WP1. Frontiers in Microbiology, 2015, 6, 978.	1.5	83
268	Reproductive Mode and the Evolution of Genome Size and Structure in Caenorhabditis Nematodes. PLoS Genetics, 2015, 11, e1005323.	1.5	102
269	A Deluge of Complex Repeats: The Solanum Genome. PLoS ONE, 2015, 10, e0133962.	1.1	23
270	The genome of Leishmania panamensis: insights into genomics of the L. (Viannia) subgenus Scientific Reports, 2015, 5, 8550.	1.6	63
271	Metagenome sequence of <scp><i>E</i></scp> <i>laphomyces granulatus</i> from sporocarp tissue reveals <scp>A</scp> scomycota ectomycorrhizal fingerprints of genome expansion and a <i><scp>P</scp>roteobacteria</i> â€rich microbiome. Environmental Microbiology, 2015, 17, 2952-2966	1.8	34
272	High quality reference genome of drumstick tree (Moringa oleifera Lam.), a potential perennial crop. Science China Life Sciences, 2015, 58, 627-638.	2.3	53

#	Article	IF	CITATIONS
274	The complete mitochondrial genome sequence of the green microalga Lobosphaera (Parietochloris) incisa reveals a new type of palindromic repetitive repeat. BMC Genomics, 2015, 16, 580.	1.2	9
275	Genome sequencing of herb Tulsi (Ocimum tenuiflorum) unravels key genes behind its strong medicinal properties. BMC Plant Biology, 2015, 15, 212.	1.6	80
276	Genome of <i>Rhodnius prolixus</i> , an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14936-14941.	3.3	329
277	Insights into Sex Chromosome Evolution and Aging from the Genome of a Short-Lived Fish. Cell, 2015, 163, 1527-1538.	13.5	251
278	Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of <i>Ficedula</i> flycatchers. Genome Research, 2015, 25, 1656-1665.	2.4	385
279	Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum. Nature, 2015, 527, 508-511.	13.7	291
280	De novo genome assembly tool comparison for highly heterozygous species Vitis vinifera cv. Sultanina. , 2015, , .		2
281	Computational Synteny Block: A framework to identify evolutionary events. , 2015, , .		0
282	Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of Fistulina hepatica and Cylindrobasidium torrendii. Fungal Genetics and Biology, 2015, 76, 78-92.	0.9	141
283	Studying Genome Heterogeneity within the Arbuscular Mycorrhizal Fungal Cytoplasm. Genome Biology and Evolution, 2015, 7, 505-521.	1.1	30
284	Integrated genome sequence and linkage map of physic nut (<i>Jatropha curcas</i> L.), a biodiesel plant. Plant Journal, 2015, 81, 810-821.	2.8	149
285	The genome and transcriptome of the zoonotic hookworm Ancylostoma ceylanicum identify infection-specific gene families. Nature Genetics, 2015, 47, 416-422.	9.4	91
286	Genetic blueprint of the zoonotic pathogen Toxocara canis. Nature Communications, 2015, 6, 6145.	5.8	103
287	Genome Sequencing of the Perciform Fish Larimichthys crocea Provides Insights into Molecular and Genetic Mechanisms of Stress Adaptation. PLoS Genetics, 2015, 11, e1005118.	1.5	230
288	Characterization and distribution of mating-type genes of the turfgrass pathogen Sclerotinia homoeocarpa on a global scale. Fungal Genetics and Biology, 2015, 81, 25-40.	0.9	15
289	DNA transposons have colonized the genome of the giant virus Pandoravirus salinus. BMC Biology, 2015, 13, 38.	1.7	50
290	Saccharina genomes provide novel insight into kelp biology. Nature Communications, 2015, 6, 6986.	5.8	222
291	Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products. BMC Genomics, 2015, 16, 28.	1.2	102

#	Article	IF	CITATIONS
292	The genome of the basal agaricomycete Xanthophyllomyces dendrorhous provides insights into the organization of its acetyl-CoA derived pathways and the evolution of Agaricomycotina. BMC Genomics, 2015, 16, 233.	1.2	47
293	Local hopping mobile DNA implicated in pseudogene formation and reductive evolution in an obligate cyanobacteria-plant symbiosis. BMC Genomics, 2015, 16, 193.	1.2	20
294	The Alternaria genomes database: a comprehensive resource for a fungal genus comprised of saprophytes, plant pathogens, and allergenic species. BMC Genomics, 2015, 16, 239.	1.2	105
295	Analyses of random BAC clone sequences of Japanese cedar, Cryptomeria japonica. Tree Genetics and Genomes, 2015, 11, 1.	0.6	4
296	The goose genome sequence leads to insights into the evolution of waterfowl and susceptibility to fatty liver. Genome Biology, 2015, 16, 89.	3.8	98
297	Impact of transposable elements on insect genomes and biology. Current Opinion in Insect Science, 2015, 7, 30-36.	2.2	45
298	The nervous system of Xenacoelomorpha: a genomic perspective. Journal of Experimental Biology, 2015, 218, 618-628.	0.8	36
299	Genome Sequences of Three Phytopathogenic Species of the Magnaporthaceae Family of Fungi. G3: Genes, Genomes, Genetics, 2015, 5, 2539-2545.	0.8	33
300	The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization. Nature Communications, 2015, 6, 8301.	5.8	159
301	Genome and transcriptome of the regeneration-competent flatworm, <i>Macrostomum lignano</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12462-12467.	3.3	90
302	Red: an intelligent, rapid, accurate tool for detecting repeats de-novo on the genomic scale. BMC Bioinformatics, 2015, 16, 227.	1.2	150
303	The Genome and Methylome of a Beetle with Complex Social Behavior, <i>Nicrophorus</i>		87
	vespinoides (1) (Coleoptera: Silphidae). Genome Biology and Evolution, 2015, 7, 5385-5396.	1.1	
304	Genome sequence of the Asian Tiger mosquito, <i>Aedes albopictus</i> , reveals insights into its biology, genetics, and evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5907-15.	1.1 3.3	251
304 305	 Genome sequence of the Asian Tiger mosquito, <i>Aedes albopictus</i>, reveals insights into its biology, genetics, and evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5907-15. Genome Sequencing of Multiple Isolates Highlights Subtelomeric Genomic Diversity within<i>Fusarium fujikuroi</i>. Genome Biology and Evolution, 2015, 7, 3062-3069. 	1.1 3.3 1.1	251 36
304 305 306	Vespinoides (Coleoptera: Supridae). Genome Biology and Evolution, 2015, 7, 3383-3396. Genome sequence of the Asian Tiger mosquito, <i>Aedes albopictus , reveals insights into its biology, genetics, and evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5907-15. Genome Sequencing of Multiple Isolates Highlights Subtelomeric Genomic Diversity within<i>Fusarium fujikuroi , Genome Biology and Evolution, 2015, 7, 3062-3069. The Genome of Winter Moth (<i>Operophtera brumata</i>Dimorphism and Phenology. Genome Biology and Evolution, 2015, 7, 2321-2332. , 2321-2332.</i></i>	1.1 3.3 1.1 1.1	251 36 70
304 305 306 307	Vespiloides(i) (Coleoptera: Siphidae), Genome Biology and Evolution, 2013, 7, 3383-3396. Genome sequence of the Asian Tiger mosquito, <i>Aedes albopictus</i> , reveals insights into its biology, genetics, and evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5907-15. Genome Sequencing of Multiple Isolates Highlights Subtelomeric Genomic Diversity within <i>Fusarium fujikuroi</i> , Genome Biology and Evolution, 2015, 7, 3062-3069. The Genome of Winter Moth (<i>Operophtera brumata</i>) Provides a Genomic Perspective on Sexual Dimorphism and Phenology. Genome Biology and Evolution, 2015, 7, 2321-2332. RiTE database: a resource database for genus-wide rice genomics and evolutionary biology. BMC Genomics, 2015, 16, 538.	1.1 3.3 1.1 1.1	251 36 70 86
304 305 306 307 308	Vesplitoides (I) (Coleoptera: Siphidae), Genome Biology and Evolution, 2015, 7, 3363-3396. Genome sequence of the Asian Tiger mosquito, <i>Aedes albopictus</i> , reveals insights into its biology, genetics, and evolution. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5907-15. Genome Sequencing of Multiple Isolates Highlights Subtelomeric Genomic Diversity within within Fusarium fujikuroi In Genome of Winter Moth (<i>Operophtera brumata</i>) Provides a Genomic Perspective on Sexual Dimorphism and Phenology. Genome Biology and Evolution, 2015, 7, 2321-2332. RiTE database: a resource database for genus-wide rice genomics and evolutionary biology. BMC Genomics, 2015, 16, 538. The genome of the truffle-parasite Tolypocladium ophioglossoides and the evolution of antifungal peptaibiotics. BMC Genomics, 2015, 16, 553.	1.1 3.3 1.1 1.1 1.2 1.2	251 36 70 86 46

#	Article	IF	CITATIONS
310	Comparative Genomics Including the Early-Diverging Smut Fungus <i>Ceraceosorus bombacis</i> Reveals Signatures of Parallel Evolution within Plant and Animal Pathogens of Fungi and Oomycetes. Genome Biology and Evolution, 2015, 7, 2781-2798.	1.1	16
311	Comparative Genomics of a Bacterivorous Green Alga Reveals Evolutionary Causalities and Consequences of Phago-Mixotrophic Mode of Nutrition. Genome Biology and Evolution, 2015, 7, 3047-3061.	1.1	36
312	A new approach for annotation of transposable elements using small RNA mapping. Nucleic Acids Research, 2015, 43, e84-e84.	6.5	28
313	Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genomics, 2015, 16, 620.	1.2	107
314	A call for benchmarking transposable element annotation methods. Mobile DNA, 2015, 6, 13.	1.3	83
315	Hemichordate genomes and deuterostome origins. Nature, 2015, 527, 459-465.	13.7	217
316	The genome sequence of the orchid Phalaenopsis equestris. Nature Genetics, 2015, 47, 65-72.	9.4	413
317	Highly evolvable malaria vectors: The genomes of 16 <i>Anopheles</i> mosquitoes. Science, 2015, 347, 1258522.	6.0	492
318	An evaluation of the ecological relationship between Drosophila species and their parasitoid wasps as an opportunity for horizontal transposon transfer. Molecular Genetics and Genomics, 2015, 290, 67-78.	1.0	18
319	Comprehensive repeatome annotation reveals strong potential impact of repetitive elements on tomato ripening. BMC Genomics, 2016, 17, 624.	1.2	29
320	Toward a First High-quality Genome Draft for Marker-assisted Breeding in Leaf Chicory, Radicchio (Cichorium intybus L). , 0, , .		11
321	Deep landscape update of dispersed and tandem repeats in the genome model of the red jungle fowl, Gallus gallus, using a series of de novo investigating tools. BMC Genomics, 2016, 17, 659.	1.2	14
322	A complete toolset for the study of Ustilago bromivora and Brachypodium sp. as a fungal-temperate grass pathosystem. ELife, 2016, 5, .	2.8	49
323	Biosynthesis of Antibiotic Leucinostatins in Bio-control Fungus Purpureocillium lilacinum and Their Inhibition on Phytophthora Revealed by Genome Mining. PLoS Pathogens, 2016, 12, e1005685.	2.1	122
324	Chromosomal-Level Assembly of the Asian Seabass Genome Using Long Sequence Reads and Multi-layered Scaffolding. PLoS Genetics, 2016, 12, e1005954.	1.5	105
325	Comparative Genomics of the Sigatoka Disease Complex on Banana Suggests a Link between Parallel Evolutionary Changes in Pseudocercospora fijiensis and Pseudocercospora eumusae and Increased Virulence on the Banana Host. PLoS Genetics, 2016, 12, e1005904.	1.5	51
326	Transposable Elements versus the Fungal Genome: Impact on Whole-Genome Architecture and Transcriptional Profiles. PLoS Genetics, 2016, 12, e1006108.	1.5	177
327	Computational Synteny Block: A Framework to Identify Evolutionary Events. IEEE Transactions on Nanobioscience, 2016, 15, 343-353.	2.2	4

#	Article	IF	CITATIONS
328	DPTEdb, an integrative database of transposable elements in dioecious plants. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw078.	1.4	23
329	The genome of black raspberry (<i>Rubus occidentalis</i>). Plant Journal, 2016, 87, 535-547.	2.8	111
330	The genome analysis of <scp><i>C</i></scp> <i>andidatus</i> â€ <scp>B</scp> urkholderia crenata reveals that secondary metabolism may be a key function of the <scp><i>A</i></scp> <i>rdisia crenata</i> leaf nodule symbiosis. Environmental Microbiology, 2016, 18, 2507-2522.	1.8	64
331	New resources for genetic studies in <i>Populus nigra</i> : genomeâ€wide <scp>SNP</scp> discovery and development of a 12k Infinium array. Molecular Ecology Resources, 2016, 16, 1023-1036.	2.2	48
332	Function and evolution of local repeats in the Firre locus. Nature Communications, 2016, 7, 11021.	5.8	75
333	De Novo Annotation of Transposable Elements: Tackling the Fat Genome Issue. Proceedings of the IEEE, 2016, , 1-8.	16.4	8
334	Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Scientific Reports, 2016, 6, 39734.	1.6	303
335	Draft genome sequence of <i>Cicer reticulatum</i> L., the wild progenitor of chickpea provides a resource for agronomic trait improvement. DNA Research, 2017, 24, dsw042.	1.5	73
336	The draft genome of whitefly Bemisia tabaci MEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biology, 2016, 14, 110.	1.7	265
337	Survey of the genome of Pogostemon cablin provides insights into its evolutionary history and sesquiterpenoid biosynthesis. Scientific Reports, 2016, 6, 26405.	1.6	21
338	The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts. Scientific Reports, 2016, 6, 24501.	1.6	89
339	Comparative "Omics―of the <i>Fusarium fujikuroi</i> Species Complex Highlights Differences in Genetic Potential and Metabolite Synthesis. Genome Biology and Evolution, 2016, 8, 3574-3599.	1.1	124
340	Comparative genomics to explore phylogenetic relationship, cryptic sexual potential and host specificity of Rhynchosporium species on grasses. BMC Genomics, 2016, 17, 953.	1.2	33
341	Draft genome sequencing and secretome analysis of fungal phytopathogen Ascochyta rabiei provides insight into the necrotrophic effector repertoire. Scientific Reports, 2016, 6, 24638.	1.6	57
342	Globally distributed root endophyte Phialocephala subalpina links pathogenic and saprophytic lifestyles. BMC Genomics, 2016, 17, 1015.	1.2	54
343	phRAIDER: Pattern-Hunter based Rapid Ab Initio Detection of Elementary Repeats. Bioinformatics, 2016, 32, i209-i215.	1.8	16
344	The rubber tree genome shows expansion of gene family associated with rubber biosynthesis. Scientific Reports, 2016, 6, 28594.	1.6	118
345	Genetic Drift, Not Life History or RNAi, Determine Long-Term Evolution of Transposable Elements. Genome Biology and Evolution, 2016, 8, 2964-2978.	1.1	58

#	Article		CITATIONS
346	A novel method for identifying polymorphic transposable elements via scanning of high-throughput short reads. DNA Research, 2016, 23, 241-251.	1.5	18
347	Reconstructing the evolutionary history of gypsy retrotransposons in the Périgord black truffle (Tuber melanosporum Vittad.). Mycorrhiza, 2016, 26, 553-563.	1.3	7
348	X. couchianus and X. hellerii genome models provide genomic variation insight among Xiphophorus species. BMC Genomics, 2016, 17, 37.	1.2	32
349	Sequencing and comparative analyses of the genomes of zoysiagrasses. DNA Research, 2016, 23, 171-180.	1.5	68
350	Repetitive Sequences. Compendium of Plant Genomes, 2016, , 115-123.	0.3	0
351	DNA methylation changes facilitated evolution of genes derived from Mutator-like transposable elements. Genome Biology, 2016, 17, 92.	3.8	14
352	The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nature Genetics, 2016, 48, 1225-1232.	9.4	479
353	Draft genome sequence of an inbred line of <i>Chenopodium quinoa</i> , an allotetraploid crop with great environmental adaptability and outstanding nutritional properties. DNA Research, 2016, 23, 535-546.	1.5	84
354	Partial sequencing reveals the transposable element composition of Coffea genomes and provides evidence for distinct evolutionary stories. Molecular Genetics and Genomics, 2016, 291, 1979-1990.	1.0	16
355	Fine-scale spatial genetic structure of a fungal parasite of coffee scale insects. Journal of Invertebrate Pathology, 2016, 139, 34-41.	1.5	4
356	The Genome of a Southern Hemisphere Seagrass Species (<i>Zostera muelleri</i>). Plant Physiology, 2016, 172, 272-283.	2.3	88
357	A draft genome of the brown alga, <i>Cladosiphon okamuranus</i> , S-strain: a platform for future studies of â€~mozuku' biology. DNA Research, 2016, 23, 561-570.	1.5	73
358	Repeat Sequences in the Tomato Genome. Compendium of Plant Genomes, 2016, , 173-199.	0.3	1
359	Genome Analysis of Plants. , 2016, , 1-27.		0
360	The <i>Ditylenchus destructor</i> genome provides new insights into the evolution of plant parasitic nematodes. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160942.	1.2	29
361	Exome capture from the spruce and pine gigaâ€genomes. Molecular Ecology Resources, 2016, 16, 1136-1146.	2.2	75
362	Genomic resources for a unique, low-virulence Babesia taxon from China. Parasites and Vectors, 2016, 9, 564.	1.0	17
363	Genome sequence and analysis of the Japanese morning glory Ipomoea nil. Nature Communications, 2016, 7, 13295.	5.8	138

#	Article	IF	Citations
364	The future of transposable element annotation and their classification in the light of functional genomics - what we can learn from the fables of Jean de la Fontaine?. Mobile Genetic Elements, 2016, 6, e1256852.	1.8	27
365	Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum. Nature Communications, 2016, 7, 12662.	5.8	156
366	The genome of the miiuy croaker reveals well-developed innate immune and sensory systems. Scientific Reports, 2016, 6, 21902.	1.6	67
367	CRISPRdigger: detecting CRISPRs with better direct repeat annotations. Scientific Reports, 2016, 6, 32942.	1.6	19
368	The Lungfish Transcriptome: A Glimpse into Molecular Evolution Events at the Transition from Water to Land. Scientific Reports, 2016, 6, 21571.	1.6	75
369	Genomic survey of a hyperparasitic microsporidianAmphiamblyssp. (Metchnikovellidae). Genome Biology and Evolution, 2016, 9, evw235.	1.1	41
370	Structural and functional analysis of the finished genome of the recently isolated toxic Anabaena sp. WA102. BMC Genomics, 2016, 17, 457.	1.2	38
371	Comparative genomics of Beauveria bassiana: uncovering signatures of virulence against mosquitoes. BMC Genomics, 2016, 17, 986.	1.2	38
372	The walnut (<i>Juglans regia</i>) genome sequence reveals diversity in genes coding for the biosynthesis of nonâ€structural polyphenols. Plant Journal, 2016, 87, 507-532.	2.8	233
373	Assembly of the draft genome of buckwheat and its applications in identifying agronomically useful genes. DNA Research, 2016, 23, 215-224.	1.5	122
374	Genus-Wide Comparative Genome Analyses of <i>Colletotrichum</i> Species Reveal Specific Gene Family Losses and Gains during Adaptation to Specific Infection Lifestyles. Genome Biology and Evolution, 2016, 8, 1467-1481.	1.1	69
375	Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Research, 2016, 44, D733-D745.	6.5	4,739
376	Transcriptome sequencing based annotation and homologous evidence based scaffolding of Anguilla japonica draft genome. BMC Genomics, 2016, 17, 13.	1.2	9
377	Comparative genomics and prediction of conditionally dispensable sequences in legume–infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors. BMC Genomics, 2016, 17, 191.	1.2	109
378	Exploration of the Drosophila buzzatii transposable element content suggests underestimation of repeats in Drosophila genomes. BMC Genomics, 2016, 17, 344.	1.2	22
379	Identification and characterization of abundant repetitive sequences in Eragrostis tef cv. Enatite genome. BMC Plant Biology, 2016, 16, 39.	1.6	16
380	Identifying the effect of patient sharing on between-hospital genetic differentiation of methicillin-resistant Staphylococcus aureus. Genome Medicine, 2016, 8, 18.	3.6	20
381	Genome sequences of Knoxdaviesia capensis and K. proteae (Fungi: Ascomycota) from Protea trees in South Africa. Standards in Genomic Sciences, 2016, 11, 22	1.5	6

#	Article	IF	CITATIONS
382	Mining approximate patterns with frequent locally optimal occurrences. Discrete Applied Mathematics, 2016, 200, 123-152.	0.5	5
383	The Dfam database of repetitive DNA families. Nucleic Acids Research, 2016, 44, D81-D89.	6.5	543
384	Draft genome sequence of the silver pomfret fish, <i>Pampus argenteus</i> . Genome, 2016, 59, 51-58.	0.9	14
385	A Tale of Genome Compartmentalization: The Evolution of Virulence Clusters in Smut Fungi. Genome Biology and Evolution, 2016, 8, 681-704.	1.1	125
386	Potential and pitfalls of eukaryotic metagenome skimming: a test case for lichens. Molecular Ecology Resources, 2016, 16, 511-523.	2.2	24
387	Impact and insights from ancient repetitive elements in plant genomes. Current Opinion in Plant Biology, 2016, 30, 41-46.	3.5	34
388	From NGS assembly challenges to instability of fungal mitochondrial genomes: A case study in genome complexity. Computational Biology and Chemistry, 2016, 61, 258-269.	1.1	13
389	High-throughput transcriptome sequencing analysis provides preliminary insights into the biotransformation mechanism of Rhodopseudomonas palustris treated with alpha-rhamnetin-3-rhamnoside. Microbiological Research, 2016, 185, 1-12.	2.5	2
390	Evidence of horizontal gene transfer between obligate leaf nodule symbionts. ISME Journal, 2016, 10, 2092-2105.	4.4	63
391	Accurate Transposable Element Annotation Is Vital When Analyzing New Genome Assemblies. Genome Biology and Evolution, 2016, 8, 403-410.	1.1	107
392	Mind the gap; seven reasons to close fragmented genome assemblies. Fungal Genetics and Biology, 2016, 90, 24-30.	0.9	108
393	A Complete and Accurate Ab Initio Repeat Finding Algorithm. Interdisciplinary Sciences, Computational Life Sciences, 2016, 8, 75-83.	2.2	7
394	Genome sequencing and analysis of Kloeckera apiculata strain 34-9, a biocontrol agent against postharvest pathogens in citrus. Genes and Genomics, 2017, 39, 87-99.	0.5	6
395	Complex modular architecture around a simple toolkit of wing pattern genes. Nature Ecology and Evolution, 2017, 1, 52.	3.4	179
396	Improved genome assembly of American alligator genome reveals conserved architecture of estrogen signaling. Genome Research, 2017, 27, 686-696.	2.4	38
397	Identification of RAN1 orthologue associated with sex determination through whole genome sequencing analysis in fig (Ficus carica L.). Scientific Reports, 2017, 7, 41124.	1.6	52
398	Isolation and characterization of centromeric repetitive DNA sequences in Saccharum spontaneum. Scientific Reports, 2017, 7, 41659.	1.6	31
399	Extensive recent secondary contacts between four European white oak species. New Phytologist, 2017, 214, 865-878.	3.5	113

#	Article	IF	Citations
400	Biology, dynamics, and applications of transposable elements in basidiomycete fungi. Applied Microbiology and Biotechnology, 2017, 101, 1337-1350.	1.7	35
401	Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature, 2017, 541, 536-540.	13.7	332
402	Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biology, 2017, 18, 28.	3.8	417
404	The genome sequence of the wisent (Bison bonasus). GigaScience, 2017, 6, 1-5.	3.3	22
405	The Whole-Genome and Transcriptome of the Manila Clam (Ruditapes philippinarum). Genome Biology and Evolution, 2017, 9, 1487-1498.	1.1	75
406	Draft genome sequence of the Tibetan medicinal herb Rhodiola crenulata. GigaScience, 2017, 6, 1-5.	3.3	33
407	Widespread adenine N6-methylation of active genes in fungi. Nature Genetics, 2017, 49, 964-968.	9.4	292
408	The Comparative Analysis of the Repeat Regions from the Assembled Contigs. Lecture Notes in Electrical Engineering, 2017, , 432-439.	0.3	0
409	Discovery of SCORs: Anciently derived, highly conserved gene-associated repeats in stony corals. Genomics, 2017, 109, 383-390.	1.3	3
410	Gene-enriched draft genome of the cattle tick Rhipicephalus microplus: assembly by the hybrid Pacific Biosciences/Illumina approach enabled analysis of the highly repetitive genome. International Journal for Parasitology, 2017, 47, 569-583.	1.3	48
411	Comparative analysis of the predicted secretomes of Rosaceae scab pathogens Venturia inaequalis and V. pirina reveals expanded effector families and putative determinants of host range. BMC Genomics, 2017, 18, 339.	1.2	68
412	The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding. DNA Research, 2017, 24, 499-508.	1.5	212
413	Genome sequencing of the sweetpotato whitefly Bemisia tabaci MED/Q. GigaScience, 2017, 6, 1-7.	3.3	90
414	Genome sequence of pacific abalone (Haliotis discus hannai): the first draft genome in family Haliotidae. GigaScience, 2017, 6, 1-8.	3.3	84
415	Genome sequencing of the winged midge, Parochlus steinenii, from the Antarctic Peninsula. GigaScience, 2017, 6, 1-8.	3.3	15
416	Ant-infecting Ophiocordyceps genomes reveal a high diversity of potential behavioral manipulation genes and a possible major role for enterotoxins. Scientific Reports, 2017, 7, 12508.	1.6	52
417	Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nature Ecology and Evolution, 2017, 1, 1747-1756.	3.4	269
418	Linkage mapping aided by de novo genome and transcriptome assembly in Portunus trituberculatus: applications in growth-related QTL and gene identification. Scientific Reports, 2017, 7, 7874.	1.6	50

#	Article	IF	CITATIONS
419	Application of Data Mining Algorithms to Classify Biological Data: The Coffea canephora Genome Case. Communications in Computer and Information Science, 2017, , 156-170.	0.4	7
420	Analysis of the spotted gar genome suggests absence of causative link between ancestral genome duplication and transposable element diversification in teleost fish. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 629-637.	0.6	16
421	Comparative genomics of maize ear rot pathogens reveals expansion of carbohydrate-active enzymes and secondary metabolism backbone genes in Stenocarpella maydis. Fungal Biology, 2017, 121, 966-983.	1.1	8
422	The Discovery of Wild Date Palms in Oman Reveals a Complex Domestication History Involving Centers in the Middle East and Africa. Current Biology, 2017, 27, 2211-2218.e8.	1.8	63
423	Penelope-like retrotransposons in the genome of the Asian blood fluke Schistosoma japonicum (Trematoda: Schistosomatidae). Molecular Genetics, Microbiology and Virology, 2017, 32, 21-28.	0.0	0
424	The genome sequence of Bipolaris cookei reveals mechanisms of pathogenesis underlying target leaf spot of sorghum. Scientific Reports, 2017, 7, 17217.	1.6	29
425	Bacterial endosymbionts influence host sexuality and reveal reproductive genes of early divergent fungi. Nature Communications, 2017, 8, 1843.	5.8	85
426	Application of Bioinformatics in Understanding of Plant Stress Tolerance. , 2017, , 347-374.		8
427	Genome-wide mapping and characterization of microsatellites in the swamp eel genome. Scientific Reports, 2017, 7, 3157.	1.6	23
428	The pomegranate (<i>Punica granatum</i> L.) genome and the genomics of punicalagin biosynthesis. Plant Journal, 2017, 91, 1108-1128.	2.8	109
429	From randomness to traplining: a framework for the study of routine movement behavior. Behavioral Ecology, 2017, 28, 280-287.	1.0	23
430	Comprehensive definition of genome features in <i>Spirodela polyrhiza</i> by highâ€depth physical mapping and shortâ€read <scp>DNA</scp> sequencing strategies. Plant Journal, 2017, 89, 617-635.	2.8	115
431	Genomic Basis of Adaptive Evolution: The Survival of Amur Ide (<i>Leuciscu</i> s <i>waleckii</i>) in an Extremely Alkaline Environment. Molecular Biology and Evolution, 2017, 34, 145-159.	3.5	66
432	Genomic skimming for identification of medium/highly abundant transposable elements in Arundo donax and Arundo plinii. Molecular Genetics and Genomics, 2017, 292, 157-171.	1.0	4
433	Complete mitochondrial genomes from the ferns <i>Ophioglossum californicum</i> and <i>Psilotum nudum</i> are highly repetitive with the largest organellar introns. New Phytologist, 2017, 213, 391-403.	3.5	83
434	Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals. Scientific Reports, 2017, 7, 17583.	1.6	121
435	Sequencing the Chickpea Genome. Compendium of Plant Genomes, 2017, , 117-123.	0.3	0
436	The Landscape of Extreme Genomic Variation in the Highly Adaptable Atlantic Killifish. Genome Biology and Evolution, 2017, 9, 659-676.	1.1	43

		CITATION RE	PORT	
#	Article		IF	CITATIONS
437	Genome sequence of the small brown planthopper, Laodelphax striatellus. GigaScience	2, 2017, 6, 1-12.	3.3	106
438	Comparative genomics of the tardigrades Hypsibius dujardini and Ramazzottius varieo Biology, 2017, 15, e2002266.	rnatus. PLoS	2.6	170
439	The house spider genome reveals an ancient whole-genome duplication during arachnic BMC Biology, 2017, 15, 62.	d evolution.	1.7	286
440	SilkPathDB: a comprehensive resource for the study of silkworm pathogens. Database: Biological Databases and Curation, 2017, 2017, .	the Journal of	1.4	11
441	Genome analysis of the foxtail millet pathogen Sclerospora graminicola reveals the con repertoire of graminicolous downy mildews. BMC Genomics, 2017, 18, 897.	nplex effector	1.2	27
442	In Silico Approach for Characterization and Comparison of Repeats in the Genomes of Palms. Bioinformatics and Biology Insights, 2017, 11, 117793221770238.	Oil and Date	1.0	3
443	Improved Genome Assembly and Annotation for the Rock Pigeon (<i>Columba livia</i> Genomes, Genetics, 2018, 8, 1391-1398.	·). G3: Genes,	0.8	62
444	Analysis of the Draft Genome of the Red Seaweed Gracilariopsis chorda Provides Insigh Size Evolution in Rhodophyta. Molecular Biology and Evolution, 2018, 35, 1869-1886.	its into Genome	3.5	71
445	The Gastrodia elata genome provides insights into plant adaptation to heterotrophy. N Communications, 2018, 9, 1615.	lature	5.8	170
446	Chromosome-scale assembly of the Monopterus genome. GigaScience, 2018, 7, .		3.3	30
447	The draft genome sequence of forest musk deer (Moschus berezovskii). GigaScience, 2	2018, 7, .	3.3	26
448	The genome sequence of the soft-rot fungus <i>Penicillium purpurogenum</i> reveals dosage for lignocellulolytic enzymes. Mycology, 2018, 9, 59-69.	a high gene	2.0	12
449	Draft genome sequence of ramie, <i>Boehmeria nivea</i> (L.) Gaudich. Molecular Ecolo 2018, 18, 639-645.	ogy Resources,	2.2	46
450	High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont <i>R irregularis</i> . New Phytologist, 2018, 220, 1161-1171.	hizophagus	3.5	206
451	A hybrid-hierarchical genome assembly strategy to sequence the invasive golden musse fortunei. GigaScience, 2018, 7, .	el, Limnoperna	3.3	60
452	The pomegranate (<i>Punica granatum</i> L.) genome provides insights into fruit qual developmental biology. Plant Biotechnology Journal, 2018, 16, 1363-1374.	ity and ovule	4.1	115
453	Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile and plant mutualists. New Phytologist, 2018, 217, 1213-1229.	e saprotrophs	3.5	185
454	Analysis of the Aedes albopictus C6/36 genome provides insight into cell line utility for propagation. GigaScience, 2018, 7, 1-13.	viral	3.3	51

#	Article	IF	CITATIONS
455	Genome sequence of the Japanese oak silk moth, Antheraea yamamai: the first draft genome in the family Saturniidae. GigaScience, 2018, 7, 1-11.	3.3	20
456	Comparative genome and transcriptome analyses reveal adaptations to opportunistic infections in woody plant degrading pathogens of Botryosphaeriaceae. DNA Research, 2018, 25, 87-102.	1.5	60
457	RepLong: <i>de novo</i> repeat identification using long read sequencing data. Bioinformatics, 2018, 34, 1099-1107.	1.8	21
458	Rapid genome shrinkage in a self-fertile nematode reveals sperm competition proteins. Science, 2018, 359, 55-61.	6.0	102
459	Comparative genome analysis of 52 fish species suggests differential associations of repetitive elements with their living aquatic environments. BMC Genomics, 2018, 19, 141.	1.2	89
460	Intraspecific comparative genomics of isolates of the Norway spruce pathogen (Heterobasidion) Tj ETQq1 1 0.7	84314 rgB 1.2	T /9yerlock
461	Comparative genomics of the wheat fungal pathogen Pyrenophora tritici-repentis reveals chromosomal variations and genome plasticity. BMC Genomics, 2018, 19, 279.	1.2	56
462	Integrative analysis of large scale transcriptome data draws a comprehensive landscape of Phaeodactylum tricornutum genome and evolutionary origin of diatoms. Scientific Reports, 2018, 8, 4834.	1.6	131
463	Draft genome of an iconic Red Sea reef fish, the blacktail butterflyfish (<i>Chaetodon austriacus</i>): current status and its characteristics. Molecular Ecology Resources, 2018, 18, 347-355.	2.2	11
464	Genome structure of Rosa multiflora, a wild ancestor of cultivated roses. DNA Research, 2018, 25, 113-121.	1.5	70
465	Know your farmer: Ancient origins and multiple independent domestications of ambrosia beetle fungal cultivars. Molecular Ecology, 2018, 27, 2077-2094.	2.0	67
466	The repeat structure of two paralogous genes, Yersinia ruckeri invasin (yrInv) and a "Y. ruckeri invasin-like moleculeâ€; (yrIlm) sheds light on the evolution of adhesive capacities of a fish pathogen. Journal of Structural Biology, 2018, 201, 171-183.	1.3	22
467	Genome sequences of <i>Chlorella sorokiniana </i> <scp>UTEX</scp> 1602 and <i>Micractinium conductrix </i> <scp>SAG</scp> 241.80: implications to maltose excretion by a green alga. Plant Journal, 2018, 93, 566-586.	2.8	68
468	Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads. Nature Ecology and Evolution, 2018, 2, 141-151.	3.4	98
469	Contemporary evolution of a Lepidopteran species, <i>Heliothis virescens</i> , in response to modern agricultural practices. Molecular Ecology, 2018, 27, 167-181.	2.0	28
470	ConTEdb: a comprehensive database of transposable elements in conifers. Database: the Journal of Biological Databases and Curation, 2018, 2018, .	1.4	15
471	First draft genome sequence of the rock bream in the family Oplegnathidae. Scientific Data, 2018, 5, 180234.	2.4	4
472	Patterns of Nucleotide Deletion and Insertion Inferred from Bacterial Pseudogenes. Genome Biology and Evolution, 2018, 10, 1792-1802.	1.1	12

#	ARTICLE	IF	CITATIONS
473	Predicting Genes in Single Genomes with AUGUSTUS. Current Protocols in Bioinformatics, 2019, 65, e57.	25.8	225
474	N6-Methyladenine DNA Methylation in Japonica and Indica Rice Genomes and Its Association with Gene Expression, Plant Development, and Stress Responses. Molecular Plant, 2018, 11, 1492-1508.	3.9	123
475	Endangered Père David's deer genome provides insights into population recovering. Evolutionary Applications, 2018, 11, 2040-2053.	1.5	19
476	FishTEDB: a collective database of transposable elements identified in the complete genomes of fish. Database: the Journal of Biological Databases and Curation, 2018, 2018, .	1.4	40
477	First Draft Genome for Red Sea Bream of Family Sparidae. Frontiers in Genetics, 2018, 9, 643.	1.1	22
478	Deciphering the evolutionary signatures of pinnipeds using novel genome sequences: The first genomes of Phoca largha, Callorhinus ursinus, and Eumetopias jubatus. Scientific Reports, 2018, 8, 16877.	1.6	7
479	Genome sequence of walking catfish (Clarias batrachus) provides insights into terrestrial adaptation. BMC Genomics, 2018, 19, 952.	1.2	36
480	Genome survey sequencing for the characterization of genetic background of Dracaena cambodiana and its defense response during dragon's blood formation. PLoS ONE, 2018, 13, e0209258.	1.1	16
481	Downregulation of RdDM during strawberry fruit ripening. Genome Biology, 2018, 19, 212.	3.8	147
482	A draft genome of the striped catfish, Pangasianodon hypophthalmus, for comparative analysis of genes relevant to development and a resource for aquaculture improvement. BMC Genomics, 2018, 19, 733.	1.2	34
483	Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L Nature Genetics, 2018, 50, 1565-1573.	9.4	463
484	The genome of common long-arm octopus Octopus minor. GigaScience, 2018, 7, .	3.3	43
485	Fast construction of a reference genome: challenges and opportunities using â€~Royal Gala' apple as a case study. Acta Horticulturae, 2018, , 35-40.	0.1	0
486	The annotation of repetitive elements in the genome of channel catfish (Ictalurus punctatus). PLoS ONE, 2018, 13, e0197371.	1.1	13
487	PIWI genes and piRNAs are ubiquitously expressed in mollusks and show patterns of lineage-specific adaptation. Communications Biology, 2018, 1, 137.	2.0	54
488	Deciphering Genome Organization of the Polyploid Brassica napus. Compendium of Plant Genomes, 2018, , 87-97.	0.3	0
489	Genomic comparison of Trypanosoma conorhini and Trypanosoma rangeli to Trypanosoma cruzi strains of high and low virulence. BMC Genomics, 2018, 19, 770.	1.2	14
490	An improved approach for reconstructing consensus repeats from short sequence reads. BMC Genomics, 2018, 19, 566.	1.2	1

#	Article	IF	CITATIONS
491	A New Reference Genome Shows the One-Speed Genome Structure of the Barley Pathogen <i>Ramularia collo-cygni</i> . Genome Biology and Evolution, 2018, 10, 3243-3249.	1.1	30
492	Firefly genomes illuminate parallel origins of bioluminescence in beetles. ELife, 2018, 7, .	2.8	108
493	Genomic overview of closely related fungi with different Protea host ranges. Fungal Biology, 2018, 122, 1201-1214.	1.1	1
494	A benchmark study of k-mer counting methods for high-throughput sequencing. GigaScience, 2018, 7, .	3.3	53
495	Measuring the Mappability Spectrum of Reference Genome Assemblies. , 2018, , .		3
496	"Out of the Can†A Draft Genome Assembly, Liver Transcriptome, and Nutrigenomics of the European Sardine, Sardina pilchardus. Genes, 2018, 9, 485.	1.0	30
497	The genome of Naegleria lovaniensis, the basis for a comparative approach to unravel pathogenicity factors of the human pathogenic amoeba N. fowleri. BMC Genomics, 2018, 19, 654.	1.2	23
498	Computational tools to unmask transposable elements. Nature Reviews Genetics, 2018, 19, 688-704.	7.7	173
499	Genome sequencing of rice subspecies and genetic analysis of recombinant lines reveals regional yield- and quality-associated loci. BMC Biology, 2018, 16, 102.	1.7	66
500	Evolution of the U.S. Biological Select Agent Rathayibacter toxicus. MBio, 2018, 9, .	1.8	10
501	Drosophila parasitoid wasps bears a distinct DNA transposon profile. Mobile DNA, 2018, 9, 23.	1.3	7
502	Identification of transposons near predicted IncRNA and mRNA pools of Prunus mume using an integrative transposable element database constructed from Rosaceae plant genomes. Molecular Genetics and Genomics, 2018, 293, 1301-1316.	1.0	3
503	SPTEdb: a database for transposable elements in salicaceous plants. Database: the Journal of Biological Databases and Curation, 2018, 2018, .	1.4	12
504	Whole-genome data reveal the complex history of a diverse ecological community. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6507-E6515.	3.3	45
505	De novo genome assembly of Oryza granulata reveals rapid genome expansion and adaptive evolution. Communications Biology, 2018, 1, 84.	2.0	24
506	A transposable element annotation pipeline and expression analysis reveal potentially active elements in the microalga Tisochrysis lutea. BMC Genomics, 2018, 19, 378.	1.2	45
507	The genomic features of parasitism, Polyembryony and immune evasion in the endoparasitic wasp Macrocentrus cingulum. BMC Genomics, 2018, 19, 420.	1.2	53
508	A High-Quality, Long-Read De Novo Genome Assembly to Aid Conservation of Hawaii's Last Remaining Crow Species. Genes, 2018, 9, 393.	1.0	22

#	Article	IF	CITATIONS
509	Extensive exchange of transposable elements in the Drosophila pseudoobscura group. Mobile DNA, 2018, 9, 20.	1.3	28
510	Genomic signatures of mitonuclear coevolution across populations of Tigriopus californicus. Nature Ecology and Evolution, 2018, 2, 1250-1257.	3.4	154
511	Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nature Genetics, 2018, 50, 796-802.	9.4	401
512	Sequencing Plant Genomes. Progress in Botany Fortschritte Der Botanik, 2018, , 109-193.	0.1	4
513	Comparison of three assembly strategies for a heterozygous seedless grapevine genome assembly. BMC Genomics, 2018, 19, 57.	1.2	15
514	Draft genome of Glyptosternon maculatum, an endemic fish from Tibet Plateau. GigaScience, 2018, 7, .	3.3	18
515	Tung Tree (Vernicia fordii, Hemsl.) Genome and Transcriptome Sequencing Reveals Co-Ordinate Up-Regulation of Fatty Acid Î2-Oxidation and Triacylglycerol Biosynthesis Pathways During Eleostearic Acid Accumulation in Seeds. Plant and Cell Physiology, 2018, 59, 1990-2003.	1.5	45
516	A reference genome of the European beech (Fagus sylvatica L.). GigaScience, 2018, 7, .	3.3	58
517	Superior ab initio identification, annotation and characterisation of TEs and segmental duplications from genome assemblies. PLoS ONE, 2018, 13, e0193588.	1.1	27
518	Harnessing the power of phylogenomics to disentangle the directionality and signatures of interkingdom host jumping in the parasitic fungal genus <i>Tolypocladium</i> . Mycologia, 2018, 110, 104-117.	0.8	12
519	Fungal Genome Annotation. Methods in Molecular Biology, 2018, 1775, 171-184.	0.4	14
520	Oak genome reveals facets of long lifespan. Nature Plants, 2018, 4, 440-452.	4.7	303
521	Long-read sequencing and de novo genome assembly of Ammopiptanthus nanus, a desert shrub. GigaScience, 2018, 7, .	3.3	22
522	Repeat in Genomes: How and Why You Should Consider Them in Genome Analyses?. , 2019, , 210-220.		1
523	Dicyemid Mesozoans: A Unique Parasitic Lifestyle and a Reduced Genome. Genome Biology and Evolution, 2019, 11, 2232-2243.	1.1	15
524	Draft Genome of the Rice Coral Montipora capitata Obtained from Linked-Read Sequencing. Genome Biology and Evolution, 2019, 11, 2045-2054.	1.1	30
525	Retrotransposons in Plant Genomes: Structure, Identification, and Classification through Bioinformatics and Machine Learning. International Journal of Molecular Sciences, 2019, 20, 3837.	1.8	56
526	Characterizations of transposable element (TE) landscape in Rhizoctonia solani. AIP Conference Proceedings, 2019, , .	0.3	0

IF

CITATIONS

527	Rapid evolution of piRNA pathway and its transposon targets in Japanese flounder (Paralichthys) Tj ETQqO 0 0 rş 100609.	gBT /Overlo 0.4	ock 10 Tf 50 7 9
528	Chromosomal-level assembly of the blood clam, Scapharca (Anadara) broughtonii, using long sequence reads and Hi-C. GigaScience, 2019, 8, .	3.3	63
529	PolyCRACKER, a robust method for the unsupervised partitioning of polyploid subgenomes by signatures of repetitive DNA evolution. BMC Genomics, 2019, 20, 580.	1.2	10
530	De novo genome assembly of the endangered Acer yangbiense, a plant species with extremely small populations endemic to Yunnan Province, China. CigaScience, 2019, 8, .	3.3	42
531	Genome-Wide Identification of Microsatellites and Transposable Elements in the Dromedary Camel Genome Using Whole-Genome Sequencing Data. Frontiers in Genetics, 2019, 10, 692.	1.1	6
532	Transposable Elements: Classification, Identification, and Their Use As a Tool For Comparative Genomics. Methods in Molecular Biology, 2019, 1910, 177-207.	0.4	74
533	Genome sequence of Isaria javanica and comparative genome analysis insights into family S53 peptidase evolution in fungal entomopathogens. Applied Microbiology and Biotechnology, 2019, 103, 7111-7128.	1.7	14
534	Pseudomolecule-level assembly of the Chinese oil tree yellowhorn (Xanthoceras sorbifolium) genome. GigaScience, 2019, 8, .	3.3	47
535	Genetic basis of species-specific genitalia reveals role in species diversification. Science Advances, 2019, 5, eaav9939.	4.7	22
536	Genome Sequences Provide Insights into the Reticulate Origin and Unique Traits of Woody Bamboos. Molecular Plant, 2019, 12, 1353-1365.	3.9	116
537	Draft genome sequence of cauliflower (Brassica oleracea L. var. botrytis) provides new insights into the C genome in Brassica species. Horticulture Research, 2019, 6, 82.	2.9	53
538	Extensive intraspecific gene order and gene structural variations in upland cotton cultivars. Nature Communications, 2019, 10, 2989.	5.8	144
539	A draft genome for Spatholobus suberectus. Scientific Data, 2019, 6, 113.	2.4	28
540	Expansion of phycobilisome linker gene families in mesophilic red algae. Nature Communications, 2019, 10, 4823.	5.8	15
541	A high-quality Actinidia chinensis (kiwifruit) genome. Horticulture Research, 2019, 6, 117.	2.9	109
542	Chromosomeâ€level genome assembly of the razor clam <i>Sinonovacula constricta</i> (Lamarck, 1818). Molecular Ecology Resources, 2019, 19, 1647-1658	2.2	45
543	The sequence and de novo assembly of hog deer genome. Scientific Data, 2019, 6, 180305.	2.4	10
544	The wild sweetpotato (Ipomoea trifida) genome provides insights into storage root development. BMC Plant Biology, 2019, 19, 119,	1.6	33

ARTICLE

#

#	Article	IF	CITATIONS
545	Whole Genome Assembly of the Snout Otter Clam, Lutraria rhynchaena, Using Nanopore and Illumina Data, Benchmarked Against Bivalve Genome Assemblies. Frontiers in Genetics, 2019, 10, 1158.	1.1	16
546	The Rhododendron Genome and Chromosomal Organization Provide Insight into Shared Whole-Genome Duplications across the Heath Family (Ericaceae). Genome Biology and Evolution, 2019, 11, 3353-3371.	1.1	47
547	Early Diverging Fungus Mucor circinelloides Lacks Centromeric Histone CENP-A and Displays a Mosaic of Point and Regional Centromeres. Current Biology, 2019, 29, 3791-3802.e6.	1.8	77
548	Chromosome genome assembly and annotation of the yellowbelly pufferfish with PacBio and Hi-C sequencing data. Scientific Data, 2019, 6, 267.	2.4	21
549	Genome assembly of the common pheasant Phasianus colchicus, a model for speciation and ecological genomics. Genome Biology and Evolution, 2019, 11, 3326-3331.	1.1	6
550	Evolutionary lability in <i>Hox</i> cluster structure and gene expression in <i>Anolis</i> lizards. Evolution Letters, 2019, 3, 474-484.	1.6	11
551	A high-quality genome assembly for the endangered golden snub-nosed monkey (Rhinopithecus) Tj ETQq0 0 0 rg	BT ₃ /Qverlc	ock 10 Tf 50
552	A chromosome-level draft genome of the grain aphid Sitobion miscanthi. GigaScience, 2019, 8, .	3.3	41
553	The evolution study on Oryza rufipogon. dw by whole-genome sequencing. Journal of Genetics, 2019, 98, 1.	0.4	3
554	Assembly and Annotation of a Draft Genome of the Medicinal Plant Polygonum cuspidatum. Frontiers in Plant Science, 2019, 10, 1274.	1.7	36
555	Intraspecific Variation in Protists: Clues for Microevolution from Poteriospumella lacustris (Chrysophyceae). Genome Biology and Evolution, 2019, 11, 2492-2504.	1.1	7
556	The sequencing and de novo assembly of the Larimichthys crocea genome using PacBio and Hi-C technologies. Scientific Data, 2019, 6, 188.	2.4	50
557	The sequence and de novo assembly of Takifugu bimaculatus genome using PacBio and Hi-C technologies. Scientific Data, 2019, 6, 187.	2.4	29
558	Genome sequence of <i>Malania oleifera</i> , a tree with great value for nervonic acid production. GigaScience, 2019, 8, .	3.3	36
559	Comparative analyses identify genomic features potentially involved in the evolution of birds-of-paradise. GigaScience, 2019, 8, .	3.3	22
560	The Genome of <i>Armadillidium vulgare</i> (Crustacea, Isopoda) Provides Insights into Sex Chromosome Evolution in the Context of Cytoplasmic Sex Determination. Molecular Biology and Evolution, 2019, 36, 727-741.	3.5	43
561	De Novo Sequencing and Hybrid Assembly of the Biofuel Crop Jatropha curcas L.: Identification of Quantitative Trait Loci for Geminivirus Resistance. Genes, 2019, 10, 69.	1.0	20
562	The genome of broomcorn millet. Nature Communications, 2019, 10, 436.	5.8	130

#	Article	IF	CITATIONS
563	Genomic changes associated with adaptation to arid environments in cactophilic Drosophila species. BMC Genomics, 2019, 20, 52.	1.2	22
564	Heterozygous diploid structure of Amorphotheca resinae ZN1 contributes efficient biodetoxification on solid pretreated corn stover. Biotechnology for Biofuels, 2019, 12, 126.	6.2	24
565	Tracing the history of LINE and SINE extinction in sigmodontine rodents. Mobile DNA, 2019, 10, 22.	1.3	17
566	Comparative genome analysis indicates high evolutionary potential of pathogenicity genes in Colletotrichum tanaceti. PLoS ONE, 2019, 14, e0212248.	1.1	19
567	LtrDetector: A tool-suite for detecting long terminal repeat retrotransposons de-novo. BMC Genomics, 2019, 20, 450.	1.2	19
568	Genome Mining–Based Identification of Identical Multirepeat Sequences in Plasmodium falciparum Genome for Highly Sensitive Real-Time Quantitative PCR Assay and Its Application in Malaria Diagnosis. Journal of Molecular Diagnostics, 2019, 21, 824-838.	1.2	12
569	De novo Inference of Diversity Genes and Analysis of Non-canonical V(DD)J Recombination in Immunoglobulins. Frontiers in Immunology, 2019, 10, 987.	2.2	22
570	Generic Repeat Finder: A High-Sensitivity Tool for Genome-Wide De Novo Repeat Detection. Plant Physiology, 2019, 180, 1803-1815.	2.3	64
571	<i>De Novo</i> Genome Sequence Assembly of Dwarf Coconut (<i>Cocos nucifera</i> L. â€~Catigan Green) Tj E	TQq0 0 0 0.8	rgBT /Overloc 55
	Genes, Genomes, Genetics, 2019, 9, 2377-2393.		
572	Genes, Genomes, Genetics, 2019, 9, 2377-2393. The Draft Genome of Eggplant. Compendium of Plant Genomes, 2019, , 55-63.	0.3	0
572 573	Genes, Genomes, Genetics, 2019, 9, 2377-2393. The Draft Genome of Eggplant. Compendium of Plant Genomes, 2019, , 55-63. The Reference Genome Sequence of Scutellaria baicalensis Provides Insights into the Evolution of Wogonin Biosynthesis. Molecular Plant, 2019, 12, 935-950.	0.3 3.9	0
572 573 574	Genes, Genomes, Genetics, 2019, 9, 2377-2393. The Draft Genome of Eggplant. Compendium of Plant Genomes, 2019, , 55-63. The Reference Genome Sequence of Scutellaria baicalensis Provides Insights into the Evolution of Wogonin Biosynthesis. Molecular Plant, 2019, 12, 935-950. Insect genomes: progress and challenges. Insect Molecular Biology, 2019, 28, 739-758.	0.3 3.9 1.0	0 121 115
572 573 574 575	Genes, Genomes, Genetics, 2019, 9, 2377-2393. The Draft Genome of Eggplant. Compendium of Plant Genomes, 2019, , 55-63. The Reference Genome Sequence of Scutellaria baicalensis Provides Insights into the Evolution of Wogonin Biosynthesis. Molecular Plant, 2019, 12, 935-950. Insect genomes: progress and challenges. Insect Molecular Biology, 2019, 28, 739-758. DeviaTE: Assemblyâ€free analysis and visualization of mobile genetic element composition. Molecular Ecology Resources, 2019, 19, 1346-1354.	0.3 3.9 1.0 2.2	0 121 115 28
572 573 574 575	Genes, Genomes, Genetics, 2019, 9, 2377-2393. The Draft Genome of Eggplant. Compendium of Plant Genomes, 2019, , 55-63. The Reference Genome Sequence of Scutellaria baicalensis Provides Insights into the Evolution of Wogonin Biosynthesis. Molecular Plant, 2019, 12, 935-950. Insect genomes: progress and challenges. Insect Molecular Biology, 2019, 28, 739-758. DeviaTE: Assemblyâ€free analysis and visualization of mobile genetic element composition. Molecular Ecology Resources, 2019, 19, 1346-1354. MCERT: a pipeline to retrieve coding sequences of mobile genetic elements from genome assemblies. Mobile DNA, 2019, 10, 21.	0.3 3.9 1.0 2.2 1.3	0 121 115 28 2
572 573 574 575 575 576	Genes, Genomes, Genetics, 2019, 9, 2377-2393. The Draft Cenome of Eggplant. Compendium of Plant Genomes, 2019, , 55-63. The Reference Genome Sequence of Scutellaria baicalensis Provides Insights into the Evolution of Wogonin Biosynthesis. Molecular Plant, 2019, 12, 935-950. Insect genomes: progress and challenges. Insect Molecular Biology, 2019, 28, 739-758. DeviaTE: Assemblyâ€free analysis and visualization of mobile genetic element composition. Molecular Ecology Resources, 2019, 19, 1346-1354. MGERT: a pipeline to retrieve coding sequences of mobile genetic elements from genome assemblies. Mobile DNA, 2019, 10, 21. ImtRDB: a database and software for mitochondrial imperfect interspersed repeats annotation. BMC Genomics, 2019, 20, 295.	0.3 3.9 1.0 2.2 1.3 1.2	0 121 115 28 2 10
572 573 574 575 576 577	Genes, Genomes, Genetics, 2019, 9, 2377-2393. The Draft Genome of Eggplant. Compendium of Plant Genomes, 2019, , 55-63. The Reference Genome Sequence of Scutellaria baicalensis Provides Insights into the Evolution of Wogonin Biosynthesis. Molecular Plant, 2019, 12, 935-950. Insect genomes: progress and challenges. Insect Molecular Biology, 2019, 28, 739-758. DeviaTE: Assemblyâ€free analysis and visualization of mobile genetic element composition. Molecular Ecology Resources, 2019, 19, 1346-1354. MCERT: a pipeline to retrieve coding sequences of mobile genetic elements from genome assemblies. Mobile DNA, 2019, 10, 21. ImtRDB: a database and software for mitochondrial imperfect interspersed repeats annotation. BMC Genomics, 2019, 20, 295. Medusozoan genomes inform the evolution of the jellyfish body plan. Nature Ecology and Evolution, 2019, 3, 811-822.	0.3 3.9 1.0 2.2 1.3 1.2 3.4	0 121 115 28 2 2 10
 572 573 574 575 576 577 578 579 	Genes, Genomes, Genetics, 2019, 9, 2377-2393. The Draft Cenome of Eggplant. Compendium of Plant Cenomes, 2019, , 55-63. The Reference Genome Sequence of Scutellaria baicalensis Provides Insights into the Evolution of Wogonin Biosynthesis. Molecular Plant, 2019, 12, 935-950. Insect genomes: progress and challenges. Insect Molecular Biology, 2019, 28, 739-758. DeviaTE: Assemblyã€free analysis and visualization of mobile genetic element composition. Molecular Ecology Resources, 2019, 19, 1346-1354. MCERT: a pipeline to retrieve coding sequences of mobile genetic elements from genome assemblies. Mobile DNA, 2019, 10, 21. IntRDB: a database and software for mitochondrial imperfect interspersed repeats annotation. BMC Genomics, 2019, 20, 295. Medusozoan genomes inform the evolution of the jellyfish body plan. Nature Ecology and Evolution, 2019, 3, 811-822. Whole genomes and transcriptomes reveal adaptation and domestication of pistachio. Genome Biology, 2019, 20, 79.	0.3 3.9 1.0 2.2 1.3 1.2 3.4 3.8	0 121 115 28 2 2 10 94 81

		CITATION R	EPORT	
#	Article		IF	Citations
581	Whole-Genome Annotation with BRAKER. Methods in Molecular Biology, 2019, 1962, 6	65-95.	0.4	461
582	Chromosome-Level Assembly of the Chinese Seabass (Lateolabrax maculatus) Genome Genetics, 2019, 10, 275.	. Frontiers in	1.1	33
583	Draft genome of the brown alga, Nemacystus decipiens, Onna-1 strain: Fusion of gene sulfated fucan biosynthesis pathway. Scientific Reports, 2019, 9, 4607.	s involved in the	1.6	33
584	Nanopore sequencing reads improve assembly and gene annotation of the Parochlus s Scientific Reports, 2019, 9, 5095.	teinenii genome.	1.6	19
585	A re-annotation of the Anopheles darlingi mobilome. Genetics and Molecular Biology, 2	2019, 42, 125-131.	0.6	5
586	The genome of the jellyfish Clytia hemisphaerica and the evolution of the cnidarian life Ecology and Evolution, 2019, 3, 801-810.	-cycle. Nature	3.4	135
587	Population Genomic Analysis and De Novo Assembly Reveal the Origin of Weedy Rice a Evolutionary Game. Molecular Plant, 2019, 12, 632-647.	is an	3.9	61
588	Genome sequence of the corn leaf aphid (<i>Rhopalosiphum maidis</i> Fitch). GigaScie	ence, 2019, 8, .	3.3	60
589	The genome of the giant Nomura's jellyfish sheds light on the early evolution of ac BMC Biology, 2019, 17, 28.	tive predation.	1.7	38
590	Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, an milkweed bug genome. Genome Biology, 2019, 20, 64.	chored by the	3.8	114
591	<i>De novo</i> genome assembly of the white-spotted flower chafer (<i>Protaetia bre GigaScience, 2019, 8, .</i>	vitarsis).	3.3	28
592	A Chromosome-Scale Genome Assembly of Paper Mulberry (Broussonetia papyrifera) P Insights into Its Forage and Papermaking Usage. Molecular Plant, 2019, 12, 661-677.	rovides New	3.9	83
593	The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic to Patagonian robalo genomes. GigaScience, 2019, 8, .	othfish and	3.3	47
594	Antarctic blackfin icefish genome reveals adaptations to extreme environments. Nature Evolution, 2019, 3, 469-478.	e Ecology and	3.4	115
595	The Galleria mellonella Hologenome Supports Microbiota-Independent Metabolism of L Hydrocarbon Beeswax. Cell Reports, 2019, 26, 2451-2464.e5.	_ong-Chain	2.9	103
596	DNA Methylation Patterns in the Social Spider, Stegodyphus dumicola. Genes, 2019, 1	0, 137.	1.0	46
597	Chromosome rearrangements shape the diversification of secondary metabolism in the producing fungus Tolypocladium inflatum. BMC Genomics, 2019, 20, 120.	e cyclosporin	1.2	22
598	IMA Genome-F 11. IMA Fungus, 2019, 10, 13.		1.7	12

#	Article	IF	CITATIONS
599	Draft genome assembly of Tenualosa ilisha, Hilsa shad, provides resource for osmoregulation studies. Scientific Reports, 2019, 9, 16511.	1.6	23
600	The persimmon (Diospyros oleifera Cheng) genome provides new insights into the inheritance of astringency and ancestral evolution. Horticulture Research, 2019, 6, 138.	2.9	39
601	Lipid and DHA-production in Aurantiochytrium sp. – Responses to nitrogen starvation and oxygen limitation revealed by analyses of production kinetics and global transcriptomes. Scientific Reports, 2019, 9, 19470.	1.6	48
602	Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biology, 2019, 20, 275.	3.8	579
603	The genetic basis of adaptive evolution in parasitic environment from the Angiostrongylus cantonensis genome. PLoS Neglected Tropical Diseases, 2019, 13, e0007846.	1.3	9
604	A chromosome-level genome assembly of the Chinese tupelo Nyssa sinensis. Scientific Data, 2019, 6, 282.	2.4	10
605	Trochodendron aralioides, the first chromosome-level draft genome in Trochodendrales and a valuable resource for basal eudicot research. GigaScience, 2019, 8, .	3.3	20
606	A de novo genome assembly of the dwarfing pear rootstock Zhongai 1. Scientific Data, 2019, 6, 281.	2.4	28
607	Genomic insights into mite phylogeny, fitness, development, and reproduction. BMC Genomics, 2019, 20, 954.	1.2	25
608	Liriodendron genome sheds light on angiosperm phylogeny and species–pair differentiation. Nature Plants, 2019, 5, 18-25.	4.7	163
609	A physical and genetic map of <i>Cannabis sativa</i> identifies extensive rearrangements at the <i>THC/CBD acid synthase</i> loci. Genome Research, 2019, 29, 146-156.	2.4	160
610	A highâ€quality chromosomeâ€level genome assembly of a generalist herbivore, <i>Trichoplusia ni</i> . Molecular Ecology Resources, 2019, 19, 485-496.	2.2	47
611	Comparative genomics of <i>Rhizophagus irregularis</i> , <i> R.Âcerebriforme</i> , <i> R.Âdiaphanus</i> and <i>Gigaspora rosea</i> highlights specific genetic features in Glomeromycotina. New Phytologist, 2019, 222, 1584-1598.	3.5	133
612	Draft Genome Assembly and Population Genetics of an Agricultural Pollinator, the Solitary Alkali Bee (Halictidae: <i>Nomia melanderi</i>). G3: Genes, Genomes, Genetics, 2019, 9, 625-634.	0.8	19
613	Alignment-free approaches for predicting novel Nuclear Mitochondrial Segments (NUMTs) in the human genome. Gene, 2019, 691, 141-152.	1.0	14
614	Phylogenomics of Endogonaceae and evolution of mycorrhizas within Mucoromycota. New Phytologist, 2019, 222, 511-525.	3.5	81
615	Fast and global detection of periodic sequence repeats in large genomic resources. Nucleic Acids Research, 2019, 47, e8-e8.	6.5	7
616	A chromosomeâ€level genome assembly reveals the genetic basis of cold tolerance in a notorious rice insect pest, <i>Chilo suppressalis</i> . Molecular Ecology Resources, 2020, 20, 268-282.	2.2	51

#	Article	IF	CITATIONS
617	The pomegranate (<i>Punica granatum</i> L.) draft genome dissects genetic divergence between soft― and hardâ€seeded cultivars. Plant Biotechnology Journal, 2020, 18, 955-968.	4.1	70
618	Genome assembly provides insights into the genome evolution and flowering regulation of orchardgrass. Plant Biotechnology Journal, 2020, 18, 373-388.	4.1	51
619	Chromosomeâ€level genome assembly of the predator <i>Propylea japonica</i> to understand its tolerance to insecticides and high temperatures. Molecular Ecology Resources, 2020, 20, 292-307.	2.2	43
620	<i>Mesostigma viride</i> Genome and Transcriptome Provide Insights into the Origin and Evolution of Streptophyta. Advanced Science, 2020, 7, 1901850.	5.6	40
621	Deciphering the highâ€quality genome sequence of coriander that causes controversial feelings. Plant Biotechnology Journal, 2020, 18, 1444-1456.	4.1	56
622	The Coix Genome Provides Insights into Panicoideae Evolution and Papery Hull Domestication. Molecular Plant, 2020, 13, 309-320.	3.9	28
623	Comparison of <i>Arachis monticola</i> with Diploid and Cultivated Tetraploid Genomes Reveals Asymmetric Subgenome Evolution and Improvement of Peanut. Advanced Science, 2020, 7, 1901672.	5.6	43
624	Longâ€read sequencing and de novo assembly of the <i>Luffa cylindrica</i> (L.) Roem. genome. Molecular Ecology Resources, 2020, 20, 511-519.	2.2	27
625	Chromosomalâ€level assembly of <i>Takifugu obscurus</i> (Abe, 1949) genome using thirdâ€generation DNA sequencing and Hi analysis. Molecular Ecology Resources, 2020, 20, 520-530.	2.2	46
626	Draft Genome of a Blister Beetle Mylabris aulica. Frontiers in Genetics, 2020, 10, 1281.	1.1	7
627	Large-scale survey reveals pervasiveness and potential function of endogenous geminiviral sequences in plants. Virus Evolution, 2020, 6, veaa071.	2.2	15
628	Blue genome: chromosomeâ€scale genome reveals the evolutionary and molecular basis of indigo biosynthesis in <i>Strobilanthes cusia</i> . Plant Journal, 2020, 104, 864-879.	2.8	15
629	Reconstruction of ancient homeobox gene linkages inferred from a new high-quality assembly of the Hong Kong oyster (Magallana hongkongensis) genome. BMC Genomics, 2020, 21, 713.	1.2	24
630	The genome of Chinese flowering cherry (Cerasus serrulata) provides new insights into Cerasus species. Horticulture Research, 2020, 7, 165.	2.9	22
631	High-quality nuclear genome for Sarcoptes scabiei—A critical resource for a neglected parasite. PLoS Neglected Tropical Diseases, 2020, 14, e0008720.	1.3	25
632	The mole genome reveals regulatory rearrangements associated with adaptive intersexuality. Science, 2020, 370, 208-214.	6.0	41
633	Genomes of the Banyan Tree and Pollinator Wasp Provide Insights into Fig-Wasp Coevolution. Cell, 2020, 183, 875-889.e17.	13.5	71
634	Genomic insights of body plan transitions from bilateral to pentameral symmetry in Echinoderms. Communications Biology, 2020, 3, 371.	2.0	34

#	Article	IF	CITATIONS
635	The highâ€quality genome of diploid strawberry (<i>Fragaria nilgerrensis</i>) provides new insights into anthocyanin accumulation. Plant Biotechnology Journal, 2020, 18, 1908-1924.	4.1	51
636	Comprehensive Chromosome End Remodeling during Programmed DNA Elimination. Current Biology, 2020, 30, 3397-3413.e4.	1.8	39
637	Genome-enabled discovery of anthraquinone biosynthesis in Senna tora. Nature Communications, 2020, 11, 5875.	5.8	57
638	A highâ€quality reference genome sequence of <i>Salvia miltiorrhiza</i> provides insights into tanshinone synthesis in its red rhizomes. Plant Genome, 2020, 13, e20041.	1.6	45
639	The genome and transcriptome analysis of snake gourd provide insights into its evolution and fruit development and ripening. Horticulture Research, 2020, 7, 199.	2.9	22
640	The Tetracentron genome provides insight into the early evolution of eudicots and the formation of vessel elements. Genome Biology, 2020, 21, 291.	3.8	23
641	The de novo genome assembly of Tapiscia sinensis and the transcriptomic and developmental bases of androdioecy. Horticulture Research, 2020, 7, 191.	2.9	3
642	Donkey genomes provide new insights into domestication and selection for coat color. Nature Communications, 2020, 11, 6014.	5.8	63
643	The <i>Acer truncatum</i> genome provides insights into nervonic acid biosynthesis. Plant Journal, 2020, 104, 662-678.	2.8	52
644	The chromosome-level wintersweet (Chimonanthus praecox) genome provides insights into floral scent biosynthesis and flowering in winter. Genome Biology, 2020, 21, 200.	3.8	69
645	The Genome of Microthlaspi erraticum (Brassicaceae) Provides Insights Into the Adaptation to Highly Calcareous Soils. Frontiers in Plant Science, 2020, 11, 943.	1.7	4
646	A chromosomeâ€level genome assembly provides new insights into paternal genome elimination in the cotton mealybug <i>Phenacoccus solenopsis</i> . Molecular Ecology Resources, 2020, 20, 1733-1747.	2.2	12
647	Reference Genome Assembly for Australian <i>Ascochyta rabiei</i> Isolate ArME14. G3: Genes, Genomes, Genetics, 2020, 10, 2131-2140.	0.8	15
648	Improved Reference Genome for <i>Cyclotella cryptica</i> CCMP332, a Model for Cell Wall Morphogenesis, Salinity Adaptation, and Lipid Production in Diatoms (Bacillariophyta). G3: Genes, Genomes, Genetics, 2020, 10, 2965-2974.	0.8	14
649	Long-Read Genome Sequencing and Assembly of <i>Leptopilina boulardi</i> : A Specialist <i>Drosophila</i> Parasitoid. G3: Genes, Genomes, Genetics, 2020, 10, 1485-1494.	0.8	3
650	De novo Genome Assembly, Annotation, and SNP Identification of an Endangered Rockcress, Boechera fecunda. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	3
651	Pacific Biosciences assembly with Hi-C mapping generates an improved, chromosome-level goose genome. GigaScience, 2020, 9, .	3.3	20
652	Genome-scale analyses and characteristics of putative pathogenicity genes of Stagonosporopsis cucurbitacearum, a pumpkin gummy stem blight fungus. Scientific Reports, 2020, 10, 18065.	1.6	6

#	Article	IF	Citations
653	First Draft Genome Assembly of the Seaweed Sargassum fusiforme. Frontiers in Genetics, 2020, 11, 590065.	1.1	14
654	The Phoebe genome sheds light on the evolution of magnoliids. Horticulture Research, 2020, 7, 146.	2.9	41
655	The Genome of the Cauliflower Coral Pocillopora verrucosa. Genome Biology and Evolution, 2020, 12, 1911-1917.	1.1	23
656	A high-quality chromosome-level genome assembly reveals genetics for important traits in eggplant. Horticulture Research, 2020, 7, 153.	2.9	85
657	Long-read sequencing and de novo genome assembly of marine medaka (Oryzias melastigma). BMC Genomics, 2020, 21, 640.	1.2	7
658	A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nature Plants, 2020, 6, 1167-1178.	4.7	111
659	Comparative Analysis of Clinical and Environmental Strains of Exophiala spinifera by Long-Reads Sequencing and RNAseq Reveal Adaptive Strategies. Frontiers in Microbiology, 2020, 11, 1880.	1.5	6
660	The chromosome-level draft genome of Dalbergia odorifera. GigaScience, 2020, 9, .	3.3	21
661	A haplotype-resolved, <i>de novo</i> genome assembly for the wood tiger moth (<i>Arctia) Tj ETQq0 0 0 rgBT /Ov</i>	verlock 10	Tf 50 422 Tc
662	Genomic and transcriptomic insights into Raffaelea lauricola pathogenesis. BMC Genomics, 2020, 21, 570.	1.2	6
663	Screening of Helicoverpa armigera Mobilome Revealed Transposable Element Insertions in Insecticide Resistance Genes. Insects, 2020, 11, 879.	1.0	25
664	Genome sequencing and phylogenetic analysis of allotetraploid Salix matsudana Koidz. Horticulture Research, 2020, 7, 201.	2.9	30
665	A phased Vanilla planifolia genome enables genetic improvement of flavour and production. Nature Food, 2020, 1, 811-819.	6.2	52
666	Chromosome-level draft genome of a diploid plum (<i>Prunus salicina</i>). GigaScience, 2020, 9, .	3.3	39
667	Integrated omics unveil the secondary metabolic landscape of a basal dinoflagellate. BMC Biology, 2020, 18, 139.	1.7	17
668	Chromosome-scale genome assembly for the duckweed Spirodela intermedia, integrating cytogenetic maps, PacBio and Oxford Nanopore libraries. Scientific Reports, 2020, 10, 19230.	1.6	23
669	Degradation of the Repetitive Genomic Landscape in a Close Relative of Caenorhabditis elegans. Molecular Biology and Evolution, 2020, 37, 2549-2567.	3.5	15
670	The draft genome sequence of an upland wild rice species, Oryza granulata. Scientific Data, 2020, 7, 131.	2.4	21

#	Article	IF	CITATIONS
671	Genomic re-assessment of the transposable element landscape of the potato genome. Plant Cell Reports, 2020, 39, 1161-1174.	2.8	12
672	The Genome of <i>Peronospora belbahrii</i> Reveals High Heterozygosity, a Low Number of Canonical Effectors, and TC-Rich Promoters. Molecular Plant-Microbe Interactions, 2020, 33, 742-753.	1.4	15
673	De novo Assembly and Genome-Wide SNP Discovery in Rohu Carp, Labeo rohita. Frontiers in Genetics, 2020, 11, 386.	1.1	17
674	A High-Quality Genome Sequence of Model Legume Lotus japonicus (MG-20) Provides Insights into the Evolution of Root Nodule Symbiosis. Genes, 2020, 11, 483.	1.0	31
675	Chromosome-scale assembly of the Kandelia obovata genome. Horticulture Research, 2020, 7, 75.	2.9	38
676	Chromosomeâ€level genome assembly of the greenfin horseâ€faced filefish (<i>Thamnaconus) Tj ETQq1 1 0.784 Ecology Resources, 2020, 20, 1069-1079.</i>	314 rgBT 2.2	Overlock 10 27
677	Draft genome of the famous ornamental plant <i>Paeonia suffruticosa</i> . Ecology and Evolution, 2020, 10, 4518-4530.	0.8	34
678	A draft genome of sweet cherry (<i>Prunus avium</i> L.) reveals genomeâ€wide and local effects of domestication. Plant Journal, 2020, 103, 1420-1432.	2.8	23
679	Chromosome-Scale Assembly of Winter Oilseed Rape Brassica napus. Frontiers in Plant Science, 2020, 11, 496.	1.7	60
680	Whole-genome sequence of Phellinus gilvus (mulberry Sanghuang) reveals its unique medicinal values. Journal of Advanced Research, 2020, 24, 325-335.	4.4	24
681	De novo sequencing and chromosomalâ€scale genome assembly of leopard coral grouper, <i>Plectropomus leopardus</i> . Molecular Ecology Resources, 2020, 20, 1403-1413.	2.2	32
682	Whole-genome sequencing provides insights into the genetic diversity and domestication of bitter gourd (Momordica spp.). Horticulture Research, 2020, 7, 85.	2.9	41
683	Genome sequence of Kobresia littledalei, the first chromosome-level genome in the family Cyperaceae. Scientific Data, 2020, 7, 175.	2.4	20
684	Dissecting the genome of star fruit (Averrhoa carambola L.). Horticulture Research, 2020, 7, 94.	2.9	16
685	Draft genomes of two outcrossing wild rice, Oryza rufipogon and O. longistaminata , reveal genomic features associated with matingâ€system evolution. Plant Direct, 2020, 4, e00232.	0.8	9
686	Lowâ€coverage genomic data resolve the population divergence and gene flow history of an Australian rain forest fig wasp. Molecular Ecology, 2020, 29, 3649-3666.	2.0	4
687	Recent hybrids recapitulate ancient hybrid outcomes. Nature Communications, 2020, 11, 2179.	5.8	29
688	Taro Genome Assembly and Linkage Map Reveal QTLs for Resistance to Taro Leaf Blight. G3: Genes, Genomes, Genetics, 2020, 10, 2763-2775.	0.8	15

		CITATION R	EPORT	
#	Article		lF	Citations
689	Chromosome Level Genome Assembly of Andrographis paniculata. Frontiers in Genetic	s, 2020, 11, 701.	1.1	14
690	Jellyfish genomes reveal distinct homeobox gene clusters and conservation of small RN Nature Communications, 2020, 11, 3051.	A processing.	5.8	47
691	Genome of the webworm Hyphantria cunea unveils genetic adaptations supporting its and spread. BMC Genomics, 2020, 21, 242.	rapid invasion	1.2	12
692	Chromosomalâ€level reference genome of the incense tree <i>Aquilaria sinensis</i> . M Resources, 2020, 20, 971-979.	lolecular Ecology	2.2	24
693	Highly Contiguous Genome Resource of <i>Colletotrichum fructicola</i> Generated Us Sequencing. Molecular Plant-Microbe Interactions, 2020, 33, 790-793.	ing Long-Read	1.4	12
694	Chromosome-level genome assembly and annotation of the loquat (Eriobotrya japonica GigaScience, 2020, 9, .	a) genome.	3.3	43
695	Chromosomeâ€level analysis of the <i>Crassostrea hongkongensis</i> genome reveals duplication of immuneâ€related genes in bivalves. Molecular Ecology Resources, 2020,	s extensive 20, 980-994.	2.2	45
696	Chromosomeâ€level genome assembly of the greenhouse whitefly (<i>Trialeurodes va</i>	borariorum) Tj ETQq1	1 0,78431 2:2	4 rgBT /Ove
697	A Giant Genome for a Giant Crayfish (Cherax quadricarinatus) With Insights Into cox1 I Decapod Genomes. Frontiers in Genetics, 2020, 11, 201.	Pseudogenes in	1.1	23
698	The chromosome-scale assembly of the willow genome provides insight into Salicaceae evolution. Horticulture Research, 2020, 7, 45.	genome	2.9	35
699	Draft genomes of female and male turbot Scophthalmus maximus. Scientific Data, 202	0, 7, 90.	2.4	15
700	Chromosomeâ€level genome assembly of the East Asian common octopus (<i>Octopu PacBio sequencing and Hiâ€C technology. Molecular Ecology Resources, 2020, 20, 157</i>	s sinensis) using 72-1582.	2.2	28
701	Adaptation to Extreme Antarctic Environments Revealed by the Genome of a Sea Ice G Current Biology, 2020, 30, 3330-3341.e7.	reen Alga.	1.8	48
702	A High-Quality Genome Assembly of the North American Song Sparrow, <i>Melospiza r Genes, Genomes, Genetics, 2020, 10, 1159-1166.</i>	nelodia. G3:	0.8	8
703	Genome sequencing and transcriptome analysis of Geotrichum citri-aurantii on citrus re potential pathogenic- and guazatine-resistance related genes. Genomics, 2020, 112, 40	eveal the 063-4071.	1.3	15
704	Comparative genomics of four strains of the edible brown alga, Cladosiphon okamuran Genomics, 2020, 21, 422.	us. BMC	1.2	9
705	The roles of hybridization and habitat fragmentation in the evolution of Brazil's eni butterflies, Heliconius nattereri and H. hermathena. BMC Biology, 2020, 18, 84.	gmatic longwing	1.7	14
706	The Genome Assembly and Annotation of the Southern Elephant Seal Mirounga leonina 160.	a. Genes, 2020, 11,	1.0	3

#	Article	IF	CITATIONS
707	Improved genome assembly provides new insights into genome evolution in a desert poplar (<i>Populus euphratica</i>). Molecular Ecology Resources, 2020, 20, 781-794.	2.2	45
708	The hornwort genome and early land plant evolution. Nature Plants, 2020, 6, 107-118.	4.7	203
709	Characterization of Growth Morphology and Pathology, and Draft Genome Sequencing of Botrytis fabae, the Causal Organism of Chocolate Spot of Faba Bean (Vicia faba L.). Frontiers in Microbiology, 2020, 11, 217.	1.5	9
710	Genomic consequences of population decline in critically endangered pangolins and their demographic histories. National Science Review, 2020, 7, 798-814.	4.6	45
711	First Draft Genome of the Sable, Martes zibellina. Genome Biology and Evolution, 2020, 12, 59-65.	1,1	5
712	Novel de Novo Genome of Cynopterus brachyotis Reveals Evolutionarily Abrupt Shifts in Gene Family Composition across Fruit Bats. Genome Biology and Evolution, 2020, 12, 259-272.	1.1	12
713	The persimmon genome reveals clues to the evolution of a lineage-specific sex determination system in plants. PLoS Genetics, 2020, 16, e1008566.	1.5	54
714	Extreme Genome and Nervous System Streamlining in the Invertebrate Parasite Intoshia variabili. Current Biology, 2020, 30, 1292-1298.e3.	1.8	35
715	A draft genome sequence of the elusive giant squid, Architeuthis dux. GigaScience, 2020, 9, .	3.3	37
716	A high-quality chromosomal genome assembly of Diospyros oleifera Cheng. GigaScience, 2020, 9, .	3.3	37
717	Counter based suffix tree for DNA pattern repeats. Theoretical Computer Science, 2020, 814, 1-12.	0.5	3
718	Genomic analyses of a "living fossil― The endangered doveâ€tree. Molecular Ecology Resources, 2020, 20, 756-769.	2.2	26
719	The genome of opportunistic fungal pathogen Fusarium oxysporum carries a unique set of lineage-specific chromosomes. Communications Biology, 2020, 3, 50.	2.0	55
720	Field cricket genome reveals the footprint of recent, abrupt adaptation in the wild. Evolution Letters, 2020, 4, 19-33.	1.6	32
721	Exploitation of Hi-C sequencing for improvement of genome assembly and in-vitro validation of differentially expressing genes in Jatropha curcas L. 3 Biotech, 2020, 10, 91.	1.1	3
722	The Reference Genome of Tea Plant and Resequencing of 81 Diverse Accessions Provide Insights into Its Genome Evolution and Adaptation. Molecular Plant, 2020, 13, 1013-1026.	3.9	257
723	Genome of extreme halophyte Puccinellia tenuiflora. BMC Genomics, 2020, 21, 311.	1.2	8
724	RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9451-9457.	3.3	1,480

ARTICLE

725 An Annotated Chromosome-Level Reference Genome of the Red-Eared Slider Turtle (Trachemys scripta) Tj ETQq0 0 0 rgBT /Overlock 10

726	De novo assembly of the olive fruit fly (Bactrocera oleae) genome with linked-reads and long-read technologies minimizes gaps and provides exceptional Y chromosome assembly. BMC Genomics, 2020, 21, 259.	1.2	21
727	Probing the Mobilome: Discoveries in the Dynamic Microbiome. Trends in Microbiology, 2021, 29, 158-170.	3.5	41
728	Sequence repetitiveness quantification and <i>de novo</i> repeat detection by weighted k-mer coverage. Briefings in Bioinformatics, 2021, 22, .	3.2	4
729	The chromosomeâ€level genome sequence and karyotypic evolution of Megadenia pygmaea (Brassicaceae). Molecular Ecology Resources, 2021, 21, 871-879.	2.2	7
730	A highâ€quality genome of taro (<i>Colocasia esculenta</i> (L.) Schott), one of the world's oldest crops. Molecular Ecology Resources, 2021, 21, 68-77.	2.2	28
731	A chromosomeâ€scale reference genome and genomeâ€wide genetic variations elucidate adaptation in yak. Molecular Ecology Resources, 2021, 21, 201-211.	2.2	14
732	The genome sequence of Samia ricini , a new model species of lepidopteran insect. Molecular Ecology Resources, 2021, 21, 327-339.	2.2	12
733	A chromosomeâ€scale assembly of allotetraploid <i>Brassica juncea</i> (AABB) elucidates comparative architecture of the A and B genomes. Plant Biotechnology Journal, 2021, 19, 602-614.	4.1	62
734	Genome Sequence Resource for <i>Colletotrichum scovillei</i> , the Cause of Anthracnose Disease of Chili. Molecular Plant-Microbe Interactions, 2021, 34, 122-126.	1.4	12
735	The celery genome sequence reveals sequential paleoâ€polyploidizations, karyotype evolution and resistance gene reduction in apiales. Plant Biotechnology Journal, 2021, 19, 731-744.	4.1	62
736	A chromosomeâ€level genome assembly of rice leaffolder, <i>Cnaphalocrocis medinalis</i> . Molecular Ecology Resources, 2021, 21, 561-572.	2.2	15
737	A Chromosomal-scale Reference Genome of the Kelp Grouper Epinephelus moara. Marine Biotechnology, 2021, 23, 12-16.	1.1	7
738	Wholeâ€genome assembly and resequencing reveal genomic imprint and key genes of rapid domestication in narrowâ€leafed lupin. Plant Journal, 2021, 105, 1192-1210.	2.8	12
739	Genomic Analysis Enlightens Agaricales Lifestyle Evolution and Increasing Peroxidase Diversity. Molecular Biology and Evolution, 2021, 38, 1428-1446.	3.5	72
740	Chromosomeâ€level reference genome assembly provides insights into aroma biosynthesis in passion fruit (<i>Passiflora edulis</i>). Molecular Ecology Resources, 2021, 21, 955-968.	2.2	31
741	Genus-Wide Characterization of Bumblebee Genomes Provides Insights into Their Evolution and Variation in Ecological and Behavioral Traits. Molecular Biology and Evolution, 2021, 38, 486-501.	3.5	58
742	Eighteen Coral Genomes Reveal the Evolutionary Origin of <i>Acropora</i> Strategies to Accommodate Environmental Changes. Molecular Biology and Evolution, 2021, 38, 16-30.	3.5	75

IF ARTICLE CITATIONS # Identifying a melanogenesis-related candidate gene by a high-quality genome assembly and population diversity analysis in Hypsizygus marmoreus. Journal of Genetics and Genomics, 2021, 48, 75-87. 745 1.7 14 Genome-wide signatures of mammalian skin covering evolution. Science China Life Sciences, 2021, 64, 1765-1780. 746 2.3 Draft Genome Sequences of the Black Truffles Tuber brumale Vittad. and Tuber indicum Cook & amp; 747 0.3 7 Massee. Microbiology Resource Announcements, 2021, 10, . Horseshoe crab genomes reveal the evolution of genes and microRNAs after three rounds of whole genome duplication. Communications Biology, 2021, 4, 83. 748 Combined genomic, transcriptomic, and metabolomic analyses provide insights into chayote (Sechium) Tj ETQq0 0,0 gBT /Oygrlock 10 749

750	Chromosomal assembly of the Antarctic toothfish (<i>Dissostichus mawsoni</i>) genome using third-generation DNA sequencing and Hi-C technology. Zoological Research, 2021, 42, 124-129.	0.9	17
751	Genomes of Other Species in Panax Linn. Compendium of Plant Genomes, 2021, , 149-157.	0.3	0
752	Genome assemblies for two Neotropical trees: <i>Jacaranda copaia</i> and <i>Handroanthus guayacan</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	3
753	Transposable Elements and Teleost Migratory Behaviour. International Journal of Molecular Sciences, 2021, 22, 602.	1.8	9
754	Genome sequence and transcriptome profiles of pathogenic fungus Paecilomyces penicillatus reveal its interactions with edible fungus Morchella importuna. Computational and Structural Biotechnology Journal, 2021, 19, 2607-2617.	1.9	11
755	Chromosome-scale genome assembly of brown-spotted flathead <i>Platycephalus</i> sp.1 provides insights into demersal adaptation in flathead fish. Zoological Research, 2021, 42, 660-665.	0.9	2
756	How the pan-genome is changing crop genomics and improvement. Genome Biology, 2021, 22, 3.	3.8	142
757	Reference genome assembly for Australian Ascochyta lentis isolate Al4. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	9
758	The draft genome sequence of the grove snail <i>Cepaea nemoralis</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	15
759	Genome and population evolution and environmental adaptation of <i>Glyptosternon maculatum</i> on the Qinghai-Tibet Plateau. Zoological Research, 2021, 42, 502-513.	0.9	7
760	Chromosome-level genome assembly of the Chinese longsnout catfish <i>Leiocassis longirostris</i> . Zoological Research, 2021, 42, 417-422.	0.9	14
761	A mosquito small RNA genomics resource reveals dynamic evolution and host responses to viruses and transposons. Genome Research, 2021, 31, 512-528.	2.4	29
762	Chromosome-level genome assembly of Ophiorrhiza pumila reveals the evolution of camptothecin biosynthesis. Nature Communications, 2021, 12, 405.	5.8	77

ARTICLE IF CITATIONS Hybridization History and Repetitive Element Content in the Genome of a Homoploid Hybrid, Yucca 763 1.7 9 gloriosa (Asparagaceae). Frontiers in Plant Science, 2020, 11, 573767. Wholeâ€Genome Sequence of Synthesized Allopolyploids in <i>Cucumis</i> Reveals Insights into the Genome Evolution of Allopolyploidization. Advanced Science, 2021, 8, 2004222. 764 5.6 24 Gene family amplification facilitates adaptation in freshwater unionid bivalve <i>Megalonaias 767 2.0 19 nervosa </i>
</i>
Molecular Ecology, 2021, 30, 1155-1173. A chromosome $\hat{\epsilon}$ -level genome assembly for the tertiary relict plant <i>Tetracentron sinense</i> oliv. (trochodendraceae). Molecular Ecology Resources, 2021, 21, 1186-1199. A Chromosome-Level Genome Assembly of the Dark Sleeper <i>Odontobutis potamophila</i>. Genome 769 1.1 7 Biology and Evolution, 2021, 13, . Comparative analysis using the draft genome sequence of California poppy (Eschscholzia californica) for exploring the candidate genes involved in benzylisoquinoline alkaloid biosynthesis. Bioscience, Biotechnology and Biochemistry, 2021, 85, 851-859. Gene family expansions and transcriptome signatures uncover fungal adaptations to wood decay. 771 1.8 44 Environmental Microbiology, 2021, 23, 5716-5732. The genome of Tripterygium wilfordii and characterization of the celastrol biosynthesis pathway. GigaByte, 0, 2021, 1-32 A long reads-based <i>de-novo</i> assembly of the genome of the Arlee homozygous line reveals 773 0.8 40 chromosomal rearrangements in rainbow trout. G3: Genes, Genomes, Genetics, 2021, 11, . Genome sequences of Tropheus moorii and Petrochromis trewavasae, two eco-morphologically 774 1.6 divergent cichlid fishes endemic to Lake Tanganyika. Scientific Reports, 2021, 11, 4309. Genome sequence and evolution of <i>Betula platyphylla </i>. Horticulture Research, 2021, 8, 37. 775 2.9 53 TEfinder: A Bioinformatics Pipeline for Detecting New Transposable Element Insertion Events in 778 1.0 Next-Generation Sequencing Data. Genes, 2021, 12, 224. Search for SINE repeats in the rice genome using correlation-based position weight matrices. BMC 780 1.2 3 Bioinformatics, 2021, 22, 42. A large genome with chromosomeâ€scale assembly sheds light on the evolutionary success of a true 2.2 toad (<i>Bufo gargarizans</i>). Molecular Ecology Resources, 2021, 21, 1256-1273. Insights into triterpene synthesis and unsaturated fatty-acid accumulation provided by chromosomal-level genome analysis of Akebia trifoliatá subsp. australis. Horticulture Research, 2021, 782 2.9 23 8, 33. The first genomic resources for Phymatotrichopsis omnivora, a soil-borne pezizomycete pathogen 784 with a broad host range. Phytopathology, 2021, , PHYTO01210014A. Chromosomeâ€level assembly of the mangrove plant <i>Aegiceras corniculatum</i> genome generated through Illumina, PacBio and Hiâ€C sequencing technologies. Molecular Ecology Resources, 2021, 21, 785 2.216 1593-1607. Interplay between genome organization and epigenomic alterations of pericentromeric DNA in cancer. 786 Journal of Genetics and Genomics, 2021, 48, 184-197.

#	Article	IF	CITATIONS
788	A route to de novo domestication of wild allotetraploid rice. Cell, 2021, 184, 1156-1170.e14.	13.5	259
789	A multi-omic characterization of temperature stress in a halotolerant Scenedesmus strain for algal biotechnology. Communications Biology, 2021, 4, 333.	2.0	22
790	Chromosomeâ€level genome of <i>Poropuntius huangchuchieni</i> provides a diploid progenitorâ€like reference genome for the allotetraploid <i>Cyprinus carpio</i> . Molecular Ecology Resources, 2021, 21, 1658-1669.	2.2	13
791	A chromosome level genome assembly of <i>Propsilocerus akamusi</i> to understand its response to heavy metal exposure. Molecular Ecology Resources, 2021, 21, 1996-2012.	2.2	11
795	A Genomic Blueprint of Flax Fungal Parasite Fusarium oxysporum f. sp. lini. International Journal of Molecular Sciences, 2021, 22, 2665.	1.8	6
797	High-Quality Genome Resource of <i>Diaporthe destruens</i> Causing Foot Rot Disease of Sweet Potato. Plant Disease, 2021, 105, 3279-3281.	0.7	4
798	Nutrient-driven genome evolution revealed by comparative genomics of chrysomonad flagellates. Communications Biology, 2021, 4, 328.	2.0	7
799	Gigantic Genomes Provide Empirical Tests of Transposable Element Dynamics Models. Genomics, Proteomics and Bioinformatics, 2021, 19, 123-139.	3.0	13
800	The draft genome of the specialist flea beetle Altica viridicyanea (Coleoptera: Chrysomelidae). BMC Genomics, 2021, 22, 243.	1.2	6
801	An Annotated Draft Genome for the Andean Bear, <i>Tremarctos ornatus</i> . Journal of Heredity, 2021, 112, 377-384.	1.0	6
802	A Chromosome—Level Genome Assembly of the Spotted Scat (<i>Scatophagus argus</i>). Genome Biology and Evolution, 2021, 13, .	1.1	17
803	Comparative genome analyses of four rice-infecting Rhizoctonia solani isolates reveal extensive enrichment of homogalacturonan modification genes. BMC Genomics, 2021, 22, 242.	1.2	18
804	Chromosomeâ€level genome assembly of the Arctic fox (<i>Vulpes lagopus</i>) using PacBio sequencing and Hi technology. Molecular Ecology Resources, 2021, 21, 2093-2108.	2.2	15
805	Sequencing, assembly and annotation of the whole-insect genome of <i>Lymantria dispar dispar</i> , the European gypsy moth. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	5
806	Whole-genome resequencing of 445 Lactuca accessions reveals the domestication history of cultivated lettuce. Nature Genetics, 2021, 53, 752-760.	9.4	64
807	Comparative genomics of the coconut crab and other decapod crustaceans: exploring the molecular basis of terrestrial adaptation. BMC Genomics, 2021, 22, 313.	1.2	11
808	Engineered sex ratio distortion by X-shredding in the global agricultural pest Ceratitis capitata. BMC Biology, 2021, 19, 78.	1.7	29
810	The Meishan pig genome reveals structural variationâ€mediated gene expression and phenotypic divergence underlying Asian pig domestication. Molecular Ecology Resources, 2021, 21, 2077-2092.	2.2	20

#	Article	IF	CITATIONS
811	A chromosome-level reference genome of the hazelnut, <i>Corylus heterophylla</i> Fisch. GigaScience, 2021, 10, .	3.3	13
812	Genome-wide analyses of the relict gull (Larus relictus): insights and evolutionary implications. BMC Genomics, 2021, 22, 311.	1.2	6
813	De novo assembly of a new Olea europaea genome accession using nanopore sequencing. Horticulture Research, 2021, 8, 64.	2.9	41
815	Chromosomal-Level Reference Genome of the Neotropical Tree Jacaranda mimosifolia D. Don. Genome Biology and Evolution, 2021, 13, .	1.1	7
816	Highâ€quality chromosomeâ€level genomes of <i>Cucumis metuliferus</i> and <i>Cucumis melo</i> provide insight into <i>Cucumis</i> genome evolution. Plant Journal, 2021, 107, 136-148.	2.8	20
817	<i>K</i> -mer-based machine learning method to classify LTR-retrotransposons in plant genomes. PeerJ, 2021, 9, e11456.	0.9	13
818	Comparative Genome Analyses Highlight Transposon-Mediated Genome Expansion and the Evolutionary Architecture of 3D Genomic Folding in Cotton. Molecular Biology and Evolution, 2021, 38, 3621-3636.	3.5	41
819	Chorus2: design of genomeâ€scale oligonucleotideâ€based probes for fluorescence <i>inÂsitu</i> hybridization. Plant Biotechnology Journal, 2021, 19, 1967-1978.	4.1	31
820	Chromosome-scale assembly of the <i>Sparassis latifolia</i> genome obtained using long-read and Hi-C sequencing. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	4
821	The genome of the venomous snail <i>Lautoconus ventricosus</i> sheds light on the origin of conotoxin diversity. GigaScience, 2021, 10, .	3.3	29
822	The genome of Nautilus pompilius illuminates eye evolution and biomineralization. Nature Ecology and Evolution, 2021, 5, 927-938.	3.4	40
823	Whole-genome resequencing of Osmanthus fragrans provides insights into flower color evolution. Horticulture Research, 2021, 8, 98.	2.9	35
824	Molecular mechanisms of mutualistic and antagonistic interactions in a plant–pollinator association. Nature Ecology and Evolution, 2021, 5, 974-986.	3.4	30
825	Genetic basis of high aroma and stress tolerance in the oolong tea cultivar genome. Horticulture Research, 2021, 8, 107.	2.9	80
826	The reference genome of Miscanthus floridulus illuminates the evolution of Saccharinae. Nature Plants, 2021, 7, 608-618.	4.7	23
827	The Genomic Signature of Allopatric Speciation in a Songbird Is Shaped by Genome Architecture (Aves:) Tj ETQq1	1,0,78431 1,1	4.rgBT /O∖
829	Whole genome sequencing of a snailfish from the Yap Trench (~7,000 m) clarifies the molecular mechanisms underlying adaptation to the deep sea. PLoS Genetics, 2021, 17, e1009530.	1.5	26
831	The chromosome-level reference genome of Coptis chinensis provides insights into genomic evolution and berberine biosynthesis. Horticulture Research, 2021, 8, 121.	2.9	25

#	Article	IF	CITATIONS
832	Gapless indica rice genome reveals synergistic contributions of active transposable elements and segmental duplications to rice genome evolution. Molecular Plant, 2021, 14, 1745-1756.	3.9	50
833	A chromosome-level Camptotheca acuminata genome assembly provides insights into the evolutionary origin of camptothecin biosynthesis. Nature Communications, 2021, 12, 3531.	5.8	66
834	De novo genome assembly of a foxtail millet cultivar Huagu11 uncovered the genetic difference to the cultivar Yugu1, and the genetic mechanism of imazethapyr tolerance. BMC Plant Biology, 2021, 21, 271.	1.6	9
836	Chromosome assembled and annotated genome sequence of <i>Aspergillus flavus</i> NRRL 3357. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	19
837	The chromosome-level Stevia genome provides insights into steviol glycoside biosynthesis. Horticulture Research, 2021, 8, 129.	2.9	35
838	The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution. Nature Plants, 2021, 7, 748-756.	4.7	98
839	Genomic insights into the adaptation and evolution of the nautilus, an ancient but evolving "living fossil― Molecular Ecology Resources, 2022, 22, 15-27.	2.2	15
841	Investigation of the activity of transposable elements and genes involved in their silencing in the newt Cynops orientalis, a species with a giant genome. Scientific Reports, 2021, 11, 14743.	1.6	7
842	Dissecting the chromosome-level genome of the Asian Clam (Corbicula fluminea). Scientific Reports, 2021, 11, 15021.	1.6	5
843	Chromosomeâ€level genome assembly of Sichuan pepper provides insights into apomixis, drought tolerance, and alkaloid biosynthesis. Molecular Ecology Resources, 2021, 21, 2533-2545.	2.2	30
844	Diploidy within a Haploid Genus of Entomopathogenic Fungi. Genome Biology and Evolution, 2021, 13, .	1.1	5
845	The first draft genome of feather grasses using SMRT sequencing and its implications in molecular studies of Stipa. Scientific Reports, 2021, 11, 15345.	1.6	6
846	The Welwitschia genome reveals aÂunique biology underpinning extreme longevity in deserts. Nature Communications, 2021, 12, 4247.	5.8	51
847	Evolutionary transition to XY sex chromosomes associated with Y-linked duplication of a male hormone gene in a terrestrial isopod. Heredity, 2021, 127, 266-277.	1.2	5
848	Chromosomalâ€scale genome assembly of Eleutherococcus senticosus provides insights into chromosome evolution in Araliaceae. Molecular Ecology Resources, 2021, 21, 2204-2220.	2.2	10
849	Genome of the Southern Giant Petrel Assembled Using Third-Generation DNA Sequencing and Linked Reads Reveals Evolutionary Traits of Southern Avian. Animals, 2021, 11, 2046.	1.0	1
850	De Novo Sequencing and High-Contiguity Genome Assembly of Moniezia expansa Reveals Its Specific Fatty Acid Metabolism and Reproductive Stem Cell Regulatory Network. Frontiers in Cellular and Infection Microbiology, 2021, 11, 693914.	1.8	3
851	Gossypium tomentosum genome and interspecific ultra-dense genetic maps reveal genomic structures, recombination landscape and flowering depression in cotton. Genomics, 2021, 113, 1999-2009.	1.3	8

	CITATION	CITATION REPORT		
#	Article	IF	Citations	
852	Draft genome of Puya raimondii (Bromeliaceae), the Queen of the Andes. Genomics, 2021, 113, 2537-2546.	1.3	4	
854	The first draft genome of Picrorhiza kurrooa, an endangered medicinal herb from Himalayas. Scientific Reports, 2021, 11, 14944.	1.6	10	
856	Tracking the transition to agriculture in Southern Europe through ancient DNA analysis of dental calculus. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	29	
857	Whole genome sequencing and bulked segregant analysis suggest a new mechanism of amitraz resistance in the citrus red mite, Panonychus citri (Acari: Tetranychidae). Pest Management Science, 2021, 77, 5032-5048.	1.7	6	
858	Impact of Repetitive DNA Elements on Snake Genome Biology and Evolution. Cells, 2021, 10, 1707.	1.8	11	
859	A sensitive repeat identification framework based on short and long reads. Nucleic Acids Research, 2021, 49, e100-e100.	6.5	10	
861	Genome assembly of Scorias spongiosa and comparative genomics provide insights into ecological adaptation of honeydew-dependent sooty mould fungi. Genomics, 2021, 113, 2189-2198.	1.3	2	
862	Genome assembly of primitive cultivated potato <i>Solanum stenotomum</i> provides insights into potato evolution. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	5	
863	Seadragon genome analysis provides insights into its phenotype and sex determination locus. Science Advances, 2021, 7, .	4.7	32	
864	The genome of the thin-necked bladder worm Taenia hydatigena reveals evolutionary strategies for helminth survival. Communications Biology, 2021, 4, 1004.	2.0	2	
865	High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement. Nature Genetics, 2021, 53, 1385-1391.	9.4	76	
866	Transposable elements expression in Rhinella marina (cane toad) specimens submitted to immune and stress challenge. Genetica, 2021, 149, 335-342.	0.5	1	
867	The Cardamine enshiensis genome reveals whole genome duplication and insight into selenium hyperaccumulation and tolerance. Cell Discovery, 2021, 7, 62.	3.1	15	
868	Transposable elements and introgression introduce genetic variation in the invasive ant <i>Cardiocondyla obscurior</i> . Molecular Ecology, 2021, 30, 6211-6228.	2.0	20	
870	Insights into the Host Specificity of a New Oomycete Root Pathogen, Pythium brassicum P1: Whole Genome Sequencing and Comparative Analysis Reveals Contracted Regulation of Metabolism, Protein Families, and Distinct Pathogenicity Repertoire. International Journal of Molecular Sciences, 2021, 22, 9002.	1.8	3	
871	Chromosome-scale assembly and evolution of the tetraploid Salvia splendens (Lamiaceae) genome. Horticulture Research, 2021, 8, 177.	2.9	27	
872	High-quality genome assembly of 'Cuiguan' pear (Pyrus pyrifolia) as a reference genome for identifying regulatory genes and epigenetic modifications responsible for bud dormancy. Horticulture Research, 2021, 8, 197.	2.9	44	
873	Chromosome-scale assembly of the Dendrobium chrysotoxum genome enhances the understanding of orchid evolution. Horticulture Research, 2021, 8, 183.	2.9	41	

CITAT	0.01	DEDO	DT
		K F P ()	ואו
011/11		ICEI O	

#	ARTICLE	IF	CITATIONS
874	Genome-Wide Transcriptional Changes of Rhodosporidium kratochvilovae at Low Temperature. Frontiers in Microbiology, 2021, 12, 727105.	1.5	5
875	Chromosomeâ€level genome assembly of the mirid predator <i>Cyrtorhinus lividipennis</i> Reuter (Hemiptera: Miridae), an important natural enemy in the rice ecosystem. Molecular Ecology Resources, 2022, 22, 1086-1099.	2.2	7
876	Whole-genome assembly of <i>Ganoderma leucocontextum</i> (Ganodermataceae, Fungi) discovered from the Tibetan Plateau of China. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	11
877	Chromosome-Level Genome Assembly and Annotation of the Fiber Flax (Linum usitatissimum) Genome. Frontiers in Genetics, 2021, 12, 735690.	1.1	15
878	Comparative Mitogenomic Analysis and the Evolution of Rhizoctonia solani Anastomosis Groups. Frontiers in Microbiology, 2021, 12, 707281.	1.5	5
880	Chromosome-level assembly of the Hypophthalmichthys molitrix (Cypriniformes: Cyprinidae) genome provides insights into its ecological adaptation. Genomics, 2021, 113, 2944-2952.	1.3	5
881	A chromosome-level reference genome of red swamp crayfish Procambarus clarkii provides insights into the gene families regarding growth or development in crustaceans. Genomics, 2021, 113, 3274-3284.	1.3	20
882	<i>Zanthoxylum-</i> specific whole genome duplication and recent activity of transposable elements in the highly repetitive paleotetraploid <i>Z. bungeanum</i> genome. Horticulture Research, 2021, 8, 205.	2.9	19
883	The chromosome-scale genome of Magnolia officinalis provides insight into the evolutionary position of magnoliids. IScience, 2021, 24, 102997.	1.9	14
884	The evolutionary puzzle solution for the origins of the partial loss of the Cτ2 exon in notothenioid fishes. Fish and Shellfish Immunology, 2021, 116, 124-139.	1.6	2
885	Genome Sequence Resource for <i>Stagonosporopsis cucurbitacearum</i> , a Cause of Gummy Stem Blight Disease of Watermelon. Molecular Plant-Microbe Interactions, 2021, 34, 977-980.	1.4	3
887	The Clausena lansium (Wampee) genome reveal new insights into the carbazole alkaloids biosynthesis pathway. Genomics, 2021, 113, 3696-3704.	1.3	11
888	The evolution and genetics of sexually dimorphic â€~dual' mimicry in the butterfly <i>Elymnias hypermnestra</i> . Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202192.	1.2	6
889	Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp. BMC Biology, 2021, 19, 1.	1.7	135
890	The Dfam community resource of transposable element families, sequence models, and genome annotations. Mobile DNA, 2021, 12, 2.	1.3	279
891	A Practical Guide on Computational Tools and Databases for Transposable Elements in Plants. Methods in Molecular Biology, 2021, 2250, 31-53.	0.4	2
892	<i>De novo</i> whole-genome assembly and resequencing resources for the roan (<i>Hippotragus) Tj ETQq0 0 (</i>) rgBT /Ove	erlock 10 Tf 50

893	Draft genome of the herbaceous bamboo <i>Raddia distichophylla</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	6
-----	--	-----	---

#	Article	IF	CITATIONS
894	The hard clam genome reveals massive expansion and diversification of inhibitors of apoptosis in Bivalvia. BMC Biology, 2021, 19, 15.	1.7	52
895	The <i>Cymbidium goeringii</i> genome provides insight into organ development and adaptive evolution in orchids. Ornamental Plant Research, 2021, 1, 1-13.	0.2	7
896	Finding and Characterizing Repeats in Plant Genomes. Methods in Molecular Biology, 2016, 1374, 293-337.	0.4	7
897	Computational Methods for the Analysis of Primate Mobile Elements. Methods in Molecular Biology, 2010, 628, 137-151.	0.4	9
898	Citrus Genomes: From Sequence Variations to Epigenetic Modifications. Compendium of Plant Genomes, 2020, , 141-165.	0.3	1
899	RAIDER: Rapid Ab Initio Detection of Elementary Repeats. Lecture Notes in Computer Science, 2013, , 170-180.	1.0	1
900	A New Approach to String Pattern Mining with Approximate Match. Lecture Notes in Computer Science, 2013, , 110-125.	1.0	3
901	Crop Genome Annotation: A Case Study for the Brassica rapa Genome. Compendium of Plant Genomes, 2015, , 53-64.	0.3	1
902	Genomics and Transcriptomics Advance in Plant Sciences. Energy, Environment, and Sustainability, 2019, , 419-448.	0.6	5
904	A chromosome-level reference genome of non-heading Chinese cabbage [Brassica campestris (syn.) Tj ETQq1 1	0.784314 2.9	rgBT /Overloo
905	A chromosome-scale genome assembly of Isatis indigotica, an important medicinal plant used in traditional Chinese medicine. Horticulture Research, 2020, 7, 18.	2.9	58
906	The sequence and de novo assembly of Oxygymnocypris stewartii genome. Scientific Data, 2019, 6, 190009.	2.4	29
907	The evolutionary origin and domestication history of goldfish (<i>Carassius auratus</i>). Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29775-29785.	3.3	47
908			100
	Approaches to Fungal Genome Annotation. Mycology, 2011, 2, 118-141.	2.0	109
909	Approaches to Fungal Genome Annotation. Mycology, 2011, 2, 118-141. A high-quality <i>de novo</i> genome assembly of one swamp eel (<i>Monopterus albus</i>) strain with PacBio and Hi-C sequencing data. G3: Genes, Genomes, Genetics, 2021, 11, 1-9.	0.8	15
909 910	Approaches to Fungal Genome Annotation. Mycology, 2011, 2, 118-141. A high-quality <i>de novo</i> genome assembly of one swamp eel (<i>Monopterus albus</i>) strain with PacBio and Hi-C sequencing data. G3: Genes, Genomes, Genetics, 2021, 11, 1-9. Chromosomal-Level Genome Assembly of Silver Sillago (Sillago sihama). Genome Biology and Evolution, 2021, 13, .	2.0 0.8 1.1	15 6
909 910 911	Approaches to Fungal Genome Annotation. Mycology, 2011, 2, 118-141. A high-quality <i>de novo</i> genome assembly of one swamp eel (<i>Monopterus albus</i>) strain with PacBio and Hi-C sequencing data. G3: Genes, Genomes, Genetics, 2021, 11, 1-9. Chromosomal-Level Genome Assembly of Silver Sillago (Sillago sihama). Genome Biology and Evolution, 2021, 13, . Assembly of highly repetitive genomes using short reads: the genome of discrete typing unit III Trypanosoma cruzi strain 231. Microbial Genomics, 2018, 4, .	2.0 0.8 1.1 1.0	15 6 24

#	Article	IF	CITATIONS
938	Millipede genomes reveal unique adaptations during myriapod evolution. PLoS Biology, 2020, 18, e3000636.	2.6	18
939	Combating a Global Threat to a Clonal Crop: Banana Black Sigatoka Pathogen Pseudocercospora fijiensis (Synonym Mycosphaerella fijiensis) Genomes Reveal Clues for Disease Control. PLoS Genetics, 2016, 12, e1005876.	1.5	77
940	Comparative Genomic Analysis of Drechmeria coniospora Reveals Core and Specific Genetic Requirements for Fungal Endoparasitism of Nematodes. PLoS Genetics, 2016, 12, e1006017.	1.5	45
941	Mosquito genomes are frequently invaded by transposable elements through horizontal transfer. PLoS Genetics, 2020, 16, e1008946.	1.5	31
942	Genome Erosion in a Nitrogen-Fixing Vertically Transmitted Endosymbiotic Multicellular Cyanobacterium. PLoS ONE, 2010, 5, e11486.	1.1	178
943	The First Symbiont-Free Genome Sequence of Marine Red Alga, Susabi-nori (Pyropia yezoensis). PLoS ONE, 2013, 8, e57122.	1.1	150
944	Sequencing and Comparative Analysis of the Straw Mushroom (Volvariella volvacea) Genome. PLoS ONE, 2013, 8, e58294.	1.1	143
945	Genome Survey Sequencing and Genetic Background Characterization of Gracilariopsis lemaneiformis (Rhodophyta) Based on Next-Generation Sequencing. PLoS ONE, 2013, 8, e69909.	1.1	52
946	The Draft Genome Sequence of European Pear (Pyrus communis L. â€~Bartlett'). PLoS ONE, 2014, 9, e92644.	1.1	241
947	Candidatus Frankia Datiscae Dg1, the Actinobacterial Microsymbiont of Datisca glomerata, Expresses the Canonical nod Genes nodABC in Symbiosis with Its Host Plant. PLoS ONE, 2015, 10, e0127630.	1.1	131
948	Genome Filtering for New DNA Biomarkers of Loa loa Infection Suitable for Loop-Mediated Isothermal Amplification. PLoS ONE, 2015, 10, e0139286.	1.1	16
949	Genome Survey Sequencing for the Characterization of the Genetic Background of Rosa roxburghii Tratt and Leaf Ascorbate Metabolism Genes. PLoS ONE, 2016, 11, e0147530.	1.1	60
950	Comparative Genomics of Pathogens Causing Brown Spot Disease of Tobacco: Alternaria longipes and Alternaria alternata. PLoS ONE, 2016, 11, e0155258.	1.1	42
951	Draft Genomes of Anopheles cracens and Anopheles maculatus: Comparison of Simian Malaria and Human Malaria Vectors in Peninsular Malaysia. PLoS ONE, 2016, 11, e0157893.	1.1	8
952	Deciphering the Draft Genome of Toxoplasma gondii RH Strain. PLoS ONE, 2016, 11, e0157901.	1.1	28
953	Comprehensive analysis of small RNAs expressed in developing male strobili of Cryptomeria japonica. PLoS ONE, 2018, 13, e0193665.	1.1	14
954	Estimating the k-mer Coverage Frequencies in Genomic Datasets: A Comparative Assessment of the State-of-the-art. Current Genomics, 2019, 20, 2-15.	0.7	10
955	An Efficient Tool for Searching Maximal and Super Maximal Repeats in Large DNA/Protein Sequences via Induced-Enhanced Suffix Array. Recent Patents on Computer Science, 2019, 12, 128-134.	0.5	2

#	Article	IF	CITATIONS
956	Molecular analysis of commercial date palm cultivars in Lybia using ISSR and SRAP PCR-based markers. Genetika, 2016, 48, 307-322.	0.1	2
958	Asymptotic Analysis of the kth Subword Complexity. Entropy, 2020, 22, 207.	1.1	1
959	The draft genome assembly of the critically endangered Nyssa yunnanensis, a plant species with extremely small populations endemic to Yunnan Province, China. GigaByte, 0, 2020, 1-12.	0.0	3
960	Draft genome of the aquatic moss Fontinalis antipyretica (Fontinalaceae, Bryophyta). GigaByte, 0, 2020, 1-9.	0.0	12
961	Evidence for suppression of immunity as a driver for genomic introgressions and host range expansion in races of Albugo candida, a generalist parasite. ELife, 2015, 4, .	2.8	71
962	Structure of the germline genome of Tetrahymena thermophila and relationship to the massively rearranged somatic genome. ELife, 2016, 5, .	2.8	130
963	The genome of an intranuclear parasite, Paramicrosporidium saccamoebae, reveals alternative adaptations to obligate intracellular parasitism. ELife, 2017, 6, .	2.8	63
964	Genome streamlining in a minute herbivore that manipulates its host plant. ELife, 2020, 9, .	2.8	33
965	A draft genome and transcriptome of common milkweed (<i>Asclepias syriaca</i>) as resources for evolutionary, ecological, and molecular studies in milkweeds and Apocynaceae. PeerJ, 2019, 7, e7649.	0.9	19
966	msRepDB: a comprehensive repetitive sequence database of over 80 000 species. Nucleic Acids Research, 2022, 50, D236-D245.	6.5	8
967	Chromosome Level Genome Assembly and Annotation of Highly Invasive Japanese Stiltgrass (<i>Microstegium vimineum</i>). Genome Biology and Evolution, 2021, 13, .	1.1	4
968	A chromosomeâ€scale genome assembly and annotation of the spring orchid (<i>Cymbidium) Tj ETQq1 1 0.7843</i>	314 rgBT / 2.2	Oyerlock 10
969	High-quality genome assembly of an important biodiesel plant, <i>Euphorbia lathyris</i> L. DNA Research, 2021, 28, .	1.5	11
970	A chromosome-scale draft genome sequence of horsegram (Macrotyloma uniflorum). GigaByte, 0, 2021, 1-23.	0.0	7
971	Evolutionary history and pan-genome dynamics of strawberry (<i>Fragaria</i> spp.). Proceedings of the United States of America, 2021, 118, .	3.3	43
972	Chromosome-Level Genome Assembly of Cyrtotrachelus buqueti and Mining of Its Specific Genes. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	2
973	Chromosomeâ€level genome assemblies of two cottonâ€melon aphid <i>Aphis gossypii</i> biotypes unveil mechanisms of host adaption. Molecular Ecology Resources, 2022, 22, 1120-1134.	2.2	10
974	Chromosome-Scale Genome and Comparative Transcriptomic Analysis Reveal Transcriptional Regulators of β-Carotene Biosynthesis in Mango. Frontiers in Plant Science, 2021, 12, 749108.	1.7	8

#	Article	IF	CITATIONS
975	The chromosomeâ€scale genome assembly, annotation and evolution of <i>Rhododendron henanense</i> subsp. <i>lingbaoense</i> . Molecular Ecology Resources, 2022, 22, 988-1001.	2.2	14
976	Chromosome-level genome assemblies of <i>Channa argus</i> and <i>Channa maculata</i> and comparative analysis of their temperature adaptability. GigaScience, 2021, 10, .	3.3	5
977	Genome features of common vetch (<scp><i>Vicia sativa</i></scp>) in natural habitats. Plant Direct, 2021, 5, e352.	0.8	12
978	Draft genome sequence of Diaporthe batatatis causing dry rot disease in sweetpotato. Plant Disease, 2021, , .	0.7	2
980	Image and Fractal Information Processing for Large-Scale Chemoinformatics, Genomics Analyses and Pattern Discovery. Lecture Notes in Computer Science, 2006, , 163-173.	1.0	3
981	An Algorithm for Identification of Repeats with Accurate Boundaries. Jisuanji Xuebao/Chinese Journal of Computers, 2009, 31, 214-219.	0.3	0
982	An Adaptive Suffix Tree Based Algorithm for Repeats Identification in a DNA Sequence. Jisuanji Xuebao/Chinese Journal of Computers, 2010, 33, 747-754.	0.3	0
983	Rice Genome Initiative. , 2010, , 205-242.		0
985	LCR_Finder: A de Novo Low Copy Repeat Finder for Human Genome. Lecture Notes in Computer Science, 2013, , 125-136.	1.0	0
986	Alternaria Comparative Genomics: The Secret Life of Rots. , 2014, , 45-63.		3
991	Penelope-like retrotransposons in the genome of asian blood fluke Schisto-soma Japonicum (Trematoda: Schistosomatidae). Molekuliarnaia Genetika, Mikrobiologiia I Virusologiia, 2017, 35, 20.	0.1	0
1029	Comprehensive understanding of Tn5 insertion preference improves transcription regulatory element identification. NAR Genomics and Bioinformatics, 2021, 3, lqab094.	1.5	8
1030	The Melastoma dodecandrum genome and the evolution of Myrtales. Journal of Genetics and Genomics, 2022, 49, 120-131.	1.7	14
1031	The Aphelenchus avenae genome highlights evolutionary adaptation to desiccation. Communications Biology, 2021, 4, 1232.	2.0	19
1033	Genome and systems biology of <i>Melilotus albus</i> provides insights into coumarins biosynthesis. Plant Biotechnology Journal, 2022, 20, 592-609.	4.1	24
1034	A draft genome, resequencing, and metabolomes reveal the genetic background and molecular basis of the nutritional and medicinal properties of loquat (Eriobotrya japonica (Thunb.) Lindl). Horticulture Research, 2021, 8, 231.	2.9	14
1035	<i>De novo</i> assembly of a chromosome-scale reference genome for the northern flicker <i>Colaptes auratus</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	4
1039	Identification of Transposable Elements in Schistosoma mansoni. Methods in Molecular Biology, 2020, 2151, 135-144.	0.4	0

#	Article	IF	CITATIONS
1040	Transposable Elements in Anopheles Species: Refining Annotation Strategies Towards Population Genomics Analyses. Population Genomics, 2020, , 1.	0.2	1
1041	9 FungalÂGenomics. , 2020, , 207-224.		0
1050	Proteome and strain analysis of cyanobacterium Candidatus "Phormidium alkaliphilum―reveals traits for success in biotechnology. IScience, 2021, 24, 103405.	1.9	13
1055	Genome Sequence of <i>Elaeagnus mollis</i> , the First Chromosome-Level Genome of the Family Elaeagnaceae. Genome Biology and Evolution, 2021, 13, .	1.1	2
1057	Chromosomeâ€level de novo genome assembly and wholeâ€genome resequencing of the threatened species <i>Acanthochlamys bracteata</i> (Velloziaceae) provide insights into alpine plant divergence in a biodiversity hotspot. Molecular Ecology Resources, 2022, 22, 1582-1595.	2.2	5
1058	Long-Read Assembly and Annotation of the Parasitoid Wasp Muscidifurax raptorellus, a Biological Control Agent for Filth Flies. Frontiers in Genetics, 2021, 12, 748135.	1.1	3
1059	Phylogenomic analyses of the genus <i>Drosophila</i> reveals genomic signals of climate adaptation. Molecular Ecology Resources, 2022, 22, 1559-1581.	2.2	15
1060	The Draft Genome of the Centric Diatom Conticribra weissflogii (Coscinodiscophyceae, Ochrophyta). Protist, 2021, 172, 125845.	0.6	4
1061	Ecological generalism drives hyperdiversity of secondary metabolite gene clusters in xylarialean endophytes. New Phytologist, 2022, 233, 1317-1330.	3.5	23
1063	Transcriptional activity and epigenetic regulation of transposable elements in the symbiotic fungus <i>Rhizophagus irregularis</i> . Genome Research, 2021, 31, 2290-2302.	2.4	19
1064	The first highâ€quality chromosomal genome assembly of a medicinal and edible plant Arctium lappa. Molecular Ecology Resources, 2021, , .	2.2	11
1065	Multiomics study of a heterotardigrade, Echinisicus testudo, suggests the possibility of convergent evolution of abundant heat-soluble proteins in Tardigrada. BMC Genomics, 2021, 22, 813.	1.2	24
1066	Chromosome-Scale Genome Assembly for Chinese Sour Jujube and Insights Into Its Genome Evolution and Domestication Signature. Frontiers in Plant Science, 2021, 12, 773090.	1.7	20
1067	The Cymbidium genome reveals the evolution of unique morphological traits. Horticulture Research, 2021, 8, 255.	2.9	33
1068	A chromosomeâ€level genome of <i>Portunus trituberculatus</i> provides insights into its evolution, salinity adaptation and sex determination. Molecular Ecology Resources, 2022, 22, 1606-1625.	2.2	11
1069	The chromosomeâ€level genome provides insight into the molecular mechanism underlying the tortuousâ€branch phenotype of <i>Prunus mume</i> . New Phytologist, 2022, 235, 141-156.	3.5	15
1071	Alleleâ€aware chromosomeâ€scale assembly of the allopolyploid genome of hexaploid Ma bamboo (<i>Dendrocalamus latiflorus</i> Munro). Journal of Integrative Plant Biology, 2022, 64, 649-670.	4.1	24
1072	Genome sequences ofÂfive Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome. Molecular Plant, 2022, 15, 488-503.	3.9	84

#	Article	IF	CITATIONS
1073	First Draft Genome of a Mud Loach (Misgurnus mizolepis) in the Family Cobitidae. Frontiers in Marine Science, 2022, 8, .	1.2	0
1074	A highâ€quality chromosomeâ€level genome of the endangered roughskin sculpin provides insights into its evolution and adaptation. Molecular Ecology Resources, 2022, 22, 1892-1905.	2.2	1
1076	Chromosomal-level genome and multi-omics dataset of <i>Pueraria lobata</i> var. <i>thomsonii</i> provide new insights into legume family and the isoflavone and puerarin biosynthesis pathways. Horticulture Research, 2022, 9, .	2.9	10
1077	Chromosome-level genome assembly of the fully mycoheterotrophic orchid <i>Gastrodia elata</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	15
1078	Finding and Characterizing Repeats in Plant Genomes. Methods in Molecular Biology, 2022, 2443, 327-385.	0.4	2
1079	A bacterial type three secretion-based delivery system for functional characterization ofÂSporisorium scitamineumÂplant immune suppressing effector proteins. Phytopathology, 2022, , .	1.1	2
1080	A chromosome-scale genome assembly for the holly (<i>Ilex polyneura</i>) provides insights into genomic adaptations to elevation in Southwest China. Horticulture Research, 2022, 9, .	2.9	12
1081	A Chromosome-Level Genome Assembly of the Pygmy Mole Cricket Xya riparia. Genome Biology and Evolution, 2022, 14, .	1.1	0
1082	Genome sequence and transcriptome of Sorbus pohuashanensis provide insights into population evolution and leaf sunburn response. Journal of Genetics and Genomics, 2022, 49, 547-558.	1.7	9
1083	Hybrid Assembly Improves Genome Quality and Completeness of Trametes villosa CCMB561 and Reveals a Huge Potential for Lignocellulose Breakdown. Journal of Fungi (Basel, Switzerland), 2022, 8, 142.	1.5	8
1084	Chromosome-level genome assembly of Zizania latifolia provides insights into its seed shattering and phytocassane biosynthesis. Communications Biology, 2022, 5, 36.	2.0	11
1085	Chromosome-level genome assembly of Bactrocera dorsalis reveals its adaptation and invasion mechanisms. Communications Biology, 2022, 5, 25.	2.0	17
1086	Genome survey sequence of black carp provides insights into developmentâ€related gene duplications. Journal of the World Aquaculture Society, 2022, 53, 1197-1214.	1.2	0
1087	Describing biodiversity in the genomics era: A new species of Nearctic Cynipidae gall wasp and its genome. Systematic Entomology, 2022, 47, 94-112.	1.7	12
1088	A chromosome-level genome assembly of an alpine plant <i>Crucihimalaya lasiocarpa</i> provides insights into high-altitude adaptation. DNA Research, 2022, 29, .	1.5	13
1089	Annotation of Protein-Coding Genes in Plant Genomes. Methods in Molecular Biology, 2022, 2443, 309-326.	0.4	0
1090	A Genome for <i>Bidens hawaiensis</i> : A Member of a Hexaploid Hawaiian Plant Adaptive Radiation. Journal of Heredity, 2022, 113, 205-214.	1.0	11
1091	Chromosome-Level Genome Assemblies of Two Hypnales (Mosses) Reveal High Intergeneric Synteny. Genome Biology and Evolution, 2022, 14, .	1.1	11

#	Article	IF	CITATIONS
1092	OUP accepted manuscript. DNA Research, 2022, , .	1.5	4
1093	The roles of recombination and selection in shaping genomic divergence in an incipient ecological species complex. Molecular Ecology, 2023, 32, 1478-1496.	2.0	10
1094	Chromosome-level genome assembly of <i>Aristolochia contorta</i> provides insights into the biosynthesis of benzylisoquinoline alkaloids and aristolochic acids. Horticulture Research, 2022, 9, .	2.9	11
1095	A Chromosome-Level Genome Assembly of the European Beech (Fagus sylvatica) Reveals Anomalies for Organelle DNA Integration, Repeat Content and Distribution of SNPs. Frontiers in Genetics, 2021, 12, 691058.	1.1	17
1096	Haplotype-Resolved Genome Analyses Reveal Genetically Distinct Nuclei within a Commercial Cultivar of Lentinula edodes. Journal of Fungi (Basel, Switzerland), 2022, 8, 167.	1.5	5
1097	Small RNA pathways in the nematode Ascaris in the absence of piRNAs. Nature Communications, 2022, 13, 837.	5.8	11
1100	The evolution study on by whole-genome sequencing. Journal of Genetics, 2019, 98, .	0.4	0
1101	A high-quality assembled genome and its comparative analysis decode the adaptive molecular mechanism of the number one Chinese cotton variety CRI-12. GigaScience, 2022, 11, .	3.3	6
1102	A high-quality assembly reveals genomic characteristics, phylogenetic status, and causal genes for leucism plumage of Indian peafowl. GigaScience, 2022, 11, .	3.3	10
1103	Chromosome-Scale Cerasus Humilis Genome Assembly Reveals Gene Family Evolution and Possible Genomic Basis of Calcium Accumulation in Fruits. SSRN Electronic Journal, O, , .	0.4	0
1104	Draft Genome Sequence of an Unusual Ectomycorrhizal Fungus, Pseudotulostoma volvatum. Microbiology Resource Announcements, 2022, 11, e0080121.	0.3	1
1105	Chromosome-level genome assembly of a xerophytic plant, <i>Haloxylon ammodendron</i> . DNA Research, 2022, 29, .	1.5	15
1106	A myxozoan genome reveals mosaic evolution in a parasitic cnidarian. BMC Biology, 2022, 20, 51.	1.7	8
1107	Chromosome-level genome assembly of the diploid blueberry Vaccinium darrowii provides insights into its subtropical adaptation and cuticle synthesis. Plant Communications, 2022, 3, 100307.	3.6	10
1108	Draft Assembled Genome of Walleye Pollock (Gadus chalcogrammus). Frontiers in Marine Science, 2022, 9, .	1.2	2
1109	The Chromosome-Scale Reference Genome of Macadamia tetraphylla Provides Insights Into Fatty Acid Biosynthesis. Frontiers in Genetics, 2022, 13, 835363.	1.1	4
1110	Migrators within migrators: exploring transposable element dynamics in the monarch butterfly, Danaus plexippus. Mobile DNA, 2022, 13, 5.	1.3	17
1111	The genome of <i>Hibiscus hamabo</i> reveals its adaptation to saline and waterlogged habitat. Horticulture Research, 2022, 9, uhac067.	2.9	12

ARTICLE IF CITATIONS Chromosomeâ€level pepino genome provides insights into genome evolution and anthocyanin 1112 2.8 9 biosynthesis in Solanaceae. Plant Journal, 2022, 110, 1128-1143. A beginner's guide to manual curation of transposable elements. Mobile DNA, 2022, 13, 7. 1.3 Chromosome-Level Genome Assembly for Acer pseudosieboldianum and Highlights to Mechanisms for 1.7 7 1114 Leaf Color and Shape Change. Frontiers in Plant Science, 2022, 13, 850054. Genome Sequence Resource of <i>Colletotrichum horii</i>, an Important Pathogenic Fungus Threatening Persimmon Production. Plant Disease, 2022, 106, 1052-1055. Onset and stepwise extensions of recombination suppression are common in matingâ€type chromosomes 1116 0.8 11 of <i>Microbotryum</i> antherâ€smut fungi. Journal of Evolutionary Biology, 2022, 35, 1619-1634. The adaptive evolution of <i>Euryale ferox</i> to the aquatic environment through paleoâ
€hexaploidization. Plant Journal, 2022, 110, 627-645. 2.8 Chromosome-scale Echinococcus granulosus (genotype G1) genome reveals the Eg95 gene family and 1118 2.0 7 conservation of the EG95-vaccine molecule. Communications Biology, 2022, 5, 199. Genome sequence and population genomics provide insights into chromosomal evolution and phytochemical innovation of <i>Hippophae rhamnoides (i>. Plant Biotechnology Journal, 2022, 20, 4.1 1257-1273. The spinach YY genome reveals sex chromosome evolution, domestication, and introgression history 1120 3.8 15 of the species. Genome Biology, 2022, 23, 75. The new Haemaphysalis longicornis genome provides insights into its requisite biological traits. 1121 1.3 Genomics, 2022, 114, 110317. Tracking of Diversity and Evolution in the Brown Rot Fungi Monilinia fructicola, Monilinia 1122 1.5 14 fructigena, and Monilinia laxa. Frontiers in Microbiology, 2022, 13, 854852. Phylogenomics and Comparative Genomics Highlight Specific Genetic Features in Ganoderma Species. 1.5 Journal of Fungi (Basel, Switzerland), 2022, 8, 311 Do Ty3/Gypsy Transposable Elements Play Preferential Roles in Sex Chromosome Differentiation?. Life, 1124 1.1 8 2022, 12, 522. Reshuffling of the ancestral core-eudicot genome shaped chromatin topology and epigenetic 5.8 modification in Panax. Nature Communications, 2022, 13, 1902. Comparative analyses of American and Asian lotus genomes reveal insights into petal color, carpel 1126 2.8 21 thermogenesis and domestication. Plant Journal, 2022, 110, 1498-1515. A Chromosome-Level Reference Genome of Chinese Balloon Flower (Platycodon grandiflorus). 1.1 Frontiers in Genetics, 2022, 13, 869784. Supercomputing of reducing sequenced bases in de novo sequencing of the human genome. Journal of 1128 2.4 4 Supercomputing, 0, , 1. The chromosome-level genome assembly of <i>Gentiana dahurica</i> (Gentianaceae) provides insights 1129 1.5 into gentiopicroside biosynthesis. DNA Research, 2022, 29, .

#	Article	IF	Citations
1130	De novo genome assembly of <i>Bradysia cellarum</i> (Diptera: Sciaridae), a notorious pest in traditional special vegetables in China. Insect Molecular Biology, 2022, 31, 508-518.	1.0	3
1131	Chromosome-scale Cerasus humilis genome assembly reveals gene family evolution and possible genomic basis of calcium accumulation in fruits. Scientia Horticulturae, 2022, 299, 111012.	1.7	5
1132	Genome Analysis of Lagocephalus sceleratus: Unraveling the Genomic Landscape of a Successful Invader. Frontiers in Genetics, 2021, 12, 790850.	1.1	6
1133	Chromosomal-Level Assembly of Antarctic Scaly Rockcod, Trematomus loennbergii Genome Using Long-Read Sequencing and Chromosome Conformation Capture (Hi-C) Technologies. Diversity, 2021, 13, 668.	0.7	3
1134	Exploring transposable element-based markers to identify allelic variations underlying agronomic traits in rice. Plant Communications, 2021, 3, 100270.	3.6	13
1135	Genomic analysis of Elsinoë arachidis reveals its potential pathogenic mechanism and the biosynthesis pathway of elsinochrome toxin. PLoS ONE, 2021, 16, e0261487.	1.1	3
1136	A masculinizing supergene underlies an exaggerated male reproductive morph in a spider. Nature Ecology and Evolution, 2022, 6, 195-206.	3.4	18
1138	Genome sequence of the English grain aphid, <i>Sitobion avenae</i> and its endosymbiont <i>Buchnera aphidicola</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	4
1139	Genetic and Molecular Characterization of a Self-Compatible Brassica rapa Line Possessing a New Class II S Haplotype. Plants, 2021, 10, 2815.	1.6	5
1140	Genome sequencing and transcriptome analyses provide insights into the origin and domestication of water caltrop (<i>Trapa</i> spp., Lythraceae). Plant Biotechnology Journal, 2022, 20, 761-776.	4.1	16
1141	Genomic Analysis Based on Chromosome-Level Genome Assembly Reveals an Expansion of Terpene Biosynthesis of Azadirachta indica. Frontiers in Plant Science, 2022, 13, 853861.	1.7	5
1142	Methodologies for the De novo Discovery of Transposable Element Families. Genes, 2022, 13, 709.	1.0	10
1143	Incomplete lineage sorting and phenotypic evolution in marsupials. Cell, 2022, 185, 1646-1660.e18.	13.5	43
1144	A chromosome-level genome of the kuruma shrimp (Marsupenaeus japonicus) provides insights into its evolution and cold-resistance mechanism. Genomics, 2022, 114, 110373.	1.3	8
1210	Deletion and tandem duplications of biosynthetic genes drive the diversity of triterpenoids in Aralia elata. Nature Communications, 2022, 13, 2224.	5.8	34
1211	Genome of the ramshorn snail Biomphalaria straminea-an obligate intermediate host of schistosomiasis GigaScience, 2022, 11, .	3.3	11
1212	A High-Quality Haplotype-Resolved Genome of Common Bermudagrass (Cynodon dactylon L.) Provides Insights Into Polyploid Genome Stability and Prostrate Growth. Frontiers in Plant Science, 2022, 13, 890980.	1.7	4
1213	Software evaluation for de novo detection of transposons. Mobile DNA, 2022, 13, 14.	1.3	14

#	Article	IF	CITATIONS
1214	Chromosome-Scale, Haplotype-Resolved Genome Assembly of Suaeda Glauca. Frontiers in Genetics, 2022, 13, .	1.1	3
1215	Tolypocladamide H and the Proposed Tolypocladamide NRPS in <i>Tolypocladium</i> Species. Journal of Natural Products, 2022, 85, 1363-1373.	1.5	10
1216	Comparative Genomics Reveals Insights into the Divergent Evolution of Astigmatic Mites and Household Pest Adaptations. Molecular Biology and Evolution, 2022, 39, .	3.5	13
1219	Chromosome-level genome assembly of Asian yellow pond turtle (Mauremys mutica) with temperature-dependent sex determination system. Scientific Reports, 2022, 12, 7905.	1.6	7
1220	SunUp and Sunset genomes revealed impact of particle bombardment mediated transformation and domestication history in papaya. Nature Genetics, 2022, 54, 715-724.	9.4	26
1221	A haploid pseudo-chromosome genome assembly for a keystone sagebrush species of western North American rangelands. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	3
1222	The chromosomeâ€level genome assembly of the Japanese yellowtail jack <i>Seriola aureovittata</i> provides insights into genome evolution and efficient oxygen transport. Molecular Ecology Resources, 2022, 22, 2701-2712.	2.2	5
1227	Comparative genomics highlight the importance of lineage-specific gene families in evolutionary divergence of the coral genus, Montipora. Bmc Ecology and Evolution, 2022, 22, .	0.7	7
1228	Chromosome-scale genome assembly of an important medicinal plant honeysuckle. Scientific Data, 2022, 9, .	2.4	7
1229	The chromosome-level genome for Toxicodendron vernicifluum provides crucial insights into Anacardiaceae evolution and urushiol biosynthesis. IScience, 2022, 25, 104512.	1.9	6
1230	Genomic insights into the recent chromosome reduction of autopolyploid sugarcane Saccharum spontaneum. Nature Genetics, 2022, 54, 885-896.	9.4	33
1232	Full-length transcripts facilitates Portunus trituberculatus genome structure annotation. Journal of Oceanology and Limnology, 2022, 40, 2042-2051.	0.6	3
1233	Genomes and demographic histories of the endangered <i>Bretschneidera sinensis</i> (Akaniaceae). GigaScience, 2022, 11, .	3.3	6
1235	A chromosome-level genome assembly of <i>Artocarpus nanchuanensis</i> (Moraceae), an extremely endangered fruit tree. GigaScience, 2022, 11, .	3.3	3
1236	The Genetic Adaptations of Toxoptera Aurantia Facilitated its Rapid Multiple Plant Hosts Dispersal and Invasion. SSRN Electronic Journal, 0, , .	0.4	0
1237	A chromosomeâ€level <i>Populus qiongdaoensis</i> genome assembly provides insights into tropical adaptation and a cryptic turnover of sex determination. Molecular Ecology, 2023, 32, 1366-1380.	2.0	10
1238	A chromosome-level genome assembly for the rabbit tapeworm Taenia pisiformis. Gene, 2022, 834, 146650.	1.0	2
1239	High sorbic acid resistance of Penicillium roqueforti is mediated by the SORBUS gene cluster. PLoS Genetics, 2022, 18, e1010086.	1.5	4

#	Article	IF	CITATIONS
1240	The genome of a mangrove plant, Avicennia marina, provides insights into adaptation to coastal intertidal habitats. Planta, 2022, 256, .	1.6	5
1241	Comparative Genomic Analyses Provide Insight Into the Pathogenicity of Metschnikowia bicuspidata LNES0119. Frontiers in Microbiology, 0, 13, .	1.5	7
1242	Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding. Plant Communications, 2022, 3, 100350.	3.6	14
1243	A chromosome-level genome assembly and annotation of the maize elite breeding line Dan340. GigaByte, 0, 2022, 1-8.	0.0	2
1244	Chromosome-scale assembly with a phased sex-determining region resolves features of early Z and W chromosome differentiation in a wild octoploid strawberry. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	11
1245	Comparative genomics reveals low levels of inter- and intraspecies diversity in the causal agents of dwarf and common bunt of wheat and hint at conspecificity of Tilletia caries and T. laevis. IMA Fungus, 2022, 13, .	1.7	5
1246	Loci underlying leaf agronomic traits identified by re-sequencing celery accessions based on an assembled genome. IScience, 2022, 25, 104565.	1.9	6
1247	Chromosome-level genome assembly and annotation of the native Chinese wild blueberry <i>Vaccinium bracteatum</i> . Fruit Research, 2022, 2, 1-14.	0.9	5
1248	Bioinformatics Approaches for Determining the Functional Impact of Repetitive Elements on Non-coding RNAs. Methods in Molecular Biology, 2022, , 315-340.	0.4	2
1249	Impact of host demography and evolutionary history on endosymbiont molecular evolution: A test in carpenter ants (genus <i>Camponotus</i>) and their <i>Blochmannia</i> endosymbionts. Ecology and Evolution, 2022, 12, .	0.8	7
1250	A de novo assembled high-quality chromosome-scale Trifolium pratense genome and fine-scale phylogenetic analysis. BMC Plant Biology, 2022, 22, .	1.6	6
1251	Lilac (Syringa oblata) genome provides insights into its evolution and molecular mechanism of petal color change. Communications Biology, 2022, 5, .	2.0	13
1252	Comparative genomic analysis of Babesia duncani responsible for human babesiosis. BMC Biology, 2022, 20, .	1.7	11
1254	Highâ€quality ice plant reference genome analysis provides insights into genome evolution and allows exploration of genes involved in the transition from <scp>C3</scp> to <scp>CAM</scp> pathways. Plant Biotechnology Journal, 2022, 20, 2107-2122.	4.1	17
1255	Chromosome-scale genome assembly of Rhododendron molle provides insights into its evolution and terpenoid biosynthesis. BMC Plant Biology, 2022, 22, .	1.6	6
1256	Chromosome-Level Genome Assembly and Transcriptome Comparison Analysis of Cephalopholis sonnerati and Its Related Grouper Species. Biology, 2022, 11, 1053.	1.3	4
1257	Chromosome-level assembly and analysis of the Thymus genome provide insights into glandular secretory trichome formation and monoterpenoid biosynthesis in thyme. Plant Communications, 2022, 3, 100413.	3.6	20
1258	DNA Methylome and LncRNAome Analysis Provide Insights Into Mechanisms of Genome-Dosage Effects in Autotetraploid Cassava. Frontiers in Plant Science, 0, 13, .	1.7	6

#	Article	IF	CITATIONS
1259	A Chromosome-Level Genome Assembly of <i>Toona ciliata</i> (Meliaceae). Genome Biology and Evolution, 2022, 14, .	1.1	7
1260	Chromosome-level genome of Tibetan naked carp (<i>Gymnocypris przewalskii</i>) provides insights into Tibetan highland adaptation. DNA Research, 2022, 29, .	1.5	9
1261	An Updated Genome Assembly Improves Understanding of the Transcriptional Regulation of Coloration in Midas Cichlid. Frontiers in Marine Science, 0, 9, .	1.2	2
1262	New insights into the evolutionary dynamic and lineage divergence of gasdermin E in metazoa. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	13
1264	Multi-omics profiling of the cold tolerant Monoraphidium minutum 26B-AM in response to abiotic stress. Algal Research, 2022, 66, 102794.	2.4	3
1265	Chromosome-level Genome Assembly of the High-altitude Leopard (<i>Panthera pardus</i>) Sheds Light on Its Environmental Adaptation. Genome Biology and Evolution, 0, , .	1.1	1
1266	Chromosome-level genome assembly of largemouth bass (Micropterus salmoides) using PacBio and Hi-C technologies. Scientific Data, 2022, 9, .	2.4	4
1268	The chromosome-level holly (Ilex latifolia) genome reveals key enzymes in triterpenoid saponin biosynthesis and fruit color change. Frontiers in Plant Science, 0, 13, .	1.7	7
1269	Chromosome-level genome assembly and population genomic analyses provide insights into adaptive evolution of the red turpentine beetle, Dendroctonus valens. BMC Biology, 2022, 20, .	1.7	5
1270	Revealing Landscapes of Transposable Elements in Apis Species by Meta-Analysis. Insects, 2022, 13, 698.	1.0	8
1271	Behavioral innovation and genomic novelty are associated with the exploitation of a challenging dietary opportunity by an avivorous bat. IScience, 2022, 25, 104973.	1.9	7
1273	The nearly complete assembly of the Cercis chinensis genome and Fabaceae phylogenomic studies provide insights into new gene evolution. Plant Communications, 2023, 4, 100422.	3.6	4
1274	A reference-grade genome assembly for Gossypium bickii and insights into its genome evolution and formation of pigment glands and gossypol. Plant Communications, 2023, 4, 100421.	3.6	10
1275	Chromosome-Level Genome Assembly of <i>Callitettix versicolor</i> (Rice Spittlebug). Genome Biology and Evolution, 2022, 14, .	1.1	2
1276	Assembly of highâ€quality genomes of the locoweed <i>Oxytropis ochrocephala</i> and its endophyte <i>Alternaria oxytropis</i> provides new evidence for their symbiotic relationship and swainsonine biosynthesis. Molecular Ecology Resources, 2023, 23, 253-272.	2.2	4
1277	The improved genome of the nematode <i>Parapristionchus giblindavisi</i> provides insights into lineage-specific gene family evolution. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	2
1278	Annotation of Siberian Larch (Larix sibirica Ledeb.) Nuclear Genome—One of the Most Cold-Resistant Tree Species in the Only Deciduous GENUS in Pinaceae. Plants, 2022, 11, 2062.	1.6	7
1279	Transposons and non-coding regions drive the intrafamily differences of genome size in insects. IScience, 2022, 25, 104873.	1.9	9

#	Article	IF	Citations
1280	Genomic and transcriptomic analyses provide insights into valuable fatty acid biosynthesis and environmental adaptation of yellowhorn. Frontiers in Plant Science, 0, 13, .	1.7	2
1281	Functional genomics analysis reveals the evolutionary adaptation and demographic history of pygmy lorises. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	5
1282	Roles of Species-Specific Legumains in Pathogenicity of the Pinewood Nematode Bursaphelenchus xylophilus. International Journal of Molecular Sciences, 2022, 23, 10437.	1.8	2
1283	The genetic adaptations of Toxoptera aurantii facilitated its rapid multiple plant hosts dispersal and invasion. Genomics, 2022, 114, 110472.	1.3	2
1284	A Chromosome-Level Genome Assembly of the <i>Rhus</i> Gall Aphid <i>Schlechtendalia chinensis</i> Provides Insight into the Endogenization of <i>Parvovirus</i> -Like DNA Sequences. SSRN Electronic Journal, 0, , .	0.4	0
1285	Genome Assembly of the Polyclad Flatworm <i>Prostheceraeus crozieri</i> . Genome Biology and Evolution, 2022, 14, .	1.1	3
1286	Chromosome-level Genomes Reveal the Genetic Basis of Descending Dysploidy and Sex Determination in Morus Plants. Genomics, Proteomics and Bioinformatics, 2022, 20, 1119-1137.	3.0	6
1287	Chromosome-scale genome assembly of Camellia sinensis combined with multi-omics provides insights into its responses to infestation with green leafhoppers. Frontiers in Plant Science, 0, 13, .	1.7	6
1288	Differences in pseudogene evolution contributed to the contrasting flavors of turnip and Chiifu, two Brassica rapa subspecies. Plant Communications, 2023, 4, 100427.	3.6	5
1289	Genomic adaptation of the picoeukaryote Pelagomonas calceolata to iron-poor oceans revealed by a chromosome-scale genome sequence. Communications Biology, 2022, 5, .	2.0	6
1291	Whole-genome assembly and analysis of a medicinal fungus: Inonotus hispidus. Frontiers in Microbiology, 0, 13, .	1.5	4
1292	The genome of Orychophragmus violaceus provides genomic insights into the evolution of Brassicaceae polyploidization and its distinct traits. Plant Communications, 2023, 4, 100431.	3.6	4
1293	The genetic architecture of phenotypic diversity in the Betta fish (<i>Betta splendens</i>). Science Advances, 2022, 8, .	4.7	10
1294	A chromosome-level genome assembly of the Chinese cork oak (Quercus variabilis). Frontiers in Plant Science, 0, 13, .	1.7	16
1295	A <i>de novo</i> assembled genome of the Tibetan Partridge (<i>Perdix hodgsoniae</i>) and its highâ€altitude adaptation. Integrative Zoology, 2023, 18, 225-236.	1.3	8
1296	Genome-wide characterization of two <i>Aubrieta</i> taxa: <i>Aubrieta canescens</i> subsp. <i>canescens</i> and <i>Au. macrostyla</i> (Brassicaceae). AoB PLANTS, 2022, 14, .	1.2	0
1297	A chromosome-level genome assembly of the redfin culter (Chanodichthys erythropterus). Scientific Data, 2022, 9, .	2.4	3
1299	Genome sequencing reveals the evolution and pathogenic mechanisms of the wheat sharp eyespot pathogen Rhizoctonia cerealis. Crop Journal, 2023, 11, 405-416.	2.3	1

	C	itation Report	tion Report	
#	Article	IF	CITATIONS	
1300	Repeated turnovers keep sex chromosomes young in willows. Genome Biology, 2022, 23, .	3.8	14	
1301	A chromosome-level genome assembly of the potato grouper (Epinephelus tukula). Genomics, 2022, 110473.	114, <u>1.3</u>	2	

1302 Chromosomal-scale genome assembly of the near-extinction big-head schizothorcin (Aspiorhynchus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

1303	<i>De novo</i> genome assembly of the medicinal plant <i>Gentiana macrophylla</i> provides insights into the genomic evolution and biosynthesis of iridoids. DNA Research, 2022, 29, .	1.5	10
1304	Comparative genomics of <i>Sarcoptes scabiei</i> provide new insights into adaptation to permanent parasitism and withinâ€host species divergence. Transboundary and Emerging Diseases, 2022, 69, 3468-3484.	1.3	4
1305	Timeâ€ordering <i>japonica/geng</i> genomes analysis indicates the importance of large structural variants in rice breeding. Plant Biotechnology Journal, 2023, 21, 202-218.	4.1	5
1306	Chromosome-level genome assembly for the Aldabra giant tortoise enables insights into the genetic health of a threatened population. GigaScience, 2022, 11, .	3.3	5
1307	Chinese Jujube: Crop Background and Genome Sequencing. Compendium of Plant Genomes, 2022, , 69-86.	0.3	Ο
1310	Chromosome-Level Assembly of Male Opsariichthys bidens Genome Provides Insights into the Regulation of the GnRH Signaling Pathway and Genome Evolution. Biology, 2022, 11, 1500.	1.3	3
1311	A reference-grade genome assembly for Astragalus mongholicus and insights into the biosynthesis and high accumulation of triterpenoids and flavonoids in its roots. Plant Communications, 2023, 4, 100469.	3.6	8
1313	Whole-Genome Sequencing and Transcriptome Analysis of Ganoderma lucidum Strain Yw-1-5 Provides New Insights into the Enhanced Effect of Tween80 on Exopolysaccharide Production. Journal of Fungi (Basel, Switzerland), 2022, 8, 1081.	1.5	4
1314	Whole genome and transcriptome reveal flavone accumulation in Scutellaria baicalensis roots. Frontiers in Plant Science, 0, 13, .	1.7	4
1316	The chromosomeâ€level genome of <i>Akebia trifoliata</i> as an important resource to study plant evolution and environmental adaptation in the Cretaceous. Plant Journal, 2022, 112, 1316-1330.	2.8	14
1317	Diploid chromosome-level reference genome and population genomic analyses provide insights into Gypenoside biosynthesis and demographic evolution of <i>Gynostemma pentaphyllum</i> (Cucurbitaceae). Horticulture Research, 2023, 10, .	2.9	3
1319	Telomere-to-telomere genome assembly of bitter melon (<i>Momordica charantia</i> L. var.) Tj ETQq0 0 0 rgBT / Horticulture Research, 2023, 10, .	Overlock 2 2.9	10 Tf 50 187 16
1320	Draft genome of the bluefin tuna blood fluke, Cardicola forsteri. PLoS ONE, 2022, 17, e0276287.	1.1	0
1321	Pathogenicity Variation in Two Genomes of <i>Cercospora</i> Species Causing Gray Leaf Spot in Maize. Molecular Plant-Microbe Interactions, 2023, 36, 14-25.	1.4	4
1322	De novo genome assembly and annotation of Holothuria scabra (Jaeger, 1833) from nanopore sequencing reads. Genes and Genomics, 2022, 44, 1487-1498.	0.5	3

#	Article	IF	CITATIONS
1323	De-novo genome assembly and annotation of sobaity seabream Sparidentex hasta. Frontiers in Genetics, 0, 13, .	1.1	1
1324	A Chromosome-Scale Genome Assembly of Mitragyna speciosa (Kratom) and the Assessment of Its Genetic Diversity in Thailand. Biology, 2022, 11, 1492.	1.3	2
1325	Thirteen Dipterocarpoideae genomes provide insights into their evolution and borneol biosynthesis. Plant Communications, 2022, 3, 100464.	3.6	6
1327	Comparative Genomic Analysis of 31 <i>Phytophthora</i> Genomes Reveals Genome Plasticity and Horizontal Gene Transfer. Molecular Plant-Microbe Interactions, 2023, 36, 26-46.	1.4	6
1328	An improved, chromosome-level genome of the giant panda (Ailuropoda melanoleuca). Genomics, 2022, 114, 110501.	1.3	5
1329	High-quality genome assemblies from key Hawaiian coral species. GigaScience, 2022, 11, .	3.3	11
1330	metaMIC: reference-free misassembly identification and correction of de novo metagenomic assemblies. Genome Biology, 2022, 23, .	3.8	12
1331	Wholeâ€genome assembly and annotation for the little yellow croaker (<i>Larimichthys polyactis</i>) provide insights into the evolution of hermaphroditism and gonochorism. Molecular Ecology Resources, 2023, 23, 632-658.	2.2	4
1332	A high-quality chromosome-level genome assembly of Pelteobagrus vachelli provides insights into its environmental adaptation and population history. Frontiers in Genetics, 0, 13, .	1.1	0
1333	Improved assembly and annotation of the sesame genome. DNA Research, 2022, 29, .	1.5	11
1334	A high-quality, haplotype-phased genome reconstruction reveals unexpected haplotype diversity in a pearl oyster. DNA Research, 2022, 29, .	1.5	10
1335	Long-read assembly of major histocompatibility complex and killer cell immunoglobulin-like receptor genome regions in cynomolgus macaque. Biology Direct, 2022, 17, .	1.9	2
1336	African Suid Genomes Provide Insights into the Local Adaptation to Diverse African Environments. Molecular Biology and Evolution, 2022, 39, .	3.5	9
1337	The first genome sequence of Phomopsis vexans: a fungal pathogen causing Phomopsis blight in eggplant. , 0, , .		1
1339	Chromosomal-level genome assembly of potato tuberworm, Phthorimaea operculella: a pest of solanaceous crops. Scientific Data, 2022, 9, .	2.4	5
1340	The chromosome-level genome assembly of goldstripe ponyfish (Karalla daura) reveals its similarity to Chinese sillago on contracted immune gene families. Frontiers in Marine Science, 0, 9, .	1.2	0
1341	Karyotype evolution of the Asterids insights from the first genome sequences of the family Cornaceae. DNA Research, 2023, 30, .	1.5	2
1342	MycoCosm, the JGl's Fungal Genome Portal for Comparative Genomic and Multiomics Data Analyses. Methods in Molecular Biology, 2023, , 271-291.	0.4	7

#	Article	IF	CITATIONS
1343	CAULIFINDER: a pipeline for the automated detection and annotation of caulimovirid endogenous viral elements in plant genomes. Mobile DNA, 2022, 13, .	1.3	2
1344	An Overview of Best Practices for Transposable Element Identification, Classification, and Annotation in Eukaryotic Genomes. Methods in Molecular Biology, 2023, , 1-23.	0.4	1
1345	Genome Sequence Resource of <i>Fusarium graminearum</i> TaB10 and <i>Fusarium avenaceum</i> KA13, Causal Agents of Stored Apple Rot. Molecular Plant-Microbe Interactions, 0, , .	1.4	0
1346	How to survive in the world's third poplar: Insights from the genome of the highest altitude woody plant, Hippophae tibetana (Elaeagnaceae). Frontiers in Plant Science, 0, 13, .	1.7	2
1348	Genome assembly of wild loquat (<i>Eriobotrya japonica</i>) and resequencing provide new insights into the genomic evolution and fruit domestication in loquat. Horticulture Research, 2023, 10, .	2.9	12
1349	Mobilome of the Rhus Gall Aphid Schlechtendalia chinensis Provides Insight into TE Insertion-Related Inactivation of Functional Genes. International Journal of Molecular Sciences, 2022, 23, 15967.	1.8	1
1350	Immunogenetic losses co-occurred with seahorse male pregnancy and mutation in tlx1 accompanied functional asplenia. Nature Communications, 2022, 13, .	5.8	9
1351	<i>Sinapis</i> genomes provide insights into wholeâ€genome triplication and divergence patterns within tribe Brassiceae. Plant Journal, 2023, 113, 246-261.	2.8	5
1352	Syringa oblata genome provides new insights into molecular mechanism of flower color differences among individuals and biosynthesis of its flower volatiles. Frontiers in Plant Science, 0, 13, .	1.7	0
1355	The draft genome of the Tibetan partridge (<i>Perdix hodgsoniae</i>) provides insights into its phylogenetic position and high-altitude adaptation. Journal of Heredity, 0, , .	1.0	2
1357	Gapless genome assembly of East Asian finless porpoise. Scientific Data, 2022, 9, .	2.4	1
1358	High-quality genome of Diaphanosoma dubium provides insights into molecular basis of its broad ecological adaptation. IScience, 2023, 26, 106006.	1.9	0
1359	Similar adaptative mechanism but divergent demographic history of four sympatric desert rodents in Eurasian inland. Communications Biology, 2023, 6, .	2.0	2
1360	High-quality haplotype-resolved genome assembly of cultivated octoploid strawberry. Horticulture Research, 2023, 10, .	2.9	11
1361	A chromosome-scale genome assembly of Artemisia argyi reveals unbiased subgenome evolution and key contributions of gene duplication to volatile terpenoid diversity. Plant Communications, 2023, 4, 100516.	3.6	16
1362	Genome sequencing and resequencing identified three horizontal gene transfers and uncovered the genetic mechanism on the intraspecies adaptive evolution of Gastrodia elata Blume. Frontiers in Plant Science, 0, 13, .	1.7	1
1363	Small RNAs and Karma methylation in Elaeis guineensis mother palms are linked to high clonal mantling. Plant Molecular Biology, 2023, 111, 345-363.	2.0	2
1364	Chromosome-level genome assembly of a high-altitude-adapted frog (Rana kukunoris) from the Tibetan plateau provides insight into amphibian genome evolution and adaptation. Frontiers in Zoology, 2023, 20, .	0.9	3

#	Article	IF	CITATIONS
1365	Large-Scale Chromosomal Changes Lead to Genome-Level Expression Alterations, Environmental Adaptation, and Speciation in the Gayal (<i>Bos frontalis</i>). Molecular Biology and Evolution, 2023, 40, .	3.5	5
1366	Two-speed genome evolution drives pathogenicity in fungal pathogens of animals. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	12
1367	Nuclear Genome Sequence and Gene Expression of an Intracellular Fungal Endophyte Stimulating the Growth of Cranberry Plants. Journal of Fungi (Basel, Switzerland), 2023, 9, 126.	1.5	2
1368	The Jasmine (Jasminum sambac) Genome Provides Insight into the Biosynthesis of Flower Fragrances and Jasmonates. Genomics, Proteomics and Bioinformatics, 2023, 21, 127-149.	3.0	5
1369	Chromosome-scale genomics, metabolomics, and transcriptomics provide insight into the synthesis and regulation of phenols in Vitis adenoclada grapes. Frontiers in Plant Science, 0, 14, .	1.7	1
1370	Chromosome fusions repatterned recombination rate and facilitated reproductive isolation during Pristionchus nematode speciation. Nature Ecology and Evolution, 0, , .	3.4	11
1371	Complete genome sequencing of nematode Aphelenchoides besseyi, an economically important pest causing rice white-tip disease. Phytopathology Research, 2023, 5, .	0.9	3
1374	Chromosome-Level Genome Assembly of <i>Herpetospermum pedunculosum</i> (Cucurbitaceae). Genome Biology and Evolution, 2023, 15, .	1.1	1
1375	Epigenetic and Genetic Population Structure is Coupled in a Marine Invertebrate. Genome Biology and Evolution, 2023, 15, .	1.1	4
1378	Chromosome-level genome of the bean bug Megacopta cribraria in native range, provides insights into adaptation and pest management. International Journal of Biological Macromolecules, 2023, 237, 123989.	3.6	0
1379	Reference genomes of channel catfish and blue catfish reveal multiple pericentric chromosome inversions. BMC Biology, 2023, 21, .	1.7	1
1380	Chromosome-Level Assembly of Flowering Cherry (Prunus campanulata) Provides Insight into Anthocyanin Accumulation. Genes, 2023, 14, 389.	1.0	1
1381	Genome and haplotype provide insights into the population differentiation and breeding improvement of Gossypium barbadense. Journal of Advanced Research, 2023, 54, 15-27.	4.4	2
1382	The genome of a vestimentiferan tubeworm (Ridgeia piscesae) provides insights into its adaptation to a deep-sea environment. BMC Genomics, 2023, 24, .	1.2	4
1383	Chromosomal-level genome assembly of the high-quality Xian/Indica rice (Oryza sativa L.) Xiangyaxiangzhan. BMC Plant Biology, 2023, 23, .	1.6	0
1384	Genome survey and genetic characterization of Acacia pachyceras O. Schwartz. Frontiers in Plant Science, 0, 14, .	1.7	2
1385	A chromosome-level genome assembly for Erianthus fulvus provides insights into its biofuel potential and facilitates breeding for improvement of sugarcane. Plant Communications, 2023, 4, 100562.	3.6	4
1386	A chromosome-level genome assembly of an early matured aromatic Japonica rice variety Qigeng10 to accelerate rice breeding for high grain quality in Northeast China. Frontiers in Plant Science, 0, 14, .	1.7	0

#	Article	IF	CITATIONS
1388	Transposable element and host silencing activity in gigantic genomes. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	3
1390	Repeat DNA Sequences in Flax Genomes. Compendium of Plant Genomes, 2023, , 19-36.	0.3	0
1391	Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nature Genetics, 2023, 55, 507-518.	9.4	31
1392	Chromosomeâ€level reference genome of <i>Tetrastigma hemsleyanum</i> (Vitaceae) provides insights into genomic evolution and the biosynthesis of phenylpropanoids and flavonoids. Plant Journal, 2023, 114, 805-823.	2.8	5
1393	The chromosome-scale genome assembly of Jasminum sambac var. unifoliatum provides insights into the formation of floral fragrance. Horticultural Plant Journal, 2023, 9, 1131-1148.	2.3	2
1394	Genome assembly of the deep-sea coral Lophelia pertusa. GigaByte, 0, 2023, 1-12.	0.0	1
1395	Insights into the genomic evolution and the alkali tolerance mechanisms of Agaricus sinodeliciosus by comparative genomic and transcriptomic analyses. Microbial Genomics, 2023, 9, .	1.0	0
1396	Biocatalytic potential of Pseudolycoriella CAZymes (Sciaroidea, Diptera) in degrading plant and fungal cell wall polysaccharides. IScience, 2023, 26, 106449.	1.9	3
1397	Intraspecific Comparative Analysis Reveals Genomic Variation of Didymella arachidicola and Pathogenicity Factors Potentially Related to Lesion Phenotype. Biology, 2023, 12, 476.	1.3	0
1398	Transposable Element Interactions Shape the Ecology of the Deer Mouse Genome. Molecular Biology and Evolution, 2023, 40, .	3.5	6
1399	Chromosome-level analysis of the Colletotrichum graminicola genome reveals the unique characteristics of core and minichromosomes. Frontiers in Microbiology, 0, 14, .	1.5	4
1401	Improved chromosomal-level genome assembly and re-annotation of leopard coral grouper. Scientific Data, 2023, 10, .	2.4	2
1402	LTR Retroelements and Bird Adaptation to Arid Environments. International Journal of Molecular Sciences, 2023, 24, 6332.	1.8	0
1403	The genome of <i>Lactuca saligna</i> , a wild relative of lettuce, provides insight into nonâ€host resistance to the downy mildew <i>Bremia lactucae</i> . Plant Journal, 2023, 115, 108-126.	2.8	2
1404	Chromosome-level genome assembly of the critically endangered Baer's pochard (Aythya baeri). Scientific Data, 2023, 10, .	2.4	1
1405	Comparative genomics reveals unique features of two Babesia motasi subspecies: Babesia motasi lintanensis and Babesia motasi hebeiensis. International Journal for Parasitology, 2023, 53, 265-283.	1.3	2
1406	Genomic Analysis of Amphioxus Reveals a Wide Range of Fragments Homologous to Viral Sequences. Viruses, 2023, 15, 909.	1.5	1
1407	Abundance of Transgene Transcript Variants Associated with Somatically Active Transgenic Helitrons from Multiple T-DNA Integration Sites in Maize. International Journal of Molecular Sciences, 2023, 24, 6574.	1.8	1

ARTICLE IF CITATIONS A complete gap-free diploid genome in Saccharum complex and the genomic footprints of evolution in 1408 4.7 7 the highly polyploid Saccharum genus. Nature Plants, 2023, 9, 554-571. Super-pangenome analyses highlight genomic diversity and structural variation across wild and cultivated tomato species. Nature Genetics, 2023, 55, 852-860. 1409 9.4 Chromosome-scale genome assembly of <i>Prunus pusilliflora</i> provides novel insights into genome evolution, disease resistance, and dormancy release in <i>Cerasus</i>L<i>.</i>. Horticulture 1410 2.9 1 Research, O, , . Chromosome-level genome assembly of <i>Salvia miltiorrhiza</i> with orange roots uncovers the 1411 2.9 role of Sm2OGD3 in catalyzing 15,16-dehydrogenation of tanshinones. Horticulture Research, 2023, 10, . New insights into the genome and transmission of the microsporidian pathogen Nosema 1412 1.5 2 muscidifuracis. Frontiers in Microbiology, 0, 14, . Haplotype-resolved genomes of two buckwheat crops provide insights into their contrasted rutin concentrations and reproductive systems. BMC Biology, 2023, 21, . Genomics reveals broad hybridization in deeply divergent Palearctic grass and water snakes (Natrix) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

CITATION REPORT

1501	Computational Genomics Approaches for Livestock Improvement and Management. Livestock Diseases and Management, 2023, , 351-376.	0.5	0	
------	---	-----	---	--