Existence and Bifurcation of Canards in \$mathbbR^3\$ in

SIAM Journal on Applied Dynamical Systems 4, 101-139 DOI: 10.1137/030601995

Citation Report

#	Article	IF	CITATIONS
1	Surprising Effects of Synaptic Excitation. Journal of Computational Neuroscience, 2005, 18, 333-342.	0.6	7
2	Generation of Very Slow Neuronal Rhythms and Chaos Near the Hopf Bifurcation in Single Neuron Models. Journal of Computational Neuroscience, 2005, 19, 325-356.	0.6	26
3	BIFURCATIONS OF RELAXATION OSCILLATIONS NEAR FOLDED SADDLES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 3411-3421.	0.7	34
4	The dynamic structure underlying subthreshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate cells. Journal of Computational Neuroscience, 2006, 21, 271-292.	0.6	96
5	Localized and asynchronous patterns via canards in coupled calcium oscillators. Physica D: Nonlinear Phenomena, 2006, 215, 46-61.	1.3	32
6	Effects of chemical synapses on the enhancement of signal propagation in coupled neurons near the canard regime. Physical Review E, 2007, 76, 041902.	0.8	45
7	Multimodal oscillations in systems with strong contraction. Physica D: Nonlinear Phenomena, 2007, 228, 87-106.	1.3	17
8	Giant squid-hidden canard: the 3D geometry of the Hodgkin–Huxley model. Biological Cybernetics, 2007, 97, 5-32.	0.6	129
9	Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system. Chaos, 2008, 18, 015107.	1.0	81
10	Singular Hopf Bifurcation in Systems with Two Slow Variables. SIAM Journal on Applied Dynamical Systems, 2008, 7, 1355-1377.	0.7	113
11	The Geometry of Slow Manifolds near a Folded Node. SIAM Journal on Applied Dynamical Systems, 2008, 7, 1131-1162.	0.7	62
12	Mixed-Mode Oscillations in Three Time-Scale Systems: A Prototypical Example. SIAM Journal on Applied Dynamical Systems, 2008, 7, 361-420.	0.7	139
13	Canard Induced Mixed-Mode Oscillations in a Medial Entorhinal Cortex Layer II Stellate Cell Model. SIAM Journal on Applied Dynamical Systems, 2008, 7, 1582-1611.	0.7	77
14	Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. Chaos, 2008, 18, 015106.	1.0	89
15	Fold points and singularities in hall MHD differential algebraic equations. , 2008, , .		0
16	Return maps of folded nodes and folded saddle-nodes. Chaos, 2008, 18, 015108.	1.0	41
17	The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales. Chaos, 2008, 18, 015105.	1.0	88
18	Feedback control of canards. Chaos, 2008, 18, 015110.	1.0	18

ATION REI

# 19	ARTICLE Chaos at the border of criticality. Chaos, 2008, 18, 033105.	IF 1.0	CITATIONS
20	Mixed-mode dynamics and the canard phenomenon: Towards a classification. Journal of Physics: Conference Series, 2008, 138, 012020.	0.3	11
21	Self-organization of a neural network with heterogeneous neurons enhances coherence and stochastic resonance. Chaos, 2009, 19, 013126.	1.0	34
22	Fold Points and Singularities in Hall MHD Differential–Algebraic Equations. IEEE Transactions on Plasma Science, 2009, 37, 254-260.	0.6	8
23	Dynamic transcritical bifurcations in a class of slow–fast predator–prey models. Journal of Differential Equations, 2009, 246, 2205-2225.	1.1	18
24	Bifurcations of mixed-mode oscillations in a stellate cell model. Physica D: Nonlinear Phenomena, 2009, 238, 1598-1614.	1.3	37
25	Canards, Clusters, and Synchronization in a Weakly Coupled Interneuron Model. SIAM Journal on Applied Dynamical Systems, 2009, 8, 253-278.	0.7	70
26	Geometric singular perturbation theory in biological practice. Journal of Mathematical Biology, 2010, 60, 347-386.	0.8	175
27	Mixed-Mode Oscillations in a Modified Chua's Circuit. Circuits, Systems, and Signal Processing, 2010, 29, 1075-1087.	1.2	38
28	Singular Hopf bifurcations and mixed-mode oscillations in a two-cell inhibitory neural network. Physica D: Nonlinear Phenomena, 2010, 239, 504-514.	1.3	86
29	Mixed mode oscillations as a mechanism for pseudo-plateau bursting. Journal of Computational Neuroscience, 2010, 28, 443-458.	0.6	68
30	Mixed mode oscillations in a gonadotropin-releasing hormone (GnRH) neuron model. BMC Neuroscience, 2010, 11, .	0.8	0
31	Local analysis near a folded saddle-node singularity. Journal of Differential Equations, 2010, 248, 2841-2888.	1.1	115
32	Folds, canards and shocks in advection–reaction–diffusion models. Nonlinearity, 2010, 23, 1949-1969.	0.6	28
33	Understanding anomalous delays in a model of intracellular calcium dynamics. Chaos, 2010, 20, 045104.	1.0	29
34	Spontaneous sarcomere dynamics. Chaos, 2010, 20, 045122.	1.0	8
35	Numerical continuation of canard orbits in slow–fast dynamical systems. Nonlinearity, 2010, 23, 739-765.	0.6	53
36	Characterizing mixed mode oscillations shaped by noise and bifurcation structure. Chaos, 2010, 20, 043117.	1.0	16

#	Article	IF	CITATIONS
37	Mixed-mode oscillations in a three time-scale system of ODEs motivated by a neuronal model. Dynamical Systems, 2010, 25, 445-482.	0.2	31
38	Bifurcations of nonlinear circuits with mixed mode and chaotic oscillations. , 2011, , .		1
39	Canards and curvature: nonsmooth approximation by pinching. Nonlinearity, 2011, 24, 1655-1682.	0.6	25
40	On decomposing mixed-mode oscillations and their return maps. Chaos, 2011, 21, 033107.	1.0	20
41	A Geometric Model for Mixed-Mode Oscillations in a Chemical System. SIAM Journal on Applied Dynamical Systems, 2011, 10, 92-128.	0.7	51
42	Multiple Timescales, Mixed Mode Oscillations and Canards in Models of Intracellular Calcium Dynamics. Journal of Nonlinear Science, 2011, 21, 639-683.	1.0	54
43	The dynamics underlying pseudo-plateau bursting in a pituitary cell model. Journal of Mathematical Neuroscience, 2011, 1, .	2.4	40
44	Changes in the criticality of Hopf bifurcations due to certain model reduction techniques in systems with multiple timescales. Journal of Mathematical Neuroscience, 2011, 1, 9.	2.4	13
45	Canard explosion of limit cycles in templator models of self-replication mechanisms. Journal of Chemical Physics, 2011, 134, 144105.	1.2	15
46	An elementary model of torus canards. Chaos, 2011, 21, 023131.	1.0	30
47	Interaction of Canard and Singular Hopf Mechanisms in a Neural Model. SIAM Journal on Applied Dynamical Systems, 2011, 10, 1443-1479.	0.7	24
48	Canards and curvature: the â€~smallness of <i>ε</i> ' in slow–fast dynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 2404-2421.	1.0	27
49	On Chaotic Subthreshold Oscillations in a Simple Neuronal Model. Mathematical Modelling of Natural Phenomena, 2011, 6, 149-162.	0.9	5
50	<i>A Survey in Mathematics for Industry</i> : Two-timing and matched asymptotic expansions for singular perturbation problems. European Journal of Applied Mathematics, 2011, 22, 613-629.	1.4	7
51	À propos de canards (Apropos canards). Transactions of the American Mathematical Society, 2012, 364, 3289-3309.	0.5	74
52	Dynamic mechanisms of generation of oscillatory cluster patterns in a globally coupled chemical system. Journal of Chemical Physics, 2012, 137, 104908.	1.2	6
53	Swing, release, and escape mechanisms contribute to the generation of phase-locked cluster patterns in a globally coupled FitzHugh-Nagumo model. Physical Review E, 2012, 86, 066207.	0.8	7
54	Unfoldings of Singular Hopf Bifurcation. SIAM Journal on Applied Dynamical Systems, 2012, 11, 1325-1359.	0.7	23

#	Article	IF	Citations
55	Mixed-Mode Oscillations in a Multiple Time Scale Phantom Bursting System. SIAM Journal on Applied Dynamical Systems, 2012, 11, 1458-1498.	0.7	42
56	The relationship between two fast/slow analysis techniques for bursting oscillations. Chaos, 2012, 22, 043117.	1.0	45
57	Mixed-Mode Oscillations with Multiple Time Scales. SIAM Review, 2012, 54, 211-288.	4.2	431
58	Dynamical systems analysis of spike-adding mechanisms in transient bursts. Journal of Mathematical Neuroscience, 2012, 2, 7.	2.4	28
59	Effects of hybrid synapses on the vibrational resonance in small-world neuronal networks. Chaos, 2012, 22, 033105.	1.0	20
60	Dynamical encoding of winnerless competition network induced by vibrational resonance. , 2012, , .		0
61	Circuits with Oscillatory Hierarchical Farey Sequences and Fractal Properties. Circuits, Systems, and Signal Processing, 2012, 31, 1279-1296.	1.2	19
62	Slow passage through canard explosion and mixed-mode oscillations in the forced Van der Pol's equation. Nonlinear Dynamics, 2012, 68, 275-283.	2.7	29
63	Hunting French ducks in a noisy environment. Journal of Differential Equations, 2012, 252, 4786-4841.	1.1	43
64	Transient Localized Wave Patterns and Their Application to Migraine. Journal of Mathematical Neuroscience, 2013, 3, 7.	2.4	28
65	Complex Earthquake Cycle Simulations Using a Two-Degree-of-Freedom Spring-Block Model with a Rate- and State-Friction Law. Pure and Applied Geophysics, 2013, 170, 745-765.	0.8	39
66	Stable Antiphase Oscillations in a Network of Electrically Coupled Model Neurons. SIAM Journal on Applied Dynamical Systems, 2013, 12, 1-27.	0.7	11
67	Excitable Neurons, Firing Threshold Manifolds and Canards. Journal of Mathematical Neuroscience, 2013, 3, 12.	2.4	46
68	CANARDS FROM CHUA'S CIRCUIT. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1330010.	0.7	11
69	Nonautonomous Dynamical Systems in the Life Sciences. Lecture Notes in Mathematics, 2013, , .	0.1	15
70	Multiple Geometric Viewpoints of Mixed Mode Dynamics Associated with Pseudo-plateau Bursting. SIAM Journal on Applied Dynamical Systems, 2013, 12, 789-830.	0.7	51
71	Abrupt and gradual transitions between low and hyperexcited firing frequencies in neuronal models with fast synaptic excitation: A comparative study. Chaos, 2013, 23, 046104.	1.0	13
72	Canards in piecewise-linear systems: explosions and super-explosions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20120603.	1.0	28

#	Article	IF	Citations
73	Canard Theory and Excitability. Lecture Notes in Mathematics, 2013, , 89-132.	0.1	18
74	Mechanism and Function of Mixed-Mode Oscillations in Vibrissa Motoneurons. PLoS ONE, 2014, 9, e109205.	1.1	17
75	Novel solutions for a model of wound healing angiogenesis. Nonlinearity, 2014, 27, 2975-3003.	0.6	12
76	Eco-Evolutionary Dynamics in a Three-Species Food Web with Intraguild Predation. Advances in Ecological Research, 2014, 50, 41-73.	1.4	22
77	Adapting to a changing environment: non-obvious thresholds in multi-scale systems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140226.	1.0	26
78	A geometric understanding of how fast activating potassium channels promote bursting in pituitary cells. Journal of Computational Neuroscience, 2014, 36, 259-278.	0.6	38
79	Existence of Traveling Wave Solutions for a Model of Tumor Invasion. SIAM Journal on Applied Dynamical Systems, 2014, 13, 366-396.	0.7	30
80	Global dynamics of the Benoît system. Annali Di Matematica Pura Ed Applicata, 2014, 193, 1103-1122.	0.5	1
81	Three Time-Scales In An Extended Bonhoeffer–Van Der Pol Oscillator. Journal of Dynamics and Differential Equations, 2014, 26, 955-987.	1.0	31
82	Weakly coupled two-slow–two-fast systems, folded singularities and mixed mode oscillations. Nonlinearity, 2014, 27, 1555-1574.	0.6	22
83	On the periodic orbit bifurcating from a zero Hopf bifurcation in systems with two slow and one fast variables. Applied Mathematics and Computation, 2014, 232, 84-90.	1.4	10
84	Computation of Saddle-Type Slow Manifolds Using Iterative Methods. SIAM Journal on Applied Dynamical Systems, 2015, 14, 1189-1227.	0.7	5
85	The effect of input current on canard-induced mixed-mode oscillation in layer II stellate cell. , 2015, , .		2
86	Canards Existence in FitzHugh-Nagumo and Hodgkin-Huxley Neuronal Models. Mathematical Problems in Engineering, 2015, 2015, 1-17.	0.6	11
87	Averaging, Folded Singularities, and Torus Canards: Explaining Transitions between Bursting and Spiking in a Coupled Neuron Model. SIAM Journal on Applied Dynamical Systems, 2015, 14, 1808-1844.	0.7	27
88	Firing Patterns of Leech Heartbeat Interneurons under External Current Stimulation: a Model Study. Neurophysiology, 2015, 47, 434-441.	0.2	0
89	Mixed-mode oscillations in slow-fast delayed optoelectronic systems. Physical Review E, 2015, 91, 012902.	0.8	47
90	From Random Poincaré Maps to Stochastic Mixed-Mode-Oscillation Patterns. Journal of Dynamics and Differential Equations, 2015, 27, 83-136.	1.0	17

#	Article	IF	CITATIONS
91	Mixed-Mode Oscillations Due to a Singular Hopf Bifurcation in a Forest Pest Model. Mathematical Population Studies, 2015, 22, 71-79.	0.8	9
92	Critical Slowing Down Governs the Transition to Neuron Spiking. PLoS Computational Biology, 2015, 11, e1004097.	1.5	53
93	Invariant manifolds and global bifurcations. Chaos, 2015, 25, 097604.	1.0	20
94	On the Use of Blowup to Study Regularizations of Singularities of Piecewise Smooth Dynamical Systems in \$mathbb{R}^3\$. SIAM Journal on Applied Dynamical Systems, 2015, 14, 382-422.	0.7	36
95	Shilnikov Homoclinic Bifurcation of Mixed-Mode Oscillations. SIAM Journal on Applied Dynamical Systems, 2015, 14, 764-786.	0.7	11
96	Canards of Folded Saddle-Node Type I. SIAM Journal on Mathematical Analysis, 2015, 47, 3235-3283.	0.9	26
97	Noise-induced Canard and Mixed-Mode Oscillations in Large-Scale Stochastic Networks. SIAM Journal on Applied Mathematics, 2015, 75, 2024-2049.	0.8	6
98	Mixed mode oscillations in a conceptual climate model. Physica D: Nonlinear Phenomena, 2015, 292-293, 70-83.	1.3	21
99	A remark on geometric desingularization of a non-hyperbolic point using hyperbolic space. Journal of Physics: Conference Series, 2016, 727, 012008.	0.3	7
100	Nonlinear Dynamics of Calcium. Interdisciplinary Applied Mathematics, 2016, , 207-242.	0.2	1
101	Canard Explosion and Relaxation Oscillation in Planar, Piecewise-Smooth, Continuous Systems. SIAM Journal on Applied Dynamical Systems, 2016, 15, 609-624.	0.7	9
102	Canard-Mediated (De)Synchronization in Coupled Phantom Bursters. SIAM Journal on Applied Dynamical Systems, 2016, 15, 580-608.	0.7	11
103	Canards, Folded Nodes, and Mixed-Mode Oscillations in Piecewise-Linear Slow-Fast Systems. SIAM Review, 2016, 58, 653-691.	4.2	46
104	Exit from sliding in piecewise-smooth flows: Deterministic vs. determinacy-breaking. Chaos, 2016, 26, 033108.	1.0	8
105	Hidden Degeneracies in Piecewise Smooth Dynamical Systems. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650087.	0.7	14
106	Mixed-Mode Oscillations of El Niño–Southern Oscillation. Journals of the Atmospheric Sciences, 2016, 73, 1755-1766.	0.6	24
107	Influences of Allee effects in the spreading of malignant tumours. Journal of Theoretical Biology, 2016, 394, 77-92.	0.8	29
108	From Canards of Folded Singularities to Torus Canards in a Forced van der Pol Equation. Journal of Nonlinear Science, 2016, 26, 405-451.	1.0	12

#	Article	IF	CITATIONS
109	Geometric desingularization of degenerate singularities in the presence of fast rotation: A new proof of known results for slow passage through Hopf bifurcations. Indagationes Mathematicae, 2016, 27, 1184-1203.	0.2	19
110	Canards Existence in Memristor's Circuits. Qualitative Theory of Dynamical Systems, 2016, 15, 383-431.	0.8	9
111	Folded Saddles and Faux Canards. SIAM Journal on Applied Dynamical Systems, 2017, 16, 546-596.	0.7	16
112	Mixed-mode oscillations in a three-store calcium dynamics model. Communications in Nonlinear Science and Numerical Simulation, 2017, 52, 148-164.	1.7	10
113	Analysis of Interacting Local Oscillation Mechanisms in Three-Timescale Systems. SIAM Journal on Applied Mathematics, 2017, 77, 1020-1046.	0.8	18
114	Generic torus canards. Physica D: Nonlinear Phenomena, 2017, 356-357, 37-64.	1.3	17
115	Multi-timescale systems and fast-slow analysis. Mathematical Biosciences, 2017, 287, 105-121.	0.9	123
116	Mixed-Mode Oscillations and Twin Canard Orbits in an Autocatalytic Chemical Reaction. SIAM Journal on Applied Dynamical Systems, 2017, 16, 2165-2195.	0.7	18
117	Stochastic mixed-mode oscillations in a three-species predator-prey model. Chaos, 2018, 28, 033606.	1.0	26
118	Early-warning signals for bifurcations in random dynamical systems with bounded noise. Journal of Mathematical Analysis and Applications, 2018, 464, 58-77.	0.5	16
119	Le Canard de Painlevé. SIAM Journal on Applied Dynamical Systems, 2018, 17, 859-908.	0.7	9
120	Stability Loss Delay and Smoothness of the Return Map in Slow-Fast Systems. SIAM Journal on Applied Dynamical Systems, 2018, 17, 788-822.	0.7	27
121	On the existence of canards in a nonlinear fluid system manifesting oscillatory behaviour. International Journal of Non-Linear Mechanics, 2018, 98, 58-63.	1.4	0
122	Bursting patterns and mixed-mode oscillations in reduced Purkinje model. International Journal of Modern Physics B, 2018, 32, 1850043.	1.0	10
123	Cascade of 3D canard doublets. Journal of Physics: Conference Series, 2018, 1096, 012053.	0.3	3
124	Early afterdepolarizations in cardiac action potentials as mixed mode oscillations due to a folded node singularity. PLoS ONE, 2018, 13, e0209498.	1.1	24
125	Delayed loss of stability due to the slow passage through Hopf bifurcations in reaction–diffusion equations. Chaos, 2018, 28, 091103.	1.0	14
126	Piecewise-Linear (PWL) Canard Dynamics. Understanding Complex Systems, 2018, , 67-86.	0.3	4

#	ARTICLE	IF	CITATIONS
127	Mixed-mode oscillations and bifurcation analysis in a pituitary model. Nonlinear Dynamics, 2018, 94, 807-826.	2.7	25
128	Chaos in homeostatically regulated neural systems. Chaos, 2018, 28, 083104.	1.0	9
129	Tangencies Between Global Invariant Manifolds and Slow Manifolds Near a Singular Hopf Bifurcation. SIAM Journal on Applied Dynamical Systems, 2018, 17, 1395-1431.	0.7	12
130	Spike-Adding in a Canonical Three-Time-Scale Model: Superslow Explosion and Folded-Saddle Canards. SIAM Journal on Applied Dynamical Systems, 2018, 17, 1989-2017.	0.7	16
131	Saddle Slow Manifolds and Canard Orbits in R 4 \$mathbb{R}^{4}\$ and Application to the Full Hodgkin–Huxley Model. Journal of Mathematical Neuroscience, 2018, 8, 5.	2.4	12
132	Canards Existence in the Hindmarsh–Rose model. Mathematical Modelling of Natural Phenomena, 2019, 14, 409.	0.9	6
133	Black swans and canards in two predator – one prey model. Mathematical Modelling of Natural Phenomena, 2019, 14, 408.	0.9	2
134	Micro-Slip as a Loss of Determinacy in Dry-Friction Oscillators. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2019, 29, 1930015.	0.7	2
135	Why pacing frequency affects the production of early afterdepolarizations in cardiomyocytes: An explanation revealed by slow-fast analysis of a minimal model. Physical Review E, 2019, 99, 052205.	0.8	18
136	Model Reduction of Non-densely Defined Piecewise-Smooth Systems in Banach Spaces. Journal of Nonlinear Science, 2019, 29, 897-960.	1.0	4
137	Mixed mode oscillations and phase locking in coupled FitzHugh-Nagumo model neurons. Chaos, 2019, 29, 033105.	1.0	31
138	Modelling of oscillations in slow/fast models of population dynamics. Journal of Physics: Conference Series, 2019, 1368, 042007.	0.3	0
139	Early Afterdepolarisations Induced by an Enhancement in the Calcium Current. Processes, 2019, 7, 20.	1.3	7
140	Symmetric coupling of multiple timescale systems with Mixed-Mode Oscillations and synchronization. Physica D: Nonlinear Phenomena, 2020, 401, 132129.	1.3	10
141	Different dynamics of repetitive neural spiking induced by inhibitory and excitatory autapses near subcritical Hopf bifurcation. Nonlinear Dynamics, 2020, 99, 1129-1154.	2.7	26
142	Canard-induced mixed-mode oscillations and bifurcation analysis in a reduced 3D pyramidal cell model. Nonlinear Dynamics, 2020, 101, 531-567.	2.7	22
143	Local Theory for Spatio-Temporal Canards and Delayed Bifurcations. SIAM Journal on Mathematical Analysis, 2020, 52, 5703-5747.	0.9	7
144	Big Ducks in the Heart: Canard Analysis Can Explain Large Early Afterdepolarizations in Cardiomyocytes. SIAM Journal on Applied Dynamical Systems, 2020, 19, 1701-1735.	0.7	11

		CITATION REPORT		
#	Article		IF	CITATIONS
145	Inflection, Canards and Folded Singularities in Excitable Systems: Application to a 3D FitzHugh–Nagumo Model. Journal of Nonlinear Science, 2020, 30, 3265-3291.		1.0	7
146	Travelling wave solutions in a negative nonlinear diffusion–reaction model. Journal o Biology, 2020, 81, 1495-1522.	f Mathematical	0.8	15
147	Constructive role of noise and diffusion in an excitable slow–fast population system. Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20		1.6	5
148	Multi-mode attractors and spatio-temporal canards. Physica D: Nonlinear Phenomena,	2020, 411, 132544.	1.3	3
149	Geometric Singular Perturbation Theory Beyond the Standard Form. Frontiers in Applie Systems: Reviews and Tutorials, 2020, , .	d Dynamical	0.5	34
150	Canard-induced complex oscillations in an excitatory network. Journal of Mathematical 2020, 80, 2075-2107.	Biology,	0.8	10
151	Desynchronization Transitions in Adaptive Networks. Physical Review Letters, 2021, 12	26,028301.	2.9	46
152	Characterizing mixed-mode oscillations shaped by canard and bifurcation structure in three-dimensional cardiac cell model. Nonlinear Dynamics, 2021, 103, 2881-2902.	3	2.7	19
153	Loss of Determinacy at Small Scales, with Application to Multiple Timescale and Nonsn International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 20	100th Dynamics. 21, 31, 2150041.	0.7	0
154	Asymptotic expansions for a degenerate canard explosion. Physica D: Nonlinear Pheno 132841.	mena, 2021, 418,	1.3	3
155	Canard solutions in neural mass models: consequences on critical regimes. Journal of N Neuroscience, 2021, 11, 11.	Nathematical	2.4	3
156	Jump-induced mixed-mode oscillations through piecewise-affine maps. Journal of Mathe Analysis and Applications, 2022, 505, 125641.	ematical	0.5	10
157	Relaxation oscillation and canard explosion in a slow–fast predator–prey model wi Beddington–DeAngelis functional response. Nonlinear Dynamics, 2021, 103, 1195-1		2.7	15
158	Mixed-Mode Oscillations in Single Neurons. , 2013, , 1-9.			3
159	Oscillations. Applied Mathematical Sciences (Switzerland), 2015, , 397-430.		0.4	2
160	Singularities and Canards. Applied Mathematical Sciences (Switzerland), 2015, , 197-2	37.	0.4	1
161	Complex aperiodic mixed mode oscillations induced by crisis and transient chaos in a r system with slow parametric excitation. Nonlinear Dynamics, 2020, 100, 659-677.	ionlinear	2.7	16
162	Canard analysis reveals why a large Ca2+ window current promotes early afterdepolari cardiac myocytes. PLoS Computational Biology, 2020, 16, e1008341.	zations in	1.5	11

#	Article	IF	CITATIONS
163	The Mechanism of Abrupt Transition between Theta and Hyper-Excitable Spiking Activity in Medial Entorhinal Cortex Layer II Stellate Cells. PLoS ONE, 2010, 5, e13697.	1.1	24
164	Mixed-mode oscillations in pyramidal neurons under antiepileptic drug conditions. PLoS ONE, 2017, 12, e0178244.	1.1	12
165	Darboux integrability of polynomial differential systems in \$mathbb R^3\$. Bulletin of the Belgian Mathematical Society - Simon Stevin, 2013, 20, .	0.1	2
166	Bifurcations of canard-induced mixed mode oscillations in a pituitary Lactotroph model. Discrete and Continuous Dynamical Systems, 2012, 32, 2879-2912.	0.5	22
167	Canard trajectories in 3D piecewise linear systems. Discrete and Continuous Dynamical Systems, 2013, 33, 4595-4611.	0.5	19
168	Nonsmooth frameworks for an extended Budyko model. Discrete and Continuous Dynamical Systems - Series B, 2017, 22, 2447-2463.	0.5	7
169	Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete and Continuous Dynamical Systems - Series B, 2021, 26, 5251.	0.5	3
170	The geometry of mixed-mode oscillations in the Olsen model for the Peroxidase-Oxidase reaction. Discrete and Continuous Dynamical Systems - Series S, 2009, 2, 807-827.	0.6	18
171	Homoclinic clusters and chaos associated with a folded node in a stellate cell model. Discrete and Continuous Dynamical Systems - Series S, 2009, 2, 829-850.	0.6	8
172	The mixed-mode oscillations in Av-Ron-Parnas-Segel model. Discrete and Continuous Dynamical Systems - Series S, 2017, 10, 487-504.	0.6	4
173	Dynamical Systems in Neuroscience. , 2006, , .		1,169
174	Mini-Workshop: Dynamics of Stochastic Systems and their Approximation. Oberwolfach Reports, 2012, 8, 2283-2326.	0.0	0
175	Geometric Singular Perturbation Analysis of Bursting Oscillations in Pituitary Cells. Frontiers in Applied Dynamical Systems: Reviews and Tutorials, 2015, , 1-52.	0.5	1
176	Applications from Physics, Biology, and Climate. , 2018, , 407-473.		0
177	Four Obsessions of the Two-Fold Singularity. , 2018, , 355-405.		0
179	Canard bifurcation in the FitzHugh-Nagumo model for spikes generation in neurons. , 2019, , .		0
180	A Surface of Heteroclinic Connections Between Two Saddle Slow Manifolds in the Olsen Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2030048.	0.7	3
181	On the Pitchfork Bifurcation of the Folded Node and Other Unbounded Time-Reversible Connection Problems in \$mathbb R^3\$. SIAM Journal on Applied Dynamical Systems, 2020, 19, 2059-2102.	0.7	2

#	Article	IF	CITATIONS
183	Comparisons of Chemical Synapses and Gap Junctions in the Stochastic Dynamics of Coupled Neurons. Lecture Notes in Computer Science, 2007, , 254-263.	1.0	1
185	Mixed-mode oscillations for slow-fast perturbed systems. Physica Scripta, 2021, 96, 125258.	1.2	5
186	Transition from Anti-coherence resonance to coherence resonance for mixed-mode oscillations and period-1 firing of nervous system. International Journal of Modern Physics B, 2021, 35, .	1.0	6
187	A Stiction Oscillator under Slowly Varying Forcing: Uncovering Small Scale Phenomena using Blowup. SIAM Journal on Applied Dynamical Systems, 2021, 20, 2359-2390.	0.7	2
188	Bifurcations of mixed-mode oscillations in three-timescale systems: An extended prototypical example. Chaos, 2022, 32, 013108.	1.0	10
189	Wiggly canards: Growth of traveling wave trains through a family of fast-subsystem foci. Discrete and Continuous Dynamical Systems - Series S, 2022, .	0.6	2
190	Classification of bursting patterns: A tale of two ducks. PLoS Computational Biology, 2022, 18, e1009752.	1.5	10
192	A new class of chimeras in locally coupled oscillators with small-amplitude, high-frequency asynchrony and large-amplitude, low-frequency synchrony. Chaos, 2021, 31, 123111.	1.0	2
193	A multiple timescale network model of intracellular calcium concentrations in coupled neurons: Insights from ROM simulations. Mathematical Modelling of Natural Phenomena, 2022, 17, 11.	0.9	4
194	Canards Underlie Both Electrical and Ca\$^{2+}\$-Induced Early Afterdepolarizations in a Model for Cardiac Myocytes. SIAM Journal on Applied Dynamical Systems, 2022, 21, 1059-1091.	0.7	3
195	Dynamics Near Nonsmooth Fold and Canard Singularities of Planar Piecewise Smooth Systems. SSRN Electronic Journal, 0, , .	0.4	0
196	Geometric analysis of the spontaneous electrical activity in anterior pituitary corticotrophs. Chaos, Solitons and Fractals, 2022, 161, 112305.	2.5	3
197	Complex Oscillatory Dynamics in a Three-Timescale El Ni~No Southern Oscillation Model. SSRN Electronic Journal, 0, , .	0.4	1
198	Mixed-Mode Oscillations in Single Neurons. , 2022, , 2046-2053.		0
199	The emergence of polyglot entrainment responses to periodic inputs in vicinities of Hopf bifurcations in slow-fast systems. Chaos, 2022, 32, .	1.0	1
200	Emergence of Canard induced mixed mode oscillations in a slow–fast dynamics of a biophysical excitable model. Chaos, Solitons and Fractals, 2022, 164, 112669.	2.5	3
201	BIFURCATIONS OF DOUBLE HETERODIMENSIONAL CYCLES WITH THREE SADDLE POINTS. Journal of Applied Analysis and Computation, 2022, 12, 2143-2162.	0.2	1
202	Complex oscillatory patterns in a three-timescale model of a generalist predator and a specialist predator competing for a common prey. Discrete and Continuous Dynamical Systems - Series B, 2022, .	0.5	0

#	Article	IF	CITATIONS
203	Multiple-timescale dynamics, mixed mode oscillations and mixed affective states in a model of bipolar disorder. Cognitive Neurodynamics, 0, , .	2.3	1
204	Canards and bifurcation delays of spatially homogeneous and inhomogeneous types in reaction-diffusion equations. , 2009, 14, .		3
205	On the Nonexistence of Terrestrial Canards: Linking Canards and Rivers. SIAM Journal on Applied Dynamical Systems, 2022, 21, 2432-2462.	0.7	0
206	Symmetry-breaking rhythms in coupled, identical fast–slow oscillators. Chaos, 2023, 33, .	1.0	3
207	Complex oscillatory dynamics in a three-timescale El Niño Southern Oscillation model. Physica D: Nonlinear Phenomena, 2023, 449, 133740.	1.3	0
217	A Review of Multiple-Time-Scale Dynamics: Fundamental Phenomena and Mathematical Methods. Mathematics Online First Collections, 2023, , .	0.1	1