Lagrangian Gas Dynamics in Two Dimensions and Lagra

Archive for Rational Mechanics and Analysis 178, 327-372 DOI: 10.1007/s00205-005-0375-4

Citation Report

#	Article	IF	CITATIONS
1	Euler–Lagrange change of variables in conservation laws. Nonlinearity, 2007, 20, 1927-1953.	0.6	21
2	Numerical simulation of the flow in a Pelton turbine using the meshless method smoothed particle hydrodynamics: A new simple solid boundary treatment. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2007, 221, 849-856.	0.8	37
3	A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems. SIAM Journal of Scientific Computing, 2007, 29, 1781-1824.	1.3	334
4	Compressible flow equations based on moving coordinates determined by the wave speed. International Journal for Numerical Methods in Fluids, 2007, 53, 149-174.	0.9	1
5	A purely Lagrangian method for computing linearly-perturbed flows in spherical geometry. Journal of Computational Physics, 2007, 225, 464-490.	1.9	7
6	A high order ENO conservative Lagrangian type scheme for the compressible Euler equations. Journal of Computational Physics, 2007, 227, 1567-1596.	1.9	120
7	A dynamic mesh adaptation method for magnetohydrodynamics problems. Computational Mathematics and Mathematical Physics, 2007, 47, 1819-1832.	0.2	11
8	Perfect plasticity and hyperelastic models for isotropic materials. Continuum Mechanics and Thermodynamics, 2008, 20, 173-192.	1.4	15
9	A cell-centered lagrangian scheme in two-dimensional cylindrical geometry. Science in China Series A: Mathematics, 2008, 51, 1479-1494.	0.5	10
10	A secondâ€order cellâ€centered Lagrangian scheme for twoâ€dimensional compressible flow problems. International Journal for Numerical Methods in Fluids, 2008, 56, 1417-1423.	0.9	64
11	On a new defect of shock-capturing methods. Journal of Computational Physics, 2008, 227, 2105-2117.	1.9	8
12	Non conformal adaptation and mesh smoothing for compressible Lagrangian fluid dynamics. ESAIM: Proceedings and Surveys, 2008, 24, 111-129.	0.4	3
13	Lagrangian method enhanced with edge swapping for the free fall and contact problem. ESAIM: Proceedings and Surveys, 2008, 24, 46-59.	0.4	1
14	Polynomial Least-Squares reconstruction for semi-Lagrangian Cell-Centered Hydrodynamic Schemes. ESAIM: Proceedings and Surveys, 2009, 28, 100-116.	0.4	2
15	Dissipative issue of high-order shock capturing schemes with non-convex equations of state. Journal of Computational Physics, 2009, 228, 833-860.	1.9	18
16	Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics. Journal of Computational Physics, 2009, 228, 799-821.	1.9	80
17	A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes. Journal of Computational Physics, 2009, 228, 2391-2425.	1.9	194
18	A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension. Journal of Computational Physics, 2009, 228, 5160-5183.	1.9	139

ATION REI

#	Article	IF	CITATIONS
19	A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry. Journal of Computational Physics, 2009, 228, 6882-6915.	1.9	98
20	ReALE: A reconnection-based arbitrary-Lagrangian–Eulerian method. Journal of Computational Physics, 2010, 229, 4724-4761.	1.9	168
21	A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry. Journal of Computational Physics, 2010, 229, 7191-7206.	1.9	45
22	A conservative nodal variational multiscale method for Lagrangian shock hydrodynamics. Computer Methods in Applied Mechanics and Engineering, 2010, 199, 3059-3100.	3.4	42
23	A Lagrangian scheme with the preservation of symmetry and conservation in cylindrical geometry: Preliminary study. Procedia Computer Science, 2010, 1, 1903-1911.	1.2	3
24	A sub-cell force-based framework to derive cell-centered Lagrangian schemes on two-dimensional polygonal grids. Procedia Computer Science, 2010, 1, 1941-1950.	1.2	0
25	A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction. Journal of Computational Physics, 2010, 229, 5755-5787.	1.9	166
26	Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme. Journal of Computational Physics, 2010, 229, 9092-9118.	1.9	61
27	Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension. Computer Methods in Applied Mechanics and Engineering, 2010, 199, 2669-2679.	3.4	26
28	A curvilinear finite-volume method to solve compressible gas dynamics in semi-Lagrangian coordinates. Comptes Rendus Mathematique, 2010, 348, 1027-1032.	0.1	11
29	Entropy-satisfying relaxation method with large time-steps for Euler IBVPs. Mathematics of Computation, 2010, 79, 1493-1533.	1.1	27
30	A CELL-CENTERED LAGRANGIAN SCHEME FOR COMPRESSIBLE MULTI-MEDIUM FLOW. Modern Physics Letters B, 2010, 24, 1283-1286.	1.0	0
31	Extension of ALE methodology to unstructured conical meshes. ESAIM: Proceedings and Surveys, 2011, 32, 31-55.	0.4	11
32	Staggered Lagrangian Discretization Based on Cell-Centered Riemann Solver and Associated Hydrodynamics Scheme. Communications in Computational Physics, 2011, 10, 940-978.	0.7	58
33	A unified subâ€cell forceâ€based discretization for cellâ€centered Lagrangian hydrodynamics on polygonal grids. International Journal for Numerical Methods in Fluids, 2011, 65, 1281-1294.	0.9	43
34	A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids. Computers and Fluids, 2011, 46, 341-347.	1.3	61
35	Metric-based mesh adaptation for 2D Lagrangian compressible flows. Journal of Computational Physics, 2011, 230, 1793-1821.	1.9	15
36	A new high-order discontinuous Galerkin spectral finite element method for Lagrangian gas dynamics in two-dimensions. Journal of Computational Physics, 2011, 230, 2496-2522.	1.9	48

#	Article	IF	CITATIONS
37	Improvement on Spherical Symmetry in Two-Dimensional Cylindrical Coordinates for a Class of Control Volume Lagrangian Schemes. Communications in Computational Physics, 2012, 11, 1144-1168.	0.7	21
38	High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics. SIAM Journal of Scientific Computing, 2012, 34, B606-B641.	1.3	166
39	Stabilization of cell-centered compressible Lagrangian methods using subzonal entropy. Journal of Computational Physics, 2012, 231, 6559-6595.	1.9	20
40	Lagrangian shock hydrodynamics on tetrahedral meshes: A stable and accurate variational multiscale approach. Journal of Computational Physics, 2012, 231, 8029-8069.	1.9	76
41	Lagrangian cell-centered conservative scheme. Applied Mathematics and Mechanics (English Edition), 2012, 33, 1329-1350.	1.9	1
42	Extension of centered hydrodynamical schemes to unstructured deforming conical meshes : the case of circles. ESAIM: Proceedings and Surveys, 2012, 38, 135-162.	0.4	2
43	A Conservative Lagrangian Scheme for Solving Compressible Fluid Flows with Multiple Internal Energy Equations. Communications in Computational Physics, 2012, 12, 1307-1328.	0.7	8
44	A new exceptional points method with application to cell-centered Lagrangian schemes and curved meshes. Journal of Computational Physics, 2012, 231, 4324-4354.	1.9	18
45	A finite volume cellâ€centered Lagrangian hydrodynamics approach for solids in general unstructured grids. International Journal for Numerical Methods in Fluids, 2013, 72, 770-810.	0.9	42
46	An entropy fixed cellâ€centered Lagrangian scheme. International Journal for Numerical Methods in Fluids, 2013, 72, 1096-1115.	0.9	0
47	High-order unstructured Lagrangian one-step WENO finite volume schemes for non-conservative hyperbolic systems: Applications to compressible multi-phase flows. Computers and Fluids, 2013, 86, 405-432.	1.3	58
48	A cell-centered Lagrangian Godunov-like method for solid dynamics. Computers and Fluids, 2013, 83, 33-47.	1.3	89
49	An approach for treating contact surfaces in Lagrangian cell-centered hydrodynamics. Journal of Computational Physics, 2013, 250, 527-554.	1.9	43
50	A cell-centered Lagrangian finite volume approach for computing elasto-plastic response of solids in cylindrical axisymmetric geometries. Journal of Computational Physics, 2013, 237, 251-288.	1.9	16
51	A new method to introduce constraints in cell-centered Lagrangian schemes. Computer Methods in Applied Mechanics and Engineering, 2013, 261-262, 56-65.	3.4	8
52	A high order cell centred dual grid Lagrangian Godunov scheme. Computers and Fluids, 2013, 83, 15-24.	1.3	15
53	3D staggered Lagrangian hydrodynamics scheme with cellâ€centered Riemann solverâ€based artificial viscosity. International Journal for Numerical Methods in Fluids, 2013, 72, 22-42.	0.9	50
54	A Remapping Method Based on Multi-Point Flux Corner Transport Upwind Advection Algorithm. Journal of Computational Mathematics, 2013, 31, 592-619.	0.2	0

#	Article	IF	Citations
55	Simple and Efficient ALE Methods with Provable Temporal Accuracy up to Fifth Order for the Stokes Equations on Time Varying Domains. SIAM Journal on Numerical Analysis, 2013, 51, 743-772.	1.1	41
56	The discontinuous Petrov—Galerkin method for one-dimensional compressible Euler equations in the Lagrangian coordinate. Chinese Physics B, 2013, 22, 050206.	0.7	5
57	Arbitrary-Lagrangian-Eulerian One-Step WENO Finite Volume Schemes on Unstructured Triangular Meshes. Communications in Computational Physics, 2013, 14, 1174-1206.	0.7	69
58	On Arbitrary-Lagrangian-Eulerian One-Step WENO Schemes for Stiff Hyperbolic Balance Laws. Communications in Computational Physics, 2013, 14, 301-327.	0.7	34
59	High-Resolution Mathematical and Numerical Analysis of Involution-Constrained PDEs. Oberwolfach Reports, 2013, 10, 2691-2747.	0.0	0
60	Highâ€order ADERâ€WENO ALE schemes on unstructured triangular meshes—application of several node solvers to hydrodynamics and magnetohydrodynamics. International Journal for Numerical Methods in Fluids, 2014, 76, 737-778.	0.9	60
61	A frame invariant and maximum principle enforcing secondâ€order extension for cellâ€centered ALE schemes based on local convex hull preservation. International Journal for Numerical Methods in Fluids, 2014, 76, 1043-1063.	0.9	15
62	Toward a reduction of mesh imprinting. International Journal for Numerical Methods in Fluids, 2014, 76, 450-470.	0.9	12
63	A Runge Kutta Discontinuous Galerkin Method for Lagrangian Compressible Euler Equations in Two-Dimensions. Communications in Computational Physics, 2014, 15, 1184-1206.	0.7	10
64	A Lagrangian staggered grid Godunov-like approach for hydrodynamics. Journal of Computational Physics, 2014, 259, 568-597.	1.9	50
65	Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers. Journal of Computational Physics, 2014, 267, 112-138.	1.9	62
66	A robust and contact resolving Riemann solver on unstructured mesh, Part I, Euler method. Journal of Computational Physics, 2014, 268, 432-455.	1.9	14
67	A robust and contact resolving Riemann solver on unstructured mesh, Part II, ALE method. Journal of Computational Physics, 2014, 268, 456-484.	1.9	11
68	A direct Arbitrary-Lagrangian–Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D. Journal of Computational Physics, 2014, 275, 484-523.	1.9	102
69	Arbitrary-Lagrangian–Eulerian ADER–WENO finite volume schemes with time-accurate local time stepping for hyperbolic conservation laws. Computer Methods in Applied Mechanics and Engineering, 2014, 280, 57-83.	3.4	36
70	A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids. Journal of Computational Physics, 2014, 276, 188-234.	1.9	81
71	A nodal Godunov method for Lagrangian shock hydrodynamics on unstructured tetrahedral grids. International Journal for Numerical Methods in Fluids, 2014, 76, 129-146.	0.9	11
72	High-order Lagrangian cell-centered conservative scheme on unstructured meshes. Applied Mathematics and Mechanics (English Edition), 2014, 35, 1203-1222.	1.9	1

#	Article	IF	CITATIONS
73	The cell-centered discontinuous Galerkin method for Lagrangian compressible Euler equations in two-dimensions. Computers and Fluids, 2014, 96, 152-164.	1.3	49
74	Two new three-dimensional contact algorithms for staggered Lagrangian Hydrodynamics. Journal of Computational Physics, 2014, 267, 247-285.	1.9	0
75	A low diffusive Lagrange-remap scheme for the simulation of violent air–water free-surface flows. Journal of Computational Physics, 2014, 274, 19-49.	1.9	18
76	A two dimensional nodal Riemann solver based on one dimensional Riemann solver for a cell-centered Lagrangian scheme. Journal of Computational Physics, 2015, 284, 566-594.	1.9	5
77	High order moment method for polydisperse evaporating sprays with mesh movement: Application to internal combustion engines. International Journal of Multiphase Flow, 2015, 71, 38-65.	1.6	16
78	A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes. Journal of Computational Physics, 2015, 290, 239-273.	1.9	20
79	Application of MFCAV Riemann Solver to Maire's Cell-Centered Lagrangian Method. Journal of Computational Mathematics, 2015, 33, 128-145.	0.2	5
80	Angular momentum preserving cell-centered Lagrangian and Eulerian schemes on arbitrary grids. Journal of Computational Physics, 2015, 290, 28-54.	1.9	15
81	High order cell-centered Lagrangian-type finite volume schemes with time-accurate local time stepping on unstructured triangular meshes. Journal of Computational Physics, 2015, 291, 120-150.	1.9	25
82	Direct Arbitrary-Lagrangian–Eulerian ADER-MOOD finite volume schemes for multidimensional hyperbolic conservation laws. Journal of Computational Physics, 2015, 292, 56-87.	1.9	51
83	Reduction of dissipation in Lagrange cell-centered hydrodynamics (CCH) through corner gradient reconstruction (CGR). Journal of Computational Physics, 2015, 299, 229-280.	1.9	42
84	A Godunov-like point-centered essentially Lagrangian hydrodynamic approach. Journal of Computational Physics, 2015, 281, 614-652.	1.9	22
85	A simple two-dimensional extension of the HLL Riemann solver for hyperbolic systems of conservation laws. Journal of Computational Physics, 2015, 280, 643-675.	1.9	30
86	Lagrange-Flux Schemes: Reformulating Second-Order Accurate Lagrange-Remap Schemes for Better Node-Based HPC Performance. Oil and Gas Science and Technology, 2016, 71, 64.	1.4	3
87	A conservative slide line method for cell-centered semi-Lagrangian and ALE schemes in 2D. ESAIM: Mathematical Modelling and Numerical Analysis, 2016, 50, 187-214.	0.8	7
88	High order accurate direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes on moving curvilinear unstructured meshes. Computers and Fluids, 2016, 136, 48-66.	1.3	24
89	Finite Volume Scheme with Local High Order Discretization of the Hydrostatic Equilibrium for the Euler Equations with External Forces. Journal of Scientific Computing, 2016, 69, 314-354.	1.1	11
90	Cell centered direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes for nonlinear hyperelasticity. Computers and Fluids, 2016, 134-135, 111-129.	1.3	28

#	Article	IF	CITATIONS
91	A multi-dimensional finite volume cell-centered direct ALE solver for hydrodynamics. Journal of Computational Physics, 2016, 326, 312-333.	1.9	8
92	A positive scheme for diffusion problems on deformed meshes. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2016, 96, 660-680.	0.9	28
93	Some cell-centered Lagrangian Lax–Wendroff HLL hybrid schemes. Journal of Computational Physics, 2016, 326, 878-892.	1.9	9
94	Arbitrary Lagrangian–Eulerian methods for modeling high-speed compressible multimaterial flows. Journal of Computational Physics, 2016, 322, 603-665.	1.9	121
95	Staggered and Colocated Finite Volume Schemes for Lagrangian Hydrodynamics. Handbook of Numerical Analysis, 2016, , 319-352.	0.9	5
96	A 3D GCL compatible cell-centered Lagrangian scheme for solving gas dynamics equations. Journal of Computational Physics, 2016, 305, 921-941.	1.9	26
97	A cell-centered Lagrangian method based on local evolution Galerkin scheme for two-dimensional compressible flows. Computers and Fluids, 2016, 128, 65-76.	1.3	1
98	Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. Part II: The two-dimensional case. Journal of Computational Physics, 2016, 312, 416-442.	1.9	29
99	Reducing the entropy production in a collocated Lagrange–Remap scheme. Journal of Computational Physics, 2016, 314, 127-144.	1.9	5
100	Entropy–viscosity method for the single material Euler equations in Lagrangian frame. Computer Methods in Applied Mechanics and Engineering, 2016, 300, 402-426.	3.4	26
101	An Efficient Quadrature-Free Formulation for High Order Arbitrary-Lagrangian–Eulerian ADER-WENO Finite Volume Schemes on Unstructured Meshes. Journal of Scientific Computing, 2016, 66, 240-274.	1.1	15
102	A firstâ€order hyperbolic framework for large strain computational solid dynamics: An upwind cell centred Total Lagrangian scheme. International Journal for Numerical Methods in Engineering, 2017, 109, 407-456.	1.5	24
103	An efficient high order direct ALE ADER finite volume scheme with a posteriori limiting for hydrodynamics and magnetohydrodynamics. International Journal for Numerical Methods in Fluids, 2017, 84, 76-106.	0.9	7
104	High Order Accurate Direct Arbitrary-Lagrangian-Eulerian ADER-MOOD Finite Volume Schemes for Non-Conservative Hyperbolic Systems with Stiff Source Terms. Communications in Computational Physics, 2017, 21, 271-312.	0.7	16
105	Direct Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming unstructured meshes. Computers and Fluids, 2017, 159, 254-275.	1.3	32
106	Arbitrary-Lagrangian–Eulerian Discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes. Journal of Computational Physics, 2017, 346, 449-479.	1.9	61
107	Study of a collocated Lagrangeâ€remap scheme for multiâ€material flows adapted to HPC. International Journal for Numerical Methods in Fluids, 2017, 83, 664-678.	0.9	3
108	High Order Direct Arbitrary-Lagrangian–Eulerian (ALE) Finite Volume Schemes for Hyperbolic Systems on Unstructured Meshes. Archives of Computational Methods in Engineering, 2017, 24, 751-801.	6.0	14

#	Article	IF	CITATIONS
109	A 3D finite element ALE method using an approximate Riemann solution. International Journal for Numerical Methods in Fluids, 2017, 83, 642-663.	0.9	23
110	A 3D finite volume scheme for solving the updated Lagrangian form of hyperelasticity. International Journal for Numerical Methods in Fluids, 2017, 84, 41-54.	0.9	8
111	A Lagrangian discontinuous Galerkin hydrodynamic method for 2D Cartesian and RZ axisymmetric coordinates. , 2018, , .		4
112	A second-order cell-centered Lagrangian ADER-MOOD finite volume scheme on multidimensional unstructured meshes for hydrodynamics. Journal of Computational Physics, 2018, 358, 103-129.	1.9	23
113	Reprint of: Direct Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming unstructured meshes. Computers and Fluids, 2018, 169, 263-284.	1.3	3
114	A new nodal solver for the two dimensional Lagrangian hydrodynamics. Journal of Computational Physics, 2018, 353, 1-25.	1.9	3
115	A posteriori limiting for 2D Lagrange plus Remap schemes solving the hydrodynamics system of equations. Computers and Fluids, 2018, 169, 249-262.	1.3	3
116	A Lagrangian discontinuous Galerkin hydrodynamic method. Computers and Fluids, 2018, 163, 68-85.	1.3	39
117	Compatible, energy conserving, bounds preserving remap of hydrodynamic fields for an extended ALE scheme. Journal of Computational Physics, 2018, 355, 492-533.	1.9	23
118	An asymptotic preserving multidimensional ALE method for a system of two compressible flows coupled with friction. Journal of Computational Physics, 2018, 363, 268-301.	1.9	7
119	A comparative study of 2 different momentum discretizations in context of Lagrangian discontinuous Galerkin hydrodynamic method for RZ axisymmetric coordinates. , 2018, , .		0
120	An upwind cell centred Total Lagrangian finite volume algorithm for nearly incompressible explicit fast solid dynamic applications. Computer Methods in Applied Mechanics and Engineering, 2018, 340, 684-727.	3.4	18
121	Lagrangian discontinuous Galerkin hydrodynamic methods in axisymmetric coordinates. Journal of Computational Physics, 2018, 373, 253-283.	1.9	22
122	Well-balanced Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gas dynamics with gravity. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2251-2275.	1.6	41
123	Reducing spurious mesh motion in Lagrangian finite volume and discontinuous Galerkin hydrodynamic methods. Journal of Computational Physics, 2018, 372, 35-61.	1.9	17
124	Constrained optimization framework for interface-aware sub-scale dynamics discrete closure model for multimaterial cells in Lagrangian cell-centered hydrodynamics. Computers and Mathematics With Applications, 2019, 78, 541-564.	1.4	5
125	A 3D Lagrangian cell-centered hydrodynamic method with higher-order reconstructions for gas and solid dynamics. Computers and Mathematics With Applications, 2019, 78, 298-317.	1.4	5
126	Isentropic correction for collocated Lagrange-Remap scheme. Computers and Mathematics With Applications, 2019, 78, 623-642.	1.4	0

#	Article	IF	CITATIONS
127	Exploration of consistent numerical integration for a 2D Lagrangian discontinuous Galerkin hydrodynamic method. , 2019, , .		1
128	An upwind vertex centred finite volume algorithm for nearly and truly incompressible explicit fast solid dynamic applications: Total and Updated Lagrangian formulations. Journal of Computational Physics: X, 2019, 3, 100025.	1.1	6
129	Conservation laws of the two-dimensional gas dynamics equations. International Journal of Non-Linear Mechanics, 2019, 112, 126-132.	1.4	12
130	One-dimensional gas dynamics equations of a polytropic gas in Lagrangian coordinates: Symmetry classification, conservation laws, difference schemes. Communications in Nonlinear Science and Numerical Simulation, 2019, 74, 201-218.	1.7	21
131	A high-order Lagrangian discontinuous Galerkin hydrodynamic method for quadratic cells using a subcell mesh stabilization scheme. Journal of Computational Physics, 2019, 386, 110-157.	1.9	32
132	A robust Lagrangian discontinuous Galerkin method on quadratic triangular meshes using sub-cell mesh stabilization. , 2019, , .		0
133	A low-Mach correction for multi-dimensional finite volume shock capturing schemes with application in lagrangian frame. Computers and Fluids, 2019, 179, 372-393.	1.3	2
134	A moving mesh WENO method based on exponential polynomials for one-dimensional conservation laws. Journal of Computational Physics, 2019, 380, 334-354.	1.9	4
135	A robust and accurate third-order Lagrangian discontinuous Galerkin hydrodynamic method for the compressible Euler equations on curvilinear meshes. , 2019, , .		1
136	Surface tension for compressible fluids in ALE framework. Journal of Computational Physics, 2020, 407, 109247.	1.9	5
137	High order direct Arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes with topology changes. Journal of Computational Physics, 2020, 407, 109167.	1.9	59
138	A high-order vertex-centered quasi-Lagrangian discontinuous Galerkin method for compressible Euler equations in two-dimensions. Computers and Fluids, 2020, 210, 104678.	1.3	0
139	3D Cell-centered hydrodynamics with subscale closure model and multi-material remap. Computers and Fluids, 2020, 207, 104592.	1.3	7
140	A reconstructed discontinuous Galerkin method for compressible flows in Lagrangian formulation. Computers and Fluids, 2020, 202, 104522.	1.3	8
141	3D cell-centered Lagrangian second order scheme for the numerical modeling of hyperelasticity system. Computers and Fluids, 2020, 207, 104523.	1.3	5
142	Cell-centered Lagrangian Lax-Wendroff HLL hybrid scheme in cylindrical geometry. Journal of Computational Physics, 2020, 417, 109605.	1.9	2
143	High-accurate and robust conservative remapping combining polynomial and hyperbolic tangent reconstructions. Computers and Fluids, 2020, 208, 104614.	1.3	1
144	An arbitrary Lagrangian-Eulerian RKDG method for multi-material flows on adaptive unstructured meshes. Computers and Fluids, 2020, 207, 104589.	1.3	6

		CITATION	Report	
#	Article		IF	Citations
145	The predictor-corrector algorithm for hourglass control. Computers and Fluids, 2020, 20	9, 104644.	1.3	3
146	A first order hyperbolic framework for large strain computational solid dynamics. Part III: Thermo-elasticity. Computer Methods in Applied Mechanics and Engineering, 2021, 373,	, 113505.	3.4	13
147	A Godunov-type tensor artificial viscosity for staggered Lagrangian hydrodynamics. Journ Computational Physics, 2021, 426, 109666.	ial of	1.9	2
148	CELL-CENTERED LAGRANGIAN LAX-WENDROFF HLL HYBRID SCHEME ON UNSTRUCTURE Polytechnica, 2021, 61, 68-76.	ED MESHES. Acta	0.3	0
149	Asymptotic preserving schemes on conical unstructured 2D meshes. International Journa Numerical Methods in Fluids, 2021, 93, 2763-2802.	al for	0.9	1
150	A cell-centered indirect Arbitrary-Lagrangian-Eulerian discontinuous Galerkin scheme on i unstructured triangular meshes with topological adaptability. Journal of Computational F 2021, 438, 110368.	noving Physics,	1.9	11
151	A cell-centered Lagrangian discontinuous Galerkin method using WENO and HWENO lim compressible Euler equations in two dimensions. Computational and Applied Mathemati	niter for cs, 2021, 40, 1.	1.0	6
152	Numerical analysis of a Reynolds Stress Model for turbulent mixing: the one-dimensional Mathematical Modelling and Numerical Analysis, 2021, 55, 1699-1740.	case. ESAIM:	0.8	1
153	An HLLC-type approximate Riemann solver for two-dimensional elastic-perfectly plastic m of Computational Physics, 2022, 448, 110675.	10del. Journal	1.9	3
154	Symmetry-preserving WENO-type reconstruction schemes in Lagrangian hydrodynamics and Fluids, 2020, 205, 104528.	. Computers	1.3	5
155	A Node-centered Artificial Viscosity Method for Two-dimensional Lagrangian Hydrodynan Calculations on a Staggered Grid. Communications in Computational Physics, 2010, 8, 8	nics 77-900.	0.7	11
156	A 3D cell-centered ADER MOOD Finite Volume method for solving updated Lagrangian h on unstructured grids. Journal of Computational Physics, 2022, 449, 110779.	yperelasticity	1.9	8
158	Comments on Current Methods for Multi-Dimensional Flow Computation. , 2012, , 69-72	7.		0
159	Lagrangian Gas Dynamics. , 2012, , 97-100.			0
161	A Second Order Cell-Centered Scheme forÂLagrangian Hydrodynamics. Springer Proceed Mathematics and Statistics, 2017, , 43-51.	lings in	0.1	0
162	Lagrange-Flux Schemes and the Entropy Property. Springer Proceedings in Mathematics 2017, , 235-243.	and Statistics,	0.1	0
163	A Lagrangian meshfree method applied to linear and nonlinear elasticity. PLoS ONE, 201	7, 12, e0186345.	1.1	0
164	A fourth-order Lagrangian discontinuous Galerkin method using a hierarchical orthogona curvilinear grids. Journal of Computational and Applied Mathematics, 2022, 404, 113890	l basis on).	1.1	5

#	Article	IF	CITATIONS
165	The Case of Multidimensional Systems. Applied Mathematical Sciences (Switzerland), 2021, , 425-579.	0.4	0
167	Lagrangian Godunov Schemes. , 2020, , 119-124.		0
168	On the Origins of Lagrangian Hydrodynamic Methods. Nuclear Technology, 2021, 207, S147-S175.	0.7	12
169	A cell-centered implicit-explicit Lagrangian scheme for a unified model of nonlinear continuum mechanics on unstructured meshes. Journal of Computational Physics, 2022, 451, 110852.	1.9	7
170	Entropy Stable and Positivity Preserving Godunov-Type Schemes for Multidimensional Hyperbolic Systems on Unstructured Grid. SSRN Electronic Journal, 0, , .	0.4	0
171	A Robust and Contact Resolving Riemann Solver for the Two-Dimensional Ideal Magnetohydrodynamics Equations. SSRN Electronic Journal, 0, , .	0.4	0
172	Triangular Metric-Based Mesh Adaptation for Compressible Multi-Material Flows in Semi-Lagrangian Coordinates. SSRN Electronic Journal, 0, , .	0.4	0
174	A 2D cell-centered Lagrangian scheme based on multi-state Riemann solver with exactly divergence-free magnetic fields. Journal of Computational Physics, 2022, 467, 111451.	1.9	1
175	Entropy stable and positivity preserving Godunov-type schemes for multidimensional hyperbolic systems on unstructured grid. Journal of Computational Physics, 2022, 468, 111493.	1.9	6
176	An Arbitrary-Lagrangian-Eulerian hybrid finite volume/finite element method on moving unstructured meshes for the Navier-Stokes equations. Applied Mathematics and Computation, 2023, 437, 127539.	1.4	2
177	A cell-centered discontinuous Galerkin multi-material arbitrary Lagrangian-Eulerian method in axisymmetric geometry. Journal of Computational Physics, 2023, 473, 111745.	1.9	4
178	On the derivation of a component-free scheme for Lagrangian fluid–structure interaction problems. Acta Mechanica, 2023, 234, 1777-1809.	1.1	1
180	An arbitrary Lagrangian–Eulerian discontinuous Galerkin method for twoâ€dimensional compressible flows on adaptive quadrilateral meshes. International Journal for Numerical Methods in Fluids, 2023, 95, 796-819.	0.9	0
181	Triangular metric-based mesh adaptation for compressible multi-material flows in semi-Lagrangian coordinates. Journal of Computational Physics, 2023, 478, 111975.	1.9	1
182	A viscoelastic flow model of Maxwell-type with a symmetric-hyperbolic formulation. Comptes Rendus - Mecanique, 2023, 351, 1-9.	0.3	0
183	A robust and contact resolving Riemann solver for the two-dimensional ideal magnetohydrodynamics equations. Journal of Computational Physics, 2023, , 112138.	1.9	0