The Scaling and Squaring Method for the Matrix Expon

SIAM Journal on Matrix Analysis and Applications 26, 1179-1193

DOI: 10.1137/04061101x

Citation Report

$\#$	ARTICLE
1	ANN bandpass filters for electro-optical implementation. , 0, , .
3	Optimal Control of Robotic Grasping. , 1992, ,

Programmable processor for on-line computing of inverse Haar transform. Electronics Letters, 2001,
0.5
itations

3 Optimal Control of Robotic Grasping. , 1992, , .

6 Assessment of the tyre footprint shape. , 2005, , .

8 Analysis of Projection Methods for Rational Function Approximation to the Matrix Exponential. SIAM Journal on Numerical Analysis, 2006, 44, 613-635.
1.162
Real-time soft shadows in dynamic scenes using spherical harmonic exponentiation. ACM Transactions
on Graphics, 2006, 25, 977-986.
Real-time soft shadows in dynamic scenes using spherical harmonic exponentiation. ACM Transactions
on Graphics, 2006, 25, 977-986.
9 Real-time soft shadows in dynamic scenes using spherical harmonic exponentiation. ACM Transactions $\quad 74$

10 Unidirectional magnetic-field gradients and geometric-phase errors during Fourier encoding using orthogonal ac fields. Physical Review B, 2006, 74, .
1.1

11
JOINT DISTRIBUTIONS OF PORTFOLIO LOSSES AND EXOTIC PORTFOLIO PRODUCTS. International Journal of Theoretical and Applied Finance, 2007, 10, 733-748.
JOINT DISTRIBUTIONS OF PORTFOLIO LOSSES AND EXOTIC PORTFOLIO PRODUCTS. International Journal of
Theoretical and Applied Finance, 2007, 10, 733-748.Numerical Integration for Future Vehicle Path Prediction. Proceedings of the American ControlConference, 2007, , .
$0.0 \quad 8$

$$
\begin{aligned}
& \text { A two-dimensional inverse parabolic potential within the Lindblad theory for application in nuclear } \\
& \text { reactions. Journal of Physics G: Nuclear and Particle Physics, 2007, 34, 441-450. }
\end{aligned}
$$

1.4

14 JOINT DISTRIBUTIONS OF PORTFOLIO LOSSES AND EXOTIC PORTFOLIO PRODUCTS. , 2007, , 141-156.
15 Geometric Means in a Novel Vector Space Structure on Symmetric Positiveâ€Definite Matrices. SIAM Journal on Matrix Analysis and Applications, 2007, 29, 328-347.
0.7
573

16 Stochastic Path Prediction using the Unscented Transform with Numerical Integration. , 2007, , .

| \# Article | |
| :--- | :--- | :--- |
| $20 \quad$An error analysis of the modified scaling and squaring method. Computers and Mathematics With
 Applications, 2007, 53, 1293-1305. | Citations |
| Entrywise relative perturbation bounds for exponentials of essentially non-negative matrices. | |
| Numerische Mathematik, 2008, 110, 393-403. | |

26 Continuously Monitored Barrier Options Under Markov Processes. SSRN Electronic Journal, 0, , .
27 Learning averages over the lie group of unitary matrices. , 2009, , . 0

A new proof of Jordan canonical forms of a square matrix. Linear and Multilinear Algebra, 2009, 57, 369-386.
$0.5 \quad 2$

29 Algorithm 894. ACM Transactions on Mathematical Software, 2009, 36, 1-20.

31	Interpolation among reducedâ€order matrices to obtain parameterized models for design, optimization and probabilistic analysis. International Journal for Numerical Methods in Fluids, 2010, 63, 207-230.	0.9	51
32	A Fast and Log-Euclidean Polyaffine Framework for Locally Linear Registration. Journal of Mathematical Imaging and Vision, 2009, 33, 222-238.	0.8	93
33	The scaling and modified squaring method for matrix functions related to the exponential. Applied Numerical Mathematics, 2009, 59, 783-799.	1.2	41
34	Determination of a matrix function using the divided difference method of Newton and the interpolation technique of Hermite. Journal of Computational and Applied Mathematics, 2009, 231, 67-81.	1.1	7
35	Comparison of methods for evaluating functions of a matrix exponential. Applied Numerical Mathematics, 2009, 59, 468-486.	1.2	21
36	An Algorithm to Compute Averages on Matrix Lie Groups. IEEE Transactions on Signal Processing, 2009, 57, 4734-4743.	3.2	52

\#	Article	IF	
38	Computing the FrÃ@chet Derivative of the Matrix Exponential, with an Application to Condition Number Estimation. SIAM Journal on Matrix Analysis and Applications, 2009, 30, 1639-1657.	0.7	5
39	Technique for the numerical analysis of the riblet effect on temporal stability of plane flows. Computational Mathematics and Mathematical Physics, 2010, 50, 1055-1070.	0.2	14
40	Fast computation of optimal disturbances for duct flows with a given accuracy. Computational Mathematics and Mathematical Physics, 2010, 50, 1914-1924.	0.2	7
41	Magnetization dynamics in isolated Ising chains. Journal of Experimental and Theoretical Physics, 2010, 110, 360-365.	0.2	6
42	The complex step approximation to the FrÃ®chet derivative of a matrix function. Numerical Algorithms, 2010, 53, 133-148.	1.1	4
43	Normalized natural gradient in independent component analysis. Signal Processing, 2010, 90, 2773-2777.	2.1	14
44	The Immersed Structural Potential Method for haemodynamic applications. Journal of Computational Physics, 2010, 229, 8613-8641.	1.9	4
45	Implementation of approach to compute the Lyapunov characteristic exponents for continuous dynamical systems to higher dimensions. Journal of the Franklin Institute, 2010, 347, 315-338.	1.9	7
46	Efficient computation of radiances for optically thin media by PadÃ® approximants. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 1885-1899.	1.1	5
47	Matrix exponentials and parallel prefix computation in a quantum control problem. Parallel Computing, 2010, 36, 359-369.	1.3	9

Exponentials of skew-symmetric matrices and logarithms of orthogonalÂmatrices. Journal of Computational and Applied Mathematics, 2010, 233, 2867-2875.
1.1

$$
49 \text { Computing matrix functions. Acta Numerica, 2010, 19, 159-208. }
$$

$6.3 \quad 72$
50 Rational approximation of the unitary exponential. IMA Journal of Numerical Analysis, 2010, 30, 512-524. 1.5 0
51 A New Scaling and Squaring Algorithm for the Matrix Exponential. SIAM Journal on Matrix Analysis 0.7 215 and Applications, 2010, 31, 970-989.ACOUSTIC PROPAGATION IN AN UNCERTAIN WAVEGUIDE ENVIRONMENT USING STOCHASTIC BASISEXPANSIONS. Journal of Computational Acoustics, 2010, 18, 397-441.
Solving the Matrix Differential Riccati Equation: A Lyapunov Equation Approach. IEEE Transactions on
Automatic Control, 2010, 55, 191-194.

Shift-Invert Arnoldi Approximation to the Toeplitz Matrix Exponential. SIAM Journal of Scientific Computing, 2010, 32, 774-792.

\#	Article	IF	Citations
56	Solving the singularly perturbed matrix differential Riccati equation: A Lyapunov equation approach., 2010, , .		0
57	Finite Horizon Optimal Control of Singularly Perturbed Systems: A Differential Lyapunov Equation Approach \$ \$. IEEE Transactions on Automatic Control, 2010, 55, 2148-2152.	3.6	12
58	Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators. SIAM Journal of Scientific Computing, 2011, 33, 488-511.	1.3	321
59	A Schurâ $€^{\prime \prime}$ PadÃ@ Algorithm for Fractional Powers of a Matrix. SIAM Journal on Matrix Analysis and Applications, 2011, 32, 1056-1078.	0.7	49
60	A Low-Rank Approximation for Computing the Matrix Exponential Norm. SIAM Journal on Matrix Analysis and Applications, 2011, 32, 349-363.	0.7	21
61	QTT approximation of elliptic solution operators in higher dimensions. Russian Journal of Numerical Analysis and Mathematical Modelling, 2011, 26, .	0.2	32
62	From Efficient Symplectic Exponentiation of Matrices to Symplectic Integration of High-dimensional Hamiltonian Systems with Slowly Varying Quadratic Stiff Potentials. Applied Mathematics Research EXpress, 2011, 2011, 242-280.	1.0	9
63	Exponential locality preserving projections for small sample size problem. Neurocomputing, 2011, 74, 3654-3662.	3.5	44
64	Improved Potterâ€"Andersonâ€"Moore algorithm for the differential Riccati equation. Applied Mathematics and Computation, 2011, 218, 4641-4646.	1.4	6
65	Discrete-space time-fractional processes. Fractional Calculus and Applied Analysis, 2011, 14, 201-232.	1.2	6

66 A Fast Algorithm for Lyapunov Exponents Calculation in Piecewise Linear Systems. , 2011, , .

67	Accurate matrix exponential computation to solve coupled differential models in engineering. Mathematical and Computer Modelling, 2011, 54, 1835-1840.	2.0	19
68	Numerical solutions to the time-dependent Bloch equations revisited. Magnetic Resonance Imaging, 2011, 29, 126-131.	1.0	72
69	Solving differential matrix Riccati equations by a piecewise-linearized method based on diagonal PadÃ® approximants. Computer Physics Communications, 2011, 182, 669-678.	3.0	1
70	Dynamic responses of composite H -beams with different elastic couplings. Journal of Mechanical Science and Technology, 2011, 25, 2505-2517.	0.7	5
71	Shift-invert Lanczos method for the symmetric positive semidefinite Toeplitz matrix exponential. Numerical Linear Algebra With Applications, 2011, 18, 603-614.	0.9	20
72	Efficient orthogonal matrix polynomial based method for computing matrix exponential. Applied Mathematics and Computation, 2011, 217, 6451-6463.	1.4	22
73	Generalized equation for describing the magnetization in spoiled gradient-echo imaging. Magnetic Resonance Imaging, 2011, 29, 723-730.	1.0	8

\#	Article	IF	Citations
74	An analytical study of sound transmission through unbounded panels of functionally gradedmaterials. Journal of Sound and Vibration, 2011, 330, 1153-1165.	2.1	30
75	Orthogonal polynomial expansions for the matrix exponential. Linear Algebra and Its Applications, 2011, 435, 537-559.	0.4	12
76	Slow dynamics of interacting antiferromagnetic nanoparticles. Physical Review B, 2011, 84, .	1.1	11
77	A Markov-Chain Model for the Analysis of High-Resolution Enzymatically 180-Labeled Mass Spectra. Statistical Applications in Genetics and Molecular Biology, 2011, 10, Article 1.	0.2	5
78	Diffeomorphic Registration of Images with Variable Contrast Enhancement. International Journal of Biomedical Imaging, 2011, 2011, 1-16.	3.0	70
79	Decomposition of unitary matrices for finding quantum circuits: Application to molecular Hamiltonians. Journal of Chemical Physics, 2011, 134, 144112.	1.2	45
80	Low-frequency linear-mode regimes in the tokamak scrape-off layer. Physics of Plasmas, 2012, 19, .	0.7	23
81	Stochastic epidemic models revisited: analysis of some continuous performance measures. Journal of Biological Dynamics, 2012, 6, 189-211.	0.8	14

82Complexity reduction of stochastic master equation simulation based on Kronecker product analysis. , 2012, ,
83Behavior of the magnetization in spin-locking magnetic resonance imaging using numerical solutions to the time-dependent Bloch equations. Physics in Medicine and Biology, 2012,57,N481-N492.

Circuit simulation via matrix exponential method for stiffness handling and parallel processing. , 2012, , .
85 Hypersonic Aeroelastic Stability Boundary Computations Using Radial Basis Functions for Mesh
Deformation. , 2012, , . 850Complexity reduction of stochastic master equation simulation based on Kronecker product analysis.to the time-dependent Bloch equations. Physics in Medicine and Biology, 2012, 57, N481-N492.122012, , .POWER SERIES SOLUTIONS OF SINGULAR LINEAR SYSTEMS. International Journal of Mathematics, 2012, 23,1250034.
87 Algorithm 919. ACM Transactions on Mathematical Software, 2012, 38, 1-19.Time-Domain Analysis of Large-Scale Circuits by Matrix Exponential Method With Adaptive Control.IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2012, 31, 1180-1193.

[^0]1.4

\#	Article	IF	Citations
92	Time-domain simulation of acoustic wave propagation and interaction with flexible structures using Chebyshev collocation method. Journal of Sound and Vibration, 2012, 331, 4343-4358.	2.1	9
93	A numerical algorithm for pricing electricity derivatives for jump-diffusion processes based on continuous time lattices. European Journal of Operational Research, 2012, 222, 361-368.	3.5	13
94	An Output Stabilization Problem of Distributed Linear Systems Approaches and Simulations. Intelligent Control and Automation, 2012, 03, 159-167.	1.0	3
95	Computing the maximum amplification of the solution norm of differential-algebraic systems. Computational Mathematics and Modeling, 2012, 23, 216-227.	0.2	5
96	A new method for computing the matrix exponential operation based on vector valued rational approximations. Journal of Computational and Applied Mathematics, 2012, 236, 2306-2316.	1.1	2
97	The physics of communicability in complex networks. Physics Reports, 2012, 514, 89-119.	10.3	242
98	CONTINUOUSLY MONITORED BARRIER OPTIONS UNDER MARKOV PROCESSES. Mathematical Finance, 2013, 23, 1-38.	0.9	73
99	Deformable Medical Image Registration: A Survey. IEEE Transactions on Medical Imaging, 2013, 32, 1153-1190.	5.4	1,094
100	Process-Variation and Temperature Aware SoC Test Scheduling Technique. Journal of Electronic Testing: Theory and Applications (JETTA), 2013, 29, 499-520.	0.9	11
101	Matrix Information Geometry. , 2013, ,		49

0.64
The Design of Intervention Trials Involving Recurrent and Terminal Events. Statistics in Biosciences,
102 2013, 5, 261-285.

103 Aerothermoelastic and Aeroelastic Studies of Hypersonic Vehicles using CFD. , 2013, , .
2

```
104 Chaos and Complex Systems. , 2013, , .
2
```

105 23, 617-629.

A modal precise integration method for the calculation of footbridge vibration response. Computers

1.9

\#	Article	IF	Citations
110	Forecasting exact scores in National Football League games. International Journal of Forecasting, 2013, 29, 122-130.	3.9	27
111	Ranking hubs and authorities using matrix functions. Linear Algebra and Its Applications, 2013, 438, 2447-2474.	0.4	106
112	Calculation of intake retention functions for intake of activated dusts in the fusion reactors. Fusion Engineering and Design, 2013, 88, 2714-2718.	1.0	1
113	Efficient computation of the matrix cosine. Applied Mathematics and Computation, 2013, 219, 7575-7585.	1.4	13
114	Numerical solution to time-dependent 4D inviscid Burgers' equations. Engineering Analysis With Boundary Elements, 2013, 37, 637-645.	2.0	16
115	Lie-group interpolation and variational recovery for internal variables. Computational Mechanics, 2013, 52, 1281-1299.	2.2	34
116	The solution of two-dimensional advectionâ€"diffusion equations via operational matrices. Applied Numerical Mathematics, 2013, 72, 172-187.	1.2	15
117	Exponential Taylor methods: Analysis and implementation. Computers and Mathematics With Applications, 2013, 65, 487-499.	1.4	14
118	Comparative performance of exponential, implicit, and explicit integrators for stiff systems of ODEs. Journal of Computational and Applied Mathematics, 2013, 241, 45-67.	1.1	65
119	Local Linearizationâ€" Rungeâ€"Kutta methods: A class of A-stable explicit integrators for dynamical systems. Mathematical and Computer Modelling, 2013, 57, 720-740.	2.0	13
120	Computing exponentials of essentially non-negative matrices entrywise to high relative accuracy. Mathematics of Computation, 2013, 82, 1577-1596.	1.1	5
121	CodonPhyML: Fast Maximum Likelihood Phylogeny Estimation under Codon Substitution Models. Molecular Biology and Evolution, 2013, 30, 1270-1280.	3.5	99
122	Some aspects in estimating warranty and post-warranty repair demands. Naval Research Logistics, 2013, 60, 499-511.	1.4	23
124	Reducing the influence of tiny normwise relative errors on performance profiles. ACM Transactions on Mathematical Software, 2013, 39, 1-11.	1.6	9

\#	Article	IF	Citations
129	Semi-supervised Domain Adaptation on Manifolds. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25, 2240-2249.	7.2	54
130	Thermal transport through ac-driven transparent Josephson weak links. Physical Review B, 2014, 90, .	1.1	4
131	Semi-discrete numeric solution for the non-stationary heat equation using mimetic techniques. European Journal of Physics, 2014, 35, 065013.	0.3	1
132	Role of centrality for the identification of influential spreaders in complex networks. Physical Review E, 2014, 90, 032812.	0.8	119
133	Implementation of Parallel Adaptive-Krylov Exponential Solvers for Stiff Problems. SIAM Journal of Scientific Computing, 2014, 36, C591-C616.	1.3	9
134	A physically and geometrically nonlinear scaledâ€boundaryâ€based finite element formulation for fracture in elastomers. International Journal for Numerical Methods in Engineering, 2014, 99, 966-999.	1.5	36
135	A Moment-Matching Arnoldi Iteration for Linear Combinations of \$varphi\$ Functions. SIAM Journal on Matrix Analysis and Applications, 2014, 35, 1344-1363.	0.7	1
136	Uncertainty in MR tracer kinetic parameters and water exchange rates estimated from <i> T<\|i〉 ₁â€weighted dynamic contrast enhanced MRI. Magnetic Resonance in Medicine, 2014, 72, 534-545.	1.9	13
137	A new class of split exponential propagation iterative methods of Rungeâ€"Kutta type (sEPIRK) for semilinear systems of ODEs. Journal of Computational Physics, 2014, 269, 40-60.	1.9	25
138	Stacked-Bloch-wave electron diffraction simulations using GPU acceleration. Ultramicroscopy, 2014, 141, 32-37.	0.8	21

139 On the stability of some algorithms for computing the action of the matrix exponential. Linear Algebra and Its Applications, 2014, 443, 1-20.
$0.4 \quad 9$
Accurate and efficient matrix exponential computation. International Journal of Computer
Mathematics, 2014, 91, 97-112.
$1.0 \quad 13$

Product approximations for a class of quantum anharmonic oscillators. Zeitschrift Fur Angewandte Mathematik Und Physik, 2014, 65, 613-643.
$0.7 \quad 0$
0.7

13
142 The Matrix Unwinding Function, with an Application to Computing the Matrix Exponential. SIAM Journal on Matrix Analysis and Applications, 2014, 35, 88-109.

Efficient full Newtonâe"Raphson technique for the solution of molecular integral equations â€" example of the SPC/E water-like system. Molecular Physics, 2014, 112, 1246-1256.

Locally Linearized Runge Kutta method of Dormand and Prince. Applied Mathematics and Computation,
$144 \quad \begin{aligned} & \text { Locally Linearized Run } \\ & 2014,247,589-606 .\end{aligned}$
1.4

6

Exponential-Krylov methods for ordinary differential equations. Journal of Computational Physics,
1.9

12

146 A higher order steelâ€ $€^{\prime \prime}$ concrete composite beam model. Engineering Structures, 2014, 80, 260-273.
2.6

\#	Article	IF	Citations
147	A reduced-order matrices fitting scheme with Log-Euclidean metrics for fast approximation of dynamic response of parametric structural systems. Computer Methods in Applied Mechanics and Engineering, 2014, 269, 1-19.	3.4	2
148	Hypersonic Aeroelastic and Aerothermoelastic Studies Using Computational Fluid Dynamics. AIAA Journal, 2014, 52, 2062-2078.	1.5	41
149	Implementing state-space methods for multizone contaminant transport. Building and Environment, 2014, 71, 131-139.	3.0	12
150	Cutting the Wires: Modularization of Cellular Networks for Experimental Design. Biophysical Journal, 2014, 106, 321-331.	0.2	6
151	Translation and integration of numerical atomic orbitals in linear molecules. Journal of Chemical Physics, 2014, 140, 064112.	1.2	0
152	Markov chain approximations for transition densities of $L \tilde{A} \bigcirc v y$ processes. Electronic Journal of Probability, 2014, 19,	0.5	4
153	Maximum Likelihood Estimation of LTI Continuous-Time Grey-box Models. IFAC Postprint Volumes IPPV \| International Federation of Automatic Control, 2014, 47, 3739-3744.	0.4	4
154	Nonlinear Model Predictive Control of Dimethyl Ether Combustion in a Jet Stirred Reactor. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 3080-3085.	0.4	0
155	Time-domain simulation for active noise control in a two dimensional duct. Noise Control Engineering Journal, 2015, 63, 59-71.	0.2	2
156	Universal quantum simulation with prethreshold superconducting qubits: Single-excitation subspace method. Physical Review A, 2015, 91, .	1.0	19
157	Quantum lattice algorithms: similarities and connections to some classic finite difference algorithms. ESAIM Proceedings and Surveys, 2015, 52, 76-104.	0.5	1
158	Matrix Functions: A Short Course. Series in Contemporary Applied Mathematics, 2015, , 1-27.	0.8	1
159	Computer-Oriented Stability Analysis Based on Recurrent Transformation of Difference Solutions of Ordinary Differential Equations. Cybernetics and Systems Analysis, 2015, 51, 416-431.	0.4	3
160	A Swarm-Based Approach to Learning Phase-Type Distributions for Continuous Time Bayesian Networks. , 2015, , .		1

161 Generating patient specific pseudo-CT of the head from MR using atlas-based regression. Physics in

1.6

```
Monte Carlo for Estimating Exponential Convolution. Communications in Statistics Part B:
Simulation and Computation, 2015, 44, 2696-2704.
162 Monte Carlo for Estimating Exponential Convolution. Communications in Statistics Part B:
```

$0.6 \quad 6$
$0.6 \quad 6$

163 Nonlinear pulse combining and pulse compression in multi-core fibers. Optics Letters, 2015, 40, 721.

\# ArticLe			
165	Componentwise accurate fluid queue computations using doubling algorithms. Numerische Mathematik, 2015, 130, $763-792$.		Discrete-Time Solutions to the Continuous-Time Differential Lyapunov Equation With Applications to
:---			
Kalman Filtering. IEEE Transactions on Automatic Control, 2015, 60, 632-643.			

175 Journal on Numerical Analysis, 2016, 54, 2490-2516. 1.1

Tests of non linear Gaussian term structure models. Journal of International Financial Markets,
$2.1 \quad 2$

Institutions and Money, 2016, 44, 128-147.
 179

Krylov subspace exponential time domain solution of Maxwellâ $€^{\mathrm{TM}}$ s equations in photonic crystal
modeling. Journal of Computational and Applied Mathematics, 2016, 293, 20-34.
1.1

28

Solving engineering models using hyperbolic matrix functions. Applied Mathematical Modelling, 2016, 40, 2837-2844.

\#	Article	IF	Citations
183	Testing Matrix Function Algorithms Using Identities. ACM Transactions on Mathematical Software, 2016, 42, 1-15.	1.6	4
184	Thermodynamics, morphology, and kinetics of early-stage self-assembly of Ï€-conjugated oligopeptides. Molecular Simulation, 2016, 42, 955-975.	0.9	29
185	Parallel GPU implementation of PWR reactor burnup. Annals of Nuclear Energy, 2016, 91, 135-141.	0.9	11
186	A high-order time-parallel scheme for solving wave propagation problems via the direct construction of an approximate time-evolution operator. IMA Journal of Numerical Analysis, 2016, 36, 688-716.	1.5	19
187	High performance computing of the matrix exponential. Journal of Computational and Applied Mathematics, 2016, 291, 370-379.	1.1	19
188	A note on the Davisonâ $€^{\text {" }}$ Man method for Sylvester matrix equations. Computational and Applied Mathematics, 2017, 36, 561-570.	1.3	3
189	An efficient bound for the condition number of the matrix exponential. Journal of Taibah University for Science, 2017, 11, 280-289.	1.1	1
190	Gaussian models for Euro high grade government yields. European Journal of Finance, 2017, 23, 1468-1511.	1.7	4
191	Numerical approaches to simulation of multi-core fibers. Journal of Computational Physics, 2017, 334, 31-44.	1.9	14
192	Verified solutions of delay eigenvalue problems. Applied Mathematics and Computation, 2017, 303, 211-225.	1.4	3
193	A matrix-exponential decomposition based time-domain method for calculating the defect states of scalar waves in two-dimensional periodic structures. Journal of Computational Physics, 2017, 337, 403-420.	1.9	2
194	Spectral variational integrators for semi-discrete Hamiltonian wave equations. Journal of Computational and Applied Mathematics, 2017, 325, 56-73.	1.1	7
195	A high-order finite difference method for option valuation. Computers and Mathematics With Applications, 2017, 74, 652-670.	1.4	14
196	Noisy-free Length Discriminant Analysis with cosine hyperbolic framework for dimensionality reduction. Expert Systems With Applications, 2017, 81, 88-107.	4.4	2

[^1]1.1

9

A Partial Fourier Transform Method for a Class of Hypoelliptic Kolmogorov Equations. SIAM Journal on Numerical Analysis, 2017, 55, 1867-1891.
1.1
202 Computation of Lyapunov Characteristic Exponents Using Parallel Computing. , 2017, , 1
203 Analysis of Markov Chain Approximation for Option Pricing and Hedging: Grid Design and
Convergence Behavior. SSRN Electronic Journal, 2017, , .$0.4 \quad 4$204 Computational Krylovâ€based methods for largeâ€scale differential Sylvester matrix problems. Numerical0.96Linear Algebra With Applications, 2018, 25, e2187.
0.9 5
A new Krylov subspace method based on rational approximation to solve stiff burnup equation.
Annals of Nuclear Energy, 2018, 118, 99-106.$0.8 \quad 9$
206 International Roughness Index and a New Solution for It
207 Numerical solution of stochastic quantum master equations using stochastic interacting wave1.92
208 Finite-Length Analysis of BATS Codes. IEEE Transactions on Information Theory, 2018, 64, 322-348 1.5 20
209 3D transient electromagnetic modeling using a shift-and-invert Krylov subspace method. Journal ofGeophysics and Engineering, 2018, 15, 1341-1349.0.7

A backward Monte
2010 20,

1.418
Application of finite difference method of lines on the heat equation. Numerical Methods for Partial Differential Equations, 2018, 34, 626-660. 2.0 16
211
Error analysis of finite difference and Markov chain approximations for option pricing. Mathematical0.944
212 Finance, 2018, 28, 877-919.$1.1 \quad 14$Numerical solutions to large-scale differential Lyapunov matrix equations. Numerical Algorithms,2018, 79, 741-757.$1.1 \quad 6$
214 Computational and Applied Mathematics, 2018, 337, 354-365.Solving Bateman Equation for Xenon Transient Analysis Using Numerical Methods. MATEC Web ofConferences, 2018, 186, 01004.
0.1 2
216 A design structure matrix approach for measuring co-change-modularity of software products. , 2018,6

\#	Article	IF	Citations
219	Study on the phase analysis of vortex electromagnetic wave., 2018, , .		0
221	Solar Photovoltaic Powered Smart Garbage Monitoring System Using CSM/GPS. , 2018,		1
222	Practical pulse engineering: Gradient ascent without matrix exponentiation. Frontiers of Physics, 2018, 13, 1.	2.4	11
223	Fast matrix treatment of 3-D radiative transfer in vegetation canopies: SPARTACUS-Vegetation 1.1. Geoscientific Model Development, 2018, 11, 339-350.	1.3	17
224	Efficient Krylov-based exponential time differencing method in application to 3D advection-diffusion-reaction systems. Applied Mathematics and Computation, 2018, 338, 260-273.	1.4	4
225	KIOPS: A fast adaptive Krylov subspace solver for exponential integrators. Journal of Computational Physics, 2018, 372, 236-255.	1.9	43
226	Locally Affine Diffeomorphic Surface Registration and Its Application to Surgical Planning of Fronto-Orbital Advancement. IEEE Transactions on Medical Imaging, 2018, 37, 1690-1700.	5.4	21
227	Firing-rate models for neurons with a broad repertoire of spiking behaviors. Journal of Computational Neuroscience, 2018, 45, 103-132.	0.6	13
228	Self-averaging of random quantum dynamics. Physical Review A, 2018, 98, .	1.0	4
229	Essentially nonnegative matrix exponential methods for nuclide transmutation. Annals of Nuclear Energy, 2018, 120, 611-624.	0.9	3
230	Scabies in residential care homes: Modelling, inference and interventions for well-connected population sub-units. PLoS Computational Biology, 2018, 14, e1006046.	1.5	19
231	On-the-fly backward error estimate for matrix exponential approximation by Taylor algorithm. Journal of Computational and Applied Mathematics, 2019, 346, 532-548.	1.1	13

\#	Article	IF	Citations
239	Discrete-Time Large-Signal Modeling and Numerical Methods for Flyback Converters. , 2019, , .		2
240	Link prediction based on linear dynamical response. Physica A: Statistical Mechanics and Its Applications, 2019, 527, 121397.	1.2	6
241	Swing angle estimation for multicopter slung load applications. Aerospace Science and Technology, 2019, 89, 264-274.	2.5	26
242	Analysis of Markov Chain Approximation for Option Pricing and Hedging: Grid Design and Convergence Behavior. Operations Research, 2019, , .	1.2	12
243	Optimality of the Patersonâ€"Stockmeyer method for evaluating matrix polynomials and rational matrix functions. Linear Algebra and Its Applications, 2019, 574, 182-200.	0.4	9
244	An Exponential Integrator with Schurâ€"Krylov Approximation to accelerate combustion chemistry computation. Combustion and Flame, 2019, 203, 180-189.	2.8	4
245	Dynamic Task Offloading in Multi-Agent Mobile Edge Computing Networks. , 2019, , .		21
248	The Effects of Random Error on the Measurement Results of Wide-Swath Interferometric Imaging Radar Altimeter. , 2019, , .		0
249	Prediction of Next Sensor Event and its Time of Occurrence using Transfer Learning across Homes. , 2019, , .		3
250	TriP: Misbehavior Detection for Dynamic Platoons using Trust. , 2019, , .		8

252 Basic Directions of Increase of Power System Fault Tolerance. , 2019, , . 0

$$
\begin{aligned}
& \text { Inter-Satellite Integrated Laser Communication/Ranging Link with Feedback-Homodyne Detection and } \\
& \text { Fractional Symbol Ranging. ,2019,,. }
\end{aligned}
$$

Research on Quality Evaluation Method of Digital Teaching Resources Design Capability Based on

```
Piezoelectric Ultra-Stretchable Strain Sensor with Excellent Linearity and Unique Self-Healing Ability.
256 , 2019,..
```

257 Machine Learning for Detecting Anomalies in SAR Data. , 2019, , .
258 Thermal Modes of Reflux-Vapor Modeling and Control of the Rectification Process. , 2019, , 2

\#	Article	IF	Citations
261	A Modified Power Control Algorithm for Coordinating CLI in Massive MIMO System. , 2019, , .		1
262	Audiovisual Analysis for Recognising Frustration during Game-Play: Introducing the Multimodal Game Frustration Database., 2019, , .		15
264	Based on Public Health Service in Smart Medical Comprehensive Service Platform. , 2019, , .		4
265	Design and Application of Multichannel Radiosonde Receiver. , 2019, ,		0
266	Harnessing Sub-Wavelength and Symmetry Engineering for the Implementation of High-Performance Silicon Bragg Grating Filters. , 2019, , .		0
267	Research on Industrial Integration and Upgrading of Artificial Intelligence and Real Economy., 2019, , .		1
268	Computing the Matrix Exponential with an Optimized Taylor Polynomial Approximation. Mathematics, 2019, 7, 1174.	1.1	21
269	A Framework for Enhancing the Agriculture yield using Cloud Clusters. , 2019, , .		1

270 View Selection in Knot Deformation. , 2019, , 0
271 Promoting Theatre Methodology for Expressive Robot Movement and Behavior. , 2019, , 1
272 Manipulation of the Perceived Direction of Wind by Cross-modal Effects of Wind and Three-dimensional Sound. , 2019, , 5
273 IEEE Journal of Selected Topics in Quantum Electronics. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, C2-C2.
274 Cybersecurity through Inoculation. , 2019, , .1
275 Fuzzy Tuner Based Modified Cascade Control for Electromagnetic Levitation System. , 2019, , 12
Temporal resolution enhancement of dynamic MRI sequences within a motion-based framework. , 2019, 2019, 4004-4007.Boosting the computation of the matrix exponential. Applied Mathematics and Computation, 2019, 340,206-220.
1.4 16
206-220.Optimization Letters, 2019, 13, 1069-1083.

\#	ARTICLE		
280	Beyond Riemannian geometry. , 2020, , 169-229.		Global extended Krylov subspace methods for large-scale differential Sylvester matrix equations.
:---			
Journal of Applied Mathematics and Computing, 2020, 62, 157-177.			

Approximation of the matrix exponential for matrices with a skinny field of values. BIT Numerical
5

294 Uniform shallow trenches termination design for highâ€voltage VDMOS transistor. Electronics
$0.5 \quad 3$
Letters, 2020, 56, 104-105.

Performance evaluation of RQ nonâ€parametric CFAR detector in multiple target and nonâ€uniform clutter. IET Radar, Sonar and Navigation, 2020, 14, 415-424.
0.93

296 Incentive-Based Integrated Demand Response for Multiple Energy Carriers Considering Behavioral Coupling Effect of Consumers. IEEE Transactions on Smart Grid, 2020, 11, 3231-3245.
$6.2 \quad 72$

Detection of integrity loss in networked control systems using an interval finite memory observer. International Journal of Control, 2021, 94, 2640-2649.
1.2

300 Dissolved Gases Analysis of canola-based ester oil under creepage discharge. , 2020, , .
Efficient implementation of partitioned stiff exponential Runge-Kutta methods. Applied Numerical
Mathematics, 2020, 152, 141-158. $\quad 1.2$

```
308 A DPG-based time-marching scheme for linear hyperbolic problems. Computer Methods in Applied
308 Mechanics and Engineering, 2021, 373, 113539.
```

309 Inexact rational Krylov method for evolution equations. BIT Numerical Mathematics, 2021, 61, 473-502.
1.0

2
,

\#	Article	IF	Citations
318	Why Improving the Accuracy of Exponential Integrators Can Decrease Their Computational Cost?. Mathematics, 2021, 9, 1008.	1.1	0
319	Markov chain approximation of one-dimensional sticky diffusions. Advances in Applied Probability, 2021, 53, 335-369.	0.4	10
320	An intra-host SARS-CoV-2 dynamics model to assess testing and quarantine strategies for incoming travelers, contact management, and de-isolation. Patterns, 2021, 2, 100262.	3.1	15
321	A Numerical Approach for Evaluating the Time-Dependent Distribution of a Quasi Birth-Death Process. Methodology and Computing in Applied Probability, 2022, 24, 1693-1715.	0.7	3
322	Inventory systems with stochastic and batch demand: computational approaches. Annals of Operations Research, 2022, 309, 163-187.	2.6	3
323	Deuteron Chemical Exchange Saturation Transfer for the Detection of Slow Motions in Rotating Solids. Frontiers in Molecular Biosciences, 2021, 8, 705572.	1.6	3
324	Accuracy and performance analysis for Bloch and Bloch-McConnell simulation methods. Journal of Magnetic Resonance, 2021, 329, 107011.	1.2	6
325	Fast estimation of matrix exponential spatial models. Journal of Spatial Econometrics, 2021, 2, 1.	0.2	2
326	Accurate Torque Control for Induction Motors by Utilizing a Clobally Optimized Flux Observer. IEEE Transactions on Power Electronics, 2021, 36, 13261-13274.	5.4	15
327	Parallel exponential time differencing methods for geophysical flow simulations. Computer Methods in Applied Mechanics and Engineering, 2021, 387, 114151.	3.4	1
328	El-NK: A Robust Exponential Integrator Method With Singularity Removal and Newtonâ€"Raphson Iterations for Transient Nonlinear Circuit Simulation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022, 41, 1693-1703.	1.9	3
329	Secure multiparty computations in floating-point arithmetic. Information and Inference, 0, .	0.9	2
331	A Log-Euclidean Framework for Statistics on Diffeomorphisms. Lecture Notes in Computer Science, 2006, 9, 924-931.	1.0	255
332	An As-Invariant-As-Possible \$\$ext \{CL\}^+(3)\{\}\$\$ -Based Statistical Shape Model. Lecture Notes in Computer Science, 2019, , 219-228.	1.0	3

333 A Solver for Stiff Finite-Rate Relaxation in Baerâ€"Nunziato Two-Phase Flow Models. Fluid Mechanics
$0.1 \quad 6$ and Its Applications, 2020, , 31-44.
0.16

334 Collected Matrix Derivative Results for Forward and Reverse Mode Algorithmic Differentiation.
$0.1 \quad 62$
Lecture Notes in Computational Science and Engineering, 2008, , 35-44.
62

335 Matrix Functions. Mathematics in Industry, 2008, , 275-303.
$0.1 \quad 30$

[^2]| \# | Article | IF | Citations |
| :---: | :---: | :---: | :---: |
| 337 | Lie Bodies: A Manifold Representation of 3D Human Shape. Lecture Notes in Computer Science, 2012, , 1-14. | 1.0 | 53 |
| 338 | A Piecewise Linear Approximation Method for the Evaluation of Lyapunov Exponents of Polynomial Nonlinear Systems., 2013, , 439-447. | | 1 |
| 339 | Hierarchical Bayesian continuous time dynamic modeling.. Psychological Methods, 2018, 23, 774-799. | 2.7 | 76 |
| 340 | Differentiable scattering matrix for optimization of photonic structures. Optics Express, 2020, 28, 37773. | 1.7 | 4 |
| 341 | Prices Expansion in the Wishart Model. SSRN Electronic Journal, 0, , . | 0.4 | 4 |
| 342 | A Krylov Subspace Method for Option Pricing. SSRN Electronic Journal, 0, , . | 0.4 | 3 |
| 343 | A Backward Monte Carlo Approach to Exotic Option Pricing. SSRN Electronic Journal, 0, , . | 0.4 | 4 |
| 344 | Approximating Hamiltonian dynamics with the NystrÃ $9 m$ method. Quantum - the Open Journal for Quantum Science, 0, 4, 234. | 0.0 | 6 |
| 346 | Krylov implicit integration factor method for a class of stiff reaction-diffusion systems with moving boundaries. Discrete and Continuous Dynamical Systems - Series B, 2020, 25, 141-159. | 0.5 | 2 |
| 347 | Solving Stiff Reaction-Diffusion Equations Using Exponential Time Differences Methods. American Journal of Computational Mathematics, 2018, 08, 55-67. | 0.2 | 3 |
| 348 | Matrix Pad\&\#233;-Type Method for Computing the Matrix Exponential. Applied Mathematics, 2011, 02, 247-253. | 0.1 | 5 |
| 349 | Numerical Analysis of the Magnetization Behavior in Magnetic Resonance Imaging in the Presence of Multiple Chemical Exchange Pools. Open Journal of Applied Sciences, 2017, 07, 1-14. | 0.2 | 2 |
| 350 | The impact of weight matrices on parameter estimation and inference: A case study of binary response using land-use data. Journal of Transport and Land Use, 2013, 6, 75-85. | 0.7 | 18 |
| 351 | Correlators of Polynomial Processes. SIAM Journal on Financial Mathematics, 2021, 12, 1374-1415. | 0.7 | 2 |

352 Estimation of Kinetic Parameters in Stochastic Biomedical Models Using Estimation Theory. , 2021, , .
o

353 Subdomain-based exponential integrators for quantum Liouville-type equations. Journal of Computational Electronics, 2021, 20, 2070-2090.
$\begin{array}{ll}1.3 & 7\end{array}$

354 Quasi-Exact Approximation of Hidden Markov Chain Filters. SSRN Electronic Journal, 0, , .
0.1

1

368 Vector Fields, Lie Derivatives, Integral Curves, and Flows. Geometry and Computing, 2020, , 293-323.
$0.1 \quad 0$
369 All-electron real-time and imaginary-time time-dependent density functional theory within a numeric atom-centered basis function framework. Journal of Chemical Physics, 2021, 155, 154801.
$1.2 \quad 14$

Quantum circuit design methodology for multiple linear regression. IET Quantum Communication,
2020, 1, 55-61.
2.2

7

371 Optical vortices in waveguides with discrete and continuous rotational symmetry. Journal of the
European Optical Society-Rapid Publications, 2021, 17, .

0.9

11

Practical computation of the diffusion MRI signal based on Laplace eigenfunctions: permeable interfaces. NMR in Biomedicine, 2022, 35, e4646.

An efficient algorithm to compute the exponential of skew-Hermitian matrices for the time
374 integration of the SchrÃَdinger equation. Mathematics and Computers in Simulation, 2022, 194,

375	Efficient and accurate computation for the $\$ \$$ varphi\$\$-functions arising from exponential integrators. Calcolo, 2022, 59, 1.	0.6	3
376	Simple and Robust Locality Preserving Projections Based on Maximum Difference Criterion. Neural Processing Letters, 2022, 54, 1783-1804.	2.0	3
377	Exponential Multi-Modal Discriminant Feature Fusion for Small Sample Size. IEEE Access, 2022, 10, 14507-14517.	2.6	0
378	A study on the solution of the spatial kinetics equations in the neutron diffusion theory. Progress in Nuclear Energy, 2022, 145, 104113.	1.3	2
379	Image Stitching with Manifold Optimization. IEEE Transactions on Multimedia, 2022, , 1-1.	5.2	3
380	Computing Semigroups with Error Control. SIAM Journal on Numerical Analysis, 2022, 60, 396-422.	1.1	9
381	<i>ReciPro</i>: free and open-source multipurpose crystallographic software integrating a crystal model database and viewer, diffraction and microscopy simulators, and diffraction data analysis tools. Journal of Applied Crystallography, 2022, 55, 397-410.	1.9	42
382	Constant upper bounds on the matrix exponential norm. Russian Journal of Numerical Analysis and Mathematical Modelling, 2022, 37, 15-23.	0.2	0
383	3D full-time anisotropic TEM modelling using a mixed BDF2/SAI method. Journal of Geophysics and Engineering, 2021, 18, 995-1006.	0.7	3

4 Exponential Time Differencing Schemes for Fuel Depletion and Transport in Molten Salt Reactors: Theory and Implementation. Nuclear Science and Engineering, 2022, 196, 497-525.
0.5

1
385 A Technique for Improving the Computation of Functions of Triangular Matrices. International
Journal of Computer Mathematics, 0, , 1-0.
1.0

0

Exponential integration for efficient and accurate multibody simulation with stiff viscoelastic contacts. Multibody System Dynamics, 2022, 54, 443-460.
1.7

Parallel transport, a central tool in geometric statistics for computational anatomy: Application to
0.4 cardiac motion modeling. Handbook of Statistics, 2022, , 285-326.

1

388 Efficient Diffeomorphic Image Registration using Multi-Scale Dual-Phased Learning. , 2022, , .

> 389 Near-linear convergence of the Random Osborne algorithm for Matrix Balancing. Mathematical
> Programming, 2023, 198, 363-397.
1.6

2

390 Gaussian Process Subspace Prediction for Model Reduction. SIAM Journal of Scientific Computing,
2022, 44, Al428-A1449.
Medicine, 2022, 148, 105873.

On the estimation of partially observed continuous-time Markov chains. Computational Statistics, 0 , ,

395	On the backward and forward error of approximations of analytic functions and applications to the computation of matrix functions. Journal of Computational and Applied Mathematics, 2023, 419, 114706.
396	Computing the Lyapunov operator Ït-functions, with an application to matrix-valued exponential integrators. Applied Numerical Mathematics, 2022, ,.

397 Topology-Preserving Shape Reconstruction and Registration via Neural Diffeomorphic Flow. , 2022, , .399 A uniformisation-driven algorithm for inference-related estimation of a phase-type ageing model.399 Lifetime Data Analysis, 2023, 29, 142-187.$0.4 \quad 2$
400 Taming numerical errors in simulations of continuous variable non-Gaussian state preparation.Scientific Reports, 2022, 12, .
401 Computational graphs for matrix functions. ACM Transactions on Mathematical Software, 0, , 1.6
402 EI-MOR., 2022, , .1
403 Accurate Approximation of the Matrix Hyperbolic Cosine Using Bernoulli Polynomials. Mathematics,
2023, 11, 520. 1.1 0Fourth-order tensor calculus operations and application to continuum mechanics. Mathematics andMechanics of Solids, 0, , 108128652211409.
$1.5 \quad 1$

[^0]: Efficient mixed rational and polynomial approximation of matrix functions. Applied Mathematics and

[^1]: 197 Computing humps of the matrix exponential. Journal of Computational and Applied Mathematics, 2017, 319, 87-96.

[^2]: 336 Exponential Barycenters of the Canonical Cartan Connection and Invariant Means on Lie Groups. ,
 2013, , 123-166.

