Toll-like receptors and their role in experimental model

Genes and Immunity 4, 87-94 DOI: 10.1038/sj.gene.6363937

Citation Report

#	Article	IF	CITATIONS
2	Toll-Like Receptor-Mediated Activation of Mast Cells: Implications for Allergic Disease?. International Archives of Allergy and Immunology, 2003, 132, 87-97.	2.1	73
3	Intracellular Signaling and Cytokine Induction upon Interactions ofPorphyromonas gingivalisFimbriae with Patternâ€Recognition Receptors. Immunological Investigations, 2004, 33, 157-172.	2.0	86
4	TLR-Independent Induction of Dendritic Cell Maturation and Adaptive Immunity by Negative-Strand RNA Viruses. Journal of Immunology, 2004, 173, 6882-6889.	0.8	131
5	Toll-Like Receptor 4-Dependent Early Elicited Tumor Necrosis Factor Alpha Expression Is Critical for Innate Host Defense against Bordetella bronchiseptica. Infection and Immunity, 2004, 72, 6650-6658.	2.2	46
6	Toll-Like Receptor 2 Suppresses Immunity against <i>Candida albicans</i> through Induction of IL-10 and Regulatory T Cells. Journal of Immunology, 2004, 172, 3712-3718.	0.8	565
7	Lipopolysaccharide and Double-stranded RNA Up-regulate Toll-like Receptor 2 Independently of Myeloid Differentiation Factor 88. Journal of Biological Chemistry, 2004, 279, 39727-39735.	3.4	52
8	Association between Common Tollâ€Like Receptor 4 Mutations and Severe Respiratory Syncytial Virus Disease. Journal of Infectious Diseases, 2004, 189, 2057-2063.	4.0	307
9	Cytokines as adjuvants for avian vaccines. Immunology and Cell Biology, 2004, 82, 638-643.	2.3	66
10	Innate immunity in aging: impact on macrophage function. Aging Cell, 2004, 3, 161-167.	6.7	380
11	Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nature Medicine, 2004, 10, 1366-1373.	30.7	998
12	Immunopathogenesis of brain abscess. Journal of Neuroinflammation, 2004, 1, 16.	7.2	96
13	Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6593-6598.	7.1	206
14	Cutting Edge: MyD88 Controls Phagocyte NADPH Oxidase Function and Killing of Gram-Negative Bacteria. Journal of Immunology, 2005, 175, 5596-5600.	0.8	137
15	Oligoclonal T cells in histiocytic necrotizing lymphadenopathy are associated with TLR9+ plasmacytoid dendritic cells. Laboratory Investigation, 2005, 85, 267-275.	3.7	5
16	Inherited disorders of human Toll-like receptor signaling: immunological implications. Immunological Reviews, 2005, 203, 10-20.	6.0	129
18	Toll-like receptor 2 (TLR2) is pivotal for recognition ofS. aureus peptidoglycan but not intact bacteria by microglia. Glia, 2005, 49, 567-576.	4.9	120
19	Invertebrates as animal models for <i>Staphylococcus aureus</i> pathogenesis: a window into host–pathogen interaction. FEMS Immunology and Medical Microbiology, 2005, 43, 311-323.	2.7	63
20	Role of TLR4 Receptor Polymorphisms in Boutonneuse Fever. International Journal of Immunopathology and Pharmacology, 2005, 18, 655-660.	2.1	27

#	Article	IF	Citations
21	Heritable defects of the human TLR signalling pathways. Journal of Endotoxin Research, 2005, 11, 220-224.	2.5	27
22	Comparative Toll-Like Receptor 4-Mediated Innate Host Defense to Bordetella Infection. Infection and Immunity, 2005, 73, 8144-8152.	2.2	63
23	A designed TLR4/MD-2 complex to capture LPS. Journal of Endotoxin Research, 2005, 11, 197-206.	2.5	23
24	Combating Bacterial Pathogens Through Host Defense Gene Programs. Current Immunology Reviews, 2005, 1, 43-54.	1.2	6
25	Worms and Flies as Genetically Tractable Animal Models To Study Host-Pathogen Interactions. Infection and Immunity, 2005, 73, 3833-3841.	2.2	110
26	Lipopolysaccharide Prevents Doxorubicin-Induced Apoptosis in RAW 264.7 Macrophage Cells by Inhibiting p53 Activation. Molecular Cancer Research, 2005, 3, 373-379.	3.4	33
28	The Function of Toll-Like Receptors. , 2005, , 18-55.		12
30	The Complex Mechanism of Antibody-Mediated Clearance ofBordetellafrom the Lungs Requires TLR4. Journal of Immunology, 2005, 175, 7504-7511.	0.8	41
31	Probiotic alternatives to reduce gastrointestinal infections: the poultry experience. Animal Health Research Reviews, 2005, 6, 105-118.	3.1	124
32	A Toll-interleukin 1 repeat protein at the synapse specifies asymmetric odorant receptor expression via ASK1 MAPKKK signaling. Genes and Development, 2005, 19, 270-281.	5.9	168
34	Two Pseudomonas syringae Type III Effectors Inhibit RIN4-Regulated Basal Defense in Arabidopsis. Cell, 2005, 121, 749-759.	28.9	416
35	The microglial "activation" continuum: from innate to adaptive responses. Journal of Neuroinflammation, 2005, 2, 24.	7.2	376
36	A conjugate vaccine composed of a heat shock protein 60 T-cell epitope peptide (p458) and Neisseria meningitidis type B capsular polysaccharide. Vaccine, 2006, 24, 6555-6563.	3.8	14
37	The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood, 2006, 108, 965-973.	1.4	333
38	Lipopolysaccharide-Induced IL-1β Production by Human Uterine Macrophages Up-Regulates Uterine Epithelial Cell Expression of Human β-Defensin 2. Journal of Immunology, 2006, 176, 6647-6655.	0.8	64
39	Lipopolysaccharide hyporesponsiveness as a risk factor for intensive care unit hospitalization in in infants with respiratory syncitial virus bronchiolitis. Clinical and Experimental Immunology, 2006, 144, 48-52.	2.6	47
40	Immunophysiology of epithelial cells and pattern-recognition receptors. Human Physiology, 2006, 32, 224-234.	0.4	7
41	New immunology—immunology of pattern recognition receptors. Biology Bulletin, 2006, 33, 417-426.	0.5	4

#	Article	IF	CITATIONS
42	Respiratory syncytial virus disease mechanisms implicated by human, animal model, and in vitro data facilitate vaccine strategies and new therapeutics. , 2006, 112, 405-424.		53
43	Induction of chemokine and cytokine genes in astrocytes following infection with Theiler's murine encephalomyelitis virus is mediated by the Toll-like receptor 3. Glia, 2006, 53, 858-867.	4.9	86
44	Peptide p277 of HSP60 signals T cells: inhibition of inflammatory chemotaxis. International Immunology, 2006, 18, 1413-1419.	4.0	39
45	Internalization and phagosome escape required for Francisella to induce human monocyte IL-1Â processing and release. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 141-146.	7.1	181
46	Endotoxin-Induced Expression of Murine Bactericidal Permeability/Increasing Protein Is Mediated Exclusively by Toll/IL-1 Receptor Domain-Containing Adaptor Inducing IFN-Î ² -Dependent Pathways. Journal of Immunology, 2006, 176, 522-528.	0.8	33
47	Microglia Recognize Double-Stranded RNA via TLR3. Journal of Immunology, 2006, 176, 3804-3812.	0.8	174
48	Selective Regulation of IL-10 Signaling and Function by Zymosan. Journal of Immunology, 2006, 176, 4785-4792.	0.8	42
49	Distinct Functions between Toll-Like Receptors 3 and 9 in Retinal Pigment Epithelial Cells. Ophthalmic Research, 2007, 39, 155-163.	1.9	52
50	Delta-Like 4 Induces Notch Signaling in Macrophages. Circulation, 2007, 115, 2948-2956.	1.6	196
51	Platelets as Potential Immunomodulators: Is There a Role for Platelet Toll-Like Receptors?. Current Immunology Reviews, 2007, 3, 109-115.	1.2	12
52	Expression and Function of Toll-like Receptor-3 and -9 in Human Corneal Myofibroblasts. , 2007, 48, 3069.		32
53	Human Tollâ€like receptorâ€dependent induction of interferons in protective immunity to viruses. Immunological Reviews, 2007, 220, 225-236.	6.0	147
54	MyD88-independent activation of a novel actin-Cdc42/Rac pathway is required for Toll-like receptor-stimulated phagocytosis. Cell Research, 2008, 18, 745-755.	12.0	121
55	Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nature Reviews Immunology, 2008, 8, 411-420.	22.7	952
56	Glutamine as a modulator of the immune system of critical care patients: Effect on Toll-like receptor expression. A preliminary study. Nutrition, 2008, 24, 522-527.	2.4	31
58	Cellular trafficking of lipoteichoic acid and Toll-like receptor 2 in relation to signaling; role of CD14 and CD36. Journal of Leukocyte Biology, 2008, 84, 280-291.	3.3	128
59	Prevention of infectious diseases in older adults through immunization: the challenge of the senescent immune response. Expert Review of Vaccines, 2009, 8, 593-606.	4.4	42
60	Impaired Priming and Activation of the Neutrophil NADPH Oxidase in Patients with IRAK4 or NEMO Deficiency. Journal of Immunology, 2009, 182, 6410-6417.	0.8	44

#	Article	IF	CITATIONS
61	Toll-like receptor 7-induced immune response to cutaneous West Nile virus infection. Journal of General Virology, 2009, 90, 2660-2668.	2.9	78
62	Toll-like Receptor 7 Mitigates Lethal West Nile Encephalitis via Interleukin 23-Dependent Immune Cell Infiltration and Homing. Immunity, 2009, 30, 242-253.	14.3	180
63	CNS Infiltration of Peripheral Immune Cells: D-Day for Neurodegenerative Disease?. Journal of NeuroImmune Pharmacology, 2009, 4, 462-475.	4.1	174
64	Regulation of TLR2 Expression and Function in Human Airway Epithelial Cells. Journal of Membrane Biology, 2009, 229, 101-113.	2.1	30
65	Antiviral immune responses: triggers of or triggered by autoimmunity?. Nature Reviews Immunology, 2009, 9, 246-258.	22.7	410
66	Toll gates to periodontal host modulation and vaccine therapy. Periodontology 2000, 2009, 51, 181-207.	13.4	30
67	Screening of innate immune receptors in neurodegenerative diseases: A similar pattern. Neurobiology of Aging, 2009, 30, 759-768.	3.1	202
68	Tollâ€like Receptorâ€2 and Tollâ€like Receptorâ€4 Expression on Maternal Neutrophils During Pregnancy. American Journal of Reproductive Immunology, 2010, 64, 427-434.	1.2	12
69	Targeting Robo4-Dependent Slit Signaling to Survive the Cytokine Storm in Sepsis and Influenza. Science Translational Medicine, 2010, 2, 23ra19.	12.4	267
70	Frizzled1 is a marker of inflammatory macrophages, and its ligand Wnt3a is involved in reprogramming <i>Mycobacterium tuberculosis</i> â€infected macrophages. FASEB Journal, 2010, 24, 4599-4612.	0.5	119
71	Functional Comparison of Innate Immune Signaling Pathways in Primates. PLoS Genetics, 2010, 6, e1001249.	3.5	94
72	Lack of effect of glutamine administration to boost the innate immune system response in trauma patients in the intensive care unit. Critical Care, 2010, 14, R233.	5.8	34
73	Role of Toll-like receptors in host responses to a virulence antigen of Streptococcus mutans expressed by a recombinant, attenuated Salmonella vector vaccine. Vaccine, 2010, 28, 4928-4936.	3.8	6
74	First identification of Toll-like receptor-4 in avian brain: evolution of lipopolysaccharide recognition and inflammation-dependent responses. Immunopharmacology and Immunotoxicology, 2011, 33, 64-72.	2.4	5
75	Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clinical Science, 2011, 121, 367-387.	4.3	426
76	Maternal Neutrophil Toll-like Receptor mRNA Expression is Down-Regulated in Preeclampsia. American Journal of Reproductive Immunology, 2011, 66, 242-248.	1.2	6
77	Innate Immunity Signaling Pathways: Links between Immunonutrition and Responses to Sepsis. Archivum Immunologiae Et Therapiae Experimentalis, 2011, 59, 139-150.	2.3	19
78	Macroevolutionary Immunology: A Role for Immunity in the Diversification of Animal life. Frontiers in Immunology, 2012, 3, 25.	4.8	32

#	Article	IF	CITATIONS
79	Modeling sepsis using neural nets and biomarkers of organ dysfunction in patients, with links to animal models. Critical Care, 2012, 16, .	5.8	0
80	Extracellular matrix turnover, angiogenesis and endothelial function in acute lung injury: relationship to pulmonary dysfunction and outcome. Critical Care, 2012, 16, .	5.8	1
81	Thalidomide modulates macrophage-mediated inflammatory innate immune response during Klebsiella pneumoniae B5055 infection in BALB/c mice. Critical Care, 2012, 16, .	5.8	0
82	Immunoglobulin therapy of abdominal sepsis in emergency surgery. Critical Care, 2012, 16, .	5.8	0
83	Procalcitonin level as a marker of severe sepsis and septic shock patients who required polymyxin-B immobilized fiber with direct hemoperfusion. Critical Care, 2012, 16, .	5.8	1
84	Diagnostic accuracy of procalcitonin in proven and clinically suspected systemic infection. Critical Care, 2012, 16, .	5.8	1
85	Evaluation of a soluble CD14 subtype in patients with surgical sepsis. Critical Care, 2012, 16, .	5.8	0
86	Advance directives and end-of-life decision-making in the ICU: results from an observational study. Critical Care, 2012, 16, .	5.8	0
87	Protective effects of FCGR2A polymorphism in invasive pneumococcal diseases. Critical Care, 2012, 16, .	5.8	0
88	Examination of blood filtration membrane removal ability of HMGB1. Critical Care, 2012, 16, .	5.8	1
89	Decreased expression of HLA-DR antigen-associated invariant chain mRNA predicts mortality after septic shock. Critical Care, 2012, 16, .	5.8	0
90	Kaiser Permanente Northern California sepsis mortality reduction initiative. Critical Care, 2012, 16, .	5.8	5
91	Dynamics of lymphocyte subpopulations during Legionnaires' disease. Critical Care, 2012, 16, .	5.8	1
92	Receptor for advanced glycation endproducts controls deleterious lung inflammation in severe Pseudomonas aeruginosa pneumonia in immunosuppressed mice. Critical Care, 2012, 16, .	5.8	0
93	Low-tidal volume ventilation as compared with conventional tidal volume ventilation in patients of sepsis: a randomized controlled trial. Critical Care, 2012, 16, .	5.8	0
94	Impact of daily auditing and weekly feedback on process of care and patient outcome in resuscitation of severe sepsis and septic shock. Critical Care, 2012, 16, .	5.8	0
95	Candida score: a predictor of mortality in patients with candidemia. Critical Care, 2012, 16, .	5.8	0
96	Incidence and prognostic implications of acute kidney injury based on the RIFLE criteria at the time of admission to an Indian ICU. Critical Care, 2012, 16, .	5.8	0

# 97	ARTICLE Candiduria in ICUs: incidence, course and outcome. Critical Care, 2012, 16, .	IF 5.8	CITATIONS
98	Erythropoietin enhances the effects of transplanted mesenchymal stem cells in an experimental model of endotoxemia. Critical Care, 2012, 16, .	5.8	0
101	Development and validation of a bedside prediction score for nosocomial sepsis in the pediatric ICU: a prospective observational cohort study. Critical Care, 2012, 16, .	5.8	0
102	Effects of statins on mitochondrial respiration and outcome during experimental sepsis. Critical Care, 2012, 16, .	5.8	0
104	Effect of phenolic acids originating from microbes on mitochondria and neutrophils. Critical Care, 2012, 16, .	5.8	3
105	Immunological modulation of estrogen during sepsis. Critical Care, 2012, 16, .	5.8	0
106	Use of Centre for Disease Control criteria to classify infections in critically ill patients: results from an interobserver agreement study. Critical Care, 2012, 16, .	5.8	1
107	Patients with sepsis exhibit mitochondrial biogenesis in peripheral blood immune cells. Critical Care, 2012, 16, .	5.8	0
108	AMP-activated protein kinase preserves endothelial tight junctions in the coronary microcirculation during sepsis. Critical Care, 2012, 16, .	5.8	2
109	Weibel-Palade body exocytosis as a therapeutic target to improve hemodynamics in Gram-positive sepsis. Critical Care, 2012, 16, .	5.8	0
110	Effectiveness of nebulized amphotericin B to eradicate Candida colonization from the lower respiratory tracts of ICU patients. Critical Care, 2012, 16, .	5.8	0
111	Clinical and diagnostic significance of apoptosis in the development of neutropenia and bacterial complications in newborns with respiratory distress syndrome. Critical Care, 2012, 16, .	5.8	0
112	Haemodynamic and renal effects of clonidine in an ovine model of severe sepsis and septic acute kidney injury. Critical Care, 2012, 16, .	5.8	0
113	Regional perfusion and oxygenation of the kidney in an ovine model of severe sepsis with hypotension and kidney injury. Critical Care, 2012, 16, .	5.8	0
115	Simplified selective decontamination of the digestive tract reduces Gram-negative bloodstream infection and respiratory tract colonization in intensive care. Critical Care, 2012, 16, .	5.8	0
116	Decreased incidence of SIRS and sepsis by acupuncture in severe multiple traumatic patients via facilitation of vagal activity. Critical Care, 2012, 16, .	5.8	3
117	A study of Candida biofilms in intensive care patients. Critical Care, 2012, 16, .	5.8	0
118	A limited set of molecular biomarkers may provide superior diagnostic outcomes to procalcitonin in sepsis. Critical Care, 2012, 16, .	5.8	1

		CITATION REPO	RT	
#	Article	IF		CITATIONS
119	Monocytic and neutrophilic CD11b and CD64 in severe sepsis. Critical Care, 2012, 16, .	5.	.8	2
120	Clinical evaluation of the Magicplex Sepsis Real-time Test (Seegene) to detect Candida DNA patients. Critical Care, 2012, 16, .	in pediatric 5.	.8	7
121	Procalcitonin, IL-10 and sCD25 as diagnostic and prognostic markers in critically ill patients. Care, 2012, 16, .	Critical 5.	.8	0
122	Ninjurin 1 contributes to TLR-induced inflammation in endothelial cells. Critical Care, 2012,	16,. 5.	.8	1
123	Effect of Calotropis procera latex extracts on the hypothalamic TNF $\hat{I}\pm$ and PGE2 levels in the of yeast-induced pyrexia. Critical Care, 2012, 16, .	rat model 5.	.8	0
124	Regulation of sepsis-induced IFNÎ ³ upon natural killer cell or natural killer T cell depletion in v Critical Care, 2012, 16, .	/ivo. 5.	.8	ο
125	Pattern recognition receptors as key players in adrenal gland dysfunction during sepsis. Crit 2012, 16, .	ical Care, 5.	.8	0
126	Effects of a TREM-like transcript-1 derived peptide during septic shock in pigs. Critical Care,	2012, 16, . 5.	.8	ο
127	Role of TREM-1 in endothelial dysfunction during experimental sepsis. Critical Care, 2012, 10	6, . 5.	.8	1
128	LPS-induced Pellino3 degradation is mediated by p62-dependent autophagy. Critical Care, 2	012, 16, . 5.	.8	1
129	Attenuated NOX2 expression impairs ROS production during the hypoinflammatory phase c Critical Care, 2012, 16, .	of sepsis. 5.	.8	0
130	Kinetic characterization of selective peroxisome-proliferator-activated receptor gamma mod in vitro. Critical Care, 2012, 16, .	ulators 5.	.8	0
131	IL-6 and IFN \hat{I}^3 play a role in fatal cases of 5N1 influenza in children. Critical Care, 2012, 16, .	5.	.8	0
133	Involvement of thrombopoietin in the development of organ injury in a mouse model of ceca and puncture-induced sepsis. Critical Care, 2012, 16, .	al ligation 5.	.8	0
134	Cholecystokinin protects rats against Staphylococcus aureus-induced sepsis. Critical Care, 2	2012, 16, . 5.	.8	0
135	Polymyxin B-direct hemoperfusion therapy contributes to oxygen delivery in septic patients. Care, 2012, 16, .	Critical 5.	.8	1
136	Sepsis in neonates: experience in a tertiary-care hospital. Critical Care, 2012, 16, .	5.	.8	1
137	Is urinary kidney injury molecule-1 a good marker for acute kidney injury in septic shock?. Cr Care, 2012, 16, .	itical 5.	.8	0

#	Article	IF	CITATIONS
138	Necrotizing fasciitis: modern clinical view. Critical Care, 2012, 16, .	5.8	2
139	Erysipelas: complement system and SIRS. Critical Care, 2012, 16, .	5.8	0
140	Pancreatic stone protein: a new predictor of outcome in patients with peritonitis. Critical Care, 2012, 16, .	5.8	0
141	Audit on patient outcome based on APACHE II scoring in the respiratory ICU of a south Indian university teaching hospital. Critical Care, 2012, 16, .	5.8	0
142	Internal jugular vein catheterization: a comparative study of apical and paracarotid approaches. Critical Care, 2012, 16, .	5.8	0
143	Citrate anticoagulation protocol to treat septic shock patients with liver dysfunction in CPFA extracorporeal therapy. Critical Care, 2012, 16, .	5.8	0
144	Manipulation of nitric oxide levels with a modified hydroxyethyl starch molecule. Critical Care, 2012, 16, .	5.8	0
145	Molecular diagnosis of severe bacterial sepsis in children. Critical Care, 2012, 16, .	5.8	0
146	Insulin exerts anti-inflammatory effects through reduction of IKK/lήB/NF-ήB pathway activation in septic rats. Critical Care, 2012, 16, .	5.8	0
147	Severe sepsis with multiple organ dysfunctions caused by Pseudomonas aeruginosa in an immunocompetent child. Critical Care, 2012, 16, .	5.8	3
148	Effects of sesamol against acute kidney injury in cecal-ligation-and-puncture-treated rats. Critical Care, 2012, 16, .	5.8	1
149	Noradrenergic neurons regulate the egress and trafficking of splenic monocytes and influence mortality during Gram-negative infection in mice. Critical Care, 2012, 16, .	5.8	0
150	Mannose-binding lectin deficiency and NOD2 mutations do not predispose to Staphylococcus aureus bloodstream infections but may influence outcome. Critical Care, 2012, 16, .	5.8	0
151	Homogeneity versus diversity: inhibition of plasma PAI-1 in murine sepsis proved lethal in homogeneous cohorts but not in all-inclusive populations. Critical Care, 2012, 16, .	5.8	0
152	Effect of heparin during extracorporeal detoxification in the severity of thrombocytopenia in patients with severe sepsis. Critical Care, 2012, 16, .	5.8	0
153	Estimation of efficacy early selective LPS sorption in patients with septic shock. Critical Care, 2012, 16, .	5.8	2
154	Audit of the ward-based management of severe sepsis in a large teaching hospital. Critical Care, 2012, 16, .	5.8	1
155	Neutrophil CD64 as a diagnostic marker of sepsis in neonates: impact on clinical care. Critical Care, 2012, 16	5.8	Ο

#	Article	IF	CITATIONS
156	Pancreatic stone protein as a novel marker for neonatal sepsis. Critical Care, 2012, 16, .	5.8	1
157	A standardized protocol for the multiplex PCR technique Septifast® Roche for neonatal samples with suspected sepsis. Critical Care, 2012, 16, .	5.8	0
158	Toll-like receptor 4 in phagocytosis of Escherichia coli by endotoxin-activated human neutrophils in whole blood. Critical Care, 2012, 16, .	5.8	5
159	CD24-mediated neutrophil death in inflammation: ex vivo study suggesting a potential role in sepsis. Critical Care, 2012, 16, .	5.8	2
160	Resistant Escherichia coli strains circulating in a tertiary-care hospital in New Delhi, India. Critical Care, 2012, 16, .	5.8	0
161	5-Lipoxygenase contributes to PPARγ activation in macrophages in response to apoptotic cells. Critical Care, 2012, 16, .	5.8	0
162	Natural killer cell status and tolerance in mouse and human bacterial sepsis. Critical Care, 2012, 16, .	5.8	0
163	Raman spectroscopic investigation of the interaction of Enterococcus faecalis and vancomycin: towards a culture-independent antibiotic susceptibility test. Critical Care, 2012, 16, .	5.8	2
164	Transthoracic echocardiographic assessment of IVC diameter variability to determine fluid responsiveness in children with septic shock: a pilot study. Critical Care, 2012, 16, .	5.8	0
165	Do we still accept central venous pressure measurements to assess preload responsiveness in children with septic shock? A single-center experience. Critical Care, 2012, 16, .	5.8	0
166	Emergence of carbapenem resistance in Gram-negative nosocomial bloodstream infections among critically ill children? A single-center experience. Critical Care, 2012, 16, .	5.8	0
167	Development of a point-of-care-testing system for procalcitonin. Critical Care, 2012, 16, .	5.8	0
168	Management of sepsis in Indian ICUs: Indian data from the MOSAICS study. Critical Care, 2012, 16, .	5.8	0
169	Impact of interventions to reduce device-related infections in Indian cancer centre ICUs. Critical Care, 2012, 16, .	5.8	0
170	Early fluid therapy with splanchnic sympathetic blockage prevented microcirculation damage, gut bacterial overgrowth, bacterial translocation and mortality in sepsis. Critical Care, 2012, 16, .	5.8	0
171	Abdominal organs' microcirculation dysfunction sequence in severe sepsis by SDF microscopy and histology. Critical Care, 2012, 16, .	5.8	0
172	Role of the clarithromycin immune modulator activity on abdominal microhemodynamics and mortality in severe sepsis. Critical Care, 2012, 16, .	5.8	1
173	Preliminary results for the use of proteinase K to achieve release of LPS from the Alteco LPS Adsorberî after perfusion with LPS containing blood. Critical Care, 2012, 16, .	5.8	0

#	Article	IF	CITATIONS
174	PSP/reg and NT-proCNP to predict the occurrence of ICU-acquired sepsis in severe trauma patients: results of a pilot study. Critical Care, 2012, 16, .	5.8	0
175	From positive blood culture to microbiological diagnosis in 4 hours by MALDI-TOF mass spectrometry bacterial identification and rapid antibiogram. Critical Care, 2012, 16, .	5.8	2
176	Relationship between plasma NGAL and serum creatinine is influenced by leucocytosis and neutrophilia in the critically ill. Critical Care, 2012, 16, .	5.8	0
177	Corticosteroid resistance in sepsis is influenced by microRNA-124-induced downregulation of glucocorticoid receptor- $\hat{1}$ ±. Critical Care, 2012, 16, .	5.8	Ο
178	Glucocorticoids control systemic inflammatory response by regulation of energy metabolism and cytokine expression. Critical Care, 2012, 16, .	5.8	0
179	Assessment of clinical deterioration and progressive organ failure in moderate-severity emergency department sepsis patients. Critical Care, 2012, 16, .	5.8	0
180	Increased endotoxin activity is associated with clinical deterioration in moderate-severity emergency department sepsis patients: a pilot study. Critical Care, 2012, 16, .	5.8	3
181	Defining the impact of delayed antibiotic administration using a comprehensive electronic health record screen to identify sepsis. Critical Care, 2012, 16, .	5.8	1
182	Effects on outcome of patients with severe sepsis and septic shock admitted to the ICU after implementation cooperative sepsis management protocol. Critical Care, 2012, 16, .	5.8	0
183	Saving 500 Lives Campaign: another way to improve the mortality rate of patients with severe sepsis and septic shock. Critical Care, 2012, 16, .	5.8	4
184	Clinical utility of using C-reactive protein and procalcitonin as biomarkers for a novel neonatal sepsis diagnostic platform (ASCMicroPlat). Critical Care, 2012, 16, .	5.8	0
185	GAPDH: is it a reliable housekeeper gene to use in sepsis research?. Critical Care, 2012, 16, .	5.8	0
186	Cytokine gene expression profiling identifies distinct patterns in severe sepsis. Critical Care, 2012, 16, .	5.8	0
187	Quantified temporal changes of heart rate variability when developing SIRS. Critical Care, 2012, 16, .	5.8	0
188	Endothelial cell specific molecule 1 is today a relevant marker of respiratory failure in sepsis and polytrauma patients. Critical Care, 2012, 16, .	5.8	0
189	A microbiome approach to sepsis: development and case-study application of novel methods for detection and isolation of microbes from whole blood. Critical Care, 2012, 16, .	5.8	2
190	Antibacterial therapy in treatment of newborns with perinatal sepsis. Critical Care, 2012, 16, .	5.8	0
191	Use of intravenous and intramuscular immunoglobulin in the practice of treatment for purulent and septic deaths in newborns. Critical Care, 2012, 16, .	5.8	1

#	Article	IF	CITATIONS
192	An overview of the sepsis situation in the Department of Infection Diseases, University Hospital Center, Tirana. Critical Care, 2012, 16, .	5.8	0
193	Is visceral leishmaniasis a sepsis or not?. Critical Care, 2012, 16, .	5.8	3
194	Evaluation of procalcitonin in patients with sepsis in Albanian adults. Critical Care, 2012, 16, .	5.8	0
195	Role of the membrane receptor ALXR in polymicrobial sepsis. Critical Care, 2012, 16, .	5.8	0
196	Sex-specific signaling through Toll-Like Receptors 2 and 4 contributes to survival outcome of Coxsackievirus B3 infection in C57Bl/6 mice. Biology of Sex Differences, 2012, 3, 25.	4.1	49
197	Genetically Engineered Lactobacilli for Technological and Functional Food Applications. , 2012, , .		1
198	Alterations in innate antibacterial response after immunomodulatory nutrition. Przeglad Gastroenterologiczny, 2012, 3, 115-124.	0.7	0
199	Sulfated polysaccharides of brown seaweeds are ligands of toll-like receptors. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2012, 6, 75-80.	0.4	8
200	ISC12 is a critical modulator of innate immune responses in murine models of sepsis. Immunobiology, 2013, 218, 1207-1216.	1.9	26
201	Diacylated lipopeptide from Mycoplasma synoviae mediates TLR15 induced innate immune responses. Veterinary Research, 2013, 44, 99.	3.0	43
202	Genetic Polymorphisms of Systemic Inflammation in Community-acquired Pneumonia. Clinical Pulmonary Medicine, 2013, 20, 69-76.	0.3	0
203	NeumonÃa adquirida en la comunidad: variantes génicas implicadas en la inflamación sistémicamación sistémica. Medicina Intensiva, 2014, 38, 315-323.	0.7	2
204	Toll-like receptors in the depressed and suicide brain. Journal of Psychiatric Research, 2014, 53, 62-68.	3.1	135
205	Effect of age on the pathogenesis of DHV-1 in Pekin ducks and on the innate immune responses of ducks to infection. Archives of Virology, 2014, 159, 905-914.	2.1	37
206	TLR signaling controls lethal encephalitis in WNV-infected brain. Brain Research, 2014, 1574, 84-95.	2.2	27
207	Impact of extracellular RNA on endothelial barrier function. Cell and Tissue Research, 2014, 355, 635-645.	2.9	35
208	Community acquired pneumonia: Genetic variants influencing systemic inflammation. Medicina Intensiva (English Edition), 2014, 38, 315-323.	0.2	0
209	Regulating Biocompatibility of Carbon Spheres via Defined Nanoscale Chemistry and a Careful Selection of Surface Functionalities. Scientific Reports, 2015, 5, 14986.	3.3	46

		CHATION K		
# 210	ARTICLE Respiratory Virus in Cystic Fibrosis â \in " A Review of the Literature. , 2015, , .		IF	CITATIONS
211	Role of the tumor necrosis factor receptor-associated factor-type zinc finger domain con protein 1 (TRAFD1) from the hard tick Haemaphysalis longicornis in immunity against be infection. Ticks and Tick-borne Diseases, 2016, 7, 36-45.	ntaining acterial	2.7	10
212	Modulating toll-like receptor-mediated inflammatory responses following exposure of w and lipopolysaccharide component from Porphyromonas gingivalis in wistar rat models. Journal of Dentistry, 2017, 11, 422-426.		1.7	6
213	Toll-like receptors: Significance, ligands, signaling pathways, and functions in mammals. Reviews of Immunology, 2018, 37, 20-36.	International	3.3	334
215	PRR Function of Innate Immune Receptors in Recognition of Bacteria or Bacterial Liganc Experimental Medicine and Biology, 2018, 1112, 255-280.	ls. Advances in	1.6	28
216	P2Y6 Receptors Regulate CXCL10 Expression and Secretion in Mouse Intestinal Epitheli Frontiers in Pharmacology, 2018, 9, 149.	al Cells.	3.5	13
217	Regulation of Toll-Like Receptor (TLR) Signaling Pathway by Polyphenols in the Treatmen Neurodegenerative Diseases: Focus on TLR4 Signaling. Frontiers in Immunology, 2019, 2	nt of Age-Linked 10, 1000.	4.8	153
218	Tollâ€like receptors in the functional orientation of cardiac progenitor cells. Journal of C Physiology, 2019, 234, 19451-19463.	Cellular	4.1	1
219	Bacillus S-Layer-Mediated Innate Interactions During Endophthalmitis. Frontiers in Immu 11, 215.	ınology, 2020,	4.8	19
220	Overview of Toll-Like Receptors in the CNS. Current Topics in Microbiology and Immuno 1-14.	logy, 2009, 336,	1.1	29
221	Mast Cell and Basophils: Interaction with IgE and Responses to Toll like Receptor Activa 113-133.	tors. , 2009, ,		2
222	Evolutionary Dynamics of Human Toll-Like Receptors and Their Different Contributions t Defense. PLoS Genetics, 2009, 5, e1000562.	to Host	3.5	341
223	Host Immune Response to Mosquito-Transmitted Chikungunya Virus Differs from That E Needle Inoculated Virus. PLoS ONE, 2010, 5, e12137.	Elicited by	2.5	96
224	Clinical characteristics and outcomes among Brazilian patients with severe acute respira syndrome coronavirus 2 infection: an observational retrospective study. Sao Paulo Med 2020, 138, 490-497.	atory ical Journal,	0.9	12
226	Toll-Like Receptors: Role in Inflammation and Commensal Bacteria. Inflammation and Al Targets, 2011, 10, 198-207.	lergy: Drug	1.8	31
227	Exposure to Cigarette Smoke Disrupts CCL20-Mediated Antimicrobial Activity in Respira Cells. The Open Immunology Journal, 2014, 7, 86-93.	atory Epithelial	1.5	15
228	Fever and hypothermia in systemic inflammation: recent discoveries and revisions. Front Bioscience - Landmark, 2005, 10, 2193.	tiers in	3.0	284
229	Immunity Versus Immunopathology in West Nile Virus Induced Encephalitis. , 0, , .			2

IF ARTICLE CITATIONS # Viral Respiratory Tract Infections in Cystic Fibrosis., 0,,. 230 0 Modeling Microbial Virulence in a Genomic Era: Impact of Shared Genomic Tools and Data Sets., 0,, 213-231. Immunomodulatory Role of Mycobacterial PE/PPE Family of Proteins. Proceedings of the Indian 232 1.4 3 National Science Academy, 2014, 80, 1055. The PE and PPE Family Proteins of Mycobacterium tuberculosis: What they Are Up To?., 2019, , 123-150. Role of Specialized Pro-Resolving Mediators in Modifying Host Defense and Decreasing Bacterial 236 3.8 9 Virulence. Molecules, 2021, 26, 6970. Resolvin D2 promotes host defense in a 2 - hit model of sepsis with secondary lung infection. Prostaglandins and Other Lipid Mediators, 2022, 159, 106617. Beyond the neuron: Role of non-neuronal cells in stress disorders. Neuron, 2022, 110, 1116-1138. 238 8.1 18 Nucleic acid-sensing toll-like receptors: Important players in Sjögren's syndrome. Frontiers in 4.8 Immunology, 0, 13, . Alternative pre-mRNA splicing as a mechanism for terminating Toll-like Receptor signaling. Frontiers in 243 4.8 4 Immunology, 0, 13, . Immunomodulatory effects of trans-anethole-treated Staphylococcus aureus Newman strain. 244 3.3 Scientific Reports, 2023, 13, . Current status of innate immune responses in Malpighian tubules of insects: A review focusing on the 245 1.1 0 Toll signaling pathway. Entomological Research, 2024, 54, . Toll like receptor 4 (TLR4) gene polymorphism and its association with somatic cell score and milk 1.5 production traits in Indian dromedary camels. Animal Biotechnology, 2024, 35, .