Band Gap Fluorescence from Individual Single-Walled G

Science 297, 593-596 DOI: 10.1126/science.1072631

Citation Report

#	Article	IF	CITATIONS
5	Mid-infrared ultrafast and nonlinear spectroscopy of semiconductors. , 0, , .		0
6	Triangular and Tetrahedral Array of Silver(I) Ions by a Novel Disk-Shaped Tridentate Ligand:Â Dynamic Control of Coordination Equilibrium of the Silver(I) Complexes. Journal of the American Chemical Society, 2002, 124, 14510-14511.	6.6	136
7	Size-Controlled Self-Assembly of Peptide Nanotubes Using Polycarbonate Membranes as Templates. Chemistry of Materials, 2002, 14, 4378-4381.	3.2	41
8	First Devonian tetrapod from Asia. Nature, 2002, 420, 760-761.	13.7	51
9	Carbon nanotubes with DNA recognition. Nature, 2002, 420, 761-761.	13.7	490
10	Length sorting cut single wall carbon nanotubes by high performance liquid chromatography. Chemical Physics Letters, 2002, 363, 111-116.	1.2	121
11	Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes. Science, 2002, 298, 2361-2366.	6.0	2,826
12	Resonance Raman Spectra of Carbon Nanotubes by Cross-Polarized Light. Physical Review Letters, 2003, 90, 107403.	2.9	124
13	Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solutions of the Anionic Surfactant NaDDBS. Journal of Physical Chemistry B, 2003, 107, 13357-13367.	1.2	569
14	Mechanistic Aspects of Carbon Nanotube Nucleation and Growth. Journal of Cluster Science, 2003, 14, 135-185.	1.7	89
15	Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants. Nano Letters, 2003, 3, 1379-1382.	4.5	1,532
16	High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water. Nano Letters, 2003, 3, 269-273.	4.5	1,728
18	Rational Chemical Strategies for Carbon Nanotube Functionalization. Chemistry - A European Journal, 2003, 9, 1898-1908.	1.7	299
19	Single-Wall Carbon Nanotube–Ferrocene Nanohybrids: Observing Intramolecular Electron Transfer in Functionalized SWNTs. Angewandte Chemie - International Edition, 2003, 42, 4206-4209.	7.2	188
20	Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates. Chemical Physics Letters, 2003, 377, 49-54.	1.2	201
21	Towards molecular-scale electronics and biomolecular self-assembly. Superlattices and Microstructures, 2003, 33, 369-379.	1.4	17
22	Interband magneto-optics in single-walled carbon nanotubes. Superlattices and Microstructures, 2003, 34, 413-418.	1.4	4
23	Structure control within poly(amidoamine) dendrimers: size, shape and regio-chemical mimicry of globular proteins. Tetrahedron, 2003, 59, 3799-3813.	1.0	165

ATION REDO

\mathbf{a}
~

	Сітатіс	on Report	
#	Article	IF	CITATIONS
24	Electronic structure of carbon nanotubes. Comptes Rendus Physique, 2003, 4, 1009-1019.	0.3	24
25	A composite method for the determination of the chirality of single walled carbon nanotubes. Journal of Microscopy, 2003, 212, 152-157.	0.8	39
26	Peptides with selective affinity for carbon nanotubes. Nature Materials, 2003, 2, 196-200.	13.3	520
27	DNA-assisted dispersion and separation of carbon nanotubes. Nature Materials, 2003, 2, 338-342.	13.3	2,573
28	Interfacial heat flow in carbon nanotube suspensions. Nature Materials, 2003, 2, 731-734.	13.3	1,027
29	Characterizing carbon nanotube samples with resonance Raman scattering. New Journal of Physics, 2003, 5, 139-139.	1.2	883
30	Variational approach to excitons in carbon nanotubes. Physical Review B, 2003, 67, .	1.1	170
31	Reversible modification of the absorption properties of single-walled carbon nanotube thin films via nitric acid exposure. Physical Chemistry Chemical Physics, 2003, 5, 178-183.	1.3	92
32	Narrow (n,m)-Distribution of Single-Walled Carbon Nanotubes Grown Using a Solid Supported Catalyst. Journal of the American Chemical Society, 2003, 125, 11186-11187.	6.6	807
33	Quantitative Analysis of Optical Spectra from Individual Single-Wall Carbon Nanotubes. Nano Letters, 2003, 3, 383-388.	4.5	200
34	Assignment of (n, m) Raman and Optical Features of Metallic Single-Walled Carbon Nanotubes. Nano Letters, 2003, 3, 1091-1096.	4.5	250
35	Unusual High Degree of Unperturbed Environment in the Interior of Single-Wall Carbon Nanotubes. Physical Review Letters, 2003, 90, 225501.	2.9	158
36	Optical characterization of single-walled carbon nanotubes synthesized by catalytic decomposition of alcohol. New Journal of Physics, 2003, 5, 149-149.	1.2	57
37	Selective Positioning and Density Control of Nanotubes within a Polymer Thin Film. Nano Letters, 2003, 3, 1333-1337.	4.5	57
38	Silica Coated Single Walled Carbon Nanotubes. Nano Letters, 2003, 3, 775-778.	4.5	172
39	Near-Infrared Saturable Absorption of Single-Wall Carbon Nanotubes Prepared by Laser Ablation Method. Japanese Journal of Applied Physics, 2003, 42, L494-L496.	0.8	77
40	Assignment of the Fine Structure in the Optical Absorption Spectra of Soluble Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2003, 107, 12082-12087.	1.2	56
41	Band Gap Photobleaching in Isolated Single-Walled Carbon Nanotubes. Nano Letters, 2003, 3, 1549-1554.	4.5	50

#	Article	IF	CITATIONS
42	Simultaneous Fluorescence and Raman Scattering from Single Carbon Nanotubes. Science, 2003, 301, 1354-1356.	6.0	391
43	Synthesis, Structure, and Aromaticity of a Hoop-Shaped Cyclic Benzenoid [10]Cyclophenacene. Journal of the American Chemical Society, 2003, 125, 2834-2835.	6.6	187
44	Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes. Science, 2003, 301, 344-347.	6.0	1,472
45	Reversible, Band-Gap-Selective Protonation of Single-Walled Carbon Nanotubes in Solution. Journal of Physical Chemistry B, 2003, 107, 6979-6985.	1.2	345
46	High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites. Journal of Applied Physics, 2003, 93, 1764-1768.	1.1	343
47	Anomalously Immobilized Water:  A New Water Phase Induced by Confinement in Nanotubes. Nano Letters, 2003, 3, 589-592.	4.5	411
48	Nonlinear photoluminescence from van Hove singularities in multiwalled carbon nanotubes. Optics Letters, 2003, 28, 266.	1.7	44
49	A Route for Bulk Separation of Semiconducting from Metallic Single-Wall Carbon Nanotubes. Journal of the American Chemical Society, 2003, 125, 3370-3375.	6.6	532
50	Poly(vinyl alcohol)/SWNT Composite Film. Nano Letters, 2003, 3, 1285-1288.	4.5	450
51	Unbundled and Highly Functionalized Carbon Nanotubes from Aqueous Reactions. Nano Letters, 2003, 3, 1215-1218.	4.5	391
52	Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization. Science, 2003, 301, 1519-1522.	6.0	1,270
53	Catalytic Transamidation under Moderate Conditions. Journal of the American Chemical Society, 2003, 125, 3422-3423.	6.6	207
54	Water and Proton Conduction through Carbon Nanotubes as Models for Biological Channels. Biophysical Journal, 2003, 85, 236-244.	0.2	275
55	Supramolecular Self-Assembly of Lipid Derivatives on Carbon Nanotubes. Science, 2003, 300, 775-778.	6.0	765
56	Molecular Ordering of Organic Molten Salts Triggered by Single-Walled Carbon Nanotubes. Science, 2003, 300, 2072-2074.	6.0	1,288
57	Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly. Science, 2003, 302, 1545-1548.	6.0	1,547
58	Bulk Separative Enrichment in Metallic or Semiconducting Single-Walled Carbon Nanotubes. Nano Letters, 2003, 3, 1245-1249.	4.5	246
59	Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension:  An Empirical Kataura Plot. Nano Letters. 2003. 3. 1235-1238.	4.5	1,070

#	Article	IF	CITATIONS
60	Photoconductivity of single-wall carbon nanotubes under continuous-wave near-infrared illumination. Applied Physics Letters, 2003, 83, 1857-1859.	1.5	164
61	Capillary Electrophoresis Separations of Bundled and Individual Carbon Nanotubes. Journal of Physical Chemistry B, 2003, 107, 6063-6069.	1.2	107
62	Absolute potential of the Fermi level of isolated single-walled carbon nanotubes. Physical Review B, 2003, 68, .	1.1	151
63	Near-Infrared Photoluminescence of Single-Walled Carbon Nanotubes Prepared by the Laser Vaporization Method. Journal of Physical Chemistry B, 2003, 107, 1949-1956.	1.2	160
64	Electrically Induced Optical Emission from a Carbon Nanotube FET. Science, 2003, 300, 783-786.	6.0	874
65	Variations of the Geometries and Band Gaps of Single-Walled Carbon Nanotubes and the Effect of Charge Injection. Journal of Physical Chemistry B, 2003, 107, 6924-6931.	1.2	88
66	22â€fâ€fFullerenes. Annual Reports on the Progress of Chemistry Section A, 2003, 99, 431-451.	0.8	5
67	Near-Infrared Absorbance of Single-Walled Carbon Nanotubes Dispersed in Dimethylformamide. Journal of Physical Chemistry B, 2003, 107, 5667-5669.	1.2	45
68	Comparative theoretical study of single-wall carbon and boron-nitride nanotubes. Physical Review B, 2003, 67, .	1.1	142
69	Dynamic Combinatorial Optimization of a Neutral Receptor That Binds Inorganic Anions in Aqueous Solution. Journal of the American Chemical Society, 2003, 125, 7804-7805.	6.6	186
70	Photoconductivity of Single Carbon Nanotubes. Nano Letters, 2003, 3, 1067-1071.	4.5	609
71	First comparative emission assay of single-wall carbon nanotubes—solutions and dispersions. Chemical Communications, 2003, , 1130-1131.	2.2	54
72	Photoconductivity of single-walled carbon nanotubes under CW illumination. , 0, , .		8
73	Photo- and Thermal Annealing-Induced Processes in Carbon Nanotube Transistors. Materials Research Society Symposia Proceedings, 2003, 789, 199.	0.1	0
74	Probing Chiral Selective Reactions Using a Revised Kataura Plot for the Interpretation of Single-Walled Carbon Nanotube Spectroscopy. Journal of the American Chemical Society, 2003, 125, 16148-16153.	6.6	228
75	FTIR-luminescence mapping of dispersed single-walled carbon nanotubes. New Journal of Physics, 2003, 5, 140-140.	1.2	84
76	Photoinduced conductivity changes in carbon nanotube transistors. Applied Physics Letters, 2003, 83, 3564-3566.	1.5	58
77	Ratio Problem in Single Carbon Nanotube Fluorescence Spectroscopy. Physical Review Letters, 2003, 90, 207401.	2.9	193

#	Article	IF	CITATIONS
78	Bright Band Gap Photoluminescence from Unprocessed Single-Walled Carbon Nanotubes. Physical Review Letters, 2003, 90, 217401.	2.9	293
79	(n,m)-Assigned Absorption and Emission Spectra of Single-Walled Carbon Nanotubes. AIP Conference Proceedings, 2003, , .	0.3	2
80	Luminescence from pillar suspended single-walled carbon nanotubes. AIP Conference Proceedings, 2004, , .	0.3	0
81	Manipulating Carbon Nanotubes with Nucleic Acids. AIP Conference Proceedings, 2004, , .	0.3	2
82	Bandgap-selective chemical doping of semiconducting single-walled carbon nanotubes. Nanotechnology, 2004, 15, 1844-1847.	1.3	15
83	Self-organizing high-density single-walled carbon nanotube arrays from surfactant suspensions. Nanotechnology, 2004, 15, 1450-1454.	1.3	45
84	Photocreated carrier dynamics in isolated carbon nanotubes. Semiconductor Science and Technology, 2004, 19, S486-S488.	1.0	5
85	Tailoring the optical excitation energies of single-walled carbon nanotubes. Applied Physics Letters, 2004, 85, 1598-1600.	1.5	5
86	Structure-Dependent Hydrostatic Deformation Potentials of Individual Single-Walled Carbon Nanotubes. Physical Review Letters, 2004, 93, .	2.9	49
87	Low Temperature Emission Spectra of Individual Single-Walled Carbon Nanotubes: Multiplicity of Subspecies within Single-Species Nanotube Ensembles. Physical Review Letters, 2004, 93, 027401.	2.9	112
88	Chirality Assignment of Single-Walled Carbon Nanotubes with Strain. Physical Review Letters, 2004, 93, 156104.	2.9	59
89	Interband Recombination Dynamics in Resonantly Excited Single-Walled Carbon Nanotubes. Physical Review Letters, 2004, 92, 117402.	2.9	225
90	Nematic Nanotube Gels. Physical Review Letters, 2004, 92, 088303.	2.9	82
91	Direct Synthesis of Single-Walled Carbon Nanotubes on Silicon and Quartz-Based Systems. Japanese Journal of Applied Physics, 2004, 43, 1221-1226.	0.8	31
92	Ultrafast Ground-State Recovery of Single-Walled Carbon Nanotubes. Physical Review Letters, 2004, 93, .	2.9	109
93	Scaling of Excitons in Carbon Nanotubes. Physical Review Letters, 2004, 92, 257402.	2.9	597
94	Effect of uniaxial strain deformation upon the Raman radial breathing modes of single-wall carbon nanotubes in composites. Physical Review B, 2004, 69, .	1.1	70
95	Direct Measurement of the Polarized Optical Absorption Cross Section of Single-Wall Carbon Nanotubes. Physical Review Letters, 2004, 93, 037404.	2.9	168

#	Article	IF	CITATIONS
96	Efficient Visible Photoluminescence from Carbon Nanotubes in Zeolite Templates. Physical Review Letters, 2004, 93, .	2.9	61
97	Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes. Physical Review B, 2004, 70, .	1.1	183
98	Diffusion of carbon nanotubes with single-molecule fluorescence microscopy. Journal of Applied Physics, 2004, 96, 6772-6775.	1.1	25
99	Reconstructing the radial breathing mode resonance Raman spectra for HiPco single-wall carbon nanotubes. Physical Review B, 2004, 70, .	1.1	13
100	Single-molecule fluorescence microscopy and Raman spectroscopy studies of RNA bound carbon nanotubes. Applied Physics Letters, 2004, 85, 4228-4230.	1.5	28
101	Carbon nanotube filaments in household light bulbs. Applied Physics Letters, 2004, 84, 4869-4871.	1.5	105
102	Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy. Journal of Chemical Physics, 2004, 120, 3368-3373.	1.2	186
103	Cold wall chemical vapor deposition of single walled carbon nanotubes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 747.	0.9	13
104	Nanotube-based systems for broadband optical limiting: towards an operational system. Materials Research Society Symposia Proceedings, 2004, 858, 102.	0.1	2
105	Surface Oriented Self-Assembly of Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2004, 818, 124.	0.1	0
107	Quantitative evaluation of bundling effect on single walled carbon nanotubes by resonance Raman spectra. Materials Research Society Symposia Proceedings, 2004, 858, 58.	0.1	0
108	Optical absorption and transient photobleaching in solutions of surfactant-encapsulated and DNA-wrapped single-walled carbon nanotubes. , 2004, 5359, 376.		1
109	Purification and Separation of Carbon Nanotubes. MRS Bulletin, 2004, 29, 252-259.	1.7	165
110	Anisotropic saturable absorption of single wall carbon nanotubes aligned in polyvinyl alcohol. Materials Research Society Symposia Proceedings, 2004, 858, 28.	0.1	1
111	Ultrafast Transient Absorption Spectroscopy Investigations of Excited State Dynamics in SWNT/Polymer Composites. Materials Research Society Symposia Proceedings, 2004, 858, 312.	0.1	0
112	Carbon Nanotube Electronics and Optoelectronics. MRS Bulletin, 2004, 29, 403-410.	1.7	109
113	Probing the Phonon-Assisted Relaxation Processes in DNA-wrapped Carbon Nanotubes Using Photoluminescence Spectroscopy. Materials Research Society Symposia Proceedings, 2004, 858, 52.	0.1	0
114	Raman studies of suspensions and solutions of singlewall carbon nanotubes. Materials Research Society Symposia Proceedings, 2004, 858, 34.	0.1	0

#	Article	IF	CITATIONS
115	Excitons in Carbon Nanotubes Revisited: Dependence on Diameter, Aharonov–Bohm Flux, and Strain. Journal of the Physical Society of Japan, 2004, 73, 3351-3363.	0.7	110
116	Time resolved spectroscopy of individual carbon nanotubes. , 0, , .		0
117	In situ Raman and fluorescence monitoring of optically trapped single-walled carbon nanotubes. , 2004, 5593, 73.		1
118	Surface Oriented Self Assembled Growth of Carbon Nanotubes. , 0, , .		1
119	Efficient Direct Water‧olubilisation of Singleâ€Walled Carbon Nanotube Derivatives. Fullerenes Nanotubes and Carbon Nanostructures, 2004, 12, 789-809.	1.0	15
120	Near-infrared optical sensors based on single-walled carbon nanotubes. Nature Materials, 2004, 4, 86-92.	13.3	889
121	Dynamics and spectra of excited states of water-micellar suspensions of single-walled carbon nanotubes. JETP Letters, 2004, 80, 176-180.	0.4	0
122	Synthesis of uniform diameter single wall carbon nanotubes inBCo-MCM-41: effects of CO pressure and reaction time. Journal of Catalysis, 2004, 226, 351-362.	3.1	66
123	Fluorescence Microscopy Visualization of Single-Walled Carbon Nanotubes Using Semiconductor Nanocrystals. Nano Letters, 2004, 4, 2415-2419.	4.5	78
124	Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes. Science, 2004, 306, 1362-1364.	6.0	2,476
125	Diameter-Controlled Synthesis of Discrete and Uniform-Sized Single-Walled Carbon Nanotubes Using Monodisperse Iron Oxide Nanoparticles Embedded in Zirconia Nanoparticle Arrays as Catalysts. Journal of Physical Chemistry B, 2004, 108, 8091-8095.	1.2	50
126	Covalent Functionalization of Single-Walled Carbon Nanotubes for Materials Applications. Journal of Physical Chemistry A, 2004, 108, 11151-11159.	1.1	617
127	Excitonic Effects and Optical Spectra of Single-Walled Carbon Nanotubes. Physical Review Letters, 2004, 92, 077402.	2.9	875
128	Optical Signatures of the Aharonov-Bohm Phase in Single-Walled Carbon Nanotubes. Science, 2004, 304, 1129-1131.	6.0	307
129	Molecular and nanoscale materials and devices in electronics. Advances in Colloid and Interface Science, 2004, 111, 133-157.	7.0	75
130	Characteristics of Raman features of isolated single-walled carbon nanotubes under electrochemical potential control. Surface Science, 2004, 566-568, 436-442.	0.8	19
131	Ultra-fast optical spectroscopy of micelle-suspended single-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2004, 78, 1093-1098.	1.1	36
132	Optical absorption of graphite and single-wall carbon nanotubes. Applied Physics A: Materials Science and Processing, 2004, 78, 1099-1105.	1.1	47

#	Article	IF	CITATIONS
133	Photoluminescence from single-walled carbon nanotubes: a comparison between suspended and micelle-encapsulated nanotubes. Applied Physics A: Materials Science and Processing, 2004, 78, 1107-1110.	1.1	138
134	Fluorescence spectroscopy of single-walled carbon nanotubes in aqueous suspension. Applied Physics A: Materials Science and Processing, 2004, 78, 1111-1116.	1.1	86
135	Quasiparticle energies, excitonic effects and optical absorption spectra of small-diameter single-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2004, 78, 1129-1136.	1.1	139
136	Electronic structure and dynamics of optically excited single-wall carbon nanotubes. Applied Physics A: Materials Science and Processing, 2004, 78, 1137-1145.	1.1	90
137	Resonant Raman excitation profiles of individually dispersed single walled carbon nanotubes in solution. Applied Physics A: Materials Science and Processing, 2004, 78, 1147-1155.	1.1	139
138	Visible and near-infrared excited-state dynamics of single-walled carbon nanotubes. Applied Physics A: Materials Science and Processing, 2004, 79, 1747-1751.	1.1	26
139	Analytical tight-binding calculations for optical absorption in single wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2004, 241, 2599-2606.	0.7	0
140	Pressure dependence of optical transitions in semiconducting single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2004, 241, 3367-3373.	0.7	6
141	Properties of Carbon Nanotube Fibers Spun from DNA-Stabilized Dispersions. Advanced Functional Materials, 2004, 14, 133-138.	7.8	155
142	Efficient Isolation and Solubilization of Pristine Single-Walled Nanotubes in Bile Salt Micelles. Advanced Functional Materials, 2004, 14, 1105-1112.	7.8	465
143	Overcoming the Insolubility of Carbon Nanotubes Through High Degrees of Sidewall Functionalization. Chemistry - A European Journal, 2004, 10, 812-817.	1.7	418
144	Near-infrared nonlinear optical properties of single-wall carbon nanotubes embedded in polymer film. Thin Solid Films, 2004, 464-465, 368-372.	0.8	46
145	Synthesis of uniform diameter single-wall carbon nanotubes in Co-MCM-41: effects of the catalyst prereduction and nanotube growth temperatures. Journal of Catalysis, 2004, 225, 453-465.	3.1	105
146	Bandgap photoluminescence of semiconducting single-wall carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 1057-1060.	1.3	28
147	Gel spinning of PVA/SWNT composite fiber. Polymer, 2004, 45, 8801-8807.	1.8	141
148	Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode. Analytical Biochemistry, 2004, 325, 285-292.	1.1	233
149	Direct electron transfer of glucose oxidase promoted by carbon nanotubes. Analytical Biochemistry, 2004, 332, 75-83.	1.1	497
150	Fluorescence spectroscopy of single-walled carbon nanotubes synthesized from alcohol. Chemical Physics Letters, 2004, 387, 198-203.	1.2	299

#	Article	IF	CITATIONS
151	Absorption-spectral features of single-walled carbon nanotubes. Chemical Physics Letters, 2004, 387, 149-154.	1.2	12
152	Electron–phonon interaction and relaxation time in graphite. Chemical Physics Letters, 2004, 392, 383-389.	1.2	68
153	Optical characterization of DNA-wrapped carbon nanotube hybrids. Chemical Physics Letters, 2004, 397, 296-301.	1.2	129
154	Exciton effects in carbon nanotubes. Carbon, 2004, 42, 1007-1010.	5.4	66
155	UV–VIS–NIR spectroscopy study of sensitivity of single-wall carbon nanotubes to chemical processing and Van-der-Waals SWNT/SWNT interaction. Verification of the SWNT content measurements by absorption spectroscopy. Carbon, 2004, 42, 1523-1535.	5.4	179
156	Protocol for the characterization of single-wall carbon nanotube material quality. Carbon, 2004, 42, 1783-1791.	5.4	269
157	Optical absorption matrix elements in single-wall carbon nanotubes. Carbon, 2004, 42, 3169-3176.	5.4	104
158	Single-Wall Carbon Nanotube Films for Photocurrent Generation. A Prompt Response to Visible-Light Irradiation. Journal of Physical Chemistry B, 2004, 108, 17015-17018.	1.2	148
159	Fabrication of nanowires with polymer shells using treated carbon nanotube bundles as macro-initiators. Chemical Communications, 2004, , 2828.	2.2	22
160	The dissolution of carbon nanotubes in aniline, revisitedElectronic Supplementary Information (ESI) available: additional TEM pictures of aniline treated MWNTs and SEM of the PTFE membranes used in the work. See http://www.rsc.org/suppdata/jm/b4/b403509g/. Journal of Materials Chemistry, 2004, 14, 2749.	6.7	35
161	Evidence of ultrafast optical switching behaviour in individual single-walled carbon nanotubes. Physical Chemistry Chemical Physics, 2004, 6, 2387.	1.3	18
162	Dispersion of Single-Walled Carbon Nanotube Bundles in Nonaqueous Solution. Journal of Physical Chemistry B, 2004, 108, 18395-18397.	1.2	102
163	New Method of Purification of Carbon Nanotubes Based on Hydrogen Treatment. Journal of Physical Chemistry B, 2004, 108, 6935-6937.	1.2	73
164	RNA Polymer Translocation with Single-Walled Carbon Nanotubes. Nano Letters, 2004, 4, 2473-2477.	4.5	302
165	Molecular Evolution onchiro-Inositol Dibenzoate Using Intramolecular Acyl Migration and Selection by Phenyl Boronic Acid. ACS Combinatorial Science, 2004, 6, 293-296.	3.3	15
166	Permanent Trapping of CO2in Single-Walled Carbon Nanotubes Synthesized by the HiPco Process. Journal of Physical Chemistry B, 2004, 108, 6170-6174.	1.2	33
167	Dispersion and Currentâ^'Voltage Characteristics of Helical Polyacetylene Single Fibers. Journal of the American Chemical Society, 2004, 126, 16722-16723.	6.6	68
168	Understanding the Nature of the DNA-Assisted Separation of Single-Walled Carbon Nanotubes Using Fluorescence and Raman Spectroscopy. Nano Letters, 2004, 4, 543-550.	4.5	191

#	Article	IF	CITATIONS
169	Polymer/Single-Walled Carbon Nanotube Films Assembled via Donorâ^'Acceptor Interactions and Their Use as Scaffolds for Silica Deposition. Chemistry of Materials, 2004, 16, 3904-3910.	3.2	55
170	Binding Kinetics and SWNT Bundle Dissociation in Low Concentration Polymerâ^'Nanotube Dispersions. Journal of Physical Chemistry B, 2004, 108, 3446-3450.	1.2	65
171	Reversible Surface Oxidation and Efficient Luminescence Quenching in Semiconductor Single-Wall Carbon Nanotubes. Journal of the American Chemical Society, 2004, 126, 15269-15276.	6.6	227
172	Using the Selective Functionalization of Metallic Single-Walled Carbon Nanotubes to Control Dielectrophoretic Mobility. Journal of Physical Chemistry B, 2004, 108, 15560-15564.	1.2	71
173	What Are the Limits to the Size of Effective Dynamic Combinatorial Libraries?. Organic Letters, 2004, 6, 1825-1827.	2.4	67
174	Estimation of Magnetic Susceptibility Anisotropy of Carbon Nanotubes Using Magnetophotoluminescence. Nano Letters, 2004, 4, 2219-2221.	4.5	89
175	Phase transition of iron inside carbon nanotubes under electron irradiation. Journal of Materials Research, 2004, 19, 1835-1839.	1.2	10
176	Polymer Brushes on Single-Walled Carbon Nanotubes by Atom Transfer Radical Polymerization ofn-Butyl Methacrylate. Journal of the American Chemical Society, 2004, 126, 170-176.	6.6	391
177	Near-Infrared Fluorescence Microscopy of Single-Walled Carbon Nanotubes in Phagocytic Cells. Journal of the American Chemical Society, 2004, 126, 15638-15639.	6.6	792
178	Time-Resolved Fluorescence of Carbon Nanotubes and Its Implication for Radiative Lifetimes. Physical Review Letters, 2004, 92, 177401.	2.9	290
179	Dispersing Carbon Nanotubes in Water:  A Noncovalent and Nonorganic Way. Journal of Physical Chemistry B, 2004, 108, 11317-11320.	1.2	95
180	Using Raman Spectroscopy to Elucidate the Aggregation State of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2004, 108, 6905-6909.	1.2	283
181	Large-Scale Fabrication of Aligned Single-Walled Carbon Nanotube Array and Hierarchical Single-Walled Carbon Nanotube Assembly. Journal of the American Chemical Society, 2004, 126, 16698-16699.	6.6	105
182	Excitons in Carbon Nanotubes: AnAb InitioSymmetry-Based Approach. Physical Review Letters, 2004, 92, 196401.	2.9	269
183	Binding of Acetylcholine and Tetramethylammonium to Flexible Cyclophane Receptors:  Improving on Binding Ability by Optimizing Host's Geometry. Journal of Organic Chemistry, 2004, 69, 3654-3661.	1.7	46
184	Effects of Alkyl Amide Solvents on the Dispersion of Single-Wall Carbon Nanotubes. Journal of Physical Chemistry B, 2004, 108, 17089-17095.	1.2	182
185	The Role of Fullerene Hemispheres in Determining Structural Features of Finite-Length Carbon Nanotubes. Journal of Physical Chemistry B, 2004, 108, 11426-11434.	1.2	49
186	Velocity Effects on Fullerene and Oxide Nanoparticle Deposition in Porous Media. Environmental Science & Technology, 2004, 38, 4377-4382.	4.6	312

		CITATION R	EPORT	
#	Article		IF	Citations
187	Advances toward bioapplications of carbon nanotubes. Journal of Materials Chemistry,	2004, 14, 527.	6.7	827
188	Dispersing Single-Walled Carbon Nanotubes with Surfactants:  A Small Angle Neut Study. Nano Letters, 2004, 4, 1789-1793.	ron Scattering	4.5	288
189	DNA, DNA/Metal Nanoparticles, DNA/Nanocarbon and Macrocyclic Metal Complex/Fulle Building Blocks for Nanosystems: Electronics and Sensing. NATO Science Series Series Physics and Chemistry, 2004, , 251-276.		0.1	1
190	Carbon Nanotube Photophysics. MRS Bulletin, 2004, 29, 276-280.		1.7	37
191	Ultrafast Spectroscopy of Excitons in Single-Walled Carbon Nanotubes. Physical Reviev 92, 017403.	v Letters, 2004,	2.9	192
192	Dispersions of Individual Single-Walled Carbon Nanotubes of High Length. Langmuir, 2 5149-5152.	004, 20,	1.6	122
193	Stokes and anti-Stokes Raman spectra of small-diameter isolated carbon nanotubes. Ph 2004, 69, .	iysical Review B,	1.1	98
194	Solubilization and Purification of Single-Wall Carbon Nanotubes in Water by in Situ Rad Polymerization of Sodium 4-Styrenesulfonate. Macromolecules, 2004, 37, 3965-3967.		2.2	209
195	Probing Electronic Transitions in Individual Carbon Nanotubes by Rayleigh Scattering. S 306, 1540-1543.	science, 2004,	6.0	228
196	Photoluminescence from an individual single-walled carbon nanotube. Physical Review	В, 2004, 69, .	1.1	158
197	Temperature-dependent photoluminescence from single-walled carbon nanotubes. Phy 2004, 70, .	sical Review B,	1.1	104
198	Selection Rules for Helicate Ligand Component Self-Assembly:  Steric, pH, Charge, Journal of the American Chemical Society, 2004, 126, 16538-16543.	and Solvent Effects.	6.6	79
199	Optical Trapping of Single-Walled Carbon Nanotubes. Nano Letters, 2004, 4, 1415-141	.9.	4.5	121
200	Dissolution of Pristine Single Walled Carbon Nanotubes in Superacids by Direct Proton of Physical Chemistry B, 2004, 108, 8794-8798.	ation. Journal	1.2	262
201	Preparation and Characterization of Individual Peptide-Wrapped Single-Walled Carbon Journal of the American Chemical Society, 2004, 126, 7222-7227.	Nanotubes.	6.6	268
202	Debundling and Dissolution of Single-Walled Carbon Nanotubes in Amide Solvents. Jou American Chemical Society, 2004, 126, 6095-6105.	rnal of the	6.6	405
203	Concomitant Length and Diameter Separation of Single-Walled Carbon Nanotubes. Jou American Chemical Society, 2004, 126, 14567-14573.	rnal of the	6.6	226
204	Long and Oriented Single-Walled Carbon Nanotubes Grown by Ethanol Chemical Vapor Journal of Physical Chemistry B, 2004, 108, 16451-16456.	Deposition.	1.2	138

#	Article	IF	CITATIONS
205	In Situ Measurements of Nanotube Dimensions in Suspensions by Depolarized Dynamic Light Scattering. Langmuir, 2004, 20, 10367-10370.	1.6	197
206	Fabrication of discrete carbon nanotube based nano-scaled force sensors. , 0, , .		14
207	Laboratory Assessment of the Mobility of Nanomaterials in Porous Media. Environmental Science & Technology, 2004, 38, 5164-5169.	4.6	480
208	Comparative study of the optical properties of single-walled carbon nanotubes within orthogonal and nonorthogonal tight-binding models. Physical Review B, 2004, 70, .	1.1	159
209	Electron-Electron Interaction Effects on the Optical Excitations of Semiconducting Single-Walled Carbon Nanotubes. Physical Review Letters, 2004, 93, 157402.	2.9	297
210	Processing carbon nanotubes with holographic optical tweezers. Optics Express, 2004, 12, 1978.	1.7	106
211	Chirality Distribution and Transition Energies of Carbon Nanotubes. Physical Review Letters, 2004, 93, 177401.	2.9	339
212	UNUSUAL PROPERTIES AND STRUCTURE OF CARBON NANOTUBES. Annual Review of Materials Research, 2004, 34, 247-278.	4.3	438
213	Assembly of Well-Aligned Multiwalled Carbon Nanotubes in Confined Polyacrylonitrile Environments:Â Electrospun Composite Nanofiber Sheets. Journal of the American Chemical Society, 2004, 126, 15754-15761.	6.6	358
214	Near-infrared resonance Raman excitation profile studies of single-walled carbon nanotube intertube interactions: A direct comparison of bundled and individually dispersedHiPconanotubes. Physical Review B, 2004, 69, .	1.1	162
215	Surface Conductance Induced Dielectrophoresis of Semiconducting Single-Walled Carbon Nanotubes. Nano Letters, 2004, 4, 1395-1399.	4.5	213
216	Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Physical Review B, 2004, 69, .	1.1	972
217	Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy: Environment and Temperature Effects. Physical Review Letters, 2004, 93, 147406.	2.9	567
218	Matrix-Imposed Stress-Induced Shifts in the Photoluminescence of Single-Walled Carbon Nanotubes at Low Temperatures. Nano Letters, 2004, 4, 2349-2354.	4.5	47
219	Functionalization of Single-Walled Carbon Nanotubes with Polystyrene via Grafting to and Grafting from Methods. Macromolecules, 2004, 37, 752-757.	2.2	338
220	Generic Approach for Dispersing Single-Walled Carbon Nanotubes:Â The Strength of a Weak Interaction. Langmuir, 2004, 20, 6085-6088.	1.6	187
221	Powder-based fabrication techniques for single-wall carbon nanotube circuits. , 0, , .		1
222	Ultrafast Relaxation Dynamics of Photoexcited Carriers in Metallic and Semiconducting Single-walled Carbon Nanotubes. Journal of the Physical Society of Japan, 2004, 73, 3479-3483.	0.7	23

#	Article	IF	CITATIONS
225	Metallic/Semiconducting Nanotube Separation and Ultra-thin, Transparent Nanotube Films. AIP Conference Proceedings, 2004, , .	0.3	5
226	Carbon nanotube photo-physics. , 2005, 6008, 22.		0
227	Effect of removal and change of surfactant upon the photoluminescence of carbon nanotubes. , 2005, 5929, 169.		0
228	Applications of Carbon Nanotubes in Biotechnology and Biomedicine. Journal of Biomedical Nanotechnology, 2005, 1, 3-17.	0.5	242
229	Effect of solvent and dispersant on the bundle dissociation of single-walled carbon nanotube. , 2005, , .		3
230	Fluorescence concentration studies of HiPco SWNTs and semi-conjugated polymers. Proceedings of SPIE, 2005, , .	0.8	0
231	Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Progress in Polymer Science, 2005, 30, 294-324.	11.8	970
232	An explanation of dispersion states of single-walled carbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. Journal of Colloid and Interface Science, 2005, 286, 216-223.	5.0	274
233	Iron nanoparticles in carbon nanotubes at various temperatures. Journal of Crystal Growth, 2005, 276, 594-605.	0.7	46
234	Recent advances in carbon nanotube photophysics. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 29, 443-446.	1.3	12
235	Soluble carbon nanotube ensembles for light-induced electron transfer interactions. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 29, 546-550.	1.3	31
236	Magneto-optical spectroscopy of carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 29, 469-474.	1.3	9
237	Raman spectroscopy of carbon nanotubes. Physics Reports, 2005, 409, 47-99.	10.3	3,709
238	Polymers and carbon nanotubes—dimensionality, interactions and nanotechnology. Polymer, 2005, 46, 7803-7818.	1.8	276
239	Poly(N-vinyl carbazole)-functionalized single-walled carbon nanotubes: Synthesis, characterization, and nanocomposite thin films. Polymer, 2005, 46, 8634-8640.	1.8	48
240	Hierarchical morphology of carbon single-walled nanotubes during sonication in an aliphatic diamine. Polymer, 2005, 46, 10854-10865.	1.8	67
241	Carbon nanotubes for power applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 116, 233-243.	1.7	169
242	Sonication-induced changes in chiral distribution: A complication in the use of single-walled carbon nanotube fluorescence for determining species distribution. Carbon, 2005, 43, 651-653.	5.4	104

		CITATION REP	ORT	
#	Article		IF	CITATIONS
243	A facile and rapid purification method for single-walled carbon nanotubes. Carbon, 2005, 43	, 660-662.	5.4	39
244	Magnetic separation of Fe catalyst from single-walled carbon nanotubes in an aqueous surfa solution. Carbon, 2005, 43, 1151-1155.	ctant	5.4	27
245	Spectroscopic study on the centrifugal fractionation of soluble single-walled carbon nanotul Carbon, 2005, 43, 2750-2759.	jes.	5.4	19
246	Solubility of Mo6S4.5I4.5 nanowires. Chemical Physics Letters, 2005, 401, 13-18.		1.2	55
247	Band gap sensitivity of bromine adsorption at carbon nanotubes. Chemical Physics Letters, 2 135-139.	2005, 403,	1.2	30
248	Structural identification of single and double-walled carbon nanotubes by high-resolution transmission electron microscopy. Chemical Physics Letters, 2005, 412, 116-120.		1.2	37
249	Quantitative characterization of surface adsorption sites of carbon nanofibers by in-situ fluorescence measurement using 1-naphthol. Chemical Physics Letters, 2005, 412, 223-227		1.2	12
250	Preparation of Pt nanoparticles on carbon nanotubes and graphite nanofibers via self-regular reduction of surfactants and their application as electrochemical catalyst. Electrochemistry Communications, 2005, 7, 453-458.		2.3	61
251	Electrochemical potential control of isolated single-walled carbon nanotubes on gold electro Electrochimica Acta, 2005, 50, 3069-3075.	ıde.	2.6	41
252	Single-Wall Carbon Nanotube Nanobomb Agents for Killing Breast Cancer Cells. Nanobiotec 2005, 1, 133-140.	nnology,	1.2	82
253	Anisotropy of Sheared Carbon-Nanotube Suspensions. Physical Review Letters, 2005, 95, 03	8304.	2.9	51
254	Noncovalent Functionalization of Single-Walled Carbon Nanotubes with Water-Soluble Porp Journal of Physical Chemistry B, 2005, 109, 7605-7609.	hyrins.	1.2	180
255	The Optical Resonances in Carbon Nanotubes Arise from Excitons. Science, 2005, 308, 838-	841.	6.0	1,114
256	Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Physica B, 2005, 72, .	I Review	1.1	441
257	Theory of Electronic States and Transport in Carbon Nanotubes. Journal of the Physical Socie Japan, 2005, 74, 777-817.	ty of	0.7	807
258	Visible Luminescence of Carbon Nanotubes and Dependence on Functionalization. Journal o Chemistry B, 2005, 109, 14779-14782.	f Physical	1.2	115
259	Versatile Visualization of Individual Single-Walled Carbon Nanotubes with Near-Infrared Fluorescence Microscopy. Nano Letters, 2005, 5, 975-979.		4.5	140
260	Femtosecond dynamics of excitations and electron-electron interactions in single-wall carbo nanotubes. Doklady Physics, 2005, 50, 12-17.	n	0.2	1

#	Article	IF	Citations
	Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra. Nature		
261	Materials, 2005, 4, 412-418.	13.3	290
262	Diameter-selective encapsulation of metallocenes in single-walled carbon nanotubes. Nature Materials, 2005, 4, 481-485.	13.3	245
263	Developing implantable optical biosensors. Trends in Biotechnology, 2005, 23, 440-444.	4.9	37
264	Isolated Nanoribbons of Carbon Nanotubes and Peapods. ChemPhysChem, 2005, 6, 426-430.	1.0	9
265	Single Carbon Nanotube Optical Spectroscopy. ChemPhysChem, 2005, 6, 577-582.	1.0	82
266	Single-Walled Carbon Nanotube Dispersions in Poly(ethylene oxide). Advanced Functional Materials, 2005, 15, 1832-1838.	7.8	173
267	Recovered Bandgap Absorption of Single-Walled Carbon Nanotubes in Acetone and Alcohols. Advanced Materials, 2005, 17, 147-150.	11.1	9
268	Soluble Self-Aligned Carbon Nanotube/Polyaniline Composites. Advanced Materials, 2005, 17, 278-281.	11.1	171
269	Achieving Individual-Nanotube Dispersion at High Loading in Single-Walled Carbon Nanotube Composites. Advanced Materials, 2005, 17, 980-984.	11.1	92
270	Single-Walled Carbon Nanotube Spectroscopy in Live Cells: Towards Long-Term Labels and Optical Sensors. Advanced Materials, 2005, 17, 2793-2799.	11.1	502
271	Separation Techniques for Carbon Nanotubes. Advanced Engineering Materials, 2005, 7, 111-116.	1.6	62
272	A correlated method for quantifying mixed and dispersed carbon nanotubes: analysis of the Raman band intensities and evidence of wavenumber shift. Journal of Raman Spectroscopy, 2005, 36, 400-408.	1.2	42
273	Electronic and vibrational properties of chemically modified single-wall carbon nanotubes. Surface Science Reports, 2005, 58, 1-1.	3.8	177
274	Linear and non-linear optical transmission from multi-walled carbon nanotubes. Journal of Materials Science, 2005, 40, 4185-4188.	1.7	1
275	Bioapplication of nanosemiconductors. Materials Today, 2005, 8, 20-31.	8.3	58
276	Single-Walled Carbon Nanotubes Under the Influence of Dynamic Coordination and Supramolecular Chemistry. Small, 2005, 1, 452-461.	5.2	89
277	Chemically Functionalized Carbon Nanotubes. Small, 2005, 1, 180-192.	5.2	1,520
278	Dispersable Carbon Nanotube/Gold Nanohybrids: Evidence for Strong Electronic Interactions. Small, 2005, 1, 527-530.	5.2	100

ARTICLE IF CITATIONS # Nanotube Network Transistors from Peptide-Wrapped Single-Walled Carbon Nanotubes. Small, 2005, 1, 279 5.2 22 820-823. Direct Electrochemistry of Redox Proteins and Enzymes Promoted by Carbon Nanotubes. Sensors, 2.1 2005, 5, 220-234. Photoresponse of Carbon Nanotube Field-Effect Transistors. Japanese Journal of Applied Physics, 2005, 281 0.8 15 44, 1592-1595. Microwave Irradiation for Chemical Modification of Carbon Nanotubes for Better Dispersion. 0.8 Japanese Journal of Applied Physics, 2005, 44, 465-468. Modulating Single Walled Carbon Nanotube Fluorescence in Response to Specific Molecular 283 0.3 3 Adsorption. AIP Conference Proceedings, 2005, , . Effect of Solvents and Dispersants on the Bundle Dissociation of Single-walled Carbon Nanotube. AIP 284 0.3 Conference Proceedings, 2005, , . 285 Dissolution Douce of Single Walled Carbon Nanotubes. AIP Conference Proceedings, 2005, , . 0.3 4 Near-infrared photoconductive and photovoltaic devices using single-wall carbon nanotubes in 1.1 286 conductive polymer films. Journal of Applied Physics, 2005, 98, 084314. Effects of Dielectrophoretic Parameters on Fabrication and Electronic Properties of Single-Walled 287 0.1 0 Carbon Nanotube Devices. Materials Research Society Symposia Proceedings, 2005, 901, 1. Ab initiostudy of curvature effects on the physical properties of the Xe-doped nanotubes and 288 nanoropes. Journal of Physics Condensed Matter, 2005, 17, 2085-2110. Characterisation of Single-walled Carbon Nanotube Bundle Dissociation in Amide Solvents. AIP 289 0.3 1 Conference Proceedings, 2005, , . Isolation of Carbon Nanostructures. AIP Conference Proceedings, 2005, , . 0.3 High-yield DNA-templated assembly of surfactant-wrapped carbon nanotubes. Nanotechnology, 2005, 291 1.3 13 16, 2238-2241. Low-temperature, photoluminescence-excitation spectroscopy of individual carbon nanotubes., 0, , . Investigation of single-walled carbon nanotube growth parameters using alcohol catalytic chemical 293 1.3 58 vapour deposition. Nanotechnology, 2005, 16, 2153-2163. Nano electromechanical transducer based on single walled carbon nanotubes., 0,,. 294 Fluid structure and transport properties of water inside carbon nanotubes. Journal of Chemical 295 1.2 136 Physics, 2005, 123, 234701. Effects of oxygen on the electron transport properties of carbon nanotubes: Ultraviolet desorption 1.1 and thermally induced processes. Physical Review B, 2005, 71, .

#	Article	IF	CITATIONS
297	Density matrix renormalization group study of conjugated polymers with transverseï€-conjugation. Physical Review B, 2005, 72, .	1.1	3
298	Exfoliation of single-wall carbon nanotubes in aqueous surfactant suspensions: A Raman study. Physical Review B, 2005, 71, .	1.1	49
299	Stochastic models of carrier dynamics in single-walled carbon nanotubes. Physical Review B, 2005, 72,	1.1	28
300	Correlation effects for semiconducting single-wall carbon nanotubes: A density matrix renormalization group study. Physical Review B, 2005, 72, .	1.1	4
301	Modeling Surfactant Adsorption on Hydrophobic Surfaces. Physical Review Letters, 2005, 94, 228301.	2.9	33
302	Quantum interferences in the Raman cross section for the radial breathing mode in metallic carbon nanotubes. Physical Review B, 2005, 71, .	1.1	21
303	Environmental effects on the carrier dynamics in carbon nanotubes. Physical Review B, 2005, 72, .	1.1	14
304	Ultrafast photoresponse of metallic and semiconducting single-wall carbon nanotubes. Physical Review B, 2005, 71, .	1.1	26
305	Analysis of photoluminescence from solubilized single-walled carbon nanotubes. Physical Review B, 2005, 71, .	1.1	95
306	Intensity of the resonance Raman excitation spectra of single-wall carbon nanotubes. Physical Review B, 2005, 71, .	1.1	75
307	Highly polarized absorption and photoluminescence of stretch-aligned single-wall carbon nanotubes dispersed in gelatin films. Applied Physics Letters, 2005, 86, 073103.	1.5	84
308	Stability of High-Density One-Dimensional Excitons in Carbon Nanotubes under High Laser Excitation. Physical Review Letters, 2005, 94, 097401.	2.9	60
309	Femtosecond Spectroscopy of Optical Excitations in Single-Walled Carbon Nanotubes: Evidence for Exciton-Exciton Annihilation. Physical Review Letters, 2005, 94, 157402.	2.9	214
310	Single Carbon Nanotubes Probed by Photoluminescence Excitation Spectroscopy: The Role of Phonon-Assisted Transitions. Physical Review Letters, 2005, 94, 127403.	2.9	81
311	Exponential Decay Lifetimes of Excitons in Individual Single-Walled Carbon Nanotubes. Physical Review Letters, 2005, 95, 197401.	2.9	203
312	Strain-Induced Interference Effects on the Resonance Raman Cross Section of Carbon Nanotubes. Physical Review Letters, 2005, 95, 217403.	2.9	61
313	Direct Experimental Evidence of Exciton-Phonon Bound States in Carbon Nanotubes. Physical Review Letters, 2005, 95, 247401.	2.9	101
314	Phonon-Assisted Excitonic Recombination Channels Observed in DNA-Wrapped Carbon Nanotubes Using Photoluminescence Spectroscopy. Physical Review Letters, 2005, 94, 127402.	2.9	110

ARTICLE IF CITATIONS # First-principles approach for the calculation of optical properties of one-dimensional systems with 315 1.1 33 helical symmetry: The case of carbon nanotubes. Physical Review B, 2005, 72, . Exciton dynamics in single-walled nanotubes:â€∱Transient photoinduced dichroism and polarized 1.1 44 emission. Physical Review B, 2005, 71, . Strong visible light emission from well-aligned multiwalled carbon nanotube films under infrared 317 1.5 14 laser irradiation. Applied Physics Letters, 2005, 87, 173114. Photoexcited electron relaxation processes in single-wall carbon nanotubes. Physical Review B, 2005, 1.1 Photoluminescence intermittency in an individual single-walled carbon nanotube at room 319 1.5 52 temperature. Applied Physics Letters, 2005, 86, 123116. Excited-state carrier lifetime in single-walled carbon nanotubes. Physical Review B, 2005, 71, . 1.1 Band-Gap Shift Transition in the Photoluminescence of Single-Walled Carbon Nanotubes. Physical 321 2.9 62 Review Letters, 2005, 94, . Intersubband Exciton Relaxation Dynamics in Single-Walled Carbon Nanotubes. Physical Review 2.9 Letters, 2005, 94, 207401. 323 Cutting lines near the Fermi energy of single-wall carbon nanotubes. Physical Review B, 2005, 72, . 1.1 48 Temperature Dependence of the Band Gap of Semiconducting Carbon Nanotubes. Physical Review 324 Letters, 2005, 94, 036801. Reversible surface functionalization of carbon nanotubes for fabrication of field-effect transistors. 325 1.5 18 Applied Physics Letters, 2005, 87, 043110. Influence of catalyst metal particles on the hydrogen sorption of single-walled carbon nanotube 1.3 materials. Nanotechnology, 2005, 16, 512-517. SOLUBLE CARBON NANOTUBES: FUNDAMENTALS AND APPLICATIONS. International Journal of 327 0.4 98 Nanoscience, 2005, 04, 119-137. AB-INITIO STUDY OF VARIOUS PROPERTIES OF SMALL DIAMETER ARMCHAIR CARBON NANOTUBES. 0.4 International Journal of Nanoscience, 2005, 04, 295-303. Chirality Characterization of Dispersed Single Wall Carbon Nanotubes. Materials Research Society 331 0 0.1 Symposia Proceedings, 2005, 872, 1. Individual single wall carbon nanotube photonics., 0,,. 333 Probing electron dynamics in single-wall carbon nanotubes., 0, , . 0 Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective 334 cancer cell destruction. Proceedings of the National Academy of Sciences of the United States of 3.3 2,169 America, 2005, 102, 11600-11605

#	Article	IF	CITATIONS
335	Separation of Single-Walled Carbon Nanotubes on Silica Gel. Materials Morphology and Raman Excitation Wavelength Affect Data Interpretation. Journal of the American Chemical Society, 2005, 127, 4497-4509.	6.6	101
337	Magic Ring Catenation by Olefin Metathesis. Organic Letters, 2005, 7, 2129-2132.	2.4	148
338	Nanoparticle-induced platelet aggregation and vascular thrombosis. British Journal of Pharmacology, 2005, 146, 882-893.	2.7	546
339	Attachment of Magnetic Nanoparticles on Carbon Nanotubes and Their Soluble Derivatives. Chemistry of Materials, 2005, 17, 1613-1617.	3.2	225
340	Enrichment of Single-Walled Carbon Nanotubes by Diameter in Density Gradients. Nano Letters, 2005, 5, 713-718.	4.5	496
341	Functional Single-Wall Carbon Nanotube NanohybridsAssociating SWNTs with Water-Soluble Enzyme Model Systems. Journal of the American Chemical Society, 2005, 127, 9830-9838.	6.6	186
342	Optical Transitions in Single-Wall Boron Nitride Nanotubes. Physical Review Letters, 2005, 94, 037405.	2.9	178
343	Lateral growth of single-walled carbon nanotubes across electrodes and the electrical property characterization. Diamond and Related Materials, 2005, 14, 1852-1856.	1.8	25
344	Manipulation of single walled carbon nanotube droplets. , 0, , .		0
345	LPD silica coating of individual single walled carbon nanotubes. Journal of Materials Chemistry, 2005, 15, 4678.	6.7	32
346	Femtosecond transient absorption spectroscopy of single-walled carbon nanotubes in aqueous surfactant suspensions: Determination of the lifetime of the lowest excited state. Physical Chemistry Chemical Physics, 2005, 7, 512.	1.3	22
347	Coating single-walled carbon nanotubes with cadmium chalcogenides. Journal of Materials Chemistry, 2005, 15, 4346.	6.7	25
348	Biexcitons in Carbon Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2005, 13, 33-39.	1.0	1
349	Reply to "Comment on â€~Using the Selective Functionalization of Metallic Single-Walled Carbon Nanotubes to Control Dielectrophoretic Mobility'â€: Journal of Physical Chemistry B, 2005, 109, 17016-17018.	1.2	4
350	Controlled Switching of Optical Emission Energies in Semiconducting Single-Walled Carbon Nanotubes. Nano Letters, 2005, 5, 1135-1138.	4.5	19
351	Metathesis Reaction of Formaldehyde Acetals:Â An Easy Entry into the Dynamic Covalent Chemistry of Cyclophane Formation. Journal of the American Chemical Society, 2005, 127, 13666-13671.	6.6	117
352	Photoluminescence Mapping of "As-Grown―Single-Walled Carbon Nanotubes: A Comparison with Micelle-Encapsulated Nanotube Solutions. Nano Letters, 2005, 5, 2618-2623.	4.5	68
353	Ultrafast Dynamics of Single-Walled Carbon Nanotubes Dispersed in Polymer Films. Journal of Physical Chemistry A, 2005, 109, 289-292.	1.1	21

#	Article	IF	CITATIONS
354	Reversible Radical Ring-Crossover Polymerization of an Alkoxyamine-Containing Dynamic Covalent Macrocycle. Macromolecules, 2005, 38, 6316-6320.	2.2	82
355	Nanoscale Optical Imaging of Excitons in Single-Walled Carbon Nanotubes. Nano Letters, 2005, 5, 2310-2313.	4.5	100
356	Opening Mechanism of Internal Nanoporosity of Single-Wall Carbon Nanohorn. Journal of Physical Chemistry B, 2005, 109, 14319-14324.	1.2	130
357	Functional One-Dimensional Lipid Bilayers on Carbon Nanotube Templates. Journal of the American Chemical Society, 2005, 127, 7538-7542.	6.6	58
358	Diastereoselective Amplification of an Induced-Fit Receptor from a Dynamic Combinatorial Library. Journal of the American Chemical Society, 2005, 127, 8902-8903.	6.6	122
359	Dispersion of Single-Walled Carbon Nanotubes of Narrow Diameter Distribution. Journal of Physical Chemistry B, 2005, 109, 14454-14460.	1.2	254
360	Raman Spectroscopy of Individual Single-Walled Carbon Nanotubes from Various Sources. Journal of Physical Chemistry B, 2005, 109, 10567-10573.	1.2	133
361	Dispersing Nanotubes with Surfactants:Â A Microscopic Statistical Mechanical Analysis. Journal of the American Chemical Society, 2005, 127, 14124-14125.	6.6	41
362	Microscopy and Spectroscopy of Interactions between Metallopolymers and Carbon Nanotubes. Journal of Physical Chemistry B, 2005, 109, 13205-13209.	1.2	13
363	Water-Soluble Full-Length Single-Wall Carbon Nanotube Polyelectrolytes:Â Preparation and Characterization. Journal of Physical Chemistry B, 2005, 109, 8634-8642.	1.2	152
364	Stability and Signatures of Biexcitons in Carbon Nanotubes. Nano Letters, 2005, 5, 291-294.	4.5	63
365	Colloidal Particles Coated and Stabilized by DNA-Wrapped Carbon Nanotubes. Langmuir, 2005, 21, 10284-10287.	1.6	51
366	Inclusion of Cut and As-Grown Single-Walled Carbon Nanotubes in the Helical Superstructure of Schizophyllan and Curdlan (β-1,3-Glucans). Journal of the American Chemical Society, 2005, 127, 5875-5884.	6.6	225
367	Fabrication of Carbon Nanotubeâ^'Moleculeâ^'Silicon Junctions. Journal of the American Chemical Society, 2005, 127, 8918-8919.	6.6	74
368	Solubility of Mo6S4.5I4.5Nanowires in Common Solvents:Â A Sedimentation Study. Journal of Physical Chemistry B, 2005, 109, 7124-7133.	1.2	105
369	Polymer-Assisted Dispersion of Single-Walled Carbon Nanotubes in Alcohols and Applicability toward Carbon Nanotube/Solâ^'Gel Composite Formation. Langmuir, 2005, 21, 1055-1061.	1.6	81
370	Exciton Binding Energy in Semiconducting Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2005, 109, 15671-15674.	1.2	110
371	Supramolecular Conjugates of Carbon Nanotubes and DNA by a Solid-State Reaction. Biomacromolecules, 2005, 6, 2919-2922.	2.6	62

#	Article	IF	CITATIONS
372	Aggregation Effects on the Raman Spectroscopy of Dielectrophoretically Deposited Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2005, 109, 20276-20280.	1.2	40
373	Photoconductivity Spectra of Single-Carbon Nanotubes:  Implications on the Nature of Their Excited States. Nano Letters, 2005, 5, 749-752.	4.5	143
374	Optically Sensing Additional Sonication Effects on Dispersed HiPco Nanotubes in Aerated Water. Journal of Physical Chemistry B, 2005, 109, 7778-7780.	1.2	28
375	Isolating Single-Wall Carbon Nanohorns as Small Aggregates through a Dispersion Method. Journal of Physical Chemistry B, 2005, 109, 22201-22204.	1.2	45
376	Influence of structure on the optical limiting properties of nanotubes. Optics Letters, 2005, 30, 1509.	1.7	46
377	Visualization of Individual Single-Walled Carbon Nanotubes by Fluorescent Polymer Wrapping. Nano Letters, 2005, 5, 1563-1567.	4.5	89
378	Excitons in semiconducting single-walled carbon nanotubes. Synthetic Metals, 2005, 155, 250-253.	2.1	7
379	Ultrafast exciton dynamics in isolated single-walled nanotubes. Synthetic Metals, 2005, 155, 254-257.	2.1	5
380	Resonance Raman spectroscopy(n,m)-dependent effects in small-diameter single-wall carbon nanotubes. Physical Review B, 2005, 71, .	1.1	225
381	Controlled Multistep Purification of Single-Walled Carbon Nanotubes. Nano Letters, 2005, 5, 163-168.	4.5	130
382	Effect of SOCl2 Treatment on Electrical and Mechanical Properties of Single-Wall Carbon Nanotube Networks. Journal of the American Chemical Society, 2005, 127, 5125-5131.	6.6	330
383	Dielectrophoretically Controlled Fabrication of Single-Crystal Nickel Silicide Nanowire Interconnects. Nano Letters, 2005, 5, 2112-2115.	4.5	116
384	Controlled Functionalization of Multiwalled Carbon Nanotubes with Various Molecular-Weight Poly(l-lactic acid). Journal of Physical Chemistry B, 2005, 109, 22237-22243.	1.2	157
385	Floating-Potential Dielectrophoresis-Controlled Fabrication of Single-Carbon-Nanotube Transistors and Their Electrical Properties. Journal of Physical Chemistry B, 2005, 109, 13148-13153.	1.2	58
386	Evidence for a Two-Step Mechanism in Electronically Selective Single-Walled Carbon Nanotube Reactions. Journal of the American Chemical Society, 2005, 127, 16129-16135.	6.6	136
387	Optical manifestations of the condensation of topological defects in continuous layer multishell carbon nanoparticles. Physical Review B, 2005, 71, .	1.1	7
388	Single-Walled Carbon Nanotube Purification, Pelletization, and Surfactant-Assisted Dispersion:Â A Combined TEM and Resonant Micro-Raman Spectroscopy Study. Journal of Physical Chemistry B, 2005, 109, 4455-4463.	1.2	70
389	Tailoring Aqueous Solubility of Functionalized Single-Wall Carbon Nanotubes over a Wide pH Range through Substituent Chain Length. Nano Letters, 2005, 5, 2001-2004.	4.5	69

#	Article	IF	CITATIONS
390	Alignment of Carbon Nanotubes under Low Magnetic Fields through Attachment of Magnetic Nanoparticles. Journal of Physical Chemistry B, 2005, 109, 19060-19063.	1.2	315
391	Dispersion of Nitric Acid-Treated SWNTs in Organic Solvents and Solvent Mixtures. Journal of Physical Chemistry B, 2005, 109, 17128-17133.	1.2	56
392	Helical Superstructures of Fullerene Peapods and Empty Single-Walled Carbon Nanotubes Formed in Water. Journal of Physical Chemistry B, 2005, 109, 13076-13082.	1.2	50
393	Light emitting diodes of fully conjugated heterocyclic aromatic rigid-rod polymer doped with multi-wall carbon nanotubes. Nanotechnology, 2005, 16, 1406-1410.	1.3	31
394	Alternating current dielectrophoresis of carbon nanotubes. Journal of Applied Physics, 2005, 98, 056103.	1.1	37
395	Radiative Lifetime of Excitons in Carbon Nanotubes. Nano Letters, 2005, 5, 2495-2499.	4.5	249
396	In Vivo Fluorescence Detection of Glucose Using a Single-Walled Carbon Nanotube Optical Sensor:Â Design, Fluorophore Properties, Advantages, and Disadvantages. Analytical Chemistry, 2005, 77, 7556-7562.	3.2	250
397	Spectroscopy of Single- and Double-Wall Carbon Nanotubes in Different Environments. Nano Letters, 2005, 5, 511-514.	4.5	199
398	TRANSPORT SPECTROSCOPY OF CHEMICAL NANOSTRUCTURES: The Case of Metallic Single-Walled Carbon Nanotubes. Annual Review of Physical Chemistry, 2005, 56, 475-490.	4.8	11
399	Functionalization of Carbon Nanotubes with Derivatized Polyimide. Macromolecules, 2005, 38, 7670-7675.	2.2	85
400	Disulfide Exchange in Hydrogen-Bonded Cyclic Assemblies:  Stereochemical Self-Selection by Double Dynamic Chemistry. Journal of Organic Chemistry, 2005, 70, 5799-5803.	1.7	42
401	Importance of Aromatic Content for Peptide/Single-Walled Carbon Nanotube Interactions. Journal of the American Chemical Society, 2005, 127, 12323-12328.	6.6	176
402	Encapsulation of Carbon Nanotubes by Self-Assembling Peptide Amphiphiles. Langmuir, 2005, 21, 4705-4709.	1.6	139
403	Theory andAbÂlnitioCalculation of Radiative Lifetime of Excitons in Semiconducting Carbon Nanotubes. Physical Review Letters, 2005, 95, 247402.	2.9	295
404	Biomimetic Assemblies of Carbon Nanostructures for Photochemical Energy Conversion. Journal of Physical Chemistry B, 2005, 109, 11432-11441.	1.2	118
405	Carbon Nanotube Electronics and Optoelectronics. Nanoscience and Technology, 2005, , 227-251.	1.5	16
406	Apparent Two-Dimensional Behavior of TiO2Nanotubes Revealed by Light Absorption and Luminescence. Journal of Physical Chemistry B, 2005, 109, 8565-8569.	1.2	124
407	Purity Assessment of Single-Wall Carbon Nanotubes, Using Optical Absorption Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 9952-9965.	1.2	157

#	ARTICLE Comparative study of photoluminescence of single-walled carbon nanotubes wrapped with sodium	IF 1.3	Citations
409	dodecyl sulfate, surfactin and polyvinylpyrrolidone. Nanotechnology, 2005, 16, S2O2-S2O5. CVD Growth of Single-Walled Carbon Nanotubes with Narrow Diameter Distribution over Fe/MgO Catalyst and Their Fluorescence Spectroscopy. Journal of Physical Chemistry B, 2005, 109, 10035-10041.	1.2	125
410	Recoverable Solution Reaction of HiPco Carbon Nanotubes with Hydrogen Peroxide. Journal of Physical Chemistry B, 2005, 109, 21634-21639.	1.2	66
411	Effect of Exciton-Phonon Coupling in the Calculated Optical Absorption of Carbon Nanotubes. Physical Review Letters, 2005, 94, 027402.	2.9	180
412	Carbon nanotubes as templates for one-dimensional nanoparticle assemblies. Journal of Materials Chemistry, 2006, 16, 22-25.	6.7	152
413	Dispersion of Pristine Single-walled Carbon Nanotubes in Water by a Thiolated Organosilane:Â Application in Supramolecular Nanoassemblies. Journal of Physical Chemistry B, 2006, 110, 13685-13688.	1.2	19
414	Photoluminescence Imaging of Suspended Single-Walled Carbon Nanotubes. Nano Letters, 2006, 6, 1603-1608.	4.5	197
415	Detection of DNA Hybridization Using the Near-Infrared Band-Gap Fluorescence of Single-Walled Carbon Nanotubes. Nano Letters, 2006, 6, 371-375.	4.5	304
416	Highly Exfoliated Water-Soluble Single-Walled Carbon Nanotubes. Chemistry of Materials, 2006, 18, 1520-1524.	3.2	75
417	Exciton absorption of perpendicularly polarized light in carbon nanotubes. Physical Review B, 2006, 74, .	1.1	89
418	Raman Scattering in Carbon Nanotubes. , 2006, , 115-234.		68
419	Interaction of fragmented double-stranded DNA with carbon nanotubes in aqueous solution. Molecular Physics, 2006, 104, 3193-3201.	0.8	40
420	A Biomimetic "Polysoap―for Single-Walled Carbon Nanotube Dispersion. Journal of the American Chemical Society, 2006, 128, 6556-6557.	6.6	80
421	Photoluminescence from Intertube Carrier Migration in Single-Walled Carbon Nanotube Bundles. Nano Letters, 2006, 6, 2864-2867.	4.5	96
422	Solubilization, purification and functionalization of carbon nanotubes using polyoxometalate. Nanotechnology, 2006, 17, 1589-1593.	1.3	58
423	Optical Detection of DNA Conformational Polymorphism on Single-Walled Carbon Nanotubes. Science, 2006, 311, 508-511.	6.0	480
424	Diffusion plasma chemical vapour deposition yielding freestanding individual single-walled carbon nanotubes on a silicon-based flat substrate. Nanotechnology, 2006, 17, 2223-2226.	1.3	36
425	Tunable Resonant Raman Scattering From Singly Resonant Single Wall Carbon Nanotubes. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1083-1090.	1.9	11

ARTICLE IF CITATIONS # Ion transport and electrochemical tuning of Fermi level in single-wall carbon nanotube probed by in 426 1.1 13 situ Raman scattering. Journal of Applied Physics, 2006, 100, 083711. Fabrication of discrete nanoscaled force sensors based on single-walled carbon nanotubes. IEEE 427 2.4 Sensors Journal, 2006, 6, 613-617. Characterization of Carbonaceous Impurity Level in As-Produced Single-Walled Carbon Nanotubes by 428 1 Using Solution-Phase Spectrophotometry., 2006, , . Charge dynamics in transparent single-walled carbon nanotube films from optical transmission 429 1.1 108 measurements. Physical Review B, 2006, 74, . Quantized Bimolecular Auger Recombination of Excitons in Single-Walled Carbon Nanotubes. Physical 431 2.9 113 Review Letters, 2006, 96, 057407. Temperature effects on femtosecond transient absorption kinetics of semiconducting single-walled 1.3 carbon nanotubes. Physical Chemistry Chemical Physics, 2006, 8, 5689. Temperature induced restoration of fluorescence from oxidised single-walled carbon nanotubes in 433 1.3 37 aqueous sodium dodecylsulfate solution. Physical Chemistry Chemical Physics, 2006, 8, 3547. Utilizing polymers for shaping the interfacial behavior of carbon nanotubes. Soft Matter, 2006, 2, 434 1.2 47 24-28. Highly Dispersed Pt Catalysts on Single-Walled Carbon Nanotubes and Their Role in Methanol 435 1.2 165 Oxidátion. Journal of Physical Chemistry B, 2006, 110, 16185-16188. Sequence-Independent Helical Wrapping of Single-Walled Carbon Nanotubes by Long Genomic DNA. 4.5 166 Nano Letters, 2006, 6, 159-164. Carbon Nanotubes: A Review of Their Properties in Relation to Pulmonary Toxicology and Workplace 437 1.039 1.4 Safety. Toxicological Sciences, 2006, 92, 5-22. Nanotube Molecular Probes: DNA Hybridization using Single Walled Carbon Nanotubes as Biomarkers. Selective Oxidation of Semiconducting Single-Wall Carbon Nanotubes by Hydrogen Peroxide. Journal 439 1.2 190 of Physical Chemistry B, 2006, 110, 25-29. Coating Single-Walled Carbon Nanotubes with Phospholipids. Journal of Physical Chemistry B, 2006, 110, 2475-2478. 440 1.2 146 Interactions between Individual Carbon Nanotubes Studied by Rayleigh Scattering Spectroscopy. 441 2.9 117 Physical Review Letters, 2006, 96, 167401. Structural and optoelectronic properties of C60 rods obtained via a rapid synthesis route. Journal of 443 94 Materials Chemistry, 2006, 16, 3715. A study of the dispersions of metal oxide nanowires in polar solvents. Chemical Physics Letters, 2006, 444 1.2 43 417, 535-539. 445 Exciton-exciton annihilation in single-walled carbon nanotubes. Physical Review B, 2006, 73, . 1.1

#	Article	IF	CITATIONS
446	Template-Directed Synthesis of Mechanically Interlocked Molecular Bundles Using Dynamic Covalent Chemistry. Organic Letters, 2006, 8, 3899-3902.	2.4	87
447	Determination of the Exciton Binding Energy in Single-Walled Carbon Nanotubes. Physical Review Letters, 2006, 96, 047403.	2.9	52
448	Debundling of Single-Walled Nanotubes by Dilution:Â Observation of Large Populations of Individual Nanotubes in Amide Solvent Dispersions. Journal of Physical Chemistry B, 2006, 110, 15708-15718.	1.2	330
449	Uniform Directional Alignment of Single-Walled Carbon Nanotubes in Viscous Polymer Flow. Langmuir, 2006, 22, 1858-1862.	1.6	66
450	Noncovalent interactions of molecules with single walled carbon nanotubes. Chemical Society Reviews, 2006, 35, 637.	18.7	616
451	Synthesis of Oligosubstituted Bullvalones:Â Shapeshifting Molecules Under Basic Conditions. Journal of the American Chemical Society, 2006, 128, 14738-14739.	6.6	46
452	Synthesis of, Light Emission from, and Optical Power Limiting in Soluble Single-Walled Carbon Nanotubes Functionalized by Disubstituted Polyacetylenes. Journal of Physical Chemistry B, 2006, 110, 2302-2309.	1.2	73
453	Charge Transfer from Metallic Single-Walled Carbon Nanotube Sensor Arrays. Journal of Physical Chemistry B, 2006, 110, 11055-11061.	1.2	86
454	Functionalization and applications of carbon nanotubes. , 2006, , 191-234.		0
455	Chapter 2 Predicting Materials and Properties: Theory of the Ground and Excited State. Contemporary Concepts of Condensed Matter Science, 2006, , 9-53.	0.5	8
456	Organized Assemblies of Single Wall Carbon Nanotubes and Porphyrin for Photochemical Solar Cells:Â Charge Injection from Excited Porphyrin into Single-Walled Carbon Nanotubesâ€. Journal of Physical Chemistry B, 2006, 110, 25477-25484.	1.2	180
457	Estimation of the (n,m) Concentration Distribution of Single-Walled Carbon Nanotubes from Photoabsorption Spectra. Analytical Chemistry, 2006, 78, 7689-7696.	3.2	72
458	Poly(acrylic acid)-wrapped multi-walled carbon nanotubes composite solubilization in water: definitive spectroscopic properties. Nanotechnology, 2006, 17, 2845-2849.	1.3	121
459	Triazenes as a Stable Diazonium Source for Use in Functionalizing Carbon Nanotubes in Aqueous Suspensions. Chemistry of Materials, 2006, 18, 2766-2770.	3.2	63
460	Luminescence Polarization Spectroscopy Study of Functionalized Carbon Nanotubes in a Polymeric Matrix. Journal of Physical Chemistry B, 2006, 110, 3001-3006.	1.2	38
461	Chirality-dependent environmental effects in photoluminescence of single-walled carbon nanotubes. Physical Review B, 2006, 73, .	1.1	111
462	Fluorescence from Aromatic Compounds Isolated in the Solid State by Double Intercalation Using Layered Polymer Crystals as the Host Solid. Langmuir, 2006, 22, 1943-1945.	1.6	44
463	Designing Multistep Transformations Using the Hammett Equation:Â Imine Exchange on a Copper(I) Template. Journal of the American Chemical Society, 2006, 128, 9887-9892.	6.6	81

		CITATION RE	PORT	
#	Article		IF	Citations
464	Long-Lived Charged States in Single-Walled Carbon Nanotubes. Nano Letters, 2006, 6,	301-305.	4.5	24
465	Comparative Measures of Single-Wall Carbon Nanotube Dispersion. Journal of Physical 2006, 110, 23801-23805.	Chemistry B,	1.2	90
466	Macroscopic 2D Networks Self-Assembled from Nanometer-Sized Protein/DNA Comple Letters, 2006, 6, 365-370.	xes. Nano	4.5	7
467	Changes in the Fluorescence Spectrum of Individual Single-Wall Carbon Nanotubes Ind Light-Assisted Oxidation with Hydroperoxide. Journal of Physical Chemistry B, 2006, 11	uced by 0, 8935-8940.	1.2	21
468	Alignment of carbon nanotubes on pre-structured silicon by surface acoustic waves. Nanotechnology, 2006, 17, 4529-4532.		1.3	44
469	Dielectrophoresis Field Flow Fractionation of Single-Walled Carbon Nanotubes. Journal American Chemical Society, 2006, 128, 8396-8397.	of the	6.6	94
470	Effects of KI Encapsulation in Single-Walled Carbon Nanotubes by Raman and Optical A Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 13848-13857.	bsorption	1.2	28
471	Cyclization and Catenation Directed by Molecular Self-Assembly. Journal of the America Society, 2006, 128, 11150-11159.	n Chemical	6.6	75
472	Protein-Assisted Solubilization of Single-Walled Carbon Nanotubes. Langmuir, 2006, 22	2, 1392-1395.	1.6	290
473	Kinetics of PL Quenching during Single-Walled Carbon Nanotube Rebundling and Diam Surfactant Interactionsâ€. Journal of Physical Chemistry B, 2006, 110, 25339-25346.	eter-Dependent	1.2	125
474	Functionalization of individual ultra-short single-walled carbon nanotubes. Nanotechno 17, 5033-5037.	logy, 2006,	1.3	49
475	Dispersion and Separation of Small-Diameter Single-Walled Carbon Nanotubes. Journal American Chemical Society, 2006, 128, 12239-12242.	of the	6.6	118
476	Electron-Transfer Reduction of Cup-Stacked Carbon Nanotubes Affording Cup-Shaped Controlled Diameter and Size. Journal of the American Chemical Society, 2006, 128, 14		6.6	50
477	Tailoring (n,m) Structure of Single-Walled Carbon Nanotubes by Modifying Reaction Co the Nature of the Support of CoMo Catalysts. Journal of Physical Chemistry B, 2006, 11		1.2	261
478	Cross-polarized optical absorption of single-walled nanotubes by polarized photolumine excitation spectroscopy. Physical Review B, 2006, 74, .	escence	1.1	107
479	Carbon Nanotube Network Formation from Evaporating Sessile Drops. Journal of Physic B, 2006, 110, 13029-13036.	cal Chemistry	1.2	56
480	Near-infrared Fourier transform photoluminescence spectrometer with tunable excitati study of single-walled carbon nanotubes. Review of Scientific Instruments, 2006, 77, 0.	on for the 53104.	0.6	19
481	Controlled Precipitation of Solubilized Carbon Nanotubes by Delamination of DNA. Jour Physical Chemistry B, 2006, 110, 54-57.	nal of	1.2	51

#	Article	IF	CITATIONS
482	pH-Dependent Electron-Transport Properties of Carbon Nanotubes. Journal of Physical Chemistry B, 2006, 110, 23736-23741.	1.2	42
483	Dielectrophoresis of Surface Conductance Modulated Single-Walled Carbon Nanotubes Using Catanionic Surfactants. Journal of Physical Chemistry B, 2006, 110, 1541-1545.	1.2	62
484	Effects of Surfactant and Boron Doping on the BWF Feature in the Raman Spectrum of Single-Wall Carbon Nanotube Aqueous Dispersionsâ€. Journal of Physical Chemistry B, 2006, 110, 25551-25558.	1.2	40
485	Enhanced Photoluminescence from Very Thin Double-Wall Carbon Nanotubes Synthesized by the Zeolite-CCVD Method. Journal of Physical Chemistry B, 2006, 110, 24816-24821.	1.2	33
486	(n,m) Abundance Evaluation of Single-Walled Carbon Nanotubes by Fluorescence and Absorption Spectroscopy. Journal of the American Chemical Society, 2006, 128, 15511-15516.	6.6	75
487	Transient Grating Measurements of Excitonic Dynamics in Single-Walled Carbon Nanotubes:  The Dark Excitonic Bottleneck. Nano Letters, 2006, 6, 1757-1760.	4.5	19
488	Controlling the Biological Effects of Spermine Using a Synthetic Receptor. Journal of the American Chemical Society, 2006, 128, 10253-10257.	6.6	113
489	Coherent Lattice Vibrations in Single-Walled Carbon Nanotubes. Nano Letters, 2006, 6, 2696-2700.	4.5	93
490	Laser Absorption Scanning Tunneling Microscopy of Carbon Nanotubes. Nano Letters, 2006, 6, 45-49.	4.5	32
491	Optical trapping and transportation of carbon nanotubes made easy by decorating with palladium. Optics Express, 2006, 14, 424.	1.7	15
492	Interfacing Carbon Nanotubes with Living Cells. Journal of the American Chemical Society, 2006, 128, 6292-6293.	6.6	290
493	Effects of Valley Mixing and Exchange on Excitons in Carbon Nanotubes with Aharonov–Bohm Flux. Journal of the Physical Society of Japan, 2006, 75, 024707.	0.7	145
494	Resonance Raman spectroscopy in one-dimensional carbon materials. Anais Da Academia Brasileira De Ciencias, 2006, 78, 423-439.	0.3	7
495	Horseradish peroxidase-driven fluorescent labeling of nanotubes with quantum dots. BioTechniques, 2006, 40, 295-302.	0.8	10
496	Light emission characterization from multiwalled carbon nanotubes under CO2 laser irradiation. , 2006, , .		0
497	Strong Chemical Structure Dependence for Individual Dissolution of Single-Walled Carbon Nanotubes in Aqueous Micelles of Biosurfactants. Bulletin of the Chemical Society of Japan, 2006, 79, 357-359.	2.0	19
499	The element carbon. , 2006, , 1-18.		7
500	Synthesis of carbon nanotubes. , 2006, , 19-49.		10

#	ARTICLE	IF	CITATIONS
501	Functionalized carbon nanotubes in composites*. , 2006, , 275-294.		6
502	Carbon nanotube peapod materials. , 2006, , 51-82.		4
503	Magnetic properties. , 2006, , 119-151.		6
504	Raman spectroscopy of single-walled carbon nanotubes. , 2006, , 153-186.		2
505	Photoluminescence instrumentation for nanophotonics applications. , 2006, , .		0
506	Aharonov-Bohm effects on bright and dark excitons in carbon nanotubes. Journal of Physics: Conference Series, 2006, 38, 13-16.	0.3	0
507	Ultrafast exciton dynamics in semiconducting single-walled carbon nanotubes¶. Molecular Physics, 2006, 104, 1179-1189.	0.8	24
508	Carrier transport properties in single-walled carbon nanotubes studied by photoluminescence spectroscopy. Journal of Physics: Conference Series, 2006, 38, 5-8.	0.3	1
509	Optical properties of covalently anchored single-walled carbon nanotube arrays on silicon (100) surfaces. , 2006, 6415, 36.		0
510	Spectroscopies on Carbon Nanotubes. , 2006, , 277-334.		2
511	Electronic Structure Calculations of Carbon Nanomaterials. Materials Transactions, 2006, 47, 2638-2645.	0.4	2
512	C60-fullerenes: detection of intracellular photoluminescence and lack of cytotoxic effects. Journal of Nanobiotechnology, 2006, 4, 14.	4.2	91
513	Tip-enhanced optical spectroscopy for surface analysis in biosciences. Surface and Interface Analysis, 2006, 38, 1472-1480.	0.8	26
514	Nanoengineered Polymeric Thin Films by Sintering CNT-Coated Polystyrene Spheres. Small, 2006, 2, 220-224.	5.2	34
515	pH-Sensitive Dispersion and Debundling of Single-Walled Carbon Nanotubes: Lysozyme as a Tool. Small, 2006, 2, 406-412.	5.2	203
516	Cation-Controlled Aqueous Dispersions of Alginic-Acid-Wrapped Multi-Walled Carbon Nanotubes. Small, 2006, 2, 874-878.	5.2	61
517	Carbon Nanotubes Encapsulated in Wormlike Hollow Silica Shells. Small, 2006, 2, 1174-1177.	5.2	58
518	Carbon Nanotube Macrobundles for Light Sensing. Small, 2006, 2, 988-993.	5.2	45

#	Article	IF	CITATIONS
519	First principles calculation of optical and electronic properties with inclusion of exciton effects. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3365-3372.	0.8	5
520	Singlewall carbon nanotubes covered with polystyrene nanoparticles byin-situ miniemulsion polymerization. Journal of Polymer Science Part A, 2006, 44, 573-584.	2.5	56
521	Optical excitations of quasi-one-dimensional systems: carbon nanotubes versus polymers and semiconductor wires. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3602-3610.	0.8	5
522	Two-photon photoluminescence and exciton binding energies in single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 2428-2435.	0.7	6
523	Photoluminescence microscopy of as-grown individual single-walled carbon nanotubes on Si/SiO2 substrates. Physica Status Solidi (B): Basic Research, 2006, 243, 3122-3125.	0.7	7
524	Excitons in carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3204-3208.	0.7	13
525	Calculation of optical constants from carbon nanotube transmission spectra. Physica Status Solidi (B): Basic Research, 2006, 243, 3485-3488.	0.7	18
526	Near-field imaging and spectroscopy of electronic states in single-walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3146-3150.	0.7	16
527	Exciton dynamics probed in carbon nanotube suspensions with narrow diameter distribution. Physica Status Solidi (B): Basic Research, 2006, 243, 3186-3191.	0.7	10
528	Magneto-optical spectroscopy of excitons in carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3192-3196.	0.7	2
529	Effects of aggregation and electron–phonon interactions on RBM spectral reconstruction of single walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3155-3160.	0.7	10
530	Fabrication of stable dispersions containing up to 70% individual carbon nanotubes in a common organic solvent. Physica Status Solidi (B): Basic Research, 2006, 243, 3058-3062.	0.7	41
531	Raman intensities of the first optical transitions in carbon nanotubes. Physica Status Solidi (B): Basic Research, 2006, 243, 3181-3185.	0.7	5
532	Harvesting photons with carbon nanotubes. Nano Today, 2006, 1, 20-27.	6.2	77
533	Excitons in nanoscale systems. Nature Materials, 2006, 5, 683-696.	13.3	1,096
534	Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotechnology, 2006, 1, 60-65.	15.6	2,075
535	Sorting out carbon nanotube electronics. Nature Nanotechnology, 2006, 1, 17-18.	15.6	21
536	A sensitive amperometric bromate sensor based on multi-walled carbon nanotubes/phosphomolybdic acid composite film. Electrochimica Acta, 2006, 51, 4255-4261.	2.6	69

#	Article	IF	CITATIONS
537	The effect of the cobalt loading on the growth of single wall carbon nanotubes by CO disproportionation on Co-MCM-41 catalysts. Carbon, 2006, 44, 67-78.	5.4	64
538	Spectroscopic and SEM studies of SWNTs: Polymer solutions and films. Carbon, 2006, 44, 1292-1297.	5.4	34
539	Water-soluble single-walled carbon nanotubes via noncovalent functionalization by a rigid, planar and conjugated diazo dye. Carbon, 2006, 44, 428-434.	5.4	106
540	A wet-chemical route for the decoration of CNTs with silver nanoparticles. Carbon, 2006, 44, 381-383.	5.4	68
541	Enhancement of Vicker's hardness of nanoclay-supported nanotube reinforced novel polymer composites. Carbon, 2006, 44, 383-386.	5.4	19
542	Photoluminescence intensity of single-wall carbon nanotubes. Carbon, 2006, 44, 873-879.	5.4	151
543	X-ray absorption near-edge structure and photoelectron spectroscopy of single-walled carbon nanotubes modified by a HBr solution. Carbon, 2006, 44, 866-872.	5.4	38
544	The effects of nitrogen and boron doping on the optical emission and diameters of single-walled carbon nanotubes. Carbon, 2006, 44, 2752-2757.	5.4	53
545	The role of surfactants in dispersion of carbon nanotubes. Advances in Colloid and Interface Science, 2006, 128-130, 37-46.	7.0	1,224
546	Incorporation of highly dispersed single-walled carbon nanotubes in a polyimide matrix. Composites Science and Technology, 2006, 66, 1190-1197.	3.8	83
547	Individual solubilization of single-walled carbon nanotubes using totally aromatic polyimide. Chemical Physics Letters, 2006, 418, 115-118.	1.2	85
548	Photoluminescence and population analysis of single-walled carbon nanotubes produced by CVD and pulsed-laser vaporization methods. Chemical Physics Letters, 2006, 420, 286-290.	1.2	34
549	Probing isolated bundles of single walled carbon nanotubes using bilayer interference enhanced Raman scattering. Chemical Physics Letters, 2006, 423, 266-269.	1.2	1
550	Debundling by dilution: Observation of significant populations of individual MoSI nanowires in high concentration dispersions. Chemical Physics Letters, 2006, 425, 89-93.	1.2	28
551	Synthesis and spectroscopic characterization of single-wall carbon nanotubes wrapped by glycoconjugate polymer with bioactive sugars. Chemical Physics Letters, 2006, 428, 98-101.	1.2	30
552	Pulsed-laser induced flocculation of carbon nanotubes solubilized by an anthracene-carrying polymer. Chemical Physics Letters, 2006, 429, 488-491.	1.2	15
553	Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions. Chemical Physics Letters, 2006, 429, 497-502.	1.2	213
554	An integrated route for purification, cutting and dispersion of single-walled carbon nanotubes. Chemical Physics Letters, 2006, 432, 205-208.	1.2	56

#	Article	IF	CITATIONS
555	Electronic decay rates in semiconducting carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 34, 658-661.	1.3	3
556	Constructing polymer brushes on multiwalled carbon nanotubes by in situ reversible addition fragmentation chain transfer polymerization. Polymer, 2006, 47, 5909-5918.	1.8	77
557	Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite. Polymer, 2006, 47, 7740-7746.	1.8	177
558	Stochasticity of photophysical processes in nanosystems. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182, 231-237.	2.0	0
559	Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion. Sensors and Actuators B: Chemical, 2006, 115, 678-684.	4.0	116
560	Non-linear optical response and relaxation dynamics in double-walled carbon nanotubes. Journal of Luminescence, 2006, 119-120, 8-12.	1.5	8
561	Nanoscale optical imaging of single-walled carbon nanotubes. Journal of Luminescence, 2006, 119-120, 204-208.	1.5	20
562	Reorienatational dynamics of cholesterol molecules in thin film surrounded carbon nanotube: Molecular dynamics simulations. Journal of Molecular Structure, 2006, 792-793, 216-220.	1.8	16
563	Tunneling-current-induced light emission from individual carbon nanotubes. Surface Science, 2006, 600, L15-L19.	0.8	16
564	Injectable Nanocomposites of Single-Walled Carbon Nanotubes and Biodegradable Polymers for Bone Tissue Engineering. Biomacromolecules, 2006, 7, 2237-2242.	2.6	175
565	Molecular Dynamics Simulations of Surfactant Self-Organization at a Solidâ^'Liquid Interface. Journal of the American Chemical Society, 2006, 128, 848-853.	6.6	83
566	Carbon nanotube/PEDOT:PSS electrodes for organic photovoltaics. EPJ Applied Physics, 2006, 36, 257-259.	0.3	56
567	Chemistry of Carbon Nanotubes. Chemical Reviews, 2006, 106, 1105-1136.	23.0	3,905
568	Carbon-Nanotube-Based Hybrid Materials: Nanopeapods. Chemistry - an Asian Journal, 2006, 1, 646-655.	1.7	58
569	Persistence Length and Nanomechanics of Random Bundles of Nanotubes. Journal of Nanoparticle Research, 2006, 8, 105-110.	0.8	60
570	Polymeric nanocomposite films from functionalized vs suspended single-walled carbon nanotubes. Polymer, 2006, 47, 5323-5329.	1.8	30
571	Solubilization of single-walled carbon nanotubes with condensed aromatic compounds. Science and Technology of Advanced Materials, 2006, 7, 609-616.	2.8	57
572	Theory and simulation of charge transfer through DNA – nanotube contacts. Chemical Physics, 2006, 327, 98-104.	0.9	7

CITATION REPORT ARTICLE IF CITATIONS Aggregate structure of hydroxyproline-rich glycoprotein (HRGP) and HRGP assisted dispersion of 3.16 carbon nanotubes. Nanoscale Research Letters, 2006, 1, 154-159. Van Hove singularities and nonlinear photoluminescence in multiwalled carbon nanotubes. 0.4 Optoelectronics Letters, 2006, 2, 186-188. Template synthesis of multifunctional nanotubes for controlled release. Journal of Controlled 4.8 110 Release, 2006, 114, 143-152. Solubilization of Single-Walled Carbon Nanotubes by using Polycyclic Aromatic Ammonium Amphiphiles in Water—Strategy for the Design of High-Performance Solubilizers. Chemistry - A European Journal, 2006, 12, 4027-4034. 194 Supramolecular Hybrids of [60]Fullerene and Single-Wall Carbon Nanotubes. Chemistry - A European 1.7 82 Journal, 2006, 12, 3975-3983. Individual Dissolution of Single-Walled Carbon Nanotubes in Aqueous Solutions of Steroid or Sugar Compounds and Their Raman and Near-IR Spectral Properties. Chemistry - A European Journal, 2006, 12, 1.7 7595-7602. Hole-Doped Single-Walled Carbon Nanotubes: Ornamenting with Gold Nanoparticles in Water. 7.2 83 Angewandte Chemie - International Edition, 2006, 45, 104-107. Stacked-Cup Carbon Nanotubes for Photoelectrochemical Solar Cells. Angewandte Chemie -7.2 120 International Edition, 2006, 45, 755-759. Overcoming the Insolubility of Molybdenum Disulfide Nanoparticles through a High Degree of Sidewall Functionalization Using Polymeric Chelating Ligands. Angewandte Chemie - International 7.2 89 Edition, 2006, 45, 4809-4815. Preparation, Purification, Characterization, and Cytotoxicity Assessment of Water-Soluble, Transition-Metal-Free Carbon Nanotube Aggregates. Angewandte Chemie - International Edition, 2006, 45, 6676-6680. Reversible Control of Carbon Nanotube Aggregation for a Glucose Affinity Sensor. Angewandte 7.2 137 Chemie - International Edition, 2006, 45, 8138-8141. Formation of Freestanding Single-Walled Carbon Nanotubes by Plasma-Enhanced CVD. Chemical Vapor 1.4 Deposition, 2006, 12, 345-352 Covalent Functionalization of Multiwalled Carbon Nanotubes with Poly(acrylic acid). Chinese 2.6 28 Journal of Chemistry, 2006, 24, 563-568. Dispersions of Surface-Modified Carbon Nanotubes in Water-Soluble and Water-Insoluble Polymers. 365 Advanced Functional Materials, 2006, 16, 357-363. Luminescence of Functionalized Carbon Nanotubes as a Tool to Monitor Bundle Formation and Dissociation in Water: The Effect of Plasmid-DNA Complexation. Advanced Functional Materials, 2006, 7.8 55 16, 1839-1846. Self-Assembly of Single-Walled Carbon Nanotubes into a Sheet by Drop Drying. Advanced Materials, 11.1 119 2006, 18, 29-34.

594	Photoluminescence Quenching Control in Quantum Dot–Carbon Nanotube Composite Colloids Using a Silica-Shell Spacer. Advanced Materials, 2006, 18, 415-420.	11.1	106
595	Generation of Chemically Unmodified Pure Single-Walled Carbon Nanotubes by Solubilizing with RNA and Treatment with Ribonuclease A. Advanced Materials, 2006, 18, 1598-1602.	11.1	54

573

574

575

577

579

580

581

583

584

585

#	ARTICLE	IF	CITATIONS
596	Photoluminescence of single-walled carbon nanotubes in field-effect transistors. Nanotechnology, 2006, 17, 549-555.	1.3	18
597	Transport Characteristic Control of Field-Effect Transistors with Single-Walled Carbon Nanotube Films Using Electrode Metals with Low and High Work Functions. Japanese Journal of Applied Physics, 2006, 45, 7234-7236.	0.8	12
598	Ab initiostudy of curvature effects on the physical properties of CH4-doped nanotubes and nanoropes. Journal of Physics Condensed Matter, 2006, 18, 4649-4675.	0.7	18
599	Electrical investigations of layer-by-layer films of carbon nanotubes. Journal Physics D: Applied Physics, 2006, 39, 3077-3085.	1.3	34
600	Photoconductivity in single wall carbon nanotube sheets. Nanotechnology, 2006, 17, 1843-1850.	1.3	130
601	Electrostatic Ejection of Single-Walled Carbon Nanotubes Suspended in Solution. Key Engineering Materials, 2006, 326-328, 321-324.	0.4	3
602	Precise positioning of single-walled carbon nanotubes by ac dielectrophoresis. Journal of Vacuum Science & Technology B, 2006, 24, 3173.	1.3	62
603	Gigantic Optical Stark Effect and Ultrafast Relaxation of Excitons in Single-Walled Carbon Nanotubes. Journal of the Physical Society of Japan, 2006, 75, 043709.	0.7	15
604	Preparation of Biodegradable Nanocomposites by Incorporation of Functionalized Carbon Nanotubes. Key Engineering Materials, 2006, 326-328, 1785-1788.	0.4	6
605	Carbon-Based Membranes. MRS Bulletin, 2006, 31, 765-769.	1.7	22
605 606		1.7 0.2	22 3
	Carbon-Based Membranes. MRS Bulletin, 2006, 31, 765-769. Synthesis and Characterization of Single-Wall Carbon Nanotubes Grown by Chemical Deposition of		
606	Carbon-Based Membranes. MRS Bulletin, 2006, 31, 765-769. Synthesis and Characterization of Single-Wall Carbon Nanotubes Grown by Chemical Deposition of Ethanol Vapor. Advances in Science and Technology, 2006, 48, 31-36. Photoluminescence of multiwalled carbon nanotubes excited at different wavelengths. Chinese	0.2	3
606 607	Carbon-Based Membranes. MRS Bulletin, 2006, 31, 765-769. Synthesis and Characterization of Single-Wall Carbon Nanotubes Grown by Chemical Deposition of Ethanol Vapor. Advances in Science and Technology, 2006, 48, 31-36. Photoluminescence of multiwalled carbon nanotubes excited at different wavelengths. Chinese Physics B, 2006, 15, 2761-2764. Single Walled Carbon Nanotube Analysis by Photoluminescence and Raman Microscopy: Rapid, Robust Acquisition and Simulation of Quantum and Chiral Maps to Ease Structural Assignments. Materials	0.2	3 18
606 607 608	Carbon-Based Membranes. MRS Bulletin, 2006, 31, 765-769. Synthesis and Characterization of Single-Wall Carbon Nanotubes Grown by Chemical Deposition of Ethanol Vapor. Advances in Science and Technology, 2006, 48, 31-36. Photoluminescence of multiwalled carbon nanotubes excited at different wavelengths. Chinese Physics B, 2006, 15, 2761-2764. Single Walled Carbon Nanotube Analysis by Photoluminescence and Raman Microscopy: Rapid, Robust Acquisition and Simulation of Quantum and Chiral Maps to Ease Structural Assignments. Materials Research Society Symposia Proceedings, 2006, 963, 1. Properties of the incandescent light emitted from double-walled carbon nanotube filament. Chinese	0.2 1.3 0.1	3 18 0
606 607 608 609	Carbon-Based Membranes. MRS Bulletin, 2006, 31, 765-769. Synthesis and Characterization of Single-Wall Carbon Nanotubes Grown by Chemical Deposition of Ethanol Vapor. Advances in Science and Technology, 2006, 48, 31-36. Photoluminescence of multiwalled carbon nanotubes excited at different wavelengths. Chinese Physics B, 2006, 15, 2761-2764. Single Walled Carbon Nanotube Analysis by Photoluminescence and Raman Microscopy: Rapid, Robust Acquisition and Simulation of Quantum and Chiral Maps to Ease Structural Assignments. Materials Research Society Symposia Proceedings, 2006, 963, 1. Properties of the incandescent light emitted from double-walled carbon nanotube filament. Chinese Physics B, 2006, 15, 2731-2734.	0.2 1.3 0.1	3 18 0 2
 606 607 608 609 610 	Carbon-Based Membranes. MRS Bulletin, 2006, 31, 765-769. Synthesis and Characterization of Single-Wall Carbon Nanotubes Grown by Chemical Deposition of Ethanol Vapor. Advances in Science and Technology, 2006, 48, 31-36. Photoluminescence of multiwalled carbon nanotubes excited at different wavelengths. Chinese Physics B, 2006, 15, 2761-2764. Single Walled Carbon Nanotube Analysis by Photoluminescence and Raman Microscopy: Rapid, Robust Acquisition and Simulation of Quantum and Chiral Maps to Ease Structural Assignments. Materials Research Society Symposia Proceedings, 2006, 963, 1. Properties of the incandescent light emitted from double-walled carbon nanotube filament. Chinese Physics B, 2006, 15, 2731-2734. Nanostructured Photovoltaics Materials Fabrication and Characterization. , 2006, , 567-594. PLD Growth of CNTs using a Nanostuctured Ni Buffer Layer: Dependence of H2 partial Pressure.	0.2 1.3 0.1 1.3	3 18 0 2 2

ARTICLE IF CITATIONS # Excitons in Carbon Nanotubes with Broken Time-Reversal Symmetry. Physical Review Letters, 2006, 96, 2.9 101 614 016406. Intrinsic and Extrinsic Effects in the Temperature-Dependent Photoluminescence of Semiconducting 44 Carbon Nanotubes. Physical Review Letters, 2006, 96, 106805. Photophysics of excitons in quasi-one-dimensional organic semiconductors: Single-walled carbon 616 1.1 74 nanotubes and l€-conjugated polymers. Physical Review B, 2006, 73, . Dynamics of Individual Single-Walled Carbon Nanotubes in Water by Real-Time Visualization. Physical 2.9 143 Réview Letters, 2006, 96, 246104. In situ fluorescence microscopy visualization and characterization of nanometer-scale carbon nanotubes labeled with 1-pyrenebutanoic acid, succinimidyl ester. Applied Physics Letters, 2006, 88, 618 1.5 25 213110. Ultrafast Dynamics of Delocalized and Localized Electrons in Carbon Nanotubes. Physical Review Letters, 2006, 96, 027401. Preferential etching of metallic single-walled carbon nanotubes with small diameter by fluorine gas. 620 1.1 74 Physical Review B, 2006, 73, . Identification of an excitonic phonon sideband by photoluminescence spectroscopy of single-walled 1.1 79 carbon-13 nanotubes. Physical Review B, 2006, 74, . 622 Electrochemical properties of carbon nanotubes., 2006, , 297-321. 1 Separation of metallic and semiconducting single-walled carbon nanotubes., 2006, , 255-295. Carbon nanotube population analysis from Raman and photoluminescence intensities. Applied Physics 624 1.5 51 Letters, 2006, 88, 023109. Optical evidence of Stark effect in single-walled carbon nanotube transistors. Applied Physics Letters, 1.5 2006, 89, 263510. Raman study of individually dispersed single-walled carbon nanotubes under pressure. Physical 626 1.1 95 Review B, 2006, 73, . Crystal-encapsulation-induced band-structure change in single-walled carbon nanotubes: 1.1 Photoluminescence and Raman spectra. Physical Review B, 2006, 74, . Band-gap unification of partially Si-substituted single-wall carbon nanotubes. Physical Review B, 2006, 628 1.1 13 74,. Spectroscopy of zigzag single-walled carbon nanotubes: Comparing femtosecond transient 1.1 29 absorption spectra withab initiocalculations. Physical Review B, 2006, 74, . Diameter dependence of exciton-phonon interaction in individual single-walled carbon nanotubes 630 1.1 42 studied by microphotoluminescence spectroscopy. Physical Review B, 2006, 73, . Symmetry restrictions in the chirality dependence of physical properties of single-wall nanotubes. 1.1 Physical Review B, 2006, 73, .

#	Article	IF	CITATIONS
632	Exciton Localization of Single-Walled Carbon Nanotubes Revealed by Femtosecond Excitation Correlation Spectroscopy. Physical Review Letters, 2006, 97, 257401.	2.9	57
633	The feature of the Breit-Wigner-Fano Raman line in DNA-wrapped single-wall carbon nanotubes. Journal of Applied Physics, 2006, 99, 094309.	1.1	35
634	Temperature Dependence of the Optical Transition Energies of Carbon Nanotubes: The Role of Electron-Phonon Coupling and Thermal Expansion. Physical Review Letters, 2006, 96, 127403.	2.9	75
635	Exciton Formation and Annihilation during 1D Impact Excitation of Carbon Nanotubes. Physical Review Letters, 2006, 96, 136803.	2.9	69
636	One-dimensional diffusion-limited relaxation of photoexcitations in suspensions of single-walled carbon nanotubes. Physical Review B, 2006, 74, .	1.1	49
637	Midgap luminescence centers in single-wall carbon nanotubes created by ultraviolet illumination. Applied Physics Letters, 2006, 89, 173108.	1.5	41
638	Photoluminescence study of aqueous-surfactant-wrapped single-walled carbon nanotubes under hydrostatic pressure. Physical Review B, 2006, 74, .	1.1	21
639	Synthesis, growth mechanism and processing of carbon nanotubes. , 2006, , 15-51.		7
640	High-performance transparent flexible transistors using carbon nanotube films. Applied Physics Letters, 2006, 88, 033511.	1.5	123
641	Resonant-Raman intensities and transition energies of theE11transition in carbon nanotubes. Physical Review B, 2006, 74, .	1.1	36
642	Photoluminescence quenching in peapod-derived double-walled carbon nanotubes. Physical Review B, 2006, 74, .	1.1	43
643	Integration of CNT with TIA into gas sensors. , 2006, , .		3
644	Biological applications of functionalized carbon nanoparticles. , 2006, , 265-276.		1
645	Coherent phonon oscillations in micelle-suspended single-wall carbon nanotubes. , 2006, , .		0
646	THE EFFECT OF SINGLE WALL CARBON NANOTUBES ON THE DIPOLE ORIENTATION AND PIEZOELECTRIC PROPERTIES OF POLYMERIC NANOCOMPOSITES. Nano, 2006, 01, 77-85.	0.5	13
647	Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 18882-18886.	3.3	460
648	Temperature and Magnetic Field Dependent Photoluminescence from Carbon Nanotubes. International Journal of Modern Physics B, 2007, 21, 1180-1188.	1.0	2
649	Endohedral Metallofullerenes and Nano-Peapods. Japanese Journal of Applied Physics, 2007, 46, 881-891.	0.8	48

#	Article	IF	CITATIONS
650	MAGNETO SPECTROSCOPY OF SINGLE-WALLED CARBON NANOTUBES. International Journal of Modern Physics B, 2007, 21, 1189-1197.	1.0	1
653	DYNAMIC RESPONSE OF CARBON NANOTUBES DISPERSED IN NEMATIC LIQUID CRYSTAL. Nano, 2007, 02, 41-49.	0.5	52
654	One-electron states and interband optical absorption in single-wall carbon nanotubes. Journal of Physics Condensed Matter, 2007, 19, 186206.	0.7	5
655	EXTRACTION OF METALLIC NANOTUBES OF ZEOLITE-SUPPORTED SINGLE-WALLED CARBON NANOTUBES SYNTHESIZED FROM ALCOHOL. Nano, 2007, 02, 221-226.	0.5	7
656	Chemomechanical Production of Functional Structure on Silicon Surfaces. Chinese Journal of Chemical Physics, 2007, 20, 655-659.	0.6	0
657	Atomic size-limited intercalation into single wall carbon nanotubes. Nanotechnology, 2007, 18, 435705.	1.3	5
658	Chemical vapour deposition of single walled carbon nanotubes freely suspended over nanotube supports. Nanotechnology, 2007, 18, 135603.	1.3	6
659	Effects of time on the quality of vertically oriented single-walled carbon nanotubes by gravity-assisted chemical vapour deposition. Nanotechnology, 2007, 18, 145613.	1.3	3
660	Large radius excitons in single-walled carbon nanotubes. Journal of Physics A: Mathematical and Theoretical, 2007, 40, 10519-10533.	0.7	6
661	Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion, and electrical properties. Journal of Applied Physics, 2007, 102, .	1.1	80
662	Automated robotic deposition system for manufacturing nano devices. , 2007, , .		1
663	Novel Carbon Nanotube Deposition System for Fabricating Nano Devices. , 2007, , .		2
664	Visible Fluorescence Induced by the Metal Semiconductor Transition in Composites of Carbon Nanotubes with Noble Metal Nanoparticles. Physical Review Letters, 2007, 99, 167404.	2.9	34
665	Ï€-electron theory of transverse optical excitons in semiconducting single-walled carbon nanotubes. Physical Review B, 2007, 76, .	1.1	23
666	Role of electron-phonon interactions and external strain on the electronic properties of semiconducting carbon nanotubes. Physical Review B, 2007, 75, .	1.1	10
667	The detection of airborne carbon nanotubes in relation to toxicology and workplace safety. Nanotoxicology, 2007, 1, 251-265.	1.6	12
668	Cross-polarized exciton absorption in carbon nanotubes with Aharonov-Bohm flux. Physical Review B, 2007, 76, .	1.1	25
669	Electrically driven light emission from hot single-walled carbon nanotubes at various temperatures and ambient pressures. Applied Physics Letters, 2007, 91, .	1.5	18

#	Article	IF	CITATIONS
670	Temperature behavior of the photoluminescence decay of semiconducting carbon nanotubes: The effective lifetime. Physical Review B, 2007, 75, .	1.1	4
671	Reversibly bonded nanocapillaries by electrostatic forces. , 2007, , .		0
672	Theoretical study of quadratic electro-optic effect in semiconducting zigzag carbon nanotubes. Physical Review B, 2007, 76, .	1.1	8
673	Ab initiostudy ofH2Oand water-chain-induced properties of carbon nanotubes. Physical Review B, 2007, 75, .	1.1	18
674	Chirality-Dependent Combustion of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 9671-9677.	1.5	56
676	Surfactant-SWNT Assembly and Static Dielectrics of SWNTs. Materials Research Society Symposia Proceedings, 2007, 1018, 1.	0.1	3
677	SYNTHESIS AND SPECTROSCOPIC CHARACTERIZATION OF SALMON DNA-WRAPPED SINGLE-WALL CARBON NANOTUBES. Nano, 2007, 02, 295-299.	0.5	11
678	Carbon Nanotubes as Optical Materials. Materials Research Society Symposia Proceedings, 2007, 1015, 1.	0.1	0
679	Fabrication of Closed packed Single-walled Carbon Nanotube film with nanometer thickness. Materials Research Society Symposia Proceedings, 2007, 1057, 1.	0.1	0
680	Self-Assembly Effects of Cyclic Peptide Dimers: Molecular Modeling Study. Key Engineering Materials, 2007, 353-358, 2257-2260.	0.4	0
681	Femtosecond Transient Absorption Spectroscopy of Single-Walled Carbon Nanotubes and their Ultrafast Optical Switching Behavior. Solid State Phenomena, 2007, 121-123, 905-908.	0.3	3
682	CHEMICAL INTERACTIONS AT NOBLE METAL NANOPARTICLE SURFACES â€" CATALYSIS, SENSORS AND DEVICES. Cosmos, 2007, 03, 103-124.	0.4	17
684	Carbon nanomaterials in biological systems. Journal of Physics Condensed Matter, 2007, 19, 373101.	0.7	65
685	Electrophoretic Deposition of Substrate-Normal-Oriented Single-Walled Carbon Nanotube Structures. Journal of the Electrochemical Society, 2007, 154, K25.	1.3	15
686	Ion transport and electrochemical tuning of Fermi level in single-wall carbon nanotubes: In situ Raman scattering. Journal of Materials Research, 2007, 22, 603-614.	1.2	1
687	The Topological Structures of the Debundled Single-Walled Carbon Nanotubes on a Grid. Materials Transactions, 2007, 48, 711-717.	0.4	2
689	Solubilization of Carbon Nanotubes and Their Applications. Kobunshi Ronbunshu, 2007, 64, 539-552.	0.2	4
690	Green Tea Solution Individually Solubilizes Single-walled Carbon Nanotubes. Chemistry Letters, 2007, 36, 1140-1141.	0.7	46

		CITATION RE	PORT	
#	Article		IF	CITATIONS
691	Fundamentals and Applications of Soluble Carbon Nanotubes. Chemistry Letters, 2007, 36, 6	92-697.	0.7	110
692	Photoluminescence Properties of Carbon Nanotubes. Springer Series on Fluorescence, 2007,	, 363-380.	0.8	1
693	Integration of electrical conductivity and high strength in a SWNT polymeric nanocomposite	.,2007,,.		0
694	Interaction of [FeFe]-hydrogenases with single-walled carbon nanotubes. Proceedings of SPI	E, 2007, , .	0.8	Ο
695	Nanometrology Links State-of-the-Art Academic Research and Ultimate Industry Needs for Technological Innovation. MRS Bulletin, 2007, 32, 988-993.		1.7	4
696	Conducting textiles from single-walled carbon nanotubes. Synthetic Metals, 2007, 157, 358-	362.	2.1	76
697	Design of plasmonic nanoantennae for enhancing spontaneous emission. Optics Letters, 200)7, 32, 1623.	1.7	249
698	Electronic and transport properties of nanotubes. Reviews of Modern Physics, 2007, 79, 677	-732.	16.4	1,234
699	Polarized Photoluminescence Excitation Spectroscopy of Single-Walled Carbon Nanotubes. F Review Letters, 2007, 98, 167406.	hysical	2.9	126
700	Healing of Low-Energy Irradiation-Induced Defects in Single-Walled Carbon Nanotubes at Roo Temperature. Journal of Physical Chemistry C, 2007, 111, 4524-4528.	om .	1.5	42
701	Internalization of MWCNTs by microglia: Possible application in immunotherapy of brain tum NeuroImage, 2007, 37, S9-S17.	ors.	2.1	142
702	Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, dopir nonadiabatic effects. Solid State Communications, 2007, 143, 47-57.	ig and	0.9	6,322
703	Chirality dependence of exciton effects in single-wall carbon nanotubes: Tight-binding model Review B, 2007, 75, .	. Physical	1.1	208
704	Nondestructive Formation of Supramolecular Nanohybrids of Single-Walled Carbon Nanotub Flexible Porphyrinic Polypeptides. Journal of Physical Chemistry C, 2007, 111, 1194-1199.	es with	1.5	75
705	Determination of the Surface Coverage of Exfoliated Carbon Nanotubes by Surfactant Molec Aqueous Solution. Langmuir, 2007, 23, 3646-3653.	ules in	1.6	91
706	Solubilization of Single-Walled Carbon Nanotubes by Supramolecular Complexes of Barbituri and Triaminopyrimidines. Langmuir, 2007, 23, 10913-10915.	c Acid	1.6	47
707	Pt atalyzed Formation of Ni Nanoshells on Carbon Nanotubes. Angewandte Chemie, 2007	7, 119, 7156-7160.	1.6	6
708	Natural Organic Matter Stabilizes Carbon Nanotubes in the Aqueous Phase. Environmental S & Technology, 2007, 41, 179-184.	cience	4.6	756

#	Article	IF	CITATIONS
709	A Raman probe for selective wrapping of single-walled carbon nanotubes by DNA. Nanotechnology, 2007, 18, 405706.	1.3	27
710	E33andE44optical transitions in semiconducting single-walled carbon nanotubes: Electron diffraction and Raman experiments. Physical Review B, 2007, 75, .	1.1	42
711	Debundling of single-walled carbon nanotubes by using natural polyelectrolytes. Nanotechnology, 2007, 18, 365702.	1.3	71
712	Structural Stability and Transformation of Aligned C60and C70Fullerenes in Double-Wall and Triple-Wall Carbon Nanotube-Peapods. Journal of Physical Chemistry C, 2007, 111, 14652-14657.	1.5	18
713	Noncovalent porphyrin-functionalized single-walled carbon nanotubes: solubilization and spectral behaviors. Journal of Porphyrins and Phthalocyanines, 2007, 11, 418-427.	0.4	29
714	Spontaneous Debundling of Single-Walled Carbon Nanotubes in DNA-Based Dispersions. Journal of Physical Chemistry C, 2007, 111, 66-74.	1.5	93
715	Photoluminescence Recovery from Single-Walled Carbon Nanotubes on Substrates. Journal of the American Chemical Society, 2007, 129, 12382-12383.	6.6	19
716	Chiral-Selective Protection of Single-walled Carbon Nanotube Photoluminescence by Surfactant Selection. Journal of Physical Chemistry C, 2007, 111, 17894-17900.	1.5	28
717	Double-Stranded DNA Single-Walled Carbon Nanotube Hybrids for Optical Hydrogen Peroxide and Glucose Sensing. Journal of Physical Chemistry C, 2007, 111, 8638-8643.	1.5	162
718	Development of Carbon Nanotube-Based Sensors—A Review. IEEE Sensors Journal, 2007, 7, 266-284.	2.4	242
719	Multimodal Biomedical Imaging with Asymmetric Single-Walled Carbon Nanotube/Iron Oxide Nanoparticle Complexes. Nano Letters, 2007, 7, 861-867.	4.5	268
720	Carbon Nanotube/Detergent Interactions via Coarse-Grained Molecular Dynamics. Nano Letters, 2007, 7, 1923-1928.	4.5	121
721	Triplet State Absorption in Carbon Nanotubes:Â A TDâ^'DFT Study. Nano Letters, 2007, 7, 2201-2206.	4.5	80
722	Dispersion Stability of Single-Walled Carbon Nanotubes Using Nafion in Bisolvent. Journal of Physical Chemistry C, 2007, 111, 2477-2483.	1.5	66
723	Excitons and Peierls Distortion in Conjugated Carbon Nanotubes. Nano Letters, 2007, 7, 86-92.	4.5	46
724	A Structureâ^'Reactivity Relationship for Single Walled Carbon Nanotubes Reacting with 4-Hydroxybenzene Diazonium Salt. Journal of the American Chemical Society, 2007, 129, 3946-3954.	6.6	99
725	Low-Defect, Purified, Narrowly (n,m)-Dispersed Single-Walled Carbon Nanotubes Grown from Cobalt-Incorporated MCM-41. ACS Nano, 2007, 1, 327-336.	7.3	56
726	Single-Walled Carbon Nanotubes in the Intact Organism:  Near-IR Imaging and Biocompatibility Studies in Drosophila. Nano Letters, 2007, 7, 2650-2654.	4.5	221

#	Article	IF	CITATIONS
727	Controlling the Electrophoretic Mobility of Single-Walled Carbon Nanotubes:  A Comparison of Theory and Experiment. Langmuir, 2007, 23, 7768-7776.	1.6	19
728	Dependence of Raman spectra <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msup><mml:mi>G</mml:mi><mml:mo>′</mml:mo></mml:msup></mml:math> band intensity on metallicity of single-wall carbon nanotubes. Physical Review B, 2007, 76, .	1.1	67
729	Direct attachment of well-aligned single-walled carbon nanotube architectures to silicon (100) surfaces: a simple approach for device assembly. Physical Chemistry Chemical Physics, 2007, 9, 510-520.	1.3	78
730	Effect of Electron-Donating and Electron-Withdrawing Groups on Peptide/Single-Walled Carbon Nanotube Interactions. Journal of the American Chemical Society, 2007, 129, 14724-14732.	6.6	87
731	Programmed Thermodynamic Formation and Structure Analysis of Star-like Nanogels with Core Cross-linked by Thermally Exchangeable Dynamic Covalent Bonds. Journal of the American Chemical Society, 2007, 129, 13298-13304.	6.6	102
732	Hierarchical Placement and Associated Optoelectronic Impact of Carbon Nanotubes in Polymer-Fullerene Solar Cells. Nano Letters, 2007, 7, 1973-1979.	4.5	185
733	Stepwise Quenching of Exciton Fluorescence in Carbon Nanotubes by Single-Molecule Reactions. Science, 2007, 316, 1465-1468.	6.0	441
734	Optical Absorption of DNAâ^'Carbon Nanotube Structures. Nano Letters, 2007, 7, 1191-1194.	4.5	111
735	Fluorescence Visualization of Carbon Nanotubes Using Quenching Effect for Nanomanipulation. , 2007, , .		4
736	Stochastic models of charge carrier dynamics in semiconducting nanosystems. Journal of Physics Condensed Matter, 2007, 19, 065105.	0.7	31
737	Magneto-optical studies of single-wall carbon nanotubes. Physical Review B, 2007, 76, .	1.1	22
738	Enhancement of temperature dependent mechanism by internanotube junctions. Applied Physics Letters, 2007, 90, 253104.	1.5	4
739	Intra- and intertube tunneling transport in ropes of single-walled carbon nanotubes. Applied Physics Letters, 2007, 90, 232109.	1.5	1
740	Direct probe of excitonic and continuum transitions in the photocurrent spectroscopy of individual carbon nanotube p-n diodes. Applied Physics Letters, 2007, 90, 053103.	1.5	47
741	Fiddling the string of carbon nanotubes with amphiphiles. Physical Chemistry Chemical Physics, 2007, 9, 439-447.	1.3	37
742	Absorption spectroscopic study of DNA hybridization using single-walled carbon nanotubes. , 2007, , .		0
743	Frequency-Modulated, Single-Molecule Absorption Detected by Scanning Tunneling Microscopy. Journal of Physical Chemistry C, 2007, 111, 3314-3321.	1.5	20
744	Supramolecular single-walled carbon nanotubes (SWCNTs) network polymer made by hybrids of SWCNTs and water-soluble calix[8]arenes. Chemical Communications, 2007, , 4776.	2.2	39

#	Article	IF	Citations
745	Automated process for manufacturing carbon nanotube (CNT) based nano devices. , 2007, , .		5
746	Peptides that non-covalently functionalize single-walled carbon nanotubes to give controlled solubility characteristics. Journal of Materials Chemistry, 2007, 17, 1909.	6.7	76
747	Systematic studies of covalent functionalization of carbon nanotubes via argon plasma-assisted UV grafting. Nanotechnology, 2007, 18, 115712.	1.3	46
748	Tunable Permittivity of Polymer Composites through Incremental Blending of Raw and Functionalized Single-Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 17751-17754.	1.5	14
749	High Mobility, Air-Stable Organic Transistors from Hexabenzocoronene/Carbon Nanotube Bilayers. Journal of Physical Chemistry C, 2007, 111, 17947-17951.	1.5	17
750	Aqueous Dispersion, Surface Thiolation, and Direct Self-Assembly of Carbon Nanotubes on Gold. Langmuir, 2007, 23, 3363-3371.	1.6	55
751	Magnetic Brightening of Carbon Nanotube Photoluminescence through Symmetry Breaking. Nano Letters, 2007, 7, 1851-1855.	4.5	120
752	Oligomeric Electrolyte as a Multifunctional Gelator. Journal of the American Chemical Society, 2007, 129, 11039-11041.	6.6	107
753	Ab Initio Study of Vibrational Dephasing of Electronic Excitations in Semiconducting Carbon Nanotubes. Nano Letters, 2007, 7, 3260-3265.	4.5	96
754	In vivo Biomodification of Lipid-Coated Carbon Nanotubes byDaphnia magna. Environmental Science & Technology, 2007, 41, 3025-3029.	4.6	304
755	Diameter Selection of Single-Walled Carbon Nanotubes through Programmable Solvation in Binary Sulfonic Acid Mixtures. Journal of Physical Chemistry C, 2007, 111, 17827-17834.	1.5	12
756	Large Area-Aligned Arrays from Direct Deposition of Single-Wall Carbon Nanotube Inks. Journal of the American Chemical Society, 2007, 129, 10088-10089.	6.6	81
757	Nanopattern of the Inner Surface of Carbon Nanotubes for Self-Assembly of Nanoparticles:  A Multistep Monte Carlo Method. Journal of Physical Chemistry C, 2007, 111, 11802-11805.	1.5	3
758	Nanoscale Curvature Effect on Ordering of N ₂ Molecules Adsorbed on Single Wall Carbon Nanotube. Journal of Physical Chemistry C, 2007, 111, 15660-15663.	1.5	26
760	Fluorescence Efficiency of Individual Carbon Nanotubes. Nano Letters, 2007, 7, 3698-3703.	4.5	116
761	Investigation of Electronic and Vibrational Properties of Single-Walled Carbon Nanotubes Functionalized with Diazonium Saltsâ€. Journal of Physical Chemistry C, 2007, 111, 17941-17946.	1.5	60
762	Thermal Reorganization and Molecular Weight Control of Dynamic Covalent Polymers Containing Alkoxyamines in Their Main Chains. Macromolecules, 2007, 40, 1429-1434.	2.2	104
763	Single-walled carbon nanotubes show stable emission and simple photoluminescence spectra with weak excitation sidebands at cryogenic temperatures. Physical Review B, 2007, 76, .	1.1	15

#	Article	IF	CITATIONS
764	Pressure-Induced Single-Walled Carbon Nanotube (<i>n,m</i>) Selectivity on Coâ^'Mo Catalysts. Journal of Physical Chemistry C, 2007, 111, 14612-14616.	1.5	72
765	Temperature Dependence of Exciton Recombination in Semiconducting Single-Wall Carbon Nanotubes. Nano Letters, 2007, 7, 398-402.	4.5	73
766	Photoelectrochemistry of Stacked-Cup Carbon Nanotube Films. Tube-Length Dependence and Charge Transfer with Excited Porphyrin. Journal of Physical Chemistry C, 2007, 111, 16626-16634.	1.5	43
767	Interaction of Tyrosine-, Tryptophan-, and Lysine-Containing Polypeptides with Single-Wall Carbon Nanotubes and Its Relevance for the Rational Design of Dispersing Agents. Journal of Physical Chemistry C, 2007, 111, 18520-18524.	1.5	49
768	Controlling Nonequilibrium Phonon Populations in Single-Walled Carbon Nanotubes. Nano Letters, 2007, 7, 2239-2242.	4.5	13
769	Selective Aggregation of Single-Walled Carbon Nanotubes via Salt Addition. Journal of the American Chemical Society, 2007, 129, 1898-1899.	6.6	118
770	Boronic Esters as a System for Crystallization-Induced Dynamic Self-Assembly Equipped with an "Onâ^'Off―Switch for Equilibration. Journal of the American Chemical Society, 2007, 129, 7754-7755.	6.6	133
771	Electrical Transport Characteristics of Surface-Conductance-Controlled, Dielectrophoretically Separated Single-Walled Carbon Nanotubes. Langmuir, 2007, 23, 4749-4752.	1.6	23
772	Divalent Ion and Thermally Induced DNA Conformational Polymorphism on Single-walled Carbon Nanotubes. Macromolecules, 2007, 40, 6731-6739.	2.2	64
773	(n,m) Selectivity of Single-Walled Carbon Nanotubes by Different Carbon Precursors on Coâ^'Mo Catalysts. Journal of the American Chemical Society, 2007, 129, 9014-9019.	6.6	184
774	Quantum Yield Heterogeneities of Aqueous Single-Wall Carbon Nanotube Suspensions. Journal of the American Chemical Society, 2007, 129, 8058-8059.	6.6	233
775	Observation of Excitons in One-Dimensional Metallic Single-Walled Carbon Nanotubes. Physical Review Letters, 2007, 99, 227401.	2.9	138
776	Recoverable Photoluminescence of Flame-Synthesized Multiwalled Carbon Nanotubes and Its Intensity Enhancement at 240 K. Journal of Physical Chemistry C, 2007, 111, 10347-10352.	1.5	20
777	Direct Observation of the Deformation and the Band Gap Change from an Individual Single-Walled Carbon Nanotube under Uniaxial Strain. Nano Letters, 2007, 7, 890-895.	4.5	66
778	Selective Functionalization and Free Solution Electrophoresis of Single-Walled Carbon Nanotubes: Separate Enrichment of Metallic and Semiconducting SWNT. Chemistry of Materials, 2007, 19, 1571-1576.	3.2	179
779	Raman Spectral Probing of Electronic Transition EnergyEiiVariation of Individual SWNTs under Torsional Strain. Nano Letters, 2007, 7, 750-753.	4.5	25
780	Interfacial Trapping of Single-Walled Carbon Nanotube Bundles. Journal of the American Chemical Society, 2007, 129, 15124-15125.	6.6	32
781	Temperature-Dependent Excitonic Decay and Multiple States in Single-Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 3601-3606.	1.5	21

#	Article	IF	Citations
782	Photon-Induced Selective Interaction between Small-Diameter Metallic Carbon Nanotubes and Triton X-100. Journal of the American Chemical Society, 2007, 129, 666-671.	6.6	21
783	Diameter-Selective Fractionation of HiPco Single-Walled Carbon Nanotubes in Repeated Functionalization Reactions. Journal of Physical Chemistry C, 2007, 111, 10254-10259.	1.5	11
784	Extrinsic and Intrinsic Effects on the Excited-State Kinetics of Single-Walled Carbon Nanotubes. Nano Letters, 2007, 7, 300-306.	4.5	36
785	Retention of Intrinsic Electronic Properties of Soluble Single-Walled Carbon Nanotubes after a Significant Degree of Sidewall Functionalization by the Bingel Reaction. Journal of Physical Chemistry C, 2007, 111, 9734-9741.	1.5	66
786	Pt/SWNTâ^'Pt/C Nanocomposite Electrocatalysts for Proton-Exchange Membrane Fuel Cells. Journal of Physical Chemistry C, 2007, 111, 16138-16146.	1.5	93
787	Adsorption Dynamics of Alkanes on Single-Wall Carbon Nanotubes:  A Molecular Beam Scattering Study. Journal of Physical Chemistry C, 2007, 111, 8043-8049.	1.5	33
788	Self-assembly of SWCNT in P3HT matrix. Diamond and Related Materials, 2007, 16, 446-453.	1.8	20
789	Wiring-Up Hydrogenase with Single-Walled Carbon Nanotubes. Nano Letters, 2007, 7, 3528-3534.	4.5	106
790	Physical Adsorption of Block Copolymers to SWNT and MWNT:Â A Nonwrapping Mechanism. Macromolecules, 2007, 40, 3676-3685.	2.2	155
791	Membranes for Hydrogen Separation. Chemical Reviews, 2007, 107, 4078-4110.	23.0	947
792	Fluorescence Quenching of Single-Walled Carbon Nanotubes in SDBS Surfactant Suspension by Metal Ions:  Quenching Efficiency as a Function of Metal and Nanotube Identityâ€. Journal of Physical Chemistry C, 2007, 111, 17812-17820.	1.5	48
793	Carbon nanotubes and their toxicity. Nanotoxicology, 2007, 1, 167-197.	1.6	59
794	Zeta-Potential Measurements of Surfactant-Wrapped Individual Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 13684-13690.	1.5	348
795	Polarons and excitons on a cylinder: a simplified model for nanotubes in polar environments. Journal of Physics Condensed Matter, 2007, 19, 156210.	0.7	7
796	Excitonic States and Resonance Raman Spectroscopy of Single-Wall Carbon Nanotubes. Topics in Applied Physics, 2007, , 251-286.	0.4	9
797	Raman Spectroscopy of Carbon Nanotubes in 1997 and 2007. Journal of Physical Chemistry C, 2007, 111, 17887-17893.	1.5	251
798	Exciton-photon, exciton-phonon matrix elements, and resonant Raman intensity of single-wall carbon nanotubes. Physical Review B, 2007, 75, .	1.1	92
799	Absorption Spectroscopy of Individual Single-Walled Carbon Nanotubes. Nano Letters, 2007, 7, 1203-1207.	4.5	154

#	Article	IF	CITATIONS
800	Ultrafast Spectroscopy of Carbon Nanotubes. Topics in Applied Physics, 2007, , 321-353.	0.4	15
801	Photoluminescence: Science and Applications. Topics in Applied Physics, 2007, , 287-319.	0.4	17
802	Simple Length Determination of Single-Walled Carbon Nanotubes by Viscosity Measurements in Dilute Suspensions. Macromolecules, 2007, 40, 4043-4047.	2.2	75
803	Temperature and pH-Responsive Single-Walled Carbon Nanotube Dispersions. Nano Letters, 2007, 7, 1480-1484.	4.5	156
804	Low-Lying Exciton States Determine the Photophysics of Semiconducting Single Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 11139-11149.	1.5	45
805	Exfoliation in ecstasy: liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug γ-butyrolactone. Nanotechnology, 2007, 18, 455705.	1.3	45
806	Effects of local Joule heating on the reduction of contact resistance between carbon nanotubes and metal electrodes. Journal of Applied Physics, 2007, 101, 024320.	1.1	103
807	Ink-jet printing of carbon nanotube thin film transistors. Journal of Applied Physics, 2007, 102, .	1.1	189
808	Exfoliation of Mo6SxI9-xnanowires in common solvents. EPJ Applied Physics, 2007, 37, 149-159.	0.3	16
810	An Unexpected New Optimum in the Structure Space of DNA Solubilizing Single-Walled Carbon Nanotubes. Chemistry - A European Journal, 2007, 13, 1815-1820.	1.7	41
811	Integration of a Self-Assembling Protein Scaffold with Water-Soluble Single-Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2007, 46, 4370-4373.	7.2	47
812	Ptâ€Catalyzed Formation of Ni Nanoshells on Carbon Nanotubes. Angewandte Chemie - International Edition, 2007, 46, 7026-7030.	7.2	56
813	Controlled Hybrid Nanostructures through Proteinâ€Mediated Noncovalent Functionalization of Carbon Nanotubes. Angewandte Chemie - International Edition, 2007, 46, 6446-6449.	7.2	67
816	The Synergistic Effect of Prussian-Blue-Grafted Carbon Nanotube/Poly(4-vinylpyridine) Composites for Amperometric Sensing. Advanced Functional Materials, 2007, 17, 1574-1580.	7.8	202
817	Wet Adsorption of a Luminescent Eu ^{III} complex on Carbon Nanotubes Sidewalls. Advanced Functional Materials, 2007, 17, 2975-2982.	7.8	71
818	Preparation of Smart Polymer/Carbon Nanotube Conjugates via Stimuliâ€Responsive Linkages. Advanced Functional Materials, 2007, 17, 2470-2477.	7.8	42
819	Design of Dispersants for the Dispersion of Carbon Nanotubes in an Organic Solvent. Advanced Functional Materials, 2007, 17, 1775-1783.	7.8	87
820	Selective Crystallization of Organic Semiconductors on Patterned Templates of Carbon Nanotubes. Advanced Functional Materials, 2007, 17, 2891-2896.	7.8	40

	CHATION R	LPURI	
# 821	ARTICLE Nanotube Alignment Using Lyotropic Liquid Crystals. Advanced Materials, 2007, 19, 359-364.	IF 11.1	Citations 185
822	Water-Redispersible Isolated Single-Walled Carbon Nanotubes Fabricated by In Situ Polymerization of Micelles. Advanced Materials, 2007, 19, 929-933.	11.1	80
823	DNA-Wrapped Single Walled Carbon Nanotubes as Rigid Templates for Assembling Linear Gold Nanoparticle Arrays. Advanced Materials, 2007, 19, 1518-1522.	11.1	89
824	Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules. Advanced Materials, 2007, 19, 3214-3228.	11.1	460
825	Effect of Water Filling on the Electronic and Vibrational Resonances of Carbon Nanotubes: Characterizing Tube Opening by Raman Spectroscopy. Advanced Materials, 2007, 19, 2274-2278.	11.1	71
826	Optical Fourier Transform Spectroscopy of Single-Walled Carbon Nanotubes and Single Molecules. ChemPhysChem, 2007, 8, 1049-1055.	1.0	7
827	Spectroelectrochemistry of Carbon Nanostructures. ChemPhysChem, 2007, 8, 974-998.	1.0	158
828	Largeâ€Scale Production of Homogeneous Helical Amylose/SWNTs Complexes with Good Biocompatibility. Macromolecular Rapid Communications, 2007, 28, 2180-2184.	2.0	31
829	Temperatureâ€dependent magnetoâ€photoluminescence spectroscopy of carbon nanotubes: evidence for dark excitons. Laser and Photonics Reviews, 2007, 1, 260-274.	4.4	28
830	Photothermal antimicrobial nanotherapy and nanodiagnostics with selfâ€assembling carbon nanotube clusters. Lasers in Surgery and Medicine, 2007, 39, 622-634.	1.1	133
831	Amylose/SWNT composites: From solution to film – Synthesis, characterization and properties. Composites Science and Technology, 2007, 67, 817-821.	3.8	22
832	Vibrations of carbon nanotubes and their composites: A review. Composites Science and Technology, 2007, 67, 1-28.	3.8	478
833	Glucose sensing based on NIR fluorescence of DNA-wrapped single-walled carbon nanotubes. Chemical Physics Letters, 2007, 435, 104-108.	1.2	40
834	Excitons in bundles of single walled carbon nanotubes. Chemical Physics Letters, 2007, 437, 104-107.	1.2	1
835	Dependence of exciton transition energy of single-walled carbon nanotubes on surrounding dielectric materials. Chemical Physics Letters, 2007, 442, 394-399.	1.2	99
836	Double resonance Raman scattering in solubilised single walled carbon nanotubes. Chemical Physics Letters, 2007, 442, 409-412.	1.2	18
837	Photoinduced energy transfer in composites of poly[(p-phenylene-1,2-vinylene)-co-(p-phenylene-1,1-vinylidene)] and single-walled carbon nanotubes. Chemical Physics Letters, 2007, 444, 263-267.	1.2	30
838	Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon, 2007, 45, 618-623.	5.4	652

#	Article	IF	CITATIONS
839	The purification of HiPco SWCNTs with liquid bromine at room temperature. Carbon, 2007, 45, 1013-1017.	5.4	23
840	Quantitative assessment of carbon nanotube dispersions by Raman spectroscopy. Carbon, 2007, 45, 907-912.	5.4	62
841	Spectral properties of single-walled carbon nanotubes encapsulating fullerenes. Carbon, 2007, 45, 1492-1505.	5.4	22
842	Tocopheryl polyethylene glycol succinate as a safe, antioxidant surfactant for processing carbon nanotubes and fullerenes. Carbon, 2007, 45, 2463-2470.	5.4	74
843	Layer-by-layer deposition of shortened nanotubes or polyethylene glycol-derivatized nanotubes on liposomes: A tool for increasing liposome stability. Carbon, 2007, 45, 2479-2485.	5.4	27
844	Development of Carbon Nanotube based radiation detectors. Nuclear Physics, Section B, Proceedings Supplements, 2007, 172, 57-60.	0.5	0
845	The influence of the carbon nanotube on the structural and dynamical properties of cholesterol cluster. New Biotechnology, 2007, 24, 572-576.	2.7	13
846	Effect of fiber length of carbon nanotubes on the absorption of erythropoietin from rat small intestine. International Journal of Pharmaceutics, 2007, 337, 357-360.	2.6	25
847	Highly visible-light luminescence properties of the carboxyl-functionalized short and ultrashort MWNTs. Journal of Solid State Chemistry, 2007, 180, 1928-1933.	1.4	18
848	Raman scattering from one-dimensional carbon systems. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 81-87.	1.3	10
849	Carbon nanotube–polymer composites for photonic devices. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 115-118.	1.3	44
850	Optical studies of carbon nanotubes and nanographites. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 88-92.	1.3	22
851	Unstable Micellarization of Carbon-Nanotube Solutions for Low-Loss Reactivity and Crosslinking. Small, 2007, 3, 226-229.	5.2	2
852	Proteins and Carbon Nanotubes: Close Encounter in Water. Small, 2007, 3, 1259-1265.	5.2	175
853	Inkjet Printing of Transparent, Electrically Conducting Singleâ€Walled Carbonâ€Nanotube Composites. Small, 2007, 3, 1500-1503.	5.2	131
854	Hybridization Kinetics and Thermodynamics of DNA Adsorbed to Individually Dispersed Singleâ€Walled Carbon Nanotubes. Small, 2007, 3, 1602-1609.	5.2	74
855	Ionic Liquid of Ultralong Carbon Nanotubes. Small, 2007, 3, 1889-1893.	5.2	54
856	Enhancement of Polymer Luminescence by Excitationâ€Energy Transfer from Multiâ€Walled Carbon Nanotubes. Small, 2007, 3, 1927-1933.	5.2	27

#	Article	IF	CITATIONS
857	Comparative high pressure Raman study of individual and bundled single-wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 100-104.	0.7	9
858	Pressure effects on surfactant solubilized single-wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 105-109.	0.7	9
859	Optical properties of multiwall boron nitride nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4147-4151.	0.7	63
860	Bondâ€curvature effect on burning of singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4035-4039.	0.7	9
861	Optical properties of polymer films with embedded singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4231-4235.	0.7	35
862	Frequency, transitionâ€energy, and bundling behavior of a new class of carbon nanotube intermediate frequency modes. Physica Status Solidi (B): Basic Research, 2007, 244, 3992-3997.	0.7	5
863	Carbon nanotubes for ultrafast photonics. Physica Status Solidi (B): Basic Research, 2007, 244, 4303-4307.	0.7	29
864	Optical properties of structurally sorted singleâ€wall carbon nanotube ensembles. Physica Status Solidi (B): Basic Research, 2007, 244, 3964-3968.	0.7	13
865	Electrically driven thermal light emission from individual single-walled carbon nanotubes. Nature Nanotechnology, 2007, 2, 33-38.	15.6	167
866	Sorting out left from right. Nature Nanotechnology, 2007, 2, 340-341.	15.6	29
866 867	Sorting out left from right. Nature Nanotechnology, 2007, 2, 340-341. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nature Nanotechnology, 2007, 2, 640-646.	15.6 15.6	29 988
	Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nature		
867	Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nature Nanotechnology, 2007, 2, 640-646.	15.6	988
867 868	Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nature Nanotechnology, 2007, 2, 640-646. A novel hybrid carbon material. Nature Nanotechnology, 2007, 2, 156-161.	15.6 15.6	988 369
867 868 869	 Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nature Nanotechnology, 2007, 2, 640-646. A novel hybrid carbon material. Nature Nanotechnology, 2007, 2, 156-161. The big picture of Raman scattering in carbon nanotubes. Vibrational Spectroscopy, 2007, 45, 71-81. Inorganic hollow nanoparticles and nanotubes in nanomedicinePart 2: Imaging, diagnostic, and 	15.6 15.6 1.2	988 369 105
867 868 869 870	Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nature Nanotechnology, 2007, 2, 640-646. A novel hybrid carbon material. Nature Nanotechnology, 2007, 2, 156-161. The big picture of Raman scattering in carbon nanotubes. Vibrational Spectroscopy, 2007, 45, 71-81. Inorganic hollow nanoparticles and nanotubes in nanomedicinePart 2: Imaging, diagnostic, and therapeutic applications. Drug Discovery Today, 2007, 12, 657-663. UV-VIS absorption spectroscopy of large molecules for applications in matter wave interferometry.	15.6 15.6 1.2 3.2	988 369 105 92
867 868 869 870 871	Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nature Nanotechnology, 2007, 2, 640-646. A novel hybrid carbon material. Nature Nanotechnology, 2007, 2, 156-161. The big picture of Raman scattering in carbon nanotubes. Vibrational Spectroscopy, 2007, 45, 71-81. Inorganic hollow nanoparticles and nanotubes in nanomedicinePart 2: Imaging, diagnostic, and therapeutic applications. Drug Discovery Today, 2007, 12, 657-663. UV-VIS absorption spectroscopy of large molecules for applications in matter wave interferometry. Laser Physics, 2007, 17, 583-589. Stabilization and "Debundlingâ€-of Single-Wall Carbon Nanotube Dispersions in (i>N (i>N Stabilization and "Debundlingâ€-of Single-Wall Carbon Nanotube Dispersions in (i>NMP) by Polyvinylpyrrolidone (PVP). Journal of Physical Chemistry C,	15.6 15.6 1.2 3.2 0.6	 988 369 105 92 9

		CITATION REPORT	
#	Article	IF	CITATIONS
875	Exciton Photophysics of Carbon Nanotubes. Annual Review of Physical Chemistry, 2007, 58, 7	⁷ 19-747. 4.8	201
876	Role of Bright and Dark Excitons in the Temperature-Dependent Photoluminescence of Carbo Nanotubes. Physical Review Letters, 2007, 98, 027404.	n 2.9	115
877	Structure-Dependent Fluorescence Efficiencies of Individual Single-Walled Carbon Nanotubes Letters, 2007, 7, 3080-3085.	. Nano 4.5	156
878	Carbon Nanotube Synthesis and Organization. Topics in Applied Physics, 2007, , 101-165.	0.4	89
879	DNA-Directed Assembly of Single-Wall Carbon Nanotubes. Journal of the American Chemical S 2007, 129, 8696-8697.	Society, 6.6	123
880	Dynamics of Diamond Nanoparticles in Solution and Cells. Nano Letters, 2007, 7, 3588-3591.	4.5	230
881	Electrically tunable viscosity of dilute suspensions of carbon nanotubes. Physics of Fluids, 200 121702.)7, 19, 1.6	32
882	Dispersion and Percolation Transitions of Nanorods in Polymer Solutions. Macromolecules, 20 344-354.	007, 40, 2.2	58
883	Characteristics of the Raman spectra of single-walled carbon nanotube bundles under electrochemical potential control. Analytical and Bioanalytical Chemistry, 2007, 388, 103-108	3. 1.9	11
884	Precise positioning of carbon nanotubes by ac dielectrophoresis using floating posts. Applied A: Materials Science and Processing, 2007, 86, 415-419.	Physics 1.1	22
885	Photoluminescence and optical absorption properties of polymer modified carbon nanotubes of Nanoparticle Research, 2007, 9, 289-292.	. Journal 0.8	3
886	Strategies for Controlled Placement of Nanoscale Building Blocks. Nanoscale Research Letters 2, 519-545.	s, 2007, 3.1	89
887	Luminescence of carbon nanotube bulbs. Science Bulletin, 2007, 52, 113-117.	1.7	9
888	Thermo- and iono-luminescence on MWCNT bundles. Radiation Physics and Chemistry, 2007,	76, 492-494. 1.4	11
889	Preparation and modification of carbon nanotubes: Review of recent advances and application catalysis and sensing. Analytica Chimica Acta, 2008, 626, 119-129.	ns in 2.6	269
890	Covalent functionalization of multi-wall carbon nanotubes (MWNTs) by nickel(II) Schiff-base of Synthesis, characterization and liquid phase oxidation of phenol with hydrogen peroxide. App Surface Science, 2008, 255, 2963-2970.	complex: lied 3.1	73
891	Automated process for selection of carbon nanotube by electronic property using dielectroph manipulation. Journal of Micro-Nano Mechatronics, 2008, 4, 37-48.	oretic 1.0	17
892	Effect of nucleases on the cellular internalization of fluorescent labeled DNA-functionalized single-walled carbon nanotubes. Nano Research, 2008, 1, 351-360.	5.8	25

#	Article	IF	CITATIONS
893	Femtosecond Dynamics in Single Wall Carbon Nanotube/Poly(3-Hexylthiophene) Composites. Nanoscale Research Letters, 2008, 3, .	3.1	14
894	Ultrasonic Processing of Single-Walled Carbon Nanotube–Glucose Oxidase Conjugates: Interrelation of Bioactivity and Structure. Nanobiotechnology, 2008, 4, 9-17.	1.2	6
895	Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science, 2008, 23, 217-228.	1.0	1,950
896	Carbon nanotube-based neat fibers. Nano Today, 2008, 3, 24-34.	6.2	255
897	Capillarityâ€Driven Fluidic Alignment of Singleâ€Walled Carbon Nanotubes in Reversibly Bonded Nanochannels. Small, 2008, 4, 92-95.	5.2	31
898	A Genetic Analysis of Carbonâ€Nanotubeâ€Binding Proteins. Small, 2008, 4, 416-420.	5.2	27
899	Nanowelded Carbonâ€Nanotubeâ€Based Solar Microcells. Small, 2008, 4, 1313-1318.	5.2	99
900	Enhanced Environmental Mobility of Carbon Nanotubes in the Presence of Humic Acid and Their Removal from Aqueous Solution. Small, 2008, 4, 2166-2170.	5.2	105
901	Synthesis and characterization of polyanilineâ€multiwalled carbon nanotube nanocomposites in the presence of sodium dodecyl sulfate. Polymers for Advanced Technologies, 2008, 19, 1754-1762.	1.6	89
902	Preparation and shear properties of carbon nanotubes/poly(butyl methacrylate) hybrid material. Polymer Composites, 2008, 29, 972-977.	2.3	21
903	Ranking the affinity of aromatic residues for carbon nanotubes by using designed surfactant peptides. Journal of Peptide Science, 2008, 14, 139-151.	0.8	67
904	Visible cathodoluminescence from carbon nanotubes: the role of impurities. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1391-1393.	0.8	8
905	The lowâ€energy electronic properties of graphene ribbons in spatially modulated magnetic fields. Physica Status Solidi (B): Basic Research, 2008, 245, 2761-2765.	0.7	1
906	Excitonic imaging spectroscopy of singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2008, 245, 2247-2250.	0.7	1
907	Quantitative analysis of dispersion and doping of individual carbon nanotubes in water based solutions using absorption and Raman spectroscopy. Physica Status Solidi (B): Basic Research, 2008, 245, 1964-1966.	0.7	3
908	Exciton transfer and propagation in carbon nanotubes studied by nearâ€field optical microscopy. Physica Status Solidi (B): Basic Research, 2008, 245, 2243-2246.	0.7	19
909	Anisotropic Electronic Conductivity in Layerâ€By‣ayer Composite Film Composed of Waterâ€Soluble Conjugated Polymers and SWNTs. Macromolecular Rapid Communications, 2008, 29, 1877-1881.	2.0	14
910	Preferred Functionalization of Metallic and Smallâ€Diameter Singleâ€Walled Carbon Nanotubes by Nucleophilic Addition of Organolithium and â€Magnesium Compounds Followed by Reoxidation. Chemistry - A European Journal, 2008, 14, 1607-1614.	1.7	62

#	Article	IF	CITATIONS
911	Creation of Hierarchical Carbon Nanotube Assemblies through Alternative Packing of Complementary Semiâ€Artificial βâ€1,3â€Glucan/Carbon Nanotube Composites. Chemistry - A European Journal, 2008, 14, 2398-2404.	1.7	51
912	Clusterization, Electrophoretic Deposition, and Photoelectrochemical Properties of Fullereneâ€Functionalized Carbon Nanotube Composites. Chemistry - A European Journal, 2008, 14, 4875-4885.	1.7	54
913	Dispersion of Singleâ€Walled Carbon Nanotubes by Using Surfactants: Are the Type and Concentration Important?. Chemistry - A European Journal, 2008, 14, 6044-6048.	1.7	100
914	Excitation Transfer in Functionalized Carbon Nanotubes. ChemPhysChem, 2008, 9, 1250-1253.	1.0	36
915	Photoinduced Luminescence Blinking and Bleaching in Individual Singleâ€Walled Carbon Nanotubes. ChemPhysChem, 2008, 9, 1460-1464.	1.0	32
916	Nanomedicine and its potential in diabetes research and practice. Diabetes/Metabolism Research and Reviews, 2008, 24, 604-610.	1.7	107
917	Covalent Sidewall Functionalization of SWNTs by Nucleophilic Addition of Lithium Amides. European Journal of Organic Chemistry, 2008, 2008, 2544-2550.	1.2	95
918	Some Properties of Sodium Dodecyl Sulfate Functionalized Multiwalled Carbon Nanotubes Electrode and Its Application on Detection of Dopamine in the Presence of Ascorbic Acid. Electroanalysis, 2008, 20, 1811-1818.	1.5	46
919	Morphology, thermal expansion, and electrical conductivity of multiwalled carbon nanotube/epoxy composites. Journal of Applied Polymer Science, 2008, 108, 979-986.	1.3	39
920	Dispersion and noncovalent modification of multiwalled carbon nanotubes by various polystyreneâ€based polymers. Journal of Applied Polymer Science, 2008, 109, 3525-3532.	1.3	28
921	Reversible Solubilization and Precipitation of Carbon Nanotubes through Oxidation–Reduction Reactions of a Solubilizing Agent. Angewandte Chemie - International Edition, 2008, 47, 4577-4580.	7.2	46
922	Carbon Nanotube–Polymer Composite for Lightâ€Driven Microthermal Control. Angewandte Chemie - International Edition, 2008, 47, 3610-3613.	7.2	45
923	Tipâ€Enhanced Nearâ€Field Optical Microscopy. Angewandte Chemie - International Edition, 2008, 47, 8178-8191.	7.2	260
924	Individual Dissolution of Singleâ€Walled Carbon Nanotubes by Using Polybenzimidazole, and Highly Effective Reinforcement of Their Composite Films. Advanced Functional Materials, 2008, 18, 1776-1782.	7.8	92
925	Charged Rodâ€Like Nanoparticles Assisting Singleâ€Walled Carbon Nanotube Dispersion in Water. Advanced Functional Materials, 2008, 18, 2685-2691.	7.8	32
926	In vivo Imaging and Drug Storage by Quantumâ€Dotâ€Conjugated Carbon Nanotubes. Advanced Functional Materials, 2008, 18, 2489-2497.	7.8	108
927	Transparent, Lowâ€Electricâ€Resistance Nanocomposites of Selfâ€Assembled Block Copolymers and SWNTs. Advanced Materials, 2008, 20, 1505-1510.	11.1	45
928	Development of Novel Carbon Nanotube/Photopolymer Nanocomposites with High Conductivity and their Application to Nanoimprint Photolithography. Advanced Materials, 2008, 20, 2151-2155.	11.1	52

#	Article	IF	CITATIONS
929	Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers. Advanced Materials, 2008, 20, 4040-4043.	11.1	148
930	Robust, Conducting, and Transparent Polymer Composites Using Surfaceâ€Modified and Individualized Doubleâ€Walled Carbon Nanotubes. Advanced Materials, 2008, 20, 4509-4512.	11.1	58
934	Two-dimensional self-assembly and complementary base-pairing between amphiphile nucleotides on graphite. Journal of Colloid and Interface Science, 2008, 323, 435-440.	5.0	27
935	Comparative study of carbon nanotube dispersion using surfactants. Journal of Colloid and Interface Science, 2008, 328, 421-428.	5.0	628
936	Dispersibility and stability improvement of unfunctionalized nanotubes in amide solvents by polymer wrapping. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2414-2418.	1.3	19
937	Optical properties of nanotube bundles by photoluminescence excitation and absorption spectroscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2352-2359.	1.3	33
938	Optical trapping of carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2347-2351.	1.3	36
939	Temperature-dependent Coulomb scattering rates of Fermi-momentum states in metallic carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2720-2723.	1.3	0
940	Non-covalent functionalization of carbon nanotubes: Experimental evidence for isolated and bundled tubes. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 41, 66-69.	1.3	13
941	One-dimensional semiconductor in a polar solvent: Solvation and low-frequency dynamics of an excess charge carrier. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 5909-5914.	0.9	5
942	Synthesis, characterization and catalytic oxyfunctionalization of cyclohexene with tert-butylhydroperoxide over a manganese(II) complex covalently anchored to multi-wall carbon nanotubes (MWNTs). Polyhedron, 2008, 27, 3653-3661.	1.0	35
943	Carbon nanotube dispersion and exfoliation in polypropylene and structure and properties of the resulting composites. Polymer, 2008, 49, 1831-1840.	1.8	138
944	Grafting-to approach for the functionalization of carbon nanotubes with polystyrene. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 152, 40-43.	1.7	30
945	Facile synthesis of multifunctional multiwalled carbon nanotubes/Fe3O4 nanoparticles/polyaniline composite nanotubes. Journal of Solid State Chemistry, 2008, 181, 628-636.	1.4	85
946	Resonant enhancement of third-order optical nonlinearities in single-walled carbon nanotubes. Journal of Luminescence, 2008, 128, 1019-1021.	1.5	5
947	Characteristics of ultrasonic dispersion of carbon nanotubes aided by antifoam. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 322, 103-107.	2.3	40
948	A novel biomimetic polymer as amphiphilic surfactant for soluble and biocompatible carbon nanotubes (CNTs). Colloids and Surfaces B: Biointerfaces, 2008, 67, 67-72.	2.5	23
949	Absorption spectroscopy of surfactant-dispersed carbon nanotube film: Modulation of electronic structures. Chemical Physics Letters, 2008, 455, 275-278.	1.2	124

#	ARTICLE	IF	CITATIONS
950	Neutralized fluorine radical detection using single-walled carbon nanotube network. Carbon, 2008, 46, 24-29.	5.4	5
951	Production of electrically conductive paper by adding carbon nanotubes. Carbon, 2008, 46, 169-171.	5.4	54
952	Protonation and sonication effects on aggregation sensitive Raman features of single wall carbon nanotubes. Carbon, 2008, 46, 1327-1330.	5.4	11
953	The quantitative characterization of the dispersion state of single-walled carbon nanotubes using Raman spectroscopy and atomic force microscopy. Carbon, 2008, 46, 1530-1534.	5.4	23
954	Size effects on the photoelectrochemical activities of single wall carbon nanotubes. Electrochimica Acta, 2008, 54, 821-828.	2.6	14
955	Structural dependence of exciton in carbon nanotubes. European Physical Journal B, 2008, 61, 433-439.	0.6	3
956	Exciton Energy Transfer-Assisted Photoluminescence Brightening from Freestanding Single-Walled Carbon Nanotube Bundles. Journal of the American Chemical Society, 2008, 130, 8101-8107.	6.6	36
957	Exciton Energy Transfer in Pairs of Single-Walled Carbon Nanotubes. Nano Letters, 2008, 8, 1363-1367.	4.5	118
958	Methodology for Homogeneous Dispersion of Single-walled Carbon Nanotubes by Physical Modification. Polymer Journal, 2008, 40, 577-589.	1.3	130
959	Polymer Structure and Solvent Effects on the Selective Dispersion of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2008, 130, 3543-3553.	6.6	287
960	Selective Photochemical Functionalization of Surfactant-Dispersed Single Wall Carbon Nanotubes in Water. Journal of the American Chemical Society, 2008, 130, 14227-14233.	6.6	38
961	Surface area and thermal stability effect of the MgO supported catalysts for the synthesis of carbon nanotubes. Journal of Materials Chemistry, 2008, 18, 5738.	6.7	28
962	Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes. Environmental Science & Technology, 2008, 42, 9005-9013.	4.6	1,088
963	Excitonic two-photon absorption in semiconducting carbon nanotubes within an effective-mass approximation. Physical Review B, 2008, 78, .	1.1	21
964	Doping and de-doping of carbon nanotube transparent conducting films by dispersant and chemical treatment. Journal of Materials Chemistry, 2008, 18, 1261.	6.7	132
965	Chapter 4 Raman spectroscopy of carbon nanotubes. Contemporary Concepts of Condensed Matter Science, 2008, 3, 83-108.	0.5	16
966	Optical polarizer made of uniaxially aligned short single-wall carbon nanotubes embedded in a polymer film. Physical Review B, 2008, 77, .	1.1	62
967	Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environmental Toxicology and Chemistry, 2008, 27, 1932-1941.	2.2	174

	CITATION R	Citation Report		
#	Article	IF	CITATIONS	
968	Sorting Carbon Nanotubes for Electronics. ACS Nano, 2008, 2, 2195-2199.	7.3	50	
969	Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chemical Communications, 2008, , 5116.	2.2	786	
970	Atomic Layer Deposition on Bulk Quantities of Surfactantâ€Modified Singleâ€Walled Carbon Nanotubes. Journal of the American Ceramic Society, 2008, 91, 831-835.	1.9	27	
971	Engineered Nanostructures for Multifunctional Singleâ€Walled Carbon Nanotube Reinforced Silicon Nitride Nanocomposites. Journal of the American Ceramic Society, 2008, 91, 3129-3137.	1.9	61	
972	Progress towards monodisperse single-walled carbon nanotubes. Nature Nanotechnology, 2008, 3, 387-394.	15.6	861	
973	Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide. Nature Nanotechnology, 2008, 3, 356-362.	15.6	222	
974	A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths. Nature Nanotechnology, 2008, 3, 609-613.	15.6	85	
975	A quantum light source. Nature Photonics, 2008, 2, 459-460.	15.6	0	
976	Carbon-nanotube photonics and optoelectronics. Nature Photonics, 2008, 2, 341-350.	15.6	1,033	
977	Optical detection of DNA hybridization using absorption spectra of single-walled carbon nanotubes. Materials Chemistry and Physics, 2008, 112, 738-741.	2.0	42	
978	Atomic Force Microscopy Studies of DNA-Wrapped Carbon Nanotube Structure and Binding to Quantum Dots. Journal of the American Chemical Society, 2008, 130, 10648-10655.	6.6	121	
979	Chapter 5 Optical spectroscopy of single-walled carbon nanotubes. Contemporary Concepts of Condensed Matter Science, 2008, 3, 109-133.	0.5	13	
980	Poly(oxyalkylene)diamine-Functionalized Carbon Nanotube/Perfluorosulfonated Polymer Composites: Synthesis, Water State, and Conductivity. Chemistry of Materials, 2008, 20, 5756-5767.	3.2	104	
981	Preparative Ultracentrifuge Method for Characterization of Carbon Nanotube Dispersions. Journal of Physical Chemistry C, 2008, 112, 19193-19202.	1.5	48	
982	Assessment of Chemically Separated Carbon Nanotubes for Nanoelectronics. Journal of the American Chemical Society, 2008, 130, 2686-2691.	6.6	111	
983	Optical Evaluation of the Metal-to-Semiconductor Ratio of Single-Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2008, 112, 13187-13191.	1.5	91	
984	Synthesis and properties of novel nanocomposites made of single-walled carbon nanotubes and low molecular mass organogels and their thermo-responsive behavior triggered by near IR radiation. Journal of Materials Chemistry, 2008, 18, 2593.	6.7	81	
985	Effect of Centrifugation on the Purity of Single-Walled Carbon Nanotubes from MCM-41 Containing Cobalt. Journal of Physical Chemistry C, 2008, 112, 17567-17575.	1.5	26	

		CITATION REPC	DRT	
#	Article	II	F	CITATIONS
986	Brownian Dynamics Simulations of Single-Wall Carbon Nanotube Separation by Type Using Dielectrophoresis. Journal of Physical Chemistry B, 2008, 112, 7467-7477.	g 1	2	25
987	Investigation of Sodium Dodecyl Benzene Sulfonate Assisted Dispersion and Debundling c Single-Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2008, 112, 332-337.	f	5	82
988	Separation of Single-Walled Carbon Nanotubes by Use of Ionic Liquid-Aided Capillary Elect Analytical Chemistry, 2008, 80, 2672-2679.	rophoresis. 3	3.2	50
989	Nanostructured scaffolds for neural applications. Nanomedicine, 2008, 3, 183-199.		7	140
990	Functional Lyotropic Liquid Crystal Materials. , 2007, , 181-222.			60
991	Diameter-selective separation of double-walled carbon nanotubes. Applied Physics Letters, 223107.	2008, 93, 1	5	18
992	Selective Probing and Imaging of Cells with Single Walled Carbon Nanotubes as Near-Infra Fluorescent Molecules. Nano Letters, 2008, 8, 586-590.	red 4	1.5	457
993	Temperature Measurement of Carbon Nanotubes Using Infrared Thermography. Chemistry 2008, 20, 4011-4016.	of Materials, 3	3.2	35
994	Control of Length and Spatial Functionality of Single-Wall Carbon Nanotube AFM Nanopro Chemistry of Materials, 2008, 20, 2793-2801.	ibes. 3	3.2	21
995	Quantitative Evaluation of Surfactant-stabilized Single-walled Carbon Nanotubes: Dispersi and Its Correlation with Zeta Potential. Journal of Physical Chemistry C, 2008, 112, 10692	on Quality -10699. 1	5	343
996	Large Populations of Individual Nanotubes in Surfactant-Based Dispersions without the Ne Ultracentrifugation. Journal of Physical Chemistry C, 2008, 112, 972-977.	ed for 1	5	75
997	Photophysics of Individual Single-Walled Carbon Nanotubes. Accounts of Chemical Resear 235-243.	ch, 2008, 41, 7	7.6	108
998	Intersubband Decay of 1-D Exciton Resonances in Carbon Nanotubes. Nano Letters, 2008,	8, 87-91. 4	1.5	41
999	Structure-Dependent Reactivity of Semiconducting Single-Walled Carbon Nanotubes with Benzenediazonium Salts. Journal of the American Chemical Society, 2008, 130, 6795-6800). ⁶	5.6	85
1000	Narrow Gap Semiconductors 2007. Springer Proceedings in Physics, 2008, , .	C).1	0
1001	Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes. (Materials, 2008, , .	Carbon d).2	115
1002	Selective Optical Property Modification of Double-Walled Carbon Nanotubes by Fluorination Nano, 2008, 2, 485-488.	on. ACS 7	7.3	64
1003	Supramolecular Discrimination of Carbon Nanotubes According to Their Helicity. Nano Let 8, 1830-1835.	ters, 2008, 4	1.5	79

#	Article	IF	CITATIONS
1004	Applications of Carbon-Based Nanomaterials for Drug Delivery in Oncology. Carbon Materials, 2008, , 223-266.	0.2	5
1005	Molecular Dynamics Study of a Nanotube-Binding Amphiphilic Helical Peptide at Different Water/Hydrophobic Interfaces. Journal of Physical Chemistry B, 2008, 112, 16326-16333.	1.2	53
1006	Controlled purification, solubilisation and cutting of carbon nanotubes using phosphomolybdic acid. Journal of Materials Chemistry, 2008, 18, 4056.	6.7	13
1007	Anisotropic Thin Films of Single-Wall Carbon Nanotubes from Aligned Lyotropic Nematic Suspensions. Nano Letters, 2008, 8, 4103-4107.	4.5	93
1008	Dispersing Carbon Nanotubes in Aqueous Solutions by a Starlike Block Copolymer. Journal of Physical Chemistry C, 2008, 112, 16377-16384.	1.5	85
1009	Comparison of the Quality of Aqueous Dispersions of Single Wall Carbon Nanotubes Using Surfactants and Biomolecules. Langmuir, 2008, 24, 5070-5078.	1.6	225
1010	Chapter 2 Quantum theories for carbon nanotubes. Contemporary Concepts of Condensed Matter Science, 2008, , 29-48.	0.5	1
1011	Theory of Third-Order Optical Susceptibility of Single-Wall Carbon Nanotubes With Account of Coulomb Interaction. Springer Proceedings in Physics, 2008, , 107-109.	0.1	0
1012	Photoluminescence of Perovskite Nanosheets Prepared by Exfoliation of Layered Oxides, K ₂ Ln ₂ Ti ₃ O ₁₀ , KLnNb ₂ O ₇ , and RbLnTa ₂ O ₇ (Ln: Lanthanide Ion). Journal of the American Chemical Society, 2008, 130, 7052-7059.	6.6	214
1013	Hydrodynamic Characterization of Surfactant Encapsulated Carbon Nanotubes Using an Analytical Ultracentrifuge. ACS Nano, 2008, 2, 2291-2300.	7.3	118
1014	Dynamics of Surfactant-Suspended Single-Walled Carbon Nanotubes in a Centrifugal Field. Langmuir, 2008, 24, 1790-1795.	1.6	130
1015	Electron transfer in pristine and functionalised single-walled carbon nanotubes. Chemical Communications, 2008, , 4867.	2.2	19
1016	Luminescence Decay and the Absorption Cross Section of Individual Single-Walled Carbon Nanotubes. Physical Review Letters, 2008, 101, 077402.	2.9	158
1017	Ordered DNA Wrapping Switches on Luminescence in Single-Walled Nanotube Dispersions. Journal of the American Chemical Society, 2008, 130, 12734-12744.	6.6	119
1018	Wrapping of Single-Walled Carbon Nanotubes by a π-Conjugated Polymer: The Role of Polymer Conformation-Controlled Size Selectivity. Journal of Physical Chemistry B, 2008, 112, 12263-12269.	1.2	97
1019	Single Gold-Nanoparticle-Enhanced Raman Scattering of Individual Single-Walled Carbon Nanotubes via Atomic Force Microscope Manipulation. Journal of Physical Chemistry C, 2008, 112, 7119-7123.	1.5	59
1020	Pathogenic Bacterial Sensors Based on Carbohydrates as Sensing Elements. , 2008, , 659-687.		2
1021	Characterization of carbon nanotube–thermotropic nematic liquid crystal composites. Journal Physics D: Applied Physics, 2008, 41, 125106.	1.3	50

#	Article	IF	CITATIONS
1022	Strain Measurements on Individual Single-Walled Carbon Nanotubes in a Polymer Host: Structure-Dependent Spectral Shifts and Load Transfer. Nano Letters, 2008, 8, 826-831.	4.5	59
1023	Why Single-Walled Carbon Nanotubes Can Be Dispersed in Imidazolium-Based Ionic Liquids. ACS Nano, 2008, 2, 2540-2546.	7.3	296
1024	Singling out the Electrochemistry of Individual Single-Walled Carbon Nanotubes in Solution. Journal of the American Chemical Society, 2008, 130, 7393-7399.	6.6	99
1025	High Quality Dispersions of Functionalized Single Walled Nanotubes at High Concentration. Journal of Physical Chemistry C, 2008, 112, 3519-3524.	1.5	56
1026	Prospects of Nanomaterials in Biosensors. Analytical Letters, 2008, 41, 159-209.	1.0	174
1027	Photon Antibunching in the Photoluminescence Spectra of a Single Carbon Nanotube. Physical Review Letters, 2008, 100, 217401.	2.9	232
1028	Self-Assembling Peptide Coatings Designed for Highly Luminescent Suspension of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2008, 130, 17134-17140.	6.6	69
1029	Fluorescent Single Walled Carbon Nanotube/Silica Composite Materials. ACS Nano, 2008, 2, 2283-2290.	7.3	40
1030	Individually Dispersing Single-Walled Carbon Nanotubes with Novel Neutral pH Water-Soluble Chitosan Derivatives. Journal of Physical Chemistry C, 2008, 112, 7579-7587.	1.5	102
1031	Near-Infrared Fluorescent Materials for Sensing of Biological Targets. Sensors, 2008, 8, 3082-3105.	2.1	173
1032	Catalytic activity of surfactantsolubilized multiwalled carbon nanotubes decorated with palladium nanoparticles. Diamond and Related Materials, 2008, 17, 1582-1585.	1.8	9
1033	Raman spectroscopy of charge transfer interactions between single wall carbon nanotubes and [FeFe] hydrogenase. Dalton Transactions, 2008, , 5454.	1.6	13
1034	Angle-controlled arrangement of single-walled carbon nanotubes solubilised by 8-quinolinol metal chelate derivatives on mica. Chemical Communications, 2008, , 1801.	2.2	9
1035	Nanomaterial-incorporated blown bubble films for large-area, aligned nanostructures. Journal of Materials Chemistry, 2008, 18, 728.	6.7	95
1036	Preferred functionalization of metallic and small-diameter single walled carbon nanotubes via reductive alkylation. Journal of Materials Chemistry, 2008, 18, 1493.	6.7	72
1037	Optical and Electrochemical Properties of Singleâ€walled Carbon Nanotube Arrays Attached to Silicon (100) Surfaces. Fullerenes Nanotubes and Carbon Nanostructures, 2008, 16, 18-29.	1.0	13
1038	Optical absorption spectrum of single-walled carbon nanotubes dispersed in sodium cholate and sodium dodecyl sulfate. Journal of Materials Research, 2008, 23, 632-636.	1.2	8
1039	Nonradiative Quenching of Fluorescence in a Semiconducting Carbon Nanotube: A Time-Domain <i>AbÂlnitio</i> Study. Physical Review Letters, 2008, 100, 197402.	2.9	126

#	Article	IF	CITATIONS
1040	Highly hydrophilic and stable polypeptide/single-wall carbon nanotube conjugates. Journal of Materials Chemistry, 2008, 18, 1977.	6.7	28
1041	Translational and Rotational Dynamics of Individual Single-Walled Carbon Nanotubes in Aqueous Suspension. ACS Nano, 2008, 2, 1770-1776.	7.3	58
1042	One-step solid-state thermolysis of a metal–organic framework: a simple and facile route to large-scale of multiwalled carbon nanotubes. Chemical Communications, 2008, , 1581.	2.2	100
1043	Influence of Gas Adsorption on Optical Transition Energies of Single-Walled Carbon Nanotubes. Nano Letters, 2008, 8, 3097-3101.	4.5	45
1044	Polymer-Assisted Isolation of Single Wall Carbon Nanotubes in Organic Solvents for Optical-Quality Nanotubeâ ``Polymer Composites. Journal of Physical Chemistry C, 2008, 112, 20227-20232.	1.5	45
1045	Subdiffraction Far-Field Imaging of Luminescent Single-Walled Carbon Nanotubes. Nano Letters, 2008, 8, 749-753.	4.5	37
1046	Organic Solvent-Redispersible Isolated Single Wall Carbon Nanotubes Coated by in-Situ Polymerized Surfactant Monolayer. Macromolecules, 2008, 41, 3261-3266.	2.2	35
1047	Improving the Effectiveness of Interfacial Trapping in Removing Single-Walled Carbon Nanotube Bundles. Journal of the American Chemical Society, 2008, 130, 14721-14728.	6.6	40
1048	Stable Luminescence from Individual Carbon Nanotubes in Acidic, Basic, and Biological Environments. Journal of the American Chemical Society, 2008, 130, 2626-2633.	6.6	68
1049	Hydrogels Based on Surfactant-Free Ionene Polymers with <i>N,N′</i> -(<i>p</i> -Phenylene)dibenzamide Linkages. Macromolecules, 2008, 41, 8841-8846.	2.2	35
1050	In-Flight Dimensional Tuning of Metal Nanoparticles by Microplasma Synthesis for Selective Production of Diameter-Controlled Carbon Nanotubes. Journal of Physical Chemistry C, 2008, 112, 17920-17925.	1.5	35
1051	Diameter Analysis of Rebundled Single-Wall Carbon Nanotubes Using X-ray Diffraction: Verification of Chirality Assignment Based on Optical Spectra. Journal of Physical Chemistry C, 2008, 112, 15997-16001.	1.5	31
1052	Controllable Redox Reaction of Chemically Purified DNAâ^'Single Walled Carbon Nanotube Hybrids with Hydrogen Peroxide. Journal of the American Chemical Society, 2008, 130, 10054-10055.	6.6	24
1053	Non-oxidizing Purification Method for Large Volumes of Long, Undamaged Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2008, 112, 19186-19192.	1.5	24
1054	Spontaneous Exfoliation of Single-Walled Carbon Nanotubes Dispersed Using a Designed Amphiphilic Peptide. Biomacromolecules, 2008, 9, 598-602.	2.6	32
1055	Photothermal Methods for Single Nonluminescent Nano-Objects. Analytical Chemistry, 2008, 80, 2288-2294.	3.2	97
1056	Vibrational Spectra and Dynamics of Electronically Excited Semiconducting Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2008, 112, 16030-16034.	1.2	2
1057	Optical Properties of Ultrashort Semiconducting Single-Walled Carbon Nanotube Capsules Down to Sub-10 nm. Journal of the American Chemical Society, 2008, 130, 6551-6555.	6.6	142

#	Article	IF	CITATIONS
1058	Efficient Quenching of Singlet Oxygen via Energy Transfer to Semiconducting Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2008, 112, 16236-16239.	1.5	29
1059	Synthesis and Redox Behavior of Flavin Mononucleotide-Functionalized Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2008, 130, 655-664.	6.6	55
1060	Complexation between Rhodamine 101 and Single-Walled Carbon Nanotubes Indicative of Solventâ~'Nanotube Interaction Strength. Journal of Physical Chemistry C, 2008, 112, 15144-15150.	1.5	15
1061	Protonation Effects on the Branching Ratio in Photoexcited Single-Walled Carbon Nanotube Dispersions. Nano Letters, 2008, 8, 1047-1054.	4.5	42
1062	Electroluminescence from Single-Wall Carbon Nanotube Network Transistors. Nano Letters, 2008, 8, 2351-2355.	4.5	74
1063	Soluble, Discrete Supramolecular Complexes of Single-Walled Carbon Nanotubes with Fluorene-Based Conjugated Polymers. Macromolecules, 2008, 41, 2304-2308.	2.2	120
1064	Noncovalent Modification of Carbon Nanotubes with Ferroceneâ^'Amino Acid Conjugates for Electrochemical Sensing of Chemical Warfare Agent Mimics. Analytical Chemistry, 2008, 80, 2574-2582.	3.2	54
1065	High-Yield Single-Walled Carbon Nanotubes Synthesized on the Small-Pore (C10) Co-MCM-41 Catalyst. Journal of Physical Chemistry C, 2008, 112, 12442-12454.	1.5	27
1066	Environment-Induced Effects on the Temperature Dependence of Raman Spectra of Single-Layer Graphene. Journal of Physical Chemistry C, 2008, 112, 20131-20134.	1.5	49
1067	Facile Synthesis and Thermoresponsive Behaviors of a Well-Defined Pyrrolidone Based Hydrophilic Polymer. Macromolecules, 2008, 41, 3007-3014.	2.2	73
1068	Photophysics of carbon nanotubes in organic polymer-toluene dispersions: Emission and excitation satellites and relaxation pathways. Physical Review B, 2008, 77, .	1.1	70
1069	Bioaccumulation of Radio-Labeled Carbon Nanotubes by <i>Eisenia foetida</i> . Environmental Science & Technology, 2008, 42, 3090-3095.	4.6	162
1070	RNA-Wrapped Carbon Nanotubes Aggregation Induced by Polymer Hybridization. Molecular Crystals and Liquid Crystals, 2008, 497, 7/[339]-19/[351].	0.4	8
1071	Where is it Heading? Single-Particle Tracking of Single-Walled Carbon Nanotubes. ACS Nano, 2008, 2, 1749-1752.	7.3	27
1072	Antenna Chemistry with Metallic Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2008, 130, 15340-15347.	6.6	25
1073	Strong Antimicrobial Coatings: Single-Walled Carbon Nanotubes Armored with Biopolymers. Nano Letters, 2008, 8, 1896-1901.	4.5	189
1074	Light-Induced Incandescence of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2008, 112, 4172-4175.	1.5	17
1075	Exciton Dynamics and Biexciton Formation in Single-Walled Carbon Nanotubes Studied with Femtosecond Transient Absorption Spectroscopy. Journal of Physical Chemistry C, 2008, 112, 4507-4516.	1.5	58

#	Article	IF	CITATIONS
1076	Covalent Functionalization of Single-Walled Carbon Nanotubes Alters Their Densities Allowing Electronic and Other Types of Separation. Journal of Physical Chemistry C, 2008, 112, 7326-7331.	1.5	91
1077	Photosensitization of nonlinear scattering and photoacoustic emission from single-walled carbon nanotubes. Applied Physics Letters, 2008, 92, 103122.	1.5	1
1078	Swelling the Micelle Core Surrounding Single-Walled Carbon Nanotubes with Water-Immiscible Organic Solvents. Journal of the American Chemical Society, 2008, 130, 16330-16337.	6.6	59
1079	Chirality-Resolved Length Analysis of Single-Walled Carbon Nanotube Samples through Shear-Aligned Photoluminescence Anisotropy. ACS Nano, 2008, 2, 1738-1746.	7.3	31
1080	Coating multi-walled carbon nanotubes with rare-earth complexes by anin situsynthetic method. Nanotechnology, 2008, 19, 345701.	1.3	30
1081	XPS and Raman characterization of single-walled carbon nanotubes grown from pretreated Fe ₂ O ₃ nanoparticles. Journal Physics D: Applied Physics, 2008, 41, 165306.	1.3	13
1082	Surface Chemical Modification of Multiwalled Carbon Nanotubes by a Wet-Mechanochemical Reaction. Journal of Nanomaterials, 2008, 2008, 1-5.	1.5	16
1083	Debundling of Single-Walled Carbon Nanotubes by a Nanoball-Penetrating Method. Journal of Physical Chemistry C, 2008, 112, 1789-1794.	1.5	5
1084	Motion of Carbon Nanotubes in suspension under AC electric field. International Journal of Nanomanufacturing, 2008, 2, 50.	0.3	8
1085	Improved Bath Sonication Method for Dispersion of Individual Single-Walled Carbon Nanotubes Using New Triphenylene-Based Surfactant. Japanese Journal of Applied Physics, 2008, 47, 2000.	0.8	41
1086	Silver-plated carbon nanotubes for silver/conducting polymer composites. Nanotechnology, 2008, 19, 495602.	1.3	46
1087	C ₆₀ (OH) _n -ASSISTED DISPERSION OF SINGLE-WALLED CARBON NANOTUBES. Nano, 2008, 03, 455-459.	0.5	5
1088	Continuous Extraction of Highly Pure Metallic Single-Walled Carbon Nanotubes in a Microfluidic Channel. Nano Letters, 2008, 8, 4380-4385.	4.5	72
1089	Effects of environmental and exciton screening in single-walled carbon nanotubes. Journal of Physics: Conference Series, 2008, 129, 012012.	0.3	8
1090	Direct spectroscopic evidence of energy transfer from photo-excited semiconducting polymers to single-walled carbon nanotubes. Nanotechnology, 2008, 19, 095603.	1.3	56
1091	Other one-dimensional systems and thermal properties. Journal of Vacuum Science & Technology B, 2008, 26, 1613.	1.3	7
1092	Laser-induced light emission from carbon nanoparticles. Journal of Applied Physics, 2008, 104, .	1.1	30
1093	Relation between peak structures of loss functions of single double-walled carbon nanotubes and interband transition energies, Journal of Electron Microscopy, 2008, 57, 129-132	0.9	4

ARTICLE IF CITATIONS Efficient dispersion and exfoliation of single-walled nanotubes in 3-aminopropyltriethoxysilane and 1094 1.3 6 its derivatives. Nanotechnology, 2008, 19, 485702. Carrier multiplication in carbon nanotubes studied by femtosecond pump-probe spectroscopy. Applied 1095 1.5 Physics Letters, 2008, 92, . Noncovalent Functionalization of DNA-Wrapped Single-Walled Carbon Nanotubes with 1096 1.6 32 Platinum-Based DNA Cross-Linkers. Langmuir, 2008, 24, 9784-9789. Characterization of the disaggregation state of single-walled carbon nanotube bundles by dielectrophoresis and Raman spectroscopy. Applied Physics Letters, 2008, 92, . Excitons in metallic carbon nanotubes with Aharonov-Bohm flux. Physical Review B, 2008, 77, . 1098 1.1 23 Optical characterization of single walled carbon nanotubes dispersed in sodium cholate and sodium 1099 dodecyl sulfate., 2008,,. Magneto-optical spectroscopy of highly aligned carbon nanotubes: Identifying the role of threading 1100 1.1 24 magnetic flux. Physical Review B, 2008, 78, . Exciton energy transfer between the inner and outer tubes in double-walled carbon nanotubes. 1.1 Physical Review B, 2008, 78, . Raman Study of Diameterâ€dependent Resonance Effects and "Metallic Window―for Different Types of 1102 1.0 1 Singleâ€walled Carbon Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2008, 16, 362-367. Cytotoxicity of single-walled carbon nanotubes suspended in various surfactants. Nanotechnology, 1.3 104 2008, 19, 255702 Bundling effects on the intensities of second-order Raman modes in semiconducting single-walled 1104 17 1.1 carbon nanotubes. Physical Review B, 2008, 77, . Nonradiative recombination of excitons in carbon nanotubes mediated by free charge carriers. 1.1 28 Physical Review B, 2008, 78, . Experimental study of Coulomb corrections and single-particle energies for single-walled carbon 1106 1.1 23 nanotubes using cross-polarized photoluminescence. Physical Review B, 2008, 78, . Immobilization of highly-dispersed single-walled carbon nanotubes in biocompatible and water-soluble solid matrix. Journal of the Ceramic Society of Japan, 2008, 116, 965-968. 1108 Ultrafast dynamics of individual air-suspended single-walled carbon nanotubes., 2008, , . 0 Laser-enhanced Dispersion of Multiwalled Carbon Nanotubes in Acetonitrile. Chemistry Letters, 2008, 1109 37, 1112-1113. Photoconductivity in defective carbon nanotube sheets under ultravioletâ€"visibleâ€"near infrared 1111 1.530 radiation. Applied Physics Letters, 2008, 93, 051911. Chain Structures of Microparticles Induced by Focusing a Laser Beam near the Liquid-Air Interface of a Droplet. AIP Conference Proceedings, 2008, , .

#	Article	IF	CITATIONS
1113	Energy gaps, electronic structures, and x-ray spectroscopies of finite semiconductor single-walled carbon nanotubes. Journal of Chemical Physics, 2008, 128, 084707.	1.2	7
1114	Recent progress in carbon nanotube-based flexible transparent conducting film. , 2008, , .		2
1115	Nanotechnology Applications in Medicine. Tumori, 2008, 94, 206-215.	0.6	27
1116	Ecological Uptake and Depuration of Carbon Nanotubes by <i>Lumbriculus variegatus</i> . Environmental Health Perspectives, 2008, 116, 496-500.	2.8	151
1118	Systematic tight-binding study of optical second-harmonic generation in carbon nanotubes. Physical Review B, 2009, 79, .	1.1	20
1119	Radiative lifetimes and coherence lengths of one-dimensional excitons in single-walled carbon nanotubes. Physical Review B, 2009, 80, .	1.1	51
1120	Strong and stable photoluminescence from the semiconducting inner tubes within double walled carbon nanotubes. Applied Physics Letters, 2009, 94, 083106.	1.5	34
1121	Chirality-Selective Excitation of Coherent Phonons in Carbon Nanotubes by Femtosecond Optical Pulses. Physical Review Letters, 2009, 102, 037402.	2.9	54
1122	Microwave properties of single-walled carbon nanotubes films below percolation threshold. Applied Physics Letters, 2009, 94, 233112.	1.5	3
1123	Engineering the band gap of carbon nanotube for infrared sensors. Applied Physics Letters, 2009, 95, .	1.5	30
1124	Size- and orientation-selective optical manipulation of single-walled carbon nanotubes: A theoretical study. Physical Review B, 2009, 80, .	1.1	24
1125	Orientational order of single-wall carbon nanotubes in stretch-aligned photoluminescent composite films. Physical Review B, 2009, 80, .	1.1	19
1126	Femtosecond excitation correlation spectroscopy of single-walled carbon nanotubes: Analysis based on nonradiative multiexciton recombination processes. Physical Review B, 2009, 80, .	1.1	14
1127	Regioregular poly(3-hexyl-thiophene) helical self-organization on carbon nanotubes. Applied Physics Letters, 2009, 95, 013304.	1.5	45
1128	Effect of dielectric environment on the ultraviolet optical absorption of single-walled carbon nanotubes. Physical Review B, 2009, 79, .	1.1	18
1129	Single-walled carbon nanotube facilitated photoacoustic stimulation of marrow stromal cells towards osteoblasts. , 2009, , .		0
1130	Optical properties of carbon nanotubes in a composite material: The role of dielectric screening and thermal expansion. Journal of Applied Physics, 2009, 105, 094323.	1.1	32
1131	Sample preparation protocols for realization of reproducible characterization of single-wall carbon nanotubes. Metrologia, 2009, 46, 682-692.	0.6	36

#	Article	IF	CITATIONS
1132	A Novel Method for Characterizing the Diameter of Single-Wall Carbon Nanotubes by Optical Absorption Spectra. Applied Physics Express, 2009, 2, 095006.	1.1	47
1133	HIGH FIELD MAGNETO-OPTICAL SPECTROSCOPY OF HIGHLY ALIGNED INDIVIDUAL AND ENSEMBLE SINGLE-WALLED CARBON NANOTUBES. International Journal of Modern Physics B, 2009, 23, 2667-2675.	1.0	1
1134	BAND STRUCTURE AND ELECTRON VELOCITY MEASUREMENT IN CARBON NANOTUBES AND GRAPHENE. International Journal of Modern Physics B, 2009, 23, 2655-2664.	1.0	3
1135	NEW TECHNIQUE TO DEPOSIT THIN FILMS OF CARBON NANOTUBES BASED ON ELECTROSTATIC CHARGE DEPOSITION AND THEIR APPLICATION FOR ALCOHOL DETECTION. International Journal of Nanoscience, 2009, 08, 443-453.	0.4	3
1136	Nonâ€Covalent Functionalization of Carbon Nanotubes with Surfactants and Polymers. Journal of the Chinese Chemical Society, 2009, 56, 234-239.	0.8	103
1137	Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10917-10921.	3.3	626
1138	Exciton States and Linear Optical Spectra of Semiconducting Carbon Nanotubes under Uniaxial Strain. Chinese Physics Letters, 2009, 26, 037102.	1.3	3
1139	Phosphine functionalized single-walled carbon nanotubes. Main Group Chemistry, 2009, 8, 275-281.	0.4	9
1140	The Chemistry of Single-Walled Nanotubes. MRS Bulletin, 2009, 34, 950-961.	1.7	16
1141	Analytical Ancestry: "Firsts―in Fluorescent Labeling of Nucleosides, Nucleotides, and Nucleic Acids. Clinical Chemistry, 2009, 55, 670-683.	1.5	69
1142	Alignment enhanced photoconductivity in single wall carbon nanotube films. Nanotechnology, 2009, 20, 035203.	1.3	19
1143	Catalytically active nanocomposites of electronically coupled carbon nanotubes and platinum nanoparticles formed via vacuum filtration. Nanotechnology, 2009, 20, 434019.	1.3	9
1144	Application of Carbon-Nanotube-Composite Japanese Washi Paper to Authentication Systems. Japanese Journal of Applied Physics, 2009, 48, 06FF04.	0.8	1
1145	Effective Separation of Carbon Nanotubes and Metal Particles from Pristine Raw Soot by Ultracentrifugation. Japanese Journal of Applied Physics, 2009, 48, 015004.	0.8	14
1146	Optical spectroscopic studies of photochemically oxidized single-walled carbon nanotubes. Nanotechnology, 2009, 20, 105708.	1.3	17
1147	Chemically Functionalized Carbon Nanotubes: Emerging Vectors for Cell Therapy. Mini-Reviews in Medicinal Chemistry, 2009, 9, 1251-1261.	1.1	11
1148	Chromatographic Length Separation and Photoluminescence Study on DNA-Wrapped Single-Wall and Double-Wall Carbon Nanotubes. Journal of Nanomaterials, 2009, 2009, 1-8.	1.5	7
1149	Ideal dipole approximation fails to predict electronic coupling and energy transfer between semiconducting single-wall carbon nanotubes. Journal of Chemical Physics, 2009, 130, 081104.	1.2	56

#	Article	IF	CITATIONS
1150	Mechanism of exciton dephasing in a single carbon nanotube studied by photoluminescence spectroscopy. Applied Physics Letters, 2009, 94, 093109.	1.5	44
1151	Polarization anisotropy of transient carrier and phonon dynamics in carbon nanotubes. Journal of Applied Physics, 2009, 105, 103506.	1.1	10
1152	Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. Journal of Biomedical Optics, 2009, 14, 021009.	1.4	273
1153	Single Walled Carbon Nanotubes as Reporters for the Optical Detection of Glucose. Journal of Diabetes Science and Technology, 2009, 3, 242-252.	1.3	50
1154	Ultrafast Mid-Infrared Intra-Excitonic Response of Individualized Single-Walled Carbon Nanotubes. Materials Research Society Symposia Proceedings, 2009, 1230, 1.	0.1	0
1155	Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent. Journal of Biomedical Optics, 2009, 14, 034018.	1.4	151
1156	Selective uptake of multi-walled carbon nanotubes by tumor macrophages in a murine glioma model. Journal of Neuroimmunology, 2009, 208, 3-9.	1.1	85
1157	Synthesis and electrochemical properties of single-walled carbon nanotube–gold nanoparticle composites. Materials Chemistry and Physics, 2009, 114, 879-883.	2.0	37
1158	Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer, 2009, 9, 351.	1.1	149
1159	Ligandâ€Driven Wavelengthâ€Tunable and Ultraâ€Broadband Infrared Luminescence in Singleâ€Ionâ€Doped Transparent Hybrid Materials. Advanced Functional Materials, 2009, 19, 2081-2088.	7.8	131
1160	Transmission Electron Microscopy and UV–vis–IR Spectroscopy Analysis of the Diameter Sorting of Carbon Nanotubes by Gradient Density Ultracentrifugation. Advanced Functional Materials, 2009, 19, 2219-2223.	7.8	29
1161	Synthesis of Microporous Carbon Nanofibers and Nanotubes from Conjugated Polymer Network and Evaluation in Electrochemical Capacitor. Advanced Functional Materials, 2009, 19, 2125-2129.	7.8	172
1162	Liquidâ€Phase Exfoliation of Nanotubes and Graphene. Advanced Functional Materials, 2009, 19, 3680-3695.	7.8	588
1163	Functional Covalent Chemistry of Carbon Nanotube Surfaces. Advanced Materials, 2009, 21, 625-642.	11.1	238
1164	Advances in Bioapplications of Carbon Nanotubes. Advanced Materials, 2009, 21, 139-152.	11.1	348
1165	Synthesis, Structure, and Properties of Singleâ€Walled Carbon Nanotubes. Advanced Materials, 2009, 21, 4565-4583.	11.1	123
1166	Nanotube–Polymer Composites for Ultrafast Photonics. Advanced Materials, 2009, 21, 3874-3899.	11.1	778
1167	Photoinduced Formation and Characterization of Electron–Hole Pairs in Azaxanthyliumâ€Derivatized Short Singleâ€Walled Carbon Nanotubes. Chemistry - A European Journal, 2009, 15, 8751-8759.	1.7	11

#	Article	IF	CITATIONS
1168	Tuning of Electronic Properties of Singleâ€Walled Carbon Nanotubes under Homogenous Conditions. ChemPhysChem, 2009, 10, 926-930.	1.0	7
1169	Photoelectrochemical Studies of Gold Electrodes Chemically Modified with Singleâ€Walled Carbon Nanotubes. ChemPhysChem, 2009, 10, 1090-1096.	1.0	12
1170	Selective Enhancement of Carbon Nanotube Photoluminescence by Resonant Energy Transfer. ChemPhysChem, 2009, 10, 905-909.	1.0	44
1171	Nearâ€Infrared Emission Quantum Yield of Soluble Short Singleâ€Walled Carbon Nanotubes. ChemPhysChem, 2009, 10, 1305-1310.	1.0	5
1172	Lightâ€īriggered Thermoelectric Conversion Based on a Carbon Nanotube–Polymer Hybrid Gel. ChemSusChem, 2009, 2, 419-422.	3.6	12
1173	Reproducibility and Efficiency of Carbon Nanotube Endâ€Group Generation and Functionalization. European Journal of Organic Chemistry, 2009, 2009, 4421-4428.	1.2	28
1174	Transparent and Conductive Polyethylene Oxide Film by the Introduction of Individualized Singleâ€Walled Carbon Nanotubes. Macromolecular Rapid Communications, 2009, 30, 2084-2088.	2.0	6
1176	Experimentally Determined Redox Potentials of Individual (<i>n</i> , <i>m</i>)â€Singleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2009, 48, 7655-7659.	7.2	147
1177	Influence of alternating <scp>L</scp> â€/ <scp>D</scp> â€amino acid chiralities and disulfide bond geometry on the capacity of cysteineâ€containing reversible cyclic peptides to disperse carbon nanotubes. Biopolymers, 2009, 92, 212-221.	1.2	9
1178	Structure and properties of polypropyleneâ€wrapped carbon nanotubes composite. Journal of Applied Polymer Science, 2009, 113, 3809-3814.	1.3	22
1179	Tailored carbon nanotubes for tissue engineering applications. Biotechnology Progress, 2009, 25, 709-721.	1.3	132
1180	A first-principles study on the behavior of HCl inside SWCNT. Computational and Theoretical Chemistry, 2009, 905, 44-47.	1.5	12
1181	A numerical study on the effective thermal conductivity of biological fluids containing single-walled carbon nanotubes. International Journal of Heat and Mass Transfer, 2009, 52, 5591-5597.	2.5	29
1182	Percolation in networks of aligned SWNTs formed with laminar flow deposition. Journal of Materials Science, 2009, 44, 1206-1211.	1.7	20
1183	Dispersion of single-walled carbon nanotubes in aqueous and organic solvents through a polymer wrapping functionalization. Journal of Materials Science: Materials in Electronics, 2009, 20, 223-229.	1.1	39
1184	Crucial Functionalizations of Carbon Nanotubes for Improved Drug Delivery: A Valuable Option?. Pharmaceutical Research, 2009, 26, 746-769.	1.7	151
1185	Synthesis, characterization and alcohol oxidation properties of multi-wall carbon nanotubes functionalized with a cobalt(II) Schiff base complex. Transition Metal Chemistry, 2009, 34, 605-612.	0.7	25
1186	Effects of charge distribution on water filling process in carbon nanotube. Science in China Series B: Chemistry, 2009, 52, 137-143.	0.8	5

#	Article	IF	CITATIONS
1187	Simulation of electronic structure of nanomaterials by central insertion scheme. Frontiers of Physics in China, 2009, 4, 307-314.	1.0	0
1188	Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells. Nanoscale Research Letters, 2009, 4, 1517-23.	3.1	53
1189	Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Research, 2009, 2, 85-120.	5.8	1,515
1190	Separation of metallic and semiconducting single-walled carbon nanotubes through fluorous chemistry. Nano Research, 2009, 2, 183-191.	5.8	28
1191	Molecular dynamics study of dipalmitoylphosphatidylcholine lipid layer self-assembly onto a single-walled carbon nanotube. Nano Research, 2009, 2, 945-954.	5.8	25
1192	How does the substrate affect the Raman and excited state spectra of a carbon nanotube?. Applied Physics A: Materials Science and Processing, 2009, 96, 271-282.	1.1	49
1193	The influence of surfactants on the processing of multiâ€walled carbon nanotubes in reinforced cement matrix composites. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2783-2790.	0.8	124
1194	Spectroscopy of singleâ€walled carbon nanotubes in aqueous surfactant dispersion. Physica Status Solidi (B): Basic Research, 2009, 246, 2704-2707.	0.7	11
1195	PERIPUTOS: Purity evaluated by Raman intensity of pristine and ultracentrifuged topping of singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2009, 246, 2728-2731.	0.7	11
1196	Sorting and transmission electron microscopy analysis of single or double wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2009, 246, 2675-2678.	0.7	8
1197	Singleâ€walled carbon nanotube–polystyrene nanocomposites: dispersing nanotubes in organic media. Polymer International, 2009, 58, 579-583.	1.6	20
1198	Nanoparticles for Optical Molecular Imaging of Atherosclerosis. Small, 2009, 5, 544-557.	5.2	69
1199	Cancerâ€Cell Targeting and Photoacoustic Therapy Using Carbon Nanotubes as "Bomb―Agents. Small, 2009, 5, 1292-1301.	5.2	139
1200	Waterâ€Soluble DNAâ€Wrapped Singleâ€Walled Carbonâ€Nanotube/Quantumâ€Dot Complexes. Small, 2009, 5, 2149-2155.	5.2	38
1201	Wrapping Nanotubes with Micelles, Hemimicelles, and Cylindrical Micelles. Small, 2009, 5, 2191-2198.	5.2	77
1202	Singleâ€Walled Carbonâ€Nanotube Dispersion with Electrostatically Tethered Nanoplatelets. Small, 2009, 5, 2692-2697.	5.2	21
1203	Bright Photoluminescence from the Inner Tubes of "Peapodâ€â€Đerived Doubleâ€Walled Carbon Nanotubes. Small, 2009, 5, 2678-2682.	5.2	38
1204	Radiation force mediated by exciton of a carbon nanotube. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 65-68.	0.8	3

#	Article	IF	CITATIONS
1205	Theory of excitons in carbon nanotubes. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 173-180.	0.8	15
1206	Grafting of aldehyde structures to singleâ€walled carbon nanotubes for application in phenolic resinâ€based composites. Journal of Polymer Science Part A, 2009, 47, 6135-6144.	2.5	8
1207	Effective <i>in situ</i> synthesis and characteristics of polystyrene nanoparticleâ€covered multiwall carbon nanotube composite. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1523-1529.	2.4	17
1208	Fabrication and evaluation of a nearâ€infrared hyperspectral imaging system. Journal of Microscopy, 2009, 236, 11-17.	0.8	3
1209	The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection. Nature Chemistry, 2009, 1, 473-481.	6.6	238
1210	Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nature Nanotechnology, 2009, 4, 114-120.	15.6	284
1211	Nanotubes light up cells. Nature Nanotechnology, 2009, 4, 85-86.	15.6	22
1212	A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nature Nanotechnology, 2009, 4, 773-780.	15.6	1,068
1213	Sequential delivery of dexamethasone and VEGF to control local tissue response for carbon nanotube fluorescence based micro-capillary implantable sensors. Biomaterials, 2009, 30, 622-631.	5.7	43
1214	Direct electrochemistry and electrocatalysis of hemoglobin immobilized in an amphiphilic diblock copolymer film. Sensors and Actuators B: Chemical, 2009, 138, 244-250.	4.0	22
1215	Dispersion of boron nitride nanotubes in aqueous solution with the help of ionic surfactants. Solid State Communications, 2009, 149, 763-766.	0.9	75
1216	Substrate preparation techniques for direct investigation by TEM of single wall carbon nanotubes grown by chemical vapor deposition. Surface Science, 2009, 603, 1115-1120.	0.8	6
1217	Thermal energy storage behavior of Al2O3–H2O nanofluids. Thermochimica Acta, 2009, 483, 73-77.	1.2	190
1218	Third-order nonlinear optical response in double-walled carbon nanotubes. Journal of Luminescence, 2009, 129, 1722-1725.	1.5	5
1219	Dispersions of carbon nanotubes in sulfonated poly[bis(benzimidazobenzisoquinolinones)] and their proton-conducting composite membranes. Polymer, 2009, 50, 3600-3608.	1.8	28
1220	A facile gemini surfactant-improved dispersion of carbon nanotubes in polystyrene. Polymer, 2009, 50, 5787-5793.	1.8	66
1221	Growth and characterization of pyrene crystals on carbon nanofibers. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 206, 148-154.	2.0	2
1222	Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes. Advances in Colloid and Interface Science, 2009, 150, 63-89.	7.0	92

#	Article	IF	CITATIONS
1223	Dispersing carbon nanotubes using surfactants. Current Opinion in Colloid and Interface Science, 2009, 14, 364-371.	3.4	221
1224	Dispersing carbon nanotubes in aqueous solutions by a silicon surfactant: Experimental and molecular dynamics simulation study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 350, 101-108.	2.3	33
1225	The dispersion of SWCNTs treated by dispersing agents in glass fiber reinforced polymer composites. Composites Science and Technology, 2009, 69, 2115-2118.	3.8	19
1226	Adsorption kinetics of small organic molecules on thick and thinner layers of carbon nanotubes. Chemical Physics Letters, 2009, 470, 300-303.	1.2	5
1227	Investigation of the light emission efficiency of single-wall carbon nanotubes wrapped with different surfactants. Chemical Physics Letters, 2009, 473, 96-101.	1.2	39
1228	Adsorption kinetics of methanol in carbon nanotubes revisited – solvent effects and pitfalls in ultra-high vacuum surface science experiments. Chemical Physics Letters, 2009, 473, 131-134.	1.2	10
1229	Quantitative comparison of ultracentrifuged and diluted single walled nanotube dispersions; differences in dispersion quality. Chemical Physics Letters, 2009, 474, 122-126.	1.2	19
1230	The effects of UV/ozone treatments on the electrical transport behavior of single-walled carbon nanotube arrays. Chemical Physics Letters, 2009, 474, 158-161.	1.2	16
1231	Possible effect of carbon nanotube diameter on gas–surface interactions – The case of benzene, water, and n-pentane adsorption on SWCNTs at ultra-high vacuum conditions. Chemical Physics Letters, 2009, 476, 227-231.	1.2	26
1232	Temperature effects in the Raman spectra of bundled single-wall carbon nanotubes. Chemical Physics Letters, 2009, 477, 336-339.	1.2	9
1233	Nucleoside-based lipids at work: From supramolecular assemblies to biological applications. Comptes Rendus Chimie, 2009, 12, 171-179.	0.2	45
1234	Preparation of gold nanoparticles/functionalized multiwalled carbon nanotube nanocomposites and its glucose biosensing application. Biosensors and Bioelectronics, 2009, 24, 1765-1770.	5.3	76
1235	Correlation of carbon nanotube dispersability in aqueous surfactant solutions and polymers. Carbon, 2009, 47, 602-612.	5.4	111
1236	Assembly of untreated single-walled carbon nanotubes at a liquid–liquid interface. Carbon, 2009, 47, 1444-1450.	5.4	33
1237	Antiseptic single wall carbon nanotube bandages. Carbon, 2009, 47, 1561-1564.	5.4	41
1238	The production of a flexible electroluminescent device on polyethylene terephthalate films using transparent conducting carbon nanotube electrode. Carbon, 2009, 47, 3461-3465.	5.4	45
1239	Mild method for bulk enrichment of highâ€aspect ratio SWNTs. Physica Status Solidi - Rapid Research Letters, 2009, 3, 31-33.	1.2	4
1240	Two modes of electroluminescence from singleâ€walled carbon nanotubes. Physica Status Solidi - Rapid Research Letters, 2009, 3, 199-201.	1.2	10

#	Article	IF	CITATIONS
1241	<i>In Vivo</i> Near-Infrared Mediated Tumor Destruction by Photothermal Effect of Carbon Nanotubes. ACS Nano, 2009, 3, 3707-3713.	7.3	739
1242	Energy Transfer from Photo-Excited Fluorene Polymers to Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 14946-14952.	1.5	54
1243	Photoluminescence and Förster Resonance Energy Transfer in Elemental Bundles of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 7536-7540.	1.5	72
1244	Carbon nanotube self-assembly with lipids and detergent: a molecular dynamics study. Nanotechnology, 2009, 20, 045101.	1.3	100
1245	Exciton-phonon coupling strength in single wall carbon nanotubes. European Physical Journal B, 2009, 70, 469-473.	0.6	2
1246	Electronic properties and quantum transport in Graphene-based nanostructures. European Physical Journal B, 2009, 72, 1-24.	0.6	185
1247	Brightly Fluorescent Single-Walled Carbon Nanotubes via an Oxygen-Excluding Surfactant Organization. Science, 2009, 323, 1319-1323.	6.0	232
1248	Nucleic Acid Conjugated Nanomaterials for Enhanced Molecular Recognition. ACS Nano, 2009, 3, 2451-2460.	7.3	303
1249	"Shaken, Not Stable― Dispersion Mechanism and Dynamics of Protein-Dispersed Nanotubes Studied via Spectroscopy. Langmuir, 2009, 25, 10459-10465.	1.6	39
1250	Species-Dependent Energy Transfer of Surfactant-Dispersed Semiconducting Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 20061-20065.	1.5	15
1251	One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano, 2009, 3, 2367-2375.	7.3	1,093
1252	The effect of bundling on the G′ Raman band of single-walled carbon nanotubes. Nanotechnology, 2009, 20, 465703.	1.3	16
1253	Determining exact molar absorbance coefficients of single-wall carbon nanotubes. Physical Chemistry Chemical Physics, 2009, 11, 1091.	1.3	14
1254	Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. Journal of the American Chemical Society, 2009, 131, 3611-3620.	6.6	2,038
1255	Carbon nanotubes for lithium ion batteries. Energy and Environmental Science, 2009, 2, 638.	15.6	1,001
1256	Carbon nanofibers and carbon nanotubes in regenerative medicine. Advanced Drug Delivery Reviews, 2009, 61, 1097-1114.	6.6	399
1257	Enrichment Mechanism of Semiconducting Single-Walled Carbon Nanotubes by Surfactant Amines. Journal of the American Chemical Society, 2009, 131, 6775-6784.	6.6	56
1258	Adsorption of Single Walled Carbon Nanotubes onto Silicon Oxide Surface Gradients of 3-Aminopropyltri(ethoxysilane) Described by Polymer Adsorption Theory. Langmuir, 2009, 25, 9922-9930.	1.6	11

#	Article	IF	CITATIONS
1259	Suspended single-wall carbon nanotubes: synthesis and optical properties. Reports on Progress in Physics, 2009, 72, 066502.	8.1	29
1260	Alignment Dynamics of Single-Walled Carbon Nanotubes in Pulsed Ultrahigh Magnetic Fields. ACS Nano, 2009, 3, 131-138.	7.3	51
1261	Controlling the Carbon Nanotube-to-Medium Conductivity Ratio for Dielectrophoretic Separation. Langmuir, 2009, 25, 12471-12474.	1.6	16
1262	Strategy for High Concentration Nanodispersion of Single-Walled Carbon Nanotubes with Diameter Selectivity. Journal of Physical Chemistry C, 2009, 113, 10044-10051.	1.5	17
1263	Thermally Switchable One- and Two-Dimensional Arrays of Single-Walled Carbon Nanotubes in a Polymeric System. Journal of the American Chemical Society, 2009, 131, 16568-16572.	6.6	29
1264	Effects of Ambient Conditions on Solventâ^'Nanotube Dispersions: Exposure to Water and Temperature Variation. Journal of Physical Chemistry C, 2009, 113, 1260-1266.	1.5	16
1265	Gel Electrophoresis Method to Measure the Concentration of Single-Walled Carbon Nanotubes Extracted from Biological Tissue. Analytical Chemistry, 2009, 81, 2944-2952.	3.2	38
1266	Spectroscopic Evidence for Interaction of Poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene] Conformers and Single-Walled Carbon Nanotubes in Solvent Dispersions. Journal of Physical Chemistry B, 2009, 113, 5809-5815.	1.2	13
1267	High Population of Individualized SWCNTs through the Adsorption of Water-Soluble Perylenes. Journal of the American Chemical Society, 2009, 131, 2172-2184.	6.6	137
1268	Single-Walled Carbon Nanotubes Spontaneous Loading into Exponentially Grown LBL Films. Chemistry of Materials, 2009, 21, 4397-4400.	3.2	23
1269	Self-Assembly of Ordered Nanowires in Biological Suspensions of Single-Wall Carbon Nanotubes. ACS Nano, 2009, 3, 189-196.	7.3	24
1270	Photoluminescence spectral imaging of ultralong single-walled carbon nanotubes: Micromanipulation-induced strain, rupture, and determination of handedness. Physical Review B, 2009, 80, .	1.1	12
1271	Bending and Twisting of Suspended Single-Walled Carbon Nanotubes in Solution. Nano Letters, 2009, 9, 1609-1614.	4.5	21
1272	Phospholipidâ^'Dextran with a Single Coupling Point: A Useful Amphiphile for Functionalization of Nanomaterials. Journal of the American Chemical Society, 2009, 131, 289-296.	6.6	83
1273	Microscale Polymerâ^'Nanotube Composites. ACS Applied Materials & Interfaces, 2009, 1, 1561-1566.	4.0	25
1274	Nanotubeâ^'Peptide Interactions on a Silicon Chip. Journal of Physical Chemistry C, 2009, 113, 3978-3985.	1.5	32
1275	Quantum Mechanical Quantification of Weakly Interacting Complexes of Peptides with Single-Walled Carbon Nanotubes. Journal of Chemical Theory and Computation, 2009, 5, 2879-2885.	2.3	38
1276	Do Inner Shells of Double-Walled Carbon Nanotubes Fluoresce?. Nano Letters, 2009, 9, 3282-3289.	4.5	42

# 1277	ARTICLE Dispersion of Multiâ€walled Carbon Nanotubes in Aqueous Pluronic F127 Solutions for Biological Applications. Fullerenes Nanotubes and Carbon Nanostructures, 2009, 17, 11-25.	IF 1.0	Citations
1278	The Nanomaterial Characterization Bottleneck. ACS Nano, 2009, 3, 2441-2446.	7.3	116
1279	Electrolyte Tuning of Surfactant Interfacial Behavior for Enhanced Density-Based Separations of Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2009, 131, 1144-1153.	6.6	133
1280	Evaluation of dispersion state and thermal conductivity measurement of carbon nanotubes/UV-curable resin nanocomposites. Synthetic Metals, 2009, 159, 827-830.	2.1	19
1281	SDS Surfactants on Carbon Nanotubes: Aggregate Morphology. ACS Nano, 2009, 3, 595-602.	7.3	237
1282	A novel near-infrared protein assay based on the dissolution and aggregation of aptamer-wrapped single-walled carbon nanotubes. Chemical Communications, 2009, , 5006.	2.2	25
1283	Fluorescent Carbon Nanotubes in Cross-Linked Micelles. Chemistry of Materials, 2009, 21, 436-438.	3.2	3
1284	Enhancement of semiconducting single-wall carbon-nanotube photoluminescence. Optics Letters, 2009, 34, 3845.	1.7	30
1285	Bright visible emission from carbon nanotubes spatially constrained on a micro-bubble. Optics Express, 2009, 17, 9614.	1.7	20
1286	Fluorescence Labeling and Quantification of Oxygen-Containing Functionalities on the Surface of Single-Walled Carbon Nanotubes. Langmuir, 2009, 25, 7573-7577.	1.6	50
1287	Double-walled carbon nanotube dispersion via surfactant substitution. Journal of Materials Chemistry, 2009, 19, 2729.	6.7	70
1288	Organic functionalisation and characterisation of single-walled carbon nanotubes. Chemical Society Reviews, 2009, 38, 2214.	18.7	557
1289	Disaggregation of single-walled carbon nanotubes (SWNTs) promoted by the ionic liquid-based surfactant1-hexadecyl-3-vinyl-imidazolium bromide in aqueous solution. Soft Matter, 2009, 5, 62-66.	1.2	52
1290	Multicomponent Solubility Parameters for Single-Walled Carbon Nanotubeâ	7.3	347
1291	Freestanding, bendable thin film for supercapacitors using DNA-dispersed double walled carbon nanotubes. Applied Physics Letters, 2009, 95, .	1.5	26
1292	Rotation Detection in Light-Driven Nanorotors. ACS Nano, 2009, 3, 3077-3084.	7.3	112
1293	Carbon nanotubes—electronic/electrochemical properties and application for nanoelectronics and photonics. Chemical Society Reviews, 2009, 38, 165-184.	18.7	502
1294	Kinetics of Nanotube and Microfiber Scission under Sonication. Journal of Physical Chemistry C, 2009, 113, 20599-20605.	1.5	173

#	Article	IF	CITATIONS
1295	Helical Wrapping of Single-Walled Carbon Nanotubes by Water Soluble Poly(<i>p</i> -phenyleneethynylene). Nano Letters, 2009, 9, 1414-1418.	4.5	162
1296	Functional DNA directed assembly of nanomaterials for biosensing. Journal of Materials Chemistry, 2009, 19, 1788.	6.7	129
1297	Electrostatic layer-by-layer construction and characterization of photoelectrochemical solar cells based on water soluble polythiophenes and carbon nanotubes. Journal of Materials Chemistry, 2009, 19, 4319.	6.7	39
1298	Viscoelasticity and Shear Stability of Single-Walled Carbon Nanotube/Unsaturated Polyester Resin Dispersions. Macromolecules, 2009, 42, 6624-6632.	2.2	48
1299	Microwave-Assisted Bromination of Double-Walled Carbon Nanotubes. Chemistry of Materials, 2009, 21, 4747-4749.	3.2	64
1300	Selective Band Structure Modulation of Single-Walled Carbon Nanotubes in Ionic Liquids. Journal of the American Chemical Society, 2009, 131, 5364-5365.	6.6	39
1301	A simple route to coat mesoporous SiO2 layer on carbon nanotubes. Journal of Materials Chemistry, 2009, 19, 3725.	6.7	92
1302	Ab initio study of noncovalent sidewall functionalization of carbon nanotubes. Applied Physics Letters, 2009, 95, 243110.	1.5	12
1303	Diffusion-Ordered NMR Spectroscopy in the Structural Characterization of Functionalized Carbon Nanotubes. Journal of the American Chemical Society, 2009, 131, 9086-9093.	6.6	37
1304	Modulation of Single-Walled Carbon Nanotube Photoluminescence by Hydrogel Swelling. ACS Nano, 2009, 3, 3869-3877.	7.3	79
1305	Photoinduced electron transfer in supramolecules composed of porphyrin/phthalocyanine and nanocarbon materials. Journal of Porphyrins and Phthalocyanines, 2009, 13, 1017-1033.	0.4	26
1306	Quantifying the Semiconducting Fraction in Single-Walled Carbon Nanotube Samples through Comparative Atomic Force and Photoluminescence Microscopies. Nano Letters, 2009, 9, 3203-3208.	4.5	65
1307	Highly Catalytic Single-Crystal Dendritic Pt Nanostructures Supported on Carbon Nanotubes. Chemistry of Materials, 2009, 21, 1531-1535.	3.2	100
1308	Revisiting the Laser Dye Styryl-13 As a Reference Near-Infrared Fluorophore: Implications for the Photoluminescence Quantum Yields of Semiconducting Single-Walled Carbon Nanotubes. Journal of Physical Chemistry A, 2009, 113, 10238-10240.	1.1	13
1309	Growth Velocity and Direct Length-Sorted Growth of Short Single-Walled Carbon Nanotubes by a Metal-Catalyst-Free Chemical Vapor Deposition Process. ACS Nano, 2009, 3, 3421-3430.	7.3	76
1310	Large Variety of Behaviors for the Raman G′ Mode of Single Walled Carbon Nanotubes upon Electrochemical Gating Arising from Different (<i>n</i> , <i>m</i>) of Individual Nanotubes. Journal of Physical Chemistry C, 2009, 113, 1751-1757.	1.5	14
1311	Rotational friction of single-wall carbon nanotubes in liquid suspension. Applied Physics Letters, 2009, 94, .	1.5	14
1312	Carbon Nanotube Electronics. Integrated Circuits and Systems, 2009, , .	0.2	19

#	Article	IF	CITATIONS
1313	Light-Harvesting Using High Density <i>p</i> -type Single Wall Carbon Nanotube/ <i>n</i> -type Silicon Heterojunctions. ACS Nano, 2009, 3, 1407-1414.	7.3	141
1314	Adsorption of Glucose Oxidase onto Single-Walled Carbon Nanotubes and Its Application in Layer-By-Layer Biosensors. Analytical Chemistry, 2009, 81, 7917-7925.	3.2	123
1315	Interactions of Carbon Nanotubes with Biomolecules: Advances and Challenges. , 0, , 715-742.		1
1316	Passively mode-locked lasers using saturable absorber incorporating dispersed single-wall carbon nanotubes. , 2009, , .		3
1317	Application of Polymer Solubility Theory to Solution Phase Dispersion of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2009, 113, 9532-9540.	1.5	42
1318	Beyond Förster Resonance Energy Transfer in Biological and Nanoscale Systems. Journal of Physical Chemistry B, 2009, 113, 6583-6599.	1.2	404
1319	Aqueous Dispersion and Dielectrophoretic Assembly of Individual Surface-Synthesized Single-Walled Carbon Nanotubes. Langmuir, 2009, 25, 7778-7782.	1.6	29
1320	Electroluminescence from Suspended and On-Substrate Metallic Single-Walled Carbon Nanotubes. Nano Letters, 2009, 9, 1747-1751.	4.5	27
1321	The effect of preparation conditions and biopolymer dispersants on the properties of SWNT buckypapers. Journal of Materials Chemistry, 2009, 19, 9131.	6.7	45
1322	Surfactant-Stabilized Single-Walled Carbon Nanotubes Using Triphenylene Derivatives Remain Individually Dispersion in Both Liquid and Dried Solid States. Applied Physics Express, 0, 2, 055501.	1.1	12
1323	Quantitative Analyses of Microwave-Treated HiPco Carbon Nanotubes Using Absorption and Raman Spectroscopy. Journal of Physical Chemistry C, 2009, 113, 7134-7138.	1.5	18
1324	Aromatic Electron Acceptors Change the Chirality Dependence of Single-Walled Carbon Nanotube Oxidation. Langmuir, 2009, 25, 10417-10421.	1.6	14
1325	Decoration of Gold Nanoparticles on Surface-Grown Single-Walled Carbon Nanotubes for Detection of Every Nanotube by Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society, 2009, 131, 14310-14316.	6.6	97
1326	An immunoassay using biotinylated single-walled carbon nanotubes as Raman biomarkers. Analyst, The, 2009, 134, 1294.	1.7	3
1327	Nonlinear Optical Property of Aligned Multi-Walled Carbon Nanotube Film. , 2009, , .		0
1328	Thermally controlled synthesis of single-wall carbon nanotubes with selective diameters. Journal of Materials Chemistry, 2009, 19, 3004.	6.7	53
1329	Photophysical comparative study of amylose and polyvinyle pyrrolidone/single walled carbon nanotubes complex. Physical Chemistry Chemical Physics, 2009, 11, 8626.	1.3	3
1330	The exfoliation of SWCNT bundles examined by simultaneous Raman scattering and photoluminescence spectroscopy. Carbon, 2009, 47, 3529-3537.	5.4	34

#	Article	IF	CITATIONS
1331	Exciton-Plasmon States in Nanoscale Materials: Breakdown of the Tammâ^'Dancoff Approximation. Nano Letters, 2009, 9, 2820-2824.	4.5	128
1332	PEG Branched Polymer for Functionalization of Nanomaterials with Ultralong Blood Circulation. Journal of the American Chemical Society, 2009, 131, 4783-4787.	6.6	548
1333	The dispersion of SWCNT bundles on interaction with p-Terphenyl. New Carbon Materials, 2009, 24, 73-82.	2.9	5
1334	Photosensitized Singlet Oxygen Production upon Two-Photon Excitation of Single-Walled Carbon Nanotubes and Their Functionalized Analogues. Journal of Physical Chemistry C, 2009, 113, 5182-5185.	1.5	28
1335	Synergistically Enhanced Dispersion of Native Protein–Carbon Nanotube Conjugates by Fluoroalcohols in Aqueous Solution. Chemistry - A European Journal, 2009, 15, 9905-9910.	1.7	17
1336	Long-Term Improvements to Photoluminescence and Dispersion Stability by Flowing SDS-SWNT Suspensions through Microfluidic Channels. Journal of the American Chemical Society, 2009, 131, 12721-12728.	6.6	23
1337	Observation of a Type II Heterojunction in a Highly Ordered Polymerâ^'Carbon Nanotube Nanohybrid Structure. Nano Letters, 2009, 9, 3871-3876.	4.5	77
1338	Environmental and Synthesis-Dependent Luminescence Properties of Individual Single-Walled Carbon Nanotubes. ACS Nano, 2009, 3, 2153-2156.	7.3	49
1339	Ultrasmall Copper Nanoparticles from a Hydrophobically Immobilized Surfactant Template. Nano Letters, 2009, 9, 2239-2242.	4.5	115
1340	Fluorescence Quenching of Single-Walled Carbon Nanotubes with Transition-Metal Ions. Journal of Physical Chemistry C, 2009, 113, 4270-4276.	1.5	39
1341	Preparation of single-walled carbon nanotube/TiO2 hybrid atmospheric gas sensor operated at ambient temperature. Diamond and Related Materials, 2009, 18, 493-496.	1.8	41
1342	Density of States of Single-Walled Carbon Nanotubes Grown on Metal Tip Apex. Applied Physics Express, 0, 2, 035005.	1.1	9
1343	Density Enhancement of Aligned Single-Walled Carbon Nanotube Thin Films on Quartz Substrates by Sulfur-Assisted Synthesis. Nano Letters, 2009, 9, 3646-3650.	4.5	54
1344	Curvature effects on the adsorption of aqueous sodium-dodecyl-sulfate surfactants on carbonaceous substrates: Structural features and counterion dynamics. Physical Review E, 2009, 80, 021408.	0.8	54
1345	Monitoring of tumor treatment using the combination of near-infrared laser light and carbon nanotubes. , 2009, , .		0
1346	Dispersion of single-walled carbon nanotubes using polyelectrolytes. , 2009, , .		1
1349	A green access to highly pure single-walled carbon nanotubes by taurocholate-assistant dispersion and centrifugation. Journal of Physics: Conference Series, 2009, 188, 012050.	0.3	0
1350	Family Effects on Excitons in Semiconducting Carbon Nanotubes. Journal of the Physical Society of Japan, 2009, 78, 104703.	0.7	23

#	Article	IF	CITATIONS
1351	CHEMICAL INTERACTIONS AT NOBLE METAL NANOPARTICLE SURFACES — CATALYSIS, SENSORS AND DEVICES. , 2009, , 95-116.		0
1352	Luminescence of Cup-Stacked Carbon Nanotubes and Its Application to Microchip Electrophoresis. Bunseki Kagaku, 2009, 58, 517-521.	0.1	0
1353	In Situ Photoluminescence Spectroelectrochemistry of Single-walled Carbon Nanotubes with Nine Different Chiral Indices. Chemistry Letters, 2009, 38, 864-865.	0.7	8
1354	Spheroidal nanoparticles as nanoantennas for fluorescence enhancement. International Journal of Nanotechnology, 2009, 6, 902.	0.1	16
1355	Progress towards monodisperse single-walled carbon nanotubes. , 2009, , 3-10.		4
1356	Linear diatomic crystal: single-electron states and large-radius excitons. Low Temperature Physics, 2009, 35, 394-399.	0.2	1
1357	Functionalization of Carbon Nanotubes: Manufacturing Techniques and Properties of Customized Nanocomponents for Molecular-level Technology. Recent Patents on Nanotechnology, 2009, 3, 154-161.	0.7	10
1358	One-dimensional characters of excitons in carbon nanotubes. Proceedings of SPIE, 2010, , .	0.8	0
1359	Enhanced Solubility and Covalent Functionalisation of Single Walled Carbon Nanotubes via Atmospheric Pressure Microwave Reflux and the Subsequent Spray Coating of Transparent Conducting Thin Films. Current Nanoscience, 2010, 6, 232-242.	0.7	5
1360	Excitons in nanoscale systems. , 2010, , 12-25.		12
1361	Soluble Carbon Nanotubes and Application to Electrochemistry. Electrochemistry, 2010, 78, 2-15.	0.6	5
1362	Environment Effects on Excitons in Semiconducting Carbon Nanotubes. Journal of the Physical Society of Japan, 2010, 79, 024706.	0.7	45
1363	Nanoparticle Aggregation: Challenges to Understanding Transport and Reactivity in the Environment. Journal of Environmental Quality, 2010, 39, 1909-1924.	1.0	983
1364	Deformation-Induced Anisotropy of Absorption Spectra in Bilayer Graphenes. Journal of the Physical Society of Japan, 2010, 79, 104301.	0.7	3
1365	Synthesis of tritium-labeled compounds using a fibroid carbon carrier. Moscow University Chemistry Bulletin, 2010, 65, 103-105.	0.2	0
1366	Long lived photo excitations in (6, 5) carbon nanotubes. European Physical Journal B, 2010, 75, 115-120.	0.6	9
1367	Photophysics of polymer-wrapped single-walled carbon nanotubes. European Physical Journal B, 2010, 75, 121-126.	0.6	22
1368	Surfactant-nanotube interactions in water and nanotube separation by diameter: atomistic simulations. European Physical Journal B, 2010, 75, 147-150.	0.6	4

#	Article	IF	CITATIONS
1369	Suspensions of single-wall carbon nanotubes stabilized by pluronic for biomedical applications. European Physical Journal B, 2010, 75, 163-166.	0.6	26
1370	Exciton distribution on single-walled carbon nanotube. European Physical Journal B, 2010, 74, 499-506.	0.6	4
1371	Using Cyclic Voltammetry to Measure Bandgap Modulation of Functionalized Carbon Nanotubes. Electrochemical and Solid-State Letters, 2010, 13, K5.	2.2	13
1372	Synthesis and spectroscopic characterization of solution processable highly ordered polythiophene–carbon nanotube nanohybrid structures. Nanotechnology, 2010, 21, 025201.	1.3	75
1373	Raman excitation profiles of metallic single-walled carbon nanotubes. Journal of Physics Condensed Matter, 2010, 22, 095302.	0.7	1
1374	Conformational Structural Changes of Bacteriorhodopsin Adsorbed onto Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2010, 114, 4345-4350.	1.2	23
1375	A multiscale simulation study of carbon nanotube interactions with designed amphiphilic peptide helices. Nanoscale, 2010, 2, 967.	2.8	26
1376	Beyond Photovoltaics: Semiconductor Nanoarchitectures for Liquid-Junction Solar Cells. Chemical Reviews, 2010, 110, 6664-6688.	23.0	716
1377	Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation. Journal of Physical Chemistry C, 2010, 114, 17267-17285.	1.5	144
1378	Assembling Exfoliated Layered Double Hydroxide (LDH) Nanosheet/Carbon Nanotube (CNT) Hybrids via Electrostatic Force and Fabricating Nylon Nanocomposites. Journal of Physical Chemistry B, 2010, 114, 16766-16772.	1.2	97
1379	Sensitive Efficiency of Photoinduced Electron Transfer to Band Gaps of Semiconductive Single-Walled Carbon Nanotubes with Supramolecularly Attached Zinc Porphyrin Bearing Pyrene Glues. Journal of the American Chemical Society, 2010, 132, 8158-8164.	6.6	109
1380	DNA and carbon nanotubes as medicine. Advanced Drug Delivery Reviews, 2010, 62, 633-649.	6.6	180
1381	Effects of Dispersion Conditions of Single-Walled Carbon Nanotubes on the Electrical Characteristics of Thin Film Network Transistors. ACS Applied Materials & Interfaces, 2010, 2, 2672-2678.	4.0	37
1382	Sonication Power for Length Control of Single-Walled Carbon Nanotubes in Aqueous Suspensions Used for 2-Dimensional Network Formation. Journal of Physical Chemistry C, 2010, 114, 12490-12495.	1.5	61
1383	Carbon Nanotube Thin Films: Fabrication, Properties, and Applications. Chemical Reviews, 2010, 110, 5790-5844.	23.0	889
1384	Optical transitions in semiconducting zigzag carbon nanotubes with small diameters: A first-principles broad-range study. Physical Review B, 2010, 82, .	1.1	14
1385	A Comprehensive Review on Separation Methods and Techniques for Single-Walled Carbon Nanotubes. Materials, 2010, 3, 3818-3844.	1.3	91
1386	One-Step Direct Transfer of Pristine Single-Walled Carbon Nanotubes for Functional Nanoelectronics. Nano Letters, 2010, 10, 1032-1036.	4.5	53

#	Article	IF	CITATIONS
1387	Inorganic nanomaterials for tumor angiogenesis imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 147-163.	3.3	41
1388	Fluorimetric characterization of single-walled carbon nanotubes. Analytical and Bioanalytical Chemistry, 2010, 396, 1015-1023.	1.9	46
1389	Novel antennae for the sensitization of near infrared luminescent lanthanide cations. Comptes Rendus Chimie, 2010, 13, 668-680.	0.2	89
1390	Raman and FT-IR studies on dye-assisted dispersion and flocculation of single walled carbon nanotubes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 77, 175-178.	2.0	12
1391	Robust fabrication of selective and reversible polymer coated carbon nanotube-based gas sensors. Sensors and Actuators B: Chemical, 2010, 148, 315-322.	4.0	19
1392	Visible photoluminescence of MWCNT/CdS nanohybrid structure synthesized by a simple chemical process. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 167, 97-101.	1.7	12
1393	Water-dispersible carbon nanotubes from a mixture of an ethoxy-modified trisiloxane and pluronic block copolymer F127. Colloid and Polymer Science, 2010, 288, 1665-1675.	1.0	34
1394	High performance in vivo near-IR (>1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Research, 2010, 3, 779-793.	5.8	475
1395	Multiplexed five-color molecular imaging of cancer cells and tumor tissues with carbon nanotube Raman tags in the near-infrared. Nano Research, 2010, 3, 222-233.	5.8	123
1396	Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes. Nano Research, 2010, 3, 404-411.	5.8	133
1397	Self-assembly of amphiphilic molecules: A review on the recent computer simulation results. Science China Chemistry, 2010, 53, 1853-1861.	4.2	7
1398	Fabrication and effect of post treatment on flexible single-walled carbon nanotube films. Journal of Materials Science: Materials in Electronics, 2010, 21, 595-602.	1.1	18
1399	Single walled nanotubes/amylose/SDBS complex. Journal of Nanoparticle Research, 2010, 12, 545-550.	0.8	8
1400	Transport of engineered nanoparticles in saturated porous media. Journal of Nanoparticle Research, 2010, 12, 2371-2380.	0.8	173
1401	Covalent functionalization of metal oxide and carbon nanostructures with polyoctasilsesquioxane (POSS) and their incorporation in polymer composites. Materials Research Bulletin, 2010, 45, 1894-1898.	2.7	17
1402	Functionalized carbon nanotubes for potential medicinal applications. Drug Discovery Today, 2010, 15, 428-435.	3.2	338
1403	Relevance of octanol–water distribution measurements to the potential ecological uptake of multiâ€walled carbon nanotubes. Environmental Toxicology and Chemistry, 2010, 29, 1106-1112.	2.2	57
1404	Alignment of Carbon Nanotubes in Thermotropic and Lyotropic Liquid Crystals. ChemPhysChem, 2010, 11, 333-340.	1.0	68

#	Article	IF	CITATIONS
1405	Îâ€ S tacking Functionalization of Carbon Nanotubes through Micelle Swelling. ChemPhysChem, 2010, 11, 1667-1672.	1.0	63
1406	Ion Interactions with the Carbon Nanotube Surface in Aqueous Solutions: Understanding the Molecular Mechanisms. ChemPhysChem, 2010, 11, 2612-2616.	1.0	40
1407	Interaction of Aromatic Derivatives with Singleâ€Walled Carbon Nanotubes. ChemPhysChem, 2010, 11, 3439-3446.	1.0	5
1408	Covalent Attachment of Aromatic Diisocyanate to the Sidewalls of Single- and Double-Walled Carbon Nanotubes. European Journal of Inorganic Chemistry, 2010, 2010, 4305-4308.	1.0	11
1409	Carbon Nanotubes on Polymeric Microcapsules: Freeâ€Standing Structures and Pointâ€Wise Laser Openings. Advanced Functional Materials, 2010, 20, 3136-3142.	7.8	66
1410	Ultrathin Electronic Composite Sheets of Metallic/Semiconducting Carbon Nanotubes Embedded in Conjugated Block Copolymers. Advanced Functional Materials, 2010, 20, 4305-4313.	7.8	17
1411	Carbon Nanotubes Anchored to Silicon for Device Fabrication. Advanced Materials, 2010, 22, 557-571.	11.1	27
1412	Nanotube Surfactant Design: The Versatility of Waterâ€Soluble Perylene Bisimides. Advanced Materials, 2010, 22, 788-802.	11.1	134
1413	Chemically Derived Graphene Oxide: Towards Largeâ€Area Thinâ€Film Electronics and Optoelectronics. Advanced Materials, 2010, 22, 2392-2415.	11.1	2,018
1417	Carbon Nanotube and Goldâ€Based Materials: A Symbiosis. Chemistry - A European Journal, 2010, 16, 1728-1743.	1.7	59
1418	Spatially Controllable DNA Condensation by a Waterâ€Soluble Supramolecular Hybrid of Singleâ€Walled Carbon Nanotubes and β yclodextrinâ€Tethered Ruthenium Complexes. Chemistry - A European Journal, 2010, 16, 1168-1174.	1.7	25
1419	Labelâ€Free Colorimetric Detection of Single Nucleotide Polymorphism by Using Singleâ€Walled Carbon Nanotube Intrinsic Peroxidaseâ€Like Activity. Chemistry - A European Journal, 2010, 16, 3617-3621.	1.7	484
1420	Determination of the Surfactant Density on SWCNTs by Analytical Ultracentrifugation. Chemistry - A European Journal, 2010, 16, 13176-13184.	1.7	33
1423	Carbon Nanomaterials in Biosensors: Should You Use Nanotubes or Graphene?. Angewandte Chemie - International Edition, 2010, 49, 2114-2138.	7.2	1,301
1424	A Luciferase/Singleâ€Walled Carbon Nanotube Conjugate for Nearâ€Infrared Fluorescent Detection of Cellular ATP. Angewandte Chemie - International Edition, 2010, 49, 1456-1459.	7.2	90
1425	Synthesis and characterization of a polymer/multiwalled carbon nanotube composite and its application in the hydration of ethylene oxide. Journal of Applied Polymer Science, 2010, 115, 2946-2954.	1.3	14
1426	Surfactant assisted processing of carbon nanotube/polypropylene composites: Impact of surfactants on the matrix polymer. Journal of Applied Polymer Science, 2010, 117, 2583-2590.	1.3	6
1427	Efficient dispersing and shortening of super-growth carbon nanotubes by ultrasonic treatment with ceramic balls and surfactants. Advanced Powder Technology, 2010, 21, 551-555.	2.0	32

#	Article	IF	CITATIONS
1428	Fabrication of silver nanoparticles/single-walled carbon nanotubes composite for surface-enhanced Raman scattering. Journal of Colloid and Interface Science, 2010, 351, 343-347.	5.0	25
1429	Blue–green luminescence by SWCNT/ZnO hybrid nanostructure synthesized by a simple chemical route. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 279-284.	1.3	13
1430	Analytic studies of high quality singlewall carbon nanotubes synthesized on a novel Fe:Mo:MgO catalyst. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 552-558.	1.3	8
1431	lsotropy of optical excitations in few-layer graphenes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 3594-3597.	0.9	3
1432	Polymer conformation-assisted wrapping of single-walled carbon nanotube: The impact of cis-vinylene linkage. Polymer, 2010, 51, 475-481.	1.8	34
1433	Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: A critical review. Polymer, 2010, 51, 975-993.	1.8	306
1434	Meso-meso linked diporphyrin functionalized single-walled carbon nanotubes. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 216, 15-23.	2.0	13
1435	Boron nitride nanotubes. Materials Science and Engineering Reports, 2010, 70, 92-111.	14.8	400
1436	Dispersion of pristine single-walled carbon nanotubes using pyrene-capped polystyrene and its application for preparation of polystyrene matrix composites. Carbon, 2010, 48, 2603-2612.	5.4	67
1437	The functionalization of multi-walled carbon nanotubes by in situ deposition of hydroxyapatite. Biomaterials, 2010, 31, 5182-5190.	5.7	83
1438	Aqueous dispersion stability of multi-carbon nanoparticles in anionic, cationic, neutral, bile salt and pulmonary surfactant solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 361, 13-24.	2.3	40
1439	Lyotropic liquid crystalline phases formed in binary mixture of 1-tetradecyl-3-methylimidazolium chloride/ethylammonium nitrate and its application in the dispersion of multi-walled carbon nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 369, 95-100.	2.3	23
1440	Doping behavior of single-walled carbon nanotubes with differently charged porphyrins. Carbon, 2010, 48, 377-379.	5.4	10
1441	Preparation, crystallization, electrical conductivity and thermal stability of syndiotactic polystyrene/carbon nanotube composites. Carbon, 2010, 48, 1434-1440.	5.4	99
1442	Density functional theory evidence for an electron hopping process in single-walled carbon nanotube-mediated redox reactions. Carbon, 2010, 48, 1524-1530.	5.4	5
1443	Structure and electronic properties of AgX (X = Cl, Br, I)-intercalated single-walled carbon nanotubes. Carbon, 2010, 48, 2708-2721.	5.4	83
1444	New nitrene functionalizations onto sidewalls of carbon nanotubes and their spectroscopic analysis. Carbon, 2010, 48, 2425-2434.	5.4	24
1445	Dispersability and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time. Carbon, 2010, 48, 2746-2754.	5.4	220

#	Article	IF	CITATIONS
1446	Selective removal of metallic single-walled carbon nanotubes by combined in situ and post-synthesis oxidation. Carbon, 2010, 48, 2941-2947.	5.4	50
1447	The formation of carbon nanotube dispersions by high pressure homogenization and their rapid characterization by analytical centrifuge. Carbon, 2010, 48, 3346-3352.	5.4	52
1448	Liquid crystal behavior of single wall carbon nanotubes. Carbon, 2010, 48, 3531-3542.	5.4	35
1449	Polyglycerol-derived amphiphiles for single walled carbon nanotube suspension. Chemical Physics Letters, 2010, 493, 147-150.	1.2	32
1450	Metallic single-walled carbon nanotubes for transparent conductive films. Chemical Physics Letters, 2010, 497, 57-61.	1.2	12
1451	Alloy ratio effect of Pd/Pt nanoparticles on carbon nanotubes for catalysing methanol-tolerant oxygen reduction. Electrochimica Acta, 2010, 56, 687-692.	2.6	27
1452	Surfactantâ€assisted processing of polyimide/multiwall carbon nanotube nanocomposites for microelectronics applications. Polymer International, 2010, 59, 1240-1245.	1.6	59
1453	Selective enhanced electrochemical response of DNA bases on carbon nanotube–gold nanocomposites modified gold electrode. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2263-2268.	0.8	4
1454	Ab initio calculations of optical spectra of a chiral (4,1) carbon nanotube. Physica Status Solidi (B): Basic Research, 2010, 247, 1814-1821.	0.7	20
1455	Fabrication of ordered carbon nanotube structures by unconventional lithography. Physica Status Solidi (B): Basic Research, 2010, 247, 877-883.	0.7	3
1456	Photoluminescence of single-wall carbon nanotube films. Physica Status Solidi (B): Basic Research, 2010, 247, 2805-2809.	0.7	10
1457	Effect of environment on ultrafast photoexcitation kinetics in singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2010, 247, 2831-2834.	0.7	7
1458	A combined photoemission and <i>ab initio</i> study of the electronic structure of (6,4)/(6,5) enriched single wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2010, 247, 2875-2879.	0.7	3
1459	Broadened second excitonic transition of singleâ€walled carbon nanotubes in photoluminescence excitation spectroscopy. Physica Status Solidi (B): Basic Research, 2010, 247, 2887-2890.	0.7	0
1460	Dispersion of carbon nanotubes using an azobenzene derivative. Physica Status Solidi (B): Basic Research, 2010, 247, 2891-2894.	0.7	21
1461	Diameterâ€selective desorption of semiconducting singleâ€wall carbon nanotubes from agarose gel. Physica Status Solidi (B): Basic Research, 2010, 247, 2649-2652.	0.7	3
1462	Enrichment of (8,4) Singleâ€Walled Carbon Nanotubes Through Coextraction with Heparin. Small, 2010, 6, 110-118.	5.2	27
1463	Diameter―and Metallicityâ€Selective Enrichment of Singleâ€Walled Carbon Nanotubes Using Polymethacrylates with Pendant Aromatic Functional Groups. Small, 2010, 6, 1311-1320.	5.2	14

#	Article	IF	Citations
1464	Exciton antennas and concentrators from core–shell and corrugated carbon nanotube filaments of homogeneous composition. Nature Materials, 2010, 9, 833-839.	13.3	75
1466	The Unlikely Surfactant: DNA as a Ligand for Single-Walled Carbon Nanotubes. , 0, , .		1
1467	Debundling and Selective Enrichment of SWNTs for Applications in Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2010, 2010, 1-14.	1.4	19
1468	Gas Sensors Based on Decorated Carbon Nanotubes. , 2010, , .		2
1469	Experimental Study on Solidification Behavior of Carbon Nanotube Nanofluid. Advanced Materials Research, 0, 171-172, 333-336.	0.3	11
1470	Linear augmented cylindrical wave method and its applications to nanotubes electronic structure. Journal of Nanophotonics, 2010, 4, 041680.	0.4	1
1471	Stable and Responsive Fluorescent Carbon Nanotube Silica Gels. Materials Research Society Symposia Proceedings, 2010, 1258, 1.	0.1	1
1472	EMI shielding effectiveness of silver nanoparticle-decorated multi-walled carbon nanotube sheets. International Journal of Smart and Nano Materials, 2010, 1, 249-260.	2.0	15
1473	Electrostatic Preparation of Graphite Nanofiber-Supported Ag Nanoparticles. Journal of the Electrochemical Society, 2010, 157, K232.	1.3	2
1474	Ultrafast Spectroscopy of Midinfrared Internal Exciton Transitions in Separated Single-Walled Carbon Nanotubes. Physical Review Letters, 2010, 104, 177401.	2.9	34
1475	Saturation of the Photoluminescence at Few-Exciton Levels in a Single-Walled Carbon Nanotube under Ultrafast Excitation. Physical Review Letters, 2010, 104, 017401.	2.9	54
1476	Organic/Inorganic Hybrid Photovoltaic Cells Based on Substitutionally Doped Single Wall Carbon Nanotubes. , 2010, , .		0
1478	Electron-hole asymmetry in single-walled carbon nanotubes probed by direct observation of transverse quasidark excitons. Physical Review B, 2010, 81, .	1.1	17
1480	pH-sensitive membrane peptides (pHLIPs) as a novel class of delivery agents. Molecular Membrane Biology, 2010, 27, 341-352.	2.0	113
1481	Position Control and Electrical Characterization of Single-Walled Carbon Nanotubes Debundled by Density Gradient Ultracentrifugation. Japanese Journal of Applied Physics, 2010, 49, 02BD04.	0.8	6
1482	FABRICATION OF CARBON NANOTUBE FIELD EFFECT TRANSISTORS WITH OCMC DISPERSED SINGLE-WALLED CARBON NANOTUBES. International Journal of Nanoscience, 2010, 09, 377-381.	0.4	0
1485	Thermally Induced Softening of the Radial Breathing Modes of Bundled Single-Walled Carbon Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18, 538-544.	1.0	1
1486	Recent Developments in Carbon Nanotube Sorting and Selective Growth. MRS Bulletin, 2010, 35, 315-321.	1.7	110

#	Article	IF	Citations
1487	Role of single walled carbon nanotubes in improving the efficiency of poly-(3-hexylthiophene) based organic solar cells. Journal of Applied Physics, 2010, 108, 094902.	1.1	28
1488	Plasmon-assisted photoluminescence enhancement of single-walled carbon nanotubes on metal surfaces. Applied Physics Letters, 2010, 97, 063110.	1.5	19
1489	Trace detection of multiwalled carbon nanotubes using Raman-enhancing silver nanocap arrays. Journal Physics D: Applied Physics, 2010, 43, 455302.	1.3	4
1490	Light Harvesting Single Wall Carbon Nanotube Hybrids. , 2010, , .		0
1491	Synthesis and study of photoluminescence characteristics of carbon nanotube/ZnS hybrid nanostructures. Journal of Experimental Nanoscience, 2010, 5, 363-373.	1.3	18
1492	Ensemble-averaged particle orientation and shear viscosity of single-wall-carbon-nanotube suspensions under shear and electric fields. Physics of Fluids, 2010, 22, .	1.6	16
1493	Efficient fabrication of wafer scale thin film of individualized single-walled carbon nanotubes by dual-nozzle spin casting. Review of Scientific Instruments, 2010, 81, 063905.	0.6	1
1494	Effect of Substituted Group of β-Cyclodextrin Derivatives on the Dispersing of Carbon Nanotubes. Journal of Dispersion Science and Technology, 2010, 31, 353-358.	1.3	4
1495	Carbon nanotubes for thermoacoustic contrast enhancement: preliminary results. Proceedings of SPIE, 2010, , .	0.8	1
1496	Environmental, health, and safety effects of engineered nanomaterials: challenges and research needs. , 2010, , .		1
1497	Theory of Radiation Force on Carbon Nanotubes. Japanese Journal of Applied Physics, 2010, 49, 02BB03.	0.8	0
1498	A Review on Biomedical Applications of Single-Walled Carbon Nanotubes. Current Medicinal Chemistry, 2010, 17, 10-24.	1.2	177
1499	Outer Wall Selectively Oxidized, Water-Soluble Double-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2010, 132, 3932-3938.	6.6	74
1500	Dispersion of carbon nanotubes by photo- and thermal-responsive polymers containing azobenzene unit in the backbone. Chemical Communications, 2010, 46, 5969.	2.2	50
1501	Diameter dependence of interwall separation and strain in multiwalled carbon nanotubes probed by X-ray diffraction and Raman scattering studies. Diamond and Related Materials, 2010, 19, 1281-1288.	1.8	168
1502	Phonon sidebands of photoluminescence in single wall carbon nanotubes. Journal of Applied Physics, 2010, 107, 024314.	1.1	5
1503	Role of the Bile Salt Surfactant Sodium Cholate in Enhancing the Aqueous Dispersion Stability of Single-Walled Carbon Nanotubes: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry B, 2010, 114, 15616-15625.	1.2	138
1504	The solvent-free selective hydrogenation of nitrobenzene to aniline: an unexpected catalytic activity of ultrafine Pt nanoparticles deposited on carbon nanotubes. Green Chemistry, 2010, 12, 1007.	4.6	119

#	Article	IF	CITATIONS
1505	Manufactured Nanoparticles and their Sorption of Organic Chemicals. Advances in Agronomy, 2010, , 137-181.	2.4	41
1506	Raman and Fluorescence Spectroscopic Studies of a DNA-Dispersed Double-Walled Carbon Nanotube Solution. ACS Nano, 2010, 4, 1060-1066.	7.3	25
1507	Cryogenic Transmission Electron Microscopy for Direct Observation of Polymer and Small-Molecule Materials and Structures in Solution. Polymer Reviews, 2010, 50, 287-320.	5.3	39
1508	Fundamental Importance of Background Analysis in Precise Characterization of Single-Walled Carbon Nanotubes by Optical Absorption Spectroscopy. Journal of Physical Chemistry C, 2010, 114, 10077-10081.	1.5	23
1509	Purified and Oxidized Single-Walled Carbon Nanotubes as Robust Near-IR Fluorescent Probes for Molecular Imaging. Journal of Physical Chemistry C, 2010, 114, 18407-18413.	1.5	30
1510	Nanostructured Materials: Metrology. , 2010, , 1-7.		3
1511	Nanoparticle-mediated thermal therapy: Evolving strategies for prostate cancer therapy. International Journal of Hyperthermia, 2010, 26, 775-789.	1.1	122
1512	New Solvents for Nanotubes: Approaching the Dispersibility of Surfactants. Journal of Physical Chemistry C, 2010, 114, 231-237.	1.5	108
1513	Carbon nanotube reinforced supramolecular gels with electrically conducting, viscoelastic and near-infrared sensitive properties. Journal of Materials Chemistry, 2010, 20, 6881.	6.7	96
1514	Dry Contact Transfer Printing of Aligned Carbon Nanotube Patterns and Characterization of Their Optical Properties for Diameter Distribution and Alignment. ACS Nano, 2010, 4, 1131-1145.	7.3	90
1515	Comparison of Cluster Formation, Film Structure, Microwave Conductivity, and Photoelectrochemical Properties of Composites Consisting of Single-Walled Carbon Nanotubes with C ₆₀ , C ₇₀ , and C ₈₄ . Journal of Physical Chemistry C, 2010, 114, 3235-3247.	1.5	33
1516	Stable Solutions of Multiwalled Carbon Nanotubes Using an Azobenzene Dye. Journal of Physical Chemistry C, 2010, 114, 14347-14352.	1.5	20
1517	Diameter-Selective Metal/Semiconductor Separation of Single-wall Carbon Nanotubes by Agarose Gel. Journal of Physical Chemistry C, 2010, 114, 9270-9276.	1.5	97
1518	Photophysics. , 0, , 77-101.		1
1519	A roadmap to high quality chemically prepared graphene. Journal Physics D: Applied Physics, 2010, 43, 374015.	1.3	57
1520	Single wall carbon nanotubes deposited on stainless steel sheet substrates as novel counter electrodes for ruthenium polypyridine based dye sensitized solar cells. Dalton Transactions, 2010, 39, 2903.	1.6	48
1521	Heat-Driven Release of a Drug Molecule from Carbon Nanotubes: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2010, 114, 13481-13486.	1.2	70
1522	Optical Properties of Single-Walled Carbon Nanotubes Separated in a Density Gradient: Length, Bundling, and Aromatic Stacking Effects. Journal of Physical Chemistry C, 2010, 114, 19569-19575.	1.5	49

#	Article	IF	CITATIONS
1523	Towards chirality-pure carbon nanotubes. Nanoscale, 2010, 2, 1919.	2.8	65
1524	Incorporation of Carbon Nanotubes into a Lyotropic Liquid Crystal by Phase Separation in the Presence of a Hydrophilic Polymer. Langmuir, 2010, 26, 3562-3568.	1.6	30
1525	Fluorescence Decoration of Defects in Carbon Nanotubes. Journal of Physical Chemistry C, 2010, 114, 20941-20946.	1.5	27
1526	Self-Aligned Nanogaps on Multilayer Electrodes for Fluidic and Magnetic Assembly of Carbon Nanotubes. Langmuir, 2010, 26, 11642-11647.	1.6	13
1527	Sandwiched Grapheneâ^'Membrane Superstructures. ACS Nano, 2010, 4, 229-234.	7.3	252
1528	Polymer functionalized n-type single wall carbon nanotube photovoltaic devices. Applied Physics Letters, 2010, 96, .	1.5	41
1529	Stability of metal oxide nanoparticles in aqueous solutions. Water Science and Technology, 2010, 61, 127-133.	1.2	239
1530	Saturation of Surfactant Structure at the Single-Walled Carbon Nanotube Surface. Journal of the American Chemical Society, 2010, 132, 16165-16175.	6.6	74
1531	A Molecular Simulation Probing of Structure and Interaction for Supramolecular Sodium Dodecyl Sulfate/Single-Wall Carbon Nanotube Assemblies. Nano Letters, 2010, 10, 985-991.	4.5	145
1532	Using carbon nanotubes to induce micronuclei and double strand breaks of the DNA in human cells. Nanotechnology, 2010, 21, 015102.	1.3	92
1533	Enrichment of Armchair Carbon Nanotubes via Density Gradient Ultracentrifugation: Raman Spectroscopy Evidence. ACS Nano, 2010, 4, 1955-1962.	7.3	83
1534	Fractionation of Single Wall Carbon Nanotubes by Length Using Cross Flow Filtration Method. ACS Nano, 2010, 4, 3606-3610.	7.3	27
1535	Diffusion Limited Photoluminescence Quantum Yields in 1-D Semiconductors: Single-Wall Carbon Nanotubes. ACS Nano, 2010, 4, 7161-7168.	7.3	166
1536	Phase Transfer Catalysts Drive Diverse Organic Solvent Solubility of Single-Walled Carbon Nanotubes Helically Wrapped by Ionic, Semiconducting Polymers. Nano Letters, 2010, 10, 4192-4199.	4.5	40
1537	Reversible Dispersion and Release of Carbon Nanotubes Using Foldable Oligomers. Journal of the American Chemical Society, 2010, 132, 14113-14117.	6.6	98
1538	Directed Assembly of SWNTs by Electrostatic Interactions and its Application for Making Network Transistors. Langmuir, 2010, 26, 607-612.	1.6	5
1539	Effect of Molecular Structure on Thermoresponsive Behaviors of Pyrrolidone-Based Water-Soluble Polymers. Macromolecules, 2010, 43, 4041-4049.	2.2	49
1540	Graphene Oxide-Assisted Dispersion of Pristine Multiwalled Carbon Nanotubes in Aqueous Media. Journal of Physical Chemistry C, 2010, 114, 11435-11440.	1.5	307

#	Article	IF	CITATIONS
1541	Resonant Coherent Phonon Generation in Single-Walled Carbon Nanotubes through Near-Band-Edge Excitation. ACS Nano, 2010, 4, 3222-3226.	7.3	16
1542	Luminescent Rare-Earth Complex Covalently Modified Single-Walled Carbon Nanotubes: Design, Synthesis, and DNA Sequence-Dependent Red Luminescence Enhancement. Chemistry of Materials, 2010, 22, 5718-5724.	3.2	31
1543	Synthesis, characterization and catalytic oxidation of para-xylene by a manganese(iii) Schiff base complex on functionalized multi-wall carbon nanotubes (MWNTs). Dalton Transactions, 2010, 39, 7330.	1.6	68
1544	Dispersion and Exfoliation of Nanotubes with Synthetic Oligonucleotides: Variation of Dispersion Efficiency and Oligo-Nanotube Interaction with Base Type. Journal of Physical Chemistry C, 2010, 114, 11741-11747.	1.5	16
1545	Evaluating Defects in Solution-Processed Carbon Nanotube Devices <i>via</i> Low-Temperature Transport Spectroscopy. ACS Nano, 2010, 4, 2659-2666.	7.3	14
1546	Cause and Consequence of Carbon Nanotube Doping in Water and Aqueous Media. Journal of the American Chemical Society, 2010, 132, 1572-1577.	6.6	42
1547	Phonon-Assisted Electroluminescence from Metallic Carbon Nanotubes and Graphene. Nano Letters, 2010, 10, 1589-1594.	4.5	77
1548	Single-Walled Carbon Nanotube/Lyotropic Liquid Crystal Hybrid Materials Fabricated by a Phase Separation Method in the Presence of Polyelectrolyte. Langmuir, 2010, 26, 8821-8828.	1.6	24
1549	Thermal-Actuated Optoelectronic Memory Medium Based on Carbon Nanotubeâ^' and Nickelâ 'Poly(dimethylsiloxane) Composites. ACS Applied Materials & Interfaces, 2010, 2, 2719-2723.	4.0	4
1550	Fabrication and Optoelectronic Properties of Novel Films Based on Functionalized Multiwalled Carbon Nanotubes and (Phthalocyaninato)Ruthenium(II) via Coordination Bonded Layer-by-Layer Self-Assembly. Langmuir, 2010, 26, 16084-16089.	1.6	26
1551	Spectroscopic and Scanning Probe Studies of a Nondestructive Purification Method for SWNT Suspensions. Journal of Physical Chemistry C, 2010, 114, 652-657.	1.5	6
1552	Biocompatible Nanoscale Dispersion of Single-Walled Carbon Nanotubes Minimizes in vivo Pulmonary Toxicity. Nano Letters, 2010, 10, 1664-1670.	4.5	183
1553	Selective Synthesis of (9,8) Single Walled Carbon Nanotubes on Cobalt Incorporated TUD-1 Catalysts. Journal of the American Chemical Society, 2010, 132, 16747-16749.	6.6	119
1554	SANS Investigation of Selectively Distributed Single-Walled Carbon Nanotubes in a Polymeric Lamellar Phase. Macromolecules, 2010, 43, 5411-5416.	2.2	15
1555	Selective Parallel Integration of Individual Metallic Single-Walled Carbon Nanotubes from Heterogeneous Solutions. Langmuir, 2010, 26, 10419-10424.	1.6	14
1556	Strong Micro-Dielectric Environment Effect on the Band Gaps of (<i>n</i> , <i>m</i>)Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2010, 132, 13072-13077.	6.6	50
1557	Understanding the Electrophoretic Separation of Single-Walled Carbon Nanotubes Assisted by Thionine as a Probe. Journal of Physical Chemistry C, 2010, 114, 19234-19238.	1.5	22
1558	A Demo Opto-electronic Power Source Based on Single-Walled Carbon Nanotube Sheets. ACS Nano, 2010, 4, 4701-4706.	7.3	34

#	Article	IF	CITATIONS
1559	Interfacing Carbon Nanotubes with Living Mammalian Cells and Cytotoxicity Issues. Chemical Research in Toxicology, 2010, 23, 1131-1147.	1.7	150
1560	Chemical approaches towards single-species single-walled carbon nanotubes. Nanoscale, 2010, 2, 1901.	2.8	41
1561	Optical microcavity with semiconducting single-wall carbon nanotubes. Optics Express, 2010, 18, 5740.	1.7	41
1562	Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges. Trends in Molecular Medicine, 2010, 16, 574-583.	3.5	204
1563	Surfactant assisted dispersion of functionalized multi-walled carbon nanotubes in aqueous media. Composites Part A: Applied Science and Manufacturing, 2010, 41, 1038-1046.	3.8	145
1564	Optical absorption and electron energy loss spectra of single-walled carbon nanotubes. Computational Materials Science, 2010, 49, 450-456.	1.4	38
1565	Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: Effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions. Water Research, 2010, 44, 505-520.	5.3	148
1568	Preparation and Melting/Freezing Characteristics of Cu/Paraffin Nanofluid as Phase-Change Material (PCM). Energy & Fuels, 2010, 24, 1894-1898.	2.5	261
1569	Diameter-Dependent Solubility of Single-Walled Carbon Nanotubes. ACS Nano, 2010, 4, 3063-3072.	7.3	65
1570	Gram-Scale Preparation of Surfactant-Free, Carboxylic Acid Groups Functionalized, Individual Single-Walled Carbon Nanotubes in Aqueous Solution. Langmuir, 2010, 26, 1221-1225.	1.6	19
1571	Chemistry of carbon nanotubes in biomedical applications. Journal of Materials Chemistry, 2010, 20, 1036-1052.	6.7	235
1572	Sorting Single-Walled Carbon Nanotubes by Electronic Type Using Nonionic, Biocompatible Block Copolymers. ACS Nano, 2010, 4, 4725-4732.	7.3	79
1573	Solution-Phase Extraction of Ultrathin Inner Shells from Double-Wall Carbon Nanotubes. ACS Nano, 2010, 4, 5807-5812.	7.3	44
1574	A Facile High-speed Vibration Milling Method to Water-disperse Single-walled Carbon Nanohorns. Chemistry of Materials, 2010, 22, 347-351.	3.2	22
1575	Phthalocyanineâ^'Pyrene Conjugates: A Powerful Approach toward Carbon Nanotube Solar Cells. Journal of the American Chemical Society, 2010, 132, 16202-16211.	6.6	131
1576	High quality solution processed carbon nanotube transistors assembled by dielectrophoresis. Applied Physics Letters, 2010, 96, .	1.5	57
1577	Progress in Carbon Nanotube Electronics and Photonics. MRS Bulletin, 2010, 35, 306-313.	1.7	79
1578	Optimizing Surfactant Concentrations for Dispersion of Single-Walled Carbon Nanotubes in Aqueous Solution. Journal of Physical Chemistry B, 2010, 114, 9805-9811.	1.2	212

#	Article	IF	CITATIONS
1579	Probing the electronic structure of carbon nanotubes by nanoscale spectroscopy. Nanoscale, 2010, 2, 1611.	2.8	19
1580	Effect of Single-Walled Carbon Nanotube Association upon 1H NMR Spectra of Representative Organonitrogen Compounds. Journal of Physical Chemistry C, 2010, 114, 10140-10147.	1.5	11
1581	The influence of oxygen-containing functional groups on the dispersion of single-walled carbon nanotubes in amide solvents. Journal of Physics Condensed Matter, 2010, 22, 334222.	0.7	25
1582	Controlled removal of individual carbon nanotubes from vertically aligned arrays for advanced nanoelectrodes. Journal of Materials Chemistry, 2010, 20, 3595.	6.7	9
1583	Fundamental properties of oligo double-stranded DNA/single-walled carbon nanotube nanobiohybrids. Nanoscale, 2010, 2, 1767.	2.8	34
1584	Hybrid materials based on Pd nanoparticles on carbon nanostructures for environmentally benign C–C coupling chemistry. Nanoscale, 2010, 2, 1390.	2.8	86
1585	Stabilization of Aqueous Carbon Nanotube Dispersions Using Surfactants: Insights from Molecular Dynamics Simulations. ACS Nano, 2010, 4, 7193-7204.	7.3	93
1586	Assessing the Role of Poly(ethylene glycol- <i>bl</i> -propylene sulfide) (PEG-PPS) Block Copolymers in the Preparation of Carbon Nanotube Biocompatible Dispersions. Macromolecules, 2010, 43, 3429-3437.	2.2	29
1587	Metal-Enhanced Fluorescence of Carbon Nanotubes. Journal of the American Chemical Society, 2010, 132, 15920-15923.	6.6	105
1588	Absorption spectra of AA-stacked graphite. New Journal of Physics, 2010, 12, 083060.	1.2	36
1589	DISPERSION OF PRISTINE MULTI-WALLED CARBON NANOTUBES IN COMMON ORGANIC SOLVENTS. Nano, 2010, 05, 103-109.	0.5	32
1590	Aggregation-Dependent Photoluminescence Sidebands in Single-Walled Carbon Nanotube. Journal of Physical Chemistry C, 2010, 114, 6704-6711.	1.5	12
1591	Propertyâ^'Structure Relationship of Nanoscale Ionic Materials Based on Multiwalled Carbon Nanotubes. ACS Nano, 2010, 4, 5797-5806.	7.3	86
1592	Conjugated Polymer Poly(2-methoxy-5-(3′,7′- dimethyloctyloxy)-1,4-phenylenevinylene) Modification on Carbon Nanotubes with Assistance of Supercritical Carbon Dioxide: Chemical Interaction, Solubility, and Light Emission. Journal of Physical Chemistry C, 2010, 114, 10119-10125.	1.5	14
1593	C ₁₂ E ₆ and SDS Surfactants Simulated at the Vacuumâ^'Water Interface. Langmuir, 2010, 26, 5462-5474.	1.6	64
1595	Combined experimental and <i>ab initio</i> study of the electronic structure of narrow-diameter single-wall carbon nanotubes with predominant (6,4),(6,5) chirality. Physical Review B, 2010, 82, .	1.1	19
1596	Electrical and dielectric behavior of carbon nanotube-filled polymer composites. , 2010, , 495-528.		7
1597	Effect of Multi-walled Carbon Nanotubes on Pervaporation Characteristics of Chitosan Membrane. Designed Monomers and Polymers, 2010, 13, 287-299.	0.7	8

#	Article	IF	Citations
1598	Arrangement of palladium nanoparticles templated by supramolecular self-assembly of SDS wrapped on single-walled carbon nanotubes. Chemical Communications, 2010, 46, 4363.	2.2	38
1599	Mixtures of oppositely charged polypeptides as high-performance dispersing agents for single-wall carbon nanotubes. Chemical Communications, 2010, 46, 7013.	2.2	7
1600	Approximate quantum mechanical method for describing excitations and related properties of finite single-walled carbon nanotubes. Physical Review B, 2010, 81, .	1.1	9
1601	Optimising surfactant aided dispersions of carbon nanotubes in aqueous solution. , 2010, , .		1
1602	Tunable Raman spectroscopy study of CVD and peapod-derived bundled and individual double-wall carbon nanotubes. Physical Review B, 2010, 82, .	1.1	22
1603	In Plane Orientation of SWCNT Ultrathin Film Fabricated Using a Liquid–Liquid Interface. Molecular Crystals and Liquid Crystals, 2010, 519, 9-13.	0.4	3
1604	Photocatalysis-induced selective decoration of semiconducting single walled carbon nanotubes: hole-doping effect. Chemical Communications, 2010, 46, 6977.	2.2	3
1605	Solvatochromic shifts of single-walled carbon nanotubes in nonpolar microenvironments. Physical Chemistry Chemical Physics, 2010, 12, 6990.	1.3	72
1606	Chemical mapping and electrical conductivity of carbon nanotube patterned arrays. Journal of Materials Chemistry, 2011, 21, 14259.	6.7	1
1607	Biocompatible dispersions of carbon nanotubes: a potential tool for intracellular transport of anticancer drugs. Nanoscale, 2011, 3, 925-928.	2.8	47
1608	Anisotropic TiO2 nanomaterials in dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2011, 13, 21248.	1.3	59
1609	lonic strength and pH reversible response of visible and near-infrared fluorescence of graphene oxide nanosheets for monitoring the extracellular pH. Chemical Communications, 2011, 47, 3135.	2.2	121
1610	Photoelectrochemical, photophysical and morphological studies of electrostatic layer-by-layer thin films based on poly(p-phenylenevinylene) and single-walled carbon nanotubes. Photochemical and Photobiological Sciences, 2011, 10, 1766.	1.6	4
1611	Dispersion of Multi-Walled Carbon Nanotubes in Alumina Sol for Carbon Nanotube/Alumina Composite Fiber Preparation. Journal of Dispersion Science and Technology, 2011, 32, 1129-1134.	1.3	4
1612	Ordered deposition of Pd nanoparticles on sodium dodecyl sulfate-functionalized single-walled carbon nanotubes. Journal of Materials Chemistry, 2011, 21, 12008.	6.7	13
1613	Highly conductive and transparent single-walled carbon nanotube thin films fabricated by gel coating. Journal of Materials Chemistry, 2011, 21, 17842.	6.7	25
1614	Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra. Physical Chemistry Chemical Physics, 2011, 13, 14879.	1.3	25
1615	Structural modifications of ionic liquid surfactants for improving the water dispersibility of carbon nanotubes: an experimental and theoretical study. Physical Chemistry Chemical Physics, 2011, 13, 11373.	1.3	31

#	Article	IF	CITATIONS
1616	Novel Poly(L-lactide) PLLA/SWNTs Nanocomposites for Biomedical Applications: Material Characterization and Biocompatibility Evaluation. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 541-556.	1.9	30
1617	Non-covalent ruthenium polypyridyl complexes–carbon nanotubes composites: an alternative for functional dissolution of carbon nanotubes in solution. Chemical Communications, 2011, 47, 2246.	2.2	34
1618	Salting out in organic solvents: a new route to carbon nanotube bundle engineering. Physical Chemistry Chemical Physics, 2011, 13, 12399.	1.3	13
1619	Optically- and Thermally-Responsive Programmable Materials Based on Carbon Nanotube-Hydrogel Polymer Composites. Nano Letters, 2011, 11, 3239-3244.	4.5	476
1620	Core–Shell Interactions in Coaxial Electrospinning and Impact on Electrospun Multiwall Carbon Nanotube Core, Poly(methyl methacrylate) Shell Fibers. Journal of Physical Chemistry C, 2011, 115, 12742-12750.	1.5	15
1621	Thermal-Stable Carbon Nanotube-Supported Metal Nanocatalysts by Mesoporous Silica Coating. Langmuir, 2011, 27, 6244-6251.	1.6	28
1622	Epoxy–carbon nanotube composites. , 2011, , 230-261.		1
1623	Translocation of Single-Wall Carbon Nanotubes Through Solid-State Nanopores. Nano Letters, 2011, 11, 2446-2450.	4.5	27
1624	On-Chip Rayleigh Imaging and Spectroscopy of Carbon Nanotubes. Nano Letters, 2011, 11, 1-7.	4.5	63
1625	The Role of Length and Defects on Optical Quantum Efficiency and Exciton Decay Dynamics in Single-Walled Carbon Nanotubes. ACS Nano, 2011, 5, 647-655.	7.3	57
1626	Observation of Charged Excitons in Hole-Doped Carbon Nanotubes Using Photoluminescence and Absorption Spectroscopy. Physical Review Letters, 2011, 106, 037404.	2.9	182
1627	Healing of a Vacancy Defect in a Single-Walled Carbon Nanotube by Carbon Monoxide Disproportionation. Journal of Physical Chemistry C, 2011, 115, 4649-4655.	1.5	26
1628	Short-Wavelength Electroluminescence from Single-Walled Carbon Nanotubes with High Bias Voltage. ACS Nano, 2011, 5, 1215-1222.	7.3	24
1629	Optical and Electrical Properties of Inner Tubes in Outer Wall-Selectively Functionalized Double-Wall Carbon Nanotubes. Journal of Physical Chemistry Letters, 2011, 2, 1577-1582.	2.1	37
1630	High-Performance Carbon Nanotube Light-Emitting Diodes with Asymmetric Contacts. Nano Letters, 2011, 11, 23-29.	4.5	91
1631	Efficient Spectrofluorimetric Analysis of Single-Walled Carbon Nanotube Samples. Analytical Chemistry, 2011, 83, 7431-7437.	3.2	36
1632	On the Charge Carrier Localization in Zigzag Carbon Nanotube Junctions. Journal of Physical Chemistry C, 2011, 115, 11727-11733.	1.5	3
1633	Cholesteric and Nematic Liquid Crystalline Phase Behavior of Double-Stranded DNA Stabilized Single-Walled Carbon Nanotube Dispersions. ACS Nano, 2011, 5, 1450-1458.	7.3	57

#	Article	IF	CITATIONS
1634	Critical Investigation of Defect Site Functionalization on Single-Walled Carbon Nanotubes. Chemistry of Materials, 2011, 23, 67-74.	3.2	54
1635	Suppression of Blinking and Enhanced Exciton Emission from Individual Carbon Nanotubes. ACS Nano, 2011, 5, 2664-2670.	7.3	40
1636	Four-Wave Mixing Measurement of Third-Order Nonlinear Susceptibilities of Length-Sorted Single-Walled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2011, 2, 482-487.	2.1	14
1637	Measuring Carbon Nanotube Band Gaps through Leakage Current and Excitonic Transitions of Nanotube Diodes. Nano Letters, 2011, 11, 1946-1951.	4.5	26
1638	Sorting of Single-Walled Carbon Nanotubes Based on Metallicity by Selective Precipitation with Polyvinylpyrrolidone. Journal of Physical Chemistry C, 2011, 115, 5199-5206.	1.5	14
1639	Molecular-Crowding-Induced Clustering of DNA-Wrapped Carbon Nanotubes for Facile Length Fractionation. ACS Nano, 2011, 5, 8258-8266.	7.3	58
1640	Carbon nanotube wires and cables: Near-term applications and future perspectives. Nanoscale, 2011, 3, 4542.	2.8	139
1641	NANO/MICROSCALE TECHNOLOGIES FOR DRUG DELIVERY. Journal of Mechanics in Medicine and Biology, 2011, 11, 337-367.	0.3	11
1643	Isolated single-walled carbon nanotubes in a gel as a molecular reservoir and its application to controlled drug release triggered by near-IR laser irradiation. Soft Matter, 2011, 7, 2647.	1.2	19
1644	Polybenzoxazine-CNT Nanocomposites. , 2011, , 541-554.		1
1644 1645	Polybenzoxazine-CNT Nanocomposites. , 2011, , 541-554. Coarse-grained force field for ionic surfactants. Soft Matter, 2011, 7, 6178.	1.2	1 69
		1.2	
1645	Coarse-grained force field for ionic surfactants. Soft Matter, 2011, 7, 6178. A Mechanistic Study of the Selective Retention of SDS-Suspended Single-Wall Carbon Nanotubes on		69
1645 1646	Coarse-grained force field for ionic surfactants. Soft Matter, 2011, 7, 6178. A Mechanistic Study of the Selective Retention of SDS-Suspended Single-Wall Carbon Nanotubes on Agarose Gels. Journal of Physical Chemistry C, 2011, 115, 9361-9369. Physical Properties of Carbon Nanotubes for Therapeutic Applications. Carbon Nanostructures, 2011, ,	1.5	69 43
1645 1646 1647	Coarse-grained force field for ionic surfactants. Soft Matter, 2011, 7, 6178. A Mechanistic Study of the Selective Retention of SDS-Suspended Single-Wall Carbon Nanotubes on Agarose Gels. Journal of Physical Chemistry C, 2011, 115, 9361-9369. Physical Properties of Carbon Nanotubes for Therapeutic Applications. Carbon Nanostructures, 2011, , 3-26.	1.5 0.1	69 43 3
1645 1646 1647 1648	Coarse-grained force field for ionic surfactants. Soft Matter, 2011, 7, 6178. A Mechanistic Study of the Selective Retention of SDS-Suspended Single-Wall Carbon Nanotubes on Agarose Gels. Journal of Physical Chemistry C, 2011, 115, 9361-9369. Physical Properties of Carbon Nanotubes for Therapeutic Applications. Carbon Nanostructures, 2011, , 3-26. Carbon Nanotubes in Regenerative Medicine. Carbon Nanostructures, 2011, , 27-39. Large-scale integration of single-walled carbon nanotubes and graphene into sensors and devices	1.5 0.1 0.1	69 43 3 9
1645 1646 1647 1648 1649	Coarse-grained force field for ionic surfactants. Soft Matter, 2011, 7, 6178. A Mechanistic Study of the Selective Retention of SDS-Suspended Single-Wall Carbon Nanotubes on Agarose Gels. Journal of Physical Chemistry C, 2011, 115, 9361-9369. Physical Properties of Carbon Nanotubes for Therapeutic Applications. Carbon Nanostructures, 2011, , 3-26. Carbon Nanotubes in Regenerative Medicine. Carbon Nanostructures, 2011, , 27-39. Large-scale integration of single-walled carbon nanotubes and graphene into sensors and devices using dielectrophoresis: A review. Journal of Materials Research, 2011, 26, 1561-1571. Amphiphilic Multiwalled Carbon Nanotube Polymer Hybrid with Improved Conductivity and Dispersibility Produced by Functionalization with Poly(vinylbenzyl)triethylammonium Chloride.	1.5 0.1 0.1 1.2	 69 43 3 9 23

#	Article	IF	CITATIONS
1653	Using Photosensitive Dye To Improve Multi Walled Carbon Nanotubes Dispersion. Journal of Physics: Conference Series, 2011, 274, 012117.	0.3	4
1654	Resonance Energy Transfer (RET)-Induced Intermolecular Pairing Force: A Tunable Weak Interaction and Its Application in SWNT Separation. Journal of Physical Chemistry A, 2011, 115, 8155-8166.	1.1	8
1655	Outerwall selective alkylcarboxylation and enrichment of double-walled carbon nanotubes. Journal of Materials Chemistry, 2011, 21, 18568.	6.7	7
1656	Electroabsorption study of index-defined semiconducting carbon nanotubes. EPJ Applied Physics, 2011, 55, 20401.	0.3	6
1657	Assembly of carbon nanotubes and alkylated fullerenes: nanocarbon hybrid towards photovoltaic applications. Chemical Science, 2011, 2, 2243.	3.7	47
1658	A biophysical perspective of understanding nanoparticles at large. Physical Chemistry Chemical Physics, 2011, 13, 7273.	1.3	63
1659	Single Molecule Detection of Nitric Oxide Enabled by d(AT) ₁₅ DNA Adsorbed to Near Infrared Fluorescent Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2011, 133, 567-581.	6.6	177
1660	Fluorescence of Nafion Dispersed Single-Walled Carbon Nanotubes in Water and in Silica Composite. Journal of Physical Chemistry C, 2011, 115, 10561-10568.	1.5	2
1661	Nanostructured Materials for Engineering Applications. , 2011, , .		22
1662	Wide-range optical studies on various single-walled carbon nanotubes: Origin of the low-energy gap. Physical Review B, 2011, 84, .	1.1	47
1663	Wrapping Bacteria by Graphene Nanosheets for Isolation from Environment, Reactivation by Sonication, and Inactivation by Near-Infrared Irradiation. Journal of Physical Chemistry B, 2011, 115, 6279-6288.	1.2	578
1664	Transparent Foamlike 2D Networks of Nitrogen-Doped Multiwalled Carbon Nanotubes Obtained by Self-Assembly. Journal of Physical Chemistry C, 2011, 115, 11447-11452.	1.5	1
1665	Combing DNAzyme with single-walled carbon nanotubes for detection of Pb(<scp>ii</scp>) in water. Analyst, The, 2011, 136, 764-768.	1.7	34
1666	Nanotechnology Research Directions for Societal Needs in 2020. , 2011, , .		202
1667	Fluorescence Labeling of Carbon Nanotubes and Visualization of a Nanotubeâ^'Protein Hybrid under Fluorescence Microscope. Biomacromolecules, 2011, 12, 1200-1204.	2.6	22
1668	Absorption Cross Section and Interfacial Thermal Conductance from an Individual Optically Excited Single-Walled Carbon Nanotube. ACS Nano, 2011, 5, 7391-7396.	7.3	13
1669	Selective Polycarboxylation of Semiconducting Single-Walled Carbon Nanotubes by Reductive Sidewall Functionalization. Journal of the American Chemical Society, 2011, 133, 19459-19473.	6.6	62
1670	New Route to Fluorescent Single-Walled Carbon Nanotube/Silica Nanocomposites: Balancing Fluorescence Intensity and Environmental Sensitivity. Journal of Physical Chemistry C, 2011, 115, 15147-15153.	1.5	17

#	Article	IF	Citations
1671	Biomedical Nanotechnology. Methods in Molecular Biology, 2011, , .	0.4	10
1672	NanoBiosensing. Biological and Medical Physics Series, 2011, , .	0.3	29
1673	Scaling of Excitons in Graphene Nanoribbons with Armchair Shaped Edges. Journal of Physical Chemistry A, 2011, 115, 11998-12003.	1.1	61
1675	Self-catalysis induced three-dimensional SiOx nanostructures. CrystEngComm, 2011, 13, 5807.	1.3	3
1676	Cytosensing and Cell Surface Carbohydrate Assay by Assembly of Nanoparticles. Biological and Medical Physics Series, 2011, , 485-534.	0.3	0
1677	Patterned nano-sized gold dots within FET channel: from fabrication to alignment of single walled carbon nanotube networks. Journal of Materials Chemistry, 2011, 21, 14285.	6.7	7
1679	Fundamental Examination of Nanoparticle Heating Kinetics Upon Near Infrared (NIR) Irradiation. ACS Applied Materials & Interfaces, 2011, 3, 3971-3980.	4.0	12
1680	Dispersion quantification of inclusions in composites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 75-83.	3.8	56
1681	Potential Release Pathways, Environmental Fate, And Ecological Risks of Carbon Nanotubes. Environmental Science & Technology, 2011, 45, 9837-9856.	4.6	446
1682	Swelling the Hydrophobic Core of Surfactant-Suspended Single-Walled Carbon Nanotubes: A SANS Study. Langmuir, 2011, 27, 11372-11380.	1.6	14
1683	Recognition Ability of DNA for Carbon Nanotubes Correlates with Their Binding Affinity. Langmuir, 2011, 27, 8282-8293.	1.6	90
1684	Ultrafast Dynamics of the First Excited-State of Quasi Monodispersed Single-Walled (9,7) Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 23711-23717.	1.5	1
1685	Exact and Closed Form Solutions for the Quantum Yield, Exciton Diffusion Length, and Lifetime To Reveal the Universal Behaviors of the Photoluminescence of Defective Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2011, 115, 16920-16927.	1.5	16
1686	Electroluminescence from chirality-sorted (9,7)-semiconducting carbon nanotube devices. Optics Express, 2011, 19, A1184.	1.7	28
1687	Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale, 2011, 3, 362-382.	2.8	264
1688	Fluorescent Single-Walled Carbon Nanotube Aerogels in Surfactant-free Environments. ACS Nano, 2011, 5, 6686-6694.	7.3	38
1689	Carbon Nanotubes. Progress in Molecular Biology and Translational Science, 2011, 104, 175-245.	0.9	52
1690	Dynamics and Transient Absorption Spectral Signatures of the Single-Wall Carbon Nanotube Electronically Excited Triplet State, Journal of the American Chemical Society, 2011, 133, 17156-17159.	6.6	66

#	Article	IF	CITATIONS
1691	PEG-Modified Carbon Nanotubes in Biomedicine: Current Status and Challenges Ahead. Biomacromolecules, 2011, 12, 3381-3393.	2.6	194
1692	Supramolecular Hybrid of Gold Nanoparticles and Semiconducting Single-Walled Carbon Nanotubes Wrapped by a Porphyrin–Fluorene Copolymer. Journal of the American Chemical Society, 2011, 133, 14771-14777.	6.6	46
1693	Screening interactions of zinc phthalocyanine–PPV oligomers with single wall carbon nanotubes—a comparative study. Journal of Materials Chemistry, 2011, 21, 8014.	6.7	25
1694	Tuning and optimizing the intrinsic interactions between phthalocyanine-based PPV oligomers and single-wall carbon nanotubes toward n-type/p-type. Chemical Science, 2011, 2, 652-660.	3.7	35
1695	Association of Representative Amides and Aminoalcohols with SWCNT As Revealed by ¹ H NMR. ACS Symposium Series, 2011, , 31-51.	0.5	0
1696	In-Situ Structural Characterization of Single-Walled Carbon Nanotubes in Dispersion. , 2011, , .		2
1697	Molecular Dynamics Simulation Study on the Mechanical Properties and Fracture Behavior of Single-Wall Carbon Nanotubes. , 0, , .		3
1698	Epoxy-based Carbon Nanotubes Reinforced Composites. , 0, , .		8
1699	Basics of Carbon Nanotube and Its Applications-High expectations of technological innovation by carbon nanotube as new carbon material, and facing challenges for its practical applications Journal of MMIJ, 2011, 127, 61-68.	0.4	0
1702	Fabrication and Applications of Carbon Nanotube-Based Hybrid Nanomaterials by Means of Non-Covalently Functionalized Carbon Nanotubes. , 2011, , .		3
1703	Exciton Dephasing in a Single Carbon Nanotube Studied by Photoluminescence Spectroscopy. , 2011, , .		1
1704	Single-Walled Carbon Nanotubes as a Molecular Heater for Thermoresponsive Polymer Gel Composite. , 2011, , .		1
1705	Dispersion stability and exothermic properties of DNA-functionalized single-walled carbon nanotubes. International Journal of Nanomedicine, 2011, 6, 729.	3.3	19
1706	Non-Covalent Functionalization of Carbon Nanotubes with Surfactants for Pharmaceutical Applications - A Critical Mini-Review. Drug Delivery Letters, 2011, 1, 45-57.	0.2	11
1707	Using fluorescence quenching of single walled carbon nanotubes with metal ions as a probe of surfactant\$ctdot\$SWNT interactions. Main Group Chemistry, 2011, 10, 89-104.	0.4	3
1708	Carbon-Based Nanomedicine. , 2011, , 1-24.		0
1709	Direct imaging the subcellular localization of single-walled carbon nanotubes. Proceedings of SPIE, 2011, , .	0.8	1
1710	Hybridization of Carbon Nanotubes with Si–π Polymers and Attachment of Resulting Hybrids to TiO2 Surface. Chemistry Letters, 2011, 40, 87-89.	0.7	6

#	Article	IF	CITATIONS
1711	Single walled carbon nanotubes: a model system for excitons in one dimension. Proceedings of SPIE, 2011, , .	0.8	0
1712	Photocontrollable Supramolecular Materials Formed by Cyclodextrins and Azobenzene Polymers. Kobunshi Ronbunshu, 2011, 68, 669-678.	0.2	3
1713	Microcapsule assembly of single-walled carbon nanotubes from spray-dried hollow microspheres. Journal of the Ceramic Society of Japan, 2011, 119, 180-184.	0.5	14
1714	Dispersion of Carbon Nanotubes in Water by Noncovalent Wrapping with Peptides Screened by Phage Display. Chemistry Letters, 2011, 40, 880-882.	0.7	5
1715	Enhanced photorefractivity in a polymeric composite photosensitized with carbon nanotubes grafted to a photoconductive polymer. Journal of Applied Physics, 2011, 109, .	1.1	7
1716	In vivo biodistribution and biological impact of injected carbon nanotubes using magnetic resonance techniques. International Journal of Nanomedicine, 2011, 6, 351.	3.3	61
1718	Inorganic Nanoparticles for Multimodal Molecular Imaging. Molecular Imaging, 2011, 10, 7290.2011.00001.	0.7	73
1719	Virus-templated self-assembled single-walled carbon nanotubes for highly efficient electron collection in photovoltaic devices. Nature Nanotechnology, 2011, 6, 377-384.	15.6	368
1720	Chirality-enriched semiconducting carbon nanotubes synthesized on high surface area MgO-supported catalyst. Materials Letters, 2011, 65, 1878-1881.	1.3	29
1721	Carbon Nanotubes for Organic Solar Cells. IEEE Nanotechnology Magazine, 2011, 5, 18-24.	0.9	14
1722	Synthesis of semiconducting SWNTs by arc discharge and their enhancement of water splitting performance with TiO2 photocatalyst. Carbon, 2011, 49, 5132-5141.	5.4	25
1723	Electrical conductivity of well-exfoliated single-walled carbon nanotubes. Carbon, 2011, 49, 5124-5131.	5.4	10
1724	Effects of the composition and molecular weight of maleimide polymers on the dispersibility of carbon nanotubes in chloroform. Carbon, 2011, 49, 5185-5195.	5.4	11
1725	Parametric analysis of sonication and centrifugation variables for dispersion of single walled carbon nanotubes in aqueous solutions of sodium dodecylbenzene sulfonate. Carbon, 2011, 49, 5213-5228.	5.4	71
1727	Bright Fluorescence from Individual Single-Walled Carbon Nanotubes. Nano Letters, 2011, 11, 1636-1640.	4.5	121
1728	Computational Design of Virus-Like Protein Assemblies on Carbon Nanotube Surfaces. Science, 2011, 332, 1071-1076.	6.0	196
1729	Photoinduced processes of the supramolecularly functionalized semi-conductive SWCNTs with porphyrinsvia ion-pairing interactions. Energy and Environmental Science, 2011, 4, 707-716.	15.6	43
1730	Screening the Cytotoxicity of Single-Walled Carbon Nanotubes Using Novel 3D Tissue-Mimetic Models. ACS Nano, 2011, 5, 9278-9290.	7.3	61

	CITATION RI	EPORT	
#	Article	IF	Citations
1731	Double-walled carbon nanotubes: Challenges and opportunities. Nanoscale, 2011, 3, 503-518.	2.8	169
1732	Nanotube and Graphene Polymer Composites for Photonics and Optoelectronics. , 2011, , 279-354.		7
1733	Epoxy-amine composites with ultralow concentrations of single-layer carbon nanotubes. Polymer Science - Series A, 2011, 53, 502-509.	0.4	14
1734	First principle study of Li-intercalated (5, 5) ZnO nanotube bundles. European Physical Journal B, 2011, 83, 7-13.	0.6	2
1735	Resonant Raman spectroscopy of armchair carbon nanotubes: Absence of broad <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mi>G</mml:mi><mml:mrow><mml:mo>â^`</mml:mo>Physical Review B, 2011, 84, .</mml:mrow></mml:msup></mml:mrow></mml:math 	1ro₩> <td>ml:msup></td>	ml:msup>
1736	Raman spectroscopy of graphene and carbon nanotubes. Advances in Physics, 2011, 60, 413-550.	35.9	797
1737	Improved selectivity in discriminating handedness and diameter of single-walled carbon nanotubes with N-substituted 3,6-carbazolylene-bridged chiral diporphyrin nanotweezers. Nanoscale, 2011, 3, 4117.	2.8	27
1738	Enhanced cell uptake via non-covalent decollation of a single-walled carbon nanotube-DNA hybrid with polyethylene glycol-grafted poly(l-lysine) labeled with an Alexa-dye and its efficient uptake in a cancer cell. Nanoscale, 2011, 3, 4352.	2.8	17
1739	Label-Free, Single Protein Detection on a Near-Infrared Fluorescent Single-Walled Carbon Nanotube/Protein Microarray Fabricated by Cell-Free Synthesis. Nano Letters, 2011, 11, 2743-2752.	4.5	88
1740	Single-Molecule Detection of H ₂ O ₂ Mediating Angiogenic Redox Signaling on Fluorescent Single-Walled Carbon Nanotube Array. ACS Nano, 2011, 5, 7848-7857.	7.3	70
1741	Evaluation of metallic and semiconducting single-walled carbon nanotube characteristics. Nanoscale, 2011, 3, 2074.	2.8	13
1742	Ultrafast Exciton Energy Transfer between Nanoscale Coaxial Cylinders: Intertube Transfer and Luminescence Quenching in Double-Walled Carbon Nanotubes. ACS Nano, 2011, 5, 5881-5887.	7.3	30
1743	Ultrafast Exciton Energy Transfer in Bundles of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2011, 2, 127-132.	2.1	32
1744	Separation of Empty and Water-Filled Single-Wall Carbon Nanotubes. ACS Nano, 2011, 5, 3943-3953.	7.3	65
1746	Charge Transfer Events in Semiconducting Single-Wall Carbon Nanotubes. Journal of the American Chemical Society, 2011, 133, 18696-18706.	6.6	28
1747	Analyzing Absorption Backgrounds in Single-Walled Carbon Nanotube Spectra. ACS Nano, 2011, 5, 1639-1648.	7.3	142
1748	Significant FRET between SWNT/DNA and Rare Earth Ions: A Signature of Their Spatial Correlations. ACS Nano, 2011, 5, 6052-6059.	7.3	13
1749	Elastic Exciton-Exciton Scattering in Photoexcited Carbon Nanotubes. Physical Review Letters, 2011, 107, 127401.	2.9	35

#	Article	IF	CITATIONS
1750	Single-walled carbon nanotubes in biomedical imaging. Journal of Materials Chemistry, 2011, 21, 586-598.	6.7	139
1751	Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Advanced Drug Delivery Reviews, 2011, 63, 1340-1351.	6.6	226
1752	Aptamer-conjugated nanomaterials and their applications. Advanced Drug Delivery Reviews, 2011, 63, 1361-1370.	6.6	188
1753	Analytical characterization of gold nanoparticle primary particles, aggregates, agglomerates, and agglomerated aggregates. Journal of Nanoparticle Research, 2011, 13, 3465-3481.	0.8	36
1754	Synthesis of block polyethers with various structures and their application in dispersing single-walled carbon nanotubes. Colloid and Polymer Science, 2011, 289, 933-942.	1.0	24
1755	Pegylated single-walled carbon nanotubes with gelable block copolymers. Chinese Journal of Polymer Science (English Edition), 2011, 29, 762-771.	2.0	3
1756	Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Analytical and Bioanalytical Chemistry, 2011, 399, 3-27.	1.9	442
1757	Structural and biological evaluation of a multifunctional SWCNT-AgNPs-DNA/PVA bio-nanofilm. Analytical and Bioanalytical Chemistry, 2011, 400, 547-560.	1.9	20
1758	High mobility of SDBS-dispersed single-walled carbon nanotubes in saturated and unsaturated porous media. Journal of Hazardous Materials, 2011, 186, 1766-1772.	6.5	95
1759	Cell growth inhibition and apoptosis by SDS-solubilized single-walled carbon nanotubes in normal rat kidney epithelial cells. Archives of Pharmacal Research, 2011, 34, 661-669.	2.7	35
1760	Dispersion of single-walled carbon nanotubes modified with poly-l-tyrosine in water. Nanoscale Research Letters, 2011, 6, 128.	3.1	19
1761	The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Research Letters, 2011, 6, 555.	3.1	375
1762	Multiwalled carbon nanotube/polysulfone composites: Using the Hildebrand solubility parameter to predict dispersion. Polymer Composites, 2011, 32, 1895-1903.	2.3	14
1763	Dispersion of multiwall carbon nanotubes in blends of polypropylene and acrylonitrile butadiene styrene. Polymer Engineering and Science, 2011, 51, 1891-1905.	1.5	26
1764	The role of specific interaction and selective localization of multiwall carbon nanotubes on the electrical conductivity and phase morphology of multicomponent polymer blends. Polymer Engineering and Science, 2011, 51, 1987-2000.	1.5	20
1765	Oneâ€step separation of highâ€purity (6,5) carbon nanotubes by multicolumn gel chromatography. Physica Status Solidi (B): Basic Research, 2011, 248, 2524-2527.	0.7	24
1766	Amphiphile replacement on carbon nanotube surfaces: Effect of aromatic groups on the interaction strength. Physica Status Solidi (B): Basic Research, 2011, 248, 2532-2535.	0.7	9
1767	Synthesis, characterization and properties of multifunctional poly(arylene ether nitriles) (PEN)/CNTs/Fe ₃ O ₄ nanocomposites. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 611-619.	2.4	17

#	Article	IF	CITATIONS
1768	Separation of singleâ€walled carbon nanotubes with aromatic group functionalized polymethacrylates and building blocks contribution to the enrichment. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 949-960.	2.4	3
1769	Synthesis of pyreneâ€capped polystyrene for dispersion of pristine singleâ€walled carbon nanotubes. Polymer International, 2011, 60, 1425-1433.	1.6	24
1770	Aptamerâ€Assembled Nanomaterials for Biosensing and Biomedical Applications. Small, 2011, 7, 2428-2436.	5.2	70
1771	Quantification of Uptake and Localization of Bovine Serum Albuminâ€Stabilized Singleâ€Wall Carbon Nanotubes in Different Human Cell Types. Small, 2011, 7, 2348-2355.	5.2	101
1772	Fluorescence derivatization of singleâ€walled carbon nanotubes for analysis by means of conventional CEâ€LIF. Journal of Separation Science, 2011, 34, 2866-2871.	1.3	6
1773	Comparative study on protection properties of anionic surfactants (SDS, SDBS) and DNA covering of singleâ€walled carbon nanotubes against pH influence: luminescence and absorption spectroscopy study. Materialwissenschaft Und Werkstofftechnik, 2011, 42, 41-46.	0.5	13
1774	Additiveâ€Free Dispersion of Singleâ€Walled Carbon Nanotubes and Its Application for Transparent Conductive Films. Advanced Functional Materials, 2011, 21, 2330-2337.	7.8	51
1775	Particleâ€Dissociating Peptides. Advanced Materials, 2011, 23, 132-135.	11.1	1
1776	A Scalable, CMOSâ€Compatible Assembly of Ambipolar Semiconducting Singleâ€Walled Carbon Nanotube Devices. Advanced Materials, 2011, 23, 1734-1738.	11.1	34
1777	The Potential of Perylene Bisimide Derivatives for the Solubilization of Carbon Nanotubes and Graphene. Advanced Materials, 2011, 23, 2588-2601.	11.1	92
1778	Photoinduced Dispersibility Tuning of Carbon Nanotubes by a Waterâ€Soluble Stilbene as a Dispersant. Advanced Materials, 2011, 23, 3922-3925.	11.1	32
1783	Effect of Surfactant Structure on Carbon Nanotube Sidewall Adsorption. European Journal of Organic Chemistry, 2011, 2011, 5641-5648.	1.2	42
1784	Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics. Contrast Media and Molecular Imaging, 2011, 6, 346-369.	0.4	111
1785	Spectroelectrochemistry of Carbon Nanotubes. ChemPhysChem, 2011, 12, 47-55.	1.0	32
1786	Density Gradient Ultracentrifugation on Carbon Nanotubes According to Structural Integrity as a Foundation for an Absolute Purity Evaluation. ChemPhysChem, 2011, 12, 2576-2580.	1.0	12
1787	Diameterâ€Sorted SWCNT–Porphyrin and SWCNT–Phthalocyanine Conjugates for Lightâ€Energy Harvesting. ChemPhysChem, 2011, 12, 2266-2273.	1.0	48
1788	Exocellulase Activity of Cellobiohydrolase Immobilized on DNAâ€Wrapped Singleâ€Walled Carbon Nanotubes. ChemSusChem, 2011, 4, 1595-1597.	3.6	1
1789	Cellular response of RAW 264.7 to sprayâ€coated multiâ€walled carbon nanotube films with various surfactants. Journal of Biomedical Materials Research - Part A, 2011, 96A, 413-421.	2.1	8

#	Article	IF	CITATIONS
1792	DNA Block Copolymer Doing It All: From Selection to Selfâ€Assembly of Semiconducting Carbon Nanotubes. Angewandte Chemie - International Edition, 2011, 50, 3206-3210.	7.2	60
1793	Nearâ€Infraredâ€Fluorescenceâ€Enhanced Molecular Imaging of Live Cells on Gold Substrates. Angewandte Chemie - International Edition, 2011, 50, 4644-4648.	7.2	78
1794	Surface Chemistry in the Process of Coating Mesoporous SiO ₂ onto Carbon Nanotubes Driven by the Formation of SiOC Bonds. Chemistry - A European Journal, 2011, 17, 3228-3237.	1.7	50
1795	A Luminescent Host–Guest Hybrid between a Eu ^{III} Complex and MWCNTs. Chemistry - A European Journal, 2011, 17, 8533-8537.	1.7	21
1797	Effectiveness of sorting single-walled carbon nanotubes by diameter using polyfluorene derivatives. Carbon, 2011, 49, 333-338.	5.4	49
1798	Ultrafast nonlinear optical properties of bundles of carbon nanotubes. Carbon, 2011, 49, 2971-2977.	5.4	6
1799	Effect of bundling on the π plasmon energy in sub-nanometer single wall carbon nanotubes. Carbon, 2011, 49, 3803-3807.	5.4	8
1800	Studies on near infrared optical absorption, Raman scattering, and corresponding thermal properties of single- and double-walled carbon nanotubes for possible cancer targeting and laser-based ablation. Carbon, 2011, 49, 4403-4411.	5.4	12
1801	Wet-grinding assisted ultrasonic dispersion of pristine multi-walled carbon nanotubes (MWCNTs) in chitosan solution. Colloids and Surfaces B: Biointerfaces, 2011, 86, 189-197.	2.5	48
1802	Green luminescence from triphenylphosphine functionalized single-wall carbon nanotubes. Applied Surface Science, 2011, 257, 6699-6703.	3.1	4
1803	Effects of poly-l-tyrosine molecules decoration on the surface properties and electron transport of SWCNTs compared to the effects of DNA molecules. Chemical Physics Letters, 2011, 501, 451-454.	1.2	3
1804	Oriented growth of magnetite along the carbon nanotubes via covalently bonded method in a simple solvothermal system. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 779-784.	1.7	34
1805	Pd nanoparticles deposited on poly(lactic acid) grafted carbon nanotubes: Synthesis, characterization and application in Heck C–C coupling reaction. Applied Catalysis A: General, 2011, 399, 154-160.	2.2	50
1806	Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 40-49.	1.7	192
1807	Femtosecond luminescence decay due to exciton energy transfer in single-walled carbon nanotube bundles. Journal of Luminescence, 2011, 131, 494-497.	1.5	4
1808	Dispersion of carbon nanotubes by carbazole-tailed amphiphilic imidazolium ionic liquids in aqueous solutions. Journal of Colloid and Interface Science, 2011, 356, 190-195.	5.0	35
1809	Effects of environmental dielectric screening on optical absorption in carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 798-803.	1.3	9
1810	Coherent phonons in excited-state carbon nanotubes: A simulation by tight-binding molecular dynamics. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1585-1591.	1.3	4

#	Article	IF	CITATIONS
1811	Processing dependency of percolation threshold of MWCNTs in a thermoplastic elastomeric block copolymer. Polymer, 2011, 52, 1788-1796.	1.8	29
1812	Electrophoretic methods for the analysis of nanoparticles. TrAC - Trends in Analytical Chemistry, 2011, 30, 58-71.	5.8	92
1813	Near-infrared fluorescence spectroscopy of single-walled carbon nanotubes and its applications. TrAC - Trends in Analytical Chemistry, 2011, 30, 1109-1119.	5.8	24
1814	Excellent dispersion of MWCNTs in PEO polymer achieved through a simple and potentially cost-effective evaporation casting. Nanotechnology, 2011, 22, 415703.	1.3	13
1815	Optical and thermal stimulated luminescence in carbon nanotubes. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2011, 225, 145-147.	0.1	0
1816	Enhanced Properties in Single-Walled Carbon Nanotubes Based Saturable Absorber for All Optical Signal Regeneration. Japanese Journal of Applied Physics, 2011, 50, 040206.	0.8	2
1817	Effect of density variation and non-covalent functionalization on the compressive behavior of carbon nanotube arrays. Nanotechnology, 2011, 22, 425705.	1.3	29
1818	Solubilized Carbon Nanotubes and Their Redox Chemistry. World Scientific Series on Carbon Nanoscience, 2011, , 245-269.	0.1	1
1819	Piezoresistive pressure sensors with parallel integration of individual single-walled carbon nanotubes. Journal of Applied Physics, 2011, 109, .	1.1	41
1820	Exciton Hierarchies in Gapped Carbon Nanotubes. Physical Review Letters, 2011, 106, 136805.	2.9	21
1821	Phonon-induced dephasing in single-wall carbon nanotubes. Physical Review B, 2011, 84, .	1.1	16
1822	Effect of electron-hole asymmetry on cross-polarized excitons in carbon nanotubes. Physical Review B, 2011, 83, .	1.1	18
1823	The Anomalous Photoluminescence and Thermally Stimulated Luminescence from Carbon Nanotubes. Materials Science Forum, 0, 700, 116-119.	0.3	1
1824	Dispersion of Single-Walled Carbon Nanotubes in Water by a Conjugated Surfactant. Advanced Materials Research, 0, 415-417, 562-565.	0.3	1
1825	Organic Soft Template Method to Arrange Palladium Nanoparticles on Single-Walled Carbon Nanotubes. Advanced Materials Research, 0, 284-286, 750-754.	0.3	0
1826	Molecular nanoarchitectures composed of porphyrins and carbon nanomaterials for light energy conversion. Journal of Porphyrins and Phthalocyanines, 2011, 15, 301-311.	0.4	16
1827	Recent Progress in Synthesis, Vibrational Characterization and Applications Trend of Conjugated Polymers/Carbon Nanotubes Composites. Current Organic Chemistry, 2011, 15, 1160-1196.	0.9	16
1828	Peptide secondary structure modulates single-walled carbon nanotube fluorescence as a chaperone sensor for nitroaromatics. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8544-8549.	3.3	114

		CITATION RE	PORT	
#	Article		IF	Citations
1829	Laser-based imaging of individual carbon nanostructures. NPG Asia Materials, 2011, 3,	91-99.	3.8	16
1830	Diameter Tuning of Single-Walled Carbon Nanotubes by Diffusion Plasma CVD. Journal Nanomaterials, 2011, 2011, 1-7.	of	1.5	5
1831	Preparation of Conductive Films by <i>In Situ </i> Polymerization of 3-Alkylt Soluble MWNTs. Advanced Materials Research, 0, 490-495, 3472-3475.	110phene with	0.3	0
1832	Multiscale Photoacoustic Microscopy of Single-Walled Carbon Nanotube-Incorporated Engineering Scaffolds. Tissue Engineering - Part C: Methods, 2012, 18, 310-317.	Tissue	1.1	48
1833	Recent Advances in Intracellular and In Vivo ROS Sensing: Focus on Nanoparticle and N Applications. International Journal of Molecular Sciences, 2012, 13, 10660-10679.	lanotube	1.8	53
1834	Unique Diagnostic and Therapeutic Roles of Porphyrins and Phthalocyanines in Photoc Imaging and Theranostics. Theranostics, 2012, 2, 916-966.	ynamic Therapy,	4.6	489
1835	Carbon nanotube for photonics: light emission in silicon and optical gain. , 2012, , .			0
1836	Dual-modality photothermal optical coherence tomography and magnetic-resonance in carbon nanotubes. Optics Letters, 2012, 37, 872.	naging of	1.7	30
1837	Absorption spectroscopy of powdered materials using time-resolved diffuse optical me Optics, 2012, 51, 7858.	thods. Applied	0.9	9
1838	Separation of Left- and Right-Handed Structures of Single-Walled Carbon Nanotubes t Molecular Recognition. World Scientific Series on Carbon Nanoscience, 2012, , 203-23	hrough 2.	0.1	3
1839	Autonomic restoration of electrical conductivity using polymer-stabilized carbon nano graphene microcapsules. Applied Physics Letters, 2012, 101, 043106.	tube and	1.5	51
1840	Label-free imaging of semiconducting and metallic carbon nanotubes in cells and mice absorption microscopy. Nature Nanotechnology, 2012, 7, 56-61.	using transient	15.6	93
1841	Enhancement of carbon nanotube photoluminescence by photonic crystal nanocavitie Physics Letters, 2012, 101, 141124.	s. Applied	1.5	53
1842	Four-wave mixing microscopy with electronic contrast of individual carbon nanotubes. Review B, 2012, 86, .	Physical	1.1	8
1843	Observation of high Rydberg states of one-dimensional excitons in GaAs quantum wire magnetophotoluminescence excitation spectroscopy. Physical Review B, 2012, 86, .	is by	1.1	14
1844	Dephasing of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>G</mml:mi></mml:math> -band phonons in single-wall carbo probed via impulsive stimulated Raman scattering. Physical Review B, 2012, 86, .	on nanotubes	1.1	12
1845	Absorption spectroscopy of individual cadmium selenide nanowire. Applied Physics Let 093106.	ters, 2012, 101,	1.5	3
1846	Raman excitation spectroscopy of carbon nanotubes: effects of pressure medium and Pressure Research, 2012, 32, 67-71.	pressure. High	0.4	5

#	Article	IF	CITATIONS
1847	Functionalized multiwalled carbon nanotubes as ultrasound contrast agents. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16612-16617.	3.3	139
1848	<i>In vivo</i> non-ionizing photoacoustic mapping of sentinel lymph nodes and bladders with ICG-enhanced carbon nanotubes. Physics in Medicine and Biology, 2012, 57, 7853-7862.	1.6	79
1849	Laser-Irradiation-Induced Enrichment of Metallic Single-Walled Carbon Nanotubes from As-Synthesized Nanotubes Individually Dispersed in Aqueous Solution. Japanese Journal of Applied Physics, 2012, 51, 105101.	0.8	2
1850	Mitigation of the impact of single-walled carbon nanotubes on a freshwater green algae: <i>Pseudokirchneriella subcapitata</i> . Nanotoxicology, 2012, 6, 161-172.	1.6	34
1851	Torsional electromechanical systems based on carbon nanotubes. Reports on Progress in Physics, 2012, 75, 116501.	8.1	20
1852	Carbon nanotube structure, synthesis, and applications. , 0, , 1-37.		2
1853	Near-Field Optics of SWNTs and FRET in their Nanoscale Complexes. World Scientific Series on Carbon Nanoscience, 2012, , 287-319.	0.1	0
1854	Upconversion Nanomaterials: Synthesis, Mechanism, and Applications in Sensing. Sensors, 2012, 12, 2414-2435.	2.1	249
1855	Thermodynamics on Soluble Carbon Nanotubes: How Do DNA Molecules Replace Surfactants on Carbon Nanotubes?. Scientific Reports, 2012, 2, 733.	1.6	61
1856	Carbon Nanotubes and Other Tube Structures. , 2012, , 215-252.		1
1857	Effect of Charge of a Matrix Polymer on the Electronic States of Single-Walled Carbon Nanotubes. Bulletin of the Chemical Society of Japan, 2012, 85, 1262-1267.	2.0	12
1858	Photo- and electro-functional self-assembled architectures of porphyrins. Physical Chemistry Chemical Physics, 2012, 14, 15975.	1.3	62
1859	Highly ordered superstructures of single wall carbon nanotube–liposome complexes. Soft Matter, 2012, 8, 9073.	1.2	13
1860	Characterization and Quantitative Analysis of Single-Walled Carbon Nanotubes in the Aquatic Environment Using Near-Infrared Fluorescence Spectroscopy. Environmental Science & Technology, 2012, 46, 12262-12271.	4.6	62
1861	Carbon Nanomaterials: Synthesis, Properties and Applications. Nanoscience and Technology, 2012, , 23-46.	1.5	0
1862	Immobilizing NIR absorbing azulenocyanines onto single wall carbon nanotubes—from charge transfer to photovoltaics. Chemical Science, 2012, 3, 1472.	3.7	43
1863	Assemblies of artificial photosynthetic reaction centres. Journal of Materials Chemistry, 2012, 22, 4575.	6.7	144
1864	Environment effect on cross-polarized excitons in carbon nanotubes. Physical Review B, 2012, 86, .	1.1	11

#	Article	IF	CITATIONS
1865	Effect of Competitive Surface Functionalization on Dual-Modality Fluorescence and Magnetic Resonance Imaging of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2012, 116, 16319-16324.	1.5	14
1866	Cells Take up and Recover from Protein-Stabilized Single-Wall Carbon Nanotubes with Two Distinct Rates. ACS Nano, 2012, 6, 3481-3490.	7.3	41
1867	Cellulose Nanocrystal-Assisted Dispersion of Luminescent Single-Walled Carbon Nanotubes for Layer-by-Layer Assembled Hybrid Thin Films. Langmuir, 2012, 28, 12463-12471.	1.6	123
1868	Dispersion-Process Effects on the Photoluminescence Quantum Yields of Single-Walled Carbon Nanotubes Dispersed Using Aromatic Polymers. Journal of Physical Chemistry C, 2012, 116, 10282-10286.	1.5	31
1869	Dispersant Effects in the Selective Reaction of Aryl Diazonium Salts with Single-Walled Carbon Nanotubes in Aqueous Solution. Journal of Physical Chemistry C, 2012, 116, 1709-1723.	1.5	27
1870	Growth, dispersion, and electronic devices of nitrogenâ€doped singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2012, 249, 2416-2419.	0.7	6
1871	Analysing the photoluminescence intensities of singleâ€walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2012, 249, 2473-2478.	0.7	3
1872	Improving the Degree of Functionalization and Solubility of Single-Walled Carbon Nanotubes via Covalent Multiple Functionalization. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22, 1182-1188.	1.9	7
1873	Polymer Composites Containing Non-Covalently Functionalized Carbon Nanotubes: A Study of Their Dispersion Characteristics and Response to AC Electric Fields. Procedia Engineering, 2012, 42, 1414-1424.	1.2	9
1874	A molecular dynamics simulation study for the mechanical properties of different types of carbon nanotubes. Applied Nanoscience (Switzerland), 2012, 2, 377-383.	1.6	2
1876	INTERACTION OF SINGLE-WALLED CARBON NANOTUBES WITH AMINE. Nano, 2012, 07, 1130001.	0.5	15
1877	Separation of Metallic Single-Walled Carbon Nanotubes and Semiconducting Single-Walled Carbon Nanotubes by Agarose Gel Electrophoresis. Chinese Journal of Analytical Chemistry, 2012, 40, 1839-1844.	0.9	4
1878	Functionalization of carbon and gold nanomaterials using PNIPAAm grafted dextran: a general route towards robust and smart nanomaterials. Journal of Materials Chemistry, 2012, 22, 11290.	6.7	9
1879	A new analytical approach based on asymmetrical flow field-flow fractionation coupled to ultraviolet spectrometry and light scattering detection for SWCNT aqueous dispersion studies. Analyst, The, 2012, 137, 917-923.	1.7	12
1880	Electrostatically controlled isolation of debundled single-walled carbon nanotubes from nanoplatelet dispersant. Journal of Materials Chemistry, 2012, 22, 6156.	6.7	7
1881	Effects of multivalent counterions on the morphology and interactions of polyelectrolyte chains grafted on carbon nanotubes. Soft Matter, 2012, 8, 660-666.	1.2	7
1882	Evidence for Charge-Transfer-Induced Conformational Changes in Carbon Nanostructure–Protein Corona. Journal of Physical Chemistry C, 2012, 116, 22098-22103.	1.5	39
1883	Length- and Defect-Dependent Fluorescence Efficiencies of Individual Single-Walled Carbon Nanotubes. ACS Nano, 2012, 6, 843-850.	7.3	46

#	Article	IF	CITATIONS
1884	Control over the Diameter, Length, and Structure of Carbon Nanotube Carpets Using Aluminum Ferrite and Iron Oxide Nanocrystals as Catalyst Precursors. Journal of Physical Chemistry C, 2012, 116, 10287-10295.	1.5	24
1885	N-Doped Helical Carbon Nanotubes: Single Helix Photoconductivity and Photoluminescence Properties. Journal of Physical Chemistry C, 2012, 116, 14584-14590.	1.5	13
1886	Recognition of carbon nanotube chirality by phage display. RSC Advances, 2012, 2, 1466-1476.	1.7	25
1887	Novel study of carbon nanotubes as UV absorbers for the modification of cotton fabric. Journal of the Textile Institute, 2012, 103, 893-899.	1.0	25
1888	Diameter Modulation of Vertically Aligned Single-Walled Carbon Nanotubes. ACS Nano, 2012, 6, 7472-7479.	7.3	52
1889	CNT loading into cationic cholesterol suspensions show improved DNA binding and serum stability and ability to internalize into cancer cells. Nanotechnology, 2012, 23, 065101.	1.3	17
1890	Coherent Electronic and Phononic Oscillations in Single-Walled Carbon Nanotubes. Nano Letters, 2012, 12, 769-773.	4.5	7
1891	Flow Cytometry-Based Evaluation and Enrichment of Multiwalled Carbon Nanotube Dispersions. Langmuir, 2012, 28, 4939-4947.	1.6	4
1892	Detection of Carbon Nanotubes in Environmental Matrices Using Programmed Thermal Analysis. Environmental Science & Technology, 2012, 46, 12246-12253.	4.6	76
1893	Stable Sequestration of Single-Walled Carbon Nanotubes in Self-Assembled Aqueous Nanopores. Journal of the American Chemical Society, 2012, 134, 3950-3953.	6.6	14
1894	Suspending Multi-Walled Carbon Nanotubes by Humic Acids from a Peat Soil. Environmental Science & Technology, 2012, 46, 3891-3897.	4.6	40
1895	Enhanced thermal stability of multi-walled carbon nanotubes after coating with polyaniline salt. Polymer Degradation and Stability, 2012, 97, 1405-1414.	2.7	42
1896	Polyhedral oligomeric silsesquioxanes as titanium dioxide surface modifiers for transparent acrylic UV blocking hybrid coating. Progress in Organic Coatings, 2012, 74, 654-659.	1.9	37
1897	Electronic and optoelectronic nano-devices based on carbon nanotubes. Journal of Physics Condensed Matter, 2012, 24, 313202.	0.7	87
1898	Chemistry of Carbon Nanotubes for Everyone. Journal of Chemical Education, 2012, 89, 221-229.	1.1	35
1899	Strain Paint: Noncontact Strain Measurement Using Single-Walled Carbon Nanotube Composite Coatings. Nano Letters, 2012, 12, 3497-3500.	4.5	51
1900	Quantum Light Signatures and Nanosecond Spectral Diffusion from Cavity-Embedded Carbon Nanotubes. Nano Letters, 2012, 12, 1934-1941.	4.5	66
1901	Applications of chirality-sorted individual single-wall carbon nanotube devices. Journal of Materials Chemistry, 2012, 22, 7083.	6.7	15

#	Article	IF	Citations
1902	Comparison and SEM-characterization of novel solvents of DNA/carbon nanotube. Applied Surface Science, 2012, 258, 3086-3088.	3.1	0
1903	Dispersion of multi-walled carbon nanotubes (MWCNTs) by ionic liquid-based phosphonium surfactants in aqueous solution. Journal of Molecular Liquids, 2012, 173, 42-46.	2.3	59
1904	Computational simulation of binary compounds of carbon nanotubes and amphiphilics in aqueous solution by Monte Carlo method. Computational Materials Science, 2012, 59, 121-127.	1.4	3
1905	Photoluminescence from Exciton Energy Transfer of Single-Walled Carbon Nanotube Bundles Dispersed in Ionic Liquids. Journal of Physical Chemistry C, 2012, 116, 22028-22035.	1.5	16
1906	Carbon nanotube photonics on silicon. , 2012, , .		0
1907	DNA Oligonucleotide Templated Nanohybrids Using Electronic Type Sorted Carbon Nanotubes for Light Harvesting. Advanced Materials, 2012, 24, 5447-5451.	11.1	21
1908	Optoelectronic Properties of Singleâ€Wall Carbon Nanotubes. Advanced Materials, 2012, 24, 4977-4994.	11.1	138
1910	Inâ€Vivo Fluorescence Imaging with Ag ₂ S Quantum Dots in the Second Nearâ€Infrared Region. Angewandte Chemie - International Edition, 2012, 51, 9818-9821.	7.2	645
1911	Structure and Function of Glucose Binding Protein–Single Walled Carbon Nanotube Complexes. Small, 2012, 8, 3510-3516.	5.2	10
1912	Tuning the physical parameters towards optimal polymer-wrapped single-walled carbon nanotubes dispersions. European Physical Journal B, 2012, 85, 1.	0.6	6
1913	Different cellular response mechanisms contribute to the length-dependent cytotoxicity of multi-walled carbon nanotubes. Nanoscale Research Letters, 2012, 7, 361.	3.1	54
1915	Functionalized Carbon Nanotubes and Their Enhanced Polymers. , 2012, , 439-478.		5
1916	Applications of Inorganic Nanoparticles for Biotechnology. Frontiers of Nanoscience, 2012, , 159-180.	0.3	7
1917	Self assembly of bivalent glycolipids on single walled carbon nanotubes and their specific molecular recognition properties. RSC Advances, 2012, 2, 1329.	1.7	11
1918	Photophysical Properties of SWNT Interfaced with DNA. , 2012, , 89-163.		4
1919	Modified carbon nanotubes: from nanomedicine to nanotoxicology. Proceedings of SPIE, 2012, , .	0.8	0
1920	Carbon nanotubes and organic solar cells. Energy and Environmental Science, 2012, 5, 5919-5940.	15.6	158
1921	Optical gas sensing with dip-coated carbon nanotubes through the modulation of photoluminescence and optical absorption. Journal of Materials Chemistry, 2012, 22, 4716.	6.7	7

#	Article	IF	CITATIONS
1922	Engineered Nanoparticles and Their Identification Among Natural Nanoparticles. Annual Review of Analytical Chemistry, 2012, 5, 107-132.	2.8	51
1924	Not all protein-mediated single-wall carbon nanotube dispersions are equally bioactive. Nanoscale, 2012, 4, 7425.	2.8	32
1925	Modifying the electronic properties of single-walled carbon nanotubes using designed surfactant peptides. Nanoscale, 2012, 4, 4544.	2.8	21
1926	Mapping the intracellular distribution of carbon nanotubes after targeted delivery to carcinoma cells using confocal Raman imaging as a label-free technique. Journal of Physics Condensed Matter, 2012, 24, 164206.	0.7	34
1927	Acyclic Cucurbit[<i>n</i>]uril Molecular Containers Selectively Solubilize Single-Walled Carbon Nanotubes in Water. Journal of the American Chemical Society, 2012, 134, 7254-7257.	6.6	54
1928	Carbon nanotube-based antimicrobial biomaterials formed via layer-by-layer assembly with polypeptides. Journal of Colloid and Interface Science, 2012, 388, 268-273.	5.0	77
1929	The use of surfactants for dispersing carbon nanotubes and graphene to make conductive nanocomposites. Current Opinion in Colloid and Interface Science, 2012, 17, 225-232.	3.4	202
1930	Characterization of non-covalently, non-specifically functionalized multi-wall carbon nanotubes and their melt compounded composites with an ethylene–octene copolymer. Composites Science and Technology, 2012, 73, 27-33.	3.8	27
1931	Effect of surface modification on single-walled carbon nanotube retention and transport in saturated and unsaturated porous media. Journal of Hazardous Materials, 2012, 239-240, 333-339.	6.5	41
1932	Nanotechnology to Improve Detection Sensitivity for Electrochemical Microdevices. Springer Series on Chemical Sensors and Biosensors, 2012, , 257-279.	0.5	0
1933	Interface molecular engineering of single-walled carbon nanotube/epoxy composites. Journal of Materials Chemistry, 2012, 22, 1928-1936.	6.7	40
1934	Effect of Solvent Polarity and Electrophilicity on Quantum Yields and Solvatochromic Shifts of Single-Walled Carbon Nanotube Photoluminescence. Journal of the American Chemical Society, 2012, 134, 12485-12491.	6.6	91
1935	Concentration Measurement of Length-Fractionated Colloidal Single-Wall Carbon Nanotubes. Analytical Chemistry, 2012, 84, 8733-8739.	3.2	22
1936	Nearâ€Infrared Molecular Probes for In Vivo Imaging. Current Protocols in Cytometry, 2012, 60, Unit12.27.	3.7	72
1937	Probing and Tailoring pH-Dependent Interactions between Block Copolymers and Single-Walled Carbon Nanotubes for Density Gradient Sorting. Journal of Physical Chemistry C, 2012, 116, 20103-20108.	1.5	21
1938	Purification of Single-Wall Carbon Nanotubes by Controlling the Adsorbability onto Agarose Gels Using Deoxycholate. Journal of Physical Chemistry C, 2012, 116, 9816-9823.	1.5	28
1940	Highly compliant transparent electrodes. Applied Physics Letters, 2012, 101, 061101.	1.5	53
1941	Nanotechnology developments: opportunities for animal health and production. Nanotechnology Development, 2012, 2, 4.	0.6	45

# 1942	ARTICLE Aggregation Kinetics and Transport of Single-Walled Carbon Nanotubes at Low Surfactant Concentrations. Environmental Science & amp; Technology, 2012, 46, 4458-4465.	IF 4.6	CITATIONS
1943	Ultrasensitive electrochemiluminescence detection of DNA based on nanoporous gold electrode and PdCu@carbon nanocrystal composites as labels. Analyst, The, 2012, 137, 3314.	1.7	18
1944	SOLUTION PROCESSED GRAPHENE THIN FILMS AND THEIR APPLICATIONS IN ORGANIC SOLAR CELLS. International Journal of Modern Physics B, 2012, 26, 1242004.	1.0	11
1945	Analysis of Nanoparticles Based on Electrophoretic Separations. Comprehensive Analytical Chemistry, 2012, , 33-89.	0.7	4
1946	THz bandwidth optical switching with carbon nanotube metamaterial. Optics Express, 2012, 20, 6068.	1.7	45
1948	Boronic Acid Library for Selective, Reversible Near-Infrared Fluorescence Quenching of Surfactant Suspended Single-Walled Carbon Nanotubes in Response to Glucose. ACS Nano, 2012, 6, 819-830.	7.3	71
1949	Nanocomposites of TiO2 and double-walled carbon nanotubes for improved dye-sensitized solar cells. Journal of Renewable and Sustainable Energy, 2012, 4, 023116.	0.8	13
1951	Water-stable single-walled carbon nanotubes coated by pyrenyl polyethylene glycol for fluorescence imaging and photothermal therapy. Biochip Journal, 2012, 6, 396-403.	2.5	15
1952	Three-dimensional imaging of single nanotube molecule endocytosis on plasmonic substrates. Nature Communications, 2012, 3, 700.	5.8	76
1953	Phonon spectrum and interaction between nanotubes in single-walled carbon nanotube bundles at high pressures and temperatures. Journal of Experimental and Theoretical Physics, 2012, 115, 991-998.	0.2	1
1954	Donor doping of single-walled carbon nanotubes by filling of channels with silver. Journal of Experimental and Theoretical Physics, 2012, 115, 485-491.	0.2	40
1955	Evaluation of the individualization state in single-walled carbon nanotube solutions using absorption, Raman and photoluminescence spectroscopy. Measurement Science and Technology, 2012, 23, 125501.	1.4	6
1956	Dispersion of single walled carbon nanotubes in amidine solvents. Nanotechnology, 2012, 23, 344011.	1.3	5
1957	Photophysics of Carbon Nanotubes Interfaced with Organic and Inorganic Materials. , 2012, , .		12
1958	Synthesis of nanocomposites on basis of single-walled carbon nanotubes intercalated by manganese halogenides. Journal of Physics: Conference Series, 2012, 345, 012034.	0.3	8
1959	Computational Studies of Nucleotide Selectivity in DNA–Carbon Nanotube Hybrids. Journal of Physical Chemistry Letters, 2012, 3, 2790-2797.	2.1	19
1960	Exciton states and optical properties of carbon nanotubes. Journal of Physics Condensed Matter, 2012, 24, 483001.	0.7	12
1961	Noncovalent Functionalization of Carbon Nanotubes. , 2012, , .		18

#	Article	IF	CITATIONS
1962	The Comprehensive, Effective Purification Strategy of Carbon Nanotubes. Key Engineering Materials, 2012, 531-532, 450-453.	0.4	0
1963	Glycoconjugate-functionalized carbon nanotubes in biomedicine. Journal of Materials Chemistry, 2012, 22, 8748.	6.7	34
1964	Role of Adsorbed Surfactant in the Reaction of Aryl Diazonium Salts with Single-Walled Carbon Nanotubes. Langmuir, 2012, 28, 1309-1321.	1.6	37
1966	Conducting composite materials from the biopolymer kappa-carrageenan and carbon nanotubes. Beilstein Journal of Nanotechnology, 2012, 3, 415-427.	1.5	21
1967	Altered Cell Mechanics from the Inside: Dispersed Single Wall Carbon Nanotubes Integrate with and Restructure Actin. Journal of Functional Biomaterials, 2012, 3, 398-417.	1.8	30
1968	On-Chip Band Gap Engineering of Carbon Nanotubes. , 2012, , 81-92.		1
1969	Two Faces of Carbon Nanotube: Toxicities and Pharmaceutical Applications. Critical Reviews in Therapeutic Drug Carrier Systems, 2012, 29, 65-88.	1.2	29
1970	Nanomaterials Processing for Device Manufacturing. , 2012, , 11-27.		1
1972	Simultaneous measurement of photoluminescence and Raman scattering spectra from suspended singleâ€walled carbon nanotubes. Surface and Interface Analysis, 2012, 44, 686-689.	0.8	11
1973	Excitonic signatures in the optical response of singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2012, 249, 900-906.	0.7	9
1974	Excitonic nonlinearities in singleâ€wall carbon nanotubes. Physica Status Solidi (B): Basic Research, 2012, 249, 907-913.	0.7	0
1975	Mitochondriaâ€Targeting Photoacoustic Therapy Using Singleâ€Walled Carbon Nanotubes. Small, 2012, 8, 1543-1550.	5.2	83
1976	Biomoleculeâ€Directed Assembly of Selfâ€Supported, Nanoporous, Conductive, and Luminescent Singleâ€Walled Carbon Nanotube Scaffolds. Small, 2012, 8, 1840-1845.	5.2	15
1977	Ag ₂ S Quantum Dot: A Bright and Biocompatible Fluorescent Nanoprobe in the Second Near-Infrared Window. ACS Nano, 2012, 6, 3695-3702.	7.3	669
1978	Selection rules for Raman-active electronic excitations in carbon nanotubes. Physical Review B, 2012, 85, .	1.1	4
1979	Optical antennas as nanoscale resonators. Nanoscale, 2012, 4, 692-706.	2.8	112
1980	Self-Assembly of Lipids and Single-Walled Carbon Nanotubes: Effects of Lipid Structure and PEGylation. Journal of Physical Chemistry C, 2012, 116, 9327-9333.	1.5	41
1981	Brightening of the Lowest Exciton in Carbon Nanotubes via Chemical Functionalization. Nano Letters, 2012, 12, 2306-2312.	4.5	72

#	Article	IF	CITATIONS
1982	Light Emission in Silicon from Carbon Nanotubes. ACS Nano, 2012, 6, 3813-3819.	7.3	46
1983	Controlled reversible debundling of single-walled carbon nanotubes by photo-switchable dendritic surfactants. Nanoscale, 2012, 4, 3029.	2.8	27
1984	Lipophilic guanosine derivatives as carbon nanotube dispersing agents. Carbon, 2012, 50, 4663-4672.	5.4	13
1985	Development of a Novel Composite Material with Carbon Nanotubes Assisted by Self-Assembled Peptides Designed in Conjunction with β-Sheet Formation. Journal of Pharmaceutical Sciences, 2012, 101, 3398-3412.	1.6	16
1986	Tipâ€enhanced broadband CARS spectroscopy and imaging using a photonic crystal fiber based broadband light source. Journal of Raman Spectroscopy, 2012, 43, 656-661.	1.2	36
1987	Toxicity of carbon nanotubes to freshwater aquatic invertebrates. Environmental Toxicology and Chemistry, 2012, 31, 1823-1830.	2.2	63
1988	Ultrafast energy transfer of one-dimensional excitons between carbon nanotubes: a femtosecond time-resolved luminescence study. Physical Chemistry Chemical Physics, 2012, 14, 1070-1084.	1.3	33
1989	High Selectivity cum Yield Gel Electrophoresis Separation of Single-Walled Carbon Nanotubes Using a Chemically Selective Polymer Dispersant. Journal of Physical Chemistry C, 2012, 116, 10266-10273.	1.5	29
1990	Transient Absorption Spectroscopy and Imaging of Individual Chirality-Assigned Single-Walled Carbon Nanotubes. ACS Nano, 2012, 6, 5083-5090.	7.3	41
1991	Rapid Dielectrophoresis Assembly of a Single Carbon Nanocoil on AFM Tip Apex. IEEE Nanotechnology Magazine, 2012, 11, 328-335.	1.1	3
1992	Nonâ€Covalent Functionalization of Individual Nanotubes with Spiropyranâ€Based Molecular Switches. Advanced Functional Materials, 2012, 22, 2425-2431.	7.8	62
1993	Selective Enhancement of Photoluminescence in Filled Singleâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2012, 22, 3202-3208.	7.8	40
1994	Colorâ€Tunable Photoluminescent Fullerene Nanoparticles. Advanced Materials, 2012, 24, 1999-2003.	11.1	60
1997	Utilizing the Krafft Phenomenon to Generate Ideal Micelleâ€Free Surfactantâ€Stabilized Nanoparticle Suspensions. Angewandte Chemie - International Edition, 2012, 51, 3254-3257.	7.2	24
1998	Discotic Ionic Liquid Crystals of Triphenylene as Dispersants for Orienting Singleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2012, 51, 8490-8494.	7.2	81
1999	Functionalization of Diameterâ€Sorted Semiconductive SWCNTs with Photosensitizing Porphyrins: Syntheses and Photoinduced Electron Transfer. Chemistry - A European Journal, 2012, 18, 11388-11398.	1.7	24
2000	Optical Properties of Assembled Singleâ€Walled Carbon Nanotube Gels. ChemPhysChem, 2012, 13, 2102-2107.	1.0	13
2001	Controlled Alignment of Individual Single-Wall Carbon Nanotubes at High Concentrations in Polymer Matrices. Journal of Physical Chemistry C, 2012, 116, 13760-13766.	1.5	14

#	ARTICLE	IF	Citations
2002	Supramolecular Functionalization of Single-Walled Carbon Nanotubes (SWNTs) with a Photoisomerizable Conjugated Polymer. Macromolecules, 2012, 45, 5045-5050.	2.2	40
2003	Evidence for Long-lived, Optically Generated Quenchers of Excitons in Single-Walled Carbon Nanotubes. Nano Letters, 2012, 12, 33-38.	4.5	16
2004	Enhanced dispersibility and cellular transmembrane capability of single-wall carbon nanotubes by polycyclic organic compounds as chaperon. Nanoscale, 2012, 4, 3983.	2.8	19
2005	Stability and optical limiting properties of a single wall carbon nanotubes dispersion in a binary water-glycerol solvent. Applied Physics Letters, 2012, 100, 251903.	1.5	25
2006	Synthesis of Carbon Nanotube-Inorganic Hybrid Nanocomposites: An Instructional Experiment in Nanomaterials Chemistry. Journal of Chemical Education, 2012, 89, 280-283.	1.1	14
2007	SMALLâ€Hysteresis Thinâ€Film Transistors Achieved by Facile Dipâ€Coating of Nanotube/Polymer Composite. Advanced Materials, 2012, 24, 3633-3638.	11.1	52
2008	The Role of Intermolecular Interactions in Solid State Fluorescent Conjugated Polymer Chemosensors. Journal of Fluorescence, 2012, 22, 583-589.	1.3	10
2009	Transparent conducting hybrid thin films fabricated by layer-by-layer assembly of single-wall carbon nanotubes and conducting polymers. Applied Physics A: Materials Science and Processing, 2012, 108, 305-311.	1.1	11
2010	Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon, 2012, 50, 3-33.	5.4	608
2011	Eu(III)-coupled luminescent multi-walled carbon nanotubes in surfactant solutions. Carbon, 2012, 50, 436-443.	5.4	16
2012	Electrical and mechanical characteristics of buckypapers and evaporative cast films prepared using single and multi-walled carbon nanotubes and the biopolymer carrageenan. Carbon, 2012, 50, 1197-1208.	5.4	41
2013	Optical anisotropy of single walled carbon nanotubes investigated by spectroscopic ellipsometry. Carbon, 2012, 50, 4673-4679.	5.4	17
2014	Pyrolysis of waste polypropylene for the synthesis of carbon nanotubes. Journal of Analytical and Applied Pyrolysis, 2012, 94, 91-98.	2.6	118
2015	Multi-walled carbon nanotube-based ternary rare earth (Eu3+, Tb3+) hybrid materials with organically modified silica–oxygen bridge. Journal of Colloid and Interface Science, 2012, 380, 67-74.	5.0	19
2016	Nanobiocomposite platform based on polyaniline-iron oxide-carbon nanotubes for bacterial detection. Bioelectrochemistry, 2012, 86, 30-37.	2.4	51
2017	Antitumor immunologically modified carbon nanotubes for photothermal therapy. Biomaterials, 2012, 33, 3235-3242.	5.7	183
2018	Research on the spectral properties of luminescent carbon dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 95, 555-561.	2.0	30
2019	Optical properties of single wall carbon nanotubes dispersed in biopolymers. Journal of Physics and Chemistry of Solids, 2012, 73, 232-236.	1.9	3

#	Article	IF	CITATIONS
2020	Preparation and thermal characteristics of CuO–oleic acid nanofluids as a phase change material. Thermochimica Acta, 2012, 533, 46-55.	1.2	172
2021	Semiconducting carbon nanotubes exciton probed by electroabsorption spectroscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 932-935.	1.3	1
2022	Applications and implications of manufactured nanoparticles in soils: a review. European Journal of Soil Science, 2012, 63, 437-456.	1.8	161
2023	Comparative study on raman and photoluminescence spectra of carbon nanotubes dispersed in different surfactant solutions. Journal of the Korean Physical Society, 2012, 60, 1301-1304.	0.3	1
2024	Composites of Graphene and Other Nanocarbons with Organogelators Assembled through Supramolecular Interactions. Chemistry - A European Journal, 2012, 18, 2890-2901.	1.7	52
2025	Polyglycerolâ€Derived Amphiphiles for the Solubilization of Singleâ€Walled Carbon Nanotubes in Water: A Structure–Property Study. ChemPhysChem, 2012, 13, 203-211.	1.0	27
2026	Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes: Review. Environmental Toxicology and Chemistry, 2012, 31, 60-72.	2.2	113
2027	Analysis of engineered nanomaterials in complex matrices (environment and biota): General considerations and conceptual case studies. Environmental Toxicology and Chemistry, 2012, 31, 32-49.	2.2	390
2028	Interactions Between Amino Acidâ€Tagged Naphthalenediimide and Single Walled Carbon Nanotubes for the Design and Construction of New Bioimaging Probes. Advanced Functional Materials, 2012, 22, 503-518.	7.8	49
2029	Comparison of complex permittivities of isotonic colloids containing singleâ€wall carbon nanotubes of varying chirality. Bioelectromagnetics, 2012, 33, 134-146.	0.9	2
2030	Doping-free carbon nanotube optoelectronic devices. Science Bulletin, 2012, 57, 149-156.	1.7	23
2031	Recent progresses on the new condensed forms of single-walled carbon nanotubes and energy-harvesting devices. Science Bulletin, 2012, 57, 181-186.	1.7	8
2032	Carbon nanotubes in biology and medicine: An overview. Science Bulletin, 2012, 57, 167-180.	1.7	30
2033	Tunable Nanostructures as Photothermal Theranostic Agents. Annals of Biomedical Engineering, 2012, 40, 438-459.	1.3	107
2034	Lentinan greatly enhances the dispersibility of single-walled carbon nanotubes in water and decreases the cytotoxicity. Bioactive Carbohydrates and Dietary Fibre, 2013, 1, 111-119.	1.5	11
2036	Mechanically Tough, Electrically Conductive Polyethylene Oxide Nanofiber Web Incorporating DNA-Wrapped Double-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2013, 5, 4150-4154.	4.0	20
2037	FRET-based characterisation of surfactant bilayer protected core–shell carbon nanoparticles: advancement toward carbon nanotechnology. Chemical Communications, 2013, 49, 7638.	2.2	14
2038	Carbon nanotubes as optical biomedical sensors. Advanced Drug Delivery Reviews, 2013, 65, 1933-1950.	6.6	324

#	Article	IF	CITATIONS
2039	A composite index to quantify dispersion of carbon nanotubes in polymer-based composite materials. Composites Part B: Engineering, 2013, 55, 16-21.	5.9	45
2040	Brightening of excitons in carbon nanotubes on dimensionality modification. Nature Photonics, 2013, 7, 715-719.	15.6	207
2041	Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows. Nanoscale, 2013, 5, 7882.	2.8	106
2042	Applications of Nanomaterials in Sensors and Diagnostics. Springer Series on Chemical Sensors and Biosensors, 2013, , .	0.5	37
2043	Enhancement of the solubility, thermal stability, and electronic properties of carbon nanotubes functionalized with MEH-PPV: a combined experimental and computational study. Monatshefte Für Chemie, 2013, 144, 925-935.	0.9	9
2044	Mapping Charge Transport by Electroluminescence in Chirality-Selected Carbon Nanotube Networks. ACS Nano, 2013, 7, 7428-7435.	7.3	55
2045	Excitonic absorption intensity of semiconducting and metallic carbon nanotubes. Journal of Physics Condensed Matter, 2013, 25, 245302.	0.7	7
2046	Origins of the Helical Wrapping of Phenyleneethynylene Polymers about Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2013, 117, 12953-12965.	1.2	35
2047	Effervescence-assisted carbon nanotubes dispersion for the micro-solid-phase extraction of triazine herbicides from environmental waters. Analytical and Bioanalytical Chemistry, 2013, 405, 3269-3277.	1.9	66
2048	Preparation and thermal energy storage behaviour of stearic acid–TiO2 nanofluids as a phase change material for solar heating systems. Thermochimica Acta, 2013, 565, 137-145.	1.2	129
2049	Recent developments in the photophysics of single-walled carbon nanotubes for their use as active and passive material elements in thin film photovoltaics. Physical Chemistry Chemical Physics, 2013, 15, 14896.	1.3	102
2050	Chemical functionalization of Xanthan gum for the dispersion of double-walled carbon nanotubes in water. Carbon, 2013, 62, 149-156.	5.4	16
2051	Magneto-fluorescent carbon nanotube-mediated siRNA for gastrin-releasing peptide receptor silencing in neuroblastoma. RSC Advances, 2013, 3, 4544.	1.7	5
2054	A novel method for well-organized polystyrene-grafted multi-walled carbon nanotube bundles via self-assembly in tetrahydrofuran. Fibers and Polymers, 2013, 14, 1073-1081.	1.1	2
2055	Transient Absorption Spectroscopy of Excitons in an Individual Suspended Metallic Carbon Nanotube. Journal of Physical Chemistry Letters, 2013, 4, 3050-3055.	2.1	22
2056	3D microfabrication of single-wall carbon nanotube/polymer composites by two-photon polymerization lithography. Carbon, 2013, 59, 283-288.	5.4	79
2057	A Shape-Engineered Surface-Enhanced Raman Scattering Optical Fiber Sensor Working from the Visible to the Near-Infrared. Plasmonics, 2013, 8, 13-23.	1.8	36
2058	Immunoassay with Single-Walled Carbon Nanotubes as Near-Infrared Fluorescent Labels. ACS Applied Materials & Interfaces, 2013, 5, 7665-7670.	4.0	32

#	Article	IF	CITATIONS
2059	Study of interactions between single-wall carbon nanotubes and surfactant using molecular simulations. Polymer Bulletin, 2013, 70, 1195-1204.	1.7	6
2060	Sonication-assisted dispersion of carbon nanotubes in aqueous solutions of the anionic surfactant SDBS: The role of sonication energy. Science Bulletin, 2013, 58, 2082-2090.	1.7	85
2061	"Zeroâ€Dimensional―Singleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2013, 52, 11308-11312.	7.2	13
2062	Carbon Nanotubes Induced Gelation of Unmodified Hyaluronic Acid. Langmuir, 2013, 29, 10247-10253.	1.6	14
2063	Analytical strategies for real-time, non-invasive tracking of carbon nanomaterials in vivo. TrAC - Trends in Analytical Chemistry, 2013, 48, 1-13.	5.8	4
2064	Preparation and Photoelectrochemical Properties of Supramolecular Assemblies of Nanoscale Carbon Material Composites. ECS Journal of Solid State Science and Technology, 2013, 2, M3015-M3022.	0.9	5
2065	Density functional theory studies on covalent functionalization of single-walled carbon nanotubes with benzenesulfonic acid. Vibrational Spectroscopy, 2013, 65, 84-93.	1.2	12
2066	Green, Scalable, Binderless Fabrication of a Single-Walled Carbon Nanotube Nonwoven Fabric Based on an Ancient Japanese Paper Process. ACS Applied Materials & Interfaces, 2013, 5, 12602-12608.	4.0	19
2067	Perfluoroalkyl [70]-Fullerenes as Robust Highly-Luminescent Fluorocarbons, or Position of One CF ₃ Group Matters. Journal of Physical Chemistry Letters, 2013, 4, 2500-2507.	2.1	22
2068	Nanotubes Complexed with DNA and Proteins for Resistive-Pulse Sensing. ACS Nano, 2013, 7, 8857-8869.	7.3	30
2069	Synthesis of waterâ€soluble singleâ€walled carbon nanotubes and its application in poly(vinyl alcohol) composites. Polymers for Advanced Technologies, 2013, 24, 376-382.	1.6	14
2070	3D Graphene Oxide–Polymer Hydrogel: Nearâ€Infrared Lightâ€Triggered Active Scaffold for Reversible Cell Capture and Onâ€Demand Release. Advanced Materials, 2013, 25, 6737-6743.	11.1	204
2071	Effect of tight flavin mononucleotide wrapping and its binding affinity on carbon nanotube covalent reactivities. Physical Chemistry Chemical Physics, 2013, 15, 19169.	1.3	16
2072	Mode-locking using right-angle waveguide, based nanotube saturable absorber. , 2013, , .		0
2073	Recent advances in reactive oxygen species measurement in biological systems. Trends in Biochemical Sciences, 2013, 38, 556-565.	3.7	153
2074	Photoluminescence studies on exciton photophysics in carbon nanotubes. Journal of Materials Chemistry C, 2013, 1, 6499.	2.7	56
2075	Molecular Simulation of Electrolyte-Induced Interfacial Interaction between SDS/Graphene Assemblies. Journal of Physical Chemistry C, 2013, 117, 23216-23223.	1.5	27
2076	Chiral Structure Determination of Aligned Single-Walled Carbon Nanotubes on Graphite Surface. Nano Letters, 2013, 13, 5666-5671.	4.5	18

#	Article	IF	CITATIONS
2077	Dispersing Carbon-Based Nanomaterials in Aqueous Phase by Graphene Oxides. Langmuir, 2013, 29, 13527-13534.	1.6	34
2078	Optical trapping and manipulation of nanostructures. Nature Nanotechnology, 2013, 8, 807-819.	15.6	829
2079	Enhanced Solubilization of Carbon Nanotubes in Aqueous Suspensions of Anionic–Nonionic Surfactant Mixtures. Journal of Physical Chemistry C, 2013, 117, 25138-25145.	1.5	9
2080	Single-Handed Helical Wrapping of Single-Walled Carbon Nanotubes by Chiral, Ionic, Semiconducting Polymers. Journal of the American Chemical Society, 2013, 135, 16220-16234.	6.6	68
2081	Conjugated polymer-wrapped carbon nanotubes: physical properties and device applications. European Physical Journal B, 2013, 86, 1.	0.6	41
2082	Measurement of optical second-harmonic generation from an individual single-walled carbon nanotube. New Journal of Physics, 2013, 15, 083043.	1.2	15
2083	Modified electrode using multi-walled carbon nanotubes and a metallopolymer for amperometric detection of l-cysteine. Electrochimica Acta, 2013, 113, 332-339.	2.6	24
2084	Reversible dispersion–precipitation of single-walled carbon nanotubes by pH change and addition of organic components. New Journal of Chemistry, 2013, 37, 3607.	1.4	8
2085	Dynamics of Fullerene-Mediated Heat-Driven Release of Drug Molecules from Carbon Nanotubes. Journal of Physical Chemistry Letters, 2013, 4, 4126-4132.	2.1	31
2086	Carbon nanotube–nanopipe composite vertical arrays for enhanced electrochemical capacitance. Carbon, 2013, 64, 507-515.	5.4	15
2087	Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. Nature Nanotechnology, 2013, 8, 959-968.	15.6	282
2088	Quantum Efficiency and Capture Cross Section of First and Second Excitonic Transitions of Single-Walled Carbon Nanotubes Measured through Photoconductivity. Nano Letters, 2013, 13, 3531-3538.	4.5	36
2089	Amyloidogenic Peptide/Single-Walled Carbon Nanotube Composites Based on Tau-Protein-Related Peptides Derived from AcPHF6: Preparation and Dispersive Properties. Journal of Physical Chemistry B, 2013, 117, 7593-7604.	1.2	5
2090	Photoacoustic microscopy in tissue engineering. Materials Today, 2013, 16, 67-77.	8.3	48
2091	Development of an Optical Gas Leak Sensor for Detecting Ethylene, Dimethyl Ether and Methane. Sensors, 2013, 13, 4157-4169.	2.1	17
2092	Targeting and hyperthermia of doxorubicin by the delivery of single-walled carbon nanotubes to EC-109 cells. Journal of Drug Targeting, 2013, 21, 312-319.	2.1	15
2093	Band-edge exciton states in a single-walled carbon nanotube revealed by magneto-optical spectroscopy in ultrahigh magnetic fields. Physical Review B, 2013, 87, .	1.1	9
2094	Survey of exciton-phonon sidebands by magneto-optical spectroscopy using highly specified (6,5) single-walled carbon nanotubes. Applied Physics Letters, 2013, 103, 021117.	1.5	7

#	Article	IF	CITATIONS
2096	Bioaccumulation and toxicity of singleâ€walled carbon nanotubes to benthic organisms at the base of the marine food chain. Environmental Toxicology and Chemistry, 2013, 32, 1270-1277.	2.2	58
2097	Dual effects of single-walled carbon nanotubes coupled with near-infrared radiation on Bacillus anthracis spores: inactivates spores and stimulates the germination of surviving spores. Journal of Biological Engineering, 2013, 7, 19.	2.0	16
2098	Photonics based on carbon nanotubes. Nanoscale Research Letters, 2013, 8, 300.	3.1	2
2099	Self-assembly of multiwall carbon nanotubes on sulfonated poly (arylene ether ketone) as a proton exchange membrane. Journal of Polymer Research, 2013, 20, 1.	1.2	13
2100	pH-Sensitive Photoinduced Energy Transfer from Bacteriorhodopsin to Single-Walled Carbon Nanotubes in SWNT–bR Hybrids. ACS Nano, 2013, 7, 8743-8752.	7.3	7
2101	Optical control of individual carbon nanotube light emitters by spectral double resonance in silicon microdisk resonators. Applied Physics Letters, 2013, 102, 161102.	1.5	36
2102	Structural Polymer-Based Carbon Nanotube Composite Fibers: Understanding the Processing–Structure–Performance Relationship. Materials, 2013, 6, 2543-2577.	1.3	220
2103	Photoinduced luminescent carbon nanostructures with ultra-broadly tailored size ranges. Nanoscale, 2013, 5, 12092.	2.8	19
2104	Transient Absorption Kinetics Associated with Higher Exciton States in Semiconducting Single-Walled Carbon Nanotubes: Relaxation of Excitons and Phonons. Journal of Physical Chemistry C, 2013, 117, 20289-20299.	1.5	17
2105	REVIEW OF METAL, CARBON AND POLYMER NANOPARTICLES FOR INFRARED PHOTOTHERMAL THERAPY. Nano LIFE, 2013, 03, 1330002.	0.6	26
2106	Carbon nanotube lipid drug approach for targeted delivery of a chemotherapy drug in a human breast cancer xenograft animal model. Biomaterials, 2013, 34, 10109-10119.	5.7	91
2107	Application of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] for splitting of single-walled carbon nanotube bundles in polystyrene/SWCNT composite. Russian Chemical Bulletin, 2013, 62, 2245-2250.	0.4	1
2108	Dispersion of single-walled carbon nanotubes in alcohol-cholic acid mixtures. Russian Journal of Physical Chemistry A, 2013, 87, 2068-2073.	0.1	13
2109	<i>In Situ</i> polymerization functionalization of singleâ€walled carbon nanotubes with polystyrene. Journal of Polymer Science Part A, 2013, 51, 3716-3725.	2.5	6
2110	Supramolecular Chemistry of Carbon Nanotubes at Interfaces: Toward Applications. Structure and Bonding, 2013, , 193-218.	1.0	0
2111	Fundamental optical properties of carbon nanotubes and graphene. , 2013, , 3-25.		8
2112	Carbon nanotube solar cells. , 2013, , 241-269.		13
2113	A rosette cooling cell: More effective container for solubilization of single-walled carbon nanotubes under probe-type ultrasonic irradiation. Ultrasonics Sonochemistry, 2013, 20, 37-39.	3.8	16

		CITATION REPORT	
#	Article	IF	Citations
2114	Fundamental optical processes in armchair carbon nanotubes. Nanoscale, 2013, 5, 1411.	2.8	56
2115	Quantitative Detection of Single Walled Carbon Nanotube in Water Using DNA and Magnetic Fluorescent Spheres. Environmental Science & Technology, 2013, 47, 493-501.	4.6	13
2116	Effect of Reductive Dithiothreitol and Trolox on Nitric Oxide Quenching of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2013, 117, 593-602.	1.5	39
2117	Printed Carbon Nanotubes on Polymer Films for Active Origami. Materials Research Letters, 2013, 1 13-18.	l, 4.1	20
2118	Temperature dependence of photoluminescence spectra in hole-doped single-walled carbon nanotubes: Implications of trion localization. Physical Review B, 2013, 87, .	1.1	32
2119	Decoding membrane- versus receptor-mediated delivery of single-walled carbon nanotubes into macrophages using modifications of nanotube surface coatings and cell activity. Soft Matter, 2013 758-764.	, 9, 1.2	28
2120	Electronic and Magnetic Changes in a Finite-Sized Single-Walled Zigzag Carbon Nanotube Embedde Water. Journal of Physical Chemistry C, 2013, 117, 633-638.	ed in 1.5	2
2121	Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chemical Societ Reviews, 2013, 42, 2824-2860.	y 18.7	1,105
2122	Carbon nanoporous layer for reaction location management and performance enhancement in all-vanadium redox flow batteries. Journal of Power Sources, 2013, 222, 498-502.	4.0	49
2123	Site-Specific Immobilization of Single-Walled Carbon Nanotubes onto Single and One-Dimensional Origami. Journal of the American Chemical Society, 2013, 135, 2451-2454.	DNA 6.6	55
2124	Surface functionalization of carbon nanomaterials by selfâ€assembling hydrophobin proteins. Biopolymers, 2013, 99, 84-94.	1.2	35
2125	Effect of purity on the electro-optical properties of single wall nanotube-based transparent conductive electrodes. Carbon, 2013, 64, 1-5.	5.4	9
2126	Single walled carbon nanotube–borosilicate glass composite as broadband near infrared emitter multifunctional photonic applications. Chemical Physics Letters, 2013, 570, 113-117.	for 1.2	3
2127	Acid-mediated isolation of individually dispersed SWCNTs from electrostatically tethered nanoplatelet dispersants. Carbon, 2013, 56, 374-382.	5.4	8
2128	Self-assembly of carbon nanotube films from room temperature ionic liquids. Carbon, 2013, 58, 220	6-231. 5.4	6
2129	Influences of perfluorooctanoic acid on the aggregation of multi-walled carbon nanotubes. Journal of Environmental Sciences, 2013, 25, 466-472.	3.2	4
2130	Can helical spring dextrin be composed of higher eight glucose units per turn?. Journal of Molecular Structure, 2013, 1036, 274-278.	1.8	14
2131	Probing trace Hg2+ in a microfluidic chip coupled with in situ near-infrared fluorescence detection. Talanta, 2013, 114, 204-210.	2.9	10

#	Article	IF	CITATIONS
2132	A dispersion strategy: dendritic carbon nanotube network dispersion for advanced composites. Chemical Science, 2013, 4, 727-733.	3.7	52
2133	Carbon Nanotubes: Synthesis, Structure, Functionalization, and Characterization. Topics in Current Chemistry, 2013, 350, 65-109.	4.0	10
2134	Dispersion and orientation of single-walled carbon nanotubes in a chromonic liquid crystal. Liquid Crystals, 2013, 40, 1628-1635.	0.9	52
2135	Luminophores and Carbon Nanotubes: An Odd Combination?. Journal of Physical Chemistry Letters, 2013, 4, 767-778.	2.1	10
2136	Mechanism of Electrolyte-Induced Brightening in Single-Wall Carbon Nanotubes. Journal of the American Chemical Society, 2013, 135, 3379-3382.	6.6	37
2137	Detection of a CO and NH3 gas mixture using carboxylic acid-functionalized single-walled carbon nanotubes. Nanoscale Research Letters, 2013, 8, 12.	3.1	58
2138	Functionalized nanomaterials: their use as contrast agents in bioimaging: mono- and multimodal approaches. Nanotechnology Reviews, 2013, 2, 125-169.	2.6	59
2139	Sorting out Semiconducting Singleâ€Walled Carbon Nanotube Arrays by Washing off Metallic Tubes Using SDS Aqueous Solution. Small, 2013, 9, 1306-1311.	5.2	26
2140	Ablation of Hypoxic Tumors with Dose-Equivalent Photothermal, but Not Photodynamic, Therapy Using a Nanostructured Porphyrin Assembly. ACS Nano, 2013, 7, 2541-2550.	7.3	367
2141	Interparticle Dispersion, Membrane Curvature, and Penetration Induced by Single-Walled Carbon Nanotubes Wrapped with Lipids and PEGylated Lipids. Journal of Physical Chemistry B, 2013, 117, 1337-1344.	1.2	26
2142	Carbonâ€Based Nanomaterials for Tissue Engineering. Advanced Healthcare Materials, 2013, 2, 244-260.	3.9	202
2143	Are Carbon Nanotubes a Natural Solution? Applications in Biology and Medicine. ACS Applied Materials & Interfaces, 2013, 5, 1870-1891.	4.0	163
2144	Qualitative detection and quantitative determination of single-walled carbon nanotubes in mixtures of carbon nanotubes with a portable Raman spectrometer. Analyst, The, 2013, 138, 2378.	1.7	14
2145	Electrochemical Processing of Discrete Single-Walled Carbon Nanotube Anions. ACS Nano, 2013, 7, 1769-1778.	7.3	29
2146	Mixture of ionic liquid and carbon nanotubes: comparative studies of the structural characteristics and dispersion of the aggregated non-bundled and bundled carbon nanotubes. Physical Chemistry Chemical Physics, 2013, 15, 2482.	1.3	18
2147	Carbon nanotubes in cancer therapy: a more precise look at the role of carbon nanotube–polymer interactions. Chemical Society Reviews, 2013, 42, 5231.	18.7	129
2148	One-pot synthesis of water-dispersible Ag ₂ S quantum dots with bright fluorescent emission in the second near-infrared window. Nanotechnology, 2013, 24, 055706.	1.3	108
2149	A simple pyrene "click―type modification of DNA affects solubilisation and photoluminescence of single-walled carbon nanotubes. RSC Advances, 2013, 3, 6331.	1.7	5

#	Article	IF	CITATIONS
2150	Isotopically Induced Variation in the Stability of FMN-Wrapped Carbon Nanotubes. Langmuir, 2013, 29, 7209-7215.	1.6	8
2151	Single Particle Detection by Area Amplification: Single Wall Carbon Nanotube Attachment to a Nanoelectrode. Journal of the American Chemical Society, 2013, 135, 5258-5261.	6.6	90
2152	Ultra-Low Doses of Chirality Sorted (6,5) Carbon Nanotubes for Simultaneous Tumor Imaging and Photothermal Therapy. ACS Nano, 2013, 7, 3644-3652.	7.3	279
2153	Light harvesting with non covalent carbon nanotube/porphyrin compounds. Chemical Physics, 2013, 413, 45-54.	0.9	35
2154	Coherent phonons in carbon nanotubes and graphene. Chemical Physics, 2013, 413, 55-80.	0.9	33
2155	Excitonic homogeneous broadening in single-wall carbon nanotubes. Chemical Physics, 2013, 413, 102-111.	0.9	11
2156	Monolithic microcavity with carbon nanotubes as active material. Applied Physics Letters, 2013, 102, 153102.	1.5	20
2157	Analyzing Surfactant Structures on Length and Chirality Resolved (6,5) Single-Wall Carbon Nanotubes by Analytical Ultracentrifugation. ACS Nano, 2013, 7, 3373-3387.	7.3	82
2158	Preparation and characterization of poly(trimethylene terephthalate) $\hat{a} \in poly(ethylene oxide)$ Tj ETQq0 0 0 rgBT /O polymerization. Polymer Engineering and Science, 2013, 53, 914-922.	verlock 10 1.5) Tf 50 427 1 4
2159	Chiral-Selective Growth of Single-Walled Carbon Nanotubes on Lattice-Mismatched Epitaxial Cobalt Nanoparticles. Scientific Reports, 2013, 3, 1460.	1.6	175
2160	Thermostable Luciferase from <i>Luciola cruciate</i> for Imaging of Carbon Nanotubes and Carbon Nanotubes Carrying Doxorubicin Using in Vivo Imaging System. Nano Letters, 2013, 13, 1393-1398.	4.5	32
2161	Liberation of drugs from multi-wall carbon nanotube carriers. Journal of Controlled Release, 2013, 169, 126-140.	4.8	47
2162	Novel Excitonic Properties of Carbon Nanotube Studied by Advanced Optical Spectroscopy. Nano-optics and Nanophotonics, 2013, , 33-70.	0.2	1
2163	CO ₂ â€Responsive "Smart―Singleâ€Walled Carbon Nanotubes. Advanced Materials, 2013, 25, 584-590.	11.1	106
2164	Fuel Cell Electrocatalyst Using Polybenzimidazoleâ€Modified Carbon Nanotubes As Support Materials. Advanced Materials, 2013, 25, 1666-1681.	11.1	160
2165	The density of states and thermopower in disordered carbon nanotubes. Russian Physics Journal, 2013, 55, 1266-1277.	0.2	3
2166	Genotoxic Assessment of Carbon Nanotubes. Methods in Molecular Biology, 2013, 991, 315-323.	0.4	1
2167	Dispersion studies of carboxyl, amine and thiol-functionalized carbon nanotubes for improving the electrochemical behavior of screen printed electrodes. Sensors and Actuators B: Chemical, 2013, 181, 353-360.	4.0	28

#	Article	IF	CITATIONS
2168	Complications pertaining to the detection and characterization of individual and embedded single walled carbon nanotubes by scanning electron microscopy. Nanoscale, 2013, 5, 2790.	2.8	3
2169	Lightâ€Switchable Singleâ€Walled Carbon Nanotubes Based on Host–Guest Chemistry. Advanced Functional Materials, 2013, 23, 5010-5018.	7.8	37
2170	Highly efficient exfoliation of individual single-walled carbon nanotubes by biocompatible phenoxylated dextran. Nanoscale, 2013, 5, 6773.	2.8	15
2171	Excitation characteristics of different energy transfer in nanotube-perylene complexes. Applied Physics Letters, 2013, 102, .	1.5	9
2172	Supramolecular Interactions of High Molecular Weight Poly(2,7-carbazole)s with Single-Walled Carbon Nanotubes. Macromolecules, 2013, 46, 3850-3860.	2.2	45
2173	Quantum Structures of Advanced Materials. Springer Series in Materials Science, 2013, , 1-38.	0.4	0
2174	Vibrational and electronic properties of single-walled and double-walled boron nitride nanotubes. Vibrational Spectroscopy, 2013, 66, 30-42.	1.2	10
2175	<i>In Vivo</i> Targeting of Intratumor Regulatory T Cells Using PEG-Modified Single-Walled Carbon Nanotubes. Bioconjugate Chemistry, 2013, 24, 852-858.	1.8	81
2176	Raman Spectroscopic Investigation of Individual Single-Walled Carbon Nanotubes Helically Wrapped by Ionic, Semiconducting Polymers. Journal of Physical Chemistry C, 2013, 117, 14840-14849.	1.5	15
2177	Chirality Affects Aggregation Kinetics of Single-Walled Carbon Nanotubes. Environmental Science & Technology, 2013, 47, 1844-1852.	4.6	52
2178	Mechanical Reinforcement of Polybenzoxazole by Carbon Nanotubes through Noncovalent Functionalization. Macromolecules, 2013, 46, 4034-4040.	2.2	43
2179	Optical Properties of Graphene Nanoribbons Encapsulated in Single-Walled Carbon Nanotubes. ACS Nano, 2013, 7, 6346-6353.	7.3	82
2180	Supramolecular Chemistry of Carbon Nanotubes. Topics in Current Chemistry, 2013, 348, 95-126.	4.0	21
2182	Bright, long-lived and coherent excitons in carbon nanotube quantum dots. Nature Nanotechnology, 2013, 8, 502-505.	15.6	103
2183	Preparation and Thermophysical Properties of Water–Glycerol Mixture-Based CuO Nanofluids as PCM for Cooling Applications. IEEE Nanotechnology Magazine, 2013, 12, 629-635.	1.1	31
2184	Nanoplasmonic colloidal suspensions for the enhancement of the luminescent emission from single-walled carbon nanotubes. Nano Research, 2013, 6, 593-601.	5.8	20
2185	Solvothermal One-Step Synthesis of Ni–Al Layered Double Hydroxide/Carbon Nanotube/Reduced Graphene Oxide Sheet Ternary Nanocomposite with Ultrahigh Capacitance for Supercapacitors. ACS Applied Materials & Interfaces, 2013, 5, 5443-5454.	4.0	246
2186	Transparent Stretchable Singleâ€Walled Carbon Nanotubeâ€Polymer Composite Films with Nearâ€Infrared Fluorescence. Advanced Materials, 2013, 25, 2548-2553.	11.1	22

#	Article	IF	CITATIONS
2187	Singleâ€Walled Carbon Nanotube/Phase Change Material Composites: Sunlightâ€Driven, Reversible, Form‣table Phase Transitions for Solar Thermal Energy Storage. Advanced Functional Materials, 2013, 23, 4354-4360.	7.8	331
2188	Propagative Sidewall Alkylcarboxylation that Induces Red-Shifted Near-IR Photoluminescence in Single-Walled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2013, 4, 826-830.	2.1	46
2189	Highly efficient individual dispersion of single-walled carbon nanotubes using biocompatible dispersant. Colloids and Surfaces B: Biointerfaces, 2013, 102, 95-101.	2.5	20
2190	Highly sensitive humidity sensing properties of carbon quantum dots films. Materials Research Bulletin, 2013, 48, 790-794.	2.7	71
2191	Covalently Functionalized Double-Walled Carbon Nanotubes Combine High Sensitivity and Selectivity in the Electrical Detection of Small Molecules. Journal of the American Chemical Society, 2013, 135, 2306-2312.	6.6	67
2192	Nanoplasmonic Modification of the Local Morphology, Shape, and Wetting Properties of Nanoflake Microparticles. Langmuir, 2013, 29, 7464-7471.	1.6	11
2193	Quantum light sources based on individual carbon nanotubes. , 2013, , 346-385e.		3
2194	Direct observation of substrate induced exciton in carbon nanotube. Applied Physics Letters, 2013, 103, .	1.5	1
2195	Electronic properties of pristine and modified single-walled carbon nanotubes. Physics-Uspekhi, 2013, 56, 1047-1073.	0.8	34
2196	Environmental effects on the Raman spectra of single walled carbon nanotubes. Physica Status Solidi (B): Basic Research, 2013, 250, 2635-2638.	0.7	10
2197	Achieving Ultrahigh Concentrations of Fluorescent Singleâ€Walled Carbon Nanotubes Using Smallâ€Molecule Viscosity Modifiers. Small, 2013, 9, 241-247.	5.2	7
2198	Towards non-invasivein vivomeasurements of nanoparticle concentrations using 3D optoacoustic tomography. , 2013, , .		2
2199	The Functionalization of Beta-Cyclodextrins on Multi Walled Carbon Nanotubes: Effects of the Dispersant and Non Aqueous Media. Current Nanoscience, 2013, 9, 93-102.	0.7	2
2200	Carbon nanotube-based optical platforms for biomolecular detection. , 2013, , 270-303e.		2
2201	Science and Engineering of Nanomaterials. , 2013, , 1-36.		5
2202	Optical gain and lasing in carbon nanotubes. , 2013, , 99-123e.		1
2203	Chapter 8. Recent developments in the design of nanomaterials for photothermal and magnetic hyperthermia induced controllable drug delivery. SPR Nanoscience, 2013, , 225-254.	0.3	12
2204	The Effect of Intraband Transitions on the Optical Spectra of Metallic Carbon Nanotubes. Chinese Physics Letters, 2013, 30, 077301.	1.3	22

#	Article	IF	CITATIONS
2205	Dynamics of excitons and trions in semiconducting carbon nanotubes. , 2013, , .		1
2206	Influence of Centrifugation Time and Force on Monodispersion of MWCNTs Aqueous Solution. Applied Mechanics and Materials, 0, 365-366, 1122-1127.	0.2	0
2207	Tumor photothermolysis: using carbon nanomaterials for cancer therapy. European Journal of Nanomedicine, 2013, 5, .	0.6	6
2208	Chirality distribution in single walled carbon nanotube films by spectroscopic ellipsometry. Applied Physics Letters, 2013, 102, 091909.	1.5	10
2209	Measurement of a Reaction-Diffusion Crossover in Exciton-Exciton Recombination inside Carbon Nanotubes Using Femtosecond Optical Absorption. Physical Review Letters, 2013, 111, 197401.	2.9	26
2210	Single-Walled Carbon Nanotube-Based Near-Infrared Optical Glucose Sensors toward <i>In Vivo</i> Continuous Glucose Monitoring. Journal of Diabetes Science and Technology, 2013, 7, 72-87.	1.3	38
2211	Gate-tunable carbon nanotube–MoS ₂ heterojunction p-n diode. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18076-18080.	3.3	373
2212	The magnetic, relaxometric, and optical properties of gadolinium-catalyzed single walled carbon nanotubes. Journal of Applied Physics, 2013, 113, 134308.	1.1	28
2213	Photoluminescence Measurements and Molecular Dynamics Simulations of Water Adsorption on the Hydrophobic Surface of a Carbon Nanotube in Water Vapor. Physical Review Letters, 2013, 110, 157402.	2.9	80
2214	Tunable Thermoresponsive Pyrrolidoneâ€Based Polymers from Pyroglutamic Acid, a Bioâ€Đerived Resource. Macromolecular Rapid Communications, 2013, 34, 447-451.	2.0	8
2215	Near-infrared fluorescent single walled carbon nanotube-chitosan composite: Interfacial strain transfer efficiency assessment. Applied Physics Letters, 2013, 102, 171903.	1.5	6
2216	Atomic force microscopy imaging of dialyzed single-walled carbon nanotubes dispersed with sodium dodecyl sulfate. International Journal of Smart and Nano Materials, 2013, 4, 119-127.	2.0	3
2218	Carbon Nanotube Flocculation as a Green Nanoseparation. Chemistry Letters, 2013, 42, 11-13.	0.7	1
2219	Carbon nanotubes: an overview. Emerging Materials Research, 2013, 2, 299-337.	0.4	2
2220	Amphiphilic Star Polymers Bearing a Triphenylene Core for Novel Dispersants of Carbon Nanotubes in Polar Media. Chemistry Letters, 2013, 42, 609-611.	0.7	1
2221	Evanescent-wave coupled right angled buried waveguide: Applications in carbon nanotube mode-locking. Applied Physics Letters, 2013, 103, 221117.	1.5	18
2222	Introduction to carbon-based nanostructures. , 0, , 1-10.		0
2223	Electronic properties of carbon-based nanostructures. , 0, , 11-90.		0

	Сітат	CITATION REPORT	
#	Article	IF	CITATIONS
2224	Thermoâ€Active Elastomer Composite for Optical Heating in Microfluidic Systems. Small, 2013, 9, 654-65	59. 5.2	1
2226	Spectroscopic Analysis of Two Distinct Equilibrium States for the Exchange Reaction of Sodium Cholate and Oligoâ€DNA on Singleâ€Walled Carbon Nanotubes. ChemPhysChem, 2013, 14, 1652-1655.	1.0	6
2227	Sorting of CVD-grown single-walled carbon nanotubes by means of gel column chromatography. Physica Status Solidi (B): Basic Research, 2013, 250, 2564-2568.	0.7	6
2228	Dispersion and Property Manipulation of Carbon Nanotubes by Self-Assemibles of Amphiphilic Molecules. , 0, , .		7
2229	Electrically driven, narrow-linewidth blackbody emission from carbon nanotube microcavity devices. Applied Physics Letters, 2013, 103, .	1.5	21
2230	Photoacoustic Imaging for Cancer Detection and Staging. Current Molecular Imaging, 2013, 2, 89-105.	0.7	197
2231	G-Quadruplex Guanosine Gels and Single Walled Carbon Nanotubes. Molecules, 2013, 18, 15434-15447.	. 1.7	8
2232	Carbon Nanotubes for Use in Medicine: Potentials and Limitations. , 0, , .		19
2233	Inkjet Printing of Carbon Nanotubes. Nanomaterials, 2013, 3, 453-468.	1.9	155
2234	Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy. International Journal of Nanomedicine, 2013, 8, 2653.	3.3	61
2236	The Functionalization of Beta-Cyclodextrins on Multi Walled Carbon Nanotubes: Effects of the Dispersant and Non Aqueous Media. Current Nanoscience, 2013, 9, 93-102.	0.7	11
2237	Solubilization and Titania Nano-Coating of Carbon Nanotubes Using Titanium (IV) Tetrabutoxide. Kobunshi Ronbunshu, 2013, 70, 253-261.	0.2	0
2238	Non-covalent and reversible functionalization of carbon nanotubes. Beilstein Journal of Nanotechnology, 2014, 5, 1675-1690.	1.5	114
2239	Stealth nanotubes: strategies of shielding carbon nanotubes to evade opsonization and improve biodistribution. International Journal of Nanomedicine, 2014, 9 Suppl 1, 85.	3.3	15
2240	Dependence of Geometric and Spectroscopic Properties of Double-Walled Boron Nitride Nanotubes on Interwall Distance. Nanomaterials and Nanotechnology, 2014, 4, 28.	1.2	4
2241	Acoustic resolution photoacoustic microscopy. Biomedical Engineering Letters, 2014, 4, 213-222.	2.1	110
2242	Controlling carbon nanotube photoluminescence using silicon microring resonators. Nanotechnology, 2014, 25, 215201.	1.3	28
2243	Structure-dependent Optical Activity of Single-walled Carbon Nanotube Enantiomers. Fullerenes Nanotubes and Carbon Nanostructures, 2014, 22, 269-279.	1.0	6

#	Article	IF	CITATIONS
2244	3,4,9,10-Perylene Tetracarboxylic Acid Noncovalently Modified Multiwalled Carbon Nanotubes: Synthesis, Characterization, and Application for Electrochemical Determination of 2-Aminonaphthalene. Analytical Letters, 2014, 47, 2370-2383.	1.0	5
2245	Chemical doping-induced changes in optical properties of single-walled carbon nanotubes. Japanese Journal of Applied Physics, 2014, 53, 05FD02.	0.8	1
2246	Enhancement of single-walled nanotubes luminescence intensity upon dithiothreitol doping. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2014, 117, 428-433.	0.2	2
2247	Electrophoretic Deposition of Single Wall Carbon Nanotube Films and Characterization. Materials Research Society Symposia Proceedings, 2014, 1752, 59-63.	0.1	0
2248	Recent Developments in Purification of Single Wall Carbon Nanotubes. Separation Science and Technology, 2014, 49, 2797-2812.	1.3	14
2249	Carbon Nanotubes in Biomedical Applications. Frontiers in Nanobiomedical Research, 2014, , 439-474.	0.1	1
2250	Synthesis and Characterization of Nanostructured Copolymer-Grafted Multiwalled Carbon Nanotube Composite Thermoplastic Elastomers toward Unique Morphology and Strongly Enhanced Mechanical Properties. Industrial & Engineering Chemistry Research, 2014, 53, 20154-20167.	1.8	18
2251	Soft lithographic printing and transfer of photosensitive polymers: facile fabrication of free-standing structures and patterning fragile and unconventional substrates. Journal of Micromechanics and Microengineering, 2014, 24, 115019.	1.5	7
2252	Photochemical vapor generation for removing nickel impurities from carbon nanotubes and its real-time monitoring by atomic fluorescence spectrometry. Microchemical Journal, 2014, 117, 83-88.	2.3	20
2253	Quantitative Analysis of Isolated Single-Wall Carbon Nanotubes with Their Molar Absorbance Coefficients. Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	7
2254	Decontamination of Surfaces Exposed to Carbon-Based Nanotubes and Nanomaterials. Journal of Nanomaterials, 2014, 2014, 1-9.	1.5	5
2255	Plasma-Enabled Carbon Nanostructures for Early Diagnosis of Neurodegenerative Diseases. Materials, 2014, 7, 4896-4929.	1.3	12
2256	Flexible Carbon Nanotube Films for High Performance Strain Sensors. Sensors, 2014, 14, 10042-10071.	2.1	249
2257	Properties of Carbon Nanotubes. , 2014, , 1-49.		3
2258	Molecular Modeling of PEGylated Peptides, Dendrimers, and Single-Walled Carbon Nanotubes for Biomedical Applications. Polymers, 2014, 6, 776-798.	2.0	34
2259	Characterization of the thermalisation efficiency and photostability of photoacoustic contrast agents. Proceedings of SPIE, 2014, , .	0.8	8
2260	Mechanistic studies of systemic immune responses induced by laser-nanotechnology. , 2014, , .		0
2261	Selective interactions of a high-molecular-weight polycarbazole with different commercial nanotube samples. Journal of Polymer Science Part A, 2014, 52, 2738-2747.	2.5	19

ARTICLE IF CITATIONS # Electroluminescence from Serpentine Carbon Nanotube Based Lightâ€Emitting Diodes on Quartz. Small, 2262 5.2 13 2014, 10, 1050-1056. Polyarenes II. Topics in Current Chemistry, 2014, , . 4.0 Gel electrophoresis using a selective radical for the separation of single-walled carbon nanotubes. 2264 1.6 20 Faraday Discussions, 2014, 173, 351-363. Largeâ€Area and Flexible Leadâ€Free Nanocomposite Generator Using Alkaline Niobate Particles and Metal Nanorod Filler. Advanced Functional Materials, 2014, 24, 2620-2629. The effects of hydroxylated multiwalled carbon nanotubes on the toxicity of nickel to <i>Daphnia 2266 2.2 16 magna</i> under different pH levels. Environmental Toxicology and Chemistry, 2014, 33, 2522-2528. Nonlinear photoluminescence properties of trions in hole-doped single-walled carbon nanotubes. 2267 1.1 Physical Review B, 2014, 89, . "Smart Skin" optical strain sensor using single wall carbon nanotubes. , 2014, , . 2268 4 Influence of polyvinyl pyrrolidone on the dispersion of multi-walled carbon nanotubes in aqueous 2269 0.1 14 solution. Russian Journal of Physical Chemistry A, 2014, 88, 2385-2390. 2270 Special antitumor immune effects of laser immunotherapy with SWNT-GC. Proceedings of SPIE, 2014, , . 0.8 0 A Mode-Locked Soliton Erbium-Doped Fiber Laser with a Single-Walled Carbon Nanotube Poly-Ethylene 2271 1.3 Oxide Film Saturable Absorber. Chinese Physics Letters, 2014, 31, 094202. Characteristics and Applications of Carbon Nanotubes with Different Numbers of Walls., 2014,, 2272 5 313-339. Carbon nanotube–polyaniline composites. Progress in Polymer Science, 2014, 39, 707-748. 11.8 266 Controllable synthesis of single- and double-walled carbon nanotubes from petroleum coke and their 2274 5.4 29 application to solar cells. Carbon, 2014, 68, 511-519. Photoluminescence intensity enhancement in SWNT aqueous suspensions due to reducing agent doping: Influence of adsorbed biopolymer. Chemical Physics, 2014, 438, 23-30. Interactions of porphyrins and single walled carbon nanotubes: A fine duet. Synthetic Metals, 2014, 2276 2.1 12 193, 64-70. Structural modifications of multiwalled carbon nanotubes and their effects on optical properties. 2277 Journal of Nanoparticle Research, 2014, 16, 1. Trends in nanoscience, nanotechnology, and carbon nanotubes: a bibliometric approach. Journal of 2278 0.8 15 Nanoparticle Research, 2014, 16, 1. Pristine and graphitized-MWCNTs as durable cathode-catalyst supports for PEFCs. Journal of Solid 2279 1.2 State Electrochemistry, 2014, 18, 1291-1305.

#	Article	IF	CITATIONS
2280	Design and development of fluorescent nanostructures for bioimaging. Progress in Polymer Science, 2014, 39, 365-395.	11.8	257
2281	Neodymiumâ€Doped LaF ₃ Nanoparticles for Fluorescence Bioimaging in the Second Biological Window. Small, 2014, 10, 1141-1154.	5.2	185
2282	A full-band sunlight-driven carbon nanotube/PEG/SiO2 composites for solar energy storage. Solar Energy Materials and Solar Cells, 2014, 123, 7-12.	3.0	148
2283	Dispersion of single-walled carbon nanotubes in aqueous solution with a thermo-responsive pentablock terpolymer. Colloid and Polymer Science, 2014, 292, 281-289.	1.0	9
2285	On the mechanical characterization of carbon nanotube reinforced epoxy adhesives. Materials & Design, 2014, 59, 19-32.	5.1	160
2286	Tuning the electronic and optical properties of monatomic carbon chains. Carbon, 2014, 68, 487-492.	5.4	14
2287	Assessment of length and bundle distribution of dilute singleâ€walled carbon nanotubes by viscosity measurements. AICHE Journal, 2014, 60, 1499-1508.	1.8	14
2288	Polydopamine as a Biomimetic Electron Gate for Artificial Photosynthesis. Angewandte Chemie - International Edition, 2014, 53, 6364-6368.	7.2	113
2289	Dispersion of non-covalently functionalized single-walled carbon nanotubes with high aspect ratios using poly(2-dimethylaminoethyl methacrylate-co-styrene). Carbon, 2014, 72, 57-65.	5.4	21
2290	Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma. Process Biochemistry, 2014, 49, 160-172.	1.8	200
2291	Controlling the crystalline three-dimensional order in bulk materials by single-wall carbon nanotubes. Nature Communications, 2014, 5, 3763.	5.8	28
2292	Bio-Inspired Nanotechnology. , 2014, , .		13
2293	Neurotransmitter Detection Using Corona Phase Molecular Recognition on Fluorescent Single-Walled Carbon Nanotube Sensors. Journal of the American Chemical Society, 2014, 136, 713-724.	6.6	288
2294	Excitonic energy transfer in polymer wrapped carbon nanotubes in gradually grown nanoassemblies. Physical Chemistry Chemical Physics, 2014, 16, 10914-10922.	1.3	9
2295	Arginine Side Chains as a Dispersant for Individual Singleâ€Wall Carbon Nanotubes. Chemistry - A European Journal, 2014, 20, 4922-4930.	1.7	34
2296	Carbon-based sorbents: Carbon nanotubes. Journal of Chromatography A, 2014, 1357, 53-67.	1.8	99
2297	Magnetoadsorptive Particles Enabling the Centrifugationâ€Free, Preparativeâ€6cale Separation, and Sorting of Singleâ€Walled Carbon Nanotubes. Particle and Particle Systems Characterization, 2014, 31, 1097-1104.	1.2	3
2298	Selective and Reversible Noncovalent Functionalization of Single-Walled Carbon Nanotubes by a pH-Responsive Vinylogous Tetrathiafulvalene–Fluorene Copolymer. Journal of the American Chemical Society, 2014, 136, 970-977.	6.6	80

#	Article	IF	CITATIONS
2299	Effective Nondestructive Purification of Single-Walled Carbon Nanotubes Based on High-Speed Centrifugation with a Photochemically Removable Dispersant. Journal of Physical Chemistry C, 2014, 118, 5013-5019.	1.5	22
2300	Novel strategy combining SYBR Green I with carbon nanotubes for highly sensitive detection of Salmonella typhimurium DNA. Enzyme and Microbial Technology, 2014, 54, 15-19.	1.6	6
2301	Photoreactivity of Unfunctionalized Single-Wall Carbon Nanotubes Involving Hydroxyl Radical: Chiral Dependency and Surface Coating Effect. Environmental Science & Technology, 2014, 48, 3875-3882.	4.6	30
2302	NIR luminescent nanomaterials for biomedical imaging. Journal of Materials Chemistry B, 2014, 2, 2422.	2.9	139
2303	Implantable Nanosensors: Toward Continuous Physiologic Monitoring. Analytical Chemistry, 2014, 86, 1314-1323.	3.2	55
2304	Phenanthroline-functionalized MWCNTs as versatile platform for lanthanides complexation. Carbon, 2014, 70, 22-29.	5.4	1
2305	Influence of structure-selective fluorene-based polymer wrapping on optical transitions of single-wall carbon nanotubes. Nanoscale, 2014, 6, 248-254.	2.8	13
2306	Photothermal ablation of tumor cells using a single-walled carbon nanotube–peptide composite. Journal of Controlled Release, 2014, 173, 59-66.	4.8	104
2307	Low Dimensional Carbon Materials for Applications in Mass and Energy Transport. Chemistry of Materials, 2014, 26, 172-183.	3.2	42
2308	Nanomaterials. Nanomedicine and Nanotoxicology, 2014, , 1-29.	0.1	2
2308 2309	Nanomaterials. Nanomedicine and Nanotoxicology, 2014, , 1-29. Near infrared fluorescence and enhanced electrical conductivity of single walled carbon nanotube-lead silicate glass composite. Journal of Non-Crystalline Solids, 2014, 385, 129-135.	0.1	2
	Near infrared fluorescence and enhanced electrical conductivity of single walled carbon		
2309	Near infrared fluorescence and enhanced electrical conductivity of single walled carbon nanotube-lead silicate glass composite. Journal of Non-Crystalline Solids, 2014, 385, 129-135. Actin Reorganization through Dynamic Interactions with Single-Wall Carbon Nanotubes. ACS Nano,	1.5	2
2309 2310	Near infrared fluorescence and enhanced electrical conductivity of single walled carbon nanotube-lead silicate glass composite. Journal of Non-Crystalline Solids, 2014, 385, 129-135. Actin Reorganization through Dynamic Interactions with Single-Wall Carbon Nanotubes. ACS Nano, 2014, 8, 188-197. Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnology	1.5 7.3	2 41
2309 2310 2311	Near infrared fluorescence and enhanced electrical conductivity of single walled carbon nanotube-lead silicate glass composite. Journal of Non-Crystalline Solids, 2014, 385, 129-135. Actin Reorganization through Dynamic Interactions with Single-Wall Carbon Nanotubes. ACS Nano, 2014, 8, 188-197. Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnology Advances, 2014, 32, 761-777. Photophoretic separation of single-walled carbon nanotubes: a novel approach to selective chiral	1.5 7.3 6.0	2 41 151
2309 2310 2311 2312	Near infrared fluorescence and enhanced electrical conductivity of single walled carbon nanotube-lead silicate glass composite. Journal of Non-Crystalline Solids, 2014, 385, 129-135. Actin Reorganization through Dynamic Interactions with Single-Wall Carbon Nanotubes. ACS Nano, 2014, 8, 188-197. Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnology Advances, 2014, 32, 761-777. Photophoretic separation of single-walled carbon nanotubes: a novel approach to selective chiral sorting. Physical Chemistry Chemical Physics, 2014, 16, 5221-5228. Characterization of Carbon Nanotube Dispersions in Solutions of Bile Salts and Derivatives	1.5 7.3 6.0 1.3	2 41 151 16
2309 2310 2311 2312 2313	Near infrared fluorescence and enhanced electrical conductivity of single walled carbon nanotube-lead silicate glass composite. Journal of Non-Crystalline Solids, 2014, 385, 129-135. Actin Reorganization through Dynamic Interactions with Single-Wall Carbon Nanotubes. ACS Nano, 2014, 8, 188-197. Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnology Advances, 2014, 32, 761-777. Photophoretic separation of single-walled carbon nanotubes: a novel approach to selective chiral sorting. Physical Chemistry Chemical Physics, 2014, 16, 5221-5228. Characterization of Carbon Nanotube Dispersions in Solutions of Bile Salts and Derivatives Containing Aromatic Substituents. Journal of Physical Chemistry B, 2014, 118, 1012-1021. Carbon nanotube-based fluorescence sensors. Journal of Photochemistry and Photobiology C:	1.5 7.3 6.0 1.3 1.2	2 41 151 16 35

		CITATION RE	PORT	
#	Article		IF	CITATIONS
2317	Concentrated solutions of individualized single walled carbon nanotubes. Carbon, 201	4, 67, 360-367.	5.4	20
2318	Nanotubes in biological applications. Current Opinion in Biotechnology, 2014, 28, 25-3	32.	3.3	119
2319	Multifunctional carbon nanotubes in water treatment: The present, past and future. De 2014, 354, 160-179.	esalination,	4.0	210
2320	Kinetics and Mechanism Studies on Dispersion of CNT in SDS Aqueous Solutions. Jourr Chinese Chemical Society, 2014, 61, 481-489.	al of the	0.8	4
2321	Characterizing the Chiral Index of a Singleâ€Walled Carbon Nanotube. Small, 2014, 10	, 4586-4605.	5.2	17
2322	Thermal energy storage characteristics of Cu–H 2 O nanofluids. Energy, 2014, 78, 22	12-217.	4.5	59
2323	Polymer synthesis inside a nanospace of a surfactant–micelle on carbon nanotubes: highly-stable individual nanotubes/ultrathin cross-linked polymer hybrids. RSC Advance	creation of s, 2014, 4, 6318.	1.7	17
2324	Intraexciton Transitions Observed in High Stability Doped Single-Wall Carbon Nanotub Solutions. Journal of Physical Chemistry C, 2014, 118, 25253-25260.	e Films and	1.5	5
2325	A carbon nanotube-based Raman-imaging immunoassay for evaluating tumor targeting The, 2014, 139, 3069-3076.	g ligands. Analyst,	1.7	11
2326	Macroscopic Nanotube Fibers Spun from Single-Walled Carbon Nanotube Polyelectroly 2014, 8, 9107-9112.	rtes. ACS Nano,	7.3	81
2327	Aqueous dispersion of pristine single-walled carbon nanotubes prepared by using a vinylimidazole-based polymer dispersant. RSC Advances, 2013, 4, 2327-2338.		1.7	18
2328	Gel electrophoresis and Raman mapping for determining the length distribution of SW Advances, 2014, 4, 37070-37078.	CNTs. RSC	1.7	3
2329	Dispersion and characterization of arc discharge single-walled carbon nanotubes $\hat{a} \in c$ to conducting transparent films. Nanoscale, 2014, 6, 3695.	owards	2.8	22
2330	Helical Polycarbodiimide Cloaking of Carbon Nanotubes Enables Inter-Nanotube Excito Transfer Modulation. Journal of the American Chemical Society, 2014, 136, 15545-155		6.6	48
2331	Redox properties of a single (7,5)single-walled carbon nanotube determined by an in si photoluminescence spectroelectrochemical method. Nanoscale, 2014, 6, 12798-1280		2.8	7
2332	Synthesis and optical properties of emission-tunable PbS/CdS core–shell quantum do fluorescence imaging in the second near-infrared window. RSC Advances, 2014, 4, 411		1.7	76
2333	Electro-conductive porous scaffold with single-walled carbon nanotubes in wormlike m networks. Carbon, 2014, 80, 203-212.	icellar	5.4	10
2334	Optical Properties of Carbon Nanotubes. , 2014, , 77-98.			4

#	Article	IF	Citations
2335	Electrolyte-induced Reorganization of SDS Self-assembly on Graphene: A Molecular Simulation Study. ACS Applied Materials & Interfaces, 2014, 6, 5789-5797.	4.0	12
2336	Epoxy composites with carbon nanotubes and graphene nanoplatelets – Dispersion and synergy effects. Carbon, 2014, 78, 268-278.	5.4	360
2337	Differentiation of Carbon Nanotubes with Different Chirality. , 2014, , 19-38.		4
2338	Use of Gel Electrophoresis and Raman Spectroscopy to Characterize the Effect of the Electronic Structure of Single-Walled Carbon Nanotubes on Cellular Uptake. Analytical Chemistry, 2014, 86, 2882-2887.	3.2	6
2339	Potentiometric, Electronic, and Transient Absorptive Spectroscopic Properties of Oxidized Single-Walled Carbon Nanotubes Helically Wrapped by Ionic, Semiconducting Polymers in Aqueous and Organic Media. Journal of the American Chemical Society, 2014, 136, 14193-14199.	6.6	23
2340	Understanding selective molecular recognition in integrated carbon nanotube–polymer sensors by simulating physical analyte binding on carbon nanotube–polymer scaffolds. Soft Matter, 2014, 10, 5991-6004.	1.2	9
2341	Nanoparticles for photothermal therapies. Nanoscale, 2014, 6, 9494-9530.	2.8	1,562
2342	Large work function difference driven electron transfer from electrides to single-walled carbon nanotubes. Nanoscale, 2014, 6, 8844.	2.8	36
2343	Selective Suspension of Single-Walled Carbon Nanotubes Using β-Sheet Polypeptides. Journal of Physical Chemistry C, 2014, 118, 5935-5944.	1.5	14
2344	Tailorable Aqueous Dispersion of Single-Walled Carbon Nanotubes Using Tetrachloroperylene-Based Bolaamphiphiles via Noncovalent Modification. Langmuir, 2014, 30, 8615-8620.	1.6	21
2345	Rod Hydrodynamics and Length Distributions of Single-Wall Carbon Nanotubes Using Analytical Ultracentrifugation. Langmuir, 2014, 30, 4895-4904.	1.6	40
2346	Removing Aggregates from Single-Walled Carbon Nanotube Samples by Magnetic Purification. Journal of Physical Chemistry C, 2014, 118, 4489-4494.	1.5	16
2347	Carbon nanotube based elastomer composites – an approach towards multifunctional materials. Journal of Materials Chemistry C, 2014, 2, 8446-8485.	2.7	163
2348	A simple technique to synthesize pure and highly crystalline boron nitride nanowires. Ceramics International, 2014, 40, 14727-14732.	2.3	23
2349	Probing carbon nanotube–amino acid interactions in aqueous solution with molecular dynamics simulations. Carbon, 2014, 78, 500-509.	5.4	78
2350	Carbon fiber surfaces and composite interphases. Composites Science and Technology, 2014, 102, 35-50.	3.8	585
2351	Biological Application of Carbon Nanotubes and Graphene. , 2014, , 279-312.		10
2352	Size, Dimensionality, and Strong Electron Correlation in Nanoscience. Accounts of Chemical Research, 2014, 47, 2951-2959.	7.6	49

#	Article	IF	CITATIONS
2353	Design of Surfactant–Substrate Interactions for Roll-to-Roll Assembly of Carbon Nanotubes for Thin-Film Transistors. Journal of the American Chemical Society, 2014, 136, 11188-11194.	6.6	60
2354	Through-skull fluorescence imaging of the brain in a new near-infrared window. Nature Photonics, 2014, 8, 723-730.	15.6	829
2355	Evaluation of Critical Parameters in the Separation of Single-Wall Carbon Nanotubes through Selective Adsorption onto Hydrogels. Journal of Physical Chemistry C, 2014, 118, 15495-15505.	1.5	18
2356	Conjugated Polymer-Assisted Dispersion of Single-Wall Carbon Nanotubes: The Power of Polymer Wrapping. Accounts of Chemical Research, 2014, 47, 2446-2456.	7.6	236
2357	Biocompatible Carbon Nanotube–Chitosan Scaffold Matching the Electrical Conductivity of the Heart. ACS Nano, 2014, 8, 9822-9832.	7.3	187
2358	Effects of various factors on the modification of carbon nanotubes with polyvinyl alcohol in supercritical CO2 and their application in electrospun fibers. Chemical Research in Chinese Universities, 2014, 30, 690-697.	1.3	5
2359	Measurement and characterization of engineered titanium dioxide nanoparticles in the environment. Journal of Zhejiang University: Science A, 2014, 15, 593-605.	1.3	18
2360	Processing of nanostructured polymers and advanced polymeric based nanocomposites. Materials Science and Engineering Reports, 2014, 85, 1-46.	14.8	190
2361	Dispersion of SWCNTs with Imidazolium-Rich Surfactants. Langmuir, 2014, 30, 3979-3987.	1.6	24
2362	Mesoscale Simulations of Cylindrical Nanoparticle-Driven Assembly of Diblock Copolymers in Concentrated Solutions. Macromolecules, 2014, 47, 5416-5423.	2.2	9
2363	Interactions and Chemical Transformations of Coronene Inside and Outside Carbon Nanotubes. Small, 2014, 10, 1369-1378.	5.2	33
2364	The effect of light polarization on the interband transition spectra of zigzag carbon nanotubes and its diameter dependence. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 56, 79-84.	1.3	3
2365	Unconventional Terahertz Carrier Relaxation in Graphene Oxide: Observation of Enhanced Auger Recombination Due to Defect Saturation. ACS Nano, 2014, 8, 2486-2494.	7.3	33
2366	Structureâ€Dependent Mitochondrial Dysfunction and Hypoxia Induced with Singleâ€Walled Carbon Nanotubes. Small, 2014, 10, 2859-2869.	5.2	20
2367	Spectroscopic Investigation of Electrochemically Charged Individual (6,5) Single-Walled Carbon Nanotubes. Nano Letters, 2014, 14, 3138-3144.	4.5	23
2368	Highly oxidized graphene with enhanced fluorescence and its direct fluorescence visualization. Science China Chemistry, 2014, 57, 605-614.	4.2	7
2369	Photoluminescence saturation independent of excitation pathway in air-suspended single-walled carbon nanotubes. Physical Review B, 2014, 89, .	1.1	4
2370	Method of nanocarbon/montmorillonite powder extraction. Micro and Nano Letters, 2014, 9, 315-319.	0.6	0

#	Article	IF	Citations
2371	A short-wavelength infrared emitting multimodal probe for non-invasive visualization of phagocyte cell migration in living mice. Chemical Communications, 2014, 50, 14356-14359.	2.2	39
2372	A tailored RAFT copolymer for the dispersion of single walled carbon nanotubes in aqueous media. Polymer Chemistry, 2014, 5, 6148-6150.	1.9	11
2373	Selective Assembly of DNA-Conjugated Single-Walled Carbon Nanotubes from the Vascular Secretome. ACS Nano, 2014, 8, 9126-9136.	7.3	18
2374	Thermodynamics of the Quasi-Epitaxial Flavin Assembly around Various-Chirality Carbon Nanotubes. Journal of the American Chemical Society, 2014, 136, 7452-7463.	6.6	23
2375	Intense photoluminescence from dried double-stranded DNA and single-walled carbon nanotube hybrid. Applied Physics Letters, 2014, 104, 043102.	1.5	16
2376	Optical absorption and scattering spectroscopies of single nano-objects. Chemical Society Reviews, 2014, 43, 3921.	18.7	176
2377	Efficiency evaluation in solar cell by chemically processed hierarchically stacked debundled pristine carbon nanotubes. Electrochimica Acta, 2014, 130, 406-411.	2.6	1
2378	Dispersing single-walled carbon nanotubes using common phospholipids with a small amount of polyethylene glycol-phospholipid additives. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 427-432.	2.3	4
2379	New metric for evaluating the purity of single-walled carbon nanotubes using ultraviolet–visible-near infrared absorption spectroscopy. Carbon, 2014, 75, 68-80.	5.4	5
2380	Surfactant Concentration Dependent Spectral Effects of Oxygen and Depletion Interactions in Sodium Dodecyl Sulfate Dispersions of Carbon Nanotubes. Journal of Physical Chemistry B, 2014, 118, 6288-6296.	1.2	27
2381	Solubilization of Fullerenes, Carbon Nanotubes, and Graphene. Topics in Current Chemistry, 2014, 348, 1-35.	4.0	3
2382	Fullerenes and Other Carbon-Rich Nanostructures. Structure and Bonding, 2014, , .	1.0	6
2383	Fluorescent Nanoprobes. Springer Briefs in Molecular Science, 2014, , 49-74.	0.1	0
2384	Recent advances in upscalable wet methods and ink formulations for printed electronics. Journal of Materials Chemistry C, 2014, 2, 6436-6453.	2.7	183
2385	Highly Reversible Mg Insertion in Nanostructured Bi for Mg Ion Batteries. Nano Letters, 2014, 14, 255-260.	4.5	257
2386	Carbon nanotubes leading the way forward in new generation 3D tissue engineering. Biotechnology Advances, 2014, 32, 1000-1014.	6.0	131
2387	Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window. Nature Communications, 2014, 5, 4206.	5.8	470
2388	A Rapid, Direct, Quantitative, and Labelâ€Free Detector of Cardiac Biomarker Troponin T Using Nearâ€Infrared Fluorescent Singleâ€Walled Carbon Nanotube Sensors. Advanced Healthcare Materials, 2014, 3, 412-423.	3.9	76

#	Article	IF	CITATIONS
2390	Transport of fluorescently labeled hydroxyapatite nanoparticles in saturated granular media at environmentally relevant concentrations of surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457, 58-66.	2.3	34
2391	Synthesis of biguanide-functionalized single-walled carbon nanotubes (SWCNTs) hybrid materials to immobilized palladium as new recyclable heterogeneous nanocatalyst for Suzuki–Miyaura coupling reaction. Journal of Molecular Catalysis A, 2014, 382, 106-113.	4.8	71
2392	Scientometric investigation of global carbon nanotubes research. International Journal of Nuclear Knowledge Management, 2014, 6, 322.	0.3	1
2393	Separation of the semiconducting and the metallic types of single-wall carbon nanotube by electrophoresis method. Proceedings of SPIE, 2014, , .	0.8	0
2394	Aqueous Dispersion of Carbon Nanotubes Using Self-aggregating Peptides. Chemistry Letters, 2014, 43, 102-104.	0.7	1
2395	Nanotoxicity of Polymeric and Solid Lipid Nanoparticles. , 2014, , 160-177.		3
2396	Nanosensors for Biomedicine. Frontiers in Nanobiomedical Research, 2014, , 413-451.	0.1	0
2397	Recent progress in parallel fabrication of individual single walled carbon nanotube devices using dielectrophoresis. Materials Express, 2014, 4, 263-278.	0.2	11
2399	Highly Ordered and Highly Aligned Two-Dimensional Binary Superlattice of a SWNT/Cylindrical-Micellar System. Angewandte Chemie - International Edition, 2014, 53, n/a-n/a.	7.2	7
2400	Applications of Detonation Nanodiamonds. , 2014, , 253-280.		1
2401	Diameter dependent degradation of single walled carbon nanotubes. , 2014, , .		0
2402	On the Mechanical Properties of Functionalized CNT Reinforced Polymer Roham RaÂ [~] ee and Reza Pourazizi. , 2015, , 636-653.		0
2403	Plasma Functionalization of Nanotubes. , 2015, , 484-513.		0
2404	Exciton splitting in semiconducting carbon nanotubes in ultrahigh magnetic fields above 300 T. Physical Review B, 2015, 91, .	1.1	6
2405	Tunable electronic correlation effects in nanotube-light interactions. Physical Review B, 2015, 92, .	1.1	13
2406	Exciton Lifetime Paradoxically Enhanced by Dissipation and Decoherence: Toward Efficient Energy Conversion of a Solar Cell. Physical Review Letters, 2015, 115, 197701.	2.9	9
2407	Silicon nanowire and carbon nanotube hybrid for room temperature multiwavelength light source. Scientific Reports, 2015, 5, 16753.	1.6	26
2408	Facile Isolation of Adsorbent-Free Long and Highly-Pure Chirality-Selected Semiconducting Single-Walled Carbon Nanotubes Using A Hydrogen-bonding Supramolecular Polymer. Scientific Reports, 2015, 5, 18066.	1.6	25

#	Article	IF	CITATIONS
2409	Hyperspectral Microscopy of Near-Infrared Fluorescence Enables 17-Chirality Carbon Nanotube Imaging. Scientific Reports, 2015, 5, 14167.	1.6	114
2410	Boron nitride nanowires synthesis via a simple chemical vapor deposition at 1200 °C. AIP Conference Proceedings, 2015, , .	0.3	3
2412	Optical detection of individual ultra-short carbon nanotubes enables their length characterization down to 10 nm. Scientific Reports, 2015, 5, 17093.	1.6	19
2415	Optical properties of armchair (7, 7) single walled carbon nanotubes. AIP Advances, 2015, 5, .	0.6	26
2416	Inhibition of Cancer Cell Migration by Multiwalled Carbon Nanotubes. Advanced Healthcare Materials, 2015, 4, 1640-1644.	3.9	29
2417	Unambiguous Diagnosis of Photoinduced Charge Carrier Signatures in a Stoichiometrically Controlled Semiconducting Polymerâ€Wrapped Carbon Nanotube Assembly. Angewandte Chemie - International Edition, 2015, 54, 8133-8138.	7.2	17
2418	Solidâ€State Approach for Fabrication of Photostable, Oxygenâ€Doped Carbon Nanotubes. Advanced Functional Materials, 2015, 25, 6157-6164.	7.8	30
2419	Generating Selective Saccharide Binding Affinity of Phenyl Boronic Acids by using Singleâ€Walled Carbon Nanotube Corona Phases. Chemistry - A European Journal, 2015, 21, 4523-4528.	1.7	16
2420	Unambiguous Diagnosis of Photoinduced Charge Carrier Signatures in a Stoichiometrically Controlled Semiconducting Polymerâ€Wrapped Carbon Nanotube Assembly. Angewandte Chemie, 2015, 127, 8251-8256.	1.6	8
2421	Selective detection and quantification of carbon nanotubes in soil. Environmental Toxicology and Chemistry, 2015, 34, 1969-1974.	2.2	6
2423	<i>In Situ </i> Photoluminescence Spectroelectrochemistry for Determination of Electronic States of Single-Walled Carbon Nanotubes. E-Journal of Surface Science and Nanotechnology, 2015, 13, 179-184.	0.1	1
2424	Hyperthermia approaches for enhanced delivery of nanomedicines to solid tumors. Biotechnology and Bioengineering, 2015, 112, 1967-1983.	1.7	59
2426	Polyazines and Polyazomethines with Didodecylthiophene Units for Selective Dispersion of Semiconducting Singleâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2015, 25, 5858-5864.	7.8	26
2427	Recent Progress in Obtaining Semiconducting Singleâ€Walled Carbon Nanotubes for Transistor Applications. Advanced Materials, 2015, 27, 7908-7937.	11.1	67
2428	Examination of Single-Walled Carbon Nanotubes Uptake and Toxicity from Dietary Exposure: Tracking Movement and Impacts in the Gastrointestinal System. Nanomaterials, 2015, 5, 1066-1086.	1.9	36
2429	Carbon nanotube-assisted optical activation of TGF-β signalling by near-infrared light. Nature Nanotechnology, 2015, 10, 465-471.	15.6	57
2430	Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Science and Technology of Advanced Materials, 2015, 16, 024802.	2.8	279
2431	Light-Driven and Phonon-Assisted Dynamics in Organic and Semiconductor Nanostructures. Chemical Reviews, 2015, 115, 5929-5978.	23.0	160

#	Article	IF	CITATIONS
2432	Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chemical Reviews, 2015, 115, 10816-10906.	23.0	1,151
2433	Temperature dependent separation of metallic and semiconducting carbon nanotubes using gel agarose chromatography. Carbon, 2015, 93, 574-594.	5.4	29
2434	Single-chirality separation of ultra-thin semiconducting arc discharge single-walled carbon nanotubes. Carbon, 2015, 91, 408-415.	5.4	6
2435	Properties of electrophoretically deposited single wall carbon nanotube films. Thin Solid Films, 2015, 589, 278-285.	0.8	6
2436	Enhanced pervaporative performance of hybrid membranes containing Fe3O4@CNT nanofillers. Journal of Membrane Science, 2015, 492, 230-241.	4.1	50
2437	A comparative study on the basis of adsorption capacity between CNTs and activated carbon as adsorbents for removal of noxious synthetic dyes: a review. Journal of Nanostructure in Chemistry, 2015, 5, 227-236.	5.3	177
2438	Synthesis and Functions of Ag2S Nanostructures. Nanoscale Research Letters, 2015, 10, 431.	3.1	50
2439	Viscoelasticity of Single-Walled Carbon Nanotubes in Unsaturated Polyester Resin: Effects of Purity and Chirality Distribution. Macromolecules, 2015, 48, 8641-8650.	2.2	9
2440	Molecular simulation perspective of liquid-phase exfoliation, dispersion, and stabilization for graphene. Current Opinion in Colloid and Interface Science, 2015, 20, 339-345.	3.4	22
2441	Efficient near-infrared up-conversion photoluminescence in carbon nanotubes. Nature Communications, 2015, 6, 8920.	5.8	103
2442	A General Method Towards Efficient Synthesis and Fluorescence Tuning of Carbon Black-Derived Carbon Dots via Controlled Liquid Oxidization. Australian Journal of Chemistry, 2015, 68, 1446.	0.5	2
2443	A comparison of physically and chemically defective graphene nanosheets as catalyst supports for cubic Pd nanoparticles in an alkaline oxygen reduction reaction. Electrochimica Acta, 2015, 186, 552-561.	2.6	24
2444	Performance dependence of SWCNT/n-silicon hybrid solar cells on the charge carrier concentration in silicon substrates. RSC Advances, 2015, 5, 621-627.	1.7	7
2445	Dramatic Improvement in Water Retention and Proton Conductivity in Electrically Aligned Functionalized CNT/SPEEK Nanohybrid PEM. ACS Applied Materials & Interfaces, 2015, 7, 264-272.	4.0	164
2446	Reactions on single-walled nanotubes: 1. Radiation-stimulated reactions in aqueous suspensions of single-walled carbon nanotubes in surfactant solutions. High Energy Chemistry, 2015, 49, 48-52.	0.2	4
2447	Raman scattering of linear chains of strongly coupled Ag nanoparticles on SWCNTs. Scientific Reports, 2014, 4, 5238.	1.6	53
2448	2D Equation-of-State Model for Corona Phase Molecular Recognition on Single-Walled Carbon Nanotube and Graphene Surfaces. Langmuir, 2015, 31, 628-636.	1.6	22
2449	Phase-dependent thermophysical properties of α-and γ-Al2O3 in aqueous suspension. Journal of Industrial and Engineering Chemistry, 2015, 25, 99-104.	2.9	6

#	Article	IF	CITATIONS
2450	Photothermal stress triggered by near infrared-irradiated carbon nanotubes promotes bone deposition in rat calvarial defects. Journal of Biomaterials Applications, 2015, 29, 1109-1118.	1.2	25
2451	Stabilization and functionalization of singleâ€walled carbon nanotubes with polyvinylpyrrolidone copolymers for applications in aqueous media. Journal of Polymer Science Part A, 2015, 53, 337-343.	2.5	11
2452	Quantification of graphene and graphene oxide in complex organic matrices. Environmental Science: Nano, 2015, 2, 60-67.	2.2	26
2453	Increase of open circuit voltage of polymer bulk heterojunction solar cell by functionalized single walled carbon nanotubes. International Journal of Higher Education Management, 2015, 1, 59-64.	1.0	1
2454	Optical Probing of Local pH and Temperature in Complex Fluids with Covalently Functionalized, Semiconducting Carbon Nanotubes. Journal of Physical Chemistry C, 2015, 119, 3733-3739.	1.5	79
2455	Effect of orientation on the piezoresistivity of mechanically drawn single walled carbon nanotube (SWCNT) thin films. Carbon, 2015, 85, 372-382.	5.4	22
2456	Conformational phase diagram for proteins absorbed on ultra-small nanoparticles studied by a structure-based coarse-grained model. Molecular Simulation, 2015, 41, 1200-1211.	0.9	2
2457	Fabrication of Copper/Multiwalled Carbon Nanotube Composites Containing Different Sized Nanotubes by Electroless Deposition. Journal of the Electrochemical Society, 2015, 162, D68-D73.	1.3	16
2458	Raman microscopy for cellular investigations — From single cell imaging to drug carrier uptake visualization. Advanced Drug Delivery Reviews, 2015, 89, 71-90.	6.6	129
2459	Gate-controlled generation of optical pulse trains using individual carbon nanotubes. Nature Communications, 2015, 6, 6335.	5.8	19
2460	Orientation and density control of bispecific anti-HER2 antibody on functionalized carbon nanotubes for amplifying effective binding reactivity to cancer cells. Nanoscale, 2015, 7, 6363-6373.	2.8	11
2461	Flexible thermoelectric rubber polymer composites based on single-walled carbon nanotubes. Japanese Journal of Applied Physics, 2015, 54, 04DN03.	0.8	10
2462	Nanotube- and graphene-based photomedicine for cancer therapeutics. , 2015, , 291-329.		1
2463	Singleâ€walled carbon nanotubes as nearâ€infrared optical biosensors for life sciences and biomedicine. Biotechnology Journal, 2015, 10, 447-459.	1.8	79
2464	Deformation of singleâ€walled carbon nanotubes by interaction with graphene: A firstâ€principles study. Journal of Computational Chemistry, 2015, 36, 717-722.	1.5	8
2465	Predicting excitonic gaps of semiconducting single-walled carbon nanotubes from a field theoretic analysis. Physical Review B, 2015, 91, .	1.1	6
2466	Photophoresis in single walled carbon nanotubes. Materials Research Express, 2015, 2, 075012.	0.8	3
2467	Dispersion of multi-walled carbon nanotubes modified by rosemary acid into poly(vinyl alcohol) and preparation of their composite fibers. RSC Advances, 2015, 5, 55492-55498.	1.7	25

#	Article	IF	CITATIONS
2468	A Mathematical Formulation and Solution of the CoPhMoRe Inverse Problem for Helically Wrapping Polymer Corona Phases on Cylindrical Substrates. Journal of Physical Chemistry C, 2015, 119, 13876-13886.	1.5	40
2469	Isomerization of Orthogonal Molecular Switches Encapsulated within Micelles Solubilizing Carbon Nanotubes. Journal of Physical Chemistry C, 2015, 119, 15731-15734.	1.5	8
2470	Bright Fraction of Single-Walled Carbon Nanotubes through Correlated Fluorescence and Topography Measurements. Journal of Physical Chemistry Letters, 2015, 6, 2816-2821.	2.1	9
2471	Ultrafast Terahertz Probes of Interacting Dark Excitons in Chirality-Specific Semiconducting Single-Walled Carbon Nanotubes. Physical Review Letters, 2015, 114, 107402.	2.9	48
2472	Differential sub-cellular processing of single-wall carbon nanotubes via interfacial modifications. Journal of Materials Chemistry B, 2015, 3, 6274-6284.	2.9	7
2473	Potential of carbon nanotubes in algal biotechnology. Photosynthesis Research, 2015, 125, 451-471.	1.6	39
2474	Ultrafast thermal charging of inorganic nano-phase change material composites for solar thermal energy storage. RSC Advances, 2015, 5, 56541-56548.	1.7	39
2475	Sol–gel chemistry mediated Zn/Al-based complex dispersant for SWCNT in water without foam formation. Carbon, 2015, 94, 518-523.	5.4	18
2476	Probing Photosensitization by Functionalized Carbon Nanotubes. Environmental Science & Technology, 2015, 49, 13835-13843.	4.6	37
2477	Molecular interactions on single-walled carbon nanotubes revealed by high-resolution transmission microscopy. Nature Communications, 2015, 6, 7732.	5.8	33
2478	Control of the photoluminescence properties of single-walled carbon nanotubes by alkylation and subsequent thermal treatment. Chemical Communications, 2015, 51, 13462-13465.	2.2	39
2479	Effect of Induction on the Dispersion of Semiconducting and Metallic Single-Walled Carbon Nanotubes Using Conjugated Polymers. Macromolecules, 2015, 48, 5155-5161.	2.2	35
2480	A study of oxidizing centers in carbon nanotubes by solid-state NMR. RSC Advances, 2015, 5, 60380-60385.	1.7	3
2481	Ammonium Laurate Surfactant for Cleaner Deposition of Carbon Nanotubes. Langmuir, 2015, 31, 6948-6955.	1.6	4
2482	Single-walled carbon nanotube networks for flexible and printed electronics. Semiconductor Science and Technology, 2015, 30, 074001.	1.0	91
2483	Multifunctionalized Carbon Nanotubes Polymer Composites: Properties and Applications. Advanced Structured Materials, 2015, , 155-214.	0.3	14
2484	Single- and double-wall carbon nanotubes fully covered with tetraphenylporphyrins: Stability and optoelectronic properties from ab initio calculations. Chemical Physics Letters, 2015, 634, 47-52.	1.2	7
2485	Preparation of carbon nanotubes/waterborne polyurethane composites with the emulsion particles assisted dispersion of carbon nanotubes. Composites Science and Technology, 2015, 114, 50-56.	3.8	33

#	Article	IF	CITATIONS
2486	Scanning electron microscopy of carbon nanotubes dispersed in ionic liquid: Solvent influence study. Microchemical Journal, 2015, 122, 137-143.	2.3	10
2487	Bench-top aqueous two-phase extraction of isolated individual single-walled carbon nanotubes. Nano Research, 2015, 8, 1755-1769.	5.8	41
2488	Optimization of Sonication Parameters for Homogeneous Surfactant-Assisted Dispersion of Multiwalled Carbon Nanotubes in Aqueous Solutions. Journal of Physical Chemistry C, 2015, 119, 7506-7516.	1.5	77
2489	Personalizing Biomaterials for Precision Nanomedicine Considering the Local Tissue Microenvironment. Advanced Healthcare Materials, 2015, 4, 1584-1599.	3.9	44
2490	Dispersing Perylene Diimide/SWCNT Hybrids: Structural Insights at the Molecular Level and Fabricating Advanced Materials. Journal of the American Chemical Society, 2015, 137, 7429-7440.	6.6	37
2491	Critical Review on the Toxicity of Some Widely Used Engineered Nanoparticles. Industrial & Engineering Chemistry Research, 2015, 54, 6209-6233.	1.8	222
2492	Carbon nanomaterials for photovoltaic process. Nano Energy, 2015, 15, 490-522.	8.2	47
2493	Anisotropic terahertz response of stretch-aligned composite films based on carbon nanotube–SiC hybrid structures. RSC Advances, 2015, 5, 26985-26990.	1.7	5
2494	Photo-nano immunotherapy for metastatic breast cancer using synergistic single-walled carbon nanotubes and glycated chitosan. , 2015, , .		0
2495	Caffeine's Antioxidant Potency Optically Sensed with Double-Stranded DNA-Encased Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2015, 119, 4068-4075.	1.2	27
2496	Synthesis of boron nitride nanotubes via chemical vapour deposition: a comprehensive review. RSC Advances, 2015, 5, 35116-35137.	1.7	54
2497	Sensing properties of light-emitting single walled carbon nanotubes prepared via click chemistry of ylides bound to the nanotube surface. RSC Advances, 2015, 5, 36865-36873.	1.7	11
2498	Flexible all-solid-state hierarchical NiCo2O4/porous graphene paper asymmetric supercapacitors with an exceptional combination of electrochemical properties. Nano Energy, 2015, 13, 306-317.	8.2	303
2499	Green synthesis of fluorescent carbon nanoparticles from lychee (Litchi chinensis) plant. Korean Journal of Chemical Engineering, 2015, 32, 1707-1711.	1.2	17
2500	Recent advances in synthetic methods and applications of colloidal silver chalcogenide quantum dots. Coordination Chemistry Reviews, 2015, 296, 91-124.	9.5	119
2501	Molecular-Level Understanding of Solvation Structures and Vibrational Spectra of an Ethylammonium Nitrate Ionic Liquid around Single-Walled Carbon Nanotubes. Industrial & Engineering Chemistry Research, 2015, 54, 8166-8174.	1.8	19
2502	Pulsed ultra-violet laser interactions with ultra-low-density porous carbon nanotube sponges. Carbon, 2015, 93, 604-610.	5.4	9
2503	Hierarchical Polymer–Carbon Nanotube Hybrid Mesostructures by Crystallization-Driven Self-Assembly. ACS Nano, 2015, 9, 10673-10685.	7.3	30

#	Article	IF	CITATIONS
2504	Photocurrent spectroscopy of exciton and free particle optical transitions in suspended carbon nanotube pn-junctions. Applied Physics Letters, 2015, 107, 053107.	1.5	13
2505	Variance Spectroscopy. Journal of Physical Chemistry Letters, 2015, 6, 3976-3981.	2.1	13
2506	Polyhydrogenated Graphene: Excited State Dynamics in Photo- and Electroactive Two-Dimensional Domains. Journal of the American Chemical Society, 2015, 137, 13079-13086.	6.6	25
2507	Naphthalenebisimides as photofunctional surfactants for SWCNTs – towards water-soluble electron donor–acceptor hybrids. Chemical Science, 2015, 6, 6886-6895.	3.7	13
2508	Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding. International Journal of Machine Tools and Manufacture, 2015, 99, 19-33.	6.2	391
2509	Deagglomeration of multi-walled carbon nanotubes via an organic modifier: structure and mechanism. Physical Chemistry Chemical Physics, 2015, 17, 25365-25378.	1.3	14
2510	Size reduction of 3D-polymer-coated single-walled carbon nanotubes by ultracentrifugation. Nanoscale, 2015, 7, 19534-19539.	2.8	8
2511	State-of-the-art photodetectors for optoelectronic integration at telecommunication wavelength. Nanophotonics, 2015, 4, 277-302.	2.9	76
2512	Synthesis of 1D-glyconanomaterials by a hybrid noncovalent–covalent functionalization of single wall carbon nanotubes: a study of their selective interactions with lectins and with live cells. Nanoscale, 2015, 7, 19259-19272.	2.8	16
2513	Tailoring the photophysical properties of carbon nanotubes by photonic nanostructures. Modern Physics Letters B, 2015, 29, 1530004.	1.0	6
2514	Carbon nanotube photonics: using microring resonators for tailoring semiconducting carbon nanotubes photoluminescence. Journal of Nanophotonics, 2015, 10, 012513.	0.4	1
2515	Fluorescence Imaging In Vivo at Wavelengths beyond 1500â€nm. Angewandte Chemie - International Edition, 2015, 54, 14758-14762.	7.2	310
2516	Chiral selectivity of polyglycerol-based amphiphiles incorporating different aromatic cores. Physica Status Solidi (B): Basic Research, 2015, 252, 2536-2540.	0.7	6
2517	Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nature Communications, 2015, 6, 8563.	5.8	921
2518	Synthesis of a Conductive Copolymer and Phase Diagram of Its Suspension with Single-Walled Carbon Nanotubes by Microfluidic Technology. Macromolecules, 2015, 48, 7473-7480.	2.2	20
2519	Chirality-dependent mechanical response of empty and water-filled single-wall carbon nanotubes at high pressure. Carbon, 2015, 95, 442-451.	5.4	40
2520	A carbon–carbon hybrid – immobilizing carbon nanodots onto carbon nanotubes. Chemical Science, 2015, 6, 6878-6885.	3.7	38
2521	Enhancement of high-resolution photoacoustic imaging with indocyanine green-conjugated carbon nanotubes. Japanese Journal of Applied Physics, 2015, 54, 07HF04.	0.8	14

#	Article	IF	Citations
2522	Preparation and Charge-Transfer Study in a Single-Walled Carbon Nanotube Functionalized with Poly(3,4-ethylenedioxythiophene). Journal of Physical Chemistry C, 2015, 119, 21538-21546.	1.5	11
2523	Carbon nanotubes as non-contact optical strain sensors in smart skins. Journal of Strain Analysis for Engineering Design, 2015, 50, 505-512.	1.0	25
2524	Production of well dispersible single walled carbon nanotubes via a "floating catalyst―method. Chemical Engineering Science, 2015, 138, 385-395.	1.9	14
2525	Protein functionalized carbon nanomaterials for biomedical applications. Carbon, 2015, 95, 767-779.	5.4	186
2526	Not nanocarbon but dispersant induced abnormality in lysosome in macrophages <i>in vivo</i> . Nanotechnology, 2015, 26, 195102.	1.3	5
2527	Electron spectrum of a single-wall carbon nanotube in the framework of the nonlinear SchrĶdinger equation. Journal of Experimental and Theoretical Physics, 2015, 121, 289-293.	0.2	0
2528	Recent Progress on the Chemical Reactions of Single-Walled Carbon Nanotubes. , 2015, , 177-197.		1
2529	Dispersion and Individualization of SWNT in Surfactant-Free Suspensions and Composites of Hydrosoluble Polymers. Journal of Physical Chemistry C, 2015, 119, 703-709.	1.5	9
2530	Understanding the Stabilization of Single-Walled Carbon Nanotubes and Graphene in Ionic Surfactant Aqueous Solutions: Large-Scale Coarse-Grained Molecular Dynamics Simulation-Assisted DLVO Theory. Journal of Physical Chemistry C, 2015, 119, 1047-1060.	1.5	50
2531	Effect of temperature on the selection of semiconducting single walled carbon nanotubes using Poly(3-dodecylthiophene-2,5-diyl). Carbon, 2015, 84, 66-73.	5.4	27
2532	Decoration of carbon nanotubes with highly dispersed platinum nanoparticles for electrocatalytic application. Journal of Electroanalytical Chemistry, 2015, 738, 77-83.	1.9	11
2533	Fluorescent labels in biosensors for pathogen detection. Critical Reviews in Biotechnology, 2015, 35, 82-93.	5.1	71
2534	On the trade-off between processability and opto-electronic properties of single wall carbon nanotube derivatives in thin film heterojunctions. Journal of Materials Chemistry C, 2015, 3, 303-312.	2.7	20
2535	Effective Purification of SWNTs Based on Combined Method. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 78-82.	1.0	1
2536	Carbon nanomaterials: multi-functional agents for biomedical fluorescence and Raman imaging. Chemical Society Reviews, 2015, 44, 4672-4698.	18.7	220
2537	Multi-walled carbon nanotube dispersion by the adsorbed humic acids with different chemical structures. Environmental Pollution, 2015, 196, 292-299.	3.7	39
2538	Relative Ordering between Bright and Dark Excitons in Single-walled Carbon Nanotubes. Scientific Reports, 2014, 4, 6999.	1.6	13
2539	Characterization of carbon nanotubes and analytical methods for their determination in environmental and biological samples: A review. Analytica Chimica Acta, 2015, 853, 77-94.	2.6	101

#	Article	IF	CITATIONS
2540	Dithiafulvenyl-grafted phenylene ethynylene polymers as selective and reversible dispersants for single-walled carbon nanotubes. Chemical Communications, 2015, 51, 149-152.	2.2	20
2541	Carbon nanotube based biosensors. Sensors and Actuators B: Chemical, 2015, 207, 690-715.	4.0	407
2543	Enrichment of Metallic Single-Walled Carbon Nanotubes with Simultaneous Purification by Nitric Acid Treatment. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 542-548.	1.0	5
2544	Application of Carbon Nanotubes for Plant Genetic Transformation. Springer Proceedings in Physics, 2015, , 233-255.	0.1	5
2545	A Pharmacokinetic Model of a Tissue Implantable Insulin Sensor. Advanced Healthcare Materials, 2015, 4, 87-97.	3.9	39
2547	Electronic and Optoelectronic Properties and Applications of Carbon Nanotubes. , 2016, , .		0
2548	Mechanical Properties of Carbon Nanotubes-Polymer Composites. , 0, , .		15
2549	Strain-sensing smart skin. , 2016, , 353-375.		2
2551	Determining the Surfactant Consistent with Concrete in order to Achieve the Maximum Possible Dispersion of Multiwalled Carbon Nanotubes in Keeping the Plain Concrete Properties. Journal of Nanotechnology, 2016, 2016, 1-9.	1.5	21
2552	Enhancement of Photoluminescence from Semiconducting Nanotubes in Aqueous Suspensions due to Cysteine and Dithiothreitol Doping: Influence of the Sonication Treatment. Nanoscale Research Letters, 2016, 11, 490.	3.1	4
2553	Affinity-mediated sorting order reversal of single-walled carbon nanotubes in density gradient ultracentrifugation. Nanotechnology, 2016, 27, 41LT01.	1.3	12
2554	Nanocomposite Polymer Biomaterials for Tissue Repair of Bone and Cartilage: A Material Science Perspective. , 2016, , 557-584.		1
2555	Enhancing the Colloidal Stability and Electrical Conductivity of Single-Walled Carbon Nanotubes Dispersed in Water. Macromolecular Chemistry and Physics, 2016, 217, 683-700.	1.1	9
2556	Highly selective sorting of semiconducting single wall carbon nanotubes exhibiting light emission at telecom wavelengths. Nano Research, 2016, 9, 2478-2486.	5.8	6
2557	Chemically Functionalized, Wellâ€Dispersed Carbon Nanotubes in Lithiumâ€Doped Zinc Oxide for Lowâ€Cost, Highâ€Performance Thinâ€Film Transistors. Small, 2016, 12, 1859-1865.	5.2	4
2558	Chiralityâ€Selective Photoluminescence Enhancement of ssDNAâ€Wrapped Singleâ€Walled Carbon Nanotubes Modified with Gold Nanoparticles. Small, 2016, 12, 3164-3171.	5.2	11
2559	Carbon nanotubes in the surfactants dispersion: formation of the microenvironment. Journal of Physics: Conference Series, 2016, 690, 012030.	0.3	16
2560	Carbon nanotube chirality enrichment through chiralityâ€selective precipitation. Physica Status Solidi (B): Basic Research, 2016, 253, 2380-2384.	0.7	1

#	Article	IF	Citations
2561	Spontaneously restored electrical conductivity of bioactive gel comprising mussel adhesive protein-coated carbon nanotubes. RSC Advances, 2016, 6, 87044-87048.	1.7	7
2562	Near-field imaging of single walled carbon nanotubes emitting in the telecom wavelength range. Journal of Applied Physics, 2016, 120, 123110.	1.1	5
2563	Effect of cleaning procedures on the electrical properties of carbon nanotube transistors—A statistical study. Journal of Applied Physics, 2016, 119, .	1.1	18
2564	Structure and properties of aqueous dispersions of sodium dodecyl sulfate with carbon nanotubes. Russian Chemical Bulletin, 2016, 65, 1208-1215.	0.4	31
2565	Large Bandgap Shrinkage from Doping and Dielectric Interface in Semiconducting Carbon Nanotubes. Scientific Reports, 2016, 6, 28520.	1.6	10
2566	Nanoparticle guests in lyotropic liquid crystals. Series in Sof Condensed Matter, 2016, , 695-722.	0.1	Ο
2567	Laser-assisted photoporation: fundamentals, technological advances and applications. Advances in Physics: X, 2016, 1, 596-620.	1.5	47
2568	Zero dark leakage current single-walled carbon nanotube diodes. Applied Physics Letters, 2016, 109, 203114.	1.5	4
2569	Performance Enhancement of Polymerâ€Free Carbon Nanotube Solar Cells via Transfer Matrix Modeling. Advanced Energy Materials, 2016, 6, 1501345.	10.2	25
2570	Ultrafast nonlinear photoresponse of single-wall carbon nanotubes: a broadband degenerate investigation. Nanoscale, 2016, 8, 9304-9309.	2.8	39
2571	Red-emitting Ï¿-conjugated oligomers infused single-wall carbon nanotube sheets. Chemical Physics Letters, 2016, 649, 53-59.	1.2	3
2572	Study of ionic surfactants interactions with carboxylated single-walled carbon nanotubes by using ion-selective electrodes. Electrochemistry Communications, 2016, 67, 31-34.	2.3	15
2573	Functionalization of single-walled carbon nanotubes with thermo-responsive poly(N-isopropylacrylamide): effect of the polymer architecture. RSC Advances, 2016, 6, 37953-37964.	1.7	20
2574	Carbon Nanotube–Based Electrodes for Detection of Low–ppb Level Hexavalent Chromium Using Amperometry. ECS Journal of Solid State Science and Technology, 2016, 5, M3026-M3031.	0.9	9
2575	Fabrication of copper/single-walled carbon nanotube composite film with homogeneously dispersed nanotubes by electroless deposition. Materials Today Communications, 2016, 7, 101-107.	0.9	29
2576	ï€-Plasmon absorption of carbon nanotubes for the selective and sensitive detection of Fe ³⁺ ions. Chemical Science, 2016, 7, 5192-5199.	3.7	55
2577	Surface engineering of nanomaterials for improved energy storage – A review. Chemical Engineering Science, 2016, 154, 3-19.	1.9	49
2578	Photoluminescent Carbon Nanostructures. Chemistry of Materials, 2016, 28, 4085-4128.	3.2	186

#	Article	IF	CITATIONS
2579	Development of Novel Drug and Gene Delivery Carriers Composed ofÂSingle-Walled Carbon Nanotubes and Designed Peptides With PEGylation. Journal of Pharmaceutical Sciences, 2016, 105, 2815-2824.	1.6	33
2580	Spectral triangulation: a 3D method for locating single-walled carbon nanotubes in vivo. Nanoscale, 2016, 8, 10348-10357.	2.8	20
2581	Molecularly Tunable Fluorescent Quantum Defects. Journal of the American Chemical Society, 2016, 138, 6878-6885.	6.6	126
2583	Structure–property relations in individual carbon nanotubes [Invited]. Journal of the Optical Society of America B: Optical Physics, 2016, 33, C102.	0.9	4
2584	Dynamics of Evaporation from Confined Water in an SWCNT in the Presence of an External Field. Journal of Physical Chemistry C, 2016, 120, 6493-6501.	1.5	6
2585	Enriched surface acidity for surfactant-free suspensions of carboxylated carbon nanotubes purified by centrifugation. Analytical Chemistry Research, 2016, 8, 26-33.	2.0	5
2586	Characterization and properties of transparent cellulose nanowhiskers-based graphene nanoplatelets/multi-walled carbon nanotubes films. Composites Part A: Applied Science and Manufacturing, 2016, 86, 77-86.	3.8	12
2587	Ubiquity of Exciton Localization in Cryogenic Carbon Nanotubes. Nano Letters, 2016, 16, 2958-2962.	4.5	24
2588	An intensive dispersion and synchronous assembly of single-walled carbon nanotubes in a surfactant–oil–water association system. Physical Chemistry Chemical Physics, 2016, 18, 10947-10953.	1.3	7
2589	Quantitative Tissue Spectroscopy of Near Infrared Fluorescent Nanosensor Implants. Journal of Biomedical Nanotechnology, 2016, 12, 1035-1047.	0.5	46
2590	Interaction of Polymers with Single-Wall Carbon Nanotubes. Journal of Physical Chemistry C, 2016, 120, 10094-10103.	1.5	20
2591	Bio-inspired ZnO nanoparticles from Ocimum tenuiflorum and their in vitro antioxidant activity. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	33
2592	Review—Engineering the Selectivity of the DNA-SWCNT Sensor. ECS Journal of Solid State Science and Technology, 2016, 5, M3067-M3074.	0.9	12
2593	Chirality dependent corona phase molecular recognition of DNA-wrapped carbon nanotubes. Carbon, 2016, 97, 147-153.	5.4	78
2594	Fullerene-Assisted Photoinduced Charge Transfer of Single-Walled Carbon Nanotubes through a Flavin Helix. Journal of the American Chemical Society, 2016, 138, 5904-5915.	6.6	15
2595	Influence of regiochemistry in the selective dispersion of metallic carbon nanotubes using electron poor conjugated polymers. Polymer Chemistry, 2016, 7, 3832-3837.	1.9	8
2596	Palm kernel oil-based polyester polyurethane composites incorporated with multi-walled carbon nanotubes for biomedical application. Bioresources and Bioprocessing, 2016, 3, .	2.0	6
2597	Nanoparticle Ecotoxicology. , 2016, , 343-450.		18

#	Article	IF	CITATIONS
2598	Facile synthesis of 3D silicon/carbon nanotube capsule composites as anodes for high-performance lithium-ion batteries. Journal of Power Sources, 2016, 329, 422-427.	4.0	41
2599	Removal of excess polymer from a suspension containing hybrids of thermoresponsive polymer and carbon nanotubes using aggregation phenomenon. Japanese Journal of Applied Physics, 2016, 55, 095003.	0.8	1
2600	The nano necklace made of single-walled carbon nanotubes and an azo-containing polymer: Island-like carboxyl distribution, bead-like morphology formation, and photophysical properties manipulation. Carbon, 2016, 108, 112-119.	5.4	3
2601	Decontamination of surfaces exposed to single wall carbon nanohorns. Journal of Environmental Chemical Engineering, 2016, 4, 3409-3414.	3.3	2
2602	Highly Efficient and Predictable Noncovalent Dispersion of Single-Walled and Multi-Walled Carbon Nanotubes by Cellulose Nanocrystals. Journal of Physical Chemistry C, 2016, 120, 22694-22701.	1.5	48
2603	Superemission in vertically-aligned single-wall carbon nanotubes. Photonics and Nanostructures - Fundamentals and Applications, 2016, 21, 67-81.	1.0	6
2605	Photoluminescence Side Band Spectroscopy of Individual Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2016, 120, 23898-23904.	1.5	24
2606	Photopatterned Single-Walled Carbon Nanotube Films Utilizing the Adsorption/Desorption Processes of Photofunctional Dispersants. ACS Applied Materials & amp; Interfaces, 2016, 8, 28400-28405.	4.0	7
2607	9 Upconversion Nanoparticles for Phototherapy. Nanomaterials and Their Applications, 2016, , 255-290.	0.0	0
2608	Boundary conditions at closed edge of bilayer graphene and energy bands of collapsed nanotubes. Physical Review B, 2016, 94, .	1.1	3
2609	Near infrared photoluminescence modulation of single-walled carbon nanotubes based on a molecular recognition approach. Chemical Communications, 2016, 52, 12972-12975.	2.2	52
2610	Probing the Diameter Limit of Single Walled Carbon Nanotubes in SWCNT: Fullerene Solar Cells. Advanced Energy Materials, 2016, 6, 1600890.	10.2	50
2611	Probing the Influence of Amino Acids on Photoluminescence from Carbon Nanotubes Suspended with DNA. Journal of Fluorescence, 2016, 26, 1951-1958.	1.3	5
2612	Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite. Journal of Colloid and Interface Science, 2016, 484, 135-145.	5.0	43
2613	Surface-Anchored Poly(4-vinylpyridine)–Single-Walled Carbon Nanotube–Metal Composites for Gas Detection. Chemistry of Materials, 2016, 28, 5916-5924.	3.2	54
2614	A ZnO–CNT nanocomposite based electrochemical DNA biosensor for meningitis detection. RSC Advances, 2016, 6, 76214-76222.	1.7	15
2615	Contrast agents for molecular photoacoustic imaging. Nature Methods, 2016, 13, 639-650.	9.0	979
2616	Origin of the Surfactantâ€Dependent Redox Chemistry of Singleâ€Wall Carbon Nanotubes. ChemNanoMat, 2016, 2, 911-920.	1.5	16

#	Article	IF	CITATIONS
2617	Implementing luminescence thermometry at 1.3 μm using (GdNd)2O3 nanoparticles. Journal of Luminescence, 2016, 180, 25-30.	1.5	43
2618	Optical sensitivity of mussel protein-coated double-walled carbon nanotubes on the iron–DOPA conjugation bond. RSC Advances, 2016, 6, 16308-16313.	1.7	1
2619	Ultrafast Photophysics of Singleâ€Walled Carbon Nanotubes. Advanced Optical Materials, 2016, 4, 1670-1688.	3.6	28
2620	Substrate-Mediated Cooperative Adsorption of Sodium Cholate on (6,5) Single-Wall Carbon Nanotubes. Langmuir, 2016, 32, 9598-9603.	1.6	19
2621	"€-Conjugated polymers with pendant coumarins: design, synthesis, characterization, and interactions with carbon nanotubes. Canadian Journal of Chemistry, 2016, 94, 759-768.	0.6	5
2622	Experimental evaluation of cooling performance by friction coefficient and specific friction energy in nanofluid minimum quantity lubrication grinding with different types of vegetable oil. Journal of Cleaner Production, 2016, 139, 685-705.	4.6	113
2623	Selective Dispersion of Highly Pure Large-Diameter Semiconducting Carbon Nanotubes by a Flavin for Thin-Film Transistors. ACS Applied Materials & Interfaces, 2016, 8, 23270-23280.	4.0	32
2624	Specific Molecular Interaction and Recognition at Single-Walled Carbon Nanotube Surfaces. Langmuir, 2016, 32, 12323-12331.	1.6	7
2625	Combined microfluidization and ultrasonication: a synergistic protocol for high-efficient processing of SWCNT dispersions with high quality. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	5
2626	Influence of Polymer Electronics on Selective Dispersion of Singleâ€Walled Carbon Nanotubes. Chemistry - A European Journal, 2016, 22, 14560-14566.	1.7	37
2627	Elucidating the role of surfactant dispersed CNTs towards HSA fibrillation in vitro — A multiple spectroscopic approach. Journal of Molecular Liquids, 2016, 221, 714-720.	2.3	3
2628	Tuning of the photoluminescence and up-conversion photoluminescence properties of single-walled carbon nanotubes by chemical functionalization. Nanoscale, 2016, 8, 16916-16921.	2.8	44
2629	(n,m) Assignments of Metallic Single-Walled Carbon Nanotubes by Raman Spectroscopy: The Importance of Electronic Raman Scattering. ACS Nano, 2016, 10, 10789-10797.	7.3	27
2630	Quantum dot-like excitonic behavior in individual single walled-carbon nanotubes. Scientific Reports, 2016, 6, 37167.	1.6	6
2631	Polymer-Free Carbon Nanotube Thermoelectrics with Improved Charge Carrier Transport and Power Factor. ACS Energy Letters, 2016, 1, 1212-1220.	8.8	76
2632	Effect of nano sized garnet particles dispersion on the viscous behavior of extreme pressure lubricant oil. Journal of Molecular Liquids, 2016, 223, 643-651.	2.3	38
2633	Covalently Functionalized SWCNTs as Tailored p-Type Dopants for Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 27966-27973.	4.0	38
2635	Functional Singleâ€Walled Carbon Nanotubes and Nanoengineered Networks for Organic―and Perovskiteâ€Solarâ€Cell Applications. Advanced Materials, 2016, 28, 9668-9685.	11.1	22

#	Article	IF	CITATIONS
2636	Dispersibility Switching of Carbon Nanotubes and Carbon Black by the Photoisomerization of a Cationic Azobenzene Derivative. Chemistry Letters, 2016, 45, 1307-1309.	0.7	10
2637	Tuning the backbones and side chains of cationic meta-linked poly(phenylene ethynylene)s: Different conformational modes, tunable light emission, and helical wrapping of multi-walled carbon nanotubes. Polymer, 2016, 102, 143-152.	1.8	6
2638	The role of carbon precursor on carbon nanotube chirality in floating catalyst chemical vapour deposition. Nanoscale, 2016, 8, 17262-17270.	2.8	35
2639	Requirement for the Formation of Crosslinked Polymers on Single-walled Carbon Nanotubes Using Vinyl Monomers. Chemistry Letters, 2016, 45, 274-276.	0.7	9
2640	"Smart poisoning―of Co/SiO2catalysts by sulfidation for chirality-selective synthesis of (9,8) single-walled carbon nanotubes. Nanoscale, 2016, 8, 17705-17713.	2.8	32
2641	Formation of Coaxial Nanocables with Amplified Supramolecular Chirality through an Interaction between Carbon Nanotubes and a Chiral Ï€â€Gelator. Angewandte Chemie, 2016, 128, 10501-10505.	1.6	10
2642	Formation of Coaxial Nanocables with Amplified Supramolecular Chirality through an Interaction between Carbon Nanotubes and a Chiral Ï€â€Gelator. Angewandte Chemie - International Edition, 2016, 55, 10345-10349.	7.2	22
2643	Individualized pâ€Đoped Carbon Nanohorns. Angewandte Chemie, 2016, 128, 10624-10628.	1.6	2
2644	Individualized pâ€Đoped Carbon Nanohorns. Angewandte Chemie - International Edition, 2016, 55, 10468-10472.	7.2	17
2645	Theory of Exciton Energy Transfer in Carbon Nanotube Composites. Journal of Physical Chemistry C, 2016, 120, 16354-16366.	1.5	12
2646	Visualizing Helical Wrapping of Semiconducting Singleâ€Walled Carbon Nanotubes by Surfactants and Their Impacts on Electronic Properties. ChemistrySelect, 2016, 1, 3569-3572.	0.7	4
2647	Carbon Nanotube TFTs. , 2016, , 1145-1183.		0
2648	Carbon nanotube reinforced cementitious composites: An overview. Composites Part A: Applied Science and Manufacturing, 2016, 91, 301-323.	3.8	214
2649	Cooperative Assembly of Phosphole Lipids and Single-Walled Carbon Nanotubes. Chemistry of Materials, 2016, 28, 8407-8414.	3.2	8
2650	Nanoscale Light Emission Spectroscopy of a Single Carbon Nanotube Adsorbed on Au(111). Journal of the Vacuum Society of Japan, 2016, 59, 92-95.	0.3	1
2651	Strain effect of cellulose-wrapped single-walled carbon nanotubes measured by photoluminescence and Raman scattering spectroscopy. Japanese Journal of Applied Physics, 2016, 55, 075101.	0.8	7
2652	Thermodynamics for the Formation of Double‣tranded DNA–Singleâ€Walled Carbon Nanotube Hybrids. Chemistry - A European Journal, 2016, 22, 4774-4779.	1.7	14
2653	Flexible capacitive behavior of hybrid carbon materials prepared from graphene sheets. Materials Research Express, 2016, 3, 065006.	0.8	0

#	Article	IF	CITATIONS
2654	Ensuring near-optimum homogeneity and densification levels in nano-reinforced ceramics. Proceedings of SPIE, 2016, , .	0.8	0
2655	Selective synthesis of carbon-nanotubes/graphite or carbon-nanotubes/multi-graphene composites on 3-D nickel foam prepared with different nickel catalyst and pre-treatment. Synthetic Metals, 2016, 219, 124-134.	2.1	9
2656	Ultrafast electron transfer in all-carbon-based SWCNT–C ₆₀ donor–acceptor nanoensembles connected by poly(phenylene–ethynylene) spacers. Nanoscale, 2016, 8, 14716-14724.	2.8	18
2657	Toward carbon nanotube-based imaging agents for the clinic. Biomaterials, 2016, 101, 229-240.	5.7	47
2658	Synthesis and cryogenic spectroscopy of narrow-diameter single-wall carbon nanotubes. Carbon, 2016, 105, 622-627.	5.4	2
2659	Electrochemical determination of aspirin and caffeine at MWCNTs-poly-4-vinylpyridine composite modified electrode. Journal of the Taiwan Institute of Chemical Engineers, 2016, 65, 101-109.	2.7	27
2660	Optimizing the Interactions of Surfactants with Graphitic Surfaces and Clathrate Hydrates. Langmuir, 2016, 32, 6559-6570.	1.6	26
2661	Distribution of single wall carbon nanotubes in the Xenopus laevis embryo after microinjection. Journal of Applied Toxicology, 2016, 36, 568-578.	1.4	6
2662	Supramolecular interactions of fluorene-based copolymers containing 3,4-propylenedioxythiophene and phenazine units with SWNTs. Polymer Chemistry, 2016, 7, 5241-5248.	1.9	11
2663	Singleâ€Walled Carbon Nanotubes in Highly Viscous Media: A Comparison between the Dispersive Agents [BMIM][BF ₄], L121, and Triton Xâ€100. Chemistry - A European Journal, 2016, 22, 546-549.	1.7	13
2664	Recent advances on the characterization of nanoparticles using infrared spectroscopy. TrAC - Trends in Analytical Chemistry, 2016, 84, 97-106.	5.8	72
2665	Mild covalent functionalization of single-walled carbon nanotubes highlighted by spectroscopic ellipsometry. Carbon, 2016, 96, 557-564.	5.4	3
2666	Carbon nanotubes from synthesis to in vivo biomedical applications. International Journal of Pharmaceutics, 2016, 501, 278-299.	2.6	188
2667	Exploiting the biological windows: current perspectives on fluorescent bioprobes emitting above 1000 nm. Nanoscale Horizons, 2016, 1, 168-184.	4.1	527
2668	Delivering Single-Walled Carbon Nanotubes to the Nucleus Using Engineered Nuclear Protein Domains. ACS Applied Materials & Interfaces, 2016, 8, 3524-3534.	4.0	31
2669	A simple quantitative estimate of the number of functional groups on the surfaces of single-walled carbon nanotubes. RSC Advances, 2016, 6, 6451-6458.	1.7	4
2671	One-step synthesis of graphene quantum dots from defective CVD graphene and their application in IGZO UV thin film phototransistor. Carbon, 2016, 100, 201-207.	5.4	47
2672	Bioengineering Applications of Carbon Nanostructures. Nanomedicine and Nanotoxicology, 2016, , .	0.1	5

#	Article	IF	CITATIONS
2673	Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts. Nanoscale, 2016, 8, 1608-1617.	2.8	61
2674	Carbon Nanotubes Under Pressure. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2016, , 99-134.	0.3	0
2675	Cell Membrane Proteins Modulate the Carbon Nanotube Optical Bandgap <i>via</i> Surface Charge Accumulation. ACS Nano, 2016, 10, 499-506.	7.3	71
2676	Nanosensors for neurotransmitters. Analytical and Bioanalytical Chemistry, 2016, 408, 2727-2741.	1.9	45
2677	Adsorption of sodium dodecylsulfate on single-walled carbon nanotubes characterised using small-angle neutron scattering. Journal of Colloid and Interface Science, 2016, 472, 1-7.	5.0	17
2678	A room temperature light source based on silicon nanowires. Thin Solid Films, 2016, 613, 59-63.	0.8	5
2679	The effects of carbon nanotubes on the clearing transition of the antiferroelectric liquid crystal MHPOBC. Ferroelectrics, 2016, 495, 69-74.	0.3	5
2680	Near-Infrared Light Activation of Proteins Inside Living Cells Enabled by Carbon Nanotube-Mediated Intracellular Delivery. ACS Applied Materials & Interfaces, 2016, 8, 4500-4507.	4.0	25
2681	Aqueous dispersion of multiwall carbon nanotubes with phosphonic acid derivatives. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 493, 41-51.	2.3	15
2682	Thermal properties and heat storage analysis of palmitic acid-TiO 2 composite as nano-enhanced organic phase change material (NEOPCM). Applied Thermal Engineering, 2016, 99, 1254-1262.	3.0	194
2683	Performances of Al2O3/SiC hybrid nanofluids in minimum-quantity lubrication grinding. International Journal of Advanced Manufacturing Technology, 2016, 86, 3427-3441.	1.5	121
2684	Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. Journal of Materials Processing Technology, 2016, 232, 100-115.	3.1	288
2685	Impact of Redox-Active Molecules on the Fluorescence of Polymer-Wrapped Carbon Nanotubes. Journal of Physical Chemistry C, 2016, 120, 3061-3070.	1.5	78
2686	Interfacial Surfactant Ordering in Thin Films of SDS-Encapsulated Single-Walled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2016, 7, 320-326.	2.1	23
2687	Water inside carbon nanotubes: structure and dynamics. Nanotechnology Reviews, 2016, 5, .	2.6	27
2688	In situ growth of silicon carbide–carbon nanotube composites. New Journal of Chemistry, 2016, 40, 3863-3868.	1.4	2
2689	Toward Practical Non-Contact Optical Strain Sensing Using Single-Walled Carbon Nanotubes. ECS Journal of Solid State Science and Technology, 2016, 5, M3012-M3017.	0.9	16
2690	Non-covalent dispersion of multi-walled carbon nanotubes in aqueous solution with hyperbranched polyethylene-g-poly(methacrylic acid). RSC Advances, 2016, 6, 27682-27689.	1.7	7

#	Article	IF	CITATIONS
2691	Selective dispersion of single-walled carbon nanotubes with electron-rich fluorene-based copolymers. RSC Advances, 2016, 6, 25733-25740.	1.7	15
2692	Upconversion photoluminescence imaging and spectroscopy of individual single-walled carbon nanotubes. Applied Physics Express, 2016, 9, 045103.	1.1	11
2693	Giant Raman Response to the Encapsulation of Sulfur in Narrow Diameter Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2016, 138, 40-43.	6.6	43
2694	Applications of Highly Bright PbS Quantum Dots to Non-Invasive Near-Infrared Fluorescence Imaging in the Second Optical Window. ECS Journal of Solid State Science and Technology, 2016, 5, R3138-R3145.	0.9	34
2695	Protein-targeted corona phase molecular recognition. Nature Communications, 2016, 7, 10241.	5.8	193
2696	A new designed π conjugated molecule for stable single walled carbon nanotube dispersion in aqueous medium. Journal of Colloid and Interface Science, 2016, 464, 117-125.	5.0	11
2697	Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes. Biomaterials, 2016, 75, 163-173.	5.7	47
2698	Synthesis, Purification and Functionalization of Carbon Nanotubes for Biotechnological Applications. Nanomedicine and Nanotoxicology, 2016, , 139-163.	0.1	1
2699	CVD growth of 1D and 2D sp2 carbon nanomaterials. Journal of Materials Science, 2016, 51, 640-667.	1.7	70
2700	Photoluminescent carbon nanotubes interrogate the permeability of multicellular tumor spheroids. Carbon, 2016, 97, 99-109.	5.4	41
2701	Study on the removal of heavy metal ions from industry waste by carbon nanotubes: Effect of the surface modification: a review. Critical Reviews in Environmental Science and Technology, 2016, 46, 93-118.	6.6	262
2702	Synthesis and evaluation of single-wall carbon nanotube-paclitaxel-folic acid conjugate as an anti-cancer targeting agent. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1247-1253.	1.9	23
2703	Carbon nanotubes for ultrafast fibre lasers. Nanophotonics, 2017, 6, 1-30.	2.9	107
2704	Controlling the kinetics of the non-covalent functionalization of carbon nanotubes using sub-cmc dilutions in a co-surfactant environment. Nanoscale, 2017, 9, 2646-2651.	2.8	6
2705	Chirality-independent characteristic crystal length in carbon nanotube textiles measured by Raman spectroscopy. Carbon, 2017, 115, 672-680.	5.4	22
2706	Visible/near-infrared subdiffraction imaging reveals the stochastic nature of DNA walkers. Science Advances, 2017, 3, e1601600.	4.7	45
2707	Dispersion of non-covalently modified graphene in aqueous medium: a molecular dynamics simulation approach. RSC Advances, 2017, 7, 4460-4467.	1.7	12
2708	An optically detected magnetic resonance spectrometer with tunable laser excitation and wavelength resolved infrared detection. Review of Scientific Instruments, 2017, 88, 013902.	0.6	7

#	Article	IF	CITATIONS
2709	Emerging investigators series: highly effective adsorption of organic aromatic molecules from aqueous environments by electronically sorted single-walled carbon nanotubes. Environmental Science: Water Research and Technology, 2017, 3, 203-212.	1.2	18
2710	Poly(3,4-ethylene-dioxythiophene)-poly(styrenesulfonate) glued and graphene encapsulated sulfur-carbon film for high-performance free-standing lithium-sulfur batteries. Journal of Power Sources, 2017, 342, 772-778.	4.0	22
2711	Preserving π-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications. Nature Communications, 2017, 8, 14281.	5.8	130
2712	Review—Progress toward Applications of Carbon Nanotube Photoluminescence. ECS Journal of Solid State Science and Technology, 2017, 6, M3075-M3077.	0.9	27
2713	Highly Efficient Supramolecular Aggregation-Induced Emission-Active Pseudorotaxane Luminogen for Functional Bioimaging. Biomacromolecules, 2017, 18, 886-897.	2.6	101
2714	Near-infrared fluorophores for biomedical imaging. Nature Biomedical Engineering, 2017, 1, .	11.6	1,982
2715	In situ Characterization of Nanoparticles Using Rayleigh Scattering. Scientific Reports, 2017, 7, 40230.	1.6	22
2716	Molecular Luminescence of White Carbon. Small, 2017, 13, 1603495.	5.2	15
2717	Separation of double-wall carbon nanotubes by electronic type and diameter. Nanoscale, 2017, 9, 2531-2540.	2.8	17
2718	High-Yield Synthesis and Optical Properties of Carbon Nanotube Porins. Journal of Physical Chemistry C, 2017, 121, 3117-3125.	1.5	11
2719	Dependence of carbon nanotubes dispersion kinetics on surfactants. Nanotechnology, 2017, 28, 135702.	1.3	14
2720	Photoinduced charge separation in single-walled carbon nanotube/protein integrated systems. Nanoscale Horizons, 2017, 2, 163-166.	4.1	6
2721	Covalently Connected Carbon Nanotubes as Electrocatalysts for Hydrogen Evolution Reaction through Band Engineering. ACS Catalysis, 2017, 7, 2676-2684.	5.5	41
2722	Synthesis of a poly(amidoamine) dendrimer having a 1,10-bis(decyloxy)decane core and its use in fabrication of carbon nanotube/calcium carbonate hybrids through biomimetic mineralization. Canadian Journal of Chemistry, 2017, 95, 935-941.	0.6	6
2723	Electronically Pure Single Chirality Semiconducting Single-Walled Carbon Nanotube for Large Scale Electronic Devices. MRS Advances, 2017, 2, 83-88.	0.5	0
2724	Fluorescence from graphene nanoribbons of well-defined structure. Carbon, 2017, 119, 235-240.	5.4	30
2725	Single-walled carbon nanotubes as optical probes for bio-sensing and imaging. Journal of Materials Chemistry B, 2017, 5, 6511-6522.	2.9	102
2726	Multifunctional Biomedical Imaging in Physiological and Pathological Conditions Using a NIRâ€II Probe. Advanced Functional Materials, 2017, 27, 1700995.	7.8	169

#	Article	IF	Citations
2727	DNA-wrapped carbon nanotubes aligned in stretched gelatin films: Polarized resonance Raman and absorption spectroscopy study. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 93, 92-96.	1.3	9
2728	Strongly Bound Sodium Dodecyl Sulfate Surrounding Single-Wall Carbon Nanotubes. Langmuir, 2017, 33, 5006-5014.	1.6	26
2729	Properties and Applications of Polymer Nanocomposites. , 2017, , .		16
2730	Single-Walled Carbon Nanotube Separations Using Simple Metal Ionic Salt Additives in Gel-Based Chromatography. ECS Journal of Solid State Science and Technology, 2017, 6, M3148-M3154.	0.9	4
2731	Relaxation lifetimes of plasmonically enhanced hybrid gold-carbon nanotubes systems. Nanotechnology, 2017, 28, 255202.	1.3	4
2732	Nanohybrid Catalyst based on Carbon Nanotube. Carbon Nanostructures, 2017, , .	0.1	13
2733	Enhancement of pyramid solar still productivity using absorber plates made of carbon fiber/CNT-modified epoxy composites. Desalination, 2017, 419, 117-124.	4.0	64
2734	Polymer cloaking modulates the carbon nanotube protein corona and delivery into cancer cells. Journal of Materials Chemistry B, 2017, 5, 6637-6644.	2.9	25
2735	Surgery beyond the visible light spectrum: theoretical and applied methods for localization of the male urethra during transanal total mesorectal excision. Techniques in Coloproctology, 2017, 21, 413-424.	0.8	35
2736	Synergistic Impacts of Electrolyte Adsorption on the Thermoelectric Properties of Singleâ€Walled Carbon Nanotubes. Small, 2017, 13, 1700804.	5.2	34
2737	Control Synthesis of Tubular Hyper-Cross-Linked Polymers for Highly Porous Carbon Nanotubes. ACS Applied Materials & Interfaces, 2017, 9, 20779-20786.	4.0	77
2738	Functionalized carbon nanotubes in bio-world: Applications, limitations and future directions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 223, 43-63.	1.7	80
2739	Fabrication of durable and flexible single-walled carbon nanotube transparent conductive films. RSC Advances, 2017, 7, 19267-19272.	1.7	19
2740	Nanoemitters and innate immunity: the role of surfactants and bio-coronas in myeloperoxidase-catalyzed oxidation of pristine single-walled carbon nanotubes. Nanoscale, 2017, 9, 5948-5956.	2.8	9
2741	Highâ€Throughput Optical Imaging and Spectroscopy of Oneâ€Dimensional Materials. Chemistry - A European Journal, 2017, 23, 9703-9710.	1.7	1
2742	Review—Photophysics of Trions in Single-Walled Carbon Nanotubes. ECS Journal of Solid State Science and Technology, 2017, 6, M3062-M3064.	0.9	1
2743	Application of Carbon-Based Nanomaterials as Biosensor. , 2017, , 87-127.		7
2744	Raman spectroscopy enabled investigation of carbon nanotubes quality upon dispersion in aqueous environments. Biointerphases, 2017, 12, 011004.	0.6	14

#	Article	IF	CITATIONS
2745	Smart NIR linear and nonlinear optical nanomaterials for cancer theranostics: Prospects in photomedicine. Progress in Materials Science, 2017, 88, 89-135.	16.0	84
2746	A carbon nanotube reporter of microRNA hybridization events in vivo. Nature Biomedical Engineering, 2017, 1, .	11.6	160
2747	Defect-Induced Near-Infrared Photoluminescence of Single-Walled Carbon Nanotubes Treated with Polyunsaturated Fatty Acids. Journal of the American Chemical Society, 2017, 139, 4859-4865.	6.6	44
2748	Functionalized single-walled carbon nanotubes: cellular uptake, biodistribution and applications in drug delivery. International Journal of Pharmaceutics, 2017, 524, 41-54.	2.6	113
2749	Noncovalent Protein and Peptide Functionalization of Single-Walled Carbon Nanotubes for Biodelivery and Optical Sensing Applications. ACS Applied Materials & Interfaces, 2017, 9, 11321-11331.	4.0	150
2750	Near-Infrared Photoluminescent Carbon Nanotubes for Imaging of Brown Fat. Scientific Reports, 2017, 7, 44760.	1.6	71
2751	30 years of advances in functionalization of carbon nanomaterials for biomedical applications: a practical review. Journal of Materials Research, 2017, 32, 107-127.	1.2	50
2752	Evaluation of concentration and dispersion of functionalized carbon nanotubes in aqueous media by means of Low Field Nuclear Magnetic Resonance. Carbon, 2017, 113, 387-394.	5.4	6
2753	Carbon Nanotubes as Optical Sensors in Biomedicine. ACS Nano, 2017, 11, 10637-10643.	7.3	106
2754	Inner- and outer-wall sorting of double-walled carbon nanotubes. Nature Nanotechnology, 2017, 12, 1176-1182.	15.6	32
2755	Investigation of Hybrid Conjugated/Nonconjugated Polymers for Sorting of Single-Walled Carbon Nanotubes. Macromolecules, 2017, 50, 8002-8009.	2.2	13
2756	Excitonic optical response of carbon chains confined in single-walled carbon nanotubes. Physical Review B, 2017, 96, .	1.1	8
2757	Photoluminescence Brightening of Isolated Single-Walled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2017, 8, 4954-4959.	2.1	10
2758	Control of Carbon Nanotube Solvatochromic Response to Chemotherapeutic Agents. ACS Applied Materials & Interfaces, 2017, 9, 37947-37953.	4.0	21
2759	Solubility of functionalized single-wall carbon nanotubes in water: a theoretical study. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	4
2760	Ionic Strength-Mediated Phase Transitions of Surface-Adsorbed DNA on Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2017, 139, 16791-16802.	6.6	74
2761	Brightly and directionally luminescent single-walled carbon nanotubes in a wedge cavity. Applied Physics Letters, 2017, 111, 163104.	1.5	4
2762	Formation of Highly Pure and Patterned Carbon Nanotube Films on a Variety of Substrates by a Wet Process Based on Light-Induced Dispersibility Switching. ACS Applied Materials & Interfaces, 2017, 9, 30805-30811.	4.0	9

#	Article	IF	CITATIONS
2763	Carbon Fibers and Their Thermal Transporting Properties. , 2017, , 135-184.		8
2764	Phase separation and physico-chemical processes at microscopic and macroscopic levels in MWCNT laden polymer blends using a unique droplet based architecture. Physical Chemistry Chemical Physics, 2017, 19, 24961-24970.	1.3	2
2765	A Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid Flux. ACS Nano, 2017, 11, 10689-10703.	7.3	84
2766	Bandgap renormalization in single-wall carbon nanotubes. Scientific Reports, 2017, 7, 11221.	1.6	10
2767	Photoacoustic molecular imaging with functional nanoparticles. Journal of Innovative Optical Health Sciences, 2017, 10, 1730004.	0.5	6
2768	Aggregated Single-Walled Carbon Nanotubes Absorb and Deform Dopamine-Related Proteins Based on Molecular Dynamics Simulations. ACS Applied Materials & Interfaces, 2017, 9, 32452-32462.	4.0	24
2769	Carbon nanotubes in microfluidic lab-on-a-chip technology: current trends and future perspectives. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	36
2770	Spectroscopic investigation confirms retaining the pristine nature of single-walled carbon nanotubes on dissolution in aniline. Frontiers of Materials Science, 2017, 11, 276-283.	1.1	0
2771	Trajectory of the Selective Dissolution of Charged Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2017, 121, 21703-21712.	1.5	9
2772	Engineering Molecular Recognition with Bio-mimetic Polymers on Single Walled Carbon Nanotubes. Journal of Visualized Experiments, 2017, , .	0.2	9
2773	Microscopy and Image Analysis. Current Protocols in Human Genetics, 2017, 94, 4.4.1-4.4.89.	3.5	19
2774	Dispersion of singleâ€walled carbon nanotubes using nucleobaseâ€containing poly(acrylamide) polymers. Journal of Polymer Science Part A, 2017, 55, 2611-2617.	2.5	7
2775	Advanced carbon nanotubes functionalization. Journal of Physics Condensed Matter, 2017, 29, 423003.	0.7	36
2776	Carbon Nanomaterials in Biological Studies and Biomedicine. Advanced Healthcare Materials, 2017, 6, 1700574.	3.9	155
2777	Dispersion stability of multi-walled carbon nanotubes in catanionic surfactant mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 531, 141-149.	2.3	38
2778	Superacid-Surfactant Exchange: Enabling Nondestructive Dispersion of Full-Length Carbon Nanotubes in Water. ACS Nano, 2017, 11, 9231-9238.	7.3	33
2779	In-situ Adsorption of Polymer Particles on Multi-wall Carbon Nanotubes Using Colloidal Techniques. Colloids and Interface Science Communications, 2017, 20, 1-4.	2.0	8
2780	Recent developments in the selective dispersion of single-walled carbon nanotubes using conjugated polymers. Chemical Science, 2017, 8, 7292-7305.	3.7	78

.,		15	Currenterio
#	ARTICLE Assembly of carbon nanotubes into microparticles with tunable morphologies using droplets in a	IF	CITATIONS
2781	non-equilibrium state. RSC Advances, 2017, 7, 17773-17780.	1.7	6
2782	Applications of carbon nanotubes and graphene produced by chemical vapor deposition. MRS Bulletin, 2017, 42, 825-833.	1.7	14
2783	Single-Walled Carbon Nanotubes Probed with Insulator-Based Dielectrophoresis. Analytical Chemistry, 2017, 89, 13235-13244.	3.2	29
2784	Electrostatics and quantum efficiency simulations of asymmetrically contacted carbon nanotube photodetector. AIP Advances, 2017, 7, 105111.	0.6	0
2785	Creating Carbon Nanotubes Microenvironment in Surfactant Water Solutions. Solid State Phenomena, 0, 265, 342-347.	0.3	6
2786	Low mass fraction impregnation with graphene oxide (GO) enhances thermo-physical properties of paraffin for heat storage applications. Thermochimica Acta, 2017, 655, 226-233.	1.2	27
2787	The Gadonanotubes as High-Performance MRI Contrast Agents: The Unappreciated Role of the Carbon Nanotube Component at Low Magnetic Fields. ECS Journal of Solid State Science and Technology, 2017, 6, M3173-M3180.	0.9	4
2788	A Density Functional Theory Study on the Interaction Between 5-Fluorouracil Drug and C24 Fullerene. Journal of Cluster Science, 2017, 28, 2681-2692.	1.7	29
2789	Effect of amine-functionalized dispersant on cure and electrical properties of carbon nanotube/epoxy nanocomposites. Progress in Organic Coatings, 2017, 111, 389-394.	1.9	21
2790	Carbon Photodetectors: The Versatility of Carbon Allotropes. Advanced Energy Materials, 2017, 7, 1601574.	10.2	44
2791	Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chemical Society Reviews, 2017, 46, 158-196.	18.7	329
2792	Synergistic effect of chemo-photothermal for breast cancer therapy using folic acid (FA) modified zinc oxide nanosheet. Journal of Colloid and Interface Science, 2017, 488, 92-108.	5.0	75
2793	Understanding the colloidal dispersion stability of 1D and 2D materials: Perspectives from molecular simulations and theoretical modeling. Advances in Colloid and Interface Science, 2017, 244, 36-53.	7.0	37
2794	Lubricating property of MQL grinding of Al2O3/SiC mixed nanofluid with different particle sizes and microtopography analysis by cross-correlation. Precision Engineering, 2017, 47, 532-545.	1.8	121
2795	Functionalization of multiâ€walled carbon nanotubes with pramipexole for immobilization of palladium nanoparticles and investigation of catalytic activity in the Sonogashira coupling reaction. Applied Organometallic Chemistry, 2017, 31, e3600.	1.7	25
2796	Single walled carbon nanotubes emission coupled with a silicon slot-ring resonator. Journal of Luminescence, 2017, 191, 126-130.	1.5	7
2797	Construction of a highly sensitive non-enzymatic sensor for superoxide anion radical detection from living cells. Biosensors and Bioelectronics, 2017, 90, 39-45.	5.3	53
2798	Elimination of bleaching in a material based on aqueous fluid with carbon nanoparticles for optical limiters. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 123, 305-308.	0.2	2

#	Article	IF	Citations
2799	Preparation and investigation of nano-enhanced PCM for thermal energy storage. , 2017, , .		1
2800	DNA–Carbon Nanotube Complexation Affinity and Photoluminescence Modulation Are Independent. ACS Applied Materials & Interfaces, 2017, 9, 21397-21405.	4.0	62
2801	Optical Absorption in Collapsed Carbon Nanotubes. Journal of the Physical Society of Japan, 2017, 86, 064709.	0.7	1
2802	Polybenzoxazine/Carbon Nanotube Composites. , 2017, , 725-738.		6
2803	Photodynamic Action of Single-Walled Carbon Nanotubes. Chemical and Pharmaceutical Bulletin, 2017, 65, 629-636.	0.6	6
2804	Effect of deformation on the structure of polyimide PM-A at low temperatures. Low Temperature Physics, 2017, 43, 1226-1229.	0.2	2
2805	Improved tandem mass spectrometer coupled to a laser vaporization cluster ion source. Review of Scientific Instruments, 2017, 88, 123110.	0.6	11
2806	Strongly coupled exciton-surface plasmon polariton from excited-subband transitions of single-walled carbon nanotubes. Optics Express, 2017, 25, 32142.	1.7	6
2807	Evaluation of Different Single-Walled Carbon Nanotube Surface Coatings for Single-Particle Tracking Applications in Biological Environments. Nanomaterials, 2017, 7, 393.	1.9	21
2808	Carbon Nanotubes as Fluorescent Labels for Surface Plasmon Resonance-Assisted Fluoroimmunoassay. Sensors, 2017, 17, 2569.	2.1	8
2809	Recent Advances in Nanomaterials for Gene Delivery—A Review. Nanomaterials, 2017, 7, 94.	1.9	275
2810	Carbon Nanotube Membranes: Synthesis, Properties, and Future Filtration Applications. Nanomaterials, 2017, 7, 99.	1.9	110
2811	Carbon Nanotubes as an Effective Opportunity for Cancer Diagnosis and Treatment. Biosensors, 2017, 7, 9.	2.3	114
2812	Apparatus for Scalable Functionalization of Single-Walled Carbon Nanotubes via the Billups-Birch Reduction. Journal of Carbon Research, 2017, 3, 19.	1.4	6
2813	The Advances of Carbon Nanotubes in Cancer Diagnostics and Therapeutics. Journal of Nanomaterials, 2017, 2017, 1-13.	1.5	68
2814	Chemiresistor Devices for Chemical Warfare Agent Detection Based on Polymer Wrapped Single-Walled Carbon Nanotubes. Sensors, 2017, 17, 982.	2.1	53
2815	Dispersion of Single-Walled Carbon Nanotubes in Ketone Solvents and Effects of Sonication. International Journal of the Society of Materials Engineering for Resources, 2017, 22, 20-24.	0.1	0
2816	Photo-ignition process of multiwall carbon nanotubes and ferrocene by continuous wave Xe lamp illumination. Beilstein Journal of Nanotechnology, 2017, 8, 134-144.	1.5	13

#	Article	IF	CITATIONS
2817	Vibrational energy transfer from photoexcited carbon nanotubes to proteins observed by coherent phonon spectroscopy. Applied Physics Express, 2017, 10, 125101.	1.1	3
2818	Recent development on carbon based heterostructures for their applications in energy and environment: A review. Journal of Industrial and Engineering Chemistry, 2018, 64, 16-59.	2.9	146
2819	Fractal and spectroscopic analysis of soot from internal combustion engines. European Physical Journal Plus, 2018, 133, 1.	1.2	26
2820	Carbon Nanotubes Encapsulated in Coiledâ€Coil Peptide Barrels. Chemistry - A European Journal, 2018, 24, 12241-12245.	1.7	45
2821	Plasma functionalization of powdery nanomaterials using porous filter electrode and sample circulation. Applied Surface Science, 2018, 443, 628-634.	3.1	10
2822	Oxygen-doped carbon nanotubes for near-infrared fluorescent labels and imaging probes. Scientific Reports, 2018, 8, 6272.	1.6	67
2823	Carbon-nanotube-based nano-emitters: A review. Journal of Luminescence, 2018, 200, 181-188.	1.5	12
2824	Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging. Chemical Science, 2018, 9, 4370-4380.	3.7	437
2825	Noninvasive ovarian cancer biomarker detection via an optical nanosensor implant. Science Advances, 2018, 4, eaaq1090.	4.7	121
2826	Oxygen, sulfur and selenium terminated single-walled heterocyclic carbon nanobelts (SWHNBs) as potential 3D organic semiconductors. Nanoscale, 2018, 10, 7639-7648.	2.8	7
2827	Polyethylene glycol functionalized carbon nanotubes/gelatin-chitosan nanocomposite: An approach for significant drug release. Bioactive Materials, 2018, 3, 236-244.	8.6	63
2828	Direct Evidence of Exciton–Exciton Annihilation in Single-Crystalline Organic Metal Halide Nanotube Assemblies. Journal of Physical Chemistry Letters, 2018, 9, 2164-2169.	2.1	15
2829	Single-walled carbon nanotube/polystyrene core–shell hybrids: synthesis and photoluminescence properties. Journal of Materials Chemistry C, 2018, 6, 4786-4792.	2.7	5
2830	Impact of carbon nanotubes based nanofluid on oil recovery efficiency using core flooding. Results in Physics, 2018, 9, 39-48.	2.0	66
2831	Indexing the Quality of Single-Wall Carbon Nanotube Dispersions Using Absorption Spectra. Journal of Physical Chemistry C, 2018, 122, 4681-4690.	1.5	12
2832	Decoration of Polyfluorene-Wrapped Carbon Nanotubes via Strain-Promoted Azide–Alkyne Cycloaddition. Macromolecules, 2018, 51, 755-762.	2.2	22
2833	Excitons in Single-Walled Carbon Nanotubes and Their Dynamics. Annual Review of Physical Chemistry, 2018, 69, 81-99.	4.8	43
2834	De-bundled single-walled carbon nanotube-modified sensors for simultaneous differential pulse voltammetric determination of ascorbic acid, dopamine, and uric acid. New Journal of Chemistry, 2018, 42, 2432-2438.	1.4	26

# 2835	ARTICLE Engineered MoSe ₂ â€Based Heterostructures for Efficient Electrochemical Hydrogen Evolution Reaction. Advanced Energy Materials, 2018, 8, 1703212.	IF 10.2	CITATIONS
2836	Carbonâ€Nanotubeâ€Based Thermoelectric Materials and Devices. Advanced Materials, 2018, 30, 1704386.	11.1	411
2837	Single-Walled Carbon Nanotubes in Solar Cells. Topics in Current Chemistry, 2018, 376, 4.	3.0	58
2838	Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications. Advanced Materials, 2018, 30, 1701460.	11.1	137
2839	A Metalâ€Free, Nonâ€Enzymatic Electrochemical Glucose Sensor with a deâ€Bundled Singleâ€Walled Carbon Nanotubeâ€Modified Electrode. Bulletin of the Korean Chemical Society, 2018, 39, 141-145.	1.0	8
2840	Networks constructed by metal organic frameworks (MOFs) and multiwall carbon nanotubes (MCNTs) for excellent electromagnetic waves absorption. Materials Chemistry and Physics, 2018, 208, 198-206.	2.0	33
2841	A mean-density model of ionic surfactants for the dispersion of carbon nanotubes in aqueous solutions. Applied Surface Science, 2018, 439, 1133-1142.	3.1	7
2842	Density gradient ultracentrifugation for colloidal nanostructures separation and investigation. Science Bulletin, 2018, 63, 645-662.	4.3	35
2843	The photochromism, light harvesting and self-assembly activity of a multi-function Schiff-base compound based on the AIE effect. Journal of Materials Chemistry C, 2018, 6, 4057-4064.	2.7	62
2844	Single Semiconductor Nanostructure Extinction Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 16443-16463.	1.5	15
2845	Functionalization of polyfluorene-wrapped carbon nanotubes <i>via</i> copper-mediated azide–alkyne cycloaddition. Polymer Chemistry, 2018, 9, 2873-2879.	1.9	23
2846	Switching the optical and electrical properties of carbon nanotube hybrid films using a photoresponsive dispersant as a dopant. RSC Advances, 2018, 8, 11186-11190.	1.7	6
2847	Nanopatterns of Phospholipid Assemblies on Carbon Nanotubes: A Molecular Dynamics Simulation Study. Journal of Physical Chemistry C, 2018, 122, 7455-7463.	1.5	4
2848	Optical Properties of Singleâ€Walled Carbon Nanotubes Doped in Acid Medium. Physica Status Solidi (B): Basic Research, 2018, 255, 1700272.	0.7	8
2849	Synthesis of NaYF 4 :Nd@NaLuF 4 @SiO 2 @PS colloids for fluorescence imaging in the second biological window. Journal of Rare Earths, 2018, 36, 113-118.	2.5	32
2850	NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy. Journal of Materials Chemistry B, 2018, 6, 349-365.	2.9	263
2851	Recent advances in carbon nanotube based electrochemical biosensors. International Journal of Biological Macromolecules, 2018, 108, 687-703.	3.6	206
2852	Critical Review—Water-Soluble Near-Infrared Fluorophores Emitting over 1000 nm and Their Application to In Vivo Imaging in the Second Optical Window (1000–1400 nm). ECS Journal of Solid State Science and Technology, 2018, 7, R3093-R3101.	0.9	20

#	Article	IF	CITATIONS
2853	Monitoring the antioxidant effects of catechin using single-walled carbon nanotubes: Comparative analysis by near-infrared absorption and near-infrared photoluminescence. Colloids and Surfaces B: Biointerfaces, 2018, 161, 139-146.	2.5	24
2854	Effective dispersion of multi-walled carbon nanotubes in aqueous solution using an ionic-gemini dispersant. Journal of Colloid and Interface Science, 2018, 512, 750-757.	5.0	40
2855	Individually isolated single wall carbon nanotubes with controlled surface charge density. Physica B: Condensed Matter, 2018, 551, 197-202.	1.3	0
2856	Rolledâ€up Nanotechnology: Materials Issue and Geometry Capability. Advanced Materials Technologies, 2019, 4, 1800486.	3.0	42

 $\begin{array}{c} \text{Selective dispersion of arc-discharged single-walled carbon nanotubes with polymethyl(crylic) Tj ETQq0 0 0 rgBT /Oyerlock 10 Tf 50 582 \\ 1.0 \text{ or } 1.0$

2861	Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes. Nanoscale, 2018, 10, 22087-22139.	2.8	62
2862	Aqueous electromigration of single-walled carbon nanotubes and co-electromigration with copper ions. Nanoscale, 2018, 10, 19628-19637.	2.8	4
2863	Control of near infrared photoluminescence properties of single-walled carbon nanotubes by functionalization with dendrons. Nanoscale, 2018, 10, 23012-23017.	2.8	15
2864	Improved Thermal Energy Storage Behavior of CuO/Palmitic acid Composite as Phase Change Material. Materials Today: Proceedings, 2018, 5, 14618-14627.	0.9	15
2865	Improved Performance of Composite Phase Change Material for Thermal Energy Storage. Materials Today: Proceedings, 2018, 5, 14215-14224.	0.9	14
2866	Modulating Chirality-Selective Photoluminescence of Single-Walled Carbon Nanotubes by Ionic Liquids. Journal of Physical Chemistry Letters, 2018, 9, 6689-6694.	2.1	3
2867	Variance Spectroscopy Studies of Single-Wall Carbon Nanotube Aggregation. Journal of Physical Chemistry C, 2018, 122, 26251-26259.	1.5	4
2868	Plasmonâ€Assisted Energy Transfer in Hybrid Nanosystems. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800508.	1.2	10
2869	Myconanotechnology in veterinary sector: Status quo and future perspectives. International Journal of Veterinary Science and Medicine, 2018, 6, 270-273.	0.8	16
2870	Stretchable current collectors based on carbon embedded in a poly (acrylamide)/poly (N,N-methylenebisacrylamide) hydrogel modified with Nafion 117A®. Materials for Renewable and Sustainable Energy, 2018, 7, 1.	1.5	3
2871	Enrichment of Metallic Carbon Nanotubes Using a Two-Polymer Extraction Method. ACS Omega, 2018, 3, 16238-16245.	1.6	13
2872	Quantitative Evaluation of Optical Free Carrier Generation in Semiconducting Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2018, 140, 14619-14626.	6.6	5
2873	Differences in the response of the near-infrared absorbance spectra of single-walled carbon nanotubes; Effects of chirality and wrapping polymers. Colloids and Surfaces B: Biointerfaces, 2018, 172. 684-689.	2.5	10

ARTICLE IF CITATIONS Fasting-dependent Vascular Permeability Enhancement in Brown Adipose Tissues Evidenced by Using 2874 17 1.6 Carbon Nanotubes as Fluorescent Probes. Scientific Reports, 2018, 8, 14446. A review on carbon nanotubes in biosensor devices and their applications in medicine. 2.2 188 Nanocomposites, 2018, 4, 36-57. An optical nanoreporter of endolysosomal lipid accumulation reveals enduring effects of diet on 2876 5.880 hepatic macrophages in vivo. Science Translational Medicine, 2018, 10, . Suppression of single-wall carbon nanotube redox reaction by adsorbed proteins. Applied Physics 2878 1.1 Express, 2018, 11, 075101. Debundling, Dispersion, and Stability of Multiwalled Carbon Nanotubes Driven by Molecularly 2879 7 1.6 Designed Electron Acceptors. Langmuir, 2018, 34, 12137-12144. Template-Confined Growth of Poly(4-aminodiphenylamine) Nanosheets as Positive Electrode toward Superlong-Life Asymmetric Supercapacitor. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37125-37134. 2880 4.0 Preparation of stimulusâ€responsive, polyfluoreneâ€wrapped carbon nanotubes via palladium cross 2881 2.5 6 coupling. Journal of Polymer Science Part A, 2018, 56, 2723-2729. Pillar [5] arene-Decorated Single-Walled Carbon Nanotubes. ACS Omega, 2018, 3, 13935-13943. 2882 1.6 14 Ultra-Low Power Light Emission via Avalanche and Sub-avalanche Breakdown in Suspended Carbon 2883 3.2 2 Nanotubes. ACS Photonics, 2018, 5, 4432-4436. Chiral Lewis acids integrated with single-walled carbon nanotubes for asymmetric catalysis in water. 2884 6.0 Science, 2018, 362, 311-315. Surfactantâ€driven Amphoteric Doping of Carbon Nanotubes. Chemistry - an Asian Journal, 2018, 13, 2885 1.7 13 3942-3946. Unveiling the Extracellular Space of the Brain: From Super-resolved Microstructure to<i>In 79 2886 Vivo</i>Function. Journal of Neuroscience, 2018, 38, 9355-9363. Carbon Nanotube Synthesis and Dispersion Using Arc Discharge in Foam Made with a Surfactant. 2887 0.1 2 E-Journal of Surface Science and Nanotechnology, 2018, 16, 382-386. Optimized dispersion quality of aqueous carbon nanotube colloids as a function of sonochemical 2888 1.4 yield and surfactant/CNT ratio. Heliyon, 2018, 4, e00787. 2889 Release of Retained Single-Walled Carbon Nanotubes in Gels. Langmuir, 2018, 34, 12224-12232. 1.6 8 Chiral Selective Chemical Reaction of Flavin-Derivative-Wrapped Semiconducting Single-Walled 2890 Carbon Nanotubes Based on a Specific Recognition. Bulletin of the Chemical Society of Japan, 2018, 91, 1646-1651. Recent Advances of Optical Imaging in the Second Nearâ€Infrared Window. Advanced Materials, 2018, 30, 2891 503 11.1 e1802394. Advantages and Limitations of Current Techniques for Analyzing the Biodistribution of 2892 1.6 86 Nanoparticles. Frontiers in Pharmacology, 2018, 9, 802.

#	Article	IF	CITATIONS
2893	Nanomaterials in fluorescent laser-based immunosensors: Review and applications. Microchemical Journal, 2018, 141, 308-323.	2.3	30
2894	Direct Proof of a Defect-Modulated Gap Transition in Semiconducting Nanotubes. Nano Letters, 2018, 18, 3920-3925.	4.5	13
2895	Nanostructured Carbon Materials: Synthesis and Applications. NATO Science for Peace and Security Series B: Physics and Biophysics, 2018, , 177-191.	0.2	0
2896	The Toxic Truth About Carbon Nanotubes in Water Purification: a Perspective View. Nanoscale Research Letters, 2018, 13, 183.	3.1	84
2897	Embedding 1D Conducting Channels into 3D Isoporous Polymer Films for Highâ€Performance Humidity Sensing. Angewandte Chemie - International Edition, 2018, 57, 11218-11222.	7.2	33
2898	Defects in carbon nanotubes. , 2018, , 87-136.		9
2899	Carbon Nanomaterials for Nanomedicine. , 2018, , 103-113.		14
2900	Toxicity and Safety Issues of Carbon Nanotubes. , 2018, , 145-171.		11
2901	Embedding 1D Conducting Channels into 3D Isoporous Polymer Films for Highâ€Performance Humidity Sensing. Angewandte Chemie, 2018, 130, 11388-11392.	1.6	0
2902	Temperature-Dependent Charge Transport in Polymer-Sorted Semiconducting Carbon Nanotube Networks with Different Diameter Distributions. Journal of Physical Chemistry C, 2018, 122, 19886-19896.	1.5	45
2903	A Comparison Between Reduced and Intentionally Oxidized Metal Catalysts for Growth of Singleâ€Walled Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2018, 255, 1800187.	0.7	5
2904	A one-step ultrasonic irradiation assisted strategy for the preparation of polymer-functionalized carbon quantum dots and their biological imaging. Journal of Colloid and Interface Science, 2018, 532, 767-773.	5.0	53
2905	Flexible electrochromic materials based on CNT/PDA hybrids. Advances in Colloid and Interface Science, 2018, 258, 21-35.	7.0	17
2906	Mechanism of Laser Initiated Carbon Nanotube Ignition. Propellants, Explosives, Pyrotechnics, 2018, 43, 869-878.	1.0	5
2907	Toxicology and environmental fate of polymer nanocomposites. , 2018, , 649-677.		1
2908	Nitric Oxide Sensors for Biological Applications. Chemosensors, 2018, 6, 8.	1.8	31
2909	Experimental Study on Characteristics of Grinded Graphene Nanofluids with Surfactants. Materials, 2018, 11, 950.	1.3	20
2910	Alginic Acid-Aided Dispersion of Carbon Nanotubes, Graphene, and Boron Nitride Nanomaterials for Microbial Toxicity Testing. Nanomaterials, 2018, 8, 76.	1.9	30

#	Article	IF	CITATIONS
2911	Xeno Nucleic Acid Nanosensors for Enhanced Stability Against Ion-Induced Perturbations. Journal of Physical Chemistry Letters, 2018, 9, 4336-4343.	2.1	41
2912	Solvent- and Wavelength-Dependent Photoluminescence Relaxation Dynamics of Carbon Nanotube sp ³ Defect States. ACS Nano, 2018, 12, 8060-8070.	7.3	41
2913	A classical analogy for quantum band formation. American Journal of Physics, 2018, 86, 609-615.	0.3	6
2914	Recent Advances in the Therapeutic and Diagnostic Use of Liposomes and Carbon Nanomaterials in Ischemic Stroke. Frontiers in Neuroscience, 2018, 12, 453.	1.4	39
2915	In Vivo Near-Infrared Fluorescence Imaging. , 2018, , 67-125.		1
2916	Preparation and Properties of Aqueous SCNTs Dispersion based on A UV-curable Polymeric Dispersant. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 485-491.	0.4	1
2917	Controlling the structure of arborescent carbon nanotube networks for advanced rubber composites. Composites Science and Technology, 2018, 163, 10-17.	3.8	11
2918	Revealing the nature of morphological changes in carbon nanotube-polymer saturable absorber under high-power laser irradiation. Scientific Reports, 2018, 8, 7491.	1.6	15
2919	Control of the Near Infrared Photoluminescence of Locally Functionalized Singleâ€Walled Carbon Nanotubes via Doping by Azacrownâ€Ether Modification. Chemistry - A European Journal, 2018, 24, 9393-9398.	1.7	25
2920	Scaling of binding affinities and cooperativities of surfactants on carbon nanotubes. Carbon, 2018, 139, 427-436.	5.4	19
2921	Hydrothermal-photoreduction synthesis of novel Ag@AgBr/BiVO4 plasmonic heterojunction photocatalysts with enhanced activity under white light emitting diode (wLED) irradiation. Journal of Materials Science: Materials in Electronics, 2018, 29, 17602-17611.	1.1	12
2922	Therapeutic Potential of Biomineralizationâ€Based Engineering. Advanced Therapeutics, 2018, 1, 1800079.	1.6	18
2923	A review on electrochemically modified carbon nanotubes (CNTs) membrane for desalination and purification of water. Materials Research Express, 2018, 5, 102001.	0.8	32
2924	Near-Infrared Fluorescence Modulation of Refolded DNA Aptamer-Functionalized Single-Walled Carbon Nanotubes for Optical Sensing. ACS Applied Nano Materials, 2018, 1, 5327-5336.	2.4	16
2925	Optically Generated Free-Carrier Collection from an All Single-Walled Carbon Nanotube Active Layer. Journal of Physical Chemistry Letters, 2018, 9, 4841-4847.	2.1	6
2926	Advances in nanomaterials for brain microscopy. Nano Research, 2018, 11, 5144-5172.	5.8	14
2927	Hydroxide Ions Stabilize Open Carbon Nanotubes in Degassed Water. ACS Nano, 2018, 12, 8606-8615.	7.3	7
2928	Decoration of polyfluorene-wrapped carbon nanotube thin films <i>via</i> strain-promoted azide–alkyne cycloaddition. Polymer Chemistry, 2018, 9, 4460-4467.	1.9	20

#	Article	IF	CITATIONS
2929	Optoelectronic properties of silicon nanotubes with electron–electron interactions in orthogonal tight-binding model. Optik, 2018, 170, 436-443.	1.4	3
2930	Synthesis of Single-Walled Carbon Nanotubes Coated with Thiol-Reactive Gel via Emulsion Polymerization. Journal of the American Chemical Society, 2018, 140, 8544-8550.	6.6	14
2931	Methods of dispersion and stabilization of several nanomaterials in water. Ferroelectrics, 2018, 527, 133-148.	0.3	11
2932	Electrochemically active carbon nanotube (CNT) membrane filter for desalination and water purification. , 2018, , 333-363.		7
2933	Ultrashort Carbon Nanotubes That Fluoresce Brightly in the Near-Infrared. ACS Nano, 2018, 12, 6059-6065.	7.3	68
2934	Bright quantum dots emitting at â^1⁄41,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6590-6595.	3.3	310
2935	Carbon nanotubes as emerging quantum-light sources. Nature Materials, 2018, 17, 663-670.	13.3	210
2936	Photon Energy Up-conversion in Carbon Nanotubes. Nanostructure Science and Technology, 2019, , 537-549.	0.1	0
2937	Glutathione influence on the photoluminescence from semiconducting single-walled carbon nanotubes compared with other thiol compounds. Chemical Physics, 2019, 516, 218-224.	0.9	3
2938	Brightening of Long, Polymer-Wrapped Carbon Nanotubes by sp ³ Functionalization in Organic Solvents. ACS Nano, 2019, 13, 9259-9269.	7.3	48
2939	An Experimental and Theoretical Study of Biodegradable Gemini Surfactants and Surfactant/Carbon Nanotubes (CNTs) Mixtures as New Corrosion Inhibitor. Journal of Bio- and Tribo-Corrosion, 2019, 5, 1.	1.2	25
2940	Synthetic molecular recognition nanosensor paint for microalbuminuria. Nature Communications, 2019, 10, 3605.	5.8	54
2941	Biomolecular Functionalization of a Nanomaterial To Control Stability and Retention within Live Cells. Nano Letters, 2019, 19, 6203-6212.	4.5	48
2942	Near-Infrared Imaging of Serotonin Release from Cells with Fluorescent Nanosensors. Nano Letters, 2019, 19, 6604-6611.	4.5	92
2943	Surfactant-aided dispersion of carbon nanomaterials in aqueous solution. Physics of Fluids, 2019, 31, .	1.6	64
2944	Improvement in growth yield of single-walled carbon nanotubes with narrow chirality distribution by pulse plasma CVD. Frontiers of Chemical Science and Engineering, 2019, 13, 485-492.	2.3	3
2945	Molecular-Level Understanding of Structures and Dynamics of Imidazolium-Based Ionic Liquids around Single-Walled Carbon Nanotubes: Different Effects between Alkyl Chains of Cations and Nanotube Diameters. Journal of Physical Chemistry C, 2019, 123, 18932-18938.	1.5	12
2946	High-performance single-wall carbon nanotube transparent conductive films. Journal of Materials Science and Technology, 2019, 35, 2447-2462.	5.6	51

#	Article	IF	CITATIONS
2947	Theoretical Insight into Configurational Selectivity of Functionalized Single-Walled Carbon Nanotubes Based on the Clar Sextet Theory. Journal of Physical Chemistry C, 2019, 123, 18629-18637.	1.5	7
2948	Creating fluorescent quantum defects in carbon nanotubes using hypochlorite and light. Nature Communications, 2019, 10, 2874.	5.8	63
2949	Hybrid Carbon Nanostructures for Chemical and Biological Sensors. , 2019, , 357-374.		0
2950	Voltage-controlled morphing of dielectric elastomer circular sheets into conical surfaces. Extreme Mechanics Letters, 2019, 30, 100504.	2.0	30
2951	Universal Scaling of Excitons in Quasi One-Dimensional Carbon and Boron Nitride Allotropes. Journal of Physical Chemistry C, 2019, 123, 25373-25378.	1.5	1
2952	Non-covalent Methods of Engineering Optical Sensors Based on Single-Walled Carbon Nanotubes. Frontiers in Chemistry, 2019, 7, 612.	1.8	37
2954	Exciton relaxation in carbon nanotubes via electronic-to-vibrational energy transfer. Journal of Chemical Physics, 2019, 151, 144703.	1.2	2
2955	One-Dimensional Pnictogen Allotropes inside Single-Wall Carbon Nanotubes. Inorganic Chemistry, 2019, 58, 15216-15224.	1.9	18
2957	Mod(n-m,3) Dependence of Defect-State Emission Bands in Aryl-Functionalized Carbon Nanotubes. Nano Letters, 2019, 19, 8503-8509.	4.5	22
2958	A Molecular Dynamics Study on Selfâ€Assembly of Singleâ€Walled Carbon Nanotubes: From Molecular Morphology and Binding Energy. Advanced Materials Interfaces, 2019, 6, 1900983.	1.9	23
2959	Recent Progress of Rareâ€Earth Doped Upconversion Nanoparticles: Synthesis, Optimization, and Applications. Advanced Science, 2019, 6, 1901358.	5.6	228
2960	Spectroscopic signatures of spin-orbit coupling and free excitons in individual suspended carbon nanotubes. Physical Review B, 2019, 100, .	1.1	7
2961	Preparation and thermal characteristics of caprylic acid based composite as phase change material for thermal energy storage. Materials Research Express, 2019, 6, 105051.	0.8	21
2962	Near-infrared dyes, nanomaterials and proteins. Chinese Chemical Letters, 2019, 30, 1856-1882.	4.8	26
2963	Carbon nanotube fibers with enhanced longitudinal carrier mobility for high-performance all-carbon thermoelectric generators. Nanoscale, 2019, 11, 16919-16927.	2.8	41
2964	Surfactants Mediating Microstructure and Electrochemical Supercapacitive Properties of Ruthenium Oxide/Electrospun Carbon Nanofiber Composites. Journal of the Electrochemical Society, 2019, 166, A2870-A2878.	1.3	5
2965	An integrated approach to determine interactive genotoxic and global gene expression effects of multiwalled carbon nanotubes (MWCNTs) and benzo[a]pyrene (BaP) on marine mussels: evidence of reverse †Trojan Horse' effects. Nanotoxicology, 2019, 13, 1324-1343.	1.6	9
2966	Design of Refolding DNA Aptamer on Single-Walled Carbon Nanotubes for Enhanced Optical Detection of Target Proteins. Analytical Chemistry, 2019, 91, 12704-12712.	3.2	9

#	Article	IF	CITATIONS
2967	Photoswitchable single-walled carbon nanotubes for super-resolution microscopy in the near-infrared. Science Advances, 2019, 5, eaax1166.	4.7	42
2968	Optical Voltammetry of Polymer-Encapsulated Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2019, 123, 24200-24208.	1.5	7
2969	Diameter-Selective Synthesis of Single-Walled Carbon Nanotubes on Supported Cobalt Catalysts. Nano, 2019, 14, 1950106.	0.5	2
2970	Surfactant-assisted individualization and dispersion of boron nitride nanotubes. Nanoscale Advances, 2019, 1, 1096-1103.	2.2	38
2971	Oxidative Stress of Carbon Nanotubes on Proteins Is Mediated by Metals Originating from the Catalyst Remains. ACS Nano, 2019, 13, 1805-1816.	7.3	9
2972	Phenylboronic acid derivative-modified (6,5) single-wall carbon nanotube probes for detecting glucose and hydrogen peroxide. RSC Advances, 2019, 9, 2258-2267.	1.7	7
2973	Quantification of the Number of Adsorbed DNA Molecules on Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2019, 123, 4837-4847.	1.5	63
2974	Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: mechanism, properties and applications. Nanoscale, 2019, 11, 1475-1504.	2.8	134
2975	Efficient hydrogen storage with the combination of metal Mg and porous nanostructured material. International Journal of Hydrogen Energy, 2019, 44, 16824-16832.	3.8	18
2976	An <i>in Vivo</i> Nanosensor Measures Compartmental Doxorubicin Exposure. Nano Letters, 2019, 19, 4343-4354.	4.5	30
2977	Selfâ€Sorting of 10â€Âµmâ€Long Singleâ€Walled Carbon Nanotubes in Aqueous Solution. Advanced Materials, 2019, 31, e1901641.	11.1	15
2978	Application of a simple and highly efficient nanoparticle surface modification method to single-walled carbon nanotubes and formation of an interfacial organized film. Thin Solid Films, 2019, 685, 168-179.	0.8	18
2979	Research Progress of Near-Infrared Fluorescence Immunoassay. Micromachines, 2019, 10, 422.	1.4	21
2980	Dual use of anionic azobenzene derivative as dispersant and dopant for carbon nanotubes for enhanced thermal stability of transparent conductive films. Carbon, 2019, 152, 247-254.	5.4	11
2981	Single-Walled Carbon Nanotubes in Solar Cells. Topics in Current Chemistry Collections, 2019, , 271-298.	0.2	18
2982	Chirality enriched carbon nanotubes with tunable wrapping <i>via</i> corona phase exchange purification (CPEP). Nanoscale, 2019, 11, 11159-11166.	2.8	24
2983	Wavelength-dependent photoconductivity of single-walled carbon nanotube layers. RSC Advances, 2019, 9, 14677-14682.	1.7	6
2984	Recent Advances in Applications of Sorted Singleâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2019, 29, 1902273.	7.8	67

#	Article	IF	CITATIONS
2985	Diameter of Carbon Nanotube-Directed Self-Assembly of Amphiphilic Block Copolymers. Materials, 2019, 12, 1606.	1.3	6
2986	Nanoröhrenâ€Nanobodyâ€Konjugate als zielgerichtete Sonden und Marker für die Inâ€vivoâ€Nahinfrarotâ€Bildgebung. Angewandte Chemie, 2019, 131, 11591.	1.6	11
2987	Nanobody onjugated Nanotubes for Targeted Nearâ€Infrared In Vivo Imaging and Sensing. Angewandte Chemie - International Edition, 2019, 58, 11469-11473.	7.2	54
2988	Preparation and Characterization of Mesoporous TiO ₂ Sphere/g-C ₃ N ₄ Nanosheets for Photocatalytic Behaviors. Journal of Nanoscience and Nanotechnology, 2019, 19, 6247-6255.	0.9	8
2989	Improved thermal characteristics of Ag nanoparticles dispersed myristic acid as composite for low temperature thermal energy storage. Materials Research Express, 2019, 6, 085066.	0.8	17
2990	Single-Walled Carbon Nanotubes. Topics in Current Chemistry Collections, 2019, , .	0.2	20
2991	Spraying parameter optimization and microtopography evaluation in nanofluid minimum quantity lubrication grinding. International Journal of Advanced Manufacturing Technology, 2019, 103, 2523-2539.	1.5	20
2992	Effects of Sb-doped SnO2–WO3 nanocomposite on electrochromic performance. Ceramics International, 2019, 45, 15990-15995.	2.3	31
2993	Brighter near-IR emission of single-walled carbon nanotubes modified with a cross-linked polymer coating. Chemical Communications, 2019, 55, 6854-6857.	2.2	10
2994	How to Avoid Urethral Injury in Males. , 2019, , 321-333.		0
2995	Lanthanide-doped near-infrared II luminescent nanoprobes for bioapplications. Science China Materials, 2019, 62, 1071-1086.	3.5	70
2996	In situ observation of dewetting-induced deformation of vertically aligned single-walled carbon nanotubes. Diamond and Related Materials, 2019, 95, 115-120.	1.8	1
2997	A new approach for the achievement of stable aqueous dispersions of carbon nanotubes. Chemical Communications, 2019, 55, 5809-5812.	2.2	11
2998	HIV Detection via a Carbon Nanotube RNA Sensor. ACS Sensors, 2019, 4, 1236-1244.	4.0	68
2999	Experimental Observation of van Hove Singularities in Quasiâ€ID MoO ₂ Nanotubes. Advanced Electronic Materials, 2019, 5, 1900005.	2.6	1
3000	Reactive, Aqueous-Dispersible Polyfluorene-Wrapped Carbon Nanotubes Modulated with an Acidochromic Switch via Azide–Alkyne Cycloaddition. ACS Applied Polymer Materials, 2019, 1, 797-803.	2.0	15
3001	Characterization and Biodistribution Analysis of Oxygen-Doped Single-Walled Carbon Nanotubes Used as <i>in Vivo</i> Fluorescence Imaging Probes. Bioconjugate Chemistry, 2019, 30, 1323-1330.	1.8	34
3002	808â€ ⁻ nm laser-triggered NIR-II emissive rare-earth nanoprobes for small tumor detection and blood vessel imaging. Materials Science and Engineering C, 2019, 100, 260-268.	3.8	40

#	Article	IF	CITATIONS
3003	Synergistic impact of graphene and carbon nanotubes on waste paper for hybrid nanocomposite substrates. Cellulose, 2019, 26, 3935-3954.	2.4	13
3004	Significantly enhancing the strengthÂ+ ductility combination of Mg-9Al alloy using multi-walled carbon nanotubes. Journal of Alloys and Compounds, 2019, 790, 974-982.	2.8	35
3005	Development of Paint-Type Dye-Sensitized Solar Cell Using Carbon Nanotube Paint. Journal of Nanotechnology, 2019, 2019, 1-6.	1.5	3
3006	Quantification of nanoparticle dispersion within polymer matrix using gap statistics. Materials Research Express, 2019, 6, 075310.	0.8	8
3007	Beyond 1000 nm Emission Wavelength: Recent Advances in Organic and Inorganic Emitters for Deepâ€Tissue Molecular Imaging. Advanced Healthcare Materials, 2019, 8, e1900260.	3.9	125
3008	Optical Absorption Spectroscopy of DNA-Wrapped HiPco Carbon Nanotubes. Materials Science Forum, 0, 943, 95-99.	0.3	1
3009	Implantable Nanotube Sensor Platform for Rapid Analyte Detection. Macromolecular Bioscience, 2019, 19, e1800469.	2.1	8
3010	Physically Unclonable Functions Based on Single-Walled Carbon Nanotubes: A Scalable and Inexpensive Method toward Unique Identifiers. ACS Applied Nano Materials, 2019, 2, 1796-1801.	2.4	17
3011	Heterocoerdianthrone derivative as dispersant for single-walled carbon nanotubes and formation of thin film. Progress in Organic Coatings, 2019, 132, 221-226.	1.9	1
3012	Identification and preparation of stable water dispersions of protein - Carbon nanotube hybrids and efficient design of new functional materials. Carbon, 2019, 147, 70-82.	5.4	30
3013	Helical Assembly of Flavin Mononucleotides on Carbon Nanotubes as Multimodal Near-IR Hg(II)-Selective Probes. ACS Applied Materials & Interfaces, 2019, 11, 8400-8411.	4.0	7
3014	Enhancing fire and mechanical strengths of epoxy nanocomposites for metal/metal bonding of aircraft aluminum alloys. Polymer Composites, 2019, 40, 3691-3702.	2.3	16
3015	Excitonic Emission in van der Waals Nanotubes of Transition Metal Dichalcogenides. Annalen Der Physik, 2019, 531, 1800415.	0.9	28
3016	Directed evolution of the optoelectronic properties of synthetic nanomaterials. Chemical Communications, 2019, 55, 3239-3242.	2.2	18
3017	Preparation of metallic single-wall carbon nanotubes. Carbon, 2019, 147, 187-198.	5.4	22
3018	Introduction to Optical Spectroscopy of Single-Wall Carbon Nanotubes. World Scientific Series on Carbon Nanoscience, 2019, , 1-43.	0.1	4
3019	Functionalization of Carbon Nanomaterials for Biomedical Applications. Journal of Carbon Research, 2019, 5, 72.	1.4	47
3020	Aggregative Characteristics of Nanocarbon and of a Stabilizing Surfactant in the Aqueousâ€Polymer Matrix versus Optical Power Limiting Performance. Physica Status Solidi (B): Basic Research, 2019, 256, 1900320.	0.7	1

#	Article	IF	CITATIONS
3021	Frontiers in carbon dots: design, properties and applications. Materials Chemistry Frontiers, 2019, 3, 2571-2601.	3.2	118
3022	Functionalized Carbon Nanotube Excited States and Optical Properties. ACS Symposium Series, 2019, , 181-207.	0.5	1
3023	Length- and Thickness-Dependent Optical Response of Liquid-Exfoliated Transition Metal Dichalcogenides. Chemistry of Materials, 2019, 31, 10049-10062.	3.2	57
3024	Improved Laserâ€Based Photoluminescence on Singleâ€Walled Carbon Nanotubes. Physica Status Solidi (B): Basic Research, 2019, 256, 1900235.	0.7	Ο
3025	Fluorescent Single-Walled Carbon Nanotubes for Protein Detection. Sensors, 2019, 19, 5403.	2.1	64
3026	Application of some nanoparticles in the field of veterinary medicine. International Journal of Veterinary Science and Medicine, 2019, 7, 78-93.	0.8	69
3027	DNA Sequence Mediates Apparent Length Distribution in Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2019, 11, 2225-2233.	4.0	23
3028	Solubilization of Carbon Nanotubes with Ethylene-Vinyl Acetate for Solution-Processed Conductive Films and Charge Extraction Layers in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 1185-1191.	4.0	31
3029	Raman spectroscopy on 3-D acid-functional single-walled carbon nanotubes for flexible transparent-conducting films deposited with vacuum-filtration and dip-coating. Diamond and Related Materials, 2019, 92, 1-8.	1.8	11
3030	Achieving highly sensitive detection of Cu2+ based on AIE and FRET strategy in aqueous solution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 211, 272-279.	2.0	20
3031	Influence of temperature and carrier density on the photoluminescence intensity of semiconductor carbon nanotubes. Solid State Communications, 2019, 288, 5-9.	0.9	4
3032	Adsorption of bisphenol A on dispersed carbon nanotubes: Role of different dispersing agents. Science of the Total Environment, 2019, 655, 807-813.	3.9	20
3033	Noncontact Strain Mapping Using Laser-Induced Fluorescence from Nanotube-Based Smart Skin. Journal of Structural Engineering, 2019, 145, 04018238.	1.7	11
3034	Polymer/Carbon Nanotubes Mixed Matrix Membranes for Water Purification. , 2019, , 87-110.		11
3035	Straightening single-walled carbon nanotubes by helically wrapped poly(9,9-dioctylfluorene) chains. Applied Surface Science, 2019, 471, 205-212.	3.1	0
3036	High-throughput and consistent production of aqueous suspensions of Single-Wall Carbon Nanotubes. Carbon, 2019, 145, 757-763.	5.4	5
3037	Research progress on CNTs/CNFs-modified cement-based composites – A review. Construction and Building Materials, 2019, 202, 290-307.	3.2	154
3038	Carbon-based nanomaterials as an emerging platform for theranostics. Materials Horizons, 2019, 6, 434-469.	6.4	310

#	Article	IF	CITATIONS
3039	Dualâ€layer nanotubeâ€based smart skin for enhanced noncontact strain sensing. Structural Control and Health Monitoring, 2019, 26, e2279.	1.9	15
3041	Antibacterial Carbonâ€Based Nanomaterials. Advanced Materials, 2019, 31, e1804838.	11.1	452
3042	Incorporation and recovery of SWNTs through phase behavior and aggregates transition induced by changes in pH in a catanionic surfactants system. Carbon, 2019, 141, 618-625.	5.4	18
3043	Carbon Nanotubes: Electronic Structure and Spectroscopy. , 2019, , 205-218.		5
3044	Polymer-wrapped single-walled carbon nanotubes: a transformation toward better applications in healthcare. Drug Delivery and Translational Research, 2019, 9, 578-594.	3.0	21
3045	A theoretical study on the chirality detection of serine amino acid based on carbon nanotubes with and without Stone-Wales defects. Structural Chemistry, 2020, 31, 455-464.	1.0	7
3046	The Near-Infrared-II Fluorophores and Advanced Microscopy Technologies Development and Application in Bioimaging. Bioconjugate Chemistry, 2020, 31, 260-275.	1.8	75
3048	Introduction to Carbon-Based Nanostructures. , 2020, , 1-10.		0
3049	The New Family of Two-Dimensional Materials and van der Waals Heterostructures. , 2020, , 70-91.		0
3050	Quantum Transport: General Concepts. , 2020, , 92-119.		0
3051	Klein Tunneling and Ballistic Transport in Graphene and Related Materials. , 2020, , 120-144.		0
3052	Quantum Transport in Disordered Graphene-Based Materials. , 2020, , 145-209.		0
3055	Electronic Properties of Carbon-Based Nanostructures. , 2020, , 11-69.		0
3056	Quantum Hall Effects in Graphene. , 2020, , 210-236.		0
3057	Spin-Related Phenomena. , 2020, , 237-277.		0
3058	Ab Initio and Multiscale Quantum Transport in Graphene-Based Materials. , 2020, , 293-353.		0
3062	Templating colloidal sieves for tuning nanotube surface interactions and optical sensor responses. Journal of Colloid and Interface Science, 2020, 565, 55-62.	5.0	14
3063	Pure and Efficient Single-Photon Sources by Shortening and Functionalizing Air-Suspended Carbon Nanotubes. ACS Applied Nano Materials, 2020, 3, 682-690.	2.4	7

#	Article	IF	CITATIONS
3064	Correcting the effect of the detection angular on laser-induced chlorophyll fluorescence. Journal of Physics Communications, 2020, 4, 015017.	0.5	1
3065	Aggregation and stability of nanoscale plastics in aquatic environment. Water Research, 2020, 171, 115401.	5.3	90
3066	Immobilization and Function of nIR-Fluorescent Carbon Nanotube Sensors on Paper Substrates for Fluidic Manipulation. Analytical Chemistry, 2020, 92, 916-923.	3.2	20
3067	Gravity field-mediated synthesis of carbon-conjugated quantum dots with tunable defective density for enhanced triiodide reduction. Nano Energy, 2020, 69, 104377.	8.2	19
3068	Carbon nanomaterials: fundamental concepts, biological interactions, and clinical applications. , 2020, , 223-242.		7
3069	A Quest for Structurally Uniform Graphene Nanoribbons: Synthesis, Properties, and Applications. Journal of Organic Chemistry, 2020, 85, 4-33.	1.7	101
3070	Horizontal Single-Walled Carbon Nanotube Arrays: Controlled Synthesis, Characterizations, and Applications. Chemical Reviews, 2020, 120, 12592-12684.	23.0	74
3071	Enhancement of the electrical conductivity of defective carbon nanotube sheets for organic hybrid thermoelectrics by deposition of Pd nanoparticles. Materials Advances, 2020, 1, 2926-2936.	2.6	8
3072	Material platforms for defect qubits and single-photon emitters. Applied Physics Reviews, 2020, 7, .	5.5	96
3073	A synthetic mimic of phosphodiesterase type 5 based on corona phase molecular recognition of single-walled carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26616-26625.	3.3	16
3074	Carbon Nanotubes (CNTs)-Reinforced Magnesium-Based Matrix Composites: A Comprehensive Review. Materials, 2020, 13, 4421.	1.3	70
3075	Excitons and plasmons of graphene nanoribbons in infrared frequencies in an effective-mass approximation. Physical Review B, 2020, 102, .	1.1	0
3076	A study on optimum surfactant to multiwalled carbon nanotube ratio in alcoholic stable suspensions via UV–Vis absorption spectroscopy and zeta potential analysis. Ceramics International, 2020, 46, 29120-29129.	2.3	12
3077	Optimization of highly concentrated dispersions of multi-walled carbon nanotubes with emphasis on surfactant content and carbon nanotubes quality. Nanotechnology, 2020, 31, 405707.	1.3	4
3078	Cresol-Carbon Nanotube Charge-Transfer Complex: Stability in Common Solvents and Implications for Solution Processing. Matter, 2020, 3, 302-319.	5.0	22
3079	Binding Affinity and Conformational Preferences Influence Kinetic Stability of Short Oligonucleotides on Carbon Nanotubes. Advanced Materials Interfaces, 2020, 7, 2000353.	1.9	22
3080	Imaging of Monoamine Neurotransmitters with Fluorescent Nanoscale Sensors. ChemPlusChem, 2020, 85, 1465-1480.	1.3	27
3081	Remote near infrared identification of pathogens with multiplexed nanosensors. Nature Communications, 2020, 11, 5995.	5.8	81

#	Article	IF	CITATIONS
3082	Delayed Fluorescence from Carbon Nanotubes through Singlet Oxygen-Sensitized Triplet Excitons. Journal of the American Chemical Society, 2020, 142, 21189-21196.	6.6	14
3083	Detection of chirality of single-walled carbon nanotubes on hexagonal boron nitride. Applied Physics Letters, 2020, 117, .	1.5	5
3084	Preparation and Properties of Carbon Nanofiber Modified Emulsified Asphalt Based on Ultrasonication and Surfactant and the Impact of SBR and NH4Cl. Frontiers in Materials, 2020, 7, .	1.2	8
3085	Tailoring the Properties of Single-Wall Carbon Nanotube Samples through Structure-Selective Near-Infrared Photochemistry. Journal of Physical Chemistry Letters, 2020, 11, 6492-6497.	2.1	4
3086	Study on the mechanism and process of a universal preparation of carbon nanotubes uniform dispersions in aqueous solution. Ferroelectrics, 2020, 562, 135-144.	0.3	0
3087	Perfectly imperfect: a review of chemical tools for exciton engineering in single-walled carbon nanotubes. Materials Horizons, 2020, 7, 2860-2881.	6.4	35
3088	Efficient and Narrow-Linewidth Photoluminescence Devices Based on Single-Walled Carbon Nanotubes and Silicon Photonics. ACS Applied Nano Materials, 2020, 3, 7678-7684.	2.4	7
3089	Carbon Nanotube Photoluminescence Modulation by Local Chemical and Supramolecular Chemical Functionalization. Accounts of Chemical Research, 2020, 53, 1846-1859.	7.6	63
3090	Incidence of Quantum Confinement on Dark Triplet Excitons in Carbon Nanotubes. ACS Nano, 2020, 14, 11254-11261.	7.3	9
3091	The Role of Amino Acids in Neurotransmission and Fluorescent Tools for Their Detection. International Journal of Molecular Sciences, 2020, 21, 6197.	1.8	71
3093	Hydrothermal preparation and photocatalytic properties of visible light driven AgBr/BiVO4 nanocomposite. Materials Technology, 2020, , 1-8.	1.5	4
3094	Clutathione-S-transferase Fusion Protein Nanosensor. Nano Letters, 2020, 20, 7287-7295.	4.5	25
3096	Dye Quenching of Carbon Nanotube Fluorescence Reveals Structure-Selective Coating Coverage. ACS Nano, 2020, 14, 12148-12158.	7.3	15
3097	Controlling Defect-State Photophysics in Covalently Functionalized Single-Walled Carbon Nanotubes. Accounts of Chemical Research, 2020, 53, 1791-1801.	7.6	52
3098	Radical Polymer Grafting on the Surface of Single-Walled Carbon Nanotubes Enhances Photoluminescence in the Near-Infrared Region: Implications for Bioimaging and Biosensing. ACS Applied Nano Materials, 2020, 3, 8840-8847.	2.4	14
3099	Boron Nitride Nanotube (BNNT) Membranes for Energy and Environmental Applications. Membranes, 2020, 10, 430.	1.4	19
3100	Enhancing near-infrared photoluminescence from single-walled carbon nanotubes by defect-engineering using benzoyl peroxide. Scientific Reports, 2020, 10, 19877.	1.6	5
3101	The Electric Field Responses of Inorganic Ionogels and Poly(ionic liquid)s. Molecules, 2020, 25, 4547.	1.7	11

#	Article	IF	CITATIONS
3102	Quantitative analysis of the intertube coupling effect on the photoluminescence characteristics of distinct (n, m) carbon nanotubes dispersed in solution. Nano Research, 2020, 13, 1149-1155.	5.8	5
3103	<mml:math <br="" display="inline" id="d1e74" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"><mml:mrow><mml:mn>1</mml:mn><mml:mspace class="nbsp" width="1em"></mml:mspace><mml:mi mathvariant="normal">ĥ¼<mml:mi mathvariant="normal">m</mml:mi </mml:mi </mml:mrow></mml:math> . Optics Communications. 2020. 462.	1.0	5
3104	125315. Excitonic effects on photophysical processes of polymeric carbon nitride. Journal of Applied Physics, 2020, 127, .	1.1	14
3105	Experimental modeling to optimize the sonication energy in water. Measurement: Journal of the International Measurement Confederation, 2020, 163, 108039.	2.5	7
3106	Smart carbon nanotubes for drug delivery system: A comprehensive study. Journal of Drug Delivery Science and Technology, 2020, 58, 101811.	1.4	61
3107	Plasmon-enhanced high order harmonic generation of open-ended finite-sized carbon nanotubes: The effects of incident field's intensity and frequency and the interference between the incident and scattered fields. Journal of Chemical Physics, 2020, 152, 224708.	1.2	4
3108	Nanomaterials and nanocomposite applications in veterinary medicine. , 2020, , 583-638.		6
3109	UVâ€light mediated decomposition of a polyester for enrichment and release of semiconducting carbon nanotubes. Journal of Polymer Science, 2020, 58, 1965-1972.	2.0	3
3110	Atomic force microscopy studies of LAPONITE® directed self-assembly of single-walled carbon nanotubes in electronic nanonetworks. Journal of Solid State Chemistry, 2020, 289, 121466.	1.4	0
3111	Quantendefekte als Werkzeugkasten für die kovalente Funktionalisierung von Kohlenstoffnanoröhren mit Peptiden und Proteinen. Angewandte Chemie, 2020, 132, 17885-17891.	1.6	6
3112	Quantum Defects as a Toolbox for the Covalent Functionalization of Carbon Nanotubes with Peptides and Proteins. Angewandte Chemie - International Edition, 2020, 59, 17732-17738.	7.2	54
3113	Inhibition of α-chymotrypsin by pristine single-wall carbon nanotubes: Clogging up the active site. Journal of Colloid and Interface Science, 2020, 571, 174-184.	5.0	22
3114	Metal-organic coordination polymer-derived carbon nanotubes: Preparation and application in detecting small molecules. Polyhedron, 2020, 182, 114504.	1.0	6
3115	Electrochemical Sensor: L-Cysteine Induced Selectivity Enhancement of Electrochemically Reduced Graphene Oxide–Multiwalled Carbon Nanotubes Hybrid for Detection of Lead (Pb2+) Ions. Frontiers in Materials, 2020, 7, .	1.2	31
3116	Fluorescent sp3 Defect-Tailored Carbon Nanotubes Enable NIR-II Single Particle Imaging in Live Brain Slices at Ultra-Low Excitation Doses. Scientific Reports, 2020, 10, 5286.	1.6	46
3117	On carbon nanotubes in the interstellar medium. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3054-3059.	1.6	6
3118	Monitoring Plant Health with Near-Infrared Fluorescent H ₂ O ₂ Nanosensors. Nano Letters, 2020, 20, 2432-2442.	4.5	142
3119	Aptamer-functionalized nanomaterials for biological applications. Materials Chemistry Frontiers, 2020, 4, 1569-1585.	3.2	31

#	Article		CITATIONS
3121	Coral reef-like functionalized self-assembled monolayers for network formation of carbon nanotube with diameter selectivity. Carbon, 2020, 161, 599-611.	5.4	5
3122	Cardanol-derived cationic surfactants enabling the superior antibacterial activity of single-walled carbon nanotubes. Nanotechnology, 2020, 31, 265603.	1.3	6
3123	Chirality Pure Carbon Nanotubes: Growth, Sorting, and Characterization. Chemical Reviews, 2020, 120, 2693-2758.	23.0	278
3124	A multifunctional carbon nanotube reinforced nanocomposite modified via soy protein isolate: A study on dispersion, electrical and mechanical properties. Carbon, 2020, 161, 350-358.	5.4	20
3125	Review—Single Walled Carbon Nanotubes as Optical Sensors for Biological Applications. Journal of the Electrochemical Society, 2020, 167, 037530.	1.3	30
3126	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 022001.	2.0	333
3127	Recent Progress in NIR-II Contrast Agent for Biological Imaging. Frontiers in Bioengineering and Biotechnology, 2019, 7, 487.	2.0	183
3128	Quantum Transport beyond DC. , 2020, , 278-292.		0
3130	Sonochemical reaction to control the near-infrared photoluminescence properties of single-walled carbon nanotubes. Nanoscale, 2020, 12, 6263-6270.	2.8	13
3131	Physical functionalization of multi-walled carbon nanotubes for enhanced dispersibility in aqueous medium. Emergent Materials, 2020, 3, 25-32.	3.2	25
3132	Advances and clinical challenges in biomaterials for in vivo tumor imaging. , 2020, , 291-329.		1
3133	Xâ€Rayâ€Induced Persistent Luminescence Promotes Ultrasensitive Imaging and Effective Inhibition of Orthotopic Hepatic Tumors. Advanced Functional Materials, 2020, 30, 2001166.	7.8	54
3134	Near Infrared-Emitting Nanoparticles for Biomedical Applications. , 2020, , .		20
3135	Transport and programmed release of nanoscale cargo from cells by using NETosis. Nanoscale, 2020, 12, 9104-9115.	2.8	15
3136	Determining the isotropic cloud point of carbon nanotube/chlorosulfonic acid solution using UV–vis–nIR absorbance saturation behavior. Carbon, 2021, 173, 782-791.	5.4	5
3137	Nanoscale Patterning of Carbon Nanotubes: Techniques, Applications, and Future. Advanced Science, 2021, 8, 2001778.	5.6	48
3138	Supramolecular Depolymerization in the Mixture of Two Poor Solvents: Mechanistic Insights and Modulation of Supramolecular Polymerization of Ionic Ï€â€&ystems. Angewandte Chemie, 2021, 133, 5519-5526.	1.6	8
3139	Supramolecular Depolymerization in the Mixture of Two Poor Solvents: Mechanistic Insights and Modulation of Supramolecular Polymerization of Ionic Ï€â€Systems. Angewandte Chemie - International Edition, 2021, 60, 5459-5466.	7.2	19

#	Article	IF	CITATIONS
3140	Single-Walled Carbon Nanotube Sensor Platform for the Study of Extracellular Analytes. ACS Applied Nano Materials, 2021, 4, 33-42.	2.4	7
3141	Chirality luminescent properties of single-walled carbon nanotubes during redox reactions. Optical Materials, 2021, 112, 110748.	1.7	3
3142	A nanoscale paper-based near-infrared optical nose (NIRON). Biosensors and Bioelectronics, 2021, 172, 112763.	5.3	28
3143	A nanoscale optical biosensor based on peptide encapsulated SWCNTs for detection of acetic acid in the gaseous phase. Sensors and Actuators B: Chemical, 2021, 327, 128832.	4.0	43
3144	Temperature dependence of photoluminescence spectra from a suspended single-walled carbon nanotube with water adsorption layer. Journal of Applied Physics, 2021, 129, 014301.	1.1	3
3145	Surgical Navigation for Malignancies Guided by Nearâ€Infraredâ€II Fluorescence Imaging. Small Methods, 2021, 5, e2001066.	4.6	81
3146	Nanostructured thermoelectric materials. , 2021, , 261-311.		1
3147	Potentiometric Study of Carbon Nanotube/Surfactant Interactions by Ion-Selective Electrodes. Driving Forces in the Adsorption and Dispersion Processes. International Journal of Molecular Sciences, 2021, 22, 826.	1.8	10
3148	Harnessing nanotechnology to expand the toolbox of chemical biology. Nature Chemical Biology, 2021, 17, 129-137.	3.9	24
3149	Advancement in Carbon Nanotubes: Processing Techniques, Purification and Industrial Applications. , 2021, , 309-337.		0
3150	Critical challenges and advances in the carbon nanotube–metal interface for next-generation electronics. Nanoscale Advances, 2021, 3, 942-962.	2.2	46
3151	Nanobodies as <i>in vivo</i> , non-invasive, imaging agents. RSC Chemical Biology, 2021, 2, 685-701.	2.0	20
3152	Light-Induced Cellular Delivery and Analysis. , 2021, , 1-29.		2
3153	Iron nanoparticle surface treatment of carbon nanotubes to increase fatigue strength of steel composites. Nanocomposites, 2021, 7, 132-140.	2.2	3
3154	Polyvinyl acetate-based polymer host for optical and far-infrared spectroscopy of individualized nanoparticles. Journal of Applied Physics, 2021, 129, 034701.	1.1	2
3155	Emerging investigator series: examination of the gastrointestinal lipidome of largemouth bass exposed to dietary single-walled carbon nanotubes. Environmental Science: Nano, 2021, 8, 2792-2801.	2.2	2
3156	Enantiomeric Separation of Semiconducting Single-Walled Carbon Nanotubes by Acid Cleavable Chiral Polyfluorene. ACS Nano, 2021, 15, 4699-4709.	7.3	25
3157	Optical Response Characteristics of Single-Walled Carbon Nanotube Chirality Exposed to Oxidants with Different Oxidizing Power. Molecules, 2021, 26, 1091.	1.7	2

#	Article	IF	CITATIONS
3158	A review on nanotechnology and its application in modern veterinary science. International Journal of Nanomaterials Nanotechnology and Nanomedicine, 2021, , 026-031.	0.2	5
3160	Recent progress in development and applications of second nearâ€infrared (NIR-II) nanoprobes. Archives of Pharmacal Research, 2021, 44, 165-181.	2.7	20
3161	Molecular Functionalization of Carbon Nanotubes towards Near Infrared Photoluminescent Nanomaterials. Chemistry Letters, 2021, 50, 397-404.	0.7	16
3162	Green Fabrication of (6,5)Carbon Nanotube/Protein Transistor Endowed with Specific Recognition. Advanced Electronic Materials, 2021, 7, 2001114.	2.6	11
3163	Novel methods to extract and quantify sensors based on single wall carbon nanotube fluorescence from animal tissue and hydrogel-based platforms. Methods and Applications in Fluorescence, 2021, 9, 025005.	1.1	5
3164	[2ï€ + 2ï€] Photocycloaddition of Enones to Single-Walled Carbon Nanotubes Creates Fluorescent Quantum Defects. ACS Nano, 2021, 15, 4833-4844.	7.3	13
3165	An environmental ecocorona influences the formation and evolution of the biological corona on the surface of single-walled carbon nanotubes. NanoImpact, 2021, 22, 100315.	2.4	5
3166	Sensing with Chirality-Pure Near-Infrared Fluorescent Carbon Nanotubes. Analytical Chemistry, 2021, 93, 6446-6455.	3.2	45
3167	Charge Transfer from Photoexcited Semiconducting Single-Walled Carbon Nanotubes to Wide-Bandgap Wrapping Polymer. Journal of Physical Chemistry C, 2021, 125, 8125-8136.	1.5	9
3168	Green Synthesis, Spectroscopic Characterization and Biomedical Applications of Carbon Nanotubes. Current Pharmaceutical Biotechnology, 2021, 22, 793-807.	0.9	10
3169	Polar Solvents Induce Sum Frequency Generation Activity for Multiwalled Carbon Nanotubes. Langmuir, 2021, 37, 6540-6548.	1.6	2
3170	Near-infrared catecholamine nanosensors for high spatiotemporal dopamine imaging. Nature Protocols, 2021, 16, 3026-3048.	5.5	17
3171	Charge transfer evidence in donor–acceptor singleâ€walled carbon nanotubes filled with sexithiophene oligomers: Nanotube diameter dependence. Journal of Raman Spectroscopy, 2021, 52, 1381-1394.	1.2	9
3172	Quantum Light Emission from Coupled Defect States in DNA-Functionalized Carbon Nanotubes. ACS Nano, 2021, 15, 10406-10414.	7.3	22
3173	Self-Photoluminescence of Unzipped Multi-Walled Carbon Nanotubes. Nanomaterials, 2021, 11, 1632.	1.9	0
3174	Cleanly Removable Surfactant for Carbon Nanotubes. Chemistry of Materials, 2021, 33, 4551-4557.	3.2	14
3175	Multispectral Fingerprinting Resolves Dynamics of Nanomaterial Trafficking in Primary Endothelial Cells. ACS Nano, 2021, 15, 12388-12404.	7.3	23
3176	Unlocking the power of optical imaging in the second biological window: Structuring <scp>nearâ€infrared II</scp> materials from organic molecules to nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1734.	3.3	9

#	Article	IF	CITATIONS
3177	Organic molecules encapsulated in single-walled carbon nanotubes. Oxford Open Materials Science, 2020, 1, .	0.5	6
3178	When nano meets plants: A review on the interplay between nanoparticles and plants. Nano Today, 2021, 38, 101143.	6.2	70
3179	Rational primary structure design for boosting the thermoelectric properties of semiconducting carbon nanotube networks. Applied Physics Letters, 2021, 118, .	1.5	9
3180	Unzipping Carbon Nanotube Bundles through NHâ^'Ĩ€ Stacking for Enhanced Electrical and Thermal Transport. ACS Applied Materials & Interfaces, 2021, 13, 28583-28592.	4.0	6
3182	Near-infrared nanoscopy with carbon-based nanoparticles for the exploration of the brain extracellular space. Neurobiology of Disease, 2021, 153, 105328.	2.1	23
3183	Multiâ€Fidelity Highâ€Throughput Optimization of Electrical Conductivity in P3HTâ€CNT Composites. Advanced Functional Materials, 2021, 31, 2102606.	7.8	20
3184	High-yield and low-cost separation of high-purity semiconducting single-walled carbon nanotubes with closed-loop recycling of raw materials and solvents. Nano Research, 2021, 14, 4281-4287.	5.8	11
3185	Study on the improvement of dispersibility and orientation control of <scp>fluorocarbonâ€modified singleâ€walled</scp> carbon nanotubes in a fluorinated polymer matrix. Polymer Composites, 2021, 42, 4845-4859.	2.3	8
3186	Novel collagen/GO-MWNT hybrid fibers with improved strength and toughness by dry-jet wet spinning. Composite Interfaces, 2022, 29, 413-429.	1.3	8
3188	Advances in Cancer Therapeutics: Conventional Thermal Therapy to Nanotechnology-Based Photothermal Therapy. Pharmaceutics, 2021, 13, 1174.	2.0	48
3189	Wellâ€Defined Segment of Carbon Nanotube with Bright Red Emission for Threeâ€Photon Fluorescence Cerebrovascular Imaging. Advanced Optical Materials, 2021, 9, 2100482.	3.6	18
3190	Photoluminescent Properties of Hydroxyapatite and Hydroxyapatite/Multi-Walled Carbon Nanotube Composites. Crystals, 2021, 11, 832.	1.0	17
3191	Graphene, Carbon Nanotube and Plasmonic Nanosensors for Detection of Viral Pathogens: Opportunities for Rapid Testing in Pandemics like COVID-19. Frontiers in Nanotechnology, 2021, 3, .	2.4	17
3192	Quantum Defects in Fluorescent Carbon Nanotubes for Sensing and Mechanistic Studies. Journal of Physical Chemistry C, 2021, 125, 18341-18351.	1.5	28
3193	Organic Functionalized Carbon Nanostructures for Solar Energy Conversion. Molecules, 2021, 26, 5286.	1.7	7
3194	Excitonic two-photon absorption in monolayer transition metal dichalcogenides: Impact of screening and trigonal warping. Physical Review B, 2021, 104, .	1.1	0
3196	Nanotubeâ€Based 1D Heterostructures Coupled by van der Waals Forces. Small, 2021, 17, e2102585.	5.2	21
3198	Thermoelectric Performance Enhanced by Destructive Quantum Interference in Nanoporous Carbon Nanotube Based Junctions. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100400.	1.2	3

#	Article	IF	CITATIONS
3199	Single-Walled Carbon Nanotube-Based Biosensors for Detection of Bronchial Inflammation. International Journal of Nanoscience, 0, , 2130002.	0.4	0
3200	Recent advances in the development of nanomedicines for the treatment of ischemic stroke. Bioactive Materials, 2021, 6, 2854-2869.	8.6	41
3201	Synthesis of Multifunctional Charge-Transfer Agents: Toward Single-Walled Carbon Nanotubes with Defined Covalent Functionality and Preserved I€ System. Journal of Physical Chemistry C, 2021, 125, 19925-19935.	1.5	0
3202	Identification of Chiral-Specific Carbon Nanotube Binding Peptides Using a Modified Biopanning Method. Chemosensors, 2021, 9, 245.	1.8	2
3203	Harvesting Light To Produce Heat: Photothermal Nanoparticles for Technological Applications and Biomedical Devices. Chemistry - A European Journal, 2021, 27, 15361-15374.	1.7	24
3205	Dispersions of carbon nanotubes by helical flavin surfactants: Solvent induced stability and chirality enrichment, and solvatochromism. Carbon, 2021, 184, 346-356.	5.4	10
3206	Designing highly emissive over-1000 nm near-infrared fluorescent dye-loaded polystyrene-based nanoparticles for in vivo deep imaging. RSC Advances, 2021, 11, 18930-18937.	1.7	11
3207	Spatially resolved photoluminescence brightening in individual single-walled carbon nanotubes. Journal of Applied Physics, 2021, 129, 014305.	1.1	7
3208	Ultra-homogeneous NIR-II fluorescent self-assembled nanoprobe with AIE properties for photothermal therapy of prostate cancer. Nanoscale, 2021, 13, 15569-15575.	2.8	13
3209	Dispersant-assisted liquid-phase exfoliation of 2D materials beyond graphene. Nanoscale, 2021, 13, 460-484.	2.8	69
3210	Challenges and current approaches toward environmental monitoring of nanomaterials. , 2021, , 73-108.		2
3211	Quantification of Nitric Oxide Concentration Using Single-Walled Carbon Nanotube Sensors. Nanomaterials, 2021, 11, 243.	1.9	19
3212	Nanobiotechnology in animal production and health. , 2021, , 185-198.		2
3213	Raman spectroscopy for carbon nanotube applications. Journal of Applied Physics, 2021, 129, .	1.1	212
3219	The Nanospace Inside Single-Wall Carbon Nanotubes. , 2004, , 171-184.		3
3220	Carbon Nanotube—Biomolecule Interactions: Applications in Carbon Nanotube Separation and Biosensing. Nanoscience and Technology, 2005, , 253-271.	1.5	8
3221	The Selective Chemistry of Single Walled Carbon Nanotubes. Nanoscience and Technology, 2005, , 151-180.	1.5	2
3222	Scanning Probe Microscopy of Individual Carbon Nanotube Quantum Devices. , 2007, , 423-439.		1

#	Article	IF	CITATIONS
3223	Transparent Conducting Films by Using Carbon Nanotubes. , 2008, , 15-28.		3
3224	Quasiparticle and Optical Properties of Solids and Nanostructures: The GW-BSE Approach. , 2005, , 215-240.		15
3225	Carbon Nanotubes: From Fundamental Nanoscale Objects Towards Functional Nanocomposites and Applications. NATO Science for Peace and Security Series B: Physics and Biophysics, 2008, , 101-119.	0.2	9
3226	Temperature and pH-Responsive "Smart―Carbon Nanotube Dispersions. Methods in Molecular Biology, 2010, 625, 27-38.	0.4	6
3227	Applications of Carbon Nanotubes in Biomedical Studies. Methods in Molecular Biology, 2011, 726, 223-241.	0.4	16
3228	Biomedical Applications of Nano-antioxidant. Methods in Molecular Biology, 2013, 1028, 147-151.	0.4	24
3229	Near Infrared Spectral Imaging of Carbon Nanotubes for Biomedicine. , 2020, , 103-132.		1
3230	Near Infrared-Emitting Bioprobes for Low-Autofluorescence Imaging Techniques. , 2020, , 199-229.		1
3231	Photoluminescent Carbon Nanomaterials: Properties and Potential Applications. , 2009, , 128-153.		2
3232	Carbon Nanotube TFTs. , 2012, , 751-776.		1
3233	Nanomaterials Properties. , 2011, , 5-22.		4
3234	Single-Walled Carbon Nanotubes. , 2013, , 105-146.		26
3235	Introduction to Clay- and Carbon-Based Polymer Nanocomposites: Materials, Processing, and Characterization. , 2017, , 1-24.		2
3236	Sonication-assisted dispersion of carbon nanotubes in aqueous solutions of the anionic surfactant SDBS: The role of sonication energy. , 2013, 58, 2082.		1
3238	Analysis of Single-Walled Carbon Nanotubes in Estuarine Sediments by Density Gradient Ultracentrifugation Coupled to Near-Infrared Fluorescence Spectroscopy Reveals Disassociation of Residual Metal Catalyst Nanoparticles. Environmental Science & Technology, 2021, 55, 1015-1023.	4.6	5
3239	Environmental Electrometry with Luminescent Carbon Nanotubes. Nano Letters, 2018, 18, 4136-4140.	4.5	18
3240	Fate of Carbon Nanotubes Locally Implanted in Mice Evaluated by Near-Infrared Fluorescence Imaging: Implications for Tissue Regeneration. ACS Applied Nano Materials, 2019, 2, 1382-1390.	2.4	10
3241	Molecular Dynamics Studies of the Interactions Between Carbon Nanotubes and Biomembranes. RSC Biomolecular Sciences, 2010, , 287-305.	0.4	3

#	Article	IF	CITATIONS
3242	Ultrafast lattice and electronic dynamics in single-walled carbon nanotubes. Nanoscale Advances, 2020, 2, 2808-2813.	2.2	4
3245	Magnetotransport in type-enriched single-wall carbon nanotube networks. Physical Review Materials, 2018, 2, .	0.9	7
3246	Anomalous variations of spectral linewidth in internal excitonic quantum transitions of ultrafast resonantly excited single-walled carbon nanotubes. Physical Review Materials, 2019, 3, .	0.9	9
3247	Liquid-phase exfoliated semiconducting single-walled carbon nanotubes as a saturable absorber for passively Q-switched laser. Journal of Nanophotonics, 2018, 12, 1.	0.4	4
3248	Surface Adsorption and Replacement of Acid-Oxidized Single-Walled Carbon Nanotubes and Poly(vinyl) Tj ETQq0	0.0 rgBT / 0.3	Oyerlock 10
3249	Sensing of epigallocatechin gallate and tannic acid based on near infrared optical spectroscopy of DNA-wrapped single-walled carbon nanotube hybrids. Journal of Near Infrared Spectroscopy, 2021, 29, 73-83.	0.8	6
3250	Structures and Properties of Carbon Nanotubes. , 2004, , 1-24.		12
3251	Characterization Techniques in Carbon Nanotube Research. , 2004, , 117-136.		1
3252	An Introduction to Graphene and Carbon Nanotubes. , 0, , .		23
3253	Chemistry of Carbon Nanotubes. , 2006, , .		3
3254	Chemistry of Carbon Nanotubes. Advanced Materials and Technologies, 2006, , 77-147.	0.4	1
3255	Chemistry of Carbon Nanotubes. Advanced Materials and Technologies, 2006, , 37-108.	0.4	2
3256	Universality in the Photophysics of p- Conjugated Polymers and Single- Walled Carbon Nanotubes. , 2009, , 77-116.		2
3257	The Effect of DNA-Dispersed Single-Walled Carbon Nanotubes on the Polymerase Chain Reaction. PLoS ONE, 2014, 9, e94117.	1.1	25
3259	Carbon Nanotube–Purification and Sorting Protocols. Defence Science Journal, 2008, 58, 591-599.	0.5	20
3260	Carbon nanotube mode-locked fiber lasers: recent progress and perspectives. Nanophotonics, 2020, 10, 749-775.	2.9	30
3261	Nanotechnology and animal health. OIE Revue Scientifique Et Technique, 2005, 24, 425-432.	0.5	57
3263	Carbon Nanotube: A Versatile Carrier for Various Biomedical Applications. Drug Delivery Letters, 2014, 4, 156-169	0.2	3

#	Article	IF	CITATIONS
3264	Growth of Zinc Oxide Porous Films via Electrochemical Anodization Using Glycerol Based Electrolyte. Chemistry and Chemical Technology, 2014, 8, 283-286.	0.2	7
3266	The Quantitative Characterization of the Dispersion State of Single-Walled Carbon Nanotubes. Transactions of the Korean Society of Mechanical Engineers, A, 2007, 31, 483-489.	0.1	2
3267	Nanoprobes and Their Applications in Veterinary Medicine and Animal Health. Research Journal of Nanoscience and Nanotechnology, 2012, 2, 1-16.	2.0	12
3268	Application of Carbon Nanotubes in Nanomedicine. Advances in Chemical and Materials Engineering Book Series, 2015, , 90-128.	0.2	2
3269	The Role of Electric Field and Ultrasonication in the Deposition and Alignment of Single-Walled Carbon Nanotube Networks Using Dielectrophoresis. World Journal of Condensed Matter Physics, 2013, 03, 159-163.	1.1	2
3270	Synthesis, Characterization and Liquid Phase Oxidation of Cyclohexane with Hydrogen Peroxide over Oxovanadium(IV) Schiff-base Tetradendate Complex Covalently Anchored to Multi-Wall Carbon Nanotubes (MWNTs). Bulletin of the Korean Chemical Society, 2009, 30, 355-362.	1.0	12
3271	Evaluating the Degree of Macrodispersion of Carbon Nanotubes using UV-VIS-NIR Absorption Spectroscopy. Carbon Letters, 2009, 10, 14-18.	3.3	2
3272	Carbon nanomaterials in organic photovoltaic cells. Carbon Letters, 2011, 12, 194-206.	3.3	8
3273	Dielectrophoretic Alignment and Pearl Chain Formation of Single-Walled Carbon Nanotubes in Deuterium Oxide Solution. Carbon Letters, 2012, 13, 248-253.	3.3	1
3274	Double-walled carbon nanotubes: synthesis, structural characterization, and application. Carbon Letters, 2014, 15, 77-88.	3.3	35
3275	Theoretical Studies on Formation, Property Tuning and Adsorption of Graphene Segments. , 0, , .		2
3276	Environmental Effects on Photoluminescence of Single-Walled Carbon Nanotubes. , 0, , .		3
3277	Synthesis of catalytic chemical vapor grown carbon fibers: carbon nanotube and carbon nanofiber. Tanso, 2010, 2010, 153-160.	0.1	3
3278	Preparation, formation mechanism and optical properties of C/Cu shell/core nanostructures. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 108102.	0.2	12
3280	Enhanced Properties in Single-Walled Carbon Nanotubes Based Saturable Absorber for All Optical Signal Regeneration. Japanese Journal of Applied Physics, 2011, 50, 040206.	0.8	1
3281	Cold-induced Conversion of Connective Tissue Skeleton in Brown Adipose Tissues. Acta Histochemica Et Cytochemica, 2021, 54, 131-141.	0.8	2
3282	Revealing the tunability of electronic structures and optical properties of novel SWCNT derivatives, phenine nanotubes. Physical Chemistry Chemical Physics, 2021, 23, 24239-24248.	1.3	4
3283	Detection and Imaging of the Plant Pathogen Response by Nearâ€Infrared Fluorescent Polyphenol Sensors. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27

#	Article	IF	Citations
3284	Versatile Types of Inorganic/Organic NIR-IIa/IIb Fluorophores: From Strategic Design toward Molecular Imaging and Theranostics. Chemical Reviews, 2022, 122, 209-268.	23.0	232
3285	Fabrication of Metal/Carbon Nanotube Composites by Electrochemical Deposition. Electrochem, 2021, 2, 563-589.	1.7	6
3286	Design of Over-1000 nm Near-Infrared Fluorescent Polymeric Micellar Nanoparticles by Matching the Solubility Parameter of the Core Polymer and Dye. ACS Nanoscience Au, 2021, 1, 61-68.	2.0	12
3287	Detection and imaging of the plant pathogen response by near infrared fluorescent polyphenol sensors. Angewandte Chemie, 0, , .	1.6	2
3288	Optical Imaging in the Second Near Infrared Window for Vascular Bioimaging. Small, 2021, 17, e2103780.	5.2	44
3289	Modeling Electronics at the Nanoscale. The Electrical Engineering Handbook, 2002, , .	0.2	2
3290	Ultrafast dynamics of unbundeled single-walled carbon nanotubes. , 2004, , .		0
3291	Carrier Dynamics in Single-Wall Carbon Nanotubes Probed by Time-Resolved Fluorescence. , 2004, , .		0
3292	Long-lived dilute photocarriers in individually-suspended single-walled carbon nanotubes. , 2004, , .		0
3293	Time-resolved fluorescence in semiconducting single-wall carbon nanotubes. , 2004, , .		0
3294	Carbon Nanotubes and Bismuth Nanowires. , 2005, , .		1
3295	Single Carbon Nanotube Photonics and the Role of Excitons. , 2006, , .		0
3296	Electrostatic Ejection of Micro-droplets Containing Carbon Nanotubes. Transactions of the Korean Society of Mechanical Engineers, B, 2006, 30, 82-86.	0.0	0
3297	Sparse Point Representation Based on Interpolation Wavelets. Transactions of the Korean Society of Mechanical Engineers, B, 2006, 30, 8-15.	0.0	0
3298	Exciton Dynamics in Bundled and Unbundled (6,5) Carbon Nanotubes. , 2006, , .		0
3299	Chapter 5 Tip-enhanced optical spectroscopy of single-walled carbon nanotubes. Advances in Nano-optics and Nano-photonics, 2006, , 157-175.	0.0	0
3300	Surface Conductance Modulation of Single-Walled Carbon Nanotubes and Effects on Dielectrophoresis. Transactions of the Korean Society of Mechanical Engineers, A, 2006, 30, 179-186.	0.1	0
3301	Chemistry of Carbon Nanotubes. , 2006, , 51-122.		1

# 3302	ARTICLE Tip-enhanced optical spectroscopy of single-walled carbon nanotubes. , 2007, , 157-175.	IF	Citations 0
3303	In-situ Observation of CVD Growth of Carbon Nanotubes with a Scanning Electron Microscope. Hyomen Kagaku, 2007, 28, 97-103.	0.0	0
3304	Modeling Electronics at tbe Nanoscale. The Electrical Engineering Handbook, 2007, , 13-1-13-38.	0.2	0
3307	Nanocarbon and laser. The Review of Laser Engineering, 2008, 36, P4-P7.	0.0	0
3308	Pharmacological Applications of Biocompatible Carbon Nanotubes and Their Emerging Toxicology Issues. Carbon Materials, 2008, , 283-316.	0.2	1
3310	Raman and Photoluminescence Study of Single-Walled Carbon Nanotubes Dispersed in Sodium Dodecyl Sulfate Aqueous Solution Using Ultrasonication. Applied Science and Convergence Technology, 2008, 17, 170-174.	0.3	0
3311	Coherent phonon oscillations excited by the E <inf>11</inf> Ttransition in micelle-suspended single-walled carbon nanotubes. , 2008, , .		0
3312	Band Structure and Electron Transport Physics of One-Dimensional SWNTs. Integrated Circuits and Systems, 2009, , 1-42.	0.2	2
3313	Optical studies of inner tubes within double-walled carbon nanotubes. Tanso, 2009, 2009, 172-179.	0.1	0
3314	Fabrication of Directionally Aligned Carbon Nanotube Thin Films on Solid Surfaces Using Chemical Patterns. E-Journal of Surface Science and Nanotechnology, 2010, 8, 207-210.	0.1	0
3319	Carbon-Nanotube-Based LbL Assembly. , 2010, , 1-33.		0
3320	Biomedical Applications VI. , 2011, , 185-221.		0
3321	Biomedical Applications I. , 2011, , 23-45.		0
3322	Biomedical Applications IV. , 2011, , 105-150.		0
3323	Detection and Selective Destruction of Breast Cancer Cells. , 2011, , 126-141.		0
3325	Nanomedicine: Potential Devices for Diagnostics. Recent Patents on Nanomedicine, 2012, 2, 146-155.	0.5	2
3326	Laser-Irradiation-Induced Enrichment of Metallic Single-Walled Carbon Nanotubes from As-Synthesized Nanotubes Individually Dispersed in Aqueous Solution. Japanese Journal of Applied Physics, 2012, 51, 105101.	0.8	0
3327	Science and Applications of Photomechanical Actuation of Carbon Nanostructures. , 2012, , 177-236.		0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
3328	CHAPTER 16. Smart Carbon Nanotubes. RSC Smart Materials, 2013, , 90-116.		0.1	1
3329	Preparation and structure analysis of double wall-carbon nanotubes encapsulating gadol trichloride nanowires. Tanso, 2013, 2013, 279-283.	nium	0.1	0
3331	Important Spectral and Polarized Properties of Semiconducting SWNT Photoluminescen 15-36.	ce. , 2013, ,		0
3333	Carbon Nanotubes for Photovoltaics. Advances in Chemical and Materials Engineering Bo 2014, , 268-311.	ook Series,	0.2	0
3335	Environmental Interactions of Geo- and Bio-Macromolecules with Nanomaterials. , 2014,	, 257-290.		0
3336	Principles of Raman Scattering in Carbon Nanotubes. Advances in Chemical and Material Book Series, 2014, , 131-145.	s Engineering	0.2	0
3339	Distinct Diameter Dependence of Redox Property for Armchair, Zigzag Single-walled, and Double-walled Carbon Nanotubes. Challenges and Advances in Computational Chemistry 2014, , 31-60.		0.6	1
3340	Single-Walled Carbon Nanotubes: Separation Using Capillary Electrophoresis. , 0, , 4522-	4532.		0
3341	Carbon Nanotube TFTs. , 2015, , 1-33.			0
3343	State Estimation of the Time-Varying and Spatially Localized Concentration of Signal Mo the Stochastic Adsorption Dynamics on the Carbon Nanotube-Based Sensors and Its App Tumor Cell Detection. PLoS ONE, 2015, 10, e0141930.		1.1	0
3344	Nanostructured Materials: Metrology. , 2016, , .			0
3345	CNT Buckypaper-Polyurethane Composite with Enhanced Strength, Toughness and Flexil Research, 2016, 29, 161-166.	ole. Composites	0.1	0
3346	Enhancement of Luminescence from a Carbon Nanotube Aqueous Suspension at the Cys Influence of the Adsorbed Polymer. Ukrainian Journal of Physics, 2016, 61, 932-939.	teine Doping:	0.1	0
3347	5 Electronic Dispersion Relation of Single-Walled Carbon Nanotubes (SWCNTs). , 2016, ,	69-88.		0
3349	Application of Carbon Nanotubes in Nanomedicine. , 2017, , 2021-2062.			3
3351	Single-Walled Carbon Nanotubes. , 2017, , 75-96.			0
3353	Carbon Nanotube Functionalizations. Carbon Nanostructures, 2017, , 75-104.		0.1	0
3354	CLAY IMPROVED DISPERSION OF CARBON NANOTUBES IN DIFFERENT SOLVENTS. Priloz Akdemija Na Naukite I Umetnostite Oddelenie Za Prirodno-matematiÄki I BiotehniÄki Na	i: Makedonska uki, 2017, 36, .	0.3	2

#	Article	IF	CITATIONS
3356	Influence of hydroxylic endgroups on the percolation behavior of the systems based on olygoethylene glycol and carbon nanotubes. Polymer Journal, 2017, 39, 75-82.	0.3	0
3357	Application of the Model of "Quantum―Metamaterials: Metamaterial Caused Enhancement of Nonlinear Response. Springer Series in Optical Sciences, 2018, , 205-224.	0.5	0
3359	Gold Nano Particles of Cancer Treatment: A Review. American Journal of PharmTech Research, 2018, 8, 1-43.	0.2	0
3361	Nanotechnology-Based Stem Cell Tissue Engineering with a Focus on Regeneration of Cardiovascular Systems. , 2019, , 1-67.		1
3362	Photophysics and Quantum Emission Behaviors of Covalently Introduced Defects in Single-Wall Carbon Nanotubes. World Scientific Series on Carbon Nanoscience, 2019, , 143-189.	0.1	0
3364	Biomedical Applications I: Delivery of Drugs. , 2019, , 23-46.		0
3366	Biomedical Applications VI: Carbon Nanotubes As Biosensing and Biointerfacial Materials. , 2019, , 185-222.		0
3367	Photo-induced Aggregation of Single-walled Carbon Nanotubes from Dispersion by Using a Photochromic Dispersant. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2019, 32, 271-278.	0.1	0
3368	Chemical functionalization and characterization of carbon nanotubes. Tanso, 2019, 2019, 183-194.	0.1	0
3370	Length-Selective Dielectrophoretic Manipulation of Single-Walled Carbon Nanotubes. Analytical Chemistry, 2020, 92, 8901-8908.	3.2	6
3371	Light-Induced Cellular Delivery and Analysis. , 2022, , 3-30.		1
3372	The Development of Nanoparticles for the Detection and Imaging of Ovarian Cancers. Biomedicines, 2021, 9, 1554.	1.4	2
3375	Mechanical properties measurement of materials and devices at micro- and nano-scale by optical methods: A review. Optics and Lasers in Engineering, 2022, 150, 106853.	2.0	17
3377	Detection of single walled carbon nanotube based sensors in a large mammal. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102489.	1.7	12
3378	Effect on near-infrared absorption spectra of DNA/single-walled carbon nanotube (SWNT) complexes by adsorption of a blocking reagent. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111072.	2.5	2
3379	Quantum transport: general concepts. , 0, , 91-117.		1
3381	Inorganic nanoparticles for multimodal molecular imaging. Molecular Imaging, 2011, 10, 3-16.	0.7	31
3383	Emergence of carbon nanoscrolls from single walled carbon nanotubes: an oxidative route. Physical Chemistry Chemical Physics, 2021, 23, 27437-27448.	1.3	0

#	Article	IF	Citations
3384	Optical Spectroscopy of Individual Single-Walled Carbon Nanotubes. Nano-optics and Nanophotonics, 2021, , 135-163.	0.2	1
3385	Selective separation of single-walled carbon nanotubes in aqueous solution by assembling redox nanoclusters. Nanoscale, 2022, 14, 953-961.	2.8	7
3386	Nanotechnology in veterinary medicine: a review. Ciencia Rural, 2022, 52, .	0.3	5
3387	Nanotechnology in animal production. , 2022, , 149-170.		1
3388	In vivo imaging of fluorescent single-walled carbon nanotubes within C.Âelegans nematodes in the near-infrared window. Materials Today Bio, 2021, 12, 100175.	2.6	17
3389	Recent progress in PNIPAM-based multi-responsive actuators: A mini-review. Chemical Engineering Journal, 2022, 433, 133496.	6.6	48
3390	Optical Detection of Stereoselective Interactions with DNA-Wrapped Single-Wall Carbon Nanotubes. Journal of the American Chemical Society, 2021, 143, 20628-20632.	6.6	10
3392	Study the Effects of Supramolecular Interaction on Diffusion Kinetics in Hybrid Hydrogels of Zwitterionic Polymers and CNTs. Macromolecular Chemistry and Physics, 0, , 2100348.	1.1	3
3393	Letting the little light of mind shine: Advances and future directions in neurochemical detection. Neuroscience Research, 2022, 179, 65-78.	1.0	8
3394	Charge transport in semiconducting carbon nanotube networks. Applied Physics Reviews, 2021, 8, .	5.5	38
3395	Investigation of shear-induced rearrangement of carbon nanotube bundles using Taylor–Couette flow. RSC Advances, 2021, 11, 38152-38160.	1.7	3
3396	Biosensing with Fluorescent Carbon Nanotubes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	90
3397	Using data science to locate nanoparticles in a polymer matrix composite. Composites Science and Technology, 2022, 218, 109205.	3.8	5
3399	Noncovalent Functionalization of Carbon Nanotubes. , 2021, , 1-28.		2
3401	Size Selective Corona Interactions from Selfâ€Assembled Rosette and Singleâ€Walled Carbon Nanotubes. Small, 2022, 18, e2104951.	5.2	2
3402	Biosensing with Fluorescent Carbon Nanotubes. Angewandte Chemie, 0, , .	1.6	2
3403	Streptavidin-Conjugated Oxygen-Doped Single-Walled Carbon Nanotubes as Near-Infrared Labels for Immunoassays. Langmuir, 2022, 38, 1509-1513.	1.6	1
3404	Application of a cationic amylose derivative loaded with singleâ€walled carbon nanotubes for gene delivery therapy and photothermal therapy of colorectal cancer. Journal of Biomedical Materials Research - Part A, 2022, 110, 1052-1061.	2.1	10

#	Article	IF	CITATIONS
3405	Animal health monitoring using nanosensor networks. , 2022, , 573-608.		4
3406	Predicting the structure configuration and Raman analysis of caffeine molecules encapsulated into single-walled carbon nanotubes: Evidence for charge transfer. Solar Energy, 2022, 232, 204-211.	2.9	5
3407	Governing Factors for Carbon Nanotube Dispersion in Organic Solvents Estimated by Machine Learning. Advanced Materials Interfaces, 2022, 9, .	1.9	5
3408	Hyperspectral Counting of Multiplexed Nanoparticle Emitters in Single Cells and Organelles. ACS Nano, 2022, 16, 3092-3104.	7.3	8
3409	Enhanced thermal characteristics of CuO embedded lauric acid phase change material. Thermal Science, 2022, 26, 1615-1621.	0.5	15
3410	Cross-Scale Synthesis of Organic High-k Semiconductors Based on Spiro-Gridized Nanopolymers. Research, 2022, 2022, 9820585.	2.8	10
3411	Quantum defects as versatile anchors for carbon nanotube functionalization. Nature Protocols, 2022, 17, 727-747.	5.5	18
3412	Preparation of coal-based carbon nanotubes using catalytical pyrolysis: A brief review. Fuel Processing Technology, 2022, 229, 107171.	3.7	16
3413	Biological recognition elements. , 2022, , 213-239.		1
3414	Humic acid non-covalent functionalized multi-walled carbon nanotubes composite membrane and its application for the removal of organic dyes. Journal of Environmental Chemical Engineering, 2022, 10, 107320.	3.3	16
3415	Surface functionalization of carbon nanotubes via plasma discharge: A review. Inorganic Chemistry Communication, 2022, 138, 109276.	1.8	28
3416	Defected Carbon Nanotubes and Their Application. Advances in Material Research and Technology, 2022, , 111-141.	0.3	5
3418	Manufacturing methods of elastomer blends and composites. , 2022, , 11-32.		4
3419	Photoexcited State Properties of Poly(9-vinylcarbazole)-Functionalized Carbon Dots in Solution versus in Nanocomposite Films: Implications for Solid-State Optoelectronic Devices. ACS Applied Nano Materials, 2022, 5, 2820-2827.	2.4	7
3420	Recent Advances in Structure Separation of Singleâ€Wall Carbon Nanotubes and Their Application in Optics, Electronics, and Optoelectronics. Advanced Science, 2022, 9, e2200054.	5.6	39
3421	The synergistic effect of hybridizing and aligning graphene oxide nanoplatelets and multi-walled carbon nanotubes on mode-I fracture behavior of nanocomposite adhesive joints. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2022, 236, 1764-1776.	0.7	5
3422	Flexible and Stretchable Electrodes for Capacitive Sensors. Journal of Electronic Materials, 2022, 51, 2956-2963.	1.0	2
3423	Peptide-Encapsulated Single-Wall Carbon Nanotube-Based Near-Infrared Optical Nose for Bacteria Detection and Classification. IEEE Sensors Journal, 2022, 22, 6277-6287.	2.4	15

#	Article	IF	CITATIONS
3424	Nanofiller dispersing, drawn orientation, and mechanical properties of polymerâ€based composites via organoâ€modification of singleâ€walled carbon nanotubes obtained by twoâ€types of manufacturing processes. Polymer Composites, 2022, 43, 3457-3470.	2.3	4
3425	Improving the air quality with Functionalized Carbon Nanotubes: Sensing and remediation applications in the real world. Chemosphere, 2022, 299, 134468.	4.2	18
3426	Plasmon-induced near-infrared fluorescence enhancement of single-walled carbon nanotubes. Carbon, 2022, 194, 162-175.	5.4	12
3427	A review on low-dimensional novel optoelectronic devices based on carbon nanotubes. AlP Advances, 2021, 11, .	0.6	4
3428	Biokinetic Evaluation of Contrast Media Loaded Carbon Nanotubes Using a Radiographic Device. Toxics, 2021, 9, 331.	1.6	1
3429	Brightening of dark excitons in single-walled carbon nanotubes: Investigation by many-body Green's function theory. Chinese Journal of Chemical Physics, 2021, 34, 861-866.	0.6	0
3430	Discovery of DNA–Carbon Nanotube Sensors for Serotonin with Machine Learning and Near-infrared Fluorescence Spectroscopy. ACS Nano, 2022, 16, 736-745.	7.3	20
3431	Electronic Type and Diameter Dependence of the Intersubband Plasmons of Singleâ€Wall Carbon Nanotubes. Advanced Functional Materials, 2022, 32, .	7.8	4
3433	New Perspectives in SWCNT Applications: Tuball SWCNTs. Part 2. New Composite Materials through Augmentation with Tuball Carbon Trends, 2022, 8, 100176.	1.4	8
3434	Recent Advances in the Applications of Carbon Nanostructures on Optical Sensing of Emerging Aquatic Pollutants. ChemNanoMat, 2022, 8, .	1.5	6
3435	Klein tunneling and ballistic transport in graphene and related materials. , 0, , 118-142.		0
3436	Quantum transport in disordered graphene-based materials. , 0, , 143-218.		0
3437	Ab initio and multiscale quantum transport in graphene-based materials. , 0, , 232-299.		0
3438	Electronic structure calculations: the density functional theory (DFT). , 0, , 314-331.		0
3439	Electronic structure calculations: the many-body perturbation theory (MBPT). , 0, , 332-337.		0
3440	Green's functions and ab initio quantum transport in the Landauer–Büttiker formalism. , 0, , 338-357.		0
3441	CHAPTER 12. Pretreatment Processes for the Analysis of Organic Pollutants with Nanomaterials. RSC Detection Science, 0, , 306-354.	0.0	0
3443	Carbon Nanomaterials for Imaging. Monographs in Supramolecular Chemistry, 2022, , 242-277.	0.2	1

#	Article	IF	CITATIONS
3445	When Super-Resolution Localization Microscopy Meets Carbon Nanotubes. Nanomaterials, 2022, 12, 1433.	1.9	7
3446	Recent advances in graphene-based polymer composite scaffolds for bone/cartilage tissue engineering. Journal of Drug Delivery Science and Technology, 2022, 72, 103360.	1.4	5
3447	Spontaneously sp ² -Carbonized Fluorescent Polyamides as a Probe Material for Bioimaging. ACS Applied Bio Materials, 2022, 5, 3057-3066.	2.3	0
3448	Analysis of Dispersion of Carbon Nanotubes in mâ^'Cresol. Materials, 2022, 15, 3777.	1.3	0
3449	Key factors for ultra-high on/off ratio thin-film transistors using as-grown carbon nanotube networks. RSC Advances, 2022, 12, 16291-16295.	1.7	5
3450	One-Pot Separation of Semiconducting Single-Walled Carbon Nanotubes and Their Enantiomer Recognition Based on Self-Organized Supramolecular Riboflavin (Vitamin B2) Motifs. Journal of Physical Chemistry C, 2022, 126, 9909-9917.	1.5	3
3451	Comparative study of the extraction selectivity of PFO-BPy and PCz for small to large diameter single-walled carbon nanotubes. Nano Research, 2022, 15, 8479-8485.	5.8	10
3452	Dispersion of Single-Walled Carbon Nanotubes in Ethanol–Cholic Acid Mixtures: Experiments and Molecular Dynamic Simulation. Russian Journal of Physical Chemistry A, 2022, 96, 1142-1147.	0.1	0
3453	Engineering plants with carbon nanotubes: a sustainable agriculture approach. Journal of Nanobiotechnology, 2022, 20, .	4.2	31
3455	Fluorescent Nanoparticles for Super-Resolution Imaging. Chemical Reviews, 2022, 122, 12495-12543.	23.0	82
3455 3456	Fluorescent Nanoparticles for Super-Resolution Imaging. Chemical Reviews, 2022, 122, 12495-12543. Precise Deposition of Carbon Nanotube Bundles by Inkjet-Printing on a CMOS-Compatible Platform. Materials, 2022, 15, 4935.	23.0 1.3	82
	Precise Deposition of Carbon Nanotube Bundles by Inkjet-Printing on a CMOS-Compatible Platform.		
3456	Precise Deposition of Carbon Nanotube Bundles by Inkjet-Printing on a CMOS-Compatible Platform. Materials, 2022, 15, 4935. Prospects of Fluorescent Single-Chirality Carbon Nanotube-Based Biosensors. Analytical Chemistry,	1.3	6
3456 3457	 Precise Deposition of Carbon Nanotube Bundles by Inkjet-Printing on a CMOS-Compatible Platform. Materials, 2022, 15, 4935. Prospects of Fluorescent Single-Chirality Carbon Nanotube-Based Biosensors. Analytical Chemistry, 2022, 94, 9941-9951. Statistical Verification of Anomaly in Chiral Angle Distribution of Air-Suspended Carbon Nanotubes. 	1.3 3.2	6 22
3456 3457 3458	 Precise Deposition of Carbon Nanotube Bundles by Inkjet-Printing on a CMOS-Compatible Platform. Materials, 2022, 15, 4935. Prospects of Fluorescent Single-Chirality Carbon Nanotube-Based Biosensors. Analytical Chemistry, 2022, 94, 9941-9951. Statistical Verification of Anomaly in Chiral Angle Distribution of Air-Suspended Carbon Nanotubes. Nano Letters, 2022, 22, 5818-5824. An experimental and numerical study to enhance the thermal characteristics of <scp>LA</scp> / <scp>CuO</scp> / <scp> Al ₂ O ₃ </scp> nanocomposites as a phase change 	1.3 3.2 4.5	6 22 3
3456 3457 3458 3459	Precise Deposition of Carbon Nanotube Bundles by Inkjet-Printing on a CMOS-Compatible Platform. Materials, 2022, 15, 4935. Prospects of Fluorescent Single-Chirality Carbon Nanotube-Based Biosensors. Analytical Chemistry, 2022, 94, 9941-9951. Statistical Verification of Anomaly in Chiral Angle Distribution of Air-Suspended Carbon Nanotubes. Nano Letters, 2022, 22, 5818-5824. An experimental and numerical study to enhance the thermal characteristics of <scp>LA</scp> / <scp> CuO</scp> / <scp> Al ₂ O ₃ </scp> nanocomposites as a phase change material for building cooling applications. Polymer Composites, 0, Hybrid Platforms of Silicon Nanowires and Carbon Nanotubes in an Ionic Liquid Bucky Gel. Molecules,	1.3 3.2 4.5 2.3	6 22 3 4
3456 3457 3458 3459 3460	 Precise Deposition of Carbon Nanotube Bundles by Inkjet-Printing on a CMOS-Compatible Platform. Materials, 2022, 15, 4935. Prospects of Fluorescent Single-Chirality Carbon Nanotube-Based Biosensors. Analytical Chemistry, 2022, 94, 9941-9951. Statistical Verification of Anomaly in Chiral Angle Distribution of Air-Suspended Carbon Nanotubes. Nano Letters, 2022, 22, 5818-5824. An experimental and numerical study to enhance the thermal characteristics of <scp>LA</scp> / <scp>CuO</scp> / <scp> Al ₂ O ₃ </scp> nanocomposites as a phase change material for building cooling applications. Polymer Composites, 0, Hybrid Platforms of Silicon Nanowires and Carbon Nanotubes in an Ionic Liquid Bucky Gel. Molecules, 2022, 27, 4412. Photoluminescence of metallic single-walled carbon nanotubes: Role of interband and intraband 	1.3 3.2 4.5 2.3 1.7	6 22 3 4 2

#	Article	IF	CITATIONS
3465	Functionalization of polyfluoreneâ€wrapped carbon nanotubes using thermally cleavable sideâ€chains. Journal of Polymer Science, 0, , .	2.0	2
3466	Photochemical spin-state control of binding configuration for tailoring organic color center emission in carbon nanotubes. Nature Communications, 2022, 13, .	5.8	7
3467	Development of Carbon Nanotube (CNT)-Reinforced Mg Alloys: Fabrication Routes and Mechanical Properties. Metals, 2022, 12, 1392.	1.0	32
3469	Gd-Encapsulated Carbon Nanotubes as Dual-Modal Probes for Magnetic Resonance and Second Near-Infrared Emission. ECS Journal of Solid State Science and Technology, 2022, 11, 091002.	0.9	0
3470	Comparison of electrical and optical transduction modes of DNA-wrapped SWCNT nanosensors for the reversible detection of neurotransmitters Biosensors and Bioelectronics, 2022, 216, 114642.	5.3	3
3471	Protein-structure-dependent spectral shifts of near-infrared photoluminescence from locally functionalized single-walled carbon nanotubes based on avidin–biotin interactions. Nanoscale, 2022, 14, 13090-13097.	2.8	7
3472	Cationic Amphiphilic Molecules as Bactericidal Agents. , 2022, , 277-302.		0
3473	Carbon Nanotube Based Nanomaterials for Solar Energy Storage Devices. Current and Future Developments in Nanomaterials and Carbon Nanotubes, 2022, , 1-18.	0.1	2
3474	Carbon Nanotube and Its Derived Nanomaterials Based High Performance Biosensing Platform. Biosensors, 2022, 12, 731.	2.3	18
3475	Role of Mechanical van der Waals Coupling in the G <i>-</i> Band Splitting of Individual Multiwall Carbon Nanotubes. Journal of Physical Chemistry C, 2022, 126, 15759-15767.	1.5	1
3476	The Effects of Lengths of Flavin Surfactant N-10-Alkyl Side Chains on Promoting Dispersion of a High-Purity and Diameter-Selective Single-Walled Nanotube. Nanomaterials, 2022, 12, 3380.	1.9	1
3477	Larger diameter selection of carbon nanotubes by two phase extraction using amphiphilic polymeric surfactant. Journal of Molecular Liquids, 2022, 367, 120425.	2.3	0
3478	Synthesis and Biological Use of Nanomaterials. Topics in Applied Physics, 2022, , 793-858.	0.4	0
3479	Engineered Materials for Probing and Perturbing Brain Chemistry. , 2022, , 89-168.		1
3480	Optical detection of pH changes in artificial sweat using near-infrared fluorescent nanomaterials. Sensors & Diagnostics, 2022, 1, 1189-1197.	1.9	3
3481	Application of Surface Modified Carbon Nanotubes in Energy. ACS Symposium Series, 0, , 101-119.	0.5	1
3482	Hybrid, dual visible and near-infrared fluorescence emission of (6,5) Single-Walled Carbon Nanotubes modified with fluorescein through aryl diazonium salt chemistry. Nanotechnology, 0, , .	1.3	0
3483	Single-Walled Carbon Nanotubes as Fluorescent Probes for Monitoring the Self-Assembly and Morphology of Peptide/Polymer Hybrid Hydrogels. Nano Letters, 2022, 22, 9205-9214.	4.5	11

#	Article	IF	CITATIONS
3484	Optimization of ssDNA-SWCNT Ultracentrifugation via Efficacy Measurements. ECS Journal of Solid State Science and Technology, 2022, 11, 101009.	0.9	1
3485	Quantum conductance of MoS\$\$_2\$\$ armchair strained nanoribbons: a theoretical study. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	1
3486	Noncovalent Functionalization of Carbon Nanotubes. , 2022, , 421-448.		0
3487	Divalent Metal Cation Optical Sensing Using Single-Walled Carbon Nanotube Corona Phase Molecular Recognition. Analytical Chemistry, 2022, 94, 16393-16401.	3.2	4
3488	Sonication-Free Dispersion of Single-Walled Carbon Nanotubes for High-Sorption-Capacity Aerogel Fabrication. Molecules, 2022, 27, 7657.	1.7	3
3489	Localized Charge on Surfactant-Wrapped Single-Walled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2022, 13, 10705-10712.	2.1	1
3490	Clearance pathways of near-infrared-II contrast agents. Theranostics, 2022, 12, 7853-7883.	4.6	6
3491	Single-chirality of single-walled carbon nanotubes (SWCNTs) through chromatography and its potential biological applications. New Journal of Chemistry, 2023, 47, 992-1022.	1.4	1
3492	Ultra-lightweight living structural material for enhanced stiffness and environmental sensing. Materials Today Bio, 2023, 18, 100504.	2.6	2
3493	Surface characterization of covalently functionalized carbon-based nanomaterials using comprehensive XP and NEXAFS spectroscopies. Applied Surface Science, 2023, 613, 155953.	3.1	2
3494	Carbon Nanotubes for Photonics Applications. , 2022, , 1557-1577.		0
3495	Semiconducting Polymer Nanoparticles in the Second Nearâ€Infrared Region for Biomedical Imaging and Therapy. Advanced Optical Materials, 2023, 11, .	3.6	8
3496	Thermal defect healing of single-walled carbon nanotubes assisted by supplying carbon-containing reactants. Applied Physics Express, 0, , .	1.1	0
3497	Nanocarriers in Veterinary Medicine: A Challenge for Improving Osteosarcoma Conventional Treatments. Nanomaterials, 2022, 12, 4501.	1.9	4
3498	Confinement phase in carbon-nanotubes and the extended massive Schwinger model. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 504001.	0.7	0
3499	Decoupling Individual Optical Nanosensor Responses Using a Spin-Coated Hydrogel Platform. ACS Applied Materials & Interfaces, 2023, 15, 1772-1783.	4.0	6
3500	High Sensitivity Nearâ€Infrared Imaging of Fluorescent Nanosensors. Small, 2023, 19, .	5.2	17
3501	Targeting Tumor-Associated Macrophages for Imaging. Pharmaceutics, 2023, 15, 144.	2.0	1

#	ARTICLE Understanding Oligonucleotide Hybridization and the Role of Anchoring on the Single-Walled	IF	CITATIONS
3502	Carbon Nanotube Corona Phase for Viral Sensing Applications. Journal of Physical Chemistry C, 2023, 127, 606-620.	1.5	6
3503	Prospects of nanobiotechnological applications for the livestock industry. , 2023, , 475-493.		1
3504	Carbon nanotubes for anticancer therapy: new trends and innovations. , 2023, , 175-204.		0
3506	Fluorescent Carbon Nanoparticles. , 2023, , 183-197.		0
3508	Controlling Near-Infrared Photoluminescence Properties of Single-Walled Carbon Nanotubes by Substituent Effect in Stepwise Chemical Functionalization. Journal of Physical Chemistry C, 2023, 127, 2360-2370.	1.5	5
3509	Impact of Dielectric Environment on Trion Emission from Single-Walled Carbon Nanotube Networks. Journal of Physical Chemistry C, 2023, 127, 3112-3122.	1.5	4
3510	Decoration of Polyfluorene-Wrapped Carbon Nanotubes with Photocleavable Side-Chains. Molecules, 2023, 28, 1471.	1.7	0
3512	Recent Advances on Peptide-Based Biosensors and Electronic Noses for Foodborne Pathogen Detection. Biosensors, 2023, 13, 258.	2.3	9
3513	High thermoelectric performance of flexible nanocomposite films based on Bi2Te3 nanoplates and carbon nanotubes selected using ultracentrifugation. Scientific Reports, 2023, 13, .	1.6	15
3514	Synthesis of Carbon Nanotubes with Merocyanine Dyes Decorated Carbon Nanotubes for Biomedical Imaging Devices. Materials Horizons, 2023, , 1127-1150.	0.3	0
3515	Nearâ€Infrared Fluorescence Lifetime Imaging of Biomolecules with Carbon Nanotubes**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
3516	Nahinfrarot Fluoreszenz‣ebensdauer Mikroskopie von Biomolekülen mit Kohlenstoffnanoröhren**. Angewandte Chemie, 2023, 135, .	1.6	0
3517	Strategies to break the trade-off between infrared transparency and conductivity. Progress in Materials Science, 2023, 136, 101112.	16.0	8
3518	Surfactant: An ancient but young member in chemical world. Chinese Science Bulletin, 2023, 68, 1147-1155.	0.4	0
3519	Carbon nanotubes: superfabric nanoscale theranostic materials. , 2023, , 43-81.		0
3520	Guanine Quantum Defects in Carbon Nanotubes for Biosensing. Journal of Physical Chemistry Letters, 2023, 14, 3483-3490.	2.1	8
3529	Myconanotechnology in agricultural and veterinary sector. , 2023, , 35-53.		0
3534	Applications of Upconversion Nanoparticles in Bio-Imaging. Progress in Optical Science and Photonics, 2023, , 405-436.	0.3	0

#	Article	IF	CITATIONS
3540	NIR-II Fluorophores: From Synthesis to Biological Applications. Journal of Analysis and Testing, 2023, 7, 245-259.	2.5	5
3549	Human and environmental safety of carbon nanotubes across their life cycle. Nature Reviews Materials, 2024, 9, 63-81.	23.3	1
3556	Nematode Disease Diagnosis: Application of Nano-Sensors. , 2023, , 245-258.		0
3568	A nIR fluorescent single walled carbon nanotube sensor for broad-spectrum diagnostics. Sensors & Diagnostics, 2024, 3, 203-217.	1.9	2
3571	Basic Principles of Functional Materials for Biomedical Applications. , 2024, , 1-31.		0
3573	Surface Grafting of Carbon Nanostructures. , 2024, , 1-45.		Ο