Systematic Design of Pore Size and Functionality in Iso Application in Methane Storage

Science 295, 469-472 DOI: 10.1126/science.1067208

Citation Report

#	Article	IF	CITATIONS
12	Microporous Materials. Science Progress, 2002, 85, 319-345.	1.0	6
13	SOLID STATE CHEMISTRY: Porous Materials with a Difference. Science, 2002, 298, 1723-1724.	6.0	15
14	The First "Organic Zeolite―with Isomerizing Building Blocks:  Single-Crystal-to-Single-Crystal Desolvation and Structure of the Empty Matrix. Crystal Growth and Design, 2002, 2, 401-408.	1.4	43
15	Hydrothermal Synthesis, Structure Determination, and Magnetic Properties of Three New Copper(II) Methylenediphosphonates with Hybrid Frameworks (MIL-54, 55, 56), and of the Cu Homologue of Na2Co(O3P-CH2-PO3)·(H2O). Chemistry of Materials, 2002, 14, 4910-4918.	3.2	43
16	Syntheses and Characterizations of Copper(II) Polymeric Complexes Constructed from 1,2,4,5-Benzenetetracarboxylic Acid. Inorganic Chemistry, 2002, 41, 6161-6168.	1.9	210
17	Coordination networks of Ag(i) and N,N′- bis(3-pyridinecarboxamide)-1,6-hexane: structures and anion exchange. Dalton Transactions RSC, 2002, , 4561-4568.	2.3	197
18	Self-Assembly of Phase-Segregated Liquid Crystal Structures. Science, 2002, 295, 2414-2418.	6.0	1,259
19	Aziridination of Î ² -substituted styrene derivatives with 3-acetoxyaminoquinazolin-4(3H)-ones: probing transition state geometry from changes in diastereoselectivity. Perkin Transactions II RSC, 2002, , 819-828.	1.1	10
20	Advances in the chemistry of metal–organic frameworks. CrystEngComm, 2002, 4, 401-404.	1.3	271
21	Copper(ii) and cobalt(ii) coordination polymers with bridging 1,2,4,5-benzenetetracarboxylate and N-methylimidazole: coordination number-determined sheet topology. Dalton Transactions RSC, 2002, , 4555.	2.3	49
22	[Fe2(C10O8H2)]: An antiferromagnetic 3D iron(ii) carboxylate built from ferromagnetic edge-sharing octahedral chains (MIL-62). Chemical Communications, 2002, , 2172-2173.	2.2	78
23	Coordination-Driven Self-Assembly:  Solids with Bidirectional Porosity. Journal of the American Chemical Society, 2002, 124, 7266-7267.	6.6	122
24	[VIII(H2O)]3O(O2CC6H4CO2)3·(Cl, 9H2O) (MIL-59): a rare example of vanadocarboxylate with a magnetically frustrated three-dimensional hybrid framework. Chemical Communications, 2002, , 1492-1493.	2.2	119
25	Designing neutral coordination networks with the aid of hydrogen bond mimicry using silver(i) carboxylates. CrystEngComm, 2002, 4, 239-248.	1.3	54
26	Pillared clay mimics from dicarboxylic acids and flexible diamines. CrystEngComm, 2002, 4, 282-287.	1.3	72
27	Coordination polymers: toward functional transition metal sustained materials and supermolecules. Current Opinion in Solid State and Materials Science, 2002, 6, 117-123.	5.6	161
28	Guest-Dependent Spin Crossover in a Nanoporous Molecular Framework Material. Science, 2002, 298, 1762-1765.	6.0	1,428
29	Hydrothermal synthesis and structure determination of Na2Zn{O3Pî—,CH2î—,PO3}.H2O (MIL-58): a new zincomethylenediphosphonate exhibiting a hybrid zeotype. Solid State Sciences, 2002, 4, 841-844.	1.5	19

TATION PEDO

#	Article	IF	CITATIONS
30	A new three-dimensional iron trimesate: [Fe3(H2O)5(C9O6H3)2·3H2O]ÂorÂMIL-65. Solid State Sciences, 2002, 4, 1221-1225.	1.5	22
31	Hydrothermal Syntheses, Structures, and Properties of First Examples of Lanthanide(III) 2,3-Pyrazinedicarboxylates with Three-Dimensional Framework. European Journal of Inorganic Chemistry, 2002, 2002, 3356-3363.	1.0	62
32	Assembly of a microporous metal-organic framework [Zn(bpdc)(DMSO)] (bpdc=4,4′-biphenyldicarboxylate) based on paddle-wheel units affording guest inclusion. Inorganic Chemistry Communication, 2002, 5, 975-977.	1.8	28
33	Stabilization of guest-free forms of metal dibenzoylmethanate host type through self-inclusion of a ligand fragment into the intramolecular pocket. Journal of Supramolecular Chemistry, 2002, 2, 441-448.	0.4	9
34	The mononuclear cobalt(II) complex CoII(DMBDIZ)2(NCS)2, where DMBDIZ is 2,6-dimethylbenzo[1,2-d:4,5-d′]diimidazole. Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, m459-m460.	0.4	6
35	Ordered porous materials for emerging applications. Nature, 2002, 417, 813-821.	13.7	4,882
36	Acridinylresorcinol as a Self-Complementary Building Block of Robust Hydrogen-Bonded 2D Nets with Coordinative Saturation. Preservation of Crystal Structures upon Guest Alteration, Guest Removal, and Host Modification. Journal of the American Chemical Society, 2002, 124, 12453-12462.	6.6	80
37	Hybrid Inorganic–Organic Solids: An Emerging Class of Nanoporous Catalysts. Topics in Catalysis, 2003, 24, 79-86.	1.3	203
38	Title is missing!. Transition Metal Chemistry, 2003, 28, 312-315.	0.7	3
39	Hydrogen Storage in Microporous Metal-Organic Frameworks. Science, 2003, 300, 1127-1129.	6.0	4,435
39 40	Hydrogen Storage in Microporous Metal-Organic Frameworks. Science, 2003, 300, 1127-1129. Synthesis, structure determination and magnetic behaviour of the first porous hybrid oxyfluorinated vanado(iii)carboxylate: MIL-71 or Viii2(OH)2F2{O2C-C6H4-CO2}·H2O. Journal of Materials Chemistry, 2003, 13, 2208-2212.	6.0 6.7	4,435 84
39 40 41	Hydrogen Storage in Microporous Metal-Organic Frameworks. Science, 2003, 300, 1127-1129. Synthesis, structure determination and magnetic behaviour of the first porous hybrid oxyfluorinated vanado(iii)carboxylate: MIL-71 or Viii2(OH)2F2{O2C-C6H4-CO2}·H2O. Journal of Materials Chemistry, 2003, 13, 2208-2212. [Zn(bim)2] · (H2O)1.67: A metal-organic open-framework with sodalite topology. Science Bulletin, 2003, 48, 1531-1534.	6.0 6.7 1.7	4,435 84 38
39404142	Hydrogen Storage in Microporous Metal-Organic Frameworks. Science, 2003, 300, 1127-1129.Synthesis, structure determination and magnetic behaviour of the first porous hybrid oxyfluorinated vanado(iii)carboxylate: MIL-71 or Viii2(OH)2F2{O2C-C6H4-CO2}·H2O. Journal of Materials Chemistry, 2003, 13, 2208-2212.[Zn(bim)2] · (H2O)1.67: A metal-organic open-framework with sodalite topology. Science Bulletin, 2003, 48, 1531-1534.Real, virtual and not yet discovered porous structures using scale chemistry and/or simulation. A tribute to Sten Andersson. Solid State Sciences, 2003, 5, 79-94.	6.0 6.7 1.7 1.5	4,435 84 38 41
 39 40 41 42 43 	Hydrogen Storage in Microporous Metal-Organic Frameworks. Science, 2003, 300, 1127-1129.Synthesis, structure determination and magnetic behaviour of the first porous hybrid oxyfluorinated vanado(iii)carboxylate: MIL-71 or Viii2(OH)2F2{O2C-C6H4-CO2}·H2O. Journal of Materials Chemistry, 2003, 13, 2208-2212.[Zn(bim)2] · (H2O)1.67: A metal-organic open-framework with sodalite topology. Science Bulletin, 2003, 48, 1531-1534.Real, virtual and not yet discovered porous structures using scale chemistry and/or simulation. A tribute to Sten Andersson. Solid State Sciences, 2003, 5, 79-94.Novel coordination polymers based on nickel(II) and 2,6-naphthalenedicarboxylate. Solid State Sciences, 2003, 5, 303-310.	6.0 6.7 1.7 1.5	4,435 84 38 41 30
 39 40 41 42 43 44 	Hydrogen Storage in Microporous Metal-Organic Frameworks. Science, 2003, 300, 1127-1129.Synthesis, structure determination and magnetic behaviour of the first porous hybrid oxyfluorinated vanado(iii)carboxylate: MIL-71 or Viii2(OH)2F2{O2C-C6H4-CO2}·H2O. Journal of Materials Chemistry, 2003, 13, 2208-2212.[Zn(bim)2] Â. (H2O)1.67: A metal-organic open-framework with sodalite topology. Science Bulletin, 2003, 48, 1531-1534.Real, virtual and not yet discovered porous structures using scale chemistry and/or simulation. A tribute to Sten Andersson. Solid State Sciences, 2003, 5, 79-94.Novel coordination polymers based on nickel(II) and 2,6-naphthalenedicarboxylate. Solid State Sciences, 2003, 5, 303-310.Syntheses and Crystal Structures of Two Novel Zinc(II) Coordination Polymers. European Journal of Inorganic Chemistry, 2003, 2003, 2678-2682.	 6.0 6.7 1.7 1.5 1.5 1.0 	 4,435 84 38 41 30 56
 39 40 41 42 43 43 44 45 	Hydrogen Storage in Microporous Metal-Organic Frameworks. Science, 2003, 300, 1127-1129. Synthesis, structure determination and magnetic behaviour of the first porous hybrid oxyfluorinated vanado(iii)carboxylate: MIL-71 or Viii2(OH)2F2{O2C-C6H4-CO2}ÅH2O. Journal of Materials Chemistry, 2003, 13, 2208-2212. [Zn(bim)2] Å. (H2O)1.67: A metal-organic open-framework with sodalite topology. Science Bulletin, 2003, 48, 1531-1534. Real, virtual and not yet discovered porous structures using scale chemistry and/or simulation. A tribute to Sten Andersson. Solid State Sciences, 2003, 5, 79-94. Novel coordination polymers based on nickel(II) and 2,6-naphthalenedicarboxylate. Solid State Sciences, 2003, 5, 303-310. Syntheses and Crystal Structures of Two Novel Zinc(II) Coordination Polymers. European Journal of Inorganic Chemistry, 2003, 2003, 2678-2682. A Novel Three-Dimensional Metal-Organic Framework Constructed from Two-Dimensional Interpenetrating Layers Based on Trinuclear Cobalt Clusters: [Co3(btec)(C2O4)(H2O)2]n. European Journal of Inorganic Chemistry, 2003, 2003, 2567-2571.	6.0 6.7 1.7 1.5 1.5 1.0	4,435 84 38 41 30 56 80
 39 40 41 42 43 44 45 46 	Hydrogen Storage in Microporous Metal-Organic Frameworks. Science, 2003, 300, 1127-1129. Synthesis, structure determination and magnetic behaviour of the first porous hybrid oxyfluorinated vanado(iii)carboxylate: MIL-71 or Viii2(OH)2F2{O2C-C6H4-CO2}·H2O. Journal of Materials Chemistry, 2003, 13, 2208-2212. [Zn(bim)2] · (H2O)1.67: A metal-organic open-framework with sodalite topology. Science Bulletin, 2003, 48, 1531-1534. Real, virtual and not yet discovered porous structures using scale chemistry and/or simulation. A tribute to Sten Andersson. Solid State Sciences, 2003, 5, 79-94. Novel coordination polymers based on nickel(II) and 2,6-naphthalenedicarboxylate. Solid State Sciences, 2003, 5, 303-310. Syntheses and Crystal Structures of Two Novel Zinc(II) Coordination Polymers. European Journal of Inorganic Chemistry, 2003, 2003, 2678-2682. A Novel Three-Dimensional Metal-Organic Framework Constructed from Two-Dimensional Interpenetrating Layers Based on Trinuclear Cobalt Clusters: [Co3(btec)(C2O4)(H2O)2]n. European Journal of Inorganic Chemistry, 2003, 2003, 2567-2571. Dimensionality Variation in Polymeric Metallo-Organic Frameworks. European Journal of Inorganic Chemistry, 2003, 2003, 4078-4086.	 6.0 6.7 1.7 1.5 1.0 1.0 	 4,435 84 38 41 30 56 80 12

#	Article	IF	Citations
49	Title is missing!. Angewandte Chemie, 2003, 115, 331-336.	1.6	19
50	Porous Coordination-Polymer Crystals with Gated Channels Specific for Supercritical Gases. Angewandte Chemie, 2003, 115, 444-447.	1.6	150
51	Toward Fully Synthetic N-Linked Glycoproteins. Angewandte Chemie, 2003, 115, 447-450.	1.6	18
52	Title is missing!. Angewandte Chemie, 2003, 115, 550-553.	1.6	21
53	Title is missing!. Angewandte Chemie, 2003, 115, 560-564.	1.6	58
54	A Nanotubular 3D Coordination Polymer Based on a 3d–4f Heterometallic Assembly. Angewandte Chemie, 2003, 115, 964-966.	1.6	33
55	Coordination Solids via Assembly of Adaptable Components: Systematic Structural Variation in Alkaline Earth Organosulfonate Networks. Chemistry - A European Journal, 2003, 9, 5361-5370.	1.7	109
56	A Solid-State Supramolecular Sweet Spot. Angewandte Chemie - International Edition, 2003, 42, 1686-1687.	7.2	12
57	Design of Frameworks with Mixed Triangular and Octahedral Building Blocks Exemplified by the Structure of[Zn4O(TCA)2] Having the Pyrite Topology. Angewandte Chemie - International Edition, 2003, 42, 3907-3909.	7.2	200
58	Open Network Architectures from the Self-Assembly of AgNO3 and 5,10,15,20-Tetra(4-pyridyl)porphyrin (H2tpyp) Building Blocks: The Exceptional Self-Penetrating Topology of the 3D Network of [Ag8(ZnIItpyp)7(H2O)2](NO3)8. Angewandte Chemie - International Edition, 2003, 42, 317-322.	7.2	149
59	Porous Coordination-Polymer Crystals with Gated Channels Specific for Supercritical Gases. Angewandte Chemie - International Edition, 2003, 42, 428-431.	7.2	994
60	Toward Fully Synthetic N-Linked Glycoproteins. Angewandte Chemie - International Edition, 2003, 42, 431-434.	7.2	93
61	Nanoporous Lanthanide–Copper(II) Coordination Polymers: Syntheses and Crystal Structures of [{M2(Cu3(iminodiacetate)6)}â‹8 H2O]n (M=La, Nd, Eu). Angewandte Chemie - International Edition, 2003, 42, 532-535.	7.2	158
62	â"PM-1: A Recyclable Nanoporous Material Suitable for Ship-In-Bottle Synthesis and Large Hydrocarbon Sorption. Angewandte Chemie - International Edition, 2003, 42, 542-546.	7.2	453
63	A Nanotubular 3D Coordination Polymer Based on a 3d–4f Heterometallic Assembly. Angewandte Chemie - International Edition, 2003, 42, 934-936.	7.2	462
64	Chiral porous coordination networks: rational design and applications in enantioselective processes. Coordination Chemistry Reviews, 2003, 246, 305-326.	9.5	867
65	First use of the succinamate(â'1) ligand in 3d-metal chemistry: dinuclear copper(II) complexes with the rare [Cu2(η1:η42-O2CR)2(η1:η1:η42-O2CR)]+, [Cu2(η1:η1:η42-O2CR)2]2+ and [Cu2(η4-OH)(η4-OH2)(η1:η1:η4 novel one-dimensional polymerization of two different dimers (R=CH2CH2CONH2). Inorganic Chemistry Communication, 2003, 6, 1365-1371.	2-02CR)] 1.8	2+ cores, ar 44
66	Hydrogen-bonding organization of (4,4) coordination layers into a 3-D molecular architecture with channels clathrating guest molecules [Cu(tdc)(bpy)(H2O)](bpy) (tdc=thiophine-2,5-dicarboxylate;) Tj ETQq1 1 0.7	7 8 4314 rg	gBT9/Overloc

#	Article	IF	CITATIONS
67	The supramolecular chemistry of the sulfonate group in extended solids. Coordination Chemistry Reviews, 2003, 245, 49-64.	9.5	293
68	Structures and properties of Zn(II) coordination polymers. Coordination Chemistry Reviews, 2003, 246, 203-228.	9.5	429
69	Structure and magnetism of coordination polymers containing dicyanamide and tricyanomethanide. Coordination Chemistry Reviews, 2003, 246, 103-130.	9.5	985
70	Polycatenation, polythreading and polyknotting in coordination network chemistry. Coordination Chemistry Reviews, 2003, 246, 247-289.	9.5	1,880
71	Nickel(II) and manganese(II) 1D chain coordination polymers with 1,2,4,5-benzenetetracarboxylato anions. Inorganica Chimica Acta, 2003, 351, 242-250.	1.2	34
72	Triply interpenetrating coordination polymers based on paddle-wheel type secondary-building units of M2(CO2R)4: [Ni3(2,6-NDC)3(bipy)1.5], [Co3(2,6-NDC)3(bipy)1.5], and [Co(1,3-BDC)(bipyen)] (2,6-NDC=2,6-naphthalenedicarboxylate; 1,3-BDC=1,3-benzenedicarboxylate; bipy=4,4â€ ² -bipyridine;) Tj ETQq1 I	1 d: 7 8431	4 rgBT /Ove
73	Hydrothermal syntheses and crystal structures of two rectangular grid coordination polymers based on unique prismatic [M8(ip)8(4,4′-bipy)8] building blocks [M=Ni(II) or Cd(II), ip=isophthalate, bipy=bipyridine]. Journal of Solid State Chemistry, 2003, 170, 130-134.	1.4	75
74	Amine-templated metal squarates. Journal of Solid State Chemistry, 2003, 174, 60-68.	1.4	18
75	Guest-binding properties of functionally porous crystal based on metal complex of p-tert-butylthiacalix[6]arene. Tetrahedron Letters, 2003, 44, 1355-1358.	0.7	29
76	Hydrothermal synthesis and crystal structure of a novel three-dimensional mixed-valence iron coordination polymer [Fe2IIIFeIIO2(IN)2(ox)] (IN=isonicotinate, ox=oxalate). Journal of Molecular Structure, 2003, 650, 115-122.	1.8	6
77	Binary metal(II)–pyromellitate coordination polymers, M 2 (pm) (M=Co, Fe, Mn): synthesis, structures and magnetic properties. Polyhedron, 2003, 22, 1921-1927.	1.0	37
78	Supramolecular architectures from the self-assembly of lanthanide coordination compounds containing glycine and phen via hydrogen bonding and π–π stacking interactions. Polyhedron, 2003, 22, 2617-2624.	1.0	15
79	Supramolecular arrays of the [Re6(μ3-Se)8]2+ core-containing clusters mediated by transition metal ions. Polyhedron, 2003, 22, 2999-3008.	1.0	36
80	Synthesis, morphology control, and properties of porous metal–organic coordination polymers. Microporous and Mesoporous Materials, 2003, 58, 105-114.	2.2	594
81	Synthesis and spectroscopic study of mesoporous aluminum methylphosphonate foam templated by dibutyl methylphosphonate. Microporous and Mesoporous Materials, 2003, 62, 61-71.	2.2	5
82	A porous, two-dimensional copper coordination-polymer containing guest molecules: hydrothermal synthesis, structure, and thermal property of [Cu(BDC)(bipy)](BDCH 2) (BDC=1,4-benzenedicarboxylate;) Tj ETQ	1. 8 0.78	4 331 84 rgBT
83	A three-dimensional coordination framework containing μ44-sulfate anions [Cd(μ4-SO4)(bpy)]n (bpy=4,4′-bipyridine). Inorganic Chemistry Communication, 2003, 6, 495-497.	1.8	30
84	Synthesis and crystal structure of [Cu(4-OOCC6H4CN)2(4-HOOCC6H4CN)(H2O)2]·2(4-HOOCC6H4CN): a hydrogen bonded assembly of the first transition metal complex of 4-cyanobenzoic acid. Inorganic Chemistry Communication, 2003, 6, 855-858.	1.8	8

#	Article	IF	CITATIONS
85	Synthesis and crystal structure of three dimensional complex from copper(II) and 1,2,4,5-benzenetetracarboxylate. Inorganic Chemistry Communication, 2003, 6, 1152-1155.	1.8	20
86	A transition metal complex containing pyrazine-2,5-dicarboxylato bridging ligands: a novel three-dimensional manganese(II) compound. Inorganic Chemistry Communication, 2003, 6, 1224-1227.	1.8	18
87	Tetraaqua(2,2′-bipyridine)nickel(II) terephthalate. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, m82-m83.	0.4	10
88	A one-dimensional copper coordination polymer containing both dicyanamide and 1,10-phenanthroline ligands. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, m491-m493.	0.4	6
89	catena-Poly[[bis(4-cyanobenzoato)copper(II)]-μ-4,4′-bipyridine-κ2N:N′]. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o174-o176.	0.2	6
90	(2,2′-Bipyridine-κ2N,N′)bis(2-bromo-4-carboxylbenzoato-κO)copper(II). Acta Crystallographica Section E: Structure Reports Online, 2003, 59, m579-m581.	0.2	1
91	Reticular synthesis and the design of new materials. Nature, 2003, 423, 705-714.	13.7	8,374
92	A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties. Nature Materials, 2003, 2, 190-195.	13.3	633
93	Inverted metal–organic frameworks: solid-state hosts with modular functionality. Coordination Chemistry Reviews, 2003, 246, 169-184.	9.5	286
94	Polymer lithium cells with sulfur composites as cathode materials. Electrochimica Acta, 2003, 48, 1861-1867.	2.6	129
96	Engineering coordination polymers towards applications. Dalton Transactions, 2003, , 2781.	1.6	3,279
97	Heterodimetallic Compounds Assembled from Ferrocenedicarboxylato and Ferrocenecarboxylato Ligands. Inorganic Chemistry, 2003, 42, 2519-2530.	1.9	85
98	Photoluminescent Metalâ ´`Organic Polymer Constructed from Trimetallic Clusters and Mixed Carboxylates. Inorganic Chemistry, 2003, 42, 944-946.	1.9	647
99	Hydrothermal synthesis of a novel thermally stable three-dimensional ytterbium–organic framework. Chemical Communications, 2003, , 1484-1485.	2.2	42
100	Porous Lanthanide-Organic Frameworks:Â Synthesis, Characterization, and Unprecedented Gas Adsorption Properties. Journal of the American Chemical Society, 2003, 125, 3062-3067.	6.6	602
101	Designed layer assembly: a three-dimensional framework with 74% extra-framework volume by connection of infinite two-dimensional sheetsElectronic supplementary information (ESI) available: structure of the AAA stacked pyridine phase, asymmetric unit of 1, structure of phase 2, thermal stability of phase 2. See http://www.rsc.org/suppdata/cc/b2/b211124c/. Chemical Communications, 2003, ,	2.2	130
102	A nanoporous network polymer derived from hexaazatrinaphthylene with potential as an adsorbent and catalyst support. Journal of Materials Chemistry, 2003, 13, 2721-2726.	6.7	128
103	An Adamantane-Based Coordination Framework with the First Observation of Discrete Metal Sulfonate Clusters. Inorganic Chemistry, 2003, 42, 8603-8605.	1.9	32

#	Article	IF	CITATIONS
104	Zinc dicarboxylate polymers and dimers: thiourea substitution as a tool in supramolecular synthesis. Dalton Transactions, 2003, , 3840.	1.6	35
105	Ligand Entrapment in Twofold Interpenetrating PtS Matrixes by Metallo-Organic Frameworks. Inorganic Chemistry, 2003, 42, 5126-5134.	1.9	58
106	Synthesis, Structure, and Magnetic Properties of Two New Vanadocarboxylates with Three-Dimensional Hybrid Frameworks. Inorganic Chemistry, 2003, 42, 1739-1743.	1.9	99
107	Expanding horizons of mesoporous materials to non-siliceous systems. Studies in Surface Science and Catalysis, 2003, , 399-406.	1.5	9
108	A Robust Microporous Zinc Porphyrin Framework Solid. Inorganic Chemistry, 2003, 42, 7719-7721.	1.9	122
109	Two-Dimensional Hydrogen Bond Networks Supported by CH/Ï€ Interaction Leading to a Molecular Packing Appropriate for Topochemical Polymerization of 1,3-Diene Monomers. Crystal Growth and Design, 2003, 3, 247-256.	1.4	80
110	Hierarchical Assembly of Two-Dimensional Homochiral Nanocavity Arrays. Journal of the American Chemical Society, 2003, 125, 10725-10728.	6.6	210
111	A Rational Study of Crystal Engineering of Supramolecular Assemblies of 1,2,4,5-Benzenetetracarboxylic Acid. Journal of Organic Chemistry, 2003, 68, 9177-9185.	1.7	121
112	Structural Diversities of Silver(I) Coordination Compounds with Flexible Dithioether Ligands Based upon Changing the Ligand Spacers. Crystal Growth and Design, 2003, 3, 829-835.	1.4	50
113	High-Dimensional Architectures from the Self-Assembly of Lanthanide Ions with Benzenedicarboxylates and 1,10-Phenanthroline. Inorganic Chemistry, 2003, 42, 4985-4994.	1.9	304
114	Metal-organic frameworks. Chemical Society Reviews, 2003, 32, 276.	18.7	3,163
115	[(Th2F5)(NC7H5O4)2(H2O)][NO3]:Â An Actinideâ^'Organic Open Framework. Journal of the American Chemical Society, 2003, 125, 12688-12689.	6.6	82
116	Lanthanide-Based Molecular Materials: Gel Medium Induced Polymorphism. Crystal Growth and Design, 2003, 3, 1015-1020.	1.4	78
117	Thermally Programmable Gas Storage and Release in Single Crystals of an Organic van der Waals Host. Journal of the American Chemical Society, 2003, 125, 9896-9897.	6.6	126
118	MATERIALS SCIENCE: Enhanced: Molecular Fuel Tanks. Science, 2003, 300, 1104-1105.	6.0	66
119	A New Bridging Chelating Ligand for Crystal Engineering:  Synthesis, Polymorphism, and Two Modes of Assembly of 1,4-Bis(3-phenyl-1,3-propanedion)benzene with Metal Cations Resulting in Either Discrete or Polymeric Complexes. Crystal Growth and Design, 2003, 3, 1005-1013.	1.4	49
120	Pyrazole-4-sulfonate networks of alkali and alkaline-earth metals. Effect of cation size, charge, H-bonding and aromatic interactions on the three-dimensional supramolecular architecture. New Journal of Chemistry, 2003, 27, 1399.	1.4	43
121	A coordination network containing non-coordinating polyoxometalate clusters as counterions. Dalton Transactions, 2003, , 4678.	1.6	36

		CITATION REPORT		
#	Article		IF	CITATIONS
122	Coordination Polymers: Infinite Systems. , 2003, , 231-261.			42
123	Synthesis, Structure, and Mössbauer Study of [Fe(H2O)2(C9O6H4)]·H2O: A Two-L Trimellitate (MIL-67). Inorganic Chemistry, 2003, 42, 5669-5674.	Dimensional Iron(II)	1.9	48
124	Single-Wall Nanostructured Carbon for Methane Storage. Journal of Physical Chemistry 4681-4684.	[,] B, 2003, 107,	1.2	199
125	Sorption of Xenon, Methane, and Organic Solvents by a Flexible Microporous Polymer Catena-Bis(Dibenzoylmethanato)-(4,4â€~-bipyridyl)nickel(II). Chemistry of Materials, 20	003, 15, 4810-4818.	3.2	54
126	A novel 2D bilayer architecture generated via π-π interactions and host–guest mole assembly and structure of {[Cd(Htma)(bpy)(H2O)]·(H2tp)0.5·2H2O}npolymer (tma	cular recognition: = trimesate,) Tj I	ETQ.q0 0 0	rg B T /Overlo
127	Assembly of a manganese(ii) pyridine-3,4-dicarboxylate polymeric network based on in chains. Dalton Transactions, 2003, , 28-30.	finite Mn–O–C	1.6	67
128	Synthesis and structural characterisation of two coordination polymers (molecular lade incorporating [M(OAc)2]2secondary building units and 4,4′-bipyridine [M = Cu(ii), 2 CrystEngComm, 2003, 5, 454-458.	ters) In(ii)].	1.3	58
129	îµPM-2: A recyclable porous material with unusual adsorption capability: self assembl transformations. Chemical Communications, 2003, , 854-855.	y via structural	2.2	47
130	Borromean links and other non-conventional links in â€~polycatenated' coordination re-examination of some puzzling networks. CrystEngComm, 2003, 5, 269-279.	on polymers:	1.3	361
131	Crystal structure and magnetic properties of a new three-dimensional coordination pol constructed from (4,4) layers based on dimeric iron(ii) subunits. New Journal of Chemis 1599.	ymer stry, 2003, 27,	1.4	34
132	Syntheses and structures of two novel copper complexes constructed from unusual platetracopper(ii) SBUs. Chemical Communications, 2003, , 1528.	anar	2.2	84
133	Ab initio study of the hindered rotation of H2 over benzene. Materials Research Society Proceedings, 2003, 801, 7.	/ Symposia	0.1	0
134	MOLECULAR NETWORKS AS NOVEL MATERIALS. , 2003, , 261-290.			3
135	CRYSTALLINE MICROPOROUS AND OPEN FRAMEWORK MATERIALS. , 2003, , 1-37.			13
136	Anorganische Chemie 2002. Nachrichten Aus Der Chemie, 2003, 51, 258-277.		0.0	0
137	Hydrogen Bonds in Inorganic Chemistry: Application to Crystal Design. Perspectives in Supramolecular Chemistry, 2003, , 1-75.		0.1	22
138	A New Open Metal-Organic Framework [Zn8(GeO4)(C8H4O4)6]n, Constructed by Het Cluster Zn8(GeO4) Secondary Building Units. Chemistry Letters, 2003, 32, 474-475.	erometallic	0.7	8
139	Magnetic and Gas-Occlusion Properties and Catalytic Activity of Microporous Materials Ruthenium(II,II) Dicarboxylates. Chemistry Letters, 2003, 32, 468-469.	: Dinuclear	0.7	24

#	Article	IF	CITATIONS
140	Gas-Occlusion Properties of a Novel Compound: Mononuclear Copper(II) Terephthalate-Pyridine. Chemistry Letters, 2003, 32, 34-35.	0.7	27
141	Framework Assembly Engineering. Effects of Nitro Groups on Assemblies of Phenyldicarboxylates. Chemistry Letters, 2003, 32, 1010-1011.	0.7	12
142	Crystal Engineering of 3D Porous Coordination Polymers through Hydrogen Bonding to Coordination from 1D Helical Chains. Chemistry Letters, 2003, 32, 588-589.	0.7	7
143	Crystal Structures and Magnetic and Gas-Occlusion Properties of Microporous Materials Containing Infinite Chains of Mononuclear Metal (Cu(II), Zn(II), and Ni(II)) Dicarboxylates Unit. Bulletin of the Chemical Society of Japan, 2003, 76, 1387-1395.	2.0	30
144	{[In3(pzdc)6]3â^'}â^ž: A Metal–Organic Framework of Distorted NbO-like Net (pzdc =) Tj ETQq0 0 0 rgBT /Ove	rlock 10 T 0.7	f 50 582 Td (

145	Coordination Polymers. , 2004, , 1-13.		0
146	Concepts in Crystal Engineering. , 2004, , 319-325.		5
147	Honeycombs, herringbones and brick-walls; three-fold guest-dependent variation in copper trimesate complexes bearing sulfimide ligands. Dalton Transactions, 2004, , 3488.	1.6	62
148	Organic Zeolites. , 2004, , 996-1005.		23
149	ZEOLITE/MESOPOROUS MOLECULAR SIEVE COMPOSITE MATERIALS. Series on Chemical Engineering, 2004, , 47-100.	0.2	3
150	Recent developments in robust microporous porphyrin solids. Journal of Porphyrins and Phthalocyanines, 2004, 08, 182-190.	0.4	16
151	First-principles study of the rotational transitions of H[sub 2] physisorbed over benzene. Journal of Chemical Physics, 2004, 121, 12618.	1.2	40
152	Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems. Nature Materials, 2004, 3, 229-233.	13.3	653
153	Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. Nature, 2004, 427, 527-530.	13.7	572
154	A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 2004, 427, 523-527.	13.7	2,574
155	Solvothermal synthesis and structural characterization of a three-dimensional metal–organic polymer [NaZn(1,2,4-BTC)] (1,2,4-BTC=1,2,4-benzenetricarboxylate). Solid State Sciences, 2004, 6, 85-90.	1.5	30
156	Hydrothermal synthesis and novel two-dimensional architecture with fluorescent properties constructed using 2-bromo-1,4-benzenedicarboxylate. Transition Metal Chemistry, 2004, 29, 329-331.	0.7	1
157	State-of-the-Art in Zeolite Membrane Reactors. Topics in Catalysis, 2004, 29, 29-44.	1.3	116

#	Article	IF	CITATIONS
158	Syntheses, Structures, and Photoluminescence of a Novel Class of d10Metal Complexes Constructed from Pyridine-3,4-dicarboxylic Acid with Different Coordination Architectures. Inorganic Chemistry, 2004, 43, 1850-1856.	1.9	348
159	Crystal Structure and Spectroscopic Study of Novel Two- and Three-Dimensional Photoluminescent Eu(III)â°'Adipate Compounds. Inorganic Chemistry, 2004, 43, 245-250.	1.9	145
160	VIII(OH){O2C–C6H4–CO2}.(HO2C–C6H4–CO2H)x(DMF)y(H2O)z (or MIL-68), a new vanadocarboxylate with a large pore hybrid topology : reticular synthesis with infinite inorganic building blocks?. Chemical Communications, 2004, , 520-521.	2.2	170
161	Syntheses and structures of sodium aluminodiphosphonates with different morphologies (diphosphonate=1-hydroxyethylidenediphosphonate). Journal of Crystal Growth, 2004, 264, 400-408.	0.7	3
162	Syntheses, characterizations and crystal structures of two new lead(II) amino and carboxylate–sulfonates with a layered and a pillared layered structure. Journal of Solid State Chemistry, 2004, 177, 922-927.	1.4	12
163	â^ž1[M(μ-O2C-C6H4-CO2)(NH3)2] (M = Cu, Cd; O2C-C6H4-CO2 = benzene-1, 4-dicarboxylate, terephthalate): 1D Coordination Polymers with Strong Inter-Chain Hydrogen Bonding. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2004, 630, 1650-1654.	0.6	37
164	Computational Design of Hybrid Frameworks: Structure and Energetics of Two Me3OF3{-O2C-C6H4-CO2-}3 Metal-Dicarboxylate Polymorphs, MIL-hypo-1 and MIL-hypo-2. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2004, 630, 2599-2604.	0.6	30
165	Microporous polymeric materials. Materials Today, 2004, 7, 40-46.	8.3	43
166	Synchrotron charge-density studies in materials chemistry: 16â€K X-ray charge density of a new magnetic metal-organic framework material, [Mn2(C8H4O4)2(C3H7NO)2]. Acta Crystallographica Section A: Foundations and Advances, 2004, 60, 382-389.	0.3	40
167	Chloro[N,N′-ethylenebis(5-carboxysalicylideneiminato)]iron(III). Acta Crystallographica Section E: Structure Reports Online, 2004, 60, m732-m734.	0.2	2
168	trans-Bis(isothiocyanato-Î⁰N)tetrapyridinecadmium(II). Acta Crystallographica Section E: Structure Reports Online, 2004, 60, m1013-m1014.	0.2	6
169	Bis(μ-4-sulfobenzoato-κ2O:Oâ€2)bis[aqua(2,2â€2-bipyridine-κ2N,Nâ€2)copper(II)]. Acta Crystallographica Sectio Structure Reports Online, 2004, 60, m1833-m1835.	on E: 0.2	4
170	Metal Carboxylates with Open Architectures. Angewandte Chemie - International Edition, 2004, 43, 1466-1496.	7.2	1,862
171	Functional Porous Coordination Polymers. Angewandte Chemie - International Edition, 2004, 43, 2334-2375.	7.2	10,106
172	Metal–Organic Replica of Fluorite Built with an Eight-Connecting Tetranuclear Cadmium Cluster and a Tetrahedral Four-Connecting Ligand. Angewandte Chemie - International Edition, 2004, 43, 971-974.	7.2	241
173	A Robust Porous Material Constructed of Linear Coordination Polymer Chains: Reversible Single-Crystal to Single-Crystal Transformations upon Dehydration and Rehydration. Angewandte Chemie - International Edition, 2004, 43, 2798-2801.	7.2	391
174	Expanding and Shrinking Porous Modulation Based on Pillared-Layer Coordination Polymers Showing Selective Guest Adsorption. Angewandte Chemie - International Edition, 2004, 43, 3269-3272.	7.2	379
175	Hybrid Organic-Inorganic Frameworks: Routes for Computational Design and Structure Prediction. Angewandte Chemie - International Edition, 2004, 43, 6290-6296.	7.2	159

#	Article	IF	CITATIONS
176	A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction. Angewandte Chemie - International Edition, 2004, 43, 6296-6301.	7.2	822
177	Self-Assembly of Interpenetrating Coordination Nets Formed from Interpenetrating Cationic and Anionic Three-Dimensional Diamondoid Cluster Coordination Polymers. Angewandte Chemie - International Edition, 2004, 43, 5776-5779.	7.2	176
178	Rigid and Flexible: A Highly Porous Metal–Organic Framework with Unusual Guest-Dependent Dynamic Behavior. Angewandte Chemie - International Edition, 2004, 43, 5033-5036.	7.2	1,094
179	Recent Advances in Hydrogen Storage in Metal-Containing Inorganic Nanostructures and Related Materials. Advanced Materials, 2004, 16, 765-777.	11.1	457
180	Prospects for nanoporous metal-organic materials in advanced separations processes. AICHE Journal, 2004, 50, 1090-1095.	1.8	249
187	A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction. Angewandte Chemie, 2004, 116, 6456-6461.	1.6	256
190	Hydrothermal Syntheses, Crystal Structures and Photoluminescent Properties of Three Metal-Cluster Based Coordination Polymers Containing Mixed Organic Ligands. European Journal of Inorganic Chemistry, 2004, 2004, 125-133.	1.0	153
191	The Role of Spacers between Carboxylate Groups in Self-Assembly Process: Syntheses and Characterizations of Two Novel Cadmium(II) Complexes Derived from Mixed Ligands. European Journal of Inorganic Chemistry, 2004, 2004, 37-43.	1.0	57
192	Novel Supramolecular Frameworks Self-Assembled from One-Dimensional Polymeric Coordination Chains. European Journal of Inorganic Chemistry, 2004, 2004, 185-191.	1.0	210
193	Ferromagnetic and Antiferromagnetic Polymeric Complexes with the Macrocyclic Ligand 1,4,7-Triazacyclononane. European Journal of Inorganic Chemistry, 2004, 2004, 2369-2378.	1.0	32
194	Crystal Engineering of the Coordination Architecture of Metal Polycarboxylate Complexes by Hydrothermal Synthesis: Assembly and Characterization of Four Novel Cadmium Polycarboxylate Coordination Polymers Based on Mixed Ligands. European Journal of Inorganic Chemistry, 2004, 2004, 2096-2106.	1.0	103
195	Hydrothermal Syntheses, Structures, and Properties of Three 3-D Lanthanide Coordination Polymers that Form 1-D Channels. European Journal of Inorganic Chemistry, 2004, 2004, 2968-2973.	1.0	58
196	Structural and Magnetic Properties of Two Carboxylato-Bridged Manganese(II) Complexes with N-Donor Coligands. European Journal of Inorganic Chemistry, 2004, 2004, 4202-4208.	1.0	66
197	New Porous Lanthanide-Organic Frameworks: Synthesis, Characterization, and Properties of Lanthanide 2,6-Naphthalenedicarboxylates. European Journal of Inorganic Chemistry, 2004, 2004, 3262-3268.	1.0	106
198	A Novel Hybrid Supramolecular Network Assembled from Perfect ??? Stacking of an Anionic Inorganic Layer and a Cationic Hydronium-Ion-Mediated Organic Layer. European Journal of Inorganic Chemistry, 2004, 2004, 4253-4258.	1.0	52
199	Synthesis, Structural Characterization and Properties of Copper(II) and Zinc(II) Coordination Polymers with a New Bridging Chelating Ligand. European Journal of Inorganic Chemistry, 2004, 2004, 4317-4323.	1.0	38
200	Oxidation-State and Coordination-Site Specificity Influencing Dimensional Extension and Properties of Two Iron Complexes with Similar Helical Chains. European Journal of Inorganic Chemistry, 2004, 2004, 4457-4462.	1.0	25
201	Issues in the Synthesis of Crystalline Molecular Sieves: Towards the Crystallization of Low Framework-Density Structures. ChemPhysChem, 2004, 5, 304-313.	1.0	258

#	Article	IF	CITATIONS
202	A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration. Chemistry - A European Journal, 2004, 10, 1373-1382.	1.7	1,815
203	Towards Surface-Supported Supramolecular Architectures: Tailored Coordination Assembly of 1,4-Benzenedicarboxylate and Fe on Cu(100). Chemistry - A European Journal, 2004, 10, 1913-1919.	1.7	189
204	Metal-Complex Assemblies Constructed from the Flexible Hinge-Like Ligand H2bhnq: Structural Versatility and Dynamic Behavior in the Solid State. Chemistry - A European Journal, 2004, 10, 2647-2660.	1.7	92
205	Rational Design of the Pore System within the Framework Aluminium Alkylenediphosphonate Series. Chemistry - A European Journal, 2004, 10, 3270-3278.	1.7	42
206	Benzene-Templated Hydrothermal Synthesis of Metal-Organic Frameworks with Selective Sorption Properties. Chemistry - A European Journal, 2004, 10, 5535-5540.	1.7	160
207	Recent developments in metal–organic framework chemistry: design, discovery, permanent porosity and flexibility. Microporous and Mesoporous Materials, 2004, 73, 15-30.	2.2	518
208	Molecular-level design of efficient microporous materials containing metal carboxylates: inclusion complex formation with organic polymer, gas-occlusion properties, and catalytic activities for hydrogenation of olefins. Microporous and Mesoporous Materials, 2004, 73, 31-46.	2.2	205
209	Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials, 2004, 73, 3-14.	2.2	2,520
210	Molecular building block approaches to chiral porous zirconium phosphonates for asymmetric catalysis. Journal of Molecular Catalysis A, 2004, 215, 177-186.	4.8	87
211	Microporous-structural rare-earth coordination polymers constructed by 2-bromoterephthalate. Journal of Molecular Structure, 2004, 689, 177-181.	1.8	11
212	Hydrothermal synthesis and crystal structures of two novel rare earth coordination polymers based on pyridine-2,6-dicarboxylic acid. Journal of Molecular Structure, 2004, 689, 269-274.	1.8	25
213	The organic ligands as template: the synthesis, structures and properties of a series of the layered structure rare-earth coordination polymers. Journal of Molecular Structure, 2004, 690, 137-143.	1.8	35
214	Two new microporous coordination polymers constructed by ladder-like and ribbon-like molecules with cavities. Journal of Molecular Structure, 2004, 693, 11-15.	1.8	16
215	Synthesis, structures and properties of series lanthanide nitrilotriacetates. Journal of Molecular Structure, 2004, 694, 27-31.	1.8	16
216	A novel three-dimensional metal–organic network, Zn2(btec)(pipz)(H2O) (btec=1,2,4,5-benzenetetracarboxylate, pipz=piperazine), with blue fluorescent emission. Inorganica Chimica Acta, 2004, 357, 3155-3161.	1.2	53
217	A new moisture-sensitive metal-coordination solids {[Cd(C4O4)(bipy)(H2O)2]·3H2O}â^ž (bipy=4,4′-bipyridine). Inorganica Chimica Acta, 2004, 357, 3759-3764.	1.2	20
218	Non-linear optically active zinc and cadmium p-pyridinecarboxylate coordination networks. Inorganica Chimica Acta, 2004, 357, 3999-4004.	1.2	19
219	Thermal conductivity decomposition and analysis using molecular dynamics simulations. International Journal of Heat and Mass Transfer, 2004, 47, 1799-1816.	2.5	227

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
220	Hydrogen storage by physisorption: beyond carbon. Solid State Communications, 2004, 129, 769-773.	0.9	86
221	Syntheses and characterizations of six hydrogen-bonded silver(I) complexes from assembly of silver(I) nitrate and aminobenzoic acid. Inorganica Chimica Acta, 2004, 357, 103-114.	1.2	47
222	EPR characterization of a nanoporous metal-organic framework exhibiting a bulk magnetic ordering. Journal of Physics and Chemistry of Solids, 2004, 65, 819-824.	1.9	7
223	Neutral coordination frameworks with host–guest properties constructed by dicopper(II) units and 4,7-phenanthroline. Polyhedron, 2004, 23, 55-58.	1.0	12
224	Hydrothermal syntheses, structures and magnetic properties of two transition metal coordination polymers with a square grid framework. Polyhedron, 2004, 23, 1257-1262.	1.0	39
225	Dynamics and disposition of benzene guest molecules in the micropore channels of a flexible metal-organic framework studied by 2H NMR and X-ray crystallography. Microporous and Mesoporous Materials, 2004, 73, 71-79.	2.2	27
226	A new calcium tetraphosphonate containing small pores, Ca[(HO3PCH2)2N(H)–CH2C6H4CH2–N(H)(CH2PO3H)2]·2H2O. Microporous and Mesoporous Materials, 2004, 69, 65-69.	2.2	38
227	Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 2004, 73, 81-88.	2.2	977
228	Organically pillared layered zinc hydroxides. Journal of Solid State Chemistry, 2004, 177, 1852-1857.	1.4	29
229	Synthesis and characterization of two novel organocation containing group 13 metal ethylenediphosphonates. Journal of Solid State Chemistry, 2004, 177, 2951-2960.	1.4	10
230	A novel strong fluorescent three-dimensional supramolecular coordination polymer based on bridging terephthalate. Inorganic Chemistry Communication, 2004, 7, 260-263.	1.8	33
231	Syntheses and characterization of two coordination polymers: [Cd(isonicotinate) 2 (H 2 O)] · DMF and Cd 3 (isonicotinate) 4 (NO 3) 2 (4,4 ′ -bipy) 2 (H 2 O) 2. Inorganic Chemistry Communication, 2004, 7, 402-404.	1.8	30
232	A novel interpenetrating nickel polymer with mixed ligand containing 1D chain and 2D bilayer motifs constructed by 4,4 ′ -bipy. Inorganic Chemistry Communication, 2004, 7, 683-686.	1.8	16
233	[Cu 2 (HBTC) 2 (H 2 O) 2 (μ 2 -H 2 O)] · 2H 2 O: a new arm-shaped two-dimensional copper coordination polymer having both rhombic cavities and helical-like channels. Inorganic Chemistry Communication, 2004, 7, 788-791.	1.8	17
234	Synthesis, crystal structure, and magnetic property of a novel 2D polymer [Co(PDC)(4,4-bpy)](CH3OH). Inorganic Chemistry Communication, 2004, 7, 1037-1040.	1.8	27
235	A new nitrophenyldicarboxylato-bridged tetranuclear-copper complex linked into a polymeric network showing intense fluorescent emissions. Inorganic Chemistry Communication, 2004, 7, 1053-1055.	1.8	12
236	2-D open frameworks and blue fluorescence of two new zinc coordination polymers with mixed ligands. Inorganic Chemistry Communication, 2004, 7, 1145-1149.	1.8	68
237	Metal–organic framework structures of Cu(ii) with pyridine-2,6-dicarboxylate and different spacers: identification of a metal bound acyclic water tetramer. CrystEngComm, 2004, 6, 250-256.	1.3	109

		CITATION REPORT		
#	Article		IF	Citations
238	Encapsulation of gases in the solid state. Chemical Communications, 2004, , 1468.		2.2	44
239	Non-interpenetrating honeycomb-like 2D [6,3] network built by a novel trigonal metall Chemical Communications, 2004, , 2384.	oligand.	2.2	32
240	Synthesis, optical properties, crystal structures and phase behaviour of selectively fluo 1,4-bis(4?-pyridylethynyl)benzenes, 4-(phenylethynyl)pyridines and 9,10-bis(4?-pyridyle and a Zn(NO3)2 coordination polymer. Journal of Materials Chemistry, 2004, 14, 2395	rinated thynyl)anthracene,	6.7	57
241	zinc complexes of T-shaped trans-1,2,3-propenetricarboxylic acid with 1-D ribbon-like c rhombus-grid-like and herringbone-like layers, and non-interpenetrating 3-D open frameworkElectronic supplementary information (ESI) available: TGAs, structure diagra diagrams and possible hydrogen bonds. See http://www.rsc.org/suppdata/dt/b4/b4053	nain, 2-D ms, excitation 23k/. Dalton	1.6	29
242	Coordination Frameworks Containing the Pyrimidin-4-olate Ligand. Synthesis, Thermal, ab Initio XRPD Structural Characterization of Nickel and Zinc Derivatives. Inorganic Cho 43, 473-481.	Magnetic, and emistry, 2004,	1.9	22
243	Metal–oxygen–metal arrays in lamellar hybrid materials: Cobalt and manganese 4-cyclohexene-1,2-dicarboxylates. Dalton Transactions, 2004, , 3365-3369.		1.6	28
244	Co-chelation of a scorpion-shaped carboxylate ligand and phenanthroline lead to a 2-D interpenetratively tubular architecture. CrystEngComm, 2004, 6, 315.		1.3	37
245	Monomeric, one- and two-dimensional networks incorporating (2,6-Me2C6H3S)2Pb bu Dalton Transactions, 2004, , 3515.	uilding blocks.	1.6	23
246	Module-Based Assembly of Copper(II) Chloranilate Compounds:  Syntheses, Crysta Magnetic Properties of {[Cu2(CA)(terpy)2][Cu(CA)2]}n and {[Cu2(CA)(terpy)2(dmso)2][Cu(CA)2(dmso)2](EtOH)}n (H2CA = Chloranilic Acid, terp	al Structures, and ɔy =) Tj ETQq0 0 0 rgBT /C)vertock 1(0 TP 50 412 Te
247	A new (63)·(69.81) non-interpenetrated paramagnetic network with helical nanochar tricarboxylic perchlorotriphenylmethyl radical. Chemical Communications, 2004, , 116	nels based on a 4-1165.	2.2	42
248	A three dimensional porous metal–organic framework [Fe4L6·(DMF)3·(H2O)10] o neutral discrete Fe4L6pyramids [H2L = 1,3-benzodihydroxamix acid]. Chemical Commu 186-187.	onstructed from unications, 2004, ,	2.2	13
249	A thermally stable nanoporous nickel 5-sulfoisophthalate; crystal structure and adsorporties. Chemical Communications, 2004, , 2148.	tion	2.2	29
250	Molecular modelling of adsorption in novel nanoporous metal–organic materials. Mo Physics, 2004, 102, 211-221.	slecular	0.8	126
251	Syntheses and crystal structures of [Mn(H2O)4(bpy)]L · 4H2O, [Mn(H2O)4 [Zn(H2O)4(bpy)]L · 4H2O (H2L = succinic acid, H2L′ =â€% 2004, 57, 459-467.	(bpy)]L′ Â∙ 4H ₀fumaric acid). Journal of (I2O and Coത്ര ങ് inati	on&hemistry
252	Syntheses, Structures, and Properties of Intercalation Compounds of Silver(I) Complex [2.2]Paracyclophane. Inorganic Chemistry, 2004, 43, 633-641.	with	1.9	27
253	Exceptionally Stable, Hollow Tubular Metalâ^'Organic Architectures:Â Synthesis, Chara Solid-State Transformation Study. Journal of the American Chemical Society, 2004, 126	cterization, and 6, 3576-3586.	6.6	392
254	Assessment of Isoreticular Metalâ^'Organic Frameworks for Adsorption Separations:Â A Simulation Study of Methane/n-Butane Mixtures. Journal of Physical Chemistry B, 2004	4 Molecular I, 108, 15703-15708.	1.2	165
255	Design and Synthesis of 3dâ^'4f Metal-Based Zeolite-type Materials with a 3D Nanotub Encapsulated "Water―Pipe. Journal of the American Chemical Society, 2004, 126	ular Structure , 3012-3013.	6.6	572

#	Article	IF	CITATIONS
256	The First, Discrete Zn4Tetrahedron with a Selenium Atom in the Center: X-ray Structure and Solution Study of [Zn4(μ4-Se){Se2P(OPr)2}6]â€. Inorganic Chemistry, 2004, 43, 7570-7572.	1.9	17
257	Interwoven Pair of Open Frameworks in the Thiosphosphate K6Yb3(PS4)5. Journal of the American Chemical Society, 2004, 126, 11780-11781.	6.6	49
258	Structural Studies and Computer Simulation of the Inclusion of Aromatic Hydrocarbons in a Zinc 2,6-Naphthalene Dicarboxylate Framework Compound. Journal of Physical Chemistry B, 2004, 108, 535-543.	1.2	34
259	Mineralomimetic Sodalite- and Muscovite-Type Coordination Frameworks. Dynamic Crystal-to-Crystal Interconversion Processes Sensitive to Ion Pair Recognition. Journal of the American Chemical Society, 2004, 126, 3014-3015.	6.6	76
260	Synthesis and Characterization of a New Bisphosphonic Acid and Several Metal Hybrids Derivatives. Inorganic Chemistry, 2004, 43, 5283-5293.	1.9	54
261	Guest Shape-Responsive Fitting of Porous Coordination Polymer with Shrinkable Framework. Journal of the American Chemical Society, 2004, 126, 14063-14070.	6.6	286
262	Syntheses, Structures, Photoluminescence, and Theoretical Studies of d10 Metal Complexes of 2,2â€~Dihydroxy-[1,1â€~]binaphthalenyl-3,3â€~dicarboxylate. Inorganic Chemistry, 2004, 43, 830-838.	1.9	680
263	Developments in inorganic crystal engineering. Chemical Society Reviews, 2004, 33, 476.	18.7	685
264	The role of temperature in the synthesis of hybrid inorganic–organic materials: the example of cobalt succinates. Chemical Communications, 2004, , 368-369.	2.2	382
265	Electronic and vibrational properties of a MOF-5 metal–organic framework: ZnO quantum dot behaviour. Chemical Communications, 2004, , 2300-2301.	2.2	445
266	Supramolecular architecture of new lanthanide coordination polymers of 2-aminoterephthalic acid and 1,10-phenanthroline. New Journal of Chemistry, 2004, 28, 1019.	1.4	75
267	Two Polymorphs of Cobalt(II) Imidazolate Polymers Synthesized Solvothermally by Using One Organic TemplateN,N-Dimethylacetamide. Inorganic Chemistry, 2004, 43, 4631-4635.	1.9	112
268	Influence of organic bases on constructing 3D photoluminescent open metal–organic polymeric frameworks. Dalton Transactions, 2004, , 2202-2207.	1.6	67
269	An Unusual Mixed-Valence Cu(I)â^Cu(II) 3-D Framework. Inorganic Chemistry, 2004, 43, 1813-1815.	1.9	38
270	Design of New Materials for Methane Storage. Langmuir, 2004, 20, 2683-2689.	1.6	663
271	Lanthanide-containing coordination polymers. Fundamental Theories of Physics, 2004, 34, 359-404.	0.1	22
272	Microporous Metal Organic Materials:Â Promising Candidates as Sorbents for Hydrogen Storage. Journal of the American Chemical Society, 2004, 126, 1308-1309.	6.6	615
273	Solution-stable trinuclear zinc(ii) cluster from 4-methyl-2-N-(2-pyridylmethylene)aminophenol (HPyrimol). Dalton Transactions, 2004, , 2614-2615.	1.6	29

		CITATION RE	PORT	
#	Article		IF	CITATIONS
274	Microporous Manganese Formate:Â A Simple Metalâ~'Organic Porous Material with Hi Stability and Highly Selective Gas Sorption Properties. Journal of the American Chemic 126, 32-33.	gh Framework al Society, 2004,	6.6	929
275	Two Three-Dimensional Metalâ^'Organic Frameworks from Secondary Building Units o	f		

#	ARTICLE From arm-shaped layers to a new type of polythreaded array: a two fold interpenetrated	IF	CITATIONS
292	three-dimensional network with a rutile topologyElectronic Supplementary Information (ESI) available: details of the synthesis and solid state emission spectra of 1. See http://www.rsc.org/suppdata/cc/b4/b405016a/. Chemical Communications, 2004, , 1876.	2.2	131
293	Two malonato coordination polymers: syntheses and crystal structures of M(H2O)2(C3H2O4) with M=CO and Ni, C3H4O4 = malonic acid. Journal of Coordination Chemistry, 2004, 57, 1537-1543.	0.8	16
294	Journal of Coordination Chemistry, 2004, 57, 1545-1551.	0.8	3
295	A Novel 3-D Network of Fe(II) Glutarate: 2-D Honeycomb-type Edge-shared FeO6Layers and Isolated Interlayer FeO6Octahedra. Chemistry Letters, 2004, 33, 230-231.	0.7	6
296	A Novel 1-D Ladder-like Coordination Polymer [Eu(dipic)1.5(H2O)4·3H2O]â^ž. Chemistry Letters, 2004, 33, 180-181.	0.7	15
297	Syntheses of novel zinc organic complexes [Zn(C22H12N6)2](C3H9N)(NO3)2·H2O and [Zn(CH3COO)2(C22H12N6)] (C3H9N) under solvothermal conditions. Studies in Surface Science and Catalysis, 2004, 154, 3074-3080.	1.5	0
298	Poren per Baukasten. Nachrichten Aus Der Chemie, 2005, 53, 394-399.	0.0	31
299	Structures and Magnetic Properties of First-Row Transition Metal Complexes with Bridging Ligands, Squarate or Pyrazine. Bulletin of the Chemical Society of Japan, 2005, 78, 445-450.	2.0	10
300	Synthesis and structural characterization of a new open-framework zinc terephthalate Zn3(OH)2(bdc)2·2DEF, with infinite Zn–(μ3-OH)–Zn chains. Journal of Solid State Chemistry, 2005, 178, 621-628.	1.4	57
301	Hydrothermal reversible interconversion of two zincophosphates with three-dimensional open frameworks containing diprotonated 1,4-diazacycloheptane molecules. Journal of Solid State Chemistry, 2005, 178, 694-701.	1.4	5
302	[H2en]2{La2M(SO4)6(H2O)2} (M=Co, Ni): First organically templated 3d–4f mixed metal sulfates. Journal of Solid State Chemistry, 2005, 178, 2030-2035.	1.4	39
303	Soft functional polynuclear coordination compounds containing pyrimidine bridges. Journal of Solid State Chemistry, 2005, 178, 2436-2451.	1.4	69
304	Flexibility in metal-organic framework materials: Impact on sorption properties. Journal of Solid State Chemistry, 2005, 178, 2491-2510.	1.4	516
305	Glorious uncertainty—challenges for network design. Journal of Solid State Chemistry, 2005, 178, 2475-2479.	1.4	100
306	Flexible microporous coordination polymers. Journal of Solid State Chemistry, 2005, 178, 2420-2429.	1.4	358
307	Connecting small ligands to generate large tubular metal-organic architectures. Journal of Solid State Chemistry, 2005, 178, 2511-2518.	1.4	47
308	Homochiral porous metal-organic frameworks: Why and how?. Journal of Solid State Chemistry, 2005, 178, 2486-2490.	1.4	242
309	Assembly of metal ions and ligands with adaptable coordinative tendencies as a route to functional metal-organic solids. Journal of Solid State Chemistry, 2005, 178, 2519-2526.	1.4	56

#	Article	IF	CITATIONS
310	Solvothermal synthesis of new metal organic framework structures in the zinc–terephthalic acid–dimethyl formamide system. Journal of Solid State Chemistry, 2005, 178, 3342-3351.	1.4	128
311	A novel microporous coordination polymer constructed by double-chain molecules. Journal of Molecular Structure, 2005, 749, 74-77.	1.8	0
312	A novel three-dimensional hybrid framework based on fishbone-like copper halide inorganic units. Inorganica Chimica Acta, 2005, 358, 2571-2574.	1.2	12
313	Structural change of supramolecular coordination polymers of itaconic acid and 1,10-phenanthroline along lanthanide series. Inorganica Chimica Acta, 2005, 358, 2687-2696.	1.2	36
314	A reusable zigzag copper(II) coordination polymer with bio-essential constituents as a facile DNA scission agent. Inorganica Chimica Acta, 2005, 358, 3236-3240.	1.2	31
315	Synthesis, structure and fluorescence of two novel manganese(II) and zinc(II)-1,3,5-benzene tricarboxylate coordination polymers: Extended 3D supramolecular architectures stabilised by hydrogen bonding. Inorganica Chimica Acta, 2005, 358, 3855-3864.	1.2	75
316	Synthesis, structure and redox properties of an unexpected trinuclear copper(II) complex with aspartame: [Cu(apm)2Cu(μ-N,O:O′-apm)2(H2O)Cu(apm)2(H2O)]·5H2O. Inorganica Chimica Acta, 2005, 3 4431-4436.	584,2	14
317	Advanced porous materials: New developments and emerging trends. Microporous and Mesoporous Materials, 2005, 82, 227-239.	2.2	74
318	Deuterium NMR studies of framework and guest mobility in the metal–organic framework compound MOF-5, Zn4O(O2CC6H4CO2)3. Microporous and Mesoporous Materials, 2005, 84, 97-104.	2.2	88
319	Synthesis, structure, and fluorescence of two cadmium(II)-citrate coordination polymers with different coordination architectures. Journal of Molecular Structure, 2005, 740, 223-227.	1.8	15
320	A novel supramolecular assembly of 3,5-dinitro-4-methylbenzoic acid and trans-1,2-bis(4-pyridyl)ethene. Tetrahedron Letters, 2005, 46, 2411-2415.	0.7	16
321	Structure of functionalized porous metal-organic frameworks by molecular orbital methods. Computational and Theoretical Chemistry, 2005, 716, 33-38.	1.5	12
322	Synthesis and characterization of infinite coordination networks from a hybrid ligand N-(4-pyridylmethyl)imidazole. Inorganic Chemistry Communication, 2005, 8, 212-215.	1.8	21
323	The first cyanuric acid adduct incorporated with metal complex: a novel bi-layered structure constructed by hydrogen bonds. Inorganic Chemistry Communication, 2005, 8, 182-185.	1.8	10
324	Eutectic mixture of choline chloride/urea as a green solvent in synthesis of a coordination polymer: [Zn(O3PCH2CO2)]·NH4. Inorganic Chemistry Communication, 2005, 8, 390-392.	1.8	132
325	pH Value controlled structures: from macrocyclic complex monomer to 2D macrocyclic sheet. Inorganic Chemistry Communication, 2005, 8, 421-424.	1.8	12
326	Synthesis and magnetic property of porous naphthalenetetracarboxylate manganese complex, the first (1¼2-aqua)bis(1¼2-carboxylate)-bridged manganese polymer. Inorganic Chemistry Communication, 2005, 8, 555-558.	1.8	36
327	Synthesis, structural characterization and third-order non-linear optical property of new three-dimensional metal-organic framework (M=Ni, Co). Inorganic Chemistry Communication, 2005, 8, 638-642.	1.8	33

#	Article	IF	CITATIONS
328	Syntheses, crystal structures and magnetic properties of two new 3-cyanobenzate coordination complexes. Inorganic Chemistry Communication, 2005, 8, 708-712.	1.8	5
329	1D polymeric chain of copper(II) containing imidazolate and perchlorate bridging: Supramolecular synthon involving N–Hâ∢O hydrogen bonding. Inorganic Chemistry Communication, 2005, 8, 1041-1044.	1.8	24
330	Template-assisted assembly of porous lanthanide coordination polymers with 2-aminoterephthalic acid. Inorganic Chemistry Communication, 2005, 8, 1045-1048.	1.8	24
331	Raman spectra of hydrogen and deuterium adsorbed on a metal–organic framework. Chemical Physics Letters, 2005, 411, 516-519.	1.2	61
332	Hydrothermal synthesis and crystal structure of a new three-dimensional aluminum-organic framework MIL-69 with 2,6-naphthalenedicarboxylate (ndc), Al(OH)(ndc)·H2O. Comptes Rendus Chimie, 2005, 8, 765-772.	0.2	145
333	Metal organic frameworks based on Cu2+ and benzene-1,3,5-tricarboxylate as host for SO2 trapping agents. Comptes Rendus Chimie, 2005, 8, 753-763.	0.2	59
334	Crystallized Frameworks with Giant Pores:  Are There Limits to the Possible?. Accounts of Chemical Research, 2005, 38, 217-225.	7.6	1,286
335	Systematic Investigation of the Hydrothermal Syntheses of Pr(III)â^'PDA (PDA =) Tj ETQq1 1 0.784314 rgBT /Ove	rlo <u>ck</u> 10 Ti	f 50 462 Tc 181
336	Gas Adsorption Sites in a Large-Pore Metal-Organic Framework. Science, 2005, 309, 1350-1354.	6.0	842
337	Synthesis, optical properties, crystal structures and phase behaviour of symmetric, conjugated ethynylarene-based rigid rods with terminal carboxylate groups. Journal of Materials Chemistry, 2005, 15, 690-697.	6.7	40
338	Self-Diffusion and Transport Diffusion of Light Gases in Metal-Organic Framework Materials Assessed Using Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2005, 109, 15760-15768.	1.2	412
339	ENGINEERED POROUS CATALYTIC MATERIALS. Annual Review of Materials Research, 2005, 35, 209-238.	4.3	105
340	Metalâ^'Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature. Journal of the American Chemical Society, 2005, 127, 17998-17999.	6.6	2,573
341	Multifunctionality and Crystal Dynamics of a Highly Stable, Porous Metalâ^'Organic Framework [Zn4O(NTB)2]. Journal of the American Chemical Society, 2005, 127, 6374-6381.	6.6	492
342	Very Large Swelling in Hybrid Frameworks:Â A Combined Computational and Powder Diffraction Study. Journal of the American Chemical Society, 2005, 127, 16273-16278.	6.6	293
343	In Situ Single-Crystal X-ray Diffraction Studies of Desorption and Sorption in a Flexible Nanoporous Molecular Framework Material. Journal of the American Chemical Society, 2005, 127, 7891-7900.	6.6	154
344	Highly controlled acetylene accommodation in a metal–organic microporous material. Nature, 2005, 436, 238-241.	13.7	1,386
345	Temperature dependence of the crystal chemistry of the oxovanadium–ethylenediphosphonate/copper(II)bipyridine system. Crystal structures of the two-dimensional [Cu(bpy)VO2(O3PCH2CH2PO3H)]•1.5H2O and of the one-dimensional [Cu(bpv)VO2(O3PCH2CH2PO3H)]. Solid State Sciences. 2005. 7. 133-139.	1.5	32

#	Article	IF	CITATIONS
346	Interpenetrating and non-interpenetrating 3-dimensional coordination polymer frameworks from multiple building blocks. Solid State Sciences, 2005, 7, 1522-1532.	1.5	12
347	The 3D Channel Framework Based on Indium(III)-btec, and Its Ion-Exchange Properties (btec =) Tj ETQq1 1 0.7843	314 rgBT / 1.0	Oyerlock 10
348	Anion Template Effect and the Polymerization Degree - Diversity through Flexibility. European Journal of Inorganic Chemistry, 2005, 2005, 2819-2825.	1.0	10
349	New Cadmium(II) and Iron(II) Coordination Frameworks Incorporating a Di(4-pyridyl)isoindoline Ligand. European Journal of Inorganic Chemistry, 2005, 2005, 2470-2475.	1.0	7
350	Multiple Regulated Assembly, Crystal Structures and Magnetic Properties of Porous Coordination Polymers with Flexible Ligands. European Journal of Inorganic Chemistry, 2005, 2005, 4150-4159.	1.0	82
351	Hybrid 2D and 3D Frameworks Based on ε-Keggin Polyoxometallates: Experiment and Simulation. European Journal of Inorganic Chemistry, 2005, 2005, 3009-3018.	1.0	95
352	Synthesis and Characterization of a 3D H-Bonded Supramolecular Complex with Chiral Channels Encapsulating 1D Left-Handed Helical Water Chains. European Journal of Inorganic Chemistry, 2005, 2005, 3214-3216.	1.0	34
353	Hydrothermal Synthesis, Crystal Structures, and Properties of a Class of 2D Coordination Polymers. European Journal of Inorganic Chemistry, 2005, 2005, 4598-4606.	1.0	23
354	Supramolecular Arrays of Cationic Complexes Containing Pyrazole Ligands and Tetrafluoroborate, Trifluoromethanesulfonate, or Nitrate as Counterions. Crystal Structure of Bis(3,5-dimethyl-4-nitro-1H-pyrazole-l°N2)silver(1+) Nitrate ([Ag(HpzNO2)2](NO3)). Helvetica Chimica Acta, 2005, 88, 2433-2440.	1.0	15
355	The Deposition of Metallopeptide-Based Coordination Polymers on Graphite Substrates: Effects of Side-Chain Functional Groups and Local Surface Structure. Angewandte Chemie - International Edition, 2005, 44, 803-806.	7.2	30
356	Corundum, Diamond, and PtS Metal-Organic Frameworks with a Difference: Self-Assembly of a Unique Pair of 3-ConnectingD2d-Symmetric 3,3?,5,5?-Tetrakis(4-pyridyl)bimesityl. Angewandte Chemie - International Edition, 2005, 44, 2115-2119.	7.2	164
357	Methane and Carbon Dioxide Storage in a Porous van der Waals Crystal. Angewandte Chemie - International Edition, 2005, 44, 1816-1820.	7.2	388
358	Crystal Engineering: Toward Intersecting Channels from a Neutral Network with a bcu-Type Topology. Angewandte Chemie - International Edition, 2005, 44, 6063-6067.	7.2	193
359	Strategies for Hydrogen Storage in Metal-Organic Frameworks. Angewandte Chemie - International Edition, 2005, 44, 4670-4679.	7.2	2,287
360	Metal Ions Play Different Roles in the Third-Order Nonlinear Optical Properties of d10 Metal-Organic Clusters. Angewandte Chemie - International Edition, 2005, 44, 6067-6074.	7.2	139
361	Ternary Nets formed by Self-Assembly of Triangles, Squares, and Tetrahedra. Angewandte Chemie - International Edition, 2005, 44, 2877-2880.	7.2	171
362	Porous Lanthanide-Organic Open Frameworks with Helical Tubes Constructed from Interweaving Triple-Helical and Double-Helical Chains. Angewandte Chemie - International Edition, 2005, 44, 5814-5817.	7.2	436
363	Supramolecular Coordination Assemblies of Dinuclear FeIII Complexes. Angewandte Chemie - International Edition, 2005, 44, 4187-4192.	7.2	50

#	Article	IF	Citations
364	Self-Assembly of an Interlaced Triple-Stranded Molecular Braid with an Unprecedented Topology through Hydrogen-Bonding Interactions. Angewandte Chemie - International Edition, 2005, 44, 3864-3867.	7.2	188
365	Thermolysis of a Hybrid Organic-Inorganic Supramolecular Coordination Assembly: Templating the Formation of Nanostructured Fibrous Materials and Carbon-Based Microcapsules. Angewandte Chemie - International Edition, 2005, 44, 7048-7053.	7.2	43
366	Dielectric Properties of Porous Molecular Crystals That Contain Polar Molecules. Angewandte Chemie - International Edition, 2005, 44, 6508-6512.	7.2	110
367	A Phthalocyanine Clathrate of Cubic Symmetry Containing Interconnected Solvent-Filled Voids of Nanometer Dimensions. Angewandte Chemie - International Edition, 2005, 44, 7546-7549.	7.2	63
381	Encapsulation of Catalysts in Supramolecular Porous Frameworks: Size- and Shape-Selective Catalytic Oxidation of Phenols. Advanced Materials, 2005, 17, 689-692.	11.1	87
382	Hydrogen Physisorption in Metal-Organic Porous Crystals. Advanced Materials, 2005, 17, 538-541.	11.1	297
383	Nanotechnological Aspects in Materials for Hydrogen Storage. Advanced Engineering Materials, 2005, 7, 443-455.	1.6	228
384	Polymers of Intrinsic Microporosity (PIMs): Bridging the Void between Microporous and Polymeric Materials. Chemistry - A European Journal, 2005, 11, 2610-2620.	1.7	461
385	Steric Control over Hydrogen Bonding in Crystalline Organic Solids: A Structural Study ofN,N?-Dialkylthioureas. Chemistry - A European Journal, 2005, 11, 1459-1466.	1.7	81
386	Synthesis, X-ray Crystal Structures, and Gas Sorption Properties of Pillared Square Grid Nets Based on Paddle-Wheel Motifs: Implications for Hydrogen Storage in Porous Materials. Chemistry - A European Journal, 2005, 11, 3521-3529.	1.7	827
387	Rationally Designed, Polymeric, Extended Metal-Ciprofloxacin Complexes. Chemistry - A European Journal, 2005, 11, 6673-6686.	1.7	131
388	Self-assembly of a Co(II) dimer through H-bonding of water molecules to a 3D open-framework structure. Journal of Chemical Sciences, 2005, 117, 23-26.	0.7	9
389	catena-Poly[[bis(μ4-hexafluoroglutarato)bis(tetrahydrofuran)tetrasilver(I)]-μ2-4,4′-biphenyldicarbonitrile]. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m251-m253.	0.2	0
390	Di-μ-hydroxo-bis[aqua(1,10-phenanthroline-κ2N,Nâ€2)copper(II)] terephthalate octahydrate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m1027-m1029.	0.2	5
391	Hydrogen bonding and π–π stacking in di-μ-isophthalato-bis[bis(isonicotinamide)copper(II)] trihydrate. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m1705-m1707.	0.2	1
392	Poly[μ2-4,4′-bipyridine-di-μ2-imidazolidocadmium(II)]. Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m2667-m2669.	0.2	3
393	Hydrothermal Syntheses and Structural Studies of Lanthanide Coordination Polymers InvolvingIn-Situ Decarboxylation and their Luminescence Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 937-942.	0.6	53
394	Pb2(OH)2[p-O2C-C6H4-CO2]: Synthese und Kristallstruktur. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 659-662.	0.6	15

#	Article	IF	CITATIONS
396	Strategies in developing routes to commercialization of novel high silica zeolites. Studies in Surface Science and Catalysis, 2005, , 1-10.	1.5	15
397	Organic zeolites. Studies in Surface Science and Catalysis, 2005, , 37-54.	1.5	14
398	Framework variations in Mn(ii)–organic coordination polymers: solvent templated formation and characterisation of 1D zigzag and straight chain network isomers. CrystEngComm, 2005, 7, 650.	1.3	37
399	New isoreticular metal-organic framework materials for high hydrogen storage capacity. Journal of Chemical Physics, 2005, 123, 214707.	1.2	59
400	Why bother with nets ?. , 2005, , 19-38.		0
401	The first suberato-bridged lanthanide coordination polymer: synthesis, crystal structure and properties of La2(H2O)2L3 (H2L=HOOC(CH2)6COOH). Journal of Coordination Chemistry, 2005, 58, 1551-1559.	0.8	6
402	Introduction to molecular sieves: trends of evolution of the zeolite community. Studies in Surface Science and Catalysis, 2005, 157, 1-12.	1.5	22
403	Flexible coordination polymers as novel porous materials. Studies in Surface Science and Catalysis, 2005, , 497-504.	1.5	4
404	BTA Copper Complexes. Inorganic Chemistry, 2005, 44, 8044-8052.	1.9	176
405	A Metalâ^'Organic Framework Functionalized with Free Carboxylic Acid Sites and Its Selective Binding of a Cl(H2O)4-Cluster. Journal of the American Chemical Society, 2005, 127, 16362-16363.	6.6	208
406	Pillared-Layer Microporous Metalâ^'Organic Frameworks Constructed by Robust Hydrogen Bonds. Synthesis, Characterization, and Magnetic and Adsorption Properties of 2,2'-Biimidazole and Carboxylate Complexes. Inorganic Chemistry, 2005, 44, 8836-8845.	1.9	142
407	Hydrothermal Synthesis of Three Novel Multidimensional Metalâ^'Organic Frameworks with Unusual Units and Mixed Ligands. Crystal Growth and Design, 2005, 5, 821-827.	1.4	42
408	Network structures of cyclotriveratrylene and its derivatives. New Journal of Chemistry, 2005, 29, 1231.	1.4	39
409	New double-layered open metal–organic frameworks with nanosized channels encapsulated removable 2,5-bis(4-pyridyl)-1,3,4-thiadiazole molecules. CrystEngComm, 2005, 7, 96-101.	1.3	22
410	Interconnected water channels and isolated hydrophobic cavities in a calixarene-based, nanoporous supramolecular architecture. CrystEngComm, 2005, 7, 449.	1.3	39
411	A microporous scandium terephthalate, Sc2(O2CC6H4CO2)3, with high thermal stability. Chemical Communications, 2005, , 3850.	2.2	89
412	One teflon®-like channelled nanoporous polymer with a chiral and new uninodal 4-connected net: sorption and catalytic properties. Chemical Communications, 2005, , 1291-1293.	2.2	82
413	Diversity in magnetic properties of 3D isomorphous networks of Co(ii) and Mn(ii) constructed by napthalene-1,4-dicarboxylate. Chemical Communications, 2005, , 4613.	2.2	56

#	Article	IF	CITATIONS
414	A Zinc Carboxylate Network Containing Metal Sites with Low Coordination Numbers. Inorganic Chemistry, 2005, 44, 828-830.	1.9	21
415	Fumarato-bridged open layers: Syntheses and crystal structures of M(H2O)2L, with M = Cu, Cd and H2L = fumaric acid. Journal of Coordination Chemistry, 2005, 58, 539-548.	0.8	5
416	Crystal engineering of nonporous organic solids for methane sorption. Chemical Communications, 2005, , 4420.	2.2	86
417	Second ligand-directed self-assembly of lanthanide(iii) coordination polymers with 1,4-naphthalenedicarboxylate. New Journal of Chemistry, 2005, 29, 798.	1.4	111
418	Terpyridine copperii–polycarboxylic acid architectures: formation of dimeric, helical, and cyclic nanostructures and their included-water molecule motifs. Chemical Communications, 2005, , 4405.	2.2	38
419	A 2D honeycomb-shaped network based on a starburst cluster: [Ag4(μ3-Cl)(PPh2(CH2)2PPh2)1.5{S2P(OR)2}3] (R = Et, Pri). Chemical Communications, 2005, , 1983-1985.	2.2	52
420	Three-dimensional mesomeric networks assembled from helix-linked sheets: syntheses, structures, and magnetisms. Dalton Transactions, 2005, , 2609.	1.6	59
421	Syntheses, structures and fluorescent properties of two novel coordination polymers in the U–Cu–H3pdc system. Dalton Transactions, 2005, , 1518-1523.	1.6	150
422	Novel dithioether–silver(i) coordination architectures: structural diversities by varying the spacers and terminal groups of ligands. Dalton Transactions, 2005, , 464-474.	1.6	43
423	X-RAY POWDER DIFFRACTION CHARACTERIZATION OF POLYMERIC METAL DIAZOLATES. Comments on Inorganic Chemistry, 2005, 26, 1-37.	3.0	59
424	New Metalâ^'Organic Polygons Involving MM Quadruple Bonds: M8(O2CtBu)4(μ-SC4H2-3,4-{CO2}2)6(M =) 1	[j ETQq0 0	0.rgBT /Ove
425	Syntheses, Structures, and Properties of Two-Dimensional Alkaline Earth Metal Complexes with Flexible Tripodal Tricarboxylate Ligands. Crystal Growth and Design, 2005, 5, 177-182.	1.4	129
426	Porous Metalâ^'Organic Truncated Octahedron Constructed from Paddle-Wheel Squares and Terthiophene Links. Journal of the American Chemical Society, 2005, 127, 12752-12753.	6.6	205
427	Synthesis and crystal structure of [Fe(phen)3]L·2H2L·4H2O (H2L = fumaric acid). Journal of Coordination Chemistry, 2005, 58, 883-890.	0.8	4
428	Organo-Inorganic Tetrameric Zinc Cluster with Phosphate Bridges. [Zn4(HPO4)4(phen)4](H3PO4)2(H2O)4. Crystal Growth and Design, 2005, 5, 1695-1697.	1.4	5
429	Polymeric Frameworks Constructed from a Metalâ^'Organic Coordination Compound, in 1-D and 2-D Systems:  Synthesis, Crystal Structures, and Fluorescent Properties. Crystal Growth and Design, 2005, 5, 341-346.	1.4	119
430	Motion of Aromatic Hydrocarbons in the Microporous Aluminum Methylphosphonates AlMePO-Î \pm and AlMePO-Î ² . Journal of Physical Chemistry B, 2005, 109, 21700-21709.	1.2	21
431	Bottom-Up Crystal Engineering toward Nanoporosity Exemplified by a Zinc Carboxylate Coordination Polymer Adopting a Tenorite Analogue Network Topology. Crystal Growth and Design, 2005, 5, 403-405.	1.4	40

#	Article	IF	CITATIONS
432	Multidimensional Metalâ^'Organic Frameworks Constructed from Flexible Bis(imidazole) Ligands. Crystal Growth and Design, 2005, 5, 1775-1780.	1.4	215
433	A crystalline organic substrate absorbs methane under STP conditions. Chemical Communications, 2005, , 51.	2.2	114
434	Synthesis and Characterization of a Porous Magnetic Diamond Framework, Co3(HCOO)6, and Its N2Sorption Characteristic. Inorganic Chemistry, 2005, 44, 1230-1237.	1.9	150
435	Formation and Characterization of Crystalline Molecular Arrays of Gas Molecules in a 1-Dimensional Ultramicropore of a Porous Copper Coordination Polymer. Journal of Physical Chemistry B, 2005, 109, 23378-23385.	1.2	71
436	Clathrate-Formation Mediated Adsorption of Methane on Cu-Complex Crystals. Journal of Physical Chemistry B, 2005, 109, 13851-13853.	1.2	67
437	Characterization of Porosity in Organic and Metalâ^'Organic Macrocycles by Hyperpolarized 129Xe NMR Spectroscopy. Organic Letters, 2005, 7, 3397-3400.	2.4	19
438	Flexible Eightfold Interpenetrating Diamondoid Network Generating 1D Channels:Â Selective Binding with Organic Guests. Inorganic Chemistry, 2005, 44, 810-812.	1.9	118
439	Open Metalâ^'Organic Framework Containing Cuprate Chains. Inorganic Chemistry, 2005, 44, 6192-6196.	1.9	27
440	Dynamic Formation of Coordination Polymers versus Tetragonal Prisms and Unexpected Magnetic Superexchange Coupling Mediated by Encapsulated Anions in the Cobalt(II) 1,3-Bis(pyrid-4-ylthio)propan-2-one Series. Inorganic Chemistry, 2005, 44, 9175-9184.	1.9	35
441	Binding energies of hydrogen molecules to isoreticular metal-organic framework materials. Journal of Chemical Physics, 2005, 123, 014701.	1.2	110
442	A unique example of a 36 tessellated 2-D net based on a tri-nuclear zinc(ii)-1,4-benzenedicarboxylate framework. Chemical Communications, 2005, , 5435.	2.2	100
443	Solvent hydrolysis and templating effects in the synthesis of metal–organic frameworks. CrystEngComm, 2005, 7, 548.	1.3	242
444	Microporous Porphyrin Solids. Accounts of Chemical Research, 2005, 38, 283-291.	7.6	472
445	Synthesis, crystal structure and characterization of a new layered lanthanum(III) diselenite hydrogenselenite: La(Se2O5)(HSeO3)(H2O)·H2O. Journal of Alloys and Compounds, 2005, 391, 33-37.	2.8	6
446	Assembling molecular species into 3D frameworks: Computational design and structure solution of hybrid materials. Progress in Solid State Chemistry, 2005, 33, 187-197.	3.9	50
447	Microporous Pillared Paddle-Wheel Frameworks Based on Mixed-Ligand Coordination of Zinc Ions. Inorganic Chemistry, 2005, 44, 4912-4914.	1.9	447
448	Reactive Microporous Rare-Earth Coordination Polymers that Exhibit Single-Crystal-to-Single-Crystal Dehydration and Rehydration. Crystal Growth and Design, 2005, 5, 529-533.	1.4	47
449	Syntheses and Characterizations of Two 3D Cobaltâ^'Organic Frameworks from 2D Honeycomb Building Blocks. Crystal Growth and Design, 2005, 5, 1849-1855.	1.4	131

#	ARTICLE	IF	CITATIONS
450	Terminal co-ligand directed synthesis of a neutral, non-interpenetrated (10,3)-a metal–organic framework. Chemical Communications, 2005, , 2095-2097.	2.2	63
451	The structural influence of ligand coordination and hydrogen bonding capabilities in the crystal engineering of metal thiosemicarbazide compounds with malonate. CrystEngComm, 2005, 7, 388.	1.3	10
452	1,2-, 1,3- and 1,4-Benzenedicarboxylates of Cd and Zn of different dimensionalities: Process of formation of the three-dimensional structure. Journal of Materials Chemistry, 2005, 15, 3852.	6.7	91
453	Radical polymerisation of styrene in porous coordination polymers. Chemical Communications, 2005, , 5968.	2.2	148
454	Synthesis, Physical Properties, Multitemperature Crystal Structure, and 20 K Synchrotron X-ray Charge Density of a Magnetic Metal Organic Framework Structure, Mn3(C8O4H4)3(C5H11ON)2. Journal of the American Chemical Society, 2005, 127, 9156-9166.	6.6	79
455	Molecular Simulation of Adsorption and Diffusion of Hydrogen in Metalâ^'Organic Frameworks. Journal of Physical Chemistry B, 2005, 109, 11862-11864.	1.2	276
456	Metal-Organic Frameworks Based on Trigonal Prismatic Building Blocks and the New "acs―Topology. Inorganic Chemistry, 2005, 44, 2998-3000.	1.9	276
457	Structural Constraints in the Design of Silver Sulfonate Coordination Networks:  Three New Polysulfonate Open Frameworks. Inorganic Chemistry, 2005, 44, 8868-8875.	1.9	65
458	Grand Canonical Monte Carlo Simulation Study of Methane Adsorption at an Open Graphite Surface and in Slitlike Carbon Pores at 273 K. Langmuir, 2005, 21, 5639-5646.	1.6	83
459	Controlled Aggregation of Heterometallic Nanoscale Cu12Ln6Clusters (Ln = GdIIIor NdIII) into 2D Coordination Polymers. Inorganic Chemistry, 2005, 44, 559-565.	1.9	150
460	From a 1-D Chain, 2-D Layered Network to a 3-D Supramolecular Framework Constructed from a Metalâ^'Organic Coordination Compound. Crystal Growth and Design, 2005, 5, 207-213.	1.4	141
461	Preparing a Suitable Material Designed for Methane Storage:  A Comprehensive Report. Energy & Fuels, 2005, 19, 573-583.	2.5	114
462	Direct Observation of Hydrogen Adsorption Sites and Nanocage Formation in Metal-Organic Frameworks. Physical Review Letters, 2005, 95, 215504.	2.9	254
463	Novel 2D and 3D Indium Metal-Organic Frameworks: Topology and Catalytic Propertiesâ€. Chemistry of Materials, 2005, 17, 2568-2573.	3.2	189
464	Syntheses and Structures of Zinc(II), Silver(I), Copper(II), and Cobalt(II) Complexes with Imidazole-Containing Ligand:  1-(1-Imidazolyl)-4-(imidazol-1-ylmethyl)benzene. Crystal Growth and Design, 2005, 5, 289-294.	1.4	101
465	Polynuclear Lanthanide Hydroxo Complexes: New Chemical Precursors for Coordination Polymers. Inorganic Chemistry, 2005, 44, 7743-7750.	1.9	76
466	Metallamacrocyclic complexes of Ni(ii) with 3,3,3′,3′-tetraalkyl-1,1′-aroylbis(thioureas): crystal and molecular structures of a 2 : 2 metallamacrocycle and a pyridine adduct of the analogous 3 : 3 complex. CrystEngComm, 2005, 7, 161-166.	1.3	42
467	Doubly-linked 1D coordination polymers derived from 2 â^¶ 2 metallamacrocyclic Ni(ii) complexes with bipodal acylthiourea and exo-bidentate N-donor bridging ligands: toward potentially selective chemical sensors?. New Journal of Chemistry, 2005, 29, 1416.	1.4	34

#	Article	IF	CITATIONS
468	Adsorption of Gases in Metal Organic Materials:Â Comparison of Simulations and Experiments. Journal of Physical Chemistry B, 2005, 109, 13094-13103.	1.2	365
469	Characterization of 3-D Metalâ^'Organic Frameworks Formed through Hydrogen Bonding Interactions of 2-D Networks with Rectangular Voids by CoII- and Nill-Pyridine-2,6-dicarboxylate and 4,4â€~-Bipyridine or 1,2-Di(pyridyl)ethylene. Crystal Growth and Design, 2005, 5, 623-629.	1.4	119
470	Interaction of Hydrogen with MOF-5. Journal of Physical Chemistry B, 2005, 109, 18237-18242.	1.2	157
471	The pH-controlled hydrothermal synthesis and crystal structures of two zinc N,N′-piperazinebis(methylenephosphonate) frameworks. Dalton Transactions, 2005, , 2007.	1.6	24
472	Rational assembly of a 3D metal–organic framework for gas adsorption with predesigned cubic building blocks and 1D open channels. Chemical Communications, 2005, , 3526.	2.2	106
473	Electronic structure and properties of isoreticular metal-organic frameworks: The case of M-IRMOF1 (M=Zn, Cd, Be, Mg, and Ca). Journal of Chemical Physics, 2005, 123, 124713.	1.2	147
474	Generation of a Plastic Crystal Including Methane Rotator within Metal-Organic Cavity by Forcible Gas Adsorption. Inorganic Chemistry, 2005, 44, 1362-1366.	1.9	45
475	A Discrete Metallocyclic Complex that Retains Its Solvent-Templated Channel Structure on Guest Removal to Yield a Porous, Gas Sorbing Material. Journal of the American Chemical Society, 2005, 127, 13134-13135.	6.6	123
476	A Novel Pillar-Layered Organicâ^'Inorganic Hybrid Based on Lanthanide Polymer and Polyomolybdate Clusters:  New Opportunity toward the Design and Synthesis of Porous Framework. Crystal Growth and Design, 2005, 5, 65-67.	1.4	146
477	Synthesis and properties of the metal-organic framework Mo3(BTC)2 (TUDMOF-1). Journal of Materials Chemistry, 2006, 16, 2245.	6.7	132
478	A Thermally Stable Pt/Y-Based Metalâ^'Organic Framework:Â Exploring the Accessibility of the Metal Centers with Spectroscopic Methods Using H2O, CH3OH, and CH3CN as Probes. Journal of Physical Chemistry B, 2006, 110, 21509-21520.	1.2	100
479	2D-Grid Layered Pd-Based Cationic Infinite Coordination Polymer/Polyoxometalate Crystal with Hydrophilic Sorption. Inorganic Chemistry, 2006, 45, 9448-9453.	1.9	41
480	Highly Stable Chiral Cadmium 1,2,4-Benzenetricarboxylate:Â Synthesis, Structure, and NLO and Fluorescence Properties. Inorganic Chemistry, 2006, 45, 2474-2478.	1.9	209
481	A Large Protonated Water Cluster H+(H2O)27in a 3D Metalâ^'Organic Framework. Journal of the American Chemical Society, 2006, 128, 13318-13319.	6.6	218
483	Synthesis, Structure, and Luminescent Properties of Microporous Lanthanide Metalâ^'Organic Frameworks with Inorganic Rod-Shaped Building Units. Inorganic Chemistry, 2006, 45, 2581-2587.	1.9	185
485	Synthesis and Characterization of Prussian Blue Analogues Incorporating the Edge-Bridged Octahedral [Zr6BCl12]2+ Cluster Core. Inorganic Chemistry, 2006, 45, 236-243.	1.9	40
486	From Helical Array to Porous Architecture:  Exploring the Use of Side Chains of Amino Acids to Engineer 1D Infinite Coordination Polymeric Chain into Porous Frameworks. Crystal Growth and Design, 2006, 6, 989-993.	1.4	33
487	Recent Advances in the Dynamics of Single Crystal to Single Crystal Transformations in Metal–Organic Open Frameworks. Australian Journal of Chemistry, 2006, 59, 605.	0.5	74

#	Article	IF	CITATIONS
488	Synthesis of Microporous Inorganicâ^'Organic Hybrids from Layered Octosilicate by Silylation with 1,4-Bis(trichloro- and dichloromethyl-silyl)benzenes. Chemistry of Materials, 2006, 18, 5223-5229.	3.2	54
489	Recognition of Small Polar Molecules with an Ionic Crystal of α-Keggin-Type Polyoxometalate with a Macrocation. Inorganic Chemistry, 2006, 45, 5136-5144.	1.9	58
490	Solvent hydrolysis leads to an unusual Cu(ii) metal–organic framework. CrystEngComm, 2006, 8, 473.	1.3	50
491	Increased dimensionalities of zinc–diphenic acid coordination polymers by simultaneous or subsequent addition of neutral bridging ligands. Dalton Transactions, 2006, , 586-593.	1.6	23
492	Titanium terephthalate (TT-1) hybrid materials with high specific surface area. Journal of Materials Chemistry, 2006, 16, 2354-2357.	6.7	27
493	Synthesis, structure and fluorescent studies of novel uranium coordination polymers in the pyridinedicarboxylic acid system. Dalton Transactions, 2006, , 4679.	1.6	160
494	The first route to large pore metal phosphonates. Chemical Communications, 2006, , 3305.	2.2	127
495	Tuning the Framework Formation of Ni(II) Complexes by Controlling the Hydrolysis of 2,2â€~,3,3â€~-Thiodiphthalic Dianhydride:  Syntheses, Crystal Structures, and Physical Properties. Crystal Growth and Design, 2006, 6, 2369-2375.	1.4	32
496	Synthesis, crystal structure and magnetic properties of 2D bi-layered coordination polymer. Journal of Coordination Chemistry, 2006, 59, 1641-1647.	0.8	5
497	What we have learned from the study of solid p-tert-butylcalix[4]arene compounds. Chemical Communications, 2006, , 4986.	2.2	87
498	1, 2-, 1, 3- and 1, 4-Cyclohexanedicarboxylates of Cd and Mn with chain and layered structures. Dalton Transactions, 2006, , 221-228.	1.6	54
499	Monodentate function of the 4,4′-bipyridine that systematically occurs in the 4-sulfobenzoate manganese(ii) complexes: syntheses, crystal structures, and properties. CrystEngComm, 2006, 8, 815-826.	1.3	46
500	Rapid Production of Metalâ^'Organic Frameworks via Microwave-Assisted Solvothermal Synthesis. Journal of the American Chemical Society, 2006, 128, 12394-12395.	6.6	635
501	Optimum Conditions for Adsorptive Storage. Langmuir, 2006, 22, 1688-1700.	1.6	936
502	A Mesoporous Metalâ^'Organic Framework with Permanent Porosity. Journal of the American Chemical Society, 2006, 128, 16474-16475.	6.6	314
503	Metalâ^'Organic Frameworks from Homometallic Chains of Nickel(II) and 1,4-Cyclohexanedicarboxylate Connectors:Â Ferrimagnetâ^'Ferromagnet Transformation. Inorganic Chemistry, 2006, 45, 1627-1637.	1.9	122
504	Exceptional H2Saturation Uptake in Microporous Metalâ^'Organic Frameworks. Journal of the American Chemical Society, 2006, 128, 3494-3495.	6.6	1,172
505	Ab initiostudy of metal-organic framework-5Zn4O(1,4â^'benzenedicarboxylate)3: An assessment of mechanical and spectroscopic properties. Physical Review B, 2006, 73, .	1.1	83

#	Article	IF	CITATIONS
506	Supramolecular Self-Assembled Rutheniumâ^'Polypyridyl Framework Encapsulating Discrete Water Cluster. Crystal Growth and Design, 2006, 6, 743-748.	1.4	67
507	The Synthesis, Molecular Structures, and Supramolecular Architecture of Amine Adducts of Bis(pentafluorophenyl)zinc. Organometallics, 2006, 25, 3837-3847.	1.1	33
508	Effects of Surface Area, Free Volume, and Heat of Adsorption on Hydrogen Uptake in Metalâ^'Organic Frameworks. Journal of Physical Chemistry B, 2006, 110, 9565-9570.	1.2	558
509	A metal–organic framework material that functions as an enantioselective catalyst for olefin epoxidation. Chemical Communications, 2006, , 2563-2565.	2.2	920
510	Metal–organic frameworks—prospective industrial applications. Journal of Materials Chemistry, 2006, 16, 626-636.	6.7	2,056
511	Crystal Structures and Magnetic and Luminescent Properties of a Series of Homodinuclear Lanthanide Complexes with 4-Cyanobenzoic Ligand. Inorganic Chemistry, 2006, 45, 6308-6316.	1.9	209
512	A Search for Predictable Hydrogen-Bonding Synthons in Cocrystallization of Unusual Organic Acids with a Bent Dipyridine. Crystal Growth and Design, 2006, 6, 390-396.	1.4	34
513	The Interaction of Water with MOF-5 Simulated by Molecular Dynamics. Journal of the American Chemical Society, 2006, 128, 10678-10679.	6.6	533
514	Synthesis, Structural Characterization, Gas Sorption and Guest-Exchange Studies of the Lightweight, Porous Metalâ^'Organic Framework α-[Mg3(O2CH)6]. Inorganic Chemistry, 2006, 45, 5521-5528.	1.9	227
515	New 3-D La(III)â^'Cu(II)-Containing Coordination Polymer with a High Potential Porosity. Inorganic Chemistry, 2006, 45, 8468-8470.	1.9	80
516	Unusual Robust Luminescent Porous Frameworks Self-Assembled from Lanthanide Ions and 2,2â€~-Bipyridine-4,4â€~-dicarboxylate. Crystal Growth and Design, 2006, 6, 467-473.	1.4	95
517	Determination of the hydrogen absorption sites in Zn4O(1,4-benzenedicarboxylate) by single crystal neutron diffraction. Chemical Communications, 2006, , 278-280.	2.2	132
518	Metalâ^'Organic Architectures of Silver(I), Cadmium(II), and Copper(II) with a Flexible Tricarboxylate Ligand. Inorganic Chemistry, 2006, 45, 3941-3948.	1.9	110
519	Transition metal ions: weak links for strong polymers. Soft Matter, 2006, 2, 915.	1.2	181
520	Ternary copper(II) malonato complexes with alkali metals: K2Cu(mal)2 · 3H2O, Rb2Cu(mal)2 ·â€9 Cs2[Cu(H2O)2(mal)2] 2H2O. Journal of Coordination Chemistry, 2006, 59, 1281-1293.	%H2O, 0.8	5
521	Generation of Linear Coordination Polymers ofcatena-[Diaqua-(μ-pyrazine-2,6-dicarboxylato-N,O,Oâ€~-μ-Nâ€~)copper(II) via in Situ Hydro(solvo)thermal Decarboxylation of Pyrazine-2,3,5,6-tetracarboxylic Acid. Crystal Growth and Design, 2006, 6, 829-832.	1.4	48
522	Influence of Weaker Interactions on the Self-Assembly of Rigid Molecular Scaffolds Based on Tetraarylbimesityls. Crystal Growth and Design, 2006, 6, 919-924.	1.4	11
523	Two Cobalt(II) 5-Aminoisophthalate Complexes and Their Stable Supramolecular Microporous Frameworks. Inorganic Chemistry, 2006, 45, 6276-6281.	1.9	32

ARTICLE IF CITATIONS Novel 3D, 2D, and 0D First-Row Coordination Compounds with 4,4â€⁻-Bipyridine-N,Nâ€⁻-dioxide 524 1.9 36 Incorporating Sulfur-Containing Anions. Inorganic Chemistry, 2006, 45, 3287-3294. A Long 3,3â€~-Bipyridine-Type Linking Ligand and Its Coordination Polymers:  [ZnL(NO3)2], [CoL1.5(NO3)2], 1.4 and Design, 2006, 6, 342-347. Rational Synthesis and Characterization of Robust Microporous Metalâ[^]Organic Frameworks with 526 1.4 18 Base Functionality. Crystal Growth and Design, 2006, 6, 1059-1061. Hydrogen Physisorption on the Organic Linker in Metal Organic Frameworks:Â Ab Initio Computational 1.2 39 Study. Journal of Physical Chemistry B, 2006, 110, 10479-10484. NO-Releasing Zeolites and Their Antithrombotic Properties. Journal of the American Chemical Society, 528 230 6.6 2006, 128, 502-509. Inorganic Complexes Retain Diethyl Ether Well Above Its Boiling Point through OH2·Â·ÂOEt2Hydrogen 529 1.4 Bonding. Crystal Growth and Design, 2006, 6, 822-824. Characterization of the Metalâ^{-/}Organic Framework Compound Cu3(benzene 1,3,5-tricarboxylate)2by Means of 129Xe Nuclear Magnetic and Electron Paramagnetic Resonance Spectroscopy. Journal of Physical Chemistry B, 2006, 110, 20177-20181. 530 1.2 48 One Dense and Two Open Chiral Metalâ²⁰Organic Frameworks:Â Crystal Structures and Physical 531 1.9 Properties. Inorganic Chemistry, 2006, 45, 2972-2978. A Combined Experimental and Theoretical Study of Carboxylate Coordination Modes: A Structural 532 6.6 54 Probe. Journal of the American Chemical Society, 2006, 128, 1183-1187. Assembly of Heterometallic Clusters and Coordination Polymers by Combining Moâ²³S-Based Clusters 1.9 with Mn2+. Inorganic Chemistry, 2006, 45, 4284-4302. First 3D 3da[^]4f Interpenetrating Structure: Â Synthesis, Reaction, and Characterization of 534 1.9 86 {[LnCr(IDA)2(C2O4)]}n. Inorganic Chemistry, 2006, 45, 8471-8473. Porous Metalâ[^]Organic Framework with Coordinatively Unsaturated MnIISites:Sorption Properties 147 for Various Gases. Inorganic Chemistry, 2006, 45, 8672-8676. Bis(imidazolium 2,4,6-tricarboxypyridine) Metal(II) Complexes:  Molecular Building Blocks that 536 1.4 34 Generate Isomorphous Hydrogen-Bonded Frameworks. Crystal Growth and Design, 2006, 6, 63-69. Robust Non-Interpenetrating Coordination Frameworks from New Shape-Persistent Building Blocks. Inorganic Chemistry, 2006, 45, 1442-1444. 1.9 Surface-Template Assembly of Two-Dimensional Metalâ[^]Organic Coordination Networks. Journal of 538 1.2 86 Physical Chemistry B, 2006, 110, 23472-23477. Monte Carlo Simulation for the Adsorption and Separation of Linear and Branched Alkanes in IRMOF-1. 118 Langmuir, 2006, 22, 5702-5707. A NaCl-like Metalâ[^]Organic Framework Constructed by Unprecedented Tetrahedral Cd4O6 and Cd5O6 540 1.4 42 Units. Crystal Growth and Design, 2006, 6, 2637-2639. Nanoscale Tubular Vessels for Storage of Methane at Ambient Temperatures. Langmuir, 2006, 22, 541 1.6 9035-9040.

#	Article	IF	CITATIONS
542	Syntheses, Crystal Structures, and Magnetic Properties of Novel Copper(II) Complexes with the Flexible Bidentate Ligand 1-Bromo-3,5-bis(imidazol-1-ylmethyl)benzene. Crystal Growth and Design, 2006, 6, 2092-2102.	1.4	38
543	Facile Synthesis of a Highly Crystalline, Covalently Linked Porous Boronate Network. Chemistry of Materials, 2006, 18, 5296-5301.	3.2	325
544	Assemblies of a New Flexible Multicarboxylate Ligand and d10 Metal Centers toward the Construction of Homochiral Helical Coordination Polymers:  Structures, Luminescence, and NLO-Active Properties. Inorganic Chemistry, 2006, 45, 174-180.	1.9	320
545	Syntheses, Structures, and Photoluminescence of Three Coordination Polymers of Cadmium Dicarboxylates. Crystal Growth and Design, 2006, 6, 1684-1689.	1.4	153
546	Structure of Organic and Metalâ^'Organic Networks Based on a Bifunctionalm-Terphenyl Carboxylic Acid. Inorganic Chemistry, 2006, 45, 1646-1655.	1.9	25
547	Stepwise Guest Adsorption with Large Hysteresis in a Coordination Polymer {[Cu(bhnq)(THF)2](THF)}n Constructed from a Flexible Hingelike Ligand. Inorganic Chemistry, 2006, 45, 4322-4324.	1.9	41
548	Functionalization of polyoxometalates by carboxylato and azido ligands: macromolecular complexes and extended compounds. Chemical Communications, 2006, , 3477-3485.	2.2	246
549	Synthesis, Crystal Structure, and Porosity Estimation of Hydrated Erbium Terephthalate Coordination Polymers. Inorganic Chemistry, 2006, 45, 5399-5406.	1.9	131
550	A Porous Framework Polymer Based on a Zinc(II) 4,4â€~-Bipyridine-2,6,2â€~,6â€~-tetracarboxylate: Synthesis, Structure, and "Zeolite-Like―Behaviors. Journal of the American Chemical Society, 2006, 128, 10745-10753.	6.6	296
551	Ab-initio prediction of materials properties with CRYSTAL: MOF-5 as a case study. CrystEngComm, 2006, 8, 364-371.	1.3	187
552	Structures and Sorption Properties of Ionic Crystals of Polyoxometalates with Macrocation. Chemistry Letters, 2006, 35, 688-693.	0.7	18
553	Syntheses and Crystal Structures of Cu ^{li} and Ag ^l Coordination Complexes Based on the Hydrolysis of N-Salicylidene-2-Aminopyridine. Journal of Chemical Research, 2006, 2006, 19-21.	0.6	7
554	Incorporating Molecular Hosts into Network Structures. , 2006, , 135-155.		0
555	Hydrothermal Synthesis, Solid State Structure, and Thermal Properties of a Family of Isomorphous 1-D Coordination Polymers Aggregated by Extensive Hydrogen Bonding: {[M(3,3′-bpy)(H2O)4](SO4)·2H2O} (M)	TjÞEð Qq1	1D.784314
556	Poly[[[bis(N,N′-dimethylformamide)zinc(II)]-μ3-5-hydroxybenzene-1,3-dicarboxylato] toluene solvate]. Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, m334-m336.	0.4	0
557	2,5-Dicarboxyanilinium chloride monohydrate. Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, o587-o589.	0.4	2
558	Solvothermal synthesis, multi-temperature crystal structures and physical properties of isostructural coordination polymers, 2C4H12N+[M 3(C8H4O4)4]2â^'·3C5H11NO, M = Co, Zn. Acta Crystallographica Section B: Structural Science, 2006, 62, 245-254.	1.8	19
559	Two-dimensional metal-organic frameworks containing linear dicarboxylates. Acta Crystallographica Section B: Structural Science, 2006, 62, 808-814.	1.8	60

#	Article	IF	CITATIONS
560	catena-Poly[[(2,2′-bipyridine)cadmium(II)]-di-μ-bromo]. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m183-m184.	0.2	5
561	catena-Poly[[[di-μ-acetato-1κ2O:2κ2O′-bis[(acetato-κ2O,O′)cadmium(II)]]-di-μ-4,4′-bipyridine-1κN:1â monohydrate]. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m210-m212.	i€2îºNâ€2 0.2	;2 <u>ĵ</u> ⁰N:2′ ^ĵ ⁰
562	A one-dimensional nickel(II) coordination polymer with pyridine and isophthalate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m322-m324.	0.2	0
563	(2,2′-Bipyridine-5,5′-dicarboxylic acid)tetrachloroplatinum(IV) monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m414-m416.	0.2	6
564	catena-Poly[[[bis(3-hydroxynaphthalene-2-carboxylato)zinc(II)]-μ-4,4′-bipyridine-κ2N:N′] hemihydrate]. Act Crystallographica Section E: Structure Reports Online, 2006, 62, m2238-m2240.	ta 0.2	2
565	Neutron scattering and hydrogenous materials. Materials Today, 2006, 9, 34-41.	8.3	25
566	Two novel coordination polymers with different molecular tectonics based on cobalt–succinate-organoamine systems. Inorganic Chemistry Communication, 2006, 9, 273-276.	1.8	18
567	A 2D brick wall metal-organic framework constructed from quasi-tetracopper(II) SBUs: Crystal structure and magnetic property. Inorganic Chemistry Communication, 2006, 9, 337-340.	1.8	14
568	Structure characterization of a novel 3-D cadmium-halo coordination polymer linked by piperazine bridge. Inorganic Chemistry Communication, 2006, 9, 415-417.	1.8	16
569	Synthesis, characterization and crystal structure of a new β-octamolybdate-supported compound: [Ni(H2O)(2, 2′- bipy)2]2[Mo8O26] ·4H2O·2CH3COOH. Inorganic Chemistry Communication, 2006, 9, 599-602.	1.8	9
570	Cd7I12S·3H2O: A novel 3-D inorganic open-framework with unusual heptanuclear quasi-supertetrahedra. Inorganic Chemistry Communication, 2006, 9, 1029-1032.	1.8	0
571	Studies on the radii dependent lanthanide self-assembly coordination behaviors of a flexible dicarboxylate ligand. Inorganic Chemistry Communication, 2006, 9, 1091-1095.	1.8	29
572	Synthesis, crystal structure and magnetic properties of a new three-dimensional porous framework: [Gd2(BDA)3(DMF)2(H2O)4] ·2DMF. Inorganic Chemistry Communication, 2006, 9, 1223-1226.	1.8	9
573	Titanium carbide derived nanoporous carbon for energy-related applications. Carbon, 2006, 44, 2489-2497.	5.4	351
574	Coordination polymer networks with O- and N-donors: What they are, why and how they are made. Coordination Chemistry Reviews, 2006, 250, 2127-2157.	9.5	1,384
575	Hydrothermal synthesis and structural studies of two new copper(II) coordination polymers with V-shape ligands. Journal of Molecular Structure, 2006, 782, 171-176.	1.8	22
576	Self-assembly of alternating left- and right-handed infinite Cd(II) helicates into a 2D open framework structure. Journal of Molecular Structure, 2006, 796, 119-122.	1.8	16
577	1D and 2D metal–organic frameworks functionalized with free pyridyl groups. Journal of Molecular Structure, 2006, 796, 58-62.	1.8	7

#	Article	IF	CITATIONS
578	Hydrothermal synthesis, structural characterisation and magnetic behaviour of (4,4′-bpyH)2[M(4,4′-bpy)(H2O)4][V2O2(pmida)2]•2H2O (M=Mn2+ and Co2+). Inorganica Chimica Acta 359, 1147-1158.	, 2006,	21
579	Syntheses and crystal structures of trimethyltin(IV) coordination polymers based on mixed ligands of 5-nitroisophthalate and 2,2′(4,4′)-bipy or phen. Inorganica Chimica Acta, 2006, 359, 2407-2416.	1.2	28
580	A systematic study of ligand intermolecular interactions in crystals of copper(II) complexes of bidentate guanidino derivatives. Inorganica Chimica Acta, 2006, 359, 3565-3580.	1.2	12
581	Zinc complexes with tricarballylic acid and Lewis bases with zero- and two-dimensional structures. Inorganica Chimica Acta, 2006, 359, 3540-3548.	1.2	22
582	Two-dimensional network acquired by Pb(II)–2-aminoethanethiolate. Inorganica Chimica Acta, 2006, 359, 3375-3378.	1.2	7
583	A copper(II) coordination polymer based on flexible spacer ligands: Synthesis, crystal structure, and magnetic properties of the adipato complex [Cu4(bpy)4(adip)3](tcnp)2 [bpy=C10H8N2; ;]. Inorganica Chimica Acta, 2006, 359, 3269-3274.	1.2	19
584	Metal-organic frameworks of lanthanide (III) ions with a podand bearing terminal carboxylates: Identification of water clusters of different nuclearity. Polyhedron, 2006, 25, 1491-1497.	1.0	20
585	Dicarboxylate anion-dependent assembly of Co(II) and Ni(II) coordination polymers with 1,2-bis(4-pyridyl)ethane. Polyhedron, 2006, 25, 3017-3024.	1.0	19
586	Inorganic–organic hybrid compounds: Synthesis and characterization of three new metal phosphonates with similar characteristic structural features. Journal of Solid State Chemistry, 2006, 179, 145-155.	1.4	45
587	Four novel porous frameworks constructed by formate ligand. Microporous and Mesoporous Materials, 2006, 91, 215-220.	2.2	28
588	Strong fluorescent emission of a new fourfold-interpenetrated diamondoid metal-organic framework of zinc(II) urocanate with one-dimensional open channels. Microporous and Mesoporous Materials, 2006, 91, 233-237.	2.2	21
589	Three metal-organic frameworks prepared from mixed solvents of DMF and HAc. Microporous and Mesoporous Materials, 2006, 90, 145-152.	2.2	99
590	Synthesis, crystal structure and magnetic properties of N1,N2-bridged polynuclear Ni(II) complexes. Journal of Molecular Structure, 2006, 784, 138-143.	1.8	22
591	Absorption effects of carbon tetrachloride on the structural and thermodynamic properties of copper(II) trans-1,4-cyclohexanedicarboxylate. Thermochimica Acta, 2006, 446, 117-120.	1.2	4
592	Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metalâ~Organic Frameworks. Journal of the American Chemical Society, 2006, 128, 1304-1315.	6.6	1,710
593	Vapor phase inclusion of ferrocene and its derivative in a microporous metal–organic porous material and its structural characterization by single crystal X-ray diffraction. Chemical Communications, 2006, , 2759-2761.	2.2	75
594	Mechanochemical preparation of molecular and supramolecular organometallic materials and coordination networks. Dalton Transactions, 2006, , 1249.	1.6	266
595	Molecular Simulation of Carbon Dioxide/Methane/Hydrogen Mixture Adsorption in Metalâ `Organic Frameworks. Journal of Physical Chemistry B, 2006, 110, 17776-17783.	1.2	503

		CITATION R	EPORT	
#	Article		IF	CITATIONS
596	Polymerization in Coordination Nanospaces. Chemistry - an Asian Journal, 2006, 1, 36-4	44.	1.7	127
597	Tuning the Formation of Cadmium(II) Urocanate Frameworks by Control of Reaction C Crystal Structure, Properties, and Theoretical Investigation. Chemistry - an Asian Journa 536-543.	onditions: al, 2006, 1,	1.7	18
598	Loading of porous metal–organic open frameworks with organometallic CVD precurs compounds of the type [LnM]a@MOF-5. Journal of Materials Chemistry, 2006, 16, 246	sors: inclusion 54-2472.	6.7	204
599	Study on one-dimensional chain coordination polymer [Cd(1,3,5-benzenetricarboxylate diffusion synthesis, crystal structure, and thermal analyses. Structural Chemistry, 2006	e)(pyridine)3] n : , 17, 577-583.	1.0	7
600	Synthesis, crystal structure and thermal stability of a novel 3D microporous coordination Na2[Co(1,4-napdc)2(DMF)2]. Transition Metal Chemistry, 2006, 31, 874-878.	on polymer:	0.7	3
601	A microporous coordination polymer with 1-D channels constructed from a basic react Journal of Chemical Crystallography, 2006, 36, 199-204.	ion system.	0.5	7
602	Reaction of 1,2-bis(2,6-dicarboxypyridin-4-yl)ethyne with Co(II) generates coordination polymers: Crystal structure of 4-(2,6-dicarboxypyridin-4-yl)ethynylpyridine-2,6-dicarbox cobalt(II) monohydrate. Journal of Chemical Crystallography, 2006, 36, 371-379.	monomers not ylatotriaqua	0.5	2
603	An evidence for a chain to network transformation during the microwave hydrotherma crystallization of an open-framework zinc terephthalate. Journal of Porous Materials, 20 153-156.	l 006, 13,	1.3	3
604	Synthesis and structure of the n = 4 member of the framework aluminium alkylenediph series Al2[O3PC n H2n PO3](H2O)2F2. Journal of Porous Materials, 2006, 13, 207-212	iosphonate 2.	1.3	5
605	A novel cobalt(II)–molybdenum(V) phosphate organic–inorganic hybrid polymer. Jo State Chemistry, 2006, 179, 1497-1505.	ournal of Solid	1.4	26
606	Hydrothermal synthesis, crystal structure and luminescence of four novel metal–org frameworks. Journal of Solid State Chemistry, 2006, 179, 4037-4046.	anic	1.4	57
607	Absorption and Capture of Methane into Ionic Liquid. Journal of Natural Gas Chemistry 282-286.	, 2006, 15,	1.8	14
608	(NH4)2(C4O4), an anhydrous salt of acetylenedicarboxylic acid. Solid State Sciences, 2	2006, 8, 353-358.	1.5	12
609	Novel open-framework architectures in lanthanide phosphonates. Solid State Sciences, 397-403.	, 2006, 8,	1.5	33
610	Synthesis and characterization of a new metal organic framework structure with a 2D (H2NEt2)2[Zn3(BDC)4]â<3DEF. Solid State Sciences, 2006, 8, 363-370.	porous system:	1.5	55
611	Synthesis and structure determination of new open-framework chromium carboxylate CrIII(OH)·{O2C–C6(CH3)4–CO2}·nH2O. Materials Research Bulletin, 2006, 41,	MIL-105 or 1550-1557.	2.7	11
612	A new indium metal-organic 3D framework with 1,3,5-benzenetricarboxylate, MIL-96 (I μ43-oxo-centered trinuclear units and a hexagonal 18-ring network. Materials Research 41, 948-954.	n), containing 1 Bulletin, 2006,	2.7	76
613	Metal Nuclearity Modulated Four-, Six-, and Eight-Connected Entangled Frameworks Ba Bi-, and Trimetallic Cores as Nodes. Chemistry - A European Journal, 2006, 12, 2680-26	ased on Mono-, 91.	1.7	479

#	Article	IF	CITATIONS
614	A Bridge between Pillared-Layer and Helical Structures: A Series of Three-Dimensional Pillared Coordination Polymers with Multiform Helical Chains. Chemistry - A European Journal, 2006, 12, 6528-6541.	1.7	230
615	An Investigation of the Self-Assembly of Neutral, Interlaced, Triple-Stranded Molecular Braids. Chemistry - A European Journal, 2006, 12, 6281-6289.	1.7	109
616	Probing the Lewis Acidity and Catalytic Activity of the Metal–Organic Framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chemistry - A European Journal, 2006, 12, 7353-7363.	1.7	651
617	Microwave Synthesis of Hybrid Inorganic–Organic Porous Materials: Phase-Selective and Rapid Crystallization. Chemistry - A European Journal, 2006, 12, 7899-7905.	1.7	149
618	NMR Studies on the Diffusion of Hydrocarbons on the Metal-Organic Framework Material MOF-5. Angewandte Chemie - International Edition, 2006, 45, 2123-2126.	7.2	211
619	A Microporous Metal–Organic Framework for Gas-Chromatographic Separation of Alkanes. Angewandte Chemie - International Edition, 2006, 45, 1390-1393.	7.2	1,128
620	A Homochiral Metal–Organic Material with Permanent Porosity, Enantioselective Sorption Properties, and Catalytic Activity. Angewandte Chemie - International Edition, 2006, 45, 916-920.	7.2	620
621	Preparation, Adsorption Properties, and Catalytic Activity of 3D Porous Metal–Organic Frameworks Composed of Cubic Building Blocks and Alkali-Metal Ions. Angewandte Chemie - International Edition, 2006, 45, 2542-2546.	7.2	506
622	Hydrothermal Chemistry of the Copper–Triazolate System: A Microporous Metal–Organic Framework Constructed from Magnetic {Cu3(1¼3-OH)(triazolate)3}2+ Building Blocks, and Related Materials. Angewandte Chemie - International Edition, 2006, 45, 3497-3500.	7.2	152
623	Polymer-Induced Heteronucleation for the Discovery of New Extended Solids. Angewandte Chemie - International Edition, 2006, 45, 2553-2556.	7.2	139
624	"Design―in Chemical Synthesis—An Illusion?. Angewandte Chemie - International Edition, 2006, 45, 3406-3412.	7.2	107
625	High H2 Adsorption by Coordination-Framework Materials. Angewandte Chemie - International Edition, 2006, 45, 7358-7364.	7.2	692
626	From Molecular Double-Ladders to an Unprecedented Polycatenation: A Parallel Catenated 3D Network Containing Bicapped Keggin Polyoxometalate Clusters. European Journal of Inorganic Chemistry, 2006, 2006, 385-388.	1.0	58
627	2D and 3D Cadmium(II) Coordination Polymers from a Flexible Tripodal Ligand of 1,3,5-Tris(carboxymethoxy)benzene and Bidentate Pyridyl-Containing Ligands with Three-, Eight- and Ten-Connected Topologies. European Journal of Inorganic Chemistry, 2006, 2006, 3041-3053.	1.0	99
628	Luminescent Open-Framework Antiferromagnet – Hydrothermal Syntheses, Structures, and Luminescent and Magnetic Properties of Two Novel Coordination Polymers: [Zn(pdoa)(bipy)]n and {[Mn(pdoa)(bipy)](bipy)}n [pdoa = 2,2′-(1,3-phenylenedioxy)bis(acetate); bipy = 4,4′-bipyridine]. European Journal of Inorganic Chemistry, 2006, 2006, 3659-3666.	1.0	37
629	A Novel Copper(I) Halide Framework Templated by Organic–Inorganic Hybrid Polyoxometalate Chains Formed In Situ: A New Route for the Design and Synthesis of Porous Frameworks. European Journal of Inorganic Chemistry, 2006, 2006, 4541-4545.	1.0	71
630	Synthesis, Crystal Structures, and Magnetic Properties of 2D Manganese(II) and 1D Gadolinium(III) Coordination Polymers with 1H-1,2,3-Triazole-4,5-dicarboxylic Acid. European Journal of Inorganic Chemistry, 2006, 2006, 4931-4937.	1.0	44
631	Solvent-Induced Pore-Size Adjustment in the Metal-Organic Framework [Mg3(ndc)3(dmf)4] (ndc =) Tj ETQq1 1 0.	784314 rg	gBT <u>/</u> Overlo

#	Article	IF	CITATIONS
632	The Remarkable Solvent-Dependent Crystallization of the Mono- and Bis(4-pyrrol-1-ylbenzonitrile) Adducts of Bis(pentafluorophenyl)zinc. European Journal of Inorganic Chemistry, 2006, 2006, 4037-4041.	1.0	10
633	One-Pot Hydrothermal Synthesis of Two New Copper(II) Complexes with 4-Carboxyphenoxy Acetic Acid. Chinese Journal of Chemistry, 2006, 24, 1554-1558.	2.6	1
634	Improved Hydrogen Storage in the Metal-Organic Framework Cu3(BTC)2. Advanced Engineering Materials, 2006, 8, 293-296.	1.6	180
643	Hydrogen Adsorption in Metal–Organic Frameworks: Cu-MOFs and Zn-MOFs Compared. Advanced Functional Materials, 2006, 16, 520-524.	7.8	630
644	Quantitative Structure-Uptake Relationship of Metal-Organic Frameworks as Hydrogen Storage Material. Materials Research Society Symposia Proceedings, 2006, 927, 1.	0.1	0
645	Self assembled functional nanomaterials: from ionic capsules to nanoporous molecular framework. , 2006, , .		0
646	Syntheses and structures of M–Na (M=Zn, Mn) coordination polymers in which ligands and Na ions exhibit complex coordination modes. Journal of Coordination Chemistry, 2006, 59, 2005-2014.	0.8	8
647	Lattice dynamics of metal-organic frameworks: Neutron inelastic scattering and first-principles calculations. Physical Review B, 2006, 74, .	1.1	72
648	Cubic networks and 36tilings assembled from isostructural trimeric magnesium aryldicarboxylates. Main Group Chemistry, 2006, 5, 21-30.	0.4	30
649	Captured Molecules in Coordination Frameworks. MRS Bulletin, 2007, 32, 540-543.	1.7	14
650	How does the pore morphology influence the adsorption performance of metal-organic frameworks? A molecular simulation study of methane and ethane adsorption in Zn-MOFs. Studies in Surface Science and Catalysis, 2007, 170, 2042-2047.	1.5	3
651	Synthesis, Crystal Structure and Properties of a Novel Cu(II)Complex with αâ€Furan Carboxylate, [Cu(fura)2(bpy)(H2O)], (fura=αâ€Furan Carboxylate, bpy=2,2′â€bispyridine). Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2007, 37, 235-239.	0.6	2
652	From Metal–Organic Precursors to Functional Ceramics and Related Nanoscale Materials. , 2007, , 35-70.		7
653	Irradiation induced pulsations of reverse biased metal oxide/silicon structures. Applied Physics Letters, 2007, 91, .	1.5	5
654	Synthesis, Crystal Structure and Properties of a Novel Cu(II) Complex with αâ€Furan Carboxylate, [Cu(fura) ₂ (bpy)(H ₂ O)], (fura=αâ€Furan Carboxylate, bpy=2,2′â€bispyridine). Synth and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2007, 37, 541-545.	າຍສົສ	0
655	Syntheses and crystal structures of two Zn(II) complexes, [Zn(Fura) ₂ (2,2′-bipy)(H ₂ O)] and [Zn(μ-dnbc) ₂] (Fura=Furoic acid,) Tj 1317-1325.	ETQq1 1	0.784314 rg
656	Design for Hydrogen Storage Materials via Observation of Adsorption Sites by Computer Tomography. Journal of Physical Chemistry B, 2007, 111, 4291-4295.	1.2	38
657	HIGH-SURFACE-AREA BIOCARBONS FOR REVERSIBLE ON-BOARD STORAGE OF NATURAL GAS AND HYDROGEN. Materials Research Society Symposia Proceedings, 2007, 1041, 1.	0.1	10

#	Article	IF	CITATIONS
658	Chemistry and application of porous coordination polymers. Studies in Surface Science and Catalysis, 2007, , 1983-1990.	1.5	15
659	Linear polymer of a copper(II) complex and its supramolecular selectivity. Journal of Coordination Chemistry, 2007, 60, 2687-2694.	0.8	4
660	The Inconsistency in Adsorption Properties and Powder XRD Data of MOF-5 Is Rationalized by Framework Interpenetration and the Presence of Organic and Inorganic Species in the Nanocavities. Journal of the American Chemical Society, 2007, 129, 3612-3620.	6.6	575
661	Framework materials assembled from magnesium carboxylate building units. Dalton Transactions, 2007, , 2528.	1.6	89
662	The Different Supramolecular Arrangements of the Triangular [Cu3(μ3-OH)(μ-pz)3]2+ (pz = Pyrazolate) Secondary Building Units. Synthesis of a Coordination Polymer with Permanent Hexagonal Channels. Crystal Growth and Design, 2007, 7, 676-685.	1.4	65
663	Syntheses, Structures, and Characterization of a Series of Novel Zinc(II) and Cadmium(II) Compounds Based on 2,6-Di-(1,2,4-triazole-4-yl)pyridine. Crystal Growth and Design, 2007, 7, 1483-1489.	1.4	65
664	High-Capacity Hydrogen and Nitric Oxide Adsorption and Storage in a Metalâ^'Organic Framework. Journal of the American Chemical Society, 2007, 129, 1203-1209.	6.6	546
665	Spin Echo NMR Diffusion Studies. Annual Reports on NMR Spectroscopy, 2007, , 51-131.	0.7	108
666	A Tetracarboxylateâ^'Bridged Dicopper(II) Paddle-Wheel-Based 2-D Porous Coordination Polymer with Gas Sorption Properties. Crystal Growth and Design, 2007, 7, 1332-1336.	1.4	74
667	Design and construction of a microporous metal–organic framework based on the pillared-layer motif. CrystEngComm, 2007, 9, 545-547.	1.3	72
668	Organometallic Crystal Engineering. , 2007, , 555-588.		1
669	Old materials with new tricks: multifunctional open-framework materials. Chemical Society Reviews, 2007, 36, 770.	18.7	1,037
671	Mechanical properties of cubic zinc carboxylate IRMOF-1 metal-organic framework crystals. Physical Review B, 2007, 76, .	1.1	124
672	[Ph ₃ PCH ₂ Ph] ₂ [Zn ₃ (tp) ₃ Cl ₂] and Ni ₃ (tma) ₂ (H ₂ O) ₈ :  Two Unusual Claylike Frameworks of Metalâ^Polycarboxylate Coordination Polymers (tp = Terephthalate, tma = Trimesate). Inorganic Chemistry, 2007, 46, 7910-7916.	1.9	18
673	A Highly Symmetric Porous Framework with Multi-intersecting Open Channels. Crystal Growth and Design, 2007, 7, 1712-1715.	1.4	74
674	Metalâ^'Organic Frameworks as Adsorbents for Trapping and Preconcentration of Organic Phosphonates. Analytical Chemistry, 2007, 79, 1290-1293.	3.2	115
675	Metal-organic frameworks: the young child of the porous solids family. Studies in Surface Science and Catalysis, 2007, 170, 66-84.	1.5	57
676	A new molybdenum-oxide-based organic–inorganic hybrid framework templated by double-Keggin anions. Chemical Communications, 2007, , 2593-2595.	2.2	85
#	Article	IF	CITATIONS
-----	---	-----	-----------
677	Self-assembly of 3-D 4d–4f coordination frameworks based on 1-D inorganic heterometallic chains and linear organic linkers. CrystEngComm, 2007, 9, 471-477.	1.3	118
678	Tailoring the Dimensionality of Metal–Organic Frameworks Incorporating Pt and Pd. From Molecular Complexes to 3D Networks. Crystal Growth and Design, 2007, 7, 2302-2304.	1.4	37
679	Hydrogen and Methane Adsorption in Metalâ^'Organic Frameworks:  A High-Pressure Volumetric Study. Journal of Physical Chemistry C, 2007, 111, 16131-16137.	1.5	449
680	Hyperpolarized 129Xe Nuclear Magnetic Resonance Studies of Isoreticular Metal-Organic Frameworks. Journal of Physical Chemistry C, 2007, 111, 6060-6067.	1.5	43
681	Metalâ^'Organic Framework Based on a Trinickel Secondary Building Unit Exhibiting Gas-Sorption Hysteresis. Inorganic Chemistry, 2007, 46, 3432-3434.	1.9	119
682	Ligand flexibility and framework rearrangement in a new family of porous metal–organic frameworks. Chemical Communications, 2007, , 1532-1534.	2.2	73
683	Exciplex Fluorescence as a Diagnostic Probe of Structure in Coordination Polymers of Zn2+and 4,4â€~-Bipyridine Containing Intercalated Pyrene and Enclathrated Aromatic Solvent Guests. Journal of the American Chemical Society, 2007, 129, 9094-9101.	6.6	156
684	Periodic nets and tilings: possibilities for analysis and design of porous materials. Studies in Surface Science and Catalysis, 2007, 170, 1637-1645.	1.5	2
685	Temperature-Dependent Synthesis of Metal-Organic Frameworks Based on a Flexible Tetradentate Ligand with Bidirectional Coordination Donors. Journal of the American Chemical Society, 2007, 129, 4520-4521.	6.6	243
686	An Illustration of the Limit of the Metal Organic Framework's Isoreticular Principle Using a Semirigid Tritopic Linker Obtained by "Click―Chemistry. Journal of the American Chemical Society, 2007, 129, 12614-12615.	6.6	65
687	Unprecedented (3,4)-connected metal–organic frameworks (MOFs) with 3-fold interpenetration and considerable solvent-accessible void space. Chemical Communications, 2007, , 3744.	2.2	110
688	Using molecular simulation to characterise metal-organic frameworks and judge their performance as adsorbents. Studies in Surface Science and Catalysis, 2007, , 161-168.	1.5	2
689	Selfâ€Assembly, Spectroscopic and Electrochemical Studies of Nickel(II)â€4,8â€Diazaundecanediamide Complex. Journal of the Chinese Chemical Society, 2007, 54, 1379-1386.	0.8	2
690	Sorption of nitrogen oxides in a nonporous crystal. Chemical Communications, 2007, , 1521.	2.2	43
691	Comparison of porous and nonporous materials for methane storage. New Journal of Chemistry, 2007, 31, 628-630.	1.4	54
692	Ultramicroporous Metalâ^'Organic Framework Based on 9,10-Anthracenedicarboxylate for Selective Gas Adsorption. Inorganic Chemistry, 2007, 46, 8499-8501.	1.9	138
693	Hybrid Porous Solids. Studies in Surface Science and Catalysis, 2007, , 327-374.	1.5	27
694	Computer Simulation of the Adsorption of Light Gases in Covalent Organic Frameworks. Langmuir, 2007, 23, 12154-12158.	1.6	155

#	Article	IF	CITATIONS
695	Cleavage of Câ^'S Bonds with the Formation of a Tetranuclear Cu(I) Cluster. Inorganic Chemistry, 2007, 46, 5537-5543.	1.9	63
696	Two octanuclear gallium metallamacrocycles of topologically different connectivities. Dalton Transactions, 2007, , 5412.	1.6	25
697	Self-assembly of FeIII complexes via hydrogen bonded water molecules into supramolecular coordination networks. New Journal of Chemistry, 2007, 31, 1882.	1.4	12
698	Structural diversity and properties of M(ii) 4-carboxyl phenoxyacetate complexes with 0D-, 1D-, 2D- and 3D M-cpoa framework. CrystEngComm, 2007, 9, 653.	1.3	56
699	A novel metal–organic ternary topology constructed from triangular, square and tetrahedral molecular building blocks. Chemical Communications, 2007, , 5212.	2.2	38
700	Argon Adsorption on Cu3(Benzene-1,3,5-tricarboxylate)2(H2O)3Metalâ^'Organic Framework. Langmuir, 2007, 23, 3106-3109.	1.6	74
701	Framework coordination polymers of tetra(4-carboxyphenyl)porphyrin and lanthanide ions in crystalline solids. Dalton Transactions, 2007, , 3273.	1.6	65
702	Supramolecular isomerism in zinc hydroxide coordination polymers with pyridine-2,4-dicarboxylic acid: Two polymorphs with centrosymmetric two-dimensional and acentric three-dimensional coordination networks. CrystEngComm, 2007, 9, 882.	1.3	52
703	Single-crystal metal–organic microtubes self-assembled from designed D3 symmetrical nanoclusters with a capped triple-helix pentanuclear M5O6 core. Chemical Communications, 2007, , 4785.	2.2	14
704	Versatile lanthanide coordination assemblies due to the synergistic effect of lanthanide contraction and flexibility of a flexible tricarboxylate ligand. CrystEngComm, 2007, 9, 1051.	1.3	63
705	Highly-thermostable metal–organic frameworks (MOFs) of zinc and cadmium 4,4′-(hexafluoroisopropylidene)diphthalates with a unique fluorite topology. Chemical Communications, 2007, , 2467-2469.	2.2	143
706	Metal disordering Cu(ii) supramolecular polymers constructed from a tripodal ligand possessing two different functional groups. CrystEngComm, 2007, 9, 228.	1.3	22
707	Scorpion-shaped carboxylate ligand tailored molecular square, bilayer, self-threading and (3,6)-connected nets. CrystEngComm, 2007, 9, 806.	1.3	89
708	Syntheses, structures, and optical properties of novel zinc(ii) complexes with multicarboxylate and N-donor ligands. Dalton Transactions, 2007, , 4302.	1.6	187
709	Preparation of Stable and Metastable Coordination Compounds:  Insight into the Structural, Thermodynamic, and Kinetic Aspects of the Formation of Coordination Polymers. Inorganic Chemistry, 2007, 46, 8079-8087.	1.9	72
710	Surface-Mediated Nucleation in the Solid-State Polymorph Transformation of Terephthalic Acid. Journal of the American Chemical Society, 2007, 129, 4714-4723.	6.6	83
711	Reversible Gas Uptake by a Nonporous Crystalline Solid Involving Multiple Changes in Covalent Bonding. Journal of the American Chemical Society, 2007, 129, 15606-15614.	6.6	82
712	Porous Nonlinear-Optical Material Based on a Twin-Nest-Shaped Heterothiometallic Cluster:Â {[NH4][W2O2S6Cu6I3(4,4â€~-bipy)4]·5H2O}n. Inorganic Chemistry, 2007, 46, 6233-6235.	1.9	29

#	ARTICLE	IF	CITATIONS
713	Assemblies of Two Mixed-Ligand Coordination Polymers with Two-Dimensional Metalâ^'Organic Frameworks Constructed from M(II) Ions with Croconate and 1,2-Bis-(4-pyridyl)ethylene (M = Cd and) Tj ETQq0	0 O1rgBT /(Overslock 10 T
714	Thermal Treatment of Glutamic Acid-Modified Nickel Nanoclusters on Au{111} Leads to the Formation of One-Dimensional Metalâ~'Organic Coordination Networks. Journal of Physical Chemistry C, 2007, 111, 10534-10540.	1.5	26
715	Clathrate Formation Mechanism of Supercritical Hydrogen Adsorption on Copper(II) Benzoate Pyrazine. Langmuir, 2007, 23, 5264-5266.	1.6	11
716	Structure and Magnetic Properties of a New Cobalt(II) Thiophenedicarboxylate Coordination Polymer Showing Unprecedented Coordination. Inorganic Chemistry, 2007, 46, 3423-3425.	1.9	74
717	Porphyrin Framework Solids. Synthesis and Structure of Hybrid Coordination Polymers of Tetra(carboxyphenyl)porphyrins and Lanthanide-Bridging Ions. Inorganic Chemistry, 2007, 46, 5544-5554.	1.9	90
718	{[Nd4(ox)4(NO3)2(OH)2(H2O)2]·5H2O}n:  A Porous 3D Lanthanide-Based Coordination Polymer with a Special Luminescent Property. Inorganic Chemistry, 2007, 46, 622-624.	1.9	82
719	Simulations of Methane Adsorption and Diffusion within Alkoxy-Functionalized IRMOFs Exhibiting Severely Disordered Crystal Structures. Journal of Physical Chemistry C, 2007, 111, 16618-16625.	1.5	49
720	Coligand Modulated Six-, Eight-, and Ten-Connected Zn/Cd-1,2,4-Triazolate Frameworks Based on Mono-, Bi-, Tri-, Penta-, and Heptanuclear Cluster Units. Crystal Growth and Design, 2007, 7, 2332-2342.	1.4	225
721	Heteropolynuclear Metamagnet Showing Spin Canting and Single-Crystal to Single-Crystal Phase Transformation. Chemistry of Materials, 2007, 19, 2162-2167.	3.2	51
722	Evaluation of an Effective Gas Storage Amount of Latent Nanoporous Cu-Based Metalâ^'Organic Framework. Journal of Physical Chemistry C, 2007, 111, 248-254.	1.5	47
723	Novel Large Aluminophosphite Cage Unit as the Building Blocks To Form a Framework Structure Containing Multidimensional 12-Ring Channels. Chemistry of Materials, 2007, 19, 4142-4147.	3.2	18
724	Three Guest-Including Coordination Solids from a Single Crystallization:Â A Discrete Cage and Open-Channel Networks from 1-D Ladders and 1-D Ribbons. Inorganic Chemistry, 2007, 46, 1593-1602.	1.9	12
725	Syntheses, Characterization, and Luminescent Properties of Three 3D Leadâ^'Organic Frameworks with 1D Channels. Crystal Growth and Design, 2007, 7, 513-520.	1.4	110
726	Photoluminescent Zn(II) Metalâ^'Organic Frameworks Built from Tetrazole Ligand:Â 2D Four-Connected Regular Honeycomb (4363)-net. Crystal Growth and Design, 2007, 7, 1227-1229.	1.4	173
727	Local Structure and Xenon Adsorption Behavior of Metalâ^'Organic Framework System [M2(O2CPh)4(pyz)]n (M = Rh and Cu) As Studied with Use of Single-Crystal X-ray Diffraction, Adsorption Isotherm, and Xenon-129 NMR. Journal of Physical Chemistry C, 2007, 111, 1524-1534.	1.5	39
728	26-Ring-Channel Structure Constructed from Bimetal Phosphite Helical Chains. Journal of the American Chemical Society, 2007, 129, 5350-5351.	6.6	130
729	Metalâ^'Organic Frameworks from Copper Dimers with <i>cis</i> - and <i>trans</i> -1,4-Cyclohexanedicarboxylate and <i>cis,cis</i> -1,3,5-Cyclohexanetricarboxylate. Inorganic Chemistry, 2007, 46, 5949-5956.	1.9	50
730	Novel Alternating Ferro-Ferromagnetic Two-Dimensional (4,4) and Photoluminescent Three-Dimensional Interpenetrating PtS-Type Coordination Networks Constructed from a New Flexible Tripodal Ligand as a Four-Connected Node, Crystal Crowth and Design, 2007, 7, 747-754	1.4	102

#	Article	IF	CITATIONS
731	Raman Spectroscopic Investigation of CH4and N2Adsorption in Metalâ^'Organic Frameworks. Chemistry of Materials, 2007, 19, 3681-3685.	3.2	93
732	Selective guest sorption in an interdigitated porous framework with hydrophobic pore surfaces. Chemical Communications, 2007, , 3395.	2.2	179
733	Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn ₄ O(1,4-benzenedicarboxylate) ₃ (MOF-5). Journal of the American Chemical Society, 2007, 129, 14176-14177.	6.6	1,498
734	Construction of 2-D lanthanide coordination frameworks: syntheses, structures and luminescent property. CrystEngComm, 2007, 9, 515.	1.3	86
735	<i>Ab initio</i> study of hydrogen adsorption on benzenoid linkers in metal–organic framework materials. Journal of Physics Condensed Matter, 2007, 19, 386220.	0.7	34
736	Taxonomy of periodic nets and the design of materials. Physical Chemistry Chemical Physics, 2007, 9, 1035-1043.	1.3	239
737	Lithium-Doped Metal-Organic Frameworks for Reversible H2Storage at Ambient Temperature. Journal of the American Chemical Society, 2007, 129, 8422-8423.	6.6	418
739	Porous Host-Guest Advanced Materials. , 0, , 603-666.		0
740	Influence of Connectivity and Porosity on Ligand-Based Luminescence in Zinc Metalâ^'Organic Frameworks. Journal of the American Chemical Society, 2007, 129, 7136-7144.	6.6	625
741	Reticular Synthesis of Microporous and Mesoporous 2D Covalent Organic Frameworks. Journal of the American Chemical Society, 2007, 129, 12914-12915.	6.6	682
742	Four d10Metal Coordination Polymers Containing Isomeric Thiodiphthalic Ligands:Â Crystal Structures and Luminescent Properties. Crystal Growth and Design, 2007, 7, 1277-1283.	1.4	89
743	Isoreticular Homochiral Porous Metalâ ´`Organic Structures with Tunable Pore Sizes. Inorganic Chemistry, 2007, 46, 6843-6845.	1.9	151
744	Synthesis, structures and properties of nickel(ii) and cobalt(ii) metal–organic frameworks based on a flexible tricarboxylate ligand H3TTG and different pyridyl-containing ligands. CrystEngComm, 2007, 9, 1084.	1.3	98
745	Storage and Separation of CO2and CH4in Silicalite, C168Schwarzite, and IRMOF-1:Â A Comparative Study from Monte Carlo Simulation. Langmuir, 2007, 23, 659-666.	1.6	388
746	Two-dimensional metal–organic frameworks (MOFs) constructed from heterotrinuclear coordination units and 4,4′-biphenyldicarboxylate ligands. Dalton Transactions, 2007, , 689-696.	1.6	64
747	Applicability of the BET Method for Determining Surface Areas of Microporous Metalâ^'Organic Frameworks. Journal of the American Chemical Society, 2007, 129, 8552-8556.	6.6	885
748	A Dynamic Microporous Metal–Organic Framework with BCT Zeolite Topology: Construction, Structure, and Adsorption Behavior. Crystal Growth and Design, 2007, 7, 2286-2289.	1.4	54
749	Gaseous Species as Reaction Tracers in the Solvothermal Synthesis of the Zinc Oxide Terephthalate MOF-5. Journal of Physical Chemistry A, 2007, 111, 4259-4266.	1.1	48

#	Article	IF	CITATIONS
750	Characterization of Pore Structure in Metalâ^'Organic Framework by Small-Angle X-ray Scattering. Journal of the American Chemical Society, 2007, 129, 15997-16004.	6.6	119
751	Cadmiumâ^'Porphyrin Coordination Networks: Rich Coordination Modes and Three-Dimensional Four-Connected CdSO4and (3,5)-Connected hms Nets. Crystal Growth and Design, 2007, 7, 2576-2581.	1.4	54
752	Metalâ^'Organic Frameworks:Â Structural, Energetic, Electronic, and Mechanical Properties. Journal of Physical Chemistry B, 2007, 111, 8179-8186.	1.2	161
753	Experimental and Theoretical Studies of Gas Adsorption in Cu3(BTC)2:  An Effective Activation Procedure. Journal of Physical Chemistry C, 2007, 111, 9305-9313.	1.5	250
754	Chemistry of porous coordination polymers. Pure and Applied Chemistry, 2007, 79, 2155-2177.	0.9	135
755	Nanoporous Architectures. , 2007, , 335-354.		2
756	Role of computer simulations in structure prediction and structure determination: from molecular compounds to hybrid frameworks. Journal of Materials Chemistry, 2007, 17, 4348.	6.7	68
757	Postsynthetic Covalent Modification of a Neutral Metalâ~'Organic Framework. Journal of the American Chemical Society, 2007, 129, 12368-12369.	6.6	570
758	Porous Metalâ^'Organic Frameworks Based on Metalâ^'Organic Polyhedra with Nanosized Cavities as Supramolecular Building Blocks:  Two-Fold Interpenetrating Primitive Cubic Networks of [Cu6L8]12+ Nanocages. Inorganic Chemistry, 2007, 46, 10208-10213.	1.9	67
759	Direct Synthesis from Various Tetraphosphonic Building Blocks of Homologous Hybrid-Layered Copper(II) Derivatives Incorporating Copper Hydrate Cations. Crystal Growth and Design, 2007, 7, 1881-1888.	1.4	17
760	Three Novel Cd(II) Metalâ~Organic Frameworks Constructed from Mixed Ligands of Dipyrido[3,2-d:2â€~,3â€~-f]quinoxaline and Benzene-dicarboxylate: From a 1-D Ribbon, 2-D Layered Network, to a 3-D Architecture. Crystal Growth and Design, 2007, 7, 1086-1091.	1.4	127
761	Comparative Molecular Simulation Study of Methane Adsorption in Metalâ^'Organic Frameworks. Energy & Fuels, 2007, 21, 953-956.	2.5	68
762	A Novel Chiral Doubly Folded Interpenetrating 3D Metalâ ^{°°} Organic Framework Based on the Flexible Zwitterionic Ligand. Crystal Growth and Design, 2007, 7, 1027-1030.	1.4	57
763	A Novel Metalâ^'Organic Framework with the Diamondoid Topology Constructed from Pentanuclear Zincâ^'Carboxylate Clusters. Crystal Growth and Design, 2007, 7, 1035-1037.	1.4	70
764	Fluorous Metalâ^'Organic Frameworks for High-Density Gas Adsorption. Journal of the American Chemical Society, 2007, 129, 15454-15455.	6.6	318
765	Chemical Detection with MOF-Functionalized Piezoresistive Microcantilever Arrays. ECS Meeting Abstracts, 2007, , .	0.0	0
769	Guest-Dependent Flexible Coordination Networks with Fluorinated Ligands. Chemistry - A European Journal, 2007, 13, 3089-3105.	1.7	50
770	Lamellar and Three-Dimensional Hybrid Compounds Formed by Cyclohexene- and Cyclohexanedicarboxylates of Pb, La, and Cd. Chemistry - A European Journal, 2007, 13, 3193-3201.	1.7	92

#	Article	lF	CITATIONS
771	Semiconductor Behavior of a Metal-Organic Framework (MOF). Chemistry - A European Journal, 2007, 13, 5106-5112.	1.7	809
772	Two-Component Supramolecular Helical Architectures: Creation of Tunable Dissymmetric Cavities for the Inclusion and Chiral Recognition of the Third Components. Chemistry - A European Journal, 2007, 13, 2144-2152.	1.7	61
773	Reversible Transformation of ZnII Coordination Geometry in a Single Crystal of Porous Metal-Organic Framework [Zn3(ntb)2(EtOH)2]â‹4 EtOH. Chemistry - A European Journal, 2007, 13, 4208-4215.	1.7	107
774	Design and Generation of Extended Zeolitic Metal–Organic Frameworks (ZMOFs): Synthesis and Crystal Structures of Zinc(II) Imidazolate Polymers with Zeolitic Topologies. Chemistry - A European Journal, 2007, 13, 4146-4154.	1.7	351
775	Understanding Adsorption and Interactions of Alkane Isomer Mixtures in Isoreticular Metal–Organic Frameworks. Chemistry - A European Journal, 2007, 13, 6387-6396.	1.7	45
776	Structural and Magnetic Modulation of a Purely Organic Open Framework by Selective Guest Inclusion. Chemistry - A European Journal, 2007, 13, 8153-8163.	1.7	41
777	Nanoscale Metal Coordination Macrocycles Fabricated by Using "Dimeric―Dipyrrins. Chemistry - A European Journal, 2007, 13, 7900-7907.	1.7	27
778	Synchrotron Xâ€Ray Chargeâ€Density Study of Coordination Polymer [Mn(HCOO) ₂ (H ₂ O) ₂] _{â^ž} . Chemistry - A European Journal, 2007, 13, 9775-9790.	1.7	38
779	Study on macromolecular metal complexes: Synthesis, characterization, and fluorescence properties of stoichiometric complexes for rare earth coordinated with poly(acrylic acid). Journal of Applied Polymer Science, 2007, 103, 351-357.	1.3	41
780	Molecular Dynamics Simulation of Benzene Diffusion in MOF-5: Importance of Lattice Dynamics. Angewandte Chemie - International Edition, 2007, 46, 463-466.	7.2	195
781	A Tetrahedral Organophosphonate as a Linker for a Microporous Copper Framework. Angewandte Chemie - International Edition, 2007, 46, 795-798.	7.2	114
782	A Mesh-Adjustable Molecular Sieve for General Use in Gas Separation. Angewandte Chemie - International Edition, 2007, 46, 2458-2462.	7.2	358
783	Exceptional Negative Thermal Expansion in Isoreticular Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2007, 46, 4496-4499.	7.2	289
784	Topotactic Linear Radical Polymerization of Divinylbenzenes in Porous Coordination Polymers. Angewandte Chemie - International Edition, 2007, 46, 4987-4990.	7.2	124
785	Improved Designs of Metal–Organic Frameworks for Hydrogen Storage. Angewandte Chemie - International Edition, 2007, 46, 6289-6292.	7.2	212
786	Mesoporous Metal–Organic Framework with Rare etb Topology for Hydrogen Storage and Dye Assembly. Angewandte Chemie - International Edition, 2007, 46, 6638-6642.	7.2	347
787	Conjugated Microporous Poly(aryleneethynylene) Networks. Angewandte Chemie - International Edition, 2007, 46, 8574-8578.	7.2	1,278
788	Crystal Structure and Guest Uptake of a Mesoporous Metal–Organic Framework Containing Cages of 3.9 and 4.7â€nm in Diameter. Angewandte Chemie - International Edition, 2007, 46, 8230-8233. 	7.2	301

ARTICLE IF CITATIONS Two novel benzenedicarboxylate-metal complexes: synthesis, crystal structures and fluorescent 789 1.7 6 properties. Applied Organometallic Chemistry, 2007, 21, 150-155. Microporous Metal-Organic Frameworks with High Gas Sorption and Separation Capacity. Advanced 798 Functional Materials, 2007, 17, 1255-1262. Metal–Organic Hybrids of 1,3,5-Tris(4-pyridylsulfanylmethyl)-2,4,6-trimethylbenzene with Mercuric 799 1.0 13 Halides. European Journal of Inorganic Chemistry, 2007, 2007, 1150-1158. Templateâ€Controlled Reactivity in the Organic Solid State by Principles of Coordinationâ€Driven 800 1.0 Selfâ∈Assembly. European Journal of Inorganic Chemistry, 2007, 2007, 4559-4568. Synthesis, Crystal Structures and Thermal Properties of New ZnBr2(pyrimidine) Coordination 801 1.0 12 Compounds. European Journal of Inorganic Chemistry, 2007, 2007, 5353-5359. New Polymorphs of Magnesium-Based Metalâ€"Organic Frameworks Mg3(ndc)3 (ndc =) Tj ETQq1 1 0.784314 rgBŢ Overloc&10 Tf 5 Influence of the alkyl-chain on the symmetry and structural changes of Zn4O(RCO2)6 complexes in 803 1.2 10 film phaseâ€"An FT-IR study. Vibrational Spectroscopy, 2007, 43, 227-236. Ladder type supramolecular assembly and gas adsorption profile under reduced pressure based on 804 1.0 14 hydrogen bonded m-tetraphenyl derivative of anthracene. Tetrahedron, 2007, 63, 6887-6894. Phase transition and molecular motion of cyclohexane confined in metal-organic framework, IRMOF-1, 805 1.2 29 as studied by 2H NMR. Chemical Physics Letters, 2007, 443, 293-297. Molecular simulation of adsorption sites of light gases in the metal-organic framework IRMOF-1. 1.4 129 Fluid Phase Equilibria, 2007, 261, 152-161. Synthesis and characterizations of a magnesium metalâ€"organic framework with a distorted 807 45 1.8 (10,3)-a-net topology. Inorganic Chemistry Communication, 2007, 10, 220-222. A novel 3D metal-organic framework with the pcu topology constructed from 1,4-diaza-bicyclo[2.2.2]octane-N,Nâ€²-dioxide. Inorganic Chemistry Communication, 2007, 10, 649-651. 808 1.8 A new lamellar solid trapping water clusters and intercalated organosulfonate guests. Inorganic 809 1.8 8 Chemistry Communication, 2007, 10, 614-617. Synthesis, crystal structure and luminescence of novel two-dimensional interpenetrating 1.8 14 frameworks. Inorganic Chemistry Communication, 2007, 10, 767-771. A unique 3-D 3d–4f heterometallic coordination polymer with double betaine ligand: Crystal 811 12 1.8 structure and magnetic properties. Inorganic Chemistry Communication, 2007, 10, 787-791. Solvothermal synthesis, crystal structure and photoluminescent property of a novel 3-D magnesium metal–organic framework Mg1.5(μ5-btec) (H2O)2]·[H2N(CH3)2]·H2O. Inorganic Chemistry Communication,1.8 23 2007, 10, 876-879. Syntheses, crystal structures and luminescence properties of lanthanide coordination polymers involving in situ C–S bond cleavage of (4-pyridylthio)acetic acid. Inorganic Chemistry Communication, 813 1.8 21 2007, 10, 829-832. Two novel anion-directed Cu(II) double betaine coordination polymers with different open frameworks: Inorganic chains [Cu3(μ3–OH)2(μ2–H2Ò)2́]n as secondary building units with unusual 814 1.8 chair-like [Cu3O4] cores. Inorganic Chemistry Communication, 2007, 10, 1026-1030.

#	Article	IF	CITATIONS
815	Self-assembly of a two-dimensional cluster coordination polymer {[W2S8Cu8I4(bpe)2(py)2]·H2O}n: Crystal structure and luminescent properties. Inorganic Chemistry Communication, 2007, 10, 1164-1167.	1.8	7
816	Influence of hydrothermal synthesis temperature on the structures of two 3D coordination polymers. Inorganic Chemistry Communication, 2007, 10, 1198-1201.	1.8	13
817	Long bipyridyl-type linking ligands containing an intervening cyclohexyl fragment and their cadmium coordination polymers: and (Ln=(n-py)–CHN–C6H10–NCH–(n-py); n=4,3,2). Inorganic Chemistry Communication, 2007, 10, 1244-1248.	1.8	17
818	A porous mixed-valent iron MOF exhibiting the acs net: Synthesis, characterization and sorption behavior of Fe3O(F4BDC)3(H2O)3·(DMF)3.5. Catalysis Today, 2007, 120, 324-329.	2.2	52
819	Quantitative structure–uptake relationship of metal-organic frameworks as hydrogen storage material. Catalysis Today, 2007, 120, 317-323.	2.2	30
820	Design and syntheses of nano-structured ionic crystals with selective sorption properties. Coordination Chemistry Reviews, 2007, 251, 2537-2546.	9.5	103
821	The s-triazine ring, a remarkable unit to generate supramolecular interactions. Inorganica Chimica Acta, 2007, 360, 381-404.	1.2	151
822	Hydrothermal synthesis and characterization of a new 1-D polymeric lanthanum ethylenediaminetetraacetate with less metal-aqua coordination: {[La(EDTA)(H2O)]2}n. Inorganica Chimica Acta, 2007, 360, 1616-1620.	1.2	20
823	Homochiral metal–organic coordination networks from l-typtophan. Inorganica Chimica Acta, 2007, 360, 1669-1677.	1.2	14
824	A 2D [Fell-bistetrazole] coordination polymer exhibiting spin-crossover properties. Inorganica Chimica Acta, 2007, 360, 3787-3796.	1.2	26
825	New coordination polymer based on a triply bridged dicarboxylate ligand: Synthesis, structure, and magnetic properties of the adipato complex [Cu4(bpy)4(adip)3](tcnoet)2÷2H2O {bpy=C10H8N2; adip2â^'=[O2C(CH2)4CO2]2â^'; tcnoetâ^'=[(NC)2CC(OEt)C(CN)2]â^'}. Inorganica Chimica Acta, 2007, 360, 3879-3886.	1.2	21
826	Four three-dimensional lanthanide coordination polymer constructed from benzene-1,4-dioxydiacetic acid. Inorganica Chimica Acta, 2007, 360, 3265-3271.	1.2	38
827	Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement. International Journal of Heat and Mass Transfer, 2007, 50, 405-411.	2.5	198
828	Thermal conductivity of metal-organic framework 5 (MOF-5): Part I. Molecular dynamics simulations. International Journal of Heat and Mass Transfer, 2007, 50, 393-404.	2.5	169
829	Microporous metal-organic framework zinc(II) imidazole- 4,5-dicarboxylate: Four-fold helical structure and strong fluorescent emission. Microporous and Mesoporous Materials, 2007, 102, 122-127.	2.2	34
830	129Xe NMR study of xenon in iso-reticular metal–organic frameworks. Microporous and Mesoporous Materials, 2007, 103, 341-351.	2.2	41
831	Copper coordination polymers containing pyridinecarboxylate and multicarboxylate: [Cu1.5(ina)(btcH)]·H2O, [Cu2(ina)2(bdc)0.5(μ3-OH)], and [Cu(ina)(na)] (inaH=4-pyridinecarboxylic acid,) Tj E	ETQq0 0 0 1.8	rgBT /Overlo
832	Metal-dependent assembly and structure of metal 1,4-phenylenediacetate complexes with 1,10-phenanthroline. Journal of Molecular Structure, 2007, 832, 55-62.	1.8	22

#	ARTICLE Cobalt(II) coordination polymers based on dicarboxylates and dipyridyl-type ligands: [CoL1.5(NO3)2], [Col1.5(hpdo)1.5(dmo)1.6(dmo)1.6(ttOH) [Col1.5(ndo)1.5(dmo)2] [Col2(pdo)2(dm0)1.6(ttOH) [Col1.5(hpdo)1.6(ttOH)	IF	CITATIONS
833	(bpdcH2=biphenyl-4,4â€ ² -dicarboxylic acid, ndcH2=2,6-naphthalene dicarboxylic acid,) Tj ETQq0 0 0 rgBT /Overlo	ck 10 Tf 50) 7 32 Td (L=
834	Crystal structures and fluorescent properties of two linear trinuclear zinc(II) complexes. Journal of Molecular Structure, 2007, 842, 75-80.	1.8	24
835	Homochiral cobalt(II) and strontium(II) amino-carboxylate–phosphonate hybrids. Journal of Molecular Structure, 2007, 830, 78-84.	1.8	13
836	Synthesis, structure and property of metal thiophene 2,5-dicarboxylates: Novel three dimensional coordination polymers. Journal of Molecular Structure, 2007, 833, 1-7.	1.8	31
837	Two Cu(II) double betaine coordination polymers with different metal-organic frameworks. Journal of Molecular Structure, 2007, 837, 231-236.	1.8	16
838	Synthesis, crystal structures and magnetic properties of three new 4-cyanobenzoate complexes. Journal of Molecular Structure, 2007, 842, 38-45.	1.8	11
839	In situ ligand synthesis with the cation under hydrothermal conditions. Journal of Solid State Chemistry, 2007, 180, 2597-2602.	1.4	37
840	A systematic study of ligand intermolecular interactions in crystals of copper(II) complexes of bidentate guanidino derivatives. Polyhedron, 2007, 26, 415-429.	1.0	6
841	CuO micro plates from a 3D metallo-organic framework (MOF) of a binary copper(II) complex of N,N-bis(2-hydroxyethyl)glycine. Polyhedron, 2007, 26, 149-153.	1.0	32
842	Assembly and structures of five new Cu(II) complexes based on the V-shaped building block [Cu(dbsf)]. Polyhedron, 2007, 26, 1123-1132.	1.0	28
843	Weak ferromagnetism in 1D coordination polymers: Syntheses, crystal structures, spectroscopic and magnetic properties of [Cu(L)(Memal)]n (Memal2â^'=the dianion of methylmalonic acid,) Tj ETQq0 0 0 rgBT /Over	laata 10 Tf	5202 337 Td (
844	Assembly of two novel three-dimensional networks driven by Alkali metals with an irreversible structural conversion. Polyhedron, 2007, 26, 2979-2986.	1.0	12
845	Hetero-metallic frameworks of [Pd(CN)4]2â^ and Cu(II) with triamines: A rare example of a tetracyanometallate bridged 2D coordination polymer. Polyhedron, 2007, 26, 3189-3198.	1.0	24
846	Synthesis and characterization of Cu(II), Co(II) and Ni(II) coordination polymers containing bis(imidazolyl) ligands. Polyhedron, 2007, 26, 3074-3084.	1.0	52
847	Preparation and characterization of two three-dimensional metal–organic photoluminescent supramolecular networks. Polyhedron, 2007, 26, 5177-5184.	1.0	14
848	Molecular, supramolecular structure and catalytic activity of transition metal complexes of phenoxy acetic acid derivatives. Polyhedron, 2007, 26, 5225-5234.	1.0	33
849	Rational synthesis of hexanuclear metallacycles by alkylation reactions of an S-bridged CoIIIPdIICoIII trinuclear complex containing non-binding thiolato groups. Journal of Organometallic Chemistry, 2007, 692, 156-165.	0.8	1
850	The 3,5-dimethyl-4-nitropyrazole ligand in the construction of supramolecular networks of silver(I) complexes. Journal of Organometallic Chemistry, 2007, 692, 4093-4105.	0.8	21

#	Article	IF	CITATIONS
851	Crystalline oxyfluorinated open-framework compounds: Silicates, metal phosphates, metal fluorides and metal-organic frameworks (MOF). Journal of Fluorine Chemistry, 2007, 128, 413-422.	0.9	73
852	Adsorption of water on three-dimensional pillared-layer metal organic frameworks. Journal of Colloid and Interface Science, 2007, 314, 422-426.	5.0	40
853	A novel mixed-valence copper complex, poly[[μ2-4,4′-bipyridine-μ3-pyridine-2,4,6-tricarboxylato-dicopper(I,II)] monohydrate]. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, m19-m21.	0.4	2
854	Bis(μ-4-carboxy-2-sulfonatobenzoato)bis[aqua(2,2′-bipyridyl)manganese(II)]. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, m445-m447.	0.4	4
855	Poly[triaquatris(μ-4-pyridine-3,5-dicarboxylato)didysprosium(III)]. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m73-m74.	0.2	0
856	Bis(4-carboxamidopyridinium) diaquadioxalatocuprate(II). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1337-m1338.	0.2	2
857	catena-Poly[[diaqua(isonicotinato-κ2O,O′)gadolinium(III)]-di-μ-isonicotinato-κ4O:O′]. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m2151-m2152.	0.2	1
858	Poly[[[bis(isonicotinamide)copper(II)]-μ-benzene-1,2-dicarboxylato] monohydrate]. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m3166-m3166.	0.2	1

The 3D Supramolecular Compound { $[Cu2(L-val)2(4,4\hat{a}\in 2-bipy)(H2O)2](NO3)2$ }n (L-val = L-valine anion,) Tj ETQq0 0.0 rgBT /Overlock 10 0.6 rgBT /Overloc

860

#	Article	IF	Citations
869	Chapter 2. Families of Microporous Framework Solids. RSC Materials Monographs, 0, , 8-78.	0.2	0
870	Exploring Lanthanide Luminescence in Metal-Organic Frameworks:Â Synthesis, Structure, and Guest-Sensitized Luminescence of a Mixed Europium/Terbium-Adipate Framework and a Terbium-Adipate Framework. Inorganic Chemistry, 2007, 46, 3960-3965.	1.9	280
871	Design Requirements for Metal-Organic Frameworks as Hydrogen Storage Materials. Journal of Physical Chemistry C, 2007, 111, 18794-18803.	1.5	190
872	Calculating Geometric Surface Areas as a Characterization Tool for Metalâ^'Organic Frameworks. Journal of Physical Chemistry C, 2007, 111, 15350-15356.	1.5	498
873	Chiral Induction in the Ionothermal Synthesis of a 3-D Coordination Polymer. Journal of the American Chemical Society, 2007, 129, 4880-4881.	6.6	403
874	Li-decorated metal–organic framework 5: A route to achieving a suitable hydrogen storage medium. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20173-20176.	3.3	232
875	Applications for Metalâ^'Organic Frameworks (MOFs) as Quantum Dot Semiconductors. Journal of Physical Chemistry C, 2007, 111, 80-85.	1.5	371
876	Lanthanide(III)â^'Cobalt(II) Heterometallic Coordination Polymers with Radical Adsorption Properties. Inorganic Chemistry, 2007, 46, 5832-5834.	1.9	119
877	Enantioselective Chromatographic Resolution and One-Pot Synthesis of Enantiomerically Pure Sulfoxides over a Homochiral Znâ^'Organic Framework. Journal of the American Chemical Society, 2007, 129, 12958-12959.	6.6	246
878	3D Porous Metalâ^'Organic Framework Exhibiting Selective Adsorption of Water over Organic Solvents. Inorganic Chemistry, 2007, 46, 5835-5837.	1.9	125
879	Synthesis, crystal structure and luminescent properties of a new 3D coordination polymer constructed by Cd(II) with 4,4′-oxybis(benzoate) and 4,4′-bipyridine. Structural Chemistry, 2007, 18, 1005-1009.	1.0	11
880	Synthesis, crystal structure and magnetic properties of a new 3D coordination polymer constructed by Co(II) with pyridine-3,4-dicarboxylate and 4,4'-bipyridine. Transition Metal Chemistry, 2007, 32, 219-223.	0.7	1
881	Synthesis, crystal structure, spectroscopic and electrochemical characterization of the dinuclear complex {tetra-μ-[(±)-2-(p-methoxyphenoxy)-propionato-O,O′]bis(aqua)dicopper(II)}. Transition Metal Chemistry, 2007, 32, 355-361.	0.7	2
882	Design of scaffold-like metal-organic coordination polymers based on dinuclear zinc(II) carboxylate complexes. Russian Chemical Bulletin, 2007, 56, 225-230.	0.4	6
883	Reaction of 1,2-bis(2,6-dicarboxypyridin-4-yl)ethyne and imidazole with Cu(II) generates a discrete complex not a coordination polymer: crystal structure of [μ-4,4′-(1,2-ethynediyl)-bis(pyridine-2,6-dicarboxylato)-N, O, O′-μ-N′, O′′, O′′′]-diaqua-b Journal of Chemical Crystallography, 2007, 37, 299-308.	vis(imidaz	ole)-dicopper
884	Hydrothermal Crystal Growth, Structures and Thermal Properties of Co(II)-4,4′-bipyridine-Based Coordination Polymeric Materials. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 17, 561-568.	1.9	6
885	Syntheses and Structural Characterization of Co(II) Coordination Polymers Supported by Bis(N-benzimidazolyl)methane and Bis(N-imidazolyl)methane. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 17, 583-588.	1.9	6
886	Molecule matters. Resonance, 2007, 12, 77-86.	0.2	1

#	Article	IF	CITATIONS
887	Chemistry of coordination space of porous coordination polymers. Coordination Chemistry Reviews, 2007, 251, 2490-2509.	9.5	880
888	Synthesis, structure and luminescent property of a new hybrid solid based on Keggin anions and silver-organonitrogen fragments. Journal of Solid State Chemistry, 2008, 181, 313-318.	1.4	13
889	Atomistic packing model and free volume distribution of a polymer with intrinsic microporosity (PIM-1). Journal of Membrane Science, 2008, 318, 84-99.	4.1	227
890	A new ligand for the formation of a 3D structure by C–H···O, O–H···O hydrogen-bonds and π–π interactions. Journal of Molecular Structure, 2008, 892, 316-319.	1.8	5
891	Synthesis, characterization and thermal analysis of 1:1 and 2:3 lanthanide(III) citrates. Journal of Thermal Analysis and Calorimetry, 2008, 94, 305-311.	2.0	24
892	Structure and absorption volume for hydrogen of ultramicroporous coordination polymers of copper(II) with 4,4 $\hat{a}\in^2$ -bipyridine. Theoretical and Experimental Chemistry, 2008, 44, 245-251.	0.2	3
893	C–H···F Hydrogen-Bonded Assembly of Ni(II) and Cu(II) Complexes Generate 3D Supramolecular Frameworks. Journal of Chemical Crystallography, 2008, 38, 501-505.	0.5	6
894	Sovolthermal Synthesis and Crystal Structure of Two CdII Coordination Polymers of Benzenedicarboxylic. Journal of Chemical Crystallography, 2008, 38, 561-565.	0.5	8
895	Hydrothermal Synthesis and Crystal Structure of a Novel 2-Fold Interpenetrated Framework Based on Tetranuclear Homometallic Cluster. Journal of Inorganic and Organometallic Polymers and Materials, 2008, 18, 304-308.	1.9	3
896	A 3D 3d-4f Heterometallic Coordination Polymer: Synthesis, Crystal Structure and Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2008, 18, 358-363.	1.9	4
897	A Novel 3D Europium (III) Coordination Polymer Constructed from 3,5-Pyridinedicarboxylate Acid: Synthesis, Crystal Structure and Emission Spectrum. Journal of Inorganic and Organometallic Polymers and Materials, 2008, 18, 457-462.	1.9	4
898	Molecular simulation of condensation process of Lennard-Jones fluids confined in nanospace with jungle-gym structure. Adsorption, 2008, 14, 165-170.	1.4	11
899	Poly[[sesqui[μ2-1,4-bis(imidazol-1-ylmethyl)benzene-κ2N:N′](carbonato-κ2O,O′)copper(II)] 1,4-bis(imidazol-1-ylmethyl)benzene hemisolvate pentahydrate]. Acta Crystallographica Section C: Crystal Structure Communications, 2008, 64, m349-m352.	0.4	1
900	Hydrothermal Syntheses, Crystal Structures and Properties of Two Novel 3â€D Lanthanide(III) Coordination Polymers Constructed with Mixed Heterocyclic Carboxylic Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 387-391.	0.6	12
901	Twoâ€Dimensional Monovalent Copper Halide Coordination Polymers Incorporating <i>Anti</i> â€Conformation 3,3′â€Bipyridine. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 887-891.	0.6	1
902	A 2â€fold Interpenetrated Framework based on Tetranuclear Heterometallic Cluster: Synthesis, Structure and Magnetic Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 927-930.	0.6	5
903	Hydrothermal Synthesis, Structures and Thermal Stability of Two Novel Lanthanide Complexes: [Er4(tp)6(H2O)6], [Lu(tp)1.5(H2O)3]. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 842-844.	0.6	8
904	Gas Storages in Microporous Metalâ€Organic Framework at Ambient Temperature. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 845-847.	0.6	15

#	Article	IF	CITATIONS
905	A Cobalt(II)â€containing Metalâ€Organic Framework Showing Catalytic Activity in Oxidation Reactions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 2411-2417.	0.6	91
906	Assembly of Supramolecular Networks with the Inclusion of Water Chains, Cyclic Hepta and Octa Water Clusters. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 2663-2669.	0.6	9
907	Metal Organic Framework Compounds (MOFs) as Host Materials for Optically Switchable Complexes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 2018-2018.	0.6	3
908	Metalâ€Organic Frameworks as Gas Storage Materials. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2008, 634, 2023-2023.	0.6	1
909	Control of Porosity Geometry in Amino Acid Derived Nanoporous Materials. Chemistry - A European Journal, 2008, 14, 4521-4532.	1.7	81
910	Pt@MOFâ€177: Synthesis, Roomâ€Temperature Hydrogen Storage and Oxidation Catalysis. Chemistry - A European Journal, 2008, 14, 8204-8212.	1.7	272
911	Synthesis, characterization and crystal structure of a novel 3-D copper(II) polymer with bent N-containing ligand. Crystal Research and Technology, 2008, 43, 1087-1090.	0.6	0
912	Novel (3,4)―and (4,5) onnected Lanthanide Metal–Organic Frameworks. European Journal of Inorganic Chemistry, 2008, 2008, 98-105.	1.0	31
913	Synthesis, Crystal Structure and Thermal Reactivity of [ZnX ₂ (2â€chloropyrazine)] (X = Cl,) Tj ETQqC	0.0 rgBT 1.0	/Overlock 10 14
914	Baseâ€Induced Formation of Two Magnesium Metalâ€Organic Framework Compounds with a Bifunctional Tetratopic Ligand. European Journal of Inorganic Chemistry, 2008, 2008, 3624-3632.	1.0	295
915	Metal-Organic Frameworks (MOFs) Composed of (Triptycenedicarboxylato)zinc. European Journal of Inorganic Chemistry, 2008, 2008, 2601-2609.	1.0	31
916	Chemical Modification of a Bridging Ligand Inside a Metal–Organic Framework while Maintaining the 3D Structure. European Journal of Inorganic Chemistry, 2008, 2008, 1551-1554.	1.0	163
917	Pore-Size Tuning in Double-Pillared Metal-Organic Frameworks Containing Cadmium Clusters. European Journal of Inorganic Chemistry, 2008, 2008, 2746-2755.	1.0	30
918	1D, 2D and 3D Coordination Polymers of Aromatic Carboxylate TbIII: Structure, Thermolysis Kinetics and Fluorescence. European Journal of Inorganic Chemistry, 2008, 2008, 4280-4289.	1.0	28
919	A 2D Layered Metal–Organic Framework Constructed by Using a Hexanuclear Manganese Metallamacrocycle as a Supramolecular Building Block. European Journal of Inorganic Chemistry, 2008, 2008, 5465-5470.	1.0	22
920	Gas Storage in Nanoporous Materials. Angewandte Chemie - International Edition, 2008, 47, 4966-4981.	7.2	1,453
921	Desorption Studies of Hydrogen in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2008, 47, 2138-2142.	7.2	112
922_	Hole Control in Microporous Polymers. Angewandte Chemie - International Edition, 2008, 47, 448-450.	7.2	107 _

#	Article	IF	CITATIONS
923	Reticular Chemistry of Metal–Organic Polyhedra. Angewandte Chemie - International Edition, 2008, 47, 5136-5147.	7.2	849
924	A Crystalline Mesoporous Coordination Copolymer with High Microporosity. Angewandte Chemie - International Edition, 2008, 47, 677-680.	7.2	478
925	A Coordinatively Linked Yb Metal–Organic Framework Demonstrates High Thermal Stability and Uncommon Gasâ€Adsorption Selectivity. Angewandte Chemie - International Edition, 2008, 47, 4130-4133.	7.2	280
926	Tandem Modification of Metal–Organic Frameworks by a Postsynthetic Approach. Angewandte Chemie - International Edition, 2008, 47, 4699-4702.	7.2	218
927	Cucurbit[6]uril: Organic Molecular Porous Material with Permanent Porosity, Exceptional Stability, and Acetylene Sorption Properties. Angewandte Chemie - International Edition, 2008, 47, 3352-3355.	7.2	293
928	Functionalized Coordination Space in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2008, 47, 8164-8168.	7.2	89
929	Postsynthetic Covalent Modification of Metal–Organic Framework (MOF) Materials. Angewandte Chemie - International Edition, 2008, 47, 4635-4637.	7.2	160
930	Postâ€ S ynthetic Modification of Tagged Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2008, 47, 8482-8486.	7.2	276
931	Hierarchically Micro―and Mesoporous Metal–Organic Frameworks with Tunable Porosity. Angewandte Chemie - International Edition, 2008, 47, 9487-9491.	7.2	356
932	Microporous Organic Polymers for Methane Storage. Advanced Materials, 2008, 20, 1916-1921.	11.1	351
933	Modulation of Thirdâ€Order Nonlinear Optical Properties by Backbone Modification of Polymeric Pillared‣ayer Heterometallic Clusters. Advanced Materials, 2008, 20, 1870-1875.	11.1	97
934	Tailoring Microporosity in Covalent Organic Frameworks. Advanced Materials, 2008, 20, 2741-2746.	11.1	401
935	Kinetics and equilibrium of gas adsorption on RPM1â€Co and Cuâ€BTC metalâ€organic frameworks: Potential for gas separation applications. AICHE Journal, 2008, 54, 918-923.	1.8	37
949	A new method to determine pore size and its volume distribution of porous solids having known atomistic configuration. Journal of Colloid and Interface Science, 2008, 328, 110-119.	5.0	35
950	Magnetic field-induced formation of molecule-based magnetic material [Co1.5(N3)(OH)(L)]n with antiferromagnetic coupling. Journal of Crystal Growth, 2008, 310, 3788-3791.	0.7	5
951	Architecture of zero-, one-, two- and three-dimensional structures based on metal ions and pyrazine-2,6-dicarboxylic acid. Polyhedron, 2008, 27, 717-726.	1.0	24
952	Structure modulation of metal–organic frameworks via reaction pH: Self-assembly of a new carboxylate containing ligand N-(3-carboxyphenyl)iminodiacetic acid with cadmium(II) and cobalt(II) salts. Polyhedron, 2008, 27, 812-820.	1.0	49
953	Silver coordination polymers and networks based on O- or S-heterocyclic linking ligands: [AgL12](PF6), [Ag2L23](PF6)2, [Ag2L23](ClO4)2, [Ag2L22](BF4)2, and [Ag2L2(NO3)2] (L1=1,2-bis(thiophen-2-ylmethylene)hydrazine; L2=1,2-bis(furan-2-ylmethylene)hydrazine). Polyhedron,	1.0	24

#	ARTICLE	IF	CITATIONS
954	generated oxalate and organic pillars of 1,4-piperazinediacetic acid. Polyhedron, 2008, 27, 2119-2126.	1.0	20
955	Controlled assembly of zero-, one- and two-dimensional metal-organic frameworks involving in situ ligand synthesis under different reaction pH. Polyhedron, 2008, 27, 2327-2336.	1.0	29
956	Gas permeability properties of Matrimid® membranes containing the metal-organic framework Cu–BPY–HFS. Journal of Membrane Science, 2008, 313, 170-181.	4.1	337
957	Advanced activated carbon monoliths and activated carbons for hydrogen storage. Microporous and Mesoporous Materials, 2008, 112, 235-242.	2.2	117
958	Synthesis, structure and luminescent properties of lanthanide–organic frameworks based on pyridine-2,6-dicarboxylic acid. Journal of Molecular Structure, 2008, 872, 99-104.	1.8	37
959	2D and 3D coordination networks of tetra(carboxyphenyl)-porphyrins with cerium and thulium ions. Journal of Molecular Structure, 2008, 890, 101-106.	1.8	21
960	Hydrothermal chemistry of Th(IV) with aromatic dicarboxylates: New framework compounds and in situ ligand syntheses. Journal of Solid State Chemistry, 2008, 181, 373-381.	1.4	72
961	Syntheses, crystal structures and properties of two 1-D cadmium(II) coordination polymers based on 1,1′-(1,3-propanediyl)bis-1H-benzimidazole. Journal of Solid State Chemistry, 2008, 181, 2178-2184.	1.4	29
962	A density functional theory study on the interaction of hydrogen molecules with aromatic linkers in metal-organic frameworks. Journal of Physics and Chemistry of Solids, 2008, 69, 1428-1431.	1.9	4
963	Enhancement of H2 and CH4 adsorptivities of single wall carbon nanotubes produced by mixed acid treatment. Carbon, 2008, 46, 611-617.	5.4	36
964	Crystal structure, TGA and magnetic properties of a novel 2D coordination polymer [Mn2(btr)(μ-ox)2(H2O)2]·2H2O. Inorganic Chemistry Communication, 2008, 11, 66-68.	1.8	14
965	Unprecedented 7-connected 36·413·62 structural topology: Praseodymium-based coordination polymers built from mixed carboxylate ligands. Inorganic Chemistry Communication, 2008, 11, 125-128.	1.8	17
966	Two chiral metal–organic frameworks showing unprecedented pcu-type topology based on the vertex-shared bowl-like MNa3 SBUs. Inorganic Chemistry Communication, 2008, 11, 142-144.	1.8	11
967	A novel germanium(IV) oxalate complex: [Ge(OH)2(C2O4)2]2â^'. Inorganic Chemistry Communication, 2008, 11, 283-287.	1.8	9
968	Solvothermal synthesis and characterization of a lithium coordination polymer possessing a highly stable 3D network structure. Inorganic Chemistry Communication, 2008, 11, 396-399.	1.8	23
969	Unusual 2D assembly of the paddle wheel Cd2(COO)4 units in a luminescent complex. Inorganic Chemistry Communication, 2008, 11, 659-661.	1.8	13
970	Synthesis, structural characterization and third-order non-linear optical property of new three-dimensional metal-organic polymer [Fe2(î¼10-btc)0.5(î¼2-ox)0.5(î¼2-O)1.5]n. Inorganic Chemistry Communication, 2008, 11, 761-764.	1.8	5
971	Blue photoluminescent 3D Zn(II) metal-organic framework constructing from pyridine-2,4,6-tricarboxylate. Inorganic Chemistry Communication, 2008, 11, 832-834.	1.8	67

#	Article	IF	CITATIONS
972	A new 3D supramolecular architecture constructed from the overlapping of ladder-like 1,2,4-triazole-bridging Ag(I) chains. Inorganic Chemistry Communication, 2008, 11, 876-878.	1.8	2
973	A novel three-dimensional 3d–4f heterometallic coordination polymer: Crystal structure and photoluminescence. Inorganic Chemistry Communication, 2008, 11, 1030-1032.	1.8	21
974	A three-dimensional organic–inorganic hybrid solid constructed from novel Mo–O–Zn bimetallic oxide networks linked via 3-amino-1,2,4-triazole. Inorganic Chemistry Communication, 2008, 11, 1147-1150.	1.8	11
975	Fabrication of nanosheets of a fluorescent metal–organic framework [Zn(BDC)(H2O)]n (BDC=1,4-benzenedicarboxylate): Ultrasonic synthesis and sensing of ethylamine. Inorganic Chemistry Communication, 2008, 11, 1375-1377.	1.8	136
976	Construction of three isostructural 3d–4f microporous coordination frameworks based on mixed nicotinate and oxalate ligands. Inorganic Chemistry Communication, 2008, 11, 1409-1411.	1.8	22
977	Solvent-regulated assembly of 1-D and 2-D ZnII coordination polymers with tetrabromoterephthalate. Inorganic Chemistry Communication, 2008, 11, 1405-1408.	1.8	42
978	Syntheses and functions of porous metallosupramolecular networks. Coordination Chemistry Reviews, 2008, 252, 1007-1026.	9.5	381
979	The optimal binding sites of CH4 and CO2 molecules on the metal-organic framework MOF-5: ONIOM calculations. Chemical Physics, 2008, 349, 77-82.	0.9	36
980	Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron, 2008, 64, 8553-8557.	1.0	853
981	Bi(thipohene)-type ligand and its silver coordination polymers [AgL2]·(X) (L=1,2-bis((thiophen-3-yl)methylene)hydrazine;). Inorganica Chimica Acta, 2008, 361, 137-144.	1.2	18
982	Cobalt(II) and nickel(II) coordination polymers constructed from P,P′-diphenylmethylenediphosphinic acid (H2pcp) and 4,4′-bipyridine (bipy): Structural isomerism in [Co(pcp)(bipy)0.5(H2O)2]. Inorganica Chimica Acta, 2008, 361, 327-334.	1.2	18
983	Cadmium coordination polymers with different topologies depending on preparation methods: [CdL1.5(NO3)2], [CdL2(NO3)2]·(C6H6), and [CdL2(NO3)2]·2(C4H8O) (L=3-py–CHN–(CH3)C6H3–C6H3(CH3)–NCH–3-py). Inorganica Chimica Acta, 2008, 361, 2101-2108.	1.2	13
984	Octahedral hexanuclear complexes involving light lanthanide ions. Inorganica Chimica Acta, 2008, 361, 2349-2356.	1.2	23
985	Syntheses and crystal structures of the metal complexes based on pyrazolecarboxylic acid ligands. Inorganica Chimica Acta, 2008, 361, 2721-2730.	1.2	34
986	Sterically-induced synthesis of 3d–4f one-dimensional compounds: A new route towards 3d–4f single chain magnets. Inorganica Chimica Acta, 2008, 361, 3997-4003.	1.2	48
987	Microporous coordination polymers of cobalt(II) and manganese(II) 2,6-naphthalenedicarboxylate: preparations, structures and gas sorptive and magnetic properties. Microporous and Mesoporous Materials, 2008, 111, 470-477.	2.2	61
988	High pressure methane adsorption in the metal-organic frameworks Cu3(btc)2, Zn2(bdc)2dabco, and Cr3F(H2O)2O(bdc)3. Microporous and Mesoporous Materials, 2008, 112, 108-115.	2.2	209
989	Microporous rare-earth coordination polymers constructed by 1,4-cyclohexanedicarboxylate. Microporous and Mesoporous Materials, 2008, 115, 522-526.	2.2	9

#	Article	IF	CITATIONS
990	Adsorption and diffusion of hydrogen and methane in 2D covalent organic frameworks. Microporous and Mesoporous Materials, 2008, 116, 540-547.	2.2	49
991	Structural transformation and high pressure methane adsorption of Co2(1,4-bdc)2dabco. Microporous and Mesoporous Materials, 2008, 116, 653-657.	2.2	96
992	Solid state structural study on recognition of aromatic dicarboxylic acids by substituted amino-pyrimidines and its supramolecular network. Journal of Molecular Structure, 2008, 876, 313-321.	1.8	14
993	Synthesis, structures, and physical properties of metal flexible dicarboxylate frameworks with dipyridyl coligand. Journal of Molecular Structure, 2008, 877, 36-43.	1.8	13
994	Entangled 3D metal-organic architectures from the self-assembly of mixed ligands and transition-metal ions. Journal of Molecular Structure, 2008, 877, 56-63.	1.8	8
995	Crystal engineering of lanthanide–transition-metal coordination polymers. Journal of Molecular Structure, 2008, 887, 56-66.	1.8	15
996	Crystal structure and magnetic property of a metal-organic framework (MOF) containing double-stranded chain with metallomacrocycles and dinuclear Mn(II) subunits. Journal of Molecular Structure, 2008, 891, 357-363.	1.8	12
997	MOFs as acid catalysts with shape selectivity properties. New Journal of Chemistry, 2008, 32, 937.	1.4	137
998	A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 2008, 130, 13850-13851.	6.6	5,478
999	Zeolite- <i>like</i> Metalâ^'Organic Frameworks as Platforms for Applications: On Metalloporphyrin-Based Catalysts. Journal of the American Chemical Society, 2008, 130, 12639-12641.	6.6	579
1000	Synthesis and structural characterisation of lanthanide coordination polymers featuring 4,4′,6,6′-tetra-carboxy-2,2′-bipyridine and rare network topology. CrystEngComm, 2008, 10, 1018.	1.3	31
1001	Framework functionalisation triggers metal complex binding. Chemical Communications, 2008, , 2680.	2.2	280
1002	Molecular recognition in homogeneous transition metal catalysis: a biomimetic strategy for high selectivity. Chemical Communications, 2008, , 413-424.	2.2	97
1003	Methane Storage in Dry Water Gas Hydrates. Journal of the American Chemical Society, 2008, 130, 11608-11609.	6.6	303
1004	Interconvertable Modular Framework and Layered Lanthanide(III)-Etidronic Acid Coordination Polymers. Journal of the American Chemical Society, 2008, 130, 150-167.	6.6	153
1005	Lanthanide Coordination Polymers Constructed from Infinite Rodâ€Shaped Secondary Building Units and Flexible Ligands. Chemistry - an Asian Journal, 2008, 3, 542-547.	1.7	45
1006	Boronic Acids in Molecular Selfâ€Assembly. Chemistry - an Asian Journal, 2008, 3, 1076-1091.	1.7	226
1007	Supermolecular Building Blocks (SBBs) for the Design and Synthesis of Highly Porous Metal-Organic Frameworks. Journal of the American Chemical Society, 2008, 130, 1833-1835.	6.6	628

#	Article	IF	CITATIONS
1008	Triply interpenetrated (3,4)- and (3,5)-connected binodal metal–organic networks prepared from 1,3,5-benzenetrisbenzoate and 4,4′-bipyridyl. CrystEngComm, 2008, 10, 1687.	1.3	54
1009	Metal and mixed-metal coordination polymers synthesized with pyrazine-2-carboxylate. Dalton Transactions, 2008, , 5823.	1.6	41
1010	Metal-Organic Framework as a Template for Porous Carbon Synthesis. Journal of the American Chemical Society, 2008, 130, 5390-5391.	6.6	1,623
1011	Hybrid porous solids: past, present, future. Chemical Society Reviews, 2008, 37, 191-214.	18.7	5,395
1012	Synthesis and characterisation of metal–organic frameworks containing bis(β-diketonate) linkers. CrystEngComm, 2008, 10, 1474.	1.3	8
1013	Selective Adsorption and Separation of <i>ortho</i> -Substituted Alkylaromatics with the Microporous Aluminum Terephthalate MIL-53. Journal of the American Chemical Society, 2008, 130, 14170-14178.	6.6	376
1014	Phase Selection and Discovery among Five Assembly Modes in a Coordination Polymerization. Inorganic Chemistry, 2008, 47, 7751-7756.	1.9	80
1015	The hydrothermal syntheses, structural characterization of a novel chiral 2-D layer coordination polymer based on pyridine-2,5-dicarbocylic acid (H2Pydc). Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2008, 34, 683-687.	0.3	2
1016	Mechanical gas capture and release in a network solid via multiple single-crystalline transformations. Nature Materials, 2008, 7, 229-235.	13.3	173
1017	A new chalcogenide ion-exchanging material: Porous indium sulfide built from condensed [In10S18]6â^' T3 supertetrahedral clusters. Materials Letters, 2008, 62, 2802-2805.	1.3	7
1018	Characterisation and properties of the n=3 and n=4 members of the Al2[O3PCnH2nPO3](H2O)2F2 framework aluminium alkylenediphosphonate series. Solid State Sciences, 2008, 10, 1124-1131.	1.5	9
1019	Enhanced Adsorption Selectivity of Hydrogen/Methane Mixtures in Metalâ ^{~,} Organic Frameworks with Interpenetration: A Molecular Simulation Study. Journal of Physical Chemistry C, 2008, 112, 9854-9860.	1.5	120
1020	Systematic Functionalization of a Metalâ^'Organic Framework via a Postsynthetic Modification Approach. Journal of the American Chemical Society, 2008, 130, 8508-8517.	6.6	351
1021	Control of the topologies and packing modes of three 2D coordination polymers through variation of the solvent ratio of a binary solvent mixture. CrystEngComm, 2008, 10, 1211.	1.3	52
1022	An Accurate Force Field Model for the Strain Energy Analysis of the Covalent Organic Framework COF-102. Journal of the American Chemical Society, 2008, 130, 12600-12601.	6.6	56
1023	The Coordination Chemistry of Benzimidazole-5,6-dicarboxylic Acid with Mn(II), Ni(II), and Ln(III) Complexes (Ln = Tb, Ho, Er, Lu). Crystal Growth and Design, 2008, 8, 2299-2306.	1.4	80
1024	Synthesis and Characterization of Three-Dimensional 3dâ^'3d and 3dâ^'4f Heterometallic Coordination Polymers with High Thermal Stability. Crystal Growth and Design, 2008, 8, 1097-1099.	1.4	59
1025	Adsorptive Separation of Isobutene and Isobutane on Cu ₃ (BTC) ₂ . Langmuir, 2008, 24, 8634-8642.	1.6	310

#	Article	IF	CITATIONS
1026	Introduction: the interdisciplinary nature of nanotechnology and its need to exploit frontier characterization techniques. , 2008, , 1-15.		0
1027	Ligand-elaboration as a strategy for engendering structural diversity in porous metal–organic framework compounds. Chemical Communications, 2008, , 3672.	2.2	88
1028	Role of Exposed Metal Sites in Hydrogen Storage in MOFs. Journal of the American Chemical Society, 2008, 130, 8386-8396.	6.6	384
1029	Computational Study of CO ₂ Storage in Metalâ^'Organic Frameworks. Journal of Physical Chemistry C, 2008, 112, 1562-1569.	1.5	240
1030	Chirality-Controlled and Solvent-Templated Catenation Isomerism in Metalâ^'Organic Frameworks. Journal of the American Chemical Society, 2008, 130, 13834-13835.	6.6	250
1031	Molecular Screening of Metalâ^'Organic Frameworks for CO ₂ Storage. Langmuir, 2008, 24, 6270-6278.	1.6	227
1032	Growth-Controlled Formation of Porous Coordination Polymer Particles. Journal of the American Chemical Society, 2008, 130, 16943-16946.	6.6	296
1033	Effect of Open Metal Sites on Adsorption of Polar and Nonpolar Molecules in Metalâ^'Organic Framework Cu-BTC. Langmuir, 2008, 24, 8620-8626.	1.6	219
1034	Understanding Water Adsorption in Cuâ^'BTC Metalâ^'Organic Frameworks. Journal of Physical Chemistry C, 2008, 112, 15934-15939.	1.5	178
1035	Metalâ^'Organic Frameworks Based on Double-Bond-Coupled Di-Isophthalate Linkers with High Hydrogen and Methane Uptakes. Chemistry of Materials, 2008, 20, 3145-3152.	3.2	248
1036	Periodic Nanostructures Based on Metal–Organic Frameworks (MOFs): En Route to Zeolite-Like Metal–Organic Frameworks (ZMOFs). , 0, , 251-274.		13
1037	Hydrogen-bond-directing effect in the ionothermal synthesis of metal coordination polymers. Dalton Transactions, 2008, , 3989.	1.6	49
1038	Chemistry and application of flexible porous coordination polymers. Science and Technology of Advanced Materials, 2008, 9, 014108.	2.8	187
1039	Temperature-triggered gate opening for gas adsorption in microporous manganese formate. Chemical Communications, 2008, , 4697.	2.2	67
1040	Expanded Sodalite-Type Metalâ^'Organic Frameworks:  Increased Stability and H ₂ Adsorption through Ligand-Directed Catenation. Inorganic Chemistry, 2008, 47, 11-13.	1.9	192
1041	Syntheses, structures, photoluminescence, and magnetic properties of nanoporous 3D lanthanide coordination polymers with 4,4′-biphenyldicarboxylate ligand. CrystEngComm, 2008, 10, 1237.	1.3	68
1042	A Ternary Metalâ^'Organic Framework Built on Triangular Organic Spacers, Square and Tetrahedral Co ₂ Secondary Building Units. Crystal Growth and Design, 2008, 8, 176-178.	1.4	42
1043	Molecular simulations for adsorption and separation of natural gas in IRMOF-1 and Cu-BTC metal-organic frameworks. Physical Chemistry Chemical Physics, 2008, 10, 7085.	1.3	104

ARTICLE IF CITATIONS Unconventional metal organic frameworks: porous cross-linked phosphonates. Dalton Transactions, 1044 134 1.6 2008, , 6089. Challenges and breakthroughs in recent research on self-assembly. Science and Technology of 1045 2.8 Advanced Materials, 2008, 9, 014109. Recognition of dicarboxylic acids by 3,3â€²-bipyridine amide based receptors and its supramolecular 1046 1.3 28 behavior in solid state. CrystEngComm, 2008, 10, 507. Crystal engineering of nanoporous architectures and chiral porphyrin assemblies. CrystEngComm, 1047 123 2008, 10, 637. Sonochemical synthesis of MOF-5. Chemical Communications, 2008, , 6336. 1048 2.2 388 Understanding Inflections and Steps in Carbon Dioxide Adsorption Isotherms in Metal-Organic 1049 6.6 Frameworks. Journal of the American Chemical Society, 2008, 130, 406-407. Competition between coordination network and halogen bond network formation: towards 1050 halogen-bond functionalised network materials using copper-iodobenzoate units. CrystEngComm, 1.334 2008, 10, 1335. Characterization of interfacial water in MOF-5 (Zn4(O)(BDC)3)â€"a combined spectroscopic and 1.3 94 theoretical study. Physical Chemistry Chemical Physics, 2008, 10, 4732. Proton and Water Activity-Controlled Structure Formation in Zinc Carboxylate-Based Metal Organic 1052 1.1 141 Frameworks. Journal of Physical Chemistry A, 2008, 112, 7567-7576. Two- and Three-fold Interpenetrated Metal-Organic Frameworks from One-Pot Crystallization. 1.9 Inorganic Chemistry, 2008, 47, 7728-7733. Photoinduced Charge-Transfer Processes on MOF-5 Nanoparticles: Elucidating Differences between Metal-Organic Frameworks and Semiconductor Metal Oxides. Journal of Physical Chemistry C, 2008, 1055 226 1.5 112, 14090-14101. Microperoxidase-11 Immobilized in a Metal Organic Framework. ACS Symposium Series, 2008, , 76-98. 0.5 Enumeration of Not-Yet-Synthesized Zeolitic Zinc Imidazolate MOF Networks: A Topological and DFT 1057 1.2 93 Approach. Journal of Physical Chemistry B, 2008, 112, 9437-9443. Force Field Validation for Molecular Dynamics Simulations of IRMOF-1 and Other Isoreticular Zinc 1058 1.5 142 Carboxylate Coordination Polymers. Journal of Physical Chemistry C, 2008, 112, 5795-5802. Two microporous metal–organic frameworks with different topologies constructed from linear 1059 1.3 55 trinuclear M3(COO)n secondary building units. CrystEngComm, 2008, 10, 753. Enhanced H₂ Adsorption in Isostructural Metalâ² Organic Frameworks with Open Metal Sites: Strong Dependence of the Binding Strength on Metal Ions. Journal of the American Chemical 1060 Society, 2008, 130, 15268-15269. Exceptional Behavior over the Whole Adsorptiona[^]Storagea[^]Delivery Cycle for NO in Porous Metal 1061 6.6 391 Organic Frameworks. Journal of the American Chemical Society, 2008, 130, 10440-10444. Covalent modification of a metalâ€"organic framework with isocyanates: probing substrate scope and 2.2 reactivity. Chemical Communications, 2008, , 3366.

#	Article	IF	CITATIONS
1063	Ag, Ag ₂ S, and Ag ₂ Se Nanocrystals:  Synthesis, Assembly, and Construction of Mesoporous Structures. Journal of the American Chemical Society, 2008, 130, 4016-4022.	6.6	243
1064	Controllable preparation, network structures and properties of unusual metal–organic frameworks constructed from 4,4′-(hexafluoroisopropylidene)diphthalic acid and 4,4′-bipyridyl. Dalton Transactions, 2008, , 2346.	1.6	47
1065	Gas/Solvent-Induced Transformation and Expansion of a Nonporous Solid to 1:1 Host Guest Form. Crystal Growth and Design, 2008, 8, 2090-2092.	1.4	25
1066	Adsorption and Diffusion of Hydrogen in a New Metalâ^'Organic Framework Material:  [Zn(bdc)(ted)0.5]. Journal of Physical Chemistry C, 2008, 112, 2911-2917.	1.5	89
1067	Atomistic Simulation of Micropore Structure, Surface Area, and Gas Sorption Properties for Amorphous Microporous Polymer Networks. Journal of Physical Chemistry C, 2008, 112, 20549-20559.	1.5	59
1068	Separating Solids: Purification of Metal-Organic Framework Materials. Journal of the American Chemical Society, 2008, 130, 8598-8599.	6.6	89
1069	A Prototypical Zeolitic Lanthanideâ `Organic Framework with Nanotubular Structure. Crystal Growth and Design, 2008, 8, 166-168.	1.4	85
1070	Catenation of Loop-Containing 2D Layers with a 3D pcu Skeleton into a New Type of Entangled Framework Having Polyrotaxane and Polycatenane Character. Inorganic Chemistry, 2008, 47, 5555-5557.	1.9	99
1071	Thermodynamics of Guest-Induced Structural Transitions in Hybrid Organicâ^'Inorganic Frameworks. Journal of the American Chemical Society, 2008, 130, 14294-14302.	6.6	299
1072	Conformational Isomerism in the Isoreticular Metal Organic Framework Family: A Force Field Investigation. Journal of Physical Chemistry C, 2008, 112, 14980-14987.	1.5	50
1073	High H2 Storage of Hexagonal Metalâ^'Organic Frameworks from First-Principles-Based Grand Canonical Monte Carlo Simulations. Journal of Physical Chemistry C, 2008, 112, 13431-13436.	1.5	71
1074	Preparation and Characterization of Zeolite Membranes. Membrane Science and Technology, 2008, 13, 135-175.	0.5	15
1075	"Clickable―Metalâ^'Organic Framework. Journal of the American Chemical Society, 2008, 130, 14354-14355.	6.6	271
1076	ls catenation beneficial for hydrogen storage in metal–organic frameworks?. Chemical Communications, 2008, , 4132.	2.2	80
1077	Molybdophosphonate Clusters as Building Blocks in the Oxomolybdate-Organodiphosphonate/Cobalt(II)â^'Organoimine System:  Structural Influences of Secondary Metal Coordination Preferences and Diphosphonate Tether Lengths. Inorganic Chemistry, 2008, 47, 832-854.	1.9	96
1078	Thorium(IV) Coordination Polymers in the Pyridine and Pyrazinedicarboxylic Acid Systems. Crystal Growth and Design, 2008, 8, 2921-2928.	1.4	52
1079	Cu6S4 Cluster Based Twelve-Connected Face-Centered Cubic and Cu19I4S12 Cluster Based Fourteen-Connected Body-Centered Cubic Topological Coordination Polymers. Inorganic Chemistry, 2008, 47, 8197-8203.	1.9	51
1080	Diffusion and Separation of CO ₂ and CH ₄ in Silicalite, C ₁₆₈ Schwarzite, and IRMOF-1: A Comparative Study from Molecular Dynamics Simulation. Langmuir, 2008, 24, 5474-5484	1.6	140

#	Article	IF	Citations
1081	Guest-Dependent High Pressure Phenomena in a Nanoporous Metalâ^'Organic Framework Material. Journal of the American Chemical Society, 2008, 130, 10524-10526.	6.6	162
1082	New lanthanide based coordination polymers with high potential porosity. Journal of Alloys and Compounds, 2008, 451, 377-383.	2.8	39
1083	Metal-Organic Framework from an Anthracene Derivative Containing Nanoscopic Cages Exhibiting High Methane Uptake. Journal of the American Chemical Society, 2008, 130, 1012-1016.	6.6	813
1084	Supermolecular Building Blocks (SBBs) and Crystal Design:  12-Connected Open Frameworks Based on a Molecular Cubohemioctahedron. Journal of the American Chemical Society, 2008, 130, 1560-1561.	6.6	300
1085	New microporous copper(II) coordination polymers based upon bifunctional 1,2,4-triazole/tetrazolate bridges. CrystEngComm, 2008, 10, 1216.	1.3	65
1086	Metal-Organic Frameworks Constructed from 2,4,6-Tris(4-pyridyl)-1,3,5-triazine. Inorganic Chemistry, 2008, 47, 4481-4489.	1.9	162
1087	Role of Temperature and Time in the Formation of Infinite â^'Mâ^'Oâ^'Mâ^' Linkages and Isolated Clusters in MOFs: A Few Illustrative Examples. Inorganic Chemistry, 2008, 47, 8451-8463.	1.9	150
1088	Microwave-Assisted Solvothermal Synthesis of a Dynamic Porous Metal-Carboxylate Framework. Crystal Growth and Design, 2008, 8, 4559-4563.	1.4	76
1089	New Laser Hybrid Materials Based on POSS Copolymers. Journal of Physical Chemistry C, 2008, 112, 14710-14713.	1.5	30
1090	Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition. Chemical Communications, 2008, , 2441.	2.2	209
1091	Late transition metal-oxo compounds and open-framework materials that catalyze aerobic oxidations. Advances in Inorganic Chemistry, 2008, , 245-272.	0.4	22
1092	Self-Assembly of Organic–Inorganic Hybrid Materials Constructed from Eight-Connected Coordination Polymer Hosts with Nanotube Channels and Polyoxometalate Guests As Templates. Inorganic Chemistry, 2008, 47, 2442-2448.	1.9	213
1093	The first examples of lanthanide selenite-carboxylate compounds: syntheses, crystal structures and properties. Dalton Transactions, 2008, , 3101.	1.6	31
1094	Novel Copper(I)â^' and Copper(II)â^'Guanazolate Complexes: Structure, Network Topologies, Photoluminescence, and Magnetic Properties. Crystal Growth and Design, 2008, 8, 3735-3744.	1.4	42
1095	Control of Vertex Geometry, Structure Dimensionality, Functionality, and Pore Metrics in the Reticular Synthesis of Crystalline Metalâ~'Organic Frameworks and Polyhedra. Journal of the American Chemical Society, 2008, 130, 11650-11661.	6.6	498
1096	Synthetic Control of the Pore Dimension and Surface Area in Conjugated Microporous Polymer and Copolymer Networks. Journal of the American Chemical Society, 2008, 130, 7710-7720.	6.6	802
1097	An Example of Node-Based Postassembly Elaboration of a Hydrogen-Sorbing, Metalâ^'Organic Framework Material. Inorganic Chemistry, 2008, 47, 10223-10225.	1.9	118
1098	Syntheses, structures and properties of cadmium benzenedicarboxylate metal–organic frameworks. Dalton Transactions, 2008, , 2465.	1.6	63

#	Article	IF	CITATIONS
1099	Coordination Polymers with the Angular Dipyridyl Ligand 1,3,4-Thiadiazole-2,5-di-3-pyridyl: Influence of Analogue Dipyridyl Ligands and Bridging Anions on Structural Diversity. Crystal Growth and Design, 2008, 8, 1566-1574.	1.4	54
1100	Metal-organic frameworks with high capacity and selectivity for harmful gases. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11623-11627.	3.3	820
1101	Assembly of a Chiral Bikitaite Zeolite Metalâ^'Organic Framework Based on the Asymmetrical Tetrahedral Building Blocks. Crystal Growth and Design, 2008, 8, 2986-2989.	1.4	39
1102	Zn(<scp>ii</scp>) coordination architectures with mixed ligands of dipyrido[3,2-d â^¶â€‰2′,3′-f]quinoxaline/2,3-di-2-pyridylquinoxaline and benzenedicarboxylate: synthes structures, and photoluminescence properties. CrystEngComm, 2008, 10, 349-356.	s e s3 crysta	104
1103	Hydrogen bond directed open-framework of bis(bipyridine-glycoluril) phosphatocobalt(III) with solvent accessible void space. CrystEngComm, 2008, 10, 1520.	1.3	13
1104	Metal–organic Coordination Polymers Assembled from Divalent Transition Salts with a Flexible Spacer Ligand: Hydrothermal Syntheses, Crystal Structures, and Luminescent and Magnetic Properties. Supramolecular Chemistry, 2008, 20, 501-515.	1.5	10
1105	Guest capture, storage and removal in the TATM host framework: a single-crystal study. New Journal of Chemistry, 2008, 32, 864.	1.4	3
1106	Copper 5-sulfoisophthalato quasi-planar squares in coordination polymers modulated by alkaline-earth metals: a way to molecular squares?. CrystEngComm, 2008, 10, 784.	1.3	42
1107	Assembly of CdI2-type coordination networks from triangular ligand and octahedral metal center: topological analysis and potential framework porosity. Chemical Communications, 2008, , 356-358.	2.2	78
1108	Nickel(ii)–azido ferromagnetic chains in a 3D porous metal–organic framework with breathing guest molecules. Dalton Transactions, 2008, , 5556.	1.6	41
1109	A novel chiral porous metal–organic framework: asymmetric ring opening reaction of epoxide with amine in the chiral open space. Chemical Communications, 2008, , 820-822.	2.2	180
1110	Hydrothermal synthesis, crystal structure and fluorescence of a cyclic dimer copper compound constructed by 2-nitrobenzenedicarboxylate. Journal of Coordination Chemistry, 2008, 61, 3172-3179.	0.8	2
1111	Quantum dynamics of adsorbed <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mtext>H</mml:mtext><mml:mn>2</mml:mn></mml:msub>the microporous framework MOF-5 analyzed using diffuse reflectance infrared spectroscopy. Physical Review B 2008, 77</mml:mrow></mml:math>	ml:mrow> 1.1	67
1112	A zinc(ii) coordination polymer constructed from mixed-ligand 1,2-bis(2-(1H-imidazol-1-yl)ethoxy)ethane and 1,4-benzenedicarboxylic acid. CrystEngComm, 2008, 10, 1137.	1.3	43
1113	Novel three-dimensional 3d–4f microporous magnets exhibiting selective gas adsorption behavior. Chemical Communications, 2008, , 6348.	2.2	100
1114	A designed metal–organic framework based on a metal–organic polyhedron. Chemical Communications, 2008, , 2340.	2.2	133
1115	Enhancement of H2 adsorption in Li+-exchanged co-ordination framework materials. Chemical Communications, 2008, , 6108.	2.2	164
1116	1D, 2D and 3D luminescent zinc(ii) coordination polymers assembled from varying flexible thioether ligands. Dalton Transactions, 2008, , 4711.	1.6	68

#	Article	IF	CITATIONS
1117	Diversification of hydrothermal reaction products induced by temperature: syntheses, structures and properties of four La(iii)–Cu(ii) metal frameworks constructed from rod-shaped molecular building blocks. Dalton Transactions, 2008, , 5342.	1.6	18
1118	Manipulation of molecular aggregation and supramolecular structure using self-assembled lithium mixed-anion complexes. Dalton Transactions, 2008, , 3429.	1.6	15
1119	Three-dimensional metal–organic frameworks constructed from bix and 1,2,4-benzenetricarboxylate. CrystEngComm, 2008, 10, 1379.	1.3	49
1120	Hydrothermal syntheses, structures and luminescent properties of d10 metal–organic frameworks based on rigid 3,3′,5,5′-azobenzenetetracarboxylic acid. CrystEngComm, 2008, 10, 1395.	1.3	120
1121	Molecular simulation of hydrogen diffusion in interpenetrated metal–organic frameworks. Physical Chemistry Chemical Physics, 2008, 10, 3244.	1.3	40
1122	A biporous coordination framework with high H2storage density. Chemical Communications, 2008, , 359-361.	2.2	84
1123	Dipolar molecular rotors in the metal–organic framework crystal IRMOF-2. Physical Chemistry Chemical Physics, 2008, 10, 5188.	1.3	109
1124	Quantum Sieving Effect of Three-Dimensional Cu-Based Organic Framework for H ₂ and D ₂ . Journal of the American Chemical Society, 2008, 130, 6367-6372.	6.6	94
1125	Employing La2- (La = Eu, Tb, Pr) or Co3-Based Molecule Building Blocks To Construct 3,8-Connected Nets: Hydrothermal Synthesis, Structure, Luminescence, and Magnetic Properties. Crystal Growth and Design, 2008, 8, 2006-2010.	1.4	84
1126	Synthesis and structure of a one-dimensional copper(II) complex supported by 1,2-phenylenediacetate. Journal of Coordination Chemistry, 2008, 61, 1849-1855.	0.8	2
1127	A novel 1D armed-polyrotaxane chain constructed from a V-shaped tetracarboxylate ligand. CrystEngComm, 2008, 10, 479.	1.3	106
1128	Simultaneous and cooperative gas storage and gas production using bifunctional zeolites. Chemical Communications, 2008, , 6146.	2.2	13
1129	Three coordination polymers with helical chains based on methylenediisophthalic acid (H4MDIP). CrystEngComm, 2008, 10, 706.	1.3	56
1130	A three-dimensional lanthanide-organic radical open-framework. Chemical Communications, 2008, , 3160.	2.2	32
1131	d10 Metal complexes assembled from isomeric benzenedicarboxylates and 3-(2-pyridyl)pyrazole showing 1D chain structures: syntheses, structures and luminescent properties. Dalton Transactions, 2008, , 1302.	1.6	143
1132	Separation and Molecular-Level Segregation of Complex Alkane Mixtures in Metalâ^'Organic Frameworks. Journal of the American Chemical Society, 2008, 130, 10884-10885.	6.6	116
1133	Two-dimensional metal–organic network with an unusual 36 topology and a cubic close packing pattern. CrystEngComm, 2008, 10, 954.	1.3	19
1134	Hydrothermal Synthesis, Structures, and Photoluminescent Properties of Benzenepentacarboxylate Bridged Networks Incorporating Zinc(II)â^'Hydroxide Clusters or Zinc(II)â^'Carboxylate Layers. Inorganic Chemistry, 2008, 47, 190-199.	1.9	131

#	Article	IF	CITATIONS
1135	Three Novel Heterobimetallic Cd/Znâ^'Na Coordination Polymers: Syntheses, Crystal Structure, and Luminescence. Crystal Growth and Design, 2008, 8, 3706-3712.	1.4	85
1136	Assembly of a Cluster-Based Coordination Polymer from a Linear Trimetallic Building Block Surrounded by Flexible Hingelike Ligands. Crystal Growth and Design, 2008, 8, 2052-2054.	1.4	23
1137	Reply to "Comment on â€~Kinetics and Mechanistic Model for Hydrogen Spillover on Bridged Metal-Organic Frameworks'― Journal of Physical Chemistry C, 2008, 112, 3155-3156.	1.5	8
1138	Lanthanide Coordination Polymers Constructed from Dinuclear Building Blocks: Novel Structure Evolution from One-Dimensional Chains to Three-Dimensional Architectures. Crystal Growth and Design, 2008, 8, 3098-3106.	1.4	60
1139	Freezing Phenomena of Lennard-Jones Fluid Confined in Jungle-Gym Nanospace:  A Monte Carlo Study. Langmuir, 2008, 24, 802-809.	1.6	6
1140	Reversible Anion Exchange and Sensing in Large Porous Materials Built from 4,4′-Bipyridine via π···π and H-Bonding Interactions. Inorganic Chemistry, 2008, 47, 5122-5128.	1.9	59
1141	Donors and Acceptors Based on Triangular Dehydrobenzo[12]annulenes: Formation of a Triple-Layered Rosette Structure by a Charge-Transfer Complex. Journal of the American Chemical Society, 2008, 130, 14339-14345.	6.6	91
1142	Amphidynamic Character of Crystalline MOF-5:  Rotational Dynamics of Terephthalate Phenylenes in a Free-Volume, Sterically Unhindered Environment. Journal of the American Chemical Society, 2008, 130, 3246-3247.	6.6	229
1143	Synthesis and characterization of a two-dimensional calcium complex with (1,3,4-thiadiazole-2,5-diyldithio)diacetic acid. Journal of Coordination Chemistry, 2008, 61, 907-916.	0.8	7
1144	24- and 26-Membered Macrocyclic Diorganotin(IV) Bis-Dithiocarbamate Complexes with <i>N</i> , <i>N′</i> -Disubstituted 1,3- and 1,4-Bis(aminomethyl)benzene and 1,1′-Bis(aminomethyl)ferrocene as Spacer Groups. Inorganic Chemistry, 2008, 47, 9804-9812.	1.9	52
1145	Exceptional Framework Flexibility and Sorption Behavior of a Multifunctional Porous Cuprous Triazolate Framework. Journal of the American Chemical Society, 2008, 130, 6010-6017.	6.6	447
1146	Quest for Zeolite-like Metalâ^'Organic Frameworks:  On Pyrimidinecarboxylate Bis-Chelating Bridging Ligands. Journal of the American Chemical Society, 2008, 130, 3768-3770.	6.6	178
1147	CW and Pulsed ESR Spectroscopy of Cupric Ions in the Metalâ^'Organic Framework Compound Cu ₃ (BTC) ₂ . Journal of Physical Chemistry C, 2008, 112, 2678-2684.	1.5	101
1148	Hydrogen Bonding-Directed Metallosupramolecular Structural Motifs Based on a Peripheral Urea Fused Bipyridine Tecton. Crystal Growth and Design, 2008, 8, 1952-1960.	1.4	28
1149	Crystalline-State Guest-Exchange and Gas-Adsorption Phenomenon for a "Soft―Supramolecular Porous Framework Stacking by a Rigid Linear Coordination Polymer. Inorganic Chemistry, 2008, 47, 5218-5224.	1.9	106
1150	3D Metalâ^'Organic Frameworks Based on Elongated Tetracarboxylate Building Blocks for Hydrogen Storage. Inorganic Chemistry, 2008, 47, 3955-3957.	1.9	78
1151	A comparative investigation of H2 adsorption strength in Cd- and Zn-based metal organic framework-5. Journal of Chemical Physics, 2008, 129, 164104.	1.2	31
1152	Novel Metalâ^'Organic Frameworks Derived from Group II Metal Cations and Aryldicarboxylate Anionic Ligands. Crystal Growth and Design, 2008, 8, 911-922.	1.4	122

#	Article	IF	CITATIONS
1153	Guest Loading and Multiple Phases in Single Crystals of the van der Waals Host p- tert-Butylcalix[4]arene. Crystal Growth and Design, 2008, 8, 1878-1885.	1.4	43
1154	Broadly Hysteretic H ₂ Adsorption in the Microporous Metalâ~Organic Framework Co(1,4-benzenedipyrazolate). Journal of the American Chemical Society, 2008, 130, 7848-7850.	6.6	396
1155	Porous Metalâ^'Organic Framework Based on μ ₄ -oxo Tetrazinc Clusters: Sorption and Guest-Dependent Luminescent Properties. Inorganic Chemistry, 2008, 47, 1346-1351.	1.9	185
1156	Functional Faceted Silver Nano-Hexapods: Synthesis, Structure Characterizations, and Optical Properties. Chemistry of Materials, 2008, 20, 192-197.	3.2	54
1157	Synthesis, Structure, and Supramolecular Architecture of Benzonitrile and Pyridine Adducts of Bis(pentafluorophenyl)zinc: Pentafluorophenyl–Aryl Interactions versus Homoaromatic Pairing. Organometallics, 2008, 27, 1436-1446.	1.1	24
1158	Cubic Metalâ^'Organic Polyhedrons of Nickel(II) Imidazoledicarboxylate Depositing Protons or Alkali Metal Ions. Crystal Growth and Design, 2008, 8, 2458-2463.	1.4	49
1159	Coordination behaviour and network formation with 4,4′,6,6′-tetracarboxy-2,2′-bipyridine and 4,4′-dicarboxy-2,2′-bipyridineligands with rare and alkaline earth metals. CrystEngComm, 2008, 10, 68-78.	1.3	54
1160	Molecular Dynamics Simulations for Water and Ions in Protein Crystals. Langmuir, 2008, 24, 4215-4223.	1.6	36
1161	Novel Inorganic–Organic Hybrid Frameworks of Manganese(II): Syntheses, Crystal Structures, and Physical Properties. Crystal Growth and Design, 2008, 8, 1924-1931.	1.4	52
1162	Structurally different cadmium(II) and lead(II) supramolecular polymers with the same benzene-1,2,3,4-tetracarboxylate dianion as bridging ligands from hydrothermal reactions. Journal of Coordination Chemistry, 2008, 61, 1437-1442.	0.8	5
1163	Ln ₂ (C ₂ O ₄)(O ₂ CCH ₂ OH) ₄ (Ln) Tj E Distorted Hexagonal Lanthanide Nodes. Crystal Growth and Design, 2008, 8, 3511-3513.	TQq0 0 0 1.4) rgBT /Overlo 16
1164	Synchrotron X-ray Charge Density Study of Coordination Polymer Co ₃ (C ₈ H ₄ O ₄) ₄ (C ₄ H _{12at 16 K. Journal of the American Chemical Society, 2008, 130, 7988-7996.}	ɔø₩) <sub< td=""><td>>24/sub>(<mark>C</mark></td></sub<>	> 2 4/sub>(<mark>C</mark>
1165	Intrinsic Yellow Light Phosphor:  An Organicâ^'Inorganic Hybrid Gallium Oxalatophosphate with Hexameric Octahedral Ga ₆ (OH) ₄ O ₂₆ Cluster. Journal of the American Chemical Society, 2008, 130, 1146-1147.	6.6	79
1166	MOF-5 as acid catalyst with shape selectivity properties. Studies in Surface Science and Catalysis, 2008, , 467-470.	1.5	6
1167	Hydrogen Storage Properties of Rigid Three-Dimensional Hofmann Clathrate Derivatives:  The Effects of Pore Size. Journal of Physical Chemistry C, 2008, 112, 7079-7083.	1.5	67
1168	Metallo-supramolecular modules as a paradigm for materials science. Science and Technology of Advanced Materials, 2008, 9, 014103.	2.8	61
1169	Reticular Synthesis of Covalent Organic Borosilicate Frameworks. Journal of the American Chemical Society, 2008, 130, 11872-11873.	6.6	352
1170	Interaction of D2 with Ti-Adsorbed Polyaniline and Implication for Hydrogen Storage. Journal of Physical Chemistry B, 2008, 112, 16431-16436.	1.2	7

#	Article	IF	CITATIONS
1171	Investigation of Silver-Containing Layered Materials and Their Interactions with Primary Amines Using Solid-State ¹⁰⁹ Ag and ¹⁵ N NMR Spectroscopy and First Principles Calculations. Inorganic Chemistry, 2008, 47, 11245-11256.	1.9	8
1172	Synthesis, Crystal Structure and Luminescent Properties of a Coordination Polymer [Zn3(IDC)2(μ2-H2O) H2O] n with 1D Channels. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2008, 38, 705-709.	0.6	3
1173	Poly[tris(μ4-5-aminoisophthalato)diaquadilanthanum(III)]. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m971-m972.	0.2	1
1174	Metal-organic framework materials for hydrogen storage. , 2008, , 288-312.		6
1175	Poly[bis(N,N-dimethylformamide)tris(μ4-trans-stilbene-4,4′-dicarboxylato)tricadmium(II)]: a two-dimensional network with an unusual 36topology. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m861-m862.	0.2	3
1176	Hydrogen-based Autonomous Power Systems. Power Systems, 2008, , .	0.3	24
1177	Non-covalent synthesis of ionic and molecular complexes of benzoic acid and substituted 2-aminopyrimidines by varying aryl/alkyl <i>substituents</i> and their supramolecular chemistry. Supramolecular Chemistry, 2008, 20, 495-500.	1.5	9
1178	Synthesis, Crystal Structure and Properties of a New 2D-Coordination polymer, [Cu4L2(H2O)8]·4H2On, (H4L = 2,2′,2″,2‴-[2,5-dimethyl-1,4-phenyle-nebis(methylenenitrilo)]tetraacetic acid). Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2008, 38, 721-726.	0.6	2
1181	Origin of the exceptional negative thermal expansion in metal-organic framework-5 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mrow><mml:mtext>Zn</mml:mtext></mml:mrow><mml:mn>4 Physical Review B, 2008, 78, .</mml:mn></mml:mrow></mml:math 	<td>> 128 > 7 mml:msi</td>	> 128 > 7 mml:msi
1182	Syntheses and Structural Characterization of 1D Coordination Polymers of Transitionâ€Metal Atoms Containing 2,4â€Pyridinedicarboxylate Bridges. Journal of the Chinese Chemical Society, 2008, 55, 255-263.	0.8	6
1183	Facile Preparation of Polytopic Azoles: Synthesis, Characterization, and X-ray Powder Diffraction Studies of 1,4-Bis(pyrazol-4-yl)- and 1,4-Bis(tetrazol-5-yl)benzene. Chemistry Letters, 2008, 37, 956-957.	0.7	23
1186	Molecular simulation study of the quantum effects of hydrogen adsorption in metal-organic frameworks: influences of pore size and temperature. Molecular Simulation, 2009, 35, 748-754.	0.9	7
1188	Synthesis, structures, and characterization of cadmium(II), cobalt(II), and copper(II) metal polymers with tetrazole-1-acetate. Journal of Coordination Chemistry, 2009, 62, 2108-2117.	0.8	27
1189	Assessing Guest Diffusivities in Porous Hosts from Transient Concentration Profiles. Physical Review Letters, 2009, 102, 065901.	2.9	76
1190	Methane diffusion mechanism in catenated metal–organic frameworks. Molecular Simulation, 2009, 35, 373-380.	0.9	8
1191	Syntheses, crystal structures, and luminescence of carboxylato-bridged coordination compounds. Journal of Coordination Chemistry, 2009, 62, 2511-2519.	0.8	12
1192	A homochiral metal-organic framework with amino-functionalized pores. Main Group Chemistry, 2009, 8, 237-250.	0.4	19
1193	Gas adsorption applications of porous metal–organic frameworks. Pure and Applied Chemistry, 2009, 81, 2235-2251.	0.9	101

#	Article	IF	CITATIONS
1194	Synchrotron powder structure of a new layered lanthanide-organic network. Zeitschrift Für Kristallographie, 2009, 224, 261-272.	1.1	22
1195	Scintillating Metal Organic Frameworks: A New Class of Radiation Detection Materials. Materials Research Society Symposia Proceedings, 2009, 1164, 1.	0.1	3
1196	Chiral Metal-Organic Porous Materials: Synthetic Strategies and Applications in Chiral Separation and Catalysis. Topics in Current Chemistry, 2009, 293, 115-153.	4.0	43
1197	Reticular Chemistry and Metal-Organic Frameworks for Clean Energy. MRS Bulletin, 2009, 34, 682-690.	1.7	75
1198	Controlled Polymerization by Incarceration of Monomers in Nanochannels. Topics in Current Chemistry, 2009, 293, 155-173.	4.0	12
1199	Self-assembly of zinc polymers based on a flexible linear ligand at different pH values: Syntheses, structures and fluorescent properties. Solid State Sciences, 2009, 11, 635-642.	1.5	16
1200	An unprecedented two-dimensional Eu(III) coordination polymer Eu(OOC–C5H4N–CH2–CH2–COO)(OOC–COO)·2H2O formed by in situ reaction of fumaric acid and isonicotinic acid: Crystal structure and luminescent properties. Solid State Sciences, 2009, 11, 1065-1070.	1.5	11
1201	Non-centrosymmetric coordination polymers based on thallium and acetylenedicarboxylate. Solid State Sciences, 2009, 11, 1058-1064.	1.5	22
1202	Amino-based metal-organic frameworks as stable, highly active basic catalysts. Journal of Catalysis, 2009, 261, 75-87.	3.1	600
1203	Gold(III) – metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts. Journal of Catalysis, 2009, 265, 155-160.	3.1	266
1204	Improved synthesis and hydrogen storage of a microporous metal–organic framework material. Energy Conversion and Management, 2009, 50, 1314-1317.	4.4	18
1205	Enhanced Methane Adsorption in Catenated Metal-organic Frameworks: A Molecular Simulation Study. Chinese Journal of Chemical Engineering, 2009, 17, 580-584.	1.7	7
1206	Molecular Simulation of CO2/H2 Mixture Separation in Metal-organic Frameworks: Effect of Catenation and Electrostatic Interactions. Chinese Journal of Chemical Engineering, 2009, 17, 781-790.	1.7	42
1207	Crystal Growth of the Metal—Organic Framework Cu ₃ (BTC) ₂ on the Surface of Pulp Fibers. Advanced Engineering Materials, 2009, 11, 93-95.	1.6	86
1208	Synthesis of Microporous Carbon Nanofibers and Nanotubes from Conjugated Polymer Network and Evaluation in Electrochemical Capacitor. Advanced Functional Materials, 2009, 19, 2125-2129.	7.8	172
1209	Scintillating Metalâ€Organic Frameworks: A New Class of Radiation Detection Materials. Advanced Materials, 2009, 21, 95-101.	11.1	157
1210	Conjugated Microporous Polymers. Advanced Materials, 2009, 21, 1291-1295.	11.1	929
1211	MOF–Graphite Oxide Composites: Combining the Uniqueness of Graphene Layers and Metal–Organic Frameworks. Advanced Materials, 2009, 21, 4753-4757.	11.1	563

#	Article	IF	CITATIONS
1212	Charged <i>soc</i> metalâ€organic framework for highâ€efficacy H ₂ adsorption and syngas purification: Atomistic simulation study. AICHE Journal, 2009, 55, 2422-2432.	1.8	55
1217	Synthesis and Properties of (Triptycenedicarboxylatio)zinc Coordination Networks. Chemistry - A European Journal, 2009, 15, 5845-5853.	1.7	37
1218	Unprecedented Sulfoneâ€Functionalized Metal–Organic Frameworks and Gasâ€Sorption Properties. Chemistry - A European Journal, 2009, 15, 4523-4527.	1.7	124
1219	Facile Purification of Porous Metal Terephthalates with Ultrasonic Treatment in the Presence of Amides. Chemistry - A European Journal, 2009, 15, 11730-11736.	1.7	50
1220	Triptyceneâ€Based Metal Salphens—Exploiting Intrinsic Molecular Porosity for Gas Storage. Chemistry - A European Journal, 2009, 15, 11824-11828.	1.7	100
1221	Rigidâ€6trutâ€Containing Crown Ethers and [2]Catenanes for Incorporation into Metal–Organic Frameworks. Chemistry - A European Journal, 2009, 15, 13356-13380.	1.7	88
1222	Molecular Simulation Study of Hexane Diffusion in Dynamic Metalâ€Organic Frameworks. Chinese Journal of Chemistry, 2009, 27, 472-478.	2.6	11
1223	How Does Your MOF Grow?. ChemPhysChem, 2009, 10, 327-329.	1.0	53
1224	Preferred Hydrogen Adsorption Sites in Various MOFs—A Comparative Computational Study. ChemPhysChem, 2009, 10, 2647-2657.	1.0	75
1225	Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources. ChemSusChem, 2009, 2, 796-854.	3.6	2,178
1226	Two New Supramolecular Architectures of Singly Phenoxoâ€Bridged Copper(II) and Doubly Phenoxoâ€Bridged Manganese(II) Complexes Derived from an Unusual ONOO Donor Hydrazone Ligand: Syntheses, Structural Variations, Cryomagnetic, DFT, and EPR Studies. European Journal of Inorganic Chemistry, 2009, 2009, 2915-2928.	1.0	48
1227	A New Series of Anhydrous Lanthanideâ€Based Octahedral Hexanuclear Complexes. European Journal of Inorganic Chemistry, 2009, 2009, 3172-3178.	1.0	26
1228	New Helical Zinc Complexes with Schiff Base Derivatives of βâ€Diketonates or βâ€Keto Esters and Ethylenediamine. European Journal of Inorganic Chemistry, 2009, 2009, 3467-3474.	1.0	21
1229	Structure and Magnetic Properties of a New 1D Nickel(II) Hydroxythiophenedicarboxylate. European Journal of Inorganic Chemistry, 2009, 2009, 3713-3720.	1.0	20
1230	A New Manganese Coordination Polymer Containing 1,2,4-Benzenetricarboxylic Acid. European Journal of Inorganic Chemistry, 2009, 2009, 3661-3666.	1.0	16
1231	Mixedâ€Linker Metalâ€Organic Frameworks as Catalysts for the Synthesis of Propylene Carbonate from Propylene Oxide and CO ₂ . European Journal of Inorganic Chemistry, 2009, 2009, 3552-3561.	1.0	229
1232	Photoluminescent Metal-Organic Nanotubes via Hydrothermal in Situ Ligand Reactions. European Journal of Inorganic Chemistry, 2009, 2009, 4213-4218.	1.0	24
1241	A Nanoscale Molecular Switch Triggered by Thermal, Light, and Guest Perturbation. Angewandte Chemie - International Edition, 2009, 48, 2549-2552.	7.2	169

#	Article	IF	CITATIONS
1242	Zinc Oxide Nano―and Microfabrication from Coordinationâ€Polymer Templates. Angewandte Chemie - International Edition, 2009, 48, 3018-3021.	7.2	66
1243	Bidirectional Chemo‣witching of Spin State in a Microporous Framework. Angewandte Chemie - International Edition, 2009, 48, 4767-4771.	7.2	474
1244	Metal–Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie - International Edition, 2009, 48, 7502-7513.	7.2	1,732
1245	Lithiumâ€Đoped 3D Covalent Organic Frameworks: Highâ€Capacity Hydrogen Storage Materials. Angewandte Chemie - International Edition, 2009, 48, 4730-4733.	7.2	244
1246	Heterogeneous Catalytic Oxidation by MFUâ€1: A Cobalt(II)â€Containing Metal–Organic Framework. Angewandte Chemie - International Edition, 2009, 48, 7546-7550.	7.2	190
1247	[Al ₄ (OH) ₂ (OCH ₃) ₄ (H ₂ Nâ€bdc) ₃] A 12â€Connected Porous Metal–Organic Framework with an Unprecedented Aluminumâ€Containing Brick. Angewandte Chemie - International Edition, 2009, 48, 5163-5166.	â‹ <i>x< 7.2</i>	/i> H <su 260</su
1248	Network Topology of a Hybrid Organic Zinc Phosphate with Bimodal Porosity and Hydrogen Adsorption. Angewandte Chemie - International Edition, 2009, 48, 6124-6127.	7.2	75
1249	A Highly Connected Porous Coordination Polymer with Unusual Channel Structure and Sorption Properties. Angewandte Chemie - International Edition, 2009, 48, 5287-5290.	7.2	361
1250	Engineering a Metal–Organic Framework Catalyst by Using Postsynthetic Modification. Angewandte Chemie - International Edition, 2009, 48, 7424-7427.	7.2	225
1251	A Mesoporous Metal–Organic Framework. Angewandte Chemie - International Edition, 2009, 48, 9954-9957.	7.2	317
1252	Freeze Drying Significantly Increases Permanent Porosity and Hydrogen Uptake in 4,4 onnected Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2009, 48, 9905-9908.	7.2	203
1253	The 3D porous metal-organic framework constructed by Cd(II) with 2-methylimidazole-4,5-dicarboxylic acid. Monatshefte Für Chemie, 2009, 140, 615-617.	0.9	15
1254	Determination of absolute adsorption in highly ordered porous media. Surface Science, 2009, 603, 1979-1984.	0.8	62
1255	Potential applications of metal-organic frameworks. Coordination Chemistry Reviews, 2009, 253, 3042-3066.	9.5	1,422
1256	Natural gas treating by selective adsorption: Material science and chemical engineering interplay. Chemical Engineering Journal, 2009, 155, 553-566.	6.6	386
1257	Adsorption of methane on porous metal carboxylates. Journal of Industrial and Engineering Chemistry, 2009, 15, 674-676.	2.9	31
1258	Solvothermal syntheses and structures of indium(III)-binaphthalenyl dicarboxylate complexes with yellow/blue luminescence. Journal of Solid State Chemistry, 2009, 182, 1499-1505.	1.4	16
1259	Solvent-dependent luminescent Cu(I) framework based on 5-(4-pyridyl)tetrazole. Journal of Solid State Chemistry, 2009, 182, 2555-2559.	1.4	28

#	Article	IF	CITATIONS
1260	Mixed-matrix membranes containing MOF-5 for gas separations. Journal of Membrane Science, 2009, 328, 165-173.	4.1	524
1261	Coordination polymers formed by sharing rectangular units: [M(L1)2(NO3)2]â^ž {M=Cd, Co; L1=(3-py)CHNC10H6NCH(3-py)}. Journal of Molecular Structure, 2009, 928, 67-71.	1.8	9
1262	Thermal investigation and infrared evolved gas analysis of light lanthanide(III) complexes with pyridine-3,5-dicarboxylic acid. Journal of Analytical and Applied Pyrolysis, 2009, 86, 239-244.	2.6	23
1263	Solvent influence on isomer separation and conformation control of the cyclohexanedicarboxylate ligand toward La(III) coordination polymeric framework. Journal of Materials Science, 2009, 44, 6576-6582.	1.7	9
1264	Effect of structural and thermodynamic factors on the sorption of hydrogen by metal–organic framework compounds. Theoretical and Experimental Chemistry, 2009, 45, 75-97.	0.2	23
1265	Role of the chemical structure of metal–organic framework compounds in the adsorption of hydrogen. Theoretical and Experimental Chemistry, 2009, 45, 277-301.	0.2	11
1266	Kinetics of oxidation of hydroquinone to p-benzoquinone catalyzed by microporous metal-organic frameworks M3(BTC)2 [MÂ=Âcopper(II), cobalt(II), or nickel(II); BTCÂ=Âbenzene-1,3,5-tricarboxylate] using molecular oxygen. Transition Metal Chemistry, 2009, 34, 263-268.	0.7	37
1267	Synthesis, Structure and Characterization of Two 1D Chain-like Cadmium Terephthalate Complexes: [Cd(tp)(H2O)3]·Â4H2O and [Ph4P][Cd(tp)0.5Cl2]·ÂH2O. Journal of Chemical Crystallography, 2009, 39, 60-67.	0.5	6
1268	Classification of Structural Motifs in Porphyrinic Coordination Polymers Assembled from Porphyrin Building Units, 5,10,15,20-Tetrapyridylporphyrin and Its Derivatives. Journal of Chemical Crystallography, 2009, 39, 229-240.	0.5	57
1269	3D Solid-State Network from Hierarchical Supramolecular Self-Assembly of Transition Metal Complexes of Pyridine Based Ligand. Journal of Chemical Crystallography, 2009, 39, 416-422.	0.5	6
1270	A New 4-Connected Co(II) Coordination Framework With an Uncommon Two-Fold Interpenetrating Net: Synthesis, Structure and Luminescence Property. Journal of Inorganic and Organometallic Polymers and Materials, 2009, 19, 406-409.	1.9	7
1271	Synthesis, structure, and magnetic properties of two novel lanthanide-organic frameworks. Science in China Series B: Chemistry, 2009, 52, 1456-1462.	0.8	6
1272	A Gadolinium Complex of the 5â€(1 <i>H</i> â€Tetrazolâ€5â€yl)isophthalic Acid Ligand: [Gd(C ₉ H ₃ N ₄ O ₄)(H ₂ O) ₃ ·2H <sub Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 39-42.</sub 	⊳ ∂ ∡dsub>(O∳ _n
1273	Synthesis and Structure of a Hybrid Metal Phthalate Compound and Its Magnetic Property. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 351-354.	0.6	3
1274	Solvothermal Synthesis, Crystal Structure and Properties of the First Organicâ€ŧemplated Holmium Sulfate [C ₂ N ₂ H ₁₀] ₃ [Ho ₂ (SO ₄) _{6Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 572-576.}	sub>·2H<	₂
1275	A New Coordination Polymer [Pb(1,4â€BDC)] <i>_n</i> Containing a Unique μ ₆ â€Bridging Coordination Mode. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 1650-1653.	0.6	10
1276	with M ^{II} = Mn, Fe, Co, Cu: Four New Coordination Polymers based on 4,4â€2â€Bipyridine (4,4â€2â€ and Acetylenedicarboxylate (ADC ^{2–}). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 914-919.	oipy) 0.6	16
1277	Hydrothermal Synthesis, Crystal Structure and Thermal Stability of two 3dâ€4f Heterometallic Coordination Polymers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 2381-2384.	0.6	3

#	Article	IF	CITATIONS
1278	A unique two-dimensional coordination network of 1-benzofuran-2,3-dicarboxylate with lanthanum(III) obtained by solvothermal synthesis. Acta Crystallographica Section C: Crystal Structure Communications, 2009, 65, m149-m151.	0.4	5
1279	Two polymeric nickel(II) complexes with aromatic benzene-1,2,4,5-tetracarboxylate and pyridine-2,5-dicarboxylate linkers. Acta Crystallographica Section C: Crystal Structure Communications, 2009, 65, m250-m254.	0.4	2
1280	A prototype environmental gas cell for <i>in situ</i> small-molecule X-ray diffraction. Journal of Applied Crystallography, 2009, 42, 457-460.	1.9	13
1281	Chemically blockable transformation and ultraselective low-pressure gas adsorption in a non-porous metal organic framework. Nature Chemistry, 2009, 1, 289-294.	6.6	190
1282	Controlling interpenetration in metal–organic frameworks by liquid-phase epitaxy. Nature Materials, 2009, 8, 481-484.	13.3	500
1283	Layer-pillared metal-organic framework showing two-fold interpenetration and considerable solvent-accessible channels. Microporous and Mesoporous Materials, 2009, 117, 486-489.	2.2	20
1284	Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Microporous and Mesoporous Materials, 2009, 118, 296-301.	2.2	347
1285	Characterization of metal-organic frameworks by water adsorption. Microporous and Mesoporous Materials, 2009, 120, 325-330.	2.2	938
1286	Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth. Microporous and Mesoporous Materials, 2009, 123, 100-106.	2.2	293
1287	Knoevenagel condensation and cyanosilylation reactions catalyzed by a MOF containing coordinatively unsaturated Zn(II) centers. Journal of Molecular Catalysis A, 2009, 299, 1-4.	4.8	112
1288	Formation of bilayer structure through face-to-face π–π interactions. Journal of Molecular Structure, 2009, 920, 14-17.	1.8	6
1289	Synthesis, structures and fluorescent properties of cadmium/zinc coordination polymers with 1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene and 1,3,5-benzenetricarboxylic acid. Journal of Molecular Structure, 2009, 930, 49-54.	1.8	12
1290	Hydrothermal syntheses and structures of first examples of lanthanide 7,8,4′-tricarboxymethoxyisoflavone coordination polymers. Journal of Molecular Structure, 2009, 938, 214-220.	1.8	0
1291	Nanoporous metal organic framework materials for hydrogen storage. Particuology, 2009, 7, 129-140.	2.0	51
1292	Worm-like mesoporous carbon synthesized from metal–organic coordination polymers for supercapacitors. Electrochemistry Communications, 2009, 11, 1191-1194.	2.3	142
1293	Supramolecular salts containing the anionic [Ge(C2O4)3]2â^' complex and heteroaromatic amines. Inorganica Chimica Acta, 2009, 362, 263-270.	1.2	11
1294	Hydrothermal synthesis, structure and rare ferromagnetic property of a 3-D Nd(III) metal–organic framework based on mixed pyridine-2,5-dicarboxylic acid/nicotinic acid ligands. Inorganica Chimica Acta, 2009, 362, 299-302.	1.2	22
1295	Assembly and upconversion luminescence of lanthanide–organic frameworks with mixed acid ligands. Inorganica Chimica Acta, 2009, 362, 325-330.	1.2	56

CITATION REPORT ARTICLE IF CITATIONS The first two lanthanum-containing coordination polymers involving 1.2 11 naphthalene-1,4,5,8-tetra-carboxylate as ligand. Inorganica Chimica Acta, 2009, 362, 1478-1484. Two novel three-dimensional coordination polymers based on metal clusters: Hydrothermal 1.2 syntheses, crystal structures and luminescence. Inorganica Chimica Acta, 2009, 362, 1605-1610. Supramolecular isomers of lanthanides(III): Synthesis, crystal structures and luminescent properties. 1.2 17 Inorganica Chimica Acta, 2009, 362, 1797-1804. Exploring the effect of chain length of bridging ligands in coordination complexes and polymers derived from mixed ligand systems of pyridylnicotinamides and dicarboxylates. Inorganica Chimica 1.2 Acta, 2009, 362, 1767-1771 The lanthanide-containing cyclohexane-tri-carboxylate coordination polymers re-investigated. 1.2 11 Inorganica Chimica Acta, 2009, 362, 2123-2126. Synthesis and characterization of a novel photoluminescent three-dimensional metalâ \in "organic framework. Inorganica Chimica Acta, 2009, 362, 2510-2514. 1.2 Solvothermal synthesis, crystal structure and luminescence of the first organic amine templated 1.2 20 europium sulfate. Inorganica Chimica Acta, 2009, 362, 2565-2568. Solvothermal synthesis, crystal structure and properties of a novel 1-D organic amine templated 1.2 19 holmium sulfate. Inorganica Chimica Acta, 2009, 362, 3299-3302. Cationic induced assembly of two 2D zincâ€"terephthalate polymeric networks. Inorganica Chimica 1.2 8 Acta, 2009, 362, 3901-3909. Synthesis and hydrogen-storage behavior of metal–organic framework MOF-5. International Journal 3.8 219 of Hydrogen Energy, 2009, 34, 1377-1382. Comparison of adsorption isotherms on Cu-BTC metal organic frameworks synthesized from different 2.2 216 routes. Microporous and Mesoporous Materials, 2009, 117, 406-413. Separation of CO2/CH4 mixtures with the MIL-53(Al) metal–organic framework. Microporous and 2.2 319 Mesoporous Materials, 2009, 120, 221-227. Mechanism of benzene diffusion in MOF-5: A molecular dynamics investigation. Microporous and 2.2 45 Mesoporous Materials, 2009, 125, 90-96. New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene) Tj ETQq1 1 0.784314 rgBT /Over 2.2 298 Materials, 2009, 122, 93-98. Effect of the carboxyl groups on the assembly of copper pyridinedicarboxylate complexes. Journal of 1.8 16 Molecular Structure, 2009, 929, 105-111. In situ hydrothermal synthesis and structural characterization of two novel CdII–tetrazole 1.8 coordination polymers. Journal of Molecular Structure, 2009, 933, 98-103. Syntheses, characterization and luminescent properties of two lead(II) fumarate metal-organic 1.0 43 frameworks. Polyhedron, 2009, 28, 647-652.

1313	Linking patterns of ligands containing pyridyl–amine or two pyridyl terminals and their cadmium compounds: [CdL12(NO3)2], [CdL22(NO3)2] and [Cd2L32(NO3)4(H2O)4]·(C4H8O)2 [L1=(3-py)–CHN–C6H4–O–C6H4–NH2; L2=(4-py)–CHN–C6H4–O–C6H4–NH2; L3=(3-py)–CHN–C6H4–O–C6H4–NCH–(3-py)]. Polyhedron, 2009, 28, 614-620.	1.0	17

1296

1297

1298

1299

1300

1302

1304

1306

1308

1309

1310

#	Article	IF	Citations
1314	One-dimensional coordination polymers of praseodymium(III)–vanadium(V) complexes with pyridine-2,6-dicarboxylic acid. Polyhedron, 2009, 28, 2196-2200.	1.0	5
1315	Synthesis, molecular and crystal structure of a new dicarbonylruthenium(II) complex containing a xantphos dioxide chelating ligand. Polyhedron, 2009, 28, 2258-2262.	1.0	14
1316	Formation of nanoporous and non-porous organic–inorganic hybrid materials incorporating α-Keggin phosphotungstate anion: X-ray crystal structure of a 3D polymeric complex [{Na6(C9H5O6)3(H2O)15}{PW12O40}]â^ž with a â€~Ball-in-Bowl' type molecular structure. Polyhedron, 2009, 28, 2450-2458.	1.0	30
1317	Synthesis, and characterization of 1- and 2-D coordination polymers derived from the pseudopeptidic ligand oxamide-N,N′-diacetate: Insights into the supramolecular architectures constructed through H-bonds. Polyhedron, 2009, 28, 3322-3330.	1.0	11
1318	Assembly of novel phenanthroline-based cobalt(II) coordination polymers by selecting dicarboxylate ligands with different spacer length: From 1-D chain to 3-D interpenetrated framework. Journal of Organometallic Chemistry, 2009, 694, 2263-2269.	0.8	23
1319	Synthesis, structural characterization and selectively catalytic properties of metal–organic frameworks with nano-sized channels: A modular design strategy. Journal of Solid State Chemistry, 2009, 182, 502-508.	1.4	26
1320	Synthesis, crystal structure and photoluminescent properties of four lanthanide 5-nitroisophthalate coordination polymers. Journal of Solid State Chemistry, 2009, 182, 657-668.	1.4	34
1321	Three-dimensional (3-D) metal-organic frameworks with 3-pyridin-4-yl-benzoate defining new (3,6)-connected net topologies. Journal of Solid State Chemistry, 2009, 182, 3211-3214.	1.4	14
1322	Coordination polymers constructed from transition metal ions and organic N-containing heterocyclic ligands: Crystal structures and microporous properties. Progress in Polymer Science, 2009, 34, 240-279.	11.8	148
1323	Molecular dynamics simulation study on the hydrogen adsorption and diffusion in non-interpenetrating and interpenetrating IRMOFs. Catalysis Today, 2009, 146, 216-222.	2.2	13
1324	Molecular engineering for synthesizing novel structures of metal–organic frameworks with multifunctional properties. Coordination Chemistry Reviews, 2009, 253, 2891-2911.	9.5	623
1325	Quantum sieving in organic frameworks. Chemical Physics Letters, 2009, 467, 270-275.	1.2	25
1326	Interactions of hydrogen molecules with metal-organic frameworks at adsorption sites. Chemical Physics Letters, 2009, 469, 261-265.	1.2	7
1327	Comparison of Cu-BTC and zeolite 13X for adsorbent based CO2 separation. Energy Procedia, 2009, 1, 1265-1271.	1.8	67
1328	A novel three-dimensional cadmium(II) coordination polymer constructed from dinuclear molecular building block, syntheses, structure and photoluminescence property. Inorganic Chemistry Communication, 2009, 12, 72-75.	1.8	7
1329	Syntheses and structures of two noncentro symmetric inorganic–organic composite materials based on metal sulfate and 4,4′-bipyridine (M=Ni, Fe). Inorganic Chemistry Communication, 2009, 12, 181-183.	1.8	6
1330	Synthesis and characterization of strontium 1,3,5-benzenetricarboxylate, [Sr3(1,3,5-BTC)2(H2O)4]·H2O. Inorganic Chemistry Communication, 2009, 12, 351-354.	1.8	22
1331	A neodymium coordination polymer with mixed m-phenylenediacrylate and formate bridges: Synthesis, unprecedented topology, and magnetism. Inorganic Chemistry Communication, 2009, 12, 426-429.	1.8	12

#		IF	CITATIONS
1332	Three-dimensional fourfold interpenetrated (10,3)-b nickel(II) framework with 5-(isonicotinamido)isophthalate. Inorganic Chemistry Communication, 2009, 12, 530-533.	1.8	23
1333	A new eight-connected net with CsCl-type topology built on unique [Co2(μ3-OH)(μ2-OH2)(CO2)3]2 building blocks. Inorganic Chemistry Communication, 2009, 12, 639-641.	1.8	22
1334	Solvent-induced assembly of two supramolecular isomers of MnII thiophenedicarboxylate coordination polymers. Inorganic Chemistry Communication, 2009, 12, 755-757.	1.8	15
1335	Synthesis, crystal structures and photoluminescence of Zn–Ln heterometallic polymers based on pyridine-2,3-dicarboxylic acid. Inorganic Chemistry Communication, 2009, 12, 761-765.	1.8	40
1336	Two rod-based 3-D lead(II) tetrafluoroterephthalate coordination frameworks with sra topology: Syntheses, structures, and properties. Inorganic Chemistry Communication, 2009, 12, 835-838.	1.8	26
1337	A chiral twofold interpenetrated diamond-like 3D In(III) coordination network with 4,4′,4″-phosphoryltribenzoate. Inorganic Chemistry Communication, 2009, 12, 1238-1241.	1.8	12
1338	Anisotropic mechanical properties of polymorphic hybrid inorganic–organic framework materials with different dimensionalities. Acta Materialia, 2009, 57, 3481-3496.	3.8	103
1339	Postsynthetic modification of metal–organic frameworks. Chemical Society Reviews, 2009, 38, 1315.	18.7	1,745
1340	Quantized liquid density-functional theory for hydrogen adsorption in nanoporous materials. Physical Review E, 2009, 80, 031603.	0.8	11
1341	Industrial applications of metal–organic frameworks. Chemical Society Reviews, 2009, 38, 1284.	18.7	2,053
1342	Efficient Methods for Screening of Metal Organic Framework Membranes for Gas Separations Using Atomically Detailed Models. Langmuir, 2009, 25, 11786-11795.	1.6	161
1343	Challenges in hydrogen storage. European Physical Journal: Special Topics, 2009, 176, 155-166.	1.2	55
1344	Magnetic metal–organic frameworks. Chemical Society Reviews, 2009, 38, 1353.	18.7	2,304
1345	Self-Assembly of a Series of Cobalt(II) Coordination Polymers Constructed from H ₂ tbip and Dipyridyl-Based Ligands. Inorganic Chemistry, 2009, 48, 915-924.	1.9	213
1346	Accessing Postsynthetic Modification in a Series of Metal-Organic Frameworks and the Influence of Framework Topology on Reactivity. Inorganic Chemistry, 2009, 48, 296-306.	1.9	227
1347	Isoreticular Metalation of Metalâ~'Organic Frameworks. Journal of the American Chemical Society, 2009, 131, 9492-9493.	6.6	266
1348	Fluorite and Mixedâ€Metal Kagomeâ€Related Topologies in Metal–Organic Framework Compounds: Synthesis, Structure, and Properties. Chemistry - an Asian Journal, 2009, 4, 936-947.	1.7	14
1349	Methane Sorption and Structural Characterization of the Sorption Sites in Zn ₂ (bdc) ₂ (dabco) by Single Crystal Xâ€ray Crystallography. Chemistry - an Asian Journal, 2009, 4, 886-891.	1.7	65

#	Article	IF	CITATIONS
1350	1 D Tubular and 2 D Metal–Organic Frameworks Based on a Flexible Amino Acid Derived Organic Space Chemistry - an Asian Journal, 2009, 4, 892-903.	2r 1.7	31
1351	The illustrative use of thiosulfate in the formation of new three-dimensional hybrid structures. CrystEngComm, 2009, 11, 55-57.	1.3	22
1352	Microporous Coordination Polymers As Selective Sorbents for Liquid Chromatography. Langmuir, 2009, 25, 11977-11979.	1.6	170
1353	Supercritical Processing as a Route to High Internal Surface Areas and Permanent Microporosity in Metalâ^'Organic Framework Materials. Journal of the American Chemical Society, 2009, 131, 458-460.	6.6	474
1354	Comparative Study of Hydrogen Sulfide Adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) Metalâ^'Organic Frameworks at Room Temperature. Journal of the American Chemical Society, 2009, 131, 8775-8777.	6.6	461
1355	Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. Journal of the American Chemical Society, 2009, 131, 8875-8883.	6.6	2,208
1356	Luminescent metal–organic frameworks. Chemical Society Reviews, 2009, 38, 1330.	18.7	4,545
1357	Trinuclear Cobalt Based Porous Coordination Polymers Showing Unique Topological and Magnetic Variety upon Different Dicarboxylate-like Ligands. Crystal Growth and Design, 2009, 9, 1066-1071.	1.4	127
1358	Metal–organic framework structures – how closely are they related to classical inorganic structures?. Chemical Society Reviews, 2009, 38, 2304.	18.7	294
1359	Postsynthetic Modifications of Iron-Carboxylate Nanoscale Metalâ °Organic Frameworks for Imaging and Drug Delivery. Journal of the American Chemical Society, 2009, 131, 14261-14263.	6.6	1,354
1360	Doping of Metal-Organic Frameworks with Functional Guest Molecules and Nanoparticles. Topics in Current Chemistry, 2009, 293, 77-113.	4.0	29
1361	Synthesis, crystal structure, and luminescence properties of a one-dimensional europium(III) polymer. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2009, 35, 30-35.	0.3	3
1362	Synthesis, crystal structure, and catalytic properties of a one-dimensional nickel(II) polymer. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2009, 35, 367-372.	0.3	0
1363	Synthesis, crystal structure, and magnetic properties of 2D coordination polymer "[Mn(PDB)(H2O)2] · H2O―n. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2009, 35, 916-919.	0.3	5
1364	Development of a Density Functional Theory in Three-Dimensional Nanoconfined Space: H ₂ Storage in Metalâ^'Organic Frameworks. Journal of Physical Chemistry B, 2009, 113, 12326-12331.	1.2	50
1365	A Three-Dimensional (42.84)-lvt Topology and a Two-Dimensional Brick-Wall Network: Two Pillared Supramolecular Isomers Exploring the Use of I-Cysteic Acid to Engineer Porous Frameworks. Crystal Growth and Design, 2009, 9, 3191-3196.	1.4	34
1366	Directed Organization of Dye Aggregates in Hydrogen-Bonded Host Frameworks. Crystal Growth and Design, 2009, 9, 3803-3815.	1.4	39
1367	Editorial: Launch of <i>ACS Applied Materials & Interfaces</i> . ACS Applied Materials & Interfaces, 2009, 1, 1-3.	4.0	6
#	Article	IF	CITATIONS
------	---	-----	-----------
1368	Strategies for Characterization of Large-Pore Metal-Organic Frameworks by Combined Experimental and Computational Methods. Chemistry of Materials, 2009, 21, 4768-4777.	3.2	68
1369	Fuel Gas Storage and Separations by Metalâ^'Organic Frameworks: Simulated Adsorption Isotherms for H ₂ and CH ₄ and Their Equimolar Mixture. Journal of Physical Chemistry C, 2009, 113, 6634-6642.	1.5	94
1370	An Ab Initio Force Field for Predicting Hydrogen Storage in IRMOF Materials. Journal of Physical Chemistry C, 2009, 113, 21815-21824.	1.5	47
1371	Porous Metal-Organic Frameworks Based on an Anthracene Derivative: Syntheses, Structure Analysis, and Hydrogen Sorption Studies. Inorganic Chemistry, 2009, 48, 5263-5268.	1.9	81
1372	Preparation and Gas Adsorption Studies of Three Mesh-Adjustable Molecular Sieves with a Common Structure. Journal of the American Chemical Society, 2009, 131, 6445-6451.	6.6	117
1373	Stepwise Formation of Half-Sandwich Iridium-Based Rectangles Containing 2,5-Diarylamino-1,4-benzoquinone Derivatives Linkers. Organometallics, 2009, 28, 3459-3464.	1.1	48
1374	A Three-Dimensional Porous Metalâ^'Organic Framework Constructed from Two-Dimensional Sheets via Interdigitation Exhibiting Dynamic Features. Inorganic Chemistry, 2009, 48, 4616-4618.	1.9	44
1375	Stability and Reactivity of Grafted Cr(CO)3Species on MOF Linkers: A Computational Study. Inorganic Chemistry, 2009, 48, 5439-5448.	1.9	26
1376	Isotopological Supramolecular Networks from Melamine and Fatty Acids. Journal of Physical Chemistry C, 2009, 113, 1014-1019.	1.5	40
1377	Metalâ^'Organic Polyhedron Based on a Cull Paddle-Wheel Secondary Building Unit at the Truncated Octahedron Corners. Inorganic Chemistry, 2009, 48, 1281-1283.	1.9	61
1378	Hydrothermal Synthesis, Structures, and Luminescent Properties of Seven d10 Metalâ~'Organic Frameworks Based on 9,9-Dipropylfluorene-2,7-Dicarboxylic Acid (H2DFDA). Crystal Growth and Design, 2009, 9, 1394-1401.	1.4	101
1379	Solvothermal Synthesis and Diverse Coordinate Structures of a Series of Luminescent Copper(I) Thiocyanate Coordination Polymers Based on N-Heterocyclic Ligands. Crystal Growth and Design, 2009, 9, 4626-4633.	1.4	86
1380	Targeted Synthesis of a Prototype MOF Based on Zn ₄ (O)(O ₂ C) ₆ Units and a Nonlinear Dicarboxylate Ligand. Inorganic Chemistry, 2009, 48, 417-419.	1.9	63
1381	Preparation of an Isocyano-β-diketone via its Metal Complexes, by Use of Metal Ions as Protecting Groups. Inorganic Chemistry, 2009, 48, 10512-10518.	1.9	15
1382	An Unprecedentedly Huge Square-Grid Copper(II)â^'Organic Framework Material Built from a Bulky Pyrene-Derived Elongated Cross-Shaped Scaffold. Inorganic Chemistry, 2009, 48, 8650-8652.	1.9	22
1383	Inorganic Frameworks from Selenidotetrelate Anions [T2Se6]4â^' (T = Ge, Sn): Synthesis, Structures, and Ionic Conductivity of [K2(H2O)3][MnGe4Se10] and (NMe4)2[MSn4Se10] (M = Mn, Fe). Inorganic Chemistry, 2009, 48, 1689-1698.	1.9	54
1384	Synthesis and Hydrogen Storage Properties of Be ₁₂ (OH) ₁₂ (1,3,5-benzenetribenzoate) ₄ . Journal of the American Chemical Society, 2009, 131, 15120-15121.	6.6	247
1385	Atomistic Insight into Adsorption, Mobility, and Vibration of Water in Ion-Exchanged Zeolite-like Metalâ°'Organic Frameworks. ACS Nano, 2009, 3, 2563-2572.	7.3	28

#	Article	IF	CITATIONS
1386	Single-Crystal-to-Single-Crystal Structural Transformation in a Flexible Porous Gadolinium-Organic Framework with Selective and Controlled Sorption Properties. Crystal Growth and Design, 2009, 9, 3844-3847.	1.4	33
1387	Molecular Insight into Adsorption and Diffusion of Alkane Isomer Mixtures in Metalâ^'Organic Frameworks. Journal of Physical Chemistry B, 2009, 113, 9129-9136.	1.2	48
1388	Selective Gas Adsorption in One-Dimensional, Flexible Cu ^{II} Coordination Polymers with Polar Units. Chemistry of Materials, 2009, 21, 3346-3355.	3.2	69
1389	Nanostructure and Hydrogen Spillover of Bridged Metal-Organic Frameworks. Journal of the American Chemical Society, 2009, 131, 1404-1406.	6.6	103
1390	Method for Analyzing Structural Changes of Flexible Metalâ^'Organic Frameworks Induced by Adsorbates. Journal of Physical Chemistry C, 2009, 113, 19317-19327.	1.5	71
1391	A Strategy for Synthesis of Ionic Metal-Organic Frameworks. Inorganic Chemistry, 2009, 48, 786-788.	1.9	55
1392	Syntheses, structures, and luminescent properties of cadmium (II) complexes: 3D supramolecular [Cd(phen)(NO3)(NO2)(H2O)]n and Cd(phen)2(NO3)(NO2) constructed by π–π stacking interactions. Synthetic Metals, 2009, 159, 1106-1111.	2.1	20
1393	Microwave synthesis and single-crystal-to-single-crystal transformation of magnesium coordination polymers exhibiting selective gas adsorption and luminescence properties. CrystEngComm, 2009, 11, 1462.	1.3	58
1394	Hydrothermal Synthesis, Structures, and Properties of Manganese(II) and Zinc(II) Coordination Polymers with Different Phenylenediacrylates. Crystal Growth and Design, 2009, 9, 2310-2317.	1.4	42
1395	Design of MOFs and intellectual content in reticular chemistry: a personal view. Chemical Society Reviews, 2009, 38, 1215.	18.7	407
1396	An Amine-Functionalized MIL-53 Metalâ^'Organic Framework with Large Separation Power for CO ₂ and CH ₄ . Journal of the American Chemical Society, 2009, 131, 6326-6327.	6.6	926
1397	New coordination polymers based on the triangular [Cu3(μ3-OH)(μ-pz)3]2+ unit and unsaturated carboxylates. Dalton Transactions, 2009, , 4928.	1.6	86
1398	2D and 3D networks of lanthanide with mixed dicarboxylate ligands: syntheses, crystal structures and photoluminescent properties. CrystEngComm, 2009, 11, 1642.	1.3	34
1399	High Capacity Hydrogen Adsorption in Cu(II) Tetracarboxylate Framework Materials: The Role of Pore Size, Ligand Functionalization, and Exposed Metal Sites. Journal of the American Chemical Society, 2009, 131, 2159-2171.	6.6	723
1400	In Situ Hydrothermal Growth of Metalâ~'Organic Framework 199 Films on Stainless Steel Fibers for Solid-Phase Microextraction of Gaseous Benzene Homologues. Analytical Chemistry, 2009, 81, 9771-9777.	3.2	347
1401	The effect of structural and energetic parameters of MOFs and COFs towards the improvement of their hydrogen storage properties. Nanotechnology, 2009, 20, 204030.	1.3	32
1402	Adsorption and desorption of hydrogen on metal–organic framework materials for storage applications: comparison with other nanoporous materials. Dalton Transactions, 2009, , 1487.	1.6	260
1403	One-, Two-, and Three-Dimensional Coordination Polymers of Stilbenedicarboxylate with Different Metal Ions. Crystal Growth and Design, 2009, 9, 867-873.	1.4	58

#	Article	IF	CITATIONS
1404	Isomeric Zinc(II) Triazolate Frameworks with 3-Connected Networks: Syntheses, Structures, and Sorption Properties. Inorganic Chemistry, 2009, 48, 3882-3889.	1.9	92
1405	MOF–graphite oxide nanocomposites: surface characterization and evaluation as adsorbents of ammonia. Journal of Materials Chemistry, 2009, 19, 6521.	6.7	150
1406	Construction of hybrid d10 metal–organic frameworks by flexible aromatic dicarboxylate and N-donor ligands :  syntheses, structures and physical properties. CrystEngComm, 2009, 11, 2784.	1.3	59
1407	Network Solids. , 0, , 537-589.		0
1408	Synthesis and characterization of a nickel-organic framework encapsulating hetero-chiral helical water chains in the 1-D channels. Journal of Coordination Chemistry, 2009, 62, 2814-2823.	0.8	9
1409	Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties. Journal of the American Chemical Society, 2009, 131, 3875-3877.	6.6	1,297
1410	Unprecedentedly High Selective Adsorption of Gas Mixtures in <i>rho</i> Zeolite-like Metalâ^'Organic Framework: A Molecular Simulation Study. Journal of the American Chemical Society, 2009, 131, 11417-11425.	6.6	202
1411	Syntheses, Crystal Structures, and Gas Storage Studies in New Three-Dimensional 5-Aminoisophthalate Praseodymium Polymeric Complexes. Inorganic Chemistry, 2009, 48, 3976-3981.	1.9	62
1412	New Prototype Isoreticular Metalâ^'Organic Framework Zn ₄ O(FMA) ₃ for Gas Storage. Inorganic Chemistry, 2009, 48, 4649-4651.	1.9	72
1413	Identification of Adsorption Sites in Cu-BTC by Experimentation and Molecular Simulation. Langmuir, 2009, 25, 1725-1731.	1.6	98
1414	MOF-5/n-Bu4NBr: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions. Green Chemistry, 2009, 11, 1031.	4.6	427
1415	Ab Initio Study of Hydrogen Adsorption in MOF-5. Journal of the American Chemical Society, 2009, 131, 4143-4150.	6.6	225
1416	Pd@MOF-5: limitations of gas-phase infiltration and solution impregnation of [Zn4O(bdc)3] (MOF-5) with metal–organic palladium precursors for loading with Pd nanoparticles. Journal of Materials Chemistry, 2009, 19, 1314.	6.7	120
1417	Molecular simulations of adsorption and diffusion of RDX in IRMOF-1. Molecular Simulation, 2009, 35, 910-919.	0.9	28
1418	Construction of 3-fold interpenetrated pcu organic frameworks from methanetetrabenzoic acid with zigzag bipyridines. CrystEngComm, 2009, 11, 2277.	1.3	13
1419	Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chemical Society Reviews, 2009, 38, 1380.	18.7	1,513
1420	Recent advances on simulation and theory of hydrogen storage in metal–organic frameworks and covalent organic frameworks. Chemical Society Reviews, 2009, 38, 1460.	18.7	535
1421	Design and synthesis of metal–organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chemical Society Reviews, 2009, 38, 1400.	18.7	1,630

		CITATION REPORT		
#	Article		IF	CITATIONS
1422	Porous Coordination Polymers Towards Gas Technology. Structure and Bonding, 2009	, , 96-106.	1.0	0
1423	Five related metal–organic frameworks constructed from [Ln2(SO4)2(H2O)n]2+ un acetate ligands. Dalton Transactions, 2009, , 3447.	its and oxalate or	1.6	18
1424	Dimeric Rh(III) Complex Stabilized by Hydrogen Bonding: Building Block of a Nanoporo Supramolecular Assembly. Crystal Growth and Design, 2009, 9, 1643-1645.	us	1.4	5
1425	Computational Study on the Influences of Framework Charges on CO ₂ U Metalâ^'Organic Frameworks. Industrial & Engineering Chemistry Research, 2009,	ptake in 48, 10479-10484.	1.8	76
1426	Isoreticular Metal-Organic Polyhedral Networks Based on 5-Connecting Paddlewheel N Inorganic Chemistry, 2009, 48, 2043-2047.	lotifs.	1.9	96
1427	Metal–organic frameworks based on the pyridine-2,3-dicarboxylate and a flexible bis syntheses, structures, and photoluminescence. CrystEngComm, 2009, 11, 292-297.	pyridyl ligand:	1.3	86
1428	Structural diversity and properties of ZnII and CdII complexes with a flexible dicarboxyl block 1,3-phenylenediacetate and various heterocyclic co-ligands. Dalton Transactions	ate building , 2009, , 5355.	1.6	111
1429	Anion-Assisted Structural Variation of Cadmium Coordination Polymers: From 2D → 3 Polycatenation to 2D → 3D Polythreading. Crystal Growth and Design, 2009, 9, 3003	D Inclined -3005.	1.4	86
1430	Conformation control of a flexible 1,4-phenylenediacetate ligand in coordination comprigidity-modulated strategy. CrystEngComm, 2009, 11, 583-588.	lexes: a	1.3	63
1431	Gas Adsorption Properties of the Chromium-Based Metal Organic Framework MIL-101. Physical Chemistry C, 2009, 113, 6616-6621.	Journal of	1.5	226
1432	Magnetic and Porous Molecule-Based Materials. Topics in Current Chemistry, 2009, 29	93, 207-258.	4.0	54
1433	Comparative Molecular Simulation Study of CO ₂ /N ₂ and CH ₄ /N ₂ Separation in Zeolites and Metalâ^ Organic Framew 2009, 25, 5918-5926.	orks. Langmuir,	1.6	276
1434	Zeolitic Polyoxometalate-Based Metalâ [^] Organic Frameworks (Z-POMOFs): Computation Hypothetical Polymorphs and the Successful Targeted Synthesis of the Redox-Active Z Journal of the American Chemical Society, 2009, 131, 16078-16087.	onal Evaluation of POMOF1.	6.6	265
1436	Some suggested perspectives for multifunctional hybrid porous solids. Dalton Transact 4400.	tions, 2009, ,	1.6	168
1437	High-Capacity Methane Storage in Metalâ^'Organic Frameworks M ₂ (dhtp Role of Open Metal Sites. Journal of the American Chemical Society, 2009, 131, 4995-): The Important 5000.	6.6	534
1438	The Long Story and the Brilliant Future of Crystallized Porous Solids. Structure and Boi 107-134.	nding, 2009, ,	1.0	1
1439	Synthesis and Gas Sorption Properties of a Metal-Azolium Framework (MAF) Material. Chemistry, 2009, 48, 9971-9973.	norganic	1.9	83
1440	Exceptionally High Acetylene Uptake in a Microporous Metalâ^'Organic Framework wit Sites. Journal of the American Chemical Society, 2009, 131, 12415-12419.	h Open Metal	6.6	510

#	Article	IF	CITATIONS
1441	Novel dense organic–lanthanide hybrid architectures: syntheses, structures and magnetic properties. Dalton Transactions, 2009, , 2528.	1.6	37
1442	Metalâ^'Organic Frameworks Impregnated with Magnesium-Decorated Fullerenes for Methane and Hydrogen Storage. Journal of the American Chemical Society, 2009, 131, 10662-10669.	6.6	134
1443	Methane Sorption in Nanoporous Metalâ^'Organic Frameworks and First-Order Phase Transition of Confined Methane. Journal of Physical Chemistry C, 2009, 113, 3029-3035.	1.5	119
1444	Methane, carbon dioxide and hydrogen storage in nanoporous dipeptide-based materials. Chemical Communications, 2009, , 284-286.	2.2	151
1445	Three-Dimensional Lanthanideâ^'Organic Frameworks Based on Di-, Tetra-, and Hexameric Clusters. Crystal Growth and Design, 2009, 9, 2098-2109.	1.4	71
1446	Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chemistry of Materials, 2009, 21, 2580-2582.	3.2	428
1447	Stabilization of Metalâ~'Organic Frameworks with High Surface Areas by the Incorporation of Mesocavities with Microwindows. Journal of the American Chemical Society, 2009, 131, 9186-9188.	6.6	316
1448	Ab Initio Study of Molecular Hydrogen Adsorption in Covalent Organic Framework-1. Journal of Physical Chemistry C, 2009, 113, 8498-8504.	1.5	32
1449	3-D Lanthanide Metal-Organic Frameworks: Structure, Photoluminescence, and Magnetism. Inorganic Chemistry, 2009, 48, 1062-1068.	1.9	130
1450	Impact of ligands on CO2 adsorption in metal-organic frameworks: First principles study of the interaction of CO2 with functionalized benzenes. I. Inductive effects on the aromatic ring. Journal of Chemical Physics, 2009, 130, 194703.	1.2	128
1451	Multiadsorption and Coadsorption of Hydrogen on Model Conjugated Systems. Journal of Physical Chemistry C, 2009, 113, 12571-12579.	1.5	22
1452	C ₆₀ â^'Pentacene Network Formation by 2-D Co-Crystallization. Langmuir, 2009, 25, 9857-9862.	1.6	20
1453	Docking in Metal-Organic Frameworks. Science, 2009, 325, 855-859.	6.0	360
1454	Thermal- and Light-Induced Spin Crossover in Novel 2D Fe(II) Metalorganic Frameworks {Fe(4-PhPy) ₂ [M ^{II} (CN) _{<i>x</i>}] _{<i>y</i>} }· <i>s</i> H ₂] Spectroscopic, Structural, and Magnetic Studies. Inorganic Chemistry, 2009, 48, 6130-6141.	/s ulo >O:	54
1455	Synthesis, Properties, and Gas Separation Studies of a Robust Diimide-Based Microporous Organic Polymer. Chemistry of Materials, 2009, 21, 3033-3035.	3.2	272
1456	An Unprecedented Family of Lanthanide-Containing Coordination Polymers with Highly Tunable Emission Properties. Inorganic Chemistry, 2009, 48, 2837-2843.	1.9	128
1457	A nanotubular metal–organic framework with permanent porosity: structure analysis and gas sorption studies. Chemical Communications, 2009, , 4049.	2.2	83
1458	Conformation Preference of a Flexible Cyclohexanetetracarboxylate Ligand in Three New Metal-Organic Frameworks: Structures, Magnetic and Luminescent Properties. Inorganic Chemistry, 2009–48–7194-7200	1.9	55

#	Article	IF	CITATIONS
1459	Synthesis and Structural Characterization of Lithium-Based Metalâ^'Organic Frameworks. Crystal Growth and Design, 2009, 9, 4922-4926.	1.4	68
1460	Microporous Poly(tri(4-ethynylphenyl)amine) Networks: Synthesis, Properties, and Atomistic Simulation. Macromolecules, 2009, 42, 2658-2666.	2.2	166
1461	Structural Investigation of Flexible 1,4-Bis(1,2,4-triazol-1-ylmethyl)benzene Ligand in Keggin-Based Polyoxometalate Frameworks. Crystal Growth and Design, 2009, 9, 2776-2782.	1.4	78
1462	Heats of Adsorption for Seven Gases in Three Metalâ~'Organic Frameworks: Systematic Comparison of Experiment and Simulation. Langmuir, 2009, 25, 7383-7388.	1.6	212
1463	Hydrogen, Methane and Carbon Dioxide Adsorption in Metal-Organic Framework Materials. Topics in Current Chemistry, 2009, 293, 35-76.	4.0	110
1464	Two unprecedented porous anionic frameworks: organoammonium templating effects and structural diversification. Dalton Transactions, 2009, , 8562.	1.6	39
1465	Molecular Simulations for Adsorptive Separation of CO ₂ /CH ₄ Mixture in Metal-Exposed, Catenated, and Charged Metalâ^'Organic Frameworks. Langmuir, 2009, 25, 5239-5247.	1.6	134
1466	Selective Bifunctional Modification of a Non-catenated Metalâ^'Organic Framework Material via "Click―Chemistry. Journal of the American Chemical Society, 2009, 131, 13613-13615.	6.6	224
1467	Guest Inclusion and Interpenetration Tuning of Cd(II)/Mn(II) Coordination Grid Networks Assembled from a Rigid Linear Diimidazole Schiff Base Ligand. Inorganic Chemistry, 2009, 48, 287-295.	1.9	54
1468	Ionothermal synthesis of two novel metal organophosphonates. Dalton Transactions, 2009, , 795-799.	1.6	19
1469	Co(II) Metalâ^'Organic Frameworks (MOFs) Assembled from Asymmetric Semirigid Multicarboxylate Ligands: Synthesis, Crystal Structures, and Magnetic Properties. Crystal Growth and Design, 2009, 9, 5273-5282.	1.4	124
1470	Calculation of hydrogen storage capacity of metal-organic and covalent-organic frameworks by spillover. Journal of Chemical Physics, 2009, 131, 174703.	1.2	46
1471	Porous Metal Organic Frameworks. , 2009, , 77-99.		9
1472	Electrostatic Potential Derived Atomic Charges for Periodic Systems Using a Modified Error Functional. Journal of Chemical Theory and Computation, 2009, 5, 2866-2878.	2.3	281
1473	Systematic investigation on the coordination chemistry of a sulfonated monoazo dye: Ligand-dominated d- and f-block derivatives. Dalton Transactions, 2009, , 1944.	1.6	14
1474	Low-coverage adsorption properties of the metal–organic framework MIL-47 studied by pulse chromatography and Monte Carlo simulations. Physical Chemistry Chemical Physics, 2009, 11, 3515.	1.3	73
1475	Solvent Control of Supramolecular Architectures Derived from 4,4′-Bipyridyl-Bridged Copper(II) Dipicolinate Complexes. Crystal Growth and Design, 2009, 9, 4685-4699.	1.4	53
1476	Structural, Luminescent, and Magnetic Properties of Three Novel Three-Dimensional Metal-Organic Frameworks Based on Hexadentate <i>N</i> , <i>N</i> ′-bis(4-picolinoyl)hydrazine. Inorganic Chemistry, 2009, 48, 7691-7697.	1.9	26

#	Article	IF	CITATIONS
1477	Structural susceptibility of gas inclusion crystal to external gas pressure and temperature: force guide role of channel. Dalton Transactions, 2009, , 1752.	1.6	21
1478	A 3D porous hetero-metal compound with helical channels. Dalton Transactions, 2009, , 4416.	1.6	16
1479	Zn(ii) and Cu(ii) coordination polymers assembled from V-shaped tetracarboxylate ligands and N-donor ancillary ligands: syntheses, structures and properties. CrystEngComm, 2009, 11, 643-656.	1.3	47
1480	A luminescent homochiral 3D Cd(ii) framework with a threefold interpenetrating uniform net 86. Chemical Communications, 2009, , 5296.	2.2	113
1481	A metal–organic framework based on an unprecedented nonanuclear cluster as a secondary building unit: structure and gas sorption behavior. Chemical Communications, 2009, , 2026.	2.2	22
1482	Adsorption of methane in heterometallic metal-organic frameworks with anions: a molecular simulation study. Molecular Simulation, 2009, 35, 213-219.	0.9	5
1483	A three-dimensional metal–organic framework based on a triazine derivative: syntheses, structure analysis, and sorption studies. CrystEngComm, 2009, 11, 2254.	1.3	12
1484	Substrate effect on supramolecular self-assembly: from semiconductors to metals. Physical Chemistry Chemical Physics, 2009, 11, 6498.	1.3	46
1485	Transformation of framework solids into processable metallo-polymers. Chemical Communications, 2009, , 7563.	2.2	15
1486	Modulating topologies and magnetic properties of coordination polymers using 2,2′-bipyridine and 5-aminodiacetic isophthalic acid as ligands. CrystEngComm, 2009, 11, 1666.	1.3	17
1487	A family of 3D lanthanide oxalatosuccinate with rare structures: 3D host framework incorporating a 3D alkali metal guest lattice. CrystEngComm, 2009, 11, 351-358.	1.3	15
1488	Counteranion's effects on the structures of supramolecular silver coordination compounds of one asymmetric and one biting organic ligands. CrystEngComm, 2009, 11, 1373.	1.3	22
1489	Sulfur-tagged metal–organic frameworks and their post-synthetic oxidation. Chemical Communications, 2009, , 4218.	2.2	98
1490	Dehydration and rehydration behavior of a trinodal topological 3-D framework of Cd(II) benzimidazole-5,6-dicarboxylate. CrystEngComm, 2009, 11, 2712.	1.3	31
1491	Large pores generated by the combination of different inorganic units in a zinc hydroxide ethynylene diisophthalate MOF. Dalton Transactions, 2009, , 1107-1113.	1.6	15
1492	Open and closed copper chain coordination polymers with alternating ferromagnetic and antiferromagnetic interactions. CrystEngComm, 2009, 11, 102-108.	1.3	26
1493	Delicate substituent effect of isophthalate tectons on the structural assembly of diverse 4-connected metal–organic frameworks (MOFs). CrystEngComm, 2009, 11, 1800.	1.3	66
1494	Homochiral zinc phosphonates with layered and open framework structures using polycarboxylate as second linkers. Dalton Transactions, 2009, , 9837.	1.6	31

		CITATION RE	PORT	
#	Article		IF	Citations
1495	MOF@MOF: microporous core–shell architectures. Chemical Communications, 2009	,,6162.	2.2	269
1496	Four 2D metal–organic networks incorporating Cd-cluster SUBs: hydrothermal synthand photoluminescent properties. CrystEngComm, 2009, 11, 122-129.	esis, structures	1.3	98
1497	Improved organic hydrogen carriers with superior thermodynamic properties. Chemical Communications, 2009, , 1751.		2.2	12
1498	A new perspective on the order- <i>n</i> algorithm for computing correlation functions. Simulation, 2009, 35, 1084-1097.	Molecular	0.9	82
1499	Supramolecular reactivity of naphthalene-1,4,5,8-tetracarboxylic acid towards transition coordination polymers and discrete complexes with Cu ^{II} , Ni ^{II} Co ^{II} . CrystEngComm, 2009, 11, 367-374.	n metal ions: and	1.3	16
1500	Double-walled tubular metal–organic frameworks constructed from bi-strand helices. CrystEngComm, 2009, 11, 1831.		1.3	15
1501	Dicarboxylate anion-dependent assembly of Ni(II) coordination polymers with 4,4′-di CrystEngComm, 2009, 11, 777.	pyridyl sulfide.	1.3	73
1502	Indium(iii)-2,5-pyridine dicarboxylate complexes with mononuclear, 1D chain, 2D layer a frameworks. CrystEngComm, 2009, 11, 918.	and 3D chiral	1.3	24
1503	Assembly of nanoporous organic materials from molecular building blocks. Journal of M Chemistry, 2009, 19, 1781.	aterials	6.7	77
1504	Water cluster supported architecture of lanthanide coordination polymers with pyrazinetricarboxylic acid. CrystEngComm, 2009, 11, 278-283.		1.3	25
1505	Multi-functional rare-earth hybrid layered networks: photoluminescence and catalysis s Journal of Materials Chemistry, 2009, 19, 2618.	tudies.	6.7	90
1506	The effect of solution/free volume ratio on the MOF-5 characteristics. Journal of Physics Series, 2009, 182, 012047.	: Conference	0.3	0
1507	A 3D Metal-Organic Framework with CdSO4-type Topology Through Assembly of Mixec Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2009,	l Ligands. 39, 341-344.	0.6	1
1508	Highly Porous and Robust 4,8-Connected Metalâ [°] Organic Frameworks for Hydrogen St of the American Chemical Society, 2009, 131, 4610-4612.	corage. Journal	6.6	185
1509	Self-Supported Catalysts. Chemical Reviews, 2009, 109, 322-359.		23.0	524
1510	Microporous Organic Polymers: Design, Synthesis, and Function. Topics in Current Che 293, 1-33.	mistry, 2009,	4.0	107
1511	A Large-Surface-Area Boracite-Network-Topology Porous MOF Constructed from a Conj Exhibiting a High Hydrogen Uptake Capacity. Inorganic Chemistry, 2009, 48, 7519-752	ugated Ligand 1.	1.9	66
1512	Experimental and Theoretical Investigation Into Hydrogen Storage via Spillover in IRMO Physical Chemistry C, 2009, 113, 3222-3231.	F-8. Journal of	1.5	68

#	Article	IF	CITATIONS
1517	Receptor properties of nanoporous structures based on β-cyclodextrin. Nanotechnologies in Russia, 2010, 5, 304-312.	0.7	2
1518	Hybrid Organicâ^'Inorganic Polyoxometalate Compounds: From Structural Diversity to Applications. Chemical Reviews, 2010, 110, 6009-6048.	23.0	1,583
1519	Metal Organic Frameworks Assembled from Y(III), Na(I), and Chiral Flexible-Achiral Rigid Dicarboxylates. Inorganic Chemistry, 2010, 49, 7917-7926.	1.9	34
1520	Metalâ^'Organic Frameworks with Functional Pores for Recognition of Small Molecules. Accounts of Chemical Research, 2010, 43, 1115-1124.	7.6	1,919
1521	Conductivity, Doping, and Redox Chemistry of a Microporous Dithiolene-Based Metalâ^'Organic Framework. Chemistry of Materials, 2010, 22, 4120-4122.	3.2	459
1522	High capacity hydrogenstorage materials: attributes for automotive applications and techniques for materials discovery. Chemical Society Reviews, 2010, 39, 656-675.	18.7	1,008
1523	Studies of Capillary Phase Transitions of Methane in Metalâ^'Organic Frameworks by Gauge Cell Monte Carlo Simulation. Langmuir, 2010, 26, 5160-5166.	1.6	8
1524	Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal–organic framework (Fe-BTT) discovered via high-throughput methods. Chemical Science, 2010, 1, 184.	3.7	294
1525	Readily prepared polystyrene-bound pyridine-2,6-dicarboxylate and its application for removal of mercury ions. Journal of the Iranian Chemical Society, 2010, 7, 791-798.	1.2	5
1526	Non-, Micro-, and Mesoporous Metalâ ^{~'} Organic Framework Isomers: Reversible Transformation, Fluorescence Sensing, and Large Molecule Separation. Journal of the American Chemical Society, 2010, 132, 5586-5587.	6.6	588
1527	Comparative Study of Separation Performance of COFs and MOFs for CH ₄ /CO ₂ /H ₂ Mixtures. Industrial & Engineering Chemistry Research, 2010, 49, 2902-2906.	1.8	88
1528	MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New Journal of Chemistry, 2010, 34, 2366.	1.4	1,039
1529	Functionalization in Flexible Porous Solids: Effects on the Pore Opening and the Hostâ `Guest Interactions. Journal of the American Chemical Society, 2010, 132, 1127-1136.	6.6	445
1530	The effect of the conformation of flexible carboxylate ligands on the structures of metal–organic supramolecules. New Journal of Chemistry, 2010, 34, 2496.	1.4	15
1531	Two Robust Porous Metal–Organic Frameworks Sustained by Distinct Catenation: Selective Gas Sorption and Singleâ€Crystalâ€ŧo‣ingleâ€Crystal Guest Exchange. Chemistry - an Asian Journal, 2010, 5, 2358-2368.	1.7	54
1532	Hydrosilylation of Ketones: From Metal–Organic Frameworks to Simple Base Catalysts. Chemistry - an Asian Journal, 2010, 5, 2341-2345.	1.7	38
1533	Anion-Controlled Assembly of Silver(I) Complexes of Multiring Heterocyclic Ligands: A Structural and Photophysical Study. Crystal Growth and Design, 2010, 10, 1269-1282.	1.4	47
1534	Trends in the Adsorption of Volatile Organic Compounds in a Large-Pore Metalâ ´'Organic Framework, IRMOF-1. Langmuir, 2010, 26, 11319-11329.	1.6	78

CITATION REPORT IF CITATIONS Gas Adsorption Study on Mesoporous Metalâ[^]Organic Framework UMCM-1. Journal of Physical 1.5 169 Chemistry C, 2010, 114, 6464-6471. A Framework for Predicting Surface Areas in Microporous Coordination Polymers. Langmuir, 2010, 26, 1.6 Recent advances in crystal engineering. CrystEngComm, 2010, 12, 22-43. 692 1.3Cubic Octanuclear Ni(II) Clusters in Highly Porous Polypyrazolyl-Based Materials. Journal of the American Chemical Society, 2010, 132, 7902-7904. 140 Metalâ€"organic coordination polymers based on a flexible tetrahydrofuran-2,3,4,5-tetracarboxylate ligand: syntheses, crystal structures, and magnetic/photoluminescent properties. CrystEngComm, 32 1.32010, 12, 853-865. Control over Catenation in Metalâ[^]Organic Frameworks via Rational Design of the Organic Building Block. Journal of the American Chemical Society, 2010, 132, 950-952. 344 6.6 Highly Porous Ionic rht Metalâ[°]Organic Framework for H2 and CO2 Storage and Separation: A 1.6 72 Molecular Simulation Study. Langmuir, 2010, 26, 11196-11203. Hydrogen Storage on Carbon-Based Adsorbents and Storage at Ambient Temperature by Hydrogen 5.7 139 Spillover. Catalysis Reviews - Science and Engineering, 2010, 52, 411-461. Metal-dependent dimensionality in coordination polymers of a semi-rigid dicarboxylate ligand with additional amide groups: Syntheses, structures and luminescent properties. Inorganica Chimica Acta, 1.2 31 2010, 363, 3172-3177. A novel combined manufacturing technique for rapid production of IRMOF-1 using ultrasound and 6.6 108 microwave energies. Chemical Engineering Journal, 2010, 165, 966-973. [Cu4OCl6(DABCO)2]·0.5DABCO·4CH3OH ("MFU-5â€**)**: Modular synthesis of a zeolite-like metal-organic framework constructed from tetrahedral {Cu4OCl6} secondary building units and linear organic 17 1.4 linkers. Journal of Solid State Chemistry, 2010, 183, 208-217.

1546	Structural variations of SnII pyridylphosphonates influenced by an uncommon Sn–N interaction. Journal of Solid State Chemistry, 2010, 183, 1165-1173.	1.4	18
1547	Diversity of coordination modes in the polymers based on 3,3′,4,4′-biphenylcarboxylate ligand. Journal of Solid State Chemistry, 2010, 183, 1464-1472.	1.4	5
1548	CO2 adsorption, selectivity and water tolerance of pillared-layer metal organic frameworks. Microporous and Mesoporous Materials, 2010, 132, 305-310.	2.2	103
1549	Evaluation of synthetic methods for microporous metal–organic frameworks exemplified by the competitive formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)]. Microporous and Mesoporous Materials, 2010, 132, 121-127.	2.2	239
1550	Optimal isosteric heat of adsorption for hydrogen storage and delivery using metal–organic frameworks. Microporous and Mesoporous Materials, 2010, 132, 300-303.	2.2	130
1551	Molecular simulations of very high pressure hydrogen storage using metal–organic frameworks. Microporous and Mesoporous Materials, 2010, 135, 178-186.	2.2	21
1552	A 2D metal-organic framework with a flexible cyclohexane-1,2,5,6-tetracarboxylic acid ligand: Synthesis, characterization and photoluminescent property. Journal of Molecular Structure, 2010, 970, 14-18.	1.8	14

ARTICLE

<u>5808-5814.</u>

1535

1537

1539

1540

1541

1543

1544

#	Article	IF	Citations
1553	Three novel supramolecular barium complexes with heterocyclic sulfonate ligands: Effect of ligand structure and auxiliary anions. Journal of Molecular Structure, 2010, 975, 173-179.	1.8	4
1554	The role of accessibility in the characterization of porous solids and their adsorption properties. Adsorption, 2010, 16, 3-15.	1.4	21
1555	Construction of tunable supramolecular networks studied by scanning tunneling microscopy. Science China Chemistry, 2010, 53, 310-317.	4.2	11
1556	A Novel Hydrogen-Bonded 3D Network with Unusual Coordination Mode. Journal of Chemical Crystallography, 2010, 40, 837-840.	0.5	3
1557	Structural Characterization of Coordination Polymers of Nickel(II) and Zinc(II) with Polycarboxylate Ligands. Journal of Chemical Crystallography, 2010, 40, 892-896.	0.5	8
1558	Synthesis and Crystal Structures of Two New Coordination Polymers Based on Diphenic Acid. Journal of Inorganic and Organometallic Polymers and Materials, 2010, 20, 118-123.	1.9	10
1559	Differences between the isostructural IRMOF-1 and MOCP-L porous adsorbents. Journal of Porous Materials, 2010, 17, 91-97.	1.3	30
1560	Adsorption of RDX and TATP on IRMOF-1: an ab initio study. Structural Chemistry, 2010, 21, 391-404.	1.0	13
1561	Designing Heterogeneous Catalysts by Incorporating Enzyme-Like Functionalities into MOFs. Topics in Catalysis, 2010, 53, 859-868.	1.3	73
1562	Asymmetric Catalysis with Chiral Porous Metal–Organic Frameworks. Topics in Catalysis, 2010, 53, 869-875.	1.3	71
1563	Zn(II) metal-organic frameworks (MOFs) assembled from semirigid multicarboxylate ligands: Synthesis, crystal structures, and luminescent properties. Solid State Sciences, 2010, 12, 1791-1796.	1.5	6
1564	Three new zinc(II) complexes constructed by biphenyl-2,2′,6,6′-tetracarboxylic acid: Effect of solvents and terminal ligands. Solid State Sciences, 2010, 12, 2163-2169.	1.5	18
1565	Synthesis, structure and photoluminescence of two zinc carboxylate polymers with different coordination architectures. Chinese Journal of Chemistry, 2003, 21, 1305-1308.	2.6	10
1566	Selective Guest Docking in Metalâ€Organic Framework Materials. ChemPhysChem, 2010, 11, 55-57.	1.0	8
1567	A Bioâ€Metal–Organic Framework for Highly Selective CO ₂ Capture: A Molecular Simulation Study. ChemSusChem, 2010, 3, 982-988.	3.6	95
1568	Effect of Water Concentration and Acidity on the Synthesis of Porous Chromium Benzenedicarboxylates. European Journal of Inorganic Chemistry, 2010, 2010, 1043-1048.	1.0	46
1569	Thermal Decomposition Reactions as a Tool for the Synthesis of New Thermodynamic Metastable Modifications: Synthesis, Structures, and Properties of (Formato)nickel(II) Coordination Polymers Based on 4,4′-Bipyridine. European Journal of Inorganic Chemistry, 2010, 2010, 1820-1828.	1.0	16
1570	Construction of Three-Dimensional Uranyl-Organic Frameworks with Benzenetricarboxylate Ligands. European Journal of Inorganic Chemistry, 2010, 2010, 3780-3788.	1.0	75

#	Article	IF	CITATIONS
1571	Hydrogen Adsorption in Polyoxometalate Hybrid Compounds Based on Porous Metalâ€Organic Frameworks. European Journal of Inorganic Chemistry, 2010, 2010, 3756-3761.	1.0	44
1572	Construction of a Hybrid Family Based on Lanthanide–Organic Framework Hosts and Polyoxometalate Guests. European Journal of Inorganic Chemistry, 2010, 2010, 4027-4033.	1.0	26
1573	A Series of Lanthanide Metal–Organic Frameworks Based on Biphenylâ€3,4â€2,5â€ŧricarboxylate: Syntheses, Structures, Luminescence and Magnetic Properties. European Journal of Inorganic Chemistry, 2010, 2010, 3842-3849.	1.0	89
1574	Construction of a 2D Rectangular Grid and 3D Diamondoid Interpenetrated Frameworks and Their Functionalities by Changing the Second Spacers. European Journal of Inorganic Chemistry, 2010, 2010, 3762-3769.	1.0	30
1575	Topological Diversity, Adsorption and Fluorescence Properties of MOFs Based on a Tetracarboxylate Ligand. European Journal of Inorganic Chemistry, 2010, 2010, 3835-3841.	1.0	36
1576	Synthesis and Structural Flexibility of a Series of Copper(II) Azolate-Based Metal-Organic Frameworks. European Journal of Inorganic Chemistry, 2010, 2010, 3739-3744.	1.0	26
1577	Accelerated Syntheses of Porous Isostructural Lanthanide–Benzenetricarboxylates (Ln–BTC) Under Ultrasound at Room Temperature. European Journal of Inorganic Chemistry, 2010, 2010, 4975-4981.	1.0	69
1578	Structural Investigation of Coordination Polymers Constructed from a Conformational Bisâ€triazole Ligand and Vâ€Shaped Bridging Carboxylate Anions: Hydrothermal Syntheses, Crystal Structures, and Property Studies. European Journal of Inorganic Chemistry, 2010, 2010, 5545-5555.	1.0	46
1579	Enhanced Adsorption of Ammonia on Metalâ€Organic Framework/Graphite Oxide Composites: Analysis of Surface Interactions. Advanced Functional Materials, 2010, 20, 111-118.	7.8	305
1580	Hydrogen Storage in Metal–Organic Frameworks. Advanced Materials, 2010, 22, E117-30.	11.1	349
1581	Evolution of Nanoscale Pore Structure in Coordination Polymers During Thermal and Chemical Exposure Revealed by Positron Annihilation. Advanced Materials, 2010, 22, 1598-1601.	11.1	56
1582	Direct Patterning of Oriented Metal–Organic Framework Crystals via Control over Crystallization Kinetics in Clear Precursor Solutions. Advanced Materials, 2010, 22, 2685-2688.	11.1	224
1583	Engineering Homochiral Metalâ€Organic Frameworks for Heterogeneous Asymmetric Catalysis and Enantioselective Separation. Advanced Materials, 2010, 22, 4112-4135.	11.1	800
1587	Sulfur Removal from Lowâ€Sulfur Gasoline and Diesel Fuel by Metalâ€Organic Frameworks. Chemical Engineering and Technology, 2010, 33, 275-280.	0.9	121
1588	Thermally Stable Porous Hydrogenâ€Bonded Coordination Networks Displaying Dual Properties of Robustness and Dynamics upon Guest Uptake. Chemistry - A European Journal, 2010, 16, 1841-1848.	1.7	72
1589	Adsorption of CO ₂ , CH ₄ , and N ₂ on Zeolitic Imidazolate Frameworks: Experiments and Simulations. Chemistry - A European Journal, 2010, 16, 1560-1571.	1.7	344
1590	Synthesis of a Metal–Organic Framework Material, Iron Terephthalate, by Ultrasound, Microwave, and Conventional Electric Heating: A Kinetic Study. Chemistry - A European Journal, 2010, 16, 1046-1052.	1.7	294
1591	Metal–Organic Frameworks with Exceptionally High Methane Uptake: Where and How is Methane Stored?. Chemistry - A European Journal, 2010, 16, 5205-5214.	1.7	227

#	Article	IF	CITATIONS
1592	The Construction of Open Gd ^{III} Metal–Organic Frameworks Based on Methanetriacetic Acid: New Objects with an Old Ligand. Chemistry - A European Journal, 2010, 16, 4037-4047.	1.7	37
1593	Methane Adsorption in a Supramolecular Organic Zeolite. Chemistry - A European Journal, 2010, 16, 2371-2374.	1.7	48
1594	Flexibility and Sorption Selectivity in Rigid Metal–Organic Frameworks: The Impact of Etherâ€Functionalised Linkers. Chemistry - A European Journal, 2010, 16, 14296-14306.	1.7	128
1606	Thermolabile Groups in Metal–Organic Frameworks: Suppression of Network Interpenetration, Postâ€5ynthetic Cavity Expansion, and Protection of Reactive Functional Groups. Angewandte Chemie - International Edition, 2010, 49, 4598-4602.	7.2	161
1607	Micromolding of a Highly Fluorescent Reticular Coordination Polymer: Solventâ€Mediated Reconfigurable Polymerization in a Soft Lithographic Mold. Angewandte Chemie - International Edition, 2010, 49, 3757-3761.	7.2	29
1608	Carbon Dioxide Capture: Prospects for New Materials. Angewandte Chemie - International Edition, 2010, 49, 6058-6082.	7.2	3,452
1609	Generating Reactive MILs: Isocyanate―and Isothiocyanateâ€Bearing MILs through Postsynthetic Modification. Angewandte Chemie - International Edition, 2010, 49, 4644-4648.	7.2	117
1610	A Highly Porous Metal–Organic Framework with Open Nickel Sites. Angewandte Chemie - International Edition, 2010, 49, 8489-8492.	7.2	149
1611	Control of Interpenetration for Tuning Structural Flexibility Influences Sorption Properties. Angewandte Chemie - International Edition, 2010, 49, 7660-7664.	7.2	184
1612	Modular Inorganic Polyoxometalate Frameworks Showing Emergent Properties: Redox Alloys. Angewandte Chemie - International Edition, 2010, 49, 6984-6988.	7.2	52
1613	A Catenated Strut in a Catenated Metal–Organic Framework. Angewandte Chemie - International Edition, 2010, 49, 6751-6755.	7.2	103
1614	Zeoliteâ€Y Crystals with Trimodal Porosity as Ideal Hydrocracking Catalysts. Angewandte Chemie - International Edition, 2010, 49, 10074-10078.	7.2	265
1615	Hollow Ferrocenyl Coordination Polymer Microspheres with Micropores in Shells Prepared by Ostwald Ripening. Angewandte Chemie - International Edition, 2010, 49, 9237-9241.	7.2	176
1616	Zeotype Organic–Inorganic Ionic Crystals: Facile Cation Exchange and Controllable Sorption Properties. Angewandte Chemie - International Edition, 2010, 49, 9930-9934.	7.2	50
1617	Correlation between adsorption and thermal properties of lanthanide(III) dinicotinates. Applied Surface Science, 2010, 257, 1736-1739.	3.1	5
1618	Self-assembly of a novel functional molecule: 1,2,4,5-tetra(p-hydroxyphenyl)benzene. Journal of Molecular Structure, 2010, 969, 83-87.	1.8	3
1619	Two anionic [Cul6X7]nnâ^' (X=Br and I) chain-based organic–inorganic hybrid solids with N-substituted benzotriazole ligands. Journal of Solid State Chemistry, 2010, 183, 1150-1158.	1.4	22
1620	Syntheses and characterization of inorganic–organic hybrids with 4-(isonicotinamido)phthalate and some divalent metal centers. Polyhedron, 2010, 29, 2454-2461.	1.0	17

#	Article	IF	CITATIONS
1621	Homoleptic silver-bis(pyridine) coordination polymers: [Ag(L1)2]·(PF6), [Ag(L1)2]·(SbF6), [Ag(L1)2]·(BF4), [Ag(L2)]·(PF6), and [Ag(L3)1.5]·(CF3SO3)·(H2O)2 {L1=(4-py)–CHN–C10H6–NCH–(4-py); L2=(2-py)–CHN–C10H6–NCH–(2-py); L3=(3-py)–CHN–C14H12–NCH–(3-py)}. Polyhedron, 201	1.0 0, 29, 273	23 1-2738.
1622	Synthesis and characterization of coordination polymers of a carboxylato cyclophane with metal [Źn(II) and Cd(II)]-2,2′-bipyridines. Polyhedron, 2010, 29, 2755-2761.	1.0	4
1623	Coordination steric effect of N,N-dimethylformamide, N,N-dimethylacetamide and N-methyl-2-pyrrolidone on the assembly of coordination polymers. Polyhedron, 2010, 29, 2851-2856.	1.0	9
1624	Conformational isomerism and hydrogen-bonded motifs of anion assisted supramolecular self-assemblies using Cull/Coll salts and pyridine-4-acetamide. Inorganica Chimica Acta, 2010, 363, 387-394.	1.2	20
1625	Syntheses, structures and magnetic properties of Mn(II), Co(II) and Ni(II) metal–organic frameworks constructed from 1,3,5-benzenetricarboxylate and formate ligands. Inorganica Chimica Acta, 2010, 363, 645-652.	1.2	46
1626	Structural and magnetic characterization of a novel series of dinuclear Cu(II) complexes bridging by 2,5-pyrazine dicarboxylate. Inorganica Chimica Acta, 2010, 363, 1001-1007.	1.2	19
1627	Synthesis, structures and luminescent properties of novel coordination polymers constructed by lanthanide salts and benzimidazole-5,6-dicarboxylic acid. Inorganica Chimica Acta, 2010, 363, 918-924.	1.2	15
1628	Syntheses and characterization of five d10 coordination polymers derived from phenanthroline derivative and dicarboxylate mixed ligands. Inorganica Chimica Acta, 2010, 363, 2590-2599.	1.2	13
1629	Hydrothermal synthesis, crystal structures and photoluminescent properties of four cadmium(II) coordination polymers derived from diphenic acid and auxiliary ligands. Inorganica Chimica Acta, 2010, 363, 3790-3797.	1.2	39
1630	Syntheses, crystal structures and magnetic properties of 1D and 2D cobaltous coordination polymers with mixed ligands. Inorganica Chimica Acta, 2010, 363, 3784-3789.	1.2	16
1631	Combination of covalent and hydrogen bonding in the formation of 3D uranyl-carboxylate networks. Inorganica Chimica Acta, 2010, 363, 3407-3412.	1.2	27
1632	Synthesis, structure and property of manganese(II) complexes with mixed tetradentate imidazole-containing ligand and benzenedicarboxylate. Inorganica Chimica Acta, 2010, 363, 3550-3557.	1.2	14
1633	Topological diversity in copper aromatic meta-dicarboxylate coordination polymers with bis(pyridylformyl)piperazine coligands. Inorganica Chimica Acta, 2010, 363, 3865-3873.	1.2	36
1634	Improving hydrogen storage properties of covalent organic frameworks by substitutional doping. International Journal of Hydrogen Energy, 2010, 35, 266-271.	3.8	46
1635	A porous 3d-4f heterometallic metal–organic framework for hydrogen storage. International Journal of Hydrogen Energy, 2010, 35, 8166-8170.	3.8	28
1636	Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using Cobalt–Copper–Boride (Co–Cu–B) catalysts. International Journal of Hydrogen Energy, 2010, 35, 11077-11084.	3.8	122
1637	Metal organic frameworks as NO delivery materials for biological applications. Microporous and Mesoporous Materials, 2010, 129, 330-334.	2.2	209
1638	Engineering of coordination polymers for shape selective alkylation of large aromatics and the role of defects. Microporous and Mesoporous Materials, 2010, 129, 319-329.	2.2	194

#	Article	IF	Citations
1639	Atomistic theoretical models for nanoporous hybrid materials. Microporous and Mesoporous Materials, 2010, 129, 304-318.	2.2	46
1640	Vapor-phase adsorption of alkylaromatics on aluminum-trimesate MIL-96: An unusual increase of adsorption capacity with temperature. Microporous and Mesoporous Materials, 2010, 129, 274-277.	2.2	24
1641	Computational study of the effect of organic linkers on natural gas upgrading in metal–organic frameworks. Microporous and Mesoporous Materials, 2010, 130, 76-82.	2.2	65
1642	Metal organic framework mixed matrix membranes for gas separations. Microporous and Mesoporous Materials, 2010, 131, 13-20.	2.2	305
1643	Adsorption of C5–C9 hydrocarbons in microporous MOFs MIL-100(Cr) and MIL-101(Cr): A manometric study. Microporous and Mesoporous Materials, 2010, 134, 134-140.	2.2	65
1644	Three-dimensional hybrid organic–inorganic frameworks based on lanthanide(III) sulfate layers and organic pillars of 1,4-piperazinediacetic acid. Journal of Molecular Structure, 2010, 979, 214-220.	1.8	9
1645	Luminescent cadmium phenylenediacetate coordination polymers with bis(pyridylformyl)piperazine tethers: Influence of pendant arm position on topology. Journal of Molecular Structure, 2010, 983, 162-168.	1.8	14
1646	Synthesis and characterization of new mono-, bis-, and tris-oxamato proligands. Tetrahedron Letters, 2010, 51, 5157-5159.	0.7	1
1647	Design of tetrathiafulvalene-based TPP analogues combining a good electron-donor capacity and a possible organic zeolite formation: A computational investigation. Computational and Theoretical Chemistry, 2010, 940, 13-18.	1.5	2
1648	Evaluation of functionalized isoreticular metal organic frameworks (IRMOFs) as smart nanoporous preconcentrators of RDX. Sensors and Actuators B: Chemical, 2010, 148, 459-468.	4.0	38
1649	MOF-5 based mixed-linker metal–organic frameworks: Synthesis, thermal stability and catalytic application. Thermochimica Acta, 2010, 499, 71-78.	1.2	142
1650	Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles. Chemical Engineering Journal, 2010, 156, 465-470.	6.6	130
1651	Molecular simulation of hydrogen adsorption in metal-organic frameworks. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 357, 35-42.	2.3	33
1652	Ordered mesoporous carbide derived carbons for high pressure gas storage. Carbon, 2010, 48, 1707-1717.	5.4	115
1653	Computer simulation for storage of methane and capture of carbon dioxide in carbon nanoscrolls by expansion of interlayer spacing. Carbon, 2010, 48, 3760-3768.	5.4	54
1654	A cubic ordered, mesoporous carbide-derived carbon for gas and energy storage applications. Carbon, 2010, 48, 3987-3992.	5.4	140
1655	Lanthanide-based hexanuclear complexes usable as molecular precursors for new hybrid materials. Comptes Rendus Chimie, 2010, 13, 715-730.	0.2	20
1656	Synthesis, structures and antibacterial activities of two complexes of yttrium (III) with 2,6-pyridinedicarboxylate. Inorganic Chemistry Communication, 2010, 13, 199-202.	1.8	32

ARTICLE IF CITATIONS Syntheses, structural characterization and luminescent properties of M2(ATPA)3(DMF)2(H2O)2 (M=Nd,) Tj ETQq0 0 0 rgBT /Overlock 1 1657 1.8 14 Communication, 2010, 13, 286-289. Synthesis, structures, and luminescence of lanthanide coordination polymers constructed from benzimidazole-5,6-dicarboxylate and oxalate ligands. Inorganic Chemistry Communication, 2010, 13, 1.8 19 479-483. Hydrogen bonding effects on topological structures of two supramolecular transition metal 1659 coordination complexes based on organosulphonate ligands. Inorganic Chemistry Communication, 1.8 4 2010, 13, 656-658. A highly rare (3,4,5,6)-connected metal–organic framework containing three distinct Co2 secondary 1660 1.8 building units. Inorganic Chemistry Communication, 2010, 13, 671-675. Two novel cadmium(II) coordination polymers based on bis-functionalized ligand 1661 25 1.8 4â€²-(4-carboxyphenyĺ)-2, 2â€²:6â€², 2ấ€³-terpyridine. Inorganic Chemistry Communication, 2010, 13, 715-719. Molecular ladders with finite arms: The first 1Dâ†'2D polythreading with finite components based on flexibly long ligand. Inorganic Chemistry Communication, 2010, 13, 1131-1133. 1662 1.8 Coordination polymers and hydrogen-bonded assemblies of 2,2′-[2,5-bis(carboxymethoxy)-1,4-phenylene]diacetic acid with ammonium, lanthanum and zinc cations. Acta Crystallographica Section C: Crystal Structure Communications, 2010, 66, m238-m244. 1663 0.4 5 Poly[(μ4-biphenyl-3,3â€²,4,4â€²-tetracarboxylato)bis[μ2-1,4-bis(imidazol-1-ylmethyl)benzene]dicobalt(II)]. Acta_{0,4} 1664 Crystallographica Section C: Crystal Structure Communications, 2010, 66, m311-m313. Poly[[tetraaquadi-lî¼₄-glutarato-lî¼₂-terephthalato-dineodymium(III)] 1665 heptadecahydrate]. Acta Crystallographica Section C: Crystal Structure Communications, 2010, 66, 0.4 3 m371-m374. Cadmium(II) Complexes with 2,2â€2â€Dithiodibenzoate Ligand: Syntheses, Crystal Structures, and Emission 1666 Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 616-623. Solvothermal Synthesis, Crystal Structure, and Properties of a New Organicâ€Templated Holmium Sulfate with 1D Single Ladder Chains. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 1667 0.6 14 882-885. \$^3_infty\$[Tl₂Zn(ADC)₂(H₂O)₂]: the First Coordination Polymer with Acetylenedicarboxylate (ADC^{2â€"}) as Bridging Ligand containing two Different Metal IonsÂ. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 1668 0.6 11-14 Blue Fluorescence Emission Property of a Metalâ€Organic Coordination Polymer with Oneâ€Dimensional 1669 0.6 9 ChannelsÂ. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 1133-1136. PbADC and PbADC·H₂O: Two Coordination Polymers with Acetylenedicarboxylate (ADC^{2–}) as Bridging LigandÂ. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 1670 0.6 636, 1026-1031. Synthesis, Crystal Structure, and Physical Properties of a Barium(II) 1671 <í>p</i>a€(Carboxylâ€methyloxy)â€benzenecarboxylic Acid Complex. Zeitschrift Fur Anorganische Und 2 0.6 Allgemeine Chemie, 2011, 637, 289-292. Hydrogen adsorption on metal-organic framework MOF-177. Tsinghua Science and Technology, 2010, 15, 363-376. 38 Facile Synthesis of Vanadium Metal–Organic Frameworks and their Magnetic Properties. Small, 2010, 6, 1673 5.250 1598-1602. Methane storage in porous metalâ[~]organic frameworks: current records and future perspectives. 1674 99 Chemical Record, 2010, 10, 200-204.

ARTICLE IF CITATIONS Robust dynamics. Nature Chemistry, 2010, 2, 439-443. 233 1675 6.6 A series of isoreticular chiral metal–organic frameworks as a tunable platform for asymmetric 6.6 catalysis. Nature Chemistry, 2010, 2, 838-846. De novo synthesis of a metalâ€"organic framework material featuring ultrahigh surface area and gas 1677 6.6 1,535 storage capacities. Nature Chemistry, 2010, 2, 944-948. Hybrid nanoscale inorganic cages. Nature Materials, 2010, 9, 810-815. 1678 129 Synthesis, Structure and Thermal Behavior of Oxalato-Bridged Rb+ and H3O+ Extended Frameworks 1680 1.310 with Different Dimensionalities. Materials, 2010, 3, 1281-1301. Flexible Two-Dimensional Square-Grid Coordination Polymers: Structures and Functions. International Journal of Molecular Sciences, 2010, 11, 3803-3845. 1.8 Biphenyl-4,4â€2-dicarboxylic acidN,N-dimethylformamide monosolvate. Acta Crystallographica Section E: 1683 0.2 1 Structure Reports Online, 2010, 66, o2209-o2209. Anomalous aggregation state of deuterium molecules in the nanoscale pores of a metal organic 1684 1.1 framework. Journal of Applied Physics, 2010, 108, 074310. Hole-Mediated Hydrogen Spillover Mechanism in Metal-Organic Frameworks. Physical Review Letters, 1685 2.9 34 2010, 104, 236101. High-connected mesoporous metal–organic framework. Chemical Communications, 2010, 46, 7400. 2.2 1686 RECENT ADVANCES IN THE STUDY OF MESOPOROUS METAL-ORGANIC FRAMEWORKS. Comments on 1688 3.084 Inorganic Chemistry, 2010, 31, 165-195. Synthesis, crystal structure, and characterizations of a 3-D Cu(I) complex with 1689 0.8 1,6-bi(benzotriazole)hexane. Journal of Coordination Chemistry, 2010, 63, 214-222. Synthesis, Crystal Structure, and Characterization of a New Zinc Complex with Flexible Ligand (4-Amino-1,2,4-triazole-3,5-diyldithio)diacetic Acid and 4,4â€²-Bipyridine. Synthesis and Reactivity in 1690 0.6 8 Inorganic, Metal Organic, and Nano Metal Chemistry, 2010, 40, 798-804. Hydrothermal Preparation, Crystal Structures, and Properties of New Mn(II) Metal-organic Frameworks with 4-bromoisophthalic Acid and N-donor Ligands. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2010, 40, 855-860. 0.6 Platinum group metal thiacrown complexes as precursors for self-assembly reactions. 1692 7 1.5 Supramolecular Chemistry, 2010, 22, 109-121. Distance and angular holonomic constraints in molecular simulations. Journal of Chemical Physics, 1.2 2010, 133, 034114. Crystal Structures, Topological Analyses, and Magnetic Properties of 1694 0.5 14 Manganese-Dihydroxyterephthalate Complexes. Australian Journal of Chemistry, 2010, 63, 286. Coordination polymers of various architectures built with mixed imidazole/benzimidazole and carboxylate donor ligands and different metal ions: syntheses, structural features and magnetic 1.4 properties. New Journal of Chemistry, 2010, 34, 2502.

#	Article	IF	CITATIONS
1696	Structural diversification and metal-directed assembly of coordination architectures based on tetrabromoterephthalic acid and a bent dipyridyl tecton 2,5-bis(4-pyridyl)-1,3,4-oxadiazole. CrystEngComm, 2010, 12, 4392.	1.3	39
1697	Grand Canonical Monte Carlo Studies of CO ₂ and CH ₄ Adsorption in <i>p</i> - <i>tert</i> -Butylcalix[4]Arene. Journal of Physical Chemistry B, 2010, 114, 5764-5768.	1.2	8
1698	Metal Insertion in a Microporous Metalâ^'Organic Framework Lined with 2,2′-Bipyridine. Journal of the American Chemical Society, 2010, 132, 14382-14384.	6.6	514
1699	A series of transition metal–azido extended complexes with various anionic and neutral co-ligands: synthesis, structure and their distinct magnetic behavior. Dalton Transactions, 2010, 39, 7451.	1.6	41
1700	Rational Design, Synthesis, Purification, and Activation of Metalâ^'Organic Framework Materials. Accounts of Chemical Research, 2010, 43, 1166-1175.	7.6	1,259
1701	Structures and Properties of Porous Coordination Polymers Based on Lanthanide Carboxylate Building Units. Inorganic Chemistry, 2010, 49, 10781-10787.	1.9	138
1702	Concentration-Driven Evolution of Crystal Structure, Pore Characteristics, and Hydrogen Storage Capacity of Metal Organic Framework-5s: Experimental and Computational Studies. Chemistry of Materials, 2010, 22, 6138-6145.	3.2	18
1704	pH-dependent self-assembly of divalent metals with a new ligand containing polycarboxylate: syntheses, crystal structures, luminescent and magnetic properties. CrystEngComm, 2010, 12, 2157.	1.3	76
1705	Aspects of crystal structure prediction: some successes and some difficulties. Physical Chemistry Chemical Physics, 2010, 12, 8580.	1.3	21
1706	Zeolitic polyoxometalates metal organic frameworks (Z-POMOF) with imidazole ligands and ε-Keggin ions as building blocks; computational evaluation of hypothetical polymorphs and a synthesis approach. Physical Chemistry Chemical Physics, 2010, 12, 8632.	1.3	51
1707	Cadmium(II) complexes with 3,5-di(1H-imidazol-1-yl)benzoate: topological and structural diversity tuned by counteranions. CrystEngComm, 2010, 12, 100-108.	1.3	70
1708	Synthesis and characterization of two 3-D polymeric lanthanide complexes constructed from 1,2,4,5-benzenetetracarboxylic acid. Journal of Coordination Chemistry, 2010, 63, 1029-1037.	0.8	16
1710	Coordination polymers based on flexible ditopic carboxylate or nitrogen-donor ligands. CrystEngComm, 2010, 12, 660-670.	1.3	126
1711	Polyoxometalate-Based Porous Framework with Perovskite Topology. Crystal Growth and Design, 2010, 10, 4227-4230.	1.4	39
1712	Multiscale simulation and modelling of adsorptive processes for energy gas storage and carbon dioxide capture in porous coordination frameworks. Energy and Environmental Science, 2010, 3, 1469.	15.6	138
1713	DABCO-functionalized metal–organic framework bearing a C2h-symmetric terphenyl dicarboxylate linker. Dalton Transactions, 2010, 39, 5608.	1.6	58
1714	Tunable emission from a porous metal–organic framework by employing an excited-state intramolecular proton transfer responsive ligand. Chemical Communications, 2010, 46, 7906.	2.2	170
1715	Assembly of Robust and Porous Hydrogen-Bonded Coordination Frameworks: Isomorphism, Polymorphism, and Selective Adsorption. Inorganic Chemistry, 2010, 49, 10166-10173.	1.9	64

#	Article	IF	CITATIONS
1716	A series of metal–organic coordination polymers assembled with disulfide ligand involving in situ cleavage of S–S under co-ligand intervention. CrystEngComm, 2010, 12, 3840.	1.3	38
1717	A Highly Hydrophobic Metalâ~'Organic Framework Zn(BDC)(TED)0.5 for Adsorption and Separation of CH3OH/H2O and CO2/CH4: An Integrated Experimental and Simulation Study. Journal of Physical Chemistry C, 2010, 114, 6602-6609.	1.5	94
1719	A double-walled triangular metal–organic macrocycle based on a [Cu2(COO)4] square paddle-wheel secondary building unit. Dalton Transactions, 2010, 39, 6178.	1.6	16
1720	A General Approach for Estimating Framework Charges in Metalâ^'Organic Frameworks. Journal of Physical Chemistry C, 2010, 114, 5035-5042.	1.5	118
1721	CO ₂ Transport in Polysulfone Membranes Containing Zeolitic Imidazolate Frameworks As Determined by Permeation and PFG NMR Techniques. Macromolecules, 2010, 43, 316-325.	2.2	93
1722	Molecular Simulations and Experimental Studies of CO ₂ , CO, and N ₂ Adsorption in Metalâ~'Organic Frameworks. Journal of Physical Chemistry C, 2010, 114, 15735-15740.	1.5	169
1723	Synthesis of isostructural porous metal-benzenedicarboxylates: Effect of metal ions on the kinetics of synthesis. CrystEngComm, 2010, 12, 2749.	1.3	47
1724	Isoreticular Chiral Metalâ^'Organic Frameworks for Asymmetric Alkene Epoxidation: Tuning Catalytic Activity by Controlling Framework Catenation and Varying Open Channel Sizes. Journal of the American Chemical Society, 2010, 132, 15390-15398.	6.6	635
1725	Flexible metal–organic supramolecular isomers for gas separation. Chemical Communications, 2010, 46, 538-540.	2.2	173
1726	CO ₂ /H ₂ O Adsorption Equilibrium and Rates on Metalâ^Organic Frameworks: HKUST-1 and Ni/DOBDC. Langmuir, 2010, 26, 14301-14307.	1.6	390
1727	Highly-Selective and Reversible O ₂ Binding in Cr ₃ (1,3,5-benzenetricarboxylate) ₂ . Journal of the American Chemical Society, 2010, 132, 7856-7857.	6.6	307
1728	Molecular Computations of Adsorption in Nanoporous Materials. , 2010, , 69-100.		2
1729	Crystal engineering with 1-benzofuran-2,3-dicarboxylic acid: co-crystals with bipyridyl ligands, discrete complexes and coordination polymers with metal ions. CrystEngComm, 2010, 12, 3914.	1.3	19
1730	Highly emissive metal–organic framework composites by host–guest chemistry. Photochemical and Photobiological Sciences, 2010, 9, 846.	1.6	55
1731	Mn(II)-Binaphthalenyl Dicarboxylate Complexes: Helical Rectangular Tubes, (4,4) Grid Chiral Layer and Three-Dimensional Cubic Diamond Frameworks. Crystal Growth and Design, 2010, 10, 184-190.	1.4	41
1732	Synthesis, X-ray Powder Structure, and Photophysical Properties of Three New Ce(III) Sulfate- Diaminotetraphosphonate-Based Coordination Polymers. Crystal Growth and Design, 2010, 10, 4831-4838.	1.4	14
1733	Ring-Opening Reactions within Porous Metalâ~'Organic Frameworks. Inorganic Chemistry, 2010, 49, 6387-6389.	1.9	115
1734	Triptycene-Based Polymers of Intrinsic Microporosity: Organic Materials That Can Be Tailored for Gas Adsorption. Macromolecules, 2010, 43, 5287-5294.	2.2	275

#	Article	IF	CITATIONS
1735	Li-modified metal–organic frameworks for CO ₂ /CH ₄ separation: a route to achieving high adsorption selectivity. Journal of Materials Chemistry, 2010, 20, 706-714.	6.7	115
1736	Evaluation of the BET Method for Determining Surface Areas of MOFs and Zeolites that Contain Ultra-Micropores. Langmuir, 2010, 26, 5475-5483.	1.6	257
1737	Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science, 2010, 327, 846-850.	6.0	1,607
1738	Metal–organic frameworks as semiconductors. Journal of Materials Chemistry, 2010, 20, 3141.	6.7	441
1739	Storage and separation applications of nanoporous metal–organic frameworks. CrystEngComm, 2010, 12, 1337-1353.	1.3	157
1740	Tuning MOF CO ₂ Adsorption Properties via Cation Exchange. Journal of the American Chemical Society, 2010, 132, 5578-5579.	6.6	548
1741	Molecular Relaxation Processes in a MOF-5 Structure Revealed by Broadband Dielectric Spectroscopy: Signature of Phenylene Ring Fluctuations. Journal of Physical Chemistry B, 2010, 114, 12840-12846.	1.2	30
1743	A Bioinspired Synthetic Approach for Building Metalâ^'Organic Frameworks with Accessible Metal Centers. Inorganic Chemistry, 2010, 49, 10217-10219.	1.9	65
1744	First Examples of a Modulated Bridging μ ₂ -1:2κ <i>N</i> -Triazine in Double Helical Silver Compounds. Experimental and Theoretical Evidence. Inorganic Chemistry, 2010, 49, 3828-3835.	1.9	21
1745	Interaction of Molecular Hydrogen with Microporous Metal Organic Framework Materials at Room Temperature. Journal of the American Chemical Society, 2010, 132, 1654-1664.	6.6	88
1746	Zeolite-like Metalâ^'Organic Framework Based on a Flexible 2-(1 <i>H</i> -benzimidazol-2-ylthio)acetic Ligand: Synthesis, Structures, and Properties. Crystal Growth and Design, 2010, 10, 1878-1884.	1.4	18
1747	In Situ Single-Crystal Diffraction Studies of the Structural Transition of Metalâ^'Organic Framework Copper 5-Sulfoisophthalate, Cu-SIP-3. Journal of the American Chemical Society, 2010, 132, 3605-3611.	6.6	90
1748	Microporous La(III) Metalâ^'Organic Framework Using a Semirigid Tricarboxylic Ligand: Synthesis, Single-Crystal to Single-Crystal Sorption Properties, and Gas Adsorption Studies. Crystal Growth and Design, 2010, 10, 3410-3417.	1.4	68
1749	Influence of the Synthetic Conditions on the Structural Diversity of Extended Manganeseâ^'Oxalatoâ^'1,2-bis(4-pyridyl)ethylene Systems. Inorganic Chemistry, 2010, 49, 11346-11361.	1.9	29
1750	Different Structural Networks Determined by Variation of the Ligand Skeleton in Copper(II) Diphosphinate Coordination Polymers. Crystal Growth and Design, 2010, 10, 7-10.	1.4	42
1751	Zn ^{II} and Hg ^{II} Complexes with 2,3-Substituted-5,6-di(1 <i>H</i> -tetrazol-5-yl)pyrazine Ligands: Roles of Substituting Groups and Synthetic Conditions on the Formation of Complexes. Crystal Growth and Design, 2010, 10, 564-574.	1.4	21
1752	Li-Doped and Nondoped Covalent Organic Borosilicate Framework for Hydrogen Storage. Journal of Physical Chemistry C, 2010, 114, 3108-3114.	1.5	49
1753	A Novel 3D Porous Cu(II)-Based Metalâ^'Organic Framework Built from H4hbpdc Ligand: Synthesis, Structure, and Magnetic Characterization (H4hbpdc = 3,3′-Dihydroxy-2,2′-bipyridine-6,6′-dicarboxylic). Crystal Growth and Design, 2010, 10, 2851-2853.	1.4	9

	Сітат	ION REPORT	
#	Article	IF	CITATIONS
1754	Metal–organic frameworks of manganese(<scp>ii</scp>) 4,4′-biphenyldicarboxylates: crystal structures, hydrogen adsorption, and magnetism properties. CrystEngComm, 2010, 12, 677-681.	1.3	50
1755	Evaluation of [Ln(H ₂ cmp)(H ₂ O)] Metal Organic Framework Materials for Potential Application as Magnetic Resonance Imaging Contrast Agents. Inorganic Chemistry, 2010, 49, 2969-2974.	1.9	75
1756	Three Novel Metal-Organic Frameworks with Different Topologies Based on 3,3â€2-Dimethoxy-4,4â€2-biphenyldicarboxylic Acid: Syntheses, Structures, and Properties. Crystal Growt and Design, 2010, 10, 887-894.	:h 1.4	65
1757	Zn[Htma][ddm]: An Interesting Three-Dimensional Chiral Nonlinear Optical-Active Zinc-Trimesate Framework. Crystal Growth and Design, 2010, 10, 930-936.	1.4	31
1758	Structural, Magnetic, and Gas Adsorption Study of a Two-Dimensional Tetrazole-Pyrimidine Based Metalâ^'Organic Framework. Crystal Growth and Design, 2010, 10, 2475-2478.	1.4	48
1759	Monitoring adsorption-induced switching by 129Xe NMR spectroscopy in a new metal–organic framework Ni2(2,6-ndc)2(dabco). Physical Chemistry Chemical Physics, 2010, 12, 11778.	1.3	139
1760	Modeling the Mechanical Response of Tetragonal Lysozyme Crystals. Langmuir, 2010, 26, 4251-4257.	1.6	16
1761	Coordination Polymers and Networks Constructed from Bidentate Ligands Linked with Sulfonamide and Silver(I) Ions. Crystal Growth and Design, 2010, 10, 2291-2297.	1.4	22
1762	Net Adsorption: A Thermodynamic Framework for Supercritical Gas Adsorption and Storage in Porous Solids. Langmuir, 2010, 26, 17013-17023.	1.6	80
1763	Silver Coordination Polymers Based on Neutral Trinitrile Ligand: Topology and the Role of Anion. Crystal Growth and Design, 2010, 10, 3964-3976.	1.4	68
1764	Interactions of Cyclotrimethylene Trinitramine (RDX) with Metalâ^'Organic Framework IRMOF-1. Journal of Physical Chemistry C, 2010, 114, 3732-3736.	1.5	12
1765	Hydrothermal Synthesis of Disulfide-Containing Uranyl Compounds: In Situ Ligand Synthesis versus Direct Assembly. Crystal Growth and Design, 2010, 10, 1390-1398.	1.4	65
1766	Stepwise Synthesis of Charged and Neutral Two-Dimensional Networks via One-Dimensional Silver(I) Coordination Polymer Based on Bis(4-pyridylmethyl)sulfide. Crystal Growth and Design, 2010, 10, 4148-4154.	1.4	29
1767	A Microporous Metalâ ^{~'} Organic Framework Based on [2 + 2] Parallel and Inclined Interpenetrated 2D Sheets Interconnected by an Auxiliary Linker. Crystal Growth and Design, 2010, 10, 3222-3227.	1.4	5
1768	Synthesis and Structural Characterization of a 3-D Lithium Based Metalâ^'Organic Framework Showing Dynamic Structural Behavior. Crystal Growth and Design, 2010, 10, 2801-2805.	1.4	55
1769	Molecular dynamics simulations of stability of metal–organic frameworks against H2O using the ReaxFF reactive force field. Chemical Communications, 2010, 46, 5713.	2.2	121
1770	Effects of Molecular Sieving and Electrostatic Enhancement in the Adsorption of Organic Compounds on the Zeolitic Imidazolate Framework ZIF-8. Langmuir, 2010, 26, 15625-15633.	1.6	105
1771	Novel 2D → 2D Entanglement Pattern in the Coordination Network with Both Polyrotaxane and Polycatenane Features. Crystal Growth and Design, 2010, 10, 2832-2834.	1.4	40

#	Article	IF	CITATIONS
1772	Molecular Hydrogen "Pairing―Interaction in a Metal Organic Framework System with Unsaturated Metal Centers (MOF-74). Journal of the American Chemical Society, 2010, 132, 14834-14848.	6.6	61
1773	A new ligand for metal–organic framework and co-crystal synthesis: mechanochemical route to rctt-1,2,3,4-tetrakis-(4′-carboxyphenyl)-cyclobutane. Chemical Communications, 2010, 46, 3660.	2.2	60
1774	Exploitation of Intrinsic Microporosity in Polymer-Based Materials. Macromolecules, 2010, 43, 5163-5176.	2.2	725
1775	A two-fold interpenetrated (3,6)-connected metal–organic framework with rutile topology showing a large solvent cavity. New Journal of Chemistry, 2010, 34, 2396.	1.4	41
1776	Effect of Charge Distribution on RDX Adsorption in IRMOF-10. Langmuir, 2010, 26, 5942-5950.	1.6	27
1777	Adsorption and Separation of Reactive Aromatic Isomers and Generation and Stabilization of Their Radicals within Cadmium(II)â°Triazole Metalâ°Organic Confined Space in a Single-Crystal-to-Single-Crystal Fashion. Journal of the American Chemical Society, 2010, 132, 7005-7017.	6.6	185
1778	Metalâ^'Organic Framework Based on [Zn ₄ O(COO) ₆] Clusters: Rare 3D Kagomé Topology and Luminescence. Crystal Growth and Design, 2010, 10, 44-47.	1.4	50
1779	Construction of Metalâ^'Organic Frameworks with Tetranuclear Metal Clusters: Hydrothermal Synthesis, Structure, and Magnetic Properties. Crystal Growth and Design, 2010, 10, 534-540.	1.4	33
1780	Metal–organic frameworks with designed chiral recognition sites. Chemical Communications, 2010, 46, 4911.	2.2	82
1781	Synthesis and crystal structures of two new zigzag <i>versus</i> helical coordination polymers based on diphenic acid. Journal of Coordination Chemistry, 2010, 63, 1130-1138.	0.8	11
1782	A Series of (6,6)-Connected Porous Lanthanideâ^'Organic Framework Enantiomers with High Thermostability and Exposed Metal Sites: Scalable Syntheses, Structures, and Sorption Properties. Inorganic Chemistry, 2010, 49, 10001-10006.	1.9	151
1783	Engineering Three-Dimensional Chains of Porous Nanoballs from a 1,2,4-Triazole-carboxylate Supramolecular Synthon. Crystal Growth and Design, 2010, 10, 1798-1807.	1.4	49
1784	High-Capacity Hydrogen Storage in Porous Aromatic Frameworks with Diamond-like Structure. Journal of Physical Chemistry Letters, 2010, 1, 978-981.	2.1	98
1785	Oriented growth of the functionalized metal–organic framework CAU-1 on –OH- and –COOH-terminated self-assembled monolayers. Physical Chemistry Chemical Physics, 2010, 12, 4515.	1.3	50
1786	Cobalt Doping of the MOF-5 Framework and Its Effect on Gas-Adsorption Properties. Langmuir, 2010, 26, 5300-5303.	1.6	202
1787	Exceptional Thermal Stability in a Supramolecular Organic Framework: Porosity and Gas Storage. Journal of the American Chemical Society, 2010, 132, 14457-14469.	6.6	369
1788	Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chemistry of Materials, 2010, 22, 6632-6640.	3.2	1,547
1789	Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 2010, 110, 4606-4655.	23.0	3,200

#	Article	IF	CITATIONS
1790	A pulse chromatographic study of the adsorption properties of the amino-MIL-53 (Al) metal–organic framework. Physical Chemistry Chemical Physics, 2010, 12, 9413.	1.3	69
1791	Targeted synthesis of a 3D porous aromatic framework for selective sorption of benzene. Chemical Communications, 2010, 46, 291-293.	2.2	211
1792	Growth of Metalâ~'Organic Frameworks on Polymer Surfaces. Journal of the American Chemical Society, 2010, 132, 15687-15691.	6.6	147
1793	Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chemical Communications, 2010, 46, 7700.	2.2	707
1794	Two-Step Adsorption on Jungle-Gym-Type Porous Coordination Polymers: Dependence on Hydrogen-Bonding Capability of Adsorbates, Ligand-Substituent Effect, and Temperature. Inorganic Chemistry, 2010, 49, 10133-10143.	1.9	66
1795	Heteroepitaxial Growth of Isoreticular Metalâ^'Organic Frameworks and Their Hybrid Films. Crystal Growth and Design, 2010, 10, 1283-1288.	1.4	107
1796	The role of synchrotron radiation in examining the self-assembly of crystalline nanoporous framework materials: from zeolites and aluminophosphates to metal organic hybrids. Chemical Society Reviews, 2010, 39, 4767.	18.7	43
1797	Metal organic gels (MOGs): a new class of sorbents for CO2 separation applications. Journal of Materials Chemistry, 2010, 20, 7623.	6.7	80
1798	Solid-state transformation of [Co(NCS)2(pyridine)4] into [Co(NCS)2(pyridine)2]n: from Curie–Weiss paramagnetism to single chain magnetic behaviour. Dalton Transactions, 2010, 39, 11019.	1.6	108
1799	Effect of Produced HCl during the Catalysis on Micro- and Mesoporous MOFs. Crystal Growth and Design, 2010, 10, 4118-4122.	1.4	15
1800	Chromatography in a Single Metalâ~'Organic Framework (MOF) Crystal. Journal of the American Chemical Society, 2010, 132, 16358-16361.	6.6	192
1801	Patterned film growth of metal–organic frameworks based on galvanic displacement. Chemical Communications, 2010, 46, 3735.	2.2	86
1802	Interaction of the Explosive Molecules RDX and TATP with IRMOF-8. Journal of Physical Chemistry C, 2010, 114, 7535-7540.	1.5	20
1803	Reinvestigation of the M ^{II} (M = Ni, Co)/TetraThiafulvaleneTetraCarboxylate System Using High-Throughput Methods: Isolation of a Molecular Complex and Its Single-Crystal-to-Single-Crystal Transformation to a Two-Dimensional Coordination Polymer. Inorganic Chemistry, 2010, 49, 10710-10717	1.9	66
1804	New Chiral and Flexible Metalâ^'Organic Framework with a Bifunctional Spiro Linker and Zn ₄ O-Nodes. Inorganic Chemistry, 2010, 49, 4440-4446.	1.9	51
1805	Elucidating Negative Thermal Expansion in MOF-5. Journal of Physical Chemistry C, 2010, 114, 16181-16186.	1.5	199
1806	Synthesis and characterization of the interpenetrated MOF-5. Journal of Materials Chemistry, 2010, 20, 3758.	6.7	152
1807	Solvothermal Synthesis and Structural Characterization of Ultralight Metal Coordination Networks. Crystal Growth and Design, 2010, 10, 709-715.	1.4	32

#	Article	IF	CITATIONS
1808	Potassium Chabazite: A Potential Nanocontainer for Gas Encapsulation. Journal of Physical Chemistry C, 2010, 114, 22025-22031.	1.5	45
1809	Macro-/microporous MOF composite beads. Journal of Materials Chemistry, 2010, 20, 5720.	6.7	162
1810	Preparation of three new metal-organic frameworks by adjusting reaction conditions. , 2010, , .		1
1811	Hydrothermal chemistry of vanadium oxides with aromatic di- and tri-phosphonates in the presence of secondary metal copper(II) cationic complex subunits. CrystEngComm, 2010, 12, 446-469.	1.3	47
1812	Copper(I) Cyanide Coordination Polymers Constructed from Bis(Pyrazole-1-yl)alkane Ligands: Observation of the Oddâ^'Even Dependence in the Structures. Crystal Growth and Design, 2010, 10, 2323-2330.	1.4	43
1813	Impact of ligands on CO2 adsorption in metal-organic frameworks: First principles study of the interaction of CO2 with functionalized benzenes. II. Effect of polar and acidic substituents. Journal of Chemical Physics, 2010, 132, 044705.	1.2	164
1814	A Metalâ^'Organic Framework with a Covalently Prefabricated Porous Organic Linker. Journal of the American Chemical Society, 2010, 132, 12773-12775.	6.6	88
1815	Hybrid Quantum Mechanics/Molecular Mechanics Investigation of (salen)Mn for use in Metalâ^'Organic Frameworks. Industrial & Engineering Chemistry Research, 2010, 49, 10965-10973.	1.8	32
1816	Prussian Blue Analogues for CO ₂ and SO ₂ Capture and Separation Applications. Inorganic Chemistry, 2010, 49, 4909-4915.	1.9	138
1817	Adsorption and Separation of Xylene Isomers and Ethylbenzene on Two Znâ^'Terephthalate Metalâ^'Organic Frameworks. Journal of Physical Chemistry C, 2010, 114, 311-316.	1.5	152
1818	Multistep N ₂ Breathing in the Metalâ^'Organic Framework Co(1,4-benzenedipyrazolate). Journal of the American Chemical Society, 2010, 132, 13782-13788.	6.6	220
1819	Luminescent Metal-Organic Frameworks: A Nanolaboratory for Probing Energy Transfer via Interchromophore Interactions. ECS Transactions, 2010, 28, 137-143.	0.3	5
1820	Sorbents for CO2 capture from flue gas—aspects from materials and theoretical chemistry. Nanoscale, 2010, 2, 1819.	2.8	213
1821	Preparation of Clickable Microporous Hydrocarbon Particles Based on Adamantane. Macromolecules, 2010, 43, 6943-6945.	2.2	63
1822	Phase-Transition and Phase-Selective Synthesis of Porous Chromium-Benzenedicarboxylates. Crystal Growth and Design, 2010, 10, 1860-1865.	1.4	102
1823	Selecting metal organic frameworks as enabling materials in mixed matrix membranes for high efficiency natural gas purification. Energy and Environmental Science, 2010, 3, 343.	15.6	172
1824	Understanding the Effect of Confinement on the Liquidâ Gas Transition: A Study of Adsorption Isotherms in a Family of Metalâ Organic Frameworks. Journal of Physical Chemistry C, 2010, 114, 21631-21637.	1.5	27
1825	Enhancement of Hydrogen Adsorption in Metalâ^'Organic Frameworks by Mg ²⁺ Functionalization: A Multiscale Computational Study. Journal of Physical Chemistry C, 2010, 114, 16855-16858.	1.5	31

#	Article	IF	Citations
1826	Unusual Adsorption Behavior on Metalâ^'Organic Frameworks. Langmuir, 2010, 26, 14694-14699.	1.6	52
1827	High Uptakes of Methane in Li-Doped 3D Covalent Organic Frameworks. Langmuir, 2010, 26, 220-226.	1.6	99
1828	Evaluation of Energy Heterogeneity in Metalâ~'Organic Frameworks: Absence of Henry's Region in MIL-53 and MIL-68 Materials?. Journal of Physical Chemistry C, 2010, 114, 17665-17674.	1.5	17
1829	Molecular Simulation for Adsorption and Separation of CH ₄ /H ₂ in Zeolitic Imidazolate Frameworks. Journal of Physical Chemistry C, 2010, 114, 12158-12165.	1.5	97
1830	Synthesis, Crystal Structures, and Properties of Novel Heterometallic La/Prâ^'Cuâ^'K and Sm/Eu/Tbâ^'Cu Coordination Polymers. Crystal Growth and Design, 2010, 10, 1059-1067.	1.4	46
1831	Functional Mesoporous Metalâ^'Organic Frameworks for the Capture of Heavy Metal Ions and Size-Selective Catalysis. Inorganic Chemistry, 2010, 49, 11637-11642.	1.9	283
1832	Iron-Decorated, Functionalized Metal Organic Framework for High-Capacity Hydrogen Storage: First-Principles Calculations. Journal of Physical Chemistry C, 2010, 114, 14276-14280.	1.5	26
1835	Gas storage in porous metal–organic frameworks for clean energy applications. Chemical Communications, 2010, 46, 44-53.	2.2	1,210
1836	X-ray absorption spectroscopies: useful tools to understand metallorganic frameworks structure and reactivity. Chemical Society Reviews, 2010, 39, 4885.	18.7	130
1837	Cubic Polyoxometalateâ^'Organic Molecular Cage. Journal of the American Chemical Society, 2010, 132, 15102-15103.	6.6	357
1838	Cu ₂ (pyrazine-2,3-dicarboxylate) ₂ (4,4′-bipyridine) Porous Coordination Sorbents: Activation Temperature, Textural Properties, and CO ₂ Adsorption at Low Pressure Range. Journal of Physical Chemistry C, 2010, 114, 1827-1834.	1.5	41
1839	Dipyridyl β-diketonate complexes: versatile polydentate metalloligands for metal–organic frameworks and hydrogen-bonded networks. Chemical Communications, 2010, 46, 5067.	2.2	53
1840	A Systematic Investigation of Decomposition of Nano Zn ₄ O(C ₈ H ₄ O ₄) ₃ Metalâ^'Organic Framework. Journal of Physical Chemistry C, 2010, 114, 2566-2572.	1.5	91
1841	Tetrathiafulvaleneâ^'Tetracarboxylate: An Intriguing Building Block with Versatility in Coordination Structures and Redox Properties. Inorganic Chemistry, 2010, 49, 7372-7381.	1.9	49
1845	Postsynthetic diazeniumdiolate formation and NO release from MOFs. CrystEngComm, 2010, 12, 2335.	1.3	90
1846	A Metalâ^'Organic Framework with Covalently Bound Organometallic Complexes. Journal of the American Chemical Society, 2010, 132, 9262-9264.	6.6	206
1847	Explanation of the Adsorption of Polar Vapors in the Highly Flexible Metal Organic Framework MIL-53(Cr). Journal of the American Chemical Society, 2010, 132, 9488-9498.	6.6	185
1848	Main-Group and Transition-Element IRMOF Homologues. Journal of the American Chemical Society, 2010, 132, 10978-10981.	6.6	90

#	ARTICLE Metalâ^'Organic Framework MIL-101 for Adsorption and Effect of Terminal Water Molecules: From	IF	CITATIONS
1849	Quantum Mechanics to Molecular Simulation. Langmuir, 2010, 26, 8743-8750. Generic Postfunctionalization Route from Amino-Derived Metalâ [°] Organic Frameworks. Journal of the	6.6	113
1851	American Chemical Society, 2010, 132, 4518-4519. Functionalization of Coordination Nanochannels for Controlling Tacticity in Radical Vinyl Polymerization, Journal of the American Chemical Society, 2010, 132, 4917-4924	6.6	108
1852	Adsorption of light hydrocarbons in the flexible MIL-53(Cr) and rigid MIL-47(V) metal–organic frameworks: a combination of molecular simulations and microcalorimetry/gravimetry	1.3	82
1853	Mesoporous metal organic framework–boehmite and silica composites. Chemical Communications, 2010, 46, 6798.	2.2	74
1854	Divalent zinc and cadmium coordination polymers of a new flexible tetracarboxylate ligand: syntheses, crystal structures and properties. Dalton Transactions, 2010, 39, 8022.	1.6	36
1855	Template-directed synthesis of three new open-framework metal(ii) oxalates using Co(iii) complex as template. CrystEngComm, 2010, 12, 4198.	1.3	60
1856	The first three-fold interpenetrated framework with two different four-connected uniform nets of 66 dia and new chiral 86 mdf networks. Chemical Communications, 2010, 46, 8216.	2.2	48
1857	A metal–organic framework replete with ordered donor–acceptor catenanes. Chemical Communications, 2010, 46, 380-382.	2.2	94
1858	Computational screening of metal–organic frameworks for large-molecule chemical sensing. Physical Chemistry Chemical Physics, 2010, 12, 12621.	1.3	83
1859	Facile fabrication of metal–organic framework films promoted by colloidal seeds on various substrates. CrystEngComm, 2010, 12, 352-354.	1.3	28
1860	Novel three-dimensional Ln–Ag 4d–4f heteropentametallic helix-based microporous metal–organic framework with unprecedented (3,4,5,6)-connected topology constructed from isonicotinate ligand. CrystEngComm, 2010, 12, 2014.	1.3	22
1861	Chemical reduction of a diimide based porous polymer for selective uptake of carbon dioxide versus methane. Chemical Communications, 2010, 46, 1056.	2.2	144
1862	A microporous metal–organic framework constructed from a 1D column made of linear trinuclear manganese secondary building units. CrystEngComm, 2010, 12, 2179.	1.3	13
1863	Solvothermal syntheses, crystal structures and luminescence properties of three new lanthanide sulfate fluorides. Dalton Transactions, 2010, 39, 3681.	1.6	31
1864	Following the self assembly of supramolecular MOFs using X-ray crystallography and cryospray mass spectrometry. Chemical Science, 2010, 1, 62.	3.7	48
1865	heteropolytopic ligands based on oxalate/malonate skeleton and azolate moieties. CrystEngComm, 2010, 12, 1217-1226.	1.3	2
1866	Temperature-controlled structure diversity observed in the Zn(ii)-oxalate-4,4′-bipyridine three-member system. CrystEngComm, 2010, 12, 1750.	1.3	22

#	Article	IF	CITATIONS
1867	Systematic exploration of a rutile-type zinc(ii)–phosphonocarboxylate open framework: the factors that influence the structure. Dalton Transactions, 2010, 39, 10712.	1.6	13
1868	Effect of N-donor auxiliary ligands on the engineering of crystalline architectures of a series of lead(ii) complexes with 5-amino-2,4,6-triiodoisophthalic acid. CrystEngComm, 2010, 12, 1194-1204.	1.3	49
1869	Solvent-free porous framework resulted from 3D entanglement of 1D zigzag coordination polymer. New Journal of Chemistry, 2010, 34, 2392.	1.4	9
1870	An unusual case of symmetry-preserving isomerism. Chemical Communications, 2010, 46, 1329.	2.2	162
1871	Counterion-induced controllable assembly of 2D and 3D metal–organic frameworks: effect of coordination modes of dinuclear Cu(ii) paddle-wheel motifs. CrystEngComm, 2010, 12, 3815.	1.3	35
1872	Five 3D metal–organic frameworks constructed from V-shaped polycarboxylate acids and flexible imidazole-based ligands. CrystEngComm, 2010, 12, 1175-1185.	1.3	72
1873	Tuning of unusual secondary ligands to construct fluorescent zinc coordination polymers of an unsymmetrical pyridylbenzoate ligand from 1D chain to interdigital or porous 2D layers and interpenetrated 3D frameworks. CrystEngComm, 2010, 12, 2847.	1.3	24
1874	A metal–organic framework with coordinatively unsaturated metal centers and microporous structure. CrystEngComm, 2010, 12, 2347.	1.3	24
1875	Solvothermal syntheses, structures, and physical properties of four new coordination compounds constructed from a bent dicarboxylate ligand. Dalton Transactions, 2010, 39, 8240.	1.6	23
1876	Eight new complexes based on flexible multicarboxylate ligands: synthesis, structures and properties. CrystEngComm, 2010, 12, 3183.	1.3	10
1877	Structure extending and cation exchange of Cd(ii) and Co(ii) materials compounds inducing fluorescence signal mutation. Journal of Materials Chemistry, 2010, 20, 5695.	6.7	77
1878	Asymmetric alcoholytic kinetic resolution of styrene oxide catalysed by chiral metal–organic framework crystals. New Journal of Chemistry, 2010, 34, 2389.	1.4	43
1879	Multifarious ZnII and CdII coordination frameworks constructed by a versatile trans-1-(2-pyridyI)-2-(4-pyridyI)ethylene tecton and various benzenedicarboxyl ligands. CrystEngComm, 2010, 12, 834-844.	1.3	30
1880	Design and constructions of three novel metal–organic frameworks based on pillared-layer motifs. CrystEngComm, 2010, 12, 567-572.	1.3	15
1881	Solvent effect on the construction of two microporous yttrium–organic frameworks with high thermostability viain situ ligand hydrolysis. Dalton Transactions, 2010, 39, 5683.	1.6	38
1882	Hydro(solvo)thermal synthesis and structural characterization of three lanthanide–carboxylate coordination polymers based on BDC and/or EDTA. Journal of Coordination Chemistry, 2010, 63, 625-633.	0.8	5
1883	A melamine–adipate-bridged binuclear copper complex with supramolecular architecture: synthesis, structures, and properties of [Cu ₂ (MA)(ad) ₂]·H ₂ O and (MA)·(H ₂ ad)·H ₂ O. Journal of Coordination Chemistry, 2010, 63, 435-447.	0.8	14
1884	Silver nanofibers from the nanorods of one-dimensional organometallic coordination polymers. CrystEngComm, 2010, 12, 3394.	1.3	48

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1885	A versatile V-shaped tetracarboxylate building block for constructing mixed-ligand Co(ii) an complexes incorporating various N-donor co-ligands. CrystEngComm, 2010, 12, 1227-1237	d Mn(ii) '.	1.3	61
1886	Hydrothermal preparation, crystal structures and properties of novel Mn(ii) metal–organi frameworks with 5-nitro-1,2,3-benzenetricarboxylate and various dipyridyl ligands. CrystEng 2010, 12, 1439-1449.	c gComm,	1.3	37
1887	Preparation and characterization of lanthanide–azo-dye coordination polymers and polyn films via layer-by-layer depositions. Dalton Transactions, 2010, 39, 10967.	ner thin	1.6	7
1888	Solid-state assembly of oxyfunctionalized calix[4]arene derivatives. CrystEngComm, 2010,	12, 880-887.	1.3	4
1889	Facile shaping of an imidazolate-based MOF on ceramic beads for adsorption and catalytic applications. Chemical Communications, 2010, 46, 7999.		2.2	115
1890	A NbO-type metal–organic framework derived from a polyyne-coupled di-isophthalate link situ. Chemical Communications, 2010, 46, 4196.	er formed in	2.2	139
1891	A new heterogeneous catalyst for epoxidation of alkenes via one-step post-functionalizatio IRMOF-3 with a manganese(ii) acetylacetonate complex. Chemical Communications, 2011,	n of 47, 3637.	2.2	133
1892	Molecular tectonics of metal–organic frameworks based on ligand-modulated polynuclea and aromatic multicarboxylic acids. CrystEngComm, 2011, 13, 889-896.	r zinc SBUs	1.3	43
1893	One dimensional infinite water wires incorporated in isostructural organic crystalline supermolecules with zwitterionic channels. CrystEngComm, 2011, 13, 1287-1290.		1.3	9
1894	Synthesis, structural characterization and properties of Ag(i)-complexes based on double-ar 1,3,4-oxadiazole bridging ligands. CrystEngComm, 2011, 13, 6850.	med	1.3	15
1895	Structural diversity of the mixed-ligand system Mn-cpdba-2,2′-bpy controlled by tempera CrystEngComm, 2011, 13, 1550-1556.	iture.	1.3	26
1896	Differences of crystal structure and dynamics between a soft porous nanocrystal and a bulk Chemical Communications, 2011, 47, 7632.	e crystal.	2.2	60
1897	A novel low density metal–organic framework with pcu topology by dendritic ligand. Che Communications, 2011, 47, 9167.	mical	2.2	63
1898	An unprecedented 3-fold interpenetrated double-edged pseudo-diamondoid network conta exceptional 5-fold interlocking tri-flexure helices and 15-fold interwoven helices. CrystEngC 2011, 13, 4841.	ining omm,	1.3	34
1899	Unprecedented Lanthanide-Containing Coordination Polymers Constructed from Hexanucle Molecular Building Blocks: {[Ln ₆ O(OH) ₈](NO ₃) ₂ (bdc)(Hbdc) <sub Inorganic Chemistry, 2011, 50, 2851-2858.</sub 	≥ar b>2·2NO <sub< td=""><td>>3</td><td>Â∙H_{2<!--</td-->}</td></sub<>	> 3	Â∙H _{2<!--</td-->}
1900	A novel (3,36)-connected and self-interpenetrated metal–organic framework with high th stability and gas-sorption capabilities. Chemical Communications, 2011, 47, 7722.	ermal	2.2	68
1901	Syntheses, structural aspects, luminescence and magnetism of four coordination polymers new flexible polycarboxylate. CrystEngComm, 2011, 13, 2096.	based on a	1.3	46
1902	Highly porous Co(ii)-salicylate metal–organic framework: synthesis, characterization and properties. Dalton Transactions, 2011, 40, 2932.	magnetic	1.6	60

	CITATION	CITATION REPORT		
#	Article	IF	CITATIONS	
1903	Metallomacrocycle or coordination polymer: Spacer-directed self-assembly of transition-metal complexes based on flexible bis(benzotriazole) ligands. CrystEngComm, 2011, 13, 2890.	1.3	26	
1904	A new type of entangled motif: from 2D polyrotaxane layers to a 3D polythreaded framework. CrystEngComm, 2011, 13, 3661.	1.3	49	
1905	Synthesis, characterization, crystal structure and preliminary reactivity behaviour of new heteropolytopic ligands based on the 1,3,5-triazine spacer and pyrazolyl, tris-pyrazolylmethyl and tris-pyrazolylethoxy bonding fragments. Dalton Transactions, 2011, 40, 4941.	1.6	9	
1906	Homoleptic imidazolate frameworks 3â^ž[Sr _{1â^'x} Eu _x (Im) ₂]—hybrid materials with efficient and tuneable luminescence. Chemical Communications, 2011, 47, 496-498.	2.2	53	
1907	A DFT study of IRMOF-3 catalysed Knoevenagel condensation. Physical Chemistry Chemical Physics, 2011, 13, 15995.	1.3	29	
1908	Ancillary ligand-mediated syntheses and fluorescence properties of zinc(ii) complexes based on flexible benzene dicarboxylic acid. CrystEngComm, 2011, 13, 3013.	1.3	62	
1909	Self-assembly of melem on Ag(111)—emergence of porous structures based on amino-heptazine hydrogen bonds. CrystEngComm, 2011, 13, 5559.	1.3	17	
1910	Solid-state assembly of calixcyclitol derivatives. CrystEngComm, 2011, 13, 467-473.	1.3	3	
1911	Hydrothermal syntheses, structures and luminescent properties of Zn(ii) coordination polymers assembled with benzene-1,2,3-tricarboxylic acid involving in situ ligand reactions. CrystEngComm, 2011, 13, 2764.	1.3	50	
1912	Five three/two-fold interpenetrating architectures from self-assembly of fluorene-2,7-dicarboxylic acid derivatives and d10 metals. CrystEngComm, 2011, 13, 2935.	1.3	33	
1913	Synthesis, crystal structures, and luminescent properties of Cd(<scp>ii</scp>) coordination polymers assembled from asymmetric semi-rigid V-shaped multicarboxylate ligands. CrystEngComm, 2011, 13, 279-286.	1.3	53	
1914	Molecular transition-metal phosphonates. Dalton Transactions, 2011, 40, 5394.	1.6	78	
1915	A novel 3-connected [3 + 3] topological net showing both rotaxane- and catenane-like motifs. CrystEngComm, 2011, 13, 4945.	1.3	8	
1916	Understanding ligand-centred photoluminescence through flexibility and bonding of anthraquinone inorganic–organic frameworks. Journal of Materials Chemistry, 2011, 21, 6595.	6.7	17	
1917	Multiple phase-transitions upon selective CO2 adsorption in an alkyl ether functionalized metal–organic framework—an in situ X-ray diffraction study. CrystEngComm, 2011, 13, 6399.	1.3	50	
1918	A series of lanthanide-transition metal coordination polymers with mixed ligands: syntheses, structures, photoluminescence and magnetic properties. CrystEngComm, 2011, 13, 3498.	1.3	17	
1919	Coordination polymers of flexible tetracarboxylic acids with metal ions. II. Supramolecular assemblies of 5,5â€2-methylene- and 5,5â€2-(ethane-1,2-diyl)-bis(oxy)diisophthalic acidligands with d-transitic metals. CrystEngComm, 2011, 13, 350-366.	on 1.3	51	
1920	Solvochromic and photodimerization behaviour of 1D coordination polymer via single-crystal-to-single-crystal transformation. Chemical Communications, 2011, 47, 9384.	2.2	48	

#	Article	IF	CITATIONS
1921	Structural variability of Co(ii) and Ni(ii) entangled metal–organic frameworks: effect of N-donor ligands and metal ions. CrystEngComm, 2011, 13, 3733.	1.3	53
1922	From 2D → 3D inclined polycatenation to 2D → 3D parallel polycatenation: a central metal cationic induce strategy. CrystEngComm, 2011, 13, 440-443.	1.3	58
1923	Molecular simulation investigation into the performance of Cu–BTC metal–organic frameworks for carbon dioxide–methane separations. Physical Chemistry Chemical Physics, 2011, 13, 20453.	1.3	25
1924	A mesoporous metal–organic framework constructed from a nanosized C3-symmetric linker and [Cu24(isophthalate)24] cuboctahedra. Chemical Communications, 2011, 47, 9995.	2.2	130
1925	Nanoporous Solids: Materials for a Sustainable Development. Advanced Materials Research, 2011, 324, 26-31.	0.3	1
1926	A zeolitic porous lithium–organic framework constructed from cubane clusters. Chemical Communications, 2011, 47, 5536-5538.	2.2	65
1927	Electronic Structure from First-Principles of LiBH ₄ ·NH ₃ , Sr(NH ₂ BH ₃) ₂ , and Li ₂ Al(BH ₄) ₅ ·6NH ₃ for Hydrogen Storage Applications. Journal of Physical Chemistry C, 2011, 115, 20036-20042.	1.5	10
1928	Preparation of Microporous Carbon Fibers through Carbonization of Al-Based Porous Coordination Polymer (Al-PCP) with Furfuryl Alcohol. Chemistry of Materials, 2011, 23, 1225-1231.	3.2	231
1929	Adsorption Equilibrium and Kinetics of CO ₂ on Chromium Terephthalate MIL-101. Energy & Fuels, 2011, 25, 835-842.	2.5	149
1930	Trigonal Rigid Triphenols: Self-Assembly and Multicomponent Lattice Inclusion. Crystal Growth and Design, 2011, 11, 3406-3417.	1.4	12
1931	Syntheses, Structures, and Gas Adsorption Properties of Two Novel Cadmium–Sodium Organic Frameworks with 1,3,5-Benzenetricarboxylate Ligands. Crystal Growth and Design, 2011, 11, 3529-3535.	1.4	27
1932	Synthesis, crystal structures, photoluminescence, and catalytic reactivity of novel coordination polymers (0-D, 1-D, 2-D to 3-D) constructed from cis-1,2-cyclohexanedicarboxylic acid and various bipyridyl ligands. New Journal of Chemistry, 2011, 35, 833.	1.4	38
1933	Construction of 5-Aminodiacetic Isophthalate Based Nickel(II) Complexes with Diverse Topologies through Modulating the Auxiliary Ligands. Crystal Growth and Design, 2011, 11, 3273-3281.	1.4	36
1934	Direct synthesis of nanoporous carbon nitride fibers using Al-based porous coordination polymers (Al-PCPs). Chemical Communications, 2011, 47, 8124.	2.2	140
1935	Molecular tectonics: control of interpenetration in cuboid 3-D coordination networks. CrystEngComm, 2011, 13, 776-778.	1.3	34
1936	Directly Assembling Ligand-Free ZnO Nanocrystals into Three-Dimensional Mesoporous Structures by Oriented Attachment. Inorganic Chemistry, 2011, 50, 5841-5847.	1.9	52
1937	Novel Twofold Interpenetrating Channel Framework Based on Metal Tetramer Subunits. Crystal Growth and Design, 2011, 11, 2695-2697.	1.4	5
1938	Temperature-Driven Assembly of Ln(III) (Ln = Nd, Eu, Yb) Coordination Polymers of a Flexible Azo Calix[4]arene Polycarboxylate Ligand. Crystal Growth and Design, 2011, 11, 3479-3488.	1.4	64

#	Article	IF	CITATIONS
1939	Computational Study of Hydrocarbon Adsorption in Metalâ^'Organic Framework Ni ₂ (dhtp). Journal of Physical Chemistry B, 2011, 115, 2842-2849.	1.2	13
1940	On the relationship between the structure of metal–organic frameworks and the adsorption and diffusion of hydrogen. Molecular Simulation, 2011, 37, 621-639.	0.9	12
1941	Coordination Polymers of 5-(2-Amino/Acetamido-4-carboxyphenoxy)-benzene-1,3-dioic Acids with Transition Metal lons: Synthesis, Structure, and Catalytic Activity. Crystal Growth and Design, 2011, 11, 2621-2636.	1.4	52
1942	Cation Characterization and CO2Capture in Li+-Exchanged Metalâ^'Organic Frameworks: From First-Principles Modeling to Molecular Simulationâ€. Industrial & Engineering Chemistry Research, 2011, 50, 62-68.	1.8	43
1943	Syntheses, Crystal Structures, and Properties of a Series of Coordination Polymers Based on 2-(<i>n</i> -Pyridyl)benzimidazole Ligands (<i>n</i> = 3, 4). Crystal Growth and Design, 2011, 11, 2897-2904.	1.4	18
1944	Highly Efficient Separation of a Solid Mixture of Naphthalene and Anthracene by a Reusable Porous Metal–Organic Framework through a Single-Crystal-to-Single-Crystal Transformation. Journal of the American Chemical Society, 2011, 133, 11042-11045.	6.6	263
1945	Thionyl Chloride-Catalyzed Preparation of Microporous Organic Polymers through Aldol Condensation. Macromolecules, 2011, 44, 6382-6388.	2.2	50
1946	Structural Diversity and Energetics in Anhydrous Lithium Tartrates: Experimental and Computational Studies of Novel Chiral Polymorphs and Their Racemic and Meso Analogues. Crystal Growth and Design, 2011, 11, 221-230.	1.4	39
1947	A Cubic, 12-Connected, Microporous Metalâ~'Organometallic Phosphate Framework Sustained by Truncated Tetrahedral Nodes. Journal of the American Chemical Society, 2011, 133, 1634-1637.	6.6	56
1948	Density Functional Theory Study of the Carbonyl-ene Reaction of Encapsulated Formaldehyde in Cu(I), Ag(I), and Au(I) Exchanged FAU Zeolites. Journal of Physical Chemistry A, 2011, 115, 12486-12492.	1.1	36
1949	Anionic Gallium-Based Metalâ^'Organic Framework and Its Sorption and Ion-Exchange Properties. Inorganic Chemistry, 2011, 50, 208-212.	1.9	53
1950	Three New Isostructural Coordination Polymers with Cd(II) Clusters as the SBU: Synthesis, Structural Characterization, and Luminescence Properties. Crystal Growth and Design, 2011, 11, 5434-5440.	1.4	24
1951	Syntheses, Structures, and Structural Transformations of Mixed Na(I) and Zn(II) Metal–Organic Frameworks with 1,3,5-Benzenetricarboxylate Ligands. Crystal Growth and Design, 2011, 11, 2243-2249.	1.4	18
1952	Gated Channels in a Honeycomb-like Zincâ^'Dicarboxylateâ^'Bipyridine Framework with Flexible Alkyl Ether Side Chains. Journal of the American Chemical Society, 2011, 133, 2064-2067.	6.6	153
1953	Nonlinear Properties in Coordination Copolymers Derived from Randomly Mixed Ligands. Crystal Growth and Design, 2011, 11, 2059-2063.	1.4	47
1954	Unusual Hybrid Materials Prepared by the Oxidation of a Ketone. Crystal Growth and Design, 2011, 11, 3013-3019.	1.4	4
1955	Atomistic Structure Generation and Gas Adsorption Simulations of Microporous Polymer Networks. Macromolecules, 2011, 44, 4511-4519.	2.2	84
1956	Microwave-Assisted Cyanation of an Aryl Bromide Directly on a Metalâ^Organic Framework. Inorganic Chemistry, 2011, 50, 729-731.	1.9	81

#	Article	IF	CITATIONS
1957	Three New Coordination Polymers Based on One Reduced Symmetry Tripodal Linker. Crystal Growth and Design, 2011, 11, 3115-3121.	1.4	67
1958	Metal Alkoxide Functionalization in Metalâ~'Organic Frameworks for Enhanced Ambient-Temperature Hydrogen Storage. Journal of Physical Chemistry C, 2011, 115, 2066-2075.	1.5	111
1959	Experimental and Theoretical Studies of Supercritical Methane Adsorption in the MIL-53(Al) Metal Organic Framework. Journal of Physical Chemistry C, 2011, 115, 20628-20638.	1.5	33
1960	Stability Effects on CO ₂ Adsorption for the DOBDC Series of Metal–Organic Frameworks. Langmuir, 2011, 27, 11451-11456.	1.6	171
1961	Synthesis and characterization of hybrid organic/inorganic nanotubes of the imogolite type and their behaviour towards methane adsorption. Physical Chemistry Chemical Physics, 2011, 13, 744-750.	1.3	102
1962	MOF-5: Enthalpy of Formation and Energy Landscape of Porous Materials. Journal of the American Chemical Society, 2011, 133, 9184-9187.	6.6	55
1963	Fast Synthesis of MOF-5 Microcrystals Using Solâ^'Gel SiO ₂ Nanoparticles. Chemistry of Materials, 2011, 23, 929-934.	3.2	106
1964	Novel Route to Size-Controlled Fe–MIL-88B–NH ₂ Metal–Organic Framework Nanocrystals. Langmuir, 2011, 27, 15261-15267.	1.6	224
1967	Computer simulations for the adsorption and separation of CO2/CH4/H2/N2 gases by UMCM-1 and UMCM-2 metal organic frameworks. Journal of Materials Chemistry, 2011, 21, 11259.	6.7	79
1968	The Quest for Modular Nanocages: tbo -MOF as an Archetype for Mutual Substitution, Functionalization, and Expansion of Quadrangular Pillar Building Blocks. Journal of the American Chemical Society, 2011, 133, 14204-14207.	6.6	109
1969	From Simple to Complex: Topological Evolution and Luminescence Variation in a Copper(I) Pyridylpyrazolate System Tuned via Second Ligating Spacers. Inorganic Chemistry, 2011, 50, 8879-8892.	1.9	55
1970	Pore-size tuning in double-pillared metal–organic frameworks containing cadmium clusters. CrystEngComm, 2011, 13, 3321.	1.3	49
1972	Significant Positional Isomeric Effect on Structural Assemblies of Zn(II) and Cd(II) Coordination Polymers Based on Bromoisophthalic Acids and Various Dipyridyl-Type Coligands. Crystal Growth and Design, 2011, 11, 175-184.	1.4	92
1973	Biomedical Applications of Metal Organic Frameworks. Industrial & Engineering Chemistry Research, 2011, 50, 1799-1812.	1.8	520
1974	Catalysis by metal–organic frameworks: fundamentals and opportunities. Physical Chemistry Chemical Physics, 2011, 13, 6388.	1.3	365
1975	An unprecedented 2D → 3D metal–organic polyrotaxane framework constructed from cadmium and a flexible star-like ligand. Chemical Communications, 2011, 47, 1818-1820.	2.2	154
1976	Synergistic Catalysis of Au@Ag Coreâ^'Shell Nanoparticles Stabilized on Metalâ^'Organic Framework. Journal of the American Chemical Society, 2011, 133, 1304-1306.	6.6	858
1977	New Dinuclear Nickel(II) Complexes: Synthesis, Structure, Electrochemical, and Magnetic Properties. Inorganic Chemistry, 2011, 50, 4553-4558.	1.9	40

#	Article	IF	CITATIONS
1978	A Series of Two-Dimensional Co(II), Mn(II), and Ni(II) Coordination Polymers with Di- or Trinuclear Secondary Building Units Constructed by 1,1â€2-Biphenyl-3,3â€2-Dicarboxylic Acid: Synthesis, Structures, and Magnetic Properties. Crystal Growth and Design, 2011, 11, 2874-2888.	1.4	76
1979	Neutron Scattering and Spectroscopic Studies of Hydrogen Adsorption in Cr ₃ (BTC) ₂ —A Metalâ~Organic Framework with Exposed Cr ²⁺ Sites. Journal of Physical Chemistry C, 2011, 115, 8414-8421.	1.5	50
1980	A General Thermolabile Protecting Group Strategy for Organocatalytic Metalâ^'Organic Frameworks. Journal of the American Chemical Society, 2011, 133, 5806-5809.	6.6	307
1981	Lithium-doped MOF impregnated with lithium-coated fullerenes: A hydrogen storage route for high gravimetric and volumetric uptakes at ambient temperatures. Chemical Communications, 2011, 47, 7698.	2.2	60
1982	Phloroglucinol Based Microporous Polymeric Organic Frameworks with â^'OH Functional Groups and High CO ₂ Capture Capacity. Chemistry of Materials, 2011, 23, 1818-1824.	3.2	233
1983	Porous Metal–Organic Frameworks. , 2011, , 1-20.		4
1984	Superlative Scaffold of 1,2,4-Triazole Derivative of Glycine Steering Linear Chain to a Chiral Helicate. Crystal Growth and Design, 2011, 11, 1375-1384.	1.4	26
1985	Solvothermal Synthesis, Structure, and Properties of Metal Organic Framework Isomers Derived from a Partially Fluorinated Link. Crystal Growth and Design, 2011, 11, 1215-1222.	1.4	101
1986	Syntheses, Crystal Structures, and Luminescent Properties of Two Zinc(II) Complexes with Xanthene-9-carboxylate Ligand. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 870-876.	0.6	2
1987	Assembly Chemistry of Coordination Polymers. , 2011, , 207-225.		7
1988	High CO ₂ Selectivity of A Microporous Metal–Imidazolate Framework: A Molecular Simulation Study. Industrial & Engineering Chemistry Research, 2011, 50, 8230-8236.	1.8	26
1989	Effects of Metal Ions and Ligand Functionalization on Hydrogen Storage in Metal–Organic Frameworks by Spillover. Journal of Physical Chemistry C, 2011, 115, 13829-13836.	1.5	34
1990	Two unusual self-threading frameworks self-assembled from mixed ligands and cobalt/zinc ions. CrystEngComm, 2011, 13, 325-329.	1.3	21
1991	A Molecular Basketwork: Self-Assembly of Coordination Polymers from Zn(II) and Biphenyl-3,4â€2-dicarboxylate Regulated by Different Flexible Bridging and Chelating N-Donor Ancillary Ligands. Crystal Growth and Design, 2011, 11, 2386-2397.	1.4	27
1992	Effect of Different Imidazole Ancillary Ligands on Supramolecular Architectures of a Series of Zn(II) and Cd(II) Complexes with a Bent Dicarboxylate Ligand. Crystal Growth and Design, 2011, 11, 480-487.	1.4	84
1993	Syntheses, structures and luminescent properties of zinc(<scp>ii</scp>) coordination polymers based on bis(imidazole) and dicarboxylate. CrystEngComm, 2011, 13, 330-338.	1.3	52
1994	Selective incorporation of functional dicarboxylates into zinc metal–organic frameworks. Chemical Communications, 2011, 47, 3380.	2.2	56
1995	Adsorption and Diffusion of Methanol, Glycerol, and Their Mixtures in a Metal Organic Framework. Industrial & Engineering Chemistry Research, 2011, 50, 14084-14089.	1.8	7

#	Article	IF	CITATIONS
1996	Extending the Pore Size of Crystalline Metal Phosphonates toward the Mesoporous Regime by Isoreticular Synthesis. Journal of the American Chemical Society, 2011, 133, 1266-1269.	6.6	128
1997	Three-Dimensional Robust Porous Coordination Polymer with Schiff Base Site on the Pore Wall: Synthesis, Single-Crystal-to-Single-Crystal Reversibility, and Selective CO ₂ Adsorption. Crystal Growth and Design, 2011, 11, 3905-3911.	1.4	59
1998	Porous metal–organic frameworks as platforms for functional applications. Chemical Communications, 2011, 47, 3351.	2.2	798
1999	Stepwise Synthesis of Metal–Organic Frameworks: Replacement of Structural Organic Linkers. Journal of the American Chemical Society, 2011, 133, 9984-9987.	6.6	304
2000	Multi-scale theoretical investigation of hydrogen storage in covalent organic frameworks. Nanoscale, 2011, 3, 856.	2.8	88
2001	A Solid Lithium Electrolyte via Addition of Lithium Isopropoxide to a Metal–Organic Framework with Open Metal Sites. Journal of the American Chemical Society, 2011, 133, 14522-14525.	6.6	371
2002	Heating and separation using nanomagnet-functionalized metal–organic frameworks. Chemical Communications, 2011, 47, 3075.	2.2	137
2003	Crystal-like microporous hybrid solid nanocast from Cr-MIL-101. Chemical Communications, 2011, 47, 10479.	2.2	28
2004	Inclusion of potassium 4,4′-biphenyldicarboxylate into β-cyclodextrin: the design and synthesis of an organic secondary building unit. New Journal of Chemistry, 2011, 35, 1280.	1.4	4
2005	A Series of Lanthanide Secondary Building Units Based Metalâ^'Organic Frameworks Constructed by Organic Pyridine-2,6-Dicarboxylate and Inorganic Sulfate. Crystal Growth and Design, 2011, 11, 337-346.	1.4	90
2007	Nanoporous copolymer networks through multiple Friedel–Crafts-alkylation—studies on hydrogen and methane storage. Journal of Materials Chemistry, 2011, 21, 2131-2135.	6.7	76
2008	Hydrogen storage properties and neutron scattering studies of Mg ₂ (dobdc)—a metal–organic framework with open Mg ²⁺ adsorption sites. Chemical Communications, 2011, 47, 1157-1159.	2.2	178
2009	Isoreticular Expansion of Metal–Organic Frameworks with Triangular and Square Building Units and the Lowest Calculated Density for Porous Crystals. Inorganic Chemistry, 2011, 50, 9147-9152.	1.9	322
2010	Chiral Metal–Organic Frameworks for High-Resolution Gas Chromatographic Separations. Journal of the American Chemical Society, 2011, 133, 11892-11895.	6.6	293
2011	In silico screening of metal–organic frameworks in separation applications. Physical Chemistry Chemical Physics, 2011, 13, 10593.	1.3	300
2012	Control of catenation in CuTATB-n metal–organic frameworks by sonochemical synthesis and its effect on CO2 adsorption. Journal of Materials Chemistry, 2011, 21, 3070.	6.7	225
2013	Solvent and temperature influence structural variation from nonporous 2D → 3D parallel polycatenation to 3D microporous metal–organic framework. CrystEngComm, 2011, 13, 3971.	1.3	39
2014	Second structural directing agent induces the formation of 1D organic templated terbium sulfate. CrystEngComm, 2011, 13, 2714.	1.3	17

		CITATION REPORT		
#	Article		IF	CITATIONS
2015	Container Molecules Based on Imine Type Ligands. Topics in Current Chemistry, 2011,	319, 79-98.	4.0	6
2016	Insight into the construction of metal–organic polyhedra: metal–organic cubes as Chemical Science, 2011, 2, 1695.	a case study.	3.7	39
2017	Supramolecular Engineering of Intrinsic and Extrinsic Porosity in Covalent Organic Cag the American Chemical Society, 2011, 133, 16566-16571.	es. Journal of	6.6	146
2018	Unraveling the Optoelectronic and Photochemical Behavior of Zn ₄ O-Base Frameworks. Journal of Physical Chemistry C, 2011, 115, 12487-12493.	ed Metal Organic	1.5	98
2019	Oriented Zeolitic Imidazolate Framework-8 Membrane with Sharp H ₂ /C ₃ H ₈ Molecular Sieve Separation. Chemist 2011, 23, 2262-2269.	ry of Materials,	3.2	452
2020	Heterogeneity within Order in Crystals of a Porous Metal–Organic Framework. Journ American Chemical Society, 2011, 133, 11920-11923.	al of the	6.6	227
2021	Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Transactions, 2	2011, 40, 321-330.	1.6	441
2022	A novel core–shell molecularly imprinted polymer based on metal–organic framew Chemical Communications, 2011, 47, 10118.	orks as a matrix.	2.2	62
2023	Investigating the Validity of the Knudsen Prescription for Diffusivities in a Mesoporous Organic Framework. Industrial & Engineering Chemistry Research, 2011, 50, 7083	Covalent 3-7087.	1.8	25
2024	Molecular simulations of H2 adsorption in metal-porphyrin frameworks: A potential ne evaluation. Journal of Renewable and Sustainable Energy, 2011, 3, 053105.	w material	0.8	4
2025	A time-resolved diffraction study of a window of stability in the synthesis of a copper c metal–organic framework. CrystEngComm, 2011, 13, 103-108.	arboxylate	1.3	130
2026	METAL-ORGANIC FRAMEWORKS. , 2011, , 37-64.			2
2027	Controlling the shifting degree of interpenetrated metal–organic frameworks by mo temperature and their hydrogen adsorption properties. Chemical Communications, 20	dulator and 11, 47, 2556.	2.2	56
2028	Engineering structured MOF at nano and macroscales for catalysis and separation. Jou Materials Chemistry, 2011, 21, 7582.	rnal of	6.7	140
2029	Variable behaviour of flexible N,O-mixed pyrazole ligand towards Zn(ii), Cd(ii) and Hg(i Synthesis, crystal structure and fluorescent properties. CrystEngComm, 2011, 13, 645	i) ions. i7.	1.3	25
2030	Polyoxometalate-templated lanthanide–organic hybrid layers based on 63-honeycon Dalton Transactions, 2011, 40, 5971.	ıb-like 2D nets.	1.6	35
2031	pH-Dependent assembly of two octamolybdate hybrid materials: A self-threading CdSC framework and a 3D 4-connected framework. CrystEngComm, 2011, 13, 7037.)4-type	1.3	55
2032	Controlling interpenetration in CuCN coordination polymers by size of the pendant su terpyridine ligands. CrystEngComm, 2011, 13, 6759.	ostituents of	1.3	20

#	Article	IF	CITATIONS
2033	Effect of Humidity on the Performance of Microporous Coordination Polymers as Adsorbents for CO ₂ Capture. Langmuir, 2011, 27, 6368-6373.	1.6	409
2034	Metal–Organic Frameworks Based on Unprecedented Trinuclear and Pentanuclear Metal–Tetrazole Clusters as Secondary Building Units. Inorganic Chemistry, 2011, 50, 12133-12140.	1.9	57
2035	New Hybrid Zirconium Aminophosphonates Containing Piperidine and Bipiperidine Groups. Inorganic Chemistry, 2011, 50, 10835-10843.	1.9	19
2036	Salen-Based Coordination Polymers of Iron and the Rare Earth Elements. Inorganic Chemistry, 2011, 50, 12697-12704.	1.9	19
2037	Tandem Postsynthetic Modification of Metal–Organic Frameworks Using an Inverse-Electron-Demand Diels–Alder Reaction. Inorganic Chemistry, 2011, 50, 10534-10536.	1.9	56
2038	Effects of varying water adsorption on a Cu3(BTC)2 metal–organic framework (MOF) as studied by 1H and 13C solid-state NMR spectroscopy. Physical Chemistry Chemical Physics, 2011, 13, 7783.	1.3	140
2039	lsoreticular Metalâ^'Organic Frameworks and Their Membranes with Enhanced Crack Resistance and Moisture Stability by Surfactant-Assisted Drying. Langmuir, 2011, 27, 2652-2657.	1.6	132
2040	MIL-53(Al): An Efficient Adsorbent for the Removal of Nitrobenzene from Aqueous Solutions. Industrial & Engineering Chemistry Research, 2011, 50, 10516-10524.	1.8	125
2041	Amino Functionalized SiO2nanoparticles for seeding MOF-5. IOP Conference Series: Materials Science and Engineering, 2011, 18, 052006.	0.3	1
2042	Homochiral Frameworks Formed by Reactions of Lanthanide Ions with a Chiral Antimony Tartrate Secondary Building Unit. Inorganic Chemistry, 2011, 50, 9073-9082.	1.9	27
2043	Fabrication of Isoreticular Metal–Organic Framework Coated Capillary Columns for High-Resolution Gas Chromatographic Separation of Persistent Organic Pollutants. Analytical Chemistry, 2011, 83, 5093-5100.	3.2	129
2044	Exploring Network Topologies of Copper Paddle Wheel Based Metal–Organic Frameworks with a First-Principles Derived Force Field. Journal of Physical Chemistry C, 2011, 115, 15133-15139.	1.5	47
2045	Enhancement of CO2/N2 Mixture Separation Using the Thermodynamic Stepped Behavior of Adsorption in Metalâ^'Organic Frameworks. Journal of Physical Chemistry C, 2011, 115, 2790-2797.	1.5	28
2046	Theoretical Study of Amino Acid Interaction with Metal Organic Frameworks. Journal of Physical Chemistry Letters, 2011, 2, 272-275.	2.1	16
2047	One novel complex obtained through copper-mediated conversion of 2,5-bis(3-pyridyl)-1,3,4-oxadiazole: structure, in situ formation of ligand, and luminescence properties. CrystEngComm, 2011, 13, 6243.	1.3	7
2049	A Highly Thermally Stable Ferroelectric Metal–Organic Framework and Its Thin Film with Substrate Surface Nature Dependent Morphology. Journal of the American Chemical Society, 2011, 133, 12330-12333.	6.6	78
2050	lonic Liquid/Metal–Organic Framework Composite for CO ₂ Capture: A Computational Investigation. Journal of Physical Chemistry C, 2011, 115, 21736-21742.	1.5	114
2051	Heteronuclear (Co–Ca, Co–Ba) 2,3-pyridinedicarboxylate complexes: synthesis, structure and physico-chemical properties. Dalton Transactions, 2011, 40, 463-471.	1.6	24
# 2052	ARTICLE A novel family of 3D photoluminescent lanthanide–bta–flexible MOFs constructed from 1,2,4,5-benzenetetracarboxylic acid and different spanning of dicarboxylate acid ligands. CrystEngComm, 2011, 13, 3884.	IF 1.3	CITATIONS
-----------	--	-----------	-----------
2053	Synthetic control of network topology and pore structure in microporous polyimides based on triangular triphenylbenzene and triphenylamine units. Soft Matter, 2011, 7, 5723.	1.2	65
2054	Thioether Side Chains Improve the Stability, Fluorescence, and Metal Uptake of a Metal–Organic Framework. Chemistry of Materials, 2011, 23, 2940-2947.	3.2	145
2055	High capacity gas storage by a 4,8-connected metal–organic polyhedral framework. Chemical Communications, 2011, 47, 4487.	2.2	220
2056	A Sodalite-Type Porous Metalâ^'Organic Framework with Polyoxometalate Templates: Adsorption and Decomposition of Dimethyl Methylphosphonate. Journal of the American Chemical Society, 2011, 133, 4178-4181.	6.6	405
2057	Towards Conducting Metal-Organic Frameworks. Australian Journal of Chemistry, 2011, 64, 718.	0.5	120
2058	A Multiunit Catalyst with Synergistic Stability and Reactivity: A Polyoxometalate–Metal Organic Framework for Aerobic Decontamination. Journal of the American Chemical Society, 2011, 133, 16839-16846.	6.6	475
2059	Doping Metal–Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis. Journal of the American Chemical Society, 2011, 133, 13445-13454.	6.6	1,363
2060	Lanthanide(III)/Pyrimidine-4,6-dicarboxylate/Oxalate Extended Frameworks: A Detailed Study Based on the Lanthanide Contraction and Temperature Effects. Inorganic Chemistry, 2011, 50, 8437-8451.	1.9	60
2061	Metalâ^'Organic Frameworks as Adsorbents for Hydrogen Purification and Precombustion Carbon Dioxide Capture. Journal of the American Chemical Society, 2011, 133, 5664-5667.	6.6	465
2062	Cluster-based inorganic–organic hybrid materials. Chemical Society Reviews, 2011, 40, 575-582.	18.7	255
2063	A new method to position and functionalize metal-organic framework crystals. Nature Communications, 2011, 2, 237.	5.8	225
2064	Synthesis, Structure, and Photoluminescent Properties of Metalâ^'Organic Coordination Polymers Assembled with Bithiophenedicarboxylic Acid. Inorganic Chemistry, 2011, 50, 3198-3205.	1.9	67
2065	Microcontact Click Printing for Templating Ultrathin Films of Metalâ^'Organic Frameworksâ€. Langmuir, 2011, 27, 1341-1345.	1.6	31
2066	Construction of Coordination Polymers with a Bifurcating Ligand: Synthesis, Structure, Photoluminescence, and Magnetic Studies. Crystal Growth and Design, 2011, 11, 1122-1134.	1.4	55
2067	Three POM-based coordination polymers: hydrothermal synthesis, characterization, and catalytic activity in epoxidation of styrene. CrystEngComm, 2011, 13, 7143.	1.3	30
2069	Structural Isomerism and Effect of Fluorination on Gas Adsorption in Copper-Tetrazolate Based Metal Organic Frameworks. Chemistry of Materials, 2011, 23, 2908-2916.	3.2	79
2070	Structural, Magnetic, and Gas Adsorption Study of a Series of Partially Fluorinated Metalâ^'Organic Frameworks (H <i>F</i> -MOFs). Inorganic Chemistry, 2011, 50, 3855-3865.	1.9	88

#	Article	IF	Citations
2071	Targeted synthesis of a 2D ordered porous organic framework for drug release. Chemical Communications, 2011, 47, 6389.	2.2	191
2072	Unprecedented Tuning of Structures and Gas Sorption Properties of Two 2D Nickel Metalâ^'Organic Frameworks via Altering the Positions of Fluorine Atoms in Azamacrocyclic Ligands. Crystal Growth and Design, 2011, 11, 2020-2025.	1.4	26
2073	Synthesis, structure and luminescent properties of two-dimensional lanthanum(III) porous coordination polymer based on pyridine-2,6-dicarboxylic acid. Synthetic Metals, 2011, 161, 925-930.	2.1	28
2074	Synthesis, structure and luminescent properties of 3D lanthanide (La(III), Ce(III)) coordination polymers possessing 1D nanosized cavities based on pyridine-2,6-dicarboxylic acid. Synthetic Metals, 2011, 161, 1500-1508.	2.1	29
2075	Boronic acid building blocks: tools for self assembly. Chemical Communications, 2011, 47, 1124-1150.	2.2	466
2076	Porous nanotube network: a novel 3-D nanostructured material with enhanced hydrogen storage capacity. Chemical Communications, 2011, 47, 2303-2305.	2.2	55
2077	Effect of Lanthanide Contraction on Crystal Structures of Three-Dimensional Lanthanide Based Metal–Organic Frameworks with Thiophene-2,5-Dicarboxylate and Oxalate. Crystal Growth and Design, 2011, 11, 2294-2301.	1.4	106
2078	Microporous magnets. Chemical Society Reviews, 2011, 40, 3249.	18.7	498
2079	Humidity-Driven Reversible Transformation and Guest Inclusion in a Two-Dimensional Coordination Framework Tailored by Organic Polyamine Cation. Crystal Growth and Design, 2011, 11, 3866-3876.	1.4	25
2080	Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy and Environmental Science, 2011, 4, 3030.	15.6	901
2081	X-Ray crystal structure of [HSm{VIVO(TPPS)}]n and encapsulation of nitrogen molecules in 1-D channels. Dalton Transactions, 2011, 40, 12826.	1.6	18
2082	Two Azolium Rings Are Better Than One: A Strategy for Controlling Catenation and Morphology in Zn and Cu Metal–Organic Frameworks. Crystal Growth and Design, 2011, 11, 4747-4750.	1.4	47
2083	Preparation, Characterization, and Postsynthetic Modification of Metalâ ``Organic Frameworks: Synthetic Experiments for an Undergraduate Laboratory Course in Inorganic Chemistry. Journal of Chemical Education, 2011, 88, 92-94.	1.1	32
2084	Computational screening of metal-organic frameworks for xenon/krypton separation. AICHE Journal, 2011, 57, 1759-1766.	1.8	147
2085	A New Approach to Construct a Doubly Interpenetrated Microporous Metal–Organic Framework of Primitive Cubic Net for Highly Selective Sorption of Small Hydrocarbon Molecules. Chemistry - A European Journal, 2011, 17, 7817-7822.	1.7	137
2086	Asymmetric Catalysis with Chiral Porous Metal–Organic Frameworks: Critical Issues. Journal of Physical Chemistry Letters, 2011, 2, 1701-1709.	2.1	125
2087	Frontier of Inorganic Synthesis and Preparative Chemistry (II)-Designed Synthesis—Inorganic Crystalline Porous Materials. , 2011, , 555-586.		1
2088	Preparation Chemistry of Inorganic Membranes. , 2011, , 507-523.		2

#	Article	IF	CITATIONS
2089	High-Throughput Study of the Cu(CH ₃ COO) ₂ ·H ₂ Oâ^'5-Nitroisophthalic Acidâ^'Heterocyclic Ligand System: Synthesis, Structure, Magnetic, and Heterogeneous Catalytic Studies of Three Copper Nitroisophthalates. Crystal Growth and Design, 2011, 11, 1357-1369.	1.4	29
2090	References to Part Two. Comprehensive Analytical Chemistry, 2011, 56, 359-367.	0.7	ο
2091	An unprecedented twofold interpenetrated layered metal–organic framework with a MoS2-H topology. CrystEngComm, 2011, 13, 6926.	1.3	12
2092	Supramolecular Assembly of Calcium Metalâ^'Organic Frameworks with Structural Transformations. Crystal Growth and Design, 2011, 11, 699-708.	1.4	90
2093	Crystal structure of (.4-oxygen)tetra(2-(4'-chlorobenzoyl) benzoato)trilead(II), Pb3O(C14H8O3Cl)4. Zeitschrift Fur Kristallographie - New Crystal Structures, 2011, 226, .	0.1	0
2095	Highly Selective Guest Adsorption in the Nanospace of Porous Coordination Polymers. Bulletin of Japan Society of Coordination Chemistry, 2011, 57, 45-56.	0.1	1
2096	A 2-D Cdl2 coordination network with 7-oxabicyclo[2.2.1]-5-heptene-2,3-dicarboxylate: synthesis, crystal structure, and luminescent properties. Journal of Coordination Chemistry, 2011, 64, 3928-3937.	0.8	7
2097	A Metal-Organic Framework Constructed of 1,4-Di(pyridin-4-yl)- buta-1,3-diyne and Nickel(II) Nitrate. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2011, 66, 209-212.	0.3	1
2098	One-pot Solvothermal Crystallization of Two Three-dimensional Manganese 2,6-Naphthalenedicarboxylates: Secondary Ligand-induced Pseudopolymorphism. Chemistry Letters, 2011, 40, 886-887.	0.7	6
2099	NMR studies of benzene mobility in metal-organic framework MOF-5. EPJ Applied Physics, 2011, 55, 20702.	0.3	11
2102	<mml:math <br="" altimg="si8.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:mmultiscripts><mml:mrow><mml:mrow><mml:mrow><mml:mow><mml:mo>[Solid State Sciences, 2011, 13, 1096-1101.</mml:mo></mml:mow></mml:mrow></mml:mrow></mml:mrow></mml:mmultiscripts></mml:mrow></mml:math>	noı≽a:mml:ı	m tø w> <mml< td=""></mml<>
2103	Synthesis and crystal structure of a new MOF-type indium pyromellitate (MIL-117) with infinite chains of unusual cis connection of octahedra InO4(OH)2. Solid State Sciences, 2011, 13, 1488-1493.	1.5	12
2104	Synthesis, structures and luminescent properties of Co(II) and Ni(II) metal-organic frameworks with semirigid diphthalic ligands. Solid State Sciences, 2011, 13, 1948-1953.	1.5	2
2105	Towards applications of metal–organic frameworks in catalysis: Friedel–Crafts acylation reaction over IRMOF-8 as an efficient heterogeneous catalyst. Journal of Molecular Catalysis A, 2011, 349, 28-35.	4.8	68
2106	Framework mobility in the metal–organic framework crystal IRMOF-3: Evidence for aromatic ring and amine rotation. Journal of Molecular Structure, 2011, 1004, 94-101.	1.8	68
2107	Two novel transition metal–organic frameworks based on 1,3,5-benzenetricarboxylate ligand: Syntheses, structures and thermal properties. Journal of Molecular Structure, 2011, 1004, 252-256.	1.8	21
2108	Supramolecular architectures of Cu(II) with terpyridine and pyridyl-carboxylates. Journal of Molecular Structure, 2011, 1006, 425-433.	1.8	9
2109	Designing metal-organic frameworks for radiation detection. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 652, 295-298.	0.7	28

ARTICLE IF CITATIONS High pressure structural transformation of selected metal organic frameworks – A theoretical 2110 2.0 9 investigation. Materials Chemistry and Physics, 2011, 131, 44-51. Computer Simulation of Adsorption and Separation of CO2/CH4 in Modified COF-102. Chinese Journal 1.7 of Chemical Engineering, 2011, 19, 709-716. Two lanthanide-natrium pillared-layer frameworks constructed from 4,4â€²-oxybis(benzoic acid) and 2112 1.8 16 oxalate. Inorganic Chemistry Communication, 2011, 14, 1794-1797. Structure and physical properties of Mn(II) and Co(II) complexes with multicarboxylate ligands. 1.8 Inorganic Chemistry Communication, 2011, 14, 1889-1893. Controllable assembly of silver(I) complexes by variations of the carboxyl configuration: From a 2-D (45Å-6)2(418Å-610) layer to an unusual 3-D 5-connected self-penetrating (44Å-66)2 network. Inorganic 2114 1.8 3 Chemistry Communication, 2011, 14, 1901-1905. Synthesis, structure and topological analysis of a novel 3D Cu coordination polymer from a flexible ligand of 1,3,5-triazine-2,4,6-triamine hexaacetic acid and coligand ethylenediamine. Inorganic Chemistry Communication, 2011, 14, 1924-1927. 1.8 New pyridine-monoacylhydrazidate-coordinated transition-metal complexes. Inorganica Chimica Acta, 2116 1.2 20 2011, 378, 72-80. Synthesis, characterization, and luminescence properties of magnesium coordination networks using 1.2 a thiophene-based linker. Inorganica Chimica Acta, 2011, 378, 109-114. Substituent dependent dimensionalities in cobalt isophthalate supramolecular complexes and 2118 1.2 15 coordination polymers containing dipyridylamine ligands. Inorganica Chimica Acta, 2011, 378, 269-279. Heterometallic coordination polymers constructed by linear ligands. Inorganica Chimica Acta, 2011, 1.2 379, 34-39. Improvement of CO2 adsorption on ZIF-8 crystals modified by enhancing basicity of surface. Chemical 2120 1.9 175 Engineering Science, 2011, 66, 4878-4888. Synthesis of Phase-Pure Interpenetrated MOF-5 and Its Gas Sorption Properties. Inorganic Chemistry, 114 2011, 50, 3691-3696. Flexible and Hydrophobic Zn-Based Metal–Organic Framework. Inorganic Chemistry, 2011, 50, 8367-8374. 2122 1.9 74 Influence of the Oxidation State of the Metal Center on the Flexibility and Adsorption Properties of a 1.5 89 Porous Metal Organic Framework: MIL-47(V). Journal of Physical Chemistry C, 2011, 115, 19828-19840. Two Novel Zinc(II) Metal–Organic Frameworks Based on Triazole-Carboxylate Shared Paddle-Wheel 2124 1.4 37 Units: Synthesis, Structure, and Gas Adsorption. Crystal Growth and Design, 2011, 11, 2811-2816. Visualisation and characterisation of voids in crystalline materials. CrystEngComm, 2011, 13, 1804-1813. 397 Environmental Application and Risks of Nanotechnology: A Balanced View. ACS Symposium Series, 2011, 2126 0.5 13 , 41-67. Modular and predictable assembly of porous organic molecular crystals. Nature, 2011, 474, 367-371.

#	Article	IF	CITATIONS
2128	Revisiting isoreticular MOFs of alkaline earth metals: a comprehensive study on phase stability, electronic structure, chemical bonding, and optical properties of A–IRMOF-1 (A = Be, Mg, Ca, Sr, Ba). Physical Chemistry Chemical Physics, 2011, 13, 10191.	1.3	53
2129	Mechanical properties of hybrid inorganic–organic framework materials: establishing fundamental structure–property relationships. Chemical Society Reviews, 2011, 40, 1059.	18.7	637
2130	Insight into the crystal synthesis, activation and application of ZIF-20. RSC Advances, 2011, 1, 917.	1.7	48
2131	High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites. Chemical Science, 2011, 2, 1311.	3.7	496
2132	A sixfold interpenetrated microporous MOF constructed from heterometallic tetranuclear cluster exhibiting selective gas adsorption. Dalton Transactions, 2011, 40, 10319.	1.6	28
2133	Soft porous crystal meets TCNQ: charge transfer-type porous coordination polymers. Journal of Materials Chemistry, 2011, 21, 5537.	6.7	54
2134	Electron diffraction and HRTEM imaging of beam-sensitive materials. Crystallography Reviews, 2011, 17, 163-185.	0.4	39
2135	Use of confocal fluorescence microscopy to compare different methods of modifying metal–organic framework (MOF) crystals with dyes. CrystEngComm, 2011, 13, 2828.	1.3	47
2136	Nondestructive Imaging of Anomalously Preserved Methane Clathrate Hydrate by Phase Contrast X-ray Imaging. Journal of Physical Chemistry C, 2011, 115, 16193-16199.	1.5	82
2137	Postsynthetic modification of metal–organic frameworks—a progress report. Chemical Society Reviews, 2011, 40, 498-519.	18.7	1,035
2138	Breathing and Twisting: An Investigation of Framework Deformation and Guest Packing in Single Crystals of a Microporous Vanadium Benzenedicarboxylate. Inorganic Chemistry, 2011, 50, 2028-2036.	1.9	34
2139	Silver(i)–glutathione biocoordination polymer hydrogel: effective antibacterial activity and improved cytocompatibility. Journal of Materials Chemistry, 2011, 21, 19214.	6.7	72
2140	Sophisticated Crystal Transformation of a Coordination Polymer into Mesoporous Monocrystalline Ti–Feâ€Based Oxide with Roomâ€Temperature Ferromagnetic Behavior. Chemistry - an Asian Journal, 2011, 6, 3195-3199.	1.7	18
2141	Engineering the Environment of a Catalytic Metal–Organic Framework by Postsynthetic Hydrophobization. ChemCatChem, 2011, 3, 675-678.	1.8	67
2142	Protection–deprotection Methods Applied to Metal–Organic Frameworks for the Design of Original Singleâ€ S ite Catalysts. ChemCatChem, 2011, 3, 823-826.	1.8	19
2143	Stoichiometry of N-Donor Ligand Mediated Assembly in the Zn ^{II} -Hfipbb System: From a 2-Fold Interpenetrating Pillared-Network to Unique (3,4)-Connected Isomeric Nets. Crystal Growth and Design, 2011, 11, 3850-3857.	1.4	57
2144	A Method for the Preparation of Highly Porous, Nanosized Crystals of Isoreticular Metalâ^'Organic Frameworks. Crystal Growth and Design, 2011, 11, 185-189.	1.4	97
2145	Layered and pillar-layered metal–organic frameworks based on pinwheel trinuclear zinc-carboxylate clusters. CrystEngComm, 2011, 13, 2721.	1.3	32

#	Article	IF	CITATIONS
2146	Selective Binding of O ₂ over N ₂ in a Redox–Active Metal–Organic Framework with Open Iron(II) Coordination Sites. Journal of the American Chemical Society, 2011, 133, 14814-14822.	6.6	470
2147	Bio-functionalization of metal–organic frameworks by covalent protein conjugation. Chemical Communications, 2011, 47, 2904.	2.2	219
2148	Synthesis, structures, and magnetic properties of transition metal compounds with 2,2′-dinitrobiphenyl-4,4′-dicarboxylate and N,N′-chelating ligands. Dalton Transactions, 2011, 40, 7219.	1.6	25
2149	Topological systematization of the framework coordination polymers formed by iron, cobalt, or nickel complexes. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2011, 37, 81-94.	0.3	2
2150	Synthesis and crystal structure of a coordination polymer {[Cu2(L)2(Phen)2] · 8H2O} n. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2011, 37, 388-393.	0.3	0
2151	Synthesis and crystal structure of one-dimensional heterotrimetallic coordination polymer {[(Dipic)2Cu]4 · Mg(H2O)2Na4(H2O)14} n · nNa2(H2O)10 · 2nCH3OH. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2011, 37, 541-546.	0.3	5
2152	Composite materials on the basis of phenylenecarboxylate framework MOF-5 and calix[4]arenes with various structures. Russian Journal of Physical Chemistry A, 2011, 85, 293-297.	0.1	7
2154	lsomerism in Metal–Organic Frameworks: "Framework Isomers― Journal of Physical Chemistry Letters, 2011, 2, 1682-1689.	2.1	140
2155	Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chemistry of Materials, 2011, 23, 1700-1718.	3.2	1,420
2156	3-Substituted-2,4-pentanedionates: ligands for photoactive supramolecular assemblies. Chemical Communications, 2011, 47, 11176.	2.2	30
2157	Complete Series of Monohalogenated Isoreticular Metal–Organic Frameworks: Synthesis and the Importance of Activation Method. Crystal Growth and Design, 2011, 11, 4309-4312.	1.4	53
2158	Design of Covalent Organic Frameworks for Methane Storage. Journal of Physical Chemistry A, 2011, 115, 13852-13857.	1.1	92
2159	The Mechanical Bond: A Work of Art. Topics in Current Chemistry, 2011, 323, 19-72.	4.0	52
2160	The first porous MOF with photoswitchable linker molecules. Dalton Transactions, 2011, 40, 4217.	1.6	170
2161	Thermal Transformation of a Layered Multifunctional Network into a Metal–Organic Framework Based on a Polymeric Organic Linker. Journal of the American Chemical Society, 2011, 133, 15120-15138.	6.6	59
2162	Delineating similarities and dissimilarities in the use of metal organic frameworks and zeolites as heterogeneous catalysts for organic reactions. Dalton Transactions, 2011, 40, 6344.	1.6	147
2163	Synthesis, Structure and Thermal Behavior of a New Coordination Polymer Based on Mixed Pyrazine-2-carboxylate and Oxalate Ligands. Journal of Chemical Crystallography, 2011, 41, 596-600.	0.5	2
2164	Crystal Structure and Photoluminescent Properties of Two Cadmium(II) Complexes with Orotic Acid. Journal of Chemical Crystallography, 2011, 41, 823-828.	0.5	2

0			n
CI	ΓΑΤΙ	ON.	REPORT
<u> </u>			

#	Article	IF	CITATIONS
2165	Three New Complexes Based on a Flexible Bis(benzimidazole) Ligand and Rigid/Flexible Organic Carboxylates. Journal of Chemical Crystallography, 2011, 41, 1579-1585.	0.5	17
2166	Hydrothermal Synthesis, Crystal Structure and Properties of Two Organic Amine Templated Lanthanide Sulfates. Journal of Chemical Crystallography, 2011, 41, 1737-1741.	0.5	3
2167	Synthesis and Crystal Structure of an Expanded Square Grid Metal Organic Material, [Cu(L1)(DMF)]nA·(2.64 DMF). Journal of Chemical Crystallography, 2011, 41, 1834-1838.	0.5	1
2168	One-Dimensional Ni(II) and Cu(II) Coordination Polymers Containing Syn-Syn Thiophene-2,5-dicarboxylate and Propane-1,3-diamine. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 103-109.	1.9	4
2169	Syntheses and Crystal Structures of Zinc(II) and Nickel(II) Coordination Polymers Based on Diphenic Acid and 1,2-Bis(4-pyridyl)ethane Coligands. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 207-211.	1.9	4
2170	Synthesis, Crystal Structures and Fluorescent Properties of Two Bimetallic Coordination Polymers. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 254-260.	1.9	2
2171	A New Series Lanthanide-2,6-Pyridinedicarboxylic Acid Complexes Containing Low Dimensionality: Synthesis, Structure and Photoluminescent Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 213-222.	1.9	15
2172	Syntheses and Characterizations of Two One-Dimensional Coordination Polymers Assembled by Dicarboxylate and N-Donor Coligands. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 498-503.	1.9	8
2173	Solvothermal Synthesis, Crystal Structure and Magnetic Properties of a Novel 3D 2-Fold Interpenetrated Coordination Polymer [Co2(hfipbb)2(dps) (H2O)]n. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 595-601.	1.9	2
2174	Supramolecular Coordination Assemblies Using 2-Aminodiacetic Terephthalic Acid Ligands: K[Nill(Hadta)(H2O)2]·H2O and K[Cu 1.5 II (adta)(H2O)1.5]·H2O. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21, 655-661.	1.9	1
2175	Sorption studies of CO2, CH4, N2, CO, O2 and Ar on nanoporous aluminum terephthalate [MIL-53(Al)]. Journal of Porous Materials, 2011, 18, 205-210.	1.3	142
2176	Methane storage on CPO-27-Ni pellets. Journal of Porous Materials, 2011, 18, 289-296.	1.3	78
2177	Exploration of Ni@Zn-MOCP via a wet impregnation strategy as a hydrogenation catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2011, 104, 451-465.	0.8	3
2178	Determination of heat capacities and thermodynamic properties of two structurally unrelated but isotypic calcium and manganese(II) 2,6-naphthalene dicarboxylate-based MOFs. Journal of Thermal Analysis and Calorimetry, 2011, 103, 1095-1103.	2.0	18
2179	Binding energy of gas molecule with two pyrazine molecules as organic linker in metal–organic framework: its theoretical evaluation and understanding of determining factors. Theoretical Chemistry Accounts, 2011, 130, 475-482.	0.5	11
2180	Di-, tri-, tetranuclear clusters and polymeric cadmium compounds: Syntheses, structures and fluorescent properties with various linking fashions and high stability of orotates under the condition of strong bases. Journal of Solid State Chemistry, 2011, 184, 1963-1971.	1.4	5
2181	Investigating the potential of MgMOF-74 membranes for CO2 capture. Journal of Membrane Science, 2011, 377, 249-260.	4.1	85
2182	Study of mechanochemical synthesis in the formation of the metal–organic framework Cu3(BTC)2 for hydrogen storage. Microporous and Mesoporous Materials, 2011, 143, 37-45.	2.2	79

#	Article	IF	CITATIONS
2183	A computational study of the effect of doping metals on CO2/CH4 separation in metal–organic frameworks. Microporous and Mesoporous Materials, 2011, 143, 66-72.	2.2	24
2184	Luminescent cadmium phenylenedipropionate coordination polymers with long-spanning dipyridine ligands. Journal of Molecular Structure, 2011, 998, 62-68.	1.8	10
2185	Molecular mechanism of hydrocarbons binding to the metal–organic framework. Chemical Physics Letters, 2011, 501, 455-460.	1.2	10
2186	Structural diversity in two dimensional chiral coordination polymers involving 4,4′-bipyridine and l-cysteate as bridging ligands with Zn and Cd metal centres: Synthesis, characterization and X-ray crystallographic studies. Inorganica Chimica Acta, 2011, 365, 363-370.	1.2	29
2187	Synthesis of MOF having functional side group. Inorganica Chimica Acta, 2011, 370, 76-81.	1.2	14
2188	Diverse coordination of polynuclear copper(II) complexes constructed from benzene tetracarboxylates. Inorganica Chimica Acta, 2011, 370, 435-443.	1.2	21
2189	The coordination chemistry of cyclohexanepolycarboxylate ligands. Structures, conformation and functions. Coordination Chemistry Reviews, 2011, 255, 421-450.	9.5	100
2190	Molecular simulation studies of separation of CH4/H2 mixture in metal-organic frameworks with interpenetration and mixed-ligand. Chemical Engineering Science, 2011, 66, 3012-3019.	1.9	28
2191	Porous zinc(II)-organic framework with potential open metal sites: Synthesis, structure and property. Science China Chemistry, 2011, 54, 1436-1440.	4.2	13
2192	Recent advance in porous coordination polymers from the viewpoint of crystalline-state transformation. Science China Chemistry, 2011, 54, 1371-1394.	4.2	35
2193	Syntheses, Structures, and Luminescent Properties of Two Novel Coordination Polymers with Dipicolinate and Diimidazole Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 148-153.	0.6	18
2194	Two Novel Isostructural 3D <i>Ln</i> –Sr (<i>Ln</i> = Eu; Gd) Coordination Polymers Based on Oxalate Ligands with Unusual Topology: Synthesis, Crystal Structures, and Luminescence. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 578-582.	0.6	2
2195	Cadmium(II) Complexes with Mixed <i>cis</i> â€Epoxysuccinate and 2,2′â€Bipyridylâ€Like Ligands: Syntheses, Crystal Structures, and Luminescent Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 748-754.	0.6	2
2196	A lvtâ€type Framework [Cu ₂ (tza) ₄]·ClO ₄ ·4H ₂ O Derived from 1Hâ€tetrazoleâ€1â€acetic Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 755-758.	0.6	6
2197	Synthesis, Crystal Structure, and Properties of the 3D Porous Framework [Zn(INAIP)]·DMA·H ₂ O. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 1220-1223.	0.6	5
2198	Synthesis, Characterization, and Luminescence of Two New Zinc(II) Coordination Polymers Constructed by 5â€{4â€Carboxybenzyloxy)Isophthalic Acid Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 1414-1418.	0.6	3
2199	A d ¹⁰ Metal Coordination Polymer Containing a Thiodiphthalic Ligand: Crystal Structure and Luminescent Property. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 1427-1431.	0.6	4
2200	Two Lanthanideâ€Organic Frameworks Derived from 1Hâ€Benzimidazoleâ€5â€Carboxylic Acid and Oxalate Mixed Ligands: Synthesis, Structure and Luminescence Property. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 2278-2281.	0.6	3

#	Article	IF	CITATIONS
2201	Poly[(μ ₄ -2,5-dimethoxybenzene-1,4-dicarboxylato)manganese(II)] and its zinc(II) analogue: three-dimensional coordination polymers containing unusually coordinated metal centres. Acta Crystallographica Section C: Crystal Structure Communications, 2011, 67, m5-m8.	0.4	4
2202	A rare `mesh of trees' (mot) net: poly[aquahemi[μ4-1,6-bis(1,2,4-triazol-1-yl)hexane](μ2-5-nitroisophthalato)cadmium(II)]. Acta Crystallographica Section C: Crystal Structure Communications, 2011, 67, m284-m286.	0.4	1
2203	Little change but great effect: varying supramolecular interactions in 2,5-dimethoxyterephthalic acid and 2,5-diethoxyterephthalic acid. Acta Crystallographica Section C: Crystal Structure Communications, 2011, 67, o350-o353.	0.4	1
2204	Separation of Chemical Reaction Intermediates by Metal–Organic Frameworks. Small, 2011, 7, 2356-2364.	5.2	48
2205	Hydrogen storage in nanotubes & amp; nanostructures. Materials Today, 2011, 14, 324-328.	8.3	131
2206	A Systematic Approach to Building Highly Porous, Noninterpenetrating Metal–Organic Frameworks with a Large Capacity for Adsorbing H ₂ and CH ₄ . Advanced Functional Materials, 2011, 21, 993-998.	7.8	68
2207	The Effect of Methyl Functionalization on Microporous Metalâ€Organic Frameworks' Capacity and Binding Energy for Carbon Dioxide Adsorption. Advanced Functional Materials, 2011, 21, 4754-4762.	7.8	106
2208	High-Throughput Fabrication of Uniform and Homogenous MOF Coatings. Advanced Functional Materials, 2011, 21, 4228-4231.	7.8	208
2209	Metalâ€Organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials. Advanced Materials, 2011, 23, 249-267.	11.1	1,232
2210	Dynamic Control of MOFâ€5 Crystal Positioning Using a Magnetic Field. Advanced Materials, 2011, 23, 3901-3906.	11.1	64
2211	Towards Inorganic Porous Materials by Design: Looking for New Architectures. Advanced Materials, 2011, 23, 5283-5292.	11.1	50
2212	Mesoporous Metalâ€Organic Frameworks with Sizeâ€ŧunable Cages: Selective CO ₂ Uptake, Encapsulation of Ln ³⁺ Cations for Luminescence, and Columnâ€Chromatographic Dye Separation. Advanced Materials, 2011, 23, 5015-5020.	11.1	321
2214	A Decade of Octacyanides in Polynuclear Molecular Materials. European Journal of Inorganic Chemistry, 2011, 2011, 305-326.	1.0	99
2215	Synthesis, Crystal Structures and Magnetic Properties of a Phenoxoâ€Bridged Dinuclear Cu ^{II} Complex and a Dicyanamide Bridged Novel Molecular Rectangle Based on It. European Journal of Inorganic Chemistry, 2011, 2011, 2405-2412.	1.0	28
2216	Direct Carboxylation of Zincocene Cp* ₂ Zn. European Journal of Inorganic Chemistry, 2011, 2011, 4157-4160.	1.0	20
2217	Thermodynamic Methods and Models to Study Flexible Metal–Organic Frameworks. ChemPhysChem, 2011, 12, 247-258.	1.0	105
2218	Combination of MOFs and Zeolites for Mixedâ€Matrix Membranes. ChemPhysChem, 2011, 12, 2781-2785.	1.0	225
2219	Tailoring Metal–Organic Frameworks for CO ₂ Capture: The Amino Effect. ChemSusChem, 2011, 4, 1281-1290.	3.6	66

#	Article	IF	CITATIONS
2220	Remarkable Uptake of CO ₂ and CH ₄ by Grapheneâ€Like Borocarbonitrides, B _{<i>x</i>} C _{<i>y</i>} N _{<i>z</i>} . ChemSusChem, 2011, 4, 1662-1670.	3.6	58
2221	Oberflähenchemie Metallâ€organischer Gerüste an der Flüssigâ€festâ€Grenzflähe. Angewandte Chemie, 2011, 123, 184-208.	1.6	43
2233	Surface Chemistry of Metal–Organic Frameworks at the Liquid–Solid Interface. Angewandte Chemie - International Edition, 2011, 50, 176-199.	7.2	292
2234	Imprinting Chemical and Responsive Micropatterns into Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2011, 50, 276-279.	7.2	68
2235	Metal–Organic Frameworks with Incorporated Carbon Nanotubes: Improving Carbon Dioxide and Methane Storage Capacities by Lithium Doping. Angewandte Chemie - International Edition, 2011, 50, 491-494.	7.2	255
2236	Metal–Organic Framework Nanospheres with Wellâ€Ordered Mesopores Synthesized in an Ionic Liquid/CO ₂ /Surfactant System. Angewandte Chemie - International Edition, 2011, 50, 636-639.	7.2	280
2237	Metal–Organic Conjugated Microporous Polymers. Angewandte Chemie - International Edition, 2011, 50, 1072-1075.	7.2	318
2238	A Metal–Organic Framework with Optimized Open Metal Sites and Pore Spaces for High Methane Storage at Room Temperature. Angewandte Chemie - International Edition, 2011, 50, 3178-3181.	7.2	340
2239	Variant Luminescence from an Organic–Inorganic Hybrid Structure with an Isolated 4â€Ring Zinc Phosphate Tecton. Angewandte Chemie - International Edition, 2011, 50, 5319-5322.	7.2	41
2240	lonic Liquids: New Perspectives for Inorganic Synthesis?. Angewandte Chemie - International Edition, 2011, 50, 11050-11060.	7.2	284
2241	Functional Mixed Metal–Organic Frameworks with Metalloligands. Angewandte Chemie - International Edition, 2011, 50, 10510-10520.	7.2	384
2242	Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture. Angewandte Chemie - International Edition, 2011, 50, 11586-11596.	7.2	1,025
2243	Actuation of Asymmetric Cyclopropanation Catalysts: Reversible Singleâ€Crystal to Singleâ€Crystal Reduction of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2011, 50, 8674-8678.	7.2	165
2244	Network Diversity through Decoration of Trigonalâ€Prismatic Nodes: Twoâ€Step Crystal Engineering of Cationic Metal–Organic Materials. Angewandte Chemie - International Edition, 2011, 50, 11421-11424.	7.2	118
2245	Elucidating Gating Effects for Hydrogen Sorption in MFUâ€4â€Type Triazolateâ€Based Metal–Organic Frameworks Featuring Different Pore Sizes. Chemistry - A European Journal, 2011, 17, 1837-1848.	1.7	222
2246	Ultrafine Gold Clusters Incorporated into a Metal–Organic Framework. Chemistry - A European Journal, 2011, 17, 78-81.	1.7	97
2247	A Family of Chiral Metal–Organic Frameworks. Chemistry - A European Journal, 2011, 17, 2099-2106.	1.7	128
2248	Enhancing Gas Adsorption and Separation Capacity through Ligand Functionalization of Microporous Metal–Organic Framework Structures. Chemistry - A European Journal, 2011, 17, 5101-5109.	1.7	176

#	Article	IF	CITATIONS
2249	Threeâ€Dimensional Openâ€Frameworks Based on Ln ^{III} Ions and Openâ€/Closedâ€Shell PTM Ligands: Synthesis, Structure, Luminescence, and Magnetic Properties. Chemistry - A European Journal, 2011, 17, 3644-3656.	: 1.7	45
2250	Cobalt Imidazolate Framework as Precursor for Oxygen Reduction Reaction Electrocatalysts. Chemistry - A European Journal, 2011, 17, 2063-2067.	1.7	390
2251	Pyrazolateâ€Based Cobalt(II)â€Containing Metal–Organic Frameworks in Heterogeneous Catalytic Oxidation Reactions: Elucidating the Role of Entatic States for Biomimetic Oxidation Processes. Chemistry - A European Journal, 2011, 17, 8671-8695.	1.7	138
2252	Spin Canting and Metamagnetism in the First Hybrid Cobalt–Hypoxanthine Open Framework with <i>umr</i> Topology. Chemistry - A European Journal, 2011, 17, 5588-5594.	1.7	41
2253	The Route to a Feasible Hydrogen‣torage Material: MOFs versus Ammonia Borane. Chemistry - A European Journal, 2011, 17, 10184-10207.	1.7	61
2254	Probing the Dynamics of CO ₂ and CH ₄ within the Porous Zirconium Terephthalate UiOâ€66(Zr): A Synergic Combination of Neutron Scattering Measurements and Molecular Simulations. Chemistry - A European Journal, 2011, 17, 8882-8889.	1.7	137
2255	Selective CO ₂ Adsorption by a Triazacyclononaneâ€Bridged Microporous Metal–Organic Framework. Chemistry - A European Journal, 2011, 17, 6689-6695.	1.7	42
2256	Relationship between Channel and Sorption Properties in Coordination Polymers with Interdigitated Structures. Chemistry - A European Journal, 2011, 17, 5138-5144.	1.7	76
2257	Rational Design of Zinc–Organic Coordination Polymers Directed by Nâ€Đonor Coâ€ligands. Chemistry - A European Journal, 2011, 17, 8630-8642.	1.7	60
2258	Thiodiacetate–Manganese Chemistry with N ligands: Unique Control of the Supramolecular Arrangement over the Metal Coordination Mode. Chemistry - A European Journal, 2011, 17, 10600-10617.	1.7	29
2259	Synthesis of Isoreticular Zinc(II)â€Phosphonocarboxylate Frameworks and Their Application in the Friedel–Crafts Benzylation Reaction. Chemistry - A European Journal, 2011, 17, 10323-10328.	1.7	34
2260	A Roadmap to Implementing Metal–Organic Frameworks in Electronic Devices: Challenges and Critical Directions. Chemistry - A European Journal, 2011, 17, 11372-11388.	1.7	403
2261	Design of Dinuclear Copper Species with Carboranylcarboxylate Ligands: Study of Their Steric and Electronic Effects. Chemistry - A European Journal, 2011, 17, 13217-13229.	1.7	27
2262	A new three-dimensional cobalt(II) coordination polymer based on biphenyl-2,2′,6,6′-tetracarboxylic acid and 1,2,4-triazole: Synthesis, crystal structure and magnetic properties. Inorganic Chemistry Communication, 2011, 14, 261-264.	1.8	26
2263	Two coordinated-solvent directed zinc(II) coordination polymers with rare gra topological 3D framework and 1D zigzag chain. Inorganic Chemistry Communication, 2011, 14, 300-303.	1.8	28
2264	A novel metal–organic framework with bifunctional tetrazolate-5-carboxylate ligand: Crystal structure and luminescent properties. Inorganic Chemistry Communication, 2011, 14, 407-410.	1.8	16
2265	Synthesis, structure and luminescent property of a pillared-layer coordination polymer [Pb(BPDC)] (BPDC=4,4′-biphenyldicarboxylate). Inorganic Chemistry Communication, 2011, 14, 433-436.	1.8	21
2266	Solvothermal synthesis, structure and properties of a new 3-D anionic porous framework. Inorganic Chemistry Communication, 2011, 14, 444-446.	1.8	4

#	Article	IF	CITATIONS
2267	A novel eight-connected metal–organic replica of CsCl based on heptanuclear zinc clusters. Inorganic Chemistry Communication, 2011, 14, 562-565.	1.8	11
2268	The roles of the allyloxy groups on terephthalate for the formation of three coordination networks. Inorganic Chemistry Communication, 2011, 14, 569-572.	1.8	10
2269	A unique unit cell containing simultaneous doubly and triply copper(II) complexes bridging by 2,4-pyridine dicarboxylate. Inorganic Chemistry Communication, 2011, 14, 702-705.	1.8	9
2270	Design and construction of self-penetrating coordination frameworks. Inorganic Chemistry Communication, 2011, 14, 788-803.	1.8	84
2271	New tetranuclear macrocyclic complex: Crystal structure, magnetic property and DNA cleavage activity. Inorganic Chemistry Communication, 2011, 14, 929-933.	1.8	23
2272	Ionothermal synthesis, crystal structure, and properties of an anionic two-dimensional cadmium metal organic framework based on paddle wheel-like cluster. Inorganic Chemistry Communication, 2011, 14, 1001-1003.	1.8	26
2273	Recent advances of discrete coordination complexes and coordination polymers in drug delivery. Coordination Chemistry Reviews, 2011, 255, 1623-1641.	9.5	271
2274	Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coordination Chemistry Reviews, 2011, 255, 1791-1823.	9.5	1,805
2275	Towards rapid computational screening of metal-organic frameworks for carbon dioxide capture: Calculation of framework charges via charge equilibration. Chemical Engineering Journal, 2011, 171, 775-781.	6.6	141
2276	A molecular dynamics simulation of methane adsorption in single walled carbon nanotube bundles. Carbon, 2011, 49, 4544-4553.	5.4	46
2277	Effectiveness of metal–organic frameworks for removal of refractory organo-sulfur compound present in liquid fuels. Fuel, 2011, 90, 190-197.	3.4	124
2278	The effect of reaction conditions on the nature of cadmium 1,3,5-benzenetricarboxylate metal–organic frameworks. Inorganica Chimica Acta, 2011, 366, 303-309.	1.2	18
2279	Hydrogen binding in alkali-decorated iso-reticular metal organic framework-16 based on Zn, Mg, and Ca. International Journal of Hydrogen Energy, 2011, 36, 555-562.	3.8	11
2280	Thermodynamic analysis of the breathing of amino-functionalized MIL-53(Al) upon CO2 adsorption. Microporous and Mesoporous Materials, 2011, 140, 108-113.	2.2	78
2281	Zeolitic imidazolate frameworks for separation of binary mixtures of CO2, CH4, N2 and H2: A computer simulation investigation. Microporous and Mesoporous Materials, 2011, 143, 46-53.	2.2	136
2282	Network dimensionality and ligand flexibility in lanthanide terephthalate hydrates. Journal of Molecular Structure, 2011, 985, 109-119.	1.8	30
2283	Synthesis and fluorescence of multi-dimensional structures of two cobalt (II) complexes between 2,2′-bipyridine and different chain length of aliphatic dicarboxylic, succinic or glutaric acid. Journal of Molecular Structure, 2011, 987, 101-105.	1.8	10
2284	Hydrogen-bond-directed self-assembly of a novel 2D→3D polythreading with finite components based on rigid ligand. Journal of Molecular Structure, 2011, 994, 1-5.	1.8	12

#	Article	IF	CITATIONS
2285	Selective adsorption of dibenzothiophene by functionalized metal organic framework sorbents. Applied Catalysis B: Environmental, 2011, 103, 261-265.	10.8	66
2286	Desorption of dimethylformamide from Zn4O(C8H4O4)3 framework. Applied Surface Science, 2011, 257, 3392-3398.	3.1	11
2287	Syntheses, structures and luminescent properties of a series of 3D lanthanide coordination polymers with tripodal semirigid ligand. Journal of Solid State Chemistry, 2011, 184, 373-378.	1.4	24
2288	New 4,5-dichlorophthalhydrazidate-bridged chained coordination polymers. Journal of Solid State Chemistry, 2011, 184, 667-674.	1.4	30
2289	Porous zinc(II) frameworks with 5-(isonicotinamido)isophthalate: Syntheses, structures and properties. Microporous and Mesoporous Materials, 2011, 139, 25-30.	2.2	29
2290	Enthalpy of formation of zinc acetate dihydrate. Journal of Chemical Thermodynamics, 2011, 43, 980-982.	1.0	14
2291	Gas separation performance of polyethersulfone/multi-walled carbon nanotubes mixed matrix membranes. Separation and Purification Technology, 2011, 80, 20-31.	3.9	139
2292	Observation of ZnO nanoparticles outside pores of nano Zn4O(C8H4O4)3 metal–organic framework. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 1514-1517.	0.9	6
2293	Crystal structures, thermal, spectroscopic properties and DFT/TD-DFT based investigation of [M(bba)2(phen)] (M=Cu and Zn, bba=2-benzoylbenzoato, phen=1,10-phenanthroline). Polyhedron, 2011, 30, 1389-1395.	1.0	15
2294	A comparison of the coordination preference of Cd, Zn, Cu(II) with flexible homophthalic acid and rigid bipyridine ligands. Polyhedron, 2011, 30, 1487-1493.	1.0	24
2295	Mixture diffusion of adsorbed organic compounds in metal-organic frameworks as studied by magic-angle spinning pulsed-field gradient nuclear magnetic resonance. New Journal of Physics, 2011, 13, 045016.	1.2	14
2296	Hydrothermal syntheses and characterization of four 2-D lanthanide coordination polymers with glutarate and 1,10-phenanthroline. Journal of Coordination Chemistry, 2011, 64, 424-430.	0.8	6
2297	Facile Synthesis and Characterizations of MOF-5 Coordination Polymer with Various Metal Linker Ratios for Ammonia Gas Storage. , 2011, , .		0
2298	Applications of a general random-walk theory for confined diffusion. Physical Review E, 2011, 83, 011120.	0.8	32
2299	Thermal variations of iodine nanostructures inside the channels of AlPO <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:mrow </mml:msub></mml:mrow>-5 zeolite</mml:math 	1.1	9
2300	single crystals. Physical Review B, 2011, 83, . Hydrothermal syntheses, characterizations, and luminescence of three new complexes based on 4,6-dibenzoylisophthalic acid. Journal of Coordination Chemistry, 2011, 64, 565-573.	0.8	5
2301	Lithography of porous materials for device fabrication. , 2011, , .		0
2302	Poly[[diaquabis(2,2′-bipyridine)bis(μ3-5-hydroxyisophthalato)(μ2-5-hydroxyisophthalato)digadolinium(III)] trihydrate]. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m1368-m1369.	0.2	1

		15	C
#	ARTICLE	IF	CITATIONS
2303	Adsorption and Diffusion of Li and Ni on Graphene with Boron Substitution for Hydrogen Storage: Ab-initio Method. Japanese Journal of Applied Physics, 2011, 50, 06GJ02.	0.8	2
2304	H ₂ and CH ₄ Sorption on Cu-BTC Metal Organic Frameworks at Pressures up to 15 MPa and Temperatures between 273 and 318 K. Journal of Surface Engineered Materials and Advanced Technology, 2011, 01, 23-29.	0.2	6
2305	Copper(II) Complexes with cis-Epoxysuccinate Ligand: Syntheses, Crystal Structures, and Magnetic Properties. Australian Journal of Chemistry, 2011, 64, 217.	0.5	4
2306	Computational structure characterisation tools in application to ordered and disordered porous materials. Molecular Simulation, 2011, 37, 1248-1257.	0.9	548
2307	Axial extension of trinickel string complex by 1,4-benzenedicarboxylate: synthesis, structure, and magnetism of {[Ni ₃ (dpa) ₄ (1,4-bdc)] · 0.5H ₂ O]} _n . of Coordination Chemistry, 2011, 64, 1654-1661.	Jouanal	2
2308	Synthesis, Characterization, and Crystal Structures of a Novel [Zn ₃ (bba) ₆ (3-pic) ₂] Complex (bba = 2-Benzoylbenzoat, 3-pic =) Tj ETQq1 1022-1027.	1,0,78431 0.6	4_rgBT /Ov€
2309	A New Six-Connected Double-Layer Metal-Organic Framework Directed by Carboxylate and N-Containing Donor Co-Ligands. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2011, 41, 1240-1243.	0.6	2
2310	One-Dimensional Helical Homochiral Metal-Organic Framework Built from 2,2′-Dihydroxy-1,1′-binaphthyl-3,3′-dicarboxylic Acid. Polymers, 2011, 3, 1866-1874.	2.0	3
2311	Synthesis, Crystal Structures and Thermogravimetric Analyses of Mn(II) and Cu(II) Complexes Derived from 1,4,5,6-Tetrahydro-6-oxo-3-Pyridazinecarboxylic Acid. Journal of Chemical Research, 2011, 35, 89-93.	0.6	0
2312	Coordination Polymers and Metal Organic Frameworks Derived from 1,2,4-Triazole Amino Acid Linkers . Polymers, 2011, 3, 1750-1775.	2.0	61
2313	Design of Improved Metal-Organic Framework (MOF) H2 Adsorbents. Polymers, 2011, 3, 2133-2141.	2.0	8
2314	Formation of a New 1D Coordination Polymer by <i>in situ</i> Ligand Reaction of 2,4,6-tris(pyrazol-1-yl)-1,3,5-s-triazine. Journal of Chemical Research, 2012, 36, 648-651.	0.6	0
2315	Solid-State NMR Spectroscopy of Metal–Organic Framework Compounds (MOFs). Materials, 2012, 5, 2537-2572.	1.3	130
2316	Znll/Nill coordination polymers with 2-phenylsuccinate and 1,3-bis(4-pyridyl)propane. Journal of Coordination Chemistry, 2012, 65, 2561-2568.	0.8	3
2317	A Coordination Polymer With a (3,4)-Connected (62.8)2(62.84) 3D Network: Synthesis, Crystal Structure and Luminescent Properties. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 1222-1226.	0.6	0
2318	Synthesis, Crystal Structure, and Characterization of Two New Zinc(II) Complexes With (4-Amino-1,2,4-triazole- 3,5-diyldithio)diacetic Acid and N-Containing Ligands. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 1255-1261.	0.6	0
2319	HYDROGEN STORAGE ENHANCEMENT VIA TRANSITION METAL DECORATION ON METAL ORGANIC FRAMEWORKS: A FIRST-PRINCIPLES STUDY. Nano, 2012, 07, 1250044.	0.5	5
2320	Synthesis, Crystal Structure, and Luminescent Properties of a Novel Cadmium Coordination Polymer. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 1246-1250.	0.6	0

#	Article	IF	CITATIONS
2321	Polymers of Intrinsic Microporosity. ISRN Materials Science, 2012, 2012, 1-16.	1.0	165
2322	Mn3(C10H8N2)2(C14H8O3Cl)6. Zeitschrift Fur Kristallographie - New Crystal Structures, 2012, 227, .	0.1	Ο
2323	Construction of two new photoluminescent coordination polymers <i>via</i> 5-position substituted 1,3-benzenedicarboxylate. Journal of Coordination Chemistry, 2012, 65, 4005-4012.	0.8	8
2324	Ten years of electron microscopy of nanomaterials in St. Andrews. International Journal of Nanotechnology, 2012, 9, 69.	0.1	0
2325	Synthesis, Crystal Structures, and Properties of a Series of Coordination Polymers Employing R4-Terephthalate (R = H, F, Cl, Br) and 4,4′-Bipyridine as Bridging Ligands. Bulletin of the Chemical Society of Japan, 2012, 85, 1102-1111.	2.0	4
2326	Metal and metal oxidenanoparticle synthesis from metal organic frameworks (MOFs): finding the border of metal and metal oxides. Nanoscale, 2012, 4, 591-599.	2.8	334
2327	Ordered Mesoporous Materials as Catalysts. Advances in Catalysis, 2012, 55, 127-239.	0.1	45
2328	Synthesis, characterization and sorption properties of NH2-MIL-47. Physical Chemistry Chemical Physics, 2012, 14, 15562.	1.3	27
2329	Structures, Luminescence, and Magnetic Properties of Several Three-Dimensional Lanthanide–Organic Frameworks Comprising 4-Carboxyphenoxy Acetic Acid. Crystal Growth and Design, 2012, 12, 5203-5210.	1.4	55
2330	Adjusting the Stability of Metal–Organic Frameworks under Humid Conditions by Ligand Functionalization. Langmuir, 2012, 28, 16874-16880.	1.6	170
2331	Novel (3,4,6)-Connected Metal–Organic Framework with High Stability and Gas-Uptake Capability. Inorganic Chemistry, 2012, 51, 8402-8408.	1.9	47
2332	Elucidating Molecular Iridium Water Oxidation Catalysts Using Metal–Organic Frameworks: A Comprehensive Structural, Catalytic, Spectroscopic, and Kinetic Study. Journal of the American Chemical Society, 2012, 134, 19895-19908.	6.6	322
2333	Multifunctional amino-decorated metal–organic frameworks: nonlinear-optic, ferroelectric, fluorescence sensing and photocatalytic properties. Journal of Materials Chemistry, 2012, 22, 22603.	6.7	142
2334	Amino substituted Cu3(btc)2: a new metal–organic framework with a versatile functionality. Chemical Communications, 2012, 48, 11196.	2.2	63
2335	Fine-tuning the balance between crystallization and gelation and enhancement of CO2 uptake on functionalized calcium based MOFs and metallogels. Journal of Materials Chemistry, 2012, 22, 14951.	6.7	75
2336	Functional group effects on metal–organic framework topology. Chemical Communications, 2012, 48, 9370.	2.2	50
2337	Computerâ€Assisted Screening of Ordered Crystalline Nanoporous Adsorbents for Separation of Alkane Isomers. Angewandte Chemie - International Edition, 2012, 51, 11867-11871.	7.2	89
2338	GCMC investigation into adamantane-based aromatic frameworks with diamond-like structure as high-capacity hydrogen storage materials. Physical Chemistry Chemical Physics, 2012, 14, 2391.	1.3	7

#	Article	IF	CITATIONS
2339	Luminescent microporous metal–metallosalen frameworks with the primitive cubic net. Dalton Transactions, 2012, 41, 3928-3932.	1.6	15
2340	Post-Combustion CO ₂ Capture Using Solid Sorbents: A Review. Industrial & Engineering Chemistry Research, 2012, 51, 1438-1463.	1.8	1,524
2341	Facile magnetization of metal–organic framework MIL-101 for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples. Analyst, The, 2012, 137, 3445.	1.7	390
2342	Influence of sterically non-hindering methyl groups on adsorption properties of two classical zinc and copper MOF types. Comptes Rendus Chimie, 2012, 15, 866-877.	0.2	17
2343	Prediction of Structure and Properties of Boron-Based Covalent Organic Frameworks by a First-Principles Derived Force Field. Journal of Physical Chemistry C, 2012, 116, 4921-4929.	1.5	52
2344	Palladium/tin bimetallic single-crystalline hollow nanospheres. Chemical Communications, 2012, 48, 1683-1685.	2.2	20
2345	Synthesis, crystal structure and photophysical properties of lanthanide coordination polymers of 4-[4-(9H-carbazol-9-yl)butoxy]benzoate: the effect of bidentate nitrogen donors on luminescence. Dalton Transactions, 2012, 41, 14671.	1.6	16
2346	A Route to Bimodal Micro-Mesoporous Metal–Organic Frameworks Nanocrystals. Crystal Growth and Design, 2012, 12, 1008-1013.	1.4	81
2347	CO ₂ Adsorption in Mono-, Di- and Trivalent Cation-Exchanged Metal–Organic Frameworks: A Molecular Simulation Study. Langmuir, 2012, 28, 3903-3910.	1.6	39
2348	Hydro-ionothermal syntheses, crystal structures, and properties of five new divalent metal iminophosphonates. Dalton Transactions, 2012, 41, 3995.	1.6	14
2349	Modulated Formation of MOF-5 Nanoparticles—A SANS Analysis. Journal of Physical Chemistry C, 2012, 116, 6127-6135.	1.5	31
2351	Crystal Growth Mechanisms and Morphological Control of the Prototypical Metal–Organic Framework MOFâ€5 Revealed by Atomic Force Microscopy. Chemistry - A European Journal, 2012, 18, 15406-15415.	1.7	75
2352	Facile Synthesis of MILâ€68(In) Films with Controllable Morphology. European Journal of Inorganic Chemistry, 2012, 2012, 0-0.	1.0	0
2353	Nanomaterials and processes for carbon capture and conversion into useful byâ€products for a sustainable energy future. , 2012, 2, 419-444.		34
2354	Synthesis and Crystal Structures of a Lanthanum(III) 1D Polymer and a Mixed-Ligand Cerium(III) Binuclear Complex Derived from Pyridine-2,6-dicaboxylic Acid. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22, 1165-1173.	1.9	17
2355	A Novel Binodal (4,9)-Connected 3D Calcium Coordination Polymer: Synthesis, Characterization, Thermal Stability and Luminescent Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22, 1377-1383.	1.9	6
2356	Synthesis, Crystal Structure, Spectroscopic and Thermal Investigations of a Novel 2D Sodium(I) Coordination Polymer Based on 2-Aminoterephthalic Ligand. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22, 1325-1331.	1.9	19
2357	Hydrothermal Synthesis, Crystal Structures and Photoluminescent Properties of Two New Co(II) Coordination Polymers Derived from Dicarboxylate and N-Donor Ligands. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22, 1391-1396.	1.9	4

#	Article	IF	CITATIONS
2358	A 3D Mesomeric Supramolecular Structure of a Cu(II) Coordination Polymer with 1,1′-Biphenyl-2,2′,3,3′-tetracarboxylic Acid and 5,5′-Dimethyl-2,2′-bipyridine Ligands. Journal of Inor Organometallic Polymers and Materials, 2012, 22, 1320-1324.	g a øic and	5
2359	Synergy Gas Separation Effects When Using Fillers of Different Natures (MOFs and zeolites) in the Same Mixed Matrix Membrane. Procedia Engineering, 2012, 44, 2118-2120.	1.2	6
2362	Riboflavin Chelated Luminescent Metal–Organic Framework: Identified by Liquid-Assisted Grinding for Large-Molecule Sensing via Chromaticity Coordinates. Crystal Growth and Design, 2012, 12, 3181-3190.	1.4	19
2363	Facile xenon capture and release at room temperature using a metal–organic framework: a comparison with activated charcoal. Chemical Communications, 2012, 48, 347-349.	2.2	172
2364	Characterization and Comparison of the Performance of IRMOF-1, IRMOF-8, and IRMOF-10 for CO ₂ Adsorption in the Subcritical and Supercritical Regimes. Journal of Physical Chemistry C, 2012, 116, 22938-22946.	1.5	25
2365	Syntheses, characterization and crystal structure of d10 coordination architectures: From 1D to 3D complexes based on mixed ligands. Inorganica Chimica Acta, 2012, 392, 77-83.	1.2	3
2366	Atmospheric pressure aminocarbonylation of aryl iodides using palladium nanoparticles supported on MOF-5. Chemical Communications, 2012, 48, 1805.	2.2	104
2367	Metal–organic frameworks based on naphthalene-1,5-diyldioxy-di-acetate: structures, topologies, photoluminescence and photocatalytic properties. CrystEngComm, 2012, 14, 3727.	1.3	89
2368	Metal–organic frameworks constructed from flexible V-shaped ligands: adjustment of the topology, interpenetration and porosity via a solvent system. Chemical Communications, 2012, 48, 10016.	2.2	96
2369	A facile route for preparing a mesoporous palladium coordination polymer as a recyclable heterogeneous catalyst. Dalton Transactions, 2012, 41, 4692.	1.6	23
2370	A novel 1D independent metal–organic nanotube based on cyclotriveratrylene ligand. CrystEngComm, 2012, 14, 112-115.	1.3	31
2371	Sequential Growth in Solution of NiFe Prussian Blue coordination network nanolayers on Si(100) surfaces. Dalton Transactions, 2012, 41, 1582-1590.	1.6	14
2372	A robust doubly interpenetrated metal–organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons. Chemical Communications, 2012, 48, 6493.	2.2	224
2373	Crystalline beryllium carboxylate frameworks with rutile-type and cubic-C3N4topologies. CrystEngComm, 2012, 14, 95-97.	1.3	18
2374	Anion effect on the structural diversity of three 1D coordination polymers based on a pyridyl diimide ligand. CrystEngComm, 2012, 14, 2152.	1.3	40
2375	A pcu-type metal–organic framework based on covalently quadruple cross-linked supramolecular building blocks (SBBs): structure and adsorption properties. CrystEngComm, 2012, 14, 1929.	1.3	34
2376	Auxiliary ligand-directed structural variation from 2D→3D polythreaded net to 3-fold interpenetrating 3D pillar-layered framework: Syntheses, crystal structures and magnetic properties. Dalton Transactions, 2012, 41, 2560.	1.6	111
2377	Control over multifarious entangled Co(ii) metal–organic frameworks: role of steric bulk and molar ratio of organic ligands. CrystEngComm, 2012, 14, 2906.	1.3	57

#	Article	IF	CITATIONS
2378	Structure evolution and coordination modes of metal-carboxylate frameworks with robust linear trinuclear complexes as building units. CrystEngComm, 2012, 14, 4567.	1.3	8
2379	Oxozinc carboxylates: a predesigned platform for modelling prototypical Zn-MOFs' reactivity toward water and donor solvents. Chemical Communications, 2012, 48, 7362.	2.2	28
2380	New monoacylhydrazidate-coordinated Mn2+ and Pb2+ compounds. Dalton Transactions, 2012, 41, 6137.	1.6	25
2381	A series of coordination polymers based on a multidentate N-donor ligand and different polycarboxylate anions: syntheses, structures and photoluminescent properties. CrystEngComm, 2012, 14, 6271.	1.3	48
2382	Stepwise assembly of homochiral coordination polymers based on the precursor of an enantiopure Yb3Mn6 cluster. Dalton Transactions, 2012, 41, 10518.	1.6	6
2383	Topological Difference in 2D Layers Steers the Formation of Rigid and Flexible 3D Supramolecular Isomers: Impact on the Adsorption Properties. Inorganic Chemistry, 2012, 51, 9141-9143.	1.9	41
2384	Apparent or real water exchange reactions on [Zn(H2O)4(L)]2+·2H2O (L = sp-nitrogen donor ligands)? A quantum chemical investigation. Dalton Transactions, 2012, 41, 6932.	1.6	8
2385	Elaborate fabrication of MOF-5 thin films on a glassy carbon electrode (GCE) for photoelectrochemical sensors. RSC Advances, 2012, 2, 12696.	1.7	39
2386	A (3,6)-connected metal-organic framework consisting of chair-like {Fe6} clusters and BTC linkers. Journal of Coordination Chemistry, 2012, 65, 48-54.	0.8	6
2387	Novel electrorheological properties of a metal–organic framework Cu3(BTC)2. Chemical Communications, 2012, 48, 5635.	2.2	19
2388	A homochiral diamond framework constructed from Fe(iii) and Mn(ii) oxo-clusters supported by Sb(iii) tartrate scaffolds. Chemical Communications, 2012, 48, 3990.	2.2	16
2389	New metal complexes with di(mono)acylhydrazidate molecules. Dalton Transactions, 2012, 41, 10267.	1.6	18
2390	A series of five divalent zinc and cadmium coordination polymers based on a new bifunctional ligand: syntheses, crystal structures, and properties. CrystEngComm, 2012, 14, 3951.	1.3	15
2391	Two 3D metal–organic frameworks with different topologies, thermal stabilities and magnetic properties. CrystEngComm, 2012, 14, 5905.	1.3	33
2392	Isomeric phenylenediacetates as modular tectons for a series of ZnII/CdII coordination polymers incorporating flexible bis(imidazole) co-ligands. CrystEngComm, 2012, 14, 4745.	1.3	48
2393	Construction of Cd(ii) coordination polymers based on R-isophthalate (R = –CH3 or –OCH3) and flexible N-donor co-ligands: Syntheses, structures and photoluminescence. CrystEngComm, 2012, 14, 2691.	1.3	86
2394	Experimental and theoretical investigations on the MMOF selectivity for CO2vs. N2 in flue gas mixtures. Dalton Transactions, 2012, 41, 4232.	1.6	31
2395	Controllable synthesis of a non-interpenetrating microporous metal–organic framework based on octahedral cage-like building units for highly efficient reversible adsorption of iodine. Chemical Communications, 2012, 48, 10001.	2.2	70

#	Article	IF	CITATIONS
2396	Divalent metal coordination polymers assembled from dual linkers – semirigid carboxyphenylpropionate and dipyridyl type molecule. CrystEngComm, 2012, 14, 951-960.	1.3	42
2397	Synthesis, structural characterization and photoluminescence property of four di(mono)acylhydrazidate-coordinated Cd2+ and Zn2+ compounds. CrystEngComm, 2012, 14, 8162.	1.3	20
2398	Synthesis, structure, topology and magnetic properties of cobalt(ii) coordination polymers with 2-nitrobiphenyl-4,4′-dicarboxylic acid and bis(pyridyl) ligands. Dalton Transactions, 2012, 41, 14316.	1.6	43
2399	Highly porous and robust ionic MOFs with nia topology constructed by connecting an octahedral ligand and a trigonal prismatic metal cluster. Chemical Communications, 2012, 48, 6010.	2.2	55
2400	Hydrogen thermal desorption spectra: insights from molecular simulation. Dalton Transactions, 2012, 41, 3974.	1.6	8
2401	An unprecedented 3D/3D hetero-interpenetrated MOF built from two different nodes, chemical composition, and topology of networks. CrystEngComm, 2012, 14, 5720.	1.3	43
2402	Temperature and auxiliary ligand-controlled supramolecular assembly in a series of Zn(<scp>ii</scp>)-organic frameworks: syntheses, structures and properties. CrystEngComm, 2012, 14, 590-600.	1.3	71
2403	Metamagnetic behavior and moisture-absorption induced reversible network assembly of a cobalt-1,2,4-benzenetricarboxylate supramolecular network. CrystEngComm, 2012, 14, 1317-1323.	1.3	3
2404	Bottom-up synthesis of coordination polymers based on carborane backbones and Cu2(CO2)4 paddle-wheel: ligand metathesis with metallotecons. Dalton Transactions, 2012, 41, 11657.	1.6	34
2405	New photoluminescence acylhydrazidate-coordinated complexes. Dalton Transactions, 2012, 41, 2382-2392.	1.6	37
2406	Controllable synthesis of microporous, nanotubular and mesocage-like metal–organic frameworks by adjusting the reactant ratio and modulated luminescence properties of Alq3@MOF composites. Journal of Materials Chemistry, 2012, 22, 17947.	6.7	40
2407	The cosolvent-dependent assembly of a family of three blue fluorescent lead(ii)-coordination polymers with 5-amino-2,4,6-tribromoisophthalic acid. CrystEngComm, 2012, 14, 2926.	1.3	23
2408	A microporous metal–organic framework with FeS2 topology based on [Zn6(μ6-O)] cluster for reversible sensing of small molecules. Chemical Communications, 2012, 48, 7967.	2.2	85
2409	Temperature-induced assembly of MOF polymorphs: Syntheses, structures and physical properties. CrystEngComm, 2012, 14, 1856.	1.3	63
2410	A series of new rare earth sulfates based on lanthanide contraction and dual organic-amine templating effects. CrystEngComm, 2012, 14, 6627.	1.3	12
2411	Acetylene and argon adsorption in a supramolecular organic zeolite. Physical Chemistry Chemical Physics, 2012, 14, 311-317.	1.3	20
2412	CAU-3: A new family of porous MOFs with a novel Al-based brick: [Al2(OCH3)4(O2C-X-CO2)] (X = aryl). Dalton Transactions, 2012, 41, 4164.	1.6	76
2413	Zinc-1,4-benzenedicarboxylate-bipyridine frameworks – linker functionalization impacts network topology during solvothermal synthesis. Journal of Materials Chemistry, 2012, 22, 909-918.	6.7	48

_	_	
CITATIO	NDE	
CHAILO		PORT

#	Article	IF	CITATIONS
2414	Hierarchical modeling of ammonia adsorption in functionalized metal–organic frameworks. Dalton Transactions, 2012, 41, 3962.	1.6	41
2415	Hydrothermal Synthesis of Two Ni(II) Metal-Organic Coordination Polymers Constructed From Dicarboxylate and Nitrogen-Contained Ligands. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2012, 42, 470-474.	0.6	1
2416	Microporous Zinc Tris[(4-carboxyl)phenylduryl]amine Framework with an Unusual Topological Net for Gas Storage and Separation. Inorganic Chemistry, 2012, 51, 1995-1997.	1.9	58
2417	Solvent-Controlled Syntheses, Structure, and Magnetic Properties of Trinuclear Mn(II)-Based Metal–Organic Frameworks. Crystal Growth and Design, 2012, 12, 5693-5700.	1.4	37
2418	An Extended Charge Equilibration Method. Journal of Physical Chemistry Letters, 2012, 3, 2506-2511.	2.1	253
2419	Metal–Organic Frameworks Based on Flexible V-Shaped Polycarboxylate Acids: Hydrogen Bondings, Non-Interpenetrated and Polycatenated. Crystal Growth and Design, 2012, 12, 4072-4082.	1.4	67
2421	Phenyl Ring Dynamics in a Tetraphenylethylene-Bridged Metal–Organic Framework: Implications for the Mechanism of Aggregation-Induced Emission. Journal of the American Chemical Society, 2012, 134, 15061-15070.	6.6	368
2422	Solvent- and Vapor-Mediated Solid-State Transformations in 1,3,5-Benzenetricarboxylate Metal–Organic Frameworks. Crystal Growth and Design, 2012, 12, 1999-2003.	1.4	25
2423	pH-Controlled Assembly of Two Unusual Entangled Motifs Based on a Tridentate Ligand and Octamolybdate Clusters: 1D + 1D → 3D Poly-Pseudorotaxane and 2D → 2D → 3D Polycatenation. Crystal Growth and Design, 2012, 12, 2272-2276.	1.4	67
2424	Calculation and visualization of free energy barriers for several VOCs and TNT in HKUST-1. Physical Chemistry Chemical Physics, 2012, 14, 15438.	1.3	13
2425	¹ H NMR Study of Molecular Motion of Benzene and <i>n</i> -Decane Confined in the Nanocavities of Metal–Organic Frameworks. Journal of Physical Chemistry C, 2012, 116, 1012-1019.	1.5	21
2426	Mn ^{II} Coordination Polymers Based on Bi-, Tri-, and Tetranuclear and Polymeric Chain Building Units: Crystal Structures and Magnetic Properties. Inorganic Chemistry, 2012, 51, 9431-9442.	1.9	182
2427	Structural Diversity for a Series of Metal(II) Complexes Based on Flexible 1,2-Phenylenediacetate and Dipyridyl-type Coligand. Crystal Growth and Design, 2012, 12, 147-157.	1.4	88
2428	Coordination-Induced Assembly of Coordination Polymer Submicrospheres: Promising Antibacterial and in Vitro Anticancer Activities. Crystal Growth and Design, 2012, 12, 3786-3791.	1.4	150
2429	Magnetic framework composites for polycyclic aromatic hydrocarbon sequestration. Journal of Materials Chemistry, 2012, 22, 11470.	6.7	62
2430	Ab Initio Prediction of Adsorption Isotherms for Small Molecules in Metal–Organic Frameworks: The Effect of Lateral Interactions for Methane/CPO-27-Mg. Journal of the American Chemical Society, 2012, 134, 18354-18365.	6.6	90
2431	Oxozinc Carboxylate Complexes: A New Synthetic Approach and the Carboxylate Ligand Effect on the Noncovalent-Interactions-Driven Self-Assembly. Inorganic Chemistry, 2012, 51, 7410-7414.	1.9	38
2432	Ionic liquid-in-ionic liquid nanoemulsions. Chemical Communications, 2012, 48, 10562.	2.2	23

	Сітатіс	on Report	
#	Article	IF	CITATIONS
2433	A theoretical study of the hydrogen-storage potential of (H2)4CH4in metal organic framework materials and carbon nanotubes. Journal of Physics Condensed Matter, 2012, 24, 424204.	0.7	12
2434	Toward Rational Design of Metal–Organic Frameworks for Sensing Applications: Efficient Calculation of Adsorption Characteristics in Zero Loading Regime. Journal of Physical Chemistry C, 2012, 116, 3025-3033.	1.5	48
2435	Hybrid Density Functional and Molecular Dynamics Study of Promising Hydrogen Storage Materials: Double Metal Amidoboranes and Metal Amidoborane Ammoniates. Journal of Physical Chemistry C, 2012, 116, 17351-17359.	1.5	8
2436	Metal–organic coordination architectures of condensed heterocyclic based 1,2,4-triazole: Syntheses, structures and emission properties. Polyhedron, 2012, 42, 216-226.	1.0	9
2437	Heterogeneous catalysis over a barium carboxylate framework compound: Synthesis, X-ray crystal structure and aldol condensation reaction. Polyhedron, 2012, 43, 63-70.	1.0	38
2438	A novel 2D zinc metal–organic framework: Synthesis, structural characterization and vibrational spectroscopic studies. Polyhedron, 2012, 45, 204-212.	1.0	23
2439	A three-dimensional silver(I) framework assembled from 3,3′-thiodipropionate: Synthesis, structure and molecular simulations for hydrogen gas adsorption. Polyhedron, 2012, 45, 103-106.	1.0	11
2440	Evaluation of isostructural metal–organic frameworks coated capillary columns for the gas chromatographic separation of alkane isomers. Talanta, 2012, 99, 944-950.	2.9	50
2441	CAF@ZIF-8: One-Step Encapsulation of Caffeine in MOF. ACS Applied Materials & amp; Interfaces, 2012, 4, 5016-5021.	4.0	326
2442	Control of framework interpenetration for in situ modified hydroxyl functionalised IRMOFs. Chemical Communications, 2012, 48, 10328.	2.2	64
2443	Coordination Polymers of Copper and Zinc Ions with a Linear Linker Having Imidazole at Each End and an Azo Moiety in the Middle: Pedal Motion, Gas Adsorption, and Emission Studies. Crystal Growth and Design, 2012, 12, 5025-5034.	1.4	46
2444	Progress in adsorption-based CO ₂ capture by metal–organic frameworks. Chemical Society Reviews, 2012, 41, 2308-2322.	18.7	1,205
2445	Multi-functional metal–organic frameworks assembled from a tripodal organic linker. Journal of Materials Chemistry, 2012, 22, 18354.	6.7	50
2446	Adsorption of Lower Alkanes on a Zinc Based Metal Organic Framework. Journal of Chemical & Engineering Data, 2012, 57, 2610-2613.	1.0	10
2447	Near-critical water, a cleaner solvent for the synthesis of a metal–organic framework. Green Chemistry, 2012, 14, 117-122.	4.6	53
2448	Discovery, development, and functionalization of Zr(<scp>iv</scp>)-based metal–organic frameworks. CrystEngComm, 2012, 14, 4096-4104.	1.3	282
2449	Rapid determination of the optical and redox properties of a metal–organic framework via in situ solid state spectroelectrochemistry. Chemical Communications, 2012, 48, 3945.	2.2	111
2450	Grand Canonical Monte Carlo Simulation of Low-Pressure Methane Adsorption in Nanoporous Framework Materials for Sensing Applications. Journal of Physical Chemistry C, 2012, 116, 3492-3502.	1.5	30

#	Article	IF	CITATIONS
2451	Analogous porous metal–organic frameworks: synthesis, stability and application in adsorption. CrystEngComm, 2012, 14, 7099.	1.3	174
2452	Effects of ammonium hydroxide on the structure and gas adsorption of nanosized Zr-MOFs (UiO-66). Nanoscale, 2012, 4, 3089.	2.8	87
2453	Effect of organic anions on the self-assembly of Zn(ii)-containing coordination polymers based on trigonal N-donor ligands. CrystEngComm, 2012, 14, 6934.	1.3	24
2454	Visible-Light-Promoted Photocatalytic Hydrogen Production by Using an Amino-Functionalized Ti(IV) Metal–Organic Framework. Journal of Physical Chemistry C, 2012, 116, 20848-20853.	1.5	551
2455	Modification of the Mg/DOBDC MOF with Amines to Enhance CO ₂ Adsorption from Ultradilute Gases. Journal of Physical Chemistry Letters, 2012, 3, 1136-1141.	2.1	273
2456	Prominently Improved Hydrogen Purification and Dispersive Metal Binding for Hydrogen Storage by Substitutional Doping in Porous Graphene. Journal of Physical Chemistry C, 2012, 116, 21291-21296.	1.5	76
2457	Synthesis, characterisation and adsorption properties of a porous copper(ii) 3D coordination polymer exhibiting strong binding enthalpy and adsorption capacity for carbon dioxide. Dalton Transactions, 2012, 41, 13364.	1.6	3
2458	Microporous metal–organic frameworks for storage and separation of small hydrocarbons. Chemical Communications, 2012, 48, 11813.	2.2	297
2459	Impact of Alkyl-Functionalized BTC on Properties of Copper-Based Metal–Organic Frameworks. Crystal Growth and Design, 2012, 12, 3709-3713.	1.4	65
2460	A microporous, moisture-stable, and amine-functionalized metal–organic framework for highly selective separation of CO ₂ from CH ₄ . Chemical Communications, 2012, 48, 1135-1137.	2.2	73
2461	A 3-dimensional coordination polymer with a rare lonsdaleite topology constructed from a tetrahedral ligand. CrystEngComm, 2012, 14, 7174.	1.3	31
2462	Kinetic hysteresis in gas adsorption behavior for a rigid MOF arising from zig-zag channel structures. Journal of Materials Chemistry, 2012, 22, 10166.	6.7	21
2463	Significant gas uptake enhancement by post-exchange of zinc(ii) with copper(ii) within a metal–organic framework. Chemical Communications, 2012, 48, 10286.	2.2	107
2464	Soft synthesis of isocyanate-functionalised metal–organic frameworks. Dalton Transactions, 2012, 41, 14236.	1.6	12
2465	Bench-scale preparation of Cu3(BTC)2 by ethanol reflux: Synthesis optimization and adsorption/catalytic applications. Microporous and Mesoporous Materials, 2012, 161, 48-55.	2.2	74
2466	Imaging of intact MOF-5 nanocrystals by advanced TEM at liquid nitrogen temperature. Microporous and Mesoporous Materials, 2012, 162, 131-135.	2.2	65
2467	Novel decavanadate cluster complexes [H2V10O28][LH]4·nH2O (L=Imidazole, n=2 or 2-methylimidazole,) Tj ET 86-91.	Qq0 0 0 rg 1.8	gBT /Overloc 15
2468	Two Coll coordination polymers with mixed ligands of carboxylate and flexible 1,3-bis(4-pyridyl)propane. Inorganic Chemistry Communication, 2012, 22, 6-9.	1.8	4

ARTICLE IF CITATIONS A two-fold interpenetrating metal-organic framework based on tetranuclear zinc-carboxylate 2469 15 1.8 clusters. Inorganic Chemistry Communication, 2012, 22, 44-47. 1-D to 3-D lanthanide coordination polymers constructed from 5-aminoisophthalic acid and oxalic 2470 1.8 acid. Inorganic Chemistry Communication, 2012, 23, 25-30. New insight into mesoporous silica for nano metal–organic framework. Journal of Colloid and 2471 5.0 34 Interface Science, 2012, 384, 110-115. Insights from theoretical calculations on structure, dynamics, phase behavior and hydrogen sorption in nanoporous metal organic frameworks. Computational and Theoretical Chemistry, 2012, 987, 42-56. 2472 1.1 Postsynthetic modification of metal–organic framework as a highly efficient and recyclable catalyst for three-component (aldehyde–alkyne–amine) coupling reaction. Catalysis Communications, 2012, 27, 2473 1.6 54 58-62. 2474 The past, present and future of heterogeneous catalysis. Catalysis Today, 2012, 189, 2-27. 2.2 The impact of ligands upon topology and functionality of octacyanidometallate-based assemblies. 2475 9.5 164 Coordination Chemistry Reviews, 2012, 256, 1946-1971. Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101(Cr): Volumetric 2476 6.6 140 measurements and dynamic adsorption studies. Chemical Engineering Journal, 2012, 195-196, 359-368. Incorporation of an A1/A2-Difunctionalized Pillar[5]arene into a Metal–Organic Framework. Journal 2477 254 6.6 of the American Chemical Society, 2012, 134, 17436-17439. Metal–organic frameworks for the storage and delivery of biologically active hydrogen sulfide. 2478 1.6 128 Dalton Transactions, 2012, 41, 4060. Construction and adsorption properties of microporous tetrazine-based organic frameworks. RSC 2479 1.7 46 Advances, 2012, 2, 408-410. Metal [Zn(II), Cd(II)], 1,10-Phenanthroline Containing Coordination Polymers Constructed on the Skeleton of Polycarboxylates: Synthesis, Characterization, Microstructural, and CO₂Gas 1.4 Adsorption Studies. Crystal Growth and Design, 2012, 12, 5311-5319. On Demand: The Singular rht Net, an Ideal Blueprint for the Construction of a Metal–Organic 2482 7.2 116 Framework (MOF) Platform. Angewandte Chemie - International Edition, 2012, 51, 10099-10103. On the Mechanism Behind the Instability of Isoreticular Metal–Organic Frameworks (IRMOFs) in Humid Environments. Chemistry - A European Journal, 2012, 18, 12260-12266. 2483 1.7 66 Characterization of Znâ€Containing Metalâ€"Organic Frameworks by Solidâ€State ⁶⁷Zn NMR 2484 1.7 66 Spectroscopy and Computational Modeling. Chemistry - A European Journal, 2012, 18, 12251-12259. A versatile metal–organic framework for carbon dioxide capture and cooperative catalysis. Chemical 2485 2.2 Communications, 2012, 48, 9995. Postsynthetic Ligand and Cation Exchange in Robust Metal–Organic Frameworks. Journal of the 2486 6.6 702 American Chemical Society, 2012, 134, 18082-18088. Cooperative Template-Directed Assembly of Mesoporous Metal–Organic Frameworks. Journal of the 2487 6.6 American Chemical Society, 2012, 134, 126-129.

#	Article	IF	CITATIONS
2488	Computational Study of Adsorption and Separation of CO ₂ , CH ₄ , and N ₂ by an <i>rht</i> -Type Metal–Organic Framework. Langmuir, 2012, 28, 12122-12133.	1.6	102
2490	Storage Capacity of Metal–Organic and Covalent–Organic Frameworks by Hydrogen Spillover. Journal of Physical Chemistry C, 2012, 116, 3661-3666.	1.5	35
2491	Exceptional surface area from coordination copolymers derived from two linear linkers of differing lengths. Chemical Science, 2012, 3, 2429.	3.7	63
2492	{[Co2(ndc)2(bpee)2](bpee)}: a 3D multifunctional MOF. CrystEngComm, 2012, 14, 4980.	1.3	21
2493	Adsorption of Hydrocarbons in Metal–Organic Frameworks: A Force Field Benchmark on the Example of Benzene in Metal–Organic Framework 5. Journal of Physical Chemistry C, 2012, 116, 15369-15377.	1.5	14
2494	Isoreticular Two-Dimensional Covalent Organic Frameworks Synthesized by On-Surface Condensation of Diboronic Acids. ACS Nano, 2012, 6, 7234-7242.	7.3	194
2495	Metal–organic frameworks in mixed-matrix membranes for gas separation. Dalton Transactions, 2012, 41, 14003.	1.6	442
2496	Methane storage in advanced porous materials. Chemical Society Reviews, 2012, 41, 7761.	18.7	716
2497	Metal–organic frameworks post-synthetically modified with ferrocenyl groups: framework effects on redox processes and surface conduction. Dalton Transactions, 2012, 41, 1475-1480.	1.6	57
2498	HKUST-1 as an open metal site gas chromatographic stationary phase—capillary preparation, separation of small hydrocarbons and electron donating compounds, determination of thermodynamic data. Journal of Materials Chemistry, 2012, 22, 10228.	6.7	80
2499	Structural systematic design of organic templated samarium sulfates and their luminescence property. RSC Advances, 2012, 2, 217-225.	1.7	14
2500	Connecting structure with function in metal–organic frameworks to design novel photo- and radioluminescent materials. Journal of Materials Chemistry, 2012, 22, 10235.	6.7	105
2501	Feasibility of zeolitic imidazolate framework membranes for clean energy applications. Energy and Environmental Science, 2012, 5, 7637.	15.6	154
2502	In situ synthesis of a Cu-BTC metal–organic framework (MOF 199) onto cellulosic fibrous substrates: cotton. Cellulose, 2012, 19, 1771-1779.	2.4	132
2503	Enhanced Hydrostability in Ni-Doped MOF-5. Inorganic Chemistry, 2012, 51, 9200-9207.	1.9	219
2504	Metal-adeninate vertices for the construction of an exceptionally porous metal-organic framework. Nature Communications, 2012, 3, 604.	5.8	356
2505	Photolabile protecting groups in metal–organic frameworks: preventing interpenetration and masking functional groups. Chemical Communications, 2012, 48, 1574-1576.	2.2	77
2506	Highly Selective Carbon Dioxide Uptake by [Cu(bpy- <i>n</i>) ₂ (SiF ₆)] (bpy-1 =) Tj ETQo 3663-3666.	q1 1 0.784 6.6	314 rgBT /○ 303

	CITATION RI	CITATION REPORT	
#	Article	IF	CITATIONS
2508	Synthetic routes toward MOF nanomorphologies. Journal of Materials Chemistry, 2012, 22, 10119.	6.7	176
2509	Remarkable solvent-size effects in constructing novel porous 1,3,5-benzenetricarboxylate metal–organic frameworks. CrystEngComm, 2012, 14, 5596.	1.3	68
2510	A novel series of isoreticular metal organic frameworks: realizing metastable structures by liquid phase epitaxy. Scientific Reports, 2012, 2, 921.	1.6	183
2511	Ion Exchange in Metal–Organic Framework for Water Purification: Insight from Molecular Simulation. Journal of Physical Chemistry C, 2012, 116, 6925-6931.	1.5	77
2512	N-donor ligand mediated assembly of divalent zinc and cadmium coordination polymers based on 2,3,2′,3′-thiaphthalic acid: structures and properties. CrystEngComm, 2012, 14, 4444.	1.3	25
2513	From Stimuli-Responsive Polymorphic Organic Dye Crystals to Photoluminescent Cationic Open-Framework Metal Phosphate. Journal of the American Chemical Society, 2012, 134, 9848-9851.	6.6	89
2514	CO ₂ capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy and Environmental Science, 2012, 5, 6465-6473.	15.6	463
2515	Synthesis, crystal structure and properties of a novel framework aluminium diphosphonate. RSC Advances, 2012, 2, 10291.	1.7	3
2517	Activated carbon monoliths for gas storage at room temperature. Energy and Environmental Science, 2012, 5, 9833.	15.6	109
2518	Metal–organic framework MIL-53(Al) as a solid-phase microextraction adsorbent for the determination of 16 polycyclic aromatic hydrocarbons in water samples by gas chromatography–tandem mass spectrometry. Analyst, The, 2012, 137, 5411.	1.7	165
2519	Five Novel Coordination Polymers Based on a C-Centered Triangular Flexible Ligand. Crystal Growth and Design, 2012, 12, 1022-1031.	1.4	38
2520	Rational Tuning of Water Vapor and CO ₂ Adsorption in Highly Stable Zr-Based MOFs. Journal of Physical Chemistry C, 2012, 116, 23526-23532.	1.5	129
2521	Introducing a photo-switchable azo-functionality inside Cr-MIL-101-NH2 by covalent post-synthetic modification. Dalton Transactions, 2012, 41, 8690.	1.6	138
2522	Synthesis of nanoporous copper terephthalate [MIL-53(Cu)] as a novel methane-storage adsorbent. Journal of Natural Gas Chemistry, 2012, 21, 680-684.	1.8	30
2523	Hydrothermal synthesis and crystal structure of novel bis(6-carboxypyridine-2-carboxylato-l ² ³ <i>O</i> ² , <i>N</i> , <i>O</i>) Tj ETQq0 0 0 rg	BT /Qverlo 1.8	ck 10 Tf 50 1
2524	Improving the hydrogen storage capacity of metal organic framework by chemical functionalization. International Journal of Hydrogen Energy, 2012, 37, 16070-16077.	3.8	30
2525	Hydrogen storage in lithium-decorated benzene complexes. International Journal of Hydrogen Energy, 2012, 37, 17153-17157.	3.8	8
2526	Rotational flexibility of bridging ligands in paddle–wheel layer–pillar metal–organic frameworks studied by quantum calculations. Computational and Theoretical Chemistry, 2012, 1001, 33-38.	1.1	1

#	Article	IF	CITATIONS
2527	Synthesis, characterization and thermal decomposition kinetics as well as evaluation of luminescent properties of several 3D lanthanide coordination polymers as selective luminescent probes of metal ions. Synthetic Metals, 2012, 162, 1775-1788.	2.1	12
2528	Preparation of Ni-MOF-74 membrane for CO2 separation by layer-by-layer seeding technique. Microporous and Mesoporous Materials, 2012, 163, 169-177.	2.2	115
2529	Surprising role of the BDC organic ligand in the adsorption of CO2 by MOF-5. Microporous and Mesoporous Materials, 2012, 163, 186-191.	2.2	24
2530	Investigation of Porous Silica Supported Mixed-Amine Sorbents for Post-Combustion CO ₂ Capture. Energy & Fuels, 2012, 26, 2483-2496.	2.5	135
2533	Geometry analysis and systematic synthesis of highly porous isoreticular frameworks with a unique topology. Nature Communications, 2012, 3, 642.	5.8	145
2534	Self-assembly, crystal structures, and properties of metal-2-sulfoterephthalate frameworks based on [M4(μ3-OH)2]6+ clusters (M = Co, Mn, Zn and Cd). Dalton Transactions, 2012, 41, 2639.	1.6	30
2535	A porous metal–organic framework with helical chain building units exhibiting facile transition from micro- to meso-porosity. Chemical Communications, 2012, 48, 883-885.	2.2	50
2536	Assembly of Discrete One-, Two-, and Three-Dimensional Zn(II) Complexes Containing Semirigid V-Shaped Tricarboxylate Ligands. Crystal Growth and Design, 2012, 12, 1452-1463.	1.4	109
2537	Synthesis, Crystal Structures, and Luminescence Properties of Carboxylate Based Rare-Earth Coordination Polymers. Inorganic Chemistry, 2012, 51, 11623-11634.	1.9	177
2538	An organosilicon hexacarboxylic acid and its use in the construction of a novel metal organic framework isoreticular to MOF-5. CrystEngComm, 2012, 14, 758-760.	1.3	24
2539	Synthesis of novel ZnS nanocages utilizing ZIF-8 polyhedral template. Chemical Communications, 2012, 48, 3620.	2.2	128
2540	Ab Initio Parametrized Force Field for the Flexible Metal–Organic Framework MIL-53(Al). Journal of Chemical Theory and Computation, 2012, 8, 3217-3231.	2.3	69
2541	Oxygen sensing via phosphorescence quenching of doped metal–organic frameworks. Journal of Materials Chemistry, 2012, 22, 10329.	6.7	89
2542	Investigation of in Situ Oxalate Formation from 2,3-Pyrazinedicarboxylate under Hydrothermal Conditions Using Nuclear Magnetic Resonance Spectroscopy. Inorganic Chemistry, 2012, 51, 3883-3890.	1.9	52
2543	In situ syntheses, crystal structures and magnetic properties of Cu ^{II} and Mn ^{II} coordination assemblies based on a novel heteroalicyclic dicarboxylate tecton and N-donor co-ligands. CrystEngComm, 2012, 14, 160-168.	1.3	7
2544	Engineering metal–organic frameworks immobilize gold catalysts for highly efficient one-pot synthesis of propargylamines. Green Chemistry, 2012, 14, 1710.	4.6	101
2545	Syntheses, Structures, and Photoluminescent Properties of Coordination Polymers Based on 1,4-Bis(imidazol-l-yl-methyl)benzene and Various Aromatic Dicarboxylic Acids. Crystal Growth and Design, 2012, 12, 253-263.	1.4	84
2546	Influence of π–π Stacking Interactions on the Assembly of Layered Copper Phosphonate Coordination Polymers: Combined Powder Diffraction and Electron Paramagnetic Resonance Study. Crystal Growth and Design, 2012, 12, 2327-2335.	1.4	24

#	Article	IF	CITATIONS
2547	Bistable Dynamic Coordination Polymer Showing Reversible Structural and Functional Transformations. Inorganic Chemistry, 2012, 51, 8317-8321.	1.9	17
2548	Single-Layer [Cu ₂ Br(IN) ₂] _{<i>n</i>} Coordination Polymer (CP): Electronic and Magnetic Properties, and Implication for Molecular Sensors. Journal of Physical Chemistry C, 2012, 116, 4119-4125.	1.5	27
2549	Metal–Organic Framework/Polymer Mixed-Matrix Membranes for H ₂ /CO ₂ Separation: A Fully Atomistic Simulation Study. Journal of Physical Chemistry C, 2012, 116, 19268-19277.	1.5	72
2551	Multi-component hydrogen-bonding salts formed between imidazole and aromatic acids: Synthons cooperation and crystal structures. Science China Chemistry, 2012, 55, 2115-2122.	4.2	29
2552	Adsorption and separation of methane/hydrogen in octaphenylsilsesquioxane based covalently-linked organic-inorganic hybrid framework. Frontiers of Physics, 2012, 7, 453-460.	2.4	0
2553	Understanding nanofluid stability through molecular simulation. Chemical Physics Letters, 2012, 551, 115-120.	1.2	10
2554	Non-interpenetrated IRMOF-8: synthesis, activation, and gas sorption. Chemical Communications, 2012, 48, 9828.	2.2	49
2555	Water Stable Metal–Organic Framework Evolutionally Formed from a Flexible Multidentate Ligand with Acylamide Groups for Selective CO ₂ Adsorption. Crystal Growth and Design, 2012, 12, 1081-1084.	1.4	67
2556	Synthesis of polyhedron hollow structure Cu2O and their gas-sensing properties. Sensors and Actuators B: Chemical, 2012, 171-172, 135-140.	4.0	56
2557	Chiral porous metal-organic frameworks with dual active sites for sequential asymmetric catalysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 2035-2052.	1.0	35
2558	Poly-(bis((μ4-1,4-benzenedicarboxylato)-bis(μ2-N,N-dimethylformamide)-(nitrato)-gadolinium (III))) metal organic framework: Synthesis, magnetic and luminescence properties. Inorganica Chimica Acta, 2012, 391, 1-9.	1.2	14
2559	From Nonporous to Porous Doubly-Pillared-Layer Framework: Control over Interpenetration via Shape Alteration of Layer Apertures. Crystal Growth and Design, 2012, 12, 1626-1631.	1.4	21
2560	Improving Biogas Separation and Methane Storage with Multilayer Graphene Nanostructure via Layer Spacing Optimization and Lithium Doping: A Molecular Simulation Investigation. Environmental Science & Technology, 2012, 46, 10341-10348.	4.6	69
2561	Metal Organic Framework as an Adsorbent for Desulphurization. Adsorption Science and Technology, 2012, 30, 483-490.	1.5	7
2562	Self-assembly of ZnO nanocrystals into nanoporous pyramids: high selective adsorption and photocatalytic activity. Journal of Materials Chemistry, 2012, 22, 6539.	6.7	33
2563	Aqueous Molecular Sieving and Strong Gas Adsorption in Highly Porous MOFs with a Facile Synthesis. Chemistry of Materials, 2012, 24, 4647-4652.	3.2	49
2564	Understanding Carbon Monoxide Capture Using Metal–Organic Frameworks. Journal of Physical Chemistry C, 2012, 116, 6655-6663.	1.5	62
2565	Atomically Detailed Modeling of Metal Organic Frameworks for Adsorption, Diffusion, and Separation of Noble Gas Mixtures. Industrial & Engineering Chemistry Research, 2012, 51, 7373-7382.	1.8	53

#	Article	IF	CITATIONS
2566	Electron Microscopic Study on Aerosol-Assisted Synthesis of Aluminum Organophosphonates Using Flexible Colloidal PS- <i>b</i> -PEO Templates. Langmuir, 2012, 28, 12901-12908.	1.6	36
2567	Highly selective acetone fluorescent sensors based on microporous Cd(ii) metal–organic frameworks. Journal of Materials Chemistry, 2012, 22, 23201.	6.7	140
2568	Insights into Adsorption of NH ₃ on HKUST-1 Metal–Organic Framework: A Multitechnique Approach. Journal of Physical Chemistry C, 2012, 116, 19839-19850.	1.5	176
2569	Three-Dimensional Metal–Organic Framework with Highly Polar Pore Surface: H ₂ and CO ₂ Storage Characteristics. Inorganic Chemistry, 2012, 51, 7103-7111.	1.9	66
2570	Triple Framework Interpenetration and Immobilization of Open Metal Sites within a Microporous Mixed Metal–Organic Framework for Highly Selective Gas Adsorption. Inorganic Chemistry, 2012, 51, 4947-4953.	1.9	83
2571	Up-conversion properties of lanthanide-organic frameworks and how to track ammunitions using these materials. RSC Advances, 2012, 2, 3083.	1.7	41
2572	pH variation induced construction of a series of entangled frameworks based on bi- and tri-metallic cores as nodes. CrystEngComm, 2012, 14, 124-130.	1.3	23
2573	Substituted groups-directed assembly of Cd(ii) coordination polymers based on 5-R-1,3-benzenedicarboxylate and 4,4'-bis(1-imidazolyl)bibenzene: syntheses, structures and photoluminescent properties. CrystEngComm, 2012, 14, 6064.	1.3	40
2574	Solvents control over the degree of interpenetration in metal-organic frameworks and their high sensitivities for detecting nitrobenzene at ppm level. Journal of Materials Chemistry, 2012, 22, 15939.	6.7	173
2575	Synthesis, structures, and magnetic properties of four copper compounds with 2,2â \in 2-dinitrobiphenyl-4,4â \in 2-dicarboxylate. Dalton Transactions, 2012, 41, 12192.	1.6	23
2576	Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst. Electrochemistry Communications, 2012, 25, 70-73.	2.3	259
2577	Synthesis, structures, and properties of alkali and alkaline earth coordination polymers based on V-shaped ligand. CrystEngComm, 2012, 14, 6812.	1.3	29
2578	Functional tolerance in an isoreticular series of highly porous metal–organic frameworks. Dalton Transactions, 2012, 41, 6277.	1.6	17
2579	Two Large-Pore Metal–Organic Frameworks Derived from a Single Polytopic Strut. Crystal Growth and Design, 2012, 12, 1075-1080.	1.4	31
2580	Selective Gas and Vapor Sorption and Magnetic Sensing by an Isoreticular Mixed-Metal–Organic Framework. Journal of the American Chemical Society, 2012, 134, 15301-15304.	6.6	109
2581	Mechanical, Electronic, and Adsorption Properties of Porous Aromatic Frameworks. Journal of Physical Chemistry C, 2012, 116, 22878-22884.	1.5	22
2582	Tuning Fluorescent Molecules by Inclusion in a Metal–Organic Framework: An Experimental and Computational Study. ChemPlusChem, 2012, 77, 1112-1118.	1.3	66
2583	Force fields for carbon capture. Nature Chemistry, 2012, 4, 777-778.	6.6	3

#	Article	IF	CITATIONS
2584	Synthesis, Structure, and Thermal Stability of Supramolecular Polymers with 1D Chain: [M(BPP)2(TBTA)(H2O)2]n[M=Mn(1),Co(2)]. International Journal of Inorganic Chemistry, 2012, 2012, 1-6.	0.6	0
2585	Recent Advances in Molecular Dynamics Simulations of Gas Diffusion in Metal Organic Frameworks. , 0, , .		3
2586	Diversity of Porous Coordination Polymers and Development of Synthetic Methods. Bulletin of Japan Society of Coordination Chemistry, 2012, 59, 66-81.	0.1	0
2587	Metal(II) Complexes Based on Imidazo[4, 5â€f]â€1, 10â€phenanthroline and Bridging Dicarboxylato Ligands: Synthesis, Characterization and Photoluminescence. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 473-481.	0.6	4
2588	Syntheses and Crystal Structures of Two 3D Lead(II) Coordination Polymers with Isonicotinic Acid <i>N</i> â€Oxide and Pseudohalides. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 461-465.	0.6	7
2589	Synthesis and Characterization of a Metalâ€Organic Coordination Polymer. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 282-285.	0.6	6
2590	Structural properties of metalâ€organic frameworks within the densityâ€functional based tightâ€binding method. Physica Status Solidi (B): Basic Research, 2012, 249, 335-342.	0.7	42
2591	Highly Luminescent Metal–Organic Frameworks Through Quantum Dot Doping. Small, 2012, 8, 80-88.	5.2	132
2592	Four <i>Ln</i> ^{III} â€Mg ^{II} Metal Organic Frameworks Containing Fanâ€like Helices and Independent [Mg(H ₂ 0) ₆] ²⁺ Units. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 652-657.	0.6	7
2593	Synthesis, Crystal Structure, and Physical Properties of a ÂBarium(II) Benzeneâ€1, 2, 3â€tricarboxylic Acid Complex. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 1047-1052.	0.6	9
2594	A 1D → 3D Twoâ€Fold Interpenetration Array Formed by Hydrogenâ€Bonding Interactions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 992-995.	0.6	1
2595	A 3D Water Network Confined in 3D Pure Inorganic Framework Constructed by [SiW ₁₂ O ₄₀] ^{4–} and Potassium Ions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 1018-1022.	0.6	3
2596	Systematic Investigation of Porous Inorganicâ€Organic Hybrid Compounds with Photoâ€Switchable Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 2138-2143.	0.6	14
2597	Insertion Reactions of Heterocumulenes with Zincocene Cp* ₂ Zn. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 1705-1710.	0.6	11
2598	Metal organic frameworks for drug delivery and environmental remediation: A molecular docking approach. International Journal of Quantum Chemistry, 2012, 112, 3346-3355.	1.0	47
2599	Synthesis and crystal structure of a new Cd(II) coordination polymer with mixed Oba and TATP ligands (H2Oba = 4,4′-oxybis(benzoic acid), TATP = 1,4,8,9-tetranitrogen-trisphene). Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2012, 38, 61-64.	0.3	1
2600	Synthesis and crystal structure of a 1D coordination polymer Cu3(Mip)4(2,2′-Bipy)2 (H2Mip =) Tj ETQq0 0 0 rg Chemistry/Koordinatsionnaya Khimiya, 2012, 38, 149-152.	gBT /Overl 0.3	ock 10 Tf 50 1
2601	Combination of Magnetic Susceptibility and Electron Paramagnetic Resonance to Monitor the 1D to 2D Solid State Transformation in Flexible Metal–Organic Frameworks of Co(II) and Zn(II) with 1,4-Bis(triazol-1-ylmethyl)benzene. Inorganic Chemistry, 2012, 51, 4403-4410.	1.9	37

#	Article	IF	CITATIONS
2602	Tuning the magneto-structural properties of non-porous coordination polymers by HCl chemisorption. Nature Communications, 2012, 3, 828.	5.8	99
2603	Fine tuning of the metal–organic framework Cu3(BTC)2 HKUST-1 crystal size in the 100 nm to 5 micron range. Journal of Materials Chemistry, 2012, 22, 13742.	6.7	158
2604	Deconstructing the Crystal Structures of Metal–Organic Frameworks and Related Materials into Their Underlying Nets. Chemical Reviews, 2012, 112, 675-702.	23.0	1,942
2605	Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chemical Reviews, 2012, 112, 703-723.	23.0	1,085
2606	Metal–Organic Framework Thin Films: From Fundamentals to Applications Chemical Reviews, 2012, 112, 1055-1083.	23.0	1,034
2607	Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. II. Adsorption of atomic and molecular fluids in a porous material. Journal of Chemical Physics, 2012, 136, 184108.	1.2	41
2608	Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks. Chemical Reviews, 2012, 112, 970-1000.	23.0	1,986
2609	Topological systematization of layered coordination compounds of Cu, Ag, Zn, and Cd. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2012, 38, 309-314.	0.3	1
2610	Metal–organic frameworks with dynamic interlocked components. Nature Chemistry, 2012, 4, 456-460.	6.6	260
2611	Solid-State Syntheses of Coordination Polymers by Thermal Conversion of Molecular Building Blocks and Polymeric Precursors. Inorganic Chemistry, 2012, 51, 6180-6189.	1.9	24
2612	Metal–organic framework growth at functional interfaces: thin films and composites for diverse applications. Chemical Society Reviews, 2012, 41, 2344-2381.	18.7	537
2613	Highly Porous 4,8-Connected Metal–Organic Frameworks: Synthesis, Characterization, and Hydrogen Uptake. Inorganic Chemistry, 2012, 51, 2503-2508.	1.9	24
2614	Single-atom active sites on metal-organic frameworks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 1985-1999.	1.0	48
2615	Unusual microporous polycatenane-like metal–organic frameworks for the luminescent sensing of Ln3+ cations and rapid adsorption of iodine. Chemical Communications, 2012, 48, 5919.	2.2	96
2616	Large-Pore Apertures in a Series of Metal-Organic Frameworks. Science, 2012, 336, 1018-1023.	6.0	1,729
2617	Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 2012, 112, 933-969.	23.0	3,923
2618	Current Status of Metal–Organic Framework Membranes for Gas Separations: Promises and Challenges. Industrial & Engineering Chemistry Research, 2012, 51, 2179-2199.	1.8	466
2619	Novel Coordination Frameworks Incorporating the 4,4′-Bipyrazolyl Ditopic Ligand. Inorganic Chemistry, 2012, 51, 5235-5245.	1.9	68

#	Article	IF	CITATIONS
2620	Metal–Organic Frameworks for Separations. Chemical Reviews, 2012, 112, 869-932.	23.0	5,588
2621	Metal–Organic Frameworks in Biomedicine. Chemical Reviews, 2012, 112, 1232-1268.	23.0	3,593
2622	Carbon Dioxide Capture in Metal–Organic Frameworks. Chemical Reviews, 2012, 112, 724-781.	23.0	5,612
2623	Hydrogen Storage in Metal–Organic Frameworks. Chemical Reviews, 2012, 112, 782-835.	23.0	3,283
2624	Luminescent Functional Metal–Organic Frameworks. Chemical Reviews, 2012, 112, 1126-1162.	23.0	5,099
2625	Metal–organic framework-based devices: separation and sensors. Journal of Materials Chemistry, 2012, 22, 10094.	6.7	169
2626	Near-UV photo-induced modification in isoreticular metal–organic frameworks. Journal of Materials Chemistry, 2012, 22, 10188-10194.	6.7	31
2627	Mesoporous metal–organic frameworks: design and applications. Energy and Environmental Science, 2012, 5, 7508.	15.6	203
2628	Fast and high yield post-synthetic modification of metal–organic frameworks by vapor diffusion. Chemical Communications, 2012, 48, 1904.	2.2	66
2629	Ligand design for functional metal–organic frameworks. Chemical Society Reviews, 2012, 41, 1088-1110.	18.7	725
2630	Interplay of Metalloligand and Organic Ligand to Tune Micropores within Isostructural Mixed-Metal Organic Frameworks (M′MOFs) for Their Highly Selective Separation of Chiral and Achiral Small Molecules. Journal of the American Chemical Society, 2012, 134, 8703-8710.	6.6	326
2631	N-rich zeolite-like metal–organic framework with sodalite topology: high CO2 uptake, selective gas adsorption and efficient drug delivery. Chemical Science, 2012, 3, 2114.	3.7	277
2632	Syntheses, structures and physical properties of transition metal–organic frameworks assembled from trigonal heterofunctional ligands. Dalton Transactions, 2012, 41, 10412.	1.6	58
2633	Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites. Science, 2012, 335, 1606-1610.	6.0	1,635
2634	Mesoporous metal–organic framework materials. Chemical Society Reviews, 2012, 41, 1677-1695.	18.7	830
2635	Luminescent lead(ii) complexes: new three-dimensional mixed ligand MOFs. CrystEngComm, 2012, 14, 2660.	1.3	29
2636	Tunability of Band Gaps in Metal–Organic Frameworks. Inorganic Chemistry, 2012, 51, 9039-9044.	1.9	148
2637	Two- and Three-Dimensional Divalent Metal Coordination Polymers Constructed from a New Tricarboxylate Linker and Dipyridyl Ligands. Crystal Growth and Design, 2012, 12, 4649-4657.	1.4	34

#	Article	IF	CITATIONS
2638	Solvent-Dependent Assemblies of Trinuclear Copper Cluster into Variable Frameworks Based on Mixed Ligands of Polyalcohol Amines and Organic Carboxylates. Crystal Growth and Design, 2012, 12, 3619-3630.	1.4	32
2639	Power struggles between oligopeptides and cyclodextrin vesicles. Soft Matter, 2012, 8, 8770.	1.2	12
2640	Three- and Eight-Fold Interpenetrated ThSi ₂ Metal–Organic Frameworks Fine-Tuned by the Length of Ligand. Crystal Growth and Design, 2012, 12, 2902-2907.	1.4	61
2641	Two New Coordination Polymers with Co(II) and Mn(II): Selective Gas Adsorption and Magnetic Studies. Crystal Growth and Design, 2012, 12, 2999-3005.	1.4	56
2642	Entangled Metal–Organic Frameworks of <i>m</i> -Phenylenediacrylate Modulated by Bis(pyridyl) Ligands. Crystal Growth and Design, 2012, 12, 2234-2241.	1.4	41
2643	Structural Diversity of Four Metal–Organic Frameworks Based on Linear Homo/Heterotrinuclear Nodes with Furan-2,5-dicarboxylic Acid: Crystal Structures and Luminescent and Magnetic Properties. Crystal Growth and Design, 2012, 12, 2602-2612.	1.4	61
2644	Methane storage in metal organic frameworks. Journal of Materials Chemistry, 2012, 22, 16698.	6.7	153
2645	3,6-Connected Metal–Organic Frameworks Based on Triscarboxylate as a 3-Connected Organic Node and a Linear Trinuclear Co ₃ (COO) ₆ Secondary Building Unit as a 6-Connected Node. Crystal Growth and Design, 2012, 12, 4186-4193.	1.4	45
2646	Three 3D Metal–Quinolone Complexes Based on Trimetallic or Rod‧haped Secondary Building Units. European Journal of Inorganic Chemistry, 2012, 2012, 1783-1789.	1.0	8
2647	Microporous Mixed-Metal Layer-Pillared [Zn1-xCux(bdc)(dabco)0.5] MOFs: Preparation and Characterization. European Journal of Inorganic Chemistry, 2012, 2012, 1688-1695.	1.0	46
2648	Titration of Zr ₃ (μâ€OH) Hydroxy Groups at the Cornerstones of Bulk MOF UiOâ€67, [Zr ₆ O ₄ (OH) ₄ (biphenyldicarboxylate) ₆], and Their Reaction with [AuMe(PMe ₃)]. European Journal of Inorganic Chemistry, 2012, 2012, 3014-3022.	1.0	66
2649	A Porous Metal-Organic Framework Based on Triazoledicarboxylate Ligands - Synthesis, Structure, and Gas-Sorption Studies. European Journal of Inorganic Chemistry, 2012, 2012, 3562-3568.	1.0	18
2650	Tin(II) and Tin(IV) Compounds with Scorpion-Shaped Ligands - Intramolecular N→Sn vs. Intermolecular O→Sn Coordination. European Journal of Inorganic Chemistry, 2012, 2012, 3191-3199.	1.0	30
2651	Recent advances in carbon dioxide capture with metalâ€organic frameworks. , 2012, 2, 239-259.		301
2652	Metalâ€Organic Frameworks as Singleâ€Site Solid Catalysts for Asymmetric Reactions. Israel Journal of Chemistry, 2012, 52, 591-603.	1.0	41
2653	A novel MOF with mesoporous cages for kinetic trapping of hydrogen. Chemical Communications, 2012, 48, 254-256.	2.2	41
2654	A robust microporous metal–organic framework constructed from a flexible organic linker for acetylene storage at ambient temperature. Journal of Materials Chemistry, 2012, 22, 10195.	6.7	55
2655	Targeted Highly-Thermostable Metal–Organic Frameworks Directed by Imidazole: Syntheses, Structures, Thermal Behaviors and Luminescent Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22, 507-513.	1.9	9

#	Article	IF	CITATIONS
2656	Synthesis, Structure, and Magnetic Properties of a New Eight-Connected Metal–Organic Framework (MOF) based on Co ₄ Clusters. Inorganic Chemistry, 2012, 51, 4495-4501.	1.9	51
2657	A family of 2D and 3D coordination polymers involving a trigonal tritopic linker. Dalton Transactions, 2012, 41, 4172.	1.6	25
2658	Conversion of primary amines into secondary amines on a metal–organic framework using a tandem post-synthetic modification. CrystEngComm, 2012, 14, 4112.	1.3	24
2659	Thermal post-synthetic modification of Al-MIL-53–COOH: systematic investigation of the decarboxylation and condensation reaction. CrystEngComm, 2012, 14, 4119.	1.3	76
2660	Conversion of azide to primary amine via Staudinger reaction in metal–organic frameworks. CrystEngComm, 2012, 14, 4137.	1.3	19
2661	Copper Benzene Tricarboxylate Metal–Organic Framework with Wide Permanent Mesopores Stabilized by Keggin Polyoxometallate Ions. Journal of the American Chemical Society, 2012, 134, 10911-10919.	6.6	112
2662	Thermodynamic analysis of Xe/Kr selectivity in over 137 000 hypothetical metal–organic frameworks. Chemical Science, 2012, 3, 2217.	3.7	248
2663	Recovery and reuse of heteropolyacid catalyst in liquid reaction medium through reversible encapsulation in Cu3(BTC)2 metal–organic framework. Chemical Science, 2012, 3, 1847.	3.7	41
2664	Switching Kr/Xe Selectivity with Temperature in a Metal–Organic Framework. Journal of the American Chemical Society, 2012, 134, 9046-9049.	6.6	160
2665	Directing the Breathing Behavior of Pillared-Layered Metal–Organic Frameworks via a Systematic Library of Functionalized Linkers Bearing Flexible Substituents. Journal of the American Chemical Society, 2012, 134, 9464-9474.	6.6	415
2666	Commensurate Adsorption of Hydrocarbons and Alcohols in Microporous Metal Organic Frameworks. Chemical Reviews, 2012, 112, 836-868.	23.0	985
2667	Conventional and Unconventional Metal–Organic Frameworks Based on Phosphonate Ligands: MOFs and UMOFs. Chemical Reviews, 2012, 112, 1034-1054.	23.0	588
2668	Metal–Organic Framework Materials as Chemical Sensors. Chemical Reviews, 2012, 112, 1105-1125.	23.0	6,221
2669	Novel Metal–Organic Framework Based on Cubic and Trisoctahedral Supermolecular Building Blocks: Topological Analysis and Photoluminescent Property. Crystal Growth and Design, 2012, 12, 2736-2739.	1.4	93
2670	A Superacid-Catalyzed Synthesis of Porous Membranes Based on Triazine Frameworks for CO ₂ Separation. Journal of the American Chemical Society, 2012, 134, 10478-10484.	6.6	408
2671	Ab initio investigations on the crystal structure, formation enthalpy, electronic structure, chemical bonding, and optical properties of experimentally synthesized isoreticular metal–organic framework-10 and its analogues: M-IRMOF-10 (M = Zn, Cd, Be, Mg, Ca, Sr and Ba). RSC Advances, 2012, 2, 1618-1631	1.7	63
2672	Properties of IRMOF-14 and its analogues M-IRMOF-14 (M = Cd, alkaline earth metals): electronic structure, structural stability, chemical bonding, and optical properties. Physical Chemistry Chemical Physics, 2012, 14, 4713.	1.3	45
2673	Solid-state single-crystal-to-single-crystal transformation from a 2D layer to a 3D framework mediated by lattice iodine release. Chemical Communications, 2012, 48, 7859.	2.2	72

#	Article	IF	CITATIONS
2674	Tuning the Formations of Metal–Organic Frameworks by Modification of Ratio of Reactant, Acidity of Reaction System, and Use of a Secondary Ligand. Crystal Growth and Design, 2012, 12, 281-288.	1.4	76
2675	Interplay between the structural and magnetic probes in the elucidation of the structure of a novel 2D layered [V4O4(OH)2(O2CC6H4CO2)4]·DMF. Dalton Transactions, 2012, 41, 581-589.	1.6	8
2676	Blocking bimolecular activation pathways leads to different regioselectivity in metal–organic framework catalysis. Chemical Communications, 2012, 48, 8766.	2.2	54
2677	Unusual High Thermal Stability within a Series of Novel Lanthanide TATB Frameworks: Synthesis, Structure, and Properties (TATBÂ=Â4,4′,4″-s-Triazine-2,4,6-triyl-tribenzoate). Crystal Growth and Design, 2012, 12, 670-678.	1.4	76
2678	Synthesis, structural characterization and anion-sensing studies of metal(<scp>ii</scp>) complexes based on 3,3′,4,4′-oxydiphthalate and N-donor ligands. Dalton Transactions, 2012, 41, 1961-1970.	1.6	17
2679	Solvent-Induced Controllable Synthesis, Single-Crystal to Single-Crystal Transformation and Encapsulation of Alq3 for Modulated Luminescence in (4,8)-Connected Metal–Organic Frameworks. Inorganic Chemistry, 2012, 51, 7484-7491.	1.9	127
2680	Accessible Surface Area of Porous Materials: Understanding Theoretical Limits. Advanced Materials, 2012, 24, 3130-3133.	11.1	54
2686	Transport into Metal–Organic Frameworks from Solution Is Not Purely Diffusive. Angewandte Chemie - International Edition, 2012, 51, 2662-2666.	7.2	38
2687	Supramolecular Tetrahedra of Phosphines and Coinage Metals. Angewandte Chemie - International Edition, 2012, 51, 5106-5109.	7.2	41
2688	Lithiated Porous Aromatic Frameworks with Exceptional Gas Storage Capacity. Angewandte Chemie - International Edition, 2012, 51, 6639-6642.	7.2	112
2689	Reversible Interpenetration in a Metal–Organic Framework Triggered by Ligand Removal and Addition. Angewandte Chemie - International Edition, 2012, 51, 8791-8795.	7.2	129
2690	Molecular Organic Crystals: From Barely Porous to Really Porous. Angewandte Chemie - International Edition, 2012, 51, 7892-7894.	7.2	81
2691	Lowâ€Temperature CO Oxidation over Cuâ€Based Metal–Organic Frameworks Monitored by using FTIR Spectroscopy. ChemCatChem, 2012, 4, 755-759.	1.8	38
2692	A Robust Porous Metal–Organic Framework with a New Topology That Demonstrates Pronounced Porosity and Highâ€Efficiency Sorption/Selectivity Properties of Small Molecules. Chemistry - A European Journal, 2012, 18, 5715-5723.	1.7	45
2693	Synthesis of 2―and 2,7â€Functionalized Pyrene Derivatives: An Application of Selective CH Borylation. Chemistry - A European Journal, 2012, 18, 5022-5035.	1.7	185
2694	Singleâ€Crystalâ€ŧoâ€&ingleâ€Crystal Transformation from 1 D Staggeredâ€&culls Chains to 3 D NbOâ€ Metalâ€Organic Framework through [2+2] Photodimerization. Chemistry - A European Journal, 2012, 18, 7357-7361.	₹ype 1.7	51
2695	Control of Interpenetration and Gasâ€6orption Properties of Metal–Organic Frameworks by a Simple Change in Ligand Design. Chemistry - A European Journal, 2012, 18, 8673-8680.	1.7	135
2696	Tailorâ€Made Metal–Organic Frameworks from Functionalized Molecular Building Blocks and Lengthâ€Adjustable Organic Linkers by Stepwise Synthesis. Chemistry - A European Journal, 2012, 18, 8076-8083.	1.7	69

#	Article	IF	CITATIONS
2697	Control of Porosity by Using Isoreticular Zeolitic Imidazolate Frameworks (IRZIFs) as a Template for Porous Carbon Synthesis. Chemistry - A European Journal, 2012, 18, 11399-11408.	1.7	122
2698	Screening CO ₂ /N ₂ selectivity in metalâ€organic frameworks using Monte Carlo simulations and ideal adsorbed solution theory. Canadian Journal of Chemical Engineering, 2012, 90, 825-832.	0.9	46
2699	How Can a Hydrophobic MOF be Waterâ€Unstable? Insight into the Hydration Mechanism of IRMOFs. ChemPhysChem, 2012, 13, 3497-3503.	1.0	116
2700	Porous Frameworks Based on Carborane–Ln ₂ (CO ₂) ₆ : Architecture Influenced by Lanthanide Contraction and Selective CO ₂ Capture. ChemPlusChem, 2012, 77, 141-147.	1.3	21
2701	Adsorption and Separation of Light Gases on an Aminoâ€Functionalized Metal–Organic Framework: An Adsorption and Inâ€Situ XRD Study. ChemSusChem, 2012, 5, 740-750.	3.6	115
2702	A Method for Screening the Potential of MOFs as CO ₂ Adsorbents in Pressure Swing Adsorption Processes. ChemSusChem, 2012, 5, 762-776.	3.6	109
2703	Hydrogen Storage in New Metal–Organic Frameworks. Journal of Physical Chemistry C, 2012, 116, 13143-13151.	1.5	174
2704	2D Cdl2 topological layer architecture constructed by Zn(II) and flexible tricarboxylate ligand. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2012, 38, 315-318.	0.3	1
2705	Metal–organic framework supported ionic liquid membranes for CO2 capture: anion effects. Physical Chemistry Chemical Physics, 2012, 14, 5785.	1.3	113
2706	Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews, 2012, 112, 1196-1231.	23.0	2,699
2707	A series of isostructural mesoporous metal–organic frameworks obtained by ion-exchange induced single-crystal to single-crystal transformation. Dalton Transactions, 2012, 41, 3953.	1.6	127
2708	Computer simulation of gas adsorption in modified COF-108: the impregnation of C ₆₀ into COF-108. Molecular Simulation, 2012, 38, 595-603.	0.9	1
2709	The synthesis, structures and reactions of zinc and cobalt metal–organic frameworks incorporating an alkyne-based dicarboxylate linker. CrystEngComm, 2012, 14, 188-192.	1.3	20
2710	Large-scale screening of hypothetical metal–organic frameworks. Nature Chemistry, 2012, 4, 83-89.	6.6	1,098
2711	New types of hybrid solids of tetravanadate polyanions and cucurbituril. Dalton Transactions, 2012, 41, 10080.	1.6	23
2712	A microporous metal–organic framework with high stability for GC separation of alcohols from water. Chemical Communications, 2012, 48, 7613.	2.2	133
2713	An Isomorphous Series of Cubic, Copper-Based Triazolyl Isophthalate MOFs: Linker Substitution and Adsorption Properties. Inorganic Chemistry, 2012, 51, 7579-7586.	1.9	40
2714	Systematic evaluation of textural properties, activation temperature and gas uptake of Cu2(pzdc)2L [L = dipyridyl-based ligands] porous coordination pillared-layer networks. Dalton Transactions, 2012, 41, 8922.	1.6	16

#	Article	IF	CITATIONS
2715	An Unusual Interweaving in a 3-Fold Interpenetrated Pillared-Layer Zn(II) Coordination Polymer with a Long Spacer Ligand. Crystal Growth and Design, 2012, 12, 3397-3401.	1.4	37
2716	Magnetic properties of the seven-coordinated nanoporous framework material Co(bpy) _{1.5} (NO ₃) ₂ (bpy = 4,4′-bipyridine). Dalton Transactions, 2012, 41, 10382-10389.	1.6	21
2717	Interpenetrated metal–organic frameworks and their uptake of CO2 at relatively low pressures. Journal of Materials Chemistry, 2012, 22, 10345.	6.7	73
2718	3,5-Bis{4-[(benzimidazol-1-yl)methyl]phenyl}-4H-1,2,4-triazol-4-amine and its one-dimensional polymeric complex with HgCl2. Acta Crystallographica Section C: Crystal Structure Communications, 2012, 68, m152-m155.	0.4	5
2719	Synthesis and Adsorption/Catalytic Properties of the Metal Organic Framework CuBTC. Catalysis Surveys From Asia, 2012, 16, 106-119.	1.0	54
2720	Synthesis, Crystal Structures and Luminescent Properties of pH-Dependent Zn (II) Coordination Polymers. Journal of Inorganic and Organometallic Polymers and Materials, 2012, 22, 910-915.	1.9	5
2721	Density functional theory study of interactions of cyclotrimethylene trinitramine (RDX) and triacetone triperoxide (TATP) with metal–organic framework (IRMOF-1(Be)). Structural Chemistry, 2012, 23, 1143-1154.	1.0	5
2722	Host–guest and guest–guest interactions between xylene isomers confined in the MIL-47(V) pore system. Theoretical Chemistry Accounts, 2012, 131, 1.	0.5	23
2723	Molecular simulations of adsorption of RDX and TATP on IRMOF-1(Be). Journal of Molecular Modeling, 2012, 18, 3363-3378.	0.8	11
2724	Structure–activity relationships of simple molecules adsorbed on CPO-27-Ni metal–organic framework: In situ experiments vs. theory. Catalysis Today, 2012, 182, 67-79.	2.2	67
2725	Synthesis and structure of a pure inorganic polyoxo-metalate-based porous framework. Chinese Chemical Letters, 2012, 23, 355-358.	4.8	8
2726	Generation of covalently functionalized hierarchical IRMOF-3 by post-synthetic modification. Chemical Engineering Journal, 2012, 181-182, 740-745.	6.6	34
2727	Solvothermal synthesis, crystal structure and properties of three new 1D and 3D organically templated lanthanide sulfates. Inorganica Chimica Acta, 2012, 383, 112-117.	1.2	7
2728	Two new 3-D photoluminescence metal–organic frameworks based on cubane Cu4l4 clusters as tetrahedral nodes. Inorganica Chimica Acta, 2012, 384, 287-292.	1.2	16
2729	1D chain, 2D layer and trinuclear unit based 3D frameworks of indium(iii)-biphenyl carboxylate complexes. Inorganica Chimica Acta, 2012, 386, 36-45.	1.2	3
2730	High-yield postsynthetic modification of MOF with organic–metal precursors. Inorganica Chimica Acta, 2012, 390, 22-25.	1.2	13
2731	MOF-5 and activated carbons as adsorbents for gas storage. International Journal of Hydrogen Energy, 2012, 37, 2370-2381.	3.8	119
2732	Density functional study of hydrogen spillover on direct Pd-doped metal-organic frameworks IRMOF-1. International Journal of Hydrogen Energy, 2012, 37, 5081-5089.	3.8	18
#	Article	IF	CITATIONS
------	---	-------------------	--------------------
2733	Effects of structural modifications on the hydrogen storage capacity of MOF-5. International Journal of Hydrogen Energy, 2012, 37, 5777-5783.	3.8	31
2734	An unprecedented 2D→3D polythreaded metal-lomefloxacin complex assembled from sidearm-containing 2D motifs. Inorganic Chemistry Communication, 2012, 15, 47-51.	1.8	9
2735	Effect of metal ions on the structures of metal–organic frameworks based on mixed ligands. Inorganic Chemistry Communication, 2012, 15, 288-291.	1.8	10
2736	Two novel 3D microporous heterometallic 3d–4f coordination frameworks with unique (7,) Tj ETQq1 1 0.7843 Communication, 2012, 16, 95-99.	14 rgBT /C 1.8	verlock 10 T 14
2737	Synthesis, crystal structures, and photoluminescence of two novel zinc coordination polymers built from 2,2'-(ethyne-1,2-diyl)diterephthalate. Inorganic Chemistry Communication, 2012, 17, 173-176.	1.8	3
2738	A cadmium phenylenediacetate isonicotinate network coordination polymer with new topology via in situ amide cleavage. Inorganic Chemistry Communication, 2012, 19, 31-35.	1.8	12
2739	A series of lanthanide compounds based on mixed aromatic carboxylate ligands: Syntheses, crystal structures and luminescent properties. Inorganic Chemistry Communication, 2012, 20, 247-251.	1.8	21
2740	A nanosized porous metal-organic framework assembled with mutually interdigitated two-dimensional coordination motifs. Inorganic Chemistry Communication, 2012, 20, 263-265.	1.8	7
2741	Synthesis, structure and properties of a metal–organic complex built up from ferrous sulfate chains and 2,2'-bipyridyl-5,5'-dicarboxylic acid ligands. Inorganic Chemistry Communication, 2012, 20, 277-281.	1.8	11
2742	Synthesis, characterization and experimental investigation of Cu-BTC as CO2 adsorbent from flue gas. Journal of Environmental Sciences, 2012, 24, 640-644.	3.2	27
2743	Epitaxially grown metal-organic frameworks. Materials Today, 2012, 15, 110-116.	8.3	117
2744	Change in reaction pathway of nickel(II) complex induced by magnetic fields. Materials Chemistry and Physics, 2012, 133, 541-546.	2.0	7
2745	Adsorption of CO2, CO, CH4 and N2 on a zinc based metal organic framework. Separation and Purification Technology, 2012, 94, 124-130.	3.9	75
2746	Stability and hydrogen storage properties of various metal-decorated benzene complexes. Journal of Power Sources, 2012, 211, 27-32.	4.0	11
2747	A new aluminium-based microporous metal–organic framework: Al(BTB) (BTB =) Tj ETQq0 0 0 rgBT /Overlock 1	0 Tf_50 18 2:2	2 Jd (1,3,5-t
2748	CO2/CH4, CH4/H2 and CO2/CH4/H2 separations at high pressures using Mg2(dobdc). Microporous and Mesoporous Materials, 2012, 151, 481-487.	2.2	123
2749	Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: Effect of open metal sites and adsorbate polarity. Microporous and Mesoporous Materials, 2012, 152, 246-252.	2.2	176
2750	Synthesis and adsorption properties of ZIF-76 isomorphs. Microporous and Mesoporous Materials, 2012, 153, 1-7.	2.2	43

ARTICLE IF CITATIONS Rapid solvothermal synthesis of an isoreticular metalâ€"organic framework with permanent porosity 2751 2.2 20 for hydrogen storage. Microporous and Mesoporous Materials, 2012, 153, 88-93. A porous layered metal-organic framework from π–Ï€-stacking of layers based on a Co6 building unit. 2.2 9 Microporous and Mesoporous Materials, 2012, 157, 24-32. Effect of functional groups in MIL-101 on water sorption behavior. Microporous and Mesoporous 2753 2.2 271 Materials, 2012, 157, 89-93. Reprint of: CO2/CH4, CH4/H2 and CO2/CH4/H2 separations at high pressures using Mg2(dobdc). 2754 2.2 34 Microporous and Mesoporous Materials, 2012, 157, 94-100. Synthesis, structure and magnetic property of a new nickel (II) 1,4-benzenedicarboxylate. Journal of 2755 1.8 1 Molecular Structure, 2012, 1010, 184-189. Three two-dimensional cobalt(II) and nickel(II) coordination polymers with dinuclear secondary building units constructed by one unsymmetric dicarboxylic acid: Synthesis, structures, and magnetic 1.8 property. Journal of Molecular Structure, 2012, 1011, 8-14. Structural assemblies of four Cd(II) coordination polymers based on 5-methylisophthalic acid. Solid 2757 1.5 7 State Sciences, 2012, 14, 335-340. Zn(II) and Cd(II) metal–organic frameworks (MOFs) constructed from a symmetric triangular semirigid multicarboxylate ligand: Synthesis, structures and luminescent properties. Solid State Sciences, 2012, 1.5 Structures and hydrogen adsorption of <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" 2759 0.9 0 xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML' xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevie. Physics Metamagnetism and long range ordering in \hat{l} ¹/₄-1,3 bridging transition metal thiocyanato coordination 2760 1.0 polymers. Polyhedron, 2012, 31, 587-595. Structure diversity of a series of new coordination polymers based on a C3-symmetric tridentate 2761 1.0 17 ligand with rosette architecture. Polyhedron, 2012, 33, 127-136. Mononuclear Cd(II) and Zn(II) complexes with the 1,2-cyclohexanedionedioxime ligand: Preparation and 1.0 structural charactérization. Polyhedron, 2012, 38, 68-74. Sorption of methane, hydrogen and carbon dioxide on metal-organic framework, iron terephthalate 2763 2.9 78 (MOF-235). Journal of Industrial and Engineering Chemistry, 2012, 18, 1149-1152. Synthesis, crystal structure, spectroscopic and thermal investigations of neodymium(III) 2764 1.0 biphenyl-4,4ấ€²-dicarboxylate framework. Open Chemistry, 2012, 10, 1165-1174. Synthesis, crystal structure and electrochemical properties of [Co(phen)3] · (H3btec) · (H2btec)0.5 · 2765 0.3 2 DMF · 6H2O. Russian Journal of Inorganic Chemistry, 2012, 57, 822-826. Nanoscale Biocoordination Polymers: Novel Materials from an Old Topic. Chemistry - A European 2766 Journal, 2012, 18, 1030-1037. Construction of Metal–Organic Frameworks: Versatile Behaviour of a Ligand Containing Mono―and 2767 1.7 13 Bidentate Coordination Sites. Chemistry - A European Journal, 2012, 18, 267-276. Threeâ€Dimensional Porous Metal–Radical Frameworks Based on Triphenylmethyl Radicals. Chemistry - A 2768 38 European Journal, 2012, 18, 152-162.

#	Article	IF	CITATIONS
2769	A Microporous Metal–Organic Framework for Highly Selective Separation of Acetylene, Ethylene, and Ethane from Methane at Room Temperature. Chemistry - A European Journal, 2012, 18, 613-619.	1.7	204
2770	Borromeanâ€Entanglementâ€Driven Assembly of Porous Molecular Architectures with Anionâ€Modified Pore Space. Chemistry - A European Journal, 2012, 18, 1924-1931.	1.7	36
2771	Formaldehyde Encapsulated in Lithiumâ€Decorated Metalâ€Organic Frameworks: A Density Functional Theory Study. ChemPhysChem, 2012, 13, 245-249.	1.0	20
2772	Synthesis and Structure of Lead(II) Complexes of (Ĩ· ⁶ â€Benzenecarboxylato)tricarbonylchromium. European Journal of Inorganic Chemistry, 2012, 2012, 292-297.	1.0	4
2773	A Novel Zrâ€Based Porous Coordination Polymer Containing Azobenzenedicarboxylate as a Linker. European Journal of Inorganic Chemistry, 2012, 2012, 790-796.	1.0	84
2774	Di-, Tetra-, Penta- and Polynuclear Zinc Complexes Supported by a Flexible Tetradentate Schiff Base Ligand. European Journal of Inorganic Chemistry, 2012, 2012, 1130-1138.	1.0	15
2775	Synthesis and Characterization of [2.2]Paracyclophaneâ€Containing Conjugated Microporous Polymers. Macromolecular Chemistry and Physics, 2012, 213, 572-579.	1.1	8
2776	Improving Hydrogen Adsorption Enthalpy Through Coordinatively Unsaturated Cobalt in Porous Polymers. Macromolecular Rapid Communications, 2012, 33, 407-413.	2.0	16
2777	Digital Microfluidic Highâ€Throughput Printing of Single Metalâ€Organic Framework Crystals. Advanced Materials, 2012, 24, 1316-1320.	11.1	88
2778	Experimental and theoretical study of methane adsorption on granular activated carbons. AICHE Journal, 2012, 58, 782-788.	1.8	24
2779	Functionalization of silicon nanowire surfaces with metal-organic frameworks. Nano Research, 2012, 5, 109-116.	5.8	63
2780	Hydrothermal synthesis, crystal structure, and photoluminescence of novel lanthanide metal organic frameworks constructed from 1,4-benzene-dicarboxylic acid and 1,2,4,5-benzenetetracarboxylic acid as ligands. Structural Chemistry, 2012, 23, 275-285.	1.0	18
2781	Synthesis, Crystal Structures, Thermal and Luminescent Properties of Rare Earth Metal Complexes with 1,2,4,5-Benzenetetracarboxylic Acid. Journal of Chemical Crystallography, 2012, 42, 192-198.	0.5	10
2782	Construction of a porous Na–Cd mixed metal–organic framework based on biphenyl-4,4′-dicarboxylate and benzotriazole. Monatshefte FÃ1⁄4r Chemie, 2012, 143, 421-425.	0.9	6
2783	Solvents influence on sizes of channels in three fry topological Mn(ii)-MOFs based on metal–carboxylate chains: syntheses, structures and magnetic properties. CrystEngComm, 2013, 15, 8125.	1.3	66
2784	Metal–Organic Framework Based on Pyridine-2,3-Dicarboxylate and a Flexible Bis-imidazole Ligand: Synthesis, Structure, and Photoluminescence. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 458-462.	1.9	6
2785	Simulations of Adsorption of CO2 and CH4 in MOFs: Effect of the Size and Charge Distribution on the Selectivity. Journal of Low Temperature Physics, 2013, 172, 274-288.	0.6	9
2786	Crystal structure of cobalt(II) 1,12-dodecanedioate trihydrate: A new layered coordination network. Journal of Structural Chemistry, 2013, 54, 474-478.	0.3	5

#	Article	IF	CITATIONS
2787	Applications of metal-organic frameworks as stationary phases in chromatography. TrAC - Trends in Analytical Chemistry, 2013, 50, 33-41.	5.8	117
2788	A series of metal–organic frameworks with high methane uptake and an empirical equation for predicting methane storage capacity. Energy and Environmental Science, 2013, 6, 2735.	15.6	193
2789	A Robust Molecular Porous Material with High CO ₂ Uptake and Selectivity. Journal of the American Chemical Society, 2013, 135, 10950-10953.	6.6	236
2790	Aluminum-1,4-cyclohexanedicarboxylates: High-Throughput and Temperature-Dependent in Situ EDXRD Studies. Inorganic Chemistry, 2013, 52, 8699-8705.	1.9	63
2791	Limitations and high pressure behavior of MOF-5 for CO2 capture. Physical Chemistry Chemical Physics, 2013, 15, 14319.	1.3	42
2792	Two Series of Luminescent Flexible Polycarboxylate Lanthanide Coordination Complexes with Double Layer and Rectangle Metallomacrocycle Structures. Crystal Growth and Design, 2013, 13, 3374-3380.	1.4	26
2793	Synthesis, structure and luminescent recognition properties of cerium(IV) coordination polymers based on pyridine-2,6-dicarboxylic acid. Dyes and Pigments, 2013, 99, 257-267.	2.0	17
2794	Preparation of multi-walled carbon nanotube incorporated MIL-53-Cu composite metal–organic framework with enhanced methane sorption. Journal of Industrial and Engineering Chemistry, 2013, 19, 1583-1586.	2.9	46
2795	Adsorption of hydrogen sulphide on Metal-Organic Frameworks. RSC Advances, 2013, 3, 14737.	1.7	49
2796	Solvothermal Synthesis, Structural Diversity, and Properties of Alkali Metal–Organic Frameworks Based on V-shaped Ligand. Crystal Growth and Design, 2013, 13, 3785-3793.	1.4	26
2797	Chiral microporous Ti(salan)-based metal–organic frameworks for asymmetric sulfoxidation. Chemical Communications, 2013, 49, 7120.	2.2	43
2798	Auxiliary ligand-controlled supramolecular assembly of three Cd(ii) coordination polymers based on a (E)-3-(quinolin-4-yl) acrylic acid: syntheses, structures and photoluminescent properties. CrystEngComm, 2013, 15, 6870.	1.3	25
2799	Demonstration of permanent porosity in flexible and guest-responsive organic zeolite analogs (now) Tj ETQq0 0 (D rgBT /Ov 2.2	verlock 10 Tf 21
2800	Au ^I Catalysis on a Coordination Polymer: A Solid Porous Ligand with Free Phosphine Sites. ChemCatChem, 2013, 5, 692-696.	1.8	43
2801	Efficient hydrogen production and photocatalytic reduction of nitrobenzene over a visible-light-responsive metal–organic framework photocatalyst. Catalysis Science and Technology, 2013, 3, 2092.	2.1	198
2802	Host–Guest Supramolecular Nanosystems for Cancer Diagnostics and Therapeutics. Advanced Materials, 2013, 25, 3888-3898.	11.1	210
2803	Preparation, structural diversity and characterization of a family of Cd(ii)–organic frameworks. Dalton Transactions, 2013, 42, 12468.	1.6	15
2804	Experimental and molecular simulation studies of CO2 adsorption on zeolitic imidazolate	1.4	115

#	Article	IF	CITATIONS
2805	Synthesis and Integration of Fe-soc-MOF Cubes into Colloidosomes via a Single-Step Emulsion-Based Approach. Journal of the American Chemical Society, 2013, 135, 10234-10237.	6.6	267
2806	Adsorption/catalytic properties of MIL-125 and NH2-MIL-125. Catalysis Today, 2013, 204, 85-93.	2.2	406
2807	Secondary spacer modulated assembly of polyoxometalate based metal–organic frameworks. Dalton Transactions, 2013, 42, 1667-1677.	1.6	56
2808	Chains, Layers, Channels, and More: Supramolecular Chemistry of Potent Diphosphonic Tectons with Tuned Flexibility. The Generation of Pseudopolymorphs, Polymorphs, and Adducts. Crystal Growth and Design, 2013, 13, 4039-4050.	1.4	45
2809	Crystallization in THF: the possibility of one-pot synthesis of mixed matrix membranes containing MOF MIL-68(Al). CrystEngComm, 2013, 15, 9483.	1.3	94
2810	Solvent Influence on Sizes of Channels in Three New Co(II) Complexes, Exhibiting an Active Replaceable Coordinated Site. Crystal Growth and Design, 2013, 13, 66-73.	1.4	57
2811	An Unprecedented Homochiral Metal–Organic Framework Based on Achiral Nanosized Pyridine and V-Shaped Polycarboxylate Acid Ligand. Crystal Growth and Design, 2013, 13, 440-445.	1.4	42
2812	From (3,6)-Connected kgd, chiral anh to (3,8)-connected tfz-d Nets in Low Nuclear Metal Cluster-Based Networks with Triangular Pyridinedicarboxylate Ligand. Crystal Growth and Design, 2013, 13, 1618-1625.	1.4	34
2813	Theoretical Limits of Hydrogen Storage in Metal–Organic Frameworks: Opportunities and Trade-Offs. Chemistry of Materials, 2013, 25, 3373-3382.	3.2	211
2814	Salenâ€Based Coordination Polymers of Manganese and the Rareâ€Earth Elements: Synthesis and Catalytic Aerobic Epoxidation of Olefins. Chemistry - A European Journal, 2013, 19, 1986-1995.	1.7	62
2815	Bifunctional pyrazolate–carboxylate ligands for isoreticular cobalt and zinc MOF-5 analogs with magnetic analysis of the {Co4(μ44-O)} node. CrystEngComm, 2013, 15, 9757.	1.3	98
2816	Synthesis of metal-organic frameworks: A mini review. Korean Journal of Chemical Engineering, 2013, 30, 1667-1680.	1.2	487
2817	Separation Performance of MOFs Zn(ISN)2·2H2O as Stationary Phase for High-Resolution GC. Chromatographia, 2013, 76, 831-836.	0.7	37
2818	Cobaltâ€Based 3D Metal–Organic Frameworks: Useful Candidates for Olefin Epoxidation at Ambient Temperature by H ₂ O ₂ . European Journal of Inorganic Chemistry, 2013, 2013, 5103-5109.	1.0	17
2819	The effect of water adsorption on the structure of the carboxylate containing metal–organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. Journal of Materials Chemistry A, 2013, 1, 11922.	5.2	466
2820	Structural variations and photoluminescent properties of a series of metal-organic frameworks constructed from 5-(4-carboxybenzoylamino)-isophthalic acid. Journal of Solid State Chemistry, 2013, 202, 250-256.	1.4	1
2821	Post-combustion CO2 capture with the HKUST-1 and MIL-101(Cr) metal–organic frameworks: Adsorption, separation and regeneration investigations. Microporous and Mesoporous Materials, 2013, 179, 191-197.	2.2	109
2822	Chiral, Racemic, and <i>Meso</i> -Lithium Tartrate Framework Polymorphs: A Detailed Structural Analysis. Crystal Growth and Design, 2013, 13, 3705-3715.	1.4	23

#	Article	IF	CITATIONS
2823	Self-assembly of binary molecular nanostructure arrays on graphite. Physical Chemistry Chemical Physics, 2013, 15, 12414.	1.3	20
2824	Water Cluster Confinement and Methane Adsorption in the Hydrophobic Cavities of a Fluorinated Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135, 12615-12626.	6.6	114
2825	Metal–Organic Frameworks as A Tunable Platform for Designing Functional Molecular Materials. Journal of the American Chemical Society, 2013, 135, 13222-13234.	6.6	801
2826	Synthesis, Structure, and Magnetic Properties of Bithiophene- and Terthiophene-Linked Manganese Metal–Organic Frameworks. Inorganic Chemistry, 2013, 52, 10021-10030.	1.9	14
2827	Lithiumâ€Functionalized Metal–Organic Frameworks that Show >10 wt % H 2 Uptake at Ambient Temperature. ChemPhysChem, 2013, 14, 2698-2703.	1.0	6
2828	Metal organic frameworks as heterogeneous catalysts for the production of fine chemicals. Catalysis Science and Technology, 2013, 3, 2509.	2.1	270
2829	Crucial role of blocking inaccessible cages in the simulation of gas adsorption in a paddle-wheel metal–organic framework. RSC Advances, 2013, 3, 16152.	1.7	15
2830	Construction of a new one-dimensional Hg(II) coordination polymer [Hg4(Chbz)4(4,4′-Bipy)2(NO3)4 · H2O] n involving in situ chlorobenzene synthesis. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2013, 39, 388-392.	0.3	2
2831	Facile preparation of hierarchically porous carbons from metal-organic gels and their application in energy storage. Scientific Reports, 2013, 3, 1935.	1.6	130
2832	Ca2+- and Mg2+-doped covalent organic frameworks exhibiting high hydrogen and acetylene storage. Structural Chemistry, 2013, 24, 691-703.	1.0	13
2833	Two cobalt(II) coordination polymers constructed from tetrafluoroterephthalate and hexamethylenetetramine ligands. Transition Metal Chemistry, 2013, 38, 385-392.	0.7	10
2834	Syntheses, structures, and luminescent properties of two cadmium(II) and manganese(II) coordination polymers based on the 11-fluoro-dipyrido[3,2-a:2′,3′-c]-phenazine ligand. Transition Metal Chemistry, 2013, 38, 449-453.	0.7	8
2835	Two new piperazine templated lanthanide sulfates with 2D corrugated layered crystal structures. Chemical Research in Chinese Universities, 2013, 29, 10-14.	1.3	4
2836	Effect of catenation and basicity of pillared ligands on the water stability of MOFs. Dalton Transactions, 2013, 42, 15421.	1.6	116
2837	Supercapacitive property of metal–organic-frameworks with different pore dimensions and morphology. Microporous and Mesoporous Materials, 2013, 171, 53-57.	2.2	212
2838	Materials from Extreme Conditions. , 2013, , 17-46.		4
2839	Metal–Organic Frameworks. , 2013, , 45-71.		0
2840	A 10-connected coordination network based on the planar tetranuclear cobalt cluster building blocks: synthesis, structure, and magnetism. Inorganic Chemistry Communication, 2013, 34, 12-14.	1.8	13

ARTICLE IF CITATIONS Adsorption in Metal-Organic Frameworks., 2013, , 989-1006. 3 2841 Near-infrared emitters based on post-synthetic modified Ln3+-IRMOF-3. Chemical Communications, 2013, 2842 2.2 49, 5019. Coordination polymers based on $3,3\hat{\epsilon}^2,4,4\hat{\epsilon}^2$ -benzophenone-tetracarboxylate and N-containing pillars: 2843 13 1.3 syntheses, structure, characterization and properties. CrystEngComm, 2013, 15, 7505. Programmed functionalization of SURMOFs via liquid phase heteroepitaxial growth and 2844 post-synthetic modification. Dalton Transactions, 2013, 42, 16029. Employing tripodal carboxylate ligand to construct Co(ii) coordination networks modulated by 2845 1.6 24 N-donor ligands: syntheses, structures and magnetic properties. Dalton Transactions, 2013, 42, 13231. Production of Formic Acid via Hydrogenation of CO₂ over a 2846 Copper-Alkoxide-Functionalized MOF: A Mechanistic Study. Journal of Physical Chemistry C, 2013, 117, 1.5 101 17650-17658. An alkaline one-pot metathesis reaction to give a [Cu3(BTC)2] MOF at r.t., with free Cu coordination 2847 1.7 39 sites and enhanced hydrogen uptake properties. RSC Advances, 2013, 3, 10962. A highly porous interpenetrated MOF-5-type network based on bipyrazolate linkers. CrystEngComm, 2013, 15, 9352. 2848 1.3 9 An rht type metal–organic framework based on small cubicuboctahedron supermolecular building 2849 1.4 21 blocks and its gas adsorption properties. New Journal of Chemistry, 2013, 37, 3662. Organic molecules of intrinsic microporosity: Characterization of novel microporous materials. 2.2 Microporous and Mesoporous Materials, 2013, 176, 55-63. Parallel chain polyrotaxane, layer, and diamondoid divalent metal coordination polymers containing para aromatic dicarboxylate and bis(4-pyridylmethyl)piperazine ligands. Inorganica Chimica Acta, 2013, 2851 1.2 10 406, 65-72. Coexistence of planar tetramer and cyclic octamer water clusters in a polymer: Synthesis, DFT study 1.2 and magnetism. Inorganica Chimica Ácta, 2013, 402, 20-24. The asc Trinodal Platform: Twoâ€Step Assembly of Triangular, Tetrahedral, and Trigonalâ€Prismatic 2853 7.2 88 Molecular Building Blocks. Angewandte Chemie - International Edition, 2013, 52, 2902-2905. Opportunities and challenges in carbon dioxide capture. Journal of CO2 Utilization, 2013, 1, 69-87. 2854 3.3 379 Design and construction of porous metal–organic frameworks based on flexible BPH pillars. Journal 2855 1.4 9 of Solid State Chemistry, 2013, 198, 143-148. Assembly of an eight connected porous Cd(II) framework with octahedral and cubo-octahedral cages: 1.8 Sorption and luminescent properties. Inorganic Chemistry Communication, 2013, 37, 127-131. A highly fluorescent dinuclear silver(I) complex of pyrazine derivatives: Combined experimental and 2857 1.0 7 DFT/TD-DFT investigations. Polyhedron, 2013, 56, 116-122. An interpenetrated 2D coordination polymer: A candidate for gas adsorption of small molecules. 2858 1.2 Inorganica Chimica Acta, 2013, 402, 60-68.

#	Article	IF	CITATIONS
2859	Unveiling the stereoelectronic properties of a triphenylene-based tris N-heterocyclic carbene. Chemical Communications, 2013, 49, 7126.	2.2	27
2860	Two new three-dimensional metal–organic frameworks constructed from a semirigid V-shaped ligand with luminescent and topology studies. Inorganica Chimica Acta, 2013, 399, 154-159.	1.2	1
2861	The binding nature of light hydrocarbons on Fe/MOF-74 for gas separation. Physical Chemistry Chemical Physics, 2013, 15, 19644.	1.3	46
2862	Adsorption of CO2, CO, CH4 and N2 on DABCO based metal organic frameworks. Microporous and Mesoporous Materials, 2013, 169, 75-80.	2.2	43
2863	[Co(NH3)6]2[Cd8(C2O4)11(H2O)4]·8H2O: A 5-connected sqp topological metal–organic framework co-templated by Co(NH3)63+ cation and (H2O)4 cluster. Chinese Chemical Letters, 2013, 24, 861-865.	4.8	4
2864	Metal–organic frameworks for upgrading biogas via CO2 adsorption to biogas green energy. Chemical Society Reviews, 2013, 42, 9304.	18.7	366
2865	Microwave synthesis and characterization of MOF-74 (M=Ni, Mg) for gas separation. Microporous and Mesoporous Materials, 2013, 180, 114-122.	2.2	218
2866	Three neutral metal–organic frameworks with micro- and meso-pores for adsorption and separation of dyes. Journal of Materials Chemistry A, 2013, 1, 13060.	5.2	88
2867	Review of hydrogen storage techniques forÂonÂboard vehicle applications. International Journal of Hydrogen Energy, 2013, 38, 14595-14617.	3.8	701
2868	Structural Dynamism and Controlled Chemical Blocking/Unblocking of Active Coordination Space of a Soft Porous Crystal. Inorganic Chemistry, 2013, 52, 12784-12789.	1.9	16
2869	Activation of metal–organic framework materials. CrystEngComm, 2013, 15, 9258.	1.3	239
2870	Separation of Hexane Isomers in a Metal-Organic Framework with Triangular Channels. Science, 2013, 340, 960-964.	6.0	589
2871	Rapid energy transfer in non-porous metal–organic frameworks with caged Ru(bpy)32+ chromophores: oxygen trapping and luminescence quenching. Journal of Materials Chemistry A, 2013, 1, 14982.	5.2	62
2872	Synthesis, crystal structures and properties of transition metal coordination polymers based on a rigid triazole dicarboxylic acid. RSC Advances, 2013, 3, 25175.	1.7	18
2873	Metal–organic frameworks in fuel cell technologies. Nano Today, 2013, 8, 577-597.	6.2	152
2874	The Chemistry and Applications of Metal-Organic Frameworks. Science, 2013, 341, 1230444.	6.0	12,032
2875	Auxiliary ligand-directed synthesis of a series of Cd(ii)/Co(ii) coordination polymers with methylenebis(3,5-dimethylpyrazole): syntheses, crystal structures, and properties. Dalton Transactions, 2013, 42, 15106.	1.6	19
2876	A versatile, industrially relevant, aqueous room temperature synthesis of HKUST-1 with high space-time yield. Journal of Materials Chemistry A, 2013, 1, 15220.	5.2	114

#	Article	IF	CITATIONS
2877	Carbothermal Reduction of Ti-Modified IRMOF-3: An Adaptable Synthetic Method to Support Catalytic Nanoparticles on Carbon. ACS Applied Materials & amp; Interfaces, 2013, 5, 11479-11487.	4.0	63
2878	Cadmium–Furandicarboxylate Coordination Polymers Prepared with Different Types of Pyridyl Linkers: Synthesis, Divergent Dimensionalities, and Luminescence Study. Crystal Growth and Design, 2013, 13, 5272-5281.	1.4	48
2879	Enhancing Strategies for the Assembly of Metal–Organic Systems with Inherent Cavity-Containing Calix[4]arenes. Crystal Growth and Design, 2013, 13, 5165-5168.	1.4	16
2880	Additive-mediated size control of MOF nanoparticles. CrystEngComm, 2013, 15, 9296.	1.3	69
2881	Graphite Oxide/Metal–Organic Framework (MIL-101): Remarkable Performance in the Adsorptive Denitrogenation of Model Fuels. Inorganic Chemistry, 2013, 52, 14155-14161.	1.9	188
2882	Two birds with one stone: Self-assembly of metal–organic coordination complexes with discrete metallamacrocycle and 1D zigzag chain based on a flexible dicarboxylate ligand. Inorganic Chemistry Communication, 2013, 28, 75-80.	1.8	7
2883	A microporous metal–organic open framework containing uncoordinated carbonyl groups as postsynthetic modification sites for cation exchange and Tb3+ sensing. Chemical Communications, 2013, 49, 6897.	2.2	112
2884	Solvent-directed synthesis of chiral and non-centrosymmetric metal–organic frameworks based on pyridine-3,5-dicarboxylate. Inorganic Chemistry Communication, 2013, 38, 115-118.	1.8	19
2885	New Functionalized Metal–Organic Frameworks MIL-47-X (X = â^'Cl, â^'Br, â^'CH ₃ ,) Tj ETQq0 0 0 r Adsorption Properties. Journal of Physical Chemistry C, 2013, 117, 22784-22796.	gBT /Over 1.5	lock 10 Tf 50 79
2886	Targeted synthesis of electroactive porous organic frameworks containing triphenyl phosphine moieties. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120312.	1.6	15
2887	High-Capacity Gas Storage by a Microporous Oxalamide-Functionalized NbO-Type Metal–Organic Framework. Crystal Growth and Design, 2013, 13, 5001-5006.	1.4	71
2888	Fabrication of Porous Cubic Architecture of ZnO Using Zn-terephthalate MOFs with Characteristic Microstructures. Inorganic Chemistry, 2013, 52, 14028-14033.	1.9	59
2889	The removal of bisphenol A from aqueous solutions by MIL-53(Al) and mesostructured MIL-53(Al). Journal of Colloid and Interface Science, 2013, 405, 157-163.	5.0	157
2890	Integration of Lnâ€Sandwich POMs into Molecular Porous Systems Leading to Selfâ€Assembly of Metal–POM Framework Materials. European Journal of Inorganic Chemistry, 2013, 2013, 4770-4774.	1.0	21
2892	Computational screening of porous carbons, zeolites, and metal organic frameworks for desulfurization and decarburization of biogas, natural gas, and flue gas. AICHE Journal, 2013, 59, 2928-2942.	1.8	77
2893	Construction of four new coordination polymers based on sulfone-4,4′-biphenyldicarboxylic acid ligand: Synthesis, structures and properties. Inorganic Chemistry Communication, 2013, 28, 41-48.	1.8	13
2894	Effects of nitro-functionalization on the gas adsorption properties of isoreticular metal-organic framework-eight (IRMOF-8). Microporous and Mesoporous Materials, 2013, 177, 82-90.	2.2	18
2895	Selective hydroformylation of olefins over the rhodium supported large porous metal–organic framework MIL-101. Applied Catalysis A: General, 2013, 468, 410-417.	2.2	46

#	Article	IF	CITATIONS
2896	Synthesis and Crystal Structures of Various Phases of the Microporous Three-Dimensional Coordination Polymer [Zr(OH) ₂ (C ₂ O ₄)] _{<i>n</i>} . Crystal Growth and Design, 2013, 13, 5100-5106.	1.4	12
2897	Syntheses, structures, fluorescent properties and natural bond orbital analyses of metal–organic complexes based on 5,6-substituted 1,10-phenanthroline derivatives. Polyhedron, 2013, 59, 115-123.	1.0	14
2898	Enhanced Photochemical Hydrogen Production by a Molecular Diiron Catalyst Incorporated into a Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135, 16997-17003.	6.6	501
2899	Different dimensional and structural variations in coordination polymers of d10 metal ions constructed from a benzimidazole based carboxylate linker. Polyhedron, 2013, 50, 22-30.	1.0	12
2901	Studies on atomic layer deposition of MOF-5 thin films. Microporous and Mesoporous Materials, 2013, 182, 147-154.	2.2	76
2902	Seven-, eight-, and ten-coordinated cerium(III) with highly connective pyridine-2,4,6-tricarboxylate, oxalate, and glycine ligands. Journal of Coordination Chemistry, 2013, 66, 3113-3125.	0.8	8
2903	Fascinating chemistry or frustrating unpredictability: observations in crystal engineering of metal–organic frameworks. CrystEngComm, 2013, 15, 9249.	1.3	105
2904	Metal–organic frameworks (MOFs) based on mixed linker systems: structural diversities towards functional materials. CrystEngComm, 2013, 15, 9276.	1.3	115
2905	The oxamate route, a versatile post-functionalization for metal incorporation in MIL-101(Cr): Catalytic applications of Cu, Pd, and Au. Journal of Catalysis, 2013, 307, 295-304.	3.1	86
2906	Identification of bridged CO2 binding in a Prussian blue analogue using neutron powder diffraction. Chemical Communications, 2013, 49, 9404.	2.2	20
2907	Enantioselective ring-opening of meso-epoxides by aromatic amines catalyzed by a homochiral metal–organic framework. Chemical Communications, 2013, 49, 9836.	2.2	60
2908	Fine tuning of gold electronic structure by IRMOF post-synthetic modification. RSC Advances, 2013, 3, 12043.	1.7	12
2909	Insights into Multi-Objective Design of Metal–Organic Frameworks. Crystal Growth and Design, 2013, 13, 4208-4212.	1.4	21
2910	MOF@MOF core–shell vs. Janus particles and the effect of strain: potential for guest sorption, separation and sequestration. CrystEngComm, 2013, 15, 6003.	1.3	40
2912	Liquid phase adsorption of selected chloroaromatic compounds over metal organic frameworks. Materials Research Bulletin, 2013, 48, 4499-4505.	2.7	28
2913	Multi Variant Surface Mounted Metal–Organic Frameworks. Advanced Functional Materials, 2013, 23, 3790-3798.	7.8	67
2914	How ligands improve the hydrothermal stability and affect the adsorption in the IRMOF family. Physical Chemistry Chemical Physics, 2013, 15, 17696.	1.3	29
2915	Realization of both high hydrogen selectivity and capacity in a guest responsive metal–organic framework. Journal of Materials Chemistry A, 2013, 1, 13502.	5.2	7

#	Article	IF	CITATIONS
2916	Bifunctional Co(II)–Ag(I) and Ni(II)–Ag(I) Frameworks: Modulation of Magnetic Property and CO ₂ Uptake Based on Organic Pillars. Crystal Growth and Design, 2013, 13, 4968-4976.	1.4	12
2917	Origin of Selective Guest-Induced Magnetism Transition in Fe/MOF-74. Journal of Physical Chemistry Letters, 2013, 4, 2530-2534.	2.1	45
2918	Robust R22(8) hydrogen bonded dimer for crystal engineering of glycoluril derivatives. CrystEngComm, 2013, 15, 10079.	1.3	8
2919	Bi-porous metal–organic framework with hydrophilic and hydrophobic channels: selective gas sorption and reversible iodine uptake studies. CrystEngComm, 2013, 15, 9465.	1.3	64
2920	Metal–organic framework with two different types of rigid triscarboxylates: net topology and gas sorption behaviour. CrystEngComm, 2013, 15, 9491.	1.3	10
2921	Effect of Textural Properties on the Adsorption and Desorption of Toluene on the Metal-Organic Frameworks HKUST-1 and MIL-101. Adsorption Science and Technology, 2013, 31, 325-339.	1.5	44
2922	A Family of Porous Lonsdaleite-e Networks Obtained through Pillaring of Decorated Kagomé Lattice Sheets. Journal of the American Chemical Society, 2013, 135, 14016-14019.	6.6	93
2923	Sorption and breathing properties of difluorinated MIL-47 and Al-MIL-53 frameworks. Microporous and Mesoporous Materials, 2013, 181, 175-181.	2.2	36
2924	Hydrothermal synthesis and characterization of a series of luminescent Zn(ii) and Cd(ii) coordination polymers with the new versatile multidentate ligand 1,3-di-(1,2,4-triazol-4-yl)benzene. CrystEngComm, 2013, 15, 8097.	1.3	32
2925	lonic Liquid Membranes Supported by Hydrophobic and Hydrophilic Metal–Organic Frameworks for CO ₂ Capture. Journal of Physical Chemistry C, 2013, 117, 5792-5799.	1.5	79
2926	Thiadiazole-functional porous metal–organic framework as luminescent probe for Cd2+. CrystEngComm, 2013, 15, 8883.	1.3	41
2927	Tuning the formation of MOFs by pH influence: X-ray structural variations and Hirshfeld surface analyses of 2-amino-5-nitropyridine with cadmium chloride. CrystEngComm, 2013, 15, 1772.	1.3	183
2928	Direct observations of the MOF (UiO-66) structure by transmission electron microscopy. CrystEngComm, 2013, 15, 9356.	1.3	62
2929	Zn ^{II} and Cu ^{II} complexes generated from 5-(pyridin-4-yl)-3-[2-(pyridin-4-yl)ethyl]-1,3,4-oxadiazole-2(3 <i>H</i>)-thione. Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 716-720.	0.4	3
2930	An alternative pathway for the synthesis of isocyanato- and urea-functionalised metal–organic frameworks. Dalton Transactions, 2013, 42, 8249.	1.6	13
2931	Metal–organic frameworks from novel flexible triptycene- and pentiptycene-based ligands. CrystEngComm, 2013, 15, 9811.	1.3	17
2932	Synthesis, topology and energy analysis of crystalline resorcinol-based oligophenylene molecules with various symmetries. CrystEngComm, 2013, 15, 6845.	1.3	10
2933	LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. Nanoscale, 2013, 5, 11770.	2.8	560

#	Article	IF	CITATIONS
2934	Thermal stability and crystallochemical analysis for CoII-based coordination polymers with TPP and TPPS porphyrins. CrystEngComm, 2013, 15, 4181.	1.3	32
2935	Luminescent Properties and Applications of Metal-Organic Frameworks. Structure and Bonding, 2013, , 27-88.	1.0	16
2936	A Water Stable Metal–Organic Framework with Optimal Features for CO ₂ Capture. Angewandte Chemie, 2013, 125, 10506-10510.	1.6	66
2937	Local structure and dynamics of benzene confined in the IRMOF-1 nanocavity as studied by molecular dynamics simulation. Physical Chemistry Chemical Physics, 2013, 15, 279-290.	1.3	7
2938	A magnesium-based multifunctional metal–organic framework: synthesis, thermally induced structural variation, selective gas adsorption, photoluminescence and heterogeneous catalytic study. Dalton Transactions, 2013, 42, 13912.	1.6	47
2939	Hollow fiber-protected metal–organic framework materials as micro-solid-phase extraction adsorbents for the determination of polychlorinated biphenyls in water samples by gas chromatography-tandem mass spectrometry. Analytical Methods, 2013, 5, 4875.	1.3	31
2940	Ancillary ligand-assisted structural diversity of six new MOFs with 5-(4-carboxybenzoylamino)-isophthalic acid: syntheses, crystal structures and photoluminescence properties. CrystEngComm, 2013, 15, 7522.	1.3	13
2941	Selective adsorption of olefin–paraffin on diamond-like frameworks: diamondyne and PAF-302. Journal of Materials Chemistry A, 2013, 1, 9433.	5.2	41
2942	Various crystal structures based on 4,4â€2-(diethynylanthracene-9,10-diyl) dibenzoic acid: from 0D dimer to 3D net framework. CrystEngComm, 2013, 15, 8273.	1.3	15
2943	Structural variation in ethylenediamine and -diphosphine adducts of (2,6-Me2C6H3S)2Pb: a single crystal X-ray diffraction and 207Pb solid-state NMR spectroscopy study. Dalton Transactions, 2013, 42, 9533.	1.6	26
2944	Design principles for microporous organic solids from predictive computational screening. Journal of Materials Chemistry A, 2013, 1, 11950.	5.2	37
2945	Quest for a highly connected robust porous metal–organic framework on the basis of a bifunctional linear linker and a rare heptanuclear zinc cluster. Chemical Communications, 2013, 49, 10516.	2.2	35
2946	Edge-directed assembly of a 3D 2p–3d heterometallic metal–organic framework based on a cubic Co8(TzDC)12 cage. CrystEngComm, 2013, 15, 9344.	1.3	15
2947	Experimental and theoretical evidence of unsupported Ag–Ag interactions in complexes with triazine-based ligands. Subtle effects of the symmetry of the triazine substituents. New Journal of Chemistry, 2013, 37, 3183.	1.4	18
2948	Programmed Pore Architectures in Modular Quaternary Metal–Organic Frameworks. Journal of the American Chemical Society, 2013, 135, 17731-17734.	6.6	170
2949	Controlling interpenetration in metal–organic frameworks by tuning the conformations of flexible bis(triazole) ligands. CrystEngComm, 2013, 15, 9437.	1.3	24
2950	Novel lithium-loaded porous aromatic framework for efficient CO ₂ and H ₂ uptake. Journal of Materials Chemistry A, 2013, 1, 752-758.	5.2	88
2951	Methane storage capabilities of diamond analogues. Physical Chemistry Chemical Physics, 2013, 15, 20937.	1.3	10

#	Article	IF	CITATIONS
2952	Alternative synthetic methodology for amide formation in the post-synthetic modification of Ti-MIL125-NH2. CrystEngComm, 2013, 15, 9368.	1.3	28
2953	Discrepant gas adsorption in isostructural heterometallic coordination polymers: strong dependence of metal identity. CrystEngComm, 2013, 15, 78-85.	1.3	33
2954	Trigonal prism or octahedron: the conformational change of a dendritic six-node ligand in MOFs. Journal of Materials Chemistry A, 2013, 1, 10112.	5.2	20
2955	Bifunctional iridium-(2-aminoterephthalate)–Zr-MOF chemoselective catalyst for the synthesis of secondary amines by one-pot three-step cascade reaction. Journal of Catalysis, 2013, 299, 137-145.	3.1	167
2956	Synthesis of MOF having hydroxyl functional side groups and optimization of activation process for the maximization of its BET surface area. Journal of Solid State Chemistry, 2013, 197, 261-265.	1.4	26
2957	Solid Acid Catalysts for Coumarin Synthesis by the Pechmann Reaction: MOFs versus Zeolites. ChemCatChem, 2013, 5, 1024-1031.	1.8	82
2958	Syntheses, structures, photoluminescence and magnetic properties of four-connected lanthanide–tricarboxylate coordination polymers. CrystEngComm, 2013, 15, 3308.	1.3	28
2959	A reagentless thermal post-synthetic rearrangement of an allyloxy-tagged metal–organic framework. Chemical Communications, 2013, 49, 990-992.	2.2	25
2960	A mesoporous aluminium metal–organic framework with 3 nm open pores. Journal of Materials Chemistry A, 2013, 1, 324-329.	5.2	73
2961	Two New (3,6)-Connected Frameworks Based on an Unsymmetrical Tritopic Pyridyldicarboxylate Ligand and Co ₂ Dimer: Structures, Magnetic, and Sorption Properties. Crystal Growth and Design, 2013, 13, 701-707.	1.4	25
2962	Kinetic Water Stability of an Isostructural Family of Zinc-Based Pillared Metal–Organic Frameworks. Langmuir, 2013, 29, 633-642.	1.6	161
2963	Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review. Journal of Hazardous Materials, 2013, 244-245, 444-456.	6.5	1,140
2964	Dinuclear Macrocyclic Palladium Dithiocarbamates Derived from the Homologous Series of Aliphatic 1, <i>x</i> â€Ðiamines (<i>x</i> = 4–10). European Journal of Inorganic Chemistry, 2013, 2013, 61-69.	1.0	17
2965	A polar tetrazolyl-carboxyl microporous Zn(ii)–MOF: sorption and luminescent properties. Dalton Transactions, 2013, 42, 3653.	1.6	29
2966	A Straight Forward Route for the Development of Metal–Organic Frameworks Functionalized with Aromatic â^'OH Groups: Synthesis, Characterization, and Gas (N ₂ , Ar, H ₂ ,) Tj ETQq0 (855-862) 0 rgBT /O	verlock 10 Tf
2967	Molecular dynamics simulations of metal-organic frameworks as membranes for gas mixtures separation. Journal of Membrane Science, 2013, 428, 241-250.	4.1	40
2968	Impact of Metal and Anion Substitutions on the Hydrogen Storage Properties of M-BTT Metal–Organic Frameworks. Journal of the American Chemical Society, 2013, 135, 1083-1091.	6.6	139
2969	Magnetic microporous polymer nanoparticles. Polymer Chemistry, 2013, 4, 1425-1429.	1.9	27

#	Article	IF	CITATIONS
2970	Structures, luminescent and magnetic properties of six lanthanide–organic frameworks: observation of slow magnetic relaxation behavior in the Dylll compound. Dalton Transactions, 2013, 42, 3587.	1.6	100
2971	Mixed-linker MOFs with CAU-10 structure: synthesis and gas sorption characteristics. Dalton Transactions, 2013, 42, 4840.	1.6	81
2972	Mechanochemical synthesis of a fluorenone-based metal organic framework with polarized fluorescence: an experimental and computational study. Journal of Materials Chemistry C, 2013, 1, 997-1004.	2.7	59
2973	Energy Transfer from Quantum Dots to Metal–Organic Frameworks for Enhanced Light Harvesting. Journal of the American Chemical Society, 2013, 135, 955-958.	6.6	328
2974	Analytical representation of micropores for predicting gas adsorption in porous materials. Microporous and Mesoporous Materials, 2013, 167, 188-197.	2.2	17
2975	Enhancement of <scp>CO₂</scp> Adsorption and <scp>CO₂/N₂</scp> Selectivity on <scp>ZIF</scp> â€8 via Postsynthetic Modification. AICHE Journal, 2013, 59, 2195-2206.	1.8	171
2976	Synthesis, characterization and observation of structural diversities in a series of transition metal based furan dicarboxylic acid systems. CrystEngComm, 2013, 15, 2113.	1.3	19
2977	Hydrothermal syntheses and characterization of a series of luminescent Cd(ii) frameworks with pyridine-based and benzene-based bis-triazole ligands. CrystEngComm, 2013, 15, 2490.	1.3	44
2978	Enhanced selectivity of CO2 over CH4 in sulphonate-, carboxylate- and iodo-functionalized UiO-66 frameworks. Dalton Transactions, 2013, 42, 4730.	1.6	171
2979	Partially fluorinated MIL-47 and Al-MIL-53 frameworks: influence of functionalization on sorption and breathing properties. Physical Chemistry Chemical Physics, 2013, 15, 3552.	1.3	63
2980	Consequences of cavity size and chemical environment on the adsorption properties of isoreticular metal-organic frameworks: An inverse gas chromatography study. Journal of Chromatography A, 2013, 1274, 173-180.	1.8	19
2981	Comparison of the catalytic activity of MOFs and zeolites in Knoevenagel condensation. Catalysis Science and Technology, 2013, 3, 500-507.	2.1	179
2982	Chemical transformations of a crystalline coordination polymer: a multi-stage solid–vapour reaction manifold. Chemical Science, 2013, 4, 696-708.	3.7	35
2983	Hydrothermal synthesis of benzothiazole–carboxylic cadmium(<scp>ii</scp>) coordination networks: pH-controlled topologies and compositional distributions. CrystEngComm, 2013, 15, 343-348.	1.3	8
2984	Direct synthesis of ordered mesoporous carbons. Chemical Society Reviews, 2013, 42, 3977-4003.	18.7	530
2985	Tuning the lead complexes based on a double 1,10-phenanthroline derivative with versatile coordination behavior by dicarboxylates: from 0D nano-ring to an unprecedented 0D + 3D cocrystal. CrystEngComm, 2013, 15, 551-559.	1.3	19
2986	Oxidation and Reduction of Various Substrates Over a Pd(II) Containing Post-Synthesis Metal Organic Framework. Catalysis Letters, 2013, 143, 122-125.	1.4	8
2987	Mechanism of Alcohol–Water Separation in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2013, 117, 4124-4130.	1.5	33

#	Article	IF	CITATIONS
2988	A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures. Nature Chemistry, 2013, 5, 203-211.	6.6	556
2989	Synthesis, characterization and photoluminescent properties of Zn-based mono- and hetero-MOFs containing the R-isophthalate (R = methyl or tert-butyl) ligands. New Journal of Chemistry, 2013, 37, 380-390.	1.4	28
2990	Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture. Energy and Environmental Science, 2013, 6, 128-138.	15.6	332
2991	Interpenetration of Metal Organic Frameworks for Carbon Dioxide Capture and Hydrogen Purification: Good or Bad?. Journal of Physical Chemistry C, 2013, 117, 71-77.	1.5	38
2992	Computational Screening of Functional Groups for Ammonia Capture in Metal–Organic Frameworks. Langmuir, 2013, 29, 1446-1456.	1.6	49
2993	Alkaliâ€Metal Azides Interacting with Metal–Organic Frameworks. ChemPhysChem, 2013, 14, 220-226.	1.0	0
2994	Impact of Reaction Conditions on the Structures of Nickel(II) Complexes Based on 3â€(4â€Carboxyphenyl)propionic Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 129-133.	0.6	4
2995	Syntheses and Structures of Terpyridineâ€Metal Complexes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 197-202.	0.6	11
2996	Adsorption and separation of CH4/H2 in MIL-101s by molecular simulation study. Chemical Engineering Science, 2013, 98, 246-254.	1.9	20
2997	Dzyaloshinski–Moriya (D–M) oriented weak ferromagnets in isomorphic coordination architectures constructed by flexible 1,2,4-triazole-1-acetate ligands with the assistance of halogen or pseudohalogen anions. Inorganic Chemistry Communication, 2013, 35, 290-294.	1.8	5
2998	Structure stability of metal-organic framework MIL-53 (Al) in aqueous solutions. International Journal of Hydrogen Energy, 2013, 38, 16710-16715.	3.8	153
2999	Lanthanide coordination polymers based on Ln2 cluster: Syntheses, crystal structures photoluminescence and magnetic properties. Polyhedron, 2013, 66, 34-38.	1.0	6
3000	Metal- and ligand-dependent topologies and chirality in luminescent cadmium and zinc trans-aconitate coordination polymers with bis(pyridylmethyl)piperazine ligands. Inorganica Chimica Acta, 2013, 407, 231-238.	1.2	2
3001	Spin-Crossover Modification through Selective CO ₂ Sorption. Journal of the American Chemical Society, 2013, 135, 15986-15989.	6.6	129
3002	Chemical Bonding Approach for Fabrication of Hybrid Magnetic Metal–Organic Framework-5: High Efficient Adsorbents for Magnetic Enrichment of Trace Analytes. Analytical Chemistry, 2013, 85, 6885-6893.	3.2	182
3003	Design strategies for metal alkoxide functionalized metal–organic frameworks for ambient temperature hydrogen storage. Microporous and Mesoporous Materials, 2013, 171, 103-109.	2.2	21
3004	Solvent- and temperature-driven synthesis of three Cd(II) coordination polymers based on 3,3â€2-azodibenzoic acid ligand: Crystal structures and luminescent properties. Inorganica Chimica Acta, 2013, 397, 75-82.	1.2	15
3005	Synthesis, structure and magnetic investigations of polycarboxylato-copper(II) complexes. Polyhedron, 2013, 54, 158-163.	1.0	19

#	Article	IF	CITATIONS
3006	Copper glutarate coordination polymers with dipyridylamide ligands: Effect of donor disposition and steric bulk on structure. Inorganica Chimica Acta, 2013, 405, 31-42.	1.2	11
3007	Synthesis of coordination polymers with d10 metal ions and a new linear ligand: X-ray structural and luminescence studies. Polyhedron, 2013, 52, 1145-1152.	1.0	22
3008	Structural and luminescence characterizations of lanthanide-based coordination polymers involving naphthalene-1,4,5,8-tetra-carboxylate as ligand. Inorganica Chimica Acta, 2013, 401, 11-18.	1.2	5
3009	Auxiliary ligand-directed synthesis of four novel functional supramolecular metal–organic frameworks from 1-D chains to 3-D architectures. Inorganic Chemistry Communication, 2013, 29, 4-10.	1.8	22
3010	Influential factors on assembly of first-row transition metal coordination polymers. Inorganica Chimica Acta, 2013, 403, 53-62.	1.2	22
3011	Divalent metal homophthalate coordination polymers with long-spanning dipyridyl ligands containing piperazine moieties. Inorganica Chimica Acta, 2013, 403, 78-84.	1.2	8
3012	4,4′-Bipyridine-aided synthesis and characterization of Zn(II) and Cd(II) 2-sulfoterephthalate complexes. Journal of Solid State Chemistry, 2013, 205, 71-81.	1.4	10
3013	Two Mn3 cluster-based frameworks with porosity tuned by solvent coordination/non-coordination: Structural correlation and sorption properties. Inorganic Chemistry Communication, 2013, 37, 214-218.	1.8	4
3014	Hydrothermal reactions: From the synthesis of ligand to new lanthanide 3D-coordination polymers. Journal of Solid State Chemistry, 2013, 207, 132-139.	1.4	1
3015	Preparation of coordination polymers with 8-hydroxyquinoline azo benzensulfonic acid as a planar multidentate ligand and the study of their photochemical and photo-stability properties. Dalton Transactions, 2013, 42, 4831.	1.6	6
3016	Anchoring of Palladium onto Surface of Porous Metal–Organic Framework through Post-Synthesis Modification and Studies on Suzuki and Stille Coupling Reactions under Heterogeneous Condition. Langmuir, 2013, 29, 3140-3151.	1.6	95
3017	Solvatochromic Behavior of Chiral Mesoporous Metal–Organic Frameworks and Their Applications for Sensing Small Molecules and Separating Cationic Dyes. Chemistry - A European Journal, 2013, 19, 3639-3645.	1.7	202
3018	Highly Selective Sorption and Luminescent Sensing of Small Molecules Demonstrated in a Multifunctional Lanthanide Microporous Metal–Organic Framework Containing 1D Honeycombâ€Type Channels. Chemistry - A European Journal, 2013, 19, 3358-3365.	1.7	162
3019	Metal–Organic Frameworks and Self-Assembled Supramolecular Coordination Complexes: Comparing and Contrasting the Design, Synthesis, and Functionality of Metal–Organic Materials. Chemical Reviews, 2013, 113, 734-777.	23.0	2,588
3020	Zipping and Unzipping of a Paddlewheel Metal–Organic Framework to Enable Two‣tep Synthetic and Structural Transformation. Chemistry - A European Journal, 2013, 19, 3552-3557.	1.7	28
3021	Uranyl Bearing Hybrid Materials: Synthesis, Speciation, and Solid-State Structures. Chemical Reviews, 2013, 113, 1121-1136.	23.0	385
3022	A microporous metal–organic framework of a rare sty topology for high CH4 storage at room temperature. Chemical Communications, 2013, 49, 2043.	2.2	61
3023	Modulating methane storage in anionic nano-porous MOF materials via post-synthetic cation exchange process. Dalton Transactions, 2013, 42, 4786.	1.6	100

#	Article	IF	CITATIONS
3024	Mixedâ€Ligand Znâ€MOFs for Highly Luminescent Sensing of Nitro Compounds. Chemistry - an Asian Journal, 2013, 8, 982-989.	1.7	140
3025	Conjugated microporous polymers consisting of tetrasubstituted [2.2]Paracyclophane junctions. Journal of Polymer Science Part A, 2013, 51, 2311-2316.	2.5	19
3026	Control over Catenation in Pillared Paddlewheel Metal–Organic Framework Materials via Solvent-Assisted Linker Exchange. Chemistry of Materials, 2013, 25, 739-744.	3.2	135
3027	Ligand Functionalization and Its Effect on CO ₂ Adsorption in Microporous Metal–Organic Frameworks. Chemistry - an Asian Journal, 2013, 8, 778-785.	1.7	39
3028	Experimental Study of CO ₂ , CH ₄ , and Water Vapor Adsorption on a Dimethyl-Functionalized UiO-66 Framework. Journal of Physical Chemistry C, 2013, 117, 7062-7068.	1.5	67
3029	CO2 cycloaddition of styrene oxide over MOF catalysts. Applied Catalysis A: General, 2013, 453, 175-180.	2.2	359
3030	Recent Development of Hypercrosslinked Microporous Organic Polymers. Macromolecular Rapid Communications, 2013, 34, 471-484.	2.0	360
3031	Hypothetical 3D-periodic covalent organic frameworks: exploring the possibilities by a first principles derived force field. CrystEngComm, 2013, 15, 1551.	1.3	57
3032	Catalytic activity of immobilized Ru nanoparticles in a porous metal-organic framework using supercritical fluid. Chinese Journal of Catalysis, 2013, 34, 167-175.	6.9	24
3033	Porous metal–organic frameworks with high stability and selective sorption for CO2 over N2. Microporous and Mesoporous Materials, 2013, 172, 61-66.	2.2	36
3034	Manganese-Based Layered Coordination Polymer: Synthesis, Structural Characterization, Magnetic Property, and Electrochemical Performance in Lithium-Ion Batteries. Inorganic Chemistry, 2013, 52, 2817-2822.	1.9	188
3035	Predicting Noble Gas Separation Performance of Metal Organic Frameworks Using Theoretical Correlations. Journal of Physical Chemistry C, 2013, 117, 5229-5241.	1.5	34
3036	Crystal-to-Crystal Transformations of a Series of Isostructural Metal–Organic Frameworks with Different Sizes of Ligated Solvent Molecules. Inorganic Chemistry, 2013, 52, 3891-3899.	1.9	26
3037	1,2,4,5-Benzene-tetra-carboxylic acid: a versatile ligand for high dimensional lanthanide-based coordination polymers. CrystEngComm, 2013, 15, 1882.	1.3	52
3038	Expanded Porous MOF-505 Analogue Exhibiting Large Hydrogen Storage Capacity and Selective Carbon Dioxide Adsorption. Inorganic Chemistry, 2013, 52, 2823-2829.	1.9	91
3039	The effect of substrate size in the Beckmann rearrangement: MOFs vs. zeolites. Catalysis Today, 2013, 204, 94-100.	2.2	29
3040	Kinetically Controlled Porosity in a Robust Organic Cage Material. Angewandte Chemie - International Edition, 2013, 52, 3746-3749.	7.2	137
3041	Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature, 2013, 495, 80-84.	13.7	2,005

#	Article	IF	CITATIONS
3042	Topology of 2-Periodic Coordination Networks: Toward Expert Systems in Crystal Design. Crystal Growth and Design, 2013, 13, 1655-1664.	1.4	119
3043	A porous diamond carbon framework: a new carbon allotrope with extremely high gas adsorption and mechanical properties. Journal of Materials Chemistry A, 2013, 1, 3851.	5.2	32
3044	Reactivity of Surface Species in Heterogeneous Catalysts Probed by In Situ X-ray Absorption Techniques. Chemical Reviews, 2013, 113, 1736-1850.	23.0	553
3045	Porous materials with pre-designed single-molecule traps for CO2 selective adsorption. Nature Communications, 2013, 4, 1538.	5.8	508
3046	Remarkable Lewis acid catalytic performance of the scandium trimesate metal organic framework MIL-100(Sc) for C–C and Cî€N bond-forming reactions. Catalysis Science and Technology, 2013, 3, 606-617.	2.1	136
3047	Single-chain magnets: beyond the Glauber model. RSC Advances, 2013, 3, 3772.	1.7	218
3048	Coordination assemblies of the CdII–BDC/bpt mixed-ligand system: positional isomeric effect, structural diversification and luminescent properties. CrystEngComm, 2013, 15, 2657.	1.3	40
3049	A multi-metal-cluster MOF with Cu4I4 and Cu6S6 as functional groups exhibiting dual emission with both thermochromic and near-IR character. Chemical Science, 2013, 4, 1484.	3.7	202
3050	Exploring frontiers of high surface area metal–organic frameworks. Chemical Science, 2013, 4, 1781.	3.7	52
3051	A unique magnesium-based 3D MOF with nanoscale cages and temperature dependent selective gas sorption properties. Chemical Communications, 2013, 49, 1753.	2.2	54
3052	Tandem Postsynthetic Metal Ion and Ligand Exchange in Zeolitic Imidazolate Frameworks. Inorganic Chemistry, 2013, 52, 4011-4016.	1.9	209
3053	Tailored crystalline microporous materials by post-synthesis modification. Chemical Society Reviews, 2013, 42, 263-290.	18.7	388
3054	Two Isomeric Magnesium Metal–Organic Frameworks with [24-MC-6] Metallacrown Cluster. Crystal Growth and Design, 2013, 13, 1807-1811.	1.4	30
3055	Transformation of Metal–Organic Framework to Polymer Gel by Cross-Linking the Organic Ligands Preorganized in Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135, 5427-5432.	6.6	190
3056	Effect of gas pressure on negative thermal expansion in MOF-5. Chemical Communications, 2013, 49, 789-791.	2.2	31
3057	Selective adsorption of ethylene over ethane and propylene over propane in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn). Chemical Science, 2013, 4, 2054.	3.7	398
3058	Screening Hofmann Compounds as CO ₂ Sorbents: Nontraditional Synthetic Route to Over 40 Different Pore-Functionalized and Flexible Pillared Cyanonickelates. Inorganic Chemistry, 2013, 52, 4205-4216.	1.9	61
3059	High-resolution solid-state 13C NMR spectroscopy of the paramagnetic metal–organic frameworks, STAM-1 and HKUST-1. Physical Chemistry Chemical Physics, 2013, 15, 919-929.	1.3	64

#	Article	IF	CITATIONS
3060	Solid-state NMR: A powerful tool for characterization of metal–organic frameworks. Solid State Nuclear Magnetic Resonance, 2013, 49-50, 1-11.	1.5	90
3061	A series of coordination polymers assembled from d10 metals and a new multidentate N-donor ligand: syntheses, structures, and photoluminescent properties. CrystEngComm, 2013, 15, 3824.	1.3	22
3062	Mixedâ€Linker Hybrid Superpolyhedra for the Production of a Series of Largeâ€Pore Iron(III) Carboxylate Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2013, 52, 5056-5060.	7.2	97
3063	Gas storage in renewable bioclathrates. Energy and Environmental Science, 2013, 6, 105-107.	15.6	36
3064	Highly porous and stable metal–organic frameworks for uranium extraction. Chemical Science, 2013, 4, 2396.	3.7	506
3065	Pore Design of Two-Dimensional Coordination Polymers toward Selective Adsorption. Inorganic Chemistry, 2013, 52, 3634-3642.	1.9	89
3066	A General Strategy for the Synthesis of Functionalised UiOâ€66 Frameworks: Characterisation, Stability and CO ₂ Adsorption Properties. European Journal of Inorganic Chemistry, 2013, 2013, 2154-2160.	1.0	199
3067	Examples of Heterometallic 3d-3d Azido Complexes by One-Pot Synthesis. European Journal of Inorganic Chemistry, 2013, 2013, 2389-2394.	1.0	8
3068	Triazolium-Containing Metal–Organic Frameworks: Control of Catenation in 2D Copper(II) Paddlewheel Structures. Australian Journal of Chemistry, 2013, 66, 409.	0.5	7
3069	Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit. Journal of Materials Chemistry A, 2013, 1, 5642.	5.2	578
3070	Porous NbO-type metal–organic framework with inserted acylamide groups exhibiting highly selective CO2 capture. CrystEngComm, 2013, 15, 3517.	1.3	99
3071	Hydroformylation of olefins over rhodium supported metal-organic framework catalysts of different structure. Microporous and Mesoporous Materials, 2013, 177, 135-142.	2.2	42
3072	MOFâ€Polymer Composite Microcapsules Derived from Pickering Emulsions. Advanced Materials, 2013, 25, 2717-2722.	11.1	198
3073	Microporous organic networks bearing metal-salen species for mild CO2 fixation to cyclic carbonates. Journal of Materials Chemistry A, 2013, 1, 5517.	5.2	110
3074	Heterobimetallic Sodium–Lithium Based Metal–Organic Framework Showing the βâ€Cristobalite Topology and Having High Permanent Porosity. European Journal of Inorganic Chemistry, 2013, 2013, 1138-1141.	1.0	16
3075	Influence of the Liâ‹â‹â‹ï€ Interaction on the H/Xâ‹â‹ï€ Interactions in HOLiâ‹â‹â‹C ₆ H ₆ â‹â‹â‹A‹HOX/XOH (X=F, Cl, Br, I) Complexes. ChemPhysChem, 1591-1600.	20013, 14,	18
3076	Syntheses, structures and luminescence properties of novel metal–organic frameworks based on zinc(ii), cadmium(ii) or lead(ii) and a 2,2′-dimethoxy-functionalised biphenyl linker. CrystEngComm, 2013, 15, 3874.	1.3	25
3077	Tuning Structural Topologies of a Series of Metal–Organic Frameworks: Different Bent Dicarboxylates. Crystal Growth and Design, 2013, 13, 2111-2117.	1.4	28

#	Article	IF	CITATIONS
3078	New metal–organic frameworks from triptycene: structural diversity from bulky bridges. Dalton Transactions, 2013, 42, 8026.	1.6	15
3079	Stabilization of 2D water sheets in a supramolecular metal–organic Schiff base complex: Reversible structural transformation upon dehydration–rehydration. Inorganica Chimica Acta, 2013, 399, 200-207.	1.2	3
3080	Synthesis, Ab Initio X-ray Powder Diffraction Crystal Structure, and Magnetic Properties of Mn ₃ (OH) ₂ (C ₆ H ₂ O ₄ S) ₂ Metal–Organic Framework. Inorganic Chemistry, 2013, 52, 608-616.	1.9	12
3081	Structural and fluorescent regulation of Cd(ii) coordination polymers with homoterephthalate by N-donor second ligands. CrystEngComm, 2013, 15, 2428.	1.3	45
3082	Ligandâ€Directed Control over Crystal Structures of Inorganic–Organic Frameworks and Formation of Solid Solutions. Angewandte Chemie - International Edition, 2013, 52, 5544-5547.	7.2	31
3083	Two novel MOF-74 analogs exhibiting unique luminescent selectivity. Chemical Communications, 2013, 49, 1699-1701.	2.2	135
3084	Solvothermal Synthesis, Crystal Structure, and Strong Luminescence of the First Organicâ€Templated Europium Sulfate Chloride. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 947-951.	0.6	4
3085	Observation of a Persistent Supramolecular Synthon Involving Carboxyl Groups and H ₂ O That Guides the Formation of Polycatenated Co-crystals of a Tritopic Carboxylic Acid and Bis(pyridyls). Crystal Growth and Design, 2013, 13, 1-5.	1.4	18
3086	Expanding catalytic applications of Pt-functionalized metal organic frameworks (Pt/ZIF-8): effects of calcination temperatures and metal loadings. Emerging Materials Research, 2013, 2, 127-132.	0.4	2
3087	Metal–organic framework modified carbon paste electrode for lead sensor. Sensors and Actuators B: Chemical, 2013, 177, 1161-1166.	4.0	136
3088	Enhancing Colloidal Metallic Nanocatalysis: Sharp Edges and Corners for Solid Nanoparticles and Cage Effect for Hollow Ones. Accounts of Chemical Research, 2013, 46, 1795-1805.	7.6	192
3089	Carbon Dioxide Capture by PAFs and an Efficient Strategy To Fast Screen Porous Materials for Gas Separation. Journal of Physical Chemistry C, 2013, 117, 8353-8364.	1.5	62
3090	Theoretical Investigations of CO ₂ and H ₂ Sorption in an Interpenetrated Square-Pillared Metal–Organic Material. Journal of Physical Chemistry C, 2013, 117, 9970-9982.	1.5	36
3091	A microporous metal–organic framework with both open metal and Lewis basic pyridyl sites for high C2H2 and CH4 storage at room temperature. Chemical Communications, 2013, 49, 6719.	2.2	158
3092	Convenient Detection of Pd(II) by a Metal–Organic Framework with Sulfur and Olefin Functions. Journal of the American Chemical Society, 2013, 135, 7807-7810.	6.6	113
3093	Superior Performance of Metal–Organic Frameworks over Zeolites as Solid Acid Catalysts in the Prins Reaction: Green Synthesis of Nopol. ChemSusChem, 2013, 6, 865-871.	3.6	63
3094	Lanthanide-polyphosphonate coordination polymers combining catalytic and photoluminescence properties. Chemical Communications, 2013, 49, 6400.	2.2	51
3095	A New Two-Dimensional Nill Coordination Polymer Constructed by CH3O-isophthalate and 1,6-bis(imidazol-1-yl)hexane: Synthesis, Structure, and Properties. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 937-940.	0.6	0

#	Article	IF	CITATIONS
3096	A green luminescent 1-D helical tubular dipyrazol-bridged cadmium(ii) complex: a coordination tube included in a supramolecular tube. Dalton Transactions, 2013, 42, 10503.	1.6	27
3097	Interpenetration, Porosity, and High-Pressure Gas Adsorption in Zn ₄ O(2,6-naphthalene) Tj ETQq1 1	0.784314 1.6	rgBT /Overl
3098	Gas Storage in a Partially Fluorinated Highly Stable Three-Dimensional Porous Metal–Organic Framework. Inorganic Chemistry, 2013, 52, 7358-7366.	1.9	65
3099	Interpenetration control in metal–organic frameworks for functional applications. Coordination Chemistry Reviews, 2013, 257, 2232-2249.	9.5	478
3100	Facile and economical synthesis of metal–organic framework MIL-100(Al) gels for high efficiency removal of microcystin-LR. RSC Advances, 2013, 3, 11007.	1.7	62
3101	pH modulated assembly in the mixed-ligand system Cd(ii)–dpstc–phen: structural diversity and luminescent properties. CrystEngComm, 2013, 15, 3992.	1.3	40
3102	Systematic Investigation of Silver–Carbon Bonding in Coordination Frameworks with Aryl Ligands That Contain Ethynyl and Ethenyl Substituents. Chemistry - A European Journal, 2013, 19, 5387-5400.	1.7	30
3103	Solvent-modified dynamic porosity in chiral 3D kagome frameworks. Dalton Transactions, 2013, 42, 7871.	1.6	33
3104	Synthesis and hydrogen storage studies of metalâ~'organic framework UiO-66. International Journal of Hydrogen Energy, 2013, 38, 13104-13109.	3.8	91
3105	Exploiting High Pressures to Generate Porosity, Polymorphism, And Lattice Expansion in the Nonporous Molecular Framework Zn(CN) ₂ . Journal of the American Chemical Society, 2013, 135, 7621-7628.	6.6	74
3106	Metal–Organic Frameworks Assembled From Erbium Tetramers and 2,5-Pyridinedicarboxylic Acid. Crystal Growth and Design, 2013, 13, 2607-2617.	1.4	25
3107	pH-induced different crystalline behaviors in extended metal–organic frameworks based on the same reactants. Dalton Transactions, 2013, 42, 6294.	1.6	24
3108	Coordination Polymers Based on Heterohexanuclear Rare Earth Complexes: Toward Independent Luminescence Brightness and Color Tuning. Inorganic Chemistry, 2013, 52, 6720-6730.	1.9	82
3109	Reversible multicomponent self-assembly mediated by bismuth ions. Dalton Transactions, 2013, 42, 8394.	1.6	9
3110	On the Thermodynamics of Framework Breathing: A Free Energy Model for Gas Adsorption in MIL-53. Journal of Physical Chemistry C, 2013, 117, 11540-11554.	1.5	61
3111	Screening metal–organic frameworks for selective noble gas adsorption in air: effect of pore size and framework topology. Physical Chemistry Chemical Physics, 2013, 15, 9093.	1.3	92
3112	Two high-connected metal–organic frameworks based on d10-metal clusters: syntheses, structural topologies and luminescent properties. Dalton Transactions, 2013, 42, 8183.	1.6	32
3113	Linker extensions in metal–organic frameworks: a way to isoreticular networks or new topologies?. CrystEngComm, 2013, 15, 9429.	1.3	9

#	Article	IF	CITATIONS
3114	Propeller-Shaped Self-Assembled Molecular Capsules: Synthesis and Guest Entrapment. Crystal Growth and Design, 2013, 13, 2636-2641.	1.4	20
3115	Synthesis, structure and adsorption of coordination polymers constructed from 3,3′,5,5′-azobenzenetetracarboxylic acid and Zn ions. CrystEngComm, 2013, 15, 4970.	1.3	27
3116	Enlarging an Isoreticular Family: 3,3′,5,5′-Tetramethyl-4,4′-bipyrazolato-Based Porous Coordination Polymers. Crystal Growth and Design, 2013, 13, 3087-3097.	1.4	38
3117	Thermochemistry of Paddle Wheel MOFs: Cu-HKUST-1 and Zn-HKUST-1. Langmuir, 2013, 29, 8140-8145.	1.6	101
3118	Covalently Stabilized Pd Clusters in Microporous Polyphenylene: An Efficient Catalyst for Suzuki Reactions Under Aerobic Conditions. Small, 2013, 9, 2460-2465.	5.2	20
3119	Quantification of the confinement effect in microporous materials. Physical Chemistry Chemical Physics, 2013, 15, 5648.	1.3	11
3120	Distinct interpenetrated metal–organic frameworks constructed from crown ether-based strut analogue. CrystEngComm, 2013, 15, 841-844.	1.3	20
3121	A Water Stable Metal–Organic Framework with Optimal Features for CO ₂ Capture. Angewandte Chemie - International Edition, 2013, 52, 10316-10320.	7.2	303
3122	Fast Syntheses of MOFs Using Nanosized Zeolite Crystal Seeds In Situ Generated from Microsized Zeolites. Crystal Growth and Design, 2013, 13, 2697-2702.	1.4	23
3123	Topological diversification of two new Cd(II) photoluminescent coordination polymers via auxiliary N-donor ligands. Journal of Coordination Chemistry, 2013, 66, 2398-2404.	0.8	4
3124	NH2-MIL-53(Al) and NH2-MIL-101(Al) in sulfur-containing copolyimide mixed matrix membranes for gas separation. Separation and Purification Technology, 2013, 111, 72-81.	3.9	164
3126	The effect of earth metal ion on the property of peptide-based metal–organic frameworks. CrystEngComm, 2013, 15, 5545.	1.3	12
3127	A cobalt-based 3D porous framework with excellent catalytic ability for the selective oxidation of cis-cyclooctene. Dalton Transactions, 2013, 42, 9423.	1.6	17
3128	Stable and Functional Gold Nanorod Composites with a Metal–Organic Framework Crystalline Shell. Chemistry of Materials, 2013, 25, 2565-2570.	3.2	106
3129	Structure Versatility of Coordination Polymers Constructed from a Semirigid Tetracarboxylate Ligand: Syntheses, Structures, and Photoluminescent Properties. Crystal Growth and Design, 2013, 13, 255-263.	1.4	65
3130	Medical Applications of Solid Nitrosyl Complexes. Structure and Bonding, 2013, , 225-256.	1.0	4
3131	Anion-directed assembly of a non-interpenetrated square-grid metal–organic framework with nanoscale porosity. Chemical Communications, 2013, 49, 6629.	2.2	47
3132	Catenated metal-organic frameworks: Promising hydrogen purification materials and high hydrogen storage medium with further lithium doping. International Journal of Hydrogen Energy, 2013, 38, 9811-9818.	3.8	37

#	Article	IF	Citations
3133	Solvothermal syntheses, structures and luminescent property of two coordination compounds constructed from 2,2â€2-bipyridine and dicarboxylate ligand. Zeitschrift Fur Kristallographie - Crystalline Materials, 2013, 228, 199-203.	0.4	0
3135	Immobilizing Metal Nanoparticles to Metal–Organic Frameworks with Size and Location Control for Optimizing Catalytic Performance. Journal of the American Chemical Society, 2013, 135, 10210-10213.	6.6	661
3136	Synthesis of MOFs. RSC Catalysis Series, 2013, , 9-30.	0.1	7
3137	Postâ€synthetic Modification of MOFs. RSC Catalysis Series, 2013, , 31-75.	0.1	13
3138	CHAPTER 7. Strategies for Creating Active Sites in MOFs. RSC Catalysis Series, 0, , 237-267.	0.1	5
3139	Catalysis at the Organic Ligands. RSC Catalysis Series, 2013, , 289-309.	0.1	8
3140	CHAPTER 12. Photocatalysis by MOFs. RSC Catalysis Series, 0, , 365-383.	0.1	6
3141	Color and Brightness Tuning in Heteronuclear Lanthanide Terephthalate Coordination Polymers. European Journal of Inorganic Chemistry, 2013, 2013, 3464-3476.	1.0	76
3142	Isomorphous Substitution in a Flexible Metal–Organic Framework: Mixed-Metal, Mixed-Valent MIL-53 Type Materials. Inorganic Chemistry, 2013, 52, 8171-8182.	1.9	64
3143	Synthesis, X-ray crystal structure and quantum-chemical study of new dinuclear cobalt complex {Co2[mmm-O2P(H)Mes]2(bpy)4}Br2. Mendeleev Communications, 2013, 23, 135-136.	0.6	6
3144	Advances in Hydrogen Storage in Carbon Materials. , 2013, , 269-291.		8
3145	Development of Computational Methodologies for Metal–Organic Frameworks and Their Application in Gas Separations. Chemical Reviews, 2013, 113, 8261-8323.	23.0	448
3147	Highly Hydrophobic Isoreticular Porous Metal–Organic Frameworks for the Capture of Harmful Volatile Organic Compounds. Angewandte Chemie - International Edition, 2013, 52, 8290-8294.	7.2	264
3148	A Solidâ€Solution Approach to Mixedâ€Metal Metal–Organic Frameworks – Detailed Characterization of Local Structures, Defects and Breathing Behaviour of Al/V Frameworks. European Journal of Inorganic Chemistry, 2013, 2013, 4546-4557.	1.0	69
3149	Optimization-Based Design of Metal–Organic Framework Materials. Journal of Chemical Theory and Computation, 2013, 9, 2816-2825.	2.3	30
3150	Two new series of rare-earth organic frameworks involving two structural architectures: syntheses, structures and magnetic properties. CrystEngComm, 2013, 15, 2456.	1.3	26
3151	Microporous Organic Polymers with Ketal Linkages: Synthesis, Characterization, and Gas Sorption Properties. ACS Applied Materials & amp; Interfaces, 2013, 5, 4166-4172.	4.0	20
3152	Chiral recognition of a 3D chiral nanoporous metal–organic framework. Chemical Communications, 2013, 49, 5201.	2.2	115

#	Article	IF	CITATIONS
3153	Metal-organic framework-199/graphite oxide hybrid composites coated solid-phase microextraction fibers coupled with gas chromatography for determination of organochlorine pesticides from complicated samples. Talanta, 2013, 115, 32-39.	2.9	154
3154	Sulfonic acid-functionalized MIL-101 as a highly recyclable catalyst for esterification. Catalysis Science and Technology, 2013, 3, 2044.	2.1	92
3155	Organic–Inorganic Hybrid Supermicroporous Iron(III) Phosphonate Nanoparticles as an Efficient Catalyst for the Synthesis of Biofuels. Chemistry - A European Journal, 2013, 19, 8507-8514.	1.7	42
3156	An unusual copper(i) halide-based metal–organic framework with a cationic framework exhibiting the release/adsorption of iodine, ion-exchange and luminescent properties. Dalton Transactions, 2013, 42, 7562.	1.6	71
3157	Metal-directed topological diversity of three fluorescent metal–organic frameworks based on a new tetracarboxylate strut. CrystEngComm, 2013, 15, 4606.	1.3	17
3158	Positional isomeric and substituent effect on the assemblies of a series of d10 coordination polymers based upon unsymmetric tricarboxylate acids and nitrogen-containing ligands. CrystEngComm, 2013, 15, 5476.	1.3	47
3159	Construction of Six Coordination Polymers Based on a 5,5′-(1,2-Ethynyl)bis-1,3-benzenedicarboxylic Ligand: Synthesis, Structure, Gas Sorption, and Magnetic Properties. Crystal Growth and Design, 2013, 13, 1033-1044.	1.4	58
3160	Chemisorption of Cyanogen Chloride by Spinel Ferrite Magnetic Nanoparticles. Langmuir, 2013, 29, 5500-5507.	1.6	14
3161	Evidence of Positronium Bloch States in Porous Crystals ofZn4O-Coordination Polymers. Physical Review Letters, 2013, 110, 197403.	2.9	23
3162	Control of nucleation and crystal growth kinetics of MOF-5 on functionalized gold surfaces. Microporous and Mesoporous Materials, 2013, 175, 107-115.	2.2	22
3163	Structural Diversity in a Copper(II)/Isophthalato/9-Methyladenine System. From One- to Three-Dimensional Metal-Biomolecule Frameworks. Crystal Growth and Design, 2013, 13, 3057-3067.	1.4	27
3164	Silver-Dabco Coordination Networks with Distinct Carbaborane Anions: Investigating Ag···H–B and Ag···l–B Interactions. Crystal Growth and Design, 2013, 13, 3162-3170.	1.4	28
3165	Main hain Organometallic Microporous Polymers Based on Triptycene: Synthesis and Catalytic Application in the Suzuki–Miyaura Coupling Reaction. Chemistry - A European Journal, 2013, 19, 5004-5008.	1.7	68
3166	MOFâ€FF – A flexible firstâ€principles derived force field for metalâ€organic frameworks. Physica Status Solidi (B): Basic Research, 2013, 250, 1128-1141.	0.7	162
3167	Synthesis of amine-tagged metal–organic frameworks isostructural to MIL-101(Cr). RSC Advances, 2013, 3, 10181.	1.7	30
3168	A Series of Metal–Organic Frameworks Constructed From a V-shaped Tripodal Carboxylate Ligand: Syntheses, Structures, Photoluminescent, and Magnetic Properties. Crystal Growth and Design, 2013, 13, 2756-2765.	1.4	52
3169	Influences of lithium doping and fullerene impregnation on hydrogen storage in metal organic frameworks. Molecular Simulation, 2013, 39, 968-974.	0.9	12
3170	Syntheses, structures and properties of two Cu complexes with 4-(1H-imidazol-4-ylmethyl)aminophthalic acid. Supramolecular Chemistry, 2013, 25, 204-211.	1.5	0

#	Article	IF	CITATIONS
3171	Thermal regeneration of the metal organic frameworks used in the adsorption of refractory organosulfur compounds from liquid fuels. Fuel, 2013, 105, 459-465.	3.4	23
3172	A comparison between CO2 capturing capacities of fly ash based composites of MEA/DMA and DEA/DMA. Fuel Processing Technology, 2013, 106, 490-497.	3.7	38
3173	A heterometallic microporous MOF exhibiting high hydrogen uptake. Microporous and Mesoporous Materials, 2013, 165, 20-26.	2.2	14
3174	Effect of the molecular interactions on the separation of nonpolar mixtures using Cu-BTC metal–organic framework. Microporous and Mesoporous Materials, 2013, 165, 79-83.	2.2	13
3175	Predicting the impact of functionalized ligands on CO2 adsorption in MOFs: A combined DFT and Grand Canonical Monte Carlo study. Microporous and Mesoporous Materials, 2013, 168, 225-238.	2.2	47
3176	Synthesis, structure and characterization of novel metal–organic single crystal: Dibromobis(l-proline)zinc(II). Journal of Molecular Structure, 2013, 1033, 121-126.	1.8	18
3177	Gas Adsorption and Magnetic Properties in Isostructural Ni(II), Mn(II), and Co(II) Coordination Polymers. Crystal Growth and Design, 2013, 13, 1238-1245.	1.4	33
3178	Selfâ€Assembly versus Stepwise Synthesis: Heterometal–Organic Frameworks Based on Metalloligands with Tunable Luminescence Properties. Chemistry - A European Journal, 2013, 19, 11279-11286.	1.7	55
3179	Solvothermal synthesis, structural characterization and properties of two new layered lanthanide sulfates. Chemical Research in Chinese Universities, 2013, 29, 831-836.	1.3	2
3180	Encapsulated recyclable porous materials: an effective moisture-triggered fragrance release system. Chemical Communications, 2013, 49, 5724.	2.2	45
3181	Syntheses, Structures, and Properties of Two New Co(II) Coordination Frameworks Based on R-Isophthalate (R = –CH ₃ or –OCH ₃) and Two Flexible Bis(imidazol) Coligands. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 952-956.	0.6	1
3182	Mail-Order Metal–Organic Frameworks (MOFs): Designing Isoreticular MOF-5 Analogues Comprising Commercially Available Organic Molecules. Journal of Physical Chemistry C, 2013, 117, 12159-12167.	1.5	64
3183	Examining the Effects of Different Ring Configurations and Equatorial Fluorine Atom Positions on CO ₂ Sorption in [Cu(bpy) ₂ SiF ₆]. Crystal Growth and Design, 2013, 13, 4542-4548.	1.4	17
3184	Optimization of Reaction Conditions towards Multiple Types of Framework Isomers and Periodicâ€Increased Porosity: Luminescence Properties and Selective CO ₂ Adsorption over N ₂ . ChemPhysChem, 2013, 14, 3594-3599.	1.0	14
3185	M(ii) (M = Mn, Co, Ni) variants of the MIL-53-type structure with pyridine-N-oxide as a co-ligand. CrystEngComm, 2013, 15, 9679.	1.3	28
3186	Surface and Bulk Integrations of Single-Layered Au or Ag Nanoparticles onto Designated Crystal Planes {110} or {100} of ZIF-8. Chemistry of Materials, 2013, 25, 1761-1768.	3.2	126
3187	A series of 2D metal–quinolone complexes: Syntheses, structures, and physical properties. Journal of Solid State Chemistry, 2013, 198, 279-288.	1.4	24
3188	Four (5,5)-connected three-dimensional metal organic materials based on pentacarboxylate ligand: Synthesis, structures and characterization. CrystEngComm, 2013, 15, 6395.	1.3	10

#	Article	IF	CITATIONS
3189	A linear rod-packing coordination polymer constructed from a non-linear dicarboxylate and the [Zn4O]6+ cluster. Journal of Coordination Chemistry, 2013, 66, 3058-3062.	0.8	5
3190	Novel Layered 2D and Triply Interpenetrating 3D Cobalt-Functionalized Diaza-12-crown Based Coordination Polymers: Synthesis, Structure, and Magnetic Properties. Crystal Growth and Design, 2013, 13, 1131-1139.	1.4	17
3191	Metal(II) Complexes Based on Benzene-1,2,3-triyldioxy-triacetate: Structures and Photoluminescence Properties. Crystal Growth and Design, 2013, 13, 1059-1066.	1.4	25
3192	Synthesis and Characterization of Four Novel Divalent Transition Metal-Dicarboxylate Coordination Polymers With Chelating Aromatic Amine Ligands (Metal = Mn2+, Co2+, Cu2+, Zn2+). Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 446-455.	0.6	0
3193	Comparison of Conventional and HF-Free-Synthesized MIL-101 for CO ₂ Adsorption Separation and Their Water Stabilities. Energy & amp; Fuels, 2013, 27, 7612-7618.	2.5	26
3194	Experimental Characterization of Adsorption and Transport Properties for Advanced Thermo-Adsorptive Batteries. , 2013, , .		2
3195	SUMOF-5: a mesoporous metal-organic framework with the tbo topology built from the dicopper paddle-wheel cluster and a new tritopic linker. Zeitschrift Fur Kristallographie - Crystalline Materials, 2013, 228, 323-329.	0.4	9
3196	Enhancement of Carbon Dioxide Adsorption by Lithium Decorating and Fullerene Encapsulating in Metal-Organic Frameworks. Advanced Materials Research, 0, 773, 927-931.	0.3	0
3197	Computational screening study towards redox-active metal-organic frameworks. New Journal of Physics, 2013, 15, 115004.	1.2	13
3198	Polar and Magneto-Electric Properties of Anti-Ferrodistortive Ordered Jahn-Teller Distortions in a multiferroic metal-organic framework. Journal of Physics: Conference Series, 2013, 428, 012029.	0.3	15
3200	Improved Electric Properties of Degraded Liquid Crystal Using Metal–Organic Frameworks. Applied Physics Express, 2013, 6, 121701.	1.1	7
3201	Hydrogen Storage in Metal-Organic Frameworks. Applied Mechanics and Materials, 0, 316-317, 946-949.	0.2	3
3202	A Nobleâ€Metalâ€Free Porous Coordination Framework with Exceptional Sensing Efficiency for Oxygen. Angewandte Chemie - International Edition, 2013, 52, 13429-13433.	7.2	170
3203	Poly[bis(μ-5-iodoisophthalato)(methanol)dilead(II)] exhibiting a novel centrosymmetric rhombus-shaped I4unit. Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 494-497.	0.4	3
3204	NMR study of small molecule adsorption in MOF-74-Mg. Journal of Chemical Physics, 2013, 138, 154704.	1.2	31
3205	A three-dimensional Cu–Na heteronuclear coordination polymer based on iminodiacetic acid. Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 1026-1029.	0.4	0
3206	A two-dimensional network containing an –Mn—O—C—O—Mn– chain: poly[diaqua[1,2-bis(pyridin-4-yl)ethylene][μ3-3-carboxy-5-(carboxylatomethoxy)benzoato]manganese(II)]. Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 1311-1313.	0.4	0
3207	Conjugated Porous Networks Based on Cyclotriveratrylene Building Block for Hydrogen Adsorption. Chinese Journal of Chemistry, 2013, 31, 617-623.	2.6	8

#	άρτις ι ε	IF	CITATIONS
3208	Syntheses, Supramolecular Structures and Antibacterial Activities of Five Helical Transition Complexes with 5â€Chloroâ€lâ€phenylâ€l <i>H</i> â€pyrazoleâ€3,4â€dicarboxylic Acid. Chinese Journal of Cher 2013, 31, 407-414.	ni 2t.6 y,	1
3209	The coordination chemistry of two symmetric fluorene-based organic ligands with cuprous chloride. Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 1488-1493.	0.4	3
3210	Synthesis and Structure of a 1D Copper(II) Complex [Cu(Hbtc)(PyBIm) ₂] _n (H ₃ btc=1,3,5-benzenetricarboxylic acid, PyBIm=2-(4-pyridyl)benzimidazole). Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2013, 43, 135-139.	0.6	1
3211	Interesting structures of self-assembled gadolinium coordination polymers with tuned stoichiometric ratios. Journal of Coordination Chemistry, 2013, 66, 191-205.	0.8	4
3212	A Series of Exceptionally Robust Luminescent Coordination Polymers Based on a Bipyridyldicarboxylate Ligand and Rareâ€Earthâ€Metal Ions. European Journal of Inorganic Chemistry, 2013, 2013, 6111-6118.	1.0	16
3213	Syntheses, structures, and characterizations of three Ag(I) complexes constructed by length-modulated pyrazole-based ligands. Journal of Coordination Chemistry, 2013, 66, 3402-3411.	0.8	4
3214	Syntheses, crystal structures, and photoluminescent properties of two new Cd(II) coordination polymers based on biphenyl-2,2′,4,4′-tetracarboxylate and dipyridyl-containing ligands. Journal of Coordination Chemistry, 2013, 66, 3979-3988.	0.8	20
3215	Large-Scale Generation and Screening of Hypothetical Metal-Organic Frameworks for Applications in Gas Storage and Separations. Topics in Current Chemistry, 2013, 345, 257-289.	4.0	8
3216	Metal-organic frameworks as potential drug delivery systems. Expert Opinion on Drug Delivery, 2013, 10, 89-101.	2.4	325
3217	Metal–Organic Frameworks: From Design to Materials. Structure and Bonding, 2013, , 1-26.	1.0	4
3218	The synthesis, characterization, and theoretical hydrogen gas adsorption properties of copper(II)-3,3′-thiodipropionate complexes with imidazole derivatives. Journal of Coordination Chemistry, 2013, 66, 4093-4106.	0.8	6
3219	Expanded Organic Building Units for the Construction of Highly Porous Metal–Organic Frameworks. Chemistry - A European Journal, 2013, 19, 14886-14894.	1.7	66
3220	The construction of two lanthanide coordination polymers based on 5-hydroxyisophthalate and bipyridine. Journal of Coordination Chemistry, 2013, 66, 2659-2668.	0.8	7
3222	A fourfold interpenetrating diamondoid three-dimensional coordination polymer: poly[[[μ2-1,2-bis(pyridin-4-yl)ethene-κ2N:Nâ€2](μ2-5-hydroxyisophthalato-κ2O1:O3)zinc(II)] 1,2-bis(pyridin-4-yl)ethene hemisolvate]. Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 360-362.	0.4	1
3224	MOLECULAR SIMULATION OF HYDROGEN ADSORPTION IN ALUMINUM ORGANIC FRAMEWORK. Modern Physics Letters B, 2013, 27, 1350095.	1.0	3
3225	POLYMERIZATION WITHIN CONFINED NANOCHANNELS OF POROUS METAL-ORGANIC FRAMEWORKS. Journal of Molecular and Engineering Materials, 2013, 01, 1330001.	0.9	3
3226	H, D and HD adsorption upon the metal-organic framework [CuZn(btc)] studied by pulsed ENDOR and HYSCORE spectroscopy. Molecular Physics, 2013, 111, 2950-2966.	0.8	15
3227	Design and Synthesis of Porous Coordination Polymers Showing Unique Guest Adsorption Behaviors. Bulletin of the Chemical Society of Japan, 2013, 86, 1117-1131.	2.0	29

ARTICLE IF CITATIONS Nanoporous Metal–Organic Frameworks. , 2013, , 71-98. 3228 1 Crystal structure of catena-($(\hat{l}_{4}^{1}$ 3-benzene-1,3,5-tricarboxylato- \hat{l}^{2} 6O)- triaqua- erbium(III)sesquihydrate), Er(C9H3O6)(H2O)3·1.5H2O, C9H12ErO10.50. Zeitschrift Fur Kristallographie - New Crystal Structures, 3229 0.1 2013, 228, 171-172. MFUâ€4 – A Metalâ€Organic Framework for Highly Effective H₂/D₂ Separation. 3231 11.1 150 Advanced Materials, 2013, 25, 635-639. Enclosing the functional properties of pyrazolato-based coordination polymers within a structural frame: the role of laboratory X-ray powder diffraction. Powder Diffraction, 2013, 28, S106-S125. Nano-Ordering of Donor-Acceptor Interactions Using Metal-Organic Frameworks as Scaffolds. ECS 3233 0.3 0 Transactions, 2013, 58, 21-28. Syntheses, Structures, and Properties of Three Metalâ€Organic Complexes with Different Dimensionality Based on Dipyrido[3,2â€d:2â€2â€f]quinoxaline and Different Dicarboxylates. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1261-1268. 3234 0.6 Interactions and Diffusion of Methane and Hydrogen in Microporous Structures: Nuclear Magnetic 3236 1.32 Resonance (NMR) Studies. Materials, 2013, 6, 2464-2482. Catalytic performance of Metal-Organic-Frameworks vs. extra-large pore zeolite UTL in condensation 3237 1.8 10 reactions. Frontiers in Chemistry, 2013, 1, 11. Synthesis, Crystal Structure, and Magnetic Property of Copper(II) Complex With 3242 Xanthene-9-Carboxylate and 3-(2-Pyridyl) Pyrazole Ligands. Synthesis and Reactivity in Inorganic, Metal 2 0.6 Organic, and Nano Metal Chemistry, 2014, 44, 1272-1277. Polycatenationâ€Driven Selfâ€Assembly of Nanoporous Frameworks Based on a 1D Ribbon of Rings: 3243 Regular Structural Evolution, Interpenetration Transformation, and Photochemical Modification. 1.7 Chemistry - A European Journal, 2014, 20, 2488-2495. Rational design and synthesis of a series of 3D lanthanide metal–organic frameworks with different 3244 10 1.3 structures driven by reaction conditions. CrystEngComm, 2014, 16, 10181-10188. An anionic two-dimensional indium carboxylate framework derived from a pseudo C 3-symmetric 3245 semi-flexible tricarboxylic acid. Journal of Chemical Sciences, 2014, 126, 1385-1391. Encapsulation of large dye molecules in hierarchically superstructured metal–organic frameworks. 3246 1.6 62 Dalton Transactions, 2014, 43, 17893-17898. Substituent Effects on the Gas Sorption and Selectivity Properties of Hexaphenylbenzene and Hexabenzocoronene Based Porous Polymers. Macromolecules, 2014, 47, 8645-8652. 3248 2.2 Synthesis, Structures, and Photoluminescent Properties of Three Coordination Polymers based on an 3249 Asymmetric Semiâ€rigid Vâ€shaped Tricarboxylate Ligand. Zeitschrift Fur Anorganische Und Allgemeine 0.6 6 Chemie, 2014, 640, 2477-2483. MOFs of Uranium and the Actinides. Structure and Bonding, 2014, , 265-295. 84 Adsorption Isotherms of Caffeine and Theophylline on Metal-Organic Frameworks. Adsorption Science 3251 1.517 and Technology, 2014, 32, 725-735. A Review on Breathing Behaviors of Metal-Organic-Frameworks (MOFs) for Gas Adsorption. Materials, 1.3 262 2014, 7, 3198-3250.

#	Article	IF	CITATIONS
3253	Hydrothermal syntheses, structures, and magnetic properties of two new Mn(II) complexes with biphenyl-2,3,3′,5′-tetracarboxylic acid. Journal of Molecular Structure, 2014, 1075, 456-461.	1.8	17
3255	Hydrothermal Synthesis and Characterization of a Novel 1D Luminescent Zn(II) Framework With 1,4-di-(1,2,4-triazole-4-yl) Benzene. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 1531-1534.	0.6	0
3256	Synthesis, Crystal Structure, and Properties of Two Zinc Tubular Coordination Polymers Based on Fluconazole. Molecular Crystals and Liquid Crystals, 2014, 605, 155-164.	0.4	1
3257	Adsorption Behavior of Rhodamine B on UiO-66. Chinese Journal of Chemical Engineering, 2014, 22, 1285-1290.	1.7	55
3258	Synthesis, characterisation, water adsorption and proton conductivity of three Cd(ii) based luminescent metal–organic frameworks. Inorganic Chemistry Frontiers, 2014, 1, 611-620.	3.0	31
3259	Alkaline earth metal-based metal–organic framework: hydrothermal synthesis, X-ray structure and heterogeneously catalyzed Claisen–Schmidt reaction. Dalton Transactions, 2014, 43, 13006-13017.	1.6	41
3260	Guest driven structural transformation studies of a luminescent metal–organic framework. Journal of Chemical Sciences, 2014, 126, 1417-1422.	0.7	6
3261	The structural diversity and photoluminescent properties of cadmium thiophenedicarboxylate coordination polymers. Dalton Transactions, 2014, 43, 7219-7226.	1.6	41
3262	Thermally robust and porous noncovalent organic framework with high affinity for fluorocarbons and CFCs. Nature Communications, 2014, 5, 5131.	5.8	236
3263	Coordination copolymerization of three carboxylate linkers into a pillared layer framework. Chemical Science, 2014, 5, 3729.	3.7	53
3264	Threeâ€Ðimensional Porous NbOâ€Type Anionic Framework: Synthesis, Structure, Magnetic and Adsorption Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1437-1442.	0.6	2
3265	Effect of Substituents on Topology and <i>in situ</i> Amide Hydrolysis on Cadmium Isophthalate Coordination Polymers Prepared Using a 4â€Pyridylnicotinamide Precursor. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1922-1929.	0.6	0
3266	Aromatic Nâ€Arylations Catalyzed by Copperâ€Anchored Porous Zincâ€Based Metal–Organic Framework under Heterogeneous Conditions. ChemCatChem, 2014, 6, 2373-2383.	1.8	43
3267	Mechanical grinding of a single-crystalline metal–organic framework triggered emission with tunable violet-to-orange luminescence. Chemical Communications, 2014, 50, 15956-15959.	2.2	48
3268	Hydrogen storage in a series of Zn-based IRMOFs studied by Sanchez–Lacombe equation of state. International Journal of Hydrogen Energy, 2014, 39, 21076-21082.	3.8	6
3269	Computational Generation of Userâ€Desired Multivariate Metal–Organic Framework Structures. ChemPhysChem, 2014, 15, 61-63.	1.0	1
3270	Identifying the Role of Terahertz Vibrations in Metal-Organic Frameworks: From Gate-Opening Phenomenon to Shear-Driven Structural Destabilization. Physical Review Letters, 2014, 113, 215502.	2.9	202
3271	Controlled growth and gas sorption properties of IRMOF-3 nano/microcrystals. Dalton Transactions, 2014, 43, 16707-16712.	1.6	26

#	Article	IF	CITATIONS
3272	Computational screening of porous metalâ€organic frameworks and zeolites for the removal of SO ₂ and NO _x from flue gases. AICHE Journal, 2014, 60, 2314-2323.	1.8	112
3273	Theoretical Chemistry in Belgium. Highlights in Theoretical Chemistry, 2014, , .	0.0	1
3274	Photophysical Evidence of Chargeâ€Transferâ€Complex Pairs in Mixedâ€Linker 5â€Amino/5â€Nitroisophthalate CAUâ€10. ChemPhysChem, 2014, 15, 924-928.	1.0	9
3275	Framework-solvent interactional mechanism and effect of NMP/DMF on solvothermal synthesis of [Zn4O(BDC)3]8. Transactions of Nonferrous Metals Society of China, 2014, 24, 3722-3731.	1.7	13
3276	Positronium emission spectra from self-assembled metal-organic frameworks. Physical Review B, 2014, 89, .	1.1	34
3277	Hydrogen adsorption in metal-organic frameworks: The role of nuclear quantum effects. Journal of Chemical Physics, 2014, 141, 064708.	1.2	28
3278	Synthesis, crystal structure, and properties of cobalt, zinc, and manganese coordination polymers based on fluconazole. Journal of Coordination Chemistry, 2014, 67, 1962-1979.	0.8	3
3279	Electronic Structure Modulation of Metal–Organic Frameworks for Hybrid Devices. ACS Applied Materials & Interfaces, 2014, 6, 22044-22050.	4.0	75
3280	Transition–Lanthanide Heterometal–Organic Frameworks: Synthesis, Structures, and Properties. Structure and Bonding, 2014, , 231-263.	1.0	8
3281	Metal organic frameworks (MOF) as CO2 adsorbents. Russian Journal of Organic Chemistry, 2014, 50, 1551-1555.	0.3	8
3284	Advanced Nanoporous Materials for Micro-Gravimetric Sensing to Trace-Level Bio/Chemical Molecules. Sensors, 2014, 14, 19023-19056.	2.1	51
3285	4,4′-{[1,2-Phenylenebis(methylene)]bis(oxy)}dibenzoic acid dimethylformamide disolvate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o534-o535.	0.2	0
3286	Carbon Dioxide Adsorption Behavior of Modified HKUST-1. International Journal of Nanoscience, 2014, 13, 1460002.	0.4	1
3287	Poly[[nonaaquabis(μ-5-hydroxybenzene-1,3-dicarboxylato)(5-hydroxybenzene-1,3-dicarboxylato)dicerium(III)] hexahydrate]. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, m181-m182.	0.2	2
3288	A twofold interpenetrating three-dimensional zinc–organic framework built from naphthalene-1,4-dicarboxylate and 4,4′-bipyridine ligands. Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 498-501.	0.2	3
3289	Hollow and Solid Metallic Nanoparticles in Sensing and in Nanocatalysis. Chemistry of Materials, 2014, 26, 44-58.	3.2	144
3290	Phase selection during the crystallization of metal–organic frameworks; thermodynamic and kinetic factors in the lithium tartrate system. Dalton Transactions, 2014, 43, 95-102.	1.6	19
3291	Adsorption by Metal-Organic Frameworks. , 2014, , 565-610.		13

#	Article	IF	CITATIONS
3292	Microporous organic polymers with acetal linkages: synthesis, characterization, and gas sorption properties. Polymer Chemistry, 2014, 5, 614-621.	1.9	30
3293	The lowest symmetry acentric network polymer with cavities resulted from two distinct metal centers with multifunctional ligands decorating the walls of the framework. Inorganic Chemistry Communication, 2014, 44, 124-127.	1.8	0
3294	Two-dimensional anionic zinc benzenedicarboxylates: Ionothermal syntheses, structures, properties and structural transformation. Polyhedron, 2014, 68, 241-248.	1.0	6
3295	Two dimensional coordination polymers with 3,3′-thiodipropionate: An unprecedented coordination mode and strong hydrogen-bond network. Polyhedron, 2014, 67, 456-463.	1.0	3
3296	Specific size-matching strategy for electrochemical selective and sensitive detection of mercury(II) based on a three-dimensional-gap-net in a Au–thiol coordination polymer. Electrochemistry Communications, 2014, 42, 26-29.	2.3	8
3297	Computational design of tetrahedral silsesquioxane-based porous frameworks with diamond-like structure as hydrogen storage materials. Structural Chemistry, 2014, 25, 177-185.	1.0	12
3298	Carbon dioxide capturing technologies: a review focusing on metal organic framework materials (MOFs). Environmental Science and Pollution Research, 2014, 21, 5427-5449.	2.7	171
3299	Mesoporous materials for clean energy technologies. Chemical Society Reviews, 2014, 43, 7681-7717.	18.7	422
3300	Symmetryâ€Guided Synthesis of Highly Porous Metal–Organic Frameworks with Fluorite Topology. Angewandte Chemie - International Edition, 2014, 53, 815-818.	7.2	197
3301	Mechanochemical synthesis and characterisation of cocrystals and metal organic compounds. Faraday Discussions, 2014, 170, 109-119.	1.6	33
3302	Effects of substituent groups on methane adsorption in covalent organic frameworks. RSC Advances, 2014, 4, 15542.	1.7	13
3303	Adsorption behavior of metal–organic frameworks for methylene blue from aqueous solution. Microporous and Mesoporous Materials, 2014, 193, 27-34.	2.2	368
3304	Hydrogen storage capacity of alkali and alkaline earth metal ions doped carbon based materials: A DFT study. International Journal of Hydrogen Energy, 2014, 39, 2549-2559.	3.8	55
3305	Encapsulation of gases in powder solid matrices and their applications: A review. Powder Technology, 2014, 259, 87-108.	2.1	71
3306	Core–Shell Palladium Nanoparticle@Metal–Organic Frameworks as Multifunctional Catalysts for Cascade Reactions. Journal of the American Chemical Society, 2014, 136, 1738-1741.	6.6	632
3307	The template role of caffeine in its one-step encapsulation in MOF NH ₂ -MIL-88B(Fe). Journal of Materials Chemistry B, 2014, 2, 1144-1151.	2.9	58
3308	Photoresponsive porous materials: the design and synthesis of photochromic diarylethene-based linkers and a metal–organic framework. Chemical Communications, 2014, 50, 2653-2656.	2.2	84
3309	High gas storage capacities and stepwise adsorption in a UiO type metal–organic framework incorporating Lewis basic bipyridyl sites. Chemical Communications, 2014, 50, 2304.	2.2	244

#	Article	IF	CITATIONS
3310	Predictive simulations of the structural and adsorptive properties for PIM-1 variations. Molecular Simulation, 2014, 40, 599-609.	0.9	19
3311	A new metal–organic framework with ultra-high surface area. Chemical Communications, 2014, 50, 3450.	2.2	178
3312	Solvothermal Preparation of an Electrocatalytic Metalloporphyrin MOF Thin Film and its Redox Hopping Charge-Transfer Mechanism. Journal of the American Chemical Society, 2014, 136, 2464-2472.	6.6	289
3313	Methane Storage in Metal-Substituted Metal–Organic Frameworks: Thermodynamics, Usable Capacity, and the Impact of Enhanced Binding Sites. Journal of Physical Chemistry C, 2014, 118, 2929-2942.	1.5	43
3314	Energy and charge transfer by donor–acceptor pairs confined in a metal–organic framework: a spectroscopic and computational investigation. Journal of Materials Chemistry A, 2014, 2, 3389-3398.	5.2	100
3315	Two luminescent metalâ^'organic frameworks constructed by unsymmetric tricarboxylate. Inorganic Chemistry Communication, 2014, 40, 62-65.	1.8	12
3316	Topological Diversities and Luminescent Properties of Lanthanide Metal–Organic Frameworks Based on a Tetracarboxylate Ligand. Crystal Growth and Design, 2014, 14, 2394-2400.	1.4	53
3317	Three 3D lanthanide–organic frameworks with sra topology: syntheses, structures, luminescence and magnetic properties. CrystEngComm, 2014, 16, 2779.	1.3	23
3318	Cyclotricatechylene Based Supramolecular Assembly and Entrapment of Phenanthrene. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2014, 84, 221-225.	0.8	4
3319	Interpenetrated Metal–Organic Frameworks with [Ag(CN)2]â^ Bridging Ligand: Synthesis, Structural Characterization and Magnetic Study. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 2014, 84, 243-249.	0.8	0
3320	CuBTC metal-organic frameworks enmeshed in polyacrylonitrile fibrous membrane remove methyl parathion from solutions. Fibers and Polymers, 2014, 15, 200-207.	1.1	42
3321	An all-atom force field developed for Zn4O(RCO2)6 metal organic frameworks. Journal of Molecular Modeling, 2014, 20, 2146.	0.8	8
3322	A magnetic metal-organic framework as a new sorbent for solid-phase extraction of copper(II), and its determination by electrothermal AAS. Mikrochimica Acta, 2014, 181, 949-956.	2.5	76
3323	Multiscale study on hydrogen storage based on covalent organic frameworks. Structural Chemistry, 2014, 25, 503-513.	1.0	5
3324	A series of amide functionalized isoreticular metal organic frameworks. Microporous and Mesoporous Materials, 2014, 194, 115-125.	2.2	26
3325	Merging metal–organic framework catalysis with organocatalysis: A thiourea functionalized heterogeneous catalyst at the nanoscale. Catalysis Science and Technology, 2014, 4, 925.	2.1	77
3326	[M ₃ (μ ₃ -O)(O ₂ CR) ₆] and related trigonal prisms: versatile molecular building blocks for crystal engineering of metal–organic material platforms. Chemical Science, 2014, 5, 1269-1282.	3.7	124
3327	Assessing Chemical Heterogeneity at the Nanoscale in Mixedâ€Ligand Metal–Organic Frameworks with the PTIR Technique. Angewandte Chemie - International Edition, 2014, 53, 2852-2856.	7.2	82

#	Article	IF	CITATIONS
3328	Exploration of Structural Topologies in Metal–Organic Frameworks Based on 3-(4-Carboxyphenyl)propionic Acid, Their Synthesis, Sorption, and Luminescent Property Studies. Crystal Growth and Design, 2014, 14, 2022-2033.	1.4	46
3329	Mainâ€Chain Organometallic Microporous Polymers Bearing Triphenylene–Tris(Nâ€Heterocyclic) Tj ETQq1 1	0.784314 r 1.7	gBT ₄ 9Overloci
3330	Metal–organic frameworks (MOFs) combined with ZnO quantum dots as a fluorescent sensing platform for phosphate. Sensors and Actuators B: Chemical, 2014, 197, 50-57.	4.0	98
3331	Synthesis, spectral characterization, self-assembly and biological studies of N-acyl-2-pyrazolines bearing long alkoxy side chains. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 120, 176-184.	2.0	25
3332	Adsorption Characteristics of Metal–Organic Frameworks Containing Coordinatively Unsaturated Metal Sites: Effect of Metal Cations and Adsorbate Properties. Journal of Physical Chemistry C, 2014, 118, 6847-6855.	1.5	34
3333	Organizing Mechanically Interlocked Molecules to Function Inside Metal-Organic Frameworks. Topics in Current Chemistry, 2014, 354, 213-251.	4.0	20
3334	Adsorption and separation of CO2/CH4 mixtures using nanoporous adsorbents by molecular simulation. Fluid Phase Equilibria, 2014, 362, 227-234.	1.4	49
3335	Towards industrial use of metal-organic framework: Impact of shaping on the MOF properties. Powder Technology, 2014, 255, 52-59.	2.1	155
3337	Metal–organic calixarene capsules: the evolution of controlled assembly. CrystEngComm, 2014, 16, 3655.	1.3	34
3338	Designing novel nanoporous architectures of carbon nanotubes for hydrogen storage. International Journal of Hydrogen Energy, 2014, 39, 9825-9829.	3.8	30
3339	Metal–Organic Frameworks: From Molecules/Metal Ions to Crystals to Superstructures. Chemistry - A European Journal, 2014, 20, 5192-5201.	1.7	61
3340	A MOF-supported chromium catalyst for ethylene polymerization through post-synthetic modification. Journal of Molecular Catalysis A, 2014, 387, 63-68.	4.8	30
3341	Adsorption and Separation of Xe in Metal–Organic Frameworks and Covalent–Organic Materials. Journal of Physical Chemistry C, 2014, 118, 10221-10229.	1.5	29
3342	25th Anniversary Article: Supramolecular Materials for Regenerative Medicine. Advanced Materials, 2014, 26, 1642-1659.	11.1	285
3343	Fabrication of nitrogen-doped hierarchically porous carbons through a hybrid dual-template route for CO2 capture and haemoperfusion. Carbon, 2014, 76, 84-95.	5.4	93
3344	Composites of metal–organic frameworks: Preparation and application in adsorption. Materials Today, 2014, 17, 136-146.	8.3	349
3345	Catalysis by metal–organic frameworks: proline and gold functionalized MOFs for the aldol and three-component coupling reactions. RSC Advances, 2014, 4, 13093-13107.	1.7	66
3346	Chiral metal–organic framework used as stationary phases for capillary electrochromatography. Analytica Chimica Acta, 2014, 830, 49-55.	2.6	85

#	Article	IF	CITATIONS
3347	Designs of fullerene-based frameworks for hydrogen storage. Journal of Materials Chemistry A, 2014, 2, 5910-5914.	5.2	64
3348	Lanthanide–organic frameworks for gas storage and as magneto-luminescent materials. Coordination Chemistry Reviews, 2014, 273-274, 139-164.	9.5	242
3349	Liquid Phase Heteroepitaxial Growth of Moistureâ€Tolerant MOFâ€5 Isotype Thin Films and Assessment of the Sorption Properties by Quartz Crystal Microbalance. Advanced Functional Materials, 2014, 24, 2696-2705.	7.8	45
3350	New Lithium Ion Clusters for Construction of Porous MOFs. Crystal Growth and Design, 2014, 14, 897-900.	1.4	38
3351	Modification of Extended Open Frameworks with Fluorescent Tags for Sensing Explosives: Competition between Size Selectivity and Electron Deficiency. Chemistry - A European Journal, 2014, 20, 2276-2291.	1.7	311
3352	Fast and continuous processing of a new sub-micronic lanthanide-based metal–organic framework. New Journal of Chemistry, 2014, 38, 1477-1483.	1.4	47
3353	Hydrogen storage in porous structures of adamantane-based nitrogen-heterocyclic ring with diamond-like structure. International Journal of Quantum Chemistry, 2014, 114, 1438-1444.	1.0	2
3354	Supramolecular templating of hierarchically porous metal–organic frameworks. Chemical Society Reviews, 2014, 43, 5431-5443.	18.7	233
3355	High-throughput computational screening of metal–organic frameworks. Chemical Society Reviews, 2014, 43, 5735-5749.	18.7	336
3356	In Situ Neutron Powder Diffraction and X-ray Photoelectron Spectroscopy Analyses on the Hydrogenation of MOF-5 by Pt-Doped Multiwalled Carbon Nanotubes. Journal of Physical Chemistry C, 2014, 118, 5691-5699.	1.5	17
3357	Amine-functionalized metal-organic frameworks for the transesterification of triglycerides. Journal of Materials Chemistry A, 2014, 2, 7205-7213.	5.2	68
3358	Stimulusâ€Responsive Metal–Organic Frameworks. Chemistry - an Asian Journal, 2014, 9, 2358-2376.	1.7	109
3359	Metallacarborane-Based Metal–Organic Framework with a Complex Topology. Crystal Growth and Design, 2014, 14, 1324-1330.	1.4	28
3360	Anion-Exchange and Anthracene-Encapsulation within Copper(II) and Manganese(II)-Triazole Metal–Organic Confined Space in a Single Crystal-to-Single Crystal Transformation Fashion. Inorganic Chemistry, 2014, 53, 5972-5985.	1.9	48
3361	Porous M ^{II} /Pyrimidineâ€4,6â€Dicarboxylato Neutral Frameworks: Synthetic Influence on the Adsorption Capacity and Evaluation of CO ₂ â€Adsorbent Interactions. Chemistry - A European Journal, 2014, 20, 1554-1568.	1.7	22
3362	Metal-organic frameworks in chromatography. Journal of Chromatography A, 2014, 1348, 1-16.	1.8	106
3363	Sensitive chemosensing of nitro group containing organophosphate pesticides with MOF-5. Microporous and Mesoporous Materials, 2014, 195, 60-66.	2.2	77
3364	Rational design of metal–organic frameworks with anticipated porosities and functionalities. CrystEngComm, 2014, 16, 4069-4083.	1.3	112

#	Article	IF	CITATIONS
3365	Metal–Organic Frameworks for Air Purification of Toxic Chemicals. Chemical Reviews, 2014, 114, 5695-5727.	23.0	825
3366	Bis(pyrazolato)-Based Metal–Organic Frameworks Fabricated with 4,4′-Bis((3,5-dimethyl-1 <i>H</i> -pyrazol-4-yl)methyl)biphenyl and Late Transition Metals. Crystal Growth and Design, 2014, 14, 3142-3152.	1.4	16
3367	High Methane Storage Capacity in Aluminum Metal–Organic Frameworks. Journal of the American Chemical Society, 2014, 136, 5271-5274.	6.6	410
3368	Postsynthetic modification of IRMOFâ€3 with a copper iminopyridine complex as heterogeneous catalyst for the synthesis of 2â€aminobenzothiazoles. Applied Organometallic Chemistry, 2014, 28, 198-203.	1.7	24
3369	Hydrogen Sorption Efficiency of Titanium-Functionalized Mg–BN Framework. Journal of Physical Chemistry C, 2014, 118, 10859-10866.	1.5	31
3370	A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chemical Society Reviews, 2014, 43, 631-675.	18.7	2,360
3371	Construction of Two New Cd(II) Coordination Polymers via Isomeric Biphenyldicarboxylates and Imidazole-Containing Ligands. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 498-502.	0.6	0
3372	Porous Inorganic Membranes for CO ₂ Capture: Present and Prospects. Chemical Reviews, 2014, 114, 1413-1492.	23.0	481
3373	Synthesis and structural characterization of a single-crystal to single-crystal transformable coordination polymer. Dalton Transactions, 2014, 43, 1519-1523.	1.6	15
3374	Topological Analysis of Metal–Organic Frameworks with Polytopic Linkers and/or Multiple Building Units and the Minimal Transitivity Principle. Chemical Reviews, 2014, 114, 1343-1370.	23.0	1,010
3375	From assembled metal–organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage. Chemical Communications, 2014, 50, 1519-1522.	2.2	329
3376	Supramolecular Chemistry and Self-Assembly in Organic Materials Design. Chemistry of Materials, 2014, 26, 507-518.	3.2	421
3377	Handbook of Gas Sensor Materials. Integrated Analytical Systems, 2014, , .	0.4	48
3378	Cadmium(II) and zinc(II) azido complexes with different nuclearity and dimensionality. Polyhedron, 2014, 69, 48-54.	1.0	30
3379	Influence of Photoinduced Electron Transfer on Lanthanide-Based Coordination Polymer Luminescence: A Comparison between Two Pseudoisoreticular Molecular Networks. Inorganic Chemistry, 2014, 53, 1217-1228.	1.9	57
3380	Spectral, thermal and structural studies of an acetate bridged polymeric cadmium(II) complex: Poly[aqua(μ-acetato)(4-aminobenzoato)cadmium(II) monohydrate]. Inorganic Chemistry Communication, 2014, 40, 200-204.	1.8	3
3381	Functional Hybrid Porous Coordination Polymers. Chemistry of Materials, 2014, 26, 310-322.	3.2	358
3382	Can Metal–Organic Framework Separate 1-Butene from Butene Isomers?. Journal of Physical Chemistry Letters, 2014, 5, 440-446.	2.1	29

#	Article	IF	CITATIONS
3383	Metal-Cation-Directed <i>de Novo</i> Assembly of a Functionalized Guest Molecule in the Nanospace of a Metal–Organic Framework. Journal of the American Chemical Society, 2014, 136, 1202-1205.	6.6	168
3384	On the Flexibility of Metal–Organic Frameworks. Journal of the American Chemical Society, 2014, 136, 2228-2231.	6.6	198
3385	Extension of the Universal Force Field to Metal–Organic Frameworks. Journal of Chemical Theory and Computation, 2014, 10, 880-891.	2.3	200
3386	Liquid acid-catalysed fabrication of nanoporous 1,3,5-triazine frameworks with efficient and selective CO2 uptake. Polymer Chemistry, 2014, 5, 3424.	1.9	112
3387	Homo- and heterometallic luminescent 2-D stilbene metal–organic frameworks. Dalton Transactions, 2014, 43, 2925-2935.	1.6	28
3388	A new metal–organic framework with potential for adsorptive separation of methane from carbon dioxide, acetylene, ethylene, and ethane established by simulated breakthrough experiments. Journal of Materials Chemistry A, 2014, 2, 2628.	5.2	91
3389	CO2 capture performance of HKUST-1 in a sound assisted fluidized bed. Chemical Engineering Journal, 2014, 239, 75-86.	6.6	77
3390	Methane storage in tea clathrates. Chemical Communications, 2014, 50, 1244-1246.	2.2	21
3391	Metal–organic frameworks as solid magnesium electrolytes. Energy and Environmental Science, 2014, 7, 667.	15.6	150
3392	Self-Accelerating CO Sorption in a Soft Nanoporous Crystal. Science, 2014, 343, 167-170.	6.0	434
3393	Solvents and auxiliary ligands co-regulate three antiferromagnetic Co(<scp>ii</scp>) MOFs based on a semi-rigid carboxylate ligand. Dalton Transactions, 2014, 43, 5823-5830.	1.6	41
3394	Four MOFs with 2,2′-dimethoxy-4,4′-biphenyldicarboxylic acid: syntheses, structures, topologies and properties. CrystEngComm, 2014, 16, 784-796.	1.3	55
3395	Microporous Heptazine Functionalized (3,24)-Connected rht -Metal–Organic Framework: Synthesis, Structure, and Gas Sorption Analysis. Crystal Growth and Design, 2014, 14, 414-418.	1.4	71
3396	Site characteristics in metal organic frameworks for gas adsorption. Progress in Surface Science, 2014, 89, 56-79.	3.8	86
3397	Functional Metal–Organic Frameworks via Ligand Doping: Influences of Ligand Charge and Steric Demand. Inorganic Chemistry, 2014, 53, 1331-1338.	1.9	32
3398	Solid state coordination chemistry of oxomolybdenum–organodiphosphonate materials: consequences of introducing xylyldiphosphonate components. CrystEngComm, 2014, 16, 191-213.	1.3	31
3399	Two-dimensional functional molecular nanoarchitectures – Complementary investigations with scanning tunneling microscopy and X-ray spectroscopy. Progress in Surface Science, 2014, 89, 1-55.	3.8	80
3400	Evaluating metal–organic frameworks for natural gas storage. Chemical Science, 2014, 5, 32-51.	3.7	1,038
ARTICLE IF CITATIONS Dichotomous adsorption behaviour of dyes on an amino-functionalised metalâ€" organic framework, 3401 5.2 343 amino-MIL-101(Al). journal of Materials Chemistry A, 2014, 2, 193-203. Assessing the guest-accessible volume in MOFs using two-photon fluorescence microscopy. Chemical 3402 2.2 34 Communications, 2014, 50, 289-291. A simple solvothermal process for fabrication of a metal-organic framework with an iron oxide 3403 enclosure for the determination of organophosphorus pesticides in biological samples. Journal of 101 1.8 Chromatography A, 2014, 1371, 74-81. A 3-D Mn(II) 5-Connected Interpenetrating (4 < sup > 6 < /sup > .6 < sup > 4 < /sup >) Network With Mixed $6,6\hat{a} \in ^2$ -Dithiodinicotinate and 1,3-Bis(4-pyridyl)propane Ligands. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 1023-1028. 3404 Selective Catalytic Behavior of a Phosphineâ€Tagged Metalâ€Organic Framework Organocatalyst. 3405 1.7 21 Chemistry - A European Journal, 2014, 20, 15467-15472. Bismuth tungstate incorporated zirconium metalâ \in organic framework composite with enhanced visible-light photocatalytic performance. RSC Advances, 2014, 4, 64977-64984. 1.7 Guest Modulation of Spinâ€Crossover Transition Temperature in a Porous Iron(II) Metal–Organic Framework: Experimental and Periodic DFT Studies. Chemistry - A European Journal, 2014, 20, 3407 1.7 55 12864-12873. A SIMâ€MOF: Threeâ€Dimensional Organisation of Singleâ€Ion Magnets with Anionâ€Exchange Capabilities. 3408 Chemistry - A European Journal, 2014, 20, 10695-10702. Lanthanide Metal-Organic Frameworks: Syntheses, Properties, and Potential Applications. Structure 3409 1.0 19 and Bonding, 2014, , 1-27. A rare (3,4,5)-connected metalâ \in organic framework featuring an unprecedented 1D + 2D ↠3D self-interpenetrated array and an O-atom lined pore surface: structure and controlled drug release. Chemical Communications, 2014, 50, 15807-15810. 3411 2.2 Dipyridylamide Donor Disposition and Isophthalate Substituent Steric Effect on the Dimensionality and Topology of Divalent Copper Coordination Polymers. Zeitschrift Fur Anorganische Und 3412 7 0.6 Allgemeine Chemie, 2014, 640, 2113-2122. A new MOF-5 homologue for selective separation of methane from C2 hydrocarbons at room 2.2 temperature. APL Materials, 2014, 2, . Postsynthetic modification of mixed-linker metalâ€" organic frameworks for ethylene oligomerization. 3414 1.7 44 RSC Ádvances, 2014, 4, 62343-62346. Reprogramming Kinetic Phase Control and Tailoring Pore Environments in Co^{II} and 3415 1.4 Zn < sup>II < / sup> Metal–Organic Frameworks. Crystal Growth and Design, 2014, 14, 5710-5718. Controlling the Catalytic Efficiency on the Surface of Hollow Gold Nanoparticles by Introducing an 3416 2.127 Inner Thin Layer of Platinum or Palladium. Journal of Physical Chemistry Letters, 2014, 5, 4088-4094. Synthesis, crystal structure, fluorescence, and surface photo-electric properties of a new Co(II) complex based on organosulfonate ligand. Russian Journal of Coordination 3417 Chemistry/Koordinatsionnaya Khimiya, 2014, 40, 515-522. A novel Cd(II) complex with 1,3-bis(4-Pyridyl)propane: Synthesis, crystal structure, and interaction 3418 0.3 2 with DNA. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2014, 40, 583-587. Three one-dimensional chains with bulky backbone carboxylate ligands: Syntheses, crystal structures, 3419 and luminescent properties. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2014, 40, 676-685.

#	Article	IF	CITATIONS
3420	Gas adsorption properties of highly porous metal–organic frameworks containing functionalized naphthalene dicarboxylate linkers. Dalton Transactions, 2014, 43, 18017-18024.	1.6	80
3421	Syntheses, structures, and properties of two 2-D Cd(II) complexes based on 2-(1 <i>H</i> -imidazol-1-methyl)-1 <i>H</i> -benzimidazole and polycarboxylate ligands. Journal of Coordination Chemistry, 2014, 67, 149-161.	0.8	18
3422	Intrinsic and extrinsic proton conductivity in metal-organic frameworks. RSC Advances, 2014, 4, 54382-54387.	1.7	83
3423	Zeolitic Imidazolate Frameworks: Nextâ€Generation Materials for Energyâ€Efficient Gas Separations. ChemSusChem, 2014, 7, 3202-3240.	3.6	235
3424	Ultrasound-driven preparation and pair distribution function-assisted structure solution of a copper-based layered coordination polymer. Dalton Transactions, 2014, 43, 10438-10442.	1.6	14
3425	A series of coordination compounds containing rigid multi-pyridine based ligands: syntheses, structures and properties. CrystEngComm, 2014, 16, 2754.	1.3	16
3426	A two-dimensional hydrogen bonded organic framework self-assembled from a three-fold symmetric carbamate. Chemical Communications, 2014, 50, 5209-5211.	2.2	24
3427	Structural Variation in Mellitate Complexes of First-Row Transition Metals: What Chance for Design?. Crystal Growth and Design, 2014, 14, 6282-6293.	1.4	16
3428	A family of three magnetic metal organic frameworks: their synthesis, structural, magnetic and vapour adsorption study. CrystEngComm, 2014, 16, 4742-4752.	1.3	20
3429	Design, fabrication and the relative catalytic properties of metal–organic framework complexes based on tetra(4-carboxyphenyl)porphyrin and cerium ions. CrystEngComm, 2014, 16, 4274.	1.3	6
3430	Functionalized aminocarboxylate moieties as linkers for coordination polymers: influence of the substituents in the dimensionality of the final structure. CrystEngComm, 2014, 16, 3376-3386.	1.3	10
3431	Variation of CO2 adsorption in isostructural Cd(ii)/Co(ii) based MOFs by anion modulation. CrystEngComm, 2014, 16, 5012.	1.3	32
3432	Synthesis of Cobalt-, Nickel-, Copper-, and Zinc-Based, Water-Stable, Pillared Metal–Organic Frameworks. Langmuir, 2014, 30, 14300-14307.	1.6	71
3433	A channel-type mesoporous In(<scp>iii</scp>)–carboxylate coordination framework with high physicochemical stability for use as an electrode material in supercapacitors. Journal of Materials Chemistry A, 2014, 2, 9828-9834.	5.2	124
3434	Hydrothermal Synthesis and Characterization of a Novel 1D Zn(II)-Triazole Framework Containing Infinite Zn-O-Zn Connectivity. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 1473-1476.	0.6	1
3435	Highly active AuCo alloy nanoparticles encapsulated in the pores of metal–organic frameworks for hydrolytic dehydrogenation of ammonia borane. Chemical Communications, 2014, 50, 5899.	2.2	115
3436	A series of Ag(i)–Cd(ii) hetero- and Ag(i) homo-nuclear coordination polymers based on 5-iodo-isophthalic acid and N-donor ancillary ligands. CrystEngComm, 2014, 16, 223-230.	1.3	25
3437	Cooperative ion-exchange and self-redox process to load catalytic metal nanoparticles into a MOF with Johnson-type cages. Chemical Communications, 2014, 50, 6153.	2.2	32

#	Article	IF	CITATIONS
3438	Structure and Dynamics of Carbon Dioxide, Nitrogen, Water, and Their Mixtures in Metal Organic Frameworks. Journal of Chemical & Engineering Data, 2014, 59, 2973-2981.	1.0	9
3439	Gas Storage and Diffusion through Nanocages and Windows in Porous Metal–Organic Framework Cu2(2,3,5,6-tetramethylbenzene-1,4-diisophthalate)(H2O)2. Chemistry of Materials, 2014, 26, 4679-4695.	3.2	73
3440	Ethane Selective IRMOF-8 and Its Significance in Ethane–Ethylene Separation by Adsorption. ACS Applied Materials & Interfaces, 2014, 6, 12093-12099.	4.0	161
3441	A robust porous pillar-chained Cd-framework with selective sorption for CO2 and guest-driven tunable luminescence. CrystEngComm, 2014, 16, 3848.	1.3	18
3442	Amino acid assisted templating synthesis of hierarchical zeolitic imidazolate framework-8 for efficient arsenate removal. Nanoscale, 2014, 6, 1105-1112.	2.8	258
3443	A 3D Porous Metal Organic Framework Based on Infinite 1D Nickel(II) Chains with Rutile Topology Displaying Open Metal Sites. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 2123-2131.	0.6	9
3444	lsoreticular MOFs based on a rhombic dodecahedral MOP as a tertiary building unit. CrystEngComm, 2014, 16, 6391-6397.	1.3	11
3445	Enhanced water stability and CO ₂ gas sorption properties of a methyl functionalized titanium metal–organic framework. New Journal of Chemistry, 2014, 38, 2752-2755.	1.4	19
3446	Effects of multivariate linker substitution, metal binding, and reactor conditions on the catalytic activity of a Pd-functionalized MOF for olefin hydrogenation. Applied Catalysis A: General, 2014, 488, 248-255.	2.2	12
3447	Density functional calculations of extended, periodic systems using Coulomb corrected molecular fractionation with conjugated caps method (CC-MFCC). Physical Chemistry Chemical Physics, 2014, 16, 21252-21270.	1.3	7
3448	New porous coordination polymers based on expanded pyridyl-dicarboxylate ligands and a paddle-wheel cluster. CrystEngComm, 2014, 16, 6325-6330.	1.3	25
3449	Diffusion-Coupled Molecular Assembly: Structuring of Coordination Polymers Across Multiple Length Scales. Journal of the American Chemical Society, 2014, 136, 14966-14973.	6.6	50
3450	Solvent-Free and Time Efficient Postsynthetic Modification of Amino-Tagged Metal–Organic Frameworks with Carboxylic Acid Derivatives. Chemistry of Materials, 2014, 26, 6722-6728.	3.2	65
3451	Simulation of separation of C ₂ H ₆ from CH ₄ using zeolitic imidazolate frameworks. Molecular Simulation, 2014, 40, 349-360.	0.9	17
3452	A Novel 3-D Nanoporous Ce(III) Metal-Organic Framework with Terephthalic Acid; Thermal, Topology, Porosity and Structural Studies. Journal of Inorganic and Organometallic Polymers and Materials, 2014, 24, 1021-1026.	1.9	6
3453	Novel alkali and alkaline earth metal coordination polymers based on 1,4-naphthalenedicarboxylic acid: synthesis, structural characterization and properties. CrystEngComm, 2014, 16, 1985.	1.3	40
3454	Tuning the structure of metal phosphonates using uncoordinating methyl group: syntheses, structures and properties of a series of metal diphosphonates. CrystEngComm, 2014, 16, 7043.	1.3	20
3455	Mn(<scp>ii</scp>) coordination polymers assembled from 8 or 9-connected trinuclear secondary building units: topology analysis and research of magnetic properties. CrystEngComm, 2014, 16, 8736-8746.	1.3	13

#	Article		CITATIONS
3456	Structures, luminescent and magnetic properties of a series of (3,6)-connected lanthanide–organic frameworks. Dalton Transactions, 2014, 43, 1814-1820.		50
3457	An unusual nitroso⋯nitroso interaction in the coordination polymer structures of Ni(<scp>ii</scp>) and Co(<scp>ii</scp>) complexes with the α,ï‰-bis(benzotriazoloxy)alkane system. CrystEngComm, 2014, 16, 654-666.		7
3458	A copper based metal-organic framework as single source for the synthesis of electrode materials for high-performance supercapacitors and glucose sensing applications. International Journal of Hydrogen Energy, 2014, 39, 19609-19620.	3.8	83
3459	Chemically doped perylene diimide lamellae based field effect transistor with low operating voltage and high charge carrier mobility. Chemical Communications, 2014, 50, 326-328.		29
3460	Five MOFs with different topologies based on anthracene functionalized tetracarboxylic acid: syntheses, structures, and properties. CrystEngComm, 2014, 16, 2917-2928.	1.3	33
3461	Homogeneous decoration of zeolitic imidazolate framework-8 (ZIF-8) with core–shell structures on carbon nanotubes. RSC Advances, 2014, 4, 49614-49619.	1.7	42
3462	Two 3D metal–organic frameworks of Cd(<scp>ii</scp>): modulation of structures and porous properties based on linker functionalities. CrystEngComm, 2014, 16, 4877-4885.	1.3	21
3463	Unprecedented metal-ion metathesis in a metal–carboxylate chain-based metal–organic framework. CrystEngComm, 2014, 16, 2344.	1.3	17
3464	The ionothermal synthesis, structure, and magnetism–structure relationship of two biphenyl tetracarboxylic acid-based metal–organic frameworks. Dalton Transactions, 2014, 43, 16515-16521.	1.6	15
3465	Optimizing nanoporous materials for gas storage. Physical Chemistry Chemical Physics, 2014, 16, 5499.	1.3	76
3466	Insight into the mechanism of modulated syntheses: <i>in situ</i> synchrotron diffraction studies on the formation of Zr-fumarate MOF. CrystEngComm, 2014, 16, 9198-9207.	1.3	118
3467	Exceptional control of carbon-supported transition metal nanoparticles using metal-organic frameworks. Journal of Materials Chemistry A, 2014, 2, 14014.	5.2	26
3468	Evaluation of structural transformation in 2D metal–organic frameworks based on a 4,4′-sulfonyldibenzoate linker: microwave-assisted solvothermal synthesis, characterization and applications. CrystEngComm, 2014, 16, 9308-9319.	1.3	16
3469	Controllable synthesis of isoreticular pillared-layer MOFs: gas adsorption, iodine sorption and sensing small molecules. Journal of Materials Chemistry A, 2014, 2, 14827-14834.	5.2	89
3470	Di- and tetracarboxylic aromatic acids with silane spacers and their copper complexes: Synthesis, structural characterization and properties evaluation. Journal of Organometallic Chemistry, 2014, 774, 70-78.	0.8	9
3471	Exceptional CO ₂ Adsorbing Materials under Different Conditions. Chemical Record, 2014, 14, 1134-1148.	2.9	29
3472	ZIF-8 micromembranes for gas separation prepared on laser-perforated brass supports. Journal of Materials Chemistry A, 2014, 2, 11177-11184.	5.2	22

A series of coordination polymers based on a new $2\hat{a}\in^2,5\hat{a}\in^2$ -dimethyl-1,1 $\hat{a}\in^2:4\hat{a}\in^2,1\hat{a}\in^2\hat{a}\in^2$ -terphenyl-3,3 $\hat{a}\in^2\hat{a}\in^2$ -dicarboxylic acid ligand: structures, luminescence, and magnetic properties. CrystEngComm, 2014, 16, 406-414.

#	Article	IF	CITATIONS
3474	Temperature and pH driven self-assembly of Zn(ii) coordination polymers: crystal structures, supramolecular isomerism, and photoluminescence. CrystEngComm, 2014, 16, 1687.	1.3	104
3475	Metal–organic frameworks with improved moisture stability based on a phosphonate monoester: effect of auxiliary N-donor ligands on framework dimensionality. CrystEngComm, 2014, 16, 6635-6644.	1.3	37
3476	Force field for ZIF-8 flexible frameworks: atomistic simulation of adsorption, diffusion of pure gases as CH ₄ , H ₂ , CO ₂ and N ₂ . RSC Advances, 2014, 4, 16503-16511.	1.7	64
3477	Preparation of activated carbon with high surface area for high-capacity methane storage. Journal of Energy Chemistry, 2014, 23, 662-668.	7.1	38
3478	Group 13 Metal Carboxylates: Using Molecular Clusters As Hybrid Building Units in a MIL-53 Type Framework. Crystal Growth and Design, 2014, 14, 5310-5317.	1.4	13
3479	Multifunctional metal–organic frameworks constructed from meta-benzenedicarboxylate units. Chemical Society Reviews, 2014, 43, 5618-5656.	18.7	476
3480	Computational Design of Metal–Organic Frameworks Based on Stable Zirconium Building Units for Storage and Delivery of Methane. Chemistry of Materials, 2014, 26, 5632-5639.	3.2	191
3481	Efficient Determination of Accurate Force Fields for Porous Materials Using ab Initio Total Energy Calculations. Journal of Physical Chemistry C, 2014, 118, 2693-2701.	1.5	23
3482	Cr-MIL-101 encapsulated Keggin phosphotungstic acid as active nanomaterial for catalysing the alcoholysis of styrene oxide. Green Chemistry, 2014, 16, 1351-1357.	4.6	110
3483	Targeted Manipulation of Metal–Organic Frameworks To Direct Sorption Properties. ChemPhysChem, 2014, 15, 823-839.	1.0	46
3484	Catalytic Performance of Vanadium MILâ€47 and Linkerâ€6ubstituted Variants in the Oxidation of Cyclohexene: A Combined Theoretical and Experimental Approach. ChemPlusChem, 2014, 79, 1183-1197.	1.3	20
3485	Molecular simulation of natural gas storage in Cu-BTC metal–organic framework. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 462, 194-201.	2.3	22
3486	Luminescent Response of One Anionic Metal–Organic Framework Based on Novel Octa-nuclear Zinc Cluster to Exchanged Cations. Crystal Growth and Design, 2014, 14, 410-413.	1.4	35
3487	Tuned to Perfection: Ironing Out the Defects in Metal–Organic Framework UiO-66. Chemistry of Materials, 2014, 26, 4068-4071.	3.2	634
3488	Heterogeneous organocatalysts composed of microporous polymer networks assembled by Tröger's base formation. Polymer Chemistry, 2014, 5, 5262.	1.9	44
3489	Dual Changes in Conformation and Optical Properties of Fluorophores within a Metal–Organic Framework during Framework Construction and Associated Sensing Event. Journal of the American Chemical Society, 2014, 136, 12201-12204.	6.6	146
3490	Solvent-Induced Structural Diversity of Partially Fluorinated, Stable Pb(II) Metal–Organic Frameworks and Their Luminescence Properties. Crystal Growth and Design, 2014, 14, 1476-1485.	1.4	74
3491	An acid-stable Zn(ii) complex: electrodeposition in sulfuric acid and the effect on the zinc–lead dioxide battery. Dalton Transactions, 2014, 43, 17129-17135.	1.6	2

#	Article	IF	CITATIONS
3492	Discrete and Polymeric Cu(II) Complexes Derived from in Situ Generated Pyridyl-Functionalized Bis(amido)phosphate Ligands, [PO ₂ (NHPy) ₂] ^{â^'} . Crystal Growth and Design, 2014, 14, 1701-1709.	1.4	9
3493	Ultrahigh porosity in mesoporous MOFs: promises and limitations. Chemical Communications, 2014, 50, 7089.	2.2	138
3494	Synthesis of a series of coordination polymers based on mixed ligands to tune the structural dimension. CrystEngComm, 2014, 16, 5093-5102.	1.3	23
3495	Relationship between thermal conductivity and framework architecture in MOF-5. Computational Materials Science, 2014, 94, 292-297.	1.4	49
3496	Effect of electrostatic properties of IRMOFs on VOCs adsorption: a density functional theory study. Adsorption, 2014, 20, 777-788.	1.4	9
3497	Molecular simulations in metal–organic frameworks for diverse potential applications. Molecular Simulation, 2014, 40, 516-536.	0.9	31
3498	Selfâ€Assembly of Molecular Borromean Rings from Bimetallic Coordination Rectangles. Angewandte Chemie - International Edition, 2014, 53, 11218-11222.	7.2	125
3499	Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. Chemical Society Reviews, 2014, 43, 5896-5912.	18.7	721
3500	Interpenetrated (8,3)-c and (10,3)-b Metal–Organic Frameworks Based on {Fe ^{III} ₃ } and {Fe ^{III} ₂ Co ^{II} } Pivalate Spin Clusters. Crystal Growth and Design, 2014, 14, 4721-4728.	1.4	19
3501	Organic Cation Templated Synthesis of Three Zinc–2,5-Thiophenedicarboxylate Frameworks for Selective Gas Sorption. Crystal Growth and Design, 2014, 14, 3493-3498.	1.4	19
3502	Cascade Reactions Catalyzed by Metal Organic Frameworks. ChemSusChem, 2014, 7, 2392-2410.	3.6	164
3503	Extended and functionalized porous iron(iii) tri- or dicarboxylates with MIL-100/101 topologies. Chemical Communications, 2014, 50, 6872.	2.2	93
3504	Synthesis, structure, and characterization of two Zn(II) complex containing two-dimensional bilayer structure. Journal of Molecular Structure, 2014, 1075, 7-11.	1.8	4
3505	Co(II)-doped MOF-5 nano/microcrystals: Solvatochromic behaviour, sensing solvent molecules and gas sorption property. Journal of Solid State Chemistry, 2014, 218, 50-55.	1.4	47
3506	Perspective of microporous metal–organic frameworks for CO ₂ capture and separation. Energy and Environmental Science, 2014, 7, 2868.	15.6	693
3507	Anion-directed self-assembly of Cu(ii) coordination compounds with tetrazole-1-acetic acid: syntheses in ionic liquids and crystal structures. New Journal of Chemistry, 2014, 38, 269-276.	1.4	46
3508	A Two-Column Method for the Separation of Kr and Xe from Process Off-Gases. Industrial & Engineering Chemistry Research, 2014, 53, 12893-12899.	1.8	65
3509	Solution and Mechanochemical Syntheses of Two Novel Cocrystals: Ligand Length Modulated Interpenetration of Hydrogen-Bonded 2D 6 ³ -hcb Networks Based on a Robust Trimeric Heterosynthon. Crystal Growth and Design, 2014, 14, 1221-1226.	1.4	29

#	Article	IF	CITATIONS
3510	Hosting Various Guests Including Fullerenes and Free Radicals in Versatile Organic Paramagnetic bTbk Open Frameworks. Crystal Growth and Design, 2014, 14, 467-476.	1.4	12
3511	The Potential Applications of Nanoporous Materials for the Adsorption, Separation, and Catalytic Conversion of Carbon Dioxide. Advanced Energy Materials, 2014, 4, 1301873.	10.2	165
3512	Transmetalation of a Dodecahedral Na ₉ Aggregate-Based Polymer: A Facile Route to Water Stable Cu(II) Coordination Networks. Inorganic Chemistry, 2014, 53, 7446-7454.	1.9	30
3513	Methane storage in metal–organic frameworks. Chemical Society Reviews, 2014, 43, 5657-5678.	18.7	1,449
3514	Synthesis, Crystal Structures, Magnetic, and Thermal Properties of Divalent Metal Formate–Formamide Layered Compounds Inorganic Chemistry, 2014, 53, 244-256.	1.9	13
3515	Isoreticular Investigation into the Formation of Four New Zinc Alkylbisphosphonate Families. Crystal Growth and Design, 2014, 14, 3612-3622.	1.4	8
3516	Synthesis, Structure, and Thermal Stability of Silver(I) Coordination Polymers with Bis(pyridyl) Ligands Linked by an Aromatic Sulfonamide: One-Dimensional-Straight Chain, One-Dimensional-Columnar with Helical Components, and Two-Dimensional-Layer Network Structures, Crystal Growth and Design, 2014, 14, 199-206.	1.4	23
3517	Construction of Zn(II) microporous metal–organic frameworks based on 1,1′-ethynebenzene-3,3′,5,5′-tetracarboxylate. Inorganic Chemistry Communication, 2014, 47, 102-107.	1.8	7
3518	Alkaline cation directed structural diversity of cubic-cage-based cobalt(ii) metal–organic frameworks: from pcu to bct net. CrystEngComm, 2014, 16, 7133.	1.3	16
3519	Guest Adsorption in the Nanoporous Metal–Organic Framework Cu3(1,3,5-Benzenetricarboxylate)2: Combined In Situ X-ray Diffraction and Vapor Sorption. Chemistry of Materials, 2014, 26, 4712-4723.	3.2	26
3520	Substitution reactions in metal–organic frameworks and metal–organic polyhedra. Chemical Society Reviews, 2014, 43, 5952-5981.	18.7	204
3521	Recent advances in solid sorbents for CO ₂ capture and new development trends. Energy and Environmental Science, 2014, 7, 3478-3518.	15.6	953
3522	Can Metal–Organic Frameworks Attain New DOE Targets for On-Board Methane Storage by Increasing Methane Heat of Adsorption?. Journal of Physical Chemistry C, 2014, 118, 19833-19841.	1.5	36
3523	Cd(II)-MOF: Adsorption, Separation, and Guest-Dependent Luminescence for Monohalobenzenes. Inorganic Chemistry, 2014, 53, 9087-9094.	1.9	40
3524	Sodium dodecyl sulfate-assisted synthesis of hierarchically porous ZIF-8 particles for removing mercaptan from gasoline. Chemical Engineering Journal, 2014, 256, 14-22.	6.6	62
3525	Postsynthetic modification of an amino-tagged MOF using peptide coupling reagents: a comparative study. Chemical Communications, 2014, 50, 11472-11475.	2.2	56
3526	Syntheses, structures and fluorescent properties of cadmium coordination polymers based on 2,3′,5,5′-biphenyl tetracarboxylate and N-donor ancillary ligands. Polyhedron, 2014, 83, 159-166.	1.0	18
3527	Pyrolytic cavitation, selective adsorption and molecular recognition of a porous Eu(iii) MOF. Dalton Transactions, 2014, 43, 15305-15307.	1.6	17

#	Article	IF	CITATIONS
3528	A DIH-based equation for separation of CO2–CH4 in metal–organic frameworks and covalent–organic materials. Journal of Materials Chemistry A, 2014, 2, 11341.	5.2	28
3529	Hydrogen Storage with Spectroscopic Identification of Chemisorption Sites in Cu-TDPAT via Spillover from a Pt/Activated Carbon Catalyst. Journal of Physical Chemistry C, 2014, 118, 26750-26763.	1.5	20
3530	Zeolites with Continuously Tuneable Porosity. Angewandte Chemie - International Edition, 2014, 53, 13210-13214.	7.2	104
3531	Topotactic Transformations of Metal–Organic Frameworks to Highly Porous and Stable Inorganic Sorbents for Efficient Radionuclide Sequestration. Chemistry of Materials, 2014, 26, 5231-5243.	3.2	107
3532	The syntheses, structures, magnetic and luminescent properties of five new lanthanide(III)–2,6-naphthalenedicarboxylate complexes. Inorganic Chemistry Communication, 2014, 48, 73-76.	1.8	9
3533	Metal–Organic Frameworks for Oxygen Storage. Angewandte Chemie - International Edition, 2014, 53, 14092-14095.	7.2	106
3534	Synthesis and hydrogen adsorption properties of internally polarized 2,6-azulenedicarboxylate based metal–organic frameworks. Journal of Materials Chemistry A, 2014, 2, 18823-18830.	5.2	29
3535	Facile fabrication of porous CL-20 for low sensitivity high explosives. Physical Chemistry Chemical Physics, 2014, 16, 23540-23543.	1.3	14
3536	Molecular simulations of physical and chemical adsorption under gas and liquid environments using force field- and quantum mechanics-based methods. Molecular Simulation, 2014, 40, 678-689.	0.9	9
3537	Four two-dimensional lanthanide(III)-4,4-biphenyldicarboxylate complexes: Syntheses, structures, magnetic and luminescent properties. Inorganic Chemistry Communication, 2014, 49, 120-123.	1.8	4
3538	Kinetic Trapping of D ₂ in MIL-53(Al) Observed Using Neutron Scattering. Journal of Physical Chemistry C, 2014, 118, 18197-18206.	1.5	19
3539	Effect of Functionalized Groups on Gasâ€Adsorption Properties: Syntheses of Functionalized Microporous Metal–Organic Frameworks and Their High Gasâ€Storage Capacity. Chemistry - A European Journal, 2014, 20, 1341-1348.	1.7	46
3540	Mesoporous non-siliceous inorganic–organic hybrids: a promising platform for designing multifunctional materials. New Journal of Chemistry, 2014, 38, 1905-1922.	1.4	48
3541	Transferable Force Field for Metal–Organic Frameworks from First-Principles: BTW-FF. Journal of Chemical Theory and Computation, 2014, 10, 4644-4652.	2.3	93
3542	Ligand Redox Non-innocence in the Stoichiometric Oxidation of Mn ₂ (2,5-dioxidoterephthalate) (Mn-MOF-74). Journal of the American Chemical Society, 2014, 136, 3334-3337.	6.6	87
3543	Highly selective carbon dioxide uptake by a microporous kgm-pillared metal–organic framework with acylamide groups. CrystEngComm, 2014, 16, 5520.	1.3	21
3544	An unprecedented 2D Cd(II) coordination polymer with 3,6 connected binodal net of pyrimidine derived schiff base ligand: Synthesis, crystal structure and spectral studies. Inorganic Chemistry Communication, 2014, 49, 76-78.	1.8	8
3545	Discrete metal-carboxylate self-assembled cages: Design, synthesis and applications. Coordination Chemistry Reviews, 2014, 280, 1-27.	9.5	164

#	Article		CITATIONS
3546	A Metal–Organic Framework Containing Unusual Eight onnected Zr–Oxo Secondary Building Units and Orthogonal Carboxylic Acids for Ultraâ€sensitive Metal Detection. Chemistry - A European Journal, 2014, 20, 14965-14970.	1.7	58
3547	From metal–organic framework to carbon: toward controlled hierarchical pore structures via a double-template approach. Chemical Communications, 2014, 50, 13502-13505.	2.2	47
3548	Synergistic Assembly of Heavy Metal Clusters and Luminescent Organic Bridging Ligands in Metal–Organic Frameworks for Highly Efficient X-ray Scintillation. Journal of the American Chemical Society, 2014, 136, 6171-6174.	6.6	198
3549	Synthesis, Crystal Structure and Fluorescence Properties of Three 1-D Coordination Polymers Based on Fluconazole. Journal of Chemical Crystallography, 2014, 44, 312-319.	0.5	3
3550	Sulfonyl chlorides as an efficient tool for the postsynthetic modification of Cr-MIL-101-SO ₃ H and CAU-1-NH ₂ . Chemical Communications, 2014, 50, 9306-9308.	2.2	20
3551	Mechanochemical synthesis and characterisation of two new bismuth metal organic frameworks. CrystEngComm, 2014, 16, 5560-5565.	1.3	34
3552	Exploiting Weak Noncovalent Cation··ÄE Interaction for Designing a Molecular Container for Storage of Methane Molecules with Lithiated Carbene Superbases. Journal of Physical Chemistry C, 2014, 118, 6680-6689.	1.5	12
3553	Metal phosphonate hybrid materials: from densely layered to hierarchically nanoporous structures. Inorganic Chemistry Frontiers, 2014, 1, 360-383.	3.0	134
3554	Ferrocene in the metal–organic framework MOF-5 studied by homo- and heteronuclear correlation NMR and MD simulation. Microporous and Mesoporous Materials, 2014, 186, 130-136.	2.2	5
3555	Three-Dimensional Extended Frameworks Constructed from Dinuclear Lanthanide(III) 1,4-Naphthalenedicarboxylate Units with Bis(2,2′-biimidazole) Templates: Syntheses, Structures, and Magnetic and Luminescent Properties. Crystal Growth and Design, 2014, 14, 1684-1694.	1.4	28
3556	A Microporous Anionic Metal–Organic Framework for Sensing Luminescence of Lanthanide(III) Ions and Selective Absorption of Dyes by Ionic Exchange. Chemistry - A European Journal, 2014, 20, 5625-5630.	1.7	154
3557	Molecular Complexes of 4-Halophenylboronic Acids: A Systematic Exploration of Isostructurality and Structural Landscape. Crystal Growth and Design, 2014, 14, 4143-4154.	1.4	32
3558	A supermolecular building approach for the design and construction of metal–organic frameworks. Chemical Society Reviews, 2014, 43, 6141-6172.	18.7	708
3559	Molecular simulation of gas adsorption and diffusion in a breathing MOF using a rigid force field. Physical Chemistry Chemical Physics, 2014, 16, 16060-16066.	1.3	31
3560	Controlling the Crystallization of Porous Organic Cages: Molecular Analogs of Isoreticular Frameworks Using Shape-Specific Directing Solvents. Journal of the American Chemical Society, 2014, 136, 1438-1448.	6.6	122
3561	MOF-based electronic and opto-electronic devices. Chemical Society Reviews, 2014, 43, 5994-6010.	18.7	1,145
3562	Tetrahedral node diamondyne frameworks for CO2 adsorption and separation. Journal of Materials Chemistry A, 2014, 2, 4899.	5.2	16
3563	A zirconium squarate metal–organic framework with modulator-dependent molecular sieving properties. Chemical Communications, 2014, 50, 10055-10058.	2.2	64

#	Article	IF	CITATIONS
3564	A Porous Metal–Organic Framework with Dynamic Pyrimidine Groups Exhibiting Record High Methane Storage Working Capacity. Journal of the American Chemical Society, 2014, 136, 6207-6210.	6.6	311
3565	Polyurea networks via organic sol–gel crosslinking polymerization of tetrafunctional amines and diisocyanates and their selective adsorption and filtration of carbon dioxide. Polymer Chemistry, 2014, 5, 1124.	1.9	35
3566	Heterometal–organic framework with pcu net constructed from mixed linear ligands. CrystEngComm, 2014, 16, 4091-4094.	1.3	9
3567	Network Flexibility: Control of Gate Opening in an Isostructural Series of Ag-MOFs by Linker Substitution. Inorganic Chemistry, 2014, 53, 7599-7607.	1.9	32
3568	Exploration of Chemically Cross-Linked Metal–Organic Frameworks. Inorganic Chemistry, 2014, 53, 7014-7019.	1.9	29
3569	In Situ One-Step Synthesis of Hierarchical Nitrogen-Doped Porous Carbon for High-Performance Supercapacitors. ACS Applied Materials & amp; Interfaces, 2014, 6, 7214-7222.	4.0	306
3570	Heteronuclear lanthanide-based coordination polymers exhibiting tunable multiple emission spectra. Journal of Materials Chemistry C, 2014, 2, 5510.	2.7	44
3571	Tuning Regioisomer Reactivity in Catalysis using Bifunctional Metal–Organic Frameworks with Mixed Linkers. ChemCatChem, 2014, 6, 1887-1891.	1.8	19
3572	The influence of the enantiomeric ratio of an organic ligand on the structure and chirality of metal–organic frameworks. Chemical Communications, 2014, 50, 13829-13832.	2.2	30
3573	Nitrosyl Complexes in Inorganic Chemistry, Biochemistry and Medicine II. Structure and Bonding, 2014,	1.0	10
3574	Stability and hydrogen adsorption of metal–organic frameworks prepared via different catalyst doping methods. Journal of Catalysis, 2014, 318, 128-142.	3.1	29
3575	Catalysis by metal–organic frameworks in water. Chemical Communications, 2014, 50, 12800-12814.	2.2	117
3576	IRMOF Thin Films Templated by Oriented Zinc Oxide Nanowires. Crystal Growth and Design, 2014, 14, 1506-1509.	1.4	15
3577	MOF positioning technology and device fabrication. Chemical Society Reviews, 2014, 43, 5513-5560.	18.7	600
3578	Synthesis and characterization of a pair of temperature and cosolvent-dependent Zn(II)-organic frameworks containing a novel discrete single-walled Zn(II)-organic coordination polymer nanotube. Journal of Coordination Chemistry, 2014, 67, 1596-1612.	0.8	10
3579	AuToGraFS: Automatic Topological Generator for Framework Structures. Journal of Physical Chemistry A, 2014, 118, 9607-9614.	1.1	67
3580	4,6-Connected fsb Topology Networks Obtained through Two-Step Crystal Engineering of Decorated Trigonal Prismatic Nodes. Crystal Growth and Design, 2014, 14, 2115-2117.	1.4	14
3581	Ln(IO3)3 (Ln = Ce, Nd, Eu, Gd, Er, Yb) Polycrystals As Novel Photocatalysts for Efficient Decontamination under Ultraviolet Light Irradiation. Inorganic Chemistry, 2014, 53, 4989-4993.	1.9	15

# 3582	ARTICLE Tailored design of palladium species grafted on an amino functionalized organozinc coordination polymer as a highly pertinent heterogeneous catalyst. Journal of Materials Chemistry A, 2014, 2,	IF 5.2	CITATIONS
3583	A Partially Fluorinated Threeâ€fold Interpenetrated Stable Metalâ€Organic Framework with Selective CO ₂ Uptake. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1134-1140.	0.6	9
3584	Multicomponent Assembly of Fluorescentâ€Tag Functionalized Ligands in Metal–Organic Frameworks for Sensing Explosives. Chemistry - A European Journal, 2014, 20, 13321-13336.	1.7	150
3585	High-Pressure Studies of Abnormal Guest-Dependent Expansion in {[Cu(CO ₃) ₂](CH ₆ N ₃) ₂ } _{<i>n</i>} . Journal of Physical Chemistry C, 2014, 118, 5848-5853.	1.5	21
3586	A new family of zinc metal–organic framework polymorphs containing anthracene tetracarboxylates. CrystEngComm, 2014, 16, 8937-8940.	1.3	14
3587	Experimental, DFT and quantum Monte Carlo studies of a series of peptide-based metal–organic frameworks: synthesis, structures and properties. Inorganic Chemistry Frontiers, 2014, 1, 526-533.	3.0	10
3588	Control of Metal–Organic Framework Crystal Topology by Ligand Functionalization: Functionalized HKUST-1 Derivatives. Crystal Growth and Design, 2014, 14, 6122-6128.	1.4	48
3589	Isostructural 1D coordination polymers of Zn(II), Cd(II) and Cu(II) with phenylpropynoic acid and DABCO as organic linkers. Journal of Molecular Structure, 2014, 1076, 280-284.	1.8	6
3590	Catalytic Glucose Isomerization by Porous Coordination Polymers with Open Metal Sites. Chemistry - an Asian Journal, 2014, 9, 2772-2777.	1.7	62
3591	Hollow Microporous Organic Capsules Loaded with Highly Dispersed Pt Nanoparticles for Catalytic Applications. Macromolecular Chemistry and Physics, 2014, 215, 1257-1263.	1.1	16
3592	M ₂ (<i>m</i> -dobdc) (M = Mg, Mn, Fe, Co, Ni) Metal–Organic Frameworks Exhibiting Increased Charge Density and Enhanced H ₂ Binding at the Open Metal Sites. Journal of the American Chemical Society, 2014, 136, 12119-12129.	6.6	207
3593	Connection of zinc paddle-wheels in a pto-type metal–organic framework with 2-methylimidazolate and subsequent incorporation of charged organic guests. Chemical Communications, 2014, 50, 6785-6788.	2.2	8
3594	One-pot synthesis of a metal–organic framework as an anode for Li-ion batteries with improved capacity and cycling stability. Journal of Solid State Chemistry, 2014, 210, 121-124.	1.4	152
3595	Zinc(ii) coordination polymers with substituted benzenedicarboxylate and tripodal imidazole ligands: syntheses, structures and properties. CrystEngComm, 2014, 16, 7536.	1.3	59
3596	Hybrid Materials â \in " Past, Present and Future Hybrid Materials, 2014, 1, .	0.7	26
3597	Dielectric Properties of Selected Metal–Organic Frameworks. Journal of Physical Chemistry C, 2014, 118, 11799-11805.	1.5	40
3598	Toward Efficient Drug Delivery through Suitably Prepared Metal–Organic Frameworks: A First-Principles Study. Journal of Physical Chemistry C, 2014, 118, 8885-8890.	1.5	37
3599	Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Crystal Growth and Design, 2014, 14, 3576-3586.	1.4	2,448

#	Article	IF	CITATIONS
3600	Syntheses, structures and luminescent properties of six divalent metal terephthalate coordination polymers based on three new flexible bis(imidazole) ligands. CrystEngComm, 2014, 16, 7701-7710.	1.3	13
3601	Crystallographic studies of gas sorption in metal–organic frameworks. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2014, 70, 404-422.	0.5	79
3602	Functional materials derived from open framework templates/precursors: synthesis and applications. Energy and Environmental Science, 2014, 7, 2071.	15.6	619
3603	Biomass-derived highly porous functional carbon fabricated by using a free-standing template for efficient removal of methylene blue. Bioresource Technology, 2014, 154, 138-147.	4.8	136
3604	Self-assembly and structures of new lanthanide coordination polymers with 1,3-phenylenebis(oxy)diacetic acid. Polyhedron, 2014, 72, 83-89.	1.0	8
3605	Mixed matrix membranes incorporated with cubic-MOF-5 for improved polyetherimide gas separation membranes: Theory and experiment. Journal of Industrial and Engineering Chemistry, 2014, 20, 3857-3868.	2.9	89
3606	Dinuclear copper(II) complexes bridged by imidazole-4,5-dicarboxylate. Inorganic Chemistry Communication, 2014, 43, 35-38.	1.8	18
3607	Ordered Mesoporous Metal–Organic Frameworks Incorporated with Amorphous TiO ₂ As Photocatalyst for Selective Aerobic Oxidation in Sunlight Irradiation. ACS Catalysis, 2014, 4, 1398-1403.	5.5	136
3608	Tuning the structure and function of metal–organic frameworks via linker design. Chemical Society Reviews, 2014, 43, 5561-5593.	18.7	1,792
3609	Hexaphenylâ€ <i>p</i> â€xylene: A Rigid Pseudoâ€Octahedral Core at the Service of Threeâ€Dimensional Porous Frameworks. ChemPlusChem, 2014, 79, 1176-1182.	1.3	8
3610	Anion-Controlled Dielectric Behavior of Homochiral Tryptophan-Based Metal–Organic Frameworks. Crystal Growth and Design, 2014, 14, 1572-1579.	1.4	54
3611	Swellable, Water- and Acid-Tolerant Polymer Sponges for Chemoselective Carbon Dioxide Capture. Journal of the American Chemical Society, 2014, 136, 9028-9035.	6.6	201
3612	Novel Isopolyoxotungstate [H2W11O38]8– Based Metal Organic Framework: As Lewis Acid Catalyst for Cyanosilylation of Aromatic Aldehydes. Inorganic Chemistry, 2014, 53, 6107-6112.	1.9	55
3613	Water adsorption in MOFs: fundamentals and applications. Chemical Society Reviews, 2014, 43, 5594-5617.	18.7	1,094
3614	Putting the Squeeze on CH ₄ and CO ₂ through Control over Interpenetration in Diamondoid Nets. Journal of the American Chemical Society, 2014, 136, 5072-5077.	6.6	106
3615	Redox chemistry and metal–insulator transitions intertwined in a nano-porous material. Nature Communications, 2014, 5, 4032.	5.8	12
3616	Two-Dimensional 3d–4f Heterometallic Coordination Polymers: Syntheses, Crystal Structures, and Magnetic Properties of Six New Co(II)–Ln(III) Compounds. Inorganic Chemistry, 2014, 53, 6299-6308.	1.9	20
3617	Engineering of Band Gap in Metal–Organic Frameworks by Functionalizing Organic Linker: A Systematic Density Functional Theory Investigation. Journal of Physical Chemistry C, 2014, 118, 4567-4577	1.5	97

		CITATION RE	PORT	
#	Article		IF	CITATIONS
3618	Metal-Organic Frameworks for Photonics Applications. Structure and Bonding, 2014, ,		1.0	26
3619	Flexible metal–organic frameworks. Chemical Society Reviews, 2014, 43, 6062-6096		18.7	1,741
3620	From Metal–Organic Framework to Intrinsically Fluorescent Carbon Nanodots. Cherr European Journal, 2014, 20, 8279-8282.	nistry - A	1.7	68
3621	Selective Separation of BTEX Mixtures Using Metal–Organic Frameworks. Journal of Chemistry C, 2014, 118, 13126-13136.	Physical	1.5	28
3622	Syntheses, Crystal Structures, and Magnetic Properties of Metal–Organic Hybrid Ma Mn(II)/Co(II): Three-Fold Interpenetrated α-Polonium-like Network in One of Them. Cry Design, 2014, 14, 3276-3285.	terials of stal Growth and	1.4	34
3623	A dual functional porous NbO-type metal–organic framework decorated with acylam selective sorption and catalysis. Inorganic Chemistry Communication, 2014, 46, 226-2	ide groups for 28.	1.8	19
3624	Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper m framework. Journal of Colloid and Interface Science, 2014, 430, 78-84.	.etal–organic	5.0	84
3625	Self-assembly of Terbium(III)-based metal–organic complexes with two-photon absor Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 133, 13	bing active. 34-140.	2.0	3
3627	In situ synthesis of zeolitic imidazolate frameworks/carbon nanotube composites with adsorption. Dalton Transactions, 2014, 43, 7028.	enhanced CO2	1.6	108
3628	Two new 3-D Cd(II) metal–organic frameworks based on flexible cyclohexane-1,2,4,5 acid ligand. Inorganica Chimica Acta, 2014, 421, 38-44.	-tetracarboxylic	1.2	5
3629	A Y-doped metal-organic framework-based cataluminescence gas sensor for isobutano Actuators B: Chemical, 2014, 201, 413-419.	. Sensors and	4.0	43
3630	Antimicrobial activity of cobalt imidazolate metal–organic frameworks. Chemospher 188-192.	e, 2014, 113,	4.2	126
3631	Synthesis, characterization and preliminary reactivity behaviors with transitional metal polydentate N-donor ligand. Journal of Molecular Structure, 2014, 1068, 237-244.	s of a new	1.8	7
3632	The structures and properties of the new two-dimensional inorganic–organic hybrid on the molybdate chains. Journal of Solid State Chemistry, 2014, 217, 180-186.	materials based	1.4	3
3633	Multirate delivery of multiple therapeutic agents from metal-organic frameworks. APL 1 2, .	Vaterials, 2014,	2.2	58
3634	Enhanced Methane Sorption in Densified Forms of a Porous Polymer Network. Materia Applications, 2014, 05, 387-394.	ls Sciences and	0.3	7
3635	Preparation of a Magnetic Metal Organic Framework Composite and Its Application for of Methyl Parathion. Analytical Sciences, 2014, 30, 663-668.	• the Detection	0.8	15
3636	Melting Point Elevation of Tetramethylsilane Confined in a Zn-Based Metal–Organic Chemistry Letters, 2014, 43, 423-425.	Framework.	0.7	1

#	Article	IF	CITATIONS
3637	First In Situ NMR Observation of Hydrogen Adsorbed inside [Cu3(btc)2] at Ambient Temperature and Pressure. Chemistry Letters, 2014, 43, 1363-1364.	0.7	1
3639	Capillary electrochromatographic fast enantioseparation based on a chiral metal–organic framework. Electrophoresis, 2014, 35, 3541-3548.	1.3	43
3640	Oneâ€Dimensional Channels Encapsulated in Supramolecular Networks Constructed of Zinc(II), Manganese(II), or ÂNickel(II) Atoms with 3â€(Carboxymethyl)â€2, 7â€dimethylâ€3Hâ€benzo[d]imidazoleâ€5â€ca Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 159-167.	anobooxylic	2
3643	Preparation of ZIF-69 membranes for gasoline vapor recovery. Journal of Porous Materials, 2015, 22, 1195-1203.	1.3	12
3644	Two isoreticular pillared-layer frameworks as stationary phases for gas chromatographic applications – Unusual peak broadening in size exclusion chromatography, determination of thermodynamic and kinetic data. Microporous and Mesoporous Materials, 2015, 216, 82-91.	2.2	4
3645	Cobalt and nickel coordination polymers containing 3-pyridylnicotinamide and five-membered ring dicarboxylates. Journal of Coordination Chemistry, 2015, 68, 2029-2040.	0.8	4
3646	Classical density functional theory for methane adsorption in metalâ€organic framework materials. AICHE Journal, 2015, 61, 3012-3021.	1.8	34
3647	A novel 3D energetic coordination polymer containing Co(II) atoms in a pentanuclear cluster. Journal of Structural Chemistry, 2015, 56, 1136-1142.	0.3	0
3649	Electronics material and electrical engineering. , 2015, , 409-470.		0
3650	Microwave-assisted synthesis of mesoporous metal-organic framework NH2—MIL-101(Al). Russian Chemical Bulletin, 2015, 64, 2791-2795.	0.4	20
3651	Graphene oxide as an optimal candidate material for methane storage. Journal of Chemical Physics, 2015, 143, 044704.	1.2	13
3653	Homochiral metal-organic framework [Zn ₂ (i>nd-Cam) ₂ (4,4′-bpy)] _{<i>n</i>} for high-resolution gas chromatographic separations. Acta Chromatographica, 2015, 27, 15-26.	0.7	20
3654	Recent Developments in Membrane Technologies for CO2 Separation. , 2015, , 85-133.		2
3656	Hydrothermal synthesis, structure and property of transition metal(Mn, Zn, Cd or Pb) coordination frameworks using quinoline-8-oxy-acetate acid and dicarboxylic acid as ligands. Chemical Research in Chinese Universities, 2015, 31, 489-497.	1.3	7
3657	Znâ€MOFs Containing Pyridine and BiÂpyridine Carboxylate Organic Linkers and Open Zn ²⁺ Sites. European Journal of Inorganic Chemistry, 2015, 2015, 3011-3018.	1.0	24
3658	Metal―and Substituentâ€Dependent Structural Diversity in ÂCobalt and Nickel Isophthalate Coordination Polymers with Bis(4â€pyridylformyl)piperazine Tethers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 1357-1365.	0.6	2
3659	Metal–Organic Frameworks with Boronic Acid Suspended and Their Implication for <i>cis</i> â€Điol Moieties Binding. Advanced Functional Materials, 2015, 25, 3847-3854.	7.8	59
3664	Atomic Observations of Microporous Materials Highly Unstable under the Electron Beam: The Cases of Tiâ€Doped AlPO ₄ â€5 and Zn–MOFâ€74. ChemCatChem, 2015, 7, 3719-3724.	1.8	38

#	Article	IF	CITATIONS
3665	Adsorptive Separation of Acetylene from Light Hydrocarbons by Mesoporous Iron Trimesate MILâ€100(Fe). Chemistry - A European Journal, 2015, 21, 18431-18438.	1.7	51
3666	Understanding Smallâ€Molecule Interactions in Metal–Organic Frameworks: Coupling Experiment with Theory. Advanced Materials, 2015, 27, 5785-5796.	11.1	33
3668	Confinement of Ionic Liquids in Nanocages: Tailoring the Molecular Sieving Properties of ZIFâ€8 for Membraneâ€Based CO ₂ Capture. Angewandte Chemie - International Edition, 2015, 54, 15483-15487.	7.2	303
3670	Clicked Isoreticular Metal–Organic Frameworks and Their High Performance in the Selective Capture and Separation of Large Organic Molecules. Angewandte Chemie - International Edition, 2015, 54, 12748-12752.	7.2	99
3671	Methane Storage in a Hydrated Form as Promoted by Leucines for Possible Application to Natural Gas Transportation and Storage. Energy Technology, 2015, 3, 815-819.	1.8	139
3673	Ligand Symmetry Modulation for Designing a Mesoporous Metal–Organic Framework: Dual Reactivity to Transition and Lanthanide Metals for Enhanced Functionalization. Chemistry - A European Journal, 2015, 21, 9713-9719.	1.7	59
3674	The Syntheses, Structures, and Magnetic Properties of Four 2D Lanthanide(III)â€naphthalenedicarboxylic Complexes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 2408-2413.	0.6	4
3675	Metal Ion Induced Assembly of Two Coordination Polymers with Different Topological Nets: Syntheses, Crystal Structures, and Luminescent Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 1987-1990.	0.6	3
3676	Theoretical Insights into the Tuning of Metal Binding Sites of Paddlewheels in <i>rht</i> â€Metal–Organic Frameworks. ChemPhysChem, 2015, 16, 3170-3179.	1.0	14
3677	Coordination Assembly of Discoid Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 8966-8970.	7.2	25
3678	Exploiting Largeâ€Pore Metal–Organic Frameworks for Separations through Entropic Molecular Mechanisms. ChemPhysChem, 2015, 16, 2046-2067.	1.0	27
3680	Three Series of Sulfoâ€Functionalized Mixedâ€Linker CAUâ€10 Analogues: Sorption Properties, Proton Conductivity, and Catalytic Activity. Chemistry - A European Journal, 2015, 21, 12517-12524.	1.7	49
3681	An Ideal Detector Composed of Twoâ€Dimensional Cd(II)–Triazole Frameworks for Nitroâ€Compound Explosives and Potassium Dichromate. Chemistry - A European Journal, 2015, 21, 14171-14178.	1.7	42
3682	Synthesis of Two Coordination Polymer Photocatalysts and Significant Enhancement of Their Catalytic Photodegradation Activity by Doping with Co2+Ions. European Journal of Inorganic Chemistry, 2015, 2015, 1981-1988.	1.0	22
3683	Synthesis, Characterization, Stability, and Gas Adsorption Characteristics of a Highly Stable Zirconium Mesaconate Framework Material. European Journal of Inorganic Chemistry, 2015, 2015, 3317-3322.	1.0	19
3684	A Series of Multifunctional Metal–Organic Frameworks Showing Excellent Luminescent Sensing, Sensitization, and Adsorbent Abilities. Chemistry - A European Journal, 2015, 21, 11475-11482.	1.7	219
3685	Luminescenceâ€Functionalized Metal–Organic Frameworks Based on a Ruthenium(II) Complex: A Signal Amplification Strategy for Electrogenerated Chemiluminescence Immunosensors. Chemistry - A European Journal, 2015, 21, 9825-9832.	1.7	69
3686	A Nitroâ€Functionalized Metal–Organic Framework as a Reactionâ€Based Fluorescence Turnâ€On Probe for Rapid and Selective H ₂ S Detection. Chemistry - A European Journal, 2015, 21, 9994-9997.	1.7	93

#	Article	IF	CITATIONS
3687	Gas Sorption Properties of Isostructural Coâ€MOFs Containing Dipyridylporphyrin Linkers with Different Substituents at the 10,20â€ <i>meso</i> â€Positions. European Journal of Inorganic Chemistry, 2015, 2015, 2989-2995.	1.0	6
3688	Ultraâ€Tuning of the Rareâ€Earth fcuâ€MOF Aperture Size for Selective Molecular Exclusion of Branched Paraffins. Angewandte Chemie - International Edition, 2015, 54, 14353-14358.	7.2	222
3690	The Influence of Cu ₃ (BTC) ₂ metal organic framework on the permeability and permâ€selectivity of PLLAâ€MOF mixed matrix membranes. Journal of Applied Polymer Science, 2015, 132, .	1.3	14
3691	A novel mixed-ligand coordination polymer with pillared-layer & ladder like structure: synthesis, crystal structure, properties study, and application as sorbent for acetaminophen extraction. International Journal of Basic and Applied Sciences, 2015, 4, 183-192.	0.2	3
3692	Carboxylated dithiafulvenes and tetrathiafulvalene vinylogues: synthesis, electronic properties, and complexation with zinc ions. Beilstein Journal of Organic Chemistry, 2015, 11, 957-965.	1.3	8
3693	Synthesis of Framework Isomer MOFs Containing Zinc and 4-Tetrazolyl Benzenecarboxylic Acid via a Structure Directing Solvothermal Approach. Crystals, 2015, 5, 193-205.	1.0	6
3694	Porous Materials for Hydrolytic Dehydrogenation of Ammonia Borane. Materials, 2015, 8, 4512-4534.	1.3	22
3695	Post-Synthetic Shaping of Porosity and Crystal Structure of Ln-Bipy-MOFs by Thermal Treatment. Molecules, 2015, 20, 12125-12153.	1.7	14
3696	Computer-Aided Search for Materials to Store Natural Gas for Vehicles. Frontiers for Young Minds, 2015, 3, .	0.8	2
3697	Coordination and Crystallization Molecules: Their Interactions Affecting the Dimensionality of Metalloporphyrinic SCFs. Molecules, 2015, 20, 6683-6699.	1.7	18
3698	Review of Solid State Hydrogen Storage Methods Adopting Different Kinds of Novel Materials. Journal of Nanomaterials, 2015, 2015, 1-18.	1.5	69
3699	Metal–organic framework MIL-101(Cr) as a sorbent of porous membrane-protected micro-solid-phase extraction for the analysis of six phthalate esters from drinking water: a combination of experimental and computational study. Analyst, The, 2015, 140, 5308-5316.	1.7	89
3700	Multi-responsive metal–organic lantern cages in solution. Chemical Communications, 2015, 51, 5077-5080.	2.2	60
3701	Three luminescent metal–organic frameworks constructed from trinuclear zinc(<scp>ii</scp>) clusters and furan-2,5-dicarboxylate. CrystEngComm, 2015, 17, 5101-5109.	1.3	32
3702	In silico prediction of MOFs with high deliverable capacity or internal surface area. Physical Chemistry Chemical Physics, 2015, 17, 11962-11973.	1.3	33
3703	Auxiliary Ligand-Assisted Structural Variation of Cd(II) Metal–Organic Frameworks Showing 2D → 3D Polycatenation and Interpenetration: Synthesis, Structure, Luminescence Properties, and Selective Sensing of Trinitrophenol. Crystal Growth and Design, 2015, 15, 3356-3365.	1.4	125
3704	lsoreticular isomerism in 4,4-connected paddle-wheel metal–organic frameworks: structural prediction by the reverse topological approach. CrystEngComm, 2015, 17, 344-352.	1.3	30
3705	Metal-Organic Frameworks as Platforms for Hydrogen Generation from Chemical Hydrides. Green Chemistry and Sustainable Technology, 2015, , 421-467.	0.4	0

#	Article	IF	CITATIONS
3706	Synthesis, Crystal Structure and Characterizations of a Novel Open-Framework Lanthanide Imidazoledicarboxylate. Advanced Materials Research, 2015, 1088, 305-308.	0.3	0
3707	Facile synthesis and gas adsorption behavior of new functionalized Al-MIL-101-X (XÂ= –CH3, –NO2,) Tj ETQq1 91-97.	. 1 0.7843 2.2	914 rgBT /0 29
3708	Microwave-assisted large scale synthesis of lanthanide metal–organic frameworks (Ln-MOFs), having a preferred conformation and photoluminescence properties. Dalton Transactions, 2015, 44, 11954-11962.	1.6	70
3709	Observing the Growth of Metal–Organic Frameworks by <i>in Situ</i> Liquid Cell Transmission Electron Microscopy. Journal of the American Chemical Society, 2015, 137, 7322-7328.	6.6	207
3710	Methane capture at room temperature: adsorption on cubic δ-MoC and orthorhombic β-Mo ₂ C molybdenum carbide (001) surfaces. RSC Advances, 2015, 5, 33737-33746.	1.7	18
3711	Metal organic frameworks from extended, conjugated pentiptycene-based ligands. CrystEngComm, 2015, 17, 4912-4918.	1.3	13
3712	Synthesis and photocatalytic activity of N-K ₂ Ti ₄ O ₉ /UiO-66 composites. RSC Advances, 2015, 5, 53198-53206.	1.7	2
3713	Crystallographic analysis of a series of inorganic compounds. Russian Chemical Reviews, 2015, 84, 393-421.	2.5	40
3714	Adsorption of Gases in Nanomaterials: Theory and Simulations. Progress in Optical Science and Photonics, 2015, , 121-140.	0.3	0
3715	Flexible Solid Sorbents for CO2 CaptureÂand Separation. , 2015, , 149-176.		2
3716	Thermally-promoted post-synthetic Pummerer chemistry in a sulfoxide-functionalized metal–organic framework. CrystEngComm, 2015, 17, 8858-8863.	1.3	9
3717	Preparation and catalytic applications of nanomaterials: a review. RSC Advances, 2015, 5, 53381-53403.	1.7	231
3718	Isoreticular bio-MOF 100–102 coated solid-phase microextraction fibers for fast and sensitive determination of organic pollutants by the pore structure dominated mechanism. Analyst, The, 2015, 140, 4384-4387.	1.7	41
3719	AuPd–MnO _x /MOF–Graphene: An Efficient Catalyst for Hydrogen Production from Formic Acid at Room Temperature. Advanced Energy Materials, 2015, 5, 1500107.	10.2	203
3720	Hydrogen Bonding in Supramolecular Crystal Engineering. Lecture Notes in Quantum Chemistry II, 2015, , 69-113.	0.3	6
3721	Organometallics and Related Molecules for Energy Conversion. Green Chemistry and Sustainable Technology, 2015, , .	0.4	4
3722	A series of isomorphous Metal-Organic Frameworks with rtl topology – Metal distribution and tunable sorption capacity via substitution of metal ions. Microporous and Mesoporous Materials, 2015, 216, 56-63.	2.2	12
3723	Zeolitic imidazolate framework membranes for gas separation: A review of synthesis methods and gas separation performance. Journal of Industrial and Engineering Chemistry, 2015, 28, 1-15.	2.9	129

			_
#	ARTICLE	IF	CITATIONS
3724	Microporous metal-organic frameworks with suitable pore spaces forAacetylene storage and purification. Microporous and Mesoporous Materials, 2015, 215, 109-115.	2.2	23
3725	Hydrogen storage: Materials, methods and perspectives. Renewable and Sustainable Energy Reviews, 2015, 50, 457-469.	8.2	697
3726	Infrared Imaging and Spectroscopy Beyond the Diffraction Limit. Annual Review of Analytical Chemistry, 2015, 8, 101-126.	2.8	213
3727	Complex three-dimensional lanthanide metal–organic frameworks with variable coordination spheres based on pyrazine-2,3,5,6-tetracarboxylate. CrystEngComm, 2015, 17, 5377-5388.	1.3	4
3728	Selective oxidation of cyclooctene over copper-containing metal-organic frameworks. Microporous and Mesoporous Materials, 2015, 216, 151-160.	2.2	36
3729	A urea decorated (3,24)-connected rht-type metal–organic framework exhibiting high gas uptake capability and catalytic activity. CrystEngComm, 2015, 17, 4632-4636.	1.3	33
3730	Influence of unlike dispersive interactions on methane adsorption in graphite: a grand canonical Monte Carlo simulation and classical density functional theory study. European Physical Journal B, 2015, 88, 1.	0.6	8
3731	Hierarchical Metal–Organic Framework Hybrids: Perturbation-Assisted Nanofusion Synthesis. Accounts of Chemical Research, 2015, 48, 3044-3052.	7.6	99
3732	Electronic Conductivity, Ferrimagnetic Ordering, and Reductive Insertion Mediated by Organic Mixed-Valence in a Ferric Semiquinoid Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 15703-15711.	6.6	329
3733	Crystal Engineering of Coordination Networks Using Multi-interactive Ligands. , 2015, , 223-240.		2
3734	Metalâ^'Organic Frameworks for Methane Storage. ACS Symposium Series, 2015, , 173-191.	0.5	3
3735	Structural studies of metal–organic frameworks under high pressure. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2015, 71, 587-607.	0.5	82
3736	Structural characterization, optical properties and photocatalytic activity of MOF-5 and its hydrolysis products: implications on their excitation mechanism. RSC Advances, 2015, 5, 73112-73118.	1.7	49
3737	Recent progress in the synthesis of metal–organic frameworks. Science and Technology of Advanced Materials, 2015, 16, 054202.	2.8	196
3738	A new organometallic complex based on the trimethyltin cation and 2,6-pyridinedicarboxylic acid as a potential anticancer agent. Polyhedron, 2015, 87, 383-389.	1.0	21
3739	Annulation of phenols with methylbutenol over MOFs: The role of catalyst structure and acid strength in producing 2,2-dimethylbenzopyran derivatives. Microporous and Mesoporous Materials, 2015, 202, 297-302.	2.2	13
3740	Controlled synthesis of tunable nanoporous carbons for gas storage and supercapacitor application. Microporous and Mesoporous Materials, 2015, 206, 127-135.	2.2	20
3741	Porous ZnCo ₂ O ₄ nanoparticles derived from a new mixed-metal organic framework for supercapacitors. Inorganic Chemistry Frontiers, 2015, 2, 177-183.	3.0	130

#	Article	IF	CITATIONS
3742	A New Class of Cuprous Bromide Cluster-Based Hybrid Materials: Direct Observation of the Stepwise Replacement of Hydrogen Bonds by Coordination Bonds. Inorganic Chemistry, 2015, 54, 554-559.	1.9	19
3743	Metal cluster-based functional porous coordination polymers. Coordination Chemistry Reviews, 2015, 293-294, 263-278.	9.5	234
3744	Application of Mechanosynthesized Azine-Decorated Zinc(II) Metal–Organic Frameworks for Highly Efficient Removal and Extraction of Some Heavy-Metal Ions from Aqueous Samples: A Comparative Study. Inorganic Chemistry, 2015, 54, 425-433.	1.9	209
3745	Fluorine magic: one new organofluorine linker leads to three new metal–organic frameworks. CrystEngComm, 2015, 17, 353-360.	1.3	26
3746	Chain, ladder and self-penetrated cobalt and nickel coordination polymers containing sterically bulky isophthalate and long-spanning dipyridylamide ligands. Inorganica Chimica Acta, 2015, 428, 65-72.	1.2	8
3747	Interpenetration in coordination polymers: structural diversities toward porous functional materials. Materials Today, 2015, 18, 97-116.	8.3	57
3748	Effect of modified linkers of MOF-5 on enhancing interaction energies: A theoretical study. Computational and Theoretical Chemistry, 2015, 1058, 28-33.	1.1	11
3749	Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. Journal of Materials Chemistry A, 2015, 3, 5014-5022.	5.2	283
3750	Syntheses, Characterizations, Luminescent Properties, and Controlling Interpenetration of Five Metal–Organic Frameworks Based on Bis(4-(pyridine-4-yl)phenyl)amine. Crystal Growth and Design, 2015, 15, 1303-1310.	1.4	31
3751	Site-Dependent Substitutions in Mixed-Metal Metal–Organic Frameworks: A Case Study and Guidelines for Analogous Systems. Chemistry of Materials, 2015, 27, 133-140.	3.2	18
3752	Mimic of the Green Fluorescent Protein β-Barrel: Photophysics and Dynamics of Confined Chromophores Defined by a Rigid Porous Scaffold. Journal of the American Chemical Society, 2015, 137, 2223-2226.	6.6	82
3753	Water adsorption in metal–organic frameworks with openâ€metal sites. AICHE Journal, 2015, 61, 677-687.	1.8	37
3754	Control of Interpenetration in Two-Dimensional Metal–Organic Frameworks by Modification of Hydrogen Bonding Capability of the Organic Bridging Subunits. Crystal Growth and Design, 2015, 15, 1336-1343.	1.4	32
3755	Luminescent lanthanide MOFs based on conjugated 1,1′-ethynebenzene-3,3′,5,5′-tetracarboxylate ligand syntheses, structures and photoluminescent properties. Dalton Transactions, 2015, 44, 5746-5754.	[:] 1.6	28
3756	Perceptive Approach in Assessing Rigidity versus Flexibility in the Construction of Diverse Metal–Organic Coordination Networks: Synthesis, Structure, and Magnetism. Crystal Growth and Design, 2015, 15, 1407-1421.	1.4	42
3757	Interaction of Biologically Important Organic Molecules with the Unsaturated Copper Centers of the HKUST-1 Metal–Organic Framework: an Ab-Initio Study. Journal of Physical Chemistry C, 2015, 119, 3024-3032.	1.5	23
3758	Functionalization of Cotton Fiber by Partial Etherification and Self-Assembly of Polyoxometalate Encapsulated in Cu ₃ (BTC) ₂ Metal–Organic Framework. ACS Applied Materials & Interfaces, 2015, 7, 3974-3980.	4.0	63
3759	Hysteretic Gas and Vapor Sorption in Flexible Interpenetrated Lanthanide-Based Metal–Organic Frameworks with Coordinated Molecular Gating via Reversible Single-Crystal-to-Single-Crystal Transformation for Enhanced Selectivity. Chemistry of Materials, 2015, 27, 1502-151 <u>6.</u>	3.2	76

щ		15	CITATIONS
Ŧ		IF	CHATIONS
3760	High-Surface-Area Carbon Derivatives. Journal of the American Chemical Society, 2015, 137, 2235-2238.	6.6	254
3761	Sonochemical synthesis of a new nano-sized cerium(III) coordination polymer and its conversion to nanoceria. Ultrasonics Sonochemistry, 2015, 26, 273-280.	3.8	25
3762	Halogen Bonded Three-Dimensional Uranyl–Organic Compounds with Unprecedented Halogen–Halogen Interactions and Structure Diversity upon Variation of Halogen Substitution. Crystal Growth and Design, 2015, 15, 1395-1406.	1.4	36
3763	Synthesis and energy applications of metal organic frameworks. Journal of Porous Materials, 2015, 22, 413-424.	1.3	17
3764	Reactions of Rare Earth Hydrated Nitrates and Oxides with Formamide: Relevant to Recycling Rare Earth Metals. Crystal Growth and Design, 2015, 15, 1119-1128.	1.4	11
3765	Extending the lanthanide–terephthalate system: Isolation of an unprecedented Tb(III)-based coordination polymer with high potential porosity and luminescence properties. Journal of Molecular Structure, 2015, 1086, 34-42.	1.8	27
3766	Metal–organic frameworks HKUST-1 as porous matrix for encapsulation of basic ionic liquid catalyst: effect of chemical behaviour of ionic liquid in solvent. Journal of Porous Materials, 2015, 22, 247-259.	1.3	69
3767	Robust metal–organic framework with [Mn3] clusters: Synthesis, structure and magnetic property. Inorganic Chemistry Communication, 2015, 53, 76-79.	1.8	3
3768	A flexible ligand-based wavy layered metal–organic framework for lithium-ion storage. Journal of Colloid and Interface Science, 2015, 445, 320-325.	5.0	102
3769	Methane Uptakes in Covalent Organic Frameworks with Double Halogen Substitution. Journal of Physical Chemistry C, 2015, 119, 2010-2014.	1.5	24
3770	First neutral dinuclear cobalt complex formed by bridging [μ-O2P(H)R]– ligands: synthesis, X-ray crystal structure and quantum-chemical study. Mendeleev Communications, 2015, 25, 27-28.	0.6	7
3771	Well-defined two dimensional covalent organic polymers: rational design, controlled syntheses, and potential applications. Polymer Chemistry, 2015, 6, 1896-1911.	1.9	189
3772	Predicting and creating 7-connected Zn ₄ O vertices for the construction of an exceptional metal–organic framework with nanoscale cages. CrystEngComm, 2015, 17, 1923-1926.	1.3	6
3773	Coordination polymers: Opportunities and challenges for monitoring volatile organic compounds. Progress in Polymer Science, 2015, 45, 102-118.	11.8	99
3774	Computational structure characterization tools for the era of material informatics. Chemical Engineering Science, 2015, 121, 322-330.	1.9	29
3775	On the structural stability of ionic liquid–IRMOF composites: a computational study. Physical Chemistry Chemical Physics, 2015, 17, 6248-6254.	1.3	16
3776	Degradation studies of methyl parathion with CuBTC metal-organic framework. Journal of Environmental Chemical Engineering, 2015, 3, 541-547.	3.3	20
3777	Bipyridine- and Phenanthroline-Based Metal–Organic Frameworks for Highly Efficient and Tandem Catalytic Organic Transformations via Directed C–H Activation. Journal of the American Chemical Society, 2015, 137, 2665-2673.	6.6	266

#	Article	IF	CITATIONS
3778	Four new Al-based microporous metal-organic framework compounds with MIL-53-type structure containing functionalized extended linker molecules. Microporous and Mesoporous Materials, 2015, 216, 13-19.	2.2	34
3779	Structural and catalytic performance of a polyoxometalate-based hybridÂcompound. Journal of Coordination Chemistry, 2015, 68, 766-776.	0.8	6
3780	From Inorganic to Organic Strategy To Design Porous Aromatic Frameworks for High-Capacity Gas Storage. Journal of Physical Chemistry C, 2015, 119, 3260-3267.	1.5	15
3781	The concept of mixed organic ligands in metal–organic frameworks: design, tuning and functions. Dalton Transactions, 2015, 44, 5258-5275.	1.6	225
3782	Studies on atomic layer deposition of IRMOF-8 thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	0.9	23
3783	One Dinuclear Copper(II) Complex: Synthesis, Structure, and Properties. Molecular Crystals and Liquid Crystals, 2015, 606, 147-153.	0.4	5
3784	Metal–Organic Frameworks Based on Alkaline Earth Metals – Hydrothermal Synthesis, Xâ€ray Structures, Gas Adsorption, and Heterogeneously Catalyzed Hydrogenation Reactions. European Journal of Inorganic Chemistry, 2015, 2015, 1053-1064.	1.0	25
3785	A mechanochemical strategy for IRMOF assembly based on pre-designed oxo-zinc precursors. Chemical Communications, 2015, 51, 4032-4035.	2.2	117
3786	Tuning the Supramolecular Structure through Variation of the Ligand Geometry and Metal Substituents–Diorganotin Macrocycles and Coordination Polymers Derived from <i>cis</i> - and <i>trans</i> -1,2-, 1,3-, and 1,4-Cyclohexanedicarboxylic and <i>cis</i> , <i>cis</i> -1,3,5-Cyclohexanetricarboxylic Acid. Crystal Growth and Design, 2015, 15, 829-847.	1.4	27
3787	Metal–organic frameworks catalyzed C–C and C–heteroatom coupling reactions. Chemical Society Reviews, 2015, 44, 1922-1947.	18.7	348
3788	Trapping virtual pores by crystal retro-engineering. Nature Chemistry, 2015, 7, 153-159.	6.6	52
3789	An extended framework of cages formed of pre-synthesised and functionalised heterometallic cages. Chemical Communications, 2015, 51, 3533-3536.	2.2	4
3790	Additive Effects in the Formation of Fluorescent Zinc Metal–Organic Frameworks with 5-Hydroxyisophthalate. Crystal Growth and Design, 2015, 15, 1452-1459.	1.4	17
3791	Filling Pore Space in a Microporous Coordination Polymer to Improve Methane Storage Performance. Langmuir, 2015, 31, 2211-2217.	1.6	39
3792	Syntheses, structures, gas adsorption and reversible iodine adsorption of two porous Cu(ii) MOFs. CrystEngComm, 2015, 17, 1583-1590.	1.3	17
3793	Long lifetime photoluminescence emission of 3D cadmium metal–organic frameworks based on the 5-(4-pyridyl)tetrazole ligand. Inorganica Chimica Acta, 2015, 427, 131-137.	1.2	17
3794	A new 3D Cd(II) metal–organic framework with discrete (H2O)6 clusters based on flexible cyclohexane-1,2,4,5-tetracarboxylic acid ligand. Inorganic Chemistry Communication, 2015, 53, 11-14.	1.8	21
3795	History and Classification of Non-Siliceous Hybrid Materials. Springer Briefs in Molecular Science, 2015, , 7-23.	0.1	3

#	Article	IF	CITATIONS
3796	Six Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) coordination polymers assembled from a similar binuclear building unit: tunable structures and luminescence properties. Dalton Transactions, 2015, 44, 6731-6739.	1.6	19
3797	One-dimensional lanthanide coordination polymers: synthesis, structures, and single-ion magnetic behaviour. Dalton Transactions, 2015, 44, 3764-3772.	1.6	10
3798	Metal organic framework synthesis in the presence of surfactants: towards hierarchical MOFs?. CrystEngComm, 2015, 17, 1693-1700.	1.3	78
3799	Lanthanide Metal-Organic Frameworks. Structure and Bonding, 2015, , .	1.0	33
3800	"Heterogeneity within Order―in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2015, 54, 3417-3430.	7.2	465
3801	Structural stability of BTTB-based metal–organic frameworks under humid conditions. Journal of Materials Chemistry A, 2015, 3, 1624-1631.	5.2	22
3802	Hydrothermal synthesis, structure, porosity, and luminescent properties of 3D coordination polymer of holmium with 1,4-phenylenediacetic acid [Ho2(PDA)3(H2O)] n ·2nH2O. Monatshefte Für Chemie, 2015, 146, 47-55.	0.9	3
3803	Turnâ€On Fluorescence and Unprecedented Encapsulation of Large Aromatic Molecules within a Manganese(II)–Triazole Metal–Organic Confined Space. Chemistry - A European Journal, 2015, 21, 2107-2116.	1.7	57
3804	Metal–organic framework materials for light-harvesting and energy transfer. Chemical Communications, 2015, 51, 3501-3510.	2.2	409
3805	Predesign and Systematic Synthesis of 11 Highly Porous Coordination Polymers with Unprecedented Topology. Inorganic Chemistry, 2015, 54, 1645-1649.	1.9	19
3806	Effective Ligand Functionalization of Zirconium-Based Metal–Organic Frameworks for the Adsorption and Separation of Benzene and Toluene: A Multiscale Computational Study. ACS Applied Materials & Interfaces, 2015, 7, 5775-5787.	4.0	63
3807	Separation of polar compounds using a flexible metal–organic framework. Chemical Communications, 2015, 51, 8421-8424.	2.2	41
3808	Zero-periodic metal–organic material, organic polymer composites: tuning properties of methacrylate polymers via dispersion of dodecyloxy-decorated Cu-BDC nanoballs. Journal of Materials Chemistry A, 2015, 3, 13215-13225.	5.2	7
3809	Topology analysis of metal–organic frameworks based on metal–organic polyhedra as secondary or tertiary building units. Inorganic Chemistry Frontiers, 2015, 2, 336-360.	3.0	52
3810	Engineering lanthanide-optical centres in IRMOF-3 by post-synthetic modification. New Journal of	1.4	45
	Chemistry, 2015, 39, 4249-4258.	200	
3811	Lithium decoration of three dimensional boron-doped graphene frameworks for high-capacity hydrogen storage. Applied Physics Letters, 2015, 106, .	1.5	21
3811 3812	Chemistry, 2015, 39, 4249-4258. Lithium decoration of three dimensional boron-doped graphene frameworks for high-capacity hydrogen storage. Applied Physics Letters, 2015, 106, . Enhanced gas sorption properties of a new sulfone functionalized aluminum metal-organic framework: Synthesis, characterization, andÂDFT studies. Microporous and Mesoporous Materials, 2015, 216, 20-26.	1.5 2.2	21

#	Article	IF	CITATIONS
3814	Chelating Agent-Free, Vapor-Assisted Crystallization Method to Synthesize Hierarchical Microporous/Mesoporous MIL-125 (Ti). ACS Applied Materials & Interfaces, 2015, 7, 5338-5346.	4.0	87
3815	Applications of ultrasound to the synthesis of nanoscale metal–organic coordination polymers. Coordination Chemistry Reviews, 2015, 292, 1-14.	9.5	183
3816	Cu- and Ag-Based Metal–Organic Frameworks with 4-Pyranone-2,6-dicarboxylic Acid: Syntheses, Crystal Structures, and Dielectric Properties. Crystal Growth and Design, 2015, 15, 1707-1713.	1.4	22
3817	One-step synthesis of a copper-based metal–organic framework–graphene nanocomposite with enhanced electrocatalytic activity. RSC Advances, 2015, 5, 22060-22065.	1.7	82
3818	Single-Crystal-to-Single-Crystal Metalation of a Metal–Organic Framework: A Route toward Structurally Well-Defined Catalysts. Inorganic Chemistry, 2015, 54, 2995-3005.	1.9	161
3819	Controlled Synthesis of Fe ₃ O ₄ /ZIFâ€8 Nanoparticles for Magnetically Separable Nanocatalysts. Chemistry - A European Journal, 2015, 21, 6879-6887.	1.7	55
3820	Tandem MOF-Based Photonic Crystals for Enhanced Analyte-Specific Optical Detection. Chemistry of Materials, 2015, 27, 1961-1970.	3.2	94
3821	A stable luminescent anionic porous metal–organic framework for moderate adsorption of CO ₂ and selective detection of nitro explosives. Journal of Materials Chemistry A, 2015, 3, 7224-7228.	5.2	93
3822	Metal–Organic Framework Based upon the Synergy of a BrÃ,nsted Acid Framework and Lewis Acid Centers as a Highly Efficient Heterogeneous Catalyst for Fixed-Bed Reactions. Journal of the American Chemical Society, 2015, 137, 4243-4248.	6.6	242
3823	Metal-Organic Framework Templated Synthesis of Ultrathin, Well-Aligned Metallic Nanowires. ACS Nano, 2015, 9, 3044-3049.	7.3	59
3824	Synthesis, Structures, and Properties of 3D Lanthanide (III) Coordination Polymers Based on 5-Nitroisophthalic Acid. Molecular Crystals and Liquid Crystals, 2015, 607, 181-191.	0.4	1
3825	A unique 3D Co(II)-MOF based on [Co6(μ3-OH)4]8+n chains: Synthesis, crystal structure, and magnetic property. Inorganic Chemistry Communication, 2015, 55, 17-20.	1.8	18
3826	Methane Adsorption in a Series of IRMOFs Studied by PHSC and Sanchez–Lacombe Equations of State. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 1298-1304.	1.9	3
3827	Transient absorption spectroscopy and photochemical reactivity of CAU-8. Journal of Materials Chemistry C, 2015, 3, 3607-3613.	2.7	15
3828	Dynamic DMF Binding in MOF-5 Enables the Formation of Metastable Cobalt-Substituted MOF-5 Analogues. ACS Central Science, 2015, 1, 252-260.	5.3	123
3829	Condensation of Methane in the Metal–Organic Framework IRMOF-1: Evidence for Two Critical Points. Journal of the American Chemical Society, 2015, 137, 10199-10204.	6.6	14
3830	Postsynthetic modification of metal–organic framework for hydrogen sulfide detection. Applied Surface Science, 2015, 355, 814-819.	3.1	50
3831	Covalent organic polymer framework with C–C bonds as a fluorescent probe for selective iron detection. RSC Advances, 2015, 5, 69010-69015.	1.7	32

#	Article	IF	CITATIONS
3832	Graphitic carbon nitride nanosheet@metal–organic framework core–shell nanoparticles for photo-chemo combination therapy. Nanoscale, 2015, 7, 17299-17305.	2.8	160
3833	Capturing the structural diversification upon thermal desolvation of a robust metal organic framework via a single-crystal-to-single-crystal transformation. CrystEngComm, 2015, 17, 8801-8806.	1.3	9
3834	Elemental distribution and porosity enhancement in advanced nano bimetallic catalyst. Powder Technology, 2015, 280, 42-52.	2.1	5
3835	Surface-Confined Amorphous Films from Metal-Coordinated Simple Phenolic Ligands. Chemistry of Materials, 2015, 27, 5825-5832.	3.2	177
3836	Systematic design of secondary building units by an efficient cation-directing strategy under regular vibrations of ionic liquids. Dalton Transactions, 2015, 44, 14666-14672.	1.6	8
3837	Selectively catalytic micro- and nanocrystals of metal–organic framework [Co(4-bpdh)(HIA)]â^• Journal of Solid State Chemistry, 2015, 226, 142-146.	1.4	13
3838	Two new cobalt(II) coordination polymers based on 4′-(2-carboxyphenyl)-4,2′:6′,4″-terpyridine: Synthes structures and magnetic properties. Polyhedron, 2015, 96, 88-94.	ses. 1.0	19
3839	Novel â€~anti-Prussian blue' structure based on Zn ²⁺ nodes and [Re ₃ Mo ₃ S ₈ (CN) ₆] ^{6â°} heterometallic cluster spacers and its rearrangement to Prussian blue. CrystEngComm, 2015, 17, 1477-1482.	1.3	7
3840	Polymer@MOF@MOF: "grafting from―atom transfer radical polymerization for the synthesis of hybrid porous solids. Chemical Communications, 2015, 51, 11994-11996.	2.2	100
3841	Molecular simulations of porous coordination network-based mixed matrix membranes for CO ₂ /N ₂ separations. Molecular Simulation, 2015, 41, 1396-1408.	0.9	9
3842	Fabrication of porous metal–organic frameworks via a mixed-ligand strategy for highly selective and efficient dye adsorption in aqueous solution. CrystEngComm, 2015, 17, 6037-6043.	1.3	100
3844	Hybrid materials of Ni NP@MOF prepared by a simple synthetic method. Chemical Communications, 2015, 51, 12463-12466.	2.2	70
3845	Synthesis of Zn-MOF incorporating titanium-hydrides as active sites binding H2 molecules. Journal of Solid State Chemistry, 2015, 230, 110-117.	1.4	5
3846	Carbon Dioxide Capture by a Metal–Organic Framework with Nitrogen-Rich Channels Based on Rationally Designed Triazole-Functionalized Tetraacid Organic Linker. Inorganic Chemistry, 2015, 54, 6829-6835.	1.9	44
3847	A Noninterpenetrated Metal–Organic Framework Built from an Enlarged Tetracarboxylic Acid for Small Hydrocarbon Separation. Crystal Growth and Design, 2015, 15, 4071-4074.	1.4	21
3848	Zeolite membranes – a review and comparison with MOFs. Chemical Society Reviews, 2015, 44, 7128-7154.	18.7	594
3849	Multifunctional metal–organic frameworks: from academia to industrial applications. Chemical Society Reviews, 2015, 44, 6774-6803.	18.7	766
3850	Isolation of a structural intermediate during switching of degree of interpenetration in a metal–organic framework. Chemical Science, 2015, 6, 4986-4992.	3.7	52

#	Article	IF	CITATIONS
3851	Syntheses, characterization and properties of nine novel Zn(<scp>ii</scp>) coordination polymers based on 4,4′-(phenylazanediyl)dibenzoic acid and various N-donor ligands. CrystEngComm, 2015, 17, 5451-5467.	1.3	18
3852	CO ₂ Adsorption on Ionic Liquid—Modified Cu-BTC: Experimental and Simulation Study. Adsorption Science and Technology, 2015, 33, 223-242.	1.5	37
3853	CO ₂ capture in rht metal–organic frameworks: multiscale modeling from molecular simulation to breakthrough prediction. Journal of Materials Chemistry A, 2015, 3, 16327-16336.	5.2	20
3854	A porous metal–organic framework formed by a V-shaped ligand and Zn(<scp>ii</scp>) ion with highly selective sensing for nitroaromatic explosives. Journal of Materials Chemistry A, 2015, 3, 16598-16603.	5.2	158
3855	Reversible flexible structural changes in multidimensional MOFs by guest molecules (I2, NH3) and thermal stimulation. Journal of Solid State Chemistry, 2015, 226, 114-119.	1.4	9
3856	Structural Features in Metal–Organic Nanotube Crystals That Influence Stability and Solvent Uptake. Crystal Growth and Design, 2015, 15, 4062-4070.	1.4	27
3857	Mechanically Interlocked Linkers inside Metal–Organic Frameworks: Effect of Ring Size on Rotational Dynamics. Journal of the American Chemical Society, 2015, 137, 9643-9651.	6.6	98
3858	Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: the role of hydrofluoric acid in crystallization. CrystEngComm, 2015, 17, 6434-6440.	1.3	200
3859	Cluster-based metal–organic frameworks as sensitive and selective luminescent probes for sensing nitro explosives. New Journal of Chemistry, 2015, 39, 7858-7862.	1.4	34
3860	A Chemical Route to Activation of Open Metal Sites in the Copper-Based Metal–Organic Framework Materials HKUST-1 and Cu-MOF-2. Journal of the American Chemical Society, 2015, 137, 10009-10015.	6.6	199
3861	Removal of the CO 2 from flue gas utilizing hybrid composite adsorbent MIL-53(Al)/GNP metal-organic framework. Microporous and Mesoporous Materials, 2015, 218, 144-152.	2.2	48
3862	Ewald Summation for Molecular Simulations. Journal of Chemical Theory and Computation, 2015, 11, 3684-3695.	2.3	108
3863	A highly stable porous multifunctional Co(<scp>ii</scp>) metal–organic framework showing excellent gas storage applications and interesting magnetic properties. CrystEngComm, 2015, 17, 6471-6475.	1.3	7
3864	Series of Highly Stable Isoreticular Lanthanide Metal–Organic Frameworks with Expanding Pore Size and Tunable Luminescent Properties. Chemistry of Materials, 2015, 27, 5332-5339.	3.2	146
3865	A zeolite family with expanding structural complexity and embedded isoreticular structures. Nature, 2015, 524, 74-78.	13.7	167
3866	In-situ observation for growth of hierarchical metal-organic frameworks and their self-sequestering mechanism for gas storage. Scientific Reports, 2015, 5, 12045.	1.6	17
3867	A general post-synthetic modification approach of amino-tagged metal–organic frameworks to access efficient catalysts for the Knoevenagel condensation reaction. Journal of Materials Chemistry A, 2015, 3, 17320-17331.	5.2	211
3868	Functional group tolerance in BTB-based metal–organic frameworks (BTB – benzene-1,3,5-tribenzoate). Microporous and Mesoporous Materials, 2015, 216, 42-50.	2.2	6

#	Article	IF	CITATIONS
3869	Tuning the Dimensionality of Interpenetration in a Pair of Framework-Catenation Isomers To Achieve Selective Adsorption of CO ₂ and Fluorescent Sensing of Metal Ions. Inorganic Chemistry, 2015, 54, 6084-6086.	1.9	22
3870	Towards a potential 4,4′-(1,2,4,5-tetrazine-3,6-diyl) dibenzoic spacer to construct metal–organic frameworks. New Journal of Chemistry, 2015, 39, 6453-6458.	1.4	11
3871	EQeq+C: An Empirical Bond-Order-Corrected Extended Charge Equilibration Method. Journal of Chemical Theory and Computation, 2015, 11, 3364-3374.	2.3	15
3872	A series of multi-dimensional metal–organic frameworks with trans-4,4′-azo-1,2,4-triazole: polymorphism, guest induced single-crystal-to-single-crystal transformation and solvatochromism. CrystEngComm, 2015, 17, 5396-5409.	1.3	31
3873	Novel metal-organic frameworks-based hydrogen sulfide cataluminescence sensors. Sensors and Actuators B: Chemical, 2015, 220, 614-621.	4.0	53
3874	Interpenetrated Frameworks with Anisotropic Pore Structures from a Tetrahedral Pyridine Ligand. Crystal Growth and Design, 2015, 15, 3539-3544.	1.4	15
3875	Metal–organic framework–graphene oxide composites: a facile method to highly improve the proton conductivity of PEMs operated under low humidity. Journal of Materials Chemistry A, 2015, 3, 15838-15842.	5.2	124
3876	Intramolecular hydrogen bonding stabilizes the nuclearity of complexes. A comparative study based on the H-carborane and Me-carborane framework. Dalton Transactions, 2015, 44, 10399-10409.	1.6	9
3877	Enhanced CO ₂ capture capacities and efficiencies with N-doped nanoporous carbons synthesized from solvent-modulated, pyridinedicarboxylate-containing Zn-MOFs. CrystEngComm, 2015, 17, 8015-8020.	1.3	13
3878	Porous Aromatic Frameworks Impregnated with Lithiated Fullerenes for Natural Gas Purification. Journal of Physical Chemistry C, 2015, 119, 9347-9354.	1.5	17
3879	Mixed-Matrix Membranes for CO ₂ /N ₂ Separation Comprising a Poly(vinylamine) Matrix and Metal–Organic Frameworks. Industrial & Engineering Chemistry Research, 2015, 54, 5139-5148.	1.8	64
3880	New Three-Fold Interpenetrated Uranyl Organic Framework Constructed by Terephthalic Acid and Imidazole Derivative. Inorganic Chemistry, 2015, 54, 3829-3834.	1.9	37
3881	Metal nanocrystal/metal–organic framework core/shell nanostructure from selective self-assembly induced by localization of metal ion precursors on nanocrystal surface. Journal of Colloid and Interface Science, 2015, 451, 212-215.	5.0	12
3882	Zeolitic imidazolate frameworks as heterogeneous catalysts for a one-pot P–C bond formation reaction via Knoevenagel condensation and phospha-Michael addition. RSC Advances, 2015, 5, 24687-24690.	1.7	27
3883	Thermodynamic Study of CO ₂ Sorption by Polymorphic Microporous MOFs with Open Zn(II) Coordination Sites. Inorganic Chemistry, 2015, 54, 4328-4336.	1.9	26
3884	Substituent-induced effects on dimensionality in cadmium isophthalate coordination polymers containing 3-pyridylisonicotinamide. Journal of Molecular Structure, 2015, 1094, 161-168.	1.8	3
3885	Enhanced photodegradation of Rhodamine B under visible light by N-K2Ti4O9/MIL-101 composite. Materials Science in Semiconductor Processing, 2015, 36, 115-123.	1.9	15
3886	Novel Microporous Metal–Organic Framework Exhibiting High Acetylene and Methane Storage Capacities. Inorganic Chemistry, 2015, 54, 4377-4381.	1.9	36

#	Article	IF	CITATIONS
3887	Quantum-Chemical Characterization of the Properties and Reactivities of Metal–Organic Frameworks. Chemical Reviews, 2015, 115, 6051-6111.	23.0	241
3888	Post-synthetic modification of zinc metal-organic frameworks through palladium-catalysed carbon–carbon bond formation. Journal of Organometallic Chemistry, 2015, 792, 134-138.	0.8	4
3889	Flexible Solid-State Supercapacitor Based on a Metal–Organic Framework Interwoven by Electrochemically-Deposited PANI. Journal of the American Chemical Society, 2015, 137, 4920-4923.	6.6	832
3890	Adsorbed methane storage for vehicular applications. Applied Energy, 2015, 149, 69-74.	5.1	60
3891	Heterogeneity of functional groups in a metal–organic framework displays magic number ratios. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5591-5596.	3.3	36
3892	Improved Synthesis of a Zirconium(IV) Muconate Metal–Organic Framework: Characterization, Stability and Gas Sorption Properties. European Journal of Inorganic Chemistry, 2015, 2015, 2463-2468.	1.0	11
3893	Understanding the Adsorption Mechanism of Xe and Kr in a Metal–Organic Framework from X-ray Structural Analysis and First-Principles Calculations. Journal of Physical Chemistry Letters, 2015, 6, 1790-1794.	2.1	38
3894	Self-Assembly of 2D Lanthanide-Metal Coordination Polymers Based on 5-Nitroisophthalic Acid Linker: Synthesis, Structures, and Luminescence. Molecular Crystals and Liquid Crystals, 2015, 609, 161-170.	0.4	1
3895	New binuclear copper(<scp>ii</scp>) coordination polymer based on mixed pyrazolic and oxalate ligands: structural characterization and mechanical properties. RSC Advances, 2015, 5, 32369-32375.	1.7	6
3896	Metal–Organic Framework 199 Film as a Novel Adsorbent of Thin-Film Extraction. Chromatographia, 2015, 78, 621-629.	0.7	6
3897	Syntheses, Structures and Fluorescence Properties of Four Zn/Cd(II) Coordination Polymers with 3-Nitrobenzene-1,2-dicarboxylate and Dipyridyl-typed Coligands. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 694-701.	1.9	22
3898	A series of two-dimensional microporous triazole-functionalized metal–organic frameworks with the new multi-dentate ligand 1-(4-aminobenzyl)-1,2,4-triazole: single-crystal-to-single-crystal transformation, structural diversity and luminescent sensing. RSC Advances, 2015, 5, 35238-35251.	1.7	25
3899	Mechanochemical synthesis of isoreticular metal–organic frameworks and comparative study of their potential for nitrobenzene sensing. New Journal of Chemistry, 2015, 39, 5108-5111.	1.4	28
3900	Unlocking Inter―to Nonâ€Penetrating Frameworks Using Steric Influences on Spacers for CO ₂ Adsorption. Chemistry - an Asian Journal, 2015, 10, 2117-2120.	1.7	10
3901	Insulator-to-Proton-Conductor Transition in a Dense Metal–Organic Framework. Journal of the American Chemical Society, 2015, 137, 6428-6431.	6.6	83
3902	Versatile rare earth hexanuclear clusters for the design and synthesis of highly-connected < b>ftw -MOFs. Chemical Science, 2015, 6, 4095-4102.	3.7	127
3903	Pd nanoparticles supported on hierarchically porous carbons derived from assembled nanoparticles of a zeolitic imidazolate framework (ZIF-8) for methanol electrooxidation. Chemical Communications, 2015, 51, 10827-10830.	2.2	62
3904	Supramolecular materials with robust and tunable channels constructed from tin(<scp>iv</scp>)porphyrin phenolates. CrystEngComm, 2015, 17, 3060-3063.	1.3	6

#	Article	IF	CITATIONS
3905	A Family of Lanthanide-Based Coordination Polymers with Boronic Acid as Ligand. Inorganic Chemistry, 2015, 54, 5534-5546.	1.9	49
3906	Synthesis, structures, and properties of seven transition metal coordination polymers based on a long semirigid dicarboxylic acid ligand. RSC Advances, 2015, 5, 47216-47224.	1.7	8
3907	Multistep Synthesis of a Terphenyl Derivative Showcasing the Diels–Alder Reaction. Journal of Chemical Education, 2015, 92, 1209-1213.	1.1	6
3908	Single crystalline hollow metal–organic frameworks: a metal–organic polyhedron single crystal as a sacrificial template. Chemical Communications, 2015, 51, 3678-3681.	2.2	48
3909	Photoinduced Postsynthetic Polymerization of a Metal–Organic Framework toward a Flexible Standâ€Alone Membrane. Angewandte Chemie - International Edition, 2015, 54, 4259-4263.	7.2	235
3910	Preparation and catalytic properties of Pd nanoparticles supported on micro-crystal DUT-67 MOFs. RSC Advances, 2015, 5, 32714-32719.	1.7	27
3912	Non-covalent Interactions of CO ₂ with Functional Groups of Metal–Organic Frameworks from a CCSD(T) Scheme Applicable to Large Systems. Journal of Chemical Theory and Computation, 2015, 11, 1574-1584.	2.3	32
3913	Living on the edge: Tuning supramolecular interactions to design two-dimensional organic crystals near the boundary of two stable structural phases. Journal of Chemical Physics, 2015, 142, 101914.	1.2	18
3914	Guest-Induced Emergent Properties in Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2015, 6, 1182-1195.	2.1	150
3915	Stepwise Construction of Extra-Large Heterometallic Calixarene-Based Cages. Inorganic Chemistry, 2015, 54, 3183-3188.	1.9	53
3916	Copper pyromellitates: a complex story. CrystEngComm, 2015, 17, 2857-2871.	1.3	10
3917	Metal organic frameworks for sensing applications. TrAC - Trends in Analytical Chemistry, 2015, 73, 39-53.	5.8	446
3918	Adsorptive Removal of Pb(II) Ions from Aqueous Samples with Amino-Functionalization of Metal–Organic Frameworks MIL-101(Cr). Journal of Chemical & Engineering Data, 2015, 60, 1732-1743.	1.0	172
3919	[Al2(OH)2(TCPB)] – An Al-MOF based on a tetratopic linker molecule. Microporous and Mesoporous Materials, 2015, 216, 27-35.	2.2	18
3920	Controlled in situ reaction for the assembly of Cu(<scp>ii</scp>) mixed-ligand coordination polymers: synthesis, structure, mechanistic insights, magnetism and catalysis. Dalton Transactions, 2015, 44, 11013-11020.	1.6	31
3921	Mesoporous 2D covalent organic frameworks based on shape-persistent arylene-ethynylene macrocycles. Chemical Science, 2015, 6, 4049-4053.	3.7	118
3922	A molecular shuttle that operates inside a metal–organic framework. Nature Chemistry, 2015, 7, 514-519.	6.6	247
3923	Synthesis, Crystal Structures, and Characterizations of Two Zn(II) Coordination Polymers Based on a Reduced Schiff Base Ligand. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2015, 45, 1668-1673.	0.6	1

#	Article	IF	CITATIONS
3924	Chirality from substitution: enantiomer separation via a modified metal–organic framework. Journal of Materials Chemistry A, 2015, 3, 12145-12148.	5.2	73
3925	Metalâ^'organic framework composite membranes: Synthesis and separation applications. Chemical Engineering Science, 2015, 135, 232-257.	1.9	208
3926	Hydrogen Adsorption and Storage in Heteroatoms (B, N) Modified Carbon-Based Materials Decorated with Alkali Metals: A Computational Study. Journal of Physical Chemistry C, 2015, 119, 7662-7669.	1.5	62
3927	Supramolecular self-assembly of nucleotide–metal coordination complexes: From simple molecules to nanomaterials. Coordination Chemistry Reviews, 2015, 292, 107-143.	9.5	89
3928	Equivalence of Ethylene and Azo-Bridges in the Modular Design of Molecular Complexes: Role of Weak Interactions. Crystal Growth and Design, 2015, 15, 2389-2401.	1.4	32
3929	Mesoporous Metal–Organic Frameworks with Sizeâ€, Shapeâ€, and Spaceâ€Distributionâ€Controlled Pore Structure. Advanced Materials, 2015, 27, 2923-2929.	11.1	217
3930	Carbohydrate-Mediated Purification of Petrochemicals. Journal of the American Chemical Society, 2015, 137, 5706-5719.	6.6	112
3931	Tunable Rare Earth fcu -MOF Platform: Access to Adsorption Kinetics Driven Gas/Vapor Separations via Pore Size Contraction. Journal of the American Chemical Society, 2015, 137, 5034-5040.	6.6	308
3932	Computational Screening of Metal Catecholates for Ammonia Capture in Metal–Organic Frameworks. Industrial & Engineering Chemistry Research, 2015, 54, 3257-3267.	1.8	27
3933	Hierarchically Functionalized Magnetic Core/Multishell Particles and Their Postsynthetic Conversion to Polymer Capsules. ACS Nano, 2015, 9, 4219-4226.	7.3	39
3934	Superstructure of a Substituted Zeolitic Imidazolate Metal–Organic Framework Determined by Combining Proton Solidâ€ S tate NMR Spectroscopy and DFT Calculations. Angewandte Chemie - International Edition, 2015, 54, 5971-5976.	7.2	38
3935	Mechanical Stability of Porous Low-k Dielectrics. ECS Journal of Solid State Science and Technology, 2015, 4, N3058-N3064.	0.9	40
3936	Organic and hybrid molecular systems. Mendeleev Communications, 2015, 25, 75-82.	0.6	170
3937	Narrow bandgap covalent–organic frameworks with strong optical response in the visible and infrared. Journal of Materials Chemistry C, 2015, 3, 2244-2254.	2.7	18
3938	A thermodynamic tank model for studying the effect of higher hydrocarbons on natural gas storage in metal–organic frameworks. Energy and Environmental Science, 2015, 8, 1501-1510.	15.6	84
3939	Quest for Highly Connected Metal–Organic Framework Platforms: Rare-Earth Polynuclear Clusters Versatility Meets Net Topology Needs. Journal of the American Chemical Society, 2015, 137, 5421-5430.	6.6	163
3940	Surface-mounted metal-organic frameworks for applications in sensing and separation. Microporous and Mesoporous Materials, 2015, 216, 200-215.	2.2	126
3941	Selective CO ₂ adsorption in a microporous metal–organic framework with suitable pore sizes and open metal sites. Inorganic Chemistry Frontiers, 2015, 2, 550-557.	3.0	26

#	Article	IF	CITATIONS
3942	Synthesis and characterization of three amino-functionalized metal–organic frameworks based on the 2-aminoterephthalic ligand. Dalton Transactions, 2015, 44, 8190-8197.	1.6	72
3943	Heterogeneous heck coupling in multivariate metal–organic frameworks for enhanced selectivity. Catalysis Communications, 2015, 65, 105-107.	1.6	21
3944	Steric and Electronic Influence on the Coordination Aptitude of 4-Formylpiperazine-1-Carbodithioate Towards Triorganotin(IV) Moieties. Heteroatom Chemistry, 2015, 26, 123-133.	0.4	4
3945	Metal–organic framework tethering PNIPAM for ON–OFF controlled release in solution. Chemical Communications, 2015, 51, 8614-8617.	2.2	163
3946	Various pH-Dependent Copper(II) Coordination Architectures Constructed from N,Nâ€2-Di(3-pyridyl)succinamide and Two Different Dicarboxylates. Australian Journal of Chemistry, 2015, 68, 1076.	0.5	3
3947	Solvent-controlled construction of manganese(II) complexes with 4-acetylpyridine nicotinoylhydrazone ligand. Inorganica Chimica Acta, 2015, 438, 220-231.	1.2	8
3948	A highly thermal stable microporous lanthanide–organic framework for CO2 sorption and separation. Inorganic Chemistry Communication, 2015, 61, 173-176.	1.8	3
3949	Structural characterization of μ1,2- and μ1,3-bridged-squarato 1D metal(II) coordination polymers. Polyhedron, 2015, 102, 82-87.	1.0	10
3950	Tailoring the Pore Size and Functionality of UiO-Type Metal–Organic Frameworks for Optimal Nerve Agent Destruction. Inorganic Chemistry, 2015, 54, 9684-9686.	1.9	157
3951	Amide functionalized metal–organic frameworks for diastereoselective nitroaldol (Henry) reaction in aqueous medium. RSC Advances, 2015, 5, 87400-87410.	1.7	43
3952	Systematic Tuning and Multifunctionalization of Covalent Organic Polymers for Enhanced Carbon Capture. Journal of the American Chemical Society, 2015, 137, 13301-13307.	6.6	202
3953	What Matters to the Adsorptive Desulfurization Performance of Metal - Organic Frameworks?. Journal of Physical Chemistry C, 2015, 119, 21969-21977.	1.5	91
3954	A highly stable face-extended diamondoid cluster–organic framework incorporating infinite inorganic guests. Chemical Communications, 2015, 51, 17174-17177.	2.2	7
3955	Self-assembly of heterometallic Ln ^{III} –Co ^{II} coordination polymers: syntheses, structures, and magnetic studies. Dalton Transactions, 2015, 44, 18856-18863.	1.6	10
3956	Me ₃ N-promoted synthesis of 2,3,4,4a-tetrahydroxanthen-1-one: preparation of thiosemicarbazone derivatives, their solid state self-assembly and antimicrobial properties. New Journal of Chemistry, 2015, 39, 9351-9357.	1.4	27
3957	Selective and Reusable Oxidation of Sulfides to Sulfoxides with Hydrogen Peroxide Catalyzed by Organic–Inorganic Polyoxometalate-Based Frameworks. Catalysis Letters, 2015, 145, 1984-1990.	1.4	16
3958	A luminescent Zr-based metal–organic framework for sensing/capture of nitrobenzene and high-pressure separation of CH ₄ /C ₂ H ₆ . Journal of Materials Chemistry A, 2015, 3, 23493-23500.	5.2	22
3959	Study of metal-organic framework MIL-101(Cr) for natural gas (methane) storage and compare with other MOFs (metal-organic frameworks). Energy, 2015, 91, 772-781.	4.5	131

#	Article	IF	CITATIONS
3960	Functional metal–bipyridinium frameworks: self-assembly and applications. Dalton Transactions, 2015, 44, 19041-19055.	1.6	116
3961	Rapid and discriminative detection of nitro aromatic compounds with high sensitivity using two zinc MOFs synthesized through a temperature-modulated method. Journal of Materials Chemistry A, 2015, 3, 22369-22376.	5.2	61
3962	High capacity hydrogen storage at room temperature via physisorption in a coordinatively unsaturated iron complex. International Journal of Hydrogen Energy, 2015, 40, 16330-16337.	3.8	10
3963	Topological Motifs in Cyanometallates: From Building Units to Three-Periodic Frameworks. Chemical Reviews, 2015, 115, 12286-12319.	23.0	128
3964	A new 3D pillared-layer porous framework with intersecting open channels in the Co/triazolate/carboxylate system: Synthesis, structure and magnetism. Inorganic Chemistry Communication, 2015, 62, 47-50.	1.8	13
3965	Pseudo crystalline state thermochromic and reverse-photochromic reactivity of spiroindolinobenzopyran upon encapsulation into Zn-MOF-74. CrystEngComm, 2015, 17, 8607-8611.	1.3	14
3966	Seeking metal–organic frameworks for methane storage in natural gas vehicles. Adsorption, 2015, 21, 499-507.	1.4	20
3967	Development Trends in Porous Adsorbents for Carbon Capture. Environmental Science & Technology, 2015, 49, 12641-12661.	4.6	94
3968	One-dimensional Cu ^{II} coordination polymers containing <i>C</i> _{2<i>h</i>} -symmetric 1,1′:4′,1′′-terphenyl-3,3′-dicarboxylate linkers. Crystallographica Section C, Structural Chemistry, 2015, 71, 929-935.	. Ac za	4
3969	A Convenient Surfactantâ€Mediated Hydrothermal Approach to Control Supported Copper Oxide Species for Catalytic Upgrading of Glucose to Lactic Acid. ChemNanoMat, 2015, 1, 511-516.	1.5	4
3970	1-, 3-, 6-, and 8-Tetrasubstituted Asymmetric Pyrene Derivatives with Electron Donors and Acceptors: High Photostability and Regioisomer-Specific Photophysical Properties. Journal of Organic Chemistry, 2015, 80, 10794-10805.	1.7	67
3971	Tuning oxygen-sensing behaviour of a porous coordination framework by a guest fluorophore. Inorganic Chemistry Frontiers, 2015, 2, 1085-1090.	3.0	12
3972	A new NbO type metal–organic framework for high acetylene and methane storage. RSC Advances, 2015, 5, 84446-84450.	1.7	13
3973	Triazole based Ag coordination clusters: synthesis, structural diversity and anion exchange properties. RSC Advances, 2015, 5, 83415-83426.	1.7	24
3974	Diverse isostructural MOFs by postsynthetic metal node metathesis: anionic-to-cationic framework conversion, luminescence and separation of dyes. Journal of Materials Chemistry A, 2015, 3, 22915-22922.	5.2	63
3975	Bifunctional MOF heterogeneous catalysts based on the synergy of dual functional sites for efficient conversion of CO ₂ under mild and co-catalyst free conditions. Journal of Materials Chemistry A, 2015, 3, 23136-23142.	5.2	175
3976	Facile interfacial charge transfer across hole doped cobalt-based MOFs/TiO ₂ nano-hybrids making MOFs light harvesting active layers in solar cells. Journal of Materials Chemistry A, 2015, 3, 22669-22676.	5.2	73
3977	Facile Conversion of Hydroxy Double Salts to Metal–Organic Frameworks Using Metal Oxide Particles and Atomic Layer Deposition Thin-Film Templates. Journal of the American Chemical Society, 2015, 137, 13756-13759.	6.6	174

#	Article	IF	CITATIONS
3978	Synthesis & characterization of iron-carboxylate nanoscale metal organic frameworks for drug delivery. , 2015, , .		0
3979	Cu-Based Metal–Organic Frameworks as a Catalyst To Construct a Ratiometric Electrochemical Aptasensor for Sensitive Lipopolysaccharide Detection. Analytical Chemistry, 2015, 87, 11345-11352.	3.2	163
3980	Effects of Extending the π-Electron System of Pillaring Linkers on Fluorescence Sensing of Aromatic Compounds in Two Isoreticular Metal–Organic Frameworks. Crystal Growth and Design, 2015, 15, 5543-5547.	1.4	56
3981	Modulated UiO-66-Based Mixed-Matrix Membranes for CO ₂ Separation. ACS Applied Materials & amp; Interfaces, 2015, 7, 25193-25201.	4.0	221
3982	Functional group effects on structure and topology of cadmium(<scp>ii</scp>) frameworks with mixed organic ligands. RSC Advances, 2015, 5, 43268-43278.	1.7	17
3983	Organic crystal engineering beyond the Pauling hydrogen bond. CrystEngComm, 2015, 17, 7448-7460.	1.3	36
3984	Synthesis and post-synthetic modification of amine-, alkyne-, azide- and nitro-functionalized metal–organic frameworks based on DUT-5. Dalton Transactions, 2015, 44, 16802-16809.	1.6	48
3985	Template controlled synthesis of cluster-based porous coordination polymers: crystal structure, magnetism and adsorption. New Journal of Chemistry, 2015, 39, 7333-7339.	1.4	17
3986	Porous Materials to Store Clear EnergyÂGasesa^—. , 2015, , 297-327.		2
3987	A Metal Organic Framework with Spherical Protein Nodes: Rational Chemical Design of 3D Protein Crystals. Journal of the American Chemical Society, 2015, 137, 11598-11601.	6.6	170
3988	A computational study of the effect of the metal organic framework environment on the release of chemically stored nitric oxide. Physical Chemistry Chemical Physics, 2015, 17, 23403-23412.	1.3	9
3989	Advances in Organic Crystal Chemistry. , 2015, , .		16
3990	Competitive adsorption of water vapor with VOCs dichloroethane, ethyl acetate and benzene on MIL-101(Cr) in humid atmosphere. RSC Advances, 2015, 5, 1827-1834.	1.7	92
3991	Synthesis and structure of new carbohydrate metal–organic frameworks and inclusion complexes. Journal of Molecular Structure, 2015, 1101, 14-20.	1.8	48
3992	Nanomedicine Applications of Hybrid Nanomaterials Built from Metal–Ligand Coordination Bonds: Nanoscale Metal–Organic Frameworks and Nanoscale Coordination Polymers. Chemical Reviews, 2015, 115, 11079-11108.	23.0	839
3993	Phenanthroline modulated self-assembly of nano/micro-scaled metal–organic frameworks. Inorganic Chemistry Communication, 2015, 60, 119-121.	1.8	2
3994	Structural and luminescence modulation in 8-hydroxyquinolinate-based coordination polymers by varying the dicarboxylic acid. Dalton Transactions, 2015, 44, 17774-17783.	1.6	12
3995	Advancements in the Conversion of Carbon Dioxide to Cyclic Carbonates Using Metal Organic Frameworks as Catalysts. Catalysis Surveys From Asia, 2015, 19, 223-235.	1.0	101

#	Article	IF	CITATIONS
3996	MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc -MOF for CH ₄ , O ₂ , and CO ₂ Storage. Journal of the American Chemical Society, 2015, 137, 13308-13318.	6.6	632
3997	Influence of gas packing and orientation on FTIR activity for CO chemisorption to the Cu paddlewheel. Physical Chemistry Chemical Physics, 2015, 17, 26766-26776.	1.3	24
3998	Investigation of Cu Species in CuBTC: Active Sites for Selective Catalytic Reduction of NO with NH ₃ . Advanced Materials Research, 0, 1118, 133-141.	0.3	8
3999	New luminescent porous coordination polymers with an acylamide-decorated linker for anion recognition and reversible I ₂ accommodation. CrystEngComm, 2015, 17, 8226-8230.	1.3	13
4000	Polynuclear and polymeric squarato-bridged coordination compounds. CrystEngComm, 2015, 17, 7604-7617.	1.3	15
4001	Activated carbon derived from waste coffee grounds for stable methane storage. Nanotechnology, 2015, 26, 385602.	1.3	49
4002	Hydrophobic pillared square grids for selective removal of CO ₂ from simulated flue gas. Chemical Communications, 2015, 51, 15530-15533.	2.2	115
4003	An amino-decorated NbO-type metal–organic framework for high C ₂ H ₂ storage and selective CO ₂ capture. RSC Advances, 2015, 5, 77417-77422.	1.7	53
4004	Topological Analysis of Void Spaces in Tungstate Frameworks: Assessing Storage Properties for the Environmentally Important Guest Molecules and Ions: CO ₂ , UO ₂ , PuO ₂ , U, Pu, Sr ²⁺ , Cs ⁺ , CH ₄ , and H ₂ . ACS Sustainable Chemistry and Engineering, 2015, 3, 2112-2129.	3.2	2
4005	Experimental and theoretical investigation of a stable zinc-based metal–organic framework for CO2 removal from syngas. CrystEngComm, 2015, 17, 8221-8225.	1.3	14
4006	Construction of a robust pillared-layer framework based on the rare paddlewheel subunit [MnII2(μ-O ₂ CR) ₄ L ₂]: synthesis, crystal structure and magnetic properties. Dalton Transactions, 2015, 44, 16778-16784.	1.6	11
4007	One-step synthesis of isoreticular metal–organic framework-8 derived hierarchical porous carbon and its application in differential pulse anodic stripping voltammetric determination of Pb(<scp>ii</scp>). RSC Advances, 2015, 5, 77159-77167.	1.7	33
4008	CO ₂ Scrubbing Processes and Applications. , 2015, , 239-280.		0
4009	Metal–organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties. Journal of Solid State Chemistry, 2015, 232, 62-66.	1.4	4
4010	A novel Mn(II) complex with 3-(2,5-dicarboxyl)-5-carboxylpyridine: Synthesis, crystal structure, and interaction with DNA. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2015, 41, 599-606.	0.3	5
4011	Ultraporous, Water Stable, and Breathing Zirconium-Based Metal–Organic Frameworks with ftw Topology. Journal of the American Chemical Society, 2015, 137, 13183-13190.	6.6	149
4012	Poly-functional porous-organic polymers to access functionality – CO ₂ sorption energetic relationships. Journal of Materials Chemistry A, 2015, 3, 22584-22590.	5.2	54
4013	Template metal-organic frameworks: solvent-free synthesis, characterization and powder X-ray diffraction studies of [Cu(NO3)2(bipy)2](py)2. Journal of Porous Materials, 2015, 22, 1599-1605.	1.3	11

#	Article	IF	Citations
4014	Influence of Guest Molecules on the Crystal Lattice Structure and Porous Structure Characteristics of Coordination Polymers. Theoretical and Experimental Chemistry, 2015, 51, 301-306.	0.2	1
4015	Water Desalination through Zeolitic Imidazolate Framework Membranes: Significant Role of Functional Groups. Langmuir, 2015, 31, 13230-13237.	1.6	108
4016	Gas transport in metal organic framework–polyetherimide mixed matrix membranes: The role of the polyetherimide backbone structure. Polymer, 2015, 81, 87-98.	1.8	18
4017	Synthesis of a Chiral Crystal Form of MOF-5, CMOF-5, by Chiral Induction. Journal of the American Chemical Society, 2015, 137, 15406-15409.	6.6	139
4018	A unique Zn(<scp>ii</scp>)-based MOF fluorescent probe for the dual detection of nitroaromatics and ketones in water. CrystEngComm, 2015, 17, 9404-9412.	1.3	78
4019	Mechanisms of Plastic Deformation of Metal–Organic Framework-5. Journal of Physical Chemistry C, 2015, 119, 25845-25852.	1.5	36
4020	An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks. Nature Communications, 2015, 6, 8847.	5.8	309
4021	Solvent-assisted construction of diverse Mg-TDC coordination polymers. CrystEngComm, 2015, 17, 1348-1357.	1.3	21
4022	M(II)-coordination polymers (M=Zn and Cd) constructed from 1,2-bis[4-(pyridin-3-yl)phenoxy]ethane and 1,4-benzenedicarboxylic acid. Journal of Molecular Structure, 2015, 1084, 1-8.	1.8	2
4023	Tuning Proton Conductivity in Alkali Metal Phosphonocarboxylates by Cation Size-Induced and Water-Facilitated Proton Transfer Pathways. Chemistry of Materials, 2015, 27, 424-435.	3.2	82
4024	Introduction of amino groups into acid-resistant MOFs for enhanced U(<scp>vi</scp>) sorption. Journal of Materials Chemistry A, 2015, 3, 525-534.	5.2	378
4025	New Zn(II) Coordination Polymers Constructed from Amino-Alcohols and Aromatic Dicarboxylic Acids: Synthesis, Structure, Photocatalytic Properties, and Solid-State Conversion to ZnO. Crystal Growth and Design, 2015, 15, 799-811.	1.4	18
4026	Understanding Gas Adsorption Selectivity in IRMOF-8 Using Molecular Simulation. ACS Applied Materials & Interfaces, 2015, 7, 624-637.	4.0	73
4027	Enhanced recognition of a nitrogen containing organic compound by adjusting the acidity of the porous organic frameworks base (JUC-Z2). Journal of Materials Chemistry A, 2015, 3, 2628-2633.	5.2	7
4028	Water-Stable Metal–Organic Frameworks for Fast and High Dichromate Trapping via Single-Crystal-to-Single-Crystal Ion Exchange. Chemistry of Materials, 2015, 27, 205-210.	3.2	295
4029	Magnetic MOF microreactors for recyclable size-selective biocatalysis. Chemical Science, 2015, 6, 1938-1943.	3.7	162
4030	Heterogeneous catalytic properties of unprecedented μ-O-[FeTCPP] ₂ dimers (H ₂ TCPP = meso-tetra(4-carboxyphenyl)porphyrin): an unusual superhyperfine EPR structure. Dalton Transactions, 2015, 44, 213-222.	1.6	22
4031	Thermally induced polymerization of binuclear [Ni2(en)2(H2O)6(pyr)]·4H2O complex. Thermochimica Acta, 2015, 607, 82-91.	1.2	7

#	Article	IF	CITATIONS
4032	Synthesis of metal–organic frameworks in water at room temperature: salts as linker sources. Green Chemistry, 2015, 17, 1500-1509.	4.6	263
4033	Topochemical conversion of a dense metal–organic framework from a crystalline insulator to an amorphous semiconductor. Chemical Science, 2015, 6, 1465-1473.	3.7	66
4034	In Silico Discovery of High Deliverable Capacity Metal–Organic Frameworks. Journal of Physical Chemistry C, 2015, 119, 186-195.	1.5	54
4035	Roles of hydrogen bonds and ï€â€"ï€ stacking in the optical detection of nitro-explosives with a luminescent metal–organic framework as the sensor. RSC Advances, 2015, 5, 3045-3053.	1.7	62
4036	Lipase‣upported Metal–Organic Framework Bioreactor Catalyzes Warfarin Synthesis. Chemistry - A European Journal, 2015, 21, 115-119.	1.7	108
4037	The First Oneâ€Pot Synthesis of Metal–Organic Frameworks Functionalised with Two Transitionâ€Metal Complexes. Chemistry - A European Journal, 2015, 21, 861-866.	1.7	29
4038	Construction of Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) metal–organic frameworks of diimidazole and dicarboxylate mixed ligands for the catalytic photodegradation of rhodamine B in water. CrystEngComm, 2015, 17, 1935-1943.	1.3	48
4039	Two new metal–organic framework structures derived from terephthalate and linear trimetallic zinc building units. Inorganica Chimica Acta, 2015, 426, 15-19.	1.2	9
4040	Pilot-scale synthesis of a zirconium-benzenedicarboxylate UiO-66 for CO2 adsorption and catalysis. Catalysis Today, 2015, 245, 54-60.	2.2	76
4041	The first tritopic bridging ligand 1,3,5-tris(4-carboxyphenyl)-benzene (H ₃ BTB) functionalized porous polyoxometalate-based metal–organic framework (POMOF): from design, synthesis to electrocatalytic properties. Dalton Transactions, 2015, 44, 1435-1440.	1.6	55
4042	Selective Anion Exchange and Tunable Luminescent Behaviors of Metal–Organic Framework Based Supramolecular Isomers. Inorganic Chemistry, 2015, 54, 110-116.	1.9	53
4043	Synthesis, characterization and luminescence properties of zinc(II) complexes of pseudohalides and nitrite derived from 4-azidopyridine. Inorganica Chimica Acta, 2015, 425, 46-51.	1.2	26
4044	Thermally activated 3D to 2D structural transformation of [Ni2(en)2(H2O)6(pyr)]·4H2O flexible coordination polymer. Materials Chemistry and Physics, 2015, 149-150, 105-112.	2.0	6
4045	Nanoribbonâ€Structured Organo Zinc Phosphite Polymorphs with Whiteâ€Light Photoluminescence. Angewandte Chemie - International Edition, 2015, 54, 965-968.	7.2	17
4046	Diffusion of methane and other alkanes in metal-organic frameworks for natural gas storage. Chemical Engineering Science, 2015, 124, 135-143.	1.9	34
4047	Mesoporous Organic-Inorganic Non-Siliceous Hybrid Materials. Springer Briefs in Molecular Science, 2015, , .	0.1	6
4048	Selective adsorption of cationic dyes by UiO-66-NH2. Applied Surface Science, 2015, 327, 77-85.	3.1	382
4049	Acid-functionalized UiO-66(Zr) MOFs and their evolution after intra-framework cross-linking:	5.2	174

#	Article	IF	CITATIONS
4050	Microporous spiro-centered poly(benzimidazole) networks: preparation, characterization, and gas sorption properties. Polymer Chemistry, 2015, 6, 748-753.	1.9	28
4051	Four new metal–organic frameworks based on bi-, tetra-, penta-, and hexa-nuclear clusters derived from 5-(phenyldiazenyl)isophthalic acid: syntheses, structures and properties. CrystEngComm, 2015, 17, 1201-1209.	1.3	39
4052	Metal-organic framework based highly selective fluorescence turn-on probe for hydrogen sulphide. Scientific Reports, 2014, 4, 7053.	1.6	109
4053	Critical factors influencing the structures and properties of metal–organic frameworks. CrystEngComm, 2015, 17, 981-991.	1.3	34
4054	Thermally Robust 3-D Co-DpyDtolP-MOF with Hexagonally Oriented Micropores: Formation of Polyiodine Chains in a MOF Single Crystal. Crystal Growth and Design, 2015, 15, 268-277.	1.4	43
4055	Phosphine oxide-based conjugated microporous polymers with excellent CO ₂ capture properties. New Journal of Chemistry, 2015, 39, 136-141.	1.4	39
4056	A novel dispersive solid-phase extraction method using metal-organic framework MIL-101 as the adsorbent for the analysis of benzophenones in toner. Talanta, 2015, 132, 713-718.	2.9	43
4057	Zeolite-like metal–organic frameworks (ZMOFs): design, synthesis, and properties. Chemical Society Reviews, 2015, 44, 228-249.	18.7	662
4058	Non-noble bimetallic CuCo nanoparticles encapsulated in the pores of metal–organic frameworks: synergetic catalysis in the hydrolysis of ammonia borane for hydrogen generation. Catalysis Science and Technology, 2015, 5, 525-530.	2.1	179
4059	An Efficient Nanoscale Heterogeneous Catalyst for the Capture and Conversion of Carbon Dioxide at Ambient Pressure. Angewandte Chemie - International Edition, 2015, 54, 988-991.	7.2	281
4060	Three-dimensional Printed Acrylonitrile Butadiene Styrene Framework Coated with Cu-BTC Metal-organic Frameworks for the Removal of Methylene Blue. Scientific Reports, 2014, 4, 5939.	1.6	118
4061	Simulation and modelling of MOFs for hydrogen storage. CrystEngComm, 2015, 17, 261-275.	1.3	96
4062	Improving the moisture stability of a 3D zinc–organic framework by incorporating methyl groups into the auxiliary ligand: Synthesis, characterization, luminescence and catalytic properties. Journal of Molecular Structure, 2015, 1083, 421-425.	1.8	11
4063	Design of Highly Porous Singleâ€Site Catalysts through Twoâ€Step Postsynthetic Modification of Mixedâ€Linker MILâ€53(Al). ChemPlusChem, 2015, 80, 188-195.	1.3	26
4064	Real-time monitoring of breathing of MIL-53(Al) by environmental SEM. Microporous and Mesoporous Materials, 2015, 203, 17-23.	2.2	33
4065	Evaluation of MOFs for air purification and air quality control applications: Ammonia removal from air. Chemical Engineering Science, 2015, 124, 118-124.	1.9	194
4066	Structural diversity and magnetic properties of three metal–organic frameworks assembled from a T-shaped linker. CrystEngComm, 2015, 17, 604-611.	1.3	12
4067	Synthesis, crystal structure and luminescent property of heterometallic d10–d8 porous complex. Journal of Molecular Structure, 2015, 1081, 110-113.	1.8	4
#	Article	IF	CITATIONS
------	---	-----	-----------
4068	Crystal engineering, structure–function relationships, and the future of metal–organic frameworks. CrystEngComm, 2015, 17, 229-246.	1.3	237
4069	Review on processing of metal-organic framework (MOF) materials towards system integration for hydrogen storage. International Journal of Energy Research, 2015, 39, 607-620.	2.2	163
4070	Five 8-hydroxyquinolinate-based coordination polymers with tunable structures and photoluminescent properties for sensing nitroaromatics. Dalton Transactions, 2015, 44, 401-410.	1.6	46
4071	Utilizing mixed-linker zirconium based metal-organic frameworks to enhance the visible light photocatalytic oxidation of alcohol. Chemical Engineering Science, 2015, 124, 45-51.	1.9	112
4072	NMR relaxation and diffusion studies of methane and carbon dioxide in nanoporous ZIF-8 and ZSM-58. Microporous and Mesoporous Materials, 2015, 205, 36-39.	2.2	19
4073	Versatile, High Quality and Scalable Continuous Flow Production of Metal-Organic Frameworks. Scientific Reports, 2014, 4, 5443.	1.6	150
4074	A Cu II coordination polymer based on incorporated carboxylate and sulfonate groups: Synthesis, crystal structure, and magnetic properties. Journal of Molecular Structure, 2015, 1079, 163-166.	1.8	12
4075	Synthesis, crystal structure and optical property of three coordination polymer constructed from m-phenylenediacrylate acid. Journal of Solid State Chemistry, 2015, 221, 37-48.	1.4	3
4076	Tunable Two-color Luminescence and Host–guest Energy Transfer of Fluorescent Chromophores Encapsulated in Metal-Organic Frameworks. Scientific Reports, 2014, 4, 4337.	1.6	119
4077	Atomic charges for modeling metal–organic frameworks: Why and how. Journal of Solid State Chemistry, 2015, 223, 144-151.	1.4	47
4078	Thermodynamics of metal-organic frameworks. Journal of Solid State Chemistry, 2015, 223, 53-58.	1.4	44
4079	Removal of congo red from aqueous solution by its sorption onto the metal organic framework MIL-100(Fe): equilibrium, kinetic and thermodynamic studies. Desalination and Water Treatment, 2015, 56, 709-721.	1.0	30
4080	Ligand free copper-catalyzed heterogeneous O-arylation reaction under green condition. Catalysis Communications, 2015, 58, 141-148.	1.6	12
4081	Syntheses, structures and properties of three metal–organic complexes containing 2,2′-dipyridyl-5,5′-dicarboxylate ligands. Journal of Solid State Chemistry, 2015, 221, 5-13.	1.4	7
4082	Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. Journal of Hazardous Materials, 2015, 283, 329-339.	6.5	1,142
4083	Kinetic Separation of Alkylbenzenes with Metal-organic Framework Compounds. Journal of the Japan Petroleum Institute, 2016, 59, 1-8.	0.4	2
4084	Recent Advances in Metal-Organic Frameworks for Heterogeneous Catalyzed Organic Transformations. Synthesis and Catalysis Open Access, 2016, 01, .	0.4	11
4085	Synthesis, Crystal Structure, and Luminescent Properties of New Zinc(II) and Cadmium(II) Metal-Organic Frameworks Based on Flexible Bis(imidazol-1-yl)alkane Ligands. Crystals, 2016, 6, 132.	1.0	22

ARTICLE IF CITATIONS H2 Adsorbed Site-to-Site Electronic Delocalization within IRMOF-1: Understanding Non-Negligible 4086 1.3 3 Interactions at High Pressure. Materials, 2016, 9, 578. Introductory Chapter: Metal Organic Frameworks (MOFs)., 0,, . 4087 AN EXPERIMENTAL STUDY OF H2 AND CO2 ADSORPTION BEHAVIOR OF C-MOF-5 AND T-MOF-5: A 4088 0.7 7 COMPLEMENTARY STUDY. Brazilian Journal of Chemical Engineering, 2016, 33, 225-233. Ultem®/ZIF-8 Mixed Matrix Membranes for Gas Separation: Transport and Physical Properties. 4089 Materials Research, 2016, 19, 220-228. The preparation of metal–organic frameworks and their biomedical application. 4090 3.3 85 International Journal of Nanomedicine, 2016, 11, 1187. Metal-Organic Frameworks as Materials for Fuel Cell Technologies. Nanostructure Science and 4091 0.1 Technology, 2016, , 367-407. Transforming MOFs for Energy Applications Using the Guest@MOF Concept. Inorganic Chemistry, 2016, 4092 1.9 65 55, 7233-7249. Direct Imaging of ALD Deposited Pt Nanoclusters inside the Giant Pores of MILâ€101. Particle and Particle 4093 28 Systems Characterization, 2016, 33, 382-387. Extended Linkers for Ultrahigh Surface Area Metal-Organic Frameworks., 2016, , 271-307. 4094 1 Void Engineering in Metal–Organic Frameworks via Synergistic Etching and Surface 4095 302 Functionalization. Advanced Functional Materials, 2016, 26, 5827-5834 Hybrid Ultraâ€Microporous Materials for Selective Xenon Adsorption and Separation. Angewandte 4096 38 1.6 Chemie, 2016, 128, 8425-8429. Hybrid Ultraâ€Microporous Materials for Selective Xenon Adsorption and Separation. Angewandte Chemie - International Edition, 2016, 55, 8285-8289. Hydrogen Storage and Selective, Reversible O₂ Adsorption in a Metal–Organic Framework 4098 7.2 102 with Open Chromium(II) Sites. Angewandte Chemie - International Edition, 2016, 55, 8605-8609. The Utilization of Amide Groups To Expand and Functionalize Metal–Organic Frameworks Simultaneously. Chemistry - A European Journal, 2016, 22, 6277-6285. 4099 1.7 Metal Organic Framework Crystals in Mixedâ€Matrix Membranes: Impact of the Filler Morphology on 4100 225 7.8 the Gas Separation Performance. Advanced Functional Materials, 2016, 26, 3154-3163. A Metal–Organic Framework with a Pore Size/Shape Suitable for Strong Binding and Close Packing of Methane. Angewandte Chemie - International Edition, 2016, 55, 4674-4678. A Baseâ€Resistant Zn^{II}â€Based Metalâ€"Organic Framework: Synthesis, Structure, Postsynthetic 4102 1.3 16 Modification, and Gas Adsorption. ChemPlusChem, 2016, 81, 864-871. The Road to MOF-Related Functional Materials and Beyond: Desire, Design, Decoration, and 24 Development. Chemical Record, 2016, 16, 1456-1476.

#	Article	IF	CITATIONS
4104	Adsorption microcalorimetry of small molecules on various metal–organic frameworks. Journal of Thermal Analysis and Calorimetry, 2016, 126, 1747-1755.	2.0	1
4105	Smart Approach for Inâ€Situ Oneâ€Step Encapsulation and Controlled Delivery of a Chemotherapeutic Drug using Metal–Organic Framework–Drug Composites in Aqueous Media. ChemPhysChem, 2016, 17, 1070-1077.	1.0	38
4106	Hydrogen adsorption and storage in boron-substituted and nitrogen-substituted nano-carbon materials decorated with alkaline earth metals. International Journal of Energy Research, 2016, 40, 230-240.	2.2	26
4107	Chiral Linker Systems. , 0, , 387-419.		3
4108	Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie - International Edition, 2016, 55, 5414-5445.	7.2	888
4109	Designed Assembly of Heterometallic Cluster Organic Frameworks Based on Andersonâ€Type Polyoxometalate Clusters. Angewandte Chemie - International Edition, 2016, 55, 6462-6466.	7.2	150
4110	Ligand Functionalization in Metal-Organic Frameworks for Enhanced Carbon Dioxide Adsorption. Chemical Record, 2016, 16, 1298-1310.	2.9	26
4111	Molecular sieves for gas separation. Science, 2016, 353, 121-122.	6.0	168
4112	A Fine-Tuned Fluorinated MOF Addresses the Needs for Trace CO ₂ Removal and Air Capture Using Physisorption. Journal of the American Chemical Society, 2016, 138, 9301-9307.	6.6	366
4113	A Threefold Interpenetrated Pillared‣ayer Metal–Organic Framework for Selective Separation of C ₂ H ₂ /CH ₄ and CO ₂ /CH ₄ . ChemPlusChem, 2016, 81, 764-769.	1.3	24
4114	Hydrogen Storage and Selective, Reversible O ₂ Adsorption in a Metal–Organic Framework with Open Chromium(II) Sites. Angewandte Chemie, 2016, 128, 8747-8751.	1.6	23
4115	Optimization of Kinetic Pore Size for Methane Storage Behavior of Pitchâ€based Activated Carbon Fibers. Bulletin of the Korean Chemical Society, 2016, 37, 830-834.	1.0	4
4116	Threeâ€Ðimensional Metal–Fullerene Frameworks. Chemistry - A European Journal, 2016, 22, 5982-5987.	1.7	25
4117	Cadmium(II)–Triazole Framework as a Luminescent Probe for Ca ²⁺ and Cyano Complexes. Chemistry - A European Journal, 2016, 22, 10459-10474.	1.7	75
4118	Modulation of Gas Sorption Properties through Cation Exchange within an Anionic Metal–Organic Framework. ChemPlusChem, 2016, 81, 780-785.	1.3	7
4119	An Unusual 3D Zincâ€Organic Framework Constructed from Paddleâ€Wheelâ€Based Carboxylate Sheets Bridged by Acetate Ions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 709-713.	0.6	3
4120	Nanomaterials for Fuel Cell Catalysis. Nanostructure Science and Technology, 2016, , .	0.1	11
4121	Postsynthetic Inner-Surface Functionalization of the Highly Stable Zirconium-Based Metal–Organic Framework DUT-67. Inorganic Chemistry, 2016, 55, 7206-7213.	1.9	68

#	Article	IF	CITATIONS
4122	Calcium Vapor Adsorption on the Metal–Organic Framework NU-1000: Structure and Energetics. Journal of Physical Chemistry C, 2016, 120, 16850-16862.	1.5	16
4123	Direct Fabrication of Freeâ€Standing MOF Superstructures with Desired Shapes by Micro onfined Interfacial Synthesis. Angewandte Chemie - International Edition, 2016, 55, 7116-7120.	7.2	41
4124	Enantioselective Hydrogenation of Olefins Enhanced by Metal–Organic Framework Additives. ChemCatChem, 2016, 8, 308-312.	1.8	14
4125	Metalâ€Organic Frameworks Derived Porous Carbons: Syntheses, Porosity and Gas Sorption Properties. Chinese Journal of Chemistry, 2016, 34, 157-174.	2.6	42
4126	Robust Metalâ€Organic Frameworks Based on Tritopic Phosphonoaromatic Ligands. European Journal of Inorganic Chemistry, 2016, 2016, 4300-4309.	1.0	59
4127	SURMOFs: Liquid-Phase Epitaxy of Metal-Organic Frameworks on Surfaces. , 2016, , 523-550.		1
4128	Network Topology. , 0, , 5-40.		8
4129	Reticular Chemistry of Metal-Organic Frameworks Composed of Copper and Zinc Metal Oxide Secondary Building Units as Nodes. , 0, , 41-72.		4
4130	Synthesis, Structure, and Selected Properties of Aluminum-, Gallium-, and Indium-Based Metal-Organic Frameworks. , 0, , 105-135.		5
4131	Targeted Synthesis of Two Superâ€Complex Zeolites with Embedded Isoreticular Structures. Angewandte Chemie, 2016, 128, 5012-5016.	1.6	2
4132	A Metal–Organic Framework with a Pore Size/Shape Suitable for Strong Binding and Close Packing of Methane. Angewandte Chemie, 2016, 128, 4752-4756.	1.6	27
4133	Bulky bis(imidazole) and 2-sulfoterephthalate Assisted 3-D Cu(II) and 2-D Mn(II) Coordination Polymers: Topology, Diversity in Metal Containing Nodes and Spectral Elucidation. ChemistrySelect, 2016, 1, 6230-6237.	0.7	1
4134	Computational Evaluation of the Impact of Incorporated Nitrogen and Oxygen Heteroatoms on the Affinity of Polyaromatic Ligands for Carbon Dioxide and Methane in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2016, 120, 27342-27348.	1.5	9
4135	Crystal structure of the co-crystal of 5-aminoisophthalic acid and 1,2-bis(pyridin-4-yl)ethene. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 639-642.	0.2	0
4136	Utilization of Metal-Organic Frameworks for the Management of Gases Used in Ion Implantation. , 2016, , .		3
4137	Heterogene molekulare Systeme für eine photokatalytische CO ₂ â€Reduktion mit Wasseroxidation. Angewandte Chemie, 2016, 128, 15146-15174.	1.6	46
4138	Carboxylic Acid Functionalized Clathrochelate Complexes: Large, Robust, and Easy-to-Access Metalloligands. Inorganic Chemistry, 2016, 55, 4006-4015.	1.9	43
4139	SO ₃ H-functionalized metal organic frameworks: an efficient heterogeneous catalyst for the synthesis of quinoxaline and derivatives. RSC Advances, 2016, 6, 35135-35143.	1.7	35

#	Article	IF	CITATIONS
4140	High methane storage and working capacities in a NbO-type metal–organic framework. Dalton Transactions, 2016, 45, 7559-7562.	1.6	32
4141	Synergistic effects in N-K2Ti4O9/UiO-66-NH2 composites and their photocatalysis degradation of cationic dyes. Chinese Journal of Catalysis, 2016, 37, 367-377.	6.9	41
4142	Sliding three-phase contact line of printed droplets for single-crystal arrays. Nanotechnology, 2016, 27, 184002.	1.3	16
4143	Rationally tuning the separation performances of [M3(HCOO)6] frameworks for CH4/N2 mixtures via metal substitution. Microporous and Mesoporous Materials, 2016, 225, 456-464.	2.2	40
4144	A 2D zinc-organic network being easily exfoliated into isolated sheets. Journal of Molecular Structure, 2016, 1117, 135-139.	1.8	2
4145	Coordination polymers with mixed 1, 3-bis(1-imidazolyl)-5-(imidazol-1-ylmethyl)benzene and multicarboxylate ligands: Synthesis, structure and property. Microporous and Mesoporous Materials, 2016, 231, 163-170.	2.2	8
4146	Research trend of metal–organic frameworks: a bibliometric analysis. Scientometrics, 2016, 109, 481-513.	1.6	91
4147	Heterometallic Metal–Organic Frameworks That Catalyze Two Different Reactions Sequentially. Inorganic Chemistry, 2016, 55, 5729-5731.	1.9	30
4148	Flexible solid-state supercapacitor fabricated by metal-organic framework/graphene oxide hybrid interconnected with PEDOT. Materials Chemistry and Physics, 2016, 179, 166-173.	2.0	84
4149	Hidden Transformations of a Crystalline Sponge: Elucidating the Stability of a Highly Porous Three-Dimensional Metal–Organic Framework. Crystal Growth and Design, 2016, 16, 4043-4050.	1.4	20
4150	Six lanthanide supramolecular frameworks based on mixed m-/p-hydroxybenzoic acid and 1,10-phenanthroline tectons: Syntheses, crystal structures, and properties. Polyhedron, 2016, 113, 132-143.	1.0	8
4151	A bracket approach to improve the stability and gas sorption performance of a metal–organic framework via in situ incorporating the size-matching molecular building blocks. Chemical Communications, 2016, 52, 8413-8416.	2.2	76
4152	An Azole-Based Metal–Organic Framework toward Direct White-Light Emissions by the Synergism of Ligand-Centered Charge Transfer and Interligand π–π Interactions. Crystal Growth and Design, 2016, 16, 3969-3975.	1.4	39
4153	Photoelectric properties and potential nitro derivatives sensing by a highly luminescent of Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) metal–organic frameworks assembled by the flexible hexapodal ligand, 1,3,5-triazine-2,4,6-triamine hexaacetic acid. RSC Advances, 2016, 6, 36000-36010.	1.7	19
4154	Adsorptive Removal of Methylene Blue from Aqueous Solution using a Ni-Metal Organic Framework Material. Journal of Dispersion Science and Technology, 2016, 37, 1226-1231.	1.3	19
4155	Selective CO ₂ adsorption in four zinc(<scp>ii</scp>)-based metal organic frameworks constructed using a rigid N,N′-donor linker and various dicarboxylate ligands. CrystEngComm, 2016, 18, 4395-4404.	1.3	25
4156	Diverse Metal–Organic Materials (MOMs) Based on 9,9′-Bianthryl-Dicarboxylic Acid Linker: Luminescence Properties and CO ₂ Capture. Crystal Growth and Design, 2016, 16, 2024-2032.	1.4	19
4157	Metal-organic frameworks: structure, properties, methods of synthesis and characterization. Russian Chemical Reviews, 2016, 85, 280-307.	2.5	300

#	Article	IF	CITATIONS
4158	Homonuclear Mixedâ€Valent Cobalt Imidazolate Framework for Oxygenâ€Evolution Electrocatalysis. Chemistry - A European Journal, 2016, 22, 3676-3680.	1.7	41
4159	Thermodynamics of gas adsorption in <scp>MOF</scp> s using <i>Ab Initio</i> calculations. International Journal of Quantum Chemistry, 2016, 116, 569-572.	1.0	9
4160	Inorganic nanoparticles in porous coordination polymers. Chemical Society Reviews, 2016, 45, 3828-3845.	18.7	220
4161	Synthesis and Gas Adsorption Properties of Carbide-Derived Carbons from Titanium Tin Carbide. Nano, 2016, 11, 1650040.	0.5	5
4162	A copper(<scp>ii</scp>)-based MOF film for highly efficient visible-light-driven hydrogen production. Journal of Materials Chemistry A, 2016, 4, 7174-7177.	5.2	65
4163	Aging of the reaction mixture as a tool to modulate the crystallite size of UiO-66 into the low nanometer range. Chemical Communications, 2016, 52, 6411-6414.	2.2	39
4164	An immobilized carboxyl containing metal-organic framework-5 stationary phase for open-tubular capillary electrochromatography. Talanta, 2016, 154, 360-366.	2.9	44
4165	Electroluminescence response promoted by dispersion and interaction of perylene-3,4,9,10-tetracarboxylic dianhydride inside MOF5. RSC Advances, 2016, 6, 35191-35196.	1.7	11
4166	Interfacial Synthetic Approach for Constructing Metal–Organic Framework Crystals Using Metal Ion-Doped Polymer Substrate. Crystal Growth and Design, 2016, 16, 2472-2476.	1.4	23
4167	A Fluorinated Metal–Organic Framework for High Methane Storage at Room Temperature. Crystal Growth and Design, 2016, 16, 3395-3399.	1.4	36
4168	One-Step Asymmetric Growth of Continuous Metal–Organic Framework Thin Films on Two-Dimensional Colloidal Crystal Arrays: A Facile Approach toward Multifunctional Superstructures. Crystal Growth and Design, 2016, 16, 2700-2707.	1.4	14
4169	Four novel coordination frameworks with high degree of diamondoid interpenetration containing scarce quadruple-stranded homo-axis helices and quintuple-stranded molecular braids. Inorganica Chimica Acta, 2016, 448, 42-50.	1.2	6
4170	Heterometallic Alkaline Earth–Lanthanide Ba ^{II} –La ^{III} Microporous Metal–Organic Framework as Bifunctional Luminescent Probes of Al ³⁺ and MnO ₄ [–] . Inorganic Chemistry, 2016, 55, 4391-4402.	1.9	195
4171	Facile water-stability evaluation of metal–organic frameworks and the property of selective removal of dyes from aqueous solution. Dalton Transactions, 2016, 45, 8753-8759.	1.6	76
4172	Pore engineering of metal–organic frameworks: introduction of chemically accessible Lewis basic sites inside MOF channels. CrystEngComm, 2016, 18, 3524-3550.	1.3	47
4173	A Co ^{II} -based metal–organic framework based on [Co ₆ (μ ₃ -OH) ₄] units exhibiting selective sorption of C ₂ H ₂ over CO ₂ and CH ₄ . CrystEngComm, 2016, 18, 3760-3763.	1.3	22
4174	Solid-state emissive cyanostilbene based conjugated microporous polymers via cost-effective Knoevenagel polycondensation. Polymer Chemistry, 2016, 7, 3983-3988.	1.9	64
4175	Preparation of Ni-metal organic framework-74 nanospheres by hydrothermal method for SO2 gas adsorption. Journal of Porous Materials, 2016, 23, 1249-1254.	1.3	9

#	Article	IF	CITATIONS
4176	Syntheses, characterization, and luminescence properties of three novel Ag(<scp>i</scp>) coordination polymers based on polycarboxylic acid ligands and 1,3-di-(1,2,4-triazole-4-yl)benzene. CrystEngComm, 2016, 18, 4636-4642.	1.3	31
4177	The role of metal–organic frameworks in a carbon-neutral energy cycle. Nature Energy, 2016, 1, .	19.8	374
4178	Effective Binding of Methane Using a Weak Hydrogen Bond. Journal of Physical Chemistry A, 2016, 120, 3701-3709.	1.1	7
4179	2D metal–organic frameworks: Syntheses, structures, and electrochemical properties. Inorganica Chimica Acta, 2016, 447, 162-167.	1.2	20
4180	A Robust Open Framework Formed by Decavanadate Clusters and Copper(II) Complexes of Macrocyclic Polyamines: Permanent Microporosity and Catalytic Oxidation of Cycloalkanes. Inorganic Chemistry, 2016, 55, 4970-4979.	1.9	50
4181	One pot synthesis of Zr–carboxylate porous hybrid materials: orthogonal C–C heterocoupling and carboxylate–Zr assembly. RSC Advances, 2016, 6, 42307-42312.	1.7	8
4182	Mechanism of CO2 adsorption on Mg/DOBDC with elevated CO2 loading. Fuel, 2016, 181, 340-346.	3.4	25
4183	Rational construction of functional molybdenum (tungsten)–copper–sulfur coordination oligomers and polymers from preformed cluster precursors. Chemical Society Reviews, 2016, 45, 4995-5019.	18.7	113
4184	CO ₂ Adsorption in M-IRMOF-10 (M = Mg, Ca, Fe, Cu, Zn, Ge, Sr, Cd, Sn, Ba). Journal of Physical Chemistry C, 2016, 120, 12819-12830.	1.5	21
4185	Surface polarization enhancement: high catalytic performance of Cu/CuO _x /C nanocomposites derived from Cu-BTC for CO oxidation. Journal of Materials Chemistry A, 2016, 4, 8412-8420.	5.2	119
4186	Metal–Organic Framework (MOF) and Porous Coordination Polymer (PCP)-Based Photocatalysts. Nanostructure Science and Technology, 2016, , 479-489.	0.1	3
4187	Shockwave Energy Dissipation in Metal–Organic Framework MOF-5. Journal of Physical Chemistry C, 2016, 120, 12463-12471.	1.5	31
4188	High Gas Adsorption Capacity of an <i>agw</i> â€Type Metal–Organic Framework Decorated with Methyl Groups. European Journal of Inorganic Chemistry, 2016, 2016, 4727-4730.	1.0	2
4189	Polymer brushes on metal–organic frameworks by UV-induced photopolymerization. Polymer Chemistry, 2016, 7, 5828-5834.	1.9	49
4190	A highly stable dimethyl-functionalized Ce(<scp>iv</scp>)-based UiO-66 metal–organic framework material for gas sorption and redox catalysis. CrystEngComm, 2016, 18, 7855-7864.	1.3	80
4191	Supramolecular organic frameworks of cucurbit[n]uril-based [2]pseudorotaxanes in the crystalline state. CrystEngComm, 2016, 18, 7929-7933.	1.3	11
4192	Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage. Energy and Environmental Science, 2016, 9, 3279-3289.	15.6	231
4193	Reticular Chemistry at Its Best: Directed Assembly of Hexagonal Building Units into the Awaited Metal-Organic Framework with the Intricate Polybenzene Topology, pbz-MOF. Journal of the American Chemical Society, 2016, 138, 12767-12770.	6.6	101

#	Article	IF	CITATIONS
4194	Synthesis, characterization and molecular structure of a zinc(II) formate-2,2â€2-bipyridine mono-dimensional coordination polymer. Comparison with other 2,2-bipyridine coordination compounds. Inorganica Chimica Acta, 2016, 453, 263-267.	1.2	7
4195	Two-dimensional coordination polymers based on functionalized chiral binaphthyl-derived ligands with phosphine oxide groups and zinc(II) and cadmium(II) ions. Polyhedron, 2016, 118, 96-102.	1.0	2
4196	Aberration-corrected STEM analysis of the RHO family of zeolites with embedded isoreticular structures. Microporous and Mesoporous Materials, 2016, 236, 129-133.	2.2	6
4197	Heterogeneous Molecular Systems for Photocatalytic CO ₂ Reduction with Water Oxidation. Angewandte Chemie - International Edition, 2016, 55, 14924-14950.	7.2	360
4198	Ligand-oriented assembly of a porous metal–organic framework by [Cu ^I ₄ I _{1_{] clusters and paddle-wheel [Cu^{II}₂(COO)₄(H₂O)₂] subunits. CrystEngComm, 2016, 18, 8362-8365.}}	1.3	14
4199	Three-Dimensional Co- and Mn-MOFs Containing aC2h-Symmetric Terphenyl-3,3′-dicarboxylate Linker and Their Magnetic Properties. European Journal of Inorganic Chemistry, 2016, 2016, 4891-4897.	1.0	5
4200	Development of Versatile Metal–Organic Framework Functionalized Magnetic Graphene Core–Shell Biocomposite for Highly Specific Recognition of Glycopeptides. ACS Applied Materials & Interfaces, 2016, 8, 27482-27489.	4.0	70
4201	Recent developments in porous materials for H2 and CH4 storage. Tetrahedron Letters, 2016, 57, 4873-4881.	0.7	37
4202	Topology-dependent emissive properties of zirconium-based porphyrin MOFs. Chemical Communications, 2016, 52, 13031-13034.	2.2	69
4203	Guestâ€Induced, Selfâ€Assembled Supramolecular Capsule: Effect of Guest and Counter Anions. ChemistrySelect, 2016, 1, 1630-1635.	0.7	3
4204	Nanoporous ionic organic networks: from synthesis to materials applications. Chemical Society Reviews, 2016, 45, 6627-6656.	18.7	152
4205	Highly Efficient Cooperative Catalysis by Co ^{III} (Porphyrin) Pairs in Interpenetrating Metal–Organic Frameworks. Angewandte Chemie, 2016, 128, 13943-13947.	1.6	24
4206	Highly Efficient Cooperative Catalysis by Co ^{III} (Porphyrin) Pairs in Interpenetrating Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2016, 55, 13739-13743.	7.2	78
4207	Metal-Organic Frameworks and Related Materials. , 2016, , 33-109.		3
4208	Hydrogen storage in a layered flexible [Ni2(btc)(en)2]n coordination polymer. International Journal of Hydrogen Energy, 2016, 41, 22171-22181.	3.8	13
4209	Designing Multifunctional 5-Cyanoisophthalate-Based Coordination Polymers as Single-Molecule Magnets, Adsorbents, and Luminescent Materials. Inorganic Chemistry, 2016, 55, 11230-11248.	1.9	46
4210	Cooperative electrochemical water oxidation by Zr nodes and Ni–porphyrin linkers of a PCN-224 MOF thin film. Journal of Materials Chemistry A, 2016, 4, 16818-16823.	5.2	99
4211	An alkali-ion insertion approach to structurally transform metal–organic frameworks. CrystEngComm, 2016, 18, 7680-7684.	1.3	7

#	Article	IF	CITATIONS
4212	Gaining Insights on the H ₂ –Sorbent Interactions: Robust soc-MOF Platform as a Case Study. Chemistry of Materials, 2016, 28, 7353-7361.	3.2	43
4213	Synthesis and application of core–shell magnetic metal–organic framework composites Fe ₃ O ₄ /IRMOF-3. RSC Advances, 2016, 6, 94113-94118.	1.7	25
4214	Hydrothermal synthesis and characterization of a series of luminescent Ag(<scp>i</scp>) coordination polymers with two new multidentate bis-(1,2,3-triazole) ligands: structural diversity, polymorphism and photoluminescent sensing. CrystEngComm, 2016, 18, 6640-6652.	1.3	38
4215	Production of spherical mesoporous molecularly imprinted polymer particles containing tunable amine decorated nanocavities with CO 2 molecule recognition properties. Chemical Engineering Journal, 2016, 306, 214-225.	6.6	32
4216	Competitive coordination strategy for the synthesis of hierarchical-pore metal–organic framework nanostructures. Chemical Science, 2016, 7, 7101-7105.	3.7	125
4219	Catalytic Hydroamination of Unsaturated Hydrocarbons. Topics in Catalysis, 2016, 59, 1196-1206.	1.3	30
4220	Gas transport through mixed matrix membranes composed of polysulfone and copper terephthalate particles. Microporous and Mesoporous Materials, 2016, 235, 120-134.	2.2	15
4221	Four metal–organic frameworks based on a semirigid tripodal ligand and different secondary building units: structures and electrochemical performance. CrystEngComm, 2016, 18, 6841-6848.	1.3	23
4222	Nanoscale iron carboxylate metal organic frameworks as drug carriers for magnetically aided intracellular delivery. RSC Advances, 2016, 6, 76861-76866.	1.7	15
4223	Enhanced photodegradation of Rhodamine B by coupling direct solid-state Z-scheme N-K2Ti4O9/g-C3N4 heterojunction with high adsorption capacity of UiO-66. Journal of Environmental Chemical Engineering, 2016, 4, 3364-3373.	3.3	23
4224	Capture and Reversible Storage of Volatile Iodine by Novel Conjugated Microporous Polymers Containing Thiophene Units. ACS Applied Materials & Interfaces, 2016, 8, 21063-21069.	4.0	212
4225	A Porous Metal–Organic Framework Assembled by [Cu ₃₀] Nanocages: Serving as Recyclable Catalysts for CO ₂ Fixation with Aziridines. Advanced Science, 2016, 3, 1600048.	5.6	96
4226	Pyrolytic synthesis and luminescence of porous lanthanide Euâ€MOF. Luminescence, 2016, 31, 190-194.	1.5	11
4227	2D Squaraineâ€Bridged Covalent Organic Polymers with Promising CO ₂ Storage and Separation Properties. ChemistrySelect, 2016, 1, 533-538.	0.7	8
4228	A 3D Homochiral MOF [Cd ₂ (d am) ₃]•2Hdma•4dma for HPLC Chromatographic Enantioseparation. Chirality, 2016, 28, 340-346.	2 1.3	27
4229	Coordination Polymers of 5-Alkoxy Isophthalic Acids. Crystal Growth and Design, 2016, 16, 5771-5780.	1.4	11
4230	Topological control of 3,4-connected frameworks based on the Cu ₂ -paddle-wheel node: tbo or pto , and why?. CrystEngComm, 2016, 18, 8164-8171.	1.3	24
4231	MOFâ€5â€Polystyrene: Direct Production from Monomer, Improved Hydrolytic Stability, and Unique Guest Adsorption. Angewandte Chemie, 2016, 128, 12278-12282.	1.6	11

#	Article	IF	CITATIONS
4232	Extension of the Universal Force Field for Metal–Organic Frameworks. Journal of Chemical Theory and Computation, 2016, 12, 5215-5225.	2.3	126
4233	Hydrogen adsorption in azolium and metalated N-heterocyclic carbene containing MOFs. CrystEngComm, 2016, 18, 7003-7010.	1.3	17
4234	MOFâ€5â€Polystyrene: Direct Production from Monomer, Improved Hydrolytic Stability, and Unique Guest Adsorption. Angewandte Chemie - International Edition, 2016, 55, 12099-12103.	7.2	90
4235	Yolk–Shell MnO@ZnMn ₂ O ₄ /N–C Nanorods Derived from <i>α</i> â€MnO ₂ /ZIFâ€8 as Anode Materials for Lithium Ion Batteries. Small, 2016, 12, 5564-5571.	5.2	130
4236	Stoichiometry Controlled Structural Variation in Three-Dimensional Zn(II)–Frameworks: Single-Crystal to Single-Crystal Transmetalation and Selective CO ₂ Adsorption. Crystal Growth and Design, 2016, 16, 5238-5246.	1.4	33
4237	Highly Selective CO ₂ Extraction from a Mixture of CO ₂ and H ₂ Gases Using Hydroquinone Clathrates. Energy & Fuels, 2016, 30, 7604-7609.	2.5	23
4238	A microporous Cu-MOF with optimized open metal sites and pore spaces for high gas storage and active chemical fixation of CO ₂ . Chemical Communications, 2016, 52, 11147-11150.	2.2	119
4240	A new strategy to obtain tetranuclear cobalt(<scp>ii</scp>) metal–organic frameworks based on the [Co ₄ (μ ₃ -OH) ₂] cluster: synthesis, structures and properties. Dalton Transactions, 2016, 45, 15078-15088.	1.6	42
4241	Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings? – A review. Analytica Chimica Acta, 2016, 939, 26-41.	2.6	171
4242	Nanostructured Ni compounds as electrode materials towards high-performance electrochemical capacitors. Journal of Materials Chemistry A, 2016, 4, 14509-14538.	5.2	95
4243	Development of Tetranuclear Zinc Cluster-Catalyzed Environmentally Friendly Reactions and Mechanistic Studies. Chemical and Pharmaceutical Bulletin, 2016, 64, 523-539.	0.6	22
4244	Monte Carlo Simulation of Adsorption of Polar and Nonpolar Gases in (FP)YEu Metal–Organic Framework. Journal of Chemical & Engineering Data, 2016, 61, 4209-4214.	1.0	7
4245	Variation of the Molecular Conformation, Shape, and Cavity Size in Dinuclear Metalla-Macrocycles Containing Hetero-Ditopic Dithiocarbamate–Carboxylate Ligands from a Homologous Series of N-Substituted Amino Acids. Inorganic Chemistry, 2016, 55, 12451-12469.	1.9	18
4246	Materials design by evolutionary optimization of functional groups in metal-organic frameworks. Science Advances, 2016, 2, e1600954.	4.7	82
4247	Divalent Metal 2,5-Thiophenedicarboxylate Coordination Polymers with the Conformationally Flexible Bis(4-pyridylÂformyl)homopiperazine Ligand. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 966-972.	0.6	3
4248	Description of methane adsorption on microporous carbon adsorbents on the range of supercritical temperatures on the basis of the Dubinin–Astakhov equation. Protection of Metals and Physical Chemistry of Surfaces, 2016, 52, 575-580.	0.3	16
4249	Surfactantâ€Free Palladium Nanoparticles Encapsulated in ZIFâ€8 Hollow Nanospheres for Sizeâ€5elective Catalysis in Liquidâ€Phase Solution. ChemCatChem, 2016, 8, 3224-3228.	1.8	43
4250	A unique (3,10)-connected magnesium/nickel-based metal–organic framework constructed from an unusual kgd supermolecular building layer via mixed linkers and solid solution approach. CrystEngComm, 2016, 18, 8358-8361.	1.3	3

#	Article	IF	CITATIONS
4251	Tuning the Catalytic Activity of a Metal–Organic Framework Derived Copper and Nitrogen Co-Doped Carbon Composite for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2016, 8, 26769-26774.	4.0	63
4252	Metal organic frameworks (MOFs) for magnetic solid-phase extraction of pyrazole/pyrrole pesticides in environmental water samples followed by HPLC-DAD determination. Talanta, 2016, 161, 686-692.	2.9	156
4253	Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Physical Chemistry Chemical Physics, 2016, 18, 29308-29315.	1.3	213
4254	Syntheses and structures of 1d coordination polymers based on cluster anions [Re4Te4(CN)12]4– and cationic Ln3+ (Ln = La, Gd) complexes with 1,10-phenanthroline. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2016, 42, 423-428.	0.3	2
4255	Palladium(II)@Zirconiumâ€Based Mixedâ€Linker Metal–Organic Frameworks as Highly Efficient and Recyclable Catalysts for Suzuki and Heck Crossâ€Coupling Reactions. ChemCatChem, 2016, 8, 3261-3271.	1.8	50
4256	Control of interpenetration via in situ lithium incorporation in MOFs and their gas adsorption properties and selectivity. CrystEngComm, 2016, 18, 7614-7619.	1.3	22
4257	A Seed-mediated Spray-drying Method for Facile Syntheses of Zr-MOF and a Pillared-layer-type MOF. Chemistry Letters, 2016, 45, 1313-1315.	0.7	6
4258	The excellent photocatalytic synergism of PbBiO ₂ Br/UiO-66-NH ₂ composites via multiple coupling effects. RSC Advances, 2016, 6, 89907-89915.	1.7	24
4259	Thermodynamic Insight in the High-Pressure Behavior of UiO-66: Effect of Linker Defects and Linker Expansion. Chemistry of Materials, 2016, 28, 5721-5732.	3.2	97
4260	A Partially Fluorinated, Water-Stable Cu(II)–MOF Derived via Transmetalation: Significant Gas Adsorption with High CO ₂ Selectivity and Catalysis of Biginelli Reactions. Inorganic Chemistry, 2016, 55, 7835-7842.	1.9	71
4261	Distance Dependence of Fluorescence Enhancement in Au Nanoparticle@Mesoporous Silica@Europium Complex. Journal of Physical Chemistry C, 2016, 120, 16907-16912.	1.5	19
4262	Windmill Co ₄ {Co ₄ (μ ₄ â€O)} with 16 Divergent Branches Forming a Family of Metal–Organic Frameworks: Organic Metrics Control Topology, Gas Sorption, and Magnetism. Chemistry - A European Journal, 2016, 22, 12088-12094.	1.7	34
4263	Catalysis of CO2 Electroreduction. Electrochemical Energy Storage and Conversion, 2016, , 155-228.	0.0	1
4264	Tuning Pore Size in Squareâ€Lattice Coordination Networks for Sizeâ€ S elective Sieving of CO ₂ . Angewandte Chemie, 2016, 128, 10424-10428.	1.6	43
4265	Tuning Pore Size in Squareâ€Lattice Coordination Networks for Sizeâ€Selective Sieving of CO ₂ . Angewandte Chemie - International Edition, 2016, 55, 10268-10272.	7.2	237
4266	Four new lanthanide–organic frameworks: selective luminescent sensing and magnetic properties. Dalton Transactions, 2016, 45, 12800-12806.	1.6	38
4267	Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. Angewandte Chemie - International Edition, 2016, 55, 8228-8234.	7.2	184
4268	Emerging Multifunctional Metal–Organic Framework Materials. Advanced Materials, 2016, 28, 8819-8860.	11.1	1,227

#	Article	IF	CITATIONS
4269	Synthesis of metal organic framework (MOF-5) with high selectivity for CO2/N2 separation in flue gas by maximum water concentration approach. Korean Journal of Chemical Engineering, 2016, 33, 2747-2755.	1.2	23
4270	Synthesis of Monocrystalline Nanoframes of Prussian Blue Analogues by Controlled Preferential Etching. Angewandte Chemie, 2016, 128, 8368-8374.	1.6	28
4271	A novel MOF showing a ring-like planar Zn ₆ cluster and the coexistence of a single, double, and triple wall. CrystEngComm, 2016, 18, 6336-6340.	1.3	5
4272	Solvent-Controlled Assembly of Ionic Metal–Organic Frameworks Based on Indium and Tetracarboxylate Ligand: Topology Variety and Gas Sorption Properties. Crystal Growth and Design, 2016, 16, 5554-5562.	1.4	46
4273	Advanced Fabrication Method for the Preparation of MOF Thin Films: Liquid-Phase Epitaxy Approach Meets Spin Coating Method. ACS Applied Materials & Interfaces, 2016, 8, 20459-20464.	4.0	170
4274	A Cu(<scp>ii</scp>) MOF with a flexible bifunctionalised terpyridine as an efficient catalyst for the single-pot hydrocarboxylation of cyclohexane to carboxylic acid in water/ionic liquid medium. Dalton Transactions, 2016, 45, 12779-12789.	1.6	28
4275	Coâ^'MOFs with 1,1′-(5-methyl-1,3-phenylene)bis(1H-imidazole) and aromatic carboxylates as coligands: synthesis, structure, and spectroscopic and thermal characterizations. Journal of Coordination Chemistry, 2016, 69, 2247-2262.	0.8	4
4276	Highly Efficient Luminescent Metal–Organic Framework for the Simultaneous Detection and Removal of Heavy Metals from Water. ACS Applied Materials & Interfaces, 2016, 8, 30294-30303.	4.0	320
4277	Design and synthesis of two novel functional metal–organic microcapsules; an investigation into ligand expansion effects on the metal–organic microcapsules' properties. RSC Advances, 2016, 6, 101652-101659.	1.7	3
4278	A silver coordination cage assembled from [Ag ₂ (bis(isoxazolyl)) ₃]: DFT approach to the binding forces within the host–guest interactions. RSC Advances, 2016, 6, 103346-103356.	1.7	4
4279	Zinc(II) and Copper(II) Metal-Organic Frameworks Constructed from a Terphenyl-4,4′′-dicarboxylic Acid Derivative: Synthesis, Structure, and Catalytic Application in the Cyanosilylation of Aldehydes. European Journal of Inorganic Chemistry, 2016, 2016, 5557-5567.	1.0	27
4280	Structural and Topological Study of Two Coordination Polymers Formed by 1,2,4,5 – Benzenetetracarboxylic Acid, Isonicotinylhydrazine and Metallic Ions Co ²⁺ and Zn ²⁺ . ChemistrySelect, 2016, 1, 3770-3776.	0.7	2
4281	Construction and Gilding of Metal-Organic Frameworks and Microtubule Conjugates. ChemistrySelect, 2016, 1, 5358-5362.	0.7	4
4282	Furnishing Amine-Functionalized Metal–Organic Frameworks with the β-Amidoketone Group by Postsynthetic Modification. Inorganic Chemistry, 2016, 55, 10839-10842.	1.9	18
4283	Porous organic cages: soluble, modular and molecular pores. Nature Reviews Materials, 2016, 1, .	23.3	603
4284	High proton conductivity in an unprecedented anionic metalloring organic framework (MROF) containing novel metalloring clusters with the largest diameter. Journal of Materials Chemistry A, 2016, 4, 18742-18746.	5.2	44
4285	MOF. , 2016, , .		0
4286	Influence of Pore Dimension on the Host–Guest Interaction in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2016, 120, 27319-27327.	1.5	15

#	Article	IF	CITATIONS
4287	Three transition metal cluster-based coordination polymers based on 1,4-naphthalenedicarboxylate and pyridine ligands. Inorganic Chemistry Communication, 2016, 74, 16-21.	1.8	40
4288	Methane storage in nanoporous material at supercritical temperature over a wide range of pressures. Scientific Reports, 2016, 6, 33461.	1.6	72
4289	A porphyrin-based metal organic framework for high rate photoreduction of CO2 to CH4 in gas phase. Journal of CO2 Utilization, 2016, 16, 450-457.	3.3	91
4290	Controlling Thermal Expansion: A Metal–Organic Frameworks Route. Chemistry of Materials, 2016, 28, 8296-8304.	3.2	42
4291	Two new silver triazole frameworks with polyoxometalate templates. RSC Advances, 2016, 6, 108328-108334.	1.7	9
4292	Dioxygen binding to Fe-MOF-74: microscopic insights from periodic QM/MM calculations. Canadian Journal of Chemistry, 2016, 94, 1144-1150.	0.6	21
4293	High performance carbon molecular sieving membranes derived from pyrolysis of metal–organic framework ZIF-108 doped polyimide matrices. Chemical Communications, 2016, 52, 13779-13782.	2.2	22
4294	Halogenated MOF-5 variants show new configuration, tunable band gaps and enhanced optical response in the visible and near infrared. Physical Chemistry Chemical Physics, 2016, 18, 32319-32330.	1.3	35
4295	Hybrid materials based on novel 2D lanthanide coordination polymers covalently bonded to amine-modified SBA-15 and MCM-41: assembly, characterization, structural features, thermal and luminescence properties. Dalton Transactions, 2016, 45, 18610-18621.	1.6	21
4296	Immobilization of Polyoxometalate in the Metal-Organic Framework rht-MOF-1: Towards a Highly Effective Heterogeneous Catalyst and Dye Scavenger. Scientific Reports, 2016, 6, 25595.	1.6	50
4297	Machine Learning Approach for Prediction and Search: Application to Methane Storage in a Metal–Organic Framework. Journal of Physical Chemistry C, 2016, 120, 23963-23968.	1.5	38
4299	Framework-Topology-Dependent Catalytic Activity of Zirconium-Based (Porphinato)zinc(II) MOFs. Journal of the American Chemical Society, 2016, 138, 14449-14457.	6.6	210
4300	Covalent immobilization of metal–organic frameworks onto the surface of nylon—a new approach to the functionalization and coloration of textiles. Scientific Reports, 2016, 6, 22796.	1.6	32
4301	Mapping of metal-organic frameworks publications: A bibliometric analysis. Inorganic Chemistry Communication, 2016, 73, 174-182.	1.8	57
4302	High-Throughput Screening to Investigate the Relationship between the Selectivity and Working Capacity of Porous Materials for Propylene/Propane Adsorptive Separation. Journal of Physical Chemistry C, 2016, 120, 24224-24230.	1.5	37
4303	Tuning the Adsorption-Induced Phase Change in the Flexible Metal–Organic Framework Co(bdp). Journal of the American Chemical Society, 2016, 138, 15019-15026.	6.6	123
4304	Adamantane-based Bidendate Metal Complexes in Crystalline and Solution State. Analytical Sciences, 2016, 32, 1347-1352.	0.8	4
4305	Competitive heterogeneous nucleation onto a microscopic impurity in a Potts model. Journal of Chemical Physics, 2016, 145, 064511.	1.2	1

#	Article	IF	CITATIONS
4306	Syntheses of Porous Organic Polymers via Cobalt atalyzed Acetylene Trimerization and Their Gas Adsorption Properties. Bulletin of the Korean Chemical Society, 2016, 37, 617-618.	1.0	3
4307	Ammonia Activation of Carbonized Polysaccharides and their Application for the Carbon Capture. Bulletin of the Korean Chemical Society, 2016, 37, 689-694.	1.0	5
4308	Metal–Organic Framework Capillary Microreactor for Application in Click Chemistry. ChemCatChem, 2016, 8, 1692-1698.	1.8	8
4309	Adsorption Methodology. , 0, , 575-605.		1
4310	Nanoarchitectonics for Dynamic Functional Materials from Atomicâ€∤Molecular‣evel Manipulation to Macroscopic Action. Advanced Materials, 2016, 28, 1251-1286.	11.1	441
4311	Metallâ€organische Gerüstverbindungen: Photokatalysatoren für Redoxreaktion und die Produktion von Solarbrennstoffen. Angewandte Chemie, 2016, 128, 5504-5535.	1.6	87
4312	Targeted Synthesis of Two Superâ€Complex Zeolites with Embedded Isoreticular Structures. Angewandte Chemie - International Edition, 2016, 55, 4928-4932.	7.2	26
4313	A Waterâ€Stable Cationic Metal–Organic Framework as a Dual Adsorbent of Oxoanion Pollutants. Angewandte Chemie - International Edition, 2016, 55, 7811-7815.	7.2	302
4314	Three New Complexes Based on the Flexible Zwitterionic Dicarboxylate Ligand: Synthesis, Structures, and Properties. Chinese Journal of Chemistry, 2016, 34, 225-232.	2.6	3
4315	High hydroxide conductivity in a chemically stable crystalline metal–organic framework containing a water-hydroxide supramolecular chain. Chemical Communications, 2016, 52, 8459-8462.	2.2	32
4316	Ultrafast room temperature synthesis of GrO@HKUST-1 composites with high CO2 adsorption capacity and CO2/N2 adsorption selectivity. Chemical Engineering Journal, 2016, 303, 231-237.	6.6	117
4317	Solvent-mediated secondary building units (SBUs) diversification in a series of MnII-based metal-organic frameworks (MOFs). Journal of Solid State Chemistry, 2016, 241, 18-25.	1.4	18
4318	Crystal structure, characterization and magnetic properties of a 1D copper(II) polymer incorporating a Schiff base with carboxylate side arm. Journal of Chemical Sciences, 2016, 128, 913-920.	0.7	4
4319	Copper Capture in a Thioether-Functionalized Porous Polymer Applied to the Detection of Wilson's Disease. Journal of the American Chemical Society, 2016, 138, 7603-7609.	6.6	137
4320	Metal–Organic Framework Nodes Support Single-Site Magnesium–Alkyl Catalysts for Hydroboration and Hydroamination Reactions. Journal of the American Chemical Society, 2016, 138, 7488-7491.	6.6	230
4321	Metal Nanoparticles Covered with a Metal–Organic Framework: From One-Pot Synthetic Methods to Synergistic Energy Storage and Conversion Functions. Inorganic Chemistry, 2016, 55, 7301-7310.	1.9	69
4322	Adsorbent–Adsorbate Interactions in the Oxidation of HMF Catalyzed by Ni-Based MOFs: A DRIFT and FT-IR Insight. Journal of Physical Chemistry C, 2016, 120, 15310-15321.	1.5	20
4323	Emerging adsorptive removal of azo dye by metal–organic frameworks. Chemosphere, 2016, 160, 30-44.	4.2	212

#	Article	IF	CITATIONS
4324	Topological Analysis of Void Space in Phosphate Frameworks: Assessing Storage Properties for the Environmentally Important Guest Molecules and Ions: CO2, H2O, UO2, PuO2, U, Pu, Sr2+, Cs+, CH4, and H2. ACS Sustainable Chemistry and Engineering, 2016, 4, 4094-4112.	3.2	6
4325	Equation of state for methane in nanoporous material at supercritical temperature over a wide range of pressure. , 2016, , .		3
4326	2D lanthanide MOFs driven by a rigid 3,5-bis(3-carboxy-phenyl)pyridine building block: solvothermal syntheses, structural features, and photoluminescence and sensing properties. CrystEngComm, 2016, 18, 6425-6436.	1.3	84
4327	Porous Coordination Polymers Based on {Mn ₆ } Single-Molecule Magnets. Inorganic Chemistry, 2016, 55, 5880-5885.	1.9	23
4328	Morphology Control of Metal–Organic Frameworks Based on Paddle-Wheel Units on Ion-Doped Polymer Substrate Using an Interfacial Growth Approach. Langmuir, 2016, 32, 6068-6073.	1.6	26
4329	Towards accurate porosity descriptors based on guest-host interactions. Journal of Molecular Graphics and Modelling, 2016, 66, 91-98.	1.3	1
4330	First Cationic Uranyl–Organic Framework with Anion-Exchange Capabilities. Inorganic Chemistry, 2016, 55, 6358-6360.	1.9	88
4331	Interplay between hydrophobicity and basicity toward the catalytic activity of isoreticular MOF organocatalysts. New Journal of Chemistry, 2016, 40, 6970-6976.	1.4	20
4332	Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants. Chemical Engineering Journal, 2016, 304, 774-783.	6.6	339
4333	A generalized method for constructing hypothetical nanoporous materials of any net topology from graph theory. CrystEngComm, 2016, 18, 3777-3792.	1.3	104
4334	Bis(carboxyphenyl)-1,2,4-triazole Based Metal–Organic Frameworks: Impact of Metal Ion Substitution on Adsorption Performance. Inorganic Chemistry, 2016, 55, 6938-6948.	1.9	16
4335	Secondary amine-functionalised metal–organic frameworks: direct syntheses versus tandem post-synthetic modifications. CrystEngComm, 2016, 18, 5710-5717.	1.3	10
4336	Hollow CeO ₂ dodecahedrons: one-step template synthesis and enhanced catalytic performance. RSC Advances, 2016, 6, 60975-60982.	1.7	23
4337	Metalâ€Organic Frameworkâ€Based Nanomaterials for Electrocatalysis. Advanced Energy Materials, 2016, 6, 1600423.	10.2	539
4338	A Water‣table Cationic Metal–Organic Framework as a Dual Adsorbent of Oxoanion Pollutants. Angewandte Chemie, 2016, 128, 7942-7946.	1.6	59
4339	Direct Fabrication of Free‣tanding MOF Superstructures with Desired Shapes by Microâ€Confined Interfacial Synthesis. Angewandte Chemie, 2016, 128, 7232-7236.	1.6	10
4340	Designed Assembly of Heterometallic Cluster Organic Frameworks Based on Andersonâ€Type Polyoxometalate Clusters. Angewandte Chemie, 2016, 128, 6572-6576.	1.6	24
4341	A Versatile Cu ^{II} Metal–Organic Framework Exhibiting High Gas Storage Capacity with Selectivity for CO ₂ : Conversion of CO ₂ to Cyclic Carbonate and Other Catalytic Abilities. Chemistry - A European Journal, 2016, 22, 3387-3396.	1.7	107

#	Article	IF	CITATIONS
4342	Intercalation of Coordinatively Unsaturated Fe ^{III} Ion within Interpenetrated Metal–Organic Framework MOFâ€5. Chemistry - A European Journal, 2016, 22, 7711-7715.	1.7	15
4343	Controlled partial interpenetration in metal–organic frameworks. Nature Chemistry, 2016, 8, 250-257.	6.6	113
4344	Bioactive Silver–Organic Networks Assembled from 1,3,5-Triaza-7-phosphaadamantane and Flexible Cyclohexanecarboxylate Blocks. Inorganic Chemistry, 2016, 55, 1486-1496.	1.9	95
4345	ZIF-8 Cooperating in TiN/Ti/Si Nanorods as Efficient Anodes in Micro-Lithium-Ion-Batteries. ACS Applied Materials & Interfaces, 2016, 8, 3992-3999.	4.0	37
4346	CD-MOF: A Versatile Separation Medium. Journal of the American Chemical Society, 2016, 138, 2292-2301.	6.6	269
4347	K ^I -induced synthesis of highly connected 3D K ^I –Ln ^{III} heterobimetallic MOFs: temperature-dependent structure and physical properties. CrystEngComm, 2016, 18, 1570-1576.	1.3	6
4348	A comparative study of several microporous materials to store methane by adsorption. Microporous and Mesoporous Materials, 2016, 224, 323-331.	2.2	49
4349	Ni(II)-Based Metal-Organic Framework Anchored on Carbon Nanotubes for Highly Sensitive Non-Enzymatic Hydrogen Peroxide Sensing. Electrochimica Acta, 2016, 190, 365-370.	2.6	144
4350	One dimensional coordination polymers of Cd(II) and Zn(II): Synthesis, structure, polar packing through strong inter-chain hydrogen bonding and gas adsorption studies. Polyhedron, 2016, 106, 163-170.	1.0	16
4351	3D Luminescent Amide-Functionalized Cadmium Tetrazolate Framework for Selective Detection of 2,4,6-Trinitrophenol. Crystal Growth and Design, 2016, 16, 842-851.	1.4	167
4352	Rational construction of defects in a metal–organic framework for highly efficient adsorption and separation of dyes. Chemical Engineering Journal, 2016, 289, 486-493.	6.6	205
4353	Tuning the Gas Separation Performance of CuBTC by Ionic Liquid Incorporation. Langmuir, 2016, 32, 1139-1147.	1.6	110
4354	Applicability of using CO2 adsorption isotherms to determine BET surface areas of microporous materials. Microporous and Mesoporous Materials, 2016, 224, 294-301.	2.2	112
4355	Composites of metal–organic frameworks and carbon-based materials: preparations, functionalities and applications. Journal of Materials Chemistry A, 2016, 4, 3584-3616.	5.2	301
4356	Responsive hybrid inorganic-organic system derived from lanthanide luminescence. Materials Research Bulletin, 2016, 77, 166-170.	2.7	4
4357	Layered metal–organic framework [Zn2(bpda)(chdc)2]â^for aqueous encapsulation and sensitization of visible-emitting rare-earth cations. Materials Letters, 2016, 168, 203-206.	1.3	2
4358	Syntheses, structures and properties of five entangled coordination polymers constructed with trigonal N-donor ligands. RSC Advances, 2016, 6, 5729-5738.	1.7	14
4359	Defect-driven oxygen reduction reaction (ORR) of carbon without any element doping. Inorganic Chemistry Frontiers, 2016, 3, 417-421.	3.0	146

#	Anticus	IE	CITATION
#	Selective removal of U(VI) from low concentration wastewater by functionalized	IF	CHATIONS
4360	HKUST-1@H3PW12O40. Journal of Radioanalytical and Nuclear Chemistry, 2016, 308, 865-875.	0.7	23
4361	Synthesis and supramolecular features of hybrid POM/onium solid-state assemblies. Supramolecular Chemistry, 2016, 28, 403-417.	1.5	2
4362	A pilot study of activated carbon and metal–organic frameworks for methane storage. Applied Energy, 2016, 162, 506-514.	5.1	57
4363	Three rare Ln–Na heterometallic 3D polymers based on sulfate anion: Syntheses, structures, and luminescence properties. Inorganic Chemistry Communication, 2016, 63, 16-19.	1.8	12
4364	Compositional control of pore geometry in multivariate metal–organic frameworks: an experimental and computational study. Dalton Transactions, 2016, 45, 4316-4326.	1.6	19
4365	Immobilization of laccase via adsorption onto bimodal mesoporous Zr-MOF. Process Biochemistry, 2016, 51, 229-239.	1.8	129
4366	Crystal Engineering of a 4,6-c fsc Platform That Can Serve as a Carbon Dioxide Single-Molecule Trap. Crystal Growth and Design, 2016, 16, 1071-1080.	1.4	21
4367	Application of Consistency Criteria To Calculate BET Areas of Micro- And Mesoporous Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 215-224.	6.6	201
4368	Facile Fabricating Hierarchically Porous Metal–Organic Frameworks via a Template-Free Strategy. Crystal Growth and Design, 2016, 16, 504-510.	1.4	52
4369	High performance electrochemical capacitor materials focusing on nickel based materials. Inorganic Chemistry Frontiers, 2016, 3, 175-202.	3.0	283
4370	POM species, temperature and counterions modulated the various dimensionalities of POM-based metal–organic frameworks. Dalton Transactions, 2016, 45, 1657-1667.	1.6	34
4371	De Novo Tailoring Pore Morphologies and Sizes for Different Substrates in a Urea-Containing MOFs Catalytic Platform. Chemistry of Materials, 2016, 28, 2000-2010.	3.2	63
4372	Formation of Periodically Arranged Nanobubbles in Mesopores: Capillary Bridge Formation and Cavitation during Sorption and Solidification in an Hierarchical Porous SBA-15 Matrix. Langmuir, 2016, 32, 2928-2936.	1.6	13
4373	Polynuclear copper(II) complexes bridged by polycarboxylates of aromatic and N-heterocyclic compounds. Polyhedron, 2016, 111, 45-52.	1.0	14
4374	Screening of Toxic Chemicals in a Single Drop of Human Whole Blood Using Ordered Mesoporous Carbon as a Mass Spectrometry Probe. Analytical Chemistry, 2016, 88, 4107-4113.	3.2	51
4375	Synthesis, characterization and sorption properties of functionalized Cr-MIL-101-X (X=–F, –Cl, –Br,) Tj ETQ	2q110.78	4314 rgBT
4376	Hydrolytically Stable Nanoporous Thorium Mixed Phosphite and Pyrophosphate Framework Generated from Redox-Active Ionothermal Reactions. Inorganic Chemistry, 2016, 55, 3721-3723.	1.9	19
4377	Amine-functionalized metal–organic frameworks: structure, synthesis and applications. RSC Advances, 2016, 6, 32598-32614.	1.7	169

#	Article	IF	CITATIONS
4378	Metal–organic frameworks with a large breathing effect to host hydroxyl compounds for high anhydrous proton conductivity over a wide temperature range from subzero to 125 °C. Journal of Materials Chemistry A, 2016, 4, 4062-4070.	5.2	109
4379	Crystal structure, magnetism, and dielectric properties based on the axially chiral ligand 2,2′-dinitro-4,4′-biphenyldicarboxylic acid. CrystEngComm, 2016, 18, 1944-1952.	1.3	27
4380	Advancing Magnesium–Organic Porous Materials through New Magnesium Cluster Chemistry. Crystal Growth and Design, 2016, 16, 1261-1267.	1.4	33
4381	Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews, 2016, 45, 2327-2367.	18.7	1,905
4382	New metal–organic frameworks constructed by 2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene and dicarboxylic ligands: Enhanced photocatalytic effect. Inorganic Chemistry Communication, 2016, 66, 36-40.	1.8	9
4383	Porous Fe-Nx/C hybrid derived from bi-metal organic frameworks as high efficient electrocatalyst for oxygen reduction reaction. Journal of Power Sources, 2016, 311, 137-143.	4.0	71
4384	An intramolecular antiferromagnetically coupled pentanuclear Mn(II) cluster containing acetate and tetracarboxylate linkers: Synthesis, structure and magnetism. Journal of Molecular Structure, 2016, 1114, 7-12.	1.8	4
4385	Two-Component Polymeric Materials of Fullerenes and the Transition Metal Complexes: A Bridge between Metal–Organic Frameworks and Conducting Polymers. Chemical Reviews, 2016, 116, 3812-3882.	23.0	116
4386	Minute-MOFs: Ultrafast Synthesis of M ₂ (dobpdc) Metal–Organic Frameworks from Divalent Metal Oxide Colloidal Nanocrystals. Chemistry of Materials, 2016, 28, 1581-1588.	3.2	29
4387	Covalent Chemistry beyond Molecules. Journal of the American Chemical Society, 2016, 138, 3255-3265.	6.6	328
4388	Rapid methane hydrate formation to develop a cost effective large scale energy storage system. Chemical Engineering Journal, 2016, 290, 161-173.	6.6	261
4389	Structural diversity of a series of coordination polymers built from 5-substituted isophthalic acid with or without a methyl-functionalized N-donor ligand. CrystEngComm, 2016, 18, 1363-1375.	1.3	15
4390	In situ solvothermal synthesis of metal–organic framework coated fiber for highly sensitive solid-phase microextraction of polycyclic aromatic hydrocarbons. Journal of Chromatography A, 2016, 1436, 1-8.	1.8	91
4391	Metal–organic gel templated synthesis of magnetic porous carbon for highly efficient removal of organic dyes. Dalton Transactions, 2016, 45, 4541-4547.	1.6	49
4392	Adsorption of hydrogen and methane on intrinsic and alkali metal cations-doped Zn2(NDC)2(diPyTz) metal–organic framework using GCMC simulations. Adsorption, 2016, 22, 277-285.	1.4	11
4393	Lanthanide complexes with pyridine-2,6-dicarboxylic acid: synthesis, crystal structure, thermal and Chemistry/Koordinatsionnaya Khimiya, 2016, 42, 56-65.	0.3	5
4394	Structural diversification and single-crystal-to-single-crystal transformation of alkaline earth metal-based MOFs regulated by solvent effect. CrystEngComm, 2016, 18, 2864-2872.	1.3	10
4395	Low temperature mechanism of adsorption of methane: Comparison between homogenous and heterogeneous pores. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 496, 86-93.	2.3	11

#	Article	IF	Citations
4396	Amino-Functionalized Metal-Organic Frameworks Nanoplates-Based Energy Transfer Probe for Highly Selective Fluorescence Detection of Free Chlorine. Analytical Chemistry, 2016, 88, 3413-3420.	3.2	134
4397	Well-defined gold nanoparticle@N-doped porous carbon prepared from metal nanoparticle@metal–organic frameworks for electrochemical sensing of hydrazine. RSC Advances, 2016, 6, 23403-23410.	1.7	34
4398	Large negative thermal expansion provided by metal-organic framework MOF-5: A first-principles study. Materials Chemistry and Physics, 2016, 175, 138-145.	2.0	28
4399	Inorganic and organic hybrid solid electrolytes for lithium-ion batteries. CrystEngComm, 2016, 18, 4236-4258.	1.3	110
4400	Superparamagnetic Luminescent MOF@Fe ₃ O ₄ /SiO ₂ Composite Particles for Signal Augmentation by Magnetic Harvesting as Potential Water Detectors. ACS Applied Materials & Interfaces, 2016, 8, 5445-5452.	4.0	70
4401	Manganese- and Lanthanide-Based 1D Chiral Coordination Polymers as an Enantioselective Catalyst for Sulfoxidation. Inorganic Chemistry, 2016, 55, 2701-2708.	1.9	50
4402	Paddle Wheel Based Triazolyl Isophthalate MOFs: Impact of Linker Modification on Crystal Structure and Gas Sorption Properties. Inorganic Chemistry, 2016, 55, 3030-3039.	1.9	29
4403	10-Vertex closo-carborane: a unique ligand platform for porous coordination polymers. CrystEngComm, 2016, 18, 2036-2040.	1.3	20
4404	Small-sized Ni(1 1 1) particles in metal-organic frameworks with low over-potential for visible photocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2016, 190, 12-25.	10.8	145
4405	Facile fabrication of Fe 3 O 4 /MIL-101(Cr) for effective removal of acid red 1 and orange G from aqueous solution. Chemical Engineering Journal, 2016, 295, 403-413.	6.6	191
4406	A novel synergistic composite with multi-functional effects for high-performance Li–S batteries. Energy and Environmental Science, 2016, 9, 1998-2004.	15.6	527
4407	Synthesis and Structure of Semirigid Tetracarboxylate Copper(II) Porous Coordination Polymers and Their Versatile High-Efficiency Catalytic Dye Degradation in Neutral Aqueous Solution. Crystal Growth and Design, 2016, 16, 2277-2288.	1.4	57
4408	Self-assembly of polyoxometalates, Pt nanoparticles and metal–organic frameworks into a hybrid material for synergistic hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 5952-5957.	5.2	89
4409	2-Chloro-4-fluorobenzoate vs. 2,4-dichlorobenzoate: A comparative study of non-covalent interactions in copper(II) 2-chloro-4-fluorobenzoate and copper(II) 2,4-dichlorobenzoate complexes with nitrogen-donor ligands. Inorganica Chimica Acta, 2016, 442, 37-45.	1.2	4
4410	Chemocatalysis of sugars to produce lactic acid derivatives on zeolitic imidazolate frameworks. Journal of Catalysis, 2016, 334, 60-67.	3.1	62
4411	Coarse graining of force fields for metal–organic frameworks. Dalton Transactions, 2016, 45, 4370-4379.	1.6	32
4412	Construction of structural diversity and fine-tuned porosity in acylamide MOFs by a synthetic approach. New Journal of Chemistry, 2016, 40, 2021-2027.	1.4	7
4413	Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives. Progress in Polymer Science, 2016, 57, 103-152.	11.8	262

# 4414	ARTICLE Controlling interpenetration for tuning porosity and luminescence properties of flexible MOFs based on biphenyl-4,4â€ ² -dicarboxylic acid. CrystEngComm, 2016, 18, 1282-1294.	IF 1.3	CITATIONS 30
4415	Upconversion fluorescence metal-organic frameworks thermo-sensitive imprinted polymer for enrichment and sensing protein. Biosensors and Bioelectronics, 2016, 79, 341-346.	5.3	108
4416	A metal organic framework-polyaniline nanocomposite as a fiber coating for solid phase microextraction. Journal of Chromatography A, 2016, 1431, 27-35.	1.8	60
4417	Adsorptive removal of phenol from aqueous solution with zeolitic imidazolate framework-67. Journal of Environmental Management, 2016, 169, 167-173.	3.8	56
4418	Discrete Binuclear Cobalt(III) Bis-dioximates with Wheel-and-Axle Topology as Building Blocks To Afford Porous Supramolecular Metal–Organic Frameworks. Crystal Growth and Design, 2016, 16, 814-820.	1.4	16
4419	Visible-light-induced controlled radical polymerization of methacrylates mediated by a pillared-layer metalâ€ ^r organic framework. Green Chemistry, 2016, 18, 1475-1481.	4.6	64
4420	Graphene oxides doped MIL-101(Cr) as anode materials for enhanced electrochemistry performance of lithium ion battery. Inorganic Chemistry Communication, 2016, 64, 63-66.	1.8	23
4421	Brightness and Color Tuning in a Series of Lanthanide-Based Coordination Polymers with Benzene-1,2,4,5-tetracarboxylic Acid as a Ligand. Inorganic Chemistry, 2016, 55, 794-802.	1.9	98
4422	Metal–organic frameworks supported surface–imprinted nanoparticles for the sensitive detection of metolcarb. Biosensors and Bioelectronics, 2016, 79, 359-363.	5.3	69
4423	In silico screening of 4764 computation-ready, experimental metal–organic frameworks for CO ₂ separation. Journal of Materials Chemistry A, 2016, 4, 2105-2114.	5.2	109
4424	Synthesis, Crystal Structure, and Luminescent Property of One 3D Porous Metal-Organic Framework With dmc Topology. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 365-369.	0.6	9
4425	Effect of additives on morphology and size and gas adsorption ofÂSUMOF-3 microcrystals. Microporous and Mesoporous Materials, 2016, 222, 27-32.	2.2	15
4426	Metal–organic frameworks for the control and management of air quality: advances and future direction. Journal of Materials Chemistry A, 2016, 4, 345-361.	5.2	120
4427	Hydrothermal synthesis and structural characterization of metal–organic frameworks based on new tetradentate ligands. Dalton Transactions, 2016, 45, 1382-1390.	1.6	28
4428	Synthesis, structure and photoluminescence of three 2D Cd(II) coordination polymers based on varied dicarboxylate ligand. Journal of Coordination Chemistry, 2016, 69, 286-294.	0.8	11
4429	The templated synthesis of a unique type of tetra-nuclear uranyl-mediated two-fold interpenetrating uranyl–organic framework. Chemical Communications, 2016, 52, 1641-1644.	2.2	34
4430	The role of atropisomers on the photo-reactivity and fatigue of diarylethene-based metal–organic frameworks. New Journal of Chemistry, 2016, 40, 101-106.	1.4	78
4431	Molecular simulation of methane adsorption in activated carbon: the impact of pore structure and surface chemistry. Molecular Simulation, 2016, 42, 776-782.	0.9	10

#	Article	IF	CITATIONS
4432	Efficient Separation of Enantiomers Using Stereoregular Chiral Polymers. Chemical Reviews, 2016, 116, 1094-1138.	23.0	560
4433	Nanostructured metal–organic frameworks and their bio-related applications. Coordination Chemistry Reviews, 2016, 307, 342-360.	9.5	476
4434	Facile synthesis of nanoscale high porosity IR-MOFs for low-k dielectrics thin films. Microporous and Mesoporous Materials, 2016, 221, 40-47.	2.2	25
4435	Molecular simulation study of metal organic frameworks for methane capture from low-concentration coal mine methane gas. Journal of Porous Materials, 2016, 23, 107-122.	1.3	13
4436	Lanthanide-tricarboxylate frameworks: Synthesis, structure and photoluminescence property. Dyes and Pigments, 2016, 124, 241-248.	2.0	16
4437	Capillarity-induced selective ex-situ synthesis of metal–organic framework inside mesoporous nanotubes. Microporous and Mesoporous Materials, 2016, 220, 16-20.	2.2	14
4438	Mg-MOF-74 nanostructures: facile synthesis and characterization with aid of 2,6-pyridinedicarboxylic acid ammonium. Journal of Materials Science: Materials in Electronics, 2016, 27, 1449-1456.	1.1	27
4439	Green synthesis, characterization and catalytic efficiency of hypercross-linked porous polymeric ionic liquid networks towards 4-nitrophenol reduction. Chemical Engineering Journal, 2016, 285, 554-561.	6.6	39
4440	A New 3-D Mn(II) Naphthoic Acid Complex [Mn(1,4-DNC)(DMA)]n (1,4-DNC = 1,4-Naphthalenedicarboxylate,) Tj E Chemistry, 2016, 46, 323-326.	TQq0 0 0 0.6	rgBT /Overlo 1
4441	On the hydrothermal stability of MCM-41. Evidence of capillary tension-induced effects. Microporous and Mesoporous Materials, 2016, 220, 88-98.	2.2	17
4442	Metal–organic frameworks for energy storage: Batteries and supercapacitors. Coordination Chemistry Reviews, 2016, 307, 361-381.	9.5	1,098
4443	Coordination polymers and metal–organic frameworks based on poly(pyrazole)-containing ligands. Coordination Chemistry Reviews, 2016, 307, 1-31.	9.5	222
4444	Formation of oriented and patterned films of metal–organic frameworks by liquid phase epitaxy: A review. Coordination Chemistry Reviews, 2016, 307, 391-424.	9.5	193
4445	Finely tuning MOFs towards high-performance post-combustion CO ₂ capture materials. Chemical Communications, 2016, 52, 443-452.	2.2	131
4446	Computational characterization and prediction of metal–organic framework properties. Coordination Chemistry Reviews, 2016, 307, 211-236.	9.5	206
4447	Application of metal and metal oxide nanoparticles@MOFs. Coordination Chemistry Reviews, 2016, 307, 237-254.	9.5	479
4448	Effect of temperature on hydrogen and carbon dioxide adsorption hysteresis in an ultramicroporous MOF. Microporous and Mesoporous Materials, 2016, 219, 186-189.	2.2	35

#	Article	IF	CITATIONS
4450	Impact of the strength and spatial distribution of adsorption sites on methane deliverable capacity in nanoporous materials. Chemical Engineering Science, 2017, 159, 18-30.	1.9	26
4451	Production of molecularly imprinted polymer particles with amide-decorated cavities for CO 2 capture using membrane emulsification/suspension polymerisation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 231-238.	2.3	34
4452	Synthesis and characterization of nano-peanuts of lead(II) coordination polymer [Pb(qcnh)(NO3)2]n with ultrasonic assistance: A new precursor for the preparation of pure-phase nano-sized PbO. Ultrasonics Sonochemistry, 2017, 34, 255-261.	3.8	34
4453	Synthesis of bare and functionalized porous adsorbent materials for CO ₂ capture. , 2017, 7, 399-459.		30
4454	Ethane C–H bond activation on the Fe(<scp>iv</scp>)–oxo species in a Zn-based cluster of metal–organic frameworks: a density functional theory study. Physical Chemistry Chemical Physics, 2017, 19, 3782-3791.	1.3	12
4455	Facile Synthesis and Direct Activation of Zirconium Based Metal–Organic Frameworks from Acetone. Industrial & Engineering Chemistry Research, 2017, 56, 1478-1484.	1.8	31
4456	Solvothermal preparation and gas permeability of an IRMOF-3 membrane. Microporous and Mesoporous Materials, 2017, 241, 218-225.	2.2	10
4457	Application of metal â^' organic frameworks. Polymer International, 2017, 66, 731-744.	1.6	163
4458	Combined in- and ex situ studies of pyrazine adsorption into the aliphatic MOF Al-CAU-13: structures, dynamics and correlations. Dalton Transactions, 2017, 46, 1397-1405.	1.6	21
4459	Two isostructural fluorinated metal-organic frameworks with rare rod-packing architecture: syntheses, structures and luminescent properties. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2017, 72, 107-113.	0.3	2
4460	Direct white-light-emitting and near-infrared phosphorescence of zeolitic imidazolate framework-8. Chemical Communications, 2017, 53, 1801-1804.	2.2	86
4461	The Highly Connected MOFs Constructed from Nonanuclear and Trinuclear Lanthanide-Carboxylate Clusters: Selective Gas Adsorption and Luminescent pH Sensing. Inorganic Chemistry, 2017, 56, 2159-2164.	1.9	101
4462	Optical Distinction between "Slow―and "Fast―Translational Motion in Degenerate Molecular Shuttles. Angewandte Chemie, 2017, 129, 6232-6237.	1.6	10
4463	Optical Distinction between "Slow―and "Fast―Translational Motion in Degenerate Molecular Shuttles. Angewandte Chemie - International Edition, 2017, 56, 6136-6141.	7.2	38
4464	First-principles approach to design and evaluation of graphene as methane sensors. Materials and Design, 2017, 119, 397-405.	3.3	30
4465	Syntheses, structural diversities and characterization of a series of coordination polymers with two isomeric oxadiazol-pyridine ligands. RSC Advances, 2017, 7, 9704-9718.	1.7	17
4466	Impact of Shape Persistence on the Porosity of Molecular Cages. Journal of the American Chemical Society, 2017, 139, 3259-3264.	6.6	40
4467	Syntheses, structures and selective dye adsorption of five formic-based coordination polymers prepared by in-situ hydrolysis of N, N′-dimethylformamide. Journal of Solid State Chemistry, 2017, 248, 109-118.	1.4	25

#	Article	IF	CITATIONS
4468	Smart Metal–Organic Framework Coatings: Triggered Antibiofilm Compound Release. ACS Applied Materials & Interfaces, 2017, 9, 4440-4449.	4.0	43
4469	Nanoporous Materials for the Onboard Storage of Natural Gas. Chemical Reviews, 2017, 117, 1796-1825.	23.0	241
4470	Substituent dependent layer topologies in copper isophthalate coordination polymers containing long-spanning dipyridylamide ligands. Journal of Molecular Structure, 2017, 1135, 67-74.	1.8	1
4471	Anisotropically Swelling Gels Attained through Axisâ€Dependent Crosslinking of MOF Crystals. Angewandte Chemie - International Edition, 2017, 56, 2608-2612.	7.2	47
4472	Positioning metal-organic framework nanoparticles within the context of drug delivery – A comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials, 2017, 123, 172-183.	5.7	221
4473	Metal-organic frameworks as superior media for thermal desorption-gas chromatography application: A critical assessment of MOF-5 for the quantitation of airborne formaldehyde. Microchemical Journal, 2017, 132, 219-226.	2.3	40
4474	Inverse coordination – An emerging new chemical concept. Oxygen and other chalcogens as coordination centers. Coordination Chemistry Reviews, 2017, 338, 1-26.	9.5	47
4475	Lanthanide coordination polymers with 1,2-phenylenediacetate. Inorganica Chimica Acta, 2017, 461, 136-144.	1.2	3
4476	Dynamic behaviours of a rationally prepared flexible MOF by postsynthetic modification of ligand struts. Chemical Communications, 2017, 53, 3220-3223.	2.2	12
4477	Three alkaline earth metal-organic frameworks based on fluorene-containing carboxylates: syntheses, structures and properties. Science China Chemistry, 2017, 60, 115-121.	4.2	3
4478	Systematic study on preparation of copper nanoparticle embedded porous carbon by carbonization of metal–organic framework for enzymatic glucose sensor. RSC Advances, 2017, 7, 10592-10600.	1.7	48
4479	Efficient and Selective Uptake of TcO ₄ [–] by a Cationic Metal–Organic Framework Material with Open Ag ⁺ Sites. Environmental Science & Technology, 2017, 51, 3471-3479.	4.6	323
4480	A facile synthesis of UiO-66 systems and their hydrothermal stability. Journal of Porous Materials, 2017, 24, 1327-1333.	1.3	40
4481	Fieldâ€Dependent Magnetic Behaviour in Mn ^{II} (dicarboxylate)â€{bipyridyl)â€ŧype 3D Metal–Organic Frameworks with Interpenetrated Structures. ChemistrySelect, 2017, 2, 2322-2329.	0.7	6
4482	Ligand Torsion Triggered Two Robust Feâ€Tetratopic Carboxylate Frameworks with Enhanced Gas Uptake and Separation Performance. Chemistry - A European Journal, 2017, 23, 6693-6700.	1.7	30
4483	A New Isomeric Porous Coordination Framework Showing Single-Crystal to Single-Crystal Structural Transformation and Preferential Adsorption of 1,3-Butadiene from C4 Hydrocarbons. Crystal Growth and Design, 2017, 17, 2166-2171.	1.4	31
4484	Two novel thorium organic frameworks constructed by bi- and tritopic ligands. Radiochimica Acta, 2017, 105, 531-539.	0.5	1
4485	Understanding Surface and Interfacial Chemistry in Functional Nanomaterials via Solid‣tate NMR. Advanced Materials, 2017, 29, 1605895.	11.1	91

#	Article	IF	CITATIONS
4486	A flexible porous copper-based metal-organic cage for carbon dioxide adsorption. Inorganic Chemistry Communication, 2017, 78, 28-31.	1.8	4
4487	Supercritical CO 2 for the synthesis of nanometric ZIF-8 and loading with hyperbranched aminopolymers. Applications in CO 2 capture. Journal of CO2 Utilization, 2017, 18, 147-155.	3.3	36
4488	Computational Exploration of the Water Concentration Dependence of the Proton Transport in the Porous UiO–66(Zr)–(CO ₂ H) ₂ Metal–Organic Framework. Chemistry of Materials, 2017, 29, 1569-1576.	3.2	40
4489	Controlled 2D Assembly of Nickel-Seamed Hexameric Pyrogallol[4]arene Nanocapsules. Journal of the American Chemical Society, 2017, 139, 2920-2923.	6.6	52
4490	Highly sensitive electrochemical sensor for chloramphenicol based on MOF derived exfoliated porous carbon. Talanta, 2017, 167, 39-43.	2.9	100
4491	High Brightness and Easy Color Modulation in Lanthanide-Based Coordination Polymers with 5-Methoxyisophthalate as Ligand: Toward Emission Colors Additive Strategy. Crystal Growth and Design, 2017, 17, 1224-1234.	1.4	28
4492	Metalâ€Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives. Advanced Functional Materials, 2017, 27, 1606314.	7.8	483
4493	A facile water-stable MOF-based "off–on―fluorescent switch for label-free detection of dopamine in biological fluid. Journal of Materials Chemistry B, 2017, 5, 2524-2535.	2.9	59
4494	Syntheses, structures, and magnetic properties of cobalt(II) and nickel(II) coordination polymers based on a V-shaped ligand. Journal of Solid State Chemistry, 2017, 250, 6-13.	1.4	3
4495	Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis. Chemical Science, 2017, 8, 3538-3546.	3.7	329
4496	Cu-BTC metal-organic framework natural fabric composites for fuel purification. Fuel Processing Technology, 2017, 159, 306-312.	3.7	93
4497	Anisotropically Swelling Gels Attained through Axisâ€Dependent Crosslinking of MOF Crystals. Angewandte Chemie, 2017, 129, 2652-2656.	1.6	38
4498	Synergism of carbon nanotubes and porous-organic polymers (POPs) in CO2 fixation: One-pot approach for bottom-up assembly of tunable heterogeneous catalyst. Applied Catalysis B: Environmental, 2017, 207, 347-357.	10.8	35
4499	Selective catalytic properties determined by the molecular skeleton: Two new isostructural coordination polymers[{M(H2O)5}2(μ-4-bpdh)(oba)]â^ž (M = Co, Ni). Inorganica Chimica Acta, 2017, 461, 15-20.	1.2	11
4500	Improvement of Methane–Framework Interaction by Controlling Pore Size and Functionality of Pillared MOFs. Inorganic Chemistry, 2017, 56, 2581-2588.	1.9	59
4501	CO ₂ Capture and Separations Using MOFs: Computational and Experimental Studies. Chemical Reviews, 2017, 117, 9674-9754.	23.0	837
4502	Metal–Organic Frameworks Precipitated by Reactive Crystallization in Supercritical CO ₂ . Crystal Growth and Design, 2017, 17, 2864-2872.	1.4	30
4503	Pyrolysis of Helical Coordination Polymers for Metal-Sulfide-Based Helices with Broadband Chiroptical Activity. ACS Nano, 2017, 11, 5309-5317.	7.3	14

#	Article	IF	CITATIONS
4504	Self-Assembly of Extended Head-to-Tail Triangular Pt ₃ Macrocycles into Nanotubes. Inorganic Chemistry, 2017, 56, 5383-5391.	1.9	7
4505	Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science, 2017, 356, 430-434.	6.0	1,179
4506	ZIF-derived nitrogen-doped porous carbons as highly efficient adsorbents for removal of organic compounds from wastewater. Chemical Engineering Journal, 2017, 323, 502-511.	6.6	140
4507	Computational Design of Porous Graphenes for Alkane Isomer Separation. Journal of Physical Chemistry C, 2017, 121, 10063-10070.	1.5	17
4508	Pyridyl and triazole ligands directing the assembling of zinc(II) into coordination polymers with different dimensionality through azides. Polyhedron, 2017, 130, 136-144.	1.0	15
4509	In situ formation of molecular-scale ordered polyaniline films by zinc coordination. Nanoscale, 2017, 9, 6545-6550.	2.8	19
4510	Towards the determination of sulfonamides in meat samples: A magnetic and mesoporous metal-organic framework as an efficient sorbent for magnetic solid phase extraction combined with high-performance liquid chromatography. Journal of Chromatography A, 2017, 1500, 24-31.	1.8	92
4511	Zeolitic-imidazole framework thin film-based flexible resistive switching memory. RSC Advances, 2017, 7, 21045-21049.	1.7	33
4512	Infrared laser writing of MOFs. Chemical Communications, 2017, 53, 5275-5278.	2.2	11
4513	Adsorptive separation of ethane and ethylene using IsoReticular Metal-Organic Frameworks. Microporous and Mesoporous Materials, 2017, 248, 40-45.	2.2	20
4514	Structural characterization of framework–gas interactions in the metal–organic framework Co ₂ (dobdc) by in situ single-crystal X-ray diffraction. Chemical Science, 2017, 8, 4387-4398.	3.7	80
4515	Hollow-ZIF-templated formation of a ZnO@C–N–Co core–shell nanostructure for highly efficient pollutant photodegradation. Journal of Materials Chemistry A, 2017, 5, 9937-9945.	5.2	143
4516	Trends and challenges for microporous polymers. Chemical Society Reviews, 2017, 46, 3302-3321.	18.7	386
4517	Selective Separation of Aliphatic Nitriles by Employing a Twoâ€Dimensional Interdigitated Coordination Polymer. Chemistry - an Asian Journal, 2017, 12, 1807-1815.	1.7	8
4518	CH ₃ -Tagged Bis(pyrazolato)-Based Coordination Polymers and Metal–Organic Frameworks: An Experimental and Theoretical Insight. Crystal Growth and Design, 2017, 17, 3854-3867.	1.4	19
4519	Computational exploration of the structure, stability and adsorption properties of the ZIF-9 metal-organic framework. Microporous and Mesoporous Materials, 2017, 254, 170-177.	2.2	8
4520	First-principles study of elastic mechanical responses to applied deformation of metal-organic frameworks. Journal of Chemical Physics, 2017, 146, .	1.2	17
4521	Single-Site Cobalt Catalysts at New Zr ₁₂ (μ ₃ -O) ₈ (μ ₃ -OH) ₈ -OH Metal–Organic Framework Nodes for Highly Active Hydrogenation of Nitroarenes, Nitriles, and Isocyanides, Iournal of the American Chemical Society. 2017. 139. 7004-7011.) _{6<}	/sub}

ARTICLE IF CITATIONS # Solvothermal synthesis, nanostructural characterization and gas cryo-adsorption studies in a metal–organic framework (IRMOF-1) material. International Journal of Hydrogen Energy, 2017, 42, 4522 3.8 28 23899-23907. Bicyclo[2.2.2]octane-1,4-dicarboxylic acid: towards transparent metal–organic frameworks. Dalton 1.6 Transactions, 2017, 46, 7397-7402. Preparation of Magnesiumâ€Seamed <i>C</i>â€Alkylpyrogallol[4]arene Nanocapsules with Varying Chain 4524 1.7 15 Lengths. Chemistry - A European Journal, 2017, 23, 8520-8524. Interaction of Acid Gases SO₂ and NO₂ with Coordinatively Unsaturated 99 Metal Organic Frameworks: M-MOF-74 (M = Zn, Mg, Ni, Co). Chemistry of Materials, 2017, 29, 4227-4235. Metalâ€"organic frameworks: functional luminescent and photonic materials for sensing applications. 4526 18.7 2,457 Chemical Society Reviews, 2017, 46, 3242-3285. Architectural Diversity in Multicomponent Metal–Organic Frameworks Constructed from Similar Building Blocks. Crystal Growth and Design, 2017, 17, 3185-3191. 1.4 Exciton Migration and Amplified Quenching on Two-Dimensional Metal–Organic Layers. Journal of the 4528 6.6 134 American Chemical Society, 2017, 139, 7020-7029. On rhenium(<scp>i</scp>)â€"silver(<scp>i</scp>) cyanide porous macrocyclic clusters. CrystEngComm, 4529 1.3 2017, 19, 3138-3144. Interpenetrated Double Pillared-Layer Coll MOFs with pcu Topology. Australian Journal of Chemistry, 4530 0.5 5 2017, 70, 461. C_sâ€Corrected STEM Imaging of both Pure and Silverâ€Supported Metalâ€Organic Framework 1.8 MILâ€100(Fe). ChemCatChem, 2017, 9, 3497-3502. Tuning the selectivity of light hydrocarbons in natural gas in a family of isoreticular MOFs. Journal 4532 5.2 36 of Materials Chemistry A, 2017, 5, 11032-11039. Photopatterning of fluorescent host–guest carriers through pore activation of metal–organic framework single crystals. Chemical Communications, 2017, 53, 7222-7225. 2.2 Effect of partial linker fluorination and linker extension on structure and properties of the Al-MOF 4534 2.2 14 CAU-10. Microporous and Mesoporous Materials, 2017, 249, 128-136. A highly flexible inorganic framework with amphiphilic amine assemblies as templates. Dalton Transactions, 2017, 46, 364-368. 1.6 Metalâ€Organic Frameworks for Carbon Dioxide Capture and Methane Storage. Advanced Energy 4536 10.2 334 Materials, 2017, 7, 1601296. Anodized Aluminum Oxide Templated Synthesis of Metal–Organic Frameworks Used as Membrane Reactors. Angewandte Chemie - International Edition, 2017, 56, 578-581. Centimetre-scale micropore alignment in oriented polycrystalline metal–organic framework films via 4538 13.3298 heteroepitaxial growth. Nature Materials, 2017, 16, 342-348. Rare Earth pcu Metal–Organic Framework Platform Based on RE₄(Î¹/4₃-OH)₄(COO)₆²⁺ Clusters: Rational 6.6 Design, Directed Synthesis, and Deliberate Tuning of Excitation Wavelengths. Journal of the American Chemical Society, 2017, 139, 9333-9340.

#	Article	IF	CITATIONS
4540	Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal. Chemical Engineering Journal, 2017, 326, 1145-1158.	6.6	494
4541	<i>In situ</i> biosynthesis of ultrafine metal nanoparticles within a metal-organic framework for efficient heterogeneous catalysis. Nanotechnology, 2017, 28, 365604.	1.3	16
4542	Core-shell silica particles with dendritic pore channels impregnated with zeolite imidazolate framework-8 for high performance liquid chromatography separation. Journal of Chromatography A, 2017, 1505, 63-68.	1.8	47
4543	Significant Proton Conductivity Enhancement through Rapid Water-Induced Structural Transformation from a Cationic Framework to a Water-Rich Neutral Chain. Crystal Growth and Design, 2017, 17, 3847-3853.	1.4	30
4544	Porous Molecular Solids and Liquids. ACS Central Science, 2017, 3, 544-553.	5.3	194
4545	Highly Sensitive Detection of Ionizing Radiations by a Photoluminescent Uranyl Organic Framework. Angewandte Chemie - International Edition, 2017, 56, 7500-7504.	7.2	214
4546	A Flexible Doubly Interpenetrated Metal–Organic Framework with Breathing Behavior and Tunable Gate Opening Effect by Introducing Co ²⁺ into Zn ₄ O Clusters. Inorganic Chemistry, 2017, 56, 6645-6651.	1.9	39
4547	Highly Sensitive Detection of Ionizing Radiations by a Photoluminescent Uranyl Organic Framework. Angewandte Chemie, 2017, 129, 7608-7612.	1.6	42
4548	Intermolecular Interaction Energies in Hydroquinone Clathrates at High Pressure. Crystal Growth and Design, 2017, 17, 3834-3846.	1.4	21
4549	Highly effective oxygen reduction reaction electrocatalysis: Nitrogen-doped hierarchically mesoporous carbon derived from interpenetrated nonporous metal-organic frameworks. Applied Catalysis B: Environmental, 2017, 218, 260-266.	10.8	70
4550	Phenanthroline-based metal–organic frameworks for Fe-catalyzed C _{sp3} –H amination. Faraday Discussions, 2017, 201, 303-315.	1.6	38
4551	Twoâ€Dimensional Metal–Organic Framework Nanosheets for Membraneâ€Based Gas Separation. Angewandte Chemie - International Edition, 2017, 56, 9757-9761.	7.2	371
4552	Integration of Biomolecules with Metal–Organic Frameworks. Small, 2017, 13, 1700880.	5.2	137
4553	Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages. ACS Central Science, 2017, 3, 734-742.	5.3	68
4554	Twoâ€Dimensional Metal–Organic Framework Nanosheets for Membraneâ€Based Gas Separation. Angewandte Chemie, 2017, 129, 9889-9893.	1.6	298
4555	Methylammonium Lead Trihalide Perovskite Solar Cell Semiconductors Are Not Organometallic: A Perspective. Helvetica Chimica Acta, 2017, 100, e1700090.	1.0	24
4556	Exploring metal organic frameworks for energy storage in batteries and supercapacitors. Materials Today, 2017, 20, 191-209.	8.3	402
4557	Tailoring the Adsorption and Reaction Chemistry of the Metal–Organic Frameworks UiO-66, UiO-66-NH ₂ , and HKUST-1 via the Incorporation of Molecular Guests. ACS Applied Materials & Interfaces, 2017, 9, 21579-21585.	4.0	40

#	Article	IF	CITATIONS
4558	Synthetic Modularity of Protein–Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 8160-8166.	6.6	105
4559	Water Vapor Sorption in Hybrid Pillared Square Grid Materials. Journal of the American Chemical Society, 2017, 139, 8508-8513.	6.6	90
4560	Synthesis, functionalisation and post-synthetic modification of bismuth metal–organic frameworks. Dalton Transactions, 2017, 46, 8658-8663.	1.6	52
4561	Activationâ€Dependent Breathing in a Flexible Metal–Organic Framework and the Effects of Repeated Sorption/Desorption Cycling. Angewandte Chemie - International Edition, 2017, 56, 8874-8878.	7.2	53
4562	MOFs with PCU Topology for the Inclusion of One-Dimensional Water Cages: Selective Sorption of Water Vapor, CO ₂ , and Dyes and Luminescence Properties. Crystal Growth and Design, 2017, 17, 3885-3892.	1.4	26
4563	Fe ₃ O ₄ @HKUST-1 and Pd/Fe ₃ O ₄ @HKUST-1 as magnetically recyclable catalysts prepared via conversion from a Cu-based ceramic. CrystEngComm, 2017, 19, 4201-4210.	1.3	28
4564	A comparative structural and property investigation of four new bivalent transition metal complexes based on 4-nitrophenylacetic acid with rigid 4-nitrobenzoate analogues. Inorganica Chimica Acta, 2017, 466, 180-187.	1.2	0
4565	Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 2017, 117, 8129-8176.	23.0	1,230
4566	Reversible Redox Activity in Multicomponent Metal–Organic Frameworks Constructed from Trinuclear Copper Pyrazolate Building Blocks. Journal of the American Chemical Society, 2017, 139, 7998-8007.	6.6	158
4567	Construction of hierarchically porous metal–organic frameworks through linker labilization. Nature Communications, 2017, 8, 15356.	5.8	326
4568	A superior fluorescent sensor for Al ³⁺ and UO ₂ ²⁺ based on a Co(<scp>ii</scp>) metal–organic framework with exposed pyrimidyl Lewis base sites. Journal of Materials Chemistry A, 2017, 5, 13079-13085.	5.2	287
4569	Rational composition control of mixed-lanthanide metal-organic frameworks by an interfacial reaction with metal ion-doped polymer substrates. Journal of Solid State Chemistry, 2017, 253, 43-46.	1.4	4
4570	lonic Liquid/Metal–Organic Framework Composites: From Synthesis to Applications. ChemSusChem, 2017, 10, 2842-2863.	3.6	210
4571	Combining Polycarboxylate and Bipyridyl-like Ligands in the Design of Luminescent Zinc and Cadmium Based Metal–Organic Frameworks. Crystal Growth and Design, 2017, 17, 3893-3906.	1.4	42
4572	Accurate van der Waals force field for gas adsorption in porous materials. Journal of Computational Chemistry, 2017, 38, 1991-1999.	1.5	26
4573	Cadmium Metal–Organic Frameworks Based on Ditopic Triazamacrocyclic Linkers: Unusual Structural Features and Selective CO ₂ Capture. Crystal Growth and Design, 2017, 17, 3665-3676.	1.4	12
4574	Functionalised metal–organic frameworks: a novel approach to stabilising single metal atoms. Journal of Materials Chemistry A, 2017, 5, 15559-15566.	5.2	24
4575	Activationâ€Dependent Breathing in a Flexible Metal–Organic Framework and the Effects of Repeated Sorption/Desorption Cycling. Angewandte Chemie, 2017, 129, 9000-9004.	1.6	6

#	Article	IF	CITATIONS
4576	Enhancing Mixed-Matrix Membrane Performance with Metal–Organic Framework Additives. Crystal Growth and Design, 2017, 17, 4467-4488.	1.4	123
4577	UiO-66-(SH) ₂ as stable, selective and regenerable adsorbent for the removal of mercury from water under environmentally-relevant conditions. Faraday Discussions, 2017, 201, 145-161.	1.6	67
4578	A water-stable lanthanide metal-organic framework for fluorimetric detection of ferric ions and tryptophan. Mikrochimica Acta, 2017, 184, 3363-3371.	2.5	128
4579	cis-Protected palladium(<scp>ii</scp>) based binuclear complexes as tectons in crystal engineering and the imperative role of the cis-protecting agent. CrystEngComm, 2017, 19, 5157-5172.	1.3	15
4580	Understanding gas adsorption in MOF-5/graphene oxide composite materials. Physical Chemistry Chemical Physics, 2017, 19, 11639-11644.	1.3	24
4581	Incorporating Copper Nanoclusters into Metalâ€Organic Frameworks: Confinementâ€Assisted Emission Enhancement and Application for Trinitrotoluene Detection. Particle and Particle Systems Characterization, 2017, 34, 1700029.	1.2	32
4582	Croconato-bridged copper(<scp>ii</scp>) complexes: synthesis, structure and magnetic characterization. New Journal of Chemistry, 2017, 41, 3846-3856.	1.4	5
4583	Experimental studies of hydrocarbon separation on zeolites, activated carbons and MOFs for applications in natural gas processing. RSC Advances, 2017, 7, 12629-12638.	1.7	32
4584	Crystal structure, electrochemical and magnetic properties of a new binuclear copper(II) complex with benzoic acid as a ligand. Journal of Structural Chemistry, 2017, 58, 188-193.	0.3	2
4585	A pair of Ce(III) coordination polymers based on chiral semi-rigid T-shaped tricarboxylate enantiomeric ligands: Synthesis, crystal structure and properties. Polyhedron, 2017, 129, 55-59.	1.0	5
4586	A robust anionic pillared-layer framework with triphenylamine-based linkers: ion exchange and counterion-dependent sorption properties. CrystEngComm, 2017, 19, 2723-2732.	1.3	23
4587	Perspectives on metal–organic frameworks with intrinsic electrocatalytic activity. CrystEngComm, 2017, 19, 4049-4065.	1.3	72
4588	Thrombin aptasensor enabled by Pt nanoparticles-functionalized Co-based metal organic frameworks assisted electrochemical signal amplification. Talanta, 2017, 169, 44-49.	2.9	49
4589	Synthesis, structure, and characterization of two Pr-based coordination polymers containing the 1,10-phenanthroline and their luminescence performances. Inorganic and Nano-Metal Chemistry, 2017, 47, 1190-1195.	0.9	0
4590	Immobilization of AIEgens into metalâ€organic frameworks: Ligand design, emission behavior, and applications. Journal of Polymer Science Part A, 2017, 55, 1809-1817.	2.5	17
4591	Cluster Organic Frameworks Constructed from Heterometallic Supertetrahedral Cluster Secondary Building Units. Inorganic Chemistry, 2017, 56, 4635-4642.	1.9	30
4592	Topological Transformation of a Metal–Organic Framework Triggered by Ligand Exchange. Inorganic Chemistry, 2017, 56, 4576-4583.	1.9	23
4593	Minimal edge-transitive nets for the design and construction of metal–organic frameworks. Faraday Discussions, 2017, 201, 127-143.	1.6	32

#	Article	IF	CITATIONS
4594	Ground-State versus Excited-State Interchromophoric Interaction: Topology Dependent Excimer Contribution in Metal–Organic Framework Photophysics. Journal of the American Chemical Society, 2017, 139, 5973-5983.	6.6	122
4595	Built-in TTF–TCNQ charge-transfer salts in π-stacked pillared layer frameworks. CrystEngComm, 2017, 19, 2300-2304.	1.3	17
4596	Stepwise Synthesis of Metal–Organic Frameworks. Accounts of Chemical Research, 2017, 50, 857-865.	7.6	246
4597	Fluorescence sensing of nitro-aromatics by Zn(<scp>ii</scp>) and Cd(<scp>ii</scp>) based coordination polymers having the 5-[bis(4-carboxybenzyl)-amino]isophthalic acid ligand. New Journal of Chemistry, 2017, 41, 3537-3542.	1.4	48
4598	Transforming HKUSTâ€1 Metal–Organic Frameworks into Gels – Stimuliâ€Responsiveness and Morphology Evolution. European Journal of Inorganic Chemistry, 2017, 2017, 2580-2584.	1.0	15
4599	Continuous Oneâ€Step Synthesis of Porous Mâ€XF ₆ â€Based Metalâ€Organic and Hydrogenâ€Bond Frameworks. Chemistry - A European Journal, 2017, 23, 6829-6835.	ed 1.7	28
4600	New challenge of microporous metal-organic frameworks for adsorption of hydrogen fluoride gas. Materials Letters, 2017, 197, 175-179.	1.3	14
4601	Solvent- and Pressure-Induced Phase Changes in Two 3D Copper Glutarate-Based Metal–Organic Frameworks via Glutarate (+ <i>gauche</i> â‡,, â°' <i>gauche</i>) Conformational Isomerism. Journal of the American Chemical Society, 2017, 139, 5923-5929.	6.6	38
4602	Enhancement of Gas Sorption and Separation Performance via Ligand Functionalization within Highly Stable Zirconium-Based Metal–Organic Frameworks. Crystal Growth and Design, 2017, 17, 2131-2139.	1.4	35
4603	Solvent-switchable continuous-breathing behaviour in a diamondoid metal–organic framework and its influence on CO2 versus CH4 selectivity. Nature Chemistry, 2017, 9, 882-889.	6.6	293
4604	Two Finite Binuclear [M ₂ (μ ₂ -OH)(COO) ₂] (M = Co, Ni) Based Highly Porous Metal–Organic Frameworks with High Performance for Gas Sorption and Separation. Inorganic Chemistry, 2017, 56, 4141-4147.	1.9	57
4605	Evaluation of two- and three-dimensional electrode platforms for the electrochemical characterization of organometallic catalysts incorporated in non-conducting metal–organic frameworks. Dalton Transactions, 2017, 46, 4907-4911.	1.6	17
4606	Synthesis, post-modification and catalytic properties of metal-organic framework NH2-MIL-53(Al). Chemical Research in Chinese Universities, 2017, 33, 231-238.	1.3	27
4607	Silver nanoparticles encapsulated by metal-organic-framework give the highest turnover frequencies of 10 5 h â^1 for three component reaction by microwave-assisted heating. Journal of Catalysis, 2017, 348, 276-281.	3.1	25
4608	Highly efficient photocatalytic hydrogen production from pure water via a photoactive metal–organic framework and its PDMS@MOF. Journal of Materials Chemistry A, 2017, 5, 7833-7838.	5.2	46
4609	Recent advances and challenges of metal–organic framework membranes for gas separation. Journal of Materials Chemistry A, 2017, 5, 10073-10091.	5.2	314
4610	Functional materials discovery using energy–structure–function maps. Nature, 2017, 543, 657-664.	13.7	348
4611	Anodized Aluminum Oxide Templated Synthesis of Metal–Organic Frameworks Used as Membrane Reactors. Angewandte Chemie, 2017, 129, 593-596.	1.6	18

#	Article	IF	CITATIONS
4612	Force-Field Prediction of Materials Properties in Metal-Organic Frameworks. Journal of Physical Chemistry Letters, 2017, 8, 357-363.	2.1	172
4613	The Effect of Nâ€Containing Supports on Catalytic CO Oxidation Activity over Highly Dispersed Pt/UiOâ€67. European Journal of Inorganic Chemistry, 2017, 2017, 172-178.	1.0	18
4614	A Transferable Model for Adsorption in MOFs with Unsaturated Metal Sites. Journal of Physical Chemistry C, 2017, 121, 441-458.	1.5	28
4615	A viologen-based coordination polymer exhibiting high sensitivity towards various light sources. CrystEngComm, 2017, 19, 722-726.	1.3	62
4616	A novel methoxy-decorated metal–organic framework exhibiting high acetylene and carbon dioxide storage capacities. CrystEngComm, 2017, 19, 1464-1469.	1.3	36
4617	Crâ€MILâ€101â€Encapsulated Keggin Phosphomolybdic Acid as a Catalyst for the Oneâ€Pot Synthesis of 2,5â€Diformylfuran from Fructose. ChemCatChem, 2017, 9, 1187-1191.	1.8	42
4618	Nanoconfined Ionic Liquids. Chemical Reviews, 2017, 117, 6755-6833.	23.0	499
4619	Multifunctional Metal–Organic Framework Nanoprobe for Cathepsin B-Activated Cancer Cell Imaging and Chemo-Photodynamic Therapy. ACS Applied Materials & Interfaces, 2017, 9, 2150-2158.	4.0	118
4620	Metal–Organic Framework-Derived NiSb Alloy Embedded in Carbon Hollow Spheres as Superior Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2017, 9, 2516-2525.	4.0	116
4621	Surface Decoration of Amino-Functionalized Metal–Organic Framework/Graphene Oxide Composite onto Polydopamine-Coated Membrane Substrate for Highly Efficient Heavy Metal Removal. ACS Applied Materials & Interfaces, 2017, 9, 2594-2605.	4.0	176
4622	High-Pressure Methane Adsorption in Two Isoreticular Zr-Based Metal–Organic Frameworks Constructed from C3-Symmetrical Tricarboxylates. Crystal Growth and Design, 2017, 17, 248-254.	1.4	6
4623	Emerging materials for lowering atmospheric carbon. Environmental Technology and Innovation, 2017, 7, 30-43.	3.0	13
4624	Lanthanide-based hexa-nuclear complexes and their use as molecular precursors. Coordination Chemistry Reviews, 2017, 340, 134-153.	9.5	41
4625	Network polymers derived from the integration of flexible organic polymers and rigid metal–organic frameworks. Polymer Journal, 2017, 49, 345-353.	1.3	21
4626	1D-2D-3D Transformation Synthesis of Hierarchical Metal–Organic Framework Adsorbent for Multicomponent Alkane Separation. Journal of the American Chemical Society, 2017, 139, 819-828.	6.6	62
4627	Coordination polymers and metal–organic frameworks: materials by design. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160032.	1.6	44
4628	Erbium-Organic Framework as Heterogeneous Lewis Acid Catalysis for Hantzsch Coupling and Tetrahydro-4H-Chromene Synthesis. Catalysis Letters, 2017, 147, 453-462.	1.4	30
4629	Encoding evolution of porous solids. Nature Chemistry, 2017, 9, 6-8.	6.6	9

ARTICLE IF CITATIONS Nitrate NO more. Nature Chemistry, 2017, 9, 8-8. 4630 4 6.6 Fullymeta-Substituted 4,4â€²-Biphenyldicarboxylate-Based Metal-Organic Frameworks: Synthesis, 1.0 Strúctures, and Catalytic Activities. European Journal of Inorganic Chemistry, 2017, 2017, 1478-1487. Dual-Surface Functionalization of Metal-Organic Frameworks for Enhancing the Catalytic Activity 4632 5.539 of<i>Candida antarctica</i>Lipase B in Polar Organic Media. ACS Catalysis, 2017, 7, 438-442. Computational prediction of hetero-interpenetration in metal–organic frameworks. Chemical Communications, 2017, 53, 1953-1956. Two blue-light excitable yellow-emitting LMOF phosphors constructed by triangular 4634 1.6 36 tri(4-pyridylphenyl)amine. Dalton Transactions, 2017, 46, 956-961. Pore Topology Effects in Positron Annihilation Spectroscopy of Zeolites. ChemPhysChem, 2017, 18, 470-479. 1.0 Zinc(II) Coordination Frameworks Based on Benzobisimidazole: The Role of the Methyl Substituent. 4636 1.0 3 European Journal of Inorganic Chemistry, 2017, 2017, 5395-5402. Methods for Introducing Inorganic Polymer Concepts throughout the Undergraduate Curriculum. Journal of Chemical Education, 2017, 94, 1674-1681. 4637 1.1 Pre-design and synthesis of a five-fold interpenetrated pcu-type porous coordination polymer 4638 9 1.3 and its ČO₂/CO separation. CrystEngComm, 2017, 19, 6927-6931. Adsorption of Ammonia on Zirconium-Based Metal-Organic Framework: A Combined Experimental and 0.4 Theoretical Study. Key Engineering Materials, 2017, 757, 93-97. An Experimental and Theoretical Study on the Aldol Condensation on Zirconium-Based Metal-Organic 4640 0.4 3 Framework. Key Engineering Materials, 0, 757, 98-102. A review of the latest development of polyimide based membranes for CO 2 separations. Reactive and 4641 116 Functional Polymers, 2017, 120, 104-130. Selective Gas Adsorption in Highly Porous Chromium(II)-Based Metalâ€"Organic Polyhedra. Chemistry of 4642 3.2 68 Materials, 2017, 29, 8583-8587. PCN-250 under Pressure: Sequential Phase Transformation and the Implications for MOF Densification. 4643 11.7 65 Joule, 2017, 1, 806-815. A cluster-based mesoporous Ti-MOF with sodalite supercages. Chemical Communications, 2017, 53, 2.2 4644 74 11670-11673. Facile and Mild Synthesis of Metalâ€"Formate Frameworks for Methane Adsorptive Separation. 4645 Chemistry Letters, 2017, 46, 1766-1768. Rapid Guest Exchange and Ultra‣ow Surface Tension Solvents Optimize Metal–Organic Framework 4646 1.6 26 Activation. Angewandte Chemie, 2017, 129, 14810-14813. Rapid Guest Exchange and Ultra‣ow Surface Tension Solvents Optimize Metal–Organic Framework 4647 Activation. Angewandte Chemie - International Edition, 2017, 56, 14618-14621.

#	Article	IF	CITATIONS
4648	Lewis basic site (LBS)-functionalized zeolite-like supramolecular assemblies (ZSAs) with high CO ₂ uptake performance and highly selective CO ₂ /CH ₄ separation. Journal of Materials Chemistry A, 2017, 5, 21429-21434.	5.2	21
4649	Hydrogen bonding-assisted loosely packed crystals of a diaminomaleonitrile-modified tetraphenylethene compound and their photo- and mechano-responsive properties. Journal of Materials Chemistry C, 2017, 5, 11867-11872.	2.7	25
4650	An Ising model for metal-organic frameworks. Journal of Chemical Physics, 2017, 147, 084704.	1.2	3
4651	Metal–Organic Frameworks with Internal Urea-Functionalized Dicarboxylate Linkers for SO ₂ and NH ₃ Adsorption. ACS Applied Materials & Interfaces, 2017, 9, 37419-37434.	4.0	130
4652	Anchorage of Au3+ into Modified Isoreticular Metal–Organic Framework-3 as a Heterogeneous Catalyst for the Synthesis of Propargylamines. Scientific Reports, 2017, 7, 12709.	1.6	17
4653	Metal–organic frameworks (MOFs): potential and challenges for capture and abatement of ammonia. Journal of Materials Chemistry A, 2017, 5, 22877-22896.	5.2	202
4654	Molecular Modeling of MOF Membranes for Gas Separations. , 2017, , 97-143.		0
4655	The Impact of Chargeâ€Distribution on Photochromic Properties in 1D Coordination Polymers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1766-1770.	0.6	7
4656	Direct access to non-symmetric lithium nitriloamidinate and disymmetric dilithium bisamidinate complexes from 1,3- or 1,4- dicyanobenzene and lithium amides. Journal of Organometallic Chemistry, 2017, 849-850, 88-97.	0.8	5
4657	Complex Nanostructures from Materials based on Metal–Organic Frameworks for Electrochemical Energy Storage and Conversion. Advanced Materials, 2017, 29, 1703614.	11.1	629
4658	An Isoreticular Series of Zinc(II) Metal–Organic Frameworks Derived from Terpyridylcarboxylate Ligands. Inorganic Chemistry, 2017, 56, 12224-12231.	1.9	11
4659	A porous copper–organic framework with intersecting channels and gas adsorption properties. Dalton Transactions, 2017, 46, 13952-13956.	1.6	11
4660	Reversible pressure pre-amorphization of a piezochromic metal–organic framework. Dalton Transactions, 2017, 46, 14795-14803.	1.6	30
4661	Review on the current practices and efforts towards pilot-scale production of metal-organic frameworks (MOFs). Coordination Chemistry Reviews, 2017, 352, 187-219.	9.5	190
4662	A series of sulfonic acid functionalized mixed-linker DUT-4 analogues: synthesis, gas sorption properties and catalytic performance. Dalton Transactions, 2017, 46, 14356-14364.	1.6	15
4663	Antifungal activity of water-stable copper-containing metal-organic frameworks. Royal Society Open Science, 2017, 4, 170654.	1.1	66
4664	Drug delivery and selective CO2 adsorption of a bio-based porous zinc-organic framework from 2,5-furandicarboxylate ligand. Inorganic Chemistry Communication, 2017, 86, 128-132.	1.8	20
4665	Computational Study of Water Adsorption in the Hydrophobic Metal–Organic Framework ZIF-8: Adsorption Mechanism and Acceleration of the Simulations. Journal of Physical Chemistry C, 2017, 121, 24000-24010.	1.5	62

#	Article	IF	CITATIONS
4666	A Fine-Tuned MOF for Gas and Vapor Separation: A Multipurpose Adsorbent for Acid Gas Removal, Dehydration, and BTX Sieving. CheM, 2017, 3, 822-833.	5.8	83
4667	Ir ^{III} â€based Octahedral Metalloligands Derived Primitive Cubic Frameworks for Enhanced CO ₂ /N ₂ Separation. Chemistry - an Asian Journal, 2017, 12, 3110-3113.	1.7	3
4668	Sensing properties, energy transfer mechanism and tuneable particle size processing of luminescent two-dimensional rare earth coordination networks. Journal of Materials Chemistry C, 2017, 5, 12409-12421.	2.7	13
4669	Bimetal–organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage. Journal of Materials Chemistry A, 2017, 5, 23744-23752.	5.2	119
4670	Self-Sacrificial Template Strategy Coupled with Smart <i>in Situ</i> Seeding for Highly Oriented Metal–Organic Framework Layers: From Films to Membranes. Chemistry of Materials, 2017, 29, 7103-7107.	3.2	60
4671	Short Naphthalene Organophosphonate Linkers to Microporous Frameworks. ChemistrySelect, 2017, 2, 7050-7053.	0.7	8
4672	Water Adsorption and Insertion in MOF-5. ACS Omega, 2017, 2, 4921-4928.	1.6	59
4673	Accelerating Palladium Nanowire H ₂ Sensors Using Engineered Nanofiltration. ACS Nano, 2017, 11, 9276-9285.	7.3	190
4674	Spiers Memorial Lecture: : Progress and prospects of reticular chemistry. Faraday Discussions, 2017, 201, 9-45.	1.6	85
4675	Divergent topologies in luminescent zinc and cadmium substituted isophthalate coordination polymers constructed from long-spanning dipyridylamide ligand precursors. Inorganica Chimica Acta, 2017, 467, 330-342.	1.2	0
4676	Valuing Metal–Organic Frameworks for Postcombustion Carbon Capture: A Benchmark Study for Evaluating Physical Adsorbents. Advanced Materials, 2017, 29, 1702953.	11.1	88
4677	Tuning the Morphology and Activity of Electrospun Polystyrene/UiO-66-NH ₂ Metal–Organic Framework Composites to Enhance Chemical Warfare Agent Removal. ACS Applied Materials & Interfaces, 2017, 9, 32248-32254.	4.0	93
4678	Mixed-Ligand LMOF Fluorosensors for Detection of Cr(VI) Oxyanions and Fe ³⁺ /Pd ²⁺ Cations in Aqueous Media. Inorganic Chemistry, 2017, 56, 10939-10949.	1.9	147
4679	Composite materials combining multiple luminescent MOFs and superparamagnetic microparticles for ratiometric water detection. Journal of Materials Chemistry C, 2017, 5, 10133-10142.	2.7	56
4680	Design and synthesis of polyoxometalate-framework materials from cluster precursors. Nature Reviews Materials, 2017, 2, .	23.3	191
4681	The impact of N,N′-ditopic ligand length and geometry on the structures of zinc-based mixed-linker metal–organic frameworks. CrystEngComm, 2017, 19, 5549-5557.	1.3	14
4682	Color-tunable entangled coordination polymers based on long flexible bis(imidazole) ligands and phenylenediacetate. New Journal of Chemistry, 2017, 41, 12139-12146.	1.4	9
4683	Warm-White-Light-Emitting Diode Based on a Dye-Loaded Metal–Organic Framework for Fast White-Light Communication. ACS Applied Materials & Interfaces, 2017, 9, 35253-35259	4.0	99

#	Article	IF	CITATIONS
4684	Thermodynamic Route to Efficient Prediction of Gas Diffusivity in Nanoporous Materials. Langmuir, 2017, 33, 11797-11803.	1.6	11
4685	Anharmonic Origin of Giant Thermal Displacements in the Metal–Organic Framework UiO-67. Journal of Physical Chemistry C, 2017, 121, 22010-22014.	1.5	3
4686	Modulating the Performance of an Asymmetric Organocatalyst by Tuning Its Spatial Environment in a Metal–Organic Framework. Journal of the American Chemical Society, 2017, 139, 13936-13943.	6.6	102
4687	Biologically derived metal organic frameworks. Coordination Chemistry Reviews, 2017, 349, 102-128.	9.5	116
4688	Six Co(II) Coordination Polymers Based on Two Isomeric Semirigid Ether-Linked Aromatic Tetracarboxylate Acid: Syntheses, Structural Comparison, and Magnetic Properties. Crystal Growth and Design, 2017, 17, 5533-5543.	1.4	29
4689	lsoreticular expansion of polyMOFs achieves high surface area materials. Chemical Communications, 2017, 53, 10684-10687.	2.2	52
4690	Tuneable nature of metal organic frameworks as heterogeneous solid catalysts for alcohol oxidation. Chemical Communications, 2017, 53, 10851-10869.	2.2	94
4691	Cyanosilylation of Aldehydes Catalyzed by MILâ€101(Cr): A Theoretical Investigation. ChemistrySelect, 2017, 2, 7813-7820.	0.7	12
4692	Kineticâ€Controlled Formation of Bimetallic Metal–Organic Framework Hybrid Structures. Small, 2017, 13, 1702049.	5.2	69
4693	Structural defects in metal–organic frameworks (MOFs): Formation, detection and control towards practices of interests. Coordination Chemistry Reviews, 2017, 349, 169-197.	9.5	200
4694	Lattice-Directed Construction of Metal–Organic Molecular Wires of Pentacene on the Au(110) Surface. Journal of Physical Chemistry C, 2017, 121, 21650-21657.	1.5	14
4695	Hyperfine adjustment of flexible pore-surface pockets enables smart recognition of gas size and quadrupole moment. Chemical Science, 2017, 8, 7560-7565.	3.7	57
4696	Construction of Four Indium-Based Heterometallic Metal-Organic Frameworks Containing Intersecting Indium-Organic Helical Chains and Different Divalent-Metal-Ion Linkers. European Journal of Inorganic Chemistry, 2017, 2017, 4919-4924.	1.0	11
4697	Facile synthesis of magnetic metal organic frameworks for highly efficient proteolytic digestion used in mass spectrometry-based proteomics. Analytica Chimica Acta, 2017, 994, 19-28.	2.6	33
4698	Microporous metal organic framework-based copolymers with efficient gas adsorption capability and high temporal stability. Macromolecular Research, 2017, 25, 1100-1104.	1.0	4
4699	Network Dimensionality of Selected Uranyl(VI) Coordination Polymers and Octopus-like Uranium(IV) Clusters. Crystal Growth and Design, 2017, 17, 5568-5582.	1.4	16
4700	Engineering of Pore Geometry for Ultrahigh Capacity Methane Storage in Mesoporous Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 13300-13303.	6.6	140
4701	Long-range magnetic ordering in a metal–organic framework based on octanuclear nickel(<scp>ii</scp>) clusters. Dalton Transactions, 2017, 46, 12771-12774.	1.6	16

#	Article	IF	CITATIONS
4702	Salen(Co(<scp>iii</scp>)) imprisoned within pores of a metal–organic framework by post-synthetic modification and its asymmetric catalysis for CO ₂ fixation at room temperature. Chemical Communications, 2017, 53, 10930-10933.	2.2	62
4703	Efficiently mapping structure–property relationships of gas adsorption in porous materials: application to Xe adsorption. Faraday Discussions, 2017, 201, 221-232.	1.6	5
4704	Successive stepwise evolution of host layer-stacking framework upon the intercalation of mobile vapor guests within side-chain layers. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1448-1457.	2.4	2
4705	Synthetic Considerations in the Self-Assembly of Coordination Polymers of Pyridine-Functionalized Hybrid Mn-Anderson Polyoxometalates. Crystal Growth and Design, 2017, 17, 4739-4748.	1.4	32
4706	Porous Organic Polymers for Post ombustion Carbon Capture. Advanced Materials, 2017, 29, 1700229.	11.1	293
4707	Environment-friendly fullerene separation methods. Chemical Engineering Journal, 2017, 330, 134-145.	6.6	73
4708	Recent advances on supramolecular isomerism in metal organic frameworks. CrystEngComm, 2017, 19, 4666-4695.	1.3	66
4709	Fine Tuning of MOFâ€505 Analogues To Reduce Lowâ€Pressure Methane Uptake and Enhance Methane Working Capacity. Angewandte Chemie, 2017, 129, 11584-11588.	1.6	33
4710	Fine Tuning of MOFâ€505 Analogues To Reduce Lowâ€Pressure Methane Uptake and Enhance Methane Working Capacity. Angewandte Chemie - International Edition, 2017, 56, 11426-11430.	7.2	119
4711	Computational prediction of high methane storage capacity in V-MOF-74. Physical Chemistry Chemical Physics, 2017, 19, 21132-21139.	1.3	14
4712	A hydrostable anionic zinc-organic framework carrier with a bcu topology for drug delivery. CrystEngComm, 2017, 19, 5244-5250.	1.3	26
4713	Decoding Nucleation and Growth of Zeolitic Imidazolate Framework Thin Films with Atomic Force Microscopy and Vibrational Spectroscopy. Chemistry - A European Journal, 2017, 23, 10915-10924.	1.7	62
4714	Functionalised solids delivering bioactive nitric oxide gas for therapeutic applications. Materials Today Communications, 2017, 12, 95-105.	0.9	22
4715	Functionalized Baseâ€Stable Metal–Organic Frameworks for Selective CO ₂ Adsorption and Proton Conduction. ChemPhysChem, 2017, 18, 3245-3252.	1.0	43
4716	Electronic Structure Calculations of Hydrogen Storage in Lithium-Decorated Metal–Graphyne Framework. ACS Applied Materials & Interfaces, 2017, 9, 28659-28666.	4.0	56
4717	Mesoporous Polymer Frameworks from End-Reactive Bottlebrush Copolymers. ACS Nano, 2017, 11, 8207-8214.	7.3	21
4718	Hollowing out MOFs: hierarchical micro- and mesoporous MOFs with tailorable porosity via selective acid etching. Chemical Science, 2017, 8, 6799-6803.	3.7	141
4719	Transition Metal Titanophosphates with Intercalated Molecular Photoluminescence and Catalytic Properties. Chemistry - A European Journal, 2017, 23, 13583-13586.	1.7	3
#	Article	IF	CITATIONS
------	---	------	-----------
4720	Synthesis of Denser Energetic Metal–Organic Frameworks via a Tandem Anion–Ligand Exchange Strategy. Inorganic Chemistry, 2017, 56, 10281-10289.	1.9	24
4721	Strategies for Improving the Functionality of Zeolitic Imidazolate Frameworks: Tailoring Nanoarchitectures for Functional Applications. Advanced Materials, 2017, 29, 1700213.	11.1	366
4722	Dual optimization of microporosity in carbon spheres for CO ₂ adsorption by using pyrrole as the carbon precursor and potassium salt as the activator. Journal of Materials Chemistry A, 2017, 5, 19456-19466.	5.2	27
4723	Macrocyclicâ€ligand Induced Synthesis of Aryl Ethynides with Divergent Silver(I) Clusters. Chinese Journal of Chemistry, 2017, 35, 1824-1828.	2.6	6
4724	Pyrolytic in situ magnetization of metal-organic framework MIL-100 for magnetic solid-phase extraction. Journal of Chromatography A, 2017, 1517, 18-25.	1.8	48
4725	Silicone Oil Induced Spontaneous Single-Crystal-to-Single-Crystal Phase Transitions in Ethynyl Substituted <i>ortho</i> - and <i>meta</i> -Fluorinated Benzamides. Crystal Growth and Design, 2017, 17, 4533-4540.	1.4	10
4726	Transmission electron microscopy on metal–organic frameworks – a review. Journal of Materials Chemistry A, 2017, 5, 14969-14989.	5.2	108
4727	Embedded Isoreticular Zeolites: Concept and Beyond. Chemistry - A European Journal, 2017, 23, 15922-15929.	1.7	6
4728	A Zinc(II) Porous Metal–Organic Framework and Its Morphologically Controlled Catalytic Properties in the Knoevenagel Condensation Reaction. ChemPlusChem, 2017, 82, 1182-1187.	1.3	13
4729	A 3d-3d heterometallic-organic framework constructed from Cu4I4 clusters and binuclear Zn(II) moities. Inorganic Chemistry Communication, 2017, 84, 118-121.	1.8	2
4730	Shaping of porous metal–organic framework granules using mesoporous ϕalumina as a binder. RSC Advances, 2017, 7, 55767-55777.	1.7	81
4731	Ultrafast rotation in an amphidynamic crystalline metal organic framework. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13613-13618.	3.3	74
4732	Direct Surface Growth Of UIO-66-NH ₂ on Polyacrylonitrile Nanofibers for Efficient Toxic Chemical Removal. Industrial & Engineering Chemistry Research, 2017, 56, 14502-14506.	1.8	69
4733	Influence of Metal–Organic Framework Porosity on Hydrogen Generation from Nanoconfined Ammonia Borane. Journal of Physical Chemistry C, 2017, 121, 27369-27378.	1.5	40
4735	A combined continuous wave electron paramagnetic resonance and DFT calculations of copper-doped 3â^ž[Cd _{0.98} Cu _{0.02} (prz-trz-ia)] metal–organic framework. Physical Chemistry Chemical Physics, 2017, 19, 31030-31038.	1.3	2
4736	Hexalanthanide Complexes as Molecular Precursors: Synthesis, Crystal Structure, and Luminescent and Magnetic Properties. Inorganic Chemistry, 2017, 56, 14632-14642.	1.9	15
4737	<i>Ab Initio</i> Screening of Metal Catecholates for Adsorption of Toxic Pnictogen Hydride Gases. Industrial & amp; Engineering Chemistry Research, 2017, 56, 14324-14336.	1.8	8
4738	Computational screening of functional groups for capture of toxic industrial chemicals in porous materials. Physical Chemistry Chemical Physics, 2017, 19, 31766-31772.	1.3	1

	CITATION	REPORT	
#	Article	IF	CITATIONS
4739	METAL-ORGANIC FRAMEWORKS MEMBRANES. Series on Chemical Engineering, 2017, , 80-109.	0.2	0
4740	Post-synthetic modification of IRMOF-3 with an iminopalladacycle complex and its application as an effective heterogeneous catalyst in Suzuki-Miyaura cross-coupling reaction in H2O/EtOH media at room temperature. Molecular Catalysis, 2017, 443, 286-293.	1.0	28
4741	Systematic Tuning of Zn(II) Frameworks with Furan, Thiophene, and Selenophene Dipyridyl and Dicarboxylate Ligands. Crystal Growth and Design, 2017, 17, 6262-6272.	1.4	18
4742	Synergic effect of copper-based metal–organic frameworks for highly efficient C–H activation of amidines. RSC Advances, 2017, 7, 51658-51662.	1.7	16
4743	Database Mining of Zeolite Structures. Crystal Growth and Design, 2017, 17, 6821-6835.	1.4	27
4744	Tuning Luminescence and Conductivity through Controlled Growth of Polymorphous Molecular Crystals. Advanced Electronic Materials, 2017, 3, 1700132.	2.6	8
4745	Removal of Congo red dye from aqueous solution with nickel-based metal-organic framework/graphene oxide composites prepared by ultrasonic wave-assisted ball milling. Ultrasonics Sonochemistry, 2017, 39, 845-852.	3.8	126
4746	Based on a V-shaped In(III) metal–organic framework (MOF): Design, synthesis and characterization of diverse physical and chemical properties. Polyhedron, 2017, 134, 207-214.	1.0	9
4747	Copper-Based Metal–Organic Framework Nanoparticles with Peroxidase-Like Activity for Sensitive Colorimetric Detection of <i>Staphylococcus aureus</i> . ACS Applied Materials & Interfaces, 2017, 9, 24440-24445.	4.0	238
4748	Tailoring the catalytic activity of metal organic frameworks by tuning the metal center and basic functional sites. New Journal of Chemistry, 2017, 41, 8166-8177.	1.4	34
4749	Surface-supported metal–organic framework thin films: fabrication methods, applications, and challenges. Chemical Society Reviews, 2017, 46, 5730-5770.	18.7	549
4750	MOF-derived hierarchical ZnO/ZnFe ₂ O ₄ hollow cubes for enhanced acetone gas-sensing performance. RSC Advances, 2017, 7, 34609-34617.	1.7	58
4751	Structural Diversity of Lithium Cluster-Frameworks Based on Li2O2 Half-Cubane Building Block. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1583-1592.	1.9	5
4752	Tuning Gas Adsorption Properties of Zeolite-like Supramolecular Assemblies with gis Topology via Functionalization of Isoreticular Metal–Organic Squares. ACS Applied Materials & Interfaces, 2017, 9, 33521-33527.	4.0	27
4753	Pore-Engineered Metal–Organic Frameworks with Excellent Adsorption of Water and Fluorocarbon Refrigerant for Cooling Applications. Journal of the American Chemical Society, 2017, 139, 10601-10604.	6.6	128
4754	Design and construction of a ferrocene based inclined polycatenated Co-MOF for supercapacitor and dye adsorption applications. Journal of Materials Chemistry A, 2017, 5, 17998-18011.	5.2	191
4755	Synthesis, characterization and heterogeneous base catalysis of amino functionalized lanthanide metal-organic frameworks. Journal of Molecular Structure, 2017, 1146, 853-860.	1.8	25
4756	Flexible Force Field Parameterization through Fitting on the Ab Initio-Derived Elastic Tensor. Journal of Chemical Theory and Computation, 2017, 13, 3722-3730.	2.3	13

#	Article	IF	CITATIONS
4757	Multiple Coordination Exchanges for Room-Temperature Activation of Open-Metal Sites in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2017, 9, 24743-24752.	4.0	69
4758	Mixed-Matrix Membranes of the Air-Stable MOF-5 Analogue [Co ₄ (μ ₄ -O)(Me ₂ pzba) ₃] with a Mixed-Functional Pyrazolate-Carboxylate Linker for CO ₂ /CH ₄ Separation. Crystal Growth and Design. 2017. 17. 4090-4099.	1.4	25
4759	Hydrogen Sulfide Capture: From Absorption in Polar Liquids to Oxide, Zeolite, and Metal–Organic Framework Adsorbents and Membranes. Chemical Reviews, 2017, 117, 9755-9803.	23.0	434
4760	Metal–organic-framework-based catalysts for hydrogenation reactions. Chinese Journal of Catalysis, 2017, 38, 1108-1126.	6.9	52
4761	A series of Cadmium(II) complexes with 2-substituted terephthalate building block and N-Donor co-ligands: Structural diversity and fluorescence properties. Journal of Molecular Structure, 2017, 1147, 292-299.	1.8	6
4762	Guest Exchange in a Robust Hydrogen-Bonded Organic Framework: Single-Crystal to Single-Crystal Exchange and Kinetic Studies. Crystal Growth and Design, 2017, 17, 4377-4383.	1.4	18
4763	Scalable solvent-free preparation of [Ni 3 (HCOO) 6] frameworks for highly efficient separation of CH 4 from N 2. Chemical Engineering Journal, 2017, 327, 564-572.	6.6	61
4764	The K-Region in Pyrenes as a Key Position to Activate Aggregation-Induced Emission: Effects of Introducing Highly Twisted <i>N</i> , <i>N</i> Dimethylamines. Journal of Organic Chemistry, 2017, 82, 6865-6873.	1.7	46
4765	Unidirectional compression and expansion of a crosslinked MOF crystal prepared via axis-dependent crosslinking and ligand exchange. Polymer Journal, 2017, 49, 685-689.	1.3	11
4766	Enhancing mechanical stability and uniformity of 2-D continuous ZIF-8 membranes by Zn(II)-doped polydopamine modification. Journal of Membrane Science, 2017, 541, 101-107.	4.1	21
4767	Self-assembly of a series of metal–organic frameworks with semi-rigid multicarboxylate 3,4-bis(carboxymethoxy)benzoic acid ligands. Polyhedron, 2017, 135, 60-71.	1.0	1
4768	Soft-template carbonization approach of MOF-5 to mesoporous carbon nanospheres as excellent electrode materials for supercapacitor. Microporous and Mesoporous Materials, 2017, 253, 169-176.	2.2	69
4769	Fabrication and Structural Characterization of an Ultrathin Film of a Two-Dimensional-Layered Metal–Organic Framework, {Fe(py) ₂ [Ni(CN) ₄]} (py = pyridine). Inorganic Chemistry, 2017, 56, 7606-7609.	1.9	32
4770	Recent Progress of Synthesis and Application in Au@MOFs Hybrid Materials. Catalysis Surveys From Asia, 2017, 21, 130-142.	1.0	1
4771	Thermodynamics of adsorption of aromatic compounds from non-aqueous solutions by MIL-53(Al) metal-organic framework. Russian Chemical Bulletin, 2017, 66, 16-22.	0.4	8
4772	Advancements in rationally designed PGM-free fuel cell catalysts derived from metal–organic frameworks. Materials Horizons, 2017, 4, 20-37.	6.4	139
4773	Cadmium–BINOL Metal–Organic Framework for the Separation of Alcohol Isomers. Chemistry - A European Journal, 2017, 23, 874-885.	1.7	12
4774	Simulation and Experimental Study of Metal Organic Frameworks Used in Adsorption Cooling. Heat Transfer Engineering, 2017, 38, 1305-1315.	1.2	27

_			_
C Γ	ΓΛΤΙ	ON.	
	IAH		REPORT

#	Article	IF	CITATIONS
4775	Probing Structure and Reactivity of Metal Centers in Metal–Organic Frameworks by XAS Techniques. , 2017, , 397-430.		4
4776	An Antibacterial Zn–MOF with Hydrazinebenzoate Linkers. European Journal of Inorganic Chemistry, 2017, 2017, 574-580.	1.0	70
4777	Microperoxidase-11@PCN-333 (Al)/three-dimensional macroporous carbon electrode for sensing hydrogen peroxide. Sensors and Actuators B: Chemical, 2017, 239, 890-897.	4.0	67
4778	Ultrafast room temperature synthesis of novel composites Imi@Cu-BTC with improved stability against moisture. Chemical Engineering Journal, 2017, 307, 537-543.	6.6	51
4779	The HOF structures of nitrotetraphenylethene derivatives provide new insights into the nature of AIE and a way to design mechanoluminescent materials. Chemical Science, 2017, 8, 1163-1168.	3.7	110
4780	Effect of pore size and shape on the thermal conductivity of metal-organic frameworks. Chemical Science, 2017, 8, 583-589.	3.7	120
4781	Zr(IV) and Ce(IV)-based metal-organic frameworks incorporating 4-carboxycinnamic acid as ligand: Synthesis and properties. Microporous and Mesoporous Materials, 2017, 237, 275-281.	2.2	13
4782	Reticular synthesis of porous molecular 1D nanotubes and 3D networks. Nature Chemistry, 2017, 9, 17-25.	6.6	122
4783	Three dimensional MOF–sponge for fast dynamic adsorption. Physical Chemistry Chemical Physics, 2017, 19, 5746-5752.	1.3	29
4784	A metal–organic framework functionalized with piperazine exhibiting enhanced CH ₄ storage. Journal of Materials Chemistry A, 2017, 5, 349-354.	5.2	41
4785	Thermally driven refrigeration by methanol adsorption on coatings of HKUST-1 and MIL-101(Cr). Applied Thermal Engineering, 2017, 117, 689-697.	3.0	38
4786	Activated carbon and metal organic framework as adsorbent for low-pressure methane storage applications: an overview. Journal of Porous Materials, 2017, 24, 905-922.	1.3	33
4787	High sensitive luminescence metal-organic framework sensor for hydrogen sulfide in aqueous solution: A trial of novel turn-on mechanism. Sensors and Actuators B: Chemical, 2017, 243, 8-13.	4.0	64
4788	Metal-organic frameworks for the adsorption of gaseous toluene under ambient temperature and pressure. Chemical Engineering Journal, 2017, 307, 1116-1126.	6.6	248
4789	A novel metal-organic framework composite MIL-101(Cr)@GO as an efficient sorbent in dispersive micro-solid phase extraction coupling with UHPLC-MS/MS for the determination of sulfonamides in milk samples. Talanta, 2017, 169, 227-238.	2.9	99
4790	pH- and ligand structure-specific synthesis, structure-lattice dimensionality and spectroscopic fingerprint in novel binary In(III)-hydroxycarboxylic acid materials. Polyhedron, 2017, 127, 420-431.	1.0	3
4791	Optically active derivatives of terephthalic acid: synthesis and crystal structures. Russian Chemical Bulletin, 2017, 66, 1589-1596.	0.4	4
4792	Sorption and catalysis by robust microporous metalloporphyrin framework solids. Journal of Porphyrins and Phthalocyanines, 2017, 21, 857-869.	0.4	1

#	Article	IF	Citations
4793	Coordination polymers of silver(I) with ditopic cross-conjugated dienone. Russian Journal of Inorganic Chemistry, 2017, 62, 1584-1594.	0.3	1
4794	Fabrication of a Magnetic Cellulose Nanocrystal/Metal–Organic Framework Composite for Removal of Pb(II) from Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 10447-10458.	3.2	154
4795	Synthesis and Structure–Energy Characteristics of an MOF Al-BTC Organometallic Framework Structure. Protection of Metals and Physical Chemistry of Surfaces, 2017, 53, 961-966.	0.3	10
4796	The energy of adsorption of methane on microporous carbon adsorbents. Protection of Metals and Physical Chemistry of Surfaces, 2017, 53, 780-785.	0.3	12
4797	Photocatalytic Performance of a Novel MOF/BiFeO3 Composite. Materials, 2017, 10, 1161.	1.3	33
4798	Landscape of Research Areas for Zeolites and Metal-Organic Frameworks Using Computational Classification Based on Citation Networks. Materials, 2017, 10, 1428.	1.3	19
4799	Crystal Crosslinked Gels with Aggregation-Induced Emissive Crosslinker Exhibiting Swelling Degree-Dependent Photoluminescence. Polymers, 2017, 9, 19.	2.0	21
4800	Crystal structure and luminescent properties of novel coordination polymers constructed with bifurandicarboxylic acid. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 715-721.	0.5	2
4801	Dynamic Behavior of Porous Coordination Polymers. , 2017, , 425-474.		2
4802	Recent Progress in the Fabrication of Low Dimensional Nanostructures via Surface-Assisted Transforming and Coupling. Journal of Nanomaterials, 2017, 2017, 1-17.	1.5	4
4803	Porous Organic Cages. , 2017, , 139-197.		7
4804	Preparation, characterization, and performance evaluation of UiO-66 analogues as stationary phase in HPLC for the separation of substituted benzenes and polycyclic aromatic hydrocarbons. PLoS ONE, 2017, 12, e0178513.	1.1	18
4805	Frontier of Inorganic Synthesis and Preparative Chemistry (II)-Designed Synthesis—Inorganic Crystalline Porous Materials. , 2017, , 723-761.		1
4806	Synthesis of Coordination Compounds and Coordination Polymers. , 2017, , 189-217.		10
4807	Interpenetrated Network Crystals. , 2017, , 313-371.		0
4808	Network Solids: Mixed Ligand Molecular Building Blocks. , 2017, , 243-270.		0
4809	Solvates and Hydratesâ \in "Supramolecular Compounds â~†. , 2017, , 89-108.		1
4810	Catalytic descriptors and electronic properties of single-site catalysts for ethene dimerization to 1-butene. Catalysis Today, 2018, 312, 149-157.	2.2	16

#	Article	IF	CITATIONS
4811	Coordination Polymers from Functionalized Bipyrimidine Ligands and Silver(I) Salts. Crystal Growth and Design, 2018, 18, 2210-2216.	1.4	2
4812	A Lanthanide Luminescent Cation Exchange Material Derived from a Flexible Tricarboxylic Acid 2,6-Bis(1,2,3-triazol-4-yl)pyridine (btp) Tecton. Inorganic Chemistry, 2018, 57, 3920-3930.	1.9	16
4813	Aqueousâ€Phase Synthesis of Mesoporous Zrâ€Based MOFs Templated by Amphoteric Surfactants. Angewandte Chemie, 2018, 130, 3497-3501.	1.6	32
4814	Binding CO ₂ from Air by a Bulky Organometallic Cation Containing Primary Amines. ACS Applied Materials & Interfaces, 2018, 10, 9495-9502.	4.0	35
4815	Hydrothermal syntheses and anion-induced structural transformation of three Cadmium phosphonates. Journal of Solid State Chemistry, 2018, 261, 9-15.	1.4	4
4816	Retrosynthesis of multi-component metalâ^'organic frameworks. Nature Communications, 2018, 9, 808.	5.8	159
4817	Cobalt-cadmium bimetallic porphyrin coordination polymers for electrochemistry application. IOP Conference Series: Materials Science and Engineering, 2018, 292, 012107.	0.3	3
4818	Energetic evaluation of swing adsorption processes for CO 2 capture in selected MOFs and zeolites: Effect of impurities. Chemical Engineering Journal, 2018, 342, 458-473.	6.6	76
4819	Capture of pure toxic gases through porous materials from molecular simulations. Molecular Physics, 2018, 116, 2095-2107.	0.8	24
4820	Understanding and Controlling the Dielectric Response of Metal–Organic Frameworks. ChemPlusChem, 2018, 83, 308-316.	1.3	36
4821	Thermal Stability of Metal–Organic Frameworks and Encapsulation of CuO Nanocrystals for Highly Active Catalysis. ACS Applied Materials & Interfaces, 2018, 10, 9332-9341.	4.0	56
4822	A Survey of Metal-Organic Frameworks Based on Phosphorus- and Sulfur-Containing Building Blocks. Series on Chemistry, Energy and the Environment, 2018, , 37-141.	0.3	3
4823	Microwave-Assisted, Ni-Induced Fabrication of Hollow ZIF-8 Nanoframes for the Knoevenagel Reaction. Crystal Growth and Design, 2018, 18, 3841-3850.	1.4	25
4824	Highly hydrophobic ZIF-8 particles and application for oil-water separation. Separation and Purification Technology, 2018, 206, 186-191.	3.9	128
4825	Constructing Redox-Responsive Metal–Organic Framework Nanocarriers for Anticancer Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 16698-16706.	4.0	147
4826	Environmentally friendly synthesis of flexible MOFs M(NA) ₂ (M = Zn, Co, Cu, Cd) with large and regenerable ammonia capacity. Journal of Materials Chemistry A, 2018, 6, 9922-9929.	5.2	51
4827	Development of 3D interconnected carbon materials derived from Zn-MOF-74@carbon nanofiber web as an efficient metal-free electrocatalyst for oxygen reduction. Carbon, 2018, 135, 35-43.	5.4	57
4829	Synthesis of hierarchical-pore metal-organic framework on liter scale for large organic pollutants capture in wastewater. Journal of Colloid and Interface Science, 2018, 525, 39-47.	5.0	58

ARTICLE IF CITATIONS Experimental and theoretical investigations on $Se(\langle scp \rangle iv \langle scp \rangle)$ and $Se(\langle scp \rangle vi \langle scp \rangle)$ adsorption to 4830 2.2 79 UiO-66-based metal–organic frameworks. Environmental Science: Nano, 2018, 5, 1441-1453. Computational evaluation of the impact of metal substitution on the 14CH4 storage in PCN-14 4831 2.2 metal-organic frameworks. Catalysis Today, 2018, 312, 168-173. Magnetic Sponge Behavior via Electronic State Modulations. Journal of the American Chemical 4832 6.6 42 Society, 2018, 140, 5644-5652. On flexible force fields for metal–organic frameworks: Recent developments and future prospects. 4833 49 Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1363. Functional group effect of isoreticular metal $\hat{a} \in \sigma$ organic frameworks on heavy metal ion adsorption. 4834 1.4 62 New Journal of Chemistry, 2018, 42, 8864-8873. Hierarchically porous carbon derived from metal-organic frameworks for separation of aromatic pollutants. Chemical Engineering Journal, 2018, 346, 388-396. 6.6 Computational Structure Prediction of (4,4)-Connected Copper Paddle-wheel-based MOFs: Influence of Ligand Functionalization on the Topological Preference. Crystal Growth and Design, 2018, 18, 4836 1.4 16 2699-2706. Bottom-Up Fabrication of Ultrathin 2D Zr Metal–Organic Framework Nanosheets through a Facile 3.2 Continuous Microdroplet Flow Reaction. Chemistry of Materials, 2018, 30, 3048-3059. Kitchen grinder: a tool for the synthesis of metal–organic frameworks towards size selective dye 4838 1.3 47 adsorption. CrystEngComm, 2018, 20, 2486-2490. Luminescent metal–organic frameworks as chemical sensors: common pitfalls and proposed best 129 practices. Inorganic Chemistry Frontiers, 2018, 5, 1493-1511. Integration of a metal–organic framework with zeolite: a highly sustainable composite catalyst for 4840 19 2.5 the synthesis of Î³-valerolactone and coumarins. Sustainable Energy and Fuels, 2018, 2, 1287-1298. Construction of a magnetic chiral coordination polymer based on a semi-rigid carboxylic acid. 0.8 Journal of Coordination Chemistry, 2018, 71, 421-427. Monodisperse Metal–Organic Framework Nanospheres with Encapsulated Core–Shell Nanoparticles Pt/Au@Pd@{Co₂(oba)₄(3-bpdh)₂}4H₂O for the Highly 4842 4.0 42 Selective Conversion of CO₂ to CO. ACS Applied Materials & amp; Interfaces, 2018, 10, 15096-15103 Cu-BTC synthesis, characterization and preparation for adsorption studies. Materials Chemistry and Physics, 2018, 213, 343-351. 4843 Phosphinic Acid Based Linkers: Building Blocks in Metal–Organic Framework Chemistry. Angewandte 4844 7.2 53 Chemie - International Edition, 2018, 57, 5016-5019. A new luminescent metal–organic framework based on dicarboxyl-substituted tetraphenylethene for 4845 efficient detection of nitro-containing explosives and antibiotics in aqueous media. Journal of 133 Materials Chemistry C, 2018, 6, 2983-2988. Crystal conversion between metal-organic frameworks with different crystal topologies for 4846 0.7 3 efficient crystal design on two-dimensional substrates. Journal of Crystal Growth, 2018, 487, 1-7. Different Breathing Mechanisms in Flexible Pillared-Layered Metal–Organic Frameworks: Impact of the 4847 3.2 Metal Center. Chemistry of Materials, 2018, 30, 1667-1676.

#	Article	IF	CITATIONS
4848	Phosphinic Acid Based Linkers: Building Blocks in Metal–Organic Framework Chemistry. Angewandte Chemie, 2018, 130, 5110-5113.	1.6	14
4849	Zeolitic imidazolate framework-based biosensor for detection of HIV-1 DNA. Analytical Biochemistry, 2018, 546, 5-9.	1.1	53
4850	Amine-functionalized MIL-101(Cr) embedded with Co(<scp>ii</scp>) phthalocyanine as a durable catalyst for one-pot tandem oxidative A ³ coupling reactions of alcohols. New Journal of Chemistry, 2018, 42, 4167-4174.	1.4	32
4851	Cycloaddition of CO 2 with epoxides by using an amino-acid-based Cu(II)–tryptophan MOF catalyst. Chinese Journal of Catalysis, 2018, 39, 63-70.	6.9	45
4852	Preparation and evaluation of open-tubular capillary columns modified with metal-organic framework incorporated polymeric porous layer for liquid chromatography. Talanta, 2018, 184, 29-34.	2.9	19
4853	Multifunctional Hollow–Shell Microspheres Derived from Cross-Linking of MnO ₂ Nanoneedles by Zirconium-Based Coordination Polymer: Enzyme Mimicking, Micromotors, and Protein Immobilization. Chemistry of Materials, 2018, 30, 1625-1634.	3.2	40
4854	Metal–Organic Frameworks as Platform Materials for Solar Fuels Catalysis. ACS Energy Letters, 2018, 3, 598-611.	8.8	130
4855	Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nature Materials, 2018, 17, 283-289.	13.3	449
4856	Template-free and room temperature synthesis of hierarchical porous zeolitic imidazolate framework nanoparticles and their dye and CO ₂ sorption. Green Chemistry, 2018, 20, 1074-1084.	4.6	129
4857	Metal–organic framework technologies for water remediation: towards a sustainable ecosystem. Journal of Materials Chemistry A, 2018, 6, 4912-4947.	5.2	369
4858	A new 3D POMOF with two channels consisting of Wells–Dawson arsenotungstate and {Cl ₄ Cu ₁₀ (pz) ₁₁ } complexes: synthesis, crystal structure, and properties. New Journal of Chemistry, 2018, 42, 4596-4602.	1.4	12
4859	Dual Ligand Strategy for Constructing a Series of d ¹⁰ Coordination Polymers: Syntheses, Structures, Photoluminescence, and Sensing Properties. Crystal Growth and Design, 2018, 18, 1882-1890.	1.4	33
4860	Photon Up-Conversion via Epitaxial Surface-Supported Metal–Organic Framework Thin Films with Enhanced Photocurrent. ACS Applied Energy Materials, 2018, 1, 249-253.	2.5	36
4861	Facile Synthesis of Zeolitic Imidazolate Framework-8 (ZIF-8) Particles Immobilized on Aramid Microfibrils for Wastewater Treatment. Chemistry Letters, 2018, 47, 620-623.	0.7	8
4862	Morphogenesis of Metal–Organic Mesocrystals Mediated by Double Hydrophilic Block Copolymers. Journal of the American Chemical Society, 2018, 140, 2947-2956.	6.6	69
4863	Aqueousâ€Phase Synthesis of Mesoporous Zrâ€Based MOFs Templated by Amphoteric Surfactants. Angewandte Chemie - International Edition, 2018, 57, 3439-3443.	7.2	78
4864	Highly Selective Carbon Dioxide Capture and Cooperative Catalysis of a Waterâ€Stable Acylamideâ€Functionalized Metal–Organic Framework. European Journal of Inorganic Chemistry, 2018, 2018, 1309-1314.	1.0	30
4865	Thermal Transport in Interpenetrated Metal–Organic Frameworks. Chemistry of Materials, 2018, 30, 2281-2286.	3.2	40

#	Article	IF	CITATIONS
4866	Conjugated Microporous Polymers with Extended π-Structures for Organic Vapor Adsorption. Macromolecules, 2018, 51, 947-953.	2.2	80
4867	New functionalized IRMOF-10 with strong affinity for methanol: A simulation study. Applied Surface Science, 2018, 440, 351-358.	3.1	20
4868	Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 2363-2372.	6.6	310
4869	Non-noble trimetallic Cu-Ni-Co nanoparticles supported on metal-organic frameworks as highly efficient catalysts for hydrolysis of ammonia borane. Journal of Alloys and Compounds, 2018, 741, 501-508.	2.8	55
4870	Density Functional Theory-Based Adsorption Isotherms for Pure and Flue Gas Mixtures on Mg-MOF-74. Application in CO ₂ Capture Swing Adsorption Processes. Journal of Physical Chemistry C, 2018, 122, 3945-3957.	1.5	38
4871	Early stage structural development of prototypical zeolitic imidazolate framework (ZIF) in solution. Nanoscale, 2018, 10, 4291-4300.	2.8	56
4872	Optical isotherms as a fundamental characterization method for gas sensing with luminescent MOFs by comparison of open and dense frameworks. Journal of Materials Chemistry C, 2018, 6, 2588-2595.	2.7	16
4873	Effect of Defects on the Mechanical Deformation Mechanisms of Metal–Organic Framework-5: A Molecular Dynamics Investigation. Journal of Physical Chemistry C, 2018, 122, 4300-4306.	1.5	13
4874	MOFwich: Sandwiched Metal–Organic Framework-Containing Mixed Matrix Composites for Chemical Warfare Agent Removal. ACS Applied Materials & Interfaces, 2018, 10, 6820-6824.	4.0	34
4875	Design and synthesis of porous polymeric materials and their applications in gas capture and storage: a review. Journal of Polymer Research, 2018, 25, 1.	1.2	84
4876	Stable Metal–Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2018, 30, e1704303.	11.1	1,740
4877	Efficient Solventâ€Free Carbon Dioxide Fixation Reactions with Epoxides Under Mild Conditions by Mixedâ€Ligand Zinc(II) Metal–Organic Frameworks. ChemCatChem, 2018, 10, 2401-2408.	1.8	60
4878	Coordination Polymers Containing Metal Chelate Units. Springer Series in Materials Science, 2018, , 633-759.	0.4	2
4879	Few-layer graphitic shells networked by low temperature pyrolysis of zeolitic imidazolate frameworks. Materials Chemistry Frontiers, 2018, 2, 520-529.	3.2	9
4880	POM & MOFâ€based Electrocatalysts for Energyâ€related Reactions. ChemCatChem, 2018, 10, 1703-1730.	1.8	107
4881	Ordered Entanglement in Actinide-Organic Coordination Polymers. Bulletin of the Chemical Society of Japan, 2018, 91, 554-562.	2.0	38
4882	Modeling of Diffusion in MOFs. , 2018, , 63-97.		2
4883	Flexibility in Metal–Organic Frameworks: A fundamental understanding. Coordination Chemistry Reviews, 2018, 358, 125-152.	9.5	175

		CITATION RE	PORT	
#	Article		IF	CITATIONS
4884	2D and 3D lanthanide metal–organic frameworks constructed from three benzenedia ligands: synthesis, structure and luminescent properties. CrystEngComm, 2018, 20, 61	carboxylate 5-623.	1.3	32
4885	Incorporating cuprous-halide clusters and lanthanide clusters to construct Heterometa organic frameworks with luminescence and gas adsorption properties. CrystEngComm 738-745.	llic cluster , 2018, 20,	1.3	20
4886	A novel metal-organic framework as a heterogeneous catalysis for the solvent-free con CO2 and epoxides into cyclic carbonate. Inorganic Chemistry Communication, 2018, 8	version of 8, 56-59.	1.8	13
4887	Architecture of Co-layered double hydroxide nanocages/graphene composite electrode electrochemical performance for supercapacitor. Journal of Energy Chemistry, 2018, 27	with high 7, 507-512.	7.1	35
4888	Box-like gel capsules from heterostructures based on a core–shell MOF as a template crosslinking. Chemical Communications, 2018, 54, 1437-1440.	of crystal	2.2	36
4889	Selectivity Behavior of a Robust Porous Organic Salt Based on the Pamoate Ion. Crysta Design, 2018, 18, 944-953.	l Growth and	1.4	12
4890	Superprotonic Phase Change to a Robust Phosphonate Metal–Organic Framework. C Materials, 2018, 30, 314-318.	Chemistry of	3.2	55
4891	Reversible three equal-step spin crossover in an iron(<scp>ii</scp>) Hofmann-type met framework. Dalton Transactions, 2018, 47, 1407-1411.	al–organic	1.6	39
4892	Ordered macro-microporous metal-organic framework single crystals. Science, 2018, 3	59, 206-210.	6.0	836
4893	Towards high-efficiency sorptive capture of radionuclides in solution and gas. Progress Science, 2018, 94, 1-67.	in Materials	16.0	103
4894	Engineered Transport in Microporous Materials and Membranes for Clean Energy Techr Advanced Materials, 2018, 30, 1704953.	10logies.	11.1	85
4895	Synthesis, functionalization, and applications of metal–organic frameworks in biome Transactions, 2018, 47, 2114-2133.	dicine. Dalton	1.6	195
4896	Two new luminescence cadmium coordination polymers constructed by 4,4′-di(4 <i>H</i> -1,2,4-triazol-4-yl)-1,1′-biphenyl and polycarboxylic acids: synthe Fe ³⁺ identifying and photo-degradable properties. RSC Advances, 2018, 8	ses, structures, 3, 557-566.	1.7	14
4898	Functionality proportion and corresponding stability study of multivariate metal-organi frameworks. Chinese Chemical Letters, 2018, 29, 837-841.	с	4.8	15
4899	Synthesis, Crystal Structure, and Properties of a 2D Cu(I) Coordination Polymer Based Linked by 1,3-Di-(1,2,4-Triazole-4-yl)Benzene. Journal of Cluster Science, 2018, 29, 313	on Cu3l3 Chains -317.	1.7	8
4900	Efficient Capture of Perrhenate and Pertechnetate by a Mesoporous Zr Metal–Organ Examination of Anion Binding Motifs. Chemistry of Materials, 2018, 30, 1277-1284.	ic Framework and	3.2	125
4901	Metal–Organic Frameworkâ€Derived ZnO/ZnS Heteronanostructures for Efficient Vis Photocatalytic Hydrogen Production. Advanced Science, 2018, 5, 1700590.	sibleâ€Lightâ€Driven	5.6	169
4902	Hierarchical Porous Zrâ€Based MOFs Synthesized by a Facile Monocarboxylic Acid Etch Chemistry - A European Journal, 2018, 24, 2962-2970.	ing Strategy.	1.7	91

#	Article	IF	CITATIONS
4903	Neue Funktionalitäen über Hohlräme. Nachrichten Aus Der Chemie, 2018, 66, 9-11.	0.0	0
4904	Crystal Growth of ZIF-8, ZIF-67, and Their Mixed-Metal Derivatives. Journal of the American Chemical Society, 2018, 140, 1812-1823.	6.6	496
4905	A metal–organic framework based on a custom-designed diisophthalate ligand exhibiting excellent hydrostability and highly selective adsorption of C ₂ H ₂ and CO ₂ over CH ₄ . Dalton Transactions, 2018, 47, 7213-7221.	1.6	26
4906	TopoFF: MOF structure prediction using specifically optimized blueprints. Faraday Discussions, 2018, 211, 79-101.	1.6	24
4907	Slow Released Delivery of Alendronate Using β-Cyclodextrine Modified Fe–MOF Encapsulated Porous Hydroxyapatite. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 1991-2000.	1.9	19
4908	Tuning the hydrogen adsorption properties of Zn–based metal–organic frameworks: Combined DFT and GCMC simulations. Journal of Solid State Chemistry, 2018, 266, 31-36.	1.4	11
4909	CNFs@carbonaceous Co/CoO composite derived from CNFs penetrated through ZIF-67 for high-efficient electromagnetic wave absorption material. Journal of Alloys and Compounds, 2018, 752, 115-122.	2.8	72
4910	lsotherms and thermodynamics of CO2 adsorption on a novel carbon-magnetite composite sorbent. Chemical Engineering Research and Design, 2018, 134, 540-552.	2.7	131
4911	Dye confined in metal-organic framework for two-photon fluorescent temperature sensing. Microporous and Mesoporous Materials, 2018, 268, 202-206.	2.2	20
4912	Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nature Communications, 2018, 9, 1745.	5.8	251
4913	Metal coordination and metal activation abilities of commonly unreactive chloromethanes toward metal–organic frameworks. Chemical Communications, 2018, 54, 6458-6471.	2.2	42
4914	Time-Resolved In Situ Liquid-Phase Atomic Force Microscopy and Infrared Nanospectroscopy during the Formation of Metal–Organic Framework Thin Films. Journal of Physical Chemistry Letters, 2018, 9, 1838-1844.	2.1	26
4915	Sensitive detection of melamine by an electrochemiluminescence sensor based on tris(bipyridine)ruthenium(II)-functionalized metal-organic frameworks. Sensors and Actuators B: Chemical, 2018, 265, 378-386.	4.0	60
4916	GO-guided direct growth of highly oriented metal–organic framework nanosheet membranes for H ₂ /CO ₂ separation. Chemical Science, 2018, 9, 4132-4141.	3.7	116
4917	Room Temperature Synthesis of an 8-Connected Zr-Based Metal–Organic Framework for Top-Down Nanoparticle Encapsulation. Chemistry of Materials, 2018, 30, 2193-2197.	3.2	80
4918	Green Approach To Synthesize Crystalline Nanoscale Zn ^{II} -Coordination Polymers: Cell Growth Inhibition and Immunofluorescence Study. Inorganic Chemistry, 2018, 57, 4050-4060.	1.9	107
4919	Stable Metal–Organic Frameworks with Group 4 Metals: Current Status and Trends. ACS Central Science, 2018, 4, 440-450.	5.3	382
4920	Postsynthetic Linker Exchange in Metal-Organic Frameworks. Series on Chemistry, Energy and the Environment, 2018, , 143-182.	0.3	2

#	Article	IF	CITATIONS
4921	Methane Storage in Metal-Organic Frameworks: Insights into the Storage Performance and the Intrinsic Property Relationships for Enhanced Adsorbed Natural Gas Storage. Series on Chemistry, Energy and the Environment, 2018, , 207-246.	0.3	1
4922	Metal-Organic Frameworks: An Advanced Class of Anion-Exchange Materials. Series on Chemistry, Energy and the Environment, 2018, , 325-375.	0.3	2
4924	Molecular Modelling of the H ₂ â€Adsorptive Properties of Tetrazolateâ€Based Metalâ^'Organic Frameworks: From the Cluster Approach to Periodic Simulations. ChemPhysChem, 2018, 19, 1349-1357.	1.0	6
4925	Preparation of a pure ZIF-67 membrane by self-conversion of cobalt carbonate hydroxide nanowires for H ₂ separation. CrystEngComm, 2018, 20, 2440-2448.	1.3	26
4926	Synthesis, Characterization, and Properties of a 1D Zinc(II) Complex from Substituted Imidazole Dicarboxylate. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2018, 44, 207-213.	0.3	0
4927	Zeolitic Imidazolate Framework-67: A promising candidate for recovery of uranium (VI) from seawater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 547, 73-80.	2.3	83
4928	The development of MOFs-based nanomaterials in heterogeneous organocatalysis. Science Bulletin, 2018, 63, 502-524.	4.3	61
4929	Solvo-thermal synthesis of a unique alkaline earth-transition Ba-Cd micro-porous coordination framework as hetero-metallic luminescent sensor for Cu2+ and real-time detection of benzaldehyde. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 199, 110-116.	2.0	8
4930	NMR Spectroscopy Reveals Adsorbate Binding Sites in the Metal–Organic Framework UiO-66(Zr). Journal of Physical Chemistry C, 2018, 122, 8295-8305.	1.5	33
4931	Effects of -NO2 and -NH2 functional groups in mixed-linker Zr-based MOFs on gas adsorption of CO2 and CH4. Progress in Natural Science: Materials International, 2018, 28, 160-167.	1.8	72
4932	Impact of partial interpenetration in a hybrid ultramicroporous material on C ₂ H ₂ /C ₂ H ₄ separation performance. Chemical Communications, 2018, 54, 3488-3491.	2.2	38
4933	Formation of CO ₂ Hydrates within Single-Walled Carbon Nanotubes at Ambient Pressure: CO ₂ Capture and Selective Separation of a CO ₂ /H ₂ Mixture in Water. Journal of Physical Chemistry C, 2018, 122, 7951-7958.	1.5	21
4934	New strategies based on microfluidics for the synthesis of metal–organic frameworks and their membranes. Journal of Materials Chemistry A, 2018, 6, 5485-5506.	5.2	56
4935	Recent applications of metal–organic frameworks in sample pretreatment. Journal of Separation Science, 2018, 41, 180-194.	1.3	89
4936	The adsorptive properties of UiO-66 towards organic dyes: A record adsorption capacity for the anionic dye Alizarin Red S Chinese Journal of Chemical Engineering, 2018, 26, 731-739.	1.7	74
4937	A comprehensive analysis of the BET area for nanoporous materials. AICHE Journal, 2018, 64, 286-293.	1.8	51
4938	Effects of zinc salts on the microstructure and performance of zeolitic-imidazolate framework ZIF-8 membranes for propylene/propane separation. Microporous and Mesoporous Materials, 2018, 259, 155-162.	2.2	53
4939	Overcoming double-step CO ₂ adsorption and minimizing water co-adsorption in bulky diamine-appended variants of Mg ₂ (dobpdc). Chemical Science, 2018, 9, 160-174.	3.7	88

#	Article	IF	CITATIONS
4940	Heterogeneous catalysts based on mesoporous metal–organic frameworks. Coordination Chemistry Reviews, 2018, 373, 199-232.	9.5	113
4941	Continuous synthesis for zirconium metal-organic frameworks with high quality and productivity via microdroplet flow reaction. Chinese Chemical Letters, 2018, 29, 849-853.	4.8	33
4942	Porous metal–organic frameworks for fuel storage. Coordination Chemistry Reviews, 2018, 373, 167-198.	9.5	211
4943	Design and Synthesis of Porous Coordination Polymers with Expanded Oneâ€Đimensional Channels and Strongly Lewisâ€Acidic Sites. ChemNanoMat, 2018, 4, 103-111.	1.5	11
4944	Emerging materials for sample preparation. Journal of Separation Science, 2018, 41, 262-287.	1.3	33
4945	Metal organic frameworks as catalysts in solvent-free or ionic liquid assisted conditions. Green Chemistry, 2018, 20, 86-107.	4.6	107
4946	Preparation of highly-hydrophobic novel N-coordinated UiO-66(Zr) with dopamine via fast mechano-chemical method for (CHO-/Cl-)-VOCs competitive adsorption in humid environment. Chemical Engineering Journal, 2018, 332, 608-618.	6.6	135
4947	P-type conductive polymer/zeolitic imidazolate framework-67 (ZIF-67) nanocomposite film: Synthesis, characterization, and electrochemical performance as efficient electrode materials in pseudocapacitors. Journal of Colloid and Interface Science, 2018, 509, 189-194.	5.0	68
4948	Structural diversity, single-crystal to single-crystal transformation and photocatalytic properties of Cu(II)-metal-organic frameworks based on 1,4-phenylenedipropionic acid. Inorganica Chimica Acta, 2018, 469, 11-19.	1.2	13
4949	Highly efficient oxidative cleavage of alkenes and cyanosilylation of aldehydes catalysed by magnetically recoverable MILâ€101. Applied Organometallic Chemistry, 2018, 32, e3957.	1.7	8
4950	Synthesis of graphene oxide/metal–organic frameworks hybrid materials for enhanced removal of Methylene blue in acidic and alkaline solutions. Journal of Chemical Technology and Biotechnology, 2018, 93, 698-709.	1.6	46
4951	Metal–Organic Frameworks assembled from tetraphosphonic ligands and lanthanides. Coordination Chemistry Reviews, 2018, 355, 133-149.	9.5	80
4952	Construction of heterostructured ZnIn2S4@NH2-MIL-125(Ti) nanocomposites for visible-light-driven H2 production. Applied Catalysis B: Environmental, 2018, 221, 433-442.	10.8	405
4953	Zinc/Nickelâ€Doped Hollow Core–Shell Co ₃ O ₄ Derived from a Metal–Organic Framework with High Capacity, Stability, and Rate Performance in Lithium/Sodiumâ€lon Batteries. Chemistry - A European Journal, 2018, 24, 1651-1656.	1.7	40
4954	Porous Ni@C derived from bimetallic Metal–Organic Frameworks and its application for improving LiBH4 dehydrogenation. Journal of Alloys and Compounds, 2018, 735, 1637-1647.	2.8	25
4955	Interactions of Alkali and Alkaline-Earth Metals in Water-Soluble Heterometallic Fe ^{III} /M (M = Na ⁺ , K ⁺ , Ca ²⁺)-Type Coordination Complex. Crystal Growth and Design, 2018, 18, 531-539.	1.4	6
4956	Recent advances in gas storage and separation using metal–organic frameworks. Materials Today, 2018, 21, 108-121.	8.3	1,167
4957	A mechanistic approach towards the photocatalytic organic transformations over functionalised metal organic frameworks: a review. Catalysis Science and Technology, 2018, 8, 679-696.	2.1	109

#	Article	IF	CITATIONS
4958	Features of supercritical CO2 in the delicate world of the nanopores. Journal of Supercritical Fluids, 2018, 134, 204-213.	1.6	14
4959	Rational construction of a stable Zn ₄ O-based MOF for highly efficient CO ₂ capture and conversion. Chemical Communications, 2018, 54, 456-459.	2.2	48
4960	A Macroporous Metal–Organic Framework with Enhanced Hydrophobicity for Efficient Oil Adsorption. Chemistry - A European Journal, 2018, 24, 3754-3759.	1.7	38
4961	Energy–Structure–Function Maps: Cartography for Materials Discovery. Advanced Materials, 2018, 30, e1704944.	11.1	44
4962	Magnetic responsive Fe3O4-ZIF-8 core-shell composites for efficient removal of As(III) from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539, 59-68.	2.3	146
4963	Stable Zn ^I â€Containing MOFs with Large [Zn ₇₀] Nanocages from Assembly of Zn ^{II} lons and Aromatic [Zn ^I ₈] Clusters. Chemistry - A European Journal, 2018, 24, 3683-3688.	1.7	19
4964	Text Mining Metal–Organic Framework Papers. Journal of Chemical Information and Modeling, 2018, 58, 244-251.	2.5	43
4965	Oriented UiO-66 thin films through solution shearing. CrystEngComm, 2018, 20, 294-300.	1.3	21
4966	MOF/graphene oxide composite as an efficient adsorbent for the removal of organic dyes from aqueous solution. Environmental Science and Pollution Research, 2018, 25, 5521-5528.	2.7	73
4967	Magnetic solid-phase extraction using MIL-101(Cr)-based composite combined with dispersive liquid-liquid microextraction based on solidification of a floating organic droplet for the determination of pyrethroids in environmental water and tea samples. Microchemical Journal, 2018, 137, 449-455.	2.3	78
4968	Newly MOF-Graphene Hybrid Nanoadsorbent for Removal of Ni(II) from Aqueous Phase. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 829-836.	1.9	22
4969	Two new Cd(II) coordination polymer based on Biphenyl-3, 3′, 5, 5′-tetracarboxylic acid. Inorganic Chemistry Communication, 2018, 87, 36-39.	1.8	15
4970	A pair of polymorphous metal–organic frameworks based on an angular diisophthalate linker: synthesis, characterization and gas adsorption properties. Dalton Transactions, 2018, 47, 716-725.	1.6	23
4971	Synthesis, Structure, and Magnetic Properties of a Copper(II) Metalâ€Organic Framework with Biphenylâ€2,2′,4,4′â€ŧetracarboxylic Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 109-113.	0.6	1
4972	Mesoporous Metal–Organic Frameworks with Exceptionally High Working Capacities for Adsorption Heat Transformation. Advanced Materials, 2018, 30, 1704350.	11.1	43
4973	Defect engineering in metal–organic frameworks: a new strategy to develop applicable actinide sorbents. Chemical Communications, 2018, 54, 370-373.	2.2	167
4974	Preparation of Metal–Organic Frameworks UiO-66 for Adsorptive Removal of Methotrexate from Aqueous Solution. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 177-186.	1.9	129
4975	Complete dehydrogenation of hydrazine borane and hydrazine catalyzed by MIL-101 supported NiFePd nanoparticles. Journal of Alloys and Compounds, 2018, 732, 363-371.	2.8	56

#	Article	IF	CITATIONS
4976	The growth of high density network of MOF nano-crystals across macroporous metal substrates – Solvothermal synthesis versus rapid thermal deposition. Applied Surface Science, 2018, 427, 401-408.	3.1	20
4977	Advances in Porous Adsorbents for CO2 Capture and Storage. , 2018, , .		7
4978	From 1D copper-based metal-organic coordination polymer to 1D multi-walled carbon nanotube: fabrication, characterization and property. Inorganic and Nano-Metal Chemistry, 2018, 48, 607-614.	0.9	1
4979	Regular Figures, Minimal Transitivity, and Reticular Chemistry. Israel Journal of Chemistry, 2018, 58, 962-970.	1.0	9
4980	Mesoporous Metal–Organic Frameworks: Synthetic Strategies and Emerging Applications. Small, 2018, 14, e1801454.	5.2	133
4982	Renaissance of the Methane Adsorbents. Israel Journal of Chemistry, 2018, 58, 985-994.	1.0	7
4983	Crystal Structures and Luminescence Properties of Two One-Dimensional Zinc Coordination Polymers Derived from a bis(Triazole) Ligand. Journal of Structural Chemistry, 2018, 59, 1456-1461.	0.3	10
4984	Metal–Organic Frameworks and Covalent Organic Frameworks as Platforms for Photodynamic Therapy. Comments on Inorganic Chemistry, 2018, 38, 238-293.	3.0	24
4985	Engineering a MOF–magnetic graphene oxide nanocomposite for enantioselective capture. Analytical Methods, 2018, 10, 5811-5816.	1.3	20
4986	A predictive modeling study of the impact of chemical doping on the strength of a Ag/ZnO interface. Journal of Applied Physics, 2018, 124, .	1.1	3
4987	The efficiency and mechanism of dibutyl phthalate removal by copper-based metal organic frameworks coupled with persulfate. RSC Advances, 2018, 8, 39352-39361.	1.7	30
4988	Magnetostructural relationships in polymorphic ethylmalonate-containing copper(<scp>ii</scp>) coordination polymers. CrystEngComm, 2018, 20, 7464-7472.	1.3	3
4989	Electric field induced rotation of halogenated organic linkers in isoreticular metal–organic frameworks for nanofluidic applications. Molecular Systems Design and Engineering, 2018, 3, 951-958.	1.7	16
4990	Influence of Functional Groups and Modification Sites of Metal-Organic Frameworks on CO2/CH4 Separation: A Monte Carlo Simulation Study. Chinese Journal of Chemical Physics, 2018, 31, 52-60.	0.6	3
4992	Reticular Chemistry of Multifunctional Metalâ€Organic Framework Materials. Israel Journal of Chemistry, 2018, 58, 949-961.	1.0	24
4993	Natural Gas Composition. , 2018, , 553-590.		0
4994	Heterometallic Hexanuclear [Ln ₄ Cr ₂] Cluster-Based Three-Dimensional Sulfate Frameworks as a Magnetic Refrigerant and Single Molecular Magnet. Crystal Growth and Design, 2018, 18, 7335-7342.	1.4	19
4995	Continuous negative-to-positive tuning of thermal expansion achieved by controlled gas sorption in porous coordination frameworks. Nature Communications, 2018, 9, 4873.	5.8	33

#	Article	IF	CITATIONS
4996	A Comparative Study of Interdigitated Electrode and Quartz Crystal Microbalance Transduction Techniques for Metal–Organic Framework-Based Acetone Sensors. Sensors, 2018, 18, 3898.	2.1	41
4997	Locationâ€Controlled Synthesis of Hydrophilic Magnetic Metalâ€organic Frameworks for Highly Efficient Recognition of Phthalates in Beverages. ChemistrySelect, 2018, 3, 12440-12445.	0.7	3
4998	Nitrato, Pseudohaloâ€Linked Zn(II)/Cd(II) Schiffâ€Base Complexes with 1,3â€Diimine Spacer Group: Syntheses, Crystal Structures, DFT, TDâ€DFT and Fluorescence Studies. ChemistrySelect, 2018, 3, 12371-12382.	0.7	14
4999	Efficient Conversion of Xylose into Furfural Using Sulfonic Acid-Functionalized Metal–Organic Frameworks in a Biphasic System. Industrial & Engineering Chemistry Research, 2018, 57, 16628-16634.	1.8	35
5000	Interfacial Engineering in Metal–Organic Framework-Based Mixed Matrix Membranes Using Covalently Grafted Polyimide Brushes. Journal of the American Chemical Society, 2018, 140, 17203-17210.	6.6	204
5001	High-Flux Oil/Water Separation with Interfacial Capillary Effect in Switchable Superwetting Cu(OH) ₂ @ZIF-8 Nanowire Membranes. ACS Applied Materials & Interfaces, 2018, 10, 40265-40273.	4.0	89
5002	Metal–Organic Framework Membranes: From Fabrication to Gas Separation. Crystals, 2018, 8, 412.	1.0	51
5003	Influence of Metal Substitution on the Pressure-Induced Phase Change in Flexible Zeolitic Imidazolate Frameworks. Journal of the American Chemical Society, 2018, 140, 15924-15933.	6.6	62
5004	Computational Exploration of IRMOFs for Xenon Separation from Air. ACS Omega, 2018, 3, 18535-18541.	1.6	9
5005	Nanospace within metal–organic frameworks for gas storage and separation. Materials Today Nano, 2018, 2, 21-49.	2.3	77
5006	Proton Conductivity of Composite Polyelectrolyte Membranes with Metalâ€Organic Frameworks for Fuel Cell Applications. Advanced Materials Interfaces, 2019, 6, 1801146.	1.9	130
5007	Efficient Adsorption of Pb(II) from Aqueous Solutions by Metal Organic Framework (Zn-BDC) Coated Magnetic Montmorillonite. Polymers, 2018, 10, 1383.	2.0	32
5008	Concomitant reduction of dimethylformamide and oxidation of vanadyl sulfate to <i>N,N′</i> -dimethylammonium decavanadate cluster and DNA, BSA binding, and cytotoxicity (HeLa) studies. Journal of Coordination Chemistry, 2018, 71, 3980-3993.	0.8	3
5009	Effect of Lithium Doping on the Structures and CO ₂ Adsorption Properties of Metalâ€Organic Frameworks HKUSTâ€1. ChemistrySelect, 2018, 3, 12865-12870.	0.7	34
5010	polyMOF Formation from Kinked Polymer Ligands via ortho ‣ubstitution. Israel Journal of Chemistry, 2018, 58, 1123-1126.	1.0	12
5011	CO2 capture and separation over N2 and CH4 in nanoporous MFM-300(In, Al, Ga, and In-3N): Insight from GCMC simulations. Journal of CO2 Utilization, 2018, 28, 145-151.	3.3	16
5012	Facile Mechanosynthesis of the Archetypal Zn-Based Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 13437-13442.	1.9	36
5013	Two-Dimensional Metal–Organic Layers on Carbon Nanotubes to Overcome Conductivity Constraint in Electrocatalysis. ACS Applied Materials & Interfaces, 2018, 10, 36290-36296.	4.0	51

#	Article	IF	Citations
5014	Metal-organic framework patterns and membranes with heterogeneous pores for flow-assisted switchable separations. Nature Communications, 2018, 9, 3968.	5.8	73
5015	Fabrication of Composite Beads Based on Calcium Alginate and Tetraethylenepentamine-Functionalized MIL-101 for Adsorption of Pb(II) from Aqueous Solutions. Polymers, 2018, 10, 750.	2.0	31
5016	Metal–Organic Framework (MOF)-Derived Effective Solid Catalysts for Valorization of Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, 2018, 6, 13628-13643.	3.2	267
5017	Propylene Enrichment via Kinetic Vacuum Pressure Swing Adsorption Using ZIF-8 Fiber Sorbents. ACS Applied Materials & Interfaces, 2018, 10, 36323-36331.	4.0	16
5018	Autoluminescent Metal–Organic Frameworks (MOFs): Self-Photoemission of a Highly Stable Thorium MOF. Journal of the American Chemical Society, 2018, 140, 14144-14149.	6.6	56
5019	Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Science Advances, 2018, 4, eaat9180.	4.7	533
5020	Bimetallic metal organic frameworks with precisely positioned metal centers for efficient H ₂ storage. Chemical Communications, 2018, 54, 12218-12221.	2.2	20
5021	Hierarchically porous UiO-66: facile synthesis, characterization and application. Chemical Communications, 2018, 54, 11817-11820.	2.2	47
5022	Rapid Synthesis of Hierarchical Porous Metal–Organic Frameworks and the Simulation of Growth. Crystal Growth and Design, 2018, 18, 6661-6669.	1.4	12
5023	Phosphonates Meet Metalâ^'Organic Frameworks: Towards CO 2 Adsorption. Israel Journal of Chemistry, 2018, 58, 1164-1170.	1.0	4
5024	Effect of silica removal and steam activation on extra-porous activated carbons from rice husks for methane storage. International Journal of Hydrogen Energy, 2018, 43, 22377-22384.	3.8	31
5025	Magnetism and Structure of a 3D Uncommon Pentanuclearcopper(II) Coordination Polymer. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2018, 44, 693-700.	0.3	Ο
5026	Activity of M ₂ (BDC) ₂ (DABCO) (M= Co, Ni, Cu and Zn) Metalâ€Organic Frameworks Prepared via Ballâ€Milling Solventâ€Free Method in Acylation of Alcohols, Amines and Aldehydes. ChemistrySelect, 2018, 3, 11223-11229.	0.7	10
5027	Polymeric Membrane Materials for CO2 Separations. , 2018, , 3-50.		6
5028	Postsynthetic Selective Ligand Cleavage by Solid–Gas Phase Ozonolysis Fuses Micropores into Mesopores in Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 15022-15030.	6.6	91
5029	High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework. Nature Materials, 2018, 17, 1027-1032.	13.3	341
5030	Unsaturated Mn(II)-Centered [Mn(BDC)] _{<i>n</i>} Metal–Organic Framework with Strong Water Binding Ability and Its Potential for Dehydration of an Ethanol/Water Mixture. Inorganic Chemistry, 2018, 57, 13075-13078.	1.9	6
5031	Enabling Homochirality and Hydrothermal Stability in Zn ₄ O-Based Porous Crystals. Journal of the American Chemical Society, 2018, 140, 13566-13569.	6.6	33

#	Article	IF	CITATIONS
5032	Applicable Strategy for Removing Liquid Fuel Nitrogenated Contaminants Using MIL-53-NH ₂ @Natural Fabric Composites. Industrial & Engineering Chemistry Research, 2018, 57, 15054-15065.	1.8	76
5033	Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity. Nature Energy, 2018, 3, 1059-1066.	19.8	214
5034	Systematic Tuning of the Luminescence Output of Multicomponent Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 15470-15476.	6.6	103
5035	Optimizing H ₂ , D ₂ , and C ₂ H ₂ Sorption Properties by Tuning the Pore Apertures in Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 13312-13317.	1.9	14
5036	Solvent- and pH-Dependent Formation of Four Zinc Porous Coordination Polymers: Framework Isomerism and Gas Separation. Crystal Growth and Design, 2018, 18, 7674-7682.	1.4	27
5037	Conceptual Advances from Werner Complexes to Metal–Organic Frameworks. ACS Central Science, 2018, 4, 1457-1464.	5.3	101
5038	ROMP for Metal–Organic Frameworks: An Efficient Technique toward Robust and High-Separation Performance Membranes. ACS Applied Materials & Interfaces, 2018, 10, 34640-34645.	4.0	42
5039	Higher Symmetry Multinuclear Clusters of Metal–Organic Frameworks for Highly Selective CO ₂ Capture. Journal of the American Chemical Society, 2018, 140, 17825-17829.	6.6	98
5040	Two-dimensional cyano-bridged coordination polymer of Mn(H ₂ 0) ₂ [Ni(CN) ₄]: structural analysis and proton conductivity measurements upon dehydration and rehydration. CrystEngComm, 2018, 20, 6713-6720.	1.3	26
5041	Post-synthetically modified metal–organic framework as a scaffold for selective bisulphite recognition in water. Polyhedron, 2018, 156, 1-5.	1.0	17
5042	Prussian Blue Analogue Mesoframes for Enhanced Aqueous Sodium-ion Storage. Crystals, 2018, 8, 23.	1.0	18
5043	Counteranion Modulated Crystal Growth and Function of One-Dimensional Homochiral Coordination Polymers: Morphology, Structures, and Magnetic Properties. Inorganic Chemistry, 2018, 57, 12143-12154.	1.9	17
5044	Electrosynthesis of Well-Defined Metal–Organic Framework Films and the Carbon Nanotube Network Derived from Them toward Electrocatalytic Applications. ACS Applied Materials & Interfaces, 2018, 10, 34494-34501.	4.0	42
5045	A semiconducting metal-chalcogenide–organic framework with square-planar tetra-coordinated sulfur. Chemical Communications, 2018, 54, 11272-11275.	2.2	17
5046	From fundamentals to applications: a toolbox for robust and multifunctional MOF materials. Chemical Society Reviews, 2018, 47, 8611-8638.	18.7	994
5047	All inorganic coordination polymers have been made possible with the <i>m</i> -carboranylphosphinate ligand. Dalton Transactions, 2018, 47, 14785-14798.	1.6	8
5048	Reticular control of interpenetration in a complex metal–organic framework. Materials Chemistry Frontiers, 2018, 2, 2063-2069.	3.2	15
5049	New synthetic strategies to prepare metal–organic frameworks. Inorganic Chemistry Frontiers, 2018, 5, 2693-2708.	3.0	235

#	Article	IF	CITATIONS
5050	Smoothing the single-crystal to single-crystal conversions of a two-dimensional metal–organic framework <i>via</i> the hetero-metal doping of the linear trimetallic secondary building unit. Dalton Transactions, 2018, 47, 13722-13729.	1.6	16
5051	Utilizing an effective framework to dye energy transfer in a carbazole-based metal–organic framework for high performance white light emission tuning. Inorganic Chemistry Frontiers, 2018, 5, 2868-2874.	3.0	38
5052	Modulation of Water Vapor Sorption by a Fourth-Generation Metal–Organic Material with a Rigid Framework and Self-Switching Pores. Journal of the American Chemical Society, 2018, 140, 12545-12552.	6.6	42
5053	Polymer in MOF Nanospace: from Controlled Chain Assembly to New Functional Materials. Israel Journal of Chemistry, 2018, 58, 995-1009.	1.0	18
5054	Self-assembled MOF membranes with underwater superoleophobicity for oil/water separation. Journal of Membrane Science, 2018, 566, 268-277.	4.1	143
5055	Computational screening of hydrophobic metal–organic frameworks for the separation of H ₂ S and CO ₂ from natural gas. Journal of Materials Chemistry A, 2018, 6, 18898-18905.	5.2	84
5056	Pore-filling contamination in metal–organic frameworks. Physical Chemistry Chemical Physics, 2018, 20, 23616-23624.	1.3	4
5057	Hierarchically porous metal–organic frameworks with single-crystal structures and their enhanced catalytic properties. CrystEngComm, 2018, 20, 5754-5759.	1.3	27
5058	Molecular Modeling of Carbon Dioxide Adsorption in Metal-Organic Frameworks. , 2018, , 99-149.		6
5059	Computation-Ready, Experimental Covalent Organic Framework for Methane Delivery: Screening and Material Design. Journal of Physical Chemistry C, 2018, 122, 13009-13016.	1.5	44
5060	(Fe)MIL-100-Met@alginate: a hybrid polymer–MOF for enhancement of metformin's bioavailability and pH-controlled release. New Journal of Chemistry, 2018, 42, 11137-11146.	1.4	24
5061	Lipophilic Polyelectrolyte Gels and Crystal Crosslinking, New Methods for Supramolecular Control of Swelling and Collapsing of Polymer Gels. Bulletin of the Chemical Society of Japan, 2018, 91, 1282-1292.	2.0	17
5062	The use of metal–organic frameworks for CO purification. Journal of Materials Chemistry A, 2018, 6, 10570-10594.	5.2	60
5063	A 2D Conductive Organic–Inorganic Hybrid with Extraordinary Volumetric Capacitance at Minimal Swelling. Advanced Materials, 2018, 30, e1800400.	11.1	34
5064	Color-Tunable and High-Efficiency Dye-Encapsulated Metal–Organic Framework Composites Used for Smart White-Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 18910-18917.	4.0	88
5065	Cost effective synthesis of a copper-1 <i>H</i> -imidazole@activated carbon metal organic framework as an electrode material for supercapacitor applications. New Journal of Chemistry, 2018, 42, 10300-10308.	1.4	37
5066	Nanosheets of Nonlayered Aluminum Metal–Organic Frameworks through a Surfactantâ€Assisted Method. Advanced Materials, 2018, 30, e1707234.	11.1	117
5067	Thiol-Functionalized Zr-Based Metal–Organic Framework for Capture of Hg(II) through a Proton Exchange Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 8494-8502.	3.2	140

#	Article	IF	CITATIONS
5068	Adsorption behavior and structure transformation of mesoporous metal–organic frameworks towards arsenates and organic pollutants in aqueous solution. Materials Chemistry Frontiers, 2018, 2, 1389-1396.	3.2	32
5069	CO2 adsorption performance of functionalized metal-organic frameworks of varying topologies by molecular simulations. Chemical Engineering Science, 2018, 189, 65-74.	1.9	22
5070	A gate-opening controlled metal-organic framework for selective solid-phase microextraction of aldehydes from exhaled breath of lung cancer patients. Mikrochimica Acta, 2018, 185, 307.	2.5	32
5071	Metal-organic solids derived from arylphosphonic acids. Coordination Chemistry Reviews, 2018, 369, 105-122.	9.5	86
5072	Covalent and Ionic Capacity of MOFs To Sorb Small Gas Molecules. Inorganic Chemistry, 2018, 57, 6981-6990.	1.9	55
5073	Efficient solar light-driven H ₂ production: post-synthetic encapsulation of a Cu ₂ O co-catalyst in a metal–organic framework (MOF) for boosting the effective charge carrier separation. Catalysis Science and Technology, 2018, 8, 3286-3294.	2.1	52
5074	A ligand strategic approach with Cu-MOF for enhanced solar light photocatalysis. New Journal of Chemistry, 2018, 42, 11124-11130.	1.4	16
5075	Gas adsorption in an isostructural series of pillared coordination cages. Chemical Communications, 2018, 54, 6392-6395.	2.2	19
5076	A 3D Cu(I)-organic framework constructed from discrete Cu 2 I 2 moiety and infinite [Cul] n chain. Inorganic Chemistry Communication, 2018, 92, 106-109.	1.8	1
5077	Impact of Pore–Walls Ligand Assembly on the Biodegradation of Mesoporous Organosilica Nanoparticles for Controlled Drug Delivery. ACS Omega, 2018, 3, 5195-5201.	1.6	14
5078	Understanding the characteristic of methane hydrate equilibrium in materials and its potential application. Chemical Engineering Journal, 2018, 349, 775-781.	6.6	66
5079	Charge―and Sizeâ€Complementary Multimetalâ€Induced Morphology and Phase Control in Zeoliteâ€Type Metal Chalcogenides. Chemistry - A European Journal, 2018, 24, 10812-10819.	1.7	10
5080	Hierarchically Porous Metal–Organic Frameworks: Green Synthesis and High Space-Time Yield. Industrial & Engineering Chemistry Research, 2018, 57, 9136-9143.	1.8	24
5081	Chemically-Controlled Stacking of Inorganic Subnets in Coordination Networks: Metal–Organic Magnetic Multilayers. Inorganic Chemistry, 2018, 57, 8236-8240.	1.9	5
5082	Realizing the Potential of Acetylenedicarboxylate by Functionalization to Halofumarate in Zr ^N Metal–Organic Frameworks. Chemistry - A European Journal, 2018, 24, 14048-14053.	1.7	24
5083	Nanoscale Metal–Organic Frameworks for Therapeutic, Imaging, and Sensing Applications. Advanced Materials, 2018, 30, e1707634.	11.1	504
5084	A GO-CS@MOF [Zn(BDC)(DMF)] material for the adsorption of chromium(VI) ions from aqueous solution. Composites Part B: Engineering, 2018, 152, 116-125.	5.9	118
5085	Thermolysis of Polymeric Metal Chelates. Springer Series on Polymer and Composite Materials, 2018, , 247-350.	0.5	1

#	Article	IF	CITATIONS
5086	Recent progress in biological and chemical sensing by luminescent metal-organic frameworks. Sensors and Actuators B: Chemical, 2018, 273, 1346-1370.	4.0	85
5087	Tetraarylpyrrolo[3,2- <i>b</i>]pyrroles as versatile and responsive fluorescent linkers in metal–organic frameworks. Dalton Transactions, 2018, 47, 10080-10092.	1.6	22
5088	Coordination-polymer anchored single-site â€~Pd-NHC' catalyst for Suzuki-Miyaura coupling in water. Journal of Chemical Sciences, 2018, 130, 1.	0.7	7
5089	Eu3+ or Sm3+-Doped terbium-trimesic acid MOFs: Highly efficient energy transfer anhydrous luminophors. Optical Materials, 2018, 84, 123-129.	1.7	14
5090	Monte Carlo Simulations to Examine the Role of Pore Structure on Ambient Air Separation in Metal–Organic Frameworks. Industrial & Engineering Chemistry Research, 2018, 57, 9240-9253.	1.8	14
5091	CO 2 —Capture and Storage. , 2018, , 61-130.		3
5092	A facile approach for the synthesis of Z-scheme photocatalyst ZIF-8/g-C ₃ N ₄ with highly enhanced photocatalytic activity under simulated sunlight. New Journal of Chemistry, 2018, 42, 12180-12187.	1.4	66
5093	ZrMOF nanoparticles as quenchers to conjugate DNA aptamers for target-induced bioimaging and photodynamic therapy. Chemical Science, 2018, 9, 7505-7509.	3.7	110
5094	Copper-Based Electrodes/Catalysts for CO2 Electroreduction. , 2018, , 466-476.		1
5095	Zigzag Ligands for Transversal Design in Reticular Chemistry: Unveiling New Structural Opportunities for Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 10153-10157.	6.6	60
5096	Computational structure determination of novel metal–organic frameworks. Chemical Communications, 2018, 54, 10812-10815.	2.2	27
5096 5097	Computational structure determination of novel metal–organic frameworks. Chemical Communications, 2018, 54, 10812-10815. An unprecedented water stable acylamide-functionalized metal–organic framework for highly efficient CH ₄ /CO ₂ gas storage/separation and acid–base cooperative catalytic activity. Inorganic Chemistry Frontiers, 2018, 5, 2355-2363.	2.2 3.0	27 62
5096 5097 5098	Computational structure determination of novel metal–organic frameworks. Chemical Communications, 2018, 54, 10812-10815. An unprecedented water stable acylamide-functionalized metal–organic framework for highly efficient CH ₄ /CO ₂ gas storage/separation and acid–base cooperative catalytic activity. Inorganic Chemistry Frontiers, 2018, 5, 2355-2363. Drinking and Breathing: Solvent Coordinationâ€driven Plasticity of IRMOFâ€9. Israel Journal of Chemistry, 2018, 58, 1131-1137.	2.2 3.0 1.0	27 62 10
5096 5097 5098 5099	Computational structure determination of novel metal–organic frameworks. Chemical Communications, 2018, 54, 10812-10815.An unprecedented water stable acylamide-functionalized metal–organic framework for highly efficient CH ₄ /CO ₂ gas storage/separation and acid–base cooperative catalytic activity. Inorganic Chemistry Frontiers, 2018, 5, 2355-2363.Drinking and Breathing: Solvent Coordinationâ€driven Plasticity of IRMOFâ€9. Israel Journal of Chemistry, 2018, 58, 1131-1137.Efficient extraction of inorganic selenium from water by a Zr metal–organic framework: investigation of volumetric uptake capacity and binding motifs. CrystEngComm, 2018, 20, 6140-6145.	2.2 3.0 1.0 1.3	27 62 10 33
5096 5097 5098 5099 5100	Computational structure determination of novel metal–organic frameworks. Chemical Communications, 2018, 54, 10812-10815.An unprecedented water stable acylamide-functionalized metal–organic framework for highly efficient CH ₄ /CO ₂ gas storage/separation and acid–base cooperative catalytic activity. Inorganic Chemistry Frontiers, 2018, 5, 2355-2363.Drinking and Breathing: Solvent Coordinationâ€driven Plasticity of IRMOFâ€9. Israel Journal of Chemistry, 2018, 58, 1131-1137.Efficient extraction of inorganic selenium from water by a Zr metal–organic framework: investigation of volumetric uptake capacity and binding motifs. CrystEngComm, 2018, 20, 6140-6145.Squaramideâ€IRMOFâ€16 Analogue for Catalysis of Solventâ€Free, Epoxide Ringâ€Opening Tandem and Multicomponent Reactions. ChemCatChem, 2018, 10, 3995-3998.	2.2 3.0 1.0 1.3 1.8	27 62 10 33 13
5096 5097 5098 5099 5100	Computational structure determination of novel metal–organic frameworks. Chemical Communications, 2018, 54, 10812-10815.An unprecedented water stable acylamide-functionalized metal–organic framework for highly efficient CH ₄ /CO ₂ gas storage/separation and acid–base cooperative catalytic activity. Inorganic Chemistry Frontiers, 2018, 5, 2355-2363.Drinking and Breathing: Solvent Coordinationâ€driven Plasticity of IRMOFâ€9. Israel Journal of Chemistry, 2018, 58, 1131-1137.Efficient extraction of inorganic selenium from water by a Zr metal–organic framework: investigation of volumetric uptake capacity and binding motifs. CrystEngComm, 2018, 20, 6140-6145.Squaramideâ€IRMOFâ€16 Analogue for Catalysis of Solventâ€Free, Epoxide Ringâ€Opening Tandem and Multicomponent Reactions. ChemCatChem, 2018, 10, 3995-3998.In Silico Screening of Metal–Organic Frameworks for Adsorption-Driven Heat Pumps and Chillers. ACS Applied Materials & amp; Interfaces, 2018, 10, 27074-27087.	 2.2 3.0 1.0 1.3 1.8 4.0 	27 62 10 33 13
 5096 5097 5098 5099 5100 5101 5102 	Computational structure determination of novel metalâ€"organic frameworks. Chemical Communications, 2018, 54, 10812-10815.An unprecedented water stable acylamide-functionalized metalâ€" organic framework for highly efficient CH _{4efficient CH_{4Sub>2} gas storage/separation and acidâ€"base cooperative catalytic activity. Inorganic Chemistry Frontiers, 2018, 5, 2355-2363.Drinking and Breathing: Solvent Coordinationâ€driven Plasticity of IRMOFâ€9. Israel Journal of Chemistry, 2018, 58, 1131-1137.Efficient extraction of inorganic selenium from water by a Zr metalâ€"organic framework: investigation of volumetric uptake capacity and binding motifs. CrystEngComm, 2018, 20, 6140-6145.Squaramideâ€RMOFâ€16 Analogue for Catalysis of Solventâ€Free, Epoxide Ringâ€Opening Tandem and Multicomponent Reactions. ChemCatChem, 2018, 10, 3995-3998.In Silico Screening of Metalâ€"Organic Frameworks for Adsorption-Driven Heat Pumps and Chillers. AcS Applied Materials & amp; Interfaces, 2018, 10, 27074-27087.Fabrication of amine and imine-functionalized isoreticular pillared-layer metalâ€"organic frameworks for the highly selective detection of nitre-aromatics. New Journal of Chemistry, 2018, 42, 14772-14778.}	 2.2 3.0 1.0 1.3 1.8 4.0 1.4 	 27 62 10 33 13 32 19

	CITATION RI	PORT	
#	Article	IF	CITATIONS
5104	Control of crystal structure using temperature and time. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2018, 74, 354-361.	0.5	1
5105	Highly Efficient Separation of Glycoprotein by Dual-Functional Magnetic Metal–Organic Framework with Hydrophilicity and Boronic Acid Affinity. ACS Applied Materials & Interfaces, 2018, 10, 27612-27620.	4.0	61
5106	Fabrication of MOF Thin Films at Miscible Liquid–Liquid Interface by Spray Method. ACS Applied Materials & Interfaces, 2018, 10, 25960-25966.	4.0	64
5107	Two metal–organic frameworks based on pyridyl–tricarboxylate ligands as size-selective catalysts for solvent-free cyanosilylation reaction. CrystEngComm, 2018, 20, 6070-6076.	1.3	9
5108	2,2′,6,6′â€Tetraisopropylbenzidineâ€Based Sterically Encumbered Ditopic <i>C</i> ₂ â€Symm Ligand Systems and Supramolecular Building Blocks. ChemistrySelect, 2018, 3, 8082-8094.	etric 0.7	4
5109	Improvement in Crystallinity and Porosity of Poorly Crystalline Metal–Organic Frameworks (MOFs) through Their Induced Growth on a Well-Crystalline MOF Template. Inorganic Chemistry, 2018, 57, 9048-9054.	1.9	46
5110	Carbonization of covalent triazine-based frameworks <i>via</i> ionic liquid induction. Journal of Materials Chemistry A, 2018, 6, 15564-15568.	5.2	13
5111	The effect of solvent on one-dimensional cadmium coordination polymers. New Journal of Chemistry, 2018, 42, 15014-15021.	1.4	17
5112	Two new alkaline earth metal organic frameworks with the diamino derivative of biphenyl-4,4â€2-dicarboxylate as bridging ligand: Structures, fluorescence and quenching by gas phase aldehydes. Polyhedron, 2018, 153, 173-180.	1.0	8
5113	Solvent Dependent Disorder in M2(BzOip)2(H2O)·Solvate (M = Co or Zn). Crystals, 2018, 8, 6.	1.0	1
5114	Visible-light-driven photocatalytic degradation of pollutants over Cu-doped NH2-MIL-125(Ti). Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 524-533.	2.0	67
5115	Alkaline-earth metal based MOFs with second scale long-lasting phosphor behavior. CrystEngComm, 2018, 20, 4793-4803.	1.3	29
5116	Metal- and Multicarboxylate-Dependent Structural Diversity in Metal–Organic Frameworks with Acylamide-Based Ligand. Journal of Chemical Crystallography, 2018, 48, 125-130.	0.5	1
5117	Facilitated hydrogen release kinetics from amine borane functionalization on gate-opening metal-organic framework. Surface and Coatings Technology, 2018, 350, 12-19.	2.2	7
5118	A coronene-based semiconducting two-dimensional metal-organic framework with ferromagnetic behavior. Nature Communications, 2018, 9, 2637.	5.8	210
5119	One Dinuclear Copper(II) Polymer Based on N-(Pyridine-3-Sulfonyl Amino)-Acetate: Synthesis, Structure, and Magnetic Analysis. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2018, 44, 460-465.	0.3	1
5120	Nonporous Adaptive Crystals of Pillararenes. Accounts of Chemical Research, 2018, 51, 2064-2072.	7.6	364
5121	A Zn based anionic metal-organic framework for trace Hg2+ ion detection. Journal of Solid State Chemistry, 2018, 266, 70-73.	1.4	21

#	Article	IF	CITATIONS
5122	Solid-State NMR Studies of Small Molecule Adsorption in Metal-Organic Frameworks (MOFs). , 2018, , 635-649.		2
5123	Achieving Large Volumetric Gas Storage Capacity in Metal–Organic Frameworks by Kinetic Trapping: A Case Study of Xenon Loading in MFU-4. Journal of the American Chemical Society, 2018, 140, 10191-10197.	6.6	46
5124	A metal–organic framework nanomaterial as an ideal loading platform for ultrasensitive electrochemiluminescence immunoassays. New Journal of Chemistry, 2018, 42, 13558-13564.	1.4	12
5125	Nitroâ€Functionalized Bis(pyrazolate) Metal–Organic Frameworks as Carbon Dioxide Capture Materials under Ambient Conditions. Chemistry - A European Journal, 2018, 24, 13170-13180.	1.7	29
5126	Computational Screening of MOFs for Acetylene Separation. Frontiers in Chemistry, 2018, 6, 36.	1.8	22
5127	Nanoskalige anorganische Energiematerialien aus molekularen Vorstufen bei tiefer Temperatur. Angewandte Chemie, 2018, 130, 11298-11308.	1.6	15
5128	Metal-organic framework adsorbents and membranes for separation applications. Current Opinion in Chemical Engineering, 2018, 20, 122-131.	3.8	77
5129	Interior Decoration of Stable Metal–Organic Frameworks. Langmuir, 2018, 34, 13795-13807.	1.6	34
5130	One Trinuclear Copper(II) Polymer Based on Pyridine-2,4,6-Tricarboxylic Acid: Synthesis, Structure, and Magnetic Analysis. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2018, 44, 39-44.	0.3	4
5131	Nanoâ€Sized Inorganic Energyâ€Materials by the Lowâ€Temperature Molecular Precursor Approach. Angewandte Chemie - International Edition, 2018, 57, 11130-11139.	7.2	62
5132	Zr(IV)-Based Metal-Organic Framework with T-Shaped Ligand: Unique Structure, High Stability, Selective Detection, and Rapid Adsorption of Cr ₂ O ₇ ^{2–} in Water. ACS Applied Materials & Interfaces, 2018, 10, 16650-16659.	4.0	219
5133	Synthesis chemistry of metal-organic frameworks for CO 2 capture and conversion for sustainable energy future. Renewable and Sustainable Energy Reviews, 2018, 92, 570-607.	8.2	89
5134	Benzene/toluene/water vapor adsorption and selectivity of novel C-PDA adsorbents with high uptakes of benzene and toluene. Chemical Engineering Journal, 2018, 335, 970-978.	6.6	64
5135	The MOF ⁺ Technique: A Potential Multifunctional Platform. Chemistry - A European Journal, 2018, 24, 13701-13705.	1.7	9
5137	A sensitive aptasensor for the detection of β-amyloid oligomers based on metal–organic frameworks as electrochemical signal probes. Analytical Methods, 2018, 10, 4430-4437.	1.3	49
5138	CoZn-ZIF-derived ZnCo ₂ O ₄ -framework for the synthesis of alcohols from glycerol. Green Chemistry, 2018, 20, 4299-4307.	4.6	25
5139	Harnessing Filler Materials for Enhancing Biogas Separation Membranes. Chemical Reviews, 2018, 118, 8655-8769.	23.0	239
5140	CuPd Mixed-Metal HKUST-1 as a Catalyst for Aerobic Alcohol Oxidation. Journal of Physical Chemistry C, 2018, 122, 21433-21440.	1.5	40

#	Article	IF	CITATIONS
5141	Mesoporous Hexanuclear Copper Cluster-Based Metal–Organic Framework with Highly Selective Adsorption of Gas and Organic Dye Molecules. ACS Applied Materials & Interfaces, 2018, 10, 31233-31239.	4.0	50
5142	Recent development of fiber-optic chemical sensors and biosensors: Mechanisms, materials, micro/nano-fabrications and applications. Coordination Chemistry Reviews, 2018, 376, 348-392.	9.5	179
5143	Role of Pore Chemistry and Topology in the CO ₂ Capture Capabilities of MOFs: From Molecular Simulation to Machine Learning. Chemistry of Materials, 2018, 30, 6325-6337.	3.2	144
5144	Novel Topology in Semiconducting Tetrathiafulvalene Lanthanide Metalâ€Organic Frameworks. Israel Journal of Chemistry, 2018, 58, 1119-1122.	1.0	34
5145	The insights from X-ray absorption spectroscopy into the local atomic structure and chemical bonding of Metal–organic frameworks. Polyhedron, 2018, 155, 232-253.	1.0	34
5146	Ultrasound-assisted synthesis of metal organic framework for the photocatalytic reduction of 4-nitrophenol under direct sunlight. Ultrasonics Sonochemistry, 2018, 49, 215-221.	3.8	77
5147	Folic Acid Derived Bimetallicâ€Đoped Hollow Carbon Nanostructures for Efficient Electrocatalytic Oxygen Evolution. Chemistry - an Asian Journal, 2018, 13, 3274-3280.	1.7	16
5148	Metal–Organic Frameworks Mediate Cu Coordination for Selective CO ₂ Electroreduction. Journal of the American Chemical Society, 2018, 140, 11378-11386.	6.6	326
5149	HKUSTâ€1â€Catalyzed Formation of C–C and Câ€N Bonds: Rapid Assembly of Substituted Pyridines from Propargylamine and Carbonyl Compounds. ChemistrySelect, 2018, 3, 8793-8796.	0.7	2
5150	Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs. Small Methods, 2018, 2, 1800173.	4.6	288
5151	Exposed Equatorial Positions of Metal Centers via Sequential Ligand Elimination and Installation in MOFs. Journal of the American Chemical Society, 2018, 140, 10814-10819.	6.6	70
5152	High electrical conductivity and high porosity in a Guest@MOF material: evidence of TCNQ ordering within Cu ₃ BTC ₂ micropores. Chemical Science, 2018, 9, 7405-7412.	3.7	73
5153	Role of Ionic Liquid [EMIM] ⁺ [SCN] ^{â^'} in the Adsorption and Diffusion of Gases in Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2018, 10, 29694-29704.	4.0	38
5154	DABCO molecule in the M2(C8H4O4)2·C6H12N2 (M = Co, Ni, Cu, Zn) metal-organic frameworks. Coordination Chemistry Reviews, 2018, 376, 62-74.	9.5	15
5155	Designed Construction of Cluster Organic Frameworks from Lindqvist-type Polyoxovanadate Cluster. Inorganic Chemistry, 2018, 57, 10323-10330.	1.9	52
5156	Tuning the gate opening pressure of a flexible doubly interpenetrated metal–organic framework through ligand functionalization. Dalton Transactions, 2018, 47, 13158-13163.	1.6	24
5157	Site Isolation in Metal–Organic Frameworks Enables Novel Transition Metal Catalysis. Accounts of Chemical Research, 2018, 51, 2129-2138.	7.6	212
5158	Metal–Organic Framework Nanoparticles. Advanced Materials, 2018, 30, e1800202.	11.1	539

#	Article	IF	CITATIONS
5159	2.7 Porous Materials. , 2018, , 182-203.		7
5160	A new anionic metal-organic framework based on tetranuclear zinc clusters: Selective absorption of CO2 and luminescent response to lanthanide (III) ions. Inorganica Chimica Acta, 2018, 482, 154-159.	1.2	5
5161	Electron delocalization and charge mobility as a function of reduction in a metal–organic framework. Nature Materials, 2018, 17, 625-632.	13.3	255
5162	Postâ€5ynthetic Mannich Chemistry on Metalâ€Organic Frameworks: Systemâ€5pecific Reactivity and Functionalityâ€Triggered Dissolution. Chemistry - A European Journal, 2018, 24, 11094-11102.	1.7	11
5163	Coordination polymers based on µ2η1:η1 and µ2η2:η2 bridging mode of pyridyl carboxylate: ionic liquid-induced hydrothermal synthesis, structural and thermogravimetric analysis. Journal of the Iranian Chemical Society, 2018, 15, 2315-2324.	1.2	2
5164	Anchored Aluminum Catalyzed Meerwein–Ponndorf–Verley Reduction at the Metal Nodes of Robust MOFs. Inorganic Chemistry, 2018, 57, 6825-6832.	1.9	12
5165	Coordination polymers and metal-organic frameworks built up with poly(tetrazolate) ligands. Coordination Chemistry Reviews, 2018, 372, 1-30.	9.5	74
5166	Confined Synthesis of Coordination Frameworks inside Double-Network Hydrogel for Fabricating Hydrogel-Based Water Pipes with High Adsorption Capacity for Cesium Ions. Bulletin of the Chemical Society of Japan, 2018, 91, 1357-1363.	2.0	12
5167	Turn-on fluorescent probe with aggregation-induced emission characteristics for polyazoles. Materials Chemistry Frontiers, 2018, 2, 1779-1783.	3.2	26
5168	Metal Organic Framework Derived Fe-Doped CoSe ₂ Incorporated in Nitrogen-Doped Carbon Hybrid for Efficient Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2018, 6, 8672-8678.	3.2	74
5169	Controllable Synthesis of a Highly Ordered Polymeric Structure Assembled from Cobaltâ€Clusterâ€based Racemic Supramolecules. Chemistry - an Asian Journal, 2018, 13, 1915-1919.	1.7	6
5170	Improved MOF nanoparticle recovery and purification using crosslinked PVDF membranes. Chemical Communications, 2018, 54, 7370-7373.	2.2	15
5171	History of Organic–Inorganic Hybrid Materials: Prehistory, Art, Science, and Advanced Applications. Advanced Functional Materials, 2018, 28, 1704158.	7.8	264
5172	Facilely controlled synthesis of a core-shell structured MOF composite and its derived N-doped hierarchical porous carbon for CO2 adsorption. RSC Advances, 2018, 8, 21460-21471.	1.7	17
5173	Discovery of an Optimal Porous Crystalline Material for the Capture of Chemical Warfare Agents. Chemistry of Materials, 2018, 30, 4571-4579.	3.2	62
5174	Interface-Assisted Synthesis of 2D Materials: Trend and Challenges. Chemical Reviews, 2018, 118, 6189-6235.	23.0	505
5175	Metalâ€Organic Frameworkâ€Derived Carbons for Battery Applications. Advanced Energy Materials, 2018, 8, 1800716.	10.2	174
5176	Adsorption and Detection of Hazardous Trace Gases by Metal–Organic Frameworks. Advanced Materials, 2018, 30, e1704679.	11.1	261

#	Article	IF	CITATIONS
5177	Engineering a Cuâ€MOF Nanoâ€Catalyst by using Postâ€Synthetic Modification for the Preparation of 5â€Substituted 1 <i>H</i> â€Tetrazoles. Applied Organometallic Chemistry, 2018, 32, e4416.	1.7	25
5178	Enriching the Reticular Chemistry Repertoire: Merged Nets Approach for the Rational Design of Intricate Mixed-Linker Metal–Organic Framework Platforms. Journal of the American Chemical Society, 2018, 140, 8858-8867.	6.6	129
5179	Recent Advances in Zeoliteâ€like Cluster Organic Frameworks. Chemistry - A European Journal, 2019, 25, 442-453.	1.7	35
5180	Facile CO ₂ Separation in Composite Membranes. Chemical Engineering and Technology, 2019, 42, 30-44.	0.9	45
5181	Functional UiO-66 for the removal of sulfur-containing compounds in gas and liquid mixtures: A molecular simulation study. Chemical Engineering Journal, 2019, 356, 737-745.	6.6	15
5182	Azines: synthesis, structure, electronic structure and their applications. Organic and Biomolecular Chemistry, 2019, 17, 8486-8521.	1.5	53
5183	Bipyridyl-Containing Cadmium–Organic Frameworks for Efficient Photocatalytic Oxidation of Benzylamine. ACS Applied Materials & Interfaces, 2019, 11, 30953-30958.	4.0	42
5184	Decorated Traditional Zeolites with Subunits of Metal–Organic Frameworks for CH 4 /N 2 Separation. Angewandte Chemie, 2019, 131, 10347-10350.	1.6	15
5185	The role of molecular modelling and simulation in the discovery and deployment of metal-organic frameworks for gas storage and separation. Molecular Simulation, 2019, 45, 1082-1121.	0.9	74
5186	Morphology-Controlled Synthesis of Ni-MOFs with Highly Enhanced Electrocatalytic Performance for Urea Oxidation. Inorganic Chemistry, 2019, 58, 11449-11457.	1.9	69
5187	Resolvation-Based Damage to Metal–Organic Frameworks and Approaches to Mitigation. , 2019, 1, 344-349.		10
5188	A sulfur coordination polymer with wide bandgap semiconductivity formed from zinc(II) and 5-methylsulfanyl-1,3,4-thiadiazole-2-thione. Acta Crystallographica Section C, Structural Chemistry, 2019, 75, 1243-1249.	0.2	2
5189	Computer-aided discovery of connected metal-organic frameworks. Nature Communications, 2019, 10, 3620.	5.8	71
5190	The lanthanide contraction effect and organic additives impact the coordination structures of lanthanide ions with symmetrical octamethyl-substituted cucurbit[6]uril ligands. CrystEngComm, 2019, 21, 5641-5649.	1.3	5
5191	Towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks. Nature Communications, 2019, 10, 3632.	5.8	73
5192	Nanoporous MIL-101(Cr) as a sensing layer coated on a quartz crystal microbalance (QCM) nanosensor to detect volatile organic compounds (VOCs). RSC Advances, 2019, 9, 24460-24470.	1.7	78
5193	Electron Density Studies in Materials Research. Chemistry - A European Journal, 2019, 25, 15010-15029.	1.7	26
5194	Alkaline Earth Metal–Organic Frameworks with Tailorable Ion Release: A Path for Supporting Biomineralization. ACS Applied Materials & Interfaces, 2019, 11, 32739-32745.	4.0	30

ARTICLE IF CITATIONS Acetylene Storage and Separation Using Metalâ€"Organic Frameworks with Open Metal Sites. ACS 5195 4.0 43 Applied Materials & amp; Interfaces, 2019, 11, 31499-31507. Diverse π–Ï€ stacking motifs modulate electrical conductivity in tetrathiafulvalene-based 3.7 128 metal–organic frameworks. Chemical Science, 2019, 10, 8558-8565. 5197 Carbon nanomaterials for metal–air batteries., 2019, , 311-333. 0 Two water-stable Zn(II)-based MOFs as highly selective luminescent probe for the dual detection of 5198 1.4 glyoxal and dichromate ions in aqueous solution. Journal of Solid State Chemistry, 2019, 278, 120891. Increasing Alkyl Chain Length in a Series of Layered Metal–Organic Frameworks Aids Ultrasonic 5199 1.9 23 Exfoliation to Form Nanosheets. Inorganic Chemistry, 2019, 58, 10837-10845. Facile Exfoliation of 3D Pillared Metal–Organic Frameworks (MOFs) to Produce MOF Nanosheets with Functionalized Surfaces. Inorganic Chemistry, 2019, 58, 11020-11027. Copperâ€Metal Organic Frameworks Electrodeposited on Carbon Paper as an Enhanced Cathode for the 5201 1.7 29 Hydrogen Evolution Reaction. ChemElectroChem, 2019, 6, 4507-4510. Do Anionic π Molecules Aggregate in Solution? A Case Study with Multiâ€interactive Ligands and 1.7 Network Formation. Chemistry - A European Journal, 2019, 25, 15182-15188. Combination Rules and Accurate van der Waals Force Field for Gas Uptakes in Porous Materials. 5203 1.1 8 Journal of Physical Chemistry A, 2019, 123, 7847-7854. The Zeolitic Imidazolate Framework ZIFâ€4 under Low Hydrostatic Pressures. Zeitschrift Fur 5204 Anorganische Und Allgemeine Chemie, 2019, 645, 970-974. Layered Rare Earth–Organic Framework as Highly Efficient Luminescent Matrix: The Crystal Structure, Optical Spectroscopy, Electronic Transition, and Luminescent Sensing Properties. Crystal Growth and 5205 19 1.4 Design, 2019, 19, 4754-4764. Rational Synthesis of Mixed-Metal Microporous Metal–Organic Frameworks with Controlled 3.2 96 Composition Using Mechanochemistry. Chemistry of Materials, 2019, 31, 5494-5501. Metal-organic framework based carbon capture and purification technologies for clean environment. 5207 21 , 2019, , 5-61. Metal-organic frameworks for the capture of volatile organic compounds and toxic chemicals., 2019, 5208 , 141-178. Porous MOFâ€205 with multiple modifications for efficiently storing hydrogen and methane as well as 5209 separating carbon dioxide from hydrogen and methane. International Journal of Energy Research, 2.2 9 2019, 43, 7517. Shapeâ€Defined Hollow Structural Coâ€MOFâ€74 and Metal Nanoparticles@Coâ€MOFâ€74 Composite through a 5.2 106 Transformation Strategy for Enhanced Photocatalysis Performance. Small, 2019, 15, e1902287. In situ polymerization on nanoscale metal-organic frameworks for enhanced physiological stability 5211 5.780 and stimulus-responsive intracellular drug delivery. Biomaterials, 2019, 218, 119365. Rapid and efficient ultrasonic-assisted removal of lead(II) in water using two copper- and zinc-based 1.8 metal-organic frameworks. Inorganic Chemistry Communication, 2019, 107, 107474.

#	Article	IF	Citations
5213	Organic Synthesis Using Environmentally Benign Acid Catalysis. Current Organic Synthesis, 2019, 16, 615-649.	0.7	33
5214	Fabrication of NH2-MIL-125(Ti) incorporated TiO2 nanotube arrays composite anodes for highly efficient PEC water splitting. Separation and Purification Technology, 2019, 228, 115764.	3.9	48
5215	High-capacity methane storage in flexible alkane-linked porous aromatic network polymers. Nature Energy, 2019, 4, 604-611.	19.8	110
5216	Preparation of hierarchical trimetallic coordination polymer film as efficient electrocatalyst for oxygen evolution reaction. Chemical Communications, 2019, 55, 9343-9346.	2.2	19
5217	Transport Mechanism and Modeling of Microporous Polymeric Membranes. , 2019, , 259-280.		0
5218	Formation of Metal–Organic Frameworks on a Metal Ion-Doped Polymer Substrate: In-Depth Time-Course Analysis Using Scanning Electron Microscopy. Langmuir, 2019, 35, 10390-10396.	1.6	6
5219	In Situ Formation of Unprecedented Neptunium-Oxide Wheel Clusters Stabilized in a Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 11842-11846.	6.6	36
5220	The Elusive Nitro-Functionalised Member of the IRMOF-9 Family. Australian Journal of Chemistry, 2019, 72, 811.	0.5	2
5221	A Metal-organic Framework with Paddle-wheel Zn2(CO2)4 Secondary Building Units and Cubane-1,4-dicarboxylic Acid Linkers. Periodica Polytechnica: Chemical Engineering, 2019, , .	0.5	1
5222	High-Pressure in Situ ¹²⁹ Xe NMR Spectroscopy: Insights into Switching Mechanisms of Flexible Metal–Organic Frameworks Isoreticular to DUT-49. Chemistry of Materials, 2019, 31, 6193-6201.	3.2	41
5223	Face-Sharing Archimedean Solids Stacking for the Construction of Mixed-Ligand Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 13841-13848.	6.6	101
5224	Metal-organic framework functionalization and design strategies for advanced electrochemical energy storage devices. Communications Chemistry, 2019, 2, .	2.0	610
5225	Facile "Green―Aqueous Synthesis of Mono- and Bimetallic Trimesate Metal–Organic Frameworks. Crystal Growth and Design, 2019, 19, 4981-4989.	1.4	21
5226	Two Novel Self-Catenated Metal–Organic Frameworks with Large Accessible Channels Obtained by a Mixed-Ligand Strategy: Adsorption of Dichromate and Ln ³⁺ Postsynthetic Modification. Crystal Growth and Design, 2019, 19, 5267-5274.	1.4	12
5227	Outstanding methane gravimetric working capacity of computationally designed rhr-MOFs. Microporous and Mesoporous Materials, 2019, 290, 109621.	2.2	1
5228	The application of metal-organic frameworks in electrode materials for lithium–ion and lithium–sulfur batteries. Royal Society Open Science, 2019, 6, 190634.	1.1	37
5229	Highly Stable and Longâ€Circulating Metalâ€Organic Frameworks Nanoprobes for Sensitive Tumor Detection In Vivo. Advanced Healthcare Materials, 2019, 8, 1900761.	3.9	22
5230	Synthesis of a microporous copper carboxylate metal organic framework as a new high capacity methane adsorbent. Polyhedron, 2019, 171, 108-111.	1.0	12

#	Article	IF	CITATIONS
5231	Exceptionally High CO2 Capture in an Amorphous Polymer with Ultramicropores Studied by Positron Annihilation. ACS Applied Materials & amp; Interfaces, 2019, 11, 30747-30755.	4.0	22
5232	The chemistry of multi-component and hierarchical framework compounds. Chemical Society Reviews, 2019, 48, 4823-4853.	18.7	196
5233	A dissolvable hierarchical layered double hydroxide templated from porous zeolitic imidazolate framework-67 for dispersive solid phase extraction of bisphenol A. Analytical Methods, 2019, 11, 4184-4189.	1.3	9
5234	Metal-organic frameworks as advanced sorbents in sample preparation for small organic analytes. Coordination Chemistry Reviews, 2019, 397, 1-13.	9.5	79
5235	Zn(II)-based metal-organic frameworksderived from dicarboxylate ligand and N-donor ligands as luminescent sensors for selective detection of picric acid. Journal of Molecular Structure, 2019, 1196, 194-200.	1.8	10
5236	l-Proline functionalized metal-organic framework PCN-261 as catalyst for aldol reaction. Inorganic Chemistry Communication, 2019, 107, 107448.	1.8	13
5237	Mixed-ligand lanthanide complexes constructed by flexible 1,3-propanediaminetetraacetate and rigid terephthalate. Journal of Coordination Chemistry, 2019, 72, 1547-1559.	0.8	6
5238	Facile stabilization of a cyclodextrin metal–organic framework under humid environment <i>via</i> hydrogen sulfide treatment. RSC Advances, 2019, 9, 18271-18276.	1.7	34
5239	Interior Supported Hierarchical TiO ₂ @Co ₃ O ₄ Derived from MOFâ€onâ€MOF Architecture with Enhanced Electrochemical Properties for Lithium Storage. ChemElectroChem, 2019, 6, 3657-3666.	1.7	29
5240	Enhancement of Ethane Selectivity in Ethane–Ethylene Mixtures by Perfluoro Groups in Zr-Based Metal-Organic Frameworks. ACS Applied Materials & Interfaces, 2019, 11, 27410-27421.	4.0	69
5241	Facile one-step dialysis strategy for fabrication of hollow complex nanoparticles. Chemical Communications, 2019, 55, 9120-9123.	2.2	5
5242	Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem, 2019, 1, 100006.	10.1	434
5243	Structural Factors Determining Thermal Stability Limits of Ionic Liquid/MOF Composites: Imidazolium Ionic Liquids Combined with CuBTC and ZIF-8. Industrial & Engineering Chemistry Research, 2019, 58, 14124-14138.	1.8	40
5244	Computational screening, synthesis and testing of metal–organic frameworks with a bithiazole linker for carbon dioxide capture and its green conversion into cyclic carbonates. Molecular Systems Design and Engineering, 2019, 4, 1000-1013.	1.7	24
5245	Synthesis and Applications of Isoreticular Metal–Organic Frameworks IRMOFs- <i>n</i> (<i>n</i> = 1, 3,) Tj ETQ	2q000 rg	BT_/Overlock
5246	Stability Trend of Metal–Organic Frameworks with Heterometal-Modified Hexanuclear Zr Building Units. Journal of Physical Chemistry C, 2019, 123, 28266-28274.	1.5	19
5247	A Strategy for Trapping Molecular Guests in MOF-5 Utilizing Surface-Capping Groups. Crystal Growth and Design, 2019, 19, 6331-6338.	1.4	6
5248	A Series of 3D Porous Lanthanide-Substituted Polyoxometalate Frameworks Based on Rare Hexadecahedral {Ln ₆ W ₈ O ₂₈ } Heterometallic Cage-Shaped Clusters. Inorganic Chemistry, 2019, 58, 14734-14740.	1.9	27

#	Article	IF	CITATIONS
5249	Cooperative Capture of Uranyl Ions by a Carbonylâ€Bearing Hierarchicalâ€Porous Cu–Organic Framework. Angewandte Chemie, 2019, 131, 18984-18988.	1.6	6
5250	Molecular Pivotâ€Hinge Installation to Evolve Topology in Rareâ€Earth Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 16835-16843.	1.6	4
5251	Isoreticular Expansion of Metal–Organic Frameworks via Pillaring of Metal Templated Tunable Building Layers: Hydrogen Storage and Selective CO ₂ Capture. Chemistry - A European Journal, 2019, 25, 14500-14505.	1.7	15
5252	A highly efficient synthesis of 2,4-diamino-6-arylpyrimidine-5-carbonitrile derivatives using NiCo2O4@Ni(BDC) metal-organic frameworks as a novel and bifunctional catalyst. Journal of Organometallic Chemistry, 2019, 900, 120935.	0.8	7
5253	Effect of Coordinating Solvents on the Structure of Cu(II)-4,4′-bipyridine Coordination Polymers. Inorganics, 2019, 7, 103.	1.2	8
5254	Devices for promising applications. , 2019, , 247-314.		0
5255	Fluorescence Modulation of an Aggregation-Induced Emission Active Ligand via Rigidification in a Coordination Polymer and Its Application in Singlet Oxygen Sensing. Crystal Growth and Design, 2019, 19, 6388-6397.	1.4	20
5256	Inserting Amide into NOTT-101 to Sharply Enhance Volumetric and Gravimetric Methane Storage Working Capacity. Inorganic Chemistry, 2019, 58, 13782-13787.	1.9	10
5257	Thermal Engineering of Metal–Organic Frameworks for Adsorption Applications: A Molecular Simulation Perspective. ACS Applied Materials & Interfaces, 2019, 11, 38697-38707.	4.0	56
5260	Hierarchical Multi-constraint Routing Algorithm Based on Software Defined Networking. , 2019, , .		1
5261	Adsorptive Separation of Acetylene from Ethylene in Isostructural Gallateâ€Based Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 15516-15524.	1.7	27
5262	Solvent-Free Synthetic Route for Cerium(IV) Metal–Organic Frameworks with UiO-66 Architecture and Their Photocatalytic Applications. ACS Applied Materials & Interfaces, 2019, 11, 45031-45037.	4.0	58
5263	Current Status of Microporous Metal–Organic Frameworks for Hydrocarbon Separations. Topics in Current Chemistry, 2019, 377, 33.	3.0	31
5265	Designing a SAW Sensor Array with MOF Sensing Layers for Carbon Dioxide and Methane. , 2019, , .		4
5266	Adsorption of CO2 on amine-functionalized green metal-organic framework: an interaction between amine and CO2 molecules. Environmental Science and Pollution Research, 2019, 26, 36214-36225.	2.7	20
5267	Metal-organic framework structures: adsorbents for natural gas storage. Russian Chemical Reviews, 2019, 88, 925-978.	2.5	57
5268	"Ship-in-Bottle―Strategy to Encapsulate Shape-Controllable Metal Nanocrystals into Metal–Organic Frameworks: Internal Space Matters. Chemistry of Materials, 2019, 31, 9546-9553.	3.2	17
5269	Crystal Structures, Magnetism, and Dye Degradation Catalytic Properties of Copper 2â€Methoxycarboxybenzoate Coordination Complexes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 1317-1323.	0.6	4

#	Article	IF	CITATIONS
5270	Design, Parameterization, and Implementation of Atomic Force Fields for Adsorption in Nanoporous Materials. Advanced Theory and Simulations, 2019, 2, 1900135.	1.3	41
5271	Atomic―and Molecular‣evel Design of Functional Metal–Organic Frameworks (MOFs) and Derivatives for Energy and Environmental Applications. Advanced Science, 2019, 6, 1901129.	5.6	121
5272	Uncovering Structural Opportunities for Zirconium Metal–Organic Frameworks via Linker Desymmetrization. Advanced Science, 2019, 6, 1901855.	5.6	19
5273	Synthesis and Applications of Porous Organosulfonate-Based Metal–Organic Frameworks. Topics in Current Chemistry, 2019, 377, 32.	3.0	11
5275	Cooperative Capture of Uranyl Ions by a Carbonylâ€Bearing Hierarchicalâ€Porous Cu–Organic Framework. Angewandte Chemie - International Edition, 2019, 58, 18808-18812.	7.2	42
5276	Molecular Pivotâ€Hinge Installation to Evolve Topology in Rareâ€Earth Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 16682-16690.	7.2	45
5277	<i>In situ</i> synthesis and encapsulation of copper phthalocyanine into MIL-101(Cr) and MIL-100(Fe) pores and investigation of their catalytic performance in the epoxidation of styrene. Journal of Porphyrins and Phthalocyanines, 2019, 23, 1118-1131.	0.4	6
5278	Photocatalytic performances of two new Cd(II) and Zn(II)-based coordination polymers. Journal of Molecular Structure, 2019, 1182, 79-86.	1.8	18
5279	Introducing a Longer versus Shorter Acylhydrazone Linker to a Metal–Organic Framework: Parallel Mechanochemical Approach, Nonisoreticular Structures, and Diverse Properties. Crystal Growth and Design, 2019, 19, 7160-7169.	1.4	17
5280	Encapsulation of Metal Nanoparticles within Metal–Organic Frameworks for the Reduction of Nitro Compounds. Molecules, 2019, 24, 3050.	1.7	17
5281	The Anisotropic Responses of a Flexible Metal–Organic Framework Constructed from Asymmetric Flexible Linkers and Heptanuclear Zinc Carboxylate Secondary Building Units. Crystal Growth and Design, 2019, 19, 5604-5618.	1.4	6
5282	Removal of Malachite Green Dye Using IRMOF-3–MWCNT-OH–Pd-NPs as a Novel Adsorbent: Kinetic, Isotherm, and Thermodynamic Studies. Journal of Chemical & Engineering Data, 2019, 64, 4801-4814.	1.0	26
5283	Can Metal–Organic Frameworks Be Used for Cannabis Breathalyzers?. ACS Applied Materials & Interfaces, 2019, 11, 34777-34786.	4.0	1
5284	Nd-BTC metal-organic framework (MOF); synthesis, characterization and investigation on its adsorption behavior toward cesium and strontium ions. Microchemical Journal, 2019, 150, 104188.	2.3	52
5285	Pure-Supramolecular-Linker Approach to Highly Connected Metal–Organic Frameworks for CO ₂ Capture. Journal of the American Chemical Society, 2019, 141, 14539-14543.	6.6	47
5286	Atomistic structures and dynamics of prenucleation clusters in MOF-2 and MOF-5 syntheses. Nature Communications, 2019, 10, 3608.	5.8	76
5287	Precise Measurement and Controlled Tuning of Effective Window Sizes in ZIF-8 Framework for Efficient Separation of Xylenes. Nano Letters, 2019, 19, 6506-6510.	4.5	64
5288	Covalent Functionalization of Graphene Oxide with a Presynthesized Metal–Organic Framework Enables a Highly Stable Electrochemical Sensing. ACS Applied Materials & Interfaces, 2019, 11, 33238-33244.	4.0	31

#	Article	IF	CITATIONS
5289	Synthesis and Study of an Efficient Metal-Organic Framework Adsorbent (MIL-96(Al)) for Fluoride Removal from Water. Journal of Nanomaterials, 2019, 2019, 1-13.	1.5	23
5290	Novel semiconducting iron–quinizarin metal–organic framework for application in supercapacitors. Molecular Physics, 2019, 117, 3424-3433.	0.8	4
5291	Ionothermal synthesis of a photoelectroactive titanophosphite with a three-dimensional open-framework. CrystEngComm, 2019, 21, 5867-5871.	1.3	2
5292	Synthesis of o-carborane-functionalized metal–organic frameworks through ligand exchanges for aggregation-induced emission in the solid state. Chemical Communications, 2019, 55, 11844-11847.	2.2	14
5293	Impact of H2O and CO2 on methane storage in metal–organic frameworks. Adsorption, 2019, 25, 1633-1642.	1.4	8
5294	One-Pot and Postsynthetic Phenol-Thermal Synthesis toward Highly Stable Titanium-Oxo Clusters. Inorganic Chemistry, 2019, 58, 13353-13359.	1.9	24
5295	Investigation of Metal-Organic Framework-5 (MOF-5) as an Antitumor Drug Oridonin Sustained Release Carrier. Molecules, 2019, 24, 3369.	1.7	62
5296	Metal-organic frameworks for multimodal bioimaging and synergistic cancer chemotherapy. Coordination Chemistry Reviews, 2019, 399, 213022.	9.5	98
5297	Enhanced adsorptive desulfurization by iso-structural amino bearing IRMOF-3 and IRMOF-3@Al ₂ O ₃ <i>versus</i> MOF-5 and MOF-5@Al ₂ O ₃ revealing the predominant role of hydrogen bonding. Dalton Transactions, 2019, 48, 14792-14800.	1.6	18
5298	Long-term entrapment and temperature-controlled-release of SF ₆ gas in metal–organic frameworks (MOFs). Beilstein Journal of Nanotechnology, 2019, 10, 1851-1859.	1.5	5
5299	Ligand Excess "Inverse-Defected―Zr ₆ Tetrahedral Tetracarboxylate Framework and Its Thermal Transformation. Inorganic Chemistry, 2019, 58, 12786-12797.	1.9	3
5300	Synthesis of Well-Defined Internal-Space-Controllable UiO-66 Spherical Nanostructures Used as Advanced Nanoreactor. ACS Applied Materials & amp; Interfaces, 2019, 11, 38016-38022.	4.0	16
5301	Geometry Mismatch and Reticular Chemistry: Strategies To Assemble Metal–Organic Frameworks with Non-default Topologies. Journal of the American Chemical Society, 2019, 141, 16517-16538.	6.6	90
5302	Four 3D metal-organic frameworks formed by 1,4-bis(imidazol-1-yl)terephthalic acid: Synthesis, luminescent sensing and magnetic properties. Journal of Solid State Chemistry, 2019, 279, 120909.	1.4	8
5303	Desulfurization of Liquid Hydrocarbon Fuels with Microporous and Mesoporous Materials: Metal-Organic Frameworks, Zeolites, and Mesoporous Silicas. Industrial & Engineering Chemistry Research, 2019, 58, 19322-19352.	1.8	34
5304	Metal–Organic Frameworks as Key Materials for Solid-Phase Microextraction Devices—A Review. Separations, 2019, 6, 47.	1.1	74
5305	CNT-Modified MIL-88(NH2)-Fe for Enhancing DNA-Regulated Peroxidase-Like Activity. Journal of Analysis and Testing, 2019, 3, 238-245.	2.5	7
5306	Two unique copper cluster-based metal–organic frameworks with high performance for CO ₂ adsorption and separation. Inorganic Chemistry Frontiers, 2019, 6, 556-561.	3.0	23

#	Article	IF	Citations
5307	Post-synthetic fluorination of Scholl-coupled microporous polymers for increased CO ₂ uptake and selectivity. Journal of Materials Chemistry A, 2019, 7, 549-557.	5.2	41
5308	Creation of MOFs with open metal sites by partial replacement of metal ions with different coordination numbers. Dalton Transactions, 2019, 48, 2545-2548.	1.6	17
5309	Two novel multichromic coordination polymers based on a new flexible viologen ligand exhibiting photocontrolled luminescence properties and sensitive detection for ammonia. CrystEngComm, 2019, 21, 1635-1641.	1.3	36
5310	Empirical modeling of material composition and size in MOFs prepared with ligand mixtures. Dalton Transactions, 2019, 48, 2881-2885.	1.6	2
5311	Experimental investigations on tetrahydrofuran – methane – water system: Rapid methane gas storage in hydrates. Oil and Gas Science and Technology, 2019, 74, 12.	1.4	17
5312	Casting Nanoporous Platinum in Metal–Organic Frameworks. Advanced Materials, 2019, 31, e1807553.	11.1	13
5313	Our journey of developing multifunctional metal-organic frameworks. Coordination Chemistry Reviews, 2019, 384, 21-36.	9.5	126
5314	Refining of liquid fuel from N-Containing compounds via using designed Polysulfone@Metal organic framework composite film. Journal of Cleaner Production, 2019, 218, 347-356.	4.6	69
5315	Capturing chemical intuition in synthesis of metal-organic frameworks. Nature Communications, 2019, 10, 539.	5.8	153
5316	Hydrogen storage mechanism and diffusion in metal–organic frameworks. Physical Chemistry Chemical Physics, 2019, 21, 7756-7764.	1.3	35
5317	Pyridine-grafted Cr-based metal–organic frameworks for adsorption and removal of microcystin-LR from aqueous solution. Environmental Science: Water Research and Technology, 2019, 5, 577-584.	1.2	5
5318	Amino-decorated bis(pyrazolate) metal–organic frameworks for carbon dioxide capture and green conversion into cyclic carbonates. Inorganic Chemistry Frontiers, 2019, 6, 533-545.	3.0	36
5319	MOF transmetalation beyond cation substitution: defective distortion of IRMOF-9 in the spotlight. CrystEngComm, 2019, 21, 827-834.	1.3	16
5320	Lowâ€Dimensional Metalâ€Organic Frameworks and their Diverse Functional Roles in Catalysis. ChemCatChem, 2019, 11, 3138-3165.	1.8	22
5321	SnO2@MCC and SnO2@C Composites: Synthesis and Properties. Russian Journal of Inorganic Chemistry, 2019, 64, 431-437.	0.3	5
5322	Fabrication of zeolitic imidazolate framework-8 functional polyacrylonitrile nanofibrous mats for dye removal. Journal of Polymer Research, 2019, 26, 1.	1.2	53
5323	Energy storage properties of a two-dimensional TiB ₄ monolayer. Physical Chemistry Chemical Physics, 2019, 21, 13151-13156.	1.3	11
5324	Interface construction in microporous metal–organic frameworks from luminescent terbium-based building blocks. Journal of Colloid and Interface Science, 2019, 552, 372-377.	5.0	7

#	Article	IF	CITATIONS
5325	Continuous flow synthesis of ordered porous materials: from zeolites to metal–organic frameworks and mesoporous silica. Reaction Chemistry and Engineering, 2019, 4, 1699-1720.	1.9	48
5326	Zinc-based metal–organic frameworks as nontoxic and biodegradable platforms for biomedical applications: review study. Drug Metabolism Reviews, 2019, 51, 356-377.	1.5	64
5327	Facile <i>in situ</i> growth of ZnO nanosheets standing on Ni foam as binder-free anodes for lithium ion batteries. RSC Advances, 2019, 9, 19253-19260.	1.7	17
5328	Ion-exchange resin as a new tool for characterisation of coordination compounds and MOFs by NMR spectroscopy. Chemical Communications, 2019, 55, 8106-8109.	2.2	5
5329	Porous Coordination Polymers. Polymers and Polymeric Composites, 2019, , 181-223.	0.6	1
5330	Tuning the Size and Shape of NanoMOFs via Templated Electrodeposition and Subsequent Electrochemical Oxidation. ACS Applied Materials & Interfaces, 2019, 11, 25378-25387.	4.0	20
5331	Cryo-EM Structures of Atomic Surfaces and Host-Guest Chemistry in Metal-Organic Frameworks. Matter, 2019, 1, 428-438.	5.0	102
5332	Ultrasensitive Immunosensor for Cardiac Troponin I Detection Based on the Electrochemiluminescence of 2D Ru-MOF Nanosheets. Analytical Chemistry, 2019, 91, 10156-10163.	3.2	108
5333	Coordination polymers of Cu(II), Co(II) and Cd(II) based on a tetramethyl-substituted terphenyldicarboxylic acid. Polyhedron, 2019, 170, 463-470.	1.0	7
5334	Ceramic-based membranes for water and wastewater treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 578, 123513.	2.3	179
5335	Metal-organic frameworks as emerging platform for supporting isolated single-site catalysts. Nano Today, 2019, 27, 178-197.	6.2	66
5336	Flexibility in Metal–Organic Frameworks: A Basic Understanding. Catalysts, 2019, 9, 512.	1.6	35
5337	Synergistic effect of Zr-MOF on phosphomolybdic acid promotes efficient oxidative desulfurization. Applied Catalysis B: Environmental, 2019, 256, 117804.	10.8	131
5338	PEG functionalized zirconium dicarboxylate MOFs for docetaxel drug delivery in vitro. Journal of Drug Delivery Science and Technology, 2019, 52, 846-855.	1.4	28
5339	Hydrogen Trapping Efficiency of Li-Decorated Metal–Carbyne Framework: A First-Principles Study. Journal of Physical Chemistry C, 2019, 123, 15046-15052.	1.5	12
5340	The Roles of Intrinsic Barriers and Crystal Fluidity in Determining the Dynamics of Crystalline Molecular Rotors and Molecular Machines. Journal of Organic Chemistry, 2019, 84, 9835-9849.	1.7	38
5341	Hydrophobic Metal–Organic Frameworks. Advanced Materials, 2019, 31, e1900820.	11.1	138
5342	Generation of Hierarchical Porosity in Metal–Organic Frameworks by the Modulation of Cation Valence. Angewandte Chemie, 2019, 131, 10210-10215.	1.6	12

#	Article	IF	CITATIONS
5343	Generation of Hierarchical Porosity in Metal–Organic Frameworks by the Modulation of Cation Valence. Angewandte Chemie - International Edition, 2019, 58, 10104-10109.	7.2	104
5344	Efficient Separation of <i>cis</i> ―and <i>trans</i> â€1,2â€Dichloroethene Isomers by Adaptive Biphen[3]arene Crystals. Angewandte Chemie, 2019, 131, 10387-10390.	1.6	38
5345	Selective Synthesis of Discrete Monoâ€, Interlockedâ€, and Borromean Ring Ensembles Based on a <i>le</i> â€Electronâ€Deficient Ligand. Chemistry - an Asian Journal, 2019, 14, 2712-2718.	1.7	18
5346	Syntheses, Structures and Sorption Properties of Three Isoreticular Trinuclear Indiumâ€Based Amideâ€Functionalized Metal–Organic Frameworks. Chemistry - an Asian Journal, 2019, 14, 3603-3610.	1.7	9
5347	Interconversion of lanthanide-organic frameworks based on the anions of 2,5-dihydroxyterephthalic acid as connectors. Inorganica Chimica Acta, 2019, 495, 118937.	1.2	8
5348	Synergistically Directed Assembly of Aromatic Stacks Based Metalâ€Organic Frameworks by Donorâ€Acceptor and Coordination Interactions. Chinese Journal of Chemistry, 2019, 37, 871-877.	2.6	28
5349	A review on metal-organic frameworks: Synthesis and applications. TrAC - Trends in Analytical Chemistry, 2019, 118, 401-425.	5.8	546
5350	Universal Scaling Law for Methane Capture Quantity in Metal–Organic Frameworks. Advanced Theory and Simulations, 2019, 2, 1800170.	1.3	2
5351	Five New Coordination Polymers with a Bifunctional Phosphonateâ€Sulfonate Linker Molecule. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 732-739.	0.6	3
5352	Ag/AgCl/MIL-101(Fe) Catalyzed Degradation of Methylene Blue under Visible Light Irradation. Materials, 2019, 12, 1453.	1.3	20
5353	A systematic evaluation of UiO-66 metal organic framework for CO2/N2 separation. Separation and Purification Technology, 2019, 224, 85-94.	3.9	52
5354	Tailoring of the electronic property of Zn-BTC metal–organic framework <i>via</i> ligand functionalization: an <i>ab initio</i> investigation. RSC Advances, 2019, 9, 14260-14267.	1.7	19
5355	Pilot testing of CO2 capture from a coal-fired power plant—Part 1: Sorbent characterization. Clean Energy, 2019, 3, 144-162.	1.5	5
5356	Regeneration, degradation, and toxicity effect of MOFs: Opportunities and challenges. Environmental Research, 2019, 176, 108488.	3.7	167
5357	Decorated Traditional Zeolites with Subunits of Metal–Organic Frameworks for CH ₄ /N ₂ Separation. Angewandte Chemie - International Edition, 2019, 58, 10241-10244.	7.2	69
5358	Efficient Separation of <i>cis</i> ―and <i>trans</i> ,2â€Dichloroethene Isomers by Adaptive Biphen[3]arene Crystals. Angewandte Chemie - International Edition, 2019, 58, 10281-10284.	7.2	115
5359	Expanding the Variety of Zirconiumâ€based Inorganic Building Units for Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 10995-11000.	7.2	31
5360	Expanding the Variety of Zirconiumâ€based Inorganic Building Units for Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 11111-11116.	1.6	13

#	Article	IF	CITATIONS
5361	Potassium zirconium oxalate a new precursor for the preparation of perovskite, pyrochlore and Nasicon type materials. Journal of Solid State Chemistry, 2019, 276, 133-138.	1.4	1
5362	From Molecular Fragments to the Bulk: Development of a Neural Network Potential for MOF-5. Journal of Chemical Theory and Computation, 2019, 15, 3793-3809.	2.3	72
5363	Isoreticular Tp*–W–Cu–S cluster-based one-dimensional coordination polymers with an uncommon [Tp*WS ₃ Cu ₂] + [Cu] combination and their third-order nonlinear optical properties. CrystEngComm, 2019, 21, 3343-3348.	1.3	6
5364	Zr (IV)-based coordination porous materials for adsorption of Copper(II) from water. Microporous and Mesoporous Materials, 2019, 285, 215-222.	2.2	33
5365	A new dynamic framework with direct in situ visualisation of breathing under CO2 gas pressure. CrystEngComm, 2019, 21, 3415-3419.	1.3	2
5366	Magnetic ZIF-8 as a stable support for biomolecules via adsorption in aqueous buffered solutions at pH = 7. Inorganic Chemistry Communication, 2019, 105, 225-229.	1.8	7
5367	Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nature Chemistry, 2019, 11, 622-628.	6.6	371
5368	Temperature-Controlled Assembly/Reassembly of Two Dicarboxylate-Based Three-Dimensional Co(II) Coordination Polymers with an Antiferromagnetic Metallic Layer and a Ferromagnetic Metallic Chain. Polymers, 2019, 11, 795.	2.0	1
5369	Mixed Short and Long Ligands toward the Construction of Metal–Organic Frameworks with Large Pore Openings. Crystal Growth and Design, 2019, 19, 3120-3123.	1.4	15
5370	Twoâ€Dimensional Metalâ€Organic Layers for Electrochemical Acceptorless Dehydrogenation of Nâ€Heterocycles. Chemistry - an Asian Journal, 2019, 14, 3557-3560.	1.7	19
5371	Metal-organic frameworks for aquatic arsenic removal. Water Research, 2019, 158, 370-382.	5.3	154
5372	Controlled Growth of the Noncentrosymmetric Zn(3-ptz)2 and Zn(OH)(3-ptz) Metal–Organic Frameworks. ACS Omega, 2019, 4, 7411-7419.	1.6	9
5373	A Zn(<scp>ii</scp>) metal–organic framework constructed by a mixed-ligand strategy for CO ₂ capture and gas separation. CrystEngComm, 2019, 21, 3289-3294.	1.3	14
5375	Surfactants as promising media in the field of metal-organic frameworks. Coordination Chemistry Reviews, 2019, 391, 30-43.	9.5	296
5376	Modeling the Structural and Thermal Properties of Loaded Metal–Organic Frameworks. An Interplay of Quantum and Anharmonic Fluctuations. Journal of Chemical Theory and Computation, 2019, 15, 3237-3249.	2.3	22
5377	The impact of an isoreticular expansion strategy on the performance of iodine catalysts supported in multivariate zirconium and aluminum metal–organic frameworks. Dalton Transactions, 2019, 48, 6445-6454.	1.6	14
5378	Synthesis and crystal structure of a new coordination polymer based on lanthanum and 1,4-phenylenediacetate ligands. Acta Crystallographica Section E: Crystallographic Communications, 2019, 75, 378-382.	0.2	0
5379	Estimation of system-level hydrogen storage for metal-organic frameworks with high volumetric storage density. International Journal of Hydrogen Energy, 2019, 44, 15135-15145.	3.8	53
#	Article	IF	CITATIONS
------	--	------	-----------
5380	A robust <i>etb</i> -type metal–organic framework showing polarity-exclusive adsorption of acetone over methanol for their azeotropic mixture. Chemical Communications, 2019, 55, 6495-6498.	2.2	23
5382	CO2 Storage on Metal-Organic Frameworks. Green Energy and Technology, 2019, , 331-358.	0.4	1
5383	Methane Storage on Metal-Organic Frameworks. Green Energy and Technology, 2019, , 227-253.	0.4	5
5384	Insight into organophosphate chemical warfare agent simulant hydrolysis in metal-organic frameworks. Journal of Hazardous Materials, 2019, 375, 191-197.	6.5	56
5385	Mixed-metal metal–organic frameworks. Chemical Society Reviews, 2019, 48, 2535-2565.	18.7	474
5386	Reticular Chemistry: Molecular Precision in Infinite 2D and 3D. Molecular Frontiers Journal, 2019, 03, 66-83.	0.9	46
5387	Stepâ€Growth Copolymerization Between an Immobilized Monomer and a Mobile Monomer in Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 8102-8107.	1.6	0
5388	Theoretical study of heterofullerene-linked metal–organic framework with lithium doping for CO2 capture and separation from CO2/CH4 and CO2/H2 mixtures. Microporous and Mesoporous Materials, 2019, 284, 385-392.	2.2	16
5389	Self-assembly and optoelectronic properties of isoreticular MOF nanocrystals. Synthetic Metals, 2019, 252, 107-112.	2.1	11
5390	Bottom-up synthesis of 2D Co-based metal–organic framework nanosheets by an ammonia-assisted strategy for tuning the crystal morphology. CrystEngComm, 2019, 21, 3199-3208.	1.3	30
5391	Prediction of Superconductivity in Porous, Covalent Triazine Frameworks. , 2019, 1, 30-36.		14
5392	Nanoporous Materials for Gas Storage. Green Energy and Technology, 2019, , .	0.4	14
5393	Storage of Hydrogen on Nanoporous Adsorbents. Green Energy and Technology, 2019, , 255-286.	0.4	1
5394	Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 2019, 48, 2783-2828.	18.7	1,685
5396	Biocompatible Au@Ag nanorod@ZIF-8 core-shell nanoparticles for surface-enhanced Raman scattering imaging and drug delivery. Talanta, 2019, 200, 212-217.	2.9	67
5398	Metal-Organic Framework Composites IPMC Sensors and Actuators. Engineering Materials, 2019, , 1-18.	0.3	0
5399	Synthesis strategies and potential applications of metal-organic frameworks for electrode materials for rechargeable lithium ion batteries. Coordination Chemistry Reviews, 2019, 388, 293-309.	9.5	104
5400	Designing Hydrogenâ€Bonded Organic Frameworks (HOFs) with Permanent Porosity. Angewandte Chemie, 2019, 131, 11278-11288.	1.6	7

#	Article	IF	CITATIONS
5401	Surface functionalization of carbon cloth with cobalt-porphyrin-based metal organic framework for enhanced electrochemical sensing. Carbon, 2019, 148, 64-71.	5.4	31
5402	Designing Hydrogenâ€Bonded Organic Frameworks (HOFs) with Permanent Porosity. Angewandte Chemie - International Edition, 2019, 58, 11160-11170.	7.2	414
5403	In-situ fabrication of cellulose foam HKUST-1 and surface modification with polysaccharides for enhanced selective adsorption of toluene and acidic dipeptides. Chemical Engineering Journal, 2019, 369, 898-907.	6.6	72
5404	Harnessing Bottomâ€Up Selfâ€Assembly To Position Five Distinct Components in an Ordered Porous Framework. Angewandte Chemie, 2019, 131, 5402-5407.	1.6	10
5405	Template strategies with MOFs. Coordination Chemistry Reviews, 2019, 387, 415-435.	9.5	260
5406	Adsorption of anthracene substitutes into suprachannels: bulk <i>vs.</i> included guests. CrystEngComm, 2019, 21, 2303-2309.	1.3	2
5407	Bio-related applications of porous organic frameworks (POFs). Journal of Materials Chemistry B, 2019, 7, 2398-2420.	2.9	34
5408	Emerging porous materials in confined spaces: from chromatographic applications to flow chemistry. Chemical Society Reviews, 2019, 48, 2566-2595.	18.7	103
5409	Environmentally friendly ultrasound-assisted synthesis of magnetic zeolitic imidazolate framework - Graphene oxide nanocomposites and pollutant removal from water. Journal of Molecular Liquids, 2019, 282, 115-130.	2.3	147
5410	Boronate affinity Metal–Organic frameworks for highly efficient cis-diol molecules in-situ enrichment and surface-assisted laser desorption/ionization mass spectrometric detection. Analytica Chimica Acta, 2019, 1065, 40-48.	2.6	35
5411	Langmuir's Theory of Adsorption: A Centennial Review. Langmuir, 2019, 35, 5409-5426.	1.6	250
5412	Polar functional groups anchored to a 2D MOF template for the stabilization of Pd(0) nps for the catalytic C–C coupling reaction. Dalton Transactions, 2019, 48, 7117-7121.	1.6	7
5413	Palladium NPs supported on sulfonic acid functionalized metal–organic frameworks as catalysts for biomass cascade reactions. Dalton Transactions, 2019, 48, 5515-5519.	1.6	20
5414	Green and scalable synthesis of nitro- and amino-functionalized UiO-66(Zr) and the effect of functional groups on the oxidative desulfurization performance. Inorganic Chemistry Frontiers, 2019, 6, 1267-1274.	3.0	30
5415	Metalâ^'Organic Frameworks for Highâ€Energy Lithium Batteries with Enhanced Safety: Recent Progress and Future Perspectives. Batteries and Supercaps, 2019, 2, 591-626.	2.4	45
5416	An extensive comparative analysis of two MOF databases: high-throughput screening of computation-ready MOFs for CH ₄ and H ₂ adsorption. Journal of Materials Chemistry A, 2019, 7, 9593-9608.	5.2	87
5417	MOFâ€onâ€MOF: Oriented Growth of Multiple Layered Thin Films of Metal–Organic Frameworks. Angewandte Chemie, 2019, 131, 6960-6964.	1.6	37
5418	MOFâ€onâ€MOF: Oriented Growth of Multiple Layered Thin Films of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 6886-6890.	7.2	145

#	Article	IF	CITATIONS
5419	Metal–organic frameworks with multicomponents in order. Coordination Chemistry Reviews, 2019, 388, 107-125.	9.5	82
5420	Mixedâ€Matrix Membranes Formed from Multiâ€Ðimensional Metal–Organic Frameworks for Enhanced Gas Transport and Plasticization Resistance. ChemSusChem, 2019, 12, 2355-2360.	3.6	45
5421	Reactivity of Atomic Layer Deposition Precursors with OH/H2O-Containing Metal Organic Framework Materials. Chemistry of Materials, 2019, 31, 2286-2295.	3.2	16
5422	An untethered C3v-symmetric triarylphosphine oxide locked by intermolecular hydrogen bonding. Chemical Communications, 2019, 55, 3761-3764.	2.2	6
5423	Analysis of CH ₄ Uptake over Metal–Organic Frameworks Using Data-Mining Tools. ACS Combinatorial Science, 2019, 21, 257-268.	3.8	19
5424	Functional metal–organic frameworks for catalytic applications. Coordination Chemistry Reviews, 2019, 388, 268-292.	9.5	242
5425	Trace Benzene Separation from Vinyl Acetate: A Multiscale Simulation Study. Industrial & Engineering Chemistry Research, 2019, 58, 6662-6669.	1.8	3
5426	MIL-53(Al) and NH ₂ -MIL-53(Al) modified α-alumina membranes for efficient adsorption of dyes from organic solvents. Chemical Communications, 2019, 55, 4119-4122.	2.2	33
5427	Ionothermal Synthesis of Zn(II) Coordination Polymers with Fluorescent Sensing and Selective Dye Adsorption Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1746-1754.	1.9	3
5428	Stepâ€Growth Copolymerization Between an Immobilized Monomer and a Mobile Monomer in Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2019, 58, 8018-8023.	7.2	16
5429	Synthesis and characterization of 1D coordination polymers of metal(II)-dicyanamido complexes. Polyhedron, 2019, 166, 36-43.	1.0	10
5430	Nucleobase pairing and photodimerization in a biologically derived metal-organic framework nanoreactor. Nature Communications, 2019, 10, 1612.	5.8	58
5431	Chemically stable polyarylether-based covalent organic frameworks. Nature Chemistry, 2019, 11, 587-594.	6.6	509
5432	Mixedâ€Metal MOFs: Unique Opportunities in Metal–Organic Framework (MOF) Functionality and Design. Angewandte Chemie, 2019, 131, 15330-15347.	1.6	124
5433	Mixedâ€Metal MOFs: Unique Opportunities in Metal–Organic Framework (MOF) Functionality and Design. Angewandte Chemie - International Edition, 2019, 58, 15188-15205.	7.2	493
5434	Transition from a 1D Coordination Polymer to a Mixed-Linker Layered MOF. Inorganic Chemistry, 2019, 58, 5031-5041.	1.9	13
5435	A generalized van der Waals model for light gas adsorption prediction in IRMOFs. Physical Chemistry Chemical Physics, 2019, 21, 8906-8914.	1.3	1
5439	Tailored necklace-like Ag@ZIF-8 core/shell heterostructure nanowires for high-performance plasmonic SERS detection. Chemical Engineering Journal, 2019, 371, 26-33.	6.6	93

#	Article	IF	CITATIONS
5440	Lattice Expansion and Contraction in Metal-Organic Frameworks by Sequential Linker Reinstallation. Matter, 2019, 1, 156-167.	5.0	67
5441	A Tale of Two Trimers from Two Different Worlds: A COFâ€Inspired Synthetic Strategy for Poreâ€Space Partitioning of MOFs. Angewandte Chemie - International Edition, 2019, 58, 6316-6320.	7.2	70
5442	Highly Efficient One-Dimensional Triplet Exciton Transport in a Palladium–Porphyrin-Based Surface-Anchored Metal–Organic Framework. ACS Applied Materials & Interfaces, 2019, 11, 15688-15697.	4.0	46
5443	Does Chemical Engineering Research Have a Reproducibility Problem?. Annual Review of Chemical and Biomolecular Engineering, 2019, 10, 43-57.	3.3	26
5444	A Tale of Two Trimers from Two Different Worlds: A COFâ€Inspired Synthetic Strategy for Poreâ€Space Partitioning of MOFs. Angewandte Chemie, 2019, 131, 6382-6386.	1.6	14
5445	Pd Supported IRMOF-3: Heterogeneous, Efficient and Reusable Catalyst for Heck Reaction. Catalysis Letters, 2019, 149, 1941-1951.	1.4	29
5446	Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks. Nature Communications, 2019, 10, 1568.	5.8	278
5447	Flexible films enabled by coordination polymer nanoarchitectonics. Molecular Systems Design and Engineering, 2019, 4, 531-544.	1.7	7
5448	A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials, 2019, 208, 21-31.	5.7	208
5449	Structural diversity of zinc(<scp>ii</scp>) coordination polymers with octafluorobiphenyl-4,4â€2-dicarboxylate based on mononuclear, paddle wheel and cuboidal units. CrystEngComm, 2019, 21, 2524-2533.	1.3	14
5450	Supramolecular architectures of molecularly thin yet robust free-standing layers. Science Advances, 2019, 5, eaav4489.	4.7	9
5451	A bifunctional luminescent Zn(II)-organic framework: Ionothermal synthesis, selective Fe(III) detection and cationic dye adsorption. Inorganic Chemistry Communication, 2019, 102, 215-220.	1.8	17
5452	Metalâ€Organic Frameworks for Hydrogen Energy Applications: Advances and Challenges. ChemPhysChem, 2019, 20, 1177-1215.	1.0	56
5453	Post-synthetic Modification of Metal-Organic Framework through Urethane Formation. Chemistry Letters, 2019, 48, 285-287.	0.7	4
5454	Multilevel coordination-driven assembly for metallosupramolecules with hierarchical structures. Coordination Chemistry Reviews, 2019, 387, 180-198.	9.5	25
5455	Chemical Approaches to Carbonâ€Based Metalâ€Free Catalysts. Advanced Materials, 2019, 31, e1804863.	11.1	90
5456	Hollow Functional Materials Derived from Metal–Organic Frameworks: Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications. Advanced Materials, 2019, 31, e1804903.	11.1	370
5457	In Situ Tracking of Dynamic NO Capture through a Crystalâ€to rystal Transformation from a Gateâ€Openâ€Type Chain Porous Coordination Polymer to a NOâ€Adducted Discrete Isomer. Chemistry - A European Journal, 2019, 25, 3020-3031.	1.7	12

#	Article	IF	CITATIONS
5458	Germanium-8-Hydroxyquinoline hydroxides: Synthesis, structure and luminescence properties. Inorganica Chimica Acta, 2019, 489, 211-216.	1.2	2
5459	Solid-State Electrochemistry of Copper(I) Coordination Polymers Containing Tetrafluoroborate Anions. Inorganic Chemistry, 2019, 58, 2379-2385.	1.9	5
5460	Design of Nitrile Rubber with High Strength and Recycling Ability Based on Fe ³⁺ –Catechol Group Coordination. Industrial & Engineering Chemistry Research, 2019, 58, 3912-3920.	1.8	31
5461	Reticular Access to Highly Porous acs -MOFs with Rigid Trigonal Prismatic Linkers for Water Sorption. Journal of the American Chemical Society, 2019, 141, 2900-2905.	6.6	150
5462	Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs. Coordination Chemistry Reviews, 2019, 386, 32-49.	9.5	326
5463	Understanding the modifications and applications of highly stable porous frameworks via UiO-66. Materials Today Chemistry, 2019, 12, 139-165.	1.7	89
5464	Two 3D Cobalt(II) Metal–Organic Frameworks with Micropores for Selective Dye Adsorption. Inorganic Chemistry, 2019, 58, 3130-3136.	1.9	69
5465	Toward Base Heterogenization: A Zirconium Metal–Organic Framework/Dendrimer or Polymer Mixture for Rapid Hydrolysis of a Nerve-Agent Simulant. ACS Applied Nano Materials, 2019, 2, 1005-1008.	2.4	57
5466	Effective Separation of Enantiomers Based on Novel Chiral Hierarchical Porous Metalâ€Organic Gels. Macromolecular Rapid Communications, 2019, 40, e1800862.	2.0	9
5467	A Bismuth Metal–Organic Framework as a Contrast Agent for X-ray Computed Tomography. ACS Applied Bio Materials, 2019, 2, 1197-1203.	2.3	68
5468	Harnessing Bottomâ€Up Selfâ€Assembly To Position Five Distinct Components in an Ordered Porous Framework. Angewandte Chemie - International Edition, 2019, 58, 5348-5353.	7.2	48
5469	Crystal Growth and Structure Determination of Pigment Orange 82. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 564-569.	0.6	2
5470	Heterofullerene-linked metal–organic framework with lithium decoration for storing hydrogen and methane gases. International Journal of Hydrogen Energy, 2019, 44, 6702-6708.	3.8	10
5472	Glucose Isomerization and Epimerization over Metalâ€Organic Frameworks with Singleâ€ S ite Active Centers. ChemCatChem, 2019, 11, 1903-1909.	1.8	21
5473	Cadmiumâ€Based Coordination Polymers from 1D to 3D: Synthesis, Structures, and Photoluminescent and Electrochemiluminescent Properties. ChemPlusChem, 2019, 84, 190-202.	1.3	28
5474	Modeling Gas Adsorption in Flexible Metal–Organic Frameworks via Hybrid Monte Carlo/Molecular Dynamics Schemes. Advanced Theory and Simulations, 2019, 2, 1800177.	1.3	40
5475	A Zn(<scp>ii</scp>) metal–organic framework with dinuclear [Zn ₂ (<i>N</i> -oxide) ₂] secondary building units. Dalton Transactions, 2019, 48, 6314-6318.	1.6	2
5476	Enzyme Nanocarriers. , 2019, , 153-168.		3

#	Article	IF	CITATIONS
5477	Halogen bonding in UiO-66 frameworks promotes superior chemical warfare agent simulant degradation. Chemical Communications, 2019, 55, 3481-3484.	2.2	68
5478	Porous liquids based on porous cages, metal organic frameworks and metal organic polyhedra. Coordination Chemistry Reviews, 2019, 386, 85-95.	9.5	74
5479	Lanthanum(III) complex as ferromagnetic supraprecursor for preparation of La2O3 nanoparticles by thermal decomposition method. Research on Chemical Intermediates, 2019, 45, 2887-2901.	1.3	4
5480	Modeling and simulation of adsorption of methane, ethane, hydrogen sulfide and water from natural gas in (FP)YEu Metal–Organic Framework. IOP Conference Series: Materials Science and Engineering, 2019, 579, 012020.	0.3	3
5481	Ascorbic Acid Determination Based on Electrocatalytic Behavior of Metal-Organic Framework MIL-101-(Cr) at Modified Carbon-Paste Electrode. Journal of AOAC INTERNATIONAL, 2019, 102, 625-632.	0.7	12
5482	A Sonochemically-Synthesized Microporous Metal-Organic Framework for the Rapid and Efficient Ultrasonic-Assisted Removal of Mercury (II) Ions in a Water Solution and a Study of the Antibacterial Activity. Proceedings (mdpi), 2019, 41, .	0.2	3
5483	Synthesis of New bis 1-Substituted 1H-Tetrazoles via Efficient Heterocyclizations from Symmetric Dianilines, Methyl Orthoester, and Sodium Azide. Proceedings (mdpi), 2019, 41, 26.	0.2	0
5484	Ultrathin 2D Niâ€UMOF Composites for Highlyâ€Efficient 4â€Nitrophenol Hydrogenation. ChemistrySelect, 2019, 4, 14300-14308.	0.7	4
5485	A series of flexible bis(pyridyl)bis(tetrazole)-modulated coordination polymers: construction, electrochemical properties, dye adsorption and magnetic properties. CrystEngComm, 2019, 21, 6613-6622.	1.3	14
5486	Interpenetration isomers in isoreticular amine-tagged zinc MOFs. CrystEngComm, 2019, 21, 7498-7506.	1.3	17
5487	On-demand guest release from MOF-5 sealed with nitrophenylacetic acid photocapping groups. Photochemical and Photobiological Sciences, 2019, 18, 2849-2853.	1.6	3
5488	Novel Nanostructured Metal–Organic Framework-Bonded Silica Amine and Polymer: Facile Synthesis, Kinetics, Isotherms, and Thermodynamics Evaluation for Adsorption of Yttrium(III) Ions. Journal of Chemical & Engineering Data, 2019, 64, 6060-6070.	1.0	13
5489	Gram-Scale Synthesis of Bimetallic ZIFs and Their Thermal Conversion to Nanoporous Carbon Materials. Nanomaterials, 2019, 9, 1796.	1.9	13
5490	Structure of Metal Organic Frameworks and the Periodicity of Their Properties. Russian Journal of Physical Chemistry A, 2019, 93, 2331-2339.	0.1	1
5491	Metal Organic Frameworks as Desulfurization Adsorbents of DBT and 4,6-DMDBT from Fuels. Molecules, 2019, 24, 4525.	1.7	61
5492	Enriching the Reticular Chemistry Repertoire with Minimal Edge-Transitive Related Nets: Access to Highly Coordinated Metal–Organic Frameworks Based on Double Six-Membered Rings as Net-Coded Building Units. Journal of the American Chemical Society, 2019, 141, 20480-20489.	6.6	42
5493	Synthesis, Structural, Spectroscopic, and Morphology of Metal-Organic Frameworks Based on La (III) and Ligand 2,6-Napthalenedicarboxylic acid (La-MOFs) for Hydrogen Production. IOP Conference Series: Materials Science and Engineering, 2019, 546, 042005.	0.3	5
5494	A non-luminescent Eu-MOF-based "turn-on―sensor towards an anthrax biomarker through single-crystal to single-crystal phase transition. Chemical Communications, 2019, 55, 14918-14921.	2.2	64

#	Article	IF	CITATIONS
5495	Temperature-induced structural diversity of metal–organic frameworks and their applications in selective sensing of nitrobenzene and electrocatalyzing the oxygen evolution reaction. RSC Advances, 2019, 9, 33890-33897.	1.7	15
5496	Advancement in porous adsorbents for post-combustion CO2 capture. Microporous and Mesoporous Materials, 2019, 276, 107-132.	2.2	129
5497	Efficient prediction of water vapor adsorption capacity in porous metal–organic framework materials: ANN and ANFIS modeling. Journal of the Iranian Chemical Society, 2019, 16, 11-20.	1.2	11
5498	Metal-organic framework thin films from copper hydroxide nano-assemblies. Journal of Sol-Gel Science and Technology, 2019, 89, 128-134.	1.1	7
5499	Highly porous Pt-Pb nanostructures as active and ultrastable catalysts for polyhydric alcohol electrooxidations. Science China Materials, 2019, 62, 341-350.	3.5	16
5500	Efficient photo-Fenton activity in mesoporous MIL-100(Fe) decorated with ZnO nanosphere for pollutants degradation. Applied Catalysis B: Environmental, 2019, 245, 428-438.	10.8	187
5501	GOMC: GPU Optimized Monte Carlo for the simulation of phase equilibria and physical properties of complex fluids. SoftwareX, 2019, 9, 20-27.	1.2	32
5502	Anisotropic Water-Mediated Proton Conductivity in Large Iron(II) Metal–Organic Framework Single Crystals for Proton-Exchange Membrane Fuel Cells. ACS Applied Nano Materials, 2019, 2, 291-298.	2.4	39
5503	Size, Shape, and Porosity Control of Medi-MOF-1 via Growth Modulation under Microwave Heating. Crystal Growth and Design, 2019, 19, 889-895.	1.4	29
5504	Progress in hydrometallurgical technologies to recover critical raw materials and precious metals from low-concentrated streams. Resources, Conservation and Recycling, 2019, 142, 177-188.	5.3	73
5505	Energy storage materials from clay minerals and zeolite-like structures. , 2019, , 275-288.		0
5506	Catalytic applications of enzymes encapsulated in metal–organic frameworks. Coordination Chemistry Reviews, 2019, 381, 151-160.	9.5	214
5507	A new insight for photocatalytic hydrogen production by a Cu/Ni based cyanide bridged polymer as a co-catalyst on titania support in glycerol water mixture. International Journal of Hydrogen Energy, 2019, 44, 2508-2518.	3.8	20
5508	Linker Competition within a Metal–Organic Framework for Topological Insights. Inorganic Chemistry, 2019, 58, 1513-1517.	1.9	29
5509	In Operando Analysis of Diffusion in Porous Metalâ€Organic Framework Catalysts. Chemistry - A European Journal, 2019, 25, 3465-3476.	1.7	42
5510	Metal–Organic Frameworks in Solid–Gas Phase Catalysis. ACS Catalysis, 2019, 9, 130-146.	5.5	229
5511	Metal Organic Frameworks (MOFs) and ultrasound: A review. Ultrasonics Sonochemistry, 2019, 52, 106-119.	3.8	213
5512	Metal–Organic Frameworks in Dye-Sensitized Solar Cells. Energy, Environment, and Sustainability, 2019, , 175-219.	0.6	8

#	Article	IF	CITATIONS
5513	Measuring water adsorption processes of metal-organic frameworks for heat pump applications via optical calorimetry. Microporous and Mesoporous Materials, 2019, 278, 206-211.	2.2	17
5514	Morphological, luminescence and gas adsorption studies of Pb(II)-MOFs. Materials Research Express, 2019, 6, 025103.	0.8	1
5515	Hierarchical porous zeolitic imidazolate frameworks nanoparticles for efficient adsorption of rare-earth elements. Microporous and Mesoporous Materials, 2019, 278, 175-184.	2.2	149
5516	Metal–organic frameworks: Structures and functional applications. Materials Today, 2019, 27, 43-68.	8.3	627
5517	Mesoporous Cages in Chemically Robust MOFs Created by a Large Number of Vertices with Reduced Connectivity. Journal of the American Chemical Society, 2019, 141, 488-496.	6.6	126
5518	Metal-induced ordered microporous polymers for fabricating large-area gas separation membranes. Nature Materials, 2019, 18, 163-168.	13.3	172
5519	The quest for optimal water quantity in the synthesis of metal-organic framework MOF-5. Microporous and Mesoporous Materials, 2019, 278, 23-29.	2.2	40
5520	Metal–organic frameworks in Germany: From synthesis to function. Coordination Chemistry Reviews, 2019, 380, 378-418.	9.5	91
5521	Porous materials for steady-state NO conversion: Comparisons of activated carbon fiber cloths, zeolites and metal-organic frameworks. Chemical Engineering Journal, 2019, 360, 89-96.	6.6	19
5522	Novel photo-functional material based on homo-metallic cyanide bridged nickel coordination polymer and titania for hydrogen generation. Inorganica Chimica Acta, 2019, 486, 684-693.	1.2	3
5523	Syntheses, crystal structures and photo physical aspects of azido-bridged tetranuclear cadmium (II) complexes: DFT/TD-DFT, thermal, antibacterial and anti-biofilm properties. Journal of Molecular Structure, 2019, 1179, 694-708.	1.8	27
5524	Metal-Organic Framework Derived Metal Oxide Clusters in Porous Aluminosilicates: A Catalyst Design for the Synthesis of Bioactive aza-Heterocycles. ACS Catalysis, 2019, 9, 44-48.	5.5	34
5525	Click chemistry as a versatile reaction for construction and modification of metal-organic frameworks. Coordination Chemistry Reviews, 2019, 380, 484-518.	9.5	86
5526	Polyethyleneimine (PEI) incorporated Cu-BTC composites: Extended applications in ultra-high efficient removal of congo red. Journal of Solid State Chemistry, 2019, 270, 231-241.	1.4	74
5527	Diverse structural assemblies and influence in morphology of different parameters in a series of 0D and 1D mercury(II) metal–organic coordination complexes by sonochemical process. Polyhedron, 2019, 160, 20-34.	1.0	14
5528	A Thiol-Functionalized UiO-67-Type Porous Single Crystal: Filling in the Synthetic Gap. Inorganic Chemistry, 2019, 58, 1462-1468.	1.9	31
5529	General Immobilization of Ultrafine Alloyed Nanoparticles within Metal–Organic Frameworks with High Loadings for Advanced Synergetic Catalysis. ACS Central Science, 2019, 5, 176-185.	5.3	75
5530	Fast Ion Transport Pathway Provided by Polyethylene Glycol Confined in Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 1923-1927.	6.6	217

#	Article	IF	CITATIONS
5531	Guest-Dependent Dynamics in a 3D Covalent Organic Framework. Journal of the American Chemical Society, 2019, 141, 3298-3303.	6.6	121
5532	Syntheses, Structures and Topology Variations of Metal Organic Frameworks Built From a Semiâ€Rigid Tetracarboxylate Ligand. ChemistrySelect, 2019, 4, 536-542.	0.7	16
5533	Electrochemiluminecence nanogears aptasensor based on MIL-53(Fe)@CdS for multiplexed detection of kanamycin and neomycin. Biosensors and Bioelectronics, 2019, 129, 100-106.	5.3	83
5534	Adsorption and Diffusion of Benzene in Mg-MOF-74 with Open Metal Sites. ACS Applied Materials & Interfaces, 2019, 11, 4686-4700.	4.0	46
5535	Scalable and Sustainable Synthesis of Advanced Porous Materials. ACS Sustainable Chemistry and Engineering, 2019, 7, 3647-3670.	3.2	54
5536	NiCo ₂ O ₄ @Ni(BDC) Nanoâ€Porous Metal–Organic Framework as a Novel Catalyst for the Synthesis of Spiro[indene[1,2â€d]pyrimidineâ€ones and Investigation of Their Antimicrobial Activities. ChemistrySelect, 2019, 4, 729-736.	0.7	28
5537	Carbon-based derivatives from metal-organic frameworks as cathode hosts for Li–S batteries. Journal of Energy Chemistry, 2019, 38, 94-113.	7.1	104
5538	Sustainable Metallocavitand for Flue Gas-Selective Sorption: A Multiscale Study. Journal of Physical Chemistry C, 2019, 123, 3188-3202.	1.5	5
5539	Recent Advances of 2D Nanomaterials in the Electrode Materials of Lithium-Ion Batteries. Nano, 2019, 14, 1930001.	0.5	22
5540	A Review on the Synthesis and Characterization of Metal Organic Frameworks for Photocatalytic Water Purification. Catalysts, 2019, 9, 52.	1.6	215
5541	Porous Coordination Polymers. Polymers and Polymeric Composites, 2019, , 1-44.	0.6	2
5542	Frustrated magnetism in Cu(II) based metal–organic framework. Inorganica Chimica Acta, 2019, 486, 158-161.	1.2	5
5543	Synthesis and characterization of nano-sized metal organic framework-5 (MOF-5) by using consecutive combination of ultrasound and microwave irradiation methods. Inorganica Chimica Acta, 2019, 485, 118-124.	1.2	52
5544	Nylon–MOF Composites through Postsynthetic Polymerization. Angewandte Chemie, 2019, 131, 2358-2362.	1.6	38
5545	Lanthanide-Based Coordination Polymers With 1,4-Carboxyphenylboronic Ligand: Multiemissive Compounds for Multisensitive Luminescent Thermometric Probes. Inorganic Chemistry, 2019, 58, 462-475.	1.9	40
5546	Z-Scheme Photocatalytic CO ₂ Reduction on a Heterostructure of Oxygen-Defective ZnO/Reduced Graphene Oxide/UiO-66-NH ₂ under Visible Light. ACS Applied Materials & Interfaces, 2019, 11, 550-562.	4.0	183
5547	Large Pore Isoreticular Strontium-Organic Frameworks: Syntheses, Crystal Structures, and Thermal and Luminescent Properties. Crystal Growth and Design, 2019, 19, 268-274.	1.4	10
5548	Structural and Luminescence Properties of Anthracene- and Biphenyl-Based Lanthanide Bisphosphonate Ester Coordination Polymers. Inorganic Chemistry, 2019, 58, 382-390.	1.9	19

#	Article	IF	CITATIONS
5549	Heterometallic Organic Frameworks Built from Trinuclear Indium and Cuprous Halide Clusters: Ligand-Oriented Assemblies and Iodine Adsorption Behavior. Inorganic Chemistry, 2019, 58, 516-523.	1.9	52
5550	Trace Carbon Dioxide Capture by Metal–Organic Frameworks. ACS Sustainable Chemistry and Engineering, 2019, 7, 82-93.	3.2	92
5551	Gas Convertor and Storage. Interface Science and Technology, 2019, 27, 387-437.	1.6	4
5552	Glycine-Modified HKUST-1 with Simultaneously Enhanced Moisture Stability and Improved Adsorption for Light Hydrocarbons Separation. ACS Sustainable Chemistry and Engineering, 2019, 7, 1557-1563.	3.2	37
5553	Nylon–MOF Composites through Postsynthetic Polymerization. Angewandte Chemie - International Edition, 2019, 58, 2336-2340.	7.2	132
5554	Acid-mediated surface etching of a nano-sized metal-organic framework for improved reactivity in the fixation of CO2 into polymers. Journal of Industrial and Engineering Chemistry, 2019, 71, 336-344.	2.9	23
5555	Molecular simulations of COFs, IRMOFs and ZIFs for adsorption-based separation of carbon tetrachloride from air. Journal of Molecular Graphics and Modelling, 2019, 86, 84-94.	1.3	13
5556	Preparation and characterization of a novel ZIF-8 membrane over high voidage paper-like stainless steel fibers. Journal of Solid State Chemistry, 2019, 269, 203-211.	1.4	15
5557	Diverse Multiâ€Functionalized Oligoarenes and Heteroarenes for Porous Crystalline Materials. European Journal of Organic Chemistry, 2019, 2019, 1446-1460.	1.2	15
5558	Encapsulating all-inorganic perovskite quantum dots into mesoporous metal organic frameworks with significantly enhanced stability for optoelectronic applications. Chemical Engineering Journal, 2019, 358, 30-39.	6.6	159
5559	Anchoring nZVI on metal-organic framework for removal of uranium(â¥) from aqueous solution. Journal of Solid State Chemistry, 2019, 269, 16-23.	1.4	56
5560	Two-dimensional (2D) nanoporous membranes with sub-nanopores in reverse osmosis desalination: Latest developments and future directions. Desalination, 2019, 451, 18-34.	4.0	87
5561	Nanoscale metal–organic frameworks for phototherapy of cancer. Coordination Chemistry Reviews, 2019, 379, 65-81.	9.5	309
5562	Amide-functionalized metal–organic frameworks: Syntheses, structures and improved gas storage and separation properties. Coordination Chemistry Reviews, 2019, 378, 2-16.	9.5	213
5563	Goal-directed design of metal–organic frameworks for liquid-phase adsorption and separation. Coordination Chemistry Reviews, 2019, 378, 310-332.	9.5	82
5564	Multi-variate metal organic framework as efficient catalyst for the cycloaddition of CO2 and epoxides in a gas-liquid-solid reactor. Chemical Engineering Journal, 2020, 386, 121700.	6.6	56
5565	Construction of mixed carboxylate and pyrogallate building units for luminescent metal–organic frameworks. Chinese Chemical Letters, 2020, 31, 813-817.	4.8	10
5566	A novel Co-O cluster based coordination polymer for efficient hydrogen production photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 387, 112137.	2.0	8

#	Article	IF	CITATIONS
5567	Crystal structure determination and vibrational spectroscopic studies of terephthalate and 2-amino terephthalate complexes with the 1,10-di-amonium-decane cation. Journal of Molecular Structure, 2020, 1202, 127231.	1.8	2
5568	Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review. Separation and Purification Technology, 2020, 235, 116213.	3.9	489
5569	Composition Modulation and Structure Design of Inorganicâ€inâ€Polymer Composite Solid Electrolytes for Advanced Lithium Batteries. Small, 2020, 16, e1902813.	5.2	87
5570	Regulation of the microstructure of polyvinylidene fluoride membrane via incorporation of nanoâ€ZIFâ€7 for improving hydrophobicity and antiwetting performance. Journal of the Chinese Chemical Society, 2020, 67, 732-743.	0.8	2
5571	Metalâ€Organic Frameworks in Polymer Science: Polymerization Catalysis, Polymerization Environment, and Hybrid Materials. Macromolecular Rapid Communications, 2020, 41, e1900333.	2.0	109
5572	Functional nanostructured materials: Aerosol, aerogel, and de novo synthesis to emerging energy and environmental applications. Advanced Powder Technology, 2020, 31, 104-120.	2.0	28
5573	Synthesis and effect of metal–organic frame works on CO ₂ adsorption capacity at various pressures: A contemplating review. Energy and Environment, 2020, 31, 367-388.	2.7	29
5574	Exploiting hydrophobicity and hydrophilicity in nanopores as a design principle for "smart―MOF microtanks for methane storage. Molecular Systems Design and Engineering, 2020, 5, 166-176.	1.7	4
5575	Construction of CdLa2S4/MIL-88A(Fe) heterojunctions for enhanced photocatalytic H2-evolution activity via a direct Z-scheme electron transfer. Chemical Engineering Journal, 2020, 379, 122389.	6.6	54
5576	Assembly of MIL-101(Cr)-sulphonated poly(ether sulfone) membrane matrix for selective electrodialytic separation of Pb2+ from mono-/bi-valent ions. Chemical Engineering Journal, 2020, 382, 122688.	6.6	21
5577	Precise Control of Molecular Selfâ€Diffusion in Isoreticular and Multivariate Metalâ€Organic Frameworks. ChemPhysChem, 2020, 21, 32-35.	1.0	29
5578	Hierarchically porous metal–organic frameworks: synthetic strategies and applications. National Science Review, 2020, 7, 1743-1758.	4.6	161
5579	MIL-101(Cr)-NO2 as efficient catalyst for the aerobic oxidation of thiophenols and the oxidative desulfurization of dibenzothiophenes. Applied Catalysis A: General, 2020, 590, 117340.	2.2	21
5580	Methane sorption in a family of qzd-MOFs: A multiscale computational study. Chemical Engineering Journal, 2020, 384, 123296.	6.6	5
5581	Polymer/Metal Organic Framework (MOF) Nanocomposites for Biomedical Applications. Molecules, 2020, 25, 185.	1.7	173
5582	From Molecular Precursors to Nanoparticles—Tailoring the Adsorption Properties of Porous Carbon Materials by Controlled Chemical Functionalization. Advanced Functional Materials, 2020, 30, 1908371.	7.8	57
5583	Assembly of Molecular Building Blocks into Integrated Complex Functional Molecular Systems: Structuring Matter Made to Order. Advanced Functional Materials, 2020, 30, 1907625.	7.8	34
5584	Metal-organic framework-based CO2 capture: From precise material design to high-efficiency membranes. Frontiers of Chemical Science and Engineering, 2020, 14, 188-215.	2.3	31

#	Article	IF	CITATIONS
5585	Effect of Crystal Form Control on Improving Performance of Cu3(BTC)2 Immobilized Phosphotungstic Acid in Esterification of Cyclohexene with Formic Acid. Catalysis Letters, 2020, 150, 1786-1797.	1.4	7
5586	Seed-mediated evolution of hierarchical metal–organic framework quaternary superstructures. Chemical Science, 2020, 11, 1643-1648.	3.7	36
5587	A materials perspective on magnesium-ion-based solid-state electrolytes. Journal of Materials Chemistry A, 2020, 8, 2875-2897.	5.2	71
5588	Efficient polymerase chain reaction assisted by metal–organic frameworks. Chemical Science, 2020, 11, 797-802.	3.7	15
5589	A novel method for predicting decomposition onset temperature of high-energy metal–organic frameworks. Journal of Thermal Analysis and Calorimetry, 2020, 142, 1295-1302.	2.0	4
5590	MOF-Polymer Hybrid Materials: From Simple Composites to Tailored Architectures. Chemical Reviews, 2020, 120, 8267-8302.	23.0	512
5591	Control of the deprotonation of terephthalic acid assemblies on Ag(111) studied by DFT calculations and low temperature scanning tunneling microscopy. Physical Chemistry Chemical Physics, 2020, 22, 3173-3183.	1.3	3
5592	Organic–inorganic hybrids for CO2 sensing, separation and conversion. Nanoscale Horizons, 2020, 5, 431-453.	4.1	25
5593	Combined experimental and computational studies on preferential CO ₂ adsorption over a zinc-based porous framework solid. New Journal of Chemistry, 2020, 44, 1806-1816.	1.4	4
5594	Methane-trapping metal–organic frameworks with an aliphatic ligand for efficient CH ₄ /N ₂ separation. Sustainable Energy and Fuels, 2020, 4, 138-142.	2.5	50
5595	Novel Photoactive Spirooxazine Based Switch@MOF Composite Materials. ChemPhotoChem, 2020, 4, 195-206.	1.5	27
5596	Enhanced electrochemical behaviour of Co-MOF/PANI composite electrode for supercapacitors. Inorganica Chimica Acta, 2020, 502, 119393.	1.2	100
5597	Fabrication of a sensitive and fast response electrochemical glucose sensing platform based on co-based metal-organic frameworks obtained from rapid in situ conversion of electrodeposited cobalt hydroxide intermediates. Talanta, 2020, 210, 120696.	2.9	60
5598	Amino-Functionalized β-Cyclodextrin to Construct Green Metal–Organic Framework Materials for CO ₂ Capture. ACS Applied Materials & Interfaces, 2020, 12, 3032-3041.	4.0	72
5599	Ratiometric fluorescence sensing of metal-organic frameworks: Tactics and perspectives. Coordination Chemistry Reviews, 2020, 404, 213113.	9.5	245
5600	A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction. Journal of Power Sources, 2020, 448, 227375.	4.0	217
5601	Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials, 2020, 230, 119619.	5.7	378
5602	Microporous Metal-Organic Framework Materials for Gas Separation. CheM, 2020, 6, 337-363.	5.8	528

#	Article	IF	CITATIONS
5603	Ensemble Learning of Partition Functions for the Prediction of Thermodynamic Properties of Adsorption in Metal–Organic and Covalent Organic Frameworks. Journal of Physical Chemistry C, 2020, 124, 1907-1917.	1.5	13
5604	Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chemical Society Reviews, 2020, 49, 301-331.	18.7	685
5605	Mg-MOF-74/Polyvinyl acetate (PVAc) mixed matrix membranes for CO2 separation. Separation and Purification Technology, 2020, 238, 116411.	3.9	52
5606	Separation of Bromoalkanes Isomers by Nonporous Adaptive Crystals of Leaning Pillar[6]arene. Angewandte Chemie, 2020, 132, 2271-2275.	1.6	29
5607	Atomistic Insight Into the Host–Guest Interaction of a Photoresponsive Metal–Organic Framework. Chemistry - A European Journal, 2020, 26, 1263-1268.	1.7	17
5608	Mimic of Ferroalloy To Develop a Bifunctional Fe–Organic Framework Platform for Enhanced Gas Sorption and Efficient Oxygen Evolution Electrocatalysis. ACS Applied Materials & Interfaces, 2020, 12, 4432-4442.	4.0	22
5609	Structural Insight into Binary Protein Metal–Organic Frameworks with Ferritin Nanocages as Linkers and Nickel Clusters as Nodes. Chemistry - A European Journal, 2020, 26, 3016-3021.	1.7	19
5610	Water-alcohol adsorptive separations using metal-organic frameworks and their composites as adsorbents. Microporous and Mesoporous Materials, 2020, 295, 109946.	2.2	21
5611	Machine Learning Enabled Tailor-Made Design of Application-Specific Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2020, 12, 734-743.	4.0	42
5612	Electrochemical Instability of Metal–Organic Frameworks: In Situ Spectroelectrochemical Investigation of the Real Active Sites. ACS Catalysis, 2020, 10, 81-92.	5.5	248
5613	Separation of Bromoalkanes Isomers by Nonporous Adaptive Crystals of Leaning Pillar[6]arene. Angewandte Chemie - International Edition, 2020, 59, 2251-2255.	7.2	105
5614	Metal-organic framework-based nanomaterials for biomedical applications. Chinese Chemical Letters, 2020, 31, 1060-1070.	4.8	88
5615	Thermodynamic limits on cell size in the production of stable polymeric nanocellular materials. Polymer, 2020, 186, 122036.	1.8	4
5616	Preparation of cobalt-based metal organic framework and its application as synergistic flame retardant in thermoplastic polyurethane (TPU). Composites Part B: Engineering, 2020, 182, 107498.	5.9	115
5617	Diverse Structures and Dimensionalities in Zn(II), Cd(II), and Hg(II) Metal Complexes with Piperonylic Acid. Crystal Growth and Design, 2020, 20, 383-400.	1.4	20
5618	A Highly Stable Triazoleâ€Functionalized Metal–Organic Framework Integrated with Exposed Metal Sites for Selective CO ₂ Capture and Conversion. Chemistry - A European Journal, 2020, 26, 2658-2665.	1.7	23
5619	Swift and Efficient Nuclear Spin Conversion of Molecular Hydrogen Confined in Prussian Blue Analogs. Chemistry Letters, 2020, 49, 149-152.	0.7	1
5620	Recent progress in metal-organic frameworks as active materials for supercapacitors. EnergyChem, 2020, 2, 100025.	10.1	326

#	Article	IF	CITATIONS
5621	A comparative study of the physical and chemical properties of pelletized HKUST-1, ZIF-8, ZIF-67 and UiO-66 powders. Heliyon, 2020, 6, e04883.	1.4	18
5622	MOF-Assisted Synthesis of Highly Mesoporous Cr ₂ O ₃ /SiO ₂ Nanohybrids for Efficient Lewis-Acid-Catalyzed Reactions. ACS Applied Materials & Interfaces, 2020, 12, 48691-48699.	4.0	14
5623	A critical review on recent developments in MOF adsorbents for the elimination of toxic heavy metals from aqueous solutions. Environmental Science and Pollution Research, 2020, 27, 44771-44796.	2.7	83
5624	Digital Reticular Chemistry. CheM, 2020, 6, 2219-2241.	5.8	96
5625	Exciton Coupling and Conformational Changes Impacting the Excited State Properties of Metal Organic Frameworks. Molecules, 2020, 25, 4230.	1.7	9
5626	Metal-organic frameworks for virus detection. Biosensors and Bioelectronics, 2020, 169, 112604.	5.3	71
5627	Theoretical Study on Neutral Molecules with Square Planar Tetracoordinate Oxygen O(B)4 Arrangements. ACS Omega, 2020, 5, 24513-24519.	1.6	2
5628	Reticular Materials for Artificial Photoreduction of CO ₂ . Advanced Energy Materials, 2020, 10, 2002091.	10.2	92
5629	The chemistry of Ce-based metal–organic frameworks. Dalton Transactions, 2020, 49, 16551-16586.	1.6	76
5631	Design of higher valency in covalent organic frameworks. Science, 2020, 370, .	6.0	189
5631	Design of higher valency in covalent organic frameworks. Science, 2020, 370, . Single Source Precursor for PAD-LaMnO3 Thin Films. Crystals, 2020, 10, 851.	6.0	0
5631 5632 5633	Design of higher valency in covalent organic frameworks. Science, 2020, 370, . Single Source Precursor for PAD-LaMnO3 Thin Films. Crystals, 2020, 10, 851. Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review. Renewable and Sustainable Energy Reviews, 2020, 133, 110246.	6.0 1.0 8.2	0 58
5631 5632 5633 5634	Design of higher valency in covalent organic frameworks. Science, 2020, 370, . Single Source Precursor for PAD-LaMnO3 Thin Films. Crystals, 2020, 10, 851. Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review. Renewable and Sustainable Energy Reviews, 2020, 133, 110246. Removal of inorganic arsenic from water using metal organic frameworks. Journal of Environmental Sciences, 2020, 97, 162-168.	6.0 1.0 8.2 3.2	189 0 58 14
5631 5632 5633 5634 5635	Design of higher valency in covalent organic frameworks. Science, 2020, 370, . Single Source Precursor for PAD-LaMnO3 Thin Films. Crystals, 2020, 10, 851. Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review. Renewable and Sustainable Energy Reviews, 2020, 133, 110246. Removal of inorganic arsenic from water using metal organic frameworks. Journal of Environmental Sciences, 2020, 97, 162-168. A Novel Lowâ€Cost Approach to Chloromethylated MILâ€101(Cr) Using p â€Xylene as Starting Material. ChemistrySelect, 2020, 5, 11910-11914.	6.0 1.0 8.2 3.2 0.7	189 0 58 14 2
5631 5632 5633 5634 5635 5636	Design of higher valency in covalent organic frameworks. Science, 2020, 370, . Single Source Precursor for PAD-LaMnO3 Thin Films. Crystals, 2020, 10, 851. Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review. Renewable and Sustainable Energy Reviews, 2020, 133, 110246. Removal of inorganic arsenic from water using metal organic frameworks. Journal of Environmental Sciences, 2020, 97, 162-168. A Novel Lowâ€Cost Approach to Chloromethylated MILâ€101(Cr) Using p â€Xylene as Starting Material. ChemistrySelect, 2020, 5, 11910-11914. Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction. Nature, 2020, 586, 549-554.	 6.0 1.0 8.2 3.2 0.7 13.7 	189 0 58 14 2 554
5631 5632 5633 5634 5635 5636 5636	Design of higher valency in covalent organic frameworks. Science, 2020, 370, . Single Source Precursor for PAD-LaMnO3 Thin Films. Crystals, 2020, 10, 851. Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review. Renewable and Sustainable Energy Reviews, 2020, 133, 110246. Removal of inorganic arsenic from water using metal organic frameworks. Journal of Environmental Sciences, 2020, 97, 162-168. A Novel Lowâ€Cost Approach to Chloromethylated MILâ€101(Cr) Using p â€Xylene as Starting Material. ChemistrySelect, 2020, 5, 11910-11914. Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction. Nature, 2020, 586, 549-554. Coordination and space confined preparation of nickel sub-nanoparticles within a metal-organic framework for catalytic degradation of methyl orange. Journal of Environmental Chemical Engineering, 2020, 8, 104363.	 6.0 1.0 8.2 3.2 0.7 13.7 3.3 	189 0 58 14 2 554 9
5631 5632 5633 5634 5635 5636 5636	Design of higher valency in covalent organic frameworks. Science, 2020, 370, . Single Source Precursor for PAD-LaMnO3 Thin Films. Crystals, 2020, 10, 851. Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review. Renewable and Sustainable Energy Reviews, 2020, 133, 110246. Removal of inorganic arsenic from water using metal organic frameworks. Journal of Environmental Sciences, 2020, 97, 162-168. A Novel Lowâ€Cost Approach to Chloromethylated MILâ€401(Cr) Using p â€Xylene as Starting Material. ChemistrySelect, 2020, 5, 11910-11914. Filling metal–organic framework mesopores with TiO2 for CO2 photoreduction. Nature, 2020, 586, 549-554. Coordination and space confined preparation of nickel sub-nanoparticles within a metal-organic framework for catalytic degradation of methyl orange. Journal of Environmental Chemical Engineering, 2020, 8, 104363. Design and Precursor-based Solid-State Synthesis of Mixed-Linker Zr-MIL-140A. Inorganic Chemistry, 2020, 59, 15250-15261.	 6.0 1.0 8.2 3.2 0.7 13.7 3.3 1.9 	189 0 58 14 2 554 9 4

#	Article	IF	CITATIONS
5640	Ethylendiamine (EDA) loading on MOF-5 for enhanced carbon dioxide capture applications. IOP Conference Series: Earth and Environmental Science, 2020, 471, 012009.	0.2	1
5641	Metal-organic frameworks based on pyrazole subunit for batteries applications: A systematic review. Materials Today: Proceedings, 2020, 31, S96-S102.	0.9	8
5642	Porous materials as carriers of gasotransmitters towards gas biology and therapeutic applications. Chemical Communications, 2020, 56, 9750-9766.	2.2	20
5643	Aggregation-Induced Emission-Responsive Metal–Organic Frameworks. Chemistry of Materials, 2020, 32, 6706-6720.	3.2	81
5644	Inclusion and release of ant alarm pheromones from metal–organic frameworks. Dalton Transactions, 2020, 49, 10334-10338.	1.6	10
5645	Chiral Macroporous MOF Surfaces for Electroassisted Enantioselective Adsorption and Separation. ACS Applied Materials & amp; Interfaces, 2020, 12, 36548-36557.	4.0	36
5646	Recent Progress on Microfine Design of Metal–Organic Frameworks: Structure Regulation and Gas Sorption and Separation. Advanced Materials, 2020, 32, e2002563.	11.1	160
5647	New three-dimensional Zn(II)/Cd(II)-based coordination polymers as luminescent sensor for Cu2+. Inorganica Chimica Acta, 2020, 512, 119886.	1.2	5
5648	Electronic Structure Modeling of Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8641-8715.	23.0	149
5649	NH2-UiO-66 with heterogeneous pores assists zinc indium sulfide in accelerating the photocatalytic H2 evolution under visible-light irradiation. Solar Energy, 2020, 207, 599-608.	2.9	19
5650	Unprecedented Radiation Resistant Thorium–Binaphthol Metal–Organic Framework. Journal of the American Chemical Society, 2020, 142, 13299-13304.	6.6	43
5651	Quest for an Optimal Methane Hydrate Formation in the Pores of Hydrolytically Stable Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 13391-13397.	6.6	65
5652	Fabrication of Ordered Macroâ€Microporous Single rystalline MOF and Its Derivative Carbon Material for Supercapacitor. Advanced Energy Materials, 2020, 10, 1903750.	10.2	137
5653	Introducing a Cantellation Strategy for the Design of Mesoporous Zeolite-like Metal–Organic Frameworks: Zr-sod-ZMOFs as a Case Study. Journal of the American Chemical Society, 2020, 142, 20547-20553.	6.6	31
5654	A polyoxometalate-encapsulated nanocage cluster organic framework built from {Cu ₄ P ₂ } units and its efficient bifunctional electrochemical performance. Chemical Communications, 2020, 56, 15177-15180.	2.2	61
5655	Fabrication of poly(ethylene terephthalate)/polypropylene-based elastomer blends with balanced stiffness-toughness: The effect of reactive compatibilization. Journal of Thermoplastic Composite Materials, 2020, , 089270572097323.	2.6	2
5656	Metal-Organic Frameworks History and Structural Features. Series on Chemical Engineering, 2020, , 1-29.	0.2	5
5657	Design of Hierarchical Architectures in Metal–Oganic Frameworks for Catalysis and Adsorption. Chemistry of Materials, 2020, 32, 10268-10295.	3.2	68

#	Article	IF	Citations
5658	Accelerating Discovery of Metal–Organic Frameworks for Methane Adsorption with Hierarchical Screening and Deep Learning. ACS Applied Materials & Interfaces, 2020, 12, 52797-52807.	4.0	31
5659	Design of Zeolite-Covalent Organic Frameworks for Methane Storage. Materials, 2020, 13, 3322.	1.3	6
5660	High 3D Proton Conductivity of a 2D Zn(II) Metal–Organic Framework Synthesized via Water-Assisted Single-Crystal-to-Single-Crystal Phase Transformation. Journal of Physical Chemistry C, 2020, 124, 18901-18910.	1.5	15
5661	A Porphyrinic Zirconium Metal–Organic Framework for Oxygen Reduction Reaction: Tailoring the Spacing between Active-Sites through Chain-Based Inorganic Building Units. Journal of the American Chemical Society, 2020, 142, 15386-15395.	6.6	139
5662	Hierarchical metal–organic frameworks constructed from intergrowth for the adsorption of light hydrocarbons. Materials Chemistry Frontiers, 2020, 4, 3057-3062.	3.2	7
5663	Removal of particulate matter with metal–organic framework-incorporated materials. Coordination Chemistry Reviews, 2020, 422, 213477.	9.5	66
5664	Effects of Free Volume on Shock-Wave Energy Absorption in A Metal–Organic Framework: A Molecular Dynamics Investigation. Journal of Physical Chemistry C, 2020, 124, 17027-17038.	1.5	5
5666	Synthesis and development of metal–organic frameworks. , 2020, , 3-43.		7
5667	Multifaceted functionalities constructed from pyrazine-based AIEgen system. Coordination Chemistry Reviews, 2020, 422, 213472.	9.5	39
5668	Amino Acid Residues Determine the Response of Flexible Metal–Organic Frameworks to Guests. Journal of the American Chemical Society, 2020, 142, 14903-14913.	6.6	29
5669	Immobilization of UiO-67 with photochromic spiropyrans: a quantum chemical study. Journal of Molecular Modeling, 2020, 26, 212.	0.8	2
5670	Reverse shape selectivity of hexane isomer in ligand inserted MOF-74. RSC Advances, 2020, 10, 22601-22605.	1.7	8
5671	Review of the Biomolecular Modification of the Metal-Organ-Framework. Frontiers in Chemistry, 2020, 8, 642.	1.8	20
5672	A Series of Mesoporous Metalâ€Organic Frameworks with Tunable Windows Sizes and Exceptionally High Ethane over Ethylene Adsorption Selectivity. Angewandte Chemie - International Edition, 2020, 59, 20561-20567.	7.2	90
5673	Effect of Ligand Functionalization on the Separation of Small Hydrocarbons and CO ₂ by a Series of MUF-15 Analogues. Chemistry of Materials, 2020, 32, 6744-6752.	3.2	32
5674	Exploratory studies of a multidimensionally talented simple Mn ^{II} -based porous network: selective "turn-on―recognition @ cysteine over homocysteine with an indication of cystinuria and renal dysfunction. New Journal of Chemistry, 2020, 44, 14712-14722.	1.4	29
5675	A Series of Mesoporous Metalâ€Organic Frameworks with Tunable Windows Sizes and Exceptionally High Ethane over Ethylene Adsorption Selectivity. Angewandte Chemie, 2020, 132, 20742-20748.	1.6	21
5676	Estimation of CO2 adsorption in high capacity metalâ~'organic frameworks: Applications to greenhouse gas control. Journal of CO2 Utilization, 2020, 41, 101256.	3.3	26

#	Article	IF	CITATIONS
5677	Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chemical Society Reviews, 2020, 49, 6364-6401.	18.7	784
5678	Optimized nanospace of coordination isomers with selenium sites for acetylene separation. Inorganic Chemistry Frontiers, 2020, 7, 3195-3203.	3.0	12
5679	Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations. Coordination Chemistry Reviews, 2020, 422, 213470.	9.5	124
5680	Message Passing Neural Networks for Partial Charge Assignment to Metal–Organic Frameworks. Journal of Physical Chemistry C, 2020, 124, 19070-19082.	1.5	42
5681	Facile synthesis of carbon-based nanoporous adsorbent exhibiting high ammonia uptake under low pressure range. Microporous and Mesoporous Materials, 2020, 307, 110460.	2.2	8
5682	Structures and Structural Evolution of Sublayer Surfaces of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 21419-21424.	7.2	18
5683	Understanding the diversity of the metal-organic framework ecosystem. Nature Communications, 2020, 11, 4068.	5.8	282
5684	Designing a bifunctional metal-organic framework by tandem post-synthetic modifications; an efficient and recyclable catalyst for Suzuki-Miyaura cross-coupling reaction. Polyhedron, 2020, 189, 114749.	1.0	5
5685	MOF-derived strategy for monodisperse Cd0.5Zn0.5S nanospheres with enhanced photocatalytic activity for hydrogen evolution. Journal of Alloys and Compounds, 2020, 849, 156669.	2.8	14
5686	Facile directions for synthesis, modification and activation of MOFs. Materials Today Chemistry, 2020, 17, 100343.	1.7	53
5687	Triethylamine as a tuning agent of the MIL-125 particle morphology and its effect on the photocatalytic activity. SN Applied Sciences, 2020, 2, 1.	1.5	5
5688	Series of M-MOF-184 (M = Mg, Co, Ni, Zn, Cu, Fe) Metal–Organic Frameworks for Catalysis Cycloaddition of CO ₂ . Inorganic Chemistry, 2020, 59, 16747-16759.	1.9	81
5689	Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies. Energies, 2020, 13, 5602.	1.6	19
5690	Metal Halide Perovskite@Metalâ€Organic Framework Hybrids: Synthesis, Design, Properties, and Applications. Small, 2020, 16, e2004891.	5.2	46
5691	Structural evolution of ZIF-67-derived catalysts for furfural hydrogenation. Journal of Catalysis, 2020, 392, 302-312.	3.1	25
5692	Isoreticular Design of Two Novel Metal Organic Frameworks and Their Single-Crystal-to-Single-Crystal Solvent Exchange Properties. Crystal Growth and Design, 2020, 20, 7822-7832.	1.4	3
5693	Atoms and the void: modular construction of ordered porous solids. Nature Communications, 2020, 11, 4652.	5.8	17
5694	Selective adsorption behaviours of MOFs@SiO2 with different pore sizes and shell thicknesses. Journal of Solid State Chemistry, 2020, 292, 121693.	1.4	14

#	Article	IF	Citations
5695	Photoactive Molecules within MOFs. Structure and Bonding, 2020, , 105-153.	1.0	2
5696	The various levels of integration of chemo- and bio-catalysis towards hybrid catalysis. Catalysis Science and Technology, 2020, 10, 7082-7100.	2.1	27
5697	Integration and Synergy of Organic Single Crystals and Metal–Organic Frameworks in Core–Shell Heterostructures Enables Outstanding Gas Selectivity for Detection. Advanced Functional Materials, 2020, 30, 2005727.	7.8	17
5698	A historical overview of the activation and porosity of metal–organic frameworks. Chemical Society Reviews, 2020, 49, 7406-7427.	18.7	367
5699	Rational design and synthesis of ultramicroporous metal-organic frameworks for gas separation. Coordination Chemistry Reviews, 2020, 423, 213485.	9.5	127
5700	An in situ approach to functionalize metal–organic frameworks with tertiary aliphatic amino groups. Chemical Communications, 2020, 56, 13177-13180.	2.2	10
5701	Hydrogen Sulfide (H2S) Removal via MOFs. Materials, 2020, 13, 3640.	1.3	43
5702	Evolution of the Design of CH4 Adsorbents. Surfaces, 2020, 3, 433-466.	1.0	10
5703	Amino-functionalized Zn metal organic frameworks as antitumor drug curcumin carriers. New Journal of Chemistry, 2020, 44, 17693-17704.	1.4	19
5704	Structures and Structural Evolution of Sublayer Surfaces of Metal–Organic Frameworks. Angewandte Chemie, 2020, 132, 21603-21608.	1.6	2
5705	Lanthanide Contraction in Action: Structural Variations in 13 Lanthanide(III) Thiophene-2,5-dicarboxylate Coordination Polymers (Ln = La–Lu, Except Pm and Tm) Featuring Magnetocaloric Effect, Slow Magnetic Relaxation, and Luminescence-Lifetime-based Thermometry. Crystal Growth and Design, 2020, 20, 6430-6452.	1.4	41
5706	In Situ Formation of CoMoS Interfaces for Selective Hydrodeoxygenation of <i>p</i> -Cresol to Toluene. Industrial & Engineering Chemistry Research, 2020, 59, 15921-15928.	1.8	16
5707	Metal–Organic Framework-Intercalated Graphene Oxide Membranes for Highly Efficient Oil/Water Separation. Industrial & Engineering Chemistry Research, 2020, 59, 16762-16771.	1.8	38
5708	Reticular Chemistry in the Construction of Porous Organic Cages. Journal of the American Chemical Society, 2020, 142, 18060-18072.	6.6	81
5709	Extension of Surface Organometallic Chemistry to Metal–Organic Frameworks: Development of a Well-Defined Single Site [(≡Zr–Oâ~')W(â•O)(CH ₂ ^{<i>t</i>} Bu) ₃] Olefi Metathesis Catalyst. Journal of the American Chemical Society, 2020, 142, 16690-16703.	n 6 . 6	31
5710	Metal–Organic Frameworks Based on Group 3 and 4 Metals. Advanced Materials, 2020, 32, e2004414.	11.1	69
5711	2D Porous Organic Templates via Cocrystallization of Melamine with Disulfonic Acids: Adsorption of Various Alcohols in SCSC Mode. Crystal Growth and Design, 2020, 20, 7027-7033.	1.4	7
5712	Facile preparation of polymer-grafted ZIF-8-modified magnetic nanospheres for effective identification and capture of phosphorylated and glycosylated peptides. Analytical Methods, 2020, 12, 4657-4664.	1.3	24

#	Article	IF	CITATIONS
5713	Ensemble-machine-learning-based correlation analysis of internal and band characteristics of thermoelectric materials. Journal of Materials Chemistry C, 2020, 8, 13079-13089.	2.7	9
5714	Immobilization of a Polar Sulfone Moiety onto the Pore Surface of a Humid-Stable MOF for Highly Efficient CO ₂ Separation under Dry and Wet Environments through Direct CO ₂ –Sulfone Interactions. ACS Applied Materials & Interfaces, 2020, 12, 41177-41184.	4.0	30
5715	Probing Nonuniform Adsorption in Multicomponent Metal–Organic Frameworks via Segmental Dynamics by Solid-State Nuclear Magnetic Resonance. Journal of Physical Chemistry Letters, 2020, 11, 7167-7176.	2.1	7
5716	Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications. Polymers, 2020, 12, 1861.	2.0	84
5717	Aqueous Stability and Ligand Substitution of a Layered Cu(I)/Isocyanide-Based Organometallic Network Material with a Well-Defined Channel Structure. Inorganic Chemistry, 2020, 59, 11868-11878.	1.9	8
5718	Evaluating the Fitness of Combinations of Adsorbents for Quantitative Gas Sensor Arrays. ACS Sensors, 2020, 5, 4035-4047.	4.0	7
5719	Conformal Functionalization of Cotton Fibers via Isoreticular Expansion of UiO-66 Metal-Organic Frameworks. Coatings, 2020, 10, 1172.	1.2	6
5720	Intermediate Binding Control Using Metal–Organic Frameworks Enhances Electrochemical CO ₂ Reduction. Journal of the American Chemical Society, 2020, 142, 21513-21521.	6.6	133
5721	Strategies for Controlling Through-Space Charge Transport in Metal-Organic Frameworks via Structural Modifications. Nanomaterials, 2020, 10, 2372.	1.9	4
5722	Electrostatic Design of Polar Metal–Organic Framework Thin Films. Nanomaterials, 2020, 10, 2420.	1.9	4
5723	Advances and Challenges in the Creation of Porous Metal Phosphonates. Materials, 2020, 13, 5366.	1.3	13
5724	Selective Separation of Methylfuran and Dimethylfuran by Nonporous Adaptive Crystals of Pillararenes. Journal of the American Chemical Society, 2020, 142, 19722-19730.	6.6	48
5725	Alkaline earth-organic frameworks with amino derivatives of 2,6-naphthalene dicarboxylates: structural studies and fluorescence properties. Dalton Transactions, 2020, 49, 16736-16744.	1.6	3
5726	The role of defects in the properties of functional coordination polymers. Advances in Inorganic Chemistry, 2020, 76, 73-119.	0.4	6
5727	MOF water harvesters. Nature Nanotechnology, 2020, 15, 348-355.	15.6	400
5728	Structure and redox tuning of gas adsorption properties in calixarene-supported Fe(<scp>ii</scp>)-based porous cages. Chemical Science, 2020, 11, 5273-5279.	3.7	19
5729	MOFs-derived core-shell Co3Fe7@Fe2N nanopaticles supported on rGO as high-performance bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Materials Today Energy, 2020, 17, 100433.	2.5	29
5730	Structures and photocatalytic properties of two new Zn(<scp>ii</scp>) coordination polymers based on semi-rigid V-shaped multicarboxylate ligands. RSC Advances, 2020, 10, 18721-18727.	1.7	16

#	Article	IF	CITATIONS
5731	Effect of Larger Pore Size on the Sorption Properties of Isoreticular Metal–Organic Frameworks with High Number of Open Metal Sites. Chemistry - A European Journal, 2020, 26, 13523-13531.	1.7	8
5732	Phosphonate Metal–Organic Frameworks: A Novel Family of Semiconductors. Advanced Materials, 2020, 32, e2000474.	11.1	29
5733	Two-Dimensional Multifunctional Metal–Organic Frameworks with Simultaneous Ferro-/Ferrimagnetism and Vertical Ferroelectricity. Journal of Physical Chemistry Letters, 2020, 11, 4193-4197.	2.1	30
5734	Modulated synthesis and isoreticular expansion of Th-MOFs with record high pore volume and surface area for iodine adsorption. Chemical Communications, 2020, 56, 6715-6718.	2.2	81
5735	Optical nonlinearity of zeolitic imidazolate framework-67 in the near-infrared region. Materials Chemistry Frontiers, 2020, 4, 2081-2088.	3.2	31
5736	Molecular simulation on the stability and adsorption properties of choline-based ionic liquids/IRMOF-1 hybrid composite for selective H2S/CO2 capture. Journal of Hazardous Materials, 2020, 399, 123008.	6.5	20
5737	Novel monoanionic diphenate-nicotinamide/N,N-diethylnicotinamide complexes of Nill, ZnII. Synthesis, structural investigations and hydrogen adsorption study. Journal of Molecular Structure, 2020, 1218, 128514.	1.8	3
5738	<i>Ab Initio</i> Prediction of Metal-Organic Framework Structures. Chemistry of Materials, 2020, 32, 5835-5844.	3.2	11
5739	Imaging the node-linker coordination in the bulk and local structures of metal-organic frameworks. Nature Communications, 2020, 11, 2692.	5.8	82
5740	Major advances in the development of ordered mesoporous materials. Chemical Communications, 2020, 56, 7836-7848.	2.2	74
5741	Crystalline MOF nanofilm-based SALDI-MS array for determination of small molecules. Mikrochimica Acta, 2020, 187, 326.	2.5	7
5742	Cubes on a string: a series of linear coordination polymers with cubane-like nodes and dicarboxylate linkers. Nanoscale, 2020, 12, 11601-11611.	2.8	6
5743	Pore Chemistry of Metal–Organic Frameworks. Advanced Functional Materials, 2020, 30, 2000238.	7.8	245
5744	London Dispersion Governs the Interaction Mechanism of Small Polar and Nonpolar Molecules in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2020, 124, 11985-11989.	1.5	7
5745	Size-controlled Synthesis of Zeolitic Imidazolate Framework-67 (ZIF-67) Using Electrospray in Liquid Phase. Chemistry Letters, 2020, 49, 875-878.	0.7	2
5746	Topological effects on separation of alkane isomers in metalâ~'organic frameworks. Fluid Phase Equilibria, 2020, 519, 112642.	1.4	8
5747	Emerging trends in porous materials for CO ₂ capture and conversion. Chemical Society Reviews, 2020, 49, 4360-4404.	18.7	473
5748	Recent Progress in Stimulus-Responsive Two-Dimensional Metal–Organic Frameworks. , 2020, 2, 779-797.		187

#	Article	IF	CITATIONS
5749	Colloidal crystal engineering with metal–organic framework nanoparticles and DNA. Nature Communications, 2020, 11, 2495.	5.8	114
5750	Metal removal from the secondary building unit of bio-MOF-1 by adenine N6-alkylation while retaining the overall 3D porous topology. CrystEngComm, 2020, 22, 4201-4205.	1.3	2
5751	Self-adjusting binding pockets enhance H ₂ and CH ₄ adsorption in a uranium-based metal–organic framework. Chemical Science, 2020, 11, 6709-6716.	3.7	25
5752	Substituent-controlled Constructions of M ₂ L ₄ Cage and 1D Network Structures for Cu(II) Complexes with Bis-benzimidazole Ligands. Chemistry Letters, 2020, 49, 832-835.	0.7	2
5753	A turn-on fluorescence sensor for creatinine based on the quinoline-modified metal organic frameworks. Talanta, 2020, 219, 121280.	2.9	38
5754	Metal–organic frameworks for solid-state electrolytes. Energy and Environmental Science, 2020, 13, 2386-2403.	15.6	182
5755	Controlled synthesis of ZnO nanoparticles from a Zn(II) coordination polymer: Structural characterization, optical properties and photocatalytic activity. Applied Organometallic Chemistry, 2020, 34, e5858.	1.7	7
5756	Rational design an amorphous multifunctional δ-MnO2@Fe/Mg-MIL-88B nanocomposites with tailored components for efficient and rapid removal of arsenic in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125141.	2.3	19
5757	Cation exchange in metal-organic frameworks (MOFs): The hard-soft acid-base (HSAB) principle appraisal. Inorganica Chimica Acta, 2020, 511, 119801.	1.2	75
5758	Steady-state electrochemical synthesis of HKUST-1 with polarity reversal. Microporous and Mesoporous Materials, 2020, 303, 110218.	2.2	19
5759	Optimization of Washing Processes in Solvothermal Synthesis of Nickel-Based MOF-74. Materials, 2020, 13, 2741.	1.3	32
5760	Pristine MOF and COF materials for advanced batteries. Energy Storage Materials, 2020, 31, 115-134.	9.5	149
5761	Scandium Metal–Organic Frameworks Containing Tetracarboxylate Linker Molecules: Synthesis, Structural Relationships, and Properties. Crystal Growth and Design, 2020, 20, 4686-4694.	1.4	18
5762	Four novel cobalt(II) succinate coordination polymers with N-heterocyclic ligands: crystal structures, spectral properties, magnetism and computational study. Chemical Papers, 2020, 74, 3741-3753.	1.0	2
5763	Intermarriage of Halide Perovskites and Metalâ€Organic Framework Crystals. Angewandte Chemie - International Edition, 2020, 59, 19434-19449.	7.2	73
5764	A Scandium MOF with an Unprecedented Inorganic Building Unit, Delimiting the Micropore Windows. Inorganic Chemistry, 2020, 59, 8995-9004.	1.9	11
5765	Intermarriage of Halide Perovskites and Metalâ€Organic Framework Crystals. Angewandte Chemie, 2020, 132, 19602-19617.	1.6	14
5766	Metal-organic frameworks as adsorbents for sequestering organic pollutants from wastewater. Materials Chemistry and Physics, 2020, 253, 123246.	2.0	56

#	Article	IF	CITATIONS
5767	Insights into the Adsorption of VOCs on a Cobalt-Adeninate Metal–Organic Framework (Bio-MOF-11). ACS Omega, 2020, 5, 15402-15408.	1.6	45
5768	Ligand Functionalization in Zirconiumâ€Based Metalâ€Organic Frameworks for Enhanced Carbon Dioxide Fixation. Advanced Sustainable Systems, 2020, 4, 2000098.	2.7	9
5769	Activatable nanoscale metal-organic framework for ratiometric photoacoustic imaging of hydrogen sulfide and orthotopic colorectal cancer in vivo. Science China Chemistry, 2020, 63, 1315-1322.	4.2	31
5770	Advances in Membrane Materials and Processes for Water and Wastewater Treatment. ACS Symposium Series, 2020, , 3-35.	0.5	13
5771	Recent advances in the shaping of metal–organic frameworks. Inorganic Chemistry Frontiers, 2020, 7, 2840-2866.	3.0	88
5772	Advances in luminescent metal-organic framework sensors based on post-synthetic modification. TrAC - Trends in Analytical Chemistry, 2020, 129, 115939.	5.8	80
5773	Low-field NMR relaxation-exchange measurements for the study of gas admission in microporous solids. Physical Chemistry Chemical Physics, 2020, 22, 13689-13697.	1.3	9
5774	Impact of the Preparation Procedure on the Performance of the Microporous HKUST-1 Metal-Organic Framework in the Liquid-Phase Separation of Aromatic Compounds. Molecules, 2020, 25, 2648.	1.7	12
5775	Room temperature aqueous synthesis of UiO-66 derivatives <i>via</i> postsynthetic exchange. Dalton Transactions, 2020, 49, 8841-8845.	1.6	19
5776	Octafluorobiphenyl-4,4′-dicarboxylate as a ligand for metal-organic frameworks: progress and perspectives. Pure and Applied Chemistry, 2020, 92, 1081-1092.	0.9	2
5777	Preparation of Polystyrene Nanofiber-Supported Metal-Organic Framework with Formaldehyde Adsorption Properties. Journal of Fiber Science and Technology, 2020, 76, 43-49.	0.2	6
5778	Design and Construction of a Luminescent and Highly Stable 3D Metal–Organic Framework with a [Zn ₄ (μ ₃ -OH) ₂] ⁶⁺ Core. Inorganic Chemistry, 2020, 59, 4588-4600.	1.9	58
5779	Reversible Solid-State Isomerism of Azobenzene-Loaded Large-Pore Isoreticular Mg-CUK-1. Journal of the American Chemical Society, 2020, 142, 6467-6471.	6.6	18
5780	Robust Bimetallic Ultramicroporous Metal–Organic Framework for Separation and Purification of Noble Gases. Inorganic Chemistry, 2020, 59, 4868-4873.	1.9	39
5781	Hierarchy in Metal–Organic Frameworks. ACS Central Science, 2020, 6, 359-367.	5.3	130
5782	Preparation of Porous Carbons from Petroleum Pitch and Polyaniline by Thermal Treatment for Methane Storage. Industrial & Engineering Chemistry Research, 2020, 59, 5775-5785.	1.8	8
5783	Significantly enhanced CO oxidation activity induced by a change in the CO adsorption site on Pd nanoparticles covered with metal–organic frameworks. Chemical Communications, 2020, 56, 3839-3842.	2.2	7
5784	Prospects of nanocomposite membranes for the recovery of hydrogen and production of syngas. , 2020, , 397-437.		0

#	Δρτιςι ε	IF	CITATIONS
π		п	CHAHONS
5785	Secondary building units of MOFs. , 2020, , 11-44.		7
5786	Postsynthetic modification of MOFs for biomedical applications. , 2020, , 245-276.		1
5787	Fabrication of NH ₂ -MIL-125 nanocrystals for high performance photocatalytic oxidation. Sustainable Energy and Fuels, 2020, 4, 2823-2830.	2.5	27
5788	Investigation of spectral and structural properties of a coordination compound with phthalic acid: DFT and molecular docking studies. Journal of Coordination Chemistry, 2020, 73, 671-685.	0.8	1
5790	Charting the Metal-Dependent High-Pressure Stability of Bimetallic UiO-66 Materials. , 2020, 2, 438-445.		21
5791	Synthesis, crystal structure, and optical properties of fluorinated poly(pyrazole) ligands and <i>in silico</i> assessment of their affinity for volatile organic compounds. New Journal of Chemistry, 2020, 44, 6443-6455.	1.4	7
5792	Two copper (II) complexes based on different copper salts, 1,3-benzenedicarboxylic acid and 1,4-di(imidazolidin-1-yl) benzene and their fluorescence recognition to nitrobenzene derivatives. Journal of Solid State Chemistry, 2020, 287, 121334.	1.4	4
5793	Critical role of water stability in metal–organic frameworks and advanced modification strategies for the extension of their applicability. Environmental Science: Nano, 2020, 7, 1319-1347.	2.2	79
5794	Highly efficient CO ₂ capture and conversion of a microporous acylamide functionalized <i>rht</i> -type metal–organic framework. Inorganic Chemistry Frontiers, 2020, 7, 1939-1948.	3.0	24
5795	Rapid Generation of Hierarchically Porous Metal–Organic Frameworks through Laser Photolysis. Angewandte Chemie - International Edition, 2020, 59, 11349-11354.	7.2	54
5796	Rapid Generation of Hierarchically Porous Metal–Organic Frameworks through Laser Photolysis. Angewandte Chemie, 2020, 132, 11445-11450.	1.6	16
5797	Hierarchically porous monolithic MOFs: An ongoing challenge for industrial-scale effluent treatment. Chemical Engineering Journal, 2020, 393, 124765.	6.6	75
5798	Heterometallic Titanium–Organic Frameworks by Metal-Induced Dynamic Topological Transformations. Journal of the American Chemical Society, 2020, 142, 6638-6648.	6.6	40
5799	Porous Material Screening and Evaluation for Deep Desulfurization of Dry Air. Langmuir, 2020, 36, 2775-2785.	1.6	10
5800	Metal Organic Frameworks as Tunable Linear Magnets. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1901000.	0.8	13
5801	Remarkable adsorption performance of MOF-199 derived porous carbons for benzene vapor. Environmental Research, 2020, 184, 109323.	3.7	42
5802	Investigation of the mechanism of metal–organic frameworks preventing polysulfide shuttling from the perspective of composition and structure. Journal of Materials Chemistry A, 2020, 8, 6661-6669.	5.2	28
5803	A lanthanide MOF immobilized in PMMA transparent films as a selective fluorescence sensor for nitroaromatic explosive vapours. Journal of Materials Chemistry C, 2020, 8, 3626-36 <u>30.</u>	2.7	39

#	Article	IF	CITATIONS
5804	Novel Pd/MOF electrocatalyst for hydrogen evolution reaction. Materials Chemistry and Physics, 2020, 254, 123481.	2.0	20
5805	Catalytic membrane micro-reactor with nano ZIF-8 immobilized in membrane pores for enhanced Knoevenagel reaction of Benzaldehyde and Ethyl cyanoacetate. Chemical Engineering Journal, 2020, 400, 125910.	6.6	35
5806	Nanoparticles fabrication from as-synthesized two dimensional Zn(II) coordination polymer. Polyhedron, 2020, 187, 114673.	1.0	0
5807	Controlling Metal–Organic Framework/ZnO Heterostructure Kinetics through Selective Ligand Binding to ZnO Surface Steps. Chemistry of Materials, 2020, 32, 6666-6675.	3.2	16
5808	A dual emission metal–organic framework for rapid ratiometric fluorescence detection of CO ₃ ^{2â~'} in seawater. RSC Advances, 2020, 10, 24764-24771.	1.7	9
5809	Degree-Based Topological Invariants of Metal-Organic Networks. IEEE Access, 2020, 8, 68288-68300.	2.6	40
5810	MOF-Based Membranes for Gas Separations. Chemical Reviews, 2020, 120, 8161-8266.	23.0	755
5811	Removal of Particulate Matters with Isostructural Zr-Based Metal–Organic Frameworks Coated on Cotton: Effect of Porosity of Coated MOFs on Removal. ACS Applied Materials & Interfaces, 2020, 12, 34423-34431.	4.0	26
5812	A series of coordination polymers based on 2,6-pyridinedicarboxylic acid ligand: Synthesis, crystal structures, photo-catalysis and fluorescent sensing. Journal of Solid State Chemistry, 2020, 290, 121549.	1.4	10
5813	Postsynthetic Modification: An Enabling Technology for the Advancement of Metal–Organic Frameworks. ACS Central Science, 2020, 6, 1046-1057.	5.3	285
5814	A cationic Zr-based metal organic framework with enhanced acidic resistance for selective and efficient removal of CrO ₄ ^{2â^'} . New Journal of Chemistry, 2020, 44, 12646-12653.	1.4	11
5815	Metal-organic framework as a photocatalyst: Progress in modulation strategies and environmental/energy applications. Progress in Energy and Combustion Science, 2020, 81, 100870.	15.8	156
5816	Finely Tuned Framework Isomers for Highly Efficient C ₂ H ₂ and CO ₂ Separation. Inorganic Chemistry, 2020, 59, 9569-9578.	1.9	15
5817	Density functional theory calculations on single atomic catalysis: Ti-decorated Ti3C2O2 monolayer (MXene) for HCHO oxidation. Chinese Journal of Catalysis, 2020, 41, 1633-1644.	6.9	59
5818	What triggers dye adsorption by metal organic frameworks? The current perspectives. Materials Advances, 2020, 1, 1575-1601.	2.6	126
5819	Revealing the dependence of active site configuration of N doped and N, S-co-doped carbon nanospheres on six-membered heterocyclic precursors for oxygen reduction reaction. Journal of Catalysis, 2020, 389, 677-689.	3.1	33
5820	Sustainable drug delivery systems through green nanotechnology. , 2020, , 61-89.		11
5821	Topology Meets Reticular Chemistry for Chemical Separations: MOFs as a Case Study. CheM, 2020, 6, 1613-1633.	5.8	62

#	Article	IF	Citations
5822	Polymorphous Indium Metal–Organic Frameworks Based on a Ferrocene Linker: Redox Activity, Porosity, and Structural Diversity. Inorganic Chemistry, 2020, 59, 9969-9978.	1.9	24
5823	Theoretical study of two-dimensional bis(iminothiolato)metal monolayers as promising electrocatalysts for carbon dioxide reduction. New Journal of Chemistry, 2020, 44, 12299-12306.	1.4	11
5824	Porous crystals as membranes. Science, 2020, 367, 624-625.	6.0	32
5825	Formaldehyde detection using quartz crystal microbalance (QCM) nanosensor coated by nanoporous MIL-101(Cr) film. Microporous and Mesoporous Materials, 2020, 300, 110065.	2.2	54
5826	Preparation of Zeolitic Imidazolate Frameworks and Their Application as Flame Retardant and Smoke Suppression Agent for Rigid Polyurethane Foams. Polymers, 2020, 12, 347.	2.0	38
5827	Fabrication of Microporous Metal–Organic Frameworks in Uninterrupted Mesoporous Tunnels: Hierarchical Structure for Efficient Trypsin Immobilization and Stabilization. Angewandte Chemie, 2020, 132, 6490-6496.	1.6	5
5828	Metal-organic frameworks for biomedical applications. , 2020, , 173-210.		5
5829	A novel Ag/Ag ₃ PO ₄ â€IRMOFâ€I nanocomposite for antibacterial application in the dark and under visible light irradiation. Applied Organometallic Chemistry, 2020, 34, e5575.	1.7	10
5830	Fabrications of metal organic frameworks derived hierarchical porous carbon on carbon nanotubes as efficient bioanode catalysts of NAD+-dependent alcohol dehydrogenase. Electrochimica Acta, 2020, 340, 135958.	2.6	11
5831	Rational modulating electronegativity of substituents in amorphous metal-organic frameworks for water oxidation catalysis. International Journal of Hydrogen Energy, 2020, 45, 9723-9732.	3.8	18
5832	Tailoring Pore Aperture and Structural Defects in Zirconium-Based Metal–Organic Frameworks for Krypton/Xenon Separation. Chemistry of Materials, 2020, 32, 3776-3782.	3.2	89
5833	Porous Aromatic Frameworks (PAFs). Chemical Reviews, 2020, 120, 8934-8986.	23.0	389
5834	The crucial roles of guest water in a biocompatible coordination network in the catalytic ring-opening polymerization of cyclic esters: a new mechanistic perspective. Chemical Science, 2020, 11, 3345-3354.	3.7	11
5835	Construction of a functionalized hierarchical pore metal–organic framework <i>via</i> a palladium-reduction induced strategy. Nanoscale, 2020, 12, 6250-6255.	2.8	13
5836	Mono―and pentaâ€nuclear selfâ€assembled silver(I) complexes of pyrazolyl <i>s</i> â€ŧriazine ligand; synthesis, structure and antimicrobial studies. Applied Organometallic Chemistry, 2020, 34, e5603.	1.7	8
5837	Amine-Functionalized ZIF-8 as a Fluorescent Probe for Breath Volatile Organic Compound Biomarker Detection of Lung Cancer Patients. ACS Omega, 2020, 5, 3478-3486.	1.6	19
5838	Nearâ€Infraredâ€ŧoâ€Visible Photon Upconversion by Introducing an Sâ^'T Absorption Sensitizer into a Metalâ€Organic Framework. ChemNanoMat, 2020, 6, 916-919.	1.5	11
5839	Micro gas preconcentrator using metal organic framework embedded metal foam for detection of low-concentration volatile organic compounds. Journal of Hazardous Materials, 2020, 392, 122145.	6.5	21

#	Article	IF	CITATIONS
5840	The Chemistry of Reticular Framework Nanoparticles: MOF, ZIF, and COF Materials. Advanced Functional Materials, 2020, 30, 1909062.	7.8	174
5841	GrenzflÄ e henpolymerisation: Von der Chemie zu funktionellen Materialien. Angewandte Chemie, 2020, 132, 22024-22041.	1.6	11
5842	Interfacial Polymerization: From Chemistry to Functional Materials. Angewandte Chemie - International Edition, 2020, 59, 21840-21856.	7.2	204
5843	Selective Photocatalytic Oxidation of Thioanisole on DUT-67(Zr) Mediated by Surface Coordination. Langmuir, 2020, 36, 2199-2208.	1.6	30
5844	Targeted removal of aluminium and copper in Li-ion battery waste solutions by selective precipitation as valuable porous materials. Materials Letters, 2020, 268, 127564.	1.3	6
5845	Preparation of novel hybrid catalyst with an hierarchical micro-/mesoporous structure by direct growth of the HKUST-1 nanoparticles inside mesoporous silica matrix (MMS). Microporous and Mesoporous Materials, 2020, 300, 110136.	2.2	22
5846	Multiscale Design of Flexible Metal–Organic Frameworks. Trends in Chemistry, 2020, 2, 199-213.	4.4	43
5847	Rational Construction of Porous Metal–Organic Frameworks for Uranium(VI) Extraction: The Strong Periodic Tendency with a Metal Node. ACS Applied Materials & Interfaces, 2020, 12, 14087-14094.	4.0	48
5848	Thorium–Organic Framework Constructed with a Semirigid Triazine Hexacarboxylic Acid Ligand: Unique Structure with Thorium Oxide Wheel Clusters and Iodine Adsorption Behavior. Inorganic Chemistry, 2020, 59, 3964-3973.	1.9	52
5849	Heterogeneous AgPd Alloy Nanocatalyst for Selective Reduction of Aromatic Nitro Compounds Using Formic Acid as Hydrogen Source. Catalysis Letters, 2020, 150, 1865-1869.	1.4	17
5850	Synthesis and structure of zinc(II) and cobalt(II) coordination polymers involving the elongated 2′,3′,5′,6′ tetramethylterphenyl-4, 4″-dicarboxylate ligand. Inorganica Chimica Acta, 2020, 506, 11	9500.	6
5851	Application of Various Metal-Organic Frameworks (MOFs) as Catalysts for Air and Water Pollution Environmental Remediation. Catalysts, 2020, 10, 195.	1.6	35
5852	Biodegradable Nanoscale Coordination Polymers for Targeted Tumor Combination Therapy with Oxidative Stress Amplification. Advanced Functional Materials, 2020, 30, 1908865.	7.8	96
5853	An Encapsulation-Rearrangement Strategy to Integrate Superhydrophobicity into Mesoporous Metal-Organic Frameworks. Matter, 2020, 2, 988-999.	5.0	39
5854	Continuous Variation of Lattice Dimensions and Pore Sizes in Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 4732-4738.	6.6	65
5855	CoNi-based metal–organic framework nanoarrays supported on carbon cloth as bifunctional electrocatalysts for efficient water-splitting. New Journal of Chemistry, 2020, 44, 1694-1698.	1.4	21
5856	Metalâ€Organic Framework Derived Porous αâ€Fe ₂ O ₃ /C Nanoâ€shuttles for Enhanced Visibleâ€light Photocatalysis. ChemistrySelect, 2020, 5, 1047-1053.	0.7	20
5857	Selective and efficient adsorption of Au (III) in aqueous solution by Zr-based metal-organic frameworks (MOFs): An unconventional way for gold recycling. Journal of Hazardous Materials, 2020, 391, 122175.	6.5	104

#	Article	IF	CITATIONS
5858	Novel Porous Crystals with Macrocycle-Based Well-Defined Molecular Recognition Sites. Accounts of Chemical Research, 2020, 53, 632-643.	7.6	74
5859	Synthesis of Defect-Rich Titanium Terephthalate with the Assistance of Acetic Acid for Room-Temperature Oxidative Desulfurization of Fuel Oil. ACS Catalysis, 2020, 10, 2384-2394.	5.5	100
5860	Metal–organic frameworks as a platform for clean energy applications. EnergyChem, 2020, 2, 100027.	10.1	530
5861	Molecular Insight into Fluorocarbon Adsorption in Pore Expanded Metal–Organic Framework Analogs. Journal of the American Chemical Society, 2020, 142, 3002-3012.	6.6	44
5862	Insights into the Gas Adsorption Mechanisms in Metal–Organic Frameworks from Classical Molecular Simulations. Topics in Current Chemistry, 2020, 378, 14.	3.0	16
5863	Coordination-Driven Self-Assembly on Polymer Surfaces for Efficient Synthesis of [Au(SPh)] _{<i>n</i>} Coordination Polymer-Based Films. Crystal Growth and Design, 2020, 20, 1961-1968.	1.4	5
5864	Removal of Antibiotics from Water by Polymer of Intrinsic Microporosity: Isotherms, Kinetics, Thermodynamics, and Adsorption Mechanism. Scientific Reports, 2020, 10, 794.	1.6	111
5865	Metal–organic frameworks with different spatial dimensions for supercapacitors. New Journal of Chemistry, 2020, 44, 3147-3167.	1.4	46
5866	pH-Responsive metal–organic framework encapsulated gold nanoclusters with modulated release to enhance photodynamic therapy/chemotherapy in breast cancer. Journal of Materials Chemistry B, 2020, 8, 1739-1747.	2.9	77
5867	Amine-functionalized metal organic frameworks MIL-101(Cr) adsorbent for copper and cadmium ions in single and binary solution. Separation Science and Technology, 2020, 55, 3362-3374.	1.3	22
5868	Metal–Organic Frameworks of Cu(II) Constructed from Functionalized Ligands for High Capacity H ₂ and CO ₂ Gas Adsorption and Catalytic Studies. Inorganic Chemistry, 2020, 59, 1810-1822.	1.9	25
5869	Perovskite-related ReO3-type structures. Nature Reviews Materials, 2020, 5, 196-213.	23.3	62
5870	Demonstration of a Broadband Photodetector Based on a Twoâ€Đimensional Metal–Organic Framework. Advanced Materials, 2020, 32, e1907063.	11.1	103
5871	Selectively sensing and dye adsorption properties of one Zn(II) architecture based on a rigid biphenyltetracarboxylate ligand. Journal of Solid State Chemistry, 2020, 284, 121216.	1.4	10
5872	State-of-the-art of methane sensing materials: A review and perspectives. TrAC - Trends in Analytical Chemistry, 2020, 125, 115820.	5.8	29
5873	Facile Synthesis of Metal–Organic Framework-Derived CoSe ₂ Nanoparticles Embedded in the N-Doped Carbon Nanosheet Array and Application for Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 9365-9375.	4.0	122
5874	A novel 3D pillar-layered metal-organic framework: Pore-size-dependent catalytic activity and CO2/N2 affinity. Polyhedron, 2020, 180, 114422.	1.0	9
5875	Production of MOF Adsorbent Spheres and Comparison of Their Performance with Zeolite 13X in a Moving-Bed TSA Process for Postcombustion CO ₂ Capture. Industrial & amp; Engineering Chemistry Research, 2020, 59, 7198-7211.	1.8	25

#	Article	IF	CITATIONS
5876	Ethylenediamine loading into a manganese-based metal–organic framework enhances water stability and carbon dioxide uptake of the framework. Royal Society Open Science, 2020, 7, 191934.	1.1	15
5877	A Bumper Crop of Boiling-Water-Stable Metal–Organic Frameworks from Controlled Linker Sulfuration. Inorganic Chemistry, 2020, 59, 7097-7102.	1.9	12
5878	Selfâ€Assembled Fe, Nâ€Đoped Chrysanthemum‣ike Carbon Microspheres for Efficient Oxygen Reduction Reaction and Zn–Air Battery. Energy Technology, 2020, 8, 2000145.	1.8	10
5879	Metal–Covalent Organic Frameworks (MCOFs): A Bridge Between Metal–Organic Frameworks and Covalent Organic Frameworks. Angewandte Chemie, 2020, 132, 13826-13837.	1.6	48
5880	Metal–Covalent Organic Frameworks (MCOFs): A Bridge Between Metal–Organic Frameworks and Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 13722-13733.	7.2	231
5881	Metalâ€organic Framework of [Cu ₂ (BIPAâ€TC)(DMA) ₂]n: A Promising Anode Material for Lithiumâ€Ion Battery. ChemistrySelect, 2020, 5, 4160-4164.	0.7	13
5882	MOFs-carbon hybrid nanocomposites in environmental protection applications. Environmental Science and Pollution Research, 2020, 27, 16004-16018.	2.7	33
5883	Water-based routes for synthesis of metal-organic frameworks: A review. Science China Materials, 2020, 63, 667-685.	3.5	131
5884	Nomenclature of MOFs. , 2020, , 1-9.		2
5885	Sonochemical synthesis of MOFs. , 2020, , 223-244.		17
5886	State-of-the-art and future perspectives of MOFs in medicine. , 2020, , 525-551.		0
5887	Lithium-ion storage behavior of ZIFs polyhedral carbons with topological structure. Chemical Engineering Science, 2020, 221, 115708.	1.9	2
5888	Three new cobalt(II) coordination polymers based on 1,3-bis(4-pyridyl)propane: Syntheses, structures and magnetic properties. Inorganic Chemistry Communication, 2020, 116, 107912.	1.8	3
5889	Synthesis of well-shaped and high-crystalline Ce-based metal organic framework for CO2/CH4 separation. Microporous and Mesoporous Materials, 2020, 302, 110224.	2.2	23
5890	Metoprolol beta-blocker decontamination from water by the adsorptive action of metal-organic frameworks-nano titanium oxide coated tin dioxide nanoparticles. Journal of Molecular Liquids, 2020, 309, 113096.	2.3	14
5891	Pseudo-2D Porous Networks via Interpenetration of 1D Zigzag Ladder-type Coordination Polymers: Adsorption and Separation of Xylene Isomers. Crystal Growth and Design, 2020, 20, 3601-3604.	1.4	14
5892	Influence of Pore Size on Carbon Dioxide Diffusion in Two Isoreticular Metal–Organic Frameworks. Chemistry of Materials, 2020, 32, 3570-3576.	3.2	29
5893	Robust Aluminum and Iron Phosphinate Metal–Organic Frameworks for Efficient Removal of Bisphenol A. Inorganic Chemistry, 2020, 59, 5538-5545.	1.9	17

#	Article	IF	CITATIONS
5894	Two Co-based MOFs assembled from an amine-functionalized pyridinecarboxylate ligand: inorganic acid-directed structural variety and gas adsorption properties. CrystEngComm, 2020, 22, 3424-3431.	1.3	14
5895	Single-crystal-to-single-crystal post-synthetic modifications of three-dimensional LOFs (Ln = Gd, Eu): a way to modulate their luminescence and thermometric properties. Dalton Transactions, 2020, 49, 6030-6042.	1.6	21
5896	Unobstructed Ultrathin Gas Transport Channels in Composite Membranes by Interfacial Selfâ€Assembly. Advanced Materials, 2020, 32, e1907701.	11.1	68
5897	Au-nanoparticle loaded nickel-copper bimetallic MOF: An excellent catalyst for chemical degradation of Rhodamine B. Inorganic Chemistry Communication, 2020, 117, 107949.	1.8	19
5898	A magnetic metal organic framework material as a highly efficient and recyclable catalyst for synthesis of cyclohexenone derivatives. Journal of Catalysis, 2020, 387, 39-46.	3.1	85
5899	Luminescent Properties of DOBDC Containing MOFs: The Role of Free Hydroxyls. ACS Applied Materials & Interfaces, 2020, 12, 22845-22852.	4.0	28
5900	Isoreticular Three-Dimensional Kagome Metal–Organic Frameworks with Open-Nitrogen-Donor Pillars for Selective Gas Adsorption. Crystal Growth and Design, 2020, 20, 3523-3530.	1.4	15
5901	Coordination-Driven Self-Assembly in Polymer–Inorganic Hybrid Materials. Chemistry of Materials, 2020, 32, 3680-3700.	3.2	62
5902	Heterometallic Cluster Coordination Polymers Assembled from Cuprous-Halide Clusters and Organotin–Oxygen Pyridinecarboxylate Clusters. Crystal Growth and Design, 2020, 20, 3795-3800.	1.4	8
5903	Magnetic Tunability in RE-DOBDC MOFs via NO _{<i>x</i>} Acid Gas Adsorption. ACS Applied Materials & Interfaces, 2020, 12, 19504-19510.	4.0	39
5904	Atmospheric low-temperature plasma for direct post-synthetic modification of UiO-66. Chemical Communications, 2020, 56, 5803-5806.	2.2	12
5905	Cyclic Aliphatic Hydrocarbons as Linkers in Metalâ€Organic Frameworks: New Frontiers for Ligand Design. ChemPlusChem, 2020, 85, 845-854.	1.3	16
5906	Metal-organic frameworks for photocatalytic degradation of pollutants. , 2020, , 91-126.		7
5907	Surfactant-assisted synthesis of nanocrystalline zeolitic imidazolate framework 8 and 67 for adsorptive removal of perfluorooctane sulfonate from aqueous solution. Catalysis Today, 2020, 352, 220-226.	2.2	24
5908	Recent advances in titanium metal–organic frameworks and their derived materials: Features, fabrication, and photocatalytic applications. Chemical Engineering Journal, 2020, 395, 125080.	6.6	93
5909	New Chiral Hydrogen-Bonded Organic Framework Based on Substituted Diarylacetylene Dicarboxylic Acid. Crystal Growth and Design, 2020, 20, 3713-3721.	1.4	9
5910	Reticular Chemistry 3.2: Typical Minimal Edge-Transitive <i>Derived</i> and <i>Related</i> Nets for the Design and Synthesis of Metal–Organic Frameworks. Chemical Reviews, 2020, 120, 8039-8065.	23.0	149
5911	Design and synthesis of photoluminescent active interpenetrating metal–organic frameworks using <i>N</i> -2-aryl-1,2,3-triazole ligands. Dalton Transactions, 2020, 49, 5429-5433.	1.6	9

#	Article	IF	CITATIONS
5912	Ultrathin two-dimensional conjugated metal–organic framework single-crystalline nanosheets enabled by surfactant-assisted synthesis. Chemical Science, 2020, 11, 7665-7671.	3.7	82
5913	Design and development of HMS@ZIF-8/fluorinated polybenzoxazole composite films with excellent low- <i>k</i> performance, mechanical properties and thermal stability. Journal of Materials Chemistry C, 2020, 8, 7476-7484.	2.7	27
5914	Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science, 2020, 368, 297-303.	6.0	429
5915	Heterogeneous catalysts with programmable topologies generated by reticulation of organocatalysts into metal-organic frameworks: The case of squaramide. Nano Research, 2021, 14, 458-465.	5.8	12
5916	Cucurbit[<i>n</i>]urilâ€Based Supramolecular Frameworks Assembled through Outerâ€Surface Interactions. Angewandte Chemie - International Edition, 2021, 60, 15166-15191.	7.2	83
5917	A robust soc-MOF platform exhibiting high gravimetric uptake and volumetric deliverable capacity for on-board methane storage. Nano Research, 2021, 14, 512-517.	5.8	40
5918	Crystal melting and vitrification behaviors of a three-dimensional nitrile-based metal–organic framework. Faraday Discussions, 2021, 225, 403-413.	1.6	21
5919	Cucurbit[<i>n</i>]urilâ€Based Supramolecular Frameworks Assembled through Outerâ€Surface Interactions. Angewandte Chemie, 2021, 133, 15294-15319.	1.6	14
5920	Function from configurational degeneracy in disordered framework materials. Faraday Discussions, 2021, 225, 241-254.	1.6	9
5921	Metal-organic layers as reusable solid fluorination reagents and heterogeneous catalysts for aromatic fluorination. Nano Research, 2021, 14, 473-478.	5.8	11
5922	Efficient hexane isomers separation in isoreticular bipyrazolate metal-organic frameworks: The role of pore functionalization. Nano Research, 2021, 14, 532-540.	5.8	8
5923	Metal–Organic Frameworks for Photodynamic Therapy: Emerging Synergistic Cancer Therapy. Biotechnology Journal, 2021, 16, e1900382.	1.8	42
5924	Two-dimensional d-ï€ conjugated metal-organic framework based on hexahydroxytrinaphthylene. Nano Research, 2021, 14, 369-375.	5.8	49
5925	Synthetic Macrocycleâ€Based Nonporous Adaptive Crystals for Molecular Separation. Angewandte Chemie, 2021, 133, 1714-1725.	1.6	15
5926	Synthetic Macrocycleâ€Based Nonporous Adaptive Crystals for Molecular Separation. Angewandte Chemie - International Edition, 2021, 60, 1690-1701.	7.2	121
5927	Topology: ToposPro. , 2021, , 389-412.		23
5928	Crystal engineering of MOF@COF core-shell composites for ultra-sensitively electrochemical detection. Sensors and Actuators B: Chemical, 2021, 329, 129144.	4.0	94
5929	Recent advances in naphthalenediimide-based metal-organic frameworks: Structures and applications. Coordination Chemistry Reviews, 2021, 430, 213665.	9.5	65

			_
#	ARTICLE	IF	CITATIONS
5930	Adsorptive removal of hazardous organics from water and fuel with functionalized metal-organic frameworks: Contribution of functional groups. Journal of Hazardous Materials, 2021, 403, 123655.	6.5	109
5931	Potential of adsorbents and membranes for SF6 capture and recovery: A review. Chemical Engineering Journal, 2021, 404, 126577.	6.6	49
5932	Synthesis, crystal structure, spectroscopic (FT-IR, UV–Vis,ÂEPR) and Hirshfeld surface analysis studies of Zn(II)-benzoate coordination dimer. Journal of Molecular Structure, 2021, 1223, 128943.	1.8	5
5933	Hierarchical assemblies of molecular frameworks—MOF-on-MOF epitaxial heterostructures. Nano Research, 2021, 14, 355-368.	5.8	58
5934	2D MOF-derived CoS1.097 nanoparticle embedded S-doped porous carbon nanosheets for high performance sodium storage. Chemical Engineering Journal, 2021, 405, 126638.	6.6	21
5935	Solvothermal synthesis of Co-substituted phosphomolybdate acid encapsulated in the UiO-66 framework for catalytic application in olefin epoxidation. Chinese Journal of Catalysis, 2021, 42, 356-366.	6.9	30
5936	Preparation of MOF Film/Aerogel Composite Catalysts via Substrateâ€Seeding Secondaryâ€Growth for the Oxygen Evolution Reaction and CO 2 Cycloaddition. Angewandte Chemie, 2021, 133, 711-715.	1.6	6
5937	Metal–organic frameworks based on multicarboxylate linkers. Coordination Chemistry Reviews, 2021, 426, 213542.	9.5	158
5938	Electrochemical sensing platform for naphthol isomers based on in situ growth of ZIF-8 on reduced graphene oxide by a reaction-diffusion technique. Journal of Colloid and Interface Science, 2021, 581, 576-585.	5.0	17
5939	Recent advances in metal-organic frameworks for the removal of heavy metal oxoanions from water. Chemical Engineering Journal, 2021, 407, 127221.	6.6	101
5940	Mitigation of indoor air pollution: A review of recent advances in adsorption materials and catalytic oxidation. Journal of Hazardous Materials, 2021, 405, 124138.	6.5	128
5941	Tethering Flexible Polymers to Crystalline Porous Materials: A Win–Win Hybridization Approach. Angewandte Chemie - International Edition, 2021, 60, 14222-14235.	7.2	22
5942	A Series of Mesoporous Rareâ€Earth Metal–Organic Frameworks Constructed from Organic Secondary Building Units. Angewandte Chemie - International Edition, 2021, 60, 2053-2057.	7.2	43
5943	Tethering Flexible Polymers to Crystalline Porous Materials: A Win–Win Hybridization Approach. Angewandte Chemie, 2021, 133, 14342-14355.	1.6	3
5944	3D electron diffraction as an important technique for structure elucidation of metal-organic frameworks and covalent organic frameworks. Coordination Chemistry Reviews, 2021, 427, 213583.	9.5	86
5945	Metal-organic framework membranes: Recent development in the synthesis strategies and their application in oil-water separation. Chemical Engineering Journal, 2021, 405, 127004.	6.6	147
5946	A historical perspective on porphyrin-based metal–organic frameworks and their applications. Coordination Chemistry Reviews, 2021, 429, 213615.	9.5	140
5947	Kinetic separation of C4 olefins using Y-fum-fcu-MOF with ultra-fine-tuned aperture size. Chemical Engineering Journal, 2021, 413, 127388.	6.6	24

#	Article	IF	CITATIONS
	Implanting polyathylana glycol into MIL 101(Cr) as hydrophobic barrier for ophancing tolyong		
5948	adsorption under highly humid environment. Chemical Engineering Journal, 2021, 404, 126562.	6.6	55
5949	Ultrathin holey reduced graphene oxide/Ni(picolinic acid)2 papers for flexible battery-supercapacitor hybrid devices. Chemical Engineering Journal, 2021, 408, 127302.	6.6	17
5950	The state of the field: from inception to commercialization of metal–organic frameworks. Faraday Discussions, 2021, 225, 9-69.	1.6	70
5951	Boosted capture of volatile organic compounds in adsorption capacity and selectivity by rationally exploiting defect-engineering of UiO-66(Zr). Separation and Purification Technology, 2021, 266, 118087.	3.9	41
5952	Reticular chemistry at the atomic, molecular, and framework scales. Nano Research, 2021, 14, 335-337.	5.8	8
5953	Metal–Organic Frameworks and Coordination Polymers Composed of Sulfur-based Nodes. Chemistry Letters, 2021, 50, 523-533.	0.7	23
5954	A critical review in recent developments of metal-organic-frameworks (MOFs) with band engineering alteration for photocatalytic CO2 reduction to solar fuels. Journal of CO2 Utilization, 2021, 43, 101381.	3.3	135
5955	2―and 2,7â€Substituted <i>para</i> â€ <i>N</i> â€Methylpyridinium Pyrenes: Syntheses, Molecular and Electronic Structures, Photophysical, Electrochemical, and Spectroelectrochemical Properties and Binding to Doubleâ€Stranded (ds) DNA. Chemistry - A European Journal, 2021, 27, 2837-2853.	1.7	13
5956	Design of metal-organic frameworks (MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants. Chinese Journal of Catalysis, 2021, 42, 872-903.	6.9	73
5957	Pseudo metal-organic coordination derived one-step carbonization of non-carbonizable carboxylate organic molecules toward functional mesostructured porous carbons. Carbon, 2021, 173, 637-645.	5.4	14
5958	Photoluminescence Enhancement by Light Harvesting of Metal–Organic Frameworks Surrounding Semiconductor Quantum Dots. Chemistry of Materials, 2021, 33, 1607-1617.	3.2	24
5959	Prospects for a green methanol thermo-catalytic process from CO2 by using MOFs based materials: A mini-review. Journal of CO2 Utilization, 2021, 43, 101361.	3.3	59
5960	Applications of reticular diversity in metal–organic frameworks: An ever-evolving state of the art. Coordination Chemistry Reviews, 2021, 430, 213655.	9.5	56
5961	Hierarchical ZIF-8 composite membranes: Enhancing gas separation performance by exploiting molecular dynamics in hierarchical hybrid materials. Journal of Membrane Science, 2021, 620, 118943.	4.1	15
5962	Crystal engineering of coordination polymers using flexible tetracarboxylate linkers with embedded cyclohexyldiamine cores. CrystEngComm, 2021, 23, 569-590.	1.3	4
5963	Controllable synthesis of a hollow core-shell Co-Fe layered double hydroxide derived from Co-MOF and its application in capacitive deionization. Journal of Colloid and Interface Science, 2021, 585, 85-94.	5.0	54
5964	One-pot crystallization of two 1,4-cyclohexanedicarboxylate-based tetranuclear Cu <scp>(ii)</scp> compounds and their DNA binding affinities. CrystEngComm, 2021, 23, 1091-1098.	1.3	8
5965	Metal-organic frameworks containing solid-state electrolytes for lithium metal batteries and beyond. Materials Chemistry Frontiers, 2021, 5, 1771-1794.	3.2	34

#	Article	IF	CITATIONS
5966	Bioresponsive metal–organic frameworks: Rational design and function. Coordination Chemistry Reviews, 2021, 431, 213682.	9.5	17
5967	Pressure-induced phase transition of isoreticular MOFs: Mechanical instability due to ligand buckling. Microporous and Mesoporous Materials, 2021, 312, 110765.	2.2	10
5968	2D framework materials for energy applications. Chemical Science, 2021, 12, 1600-1619.	3.7	73
5969	Controlled synthesis of a PS/Au/ZIF-8 hybrid structure as a SERS substrate for ultrasensitive detection. New Journal of Chemistry, 2021, 45, 1355-1362.	1.4	9
5970	Evaluating the purification and activation of metal-organic frameworks from a technical and circular economy perspective. Coordination Chemistry Reviews, 2021, 428, 213578.	9.5	28
5971	Post-combustion carbon capture. Renewable and Sustainable Energy Reviews, 2021, 138, 110490.	8.2	219
5972	Gas Storage in Porous Molecular Materials. Chemistry - A European Journal, 2021, 27, 4531-4547.	1.7	30
5973	Precise tuning of morphology and pore size of amine-functionalized MIL metal–organic frameworks using a directing agent. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 263, 114833.	1.7	4
5974	A Series of Mesoporous Rareâ€Earth Metal–Organic Frameworks Constructed from Organic Secondary Building Units. Angewandte Chemie, 2021, 133, 2081-2085.	1.6	1
5975	IRMOF â€8: Theoretical evaluation of aluminum doping on hydrogen, methane, and hydrogen sulfide adsorption. International Journal of Quantum Chemistry, 2021, 121, e26510.	1.0	6
5976	Recent advances in the design of metal–organic frameworks for methane storage and delivery. Journal of Porous Materials, 2021, 28, 213-230.	1.3	13
5977	Porous crystalline frameworks for thermocatalytic CO ₂ reduction: an emerging paradigm. Energy and Environmental Science, 2021, 14, 320-352.	15.6	61
5978	Preparation of MOF Film/Aerogel Composite Catalysts via Substrateâ€5eeding Secondaryâ€Growth for the Oxygen Evolution Reaction and CO ₂ Cycloaddition. Angewandte Chemie - International Edition, 2021, 60, 701-705.	7.2	107
5979	Methods and Diversity in the Synthesis of Metal-Organic Frameworks. , 2021, , 976-1020.		1
5980	Thermomechanical and anticorrosion characteristics of metal-organic frameworks. , 2021, , 295-330.		6
5981	Tuning the Lewis acidity of metal–organic frameworks for enhanced catalysis. Dalton Transactions, 2021, 50, 3116-3120.	1.6	9
5982	Cobalt(II), Zinc(II) and Cadmium(II) Coordination Polymers Assembled by Flexible 5,5′-(But-2-ene-1,4-diylbis(oxy))diisophthalic Acid and 1,2-Bis((1H-imidazol-1-yl)methyl)benzene Ligands. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 2436-2444.	1.9	4
5983	Lanthanide Materials for Sensing. , 2021, , .		0

	Сітатіс	on Report	
#	Article	IF	CITATIONS
5984	A rare 4-fold interpenetrated metal–organic framework constructed from an anionic indium-based node and a cationic dicopper linker. Dalton Transactions, 2021, 50, 6631-6636.	1.6	3
5985	Band Cap Modulation Enabled by TCNQ Loading in a Ru-Based Metal–Organic Framework for Enhanced Near-Infrared Absorption and Photothermal Conversion. Crystal Growth and Design, 2021, 21, 729-734.	1.4	8
5986	Metal-organic frameworks (MOFs) for sensing. Advances in Chemical Engineering, 2021, 57, 91-122.	0.5	4
5987	Role of additives and solvents in the synthesis of chiral isoreticular MOF-74 topologies. Dalton Transactions, 2021, 50, 12159-12167.	1.6	4
5988	Co ₉ S ₈ Nanoparticles for Hydrogen Evolution. ACS Applied Nano Materials, 2021, 4, 1776-1785.	2.4	33
5989	Synthesis of Metal Organic Frameworks (MOF) and Covalent Organic Frameworks (COF). Indian Institute of Metals Series, 2021, , 503-556.	0.2	0
5990	A Mesoporous Zirconium-Isophthalate Multifunctional Platform. Matter, 2021, 4, 182-194.	5.0	20
5991	Understanding the opportunities of metal–organic frameworks (MOFs) for CO ₂ capture and gas-phase CO ₂ conversion processes: a comprehensive overview. Reaction Chemistry and Engineering, 2021, 6, 787-814.	1.9	31
5992	Metal–organic framework (MOF) derived flower-shaped CoSe ₂ nanoplates as a superior bifunctional electrocatalyst for both oxygen and hydrogen evolution reactions. Sustainable Energy and Fuels, 2021, 5, 4992-5000.	2.5	22
5993	Heterogeneous photocatalytic reversible deactivation radical polymerization. Polymer Chemistry, 2021, 12, 2357-2373.	1.9	32
5994	Pyrene-based metal organic frameworks: from synthesis to applications. Chemical Society Reviews, 2021, 50, 3143-3177.	18.7	126
5995	Metal-organic framework photocatalysts for carbon dioxide reduction. , 2021, , 389-420.		0
5996	Mesostructured materials. , 2021, , .		1

5998	Facile fabrication of a highly (110)-oriented ZIF-7 film with rod-shaped seeds. Chemical Communications, 2021, 57, 2128-2131.	2.2	10
5999	Metal-organic frameworks as chemical reaction flask. , 2021, , 365-387.		0

Adsorptive Purification of Water Contaminated with Hazardous Organics by Using Functionalized Metal-Organic Frameworks., 2021, , 269-290. A direct solvent-free conversion approach to prepare mixed-metal metal–organic frameworks from 6001 2.2 8 doped metal oxides. Chemical Communications, 2021, 57, 3587-3590. A family of luminescent metal–organic frameworks: synthesis, structure, and sensing studies. Materials Advances, 2021, 2, 2667-2675.

#	Article	IF	CITATIONS
6003	Applications of nanoscale metal–organic frameworks as imaging agents in biology and medicine. Journal of Materials Chemistry B, 2021, 9, 3423-3449.	2.9	61
6004	Recent progress in materials development for CO ₂ conversion: issues and challenges. Materials Advances, 2021, 2, 3161-3187.	2.6	25
6005	Four new Cu ₆ S ₆ cluster-based coordination compounds: synthesis, crystal structures and fluorescence properties. Dalton Transactions, 2021, 50, 4567-4576.	1.6	13
6006	Theoretical evaluation of the performance of IRMOFs and M-MOF-74 in the formation of 5-fluorouracil@MOF. RSC Advances, 2021, 11, 31090-31097.	1.7	11
6007	Topological methods for analysis and design of coordination polymers. Russian Chemical Reviews, 2022, 91, .	2.5	17
6008	Collective structural properties of embedded molecular motors in functionalized metal–organic frameworks. Physical Chemistry Chemical Physics, 2021, 23, 4728-4735.	1.3	13
6009	Correlated disorder in metal–organic frameworks. CrystEngComm, 2021, 23, 2915-2922.	1.3	15
6010	Permeable metal-organic frameworks for fuel (gas) storage applications. , 2021, , 111-126.		0
6011	Structural similarity, synthesis, and adsorption properties of aluminum-based metal-organic frameworks. Adsorption, 2021, 27, 227-236.	1.4	8
6012	Recent advances on enhancing the multicarbon selectivity of nanostructured Cu-based catalysts. Physical Chemistry Chemical Physics, 2021, 23, 12514-12532.	1.3	12
6013	Newly Emerging Metal–Organic Frameworks (MOF), MXenes, and Zeolite Nanosheets in Solutes Removal from Water. Springer Series on Polymer and Composite Materials, 2021, , 219-247.	0.5	0
6014	Batteries. , 2021, , 79-141.		0
6015	Improved continuous synthesis of UiO-66 enabling outstanding production rates. Reaction Chemistry and Engineering, 2021, 6, 679-684.	1.9	2
6016	Metal-organic frameworks and permeable natural polymers for reasonable carbon dioxide fixation. , 2021, , 417-440.		0
6017	Construction of a series of metal-directed MOFs to explore their physical and chemical properties. New Journal of Chemistry, 2021, 45, 6438-6449.	1.4	2
6018	Welding partially reduced graphene oxides by MOFs into micro–mesoporous hybrids for high-performance oil absorption. RSC Advances, 2021, 11, 30980-30989.	1.7	2
6019	Biocompatibility and biodegradability of metal organic frameworks for biomedical applications. Journal of Materials Chemistry B, 2021, 9, 5925-5934.	2.9	79
6020	Metal-Organic Frameworks Derived From Multitopic Ligands: Structural Aspects. , 2021, , 1021-1054.		0

#	Article	IF	CITATIONS	
6021	Linker Desymmetrization: Access to a Series of Rare-Earth Tetracarboxylate Frameworks with Eight-Connected Hexanuclear Nodes. Journal of the American Chemical Society, 2021, 143, 2784-2791.	6.6	61	
6022	Monolithic metal–organic frameworks for carbon dioxide separation. Faraday Discussions, 2021, 231, 51-65.	1.6	12	
6023	Versatile Nanoscale Metal–Organic Frameworks (nMOFs): An Emerging 3D Nanoplatform for Drug Delivery and Therapeutic Applications. Small, 2021, 17, e2005064.	5.2	65	
6024	Metal–organic framework-based materials: advances, exploits, and challenges in promoting post Li-ion battery technologies. Materials Advances, 2021, 2, 2457-2482.	2.6	30	
6025	Thermal decarboxylation for the generation of hierarchical porosity in isostructural metal–organic frameworks containing open metal sites. Materials Advances, 2021, 2, 5487-5493.	2.6	14	
6026	Metal–organic frameworks of linear trinuclear cluster secondary building units: structures and applications. Dalton Transactions, 2021, 50, 12692-12707.	1.6	12	
6027	A dual stimuli responsive natural polymer based superabsorbent hydrogel engineered through a novel cross-linker. Polymer Chemistry, 2021, 12, 2404-2420.	1.9	16	
6028	A family of lanthanide metal–organic frameworks based on a redox-active tetrathiafulvalene-dicarboxylate ligand showing slow relaxation of magnetisation and electronic conductivity. Dalton Transactions, 2021, 50, 14714-14723.	1.6	7	
6029	A valuable strategy to improve ferroelectric performance significantly <i>via</i> metallic ion doping in the lattice nodes of metal–organic frameworks. Chemical Communications, 2021, 57, 2515-2518.	2.2	8	
6030	MOFâ€Based Hybrids for Solar Fuel Production. Advanced Energy Materials, 2021, 11, 2003052.	10.2	58	
6031	Solid acids for the synthesis of biologically active heterocycles. , 2021, , 165-213.		1	
6032	porE : A code for deterministic and systematic analyses of porosities. Journal of Computational Chemistry, 2021, 42, 630-643.	1.5	4	
6033	Hexamethylenetetramine-based ionic liquid anchored onto the metal–organic framework MIL-101(Cr) as a superior and reusable heterogeneous catalyst for the preparation of hexahydroquinolines. Research on Chemical Intermediates, 2021, 47, 2143-2159.	1.3	11	
6034	Using geometric simulation software â€~GASP' to model conformational flexibility in a family of zinc metal–organic frameworks. New Journal of Chemistry, 2021, 45, 8728-8737.	1.4	2	
6035	Solvent-assisted delamination of layered copper dithienothiophene-dicarboxylate (DUT-134). Inorganic Chemistry Frontiers, 2021, 8, 3308-3316.	3.0	7	
6036	Understanding entrapped molecular photosystem and metal–organic framework synergy for improved solar fuel production. Faraday Discussions, 2021, 231, 281-297.	1.6	18	
6037	Research Progress of Metal-Organic Skeleton Compounds. Material Sciences, 2021, 11, 950-957.	0.0	1	
6038	Engineering metal–organic frameworks for adsorption-based gas separations: from process to atomic scale. Molecular Systems Design and Engineering, 2021, 6, 841-875.	1.7	36	
		CITATION REPORT		
------	---	--------------------------	--------------	-----------
#	Article	I	F	CITATIONS
6039	Selective crystallization <i>via</i> vibrational strong coupling. Chemical Science, 2021, 12, 1198	36-11994. :	3.7	29
6040	Recent advances in simulating gas permeation through MOF membranes. Materials Advances, 20 5300-5317.	021, 2,	2.6	22
6041	Vapor-Phase Cyclohexene Epoxidation by Single-Ion Fe(III) Sites in Metal–Organic Frameworks Inorganic Chemistry, 2021, 60, 2457-2463.	•	1.9	17
6042	Crystalline mixed-valence copper supramolecular isomers for electroreduction of CO _{2<td>0></td><td>5.2</td><td>7</td>}	0>	5.2	7
6043	Coloring ultrasensitive MRI with tunable metal–organic frameworks. Chemical Science, 2021, 4300-4308.	12,	3.7	15
6044	Proline-Modified UIO-66 as Nanocarriers to Enhance <i>Candida rugosa</i> Lipase Catalytic Acti and Stability for Electrochemical Detection of Nitrofen. ACS Applied Materials & amp; Interfaces, 13, 4146-4155.	vity 2021, ₄	4.0	20
6045	Study on preparation of metal-organic framework membrane and pore size adjustment method. Web of Conferences, 2021, 257, 01018.	E3S ().2	1
6046	Guest-Binding-Induced Interhetero Hosts Charge Transfer Crystallization: Selective Coloration of Commonly Used Organic Solvents. Journal of the American Chemical Society, 2021, 143, 1553-1	561.	5.6	38
6047	Metal–organic framework. Interface Science and Technology, 2021, , 279-387.	1	L.6	13
6048	Zeolitic Imidazolate Framework Membranes with a High H2 Permeance Fabricated on a Macropo Support with Novel Spherical Porous Hybrid Materials. Industrial & Engineering Chemistry Research, 2021, 60, 1387-1395.	rous	L.8	8
6049	Control over interpenetration for boosting methane storage capacity in metal–organic framew Journal of Materials Chemistry A, 2021, 9, 24857-24862.	vorks.	5.2	14
6050	Development of Soft Crystals Based on Pillarï¼»nï¼½arenes. Nihon Kessho Gakkaishi, 2021, 63	8, 8-15.	0.0	1
6051	Highly Selective Separation of Isopropylbenzene and α-Methylstyrene by Nonporous Adaptive C of Perbromoethylated Pillararene via Vapor- and Liquid-Phase Adsorptions. ACS Applied Materials & amp; Interfaces, 2021, 13, 7370-7376.	rystals	4.0	16
6052	Application of near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) in an in-situ a of the stability of the surface-supported metal-organic framework HKUST-1 in water, methanol a pyridine atmospheres. Journal of Electron Spectroscopy and Related Phenomena, 2021, 247, 143	nalysis nd 0 7042.).8	11
6053	A Long-Term Stable Sensor Based on Fe@PCN-224 for Rapid and Quantitative Detection of H2O Fishery Products. Foods, 2021, 10, 419.	2 in 3	1.9	5
6054	Synthesis of Co 3 O 4 /Carbon Heteroaerogels with Ultrahigh Capacitance via Polyethyleneimine Intercalation of Co 2 BIM 4 Nanosheets. Chemistry - A European Journal, 2021, 27, 4876-4882.	i	L . 7	3
6056	Highly structured metal-organic framework nanofibers for methane storage. Science China Mate 2021, 64, 1742-1750.	rials,	3.5	24
6057	Metal–Organic Frameworks for Drug Delivery: A Design Perspective. ACS Applied Materials &a Interfaces, 2021, 13, 7004-7020.	mp;	1.0	435

#	Article	IF	CITATIONS
6058	Multifunctional MOFâ€Based Separator Materials for Advanced Lithium–Sulfur Batteries. Advanced Materials Interfaces, 2021, 8, 2001941.	1.9	27
6059	Inverted metal–organic frameworks: isoreticular decoration with organic anions using principles of supramolecular chemistry. Journal of Coordination Chemistry, 2021, 74, 169-177.	0.8	1
6060	Facile synthesis of catalase@ZIF-8 composite by biomimetic mineralization for efficient biocatalysis. Bioprocess and Biosystems Engineering, 2021, 44, 1309-1319.	1.7	14
6061	Preferential SO _{<i>x</i>} Adsorption in Mg-MOF-74 from a Humid Acid Gas Stream. ACS Applied Materials & Interfaces, 2021, 13, 7278-7284.	4.0	25
6062	Tuning MOF-Derived Co ₃ O ₄ /NiCo ₂ O ₄ Nanostructures for High-Performance Energy Storage. ACS Applied Energy Materials, 2021, 4, 1537-1547.	2.5	46
6063	High Li ⁺ and Na ⁺ Conductivity in New Hybrid Solid Electrolytes based on the Porous MILâ€121 Metal Organic Framework. Advanced Energy Materials, 2021, 11, 2003542.	10.2	24
6064	Current application of MOFs based heterogeneous catalysts in catalyzing transesterification/esterification for biodiesel production: A review. Energy Conversion and Management, 2021, 229, 113760.	4.4	85
6065	Stable core–shell ZIF-8@ZIF-67 MOFs photocatalyst for highly efficient degradation of organic pollutant and hydrogen evolution. Journal of Materials Research, 2021, 36, 602-614.	1.2	44
6066	Bimetallic Zeolitic Imidazolate Framework Derived Co3O4/CoFe2O4 Catalyst Loaded In2O3 Nanofibers for Highly Sensitive and Selective Ethanol Sensing. Journal of Sensor Science and Technology, 2021, 30, 94-98.	0.1	2
6067	Metal(II) Ion Dependence of the Structures and Properties of Square-Grid Coordination Polymers of Tetrabromobenzenedicarboxylate and Pyrazine as Bridging Ligands. Bulletin of the Chemical Society of Japan, 2021, 94, 1571-1578.	2.0	1
6068	An electrochemical aptasensor of malathion based on ferrocene/DNA-hybridized MOF, DNA coupling-gold nanoparticles and competitive DNA strand reaction. Microchemical Journal, 2021, 162, 105829.	2.3	25
6069	Three-Dimensional Electron Diffraction for Structural Analysis of Beam-Sensitive Metal-Organic Frameworks. Crystals, 2021, 11, 263.	1.0	8
6070	A reticular chemistry guide for the design of periodic solids. Nature Reviews Materials, 2021, 6, 466-487.	23.3	166
6071	Atomic layer deposition (ALD) assisting the visibility of metal-organic frameworks (MOFs) technologies. Coordination Chemistry Reviews, 2021, 430, 213734.	9.5	17
6072	Selective Implantation of Diamines for Cooperative Catalysis in Isoreticular Heterometallic Titanium–Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 11868-11873.	7.2	20
6073	Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing. Biosensors and Bioelectronics, 2021, 176, 112947.	5.3	161
6074	Recent advancement in consolidation of MOFs as absorbents for hydrogen storage. International Journal of Energy Research, 2021, 45, 12481-12499.	2.2	32
6075	Incorporation of Al ³⁺ Sites on BrÃ,nsted Acid Metal–Organic Frameworks for Glucoseâ€toâ€Hydroxylmethylfurfural Transformation. Small, 2021, 17, e2006541.	5.2	17

#	Article	IF	CITATIONS
6076	Sonochemical synthesis of Zr-based porphyrinic MOF-525 and MOF-545: Enhancement in catalytic and adsorption properties. Microporous and Mesoporous Materials, 2021, 316, 110985.	2.2	61
6077	Adsorption and separation of hexane isomers in metal-organic frameworks (MOFs): A computational study. Computational and Theoretical Chemistry, 2021, 1197, 113164.	1.1	5
6078	Effects of functional groups of –NH2 and –NO2 on water adsorption ability of Zr-based MOFs (UiO-66). Chemical Physics, 2021, 543, 111093.	0.9	25
6079	Metal–Organic Frameworks and Their Derivatives: Designing Principles and Advances toward Advanced Cathode Materials for Alkali Metal Ion Batteries. Small, 2021, 17, e2006424.	5.2	55
6080	Facile synthesis of graphite oxide/MIL-101(Cr) hybrid composites for enhanced adsorption performance towards industrial toxic dyes. Journal of Industrial and Engineering Chemistry, 2021, 95, 224-234.	2.9	40
6081	Asynchronous Double Schiff Base Formation of Pyrazole Porous Polymers for Selective Pd Recovery. Advanced Science, 2021, 8, 2001676.	5.6	21
6082	Deciphering the Supramolecular Organization of Multiple Guests Inside a Microporous MOF to Understand their Release Profile. Angewandte Chemie, 2021, 133, 10282-10290.	1.6	1
6083	Structure and properties of fluorinated and nonâ€fluorinated Baâ€coordination polymers – the position of fluorine makes the difference. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1014-1024.	0.6	3
6084	Molecularâ€Rotorâ€Driven Advanced Porous Materials. Angewandte Chemie - International Edition, 2021, 60, 16279-16292.	7.2	35
6085	Engineering Nanoscale Metalâ€Organic Frameworks for Heterogeneous Catalysis. Small Structures, 2021, 2, 2000141.	6.9	28
6086	Incorporation of MnO2 nanoparticles into MOF-5 for efficient oxygen evolution reaction. lonics, 2021, 27, 2159-2167.	1.2	5
6087	Metal-Organic Framework (MOF)-Based Biomaterials for Tissue Engineering and Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2021, 9, 603608.	2.0	73
6088	Metal Organic Frameworks (MOFs) as Photocatalysts for the Degradation of Agricultural Pollutants in Water. ACS ES&T Engineering, 2021, 1, 804-826.	3.7	82
6089	Molecularâ€Rotorâ€Ðriven Advanced Porous Materials. Angewandte Chemie, 2021, 133, 16415-16428.	1.6	10
6090	Deciphering the Supramolecular Organization of Multiple Guests Inside a Microporous MOF to Understand their Release Profile. Angewandte Chemie - International Edition, 2021, 60, 10194-10202.	7.2	18
6091	Selective Implantation of Diamines for Cooperative Catalysis in Isoreticular Heterometallic Titanium–Organic Frameworks. Angewandte Chemie, 2021, 133, 11975-11980.	1.6	1
6092	Sustainable Synthesis of MOF-5@GO Nanocomposites for Efficient Removal of Rhodamine B from Water. ACS Omega, 2021, 6, 9587-9599.	1.6	66
6093	Three-step nucleation of metal–organic framework nanocrystals. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	58

#	Article	IF	CITATIONS
6094	Deciphering of advantageous electrocatalytic water oxidation behavior of metal-organic framework in alkaline media. Nano Research, 2021, 14, 4680-4688.	5.8	37
6095	Highâ€Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 11391-11397.	7.2	29
6096	Connecting theory and simulation with experiment for the study of diffusion in nanoporous solids. Adsorption, 2021, 27, 683-760.	1.4	72
6097	Variations in Photoluminescence Intensity of a Quantum Dot Assembly Investigated by Its Adsorption on Cubic Metal–Organic Frameworks. Journal of Physical Chemistry C, 2021, 125, 8285-8293.	1.5	4
6099	Micromembrane absorber with deepâ€permeation nanostructure assembled by flowing synthesis. AICHE Journal, 2021, 67, e17272.	1.8	9
6100	Twoâ€Dimensional Metal–Organic Frameworks and Covalent–Organic Frameworks for Electrocatalysis: Distinct Merits by the Reduced Dimension. Advanced Energy Materials, 2022, 12, 2003990.	10.2	78
6101	The Preparation of Metal–Organicâ€Framework/Boron Phosphate Hybrid Materials for Improved Performances in Proton Exchange Membranes. Macromolecular Materials and Engineering, 2021, 306, 2100053.	1.7	4
6102	Hydrogen sulfide removal technology: A focused review on adsorption and catalytic oxidation. Korean Journal of Chemical Engineering, 2021, 38, 674-691.	1.2	31
6103	Synthesis optimization of metal-organic frameworks MIL-125 and its adsorption separation on C8 aromatics measured by pulse test and simulation calculation. Journal of Solid State Chemistry, 2021, 296, 121956.	1.4	7
6104	What Lies beneath a Metal–Organic Framework Crystal Structure? New Design Principles from Unexpected Behaviors. Journal of the American Chemical Society, 2021, 143, 6705-6723.	6.6	48
6106	Determination of Chemical Structure of Bis(dithiolato)iron Nanosheet. Chemistry Letters, 2021, 50, 576-579.	0.7	10
6108	A review on polyaniline composites: Synthesis, characterization, and applications. Polymer Composites, 2021, 42, 3142-3157.	2.3	62
6109	AgNPs and MIL-101(Fe) self-assembled nanometer materials improved the SERS detection sensitivity and reproducibility. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 251, 119396.	2.0	9
6110	Hydrangeaâ€like ZnS/ZnIn ₂ S ₄ microspheres with outstanding photocatalytic degradation of xylenol orange and thymol blue under vis irradiation. Micro and Nano Letters, 2021, 16, 500-505.	0.6	3
6111	Highly-sensitive and fast detection of human telomeric G-Quadruplex DNA based on a hemin-conjugated fluorescent metal-organic framework platform. Biosensors and Bioelectronics, 2021, 178, 112999.	5.3	20
6112	A Tunable Multivariate Metal–Organic Framework as a Platform for Designing Photocatalysts. Journal of the American Chemical Society, 2021, 143, 6333-6338.	6.6	69
6113	Comparison between conventional solvothermal and aqueous solution-based production of UiO-66-NH2: Life cycle assessment, techno-economic assessment, and implications for CO2 capture and storage. Journal of Environmental Chemical Engineering, 2021, 9, 105159.	3.3	33
6114	Highâ€Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis. Angewandte Chemie, 2021, 133, 11492-11498.	1.6	6

#	Article	IF	CITATIONS
6115	Porous organic frameworks for carbon dioxide capture and storage. Journal of Environmental Chemical Engineering, 2021, 9, 105090.	3.3	23
6116	Lanthanide Metal–Organic Framework-Based Fluorescent Sensor Arrays to Discriminate and Quantify Ingredients of Natural Medicine. Langmuir, 2021, 37, 5321-5328.	1.6	15
6117	Controllable Microporous Framework Isomerism within Continuous Mesoporous Channels: Hierarchically Porous Structure for Capture of Bulky Molecules. Inorganic Chemistry, 2021, 60, 6633-6640.	1.9	5
6118	State-of-the-art progress of switch fluorescence biosensors based on metal-organic frameworks and nucleic acids. Mikrochimica Acta, 2021, 188, 168.	2.5	21
6119	A single-molecule van der Waals compass. Nature, 2021, 592, 541-544.	13.7	75
6120	Separated quadrupole and shift interactions of 2H NMR spectra in paramagnetic solids by asymmetric pulse sequences. Solid State Nuclear Magnetic Resonance, 2021, 112, 101709.	1.5	2
6121	Electrochemical application of zirconium-based metal-organic framework. Inorganic and Nano-Metal Chemistry, 2022, 52, 582-588.	0.9	1
6122	Molecular dynamics simulation of small gas molecule permeation through CAU-1 membrane. Chinese Journal of Chemical Engineering, 2021, 33, 104-111.	1.7	9
6123	High-performance CO2/CH4 separation membrane fabrication with PVAm modified by the MOFs containing amine groups. Journal of Natural Gas Science and Engineering, 2021, 89, 103874.	2.1	16
6124	Control of interpenetration and structural transformations in the interpenetrated MOFs. Coordination Chemistry Reviews, 2021, 435, 213789.	9.5	79
6125	Morphology Transcription in Hierarchical MOF-on-MOF Architectures. , 2021, 3, 738-743.		13
6126	Optimizing Feâ€Based Metalâ€Organic Frameworks through Ligand Conformation Regulation for Efficient Dye Adsorption and C 2 H 2 /CO 2 Separation. Chemistry - A European Journal, 2021, 27, 10693-10699.	1.7	13
6127	Investigation into the Enhanced Catalytic Oxidation of <i>o</i> -Xylene over MOF-Derived Co ₃ O ₄ with Different Shapes: The Role of Surface Twofold-Coordinate Lattice Oxygen (O _{2f}). ACS Catalysis, 2021, 11, 6614-6625.	5.5	106
6128	Isoreticular Crystallization of Highly Porous Cubic Covalent Organic Cage Compounds**. Angewandte Chemie - International Edition, 2021, 60, 17455-17463.	7.2	34
6129	Molecular Surgery at Microporous MOF for Mesopore Generation and Renovation. Angewandte Chemie, 2021, 133, 14722-14729.	1.6	3
6130	Removal of decidedly lethal metal arsenic from water using metal organic frameworks: a critical review. Reviews in Inorganic Chemistry, 2022, 42, 197-227.	1.8	14
6131	Structural changes of a NiFe-based metal-organic framework during the oxygen-evolution reaction under alkaline conditions. International Journal of Hydrogen Energy, 2021, 46, 19245-19253.	3.8	44
6132	Two-dimensional Conducting Metal-Organic Frameworks Enabled Energy Storage Devices. Energy Storage Materials, 2021, 37, 396-416.	9.5	44

#	Article	IF	CITATIONS
6133	Effect of Different Synthesis Approaches on Structural and Thermal Properties of Lanthanide(III) Metal–Organic Frameworks Based on the 1H-Pyrazole-3,5-Dicarboxylate Linker. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 3534-3548.	1.9	9
6134	IsoretikulÃæ Kristallisation von hochporösen kubischen kovalentorganischen Kägverbindungen**. Angewandte Chemie, 2021, 133, 17595-17604.	1.6	7
6135	Ferromagnetic supramolecular metal-organic frameworks for active capture and magnetic sensing of emerging drug pollutants. Cell Reports Physical Science, 2021, 2, 100421.	2.8	9
6136	Largeâ€Area Crystalline Zeolitic Imidazolate Framework Thin Films. Angewandte Chemie, 2021, 133, 14243-14249.	1.6	4
6137	2D Porphyrinic Metal-Organic Frameworks Featuring Rod-Shaped Secondary Building Units. Molecules, 2021, 26, 2955.	1.7	5
6138	Exploring the methods on improving CH4 delivery performance to surpass the Advanced Research Project Ageney-Energy target. Chinese Journal of Chemical Engineering, 2021, 33, 118-124.	1.7	0
6139	Molecular Surgery at Microporous MOF for Mesopore Generation and Renovation. Angewandte Chemie - International Edition, 2021, 60, 14601-14608.	7.2	48
6140	Recent Progress in Luminous Particleâ€Encapsulated Host–Guest Metalâ€Organic Frameworks for Optical Applications. Advanced Optical Materials, 2021, 9, 2100283.	3.6	39
6141	Modulation of Topological Structures and Adsorption Properties of Copper-Tricarboxylate Frameworks Enabled by the Effect of the Functional Group and Its Position. Inorganic Chemistry, 2021, 60, 8111-8122.	1.9	6
6142	Largeâ€Area Crystalline Zeolitic Imidazolate Framework Thin Films. Angewandte Chemie - International Edition, 2021, 60, 14124-14130.	7.2	30
6143	Bis(2-methylpyridinium) tetrachloridocuprate(II): synthesis, structure and Hirshfeld surface analysis. Acta Crystallographica Section E: Crystallographic Communications, 2021, 77, 726-729.	0.2	3
6144	Through-Space Charge Transfer in Copper Coordination Networks with Copper-Halide Guest Anions. Inorganic Chemistry, 2021, 60, 9273-9277.	1.9	5
6145	A Showcase of Green Chemistry: Sustainable Synthetic Approach of Zirconiumâ€Based MOF Materials. Chemistry - A European Journal, 2021, 27, 9967-9987.	1.7	33
6146	Covalent Triazine Frameworks Based on the First Pseudo-Octahedral Hexanitrile Monomer via Nitrile Trimerization: Synthesis, Porosity, and CO2 Gas Sorption Properties. Materials, 2021, 14, 3214.	1.3	9
6147	Pressure dependent chemical changes of adsorbed water in MIL-47 (V) by raman spectroscopy. Materials Today: Proceedings, 2021, 49, 1196-1196.	0.9	0
6148	Cuboctahedral [In ₃₆ (μ-OH) ₂₄ (NO ₃) ₈ (Imtb) ₂₄]MOF with Atypical Pyramidal Nitrate Ion in SBU: Lewis Acid–Base Assisted Catalysis and Nanomolar Sensing of Picric Acid. Inorganic Chemistry, 2021, 60, 9238-9242.	1.9	12
6149	Coordination Polymer Frameworks for Next Generation Optoelectronic Devices. , 0, , .		0
6150	Cucurbit[n]uril/metal ion complex-based frameworks and their potential applications. Coordination Chemistry Reviews, 2021, 437, 213741.	9.5	22

#	Article	IF	CITATIONS
6151	Factors Affecting Hydrogen Adsorption in Metal–Organic Frameworks: A Short Review. Nanomaterials, 2021, 11, 1638.	1.9	31
6152	Macrocycle-Based Metal–Organic Frameworks with NO ₂ -Driven On/Off Switch of Conductivity. ACS Applied Materials & Interfaces, 2021, 13, 27066-27073.	4.0	4
6153	Influence of pretreatment conditions on low-temperature CO oxidation over Pd supported UiO-66 catalysts. Molecular Catalysis, 2021, 509, 111633.	1.0	43
6154	NH ₂ -UiO-66 Coated with Two-Dimensional Covalent Organic Frameworks: High Stability and Photocatalytic Activity. ACS Applied Materials & Interfaces, 2021, 13, 29916-29925.	4.0	68
6155	Screening Metal–Organic Frameworks for Separation of Binary Solvent Mixtures by Compact NMR Relaxometry. Molecules, 2021, 26, 3481.	1.7	3
6156	Porous metal–organic frameworks for methane storage and capture: status and challenges. New Carbon Materials, 2021, 36, 468-496.	2.9	37
6157	Carbon-Based MOF Derivatives: Emerging Efficient Electromagnetic Wave Absorption Agents. Nano-Micro Letters, 2021, 13, 135.	14.4	182
6158	Preparation of Superhydrophobic Metal–Organic Framework/Polymer Composites as Stable and Efficient Catalysts. ACS Applied Materials & Interfaces, 2021, 13, 32175-32183.	4.0	12
6159	Product Inhibition and the Catalytic Destruction of a Nerve Agent Simulant by Zirconium-Based Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 30565-30575.	4.0	28
6160	Multi-applications of new trinuclear Zr-SMI complex. Journal of Molecular Structure, 2021, 1234, 129991.	1.8	Ο
6161	Progress in Multifunctional Metal–Organic Frameworks/Polymer Hybrid Membranes. Chemistry - A European Journal, 2021, 27, 12940-12952.	1.7	14
6162	Highly selective metal-organic framework-based electrocatalyst for the electrochemical reduction of CO2 to CO. Materials Research Bulletin, 2021, 138, 111228.	2.7	12
6163	Recent progress of functional separators with catalytic effects for high-performance lithium-sulfur batteries. Nano Energy, 2021, 84, 105928.	8.2	115
6164	Oxygenated carbon nanotubes cages coated solid-phase microextraction fiber for selective extraction of migrated aromatic amines from food contact materials. Journal of Chromatography A, 2021, 1646, 462031.	1.8	12
6165	Topological aspects of metal-organic structure with the help of underlying networks. Arabian Journal of Chemistry, 2021, 14, 103157.	2.3	37
6166	Effect of coexisting alkali metal ions on the variation in the coordination mode of 1,4-phenylenbis(methylidyne)tetrakis(phosphonic acid) in a lanthanum(III) metal–organic framework. Inorganic Chemistry Communication, 2021, 128, 108560.	1.8	3
6167	A Two Step Postsynthetic Modification Strategy: Appending Short Chain Polyamines to Zn-NH ₂ -BDC MOF for Enhanced CO ₂ Adsorption. Inorganic Chemistry, 2021, 60, 11720-11729.	1.9	21
6168	In Situ Implanting of Single Tungsten Sites into Defective UiOâ€66(Zr) by Solventâ€Free Route for Efficient Oxidative Desulfurization at Room Temperature. Angewandte Chemie, 2021, 133, 20481-20487.	1.6	6

#	Article	IF	CITATIONS
6169	Highly CO selective Ca and Zn hybrid metal-organic framework electrocatalyst for the electrochemical reduction of CO2. Current Applied Physics, 2021, 27, 31-37.	1.1	11
6170	Effect of Coordinatively Unsaturated Sites in MOFâ€Derived Highly Porous CuO for Catalystâ€Free ppb‣evel Gas Sensors. Advanced Materials Interfaces, 2021, 8, 2100283.	1.9	15
6171	Plasmonic metalâ€organic frameworks. SmartMat, 2021, 2, 446-465.	6.4	49
6172	MRIâ€Active Metalâ€Organic Frameworks: Concepts for the Translation from Lab to Clinic. Advanced Therapeutics, 2021, 4, 2100067.	1.6	6
6173	Multiple functional groups in metal–organic frameworks and their positional regioisomerism. Coordination Chemistry Reviews, 2021, 438, 213892.	9.5	28
6174	Hazard Evaluation of Metal–Organic Framework Synthesis and Scale-up: A Laboratory Safety Perspective. Journal of Chemical Health and Safety, 2021, 28, 358-368.	1.1	9
6175	Der derzeitige Stand von MOF―und COFâ€Anwendungen. Angewandte Chemie, 2021, 133, 24174-24202.	1.6	18
6176	25 Jahre retikulÃæ Chemie. Angewandte Chemie, 2021, 133, 24142.	1.6	6
6177	Adsorptive removal of different pollutants using metal-organic framework adsorbents. Journal of Molecular Liquids, 2021, 333, 115593.	2.3	85
6178	Maximizing the Carrier Mobilities of Metal–Organic Frameworks Comprising Stacked Pentacene Units. Journal of Physical Chemistry Letters, 2021, 12, 7002-7009.	2.1	6
6179	Yolk–Shell-Structured Covalent Organic Frameworks with Encapsulated Metal–Organic Frameworks for Synergistic Catalysis. Chemistry of Materials, 2021, 33, 5690-5699.	3.2	32
6180	Efficient CO ₂ Separation Using a PIMâ€PIâ€Functionalized UiOâ€66 MOF Incorporated Mixed Matrix Membrane in a PIMâ€PIâ€1 Polymer. Macromolecular Materials and Engineering, 2021, 306, 2100298.	1.7	28
6181	Linker Exchange via Migration along the Backbone in Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 10541-10546.	6.6	15
6182	Metal–Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chemical Reviews, 2021, 121, 12278-12326.	23.0	633
6183	The Importance of Highly Connected Building Units in Reticular Chemistry: Thoughtful Design of Metal–Organic Frameworks. Accounts of Chemical Research, 2021, 54, 3298-3312.	7.6	62
6184	Gas Adsorption in R ₂ â€MOFâ€5 Difunctionalized with Alkyl Groups. European Journal of Inorganic Chemistry, 2021, 2021, 3185-3190.	1.0	6
6185	Oxalamide-Functionalized Metal Organic Frameworks for CO ₂ Adsorption. ACS Applied Materials & amp; Interfaces, 2021, 13, 33188-33198.	4.0	35
6186	In Situ Implanting of Single Tungsten Sites into Defective UiOâ€66(Zr) by Solventâ€Free Route for Efficient Oxidative Desulfurization at Room Temperature. Angewandte Chemie - International Edition, 2021, 60, 20318-20324.	7.2	81

#	Article	IF	CITATIONS
6187	Metal-organic frameworks for improving wound healing. Coordination Chemistry Reviews, 2021, 439, 213929.	9.5	76
6188	Conductive Metalâ€Organic Frameworks: Electronic Structure and Electrochemical Applications. Chemistry - A European Journal, 2021, 27, 11482-11538.	1.7	25
6189	Design principles and direct applications of cobalt-based metal-organic frameworks for electrochemical energy storage. Coordination Chemistry Reviews, 2021, 438, 213872.	9.5	51
6190	Differentiation of Epoxide Enantiomers in the Confined Spaces of an Homochiral Cu(II) Metalâ€Organic Framework by Kinetic Resolution. Chemistry - A European Journal, 2021, 27, 16956-16965.	1.7	1
6191	The optimized flow-electrode capacitive deionization (FCDI) performance by ZIF-8 derived nanoporous carbon polyhedron. Separation and Purification Technology, 2022, 281, 119345.	3.9	30
6192	Density Functional Theory Study of the Structure of the Pillared Hofmann Compound Ni(3-Methyl-4,4â€2-bipyridine)[Ni(CN) ₄] (Ni-BpyMe or PICNIC-21). Journal of Physical Chemistry C, 2021, 125, 15882-15889.	1.5	3
6193	Strategic Defect Engineering of Metal–Organic Frameworks for Optimizing the Fabrication of Singleâ€Atom Catalysts. Advanced Functional Materials, 2021, 31, 2103597.	7.8	68
6194	Pore-Space Partition and Optimization for Propane-Selective High-Performance Propane/Propylene Separation. ACS Applied Materials & amp; Interfaces, 2021, 13, 52160-52166.	4.0	50
6195	Fabrication of Zn-MOF/ZnO nanocomposites for room temperature H2S removal: Adsorption, regeneration, and mechanism. Chemosphere, 2021, 274, 129789.	4.2	61
6196	The Current Status of MOF and COF Applications. Angewandte Chemie - International Edition, 2021, 60, 23975-24001.	7.2	450
6197	25 Years of Reticular Chemistry. Angewandte Chemie - International Edition, 2021, 60, 23946-23974.	7.2	204
6198	Eco-friendly sorbent of bacterial cellulose/metal–organic framework composite membrane for effective bisphenol a removal. Journal of Industrial Textiles, 0, , 152808372110417.	1.1	5
6199	Hetero-structured ZnIn2S4-NiO@MOF photo-catalysts for efficient hydrogen evolution. Chinese Chemical Letters, 2022, 33, 1042-1046.	4.8	16
6200	Atomic Heat Contributions for Carbon Dioxide Adsorption in IRMOF-1. Industrial & Engineering Chemistry Research, 2021, 60, 12650-12662.	1.8	5
6201	A pore-engineered metal-organic framework with mixed ligands enabling highly efficient separation of hexane isomers for gasoline upgrading. Separation and Purification Technology, 2021, 268, 118646.	3.9	23
6202	Rational design of platinum-group-metal-free electrocatalysts for oxygen reduction reaction. Current Opinion in Electrochemistry, 2021, 28, 100724.	2.5	3
6203	Metal-organic frameworks for advanced drug delivery. Acta Pharmaceutica Sinica B, 2021, 11, 2362-2395.	5.7	197
6204	Synthesis, Structures of <scp>2D</scp> Coordination Layers <scp>Metalâ€Organic</scp> Frameworks with Highly Selective <scp>CO₂</scp> Uptake ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2789-2794.	2.6	11

#	Article	IF	CITATIONS
6205	Impact of Structural Functionalization, Pore Size, and Presence of Extra-Framework Ions on the Capture of Gaseous I2 by MOF Materials. Nanomaterials, 2021, 11, 2245.	1.9	7
6206	Structure, Luminescent Sensing and Proton Conduction of a Boiling-Water-Stable Zn(II) Metal-Organic Framework. Molecules, 2021, 26, 5044.	1.7	2
6207	Rational design of MIL-88A(Fe)/Bi2WO6 heterojunctions as an efficient photocatalyst for organic pollutant degradation under visible light irradiation. Optical Materials, 2021, 118, 111260.	1.7	30
6208	Microwave-assisted synthesis of anhydrous lanthanide-based coordination polymers built upon benzene-1,2,4,5-tetracarboxylic acid. Polyhedron, 2021, 204, 115261.	1.0	2
6209	Metal–organic framework-derived CoNi-P nanoparticles confined into flexible carbon nanofibers skeleton as high-performance oxygen reduction reaction catalysts. Surfaces and Interfaces, 2021, 25, 101207.	1.5	10
6210	Envisioning the "Air Economy―— Powered by Reticular Chemistry and Sunlight for Clean Air, Clean Energy, and Clean Water. Molecular Frontiers Journal, 2021, 05, 30-37.	0.9	5
6211	Towards estimation of CO2 adsorption on highly porous MOF-based adsorbents using gaussian process regression approach. Scientific Reports, 2021, 11, 15710.	1.6	24
6212	Crystalline porous frameworks as nano-enhancers for membrane liquid separation – Recent developments. Coordination Chemistry Reviews, 2021, 440, 213969.	9.5	27
6213	Emerging Trends in Nanomaterials for Antibacterial Applications. International Journal of Nanomedicine, 2021, Volume 16, 5831-5867.	3.3	96
6214	Removal of hydrogen sulfide from a binary mixture with methane gas, using IRMOF-1: a theoretical investigation. Journal of Molecular Modeling, 2021, 27, 240.	0.8	4
6215	Performance-Based Screening of Porous Materials for Carbon Capture. Chemical Reviews, 2021, 121, 10666-10741.	23.0	115
6216	Adsorption of gases on small–pore aluminum bisphosphonate MOF MIL–91(Al). Journal of Chemical Sciences, 2021, 133, 1.	0.7	3
6217	Selective Photochemical Reaction by Fixing Reactant as a MOF Building Block. Chemistry Letters, 2021, 50, 1987-1989.	0.7	0
6218	Hierarchical mesoporous metal–organic frameworks encapsulated enzymes: Progress and perspective. Coordination Chemistry Reviews, 2021, 443, 214032.	9.5	59
6219	Multifunctional Two-Dimensional Metal–Organic Frameworks for Radionuclide Sequestration and Detection. ACS Applied Materials & Interfaces, 2021, 13, 45696-45707.	4.0	6
6220	Highâ€Throughput Discovery of a Rhombohedral Twelve onnected Zirconiumâ€Based Metalâ€Organic Framework with Ordered Terephthalate and Fumarate Linkers. Angewandte Chemie - International Edition, 2021, 60, 26939-26946.	7.2	10
6221	Oriented Films of Metal-Organic Frameworks on Metal Hydroxides via Heteroepitaxial Growth. Bulletin of the Chemical Society of Japan, 2021, 94, 2602-2612.	2.0	8
6223	Laminar Composite Solid Electrolyte with Poly(Ethylene Oxide)â€Threaded Metalâ€Organic Framework Nanosheets for Highâ€Performance Allâ€Solidâ€State Lithium Battery. Energy and Environmental Materials, 2023, 6, .	7.3	10

#	Article	IF	CITATIONS
6224	Fast and efficient removal of mercury ions using zirconium-based metal–organic framework filter membranes. Inorganic Chemistry Communication, 2021, 131, 108796.	1.8	5
6225	Research Progress of Metal Organic Frameworks/Carbonâ€Based Composites for Microwave Absorption. Advanced Engineering Materials, 2022, 24, 2100964.	1.6	13
6226	Electrochemical-Assisted Reconstruction of Isoreticular Metal-Organic Framework-8 for Efficient Electroreduction of CO ₂ to CO. Journal of the Electrochemical Society, 2021, 168, 096503.	1.3	2
6227	Effect of Pyrolysis Conditions on the Performance of Co–Doped MOF–Derived Carbon Catalysts for Oxygen Reduction Reaction. Catalysts, 2021, 11, 1163.	1.6	8
6228	Highâ€throughput discovery of a rhombohedral twelveâ€connected zirconiumâ€based metalâ€organic framework with ordered terephthalate and fumarate linkers. Angewandte Chemie, 0, , .	1.6	2
6229	Isoreticular chemistry within metal–organic frameworks for gas storage and separation. Coordination Chemistry Reviews, 2021, 443, 213968.	9.5	246
6230	Investigation of CO ₂ Orientational Dynamics through Simulated NMR Line Shapes**. ChemPhysChem, 2021, 22, 2336-2341.	1.0	4
6231	Methane hydrate production using a novel spiralâ€agitated reactor: Promotion of hydrate formation kinetics. AICHE Journal, 2022, 68, e17423.	1.8	9
6232	Conquering the Hypoxia Limitation for Photodynamic Therapy. Advanced Materials, 2021, 33, e2103978.	11.1	262
6233	MOFs based on the application and challenges of perovskite solar cells. IScience, 2021, 24, 103069.	1.9	27
6234	Effect of zinc substitution by magnesium and cadmium on hydrogen storage properties of connector-metal-organic framework-5. Journal of Alloys and Compounds, 2021, 874, 159902.	2.8	16
6235	Hygroscopic salt-modulated UiO-66: Synthesis and its open adsorption performance. Journal of Solid State Chemistry, 2021, 301, 122304.	1.4	13
6236	Fabrication of MOF-derived mixed metal oxides with carbon residues for pseudocapacitors with long cycle life. Rare Metals, 2022, 41, 830-835.	3.6	43
6237	Metal–Organic Frameworks as Versatile Media for Polymer Adsorption and Separation. Accounts of Chemical Research, 2021, 54, 3593-3603.	7.6	29
6238	Recent progress in the removal of mercury ions from water based MOFs materials. Coordination Chemistry Reviews, 2021, 443, 214034.	9.5	93
6239	The structural appeal of metal–organic frameworks in antimicrobial applications. Coordination Chemistry Reviews, 2021, 442, 214007.	9.5	51
6240	Metal-Organic Frameworks: From Ambient Green Synthesis to Applications. Bulletin of the Chemical Society of Japan, 2021, 94, 2623-2636.	2.0	26
6241	Electrochemical sensing for naphthol isomers based on the in situ growth of zeolitic imidazole framework-67 on ultrathin CoAl layered double hydroxide nanosheets by a reaction–diffusion technique. Journal of Colloid and Interface Science, 2021, 599, 762-772.	5.0	10

#	Article	IF	CITATIONS
6242	Controlled preparation of a cd(II) coordination polymer via green sonochemical synthesis: new precursors for the preparation of cadmium(II) oxide. Journal of Coordination Chemistry, 2021, 74, 2606-2616.	0.8	0
6243	Sulfur/oxygen-doped porous carbons via NaCl-assisted thermolysis of a molecular precursor for CO2 capture. Materials Chemistry and Physics, 2022, 276, 125288.	2.0	11
6244	Multicomponent isoreticular metal-organic frameworks: Principles, current status and challenges. Coordination Chemistry Reviews, 2021, 445, 214074.	9.5	179
6245	Metal-organic frameworks in cooling and water desalination: Synthesis and application. Renewable and Sustainable Energy Reviews, 2021, 149, 111362.	8.2	39
6246	Metal organic framework based fluorescence sensor for detection of antibiotics. Trends in Food Science and Technology, 2021, 116, 1002-1028.	7.8	74
6247	Nanoscale Metal-Organic Frameworks: Recent developments in synthesis, modifications and bioimaging applications. Chemosphere, 2021, 281, 130717.	4.2	45
6248	Metal–organic framework-based sorbents in analytical sample preparation. Coordination Chemistry Reviews, 2021, 445, 214107.	9.5	138
6249	Hydrogen Clathrates: Next Generation Hydrogen Storage Materials. Energy Storage Materials, 2021, 41, 69-107.	9.5	89
6250	Vibrational modes with long mean free path and large volumetric heat capacity drive higher thermal conductivity in amorphous zeolitic imidazolate Framework-4. Materials Today Physics, 2021, 21, 100516.	2.9	13
6251	A novel TMD/MOF (Transition Metal Dichalcogenide/Metalorganic frameworks) composite for highly and selective adsorption of methylene blue dye from aqueous mixture of MB and MO. Journal of Molecular Liquids, 2021, 342, 117520.	2.3	36
6252	Bionanomaterials based on protein self-assembly: Design and applications in biotechnology. Biotechnology Advances, 2021, 52, 107835.	6.0	26
6253	A review for Metal-Organic Frameworks (MOFs) utilization in capture and conversion of carbon dioxide into valuable products. Journal of CO2 Utilization, 2021, 53, 101715.	3.3	58
6254	Construction of saturated coordination titanium-based metal–organic framework for one-step C2H2/C2H6/C2H4 separation. Separation and Purification Technology, 2021, 276, 119284.	3.9	28
6255	Natural gas dehydration by adsorption using MOFs and silicas: A review. Separation and Purification Technology, 2021, 276, 119409.	3.9	33
6256	Remediation potentials of composite metal-organic frameworks (MOFs) for dyes as water contaminants: A comprehensive review of recent literatures. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100568.	1.7	12
6257	ZIF-L based mixed matrix membranes for acetone-butanol-ethanol (ABE) recovery from diluted aqueous solution. Separation and Purification Technology, 2021, 276, 119085.	3.9	8
6258	Defect-rich bimetallic UiO-66(Hf-Zr): Solvent-free rapid synthesis and robust ambient-temperature oxidative desulfurization performance. Applied Catalysis B: Environmental, 2021, 299, 120659.	10.8	52
6259	Applications of water-stable metal-organic frameworks in the removal of water pollutants: A review. Environmental Pollution, 2021, 291, 118076.	3.7	304

#	Article	IF	CITATIONS
6260	Exploitation of a Zn(II) paddle wheel metal-organic framework as effective sorbent for the quantitative estimation of cationic and anionic dyes. Inorganica Chimica Acta, 2021, 528, 120595.	1.2	5
6261	Polycrystalline metal-organic framework (MOF) membranes for molecular separations: Engineering prospects and challenges. Journal of Membrane Science, 2021, 640, 119802.	4.1	48
6262	Fast photochromism in solid: Microenvironment in metal-organic frameworks promotes the isomerization of donor-acceptor Stenhouse adducts. Chemical Engineering Journal, 2022, 427, 132037.	6.6	14
6263	Metal-organic Framework/Polyimide composite with enhanced breakdown strength for flexible capacitor. Chemical Engineering Journal, 2022, 429, 132228.	6.6	61
6264	Solid catalysts for environmentally benign synthesis. , 2022, , 23-80.		0
6265	Metal-organic framework for batteries and supercapacitors. , 2021, , 19-35.		1
6266	Applications of phytochemicals against nerve agents in counterterrorism. , 2021, , 69-118.		0
6267	Effect of Amine Functionalization of MOF Adsorbents for Enhanced CO2 Capture and Separation: A Molecular Simulation Study. Frontiers in Chemistry, 2020, 8, 574622.	1.8	16
6268	Applications of porous frameworks in solidâ€phase microextraction. Journal of Separation Science, 2021, 44, 1231-1263.	1.3	14
6269	Atmosphere-Pressure Methane Oxidation to Methyl Trifluoroacetate Enabled by a Porous Organic Polymer-Supported Single-Site Palladium Catalyst. ACS Catalysis, 2021, 11, 1008-1013.	5.5	27
6270	Analytical Approach to Screen Semiconducting MOFs Using Bloch Mode Analysis and Spectroscopic Measurements. Journal of Physical Chemistry Letters, 2021, 12, 884-891.	2.1	5
6271	Stabilization of liquid active guests <i>via</i> nanoconfinement into a flexible microporous metal–organic framework. CrystEngComm, 2021, 23, 7262-7269.	1.3	6
6272	Porphyrin and single atom featured reticular materials: recent advances and future perspective of solar-driven CO ₂ reduction. Green Chemistry, 2021, 23, 8332-8360.	4.6	37
6273	Pore Engineering for One-Step Ethylene Purification from a Three-Component Hydrocarbon Mixture. Journal of the American Chemical Society, 2021, 143, 1485-1492.	6.6	143
6274	Strategic design and synthesis of star-shaped organic linkers for mesoporous MOFs. Faraday Discussions, 2021, 231, 97-111.	1.6	0
6275	Computational Screening of MOFs for CO2 Capture. , 2021, , 205-238.		0
6276	A mesoporous ionic solid with 272 Aul6Agl3Cull3 complex cations in a super huge crystal lattice. Chemical Science, 2021, 12, 11045-11055.	3.7	4
6277	Research Progress on the Water Stability of a Metal-Organic Framework in Advanced Oxidation Processes. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	10

	Сітатіо	n Report	
#	Article	IF	CITATIONS
6278	Stepwise collapse of a giant pore metal–organic framework. Dalton Transactions, 2021, 50, 5011-5022.	1.6	23
6279	Crystal engineering of coordination networks: then and now. , 2021, , 17-60.		0
6280	Revisiting molecular adsorption: unconventional uptake of polymer chains from solution into sub-nanoporous media. Chemical Science, 2021, 12, 12576-12586.	3.7	23
6281	Stimuli -triggered fluoro-switching in metal–organic frameworks: applications and outlook. Dalton Transactions, 2021, 50, 4067-4090.	1.6	24
6282	Water-Stable Metal-Organic Frameworks for Water Adsorption. , 2021, , 387-416.		3
6283	Construction of hierarchical-porous metal–organic frameworks through esterification reaction for efficient catalysis. Chemical Communications, 2021, 57, 10795-10798.	2.2	3
6290	Mehr als nur ein Netzwerk: Strukturierung retikulär Materialien im Nano― Meso―und Volumenbereich. Angewandte Chemie, 2020, 132, 22534-22556.	1.6	8
6291	Beyond Frameworks: Structuring Reticular Materials across Nanoâ€, Mesoâ€, and Bulk Regimes. Angewandte Chemie - International Edition, 2020, 59, 22350-22370.	7.2	60
6292	Fabrication of Microporous Metal–Organic Frameworks in Uninterrupted Mesoporous Tunnels: Hierarchical Structure for Efficient Trypsin Immobilization and Stabilization. Angewandte Chemie - International Edition, 2020, 59, 6428-6434.	7.2	41
6293	Photophysical Properties and Electrochromism of Viologen Encapsulated Viologen@ <scp>InBTB Metal–Organic</scp> Framework. Bulletin of the Korean Chemical Society, 2021, 42, 326-332.	1.0	8
6294	Crystal engineering of porous coordination networks for C3 hydrocarbon separation. SmartMat, 2021, 2, 38-55.	6.4	44
6296	Integration of Hydrogen Energy Technologies in Autonomous Power Systems. Power Systems, 2008, , 23-81.	0.3	5
6297	Hydrogen Storage. Green Energy and Technology, 2008, , 81-128.	0.4	5
6298	Porous Coordination Polymers Towards Gas Technology. Structure and Bonding, 2009, , 51-86.	1.0	15
6299	Cyclophane-Based ï€-Stacked Polymers. , 2014, , 151-184.		1
6300	Prussian Blue and Other Metal–Organic Framework-based Nanozymes. Nanostructure Science and Technology, 2020, , 141-170.	0.1	4
6301	Why Design Matters: From Decorated Metal Oxide Clusters to Functional Metal–Organic Frameworks. Topics in Current Chemistry, 2020, 378, 19.	3.0	11
6302	Hydrothermal synthesis of six new lanthanides coordination polymers based on 1-H-benzimidazole-5-carboxylic acid: Structure, Hirshfeld analysis, thermal and spectroscopic properties. Inorganica Chimica Acta, 2020, 510, 119740.	1.2	6

#	Article	IF	Citations
6303	UiO-66-NH2/Cu2O composite as an enhanced visible light photocatalyst for decomposition of organic pollutants. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 399, 112625.	2.0	19
6304	Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Progress in Energy and Combustion Science, 2020, 80, 100849.	15.8	235
6305	Superparamagnetic MOF@CO Ni and Co based hybrid nanocomposites as efficient water pollutant adsorbents. Science of the Total Environment, 2020, 738, 139213.	3.9	35
6306	The prominent photocatalytic activity with the charge transfer in the organic ligand for [Zn4O(BDC)3] MOF-5 decorated Ag3PO4 hybrids. Separation and Purification Technology, 2020, 250, 117142.	3.9	29
6307	Uncovering the Role of Metal–Organic Framework Topology on the Capture and Reactivity of Chemical Warfare Agents. Chemistry of Materials, 2020, 32, 4609-4617.	3.2	70
6308	Vibrational Paddlewheel Cu–Cu Node in Metal–Organic Frameworks: Probe of Nonradiative Relaxation. Journal of Physical Chemistry C, 2020, 124, 13187-13195.	1.5	10
6309	Ab Initio Adsorption Isotherms for Molecules with Lateral Interactions: CO ₂ in Metal–Organic Frameworks. Journal of Physical Chemistry C, 2017, 121, 12789-12799.	1.5	33
6310	Tracking and Visualization of Functional Domains in Stratified Metal–Organic Frameworks Using Gold Nanoparticles. ACS Central Science, 2020, 6, 247-253.	5.3	13
6311	Improving Energy Transfer within Metal–Organic Frameworks by Aligning Linker Transition Dipoles along the Framework Axis. Journal of the American Chemical Society, 2020, 142, 11192-11202.	6.6	48
6312	Reagent Reactivity and Solvent Choice Determine Metal–Organic Framework Microstructure during Postsynthetic Modification. Journal of the American Chemical Society, 2021, 143, 671-674.	6.6	9
6313	Metal–Organic Framework (MOF)-based CO2 Adsorbents. Inorganic Materials Series, 2018, , 153-205.	0.5	1
6314	Cadmium–1,4-cyclohexanedicarboxylato coordination polymers bearing different di-alkyl-2,2′-bipyridines: syntheses, crystal structures and photoluminescence studies. Dalton Transactions, 2017, 46, 12516-12526.	1.6	15
6315	Microporous polymeric membranes inspired by adsorbent for gas separation. Journal of Materials Chemistry A, 2017, 5, 13294-13319.	5.2	71
6316	New 2D layered structures with direct fluorine–metal bonds: MF(CH3COO) (M: Sr, Ba, Pb). CrystEngComm, 2020, 22, 2772-2780.	1.3	5
6317	Hexahydroxytriphenylene for the synthesis of group 13 MOFs – a new inorganic building unit in a β-cristobalite type structure. Dalton Transactions, 2020, 49, 3088-3092.	1.6	14
6318	Adsorption of methane on single metal atoms supported on graphene: Role of electron back-donation in binding and activation. Journal of Chemical Physics, 2020, 153, 244701.	1.2	8
6319	Poly[[octaaqua-μ ₄ -(benzene-1,2,4,5-tetracarboxylato)-dicobalt(II)] octahydrate]. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, m680-m681.	0.2	2
6320	Framework disorder and its effect on selective hysteretic sorption of a T-shaped azole-based	1.0	10

#	Article	IF	CITATIONS
6321	Crystal structure and Hirshfeld surface analysis of dichlorido(methanol-κ <i>O</i>)bis(2-methylpyridine-κ <i>N</i>)copper(II). Acta Crystallographica Section E: Crystallographic Communications, 2020, 76, 1771-1774.	0.2	1
6322	On the Application of Classical Molecular Simulations of Adsorption in Metal–Organic Frameworks. , 2015, , 53-112.		5
6323	Olefin Hydrogenation with Single-Site Gold. Acta Physica Polonica A, 2014, 125, 940-943.	0.2	2
6324	A Review on Solid State Hydrogen Storage Material. Advances in Energy and Power, 2016, 4, 11-22.	0.7	113
6325	Study on the structure activity relationship of the crystal MOF-5 synthesis, thermal stability and N2 adsorption property. High Temperature Materials and Processes, 2020, 39, 171-177.	0.6	21
6326	2-aminoterephthalate compounds: a thermal and spectroscopic approach. Brazilian Journal of Thermal Analysis, 2015, 4, 01.	0.0	2
6328	Synthesis of ZIF-8/Fly Ash Composite for Adsorption of Cu2+, Zn2+ and Ni2+ from Aqueous Solutions. Materials, 2020, 13, 214.	1.3	28
6329	A Selenophene-Incorporated Metal–Organic Framework for Enhanced CO2 Uptake and Adsorption Selectivity. Molecules, 2020, 25, 4396.	1.7	14
6330	Preparation and Characterization of Metal-Organic Framework Supported Gold Catalysts and Their Catalytic Performance for Three-Component Coupling Reaction. Chinese Journal of Catalysis, 2013, 33, 833-841.	6.9	1
6331	Modelling of porous metal-organic framework (MOF) materials used in catalysis. Czasopismo Techniczne, 2020, , 1-24.	0.2	4
6332	Cobalt and Nitrogen Co-Doped Nano-Porous Carbon: Synthesis and Application for Lithium-Sulfur Battery. Journal of Power and Energy Engineering, 2017, 05, 16-20.	0.3	2
6333	Two-dimensional Copper Coordination Polymers Based on Paddle-Wheel Type Secondary Building Units of Cu ₂ (CO ₂ R) ₄ : [Cu(1,3-BDC)(H ₂ O)]·2H ₂ O and [Cu ₂ (OBC) ₂ (H ₂ O) ₂]·H ₂ O (1,3-BDC =) Tj	ETiQq110). 78 4314 rgl
6334	A Novel Linking Schiff-Base Type Ligand (L: py-CH=N-C6H4-N=CH-py) and Its Zinc Coordination Polymers:Preparation of L, 2-Pyridin-3-yl-1H-benzoimidazol, trans-[Zn(H2O)4L2].(NO3)2.(MeOH)2[Zn(NO3)(H2O)2(L)].(NO3).(H2O)2and [Zn(L)(OBC)(H2O)] (OBC =) Tj ETC	Qq000rg	gBT ¹⁵ /Overloc
6335	Hydrothermal Synthesis and Crystal Structures of Monomeric and Polymeric Copper Phosphates with 4,4'-Bipyridine. Bulletin of the Korean Chemical Society, 2006, 27, 2077-2080.	1.0	3
6336	Solvothermal Synthesis, Crystal Structure, and Magnetic Properties of [Co ₃ (SDA) ₃ (DMF) ₂]; 2-D Layered Metal-organic Framework Derived from 4,4'-Stilbenedicarboxylic Acid (H ₂ SDA). Bulletin of the Korean Chemical Society, 2006, 27, 443-446.	1.0	21
6337	Novel Linking Ligand Containing Sulfur-Donor Atoms and Its Compounds of Palladium and Silver. Bulletin of the Korean Chemical Society, 2007, 28, 421-426.	1.0	21
6338	Unexpected Formation of the Cobalt-Formate Coordination Polymer [CO3(HCO2)6]·dmf from Co(NO3)2and 2,2'-Bipyridine-5,5'-dicarboxylic Acid in dmf-EtOH-H2O. Bulletin of the Korean Chemical Society, 2008, 29, 2383-2389.	1.0	9
6339	Bi(furan)- and Bi(fhiophene)-Type Linking Ligands and Their Silver Coordination Polymers: [Ag ₂ L ¹ (NO ₃) ₂] _n and [Ag ₂ L ² (NO ₃) ₂ (H ₂ O)] _n (L ^{1<}	/s up >=) Tj	ETQq110.

ARTICLE IF CITATIONS Adsorptive Separation of Propylene and Propane on a Porous Metal-Organic Framework, Copper 6340 1.0 70 Trimesate. Bulletin of the Korean Chemical Society, 2010, 31, 220-223. An Ordered Crystal Structure of IRMOF-3. Bulletin of the Korean Chemical Society, 2010, 31, 1041-1042. 6341 1.0 Binding energy of H2to MOF-5: A Model Study. Bulletin of the Korean Chemical Society, 2011, 32, 6342 2 1.0 4199-4204. A Series of 3D Lanthanide Complexes Containing (La(III), Sm(III) and Gd(III)) Metal-organic Frameworks: Synthesis, Structure, Characterization and Their Luminescent Properties. Bulletin of the Korean 6343 Chemical Society, 2012, 33, 3777-3787 Rational Design of Coordination Polymers with Flexible Oxyethylene Side Chains. Bulletin of the 6344 1.0 2 Korean Chemical Society, 2012, 33, 1264-1267. Synthesis and Crystal Structure of a 3D Samarium-Organic Framework Containing Vacant Chelating Sites. Bulletin of the Korean Chemical Society, 2012, 33, 1349-1352. 6345 1.0 Synthesis and Structure of a 3-D Metal-Organic Framework, [Ćd₂(1,4-cyclohexanedicarboxylate)₂·DMF], Comprising Unusual Two 6346 1.0 10 Different Ligand Conformations. Bulletin of the Korean Chemical Society, 2012, 33, 3111-3114. Structural Transformation and Gas Adsorption Properties of Interpenetrated IRMOF-8. Bulletin of the 6347 1.0 Korean Chemical Society, 2014, 35, 949-952. Syntheses, Structures, and Characterization of Two Novel Copper(II) and Cadmium(II) Compounds 6348 1.0 1 Based on Pyridyl Conjugated 1,2,3-Triazole. Bulletin of the Korean Chemical Society, 2014, 35, 1495-1500. A Novel Ligand Containing Oxygen Atoms in the Terminal Furan Rings and Its Palladium Compound. 6349 0.2 Journal of the Korean Chemical Society, 2006, 50, 420-423. Hydrothermal Synthesis and Crystal Structure of [Ćo(phen)₂(CO₃)]·(HCO₃)·4H₂O 6350 0.2 1 (phen=1,10-phenanthroline). Journal of the Korean Chemical Society, 2007, 51, 595-599. Factors in the Synthesis of 3-D Metal-Organic Framework, [Zn(HCOO)₃](C₂H₈N), Derived from Decomposition of Solvent. Journal of the Korean Chemical Society, 2009, 53, 73-78. Development of Environmentally Benign Catalytic Reactions Using Tetranuclear Zinc Clusters. Yuki 6352 0.0 3 Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2009, 67, 494-506. A review: methane capture by nanoporous carbon materials for automobiles. Carbon Letters, 2016, 17, 3.3 18-28. Adsorption and Diffusion of Li and Ni on Graphene with Boron Substitution for Hydrogen 6354 0.8 6 Storage: <i>Ab-initio </i>Method. Japanese Journal of Applied Physics, 2011, 50, 06GJ02. Sonochemical Synthesis of UiO-66 for CO₂Adsorption and Xylene Isomer Separation. Korean Chemical Engineering Research, 2013, 51, 470-475. Experimental and theoretical studies of a pyridylvinyl(benzoate) based coordination polymer 6356 1.31 structure. CrystEngComm, 2021, 23, 8139-8149. Nafion-threaded MOF laminar membrane with efficient and stable transfer channels towards highly 5.8 enhanced proton conduction. Nano Research, 2022, 15, 3195-3203.

#	Article	IF	CITATIONS
6358	A Triazole Functionalized <i>txt</i> -Type Metal–Organic Framework with High Performance for CH ₄ Uptake and Selective CO ₂ Adsorption. Inorganic Chemistry, 2021, 60, 15646-15652.		5
6359	Nanomaterials as adsorbents for As(III) and As(V) removal from water: A review. Journal of Hazardous Materials, 2022, 424, 127572.	6.5	32
6360	Active mechanisorption driven by pumping cassettes. Science, 2021, 374, 1215-1221.	6.0	88
6361	Fullerene-impregnated IRMOFs for balanced gravimetric and volumetric H2 densities: A combined DFT and GCMC simulations study. International Journal of Hydrogen Energy, 2021, 46, 40294-40294.	3.8	3
6362	Unusual Metal–Organic Framework Topology and Radiation Resistance through Neptunyl Coordination Chemistry. Journal of the American Chemical Society, 2021, 143, 17354-17359.	6.6	16
6363	Synthetic Strategy for Incorporating Carboxylate Ligands into Coordination Polymers under a Solvent-Free Reaction. Crystal Growth and Design, 2021, 21, 6031-6036.	1.4	3
6364	Novel Nanoporous Ti-Phosphonate Metal–Organic Framework for Selective Sensing of 2,4,6-Trinitrophenol and a Promising Electrode in an Energy Storage Device. ACS Sustainable Chemistry and Engineering, 2021, 9, 14224-14237.	3.2	42
6365	Paperâ€Like Writable Nanoparticle Network Sheets for Maskâ€Less MOF Patterning. Advanced Functional Materials, 2022, 32, .	7.8	5
6366	Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting. Science, 2021, 374, 454-459.	6.0	281
6367	Understanding the Anisotropic Elastic Properties of Metal–Organic Frameworks at the Nanoscale: The Instructive Example of MOF-74. Journal of Physical Chemistry C, 2021, 125, 24728-24745.	1.5	5
6368	Comparing Zinc Oxide- and Zinc Silicate-Related Metal-Organic Networks via Connection-Based Zagreb Indices. Journal of Chemistry, 2021, 2021, 1-16.	0.9	3
6369	Using Machine Learning and Data Mining to Leverage Community Knowledge for the Engineering of Stable Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 17535-17547.	6.6	71
6370	Molecular insights into hybrid CH4 physisorption-hydrate growth in hydrophobic metal–organic framework ZIF-8: Implications for CH4 storage. Chemical Engineering Journal, 2022, 430, 132901.	6.6	8
6371	Functionalization using biocompatible carboxylated cyclodextrins of iron-based nanoMIL-100. Polyhedron, 2021, 210, 115509.	1.0	1
6373	Interpenetration - strategies and nomenclature. , 2005, , 211-225.		0
6374	Introduction and a short dictionary of network terminology. , 2005, , 1-17.		0
6375	The most common 3D-nets. , 2005, , 81-97.		0
6376	Syntheses of dinuclear rhodium(II) monocarboxylates with micropores. Transactions of the Materials Research Society of Japan, 2008, 33, 1351-1354.	0.2	0

#	Article	IF	CITATIONS
6378	Poly[tris(2,5-dimethylbenzene-1,4-dicarboxylato)bis(pyridine)trizinc(II)]. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, m282-m282.	0.2	1
6379	Micromechanics of 3D Crystallized Protein Structures. , 2012, , 197-212.		0
6380	Synthesis of Through-space Conjugated Polymers. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 480-491.	0.0	1
6381	Coordination Chemical Approach to Surface Molecular Devices: Molecular Basis toward Surface Programming. Bulletin of Japan Society of Coordination Chemistry, 2012, 60, 2-23.	0.1	1
6382	Host–guest and guest–guest interactions between xylene isomers confined in the MIL-47(V) pore system. Highlights in Theoretical Chemistry, 2014, , 35-47.	0.0	0
6383	CO2Adsorption in Metal-organic Frameworks. Korean Chemical Engineering Research, 2013, 51, 171-180.	0.2	1
6386	Single Crystals of a 2-Dimensional Metal Coordination Polymer Containing Pendant Carbazole Groups. Bulletin of the Korean Chemical Society, 2013, 34, 3903-3905.	1.0	0
6387	Production of Atomic Photochemical Hydrogen and Photoinjection of Hydrogen in Solids. , 2013, , 241-282.		0
6388	Water and hydrate structures in carbon nanopores. Tanso, 2014, 2014, 91-103.	0.1	3
6389	NMR Study of Confined Molecular System. Oleoscience, 2014, 14, 253-260.	0.0	0
6390	Review : Structures, Synthesis and Applications of MOF. Journal of the Korea Institute of Military Science and Technology, 2014, 17, 510-520.	0.1	1
6391	Crystal structure of poly[[μ3-4,4′-(4,4′-bipyridine-2,6-diyl)dibenzoato]{μ2-4-[6-(4-carboxyphenyl)-4,4′-bipyridin-4′-ium- hemihydrate]. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, m374-m375.	2- øl] benzo	oa to }mang <mark>a</mark> n
6392	Modeling of Zeolitic-Like Hybrid Materials for Gas Separation. , 2015, , 381-418.		0
6393	Molecular Modeling of Metal–Organic Frameworks for Carbon Dioxide Separation Applications. , 2015, , 339-379.		0
6394	Modeling Adsorptive Separations Using Metal–Organic Frameworks. , 2015, , 419-449.		0
6396	Modeled Catalytic Properties of MOF-Based Compounds. , 2015, , 517-551.		0
6397	Computational Modeling of Catalysis in Metal–Organic Frameworks. , 2015, , 483-516.		0
6398	First-principle studies of mechanical, electronic properties and strain engineering of metal-organic framework. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 178105.	0.2	1

ARTICLE IF CITATIONS The Hydrothermal Synthesis of Porous Material MOF Based on the CMIA-Cd. Advances in Analytical 6400 0.1 0 Chemistry, 2017, 07, 196-202. Solid-State NMR Studies of Small Molecule Adsorption in Metal-Organic Frameworks (MOFs)., 2017,, 6401 1-15. Multi-metal citrate complex: green synthesis using Lime juice for hydrogen storage applications. 6402 0 0.1 International Journal of Pharma and Bio Sciences, 2018, 9, . Research Progress in Functional Metal-Organic Frameworks for Tumor Therapy. Acta Chimica Sinica, 6404 0.5 2019, 77, 1156. 6406 Materials From Extreme High Pressure Conditions., 2019,,. 1 Fabrication of Metal-organic Framework (MOF) Thin Films from Copper Hydroxide Nano-assemblies. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2020, 67, 0.1 132-139 One-dimensional metal hydroxide nanomaterials with macroscopically controlled orientation and aggregation: fascinating surface hydroxyl groups on anisotropic structures for functionalities. Journal of the Ceramic Society of Japan, 2020, 128, 627-634. 6411 0.5 1 Visualization and Quantification of Geometric Diversity in Metal–Organic Frameworks. Chemistry of 6412 3.2 Materials, 0, , . Metal-Organic Frameworks Characterization via Inverse Pulse Gas Chromatography. Applied Sciences 6413 1.3 8 (Switzerland), 2021, 11, 10243. Methane and Hydrogen Storage in Metal Organic Frameworks: A Mini Review. Journal of 6415 0.4 Environmental & Earth Sciences, 2020, 2, . Lanthanide-doped metal-organic frameworks with multicolor mechanoluminescence. Science China 6416 3.5 13 Materials, 2021, 64, 931-941. Polynomials of Degree-Based Indices of Metal-Organic Networks. Combinatorial Chemistry and High 0.6 Throughput Screening, 2020, 23, . A robust two–dimensional layered metal–organic framework for efficient separation of methane 6418 3.9 16 from nitrogen. Separation and Purification Technology, 2022, 281, 119911. Facile immobilization of ethylenediamine tetramethylene-phosphonic acid into UiO-66 for toxic divalent heavy metal ions removal: An experimental and theoretical exploration. Science of the Total Environment, 2022, 806, 150652. 6419 A Density Functional Theory (DFT) Investigation on the Structure and Spectroscopic Behavior of 6420 0.8 1 2-Aminoterephthalic Acid and Its Sodium Salts. Green and Sustainable Chemistry, 2020, 10, 39-55. Recent Advances on Metal Organic Frameworks and Its Derivatives as Efficient Electrodes for 6421 Electrochemical Energy Storage., 2020,,. An ultra-high quantum yield Tb-MOF with phenolic hydroxyl as the recognition group for a highly 6423 selective and sensitive detection of Fe³⁺. Journal of Materials Chemistry C, 2021, 9, 2.7 36 15840-15847. Hydrogen Storage in Cryogenic, Cybernetic, and Catalytic Vessels for Transport Vehicles. Journal of 6424 Energy and Power Technology, 2021, 03, 1-1.

#	Article	IF	Citations
6425	Twoâ€dimensional composite (BiOCl/GO/MOFâ€5) by ultrasonicâ€assisted solvothermal synthesis with enhanced photocatalytic activity. Micro and Nano Letters, 2020, 15, 149-154.	0.6	6
6428	Topological evolution of correlated band structures and heavy-fermion-like behavior in a molybdenum-based metal organic framework C48S36Mo6. Journal of Physics Condensed Matter, 2020, 32, 295503.	0.7	0
6429	Elemental Depth Profiling of Intact Metal–Organic Framework Single Crystals by Scanning Nuclear Microprobe. Journal of the American Chemical Society, 2021, 143, 18626-18634.	6.6	4
6430	Clipâ€off Chemistry: Synthesis by Programmed Disassembly of Reticular Materials**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
6431	Clipâ€off Chemistry: Synthesis by Programmed Disassembly of Reticular Materials. Angewandte Chemie, 0, , .	1.6	0
6432	New Insights into the Nanoworld of Functional Materials. , 2006, , 395-407.		0
6433	THE ROLE OF DIFFUSION IN APPLICATIONS OF NOVEL NANOPOROUS MATERIALS AND IN NOVEL USES OF TRADITIONAL MATERIALS. , 2006, , 69-91.		1
6434	Synergetic Effect of Graphene Oxide and Metal Organic Framework Nanocomposites as Electrocatalysts for Hydrogen Evolution Reaction. , 2021, , 23-54.		1
6435	Study of the adsorption of an organic pollutant onto a microporous metal organic framework. Water Science and Technology, 2021, 83, 137-151.	1.2	1
6436	Synthesis, crystal structure and DNA binding of a new Ni(II) coordination compound based on 4-(1-naphthylvinyl)pyridine ligand. Polyhedron, 2020, 190, 114777.	1.0	2
6437	Mind the gap! tailoring sol–gel ceramic mesoporous coatings on labile metal–organic frameworks through kinetic control. Inorganic Chemistry Frontiers, 2022, 9, 221-230.	3.0	1
6438	Dispersion‒corrected DFT investigations on the interaction of glycine amino acid with metal organic framework MOF‒5. Physica B: Condensed Matter, 2022, 626, 413446.	1.3	36
6439	Target-modulated competitive binding and exonuclease I-powered strategy for the simultaneous and rapid detection of biological targets. Biosensors and Bioelectronics, 2022, 198, 113817.	5.3	10
6440	Separation of Durene and Prehnitene by Metal-organic Framework UiO-66. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 641, 127904.	2.3	2
6441	Rapid Quantification of Mass Transfer Barriers in Metal–Organic Framework Crystals. Chemistry of Materials, 0, , .	3.2	10
6443	Advanced Ordered Nanoporous Materials. Engineering Materials, 2022, , 259-317.	0.3	2
6444	Regulation of Catenation in Metal–Organic Frameworks with Tunable Clathrochelate-Based Building Blocks. Crystal Growth and Design, 2021, 21, 6665-6670.	1.4	7
6445	MOF-inorganic nanocomposites: Bridging a gap with inorganic materials. Applied Materials Today, 2022, 26, 101283.	2.3	8

ARTICLE IF CITATIONS Discovery of spontaneous de-interpenetration through charged point-point repulsions. CheM, 2022, 8, 5.8 11 6446 225-242. Synthesis of Mesoporous Materials. Engineering Materials, 2022, , 113-173. 6447 0.3 Robust smart schemes for modeling carbon dioxide uptake in metalÂâr Âorganic frameworks. Fuel, 2022, 6448 3.4 13 311, 122545. Structureâ€"Property Correlation of Hierarchically Porous Carbons for Fluorocarbon Adsorption. 6449 4.0 ACS Applied Materials & amp; Interfaces, 2021, 13, 54266-54273. Conductive Hybrid Cuâ€HHTPâ€TCNQ Metal–Organic Frameworks for Chemiresistive Sensing. Advanced 6450 2.6 5 Electronic Materials, 2022, 8, 2100871. Connectivity Replication of Neutral Eu³⁺- and Tb³⁺-Based Metalâ€"Organic Frameworks (MOFs) from Anionic Cd²⁺-Based MOF Crystallites. Inorganic Chemistry, 2021, 60, 18614-18619. Influencing the Dimensionality of Ni/Coâ€Bipyrazole based Coordination Frameworks through Anions 6452 1.0 0 and thermal Activation. European Journal of Inorganic Chemistry, 0, , . Recent advances in luminescent metal–organic frameworks and their photonic applications. Chemical 6453 Communications, 2021, 57, 13678-13691. Synthesis methods of microporous organic polymeric adsorbents: a review. Polymer Chemistry, 2021, 6454 1.9 11 12,6962-6997. Chapter 2. Inorganic Materials in Drug Delivery. Inorganic Materials Series, 2021, , 14-126. 6455 Monolayer Nanosheets Exfoliated from Cage-Based Cationic Metal–Organic Frameworks. Inorganic 6457 1.9 6 Chemistry, 2022, 61, 1521-1529. A fluorinated 2D magnetic coordination polymer. Dalton Transactions, 2022, 51, 1861-1865. 6458 1.6 Shaping of ZIF-8 and MIL-53(Al) adsorbents for CH4/N2 separation. Microporous and Mesoporous 6459 2.2 14 Materials, 2022, 331, 111648. Synthesis of zeolitic imidazolate framework-8 and gold nanoparticles in a sustained 6460 1.6 out-of-equilibrium state. Scientific Reports, 2022, 12, 222. Shellâ€like Xenon Nanoâ€Traps within Angular Anionâ€Pillared Layered Porous Materials for Boosting Xe/Kr 6461 1.6 3 Separation. Angewandte Chemie, 2022, 134, . Structural and molecular properties of complexes of biomolecules and metal–organic frameworks: 6462 dispersion-corrected DFT treatment. Journal of Molecular Modeling, 2022, 28, 32. Metal-organic and covalent organic frameworks for the remediation of aqueous dye solutions: 6463 9.5 48 Adsorptive, catalytic and extractive processes. Coordination Chemistry Reviews, 2022, 454, 214332. Field-applied biochar-based MgO and sepiolite composites possess CO2 capture potential and alter 6464 organic C mineralization and C-cycling bacterial structure in fertilized soils. Science of the Total Environment, 2022, 813, 152495.

#	Article	IF	CITATIONS
6465	Effects of regulator ratio and guest molecule diffusion on VOCs adsorption by defective UiO-67: Experimental and theoretical insights. Chemical Engineering Journal, 2022, 433, 134510.	6.6	97
6466	Removal of Hydrogen Sulfide (H2S) Using MOFs: A Review of the Latest Developments. , 2020, 2, .		1
6467	TWO NEW SELF-ASSEMBLED CADMIUM(II) METAL-ORGANIC FRAMEWORKS CONSTRUCTED OF A FLEXIBLE TRIPODAL LIGAND: SYNTHESIS, STRUCTURE, AND THERMAL STABILITY. Journal of Structural Chemistry, 2021, 62, 1703-1714.	0.3	5
6468	A Microporous Metal–Organic Framework Incorporating Both Primary and Secondary Building Units for Splitting Alkane Isomers. Journal of the American Chemical Society, 2022, 144, 3766-3770.	6.6	36
6469	Crystal Packing-Driven Selective Hg(II) Ion Sensing Using Thiazolothiazole-Based Water-Stable Zinc Metal–Organic Framework. Inorganic Chemistry, 2022, 61, 2227-2233.	1.9	19
6470	Porous Assembly of <scp>Metalloâ€Supramolecule</scp> and Polyoxometalate via Ionic Complexation with Vapor Sorption Properties. Chinese Journal of Chemistry, 2022, 40, 813-818.	2.6	10
6471	Theranostic Effect of Folic Acid Functionalized MIL-100(Fe) for Delivery of Prodigiosin and Simultaneous Tracking-Combating Breast Cancer. Journal of Nanomaterials, 2022, 2022, 1-16.	1.5	5
6472	Biomedical Applications of Metalâ^'Organic Frameworks for Disease Diagnosis and Drug Delivery: A Review. Nanomaterials, 2022, 12, 277.	1.9	61
6473	Metal-Organic Frameworks-Based Sensors for Food Safety. Foods, 2022, 11, 382.	1.9	29
6474	Mixed matrix membranes for gas separation. , 2022, , 203-254.		0
6475	AIE-active macromolecules: designs, performances, and applications. Polymer Chemistry, 2021, 13, 8-43.	1.9	20
6476	Solvothermal Synthesis of Flower-Flakes Like Nano Composites of Ni-Co Metal Organic Frameworks and Graphene Nanoplatelets for Energy Storage Applications. ECS Journal of Solid State Science and Technology, 2022, 11, 011001.	0.9	8
6477	Highly conjugated three-dimensional covalent organic frameworks with enhanced Li-ion conductivity as solid-state electrolytes for high-performance lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 8761-8771.	5.2	33
6478	State of the art developments and prospects of metal–organic frameworks for energy applications. Dalton Transactions, 2022, 51, 1675-1723.	1.6	11
6479	Origin of the weakly temperature-dependent thermal conductivity in ZIF-4 and ZIF-62. Physical Review Materials, 2022, 6, .	0.9	8
6480	Modified Metalâ ``Organic Frameworks for Electrochemical Applications. Small Structures, 2022, 3, .	6.9	20
6481	Design of a MOF based on octa-nuclear zinc clusters realizing both thermal stability and structural flexibility. Chemical Communications, 2022, 58, 1139-1142.	2.2	6
6482	Superradiance and Directional Exciton Migration in Metal–Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 1396-1406.	6.6	22

#	Article		CITATIONS
6483	Shellâ€like Xenon Nanoâ€Traps within Angular Anionâ€Pillared Layered Porous Materials for Boosting Xe/Kr Separation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
6484	Are you using the right probe molecules for assessing the textural properties of metal–organic frameworks?. Journal of Materials Chemistry A, 2021, 10, 157-173.	5.2	33
6485	A phase conversion method to anchor ZIF-8 onto a PAN nanofiber surface for CO ₂ capture. RSC Advances, 2021, 12, 664-670.	1.7	12
6486	Single Nano-Sized Metal–Organic Framework for Bio-Nanoarchitectonics with In Vivo Fluorescence Imaging and Chemo-Photodynamic Therapy. Nanomaterials, 2022, 12, 287.	1.9	11
6487	NUIG4: A biocompatible pcu metal–organic framework with an exceptional doxorubicin encapsulation capacity. Journal of Materials Chemistry B, 2022, 10, 1378-1385.	2.9	4
6488	Surface chemistry of metal–organic polyhedra. Chemical Communications, 2022, 58, 2443-2454.	2.2	20
6489	Superhydrophobic MOFs decorated on hierarchically micro/nanofibrous membranes for high-performance emulsified oily wastewater separation and cationic dyes adsorption. Journal of Materials Chemistry A, 2022, 10, 829-845.	5.2	24
6490	Synthesize and characterization of Co-complex as interlayer for Schottky type photodiode. Polymer Bulletin, 2022, 79, 11389-11408.	1.7	13
6491	Persulfate activation by ferrocene-based metal–organic framework microspheres for efficient oxidation of orange acid 7. Environmental Science and Pollution Research, 2022, , 1.	2.7	8
6492	Highly Emissive Multipurpose Organoplatinum(II) Metallacycles with Contrasting Mechanoresponsive Features. Inorganic Chemistry, 2022, 61, 2883-2891.	1.9	56
6493	Quasi Solid–Liquid Reaction Strategy to In Situ Synthesize the Conductive MOF Film with Ordered Submicron Macropores for Gas Sensing. Advanced Materials Interfaces, 2022, 9, .	1.9	6
6494	Reticular Chemistry for Highly Porous Metal–Organic Frameworks: The Chemistry and Applications. Accounts of Chemical Research, 2022, 55, 579-591.	7.6	145
6495	Preparation and Characterization of a New Chiral Metal-Organic Framework with Spiranes. Journal of Molecular Structure, 2022, , 132538.	1.8	3
6496	Study on the adsorption performance of zeolitic imidazolate framework-8 (ZIF-8) for Co2+ and Mn2+. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331, 1367-1379.	0.7	7
6497	Vanadiumâ€based metalâ€organic frameworks and their derivatives for electrochemical energy conversion and storage. SmartMat, 2022, 3, 384-416.	6.4	51
6498	Design of new porous supramolecular arrays from flavyliums derivative linker. A theoretical assemble toward surface properties. Computational Materials Science, 2022, 204, 111202.	1.4	0
6499	Application of metal-organic framework (Zn-Ph-D CP) for copper ion removal from aqueous solution. Ain Shams Engineering Journal, 2022, 13, 101670.	3.5	5
6500	Origin of the temperature dependence of ¹³ C pNMR shifts for copper paddlewheel MOFs. Chemical Science, 2022, 13, 2674-2685.	3.7	2

#	Article	IF	CITATIONS
6501	Spray drying-assisted construction of hierarchically porous ZIF-8 for controlled release of doxorubicin. Nanoscale, 2022, 14, 2793-2801.	2.8	14
6502	Metal–organic frameworks with ftw -type connectivity: design, pore structure engineering, and potential applications. CrystEngComm, 2022, 24, 2189-2200.	1.3	5
6503	Intrinsic Hole Mobility in Luminescent Metal–Organic Frameworks and Its Application in Organic Lightâ€Emitting Diodes. Angewandte Chemie, 2022, 134, .	1.6	2
6504	Intrinsic Hole Mobility in Luminescent Metal–Organic Frameworks and Its Application in Organic Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
6505	Metalâ€Organic Framework (MOF) Morphology Control by Design. Chemistry - A European Journal, 2022, 28, .	1.7	29
6506	Hollow zirconium-porphyrin-based metal-organic framework for efficient solid-phase microextraction of naphthols. Analytica Chimica Acta, 2022, 1200, 339586.	2.6	7
6507	Leveraging Chiral Zr(IV)-Based Metal–Organic Frameworks To Elucidate Catalytically Active Rh Species in Asymmetric Hydrogenation Reactions. Journal of the American Chemical Society, 2022, 144, 3117-3126.	6.6	31
6508	Constructing fluorine-doped Zr-MOF films on titanium for antibacteria, anti-inflammation, and osteogenesis. Materials Science and Engineering C, 2022, 134, 112699.	3.8	12
6509	Synthesis and characterization of nano-sized magnesium 1,4-benzenedicarboxylate metal organic framework via electrochemical method. Journal of Solid State Chemistry, 2022, 309, 122970.	1.4	1
6510	CO ₂ uptake prediction of metal–organic frameworks using quasi-SMILES and Monte Carlo optimization. New Journal of Chemistry, 2022, 46, 8827-8837.	1.4	10
6511	Recent Progress in the Synthesis and Electrocatalytic Application of Metal–Organic Frameworks Encapsulated Nanoparticle Composites. , 2022, , 731-764.		7
6512	Metal Organic Frameworks as Photocatalyst for Water Purification. , 2022, , 561-593.		5
6513	A silver-functionalized metal–organic framework with effective antibacterial activity. New Journal of Chemistry, 2022, 46, 5922-5926.	1.4	7
6514	Calcium-based coordination polymers from a solvothermal synthesis of HKUST-1 in 3D printed autoclaves. Mendeleev Communications, 2022, 32, 105-108.	0.6	7
6515	Electrocatalytic water oxidation from a mixed linker MOF based on NU-1000 with an integrated ruthenium-based metallo-linker. Materials Advances, 2022, 3, 4227-4234.	2.6	3
6516	Highly Connected Framework Materials from Flexible Tetra-Isophthalate Ligands. CrystEngComm, 0, , .	1.3	3
6518	Metal-organic frameworks for fuel cell technologies. , 2022, , 173-199.		1
6519	Preparation and characterization of a newly constructed multifunctional Co(<scp>ii</scp>)–organic framework: proton conduction and adsorption of Congo red in aqueous medium. CrystEngComm, 2022, 24, 3380-3393.	1.3	7

#	Article	IF	CITATIONS
6520	Pt(<scp>ii</scp>)-coordinated tricomponent self-assemblies of tetrapyridyl porphyrin and dicarboxylate ligands: are they 3D prisms or 2D bow-ties?. Chemical Science, 2022, 13, 4070-4081.	3.7	9
6521	Cu(<scp>ii</scp>) and Zn(<scp>ii</scp>) frameworks constructed by directional tuning of diverse substituted groups on a triazine skeleton and supermassive adsorption behavior for iodine and dyes. Dalton Transactions, 2022, 51, 5457-5470.	1.6	8
6522	Macro-Meso-Microporous Metal–Organic Frameworks: Template-Assisted Spray Drying Synthesis and Enhanced Catalysis. ACS Applied Materials & Interfaces, 2022, 14, 10712-10720.	4.0	14
6523	Zinc-metal–organic frameworks with tunable UV diffuse-reflectance as sunscreens. Journal of Nanobiotechnology, 2022, 20, 87.	4.2	7
6524	Large Cages of Zeolitic Imidazolate Frameworks. Accounts of Chemical Research, 2022, 55, 707-721.	7.6	71
6525	Dual-Force Zone Nonequilibrium Molecular Dynamics Simulations on Nanoporous Metal–Organic Framework Membranes for Separation of H ₂ /CH ₄ Mixtures. ACS Applied Nano Materials, 2022, 5, 4048-4061.	2.4	9
6526	Fabrication of bimetallic ZIF/carbon nanofibers composite for electrochemical sensing of adrenaline. Journal of Materials Science, 2022, 57, 6629-6639.	1.7	8
6527	A Hessian-based assessment of atomic forces for training machine learning interatomic potentials. Journal of Chemical Physics, 2022, 156, 114106.	1.2	6
6528	Interfacial nanoarchitectonics for ZIF-8 membranes with enhanced gas separation. Beilstein Journal of Nanotechnology, 2022, 13, 313-324.	1.5	7
6529	Cooperative Assembly of 2Dâ€MOF Nanoplatelets into Hierarchical Carpets and Tubular Superstructures for Advanced Air Filtration. Angewandte Chemie - International Edition, 2022, , .	7.2	2
6530	Recent Advances in MOF-Based Adsorbents for Dye Removal from the Aquatic Environment. Energies, 2022, 15, 2023.	1.6	37
6531	Bottom-Up Synthesis of 8-Connected Three-Dimensional Covalent Organic Frameworks for Highly Efficient Ethylene/Ethane Separation. Journal of the American Chemical Society, 2022, 144, 5643-5652.	6.6	131
6532	Mixed Metal–Organic Framework Stationary Phases for Liquid Chromatography. ACS Nano, 2022, 16, 6771-6780.	7.3	12
6533	Cooperative Assembly of 2Dâ€MOF Nanoplatelets into Hierarchical Carpets and Tubular Superstructures for Advanced Air Filtration. Angewandte Chemie, 2022, 134, .	1.6	1
6534	Mechanochemical Synthesis of Fluorine-Containing Co-Doped Zeolitic Imidazolate Frameworks for Producing Electrocatalysts. Frontiers in Chemistry, 2022, 10, 840758.	1.8	4
6535	Further Insight into the Conversion of a Ni–Fe Metal–Organic Framework during Water-Oxidation Reaction. Inorganic Chemistry, 2022, 61, 5112-5123.	1.9	17
6536	Anion Regulates scu Topological Porous Coordination Polymers into the Acetylene Trap. ACS Applied Materials & Interfaces, 2022, 14, 13550-13559.	4.0	14
6537	Preparation of CeO2/UiO-66-NH2 Heterojunction and Study on a Photocatalytic Degradation Mechanism. Materials, 2022, 15, 2564.	1.3	4

		CITATION REPORT		
#	Article		IF	Citations
6538	Topology-guided roadmap for reticular chemistry of metal-organic polyhedra. CheM, 24	022, 8, 617-631.	5.8	10
6539	Structures and Catalytic Properties of two New Squaramideâ€decorated Cdâ€MOFs. Z Anorganische Und Allgemeine Chemie, 0, , .	leitschrift Fur	0.6	0
6540	A Perylenediimide-Based Zinc-Coordination Polymer for Photosensitized Singlet-Oxyge Energies, 2022, 15, 2437.	n Generation.	1.6	1
6541	Electrochemical (Bio)Sensors for the Detection of Organophosphorus Pesticides Based Nanomaterial-Modified Electrodes: A Review. Critical Reviews in Analytical Chemistry, 2 1766-1791.	l on 2023, 53,	1.8	12
6542	Subtle Ligand Spacer Change in 2D Metal–Organic Framework Sheets for Dual Turn- Sensing of Acetylacetone and Turn-On Sensing of Water in Organic Solvents. ACS App & Interfaces, 2022, 14, 16357-16368.	·On/Turn-Off lied Materials	4.0	21
6543	A (3,8)-Connected Metal–Organic Framework with Bending Dicarboxylate Linkers fo C ₂ H ₂ /CO ₂ Separation. Inorganic Chemistry, 20	r 022, 61, 4555-4560.	1.9	13
6544	Mixed-Linker Strategy for the Construction of Metal–Organic Framework Combined toward Alcohol Detection. Inorganic Chemistry, 2022, 61, 5318-5325.	with Dyes	1.9	3
6545	Supramolecular Interactions Lead to Remarkably High Thermal Conductivities in Interp Two-Dimensional Porous Crystals. Nano Letters, 2022, 22, 3071-3076.	enetrated	4.5	6
6546	Current Progress and Scalable Approach toward the Synthesis of 2D Metal–Organic Advanced Materials Interfaces, 2022, 9, .	Frameworks.	1.9	9
6547	Chaotropic Effect as an Assembly Motif to Construct Supramolecular Cyclodextrin–Polyoxometalate-Based Frameworks. Journal of the American Chemica 144, 4469-4477.	l Society, 2022,	6.6	38
6548	A Highly Effective Inorganic Composite Promoter: Synergistic Effect of Boric Acid and G Hydroxide in Promoting Methane Hydrate Formation under Static Conditions. Industria Engineering Chemistry Research, 2022, 61, 3775-3780.	Calcium al &	1.8	2
6549	Zeolitic imidazolate frameworkâ€67 modified openâ€ŧubular column with cyclodextrir Enantioseparation in capillary electrochromatography. Electrophoresis, 2022, , .	ı for	1.3	3
6550	Visualizing Pore Packing and Topology in MOFs. Journal of Chemical Education, 2022,	99, 1998-2004.	1.1	11
6551	Rapid and energy-dense methane hydrate formation at near ambient temperature usin a dual-function promoter. Applied Energy, 2022, 311, 118678.	g 1,3-dioxolane as	5.1	26
6552	Bifunctionalized Metal–Organic Frameworks for Pore‣izeâ€Dependent Enantiose Angewandte Chemie - International Edition, 2022, 61, .	lective Sensing.	7.2	57
6553	Secondary-assembled defect-free MOF membrane via triple-needle electrostatic atomiz stable and selective organics permeation. Journal of Membrane Science, 2022, 648, 12	zation for highly 20382.	4.1	10
6554	Understanding the Origin of the Particularly Small and Anisotropic Thermal Expansion Advanced Theory and Simulations, 2022, 5, .	of MOFâ€74.	1.3	5
6555		eparation. Applied	1.7	3

#	Article	IF	CITATIONS
6556	Bifunctionalized Metal–Organic Frameworks for Pore‧izeâ€Dependent Enantioselective Sensing. Angewandte Chemie, 0, , .	1.6	1
6557	Membrane adsorber with hierarchically porous HKUST-1 immobilized in membrane pores by flowing synthesis. Journal of Membrane Science, 2022, 650, 120424.	4.1	8
6558	Designing of three mixed ligand MOFs in searching of length induced flexibility in ligand for the creation of interpenetration. Polyhedron, 2022, 218, 115763.	1.0	4
6559	A review on high-density methane storage in confined nanospace by adsorption-hydration hybrid technology. Journal of Energy Storage, 2022, 50, 104195.	3.9	12
6560	Endocytosis and intracellular RNAs imaging of nanomaterials-based fluorescence probes. Talanta, 2022, 243, 123377.	2.9	8
6561	Metal-organic framework-derived Co/C composite with high magnetization as broadband electromagnetic wave absorber. Journal of Alloys and Compounds, 2022, 906, 164257.	2.8	52
6562	Cobalt metal-organic framework for low concentration detection of glucose. Inorganic and Nano-Metal Chemistry, 0, , 1-6.	0.9	0
6563	Radical PolyMOFs: A Role for Ligand Dispersity in Enabling Crystallinity. Chemistry of Materials, 2021, 33, 9508-9514.	3.2	8
6564	Self-assembly of 3p-Block Metal-based Metal-Organic Frameworks from Structural Perspective. Chemical Research in Chinese Universities, 2022, 38, 31-44.	1.3	4
6565	Combining metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs): Emerging opportunities for new materials and applications. Nano Research, 2022, 15, 3514-3532.	5.8	46
6566	Crystallizationâ€driven selfâ€assembly of semicrystalline block copolymers and endâ€functionalized polymers: A minireview. Journal of Polymer Science, 2022, 60, 2136-2152.	2.0	7
6567	Zinc-Based Metal-Organic Frameworks in Drug Delivery, Cell Imaging, and Sensing. Molecules, 2022, 27, 100.	1.7	24
6568	Accelerated HKUST-1 Thin-Film Property Optimization Using Active Learning. ACS Applied Materials & amp; Interfaces, 2021, 13, 61827-61837.	4.0	4
6569	An Electrically Conductive Tetrathiafulvalene-Based Hydrogen-Bonded Organic Framework. , 2022, 4, 128-135.		34
6570	Tuning topological networks in MOFs by secondaryâ€buildingâ€unit connection: syntheses, structures and luminescent properties of two Zn ₄ â€cluster coordination polymers. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	0.6	0
6571	Diversifying Databases of Metal Organic Frameworks for High-Throughput Computational Screening. ACS Applied Materials & Interfaces, 2021, 13, 61004-61014.	4.0	50
6572	Modeling of CO2 adsorption capacity by porous metal organic frameworks using advanced decision tree-based models. Scientific Reports, 2021, 11, 24468.	1.6	34
6573	Upgrading the Hydrogen Storage of MOF-5 by Post-Synthetic Exchange with Divalent Metal Ions. Applied Sciences (Switzerland), 2021, 11, 11687.	1.3	10

#	Article	IF	CITATIONS
6574	Multifunctional Anthracene-Based Ni-MOF with Encapsulated Fullerenes: Polarized Fluorescence Emission and Selective Separation of C ₇₀ from C ₆₀ . ACS Applied Materials & Interfaces, 2022, 14, 1397-1403.	4.0	1
6575	Performance of GFN1-xTB for periodic optimization of metal organic frameworks. Physical Chemistry Chemical Physics, 2022, 24, 10906-10914.	1.3	4
6576	Metal–organic frameworks in pursuit of size: the development of macroscopic single crystals. Dalton Transactions, 2022, 51, 7775-7782.	1.6	4
6577	A neural network potential for the IRMOF series and its application for thermal and mechanical behaviors. Physical Chemistry Chemical Physics, 2022, 24, 11882-11897.	1.3	8
6578	Adsorption in Reversed Order of C ₂ Hydrocarbons on an Ultramicroporous Fluorinated Metalâ€Organic Framework. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
6579	Adsorption in Reversed Order of C ₂ Hydrocarbons on an Ultramicroporous Fluorinated Metalâ€Organic Framework. Angewandte Chemie, 2022, 134, .	1.6	7
6580	Synthesis, Structural Characterization, and Water Vapor Sorption Behavior of Two Ligand Ratio-Dependent Supramolecular Networks, [Cd(2,2′-bpym) _{1.5} (BDC)]·0.5(2,2′-bpym)·5H ₂ O and [Cd(2,2′-bpym) _{0.5} (BDC)(H ₂ O) ₃]. ACS Omega, 2022, 7, 14089-14101.	1.6	0
6581	Compatible with excellent gold/palladium trap and open sites for green Suzuki coupling by an imidazole-modified MOF. Microporous and Mesoporous Materials, 2022, 337, 111877.	2.2	4
6582	Are metal dopant and ligands efficient to optimize the adsorption rate of CH4, H2 and H2S on IRMOFs? Insights from factorial design. Computational Materials Science, 2022, 210, 111438.	1.4	5
6583	Chapter 10. Advanced Applications and Current Trends. RSC Materials Monographs, 0, , 403-416.	0.2	0
6588	Steps towards a nature inspired inorganic crystal engineering. Dalton Transactions, 2022, , .	1.6	8
6591	3D <i>vs.</i> turbostratic: controlling metal–organic framework dimensionality <i>via N</i> -heterocyclic carbene chemistry. Chemical Science, 2022, 13, 6418-6428.	3.7	2
6592	Metal-Organic Frameworks (Mofs) and Their Derivative as Electrode Materials for Lithium-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
6593	Strategies for induced defects in metal–organic frameworks for enhancing adsorption and catalytic performance. Dalton Transactions, 2022, 51, 8133-8159.	1.6	22
6594	Harvesting mechanical energy for hydrogen generation by piezoelectric metal–organic frameworks. Materials Horizons, 2022, 9, 1978-1983.	6.4	20
6595	Current development in MOFs for hydrogen storage. , 2022, , 631-661.		3
6596	Construction of cucurbit[<i>n</i>]uril-based supramolecular frameworks <i>via</i> host–guest inclusion and functional properties thereof. Inorganic Chemistry Frontiers, 2022, 9, 2753-2809.	3.0	11
6597	Low-temperature water-assisted crystallization approach to MOF@TiO ₂ core–shell nanostructures for efficient dye removal. Inorganic Chemistry Frontiers, 2022, 9, 2725-2733.	3.0	5

		CITATION REP	ORT	
#	Article		IF	CITATIONS
6598	Metalâ \in organic framework based cathode materials in lithiumâ \in sulfur batteries. , 2022, ,	333-360.		2
6599	Acyl amide-functionalized and water-stable iron-based MOF for rapid and selective dye remo CrystEngComm, 2022, 24, 4074-4084.	oval.	1.3	15
6600	Mil-101(Fe)-Derived Iron Oxide/Carbon Anode for Lithium-Ion Batteries: Derivation Process S Performance Optimization. SSRN Electronic Journal, 0, , .	Study and	0.4	0
6601	Effect of structural modifications on the oxygen reduction reaction properties of metal-orga framework-based catalysts. , 2022, , 165-184.	inic		0
6602	Stability of the adsorption properties of the metal-organic framework HKUST-1. Russian Che Bulletin, 2022, 71, 240-243.	mical	0.4	4
6603	Drug Delivery Applications of Metal-Organic Frameworks (MOFs). , 0, , .			2
6604	A Three-Dimensional Coordination Framework with a Ferromagnetic Coupled Ni(II)-CrO4 Lay Synthesis, Structure, and Magnetic Studies. Polymers, 2022, 14, 1735.	/er:	2.0	2
6605	Computational Identification and Experimental Demonstration of Highâ€Performance Meth Sorbents. Angewandte Chemie - International Edition, 2022, 61, e202203575.	ane	7.2	13
6606	Computational Identification and Experimental Demonstration of Highâ€Performance Meth Sorbents. Angewandte Chemie, 2022, 134, .	ane	1.6	2
6607	Fabrication of Hierarchical Quaternary Architectures of Metal–Organic Frameworks throu Programmed Transformation. Inorganic Chemistry, 2022, 61, 7173-7179.	gh	1.9	4
6608	Evaluating the High-Pressure Volumetric CH ₄ , H ₂ , and CO _{2 Storage Properties of Denser-Version Isostructural soc-Metal–Organic Framewor of Chemical & Engineering Data, 2022, 67, 1732-1742.}	c/sub> אs. Journal	1.0	8
6609	Self-sacrifice MOFs for heterogeneous catalysis: Synthesis mechanisms and future perspect Materials Today, 2022, 55, 137-169.	ives.	8.3	70
6610	Recent advances in pillarâ€layered metalâ€organic frameworks with interpenetrated and nonâ€interpenetrated topologies as supercapacitor electrodes. Zeitschrift Fur Anorganische Allgemeine Chemie, 2022, 648, .	2 Und	0.6	7
6611	Studies of Metal Organic Networks via M-Polynomial-Based Topological Indices. Journal of Mathematics, 2022, 2022, 1-16.		0.5	1
6612	Synergistic effects of nanosized supramolecular complex inlaid with silver nanoparticles: Ca sensors, and biological activities. Applied Organometallic Chemistry, 2022, 36, .	talysis,	1.7	0
6613	Customized Synthesis: Solvent- and Acid-Assisted Topology Evolution in Zirconium-Tetracar Frameworks. Inorganic Chemistry, 2022, 61, 7980-7988.	boxylate	1.9	13
6614	Isoreticular Double Interpenetrating Copper–Pyrazolate–Carboxylate Frameworks for E CO ₂ Capture. Crystal Growth and Design, 2022, 22, 3853-3861.	fficient	1.4	5
6615	Modulating the Biomimetic and Fluorescence Quenching Activities of Metal–Organic Framework/Platinum Nanoparticle Composites and Their Applications in Molecular Biosensi Applied Materials & Interfaces, 2022, 14, 21677-21686.	ng. ACS	4.0	17

#	Article	IF	CITATIONS
6616	Recent Advancements in MOF/Biomass and Bio-MOF Multifunctional Materials: A Review. Sustainability, 2022, 14, 5768.	1.6	23
6617	Engineering Homochiral Dinuclear Ir(III)-Metallohelix-Based Porous Molecular Crystals for Atropisomer Enantioseparation. Chemistry of Materials, 2022, 34, 4471-4478.	3.2	5
6618	Recent advances in the tuning of the organic framework materials – The selections of ligands, reaction conditions, and post-synthesis approaches. Journal of Colloid and Interface Science, 2022, 623, 378-404.	5.0	7
6619	Flexible ligand for Metal-Organic frameworks with simultaneous Large-Pore and antenna effect emission. Chemical Engineering Journal, 2022, 443, 136532.	6.6	39
6620	A comprehensive review on water remediation using UiO-66 MOFs and their derivatives. Chemosphere, 2022, 302, 134845.	4.2	69
6621	A 1D zinc coordination polymer built from the in situ generated ligand of bisimidazole-tetrathiolate via solvothermal reaction. Journal of Solid State Chemistry, 2022, 312, 123180.	1.4	2
6622	Cobalt-based MOF nanoribbons with abundant O/N species for cycloaddition of carbon dioxide to epoxides. Journal of Colloid and Interface Science, 2022, 623, 752-761.	5.0	17
6623	In-Plane Oriented Two-Dimensional Conjugated Metal–Organic Framework Films for High-Performance Humidity Sensing. , 2022, 4, 1146-1153.		7
6624	Charge-State Control of a Host Metal–Organic Framework Enabled by Axially Coordinated Tripyridine Ligand Alternation. Crystal Growth and Design, 2022, 22, 3594-3600.	1.4	1
6625	Discrete Arsonate-Grafted Inverted-Keggin 12-Molybdate Ion [Mo ₁₂ O ₃₂ (OH) ₂ (4-N ₃ C ₂ H ₂ -C and Formation of a Copper(II)-Mediated Metal–Organic Framework. Inorganic Chemistry, 2022, , .	<sub⊵.€<td>b>kd_{4<!--</td-->}</td></sub	b>kd _{4<!--</td-->}
6626	Nanofused Hierarchically Porous MIL-101(Cr) for Enhanced Methyl Orange Removal and Improved Catalytic Activity. Materials, 2022, 15, 3645.	1.3	8
6627	Installing a molecular truss beam stabilizes MOF structures. Npj Computational Materials, 2022, 8, .	3.5	3
6628	The catalytic mechanism of hydroformylation of 1-butene on rhodium-coordinated organic linkers in MOFs: A computational study. Computational and Theoretical Chemistry, 2022, 1213, 113743.	1.1	2
6629	Methane storage in flexible and dynamical metal–organic frameworks. Chemical Physics Reviews, 2022, 3, .	2.6	7
6631	Construction of metal-organic frameworks-nucleic acids composites and their application in fluorescent biomedical sensing. Scientia Sinica Chimica, 2022, , .	0.2	0
6632	Removal of carbon dioxide using zeolitic imidazolate frameworks: Adsorption and conversion via catalysis. Applied Organometallic Chemistry, 2022, 36, .	1.7	31
6633	Effect of Synthesis Temperature on Water Adsorption in UiO-66 Derivatives: Experiment, DFT+D Modeling, and Monte Carlo Simulations. Journal of Physical Chemistry C, 2022, 126, 9185-9194.	1.5	6
6634	Recent Progress of Metal-Organic Framework-Based Photodynamic Therapy for Cancer Treatment. International Journal of Nanomedicine, 0, Volume 17, 2367-2395.	3.3	23

#	Article	IF	CITATIONS
6635	Surface Modification Strategy for Enhanced NO2 Capture in Metal–Organic Frameworks. Molecules, 2022, 27, 3448.	1.7	5
6636	Analogy Powered by Prediction and Structural Invariants: Computationally Led Discovery of a Mesoporous Hydrogen-Bonded Organic Cage Crystal. Journal of the American Chemical Society, 2022, 144, 9893-9901.	6.6	33
6637	Guest-induced amorphous-to-crystalline transformation enables sorting of haloalkane isomers with near-perfect selectivity. Science Advances, 2022, 8, .	4.7	29
6638	Two-Dimensional Negative Thermal Expansion in a Facile and Low-Cost Oxalate-Based Metal–Organic Framework. Inorganic Chemistry, 2022, 61, 8634-8638.	1.9	2
6639	Recent progresses of metal-organic framework-based materials in electrochemical energy storage. Materials Today Sustainability, 2022, 19, 100174.	1.9	4
6640	Postsynthetic Modification (PSM) in Metalâ ``Organic Frameworks (MOFs): Icing on the Cake. ACS Symposium Series, 0, , 83-115.	0.5	3
6641	Metalâ^'Organic Frameworks as Sensors of Biomolecules. ACS Symposium Series, 0, , 1-31.	0.5	4
6642	Turn-on fluorescent sensor based on curcumin@MOF-5 for the sensitive detection of Al ³⁺ . Analytical Methods, 2022, 14, 2714-2722.	1.3	15
6643	Metal–organic framework-based solid-state electrolytes for all solid-state lithium metal batteries: a review. CrystEngComm, 2022, 24, 5014-5030.	1.3	64
6644	Photochemistry of Metal-Organic Frameworks. Springer Handbooks, 2022, , 691-732.	0.3	2
6645	An Insight into Sensitive Detection of Metal ions Using a Novel Cobalt MOF: Single Crystal, Photoluminescence, and Theoretical Studies. CrystEngComm, 0, , .	1.3	0
6646	Recent development of the fluorescence-based detection of volatile organic compounds: a mechanistic overview. Journal of Materials Chemistry C, 2022, 10, 10224-10254.	2.7	23
6647	MOF@PVA beads for dynamic and low concentration VOC capture. Materials Advances, 2022, 3, 6458-6465.	2.6	3
6648	Introducing porosity into metal–organic framework glasses. Journal of Materials Chemistry A, 2022, 10, 19552-19559.	5.2	10
6649	Fluorescent Zn(II)-Based Metal-Organic Framework: Interaction with Organic Solvents and CO2 and Methane Capture. Molecules, 2022, 27, 3845.	1.7	4
6650	Progress in the Application of MOFs in the Field of Atmospheric Environment. Key Engineering Materials, 0, 922, 237-247.	0.4	0
6651	Zirconium Metal Organic Framework-Based Hybrid Sensors with Chiral and Luminescent Centers Fabricated by Postsynthetic Modification for the Detection and Recognition of Tryptophan Enantiomers. Inorganic Chemistry, 2022, 61, 9615-9622.	1.9	22
6652	Data-Driven Mapping of Inorganic Chemical Space for the Design of Transition Metal Complexes and Metal-Organic Frameworks, ACS Symposium Series, 0 127-179	0.5	0

#	Article	IF	CITATIONS
6653	Exploring the Impact of the Linker Length on Heat Transport in Metal–Organic Frameworks. Nanomaterials, 2022, 12, 2142.	1.9	5
6654	Effect of Hydrogen Bonding on the Luminescence Lifetime and Device Resistance: A Case Study Based on Two New Related Cd-Based Coordination Polymers. Crystal Growth and Design, 2022, 22, 4559-4569.	1.4	2
6655	Preparation, Characterization, and In Vitro Release of Curcumin-Loaded IRMOF-10 Nanoparticles and Investigation of Their Pro-Apoptotic Effects on Human Hepatoma HepG2 Cells. Molecules, 2022, 27, 3940.	1.7	6
6656	Construction of hierarchically porous metal-organic frameworks via vapor atmosphere etching. Science China Materials, 2022, 65, 3062-3068.	3.5	7
6657	Photocatalytic active metal–organic framework and its derivatives for solar-driven environmental remediation and renewable energy. Coordination Chemistry Reviews, 2022, 468, 214639.	9.5	45
6658	Recent developments in MOF and MOF based composite as potential adsorbents for removal of aqueous environmental contaminants. Chemosphere, 2022, 304, 135261.	4.2	34
6659	Incorporating Fe-O cluster in multivariate (MTV) metal–organic frameworks for promoting visible-light photo-Fenton degradation of micropollutants from water. Chemical Engineering Journal, 2022, 446, 137446.	6.6	13
6660	The chemistry of metal–organic frameworks with face-centered cubic topology. Coordination Chemistry Reviews, 2022, 468, 214644.	9.5	14
6661	Applications of nanocomposites based on zeolitic imidazolate framework-8 in photodynamic and synergistic anti-tumor therapy. RSC Advances, 2022, 12, 16927-16941.	1.7	6
6662	Rotation Configuration Control of the sp2 Bond in Diimidazoleâ^'dicarboxylate Linker for Isomerism of Porous Coordination Polymers. Dalton Transactions, 0, , .	1.6	0
6663	The unique opportunities of mechanosynthesis in green and scalable fabrication of metal–organic frameworks. Journal of Materials Chemistry A, 2022, 10, 15332-15369.	5.2	9
6664	Acetylenedicarboxylate as a linker in the engineering of coordination polymers and metal–organic frameworks: challenges and potential. Chemical Communications, 2022, 58, 8900-8933.	2.2	10
6665	The topology of crystalline matter. ChemistrySelect, 2022, .	0.7	0
6666	Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem, 2022, 4, 100078.	10.1	232
6667	Lanthanide Metal–Organic Frameworks with High Chemical Stability as Multifunctional Materials: Cryogenic Magnetic Cooler and Luminescent Probe. Crystal Growth and Design, 2022, 22, 4917-4925.	1.4	6
6668	Ligand Tailoring Strategy of a Metal–Organic Framework for Optimizing Methane Storage Working Capacities. Inorganic Chemistry, 2022, 61, 10417-10424.	1.9	5
6669	Tailored Inorganicâ€Organic Architectures via Metalloligands. Chemical Record, 0, , .	2.9	1
6670	A Review on Metal- Organic Frameworks (MOFS), Synthesis, Activation, Characterisation, and Application. Oriental Journal of Chemistry, 2022, 38, 490-516.	0.1	3

#	Article	IF	CITATIONS
6671	Reticular Chemistry for the Construction of Highly Porous Aluminum-Based nia -Metal–Organic Frameworks. Inorganic Chemistry, 2022, 61, 10661-10666.	1.9	8
6672	Zinc-based metal-organic frameworks: synthesis and recent progress in biomedical application. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 3339-3354.	1.9	19
6673	Costâ€Effective 2D Ultrathin Metal–Organic Layers with Bisâ€Metallic Catalytic Sites for Visible Lightâ€Đriven Photocatalytic CO2 Reduction. Chemistry - A European Journal, 0, , .	1.7	1
6674	Tunable Confined Aliphatic Pore Environment in Robust Metal–Organic Frameworks for Efficient Separation of Gases with a Similar Structure. Journal of the American Chemical Society, 2022, 144, 14322-14329.	6.6	56
6675	Improving <scp>CH₄</scp> uptake and <scp>CH₄</scp> / <scp>N₂</scp> separation in pillarâ€layered metal–organic frameworks using a regulating strategy of interlayer channels. AICHE Journal, 2022, 68, .	1.8	6
6676	Fundamentals and Advances in Emerging Crystalline Porous Materials for Photocatalytic and Electrocatalytic Nitrogen Fixation. ACS Applied Energy Materials, 2022, 5, 9241-9265.	2.5	13
6677	Photocatalytic Biocidal Coatings Featuring Zr ₆ Ti ₄ -Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2022, 144, 12192-12201.	6.6	35
6678	CO2 Hydrogenation on Metal-Organic Frameworks-Based Catalysts: A Mini Review. Frontiers in Chemistry, 0, 10, .	1.8	4
6679	Pore space partition of metal-organic frameworks for gas storage and separation. EnergyChem, 2022, 4, 100080.	10.1	35
6680	Improvement of the Proton Conduction of Copper(II)-Mesoxalate Metal–Organic Frameworks by Strategic Selection of the Counterions. Inorganic Chemistry, 2022, 61, 11651-11666.	1.9	2
6681	Achieving tunable luminescence in rare earth free IRMOF-3 through post synthetic modifications by judicious choice of organic linker. Optical Materials, 2022, 131, 112660.	1.7	3
6682	MIL-101(Fe)-derived iron oxide/carbon anode for lithium-ion batteries: Derivation process study and performance optimization. Electrochimica Acta, 2022, 426, 140794.	2.6	8
6683	Adsorptive removal of 2,4-dinitrophenol from aqueous phase using amine functionalized metal organic framework (NH2-MIL-101(Cr)). Materials Chemistry and Physics, 2022, 289, 126493.	2.0	9
6684	Metal–Organic Framework: An Emergent Catalyst in C–N Cross-Coupling Reactions. Coordination Chemistry Reviews, 2022, 469, 214667.	9.5	23
6685	Study of CO2 and N2 sorption into ZIF-8 at high pressure and different temperatures. Journal of Solid State Chemistry, 2022, 314, 123370.	1.4	3
6686	Stimuli-responsive metal–organic frameworks enabled by intrinsic molecular motion. Nature Materials, 2022, 21, 1334-1340.	13.3	25
6687	Aperture Modulation of Isoreticular Metal Organic Frameworks for Targeted Antitumor Drug Delivery. ACS Applied Materials & Interfaces, 2022, 14, 36366-36378.	4.0	15
6688	Adsorption Properties and Gas Chromatographic Application of a Composite Surface-layer Sorbent with Terephthalic Acid-Based Metal-Organic Framework. Journal of Chromatography A, 2022, , 463373.	1.8	1

#	Article	IF	CITATIONS
6689	Size- and ion-selective adsorption of organic dyes from aqueous solutions using functionalized UiO-66 frameworks. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129749.	2.3	17
6690	Tuning of Thermometric Performances of Mixed Eu–Tb Metal–Organic Frameworks through Singleâ€Crystal Coordinating Solvent Exchange Reactions. Advanced Optical Materials, 2022, 10, .	3.6	6
6691	Tethering Effects in Oligomer-Based Metal–Organic Frameworks. Inorganic Chemistry, 2022, 61, 12284-12292.	1.9	4
6692	Metal-organic frameworks (MOFs) and their derivative as electrode materials for lithium-ion batteries. Coordination Chemistry Reviews, 2022, 470, 214715.	9.5	50
6693	Nanomaterial integrated 3D printing for biomedical applications. Journal of Materials Chemistry B, 2022, 10, 7473-7490.	2.9	29
6694	Structural Engineering and Carbon Enrichment in V2ctx Mxene: An Approach for Enhanced Supercapacitive Charge Storage. SSRN Electronic Journal, 0, , .	0.4	0
6695	Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. , 2022, , 17-35.		7
6696	Recent advances in microporous metal–organic frameworks as promising adsorbents for gas separation. Journal of Materials Chemistry A, 2022, 10, 17878-17916.	5.2	29
6697	Anionic or neutral? the charge of Ni ₈ cubes in metal–organic framework compounds. Chemical Communications, 2022, 58, 9349-9352.	2.2	2
6698	Harvesting mechanical energy induces piezoelectric polarization of MIL-100(Fe) for cocatalyst-free hydrogen production. Chemical Communications, 2022, 58, 10723-10726.	2.2	20
6699	Metal-Organic Frameworks for Photocatalytic Degradation of Organic Wastewater. , 0, 6, 1-8.		0
6700	Synthesis of Metal–Organic Frameworks Quantum Dots Composites as Sensors for Endocrine-Disrupting Chemicals. International Journal of Molecular Sciences, 2022, 23, 7980.	1.8	8
6701	Zirconium-Based MOFs and Their Biodegradable Polymer Composites for Controlled and Sustainable Delivery of Herbicides. ACS Applied Bio Materials, 2022, 5, 3972-3981.	2.3	16
6702	Hierarchically Porous MOFs Synthesized by Soft-Template Strategies. Accounts of Chemical Research, 2022, 55, 2235-2247.	7.6	57
6703	Straightforward Mechanosynthesis of a Phase-Pure Interpenetrated MOF-5 Bearing a Size-Matching Tetrazine-Based Linker. Inorganic Chemistry, 2022, 61, 11695-11701.	1.9	3
6704	Selective CO ₂ -to-Formate Conversion Driven by Visible Light over a Precious-Metal-Free Nonporous Coordination Polymer. ACS Catalysis, 2022, 12, 10172-10178.	5.5	13
6705	MOFâ€Based Chemiresistive Gas Sensors: Toward New Functionalities. Advanced Materials, 2023, 35, .	11.1	59
6706	Progress in Hybridization of Covalent Organic Frameworks and Metal–Organic Frameworks. Small, 2022, 18, .	5.2	41

#	Article	IF	Citations	
6707	Adsorption performance of sulfonamide-modified metal–organic frameworks (MOFs) for Co(II) in aqueous solution. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331, 3965-3977.	0.7	3	
6708	Material Design and Reticular Chemistry: Unveiling New Topologies through Face Decoration of Edge Nets. Industrial & Engineering Chemistry Research, 2022, 61, 12641-12648.	1.8	3	
6709	Nanoscale MOFs: From synthesis to drug delivery and theranostics applications. Advanced Drug Delivery Reviews, 2022, 190, 114496.	6.6	84	
6710	MoSe2 nanosheets decorated Co/C fibrous composite towards high efficiency electromagnetic wave absorption. Composites Part A: Applied Science and Manufacturing, 2022, 163, 107169.	3.8	13	
6712	A review of synthesis, fabrication, and emerging biomedical applications of metal-organic frameworks. , 2022, 140, 213049.		20	
6713	Amino-grafting pre-functionalization of terephthalic acid by impulse dielectric-barrier discharge (DBD) plasma for amino-based Metal-Organic Frameworks (MOFs). Materials Chemistry and Physics, 2022, 290, 126629.	2.0	4	
6714	A systematic review on recent advances of metal–organic frameworks-based nanomaterials for electrochemical energy storage and conversion. Coordination Chemistry Reviews, 2022, 471, 214741.	9.5	24	
6715	Luminescence properties of europium (III)-based metal–organic frameworks: Influence of varied organic linkers. Journal of Molecular Structure, 2022, 1269, 133767.	1.8	1	
6716	Controlling dynamics in extended molecular frameworks. Nature Reviews Chemistry, 2022, 6, 705-725.	13.8	24	
6717	Metal–organic framework-derived heteroatom-doped nanoarchitectures for electrochemical energy storage: Recent advances and future perspectives. Energy Storage Materials, 2022, 52, 685-735.	9.5	38	
6718	Sustainable fabrication of Co-MOF@CNT nano-composite for efficient adsorption and removal of organic dyes and selective sensing of Cr(VI) in aqueous phase. Materials Chemistry and Physics, 2022, 291, 126748.	2.0	19	
6719	Toward emerging two-dimensional nickel-based materials for electrochemical energy storage: Progress and perspectives. Energy Storage Materials, 2022, 53, 79-135.	9.5	49	
6720	Introduction to chemistry of metal-organic frameworks. , 2022, , 1-16.		0	
6721	Recent progress on MOF-based optical sensors for VOC sensing. Chemical Science, 2022, 13, 13978-14007.	3.7	49	
6722	<i>In situ</i> time-resolved monitoring of mixed-ligand metal–organic framework mechanosynthesis. CrystEngComm, 2022, 24, 6747-6750.	1.3	1	
6723	Computer Simulations of MOF Systems: Key Applications. Engineering Materials, 2022, , 231-253.	0.3	0	
6724	An approach for the pore-centred description of adsorption in hierarchical porous materials. CrystEngComm, 2022, 24, 7326-7334.	1.3	2	
6725	A water-stable Zn ₄ O-based MOF decorated with carbazolyl chromophores for multi-responsive fluorescence sensing of Fe ³⁺ , Cr ₂ O ₇ ^{2a^'} and nitro-compounds. New Journal of Chemistry, 2022, 46_18710-18717	1.4	6	
		CITATION RE	PORT	
------	---	-----------------------------	------	-----------
#	Article		IF	CITATIONS
6726	Introduction to Organicâ \in 'Inorganic Nanohybrids. Materials Horizons, 2022, , 1-27.		0.3	0
6727	Phase transition of metal–organic frameworks for regulating the fluorescence proper New Journal of Chemistry, 2022, 46, 20056-20060.	ties of dyes.	1.4	1
6728	Porous metal–organic frameworks for hydrogen storage. Chemical Communications, 11059-11078.	, 2022, 58,	2.2	42
6729	Ultrathin CdS@BDC Nanosheets Derived from 2D Metal-Organic Frameworks for Enha Photoinduced-Stability and Photocatalytic Hydrogen Production. Materials Advances, C	nced), , .	2.6	0
6730	<i>In situ</i> fabrication of bendable epitaxial metal–organic framework films <i>via Chemical Communications, 2022, 58, 11123-11126.</i>	spraying.	2.2	1
6731	Boosting C ₂ H ₂ /CO ₂ separation of metal–org frameworks <i>via</i> anion exchange and temperature elevation. Journal of Materials C 2022, 10, 22175-22181.	anic Chemistry A,	5.2	9
6732	Open metal site (OMS)-inspired investigation of adsorption and catalytic functions in a metal–organic framework (MOF). Dalton Transactions, 2022, 51, 15496-15506.	porous	1.6	8
6733	A metal–covalent organic framework catalyst with pincer coordination units for booshydrogenation of quinolines with ammonia borane. Journal of Materials Chemistry A, 20 18602-18608.	sting transfer 022, 10,	5.2	3
6734	Metal–organic frameworks and their derivatives for metal-ion (Li, Na, K and Zn) hybri Chemical Science, 2022, 13, 11981-12015.	d capacitors.	3.7	31
6735	Fluorinated metal–organic frameworks for gas separation. Chemical Society Reviews 7427-7508.	, 2022, 51,	18.7	76
6736	Nanoparticle/metal–organic framework hybrid catalysts: elucidating the role of the N Communications, 2022, 58, 10757-10767.	1OF. Chemical	2.2	18
6737	A recent overview of per- and polyfluoroalkyl substances (PFAS) removal by functional materials. Chemical Engineering Journal, 2023, 452, 139202.	framework	6.6	13
6738	Amino-Acid-Functionalized Metal–Organic Frameworks as Excellent Precursors towar Metal-Free Electrocatalysts. ACS Applied Energy Materials, 2022, 5, 11091-11097.	[.] d Bifunctional	2.5	4
6739	温和æ∮件下甲çƒ∙æ°′å•̂物强åŒ−ç"ŸæˆæŠ€æœ⁻. Chinese Science Bulletin, 2	022,,.	0.4	0
6740	Architectural Chirality in a Metal–Organic Framework Superstructure. Crystal Growth 2022, 22, 6456-6460.	1 and Design,	1.4	0
6741	A Facile Method to Prepare Defectâ€Sealed Zeolitic Imidazolate Framework Membrane Separation. Advanced Materials Interfaces, 2022, 9, .	on Cu Net for Gas	1.9	3
6742	Demonstration of High-Throughput Building Block and Composition Analysis of Metalâ Frameworks. Journal of Chemical Information and Modeling, 2022, 62, 4672-4679.	€"Organic	2.5	3
6743	Metal–Organic Framework Materials for Electrochemical Supercapacitors. Nano-Mici 14, .	o Letters, 2022,	14.4	61

#	Article	IF	CITATIONS
6744	Development of a High-Accuracy Statistical Model to Identify the Key Parameter for Methane Adsorption in Metal-Organic Frameworks. Analytica—A Journal of Analytical Chemistry and Chemical Analysis, 2022, 3, 335-370.	0.8	1
6745	GCMC and electronic evaluation of pesticide capture by IRMOF systems. Journal of Molecular Modeling, 2022, 28, .	0.8	1
6746	Metalâ€organic framework derived porous structures towards lithium rechargeable batteries. EcoMat, 2023, 5, .	6.8	33
6747	Preparation and characterization of Bimetal MOF-74-Co/Cu and its toluene adsorption performances. Journal of Porous Materials, 2023, 30, 421-432.	1.3	3
6748	Multi-topic Carboxylates as Versatile Building Blocks for the Design and Synthesis of Multifunctional MOFs Based on Alkaline Earth, Main Group and Transition Metals. Comments on Inorganic Chemistry, 2023, 43, 257-304.	3.0	1
6749	Schottky type photodiodes with organic Coâ€complex and Cdâ€complex interlayers. Applied Organometallic Chemistry, 2022, 36, .	1.7	8
6750	Dialytic Synthesis of Two-Dimensional Cu-Based Metal–Organic Frameworks for Gas Separation: Designable MOF–Polymer Interface. Inorganic Chemistry, 2022, 61, 16197-16202.	1.9	3
6751	Observation of formation and local structures of metal-organic layers via complementary electron microscopy techniques. Nature Communications, 2022, 13, .	5.8	18
6752	Mechanistic Principles for Engineering Hierarchical Porous Metal–Organic Frameworks. ACS Nano, 2022, 16, 13573-13594.	7.3	9
6753	Photoinduced Electron Transfer in Multicomponent Truxene-Quinoxaline Metal–Organic Frameworks. Chemistry of Materials, 2022, 34, 8437-8445.	3.2	9
6754	Understanding the stability and structural properties of ordered nanoporous metals towards their rational synthesis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2022, 478, .	1.0	4
6755	Photoelectrochemical sensor for detection Hg2+ based on in situ generated MOFs-like structures. Analytica Chimica Acta, 2022, 1233, 340496.	2.6	9
6756	Stabilizing large pores in a flexible metal–organic framework <i>via</i> chemical cross-linking. Chemical Communications, 2022, 58, 12361-12364.	2.2	1
6757	Defined metal atom aggregates precisely incorporated into metal–organic frameworks. Chemical Society Reviews, 2022, 51, 9933-9959.	18.7	28
6758	Directed molecular structure design of coordination polymers with different ligands for regulating output performance of triboelectric nanogenerators. RSC Advances, 2022, 12, 30051-30055.	1.7	0
6759	A flexible route to crisp-like metal–organic framework derivatives by crystalline transformation. Inorganic Chemistry Frontiers, 0, , .	3.0	0
6760	Rational Design of Inhibitor-Encapsulated Bio-MOF-1 for Dual Corrosion Protection. Inorganic Chemistry, 2022, 61, 18285-18292.	1.9	3
6761	Dual-Ligand Strategy Employing Rigid 2,5-Thiophenedicarboxylate and 1,10-Phenanthroline as Coligands for Solvothermal Synthesis of Eight Lanthanide(III) Coordination Polymers: Structural Diversity, DFT Study, and Exploration of the Luminescent Tb(III) Coordination Polymer as an Efficient Chemical Sensor for Nitroaromatic Compounds. ACS Omega. 2022. 7. 41370-41391.	1.6	9

#	Article	IF	Citations
6762	Direct Probing of Vibrational Interactions in UiO-66 Polycrystalline Membranes with Femtosecond Two-Dimensional Infrared Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 9793-9800.	2.1	0
6763	Metal–Organic Framework Seeding to Drive Phase Selection and Overcome Synthesis Limitations. Crystal Growth and Design, 2022, 22, 6379-6383.	1.4	4
6764	Electrically regulating nonlinear optical limiting of metal-organic framework film. Nature Communications, 2022, 13, .	5.8	42
6765	A Flexible Hydrogenâ€Bonded Organic Framework Constructed from a Tetrabenzaldehyde with a Carbazole Nâ~H Binding Site for the Highly Selective Recognition and Separation of Acetone. Angewandte Chemie, 2022, 134, .	1.6	2
6766	Oxygen Onâ€Demand: Understanding the Oxygen Reduction Reaction (ORR) Performance Enhancement of Conductive Polymer Films upon Modification with ZIFâ€8 MOF. ChemCatChem, 2022, 14, .	1.8	5
6767	Computational Study of Two Three-Dimensional Co(II)-Based Metal–Organic Frameworks as Quercetin Anticancer Drug Carriers. Crystal Growth and Design, 2022, 22, 7221-7233.	1.4	7
6768	Postsynthetic Metalation of a New Metal–Organic Framework To Improve Methane Working Storage Capacity. , 2022, 4, 2375-2380.		2
6769	A Flexible Hydrogenâ€Bonded Organic Framework Constructed from a Tetrabenzaldehyde with a Carbazole Nâ"H Binding Site for the Highly Selective Recognition and Separation of Acetone. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
6770	Bimetal Organic Framework–Ti ₃ C ₂ T _x MXene with Metalloporphyrin Electrocatalyst for Lithium–Oxygen Batteries. Advanced Functional Materials, 2023, 33, .	7.8	24
6771	Impact of Loading-Dependent Intrinsic Framework Flexibility on Adsorption in UiO-66. Journal of Physical Chemistry C, 2022, 126, 17699-17711.	1.5	7
6772	Synthesis and Biomedical Applications of Highly Porous Metal–Organic Frameworks. Molecules, 2022, 27, 6585.	1.7	4
6773	Computational insights into the energy storage of ultraporous MOFs NU-1501-M (M = Al or Fe): Protonization revealing and performance improving by decoration of superalkali clusters. International Journal of Hydrogen Energy, 2022, 47, 41034-41045.	3.8	5
6774	The Complexity of Comparative Adsorption of C6 Hydrocarbons (Benzene, Cyclohexane, n-Hexane) at Metal–Organic Frameworks. Nanomaterials, 2022, 12, 3614.	1.9	5
6775	Computational Characterization of Adsorptive Desulfurization Using Metal–Organic Frameworks. Journal of Physical Chemistry C, 2022, 126, 18822-18832.	1.5	4
6776	Preparation of Hydrophobic Metal–Organic Frameworks/Parylene Composites as a Platform for Enhanced Catalytic Performance. Inorganic Chemistry, 2022, 61, 18303-18310.	1.9	1
6777	Hierarchically Porous Metal–Organic Frameworks: Synthetic Strategies and Applications. Small Structures, 2023, 4, .	6.9	16
6778	Soft Spray: An Emerging Technique for Metal–Organic Framework-Based Materials. Langmuir, 2022, 38, 13635-13646.	1.6	5
6779	Adsorption and Degradation of Volatile Organic Compounds by Metal–Organic Frameworks (MOFs): A Review. Materials, 2022, 15, 7727.	1.3	18

#		IF	CITATIONS
6780	Tuning Metalä€"Organic Framework (MOF) Topology by Regulating Ligand and Secondary Building Unit (SBU) Geometry: Structures Built on 8-Connected M ₆ (M = Zr, Y) Clusters and a Flexible Tetracarboxylate for Propane-Selective Propane/Propylene Separation. Journal of the American Chemical Society, 2022, 144, 21702-21709.	6.6	31
6781	Regulation of Porosity in MOFs: A Review on Tunable Scaffolds and Related Effects and Advances in Different Applications. Journal of Environmental Chemical Engineering, 2022, 10, 108836.	3.3	23
6782	Mechanism, structural design, modulation and applications of Aggregation-induced emission-based Metal-organic framework. Inorganic Chemistry Communication, 2022, 146, 110038.	1.8	6
6783	Water-reservoir properties dependent on packing modes of [Ni(<scp>ii</scp>) ₃ L ₆] cages. New Journal of Chemistry, 2022, 46, 23239-23244.	1.4	1
6784	Natural gas storage by adsorption. , 2023, , 261-297.		0
6785	A feasible strategy for separating oxyanions-loaded microfine Fe-MOF adsorbents from solution by bubble flotation. Chemical Engineering Journal, 2023, 454, 140299.	6.6	6
6786	MOFs and MOF-Derived Materials for Antibacterial Application. Journal of Functional Biomaterials, 2022, 13, 215.	1.8	36
6787	Structure and function tailored metal-organic frameworks for heterogeneous catalysis. Chem Catalysis, 2022, 2, 3304-3319.	2.9	10
6788	Uncovering the optimal pyrolysis temperature of NH2-MIL-88B-derived FeOX/Fe@porous carbon composites for the ultrasensitive electrochemical detection of baicalin in natural plant samples. Carbon, 2023, 202, 125-136.	5.4	13
6789	Guest Molecules with Amino and Sulfhydryl Groups Enhance Photoluminescence by Reducing the Intermolecular Ligand-To-Metal Charge Transfer Process of Metal–Organic Frameworks. Applied Sciences (Switzerland), 2022, 12, 11467.	1.3	0
6790	Recent Advances in Porous Polymers for Solid-State Rechargeable Lithium Batteries. Polymers, 2022, 14, 4804.	2.0	8
6791	trans-[Ni(pdm)2]2+ (pdm = 2-pyridinemethanol) as a reliable synthon for isoreticular metal–organic frameworks of linear dicarboxylates. Journal of Solid State Chemistry, 2023, 317, 123721.	1.4	2
6792	Recent progress in metal-organic frameworks (MOFs) for CO2 capture at different pressures. Journal of Environmental Chemical Engineering, 2022, 10, 108930.	3.3	28
6793	The review of different dimensionalities based pristine metal organic frameworks for supercapacitor application. Journal of Energy Storage, 2022, 56, 105700.	3.9	13
6794	Unveiling Chemically Robust Bimetallic Squarateâ€Based Metal–Organic Frameworks for Electrocatalytic Oxygen Evolution Reaction. Advanced Energy Materials, 2023, 13, .	10.2	22
6797	Porous metal–organic framework nanoscale carriers as a potential platform for drug delivery. , 2023, , 153-176.		0
6798	Rare-earth squarate frameworks with <i>scu</i> topology. Dalton Transactions, 2022, 51, 18378-18382.	1.6	3
6799	Controlling pore size and interlayer space by ring rotation and electron-withdrawing effects in a 2D MOF. Polyhedron, 2023, 230, 116211.	1.0	3

#	Article	IF	CITATIONS
6800	lsomeric effect of naphthyl spacers on structures and properties of isostructural porous crystalline frameworks. Materials Chemistry Frontiers, 2022, 7, 106-116.	3.2	9
6801	Incorporation of 1-ethyl-3-methyl-imidazolium acetate into UiO-66 as an efficient sorbent for carbon dioxide capture. New Journal of Chemistry, 2023, 47, 2257-2263.	1.4	2
6802	Advances in metal–organic framework-based hydrogel materials: preparation, properties and applications. Journal of Materials Chemistry A, 2023, 11, 2092-2127.	5.2	23
6803	Exploration of metal organic frameworks and covalent organic frameworks for energy-related applications. Coordination Chemistry Reviews, 2023, 477, 214968.	9.5	77
6804	Constructing multiple sites of metal-organic frameworks for efficient adsorption and selective separation of CO2. Separation and Purification Technology, 2023, 307, 122725.	3.9	17
6805	Highly functionalized photo-activated metal–organic frameworks for dye degradation: Recent advancements. Materials Today Communications, 2023, 34, 105180.	0.9	4
6806	Two-dimensional oxalamide based isostructural MOFs for CO2 capture. Journal of Solid State Chemistry, 2023, 319, 123778.	1.4	2
6807	Design of metal-organic frameworks for improving pseudo-solid-state magnesium-ion electrolytes: Open metal sites, isoreticular expansion, and framework topology. Journal of Materials Science and Technology, 2023, 144, 15-27.	5.6	9
6808	Solvothermal and hydrothermal methods for preparative solid-state chemistry. , 2023, , 40-110.		0
6809	Jadeite original stone inspired PBA core-shell architecture endowed fire-safe and mechanic-robust EP composites with low toxicity. Ceramics International, 2023, 49, 10839-10851.	2.3	8
6810	Metal-organic frameworks-based hydrogen storage strategies and applications. Journal of Physics: Conference Series, 2022, 2403, 012022.	0.3	0
6811	MOF/MWCNT–Nanocomposite Manipulates High Selectivity to Gas via Different Adsorption Sites with Varying Electron Affinity: A Study in Methane Detection in Parts-per-Billion. ACS Sensors, 2022, 7, 3846-3856.	4.0	9
6812	Phosphineâ€Functionalized Porous Materials for Catalytic Organic Synthesis. European Journal of Organic Chemistry, 2022, 2022, .	1.2	6
6813	Preferential CO2 adsorption over cadmium-based Porous Metal-organic Framework. Journal of Porous Materials, 2023, 30, 1163-1170.	1.3	1
6814	Fifth international conference on materials and environmental science. Materials Today: Proceedings, 2022, , .	0.9	0
6815	Metal-Organic Frameworks as bio- and heterogeneous catalyst supports for biodiesel production. Reviews in Inorganic Chemistry, 2022, .	1.8	1
6816	Real-Space Imaging of the Node–Linker Coordination on the Interfaces between Self-Assembled Metal–Organic Frameworks. Nano Letters, 2022, 22, 9928-9934.	4.5	8
6817	C–H···S Hydrogen Bonds Governed Colossal Thermal Expansion: Two Concomitant Crystalline Forms of Ethionamide and 2-Thiobarbituric Acid. Crystal Growth and Design, 2023, 23, 403-412.	1.4	3

#	Article	IF	CITATIONS
6818	Carbon Nanotubes Decorated with Coordination Polymers for Fluorescence Detection of Heavy-Metal Ions and Nitroaromatic Chemicals. ACS Omega, 2023, 8, 1220-1231.	1.6	5
6819	Significantly Enhanced Carbon Dioxide Selective Adsorption via Gradual Acylamide Truncation in MOFs: Experimental and Theoretical Research. Inorganic Chemistry, 2022, 61, 19944-19950.	1.9	5
6820	Synthesis of unsymmetrical NH-pyrroles from biomass feedstock in the confined space of metal–organic frameworks. Green Chemistry, 2023, 25, 915-921.	4.6	3
6821	A literature review of MOF derivatives of electromagnetic wave absorbers mainly based on pyrolysis. International Journal of Minerals, Metallurgy and Materials, 2023, 30, 446-473.	2.4	35
6822	Development of Porous Coordination Polymers for Gas Storage and Separation Materials. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2023, 81, 46-52.	0.0	0
6823	Preconcentration of Pb(II) by Magnetic Metal-Organic Frameworks and Analysis Using Graphite Furnace Atomic Absorption Spectroscopy. Journal of Analytical Methods in Chemistry, 2023, 2023, 1-10.	0.7	2
6824	Computer-aided design of high-connectivity covalent organic frameworks as CH4/H2 adsorption and separation media. International Journal of Hydrogen Energy, 2023, 48, 12753-12766.	3.8	0
6825	Metal–Organic Frameworks and Their Biodegradable Composites for Controlled Delivery of Antimicrobial Drugs. Pharmaceutics, 2023, 15, 274.	2.0	15
6826	Porous framework materials for energy & environment relevant applications: A systematic review. Green Energy and Environment, 2024, 9, 217-310.	4.7	12
6827	Delivery of Immobilized IFN-γ With PCN-333 and Its Effect on Human Mesenchymal Stem Cells. ACS Biomaterials Science and Engineering, 0, , .	2.6	2
6828	Morphology Tuning via Linker Modulation: Metalâ€Free Covalent Organic Nanostructures with Exceptional Chemical Stability for Electrocatalytic Water Splitting. Advanced Materials, 0, , .	11.1	11
6829	MOFs-derived advanced heterostructure electrodes for energy storage. Coordination Chemistry Reviews, 2023, 479, 214985.	9.5	19
6830	Plasma Meets MOFs: Synthesis, Modifications, and Functionalities. Chemical Record, 2023, 23, .	2.9	4
6831	Nanoporous adsorbents for hydrogen storage. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	12
6832	Early-Stage Formation of the SIFSIX-3-Zn Metal–Organic Framework: An Automated Computational Study. Inorganic Chemistry, 2023, 62, 1210-1217.	1.9	3
6833	Effects of MOF linker rotation and functionalization on methane uptake and diffusion. Molecular Systems Design and Engineering, 2023, 8, 527-537.	1.7	1
6834	Nonlinear optical limiting effect and charge transfer dynamics in a Fe-porphyrin metal-organic framework. Optical Materials Express, 2023, 13, 484.	1.6	0
6835	Recent advances and future perspectives in MOF-derived single-atom catalysts and their application: a review. Journal of Materials Chemistry A, 2023, 11, 3315-3363.	5.2	28

#	Article	IF	CITATIONS
6836	Rational Regulation of Reducibility and Acid Site on Mn–Fe–BTC to Achieve High Low-Temperature Catalytic Denitration Performance. ACS Applied Materials & Interfaces, 2023, 15, 4132-4143.	4.0	15
6837	Structural Properties of Metal–Organic Frameworks at Elevated Thermal Conditions via a Combined Density Functional Tight Binding Molecular Dynamics (DFTB MD) Approach. Journal of Physical Chemistry C, 2023, 127, 1560-1575.	1.5	7
6838	N-doped semi-graphitic C loaded with metallic Co: synthesis parameters and catalytic selective reduction of <i>p</i> -nitrophenol. New Journal of Chemistry, 2023, 47, 3834-3846.	1.4	1
6839	Statistical copolymer metal organic nanotubes. Chemical Science, 2023, 14, 1003-1009.	3.7	2
6840	Highly efficient removal of aromatic diamines from the polyurethane bio-hydrolysate by MIL-53 series MOFs. Chemical Engineering Journal, 2023, 457, 141326.	6.6	6
6841	Ultra-thin nanosheet assembled 3D honeycomb-like Zn0.5Cd0.5S for boosting photocatalytic H2 evolution. Separation and Purification Technology, 2023, 309, 123102.	3.9	3
6842	Metal-organic framework hybrid adsorbents for carbon capture – A review. Journal of Environmental Chemical Engineering, 2023, 11, 109291.	3.3	11
6843	Strategies for designing metal–organic frameworks with superprotonic conductivity. Coordination Chemistry Reviews, 2023, 479, 214995.	9.5	19
6844	Adsorptive removal of Uranium (VI) using zeolitic imidazole framework (ZIF)-67 from alkaline leach liquor. Separation and Purification Technology, 2023, 310, 123137.	3.9	16
6845	In-situ synthesis of Fe7S8 on metal sites of MOFs as high-capacity and fast-kinetics anodes for sodium ion batteries. Journal of Alloys and Compounds, 2023, 940, 168854.	2.8	3
6846	Synthesis and Crystal Structure of a 3D Cd(II) Coordination Polymer Assembled with Itaconate and 1,2-Bis(4-pyridyl)ethane. Crystallography Reports, 2022, 67, 1175-1182.	0.1	0
6847	Strategies, Synthesis, and Applications of Metal-Organic Framework Materials. , 2023, , 1-82.		0
6848	Nanoporous Zeolitic Imidazolate Framework-8 Nanoparticles for Arsenic Removal. ACS Applied Nano Materials, 2023, 6, 1744-1754.	2.4	2
6849	Composite Electrolyte for All-Solid-State Lithium Battery. , 2023, , 253-302.		0
6850	Lignin and metal–organic frameworks: mutual partners on the road to sustainability. Journal of Materials Chemistry A, 2023, 11, 2595-2617.	5.2	8
6851	Stability and chaotic dynamic analysis of Li-doped fullerene-IRMOF composite materials for hydrogen storage. International Journal of Hydrogen Energy, 2023, , .	3.8	0
6852	2D Metal–Organic Frameworks as Competent Electrocatalysts for Water Splitting. Small, 2023, 19, .	5.2	31
6853	Tuning of Second-Harmonic Generation in Zn-Based Metal–Organic Frameworks by Controlling the Structural Interpenetrations: A First-Principles Investigation. Journal of Physical Chemistry C, 2023, 127, 2058-2068.	1.5	3

#	Article	IF	CITATIONS
6854	Truchet-tile structure of a topologically aperiodic metal–organic framework. Science, 2023, 379, 357-361.	6.0	16
6855	MOFs-based advanced materials for gaseous adsorption: Sustainable environmental remediation. , 2023, , 185-205.		0
6856	Noncentrosymmetric Supramolecular Hydrogen-Bonded Assemblies Based on Achiral Pyrazine-Bridged Zinc(II) Coordination Polymers with Pyrazinedione Derivatives. Chemistry, 2023, 5, 179-186.	0.9	0
6857	Synthesis of Metal Organic Frameworks (MOFs) and Their Derived Materials for Energy Storage Applications. Clean Technologies, 2023, 5, 140-166.	1.9	10
6858	Experimentally Validated Ab Initio Crystal Structure Prediction of Novel Metal–Organic Framework Materials. Journal of the American Chemical Society, 2023, 145, 3515-3525.	6.6	3
6859	Designing a new method for growing metal–organic framework (MOF) on MOF: synthesis, characterization and catalytic applications. Nanoscale, 2023, 15, 4917-4931.	2.8	4
6860	Effects of Missing Linker Defects on the Elastic Properties and Mechanical Stability of the Metal–Organic Framework HKUST-1. Journal of Physical Chemistry C, 2023, 127, 2533-2543.	1.5	5
6861	Coaxial assembly of helical aromatic foldamers by metal coordination. Chemical Communications, 2023, 59, 5253-5256.	2.2	1
6862	Organic polymers for CO2 capture and conversion. , 2023, , 77-99.		0
6863	A robust and porous titanium metal–organic framework for gas adsorption, CO ₂ capture and conversion. Dalton Transactions, 2023, 52, 3896-3906.	1.6	3
6864	Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: Chemistry, physics and applications in biomedicine, catalysis and magnetism. Coordination Chemistry Reviews, 2023, 480, 215025.	9.5	25
6865	Inâ€situ Etching Synthesis of Defective CuBTC for CO ₂ /CH ₄ Separation. European Journal of Inorganic Chemistry, 0, , .	1.0	0
6866	Preparation of bead-like PAN/ZIF-8 nanofiber membrane for methyl blue adsorption by one-step electrospinning. Materials Letters, 2023, 338, 134057.	1.3	7
6867	Recent progress in mixed rare earth metal-organic frameworks: From synthesis to application. Coordination Chemistry Reviews, 2023, 485, 215121.	9.5	15
6868	A DFT study on MOFs with rhodium-coordinated organic phosphine linkers modified by functional groups for catalytic hydroformylation of 1-butene. Materials Today Communications, 2023, 35, 105725.	0.9	0
6869	Solvent-dependent strategy to construct mesoporous Zr-based metal-organic frameworks for high-efficient adsorption of tetracycline. Environmental Research, 2023, 226, 115633.	3.7	17
6870	Insight into the surface-reconstruction of metal–organic framework-based nanomaterials for the electrocatalytic oxygen evolution reaction. Coordination Chemistry Reviews, 2023, 484, 215117.	9.5	7
6871	The membrane-based desalination: Focus on MOFs and COFs. Desalination, 2023, 557, 116598.	4.0	11

#	Article	IF	CITATIONS
6872	MOF Linker Extension Strategy for Enhanced Atmospheric Water Harvesting. ACS Central Science, 2023, 9, 551-557.	5.3	22
6873	Functional metal–organic framework nanoparticles loaded with polyphyllin I for targeted tumor therapy. Journal of Science: Advanced Materials and Devices, 2023, 8, 100548.	1.5	1
6874	Trends in monoliths: Packings, stationary phases and nanoparticles. Journal of Chromatography A, 2023, 1691, 463819.	1.8	7
6875	Progress on fundamentals of adsorption transport of metal-organic frameworks materials and sustainable applications for water harvesting and carbon capture. Journal of Cleaner Production, 2023, 393, 136253.	4.6	6
6876	Application of metal-organic frameworks, covalent organic frameworks and their derivates for the metal-air batteries. , 2023, 2, e9120052.		30
6877	Precisely modulating the branching functional groups of MIL-53(Al) for highly efficient sequestration of uranium. Journal of Environmental Chemical Engineering, 2023, 11, 109393.	3.3	0
6878	Recent Advances in Metal-Organic Framework (MOF) Asymmetric Membranes/Composites for Biomedical Applications. Symmetry, 2023, 15, 403.	1.1	10
6879	A rapid self-healing glassy polymer/metal–organic-framework hybrid membrane at room temperature. Dalton Transactions, 2023, 52, 3148-3157.	1.6	0
6880	Microporous MOF-5@AC and Cu-BDC@AC Composite Materials for Methane Storage in ANG Technology. International Journal of Energy Research, 2023, 2023, 1-14.	2.2	0
6881	A systematic review of metal organic frameworks materials for heavy metal removal: Synthesis, applications and mechanism. Chemical Engineering Journal, 2023, 460, 141710.	6.6	55
6882	Metalâ€Organic Frameworkâ€Based Colloidal Particle Synthesis, Assembly, and Application. ChemPlusChem, 2023, 88, .	1.3	2
6883	Ag/ZIF-8 Substrate with Enhanced SERS via the Plasmonic Nanogap and MOF-Enabled Molecular Preconcentration Effect. Journal of Physical Chemistry C, 2023, 127, 3542-3550.	1.5	3
6884	Preparation and characterization of dense membrane based metal organic networks (MOF- 5) for separation :aromatic-aliphatic mixtures. Polymer-Plastics Technology and Materials, 2023, 62, 909-920.	0.6	0
6885	Metal–organic frameworks as catalysts and biocatalysts for methane oxidation: The current state of the art. Coordination Chemistry Reviews, 2023, 481, 215042.	9.5	19
6886	Clickable Norbornene-Based Zirconium Carboxylate Polyhedra. Chemistry of Materials, 2023, 35, 1651-1658.	3.2	4
6887	Sensing of KCl, NaCl, and Pyocyanin with a MOF-Decorated Electrospun Nitrocellulose Matrix. ACS Applied Nano Materials, 2023, 6, 2854-2863.	2.4	4
6888	Metal Organic Frameworks of ANA Topology as an Effective Adsorbent for Co(II) and Mn(II) in Solution. Journal of Physical Chemistry C, 2023, 127, 3551-3562.	1.5	1
6889	A Simple, Transition Metal Catalystâ€Free Method for the Design of Complex Organic Building Blocks Used to Construct Porous Metal–Organic Frameworks. Angewandte Chemie, 2023, 135, .	1.6	0

#	Article	IF	CITATIONS
6890	Investigation of the Influence of Functionalization Strategy on Urea 2D MOF Catalytic Performance. Inorganic Chemistry, 2023, 62, 3498-3505.	1.9	4
6891	A Simple, Transition Metal Catalystâ€Free Method for the Design of Complex Organic Building Blocks Used to Construct Porous Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
6892	Synergistic Steric and Electronic Effects on the Photoredox Catalysis by a Multivariate Library of Titania Metal–Organic Frameworks. Journal of the American Chemical Society, 2023, 145, 4589-4600.	6.6	6
6893	Engineering DNA Crystals toward Studying DNA–Guest Molecule Interactions. Journal of the American Chemical Society, 2023, 145, 4853-4859.	6.6	9
6894	MOFs-Modified Electrochemical Sensors and the Application in the Detection of Opioids. Biosensors, 2023, 13, 284.	2.3	5
6895	Controlling the Flexibility of Carbazoleâ€Based Metal–Organic Frameworks by Substituent Effects. Chemistry - A European Journal, 0, , .	1.7	0
6896	Quasi-HKUST-1 Nanostructures with Enhanced Catalytic Activity and Water Stability for Bacteria-Infected Diabetic Wound Therapy. ACS Applied Nano Materials, 2023, 6, 3835-3847.	2.4	4
6897	Magnetic coupling of guest metallocene molecules with SURMOF-2 host matrix. Physical Review B, 2023, 107, .	1.1	1
6898	Stability improvements of metal halide perovskite nanocrystals and their optoelectrical applications. Materials Chemistry Frontiers, 2023, 7, 2175-2207.	3.2	5
6899	Research on Improved MOF Materials Modified by Functional Groups for Purification of Water. Molecules, 2023, 28, 2141.	1.7	3
6900	Metal–Organic Framework-Based Materials for Wastewater Treatment: Superior Adsorbent Materials for the Removal of Hazardous Pollutants. ACS Omega, 2023, 8, 9004-9030.	1.6	23
6901	MOF/Al2O3 composites obtained by immobilization of MIL-53(Cr) or MIL-101(Cr) on γ-alumina: Preparation and characterization. Microporous and Mesoporous Materials, 2023, 353, 112518.	2.2	5
6902	Boosting Catalytic Performance of MOF-808(Zr) by Direct Generation of Rich Defective Zr Nodes via a Solvent-Free Approach. Inorganic Chemistry, 2023, 62, 4248-4259.	1.9	28
6903	Synthesis, characterization, and activation of metal organic frameworks (MOFs) for the removal of emerging organic contaminants through the adsorption-oriented process: A review. Results in Chemistry, 2023, 5, 100866.	0.9	9
6904	Biodiesel Production from Waste Oil Catalysed by Metal-Organic Framework (MOF-5): Insights on Activity and Mechanism. Catalysts, 2023, 13, 503.	1.6	3
6905	Stimuli responsive metal organic framework materials towards advanced smart application. Materials Today, 2023, 64, 138-164.	8.3	12
6906	Research Progress of Synthesis Methods for Crystalline Porous Materials. Acta Chimica Sinica, 2023, 81, 146.	0.5	3
6907	Zirconium-Based Metal–Organic Frameworks as Reusable Antibacterial Peroxide Carriers for Protective Textiles. Chemistry of Materials, 2023, 35, 2342-2352.	3.2	6

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
6909	Evolution in MOF Porosity, Modularity, and Topology. Engineering Materials, 2023, , 91	1-100.	0.3	0
6910	<scp>MOFs</scp> for desulfurization of fuel oil: Recent advances and future insights. Chinese Chemical Society, 2023, 70, 789-824.	ournal of the	0.8	3
6911	Effect of steric hindrance on the interfacial connection of MOF-on-MOF architectures. Advances, 2023, 5, 2111-2117.	Nanoscale	2.2	2
6912	Quantum Physisorption of Gas in Nanoporous Media: A New Perspective. Processes, 20	023, 11, 758.	1.3	3
6913	Direct synthesis of amorphous coordination polymers and metal–organic framework Reviews Chemistry, 2023, 7, 273-286.	s. Nature	13.8	40
6914	Impact of Ligands on the Properties of Lanthanide Metalâ€Organic Frameworks. Zeitsc Anorganische Und Allgemeine Chemie, 2023, 649, .	hrift Fur	0.6	1
6915	Monolithic Zirconiumâ€Based Metal–Organic Frameworks for Energyâ€Efficient Wa Applications. Advanced Materials, 2023, 35, .	ter Adsorption	11.1	7
6916	Quantification of the Microwave Effect in the Synthesis of 5-Hydroxymethylfurfural ove MIL-101(Cr). Catalysts, 2023, 13, 622.	er Sulfonated	1.6	1
6917	Recent advances in metal–organic framework-based photoelectrochemical and electrochemiluminescence biosensors. Analyst, The, 2023, 148, 2200-2213.		1.7	16
6918	Enhanced Solid-State Fluorescence of Flavin Derivatives by Incorporation in the Metal-G Frameworks MIL-53(Al) and MOF-5. Molecules, 2023, 28, 2877.	Drganic	1.7	2
6919	Controlling the Composition and Position of Metal–Organic Frameworks via Reactive Advanced Materials Interfaces, 2023, 10, .	e Inkjet Printing.	1.9	2
6920	High-pressure Mechanical Behaviour Under Hydrostatic Compression. , 2023, , 205-26	б.		0
6921	Cageâ€Like Sodaliteâ€Type Porous Organic Salts Enabling Luminescent Molecule's Inc Roomâ€ŧemperature Phosphorescence Induction in Air. Small, 2023, 19, .	orporation and	5.2	4
6922	Overcoming challenges in ⁶⁷ Zn NMR: a new strategy of signal enhancem characterization. Chemical Communications, 2023, 59, 5205-5208.	ent for MOF	2.2	1
6923	Closer Look at Adsorption of Sarin and Simulants on Metal–Organic Frameworks. AC Materials & Interfaces, 2023, 15, 18559-18567.	:S Applied	4.0	9
6924	Machine learning transferable atomic forces for large systems from underconverged m fragments. Physical Chemistry Chemical Physics, 2023, 25, 12979-12989.	olecular	1.3	5
6925	Metalâ€Organic Framework Based Polymer Fibers: Review on Synthesis and Application Materials Technologies, 2023, 8, .	ns. Advanced	3.0	2
6926	Metal–organic framework clustering through the lens of transfer learning. Molecular Design and Engineering, 2023, 8, 1049-1059.	Systems	1.7	1

#	Article	IF	CITATIONS
6927	Bioinspired Framework Catalysts: From Enzyme Immobilization to Biomimetic Catalysis. Chemical Reviews, 2023, 123, 5347-5420.	23.0	37
6928	Ligand field tuning of d-orbital energies in metal-organic framework clusters. Communications Chemistry, 2023, 6, .	2.0	4
6929	Synthesis of Isoreticular Metal Organic Framework-3 (IRMOF-3) Porous Nanostructure and Its Effect on Naphthalene Adsorption: Optimized by Response Surface Methodology. Separations, 2023, 10, 261.	1.1	0
6930	Improved quantum yield in geometrically constrained tetraphenylethylene-based metal–organic frameworks. CrystEngComm, 2023, 25, 2701-2705.	1.3	0
6931	Chemically routed interpore molecular diffusion in metal-organic framework thin films. Nature Communications, 2023, 14, .	5.8	1
6932	Plasmonic Ag nanoparticles decorated MIL-101(Fe) for enhanced photocatalytic degradation of bisphenol A with peroxymonosulfate under visible-light irradiation. Chinese Chemical Letters, 2024, 35, 108475.	4.8	3
6933	UiO-66 framework with encapsulated spin probe: synthesis and exceptional sensitivity to mechanical pressure. Physical Chemistry Chemical Physics, 0, , .	1.3	1
6934	Monoliths Media: Stationary Phases and Nanoparticles. , 0, , .		0
6935	Highly selective adsorption of light hydrocarbons in a HKUST-like MOF constructed from spirobifluorene-based octacarboxylate ligand by a substitution strategy. Nano Research, 2023, 16, 10652-10659.	5.8	4
6936	Linker Vacancy Engineering of a Robust ftwâ€ŧype Zrâ€MOF for Hexane Isomers Separation. Angewandte Chemie, 2023, 135, .	1.6	1
6937	Linker Vacancy Engineering of a Robust ftwâ€ŧype Zrâ€MOF for Hexane Isomers Separation. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
6938	IRMOF-3 nanosheet-filled glass fiber membranes for efficient separation of hydrogen and carbon dioxide. Separation and Purification Technology, 2023, 318, 123908.	3.9	2
6939	Recent advances in fluorescent and colorimetric sensing for volatile organic amines and biogenic amines in food. , 2023, 2, 79-87.		19
6944	Microporous and Mesoporous Materials from Soft Building Blocks. , 2008, , 521-592.		0
6945	Effect of Temperature on the Hydrogen Adsorption and Transportation Inside MOF-5 Through Molecular Dynamics Simulation. Springer Proceedings in Energy, 2023, , 97-103.	0.2	0
6947	Raman spectroscopy, an ideal tool for studying the physical properties and applications of metalâ€ ^e organic frameworks (MOFs). Chemical Society Reviews, 2023, 52, 3397-3437.	18.7	13
6957	Metal–organic frameworks (an overview). , 2023, , 1-38.		0
6959	Functionalized metal–organic frameworks for heavy metal ion removal from water. Nanoscale, 2023, 15, 10189-10205.	2.8	7

#	Article	IF	CITATIONS
6961	Rational design of stable functional metal–organic frameworks. Materials Horizons, 2023, 10, 3257-3268.	6.4	13
6968	State of the art and prospectives of heterogeneous photocatalysts based on metal–organic frameworks (MOFs): design, modification strategies, and their applications and mechanisms in photodegradation, water splitting, and CO ₂ reduction. Catalysis Science and Technology, 2023. 13. 4285-4347.	2.1	5
6976	Historical and contemporary perspectives on metal–organic frameworks for gas sensing applications: a review. , 2023, 1, 1125-1149.		2
6990	Simultaneous Control of Flexibility and Rigidity in Pore-Space-Partitioned Metal–Organic Frameworks. Journal of the American Chemical Society, 2023, 145, 10980-10986.	6.6	19
6994	Metal–Organic Frameworks for Luminescence Thermometry. , 2023, , .		0
7016	Ionic Liquids Functionalized MOFs for Adsorption. Chemical Reviews, 2023, 123, 10432-10467.	23.0	31
7024	Proton Conductors: Physics and Technological Advancements for PC-SOFC. Materials Horizons, 2023, , 1-55.	0.3	0
7039	Metal-Organic Frameworks: Synthesis, Characterization, and Applications. , 2023, , 97-121.		0
7049	Efficient separation of monobromotoluene isomers by nonporous adaptive perbromoethylated pillar[5]arene crystals. Chemical Communications, 2023, 59, 10432-10435.	2.2	1
7052	High-performance SERS Substrates via the Plasmonic Micro-nano Structure and MOF-Enabled Molecular Preconcentration Effect. , 2023, , .		0
7055	Chemistry of Metal–Organic Frameworks. , 2023, , 45-79.		1
7060	Recent Advances in Multifunctional Reticular Framework Nanoparticles: A Paradigm Shift in Materials Science Road to a Structured Future. Nano-Micro Letters, 2023, 15, .	14.4	3
7077	Preparation and applications of water-based isoreticular metal–organic frameworks. , 2024, , 199-218.		0
7085	Introduction to metal–organic frameworks. , 2024, , 1-24.		0
7095	Recent advances in the nanoarchitectonics of metal–organic frameworks for light-activated tumor therapy. Dalton Transactions, 2023, 52, 16085-16102.	1.6	1
7103	Introduction to Metal–Organic Framework Sponges and Their Synthetic and Functionalization Strategies. , 2023, , 187-218.		0
7110	Fundamentals of metal–organic frameworks. , 2024, , 25-34.		0
7111	Microwave-assisted synthesis of metal–organic frameworks. , 2024, , 51-72.		0

#	Article	IF	CITATIONS
7118	Emerging trends in membrane-based wastewater treatment: electrospun nanofibers and reticular porous adsorbents as key components. Environmental Science: Water Research and Technology, 0, , .	1.2	0
7119	Post-synthesis modification of metal–organic frameworks: synthesis, characteristics, and applications. Journal of Materials Chemistry A, 2023, 11, 24519-24550.	5.2	0
7124	Creating glassy states of dicarboxylate-bridged coordination polymers. Chemical Communications, 2023, 59, 14317-14320.	2.2	3
7125	Pore engineering of metal–organic frameworks for boosting low-pressure CO ₂ capture. Journal of Materials Chemistry A, 2023, 11, 25784-25802.	5.2	0
7182	Photocatalytic Reduction of Nitrophenol and Nitrobenzene with Zn Oxysulfide Semiconductor Without Using Reducing Agents. , 2024, , 1-31.		0
7193	Investigation of porous coordination polymers for gas storage and separation. , 2024, , 137-176.		0
7196	Progress toward the computational discovery of new metal–organic framework adsorbents for energy applications. Nature Energy, 2024, 9, 121-133.	19.8	1
7206	Mesopore and macropore engineering in metal–organic frameworks for energy environment-related applications. Journal of Materials Chemistry A, 2024, 12, 4931-4970.	5.2	0
7211	Porous coordination polymers: a brief introduction. , 2024, , 1-9.		0
7212	Nanomaterials in gas separations. , 2024, , 579-605.		0
7239	Nanomaterials for carbon capture and their conversion to useful products for sustainable energy production. , 2024, , 369-395.		0
7245	Metal–Organic Frameworks and Their Composites for Sensing Applications. Advanced Structured Materials, 2024, , 225-241.	0.3	0
7252	Hydrogen Production and Storage. , 2024, , 37-115.		0

7252 Hydrogen Production and Storage. , 2024, , 37-115.