Listeria Pathogenesis and Molecular Virulence Determi

Clinical Microbiology Reviews 14, 584-640

DOI: 10.1128/cmr.14.3.584-640.2001

Citation Report

#	Article	IF	CITATIONS
1	Regulation of virulence genes in Listeria. International Journal of Medical Microbiology, 2001, 291, 145-157.	1.5	151
2	Molecular and cellular basis of the infection by Listeria monocytogenes: an overview. International Journal of Medical Microbiology, 2001, 291, 401-409.	1.5	85
3	Lining-up Listeria genomes. Genome Biology, 2001, 2, spotlight-20011026-01.	13.9	0
4	A role for ActA in epithelial cell invasion by Listeria monocytogenes. Cellular Microbiology, 2001, 3, 853-864.	1.1	128
5	Pathogenicity islands and virulence evolution in Listeria. Microbes and Infection, 2001, 3, 571-584.	1.0	207
6	Positive Selection of Mutations Leading to Loss or Reduction of Transcriptional Activity of PrfA, the Central Regulator of Listeria monocytogenes Virulence. Journal of Bacteriology, 2001, 183, 5562-5570.	1.0	27
7	Identification and Mutagenesis by Allelic Exchange of choE, Encoding a Cholesterol Oxidase from the Intracellular Pathogen Rhodococcus equi. Journal of Bacteriology, 2001, 183, 4796-4805.	1.0	108
8	Protective Immunosurveillance of the Central Nervous System by Listeria-Specific CD4 and CD8 T Cells in Systemic Listeriosis in the Absence of Intracerebral Listeria. Journal of Immunology, 2002, 169, 2010-2019.	0.4	19
9	Identification of Listeria Species by Microarray-Based Assay. Journal of Clinical Microbiology, 2002, 40, 4720-4728.	1.8	208
10	Hpt, a bacterial homolog of the microsomal glucose- 6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 431-436.	3.3	232
11	Nonsecreted Bacterial Proteins Induce Recall CD8 T Cell Responses But Do Not Serve as Protective Antigens. Journal of Immunology, 2002, 169, 5805-5812.	0.4	28
12	Perforin-Mediated CTL Cytolysis Counteracts Direct Cell-Cell Spread ofListeria monocytogenes. Journal of Immunology, 2002, 169, 5202-5208.	0.4	35
13	Production of Type I IFN Sensitizes Macrophages to Cell Death Induced by <i>Listeria monocytogenes </i> . Journal of Immunology, 2002, 169, 6522-6529.	0.4	144
14	An Outbreak of Febrile Gastroenteritis Associated with Delicatessen Meat Contaminated with Listeria monocytogenes. Clinical Infectious Diseases, 2002, 35, 943-949.	2.9	116
15	Effect of Acid Adaptation on the Fate of Listeria monocytogenes in THP-1 Human Macrophages Activated by Gamma Interferon. Infection and Immunity, 2002, 70, 4369-4378.	1.0	44
16	Inducible Control of Virulence Gene Expression in Listeria monocytogenes : Temporal Requirement of Listeriolysin O during Intracellular Infection. Journal of Bacteriology, 2002, 184, 5935-5945.	1.0	59
17	Bactericidal Group IIA Phospholipase A2 in Serum of Patients with Bacterial Infections. Journal of Infectious Diseases, 2002, 185, 1767-1772.	1.9	61
18	Listeriolysin O. Journal of Cell Biology, 2002, 156, 943-946.	2.3	75

#	Article	IF	Citations
19	Génomique comparative. Annales De L'Institut Pasteur / Actualités, 2002, 11, 33-49.	0.1	0
20	PCR Technology and Applications to Zoonotic Food-Borne Bacterial Pathogens. , 2003, 216, 65-84.		13
21	The Sortase SrtA of Listeria monocytogenes Is Involved in Processing of Internalin and in Virulence. Infection and Immunity, 2002, 70, 1382-1390.	1.0	112
22	The cell biology of Listeria monocytogenes infection. Journal of Cell Biology, 2002, 158, 409-414.	2.3	402
23	Sphingomyelinases: enzymology and membrane activity. FEBS Letters, 2002, 531, 38-46.	1.3	312
24	Genetically-modified-animal models for human infections: the Listeria paradigm. Trends in Molecular Medicine, 2002, 8, 537-542.	3.5	57
25	Bacterial growth in the cytosol: lessons from Listeria. Trends in Microbiology, 2002, 10, 493-495.	3.5	1
26	Listeria monocytogenes Virulence and Pathogenicity, a Food Safety Perspective. Journal of Food Protection, 2002, 65, 1811-1829.	0.8	606
27	Pulmonary microbial infection in mice: Comparison of different application methods and correlation of bacterial numbers and histopathology. Experimental and Toxicologic Pathology, 2002, 54, 127-133.	2.1	27
28	Macrophage intracellular signaling induced by Listeria monocytogenes. Microbes and Infection, 2002, 4, 1335-1343.	1.0	52
29	InlA- but not InlB-mediated internalization ofListeria monocytogenesby non-phagocytic mammalian cells needs the support of other internalins. Molecular Microbiology, 2002, 43, 557-570.	1.2	77
30	A hypermutator phenotype attenuates the virulence of Listeria monocytogenes in a mouse model. Molecular Microbiology, 2002, 44, 877-887.	1.2	38
31	Critical role of the N-terminal residues of listeriolysin O in phagosomal escape and virulence of Listeria monocytogenes. Molecular Microbiology, 2002, 46, 367-379.	1.2	37
32	Distinct protein patterns associated with Listeria monocytogenes InlA- or InlB-phagosomes. Cellular Microbiology, 2002, 4, 101-115.	1.1	85
33	Listeriolysin of Listeria monocytogenes forms Ca2+-permeable pores leading to intracellular Ca2+ oscillations. Cellular Microbiology, 2002, 4, 483-491.	1.1	98
34	A Listeria adhesion protein-deficient Listeria monocytogenes strain shows reduced adhesion primarily to intestinal cell lines. Medical Microbiology and Immunology, 2003, 192, 85-91.	2.6	37
35	Role of heparan sulfate in interactions of Listeria monocytogenes with enterocytes. Medical Microbiology and Immunology, 2003, 192, 107-115.	2.6	51
36	Identification and characterisation of regions in the cellular protein LaXp180 and the Listeria monocytogenes surface protein ActA necessary for the interaction of the two proteins. Molecular Genetics and Genomics, 2003, 268, 607-617.	1.0	4

#	Article	IF	CITATIONS
37	Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions. Trends in Cell Biology, 2003, 13, 23-31.	3.6	237
38	Discrimination among Listeria monocytogenes isolates using a mixed genome DNA microarray. Veterinary Microbiology, 2003, 92, 351-362.	0.8	87
39	A simple method for the differentiation of Listeria monocytogenes based on induction of lecithinase activity by charcoal. International Journal of Food Microbiology, 2003, 82, 87-94.	2.1	28
40	Modulation of Hepatic Cytochrome P450 during Listeria Monocytogenes Infection of the Brain. Journal of Pharmaceutical Sciences, 2003, 92, 1860-1868.	1.6	19
41	Structural Aspects of Adhesion to and Invasion of Host Cells by the Human Pathogen Listeria monocytogenes. ChemBioChem, 2003, 4, 1285-1291.	1.3	15
42	Identification of Listeria innocua by PCR targeting a putative transcriptional regulator gene. FEMS Microbiology Letters, 2003, 223, 205-210.	0.7	41
43	The gene encoding pyolysin, the pore-forming toxin of Arcanobacterium pyogenes, resides within a genomic islet flanked by essential genes. FEMS Microbiology Letters, 2003, 225, 241-247.	0.7	11
44	Susceptibility ofListeria monocytogenesto antimicrobial peptides. FEMS Microbiology Letters, 2003, 226, 101-105.	0.7	41
45	Comparison of the genome sequences of Listeria monocytogenesand Listeria innocua: clues for evolution and pathogenicity. FEMS Immunology and Medical Microbiology, 2003, 35, 207-213.	2.7	187
46	History and epidemiology of listeriosis. FEMS Immunology and Medical Microbiology, 2003, 35, 199-202.	2.7	85
47	Listeria species escape from the phagosomes of interleukinâ€4â€deactivated human macrophages independent of listeriolysin. Immunology and Cell Biology, 2003, 81, 431-439.	1.0	7
48	Detection of Listeria monocytogenes in Italian-style soft cheeses. Journal of Applied Microbiology, 2003, 94, 879-885.	1.4	36
49	Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Molecular Microbiology, 2003, 47, 1613-1625.	1.2	290
50	Isolation of Listeria monocytogenes mutants with high-level in vitro expression of host cytosol-induced gene products. Molecular Microbiology, 2003, 48, 1537-1551.	1.2	97
51	Drosophila S2 cells: an alternative infection model for Listeria monocytogenes. Cellular Microbiology, 2003, 5, 875-885.	1.1	83
52	Exploration of host-pathogen interactions using Listeria monocytogenes and Drosophila melanogaster. Cellular Microbiology, 2003, 5, 901-911.	1.1	169
53	Carbon starvation survival ofListeria monocytogenes in planktonic state and in biofilm: A proteomic study. Proteomics, 2003, 3, 2052-2064.	1.3	53
54	New technologies to assess genotype–phenotype relationships. Nature Reviews Genetics, 2003, 4, 309-314.	7.7	211

#	Article	IF	CITATIONS
55	Listeria monocytogenes infection in patients with cancer. Diagnostic Microbiology and Infectious Disease, 2003, 47, 393-398.	0.8	55
56	Pathogen, host and environmental factors contributing to the pathogenesis of listeriosis. Cellular and Molecular Life Sciences, 2003, 60, 904-918.	2.4	131
57	Listeriolysin O-Mediated Calcium Influx Potentiates Entry of Listeria monocytogenes into the Human Hep-2 Epithelial Cell Line. Infection and Immunity, 2003, 71, 3614-3618.	1.0	119
58	Listeria monocytogenes Mutants That Fail To Compartmentalize Listerolysin O Activity Are Cytotoxic, Avirulent, and Unable To Evade Host Extracellular Defenses. Infection and Immunity, 2003, 71, 6754-6765.	1.0	120
59	Antibodies Present in Normal Human Serum Inhibit Invasion of Human Brain Microvascular Endothelial Cells by Listeria monocytogenes. Infection and Immunity, 2003, 71, 95-100.	1.0	20
60	Genome Diversification in Phylogenetic Lineages I and II of Listeria monocytogenes: Identification of Segments Unique to Lineage II Populations. Journal of Bacteriology, 2003, 185, 5573-5584.	1.0	93
61	Differences in Gamma Interferon Production Induced by Listeriolysin O and Ivanolysin O Result in Different Levels of Protective Immunity in Mice Infected with Listeria monocytogenes and Listeria ivanovii. Infection and Immunity, 2003, 71, 2447-2454.	1.0	18
62	CD44-Regulated Intracellular Proliferation of Listeria monocytogenes. Infection and Immunity, 2003, 71, 4102-4111.	1.0	11
63	Mixed-Genome Microarrays Reveal Multiple Serotype and Lineage-Specific Differences among Strains of Listeria monocytogenes. Journal of Clinical Microbiology, 2003, 41, 632-639.	1.8	110
64	An Improved Cloning Vector for Construction of Gene Replacements in Listeria monocytogenes. Applied and Environmental Microbiology, 2003, 69, 3020-3023.	1.4	10
65	Negative regulation of PrfA, the key activator of Listeria monocytogenes virulence gene expression, is dispensable for bacterial pathogenesis. Microbiology (United Kingdom), 2003, 149, 111-120.	0.7	22
66	CesRK, a Two-Component Signal Transduction System in Listeria monocytogenes, Responds to the Presence of Cell Wall-Acting Antibiotics and Affects \hat{I}^2 -Lactam Resistance. Antimicrobial Agents and Chemotherapy, 2003, 47, 3421-3429.	1.4	77
67	Identification of the agr Locus of Listeria monocytogenes: Role in Bacterial Virulence. Infection and Immunity, 2003, 71, 4463-4471.	1.0	150
68	Influence of Pregnancy on the Pathogenesis of Listeriosis in Mice Inoculated Intragastrically. Infection and Immunity, 2003, 71, 5202-5209.	1.0	27
69	Development of a Listeria monocytogenes EGDe Partial Proteome Reference Map and Comparison with the Protein Profiles of Food Isolates. Applied and Environmental Microbiology, 2003, 69, 3368-3376.	1.4	36
70	Capacity of ivanolysin O to replace listeriolysin O in phagosomal escape and in vivo survival of Listeria monocytogenes. Microbiology (United Kingdom), 2003, 149, 611-620.	0.7	27
71	Haemolytic activities of Trichophytonspecies. Medical Mycology, 2003, 41, 511-516.	0.3	26
72	Adhesion, Invasion, and Translocation Characteristics of Listeria monocytogenes Serotypes in Caco-2 Cell and Mouse Models. Applied and Environmental Microbiology, 2003, 69, 3640-3645.	1.4	73

#	Article	IF	Citations
73	Identification and Characterization of a Peptidoglycan Hydrolase, MurA, of Listeria monocytogenes, a Muramidase Needed for Cell Separation. Journal of Bacteriology, 2003, 185, 6801-6808.	1.0	84
74	Deletion of the Gene Encoding p60 in Listeria monocytogenes Leads to Abnormal Cell Division and Loss of Actin-Based Motility. Infection and Immunity, 2003, 71, 3473-3484.	1.0	121
75	Identification of LpeA, a PsaA-Like Membrane Protein That Promotes Cell Entry by Listeria monocytogenes. Infection and Immunity, 2003, 71, 474-482.	1.0	47
76	Role of Listeria monocytogenes Ïf B in Survival of Lethal Acidic Conditions and in the Acquired Acid Tolerance Response. Applied and Environmental Microbiology, 2003, 69, 2692-2698.	1.4	165
77	Expression of Truncated Internalin A Is Involved in Impaired Internalization of Some Listeria monocytogenes Isolates Carried Asymptomatically by Humans. Infection and Immunity, 2003, 71, 1217-1224.	1.0	93
78	Maturation of Lipoproteins by Type II Signal Peptidase Is Required for Phagosomal Escape of Listeria monocytogenes. Journal of Biological Chemistry, 2003, 278, 49469-49477.	1.6	68
79	Genomics of food-borne bacterial pathogens. Nutrition Research Reviews, 2003, 16, 21.	2.1	18
80	Listeria Monocytogenes Meningitis and Rhombencephalitis. , 2003, 8, 181-186.		0
81	Foodborne enteric infections. Current Opinion in Gastroenterology, 2003, 19, 11-22.	1.0	12
82	Listeria Monocytogenes Meningitis and Rhombencephalitis. , 2003, 8, 181-186.		1
83	Requirement of the Listeria monocytogenes Broad-Range Phospholipase PC-PLC during Infection of Human Epithelial Cells. Journal of Bacteriology, 2003, 185, 6295-6307.	1.0	119
84	Heterogeneity of Virulence-Related Properties in Listeria Monocytogenes Strains Isolated from Patients with Haematological Malignancies. International Journal of Immunopathology and Pharmacology, 2003, 16, 119-127.	1.0	8
85	Rab5 and Rab11 mediate transferrin and anti-variant surface glycoprotein antibody recycling in Trypanosoma brucei. Biochemical Journal, 2003, 374, 443-451.	1.7	93
87	Cross Bridging Proteins in Nature and their Utilization in Bio- and Nanotechnology. Current Protein and Peptide Science, 2004, 5, 33-49.	0.7	15
88	<i>Listeria monocytogenes</i> invasion and intracellular growth., 2004, , 161-202.		2
89	A Validated PCR-Based Method To Detect Listeria monocytogenes Using Raw Milk as a Food Model—Towards an International Standard. Journal of Food Protection, 2004, 67, 1646-1655.	0.8	127
90	Sortase B, a New Class of Sortase in Listeria monocytogenes. Journal of Bacteriology, 2004, 186, 1972-1982.	1.0	92
91	Listeria monocytogenes if B Contributes to Invasion of Human Intestinal Epithelial Cells. Infection and Immunity, 2004, 72, 7374-7378.	1.0	82

#	ARTICLE	lF	Citations
92	Natural Atypical Listeria innocua Strains with Listeria monocytogenes Pathogenicity Island 1 Genes. Applied and Environmental Microbiology, 2004, 70, 4256-4266.	1.4	112
93	CpG Oligodeoxynucleotides Improve the Survival of Pregnant and Fetal Mice following Listeria monocytogenes Infection. Infection and Immunity, 2004, 72, 3543-3548.	1.0	39
94	Impairment of Growth ofListeria monocytogenesin THPâ€1 Macrophages by Granulocyte Macrophage Colonyâ€5timulating Factor: Release of Tumor Necrosis Factorâ€"α and Nitric Oxide. Journal of Infectious Diseases, 2004, 189, 2101-2109.	1.9	29
95	Role of lipid rafts in E-cadherin– and HGF-R/Met–mediated entry of Listeria monocytogenes into host cells. Journal of Cell Biology, 2004, 166, 743-753.	2.3	160
96	Identification of Sigma Factor ÏfB-Controlled Genes and Their Impact on Acid Stress, High Hydrostatic Pressure, and Freeze Survival in Listeria monocytogenes EGD-e. Applied and Environmental Microbiology, 2004, 70, 3457-3466.	1.4	185
97	Growth, Virulence, and Immunogenicity of Listeria monocytogenes aro Mutants. Infection and Immunity, 2004, 72, 5622-5629.	1.0	89
98	New Aspects Regarding Evolution and Virulence of Listeria monocytogenes Revealed by Comparative Genomics and DNA Arrays. Infection and Immunity, 2004, 72, 1072-1083.	1.0	307
99	Oral Inoculation of A/J Mice for Detection of Invasiveness Differences between Listeria monocytogenes Epidemic and Environmental Strains. Infection and Immunity, 2004, 72, 4318-4321.	1.0	22
100	Invasion of the Central Nervous System by Intracellular Bacteria. Clinical Microbiology Reviews, 2004, 17, 323-347.	5.7	211
101	Listeria monocytogenes Isolates from Foods and Humans Form Distinct but Overlapping Populations. Applied and Environmental Microbiology, 2004, 70, 5833-5841.	1.4	229
102	Heat Shock Protein 60 Acts as a Receptor for the Listeria Adhesion Protein in Caco-2 Cells. Infection and Immunity, 2004, 72, 931-936.	1.0	98
103	pbp2229-Mediated Nisin Resistance Mechanism in Listeria monocytogenes Confers Cross-Protection to Class Ila Bacteriocins and Affects Virulence Gene Expression. Applied and Environmental Microbiology, 2004, 70, 1669-1679.	1.4	78
104	The RNA-Binding Protein Hfq of Listeria monocytogenes: Role in Stress Tolerance and Virulence. Journal of Bacteriology, 2004, 186, 3355-3362.	1.0	232
105	Role of Flagellin and the Two-Component CheA/CheY System of Listeria monocytogenes in Host Cell Invasion and Virulence. Infection and Immunity, 2004, 72, 3237-3244.	1.0	144
106	Lactoferricin influences early events of Listeria monocytogenes infection in THP-1 human macrophages. Journal of Medical Microbiology, 2004, 53, 87-91.	0.7	17
107	Unconventional myosin VIIa and vezatin, two proteins crucial forListeriaentry into epithelial cells. Journal of Cell Science, 2004, 117, 2121-2130.	1.2	75
108	The Ly-6Chigh Monocyte Subpopulation Transports <i>Listeria monocytogenes</i> into the Brain during Systemic Infection of Mice. Journal of Immunology, 2004, 172, 4418-4424.	0.4	141
109	Virulence and Cord Blood Mononuclear Cells Cytokine Production Induced by Perinatal <i>Listeria monocytogenes</i> Strains from Different Phylogenetic Lineages. Neonatology, 2004, 86, 66-72.	0.9	4

#	Article	IF	CITATIONS
110	Quantitative Detection of Listeria monocytogenes and Listeria innocua by Real-Time PCR: Assessment of hly, iap, and lin02483 Targets and AmpliFluor Technology. Applied and Environmental Microbiology, 2004, 70, 1366-1377.	1.4	215
111	Deregulation of Listeria monocytogenes virulence gene expression by two distinct and semi-independent pathways. Microbiology (United Kingdom), 2004, 150, 321-333.	0.7	30
112	A Novel Mutation within the Central Listeria monocytogenes Regulator PrfA That Results in Constitutive Expression of Virulence Gene Products. Journal of Bacteriology, 2004, 186, 6265-6276.	1.0	64
113	Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes: Role of internalin interaction with trophoblast E-cadherin. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6152-6157.	3.3	210
114	IFN Regulatory Factor 3-Dependent Induction of Type I IFNs by Intracellular Bacteria Is Mediated by a TLR- and Nod2-Independent Mechanism. Journal of Immunology, 2004, 173, 7416-7425.	0.4	195
115	Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12318-12323.	3 . 3	201
116	Macrophage activation and $Fc^{\hat{1}3}$ receptor-mediated signaling do not require expression of the SLP-76 and SLP-65 adaptors. Journal of Leukocyte Biology, 2004, 75, 541-552.	1.5	16
117	Disruption of Putative Regulatory Loci in Listeria monocytogenes Demonstrates a Significant Role for Fur and PerR in Virulence. Infection and Immunity, 2004, 72, 717-727.	1.0	107
118	Sequence and Binding Activity of the Autolysin-Adhesin Ami from Epidemic Listeria monocytogenes 4b. Infection and Immunity, 2004, 72, 4401-4409.	1.0	31
119	Listeria monocytogenes-infected bone marrow myeloid cells promote bacterial invasion of the central nervous system. Cellular Microbiology, 2005, 7, 167-180.	1.1	76
120	Clinical and Histopathological Aspects of Naturally Occurring Mastitis Caused by Listeria monocytogenes in Cattle and Ewes. Zoonoses and Public Health, 2004, 51, 176-179.	1.4	48
121	The diversity of Listeria monocytogenes strains from 10 Icelandic sheep farms. Journal of Applied Microbiology, 2004, 96, 913-921.	1.4	16
122	In vitro transcription of the Listeria monocytogenes virulence genes inlC and mpl reveals overlapping PrfA-dependent and -independent promoters that are differentially activated by GTP. Molecular Microbiology, 2004, 52, 39-52.	1.2	29
123	Differential roles of multiple signal peptidases in the virulence of Listeria monocytogenes. Molecular Microbiology, 2004, 51, 1251-1266.	1.2	56
124	Identification of a gene encoding a putative phosphotransferase system enzyme IIBC in Listeria welshimeri and its application for diagnostic PCR. Letters in Applied Microbiology, 2004, 38, 151-157.	1.0	15
125	Simultaneous quantitative detection of Listeriaspp. and Listeria monocytogenesusing a duplex real-time PCR-based assay. FEMS Microbiology Letters, 2004, 233, 257-267.	0.7	53
126	Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence. Molecular Microbiology, 2004, 51, 1601-1614.	1.2	143
127	Negative control of Listeria monocytogenes virulence genes by a diffusible autorepressor. Molecular Microbiology, 2004, 52, 601-611.	1.2	85

#	Article	IF	CITATIONS
128	New Listeria monocytogenes prfA* mutants, transcriptional properties of PrfA* proteins and structure-function of the virulence regulator PrfA. Molecular Microbiology, 2004, 52, 1553-1565.	1.2	66
129	FbpA, a novel multifunctional Listeria monocytogenes virulence factor. Molecular Microbiology, 2004, 53, 639-649.	1.2	133
130	Impact of genomics on microbial food safety. Trends in Biotechnology, 2004, 22, 653-660.	4.9	40
131	Single-chain Fv antibody with specificity for Listeria monocytogenes. Journal of Immunological Methods, 2004, 289, 147-155.	0.6	44
132	Genetic Characterization of Listeria monocytogenes Food Isolates and Pathogenic Potential within Serovars 1/2a and 1/2b. Systematic and Applied Microbiology, 2004, 27, 454-461.	1.2	13
133	Listeria monocytogenes and listeriosis: a review of hazard characterisation for use in microbiological risk assessment of foods. International Journal of Food Microbiology, 2004, 92, 15-33.	2.1	324
134	Recognition of Bacteria in the Cytosol of Mammalian Cells by the Ubiquitin System. Current Biology, 2004, 14, 806-811.	1.8	457
135	Use of PCR primers derived from a putative transcriptional regulator gene for species-specific determination of Listeria monocytogenes. International Journal of Food Microbiology, 2004, 91, 297-304.	2.1	56
136	New chromogenic plating media for detection and enumeration of pathogenic Listeria spp.—an overview. International Journal of Food Microbiology, 2004, 95, 1-9.	2.1	71
137	Listeria monocytogenes in Products of Animal Origin in Turkey. Veterinary Research Communications, 2004, 28, 561-567.	0.6	10
138	Pathogenicity Islands in BacterialPathogenesis. Clinical Microbiology Reviews, 2004, 17, 14-56.	5.7	603
139	Antigen-specific CD8+ T cell responses in intestinal tissues during murine listeriosis. Microbes and Infection, 2004, 6, 8-16.	1.0	15
140	Two-dimensional electrophoresis database ofListeria monocytogenes EGDe proteome and proteomic analysis of mid-log and stationary growth phase cells. Proteomics, 2004, 4, 3187-3201.	1.3	71
141	The cell wall subproteome ofListeria monocytogenes. Proteomics, 2004, 4, 2991-3006.	1.3	182
142	Evidence implicating the $5\hat{a} \in \mathbb{R}^2$ untranslated region of Listeria monocytogenes act Ain the regulation of bacterial actin-based motility. Cellular Microbiology, 2004, 6, 155-166.	1.1	51
143	Characterization of DegU, a response regulator inListeria monocytogenes, involved in regulation of motility and contributes to virulence. FEMS Microbiology Letters, 2004, 240, 171-179.	0.7	65
144	Rapid Quantitative Detection of Listeria monocytogenes in Meat Products by Real-Time PCR. Applied and Environmental Microbiology, 2004, 70, 6299-6301.	1.4	85
145	Differentiation of the Major Listeria monocytogenes Serovars by Multiplex PCR. Journal of Clinical Microbiology, 2004, 42, 3819-3822.	1.8	915

#	ARTICLE	IF	CITATIONS
146	A Nuclear Strike against Listeria— The Evolving Life of LXR. Cell, 2004, 119, 149-151.	13.5	13
147	Exploitation of host cell cytoskeleton and signalling during Listeria monocytogenes entry into mammalian cells. Comptes Rendus - Biologies, 2004, 327, 115-123.	0.1	24
148	Exploitation of host cell cytoskeleton and signalling during Listeria monocytogenes entry into mammalian cells. Comptes Rendus - Biologies, 2004, 327, 523-531.	0.1	12
149	Simultaneous quantitative detection of Listeria spp. and Listeria monocytogenes using a duplex real-time PCR-based assay. FEMS Microbiology Letters, 2004, 233, 257-267.	0.7	28
150	Species-specific PCR determination of Listeria seeligeri. Research in Microbiology, 2004, 155, 741-746.	1.0	18
151	Bacteria as DNA vaccine carriers for genetic immunization. International Journal of Medical Microbiology, 2004, 294, 319-335.	1.5	97
152	Molecular Determinants of Listeria monocytogenes Virulence. Annual Review of Microbiology, 2004, 58, 587-610.	2.9	246
153	Bacterial Invasion: The Paradigms of Enteroinvasive Pathogens. Science, 2004, 304, 242-248.	6.0	890
155	Molecular and experimental virulence of Listeria monocytogenesstrains isolated from cases with invasive listeriosis and febrile gastroenteritis. FEMS Immunology and Medical Microbiology, 2005, 43, 431-439.	2.7	21
156	Comparative assessment of acid, alkali and salt tolerance inListeria monocytogenesvirulent and avirulent strains. FEMS Microbiology Letters, 2005, 243, 373-378.	0.7	94
157	Lessons from signature-tagged mutagenesis on the infectious mechanisms of pathogenic bacteria. FEMS Microbiology Reviews, 2005, 29, 703-717.	3.9	45
158	Supportive and inhibitory elements of a putative PrfA-dependent promoter in Listeria monocytogenes. Molecular Microbiology, 2005, 55, 986-997.	1.2	6
160	The mutation G145S in PrfA, a key virulence regulator of Listeria monocytogenes, increases DNA-binding affinity by stabilizing the HTH motif. Molecular Microbiology, 2005, 56, 433-446.	1.2	85
161	Two acid-inducible promoters fromLactococcus lactisrequire thecis-acting ACiD-box and the transcription regulator RcfB. Molecular Microbiology, 2005, 56, 735-746.	1.2	43
162	VirR, a response regulator critical forListeria monocytogenesvirulence. Molecular Microbiology, 2005, 57, 1367-1380.	1.2	184
163	The 5′ untranslated region-mediated enhancement of intracellular listeriolysin O production is required forListeria monocytogenespathogenicity. Molecular Microbiology, 2005, 57, 1460-1473.	1.2	95
164	Gastrointestinal phase ofListeria monocytogenesinfection. Journal of Applied Microbiology, 2005, 98, 1345-1353.	1.4	117
165	Dermatophytes can trigger cooperative (CAMP-like) haemolytic reactions. British Journal of Dermatology, 2005, 153, 584-590.	1.4	14

#	ARTICLE	IF	CITATIONS
166	Listeria monocytogenes exploits ERM protein functions to efficiently spread from cell to cell. EMBO Journal, 2005, 24, 1287-1300.	3.5	80
167	Translation elongation factor EF-Tu is a target for Stp, a serine-threonine phosphatase involved in virulence of Listeria monocytogenes. Molecular Microbiology, 2005, 56, 383-396.	1.2	98
168	Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the 'red complex', a prototype polybacterial pathogenic consortium in periodontitis. Periodontology 2000, 2005, 38, 72-122.	6.3	758
169	QUANTIFICATION OF ATTACHMENT STRENGTH OF SELECTED FOODBORNE PATHOGENS BY THE BLOT SUCCESSION METHOD. Journal of Rapid Methods and Automation in Microbiology, 2005, 13, 127-133.	0.4	9
170	Simultaneous detection of Listeria monocytogenes and Salmonella by multiplex PCR in cooked ham. Food Microbiology, 2005, 22, 109-115.	2.1	103
171	Discrimination of Listeria monocytogenes contaminated commercial Japanese meats. International Journal of Food Microbiology, 2005, 105, 455-462.	2.1	16
172	Evolutionary history of the genus Listeria and its virulence genes. Systematic and Applied Microbiology, 2005, 28, 1-18.	1.2	116
173	A computational approach for identifying pathogenicity islands in prokaryotic genomes. BMC Bioinformatics, 2005, 6, 184.	1.2	55
174	"LANESPECTORâ€, a tool for membrane proteome profiling based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis/liquid chromatography - tandem mass spectrometry analysis: Application toListeria monocytogenes membrane proteins. Electrophoresis, 2005, 26, 2450-2460.	1.3	33
175	Functional transfer of eukaryotic expression plasmids to mammalian cells byListeria monocytogenes: a mechanistic approach. Journal of Gene Medicine, 2005, 7, 1097-1112.	1.4	13
176	Response regulator DegU ofListeria monocytogenesregulates the expression of flagella-specific genes. FEMS Microbiology Letters, 2005, 252, 287-298.	0.7	56
177	Human dendritic cells process and present Listeria antigens for in vitro priming of autologous CD4+ T lymphocytes. Histochemistry and Cell Biology, 2005, 123, 169-178.	0.8	6
178	Analysis of theListeriacell wall proteome by two-dimensional nanoliquid chromatography coupled to mass spectrometry. Proteomics, 2005, 5, 433-443.	1.3	66
179	Comparative proteome analysis of secretory proteins from pathogenic and nonpathogenicListeriaspecies. Proteomics, 2005, 5, 1544-1557.	1.3	143
180	Identification of substrates of theListeria monocytogenes sortases A and B by a non-gel proteomic analysis. Proteomics, 2005, 5, 4808-4817.	1.3	63
181	Rapid Quantitative Detection of Listeria monocytogenes in Salmon Products: Evaluation of Pre–Real-Time PCR Strategies. Journal of Food Protection, 2005, 68, 1467-1471.	0.8	43
182	Achieving Continuous Improvement in Reductions in Foodborne Listeriosis—A Risk-Based Approach. Journal of Food Protection, 2005, 68, 1932-1994.	0.8	137
183	Apoptotic Death of Listeria Monocytogenes-Infected Human Macrophages Induced by Lactoferricin B, A Bovine Lactoferrin-Derived Peptide. International Journal of Immunopathology and Pharmacology, 2005, 18, 317-325.	1.0	14

#	Article	IF	CITATIONS
185	Power Ultrasound Treatment of Listeria monocytogenes in Apple Cider. Journal of Food Protection, 2005, 68, 2333-2340.	0.8	112
186	A Novel Real-Time PCR for Listeria monocytogenes That Monitors Analytical Performance via an Internal Amplification Control. Applied and Environmental Microbiology, 2005, 71, 9008-9012.	1.4	82
187	A Cellular Deficiency of Gangliosides Causes Hypersensitivity to Clostridium perfringens Phospholipase C. Journal of Biological Chemistry, 2005, 280, 26680-26689.	1.6	58
188	Truncated Internalin A and Asymptomatic Listeria monocytogenes Carriage: In Vivo Investigation by Allelic Exchange. Infection and Immunity, 2005, 73, 644-648.	1.0	35
189	Listeria monocytogenes: silage, sandwiches and science. Animal Health Research Reviews, 2005, 6, 211-217.	1.4	39
190	Listeriolysin O-Induced Membrane Permeation Mediates Persistent Interleukin-6 Production in Caco-2 Cells during Listeria monocytogenes Infection In Vitro. Infection and Immunity, 2005, 73, 3869-3877.	1.0	45
191	Effect of Immersion Solutions Containing Enterocin AS-48 on Listeria monocytogenes in Vegetable Foods. Applied and Environmental Microbiology, 2005, 71, 7781-7787.	1.4	80
192	Regulation of expression of type I signal peptidases in Listeria monocytogenes. Microbiology (United) Tj ETQq1 1	0,784314	4 rgBT /Over
193	Redundant Roles for Met Docking Site Tyrosines and the Gab1 Pleckstrin Homology Domain in InlB-Mediated Entry of Listeria monocytogenes. Infection and Immunity, 2005, 73, 2061-2074.	1.0	28
194	Contribution of Nitric Oxide to CpG-Mediated Protection against Listeria monocytogenes. Infection and Immunity, 2005, 73, 3803-3805.	1.0	14
195	Pleiotropic Enhancement of Bacterial Pathogenesis Resulting from the Constitutive Activation of the Listeria monocytogenes Regulatory Factor PrfA. Infection and Immunity, 2005, 73, 1917-1926.	1.0	46
196	Use of RNA interference in Drosophila S2 cells to identify host pathways controlling compartmentalization of an intracellular pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13646-13651.	3.3	118
197	Factors Influencing the Ability of Listeria monocytogenes To Pass through a Membrane Filter by Active Infiltration. Applied and Environmental Microbiology, 2005, 71, 7571-7574.	1.4	5
198	Characterization of a Mutant Listeria monocytogenes Strain Expressing Green Fluorescent Protein. Acta Biochimica Et Biophysica Sinica, 2005, 37, 19-24.	0.9	9
199	Measuring microbiological contamination in fruit and vegetables., 2005,, 89-134.		7
200	The TLR7 Agonist Imiquimod Enhances the Anti-Melanoma Effects of a RecombinantListeria monocytogenesVaccine. Journal of Immunology, 2005, 175, 1983-1990.	0.4	110
201	SigB-Dependent In Vitro Transcription of prfA and Some Newly Identified Genes of Listeria monocytogenes Whose Expression Is Affected by PrfA In Vivo. Journal of Bacteriology, 2005, 187, 800-804.	1.0	72
202	Chapter 13 Endothelial injury due to infectious agents. Advances in Molecular and Cell Biology, 2005, 35, 365-400.	0.1	0

#	Article	IF	CITATIONS
203	Pseudomonas Invasion of Type I Pneumocytes Is Dependent on the Expression and Phosphorylation of Caveolin-2. Journal of Biological Chemistry, 2005, 280, 4864-4872.	1.6	67
204	Role of FliF and FliI of Listeria monocytogenes in Flagellar Assembly and Pathogenicity. Infection and Immunity, 2005, 73, 5530-5539.	1.0	71
205	$\ddot{l}f$ B contributes to Listeria monocytogenes invasion by controlling expression of inlA and inlB. Microbiology (United Kingdom), 2005, 151, 3215-3222.	0.7	121
206	The Dps-like protein Fri of Listeria monocytogenes promotes stress tolerance and intracellular multiplication in macrophage-like cells. Microbiology (United Kingdom), 2005, 151, 925-933.	0.7	93
207	Genome-Wide RNAi Screen for Host Factors Required for Intracellular Bacterial Infection. Science, 2005, 309, 1248-1251.	6.0	282
208	Rho GTPases and the Control of the Oxidative Burst in Polymorphonuclear Leukocytes. , 2005, 291, 91-111.		30
209	Listeria monocytogenes as a probe of immune function. Briefings in Functional Genomics & Proteomics, 2005, 4, 258-269.	3.8	17
210	Listeria monocytogenes in the Chinese food system: strain characterization through partial actA sequencing and tissue-culture pathogenicity assays. Journal of Medical Microbiology, 2005, 54, 217-224.	0.7	33
211	CpG Oligodeoxynucleotides Enhance Neonatal Resistance toListeriaInfection. Journal of Immunology, 2005, 174, 777-782.	0.4	56
212	ldentification and Characterization of Di- and Tripeptide Transporter DtpT of Listeria monocytogenes EGD-e. Applied and Environmental Microbiology, 2005, 71, 5771-5778.	1.4	28
213	Listeria monocytogenes PerR Mutants Display a Small-Colony Phenotype, Increased Sensitivity to Hydrogen Peroxide, and Significantly Reduced Murine Virulence. Applied and Environmental Microbiology, 2005, 71, 8314-8322.	1.4	90
214	Construction and Characterization of Listeria monocytogenes Mutants with In-Frame Deletions in the Response Regulator Genes Identified in the Genome Sequence. Infection and Immunity, 2005, 73, 3152-3159.	1.0	64
215	Bacterial Endocytic Systems in Plants and Animals: Ca2+as a Common Theme?. Critical Reviews in Plant Sciences, 2005, 24, 283-308.	2.7	7
216	The Bacterial Zincâ€Metallophospholipases C. Toxin Reviews, 2005, 23, 509-554.	1.5	6
217	A Multidomain Fusion Protein in Listeria monocytogenes Catalyzes the Two Primary Activities for Glutathione Biosynthesis. Journal of Bacteriology, 2005, 187, 3839-3847.	1.0	95
218	Isolation and PCR amplification of a species-specific oxidoreductase-coding gene region in Listeria grayi. Canadian Journal of Microbiology, 2005, 51, 95-98.	0.8	15
219	Bacteriophage P100 for control of Listeria monocytogenes in foods: Genome sequence, bioinformatic analyses, oral toxicity study, and application. Regulatory Toxicology and Pharmacology, 2005, 43, 301-312.	1.3	375
220	Characterization of anti-self CD8 T-cell responses stimulated by recombinant expressing the melanoma antigen TRP-2. Vaccine, 2005, 23, 4263-4272.	1.7	33

#	Article	IF	Citations
221	Ability of Orally Administered IFN-α-Containing Transgenic Potato Extracts to InhibitListeria monocytogenesInfection. Journal of Interferon and Cytokine Research, 2005, 25, 459-466.	0.5	17
222	From hot dogs to host cells: how the bacterial pathogenListeria monocytogenesregulates virulence gene expression. Future Microbiology, 2006, 1, 89-101.	1.0	28
223	Paradigms and classification of bacterial membrane-damaging toxins., 2006,, 507-515.		1
224	Tissue Culture Cell Assays Used to AnalyzeListeria monocytogenes. Current Protocols in Microbiology, 2006, 1 , Unit 9B.4.	6.5	9
225	Enhancement of Mice Susceptibility to Infection with <i>Listeria monocytogenes</i> by the Treatment of Morphine. Microbiology and Immunology, 2006, 50, 543-547.	0.7	25
226	Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen. Journal of Medical Microbiology, 2006, 55, 645-659.	0.7	268
227	Comparative and functional genomics of Listeria spp Journal of Biotechnology, 2006, 126, 37-51.	1.9	86
228	Listeria monocytogenes induced Rac1-dependent signal transduction in endothelial cells. Biochemical Pharmacology, 2006, 72, 1367-1374.	2.0	15
229	The Extended Family of Neutral Sphingomyelinases. Biochemistry, 2006, 45, 11247-11256.	1.2	156
230	Bacterial entry into cells: A role for the endocytic machinery. FEBS Letters, 2006, 580, 2962-2967.	1.3	58
231	CRIg: A Macrophage Complement Receptor Required for Phagocytosis of Circulating Pathogens. Cell, 2006, 124, 915-927.	13.5	526
232	Low virulence but potentially fatal outcomeâ€"Listeria ivanovii. European Journal of Internal Medicine, 2006, 17, 286-287.	1.0	56
233	An in vitro cell-culture model demonstrates internalin- and hemolysin-independent translocation of Listeria monocytogenes across M cells. Microbial Pathogenesis, 2006, 41, 241-250.	1.3	47
234	Detection of Listeria monocytogenes and the toxin listeriolysin O in food. Journal of Microbiological Methods, 2006, 64, 141-170.	0.7	113
235	Invasion assay of Listeria monocytogenes using Vero and Caco-2 cells. Journal of Microbiological Methods, 2006, 66, 96-103.	0.7	15
236	Production, characterisation and potential application of a novel monoclonal antibody for rapid identification of virulent Listeria monocytogenes. Journal of Microbiological Methods, 2006, 66, 294-312.	0.7	73
237	THE ENDOTHELIUM AS A TARGET FOR INFECTIONS. Annual Review of Pathology: Mechanisms of Disease, 2006, 1, 171-198.	9.6	76
238	Genomic dissection of microbial pathogenesis in cultured Drosophila cells. Trends in Microbiology, 2006, 14, 101-104.	3.5	11

#	ARTICLE	IF	CITATIONS
239	Inactivation of the Crp/Fnr Family of Regulatory Genes in Listeria monocytogenes Strain F2365 Does Not Alter Its Heat Resistance at 60°Câ€. Journal of Food Protection, 2006, 69, 2758-2760.	0.8	3
240	Role of uvrA in the Growth and Survival of Listeria monocytogenes under UV Radiation and Acid and Bile Stress. Journal of Food Protection, 2006, 69, 3031-3036.	0.8	22
241	Cold Stress Tolerance of Listeria monocytogenes: A Review of Molecular Adaptive Mechanisms and Food Safety Implications. Journal of Food Protection, 2006, 69, 1473-1484.	0.8	124
244	Listeriae., 2006,,.		O
245	Recent Advances in the Study of the Genotypic Diversity and Ecology of Listeria monocytogenes. Microbes and Environments, 2006, 21, 69-77.	0.7	5
246	Genomics of Listeria monocytogenes. , 2006, , 339-366.		1
247	The cell wall subproteome of Listeria monocytogenes., 0,, 153-179.		0
248	Listeria Monocytogenes in a Young Patient with Non Hodgkin's Lymphoma: Case Report. International Journal of Immunopathology and Pharmacology, 2006, 19, 923-927.	1.0	2
249	Nationwide outbreak of listeriosis due to contaminated meat. Epidemiology and Infection, 2006, 134, 744-751.	1.0	184
250	Listeria-Based Anti-Infective Vaccine Strategies. Recent Patents on Anti-infective Drug Discovery, 2006, 1, 281-290.	0.5	11
252	Central Nervous System Tumor Immunity Generated by a Recombinant Listeria monocytogenes Vaccine Targeting Tyrosinase Related Protein-2 and Real-Time Imaging of Intracranial Tumor Burden. Neurosurgery, 2006, 58, 169-178.	0.6	17
253	Subversion of cellular functions byListeria monocytogenes. Journal of Pathology, 2006, 208, 215-223.	2.1	102
254	Phosphorylation, ubiquitination and degradation of listeriolysin O in mammalian cells: role of the PEST-like sequence. Cellular Microbiology, 2006, 8, 353-364.	1.1	83
255	Carbon metabolism of intracellular bacteria. Cellular Microbiology, 2006, 8, 10-22.	1.1	228
256	Adhesion characteristics of Listeria adhesion protein (LAP)-expressing Escherichia coli to Caco-2 cells and of recombinant LAP to eukaryotic receptor Hsp60 as examined in a surface plasmon resonance sensor. FEMS Microbiology Letters, 2006, 256, 324-332.	0.7	65
257	Listeriolysin O: a key protein ofListeria monocytogeneswith multiple functions. FEMS Microbiology Reviews, 2006, 30, 514-529.	3.9	102
258	The protein secretion systems inListeria: inside out bacterial virulence. FEMS Microbiology Reviews, 2006, 30, 774-805.	3.9	113
259	Mammalian peptidoglycan recognition protein TagL inhibitsListeria monocytogenesinvasion into epithelial cells. FEMS Immunology and Medical Microbiology, 2006, 46, 284-290.	2.7	14

#	Article	IF	CITATIONS
260	Characterization of Ers, a PrfA-like regulator of Enterococcus faecalis. FEMS Immunology and Medical Microbiology, 2006, 46, 410-418.	2.7	36
261	Modification of a virulence-associated phenotype after growth of Listeria monocytogenes on food. Journal of Applied Microbiology, 2006, 101, 300-308.	1.4	19
262	A spontaneous genomic deletion inListeria ivanoviiidentifies LIPI-2, a species-specific pathogenicity island encoding sphingomyelinase and numerous internalins. Molecular Microbiology, 2006, 59, 415-432.	1.2	58
263	The response regulator ResD modulates virulence gene expression in response to carbohydrates in Listeria monocytogenes. Molecular Microbiology, 2006, 61, 1622-1635.	1.2	61
264	The MprF protein is required for lysinylation of phospholipids in listerial membranes and confers resistance to cationic antimicrobial peptides (CAMPs) on Listeria monocytogenes. Molecular Microbiology, 2006, 62, 1325-1339.	1.2	181
265	Coexpression of virulence and fosfomycin susceptibility in Listeria: molecular basis of an antimicrobial in vitro–in vivo paradox. Nature Medicine, 2006, 12, 515-517.	15.2	73
266	Modelling infectious disease — time to think outside the box?. Nature Reviews Microbiology, 2006, 4, 307-312.	13.6	54
267	Listeria monocytogenes internalins are highly diverse and evolved by recombination and positive selection. Infection, Genetics and Evolution, 2006, 6, 378-389.	1.0	53
268	Influence of particle size on drug delivery to rat alveolar macrophages following pulmonary administration of ciprofloxacin incorporated into liposomes. Journal of Drug Targeting, 2006, 14, 557-566.	2.1	128
269	Characterization of Listeria monocytogenes protein Lmo0327 with murein hydrolase activity. Archives of Microbiology, 2006, 186, 69-86.	1.0	24
270	The major outer membrane protein rOmpB of spotted fever group rickettsiae functions in the rickettsial adherence to and invasion of Vero cells. Microbes and Infection, 2006, 8, 801-809.	1.0	73
271	Anti-listerial activity of plant essential oils from western region of Argentina. Annals of Microbiology, 2006, 56, 369-371.	1.1	1
272	Host and bacterial factors in listeriosis pathogenesis. Veterinary Microbiology, 2006, 114, 1-15.	0.8	26
273	Control of Listeria monocytogenes in raw-milk cheeses. International Journal of Food Microbiology, 2006, 108, 105-114.	2.1	70
274	Towards the definition of pathogenic microbe. International Journal of Food Microbiology, 2006, 112, 236-243.	2.1	11
275	Strain and growth temperature influence Listeria spp. attachment to intact and cut cabbage. International Journal of Food Microbiology, 2006, 111, 34-42.	2.1	78
276	Comparison of Listeria monocytogenes strain types in Irish smoked salmon and other foods. International Journal of Hygiene and Environmental Health, 2006, 209, 527-534.	2.1	27
277	Experimental Coxiella burnetii Infection in Pregnant Goats: a Histopathological and Immunohistochemical Study. Journal of Comparative Pathology, 2006, 135, 108-115.	0.1	78

#	Article	IF	CITATIONS
278	inGeno – an integrated genome and ortholog viewer for improved genome to genome comparisons. BMC Bioinformatics, 2006, 7, 461.	1.2	8
279	"Mini-array―transcriptional analysis of theListeria monocytogenes lecithinase operon as a class project: A student investigative molecular biology laboratory experience. Biochemistry and Molecular Biology Education, 2006, 34, 221-226.	0.5	4
280	LEGER: knowledge database and visualization tool for comparative genomics of pathogenic and non-pathogenic Listeria species. Nucleic Acids Research, 2006, 34, D402-D406.	6.5	24
281	Associations amongListeria monocytogenesgenotypes and distinct clinical manifestations of listeriosis in cattle. American Journal of Veterinary Research, 2006, 67, 616-626.	0.3	21
282	A Homolog of Bacillus subtilis Trigger Factor in Listeria monocytogenes Is Involved in Stress Tolerance and Bacterial Virulence. Applied and Environmental Microbiology, 2006, 72, 6623-6631.	1.4	24
283	Regulation of Apoptosis by Gram-Positive Bacteria: Mechanistic Diversity and Consequences for Immunity. Current Immunology Reviews, 2006, 2, 119-141.	1.2	43
284	Listeria monocytogenes Invades the Epithelial Junctions at Sites of Cell Extrusion. PLoS Pathogens, 2006, 2, e3.	2.1	172
285	Exploring the role of the CTL epitope region of listeriolysin O in the pathogenesis of Listeria monocytogenes. Microbiology (United Kingdom), 2006, 152, 1287-1296.	0.7	6
286	Differential inlA and inlB Expression and Interaction with Human Intestinal and Liver Cells by Listeria monocytogenes Strains of Different Origins. Applied and Environmental Microbiology, 2006, 72, 3862-3871.	1.4	56
287	Identification of an Essential Gene of Listeria monocytogenes Involved in Teichoic Acid Biogenesis. Journal of Bacteriology, 2006, 188, 6580-6591.	1.0	30
288	Whole-Genome Sequence of Listeria welshimeri Reveals Common Steps in Genome Reduction with Listeria innocua as Compared to Listeria monocytogenes. Journal of Bacteriology, 2006, 188, 7405-7415.	1.0	89
289	How the Bacterial Pathogen Listeria monocytogenes Mediates the Switch from Environmental Dr. Jekyll to Pathogenic Mr. Hyde. Infection and Immunity, 2006, 74, 2505-2512.	1.0	174
290	Identification of small Hfq-binding RNAs in Listeria monocytogenes. Rna, 2006, 12, 1383-1396.	1.6	150
291	Species-Specific Differences in the Activity of PrfA,the Key Regulator of Listerial VirulenceGenes. Journal of Bacteriology, 2006, 188, 7941-7956.	1.0	20
292	Listeria monocytogenes Serotype 4b Strains Belonging to Lineages I and III Possess Distinct Molecular Features. Journal of Clinical Microbiology, 2006, 44, 214-217.	1.8	51
293	Listeria monocytogenes Subgroups IIIA, IIIB, and IIIC Delineate Genetically Distinct Populations with Varied Pathogenic Potential. Journal of Clinical Microbiology, 2006, 44, 4229-4233.	1.8	76
294	CcpC-Dependent Regulation of citB and lmo0847 in Listeria monocytogenes. Journal of Bacteriology, 2006, 188, 179-190.	1.0	21
295	Sortases and the Art of Anchoring Proteins to the Envelopes of Gram-Positive Bacteria. Microbiology and Molecular Biology Reviews, 2006, 70, 192-221.	2.9	569

#	Article	IF	CITATIONS
296	Listeria monocytogenes Flagella Are Used for Motility, Not as Adhesins, To Increase Host Cell Invasion. Infection and Immunity, 2006, 74, 6675-6681.	1.0	142
297	Identification of Listeria monocytogenes Genes Contributing to Intracellular Replication by Expression Profiling and Mutant Screening. Journal of Bacteriology, 2006, 188, 556-568.	1.0	286
298	Inactivation of Adhesion and Invasion of Food-Borne Listeria monocytogenes by Bacteriocin-Producing Bifidobacterium Strains of Human Origin. Applied and Environmental Microbiology, 2006, 72, 6894-6901.	1.4	89
299	A Mutation in the luxS Gene Influences Listeria monocytogenes Biofilm Formation. Applied and Environmental Microbiology, 2006, 72, 5653-5658.	1.4	98
300	Novel Luciferase Reporter System for In Vitro and Organ-Specific Monitoring of Differential Gene Expression in Listeria monocytogenes. Applied and Environmental Microbiology, 2006, 72, 2876-2884.	1.4	69
301	$\ddot{l}f$ B Activation under Environmental and Energy Stress Conditions in Listeria monocytogenes. Applied and Environmental Microbiology, 2006, 72, 5197-5203.	1.4	72
302	13C isotopologue perturbation studies ofListeria monocytogenescarbon metabolism and its modulation by the virulence regulator PrfA. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2040-2045.	3.3	89
303	Invasion of the Placenta during Murine Listeriosis. Infection and Immunity, 2006, 74, 663-672.	1.0	32
304	Overexpression of PrfA Leads to Growth Inhibition of Listeria monocytogenes in Glucose-Containing Culture Media by Interfering with Glucose Uptake. Journal of Bacteriology, 2006, 188, 3887-3901.	1.0	53
305	Directed antigen delivery as a vaccine strategy for an intracellular bacterial pathogen. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5102-5107.	3.3	13
306	Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets. Nucleic Acids Research, 2007, 35, 962-974.	6.5	220
307	Identification of Novel <i>Listeria monocytogenes</i> Secreted Virulence Factors following Mutational Activation of the Central Virulence Regulator, PrfA. Infection and Immunity, 2007, 75, 5886-5897.	1.0	71
308	Thermodynamically reengineering the listerial invasion complex InIA/E-cadherin. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13960-13965.	3.3	26
309	Listeriolysin O Secreted by <i>Listeria monocytogenes </i> i>into the Host Cell Cytosol Is Degraded by the N-End Rule Pathway. Infection and Immunity, 2007, 75, 5135-5147.	1.0	50
310	Novel protein targets of the humoral immune response to Listeria monocytogenes infection in rabbits. Journal of Medical Microbiology, 2007, 56, 888-895.	0.7	20
311	Molecular characterization of the Fur protein of Listeria monocytogenes. Microbiology (United) Tj ETQq $1\ 1\ 0.78$	4314 rgBT 0.7	i /Overlock 10
312	Pharmacokinetic and Pharmacodynamic Efficacy of Intrapulmonary Administration of Ciprofloxacin for the Treatment of Respiratory Infections. Drug Metabolism and Pharmacokinetics, 2007, 22, 88-95.	1.1	28
314	Environmental Reservoir and Transmission into the Mammalian Host. , 2007, , 111-137.		12

#	Article	IF	CITATIONS
315	Invasive Pathway of <i>Listeria Ivanovii</i> in Human Amnion-Derived Wish Cells. International Journal of Immunopathology and Pharmacology, 2007, 20, 509-518.	1.0	8
316	Identification of IspC, an 86-Kilodalton Protein Target of Humoral Immune Response to Infection with Listeria monocytogenes Serotype 4b, as a Novel Surface Autolysin. Journal of Bacteriology, 2007, 189, 2046-2054.	1.0	18
318	Interference of Components of the Phosphoenolpyruvate Phosphotransferase System with the Central Virulence Gene Regulator PrfA of Listeria monocytogenes. Journal of Bacteriology, 2007, 189, 473-490.	1.0	88
319	A mariner-Based Transposition System for Listeria monocytogenes. Applied and Environmental Microbiology, 2007, 73, 2758-2761.	1.4	54
320	Use of High-Affinity Cell Wall-Binding Domains of Bacteriophage Endolysins for Immobilization and Separation of Bacterial Cells. Applied and Environmental Microbiology, 2007, 73, 1992-2000.	1.4	153
321	Essential Role of CCL2 in Clustering of Splenic ERTR-9 + Macrophages during Infection of BALB/c Mice by Listeria monocytogenes. Infection and Immunity, 2007, 75, 462-470.	1.0	17
322	Inactivation of Lgt Allows Systematic Characterization of Lipoproteins from Listeria monocytogenes. Journal of Bacteriology, 2007, 189, 313-324.	1.0	82
323	The Presence of the Internalin Gene in Natural Atypically Hemolytic Listeria innocua Strains Suggests Descent from L. monocytogenes. Applied and Environmental Microbiology, 2007, 73, 1928-1939.	1.4	49
324	Autophagy Limits <i>Listeria monocytogenes</i> Intracellular Growth in the Early Phase of Primary Infection. Autophagy, 2007, 3, 117-125.	4.3	206
325	The Aryl Hydrocarbon Receptor Is Required for Optimal Resistance to <i>Listeria monocytogenes</i> Infection in Mice. Journal of Immunology, 2007, 179, 6952-6962.	0.4	74
326	Comparative Transcriptome Analysis of <i>Listeria monocytogenes</i> Strains of the Two Major Lineages Reveals Differences in Virulence, Cell Wall, and Stress Response. Applied and Environmental Microbiology, 2007, 73, 6078-6088.	1.4	66
327	ActA Is Required for Crossing of the Fetoplacental Barrier by Listeria monocytogenes. Infection and Immunity, 2007, 75, 950-957.	1.0	77
328	Isolation of Listeria monocytogenes from the Skin of Slaughtered Beef Cattle. Journal of Veterinary Medical Science, 2007, 69, 1077-1079.	0.3	11
329	Listeria monocytogenes. , 2007, , 457-491.		18
330	Microbiological Safety of Foods. , 2007, , 37-67.		0
332	Recombinant vaccines based on translocated effector proteins of Salmonella Pathogenicity Island 2. Vaccine, 2007, 25, 185-193.	1.7	38
333	Endothelial cell infection and hemostasis. Thrombosis Research, 2007, 119, 531-549.	0.8	45
334	Biophysical modeling of forward scattering from bacterial colonies using scalar diffraction theory. Applied Optics, 2007, 46, 3639.	2.1	55

#	Article	IF	CITATIONS
335	Leakage-free membrane fusion induced by the hydrolytic activity of PlcHR2, a novel phospholipase C/sphingomyelinase from Pseudomonas aeruginosa. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 2365-2372.	1.4	24
336	A novel surface autolysin of Listeria monocytogenes serotype 4b, IspC, contains a 23-residue N-terminal signal peptide being processed in E. coli. Biochemical and Biophysical Research Communications, 2007, 354, 403-408.	1.0	8
337	Extending the Host Range of Listeria monocytogenes by Rational Protein Design. Cell, 2007, 129, 891-902.	13.5	192
338	Redefining the Persistent Infection in Root Canals: Possible Role of Biofilm Communities. Journal of Endodontics, 2007, 33, 652-662.	1.4	242
339	Pathogenomics of Listeria spp International Journal of Medical Microbiology, 2007, 297, 541-557.	1.5	84
340	Gut osmolarity: A key environmental cue initiating the gastrointestinal phase of Listeria monocytogenes infection?. Medical Hypotheses, 2007, 69, 1090-1092.	0.8	27
341	A molecular beacon-based real time NASBA assay for detection of Listeria monocytogenes in food products: Role of target mRNA secondary structure on NASBA design. Journal of Microbiological Methods, 2007, 68, 623-632.	0.7	57
342	The use of multiplex PCR to detect and differentiate food- and beverage-associated microorganisms: A review. Journal of Microbiological Methods, 2007, 69, 1-22.	0.7	129
343	A multiplex PCR for species- and virulence-specific determination of Listeria monocytogenes. Journal of Microbiological Methods, 2007, 71, 133-140.	0.7	180
344	Prevalence of and Risk Factors for Listeria Species on Dairy Farms. Journal of Dairy Science, 2007, 90, 5083-5088.	1.4	47
345	Evaluation of Indirect and Avidin–Biotin Enzyme Linked Immunosorbent Assays for Detection of Anti-Listeriolysin O Antibodies in Bovine Milk Samples. Zoonoses and Public Health, 2007, 54, 301-306.	0.9	6
346	Listeria. , 2007, , 27-39.		7
347	Characteristics and frequency of detection of fecal <i>Listeria monocytogenes</i> shed by livestock, wildlife, and humans. Canadian Journal of Microbiology, 2007, 53, 1158-1167.	0.8	77
348	Distribution and Characteristics of <i>Listeria monocytogenes</i> Isolates from Surface Waters of the South Nation River Watershed, Ontario, Canada. Applied and Environmental Microbiology, 2007, 73, 5401-5410.	1.4	135
349	Development ofListeria monocytogenesâ€"Specific Immunomagnetic Beads Using A Single-Chain Antibody Fragment. Foodborne Pathogens and Disease, 2007, 4, 74-83.	0.8	14
350	The Human/Animal Interface: Emergence and Resurgence of Zoonotic Infectious Diseases. Critical Reviews in Microbiology, 2007, 33, 243-299.	2.7	210
352	Sodium Chloride Enhances Adherence and Aggregation and Strain Variation Influences Invasiveness of Listeria monocytogenes Strains. Journal of Food Protection, 2007, 70, 592-599.	0.8	71
353	The role of the activated macrophage in clearing Listeria monocytogenes nbsp infection. Frontiers in Bioscience - Landmark, 2007, 12, 2683-2692.	3.0	28

#	Article	IF	CITATIONS
354	Listeria monocytogenes F2365 Carries Several Authentic Mutations Potentially Leading to Truncated Gene Products, Including InlB, and Demonstrates Atypical Phenotypic Characteristics. Journal of Food Protection, 2007, 70, 482-488.	0.8	36
355	Real-Time PCR Detection of 16S rRNA Genes Speeds Most-Probable-Number Enumeration of Foodborne Listeria monocytogenes. Journal of Food Protection, 2007, 70, 1650-1655.	0.8	32
356	Distribution of Epidemic Clonal Genetic Markers among Listeria monocytogenes 4b Isolates. Journal of Food Protection, 2007, 70, 574-581.	0.8	13
357	Improved solubilization of surface proteins from <i>Listeria monocytogenes</i> for 2â€ĐE. Electrophoresis, 2007, 28, 3998-4007.	1.3	27
358	Optical forward-scattering for detection of Listeria monocytogenes and other Listeria species. Biosensors and Bioelectronics, 2007, 22, 1664-1671.	5.3	125
359	Low genetic diversity and epidemiological significance of Listeria monocytogenes isolated from wild animals in the far east of Russia. Infection, Genetics and Evolution, 2007, 7, 736-742.	1.0	30
360	Life of Listeria monocytogenes in the host cells' cytosol. Microbes and Infection, 2007, 9, 1188-1195.	1.0	64
361	Human listeriosis and animal models. Microbes and Infection, 2007, 9, 1216-1225.	1.0	189
362	The PrfA virulence regulon. Microbes and Infection, 2007, 9, 1196-1207.	1.0	229
363	Bacteria-mediated delivery of nanoparticles and cargo into cells. Nature Nanotechnology, 2007, 2, 441-449.	15.6	305
364	Characterization of New Hybridoma Clones Producing Monoclonal Antibodies Reactive Against Both Live and Heat-Killed Listeria monocytogenes. Journal of Food Science, 2007, 72, M008-M015.	1.5	7
365	Interactions between the environmental pathogen Listeria monocytogenes and a free-living protozoan (Acanthamoeba castellanii). Environmental Microbiology, 2007, 9, 913-922.	1.8	37
366	Differential function of Listeria monocytogenes listeriolysin O and phospholipases C in vacuolar dissolution following cell-to-cell spread. Cellular Microbiology, 2007, 9, 179-195.	1.1	107
367	A FRET analysis to unravel the role of cholesterol in Rac1 and PI 3-kinase activation in the InlB/Met signalling pathway. Cellular Microbiology, 2007, 9, 790-803.	1.1	61
368	Entry of the bacterial pathogen Listeria monocytogenes into mammalian cells. Cellular Microbiology, 2007, 9, 1365-1375.	1.1	80
369	The carboxyl-terminal SH3 domain of the mammalian adaptor CrkII promotes internalization of Listeria monocytogenes through activation of host phosphoinositide 3-kinase. Cellular Microbiology, 2007, 9, 2497-2516.	1.1	29
370	Src, cortactin and Arp2/3 complex are required for E-cadherin-mediated internalization of Listeria into cells. Cellular Microbiology, 2007, 9, 2629-2643.	1.1	85
371	Mast cells initiate early anti-Listeria host defences. Cellular Microbiology, 2007, 10, 070820203734003-???.	1.1	49

#	Article	IF	CITATIONS
372	Characterization of relA and codY mutants of Listeria monocytogenes: identification of the CodY regulon and its role in virulence. Molecular Microbiology, 2007, 63, 1453-1467.	1.2	142
373	Acid adaptation and survival of Listeria monocytogenes in Italian-style soft cheeses. Journal of Applied Microbiology, 2007, 103, 185-193.	1.4	41
374	Listeria monocytogenes in spontaneous abortions in humans and its detection by multiplex PCR. Journal of Applied Microbiology, 2007, 103, 1889-1896.	1.4	83
375	A significant role for Sigma B in the detergent stress response of Listeria monocytogenes. Letters in Applied Microbiology, 2008, 46, 148-154.	1.0	22
376	Influence of immunomodulation on the development of Listeria monocytogenes infection in aged guinea pigs. FEMS Immunology and Medical Microbiology, 2007, 49, 415-424.	2.7	8
377	Impact of selectedLactobacillusandBifidobacteriumspecies onListeria monocytogenesinfection and the mucosal immune response. FEMS Immunology and Medical Microbiology, 2007, 50, 380-388.	2.7	91
378	The <i>lmo1078 </i> gene encoding a putative UDP-glucose pyrophosphorylase is involved in growth of <i>Listeria monocytogenes </i> at low temperature. FEMS Microbiology Letters, 2007, 275, 31-37.	0.7	22
379	OCCURRENCE OF LISTERIA SPECIES IN THE PROCESSING STAGES OF FROZEN PEPPER. Journal of Food Safety, 2007, 27, 134-147.	1.1	7
380	INCIDENCE OF LISTERIA SPECIES IN SEAFOOD PRODUCTS OF MYSORE, INDIA. Journal of Food Safety, 2007, 27, 362-372.	1.1	14
381	Characterization of a small PlcR-regulated gene co-expressed with cereolysin O. BMC Microbiology, 2007, 7, 52.	1.3	14
382	Development and application of Multiple-Locus Variable Number of tandem repeat Analysis (MLVA) to subtype a collection of Listeria monocytogenes. International Journal of Food Microbiology, 2007, 115, 187-194.	2.1	80
383	Nonsense-mutated inlA and prfA not widely distributed in Listeria monocytogenes isolates from ready-to-eat seafood products in Japan. International Journal of Food Microbiology, 2007, 117, 312-318.	2.1	55
384	Toward an improved laboratory definition of Listeria monocytogenes virulence. International Journal of Food Microbiology, 2007, 118, 101-115.	2.1	48
385	Morphological changes in Listeria monocytogenes subjected to sublethal alkaline stress. International Journal of Food Microbiology, 2007, 120, 250-258.	2.1	52
386	Isolation and characterization of a haemolysin from Trichophyton mentagrophytes. Veterinary Microbiology, 2007, 122, 342-349.	0.8	11
387	Recent advances in the immunobiology of ceramide. Experimental and Molecular Pathology, 2007, 82, 298-309.	0.9	35
388	Repeated daily doses do not increase Listeria monocytogenes infection in ewes as shown by faecal excretion and serological monitoring. Small Ruminant Research, 2007, 71, 286-292.	0.6	1
389	Screening of a specific monoclonal antibody against and detection of Listeria monocytogenes whole cells using a surface plasmon resonance biosensor. Biotechnology and Bioprocess Engineering, 2007, 12, 80-85.	1.4	16

#	Article	IF	CITATIONS
390	Characteristics of cell-mediated, anti-listerial immunity induced by a naturally avirulent Listeria monocytogenes serotype 4a strain HCC23. Archives of Microbiology, 2007, 188, 251-256.	1.0	6
391	Clinical Features of Liver Involvement in Adult Patients with Listeriosis. Review of the Literature. Infection, 2007, 35, 212-218.	2.3	17
392	Molecular mechanisms exploited by Listeria monocytogenes during host cell invasion. Microbes and Infection, 2007, 9, 1167-1175.	1.0	109
393	Listeriolysin O: a phagosome-specific lysin. Microbes and Infection, 2007, 9, 1176-1187.	1.0	317
394	Regulation of the acid induciblercfB promoter inLactococcus lactis subsp.lactis. Annals of Microbiology, 2008, 58, 269-273.	1.1	4
395	Adhesion of the probiotic strains Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 to Caco-2 cells under conditions simulating the intestinal tract, and in the presence of antibiotics and anti-inflammatory medicaments. Archives of Microbiology, 2008, 190, 573-584.	1.0	108
396	InlA and InlC2 of Listeria monocytogenes Serotype 4b Are Two Internalin Proteins Eliciting Humoral Immune Responses Common to Listerial Infection of Various Host Species. Current Microbiology, 2008, 56, 505-509.	1.0	14
397	Autofluorescence and green fluorescent protein-derived fluorescence in Listeria innocua. Sensing and Instrumentation for Food Quality and Safety, 2008, 2, 21-26.	1.5	0
398	Listeria Monocytogenes Peritonitis in a Peritoneal Dialysis Patient with Severe Heart Failure. Kidney, 2008, 17, 238-240.	0.1	5
399	The role of apoptosis in Listeria monocytogenes neural infection: Listeriolysin O interaction with neuroblastoma Neuro-2a cells. Infection, Genetics and Evolution, 2008, 8, 59-67.	1.0	8
400	Lineage specific recombination and positive selection in coding and intragenic regions contributed to evolution of the main Listeria monocytogenes virulence gene cluster. Infection, Genetics and Evolution, 2008, 8, 566-576.	1.0	28
401	A NOVEL PCR ASSAY FOR LISTERIA WELSHIMERI TARGETING TRANSCRIPTIONAL REGULATOR GENE LWE1801. Journal of Rapid Methods and Automation in Microbiology, 2008, 16, 154-163.	0.4	1
402	MOLECULAR CHARACTERIZATION OF <i>LISTERIA MONOCYTOGENES</i> STRAINS HARBORING <i>LISTERIA INNOCUA</i> PUTATIVE TRANSCRIPTIONAL REGULATOR GENE <i>LIN0464</i> Journal of Rapid Methods and Automation in Microbiology, 2008, 16, 412-427.	0.4	2
403	M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunology and Medical Microbiology, 2008, 52, 2-12.	2.7	254
404	<i>Listeria monocytogenes</i> : epidemiology, human disease, and mechanisms of brain invasion. FEMS Immunology and Medical Microbiology, 2008, 53, 151-165.	2.7	261
405	Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature, 2008, 455, 1114-1118.	13.7	233
406	Mage-b vaccine delivered by recombinant Listeria monocytogenes is highly effective against breast cancer metastases. British Journal of Cancer, 2008, 99, 741-749.	2.9	72
407	A bacterial pore-forming toxin forms aggregates in cells that resemble those associated with neurodegenerative diseases. Cellular Microbiology, 2008, 10, 985-993.	1.1	19

#	Article	IF	Citations
408	Type I IFN are host modulators of strain-specific Listeria monocytogenes virulence. Cellular Microbiology, 2008, 10, 1116-1129.	1.1	34
409	The expression of alpha-haemolysin is required for i>Staphylococcus aureus i>phagosomal escape after internalization in CFT-1 cells. Cellular Microbiology, 2008, 10, 1801-1814.	1.1	83
410	Attenuated <i>Listeria</i> infection activates natural killer cell cytotoxicity to regress melanoma growth <i>in vivo</i> . Microbiology and Immunology, 2008, 52, 107-117.	0.7	10
411	Inhibition of ROCK activity allows InlFâ€mediated invasion and increased virulence of <i>Listeria monocytogenes</i> . Molecular Microbiology, 2008, 68, 749-767.	1.2	39
412	Carbon metabolism of <i>Listeria monocytogenes</i> growing inside macrophages. Molecular Microbiology, 2008, 69, 1008-1017.	1.2	123
413	Listeria monocytogenes is common in wild birds in Helsinki region and genotypes are frequently similar with those found along the food chain. Journal of Applied Microbiology, 2008, 104, 883-888.	1.4	55
414	Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity. Journal of Applied Microbiology, 2008, 104, 1552-1561.	1.4	359
415	Specific detection and quantitative enumeration of <i>Listeria </i> spp. using fluorescent <i> in situ </i> hybridization in combination with filter cultivation (FISHFC). Journal of Applied Microbiology, 2008, 105, 502-509.	1.4	33
416	Antimicrobial peptides effectively kill a broad spectrum of Listeria monocytogenes and Staphylococcus aureus strains independently of origin, sub-type, or virulence factor expression. BMC Microbiology, 2008, 8, 205.	1.3	39
417	Development of multiple strain competitive index assays for Listeria monocytogenes using pIMC; a new site-specific integrative vector. BMC Microbiology, 2008, 8, 96.	1.3	37
418	Prodrug converting enzyme gene delivery by L. monocytogenes. BMC Cancer, 2008, 8, 94.	1.1	35
419	Preparation of Listeria monocytogenes specimens for molecular detection and identification. International Journal of Food Microbiology, 2008, 122, 229-242.	2.1	29
420	Processing plant persistent strains of Listeria monocytogenes appear to have a lower virulence potential than clinical strains in selected virulence models. International Journal of Food Microbiology, 2008, 123, 254-261.	2.1	42
421	Effectiveness of chitosan-coated plastic films incorporating antimicrobials in inhibition of Listeria monocytogenes on cold-smoked salmon. International Journal of Food Microbiology, 2008, 127, 235-240.	2.1	112
422	Protein expression by Listeria monocytogenes grown on a RTE-meat matrix. International Journal of Food Microbiology, 2008, 128, 203-211.	2.1	21
423	Transient transfection of Echinococcus multilocularis primary cells and complete in vitro regeneration of metacestode vesicles. International Journal for Parasitology, 2008, 38, 1025-1039.	1.3	138
424	Neonatal Sepsis in the Emergency Department. Clinical Pediatric Emergency Medicine, 2008, 9, 160-168.	0.4	12
425	Biotechnological applications of <i>Listeria</i> sophisticated infection strategies. Microbial Biotechnology, 2008, 1, 361-372.	2.0	7

#	Article	IF	CITATIONS
426	Listeria monocytogenes., 2008, , 165-182.		0
427	Listeriolysin S, a Novel Peptide Haemolysin Associated with a Subset of Lineage I Listeria monocytogenes. PLoS Pathogens, 2008, 4, e1000144.	2.1	201
428	Nisin inducible production of listeriolysin O in Lactococcus lactis NZ9000. Microbial Cell Factories, 2008, 7, 24.	1.9	27
429	Chapter 1 New Insights into Determinants of Listeria Monocytogenes Virulence. International Review of Cell and Molecular Biology, 2008, 270, 1-38.	1.6	60
430	Modulation of PrfA activity in Listeria monocytogenes upon growth in different culture media. Microbiology (United Kingdom), 2008, 154, 3856-3876.	0.7	52
431	Virulence of Listeria monocytogenes isolated from the cheese dairy environment, other foods and clinical cases. Journal of Medical Microbiology, 2008, 57, 411-415.	0.7	29
432	Crystal Structure and Standardized Geometric Analysis of InlJ, a Listerial Virulence Factor and Leucine-Rich Repeat Protein with a Novel Cysteine Ladder. Journal of Molecular Biology, 2008, 378, 87-96.	2.0	32
433	Protease treatment affects both invasion ability and biofilm formation in Listeria monocytogenes. Microbial Pathogenesis, 2008, 45, 45-52.	1.3	81
434	A novel prfA mutation that promotes Listeria monocytogenes cytosol entry but reduces bacterial spread and cytotoxicity. Microbial Pathogenesis, 2008, 45, 273-281.	1.3	24
435	Listeria monocytogenes as novel carrier system for the development of live vaccines. International Journal of Medical Microbiology, 2008, 298, 45-58.	1.5	31
436	Novel functions of type I interferons revealed by infection studies with Listeria monocytogenes. Immunobiology, 2008, 213, 889-897.	0.8	30
437	Lactococcus lactis-expressing listeriolysin O (LLO) provides protection and specific CD8+ T cells against Listeria monocytogenes in the murine infection model. Vaccine, 2008, 26, 5304-5314.	1.7	47
438	Modulation of stress and virulence in Listeria monocytogenes. Trends in Microbiology, 2008, 16, 388-396.	3.5	173
439	Epigallocatechin gallate inhibits intracellular survival of Listeria monocytogenes in macrophages. Biochemical and Biophysical Research Communications, 2008, 365, 310-315.	1.0	42
440	Comparison of PI-PLC based assays and PCR along with in vivo pathogenicity tests for rapid detection of pathogenic Listeria monocytogenes. Food Control, 2008, 19, 641-647.	2.8	21
441	Survival and replication of Piscirickettsia salmonis in rainbow trout head kidney macrophages. Fish and Shellfish Immunology, 2008, 25, 477-484.	1.6	94
442	Development of a quantitative polymerase chain reaction method using a live bacterium as internal control for the detection of Listeria monocytogenes. Diagnostic Microbiology and Infectious Disease, 2008, 62, 374-381.	0.8	17
443	Efficient drug targeting to rat alveolar macrophages by pulmonary administration of ciprofloxacin incorporated into mannosylated liposomes for treatment of respiratory intracellular parasitic infections. Journal of Controlled Release, 2008, 127, 50-58.	4.8	146

#	Article	IF	CITATIONS
444	Differential Regulation of (i) Listeria monocytogenes (i) Internalin and Internalin-Like Genes by $\ f\ \leq \ f\ \le \ f\ $ as Revealed by Subgenomic Microarray Analyses. Foodborne Pathogens and Disease, 2008, 5, 417-435.	0.8	32
445	$\ddot{l}f$ (sup>B- and PrfA-Dependent Transcription of Genes Previously Classified as Putative Constituents of the (i>Listeria monocytogenesPrfA Regulon. Foodborne Pathogens and Disease, 2008, 5, 281-293.	0.8	32
446	Development and Implementation of a Multiplex Single-Nucleotide Polymorphism Genotyping Assay for Detection of Virulence-Attenuating Mutations in the <i>Listeria monocytogenes </i> Virulence-Associated Gene <i>inlA </i> . Applied and Environmental Microbiology, 2008, 74, 7365-7375.	1.4	57
447	Identification of a $\ddot{i}f$ B -Dependent Small Noncoding RNA in Listeria monocytogenes. Journal of Bacteriology, 2008, 190, 6264-6270.	1.0	44
448	Glycerol Metabolism and PrfA Activity in <i>Listeria monocytogenes</i> . Journal of Bacteriology, 2008, 190, 5412-5430.	1.0	118
449	Innate Responses to Systemic Infection by Intracellular Bacteria Trigger Recruitment of Ly-6ChighMonocytes to the Brain. Journal of Immunology, 2008, 181, 529-536.	0.4	31
450	Identification of Drosophila Mutants Altering Defense of and Endurance to <i>Listeria monocytogenes</i> Infection. Genetics, 2008, 178, 1807-1815.	1.2	109
451	The Terminally Redundant, Nonpermuted Genome of <i>Listeria </i> Bacteriophage A511: a Model for the SPO1-Like Myoviruses of Gram-Positive Bacteria. Journal of Bacteriology, 2008, 190, 5753-5765.	1.0	122
452	Genetic immunization: Bacteria as DNA vaccine delivery vehicles. Hum Vaccin, 2008, 4, 189-202.	2.4	32
453	Spontaneous Bacterial Peritonitis Caused by Infection with <i>Listeria monocytogenes</i> . Case Reports in Gastroenterology, 2008, 2, 321-325.	0.3	11
454	Promises and challenges for the development of <i>Listeria monocytogenes </i> based immunotherapies. Expert Review of Vaccines, 2008, 7, 1069-1084.	2.0	45
455	<i>i>inlA</i> Premature Stop Codons Are Common among <i>Listeria monocytogenes</i> Isolates from Foods and Yield Virulence-Attenuated Strains That Confer Protection against Fully Virulent Strains. Applied and Environmental Microbiology, 2008, 74, 6570-6583.	1.4	135
456	The Two-Component System CesRK Controls the Transcriptional Induction of Cell Envelope-Related Genes in <i>Listeria monocytogenes</i> in Response to Cell Wall-Acting Antibiotics. Journal of Bacteriology, 2008, 190, 4772-4776.	1.0	41
457	Concurrent coccidiosis and listeriosis in a Bennett's wallaby (<i>Macropus rufogriseus</i>). Veterinary Record, 2008, 163, 635-636.	0.2	3
458	A New Perspective on Listeria monocytogenes Evolution. PLoS Pathogens, 2008, 4, e1000146.	2.1	518
459	Comparative Analysis of Extracellular and Intracellular Proteomes of (i>Listeria monocytogenes (i>Strains Reveals a Correlation between Protein Expression and Serovar. Applied and Environmental Microbiology, 2008, 74, 7399-7409.	1.4	40
460	Activation of Cytosolic Phospholipase A2α in Resident Peritoneal Macrophages by Listeria monocytogenes Involves Listeriolysin O and TLR2. Journal of Biological Chemistry, 2008, 283, 4744-4755.	1.6	28
461	Selected prfA * Mutations in Recombinant Attenuated Listeria monocytogenes Strains Augment Expression of Foreign Immunogens and Enhance Vaccine-Elicited Humoral and Cellular Immune Responses. Infection and Immunity, 2008, 76, 3439-3450.	1.0	15

#	Article	IF	CITATIONS
462	Proteomic Analyses of a <i>Listeria monocytogenes</i> Mutant Lacking if ^B Identify New Components of the if ^B Regulon and Highlight a Role for if ^B in the Utilization of Glycerol. Applied and Environmental Microbiology, 2008, 74, 594-604.	1.4	59
463	A Putative ABC Transporter Is Involved in Negative Regulation of Biofilm Formation by <i>Listeria monocytogenes</i> . Applied and Environmental Microbiology, 2008, 74, 7675-7683.	1.4	58
464	Tools for Functional Postgenomic Analysis of <i>Listeria monocytogenes </i> . Applied and Environmental Microbiology, 2008, 74, 3921-3934.	1.4	205
465	Activity against <i>Listeria monocytogenes</i> of human milk during lactation. A preliminary study. Journal of Dairy Research, 2008, 75, 24-29.	0.7	6
466	Constitutive Activation of the PrfA Regulon Enhances the Potency of Vaccines Based on Live-Attenuated and Killed but Metabolically Active <i>Listeria monocytogenes</i> Strains. Infection and Immunity, 2008, 76, 3742-3753.	1.0	58
467	The <i>Listeria monocytogenes</i> Virulence Factor InlJ Is Specifically Expressed In Vivo and Behaves as an Adhesin. Infection and Immunity, 2008, 76, 1368-1378.	1.0	72
468	Acid Stress Responses in Listeria monocytogenes. Advances in Applied Microbiology, 2008, 65, 67-91.	1.3	56
469	Changes in Growth of Artificially Inoculated Refampicin-resistant Listeria monocytogenes in Refrigerated Lightly Pickled Cucumber Induced by Addition of Antimicrobial Food Additives. Journal of the Japanese Society for Food Science and Technology, 2008, 55, 151-157.	0.1	2
470	Subtyping of Listeria monocytogenes Based on Nucleotide Polymorphism in the clpC, inlA, hlyA, and plcA Genes and Rapid Identification of L. monocytogenes Genetically Similar to Clinical Isolates. Food Science and Technology Research, 2008, 14, 557-564.	0.3	11
471	Listeriosis: A Model for the Fine Balance Between Immunity and Morbidity. Epidemiology, 2008, 19, 581-587.	1.2	12
472	A Processing Plant Persistent Strain of Listeria monocytogenes Crosses the Fetoplacental Barrier in a Pregnant Guinea Pig Model. Journal of Food Protection, 2008, 71, 1028-1034.	0.8	26
473	Listeria monocytogenes in the Irish Dairy Farm Environment. Journal of Food Protection, 2009, 72, 1450-1456.	0.8	102
474	Adherence Characteristics of Listeria Strains Isolated from Three Ready-to-Eat Meat Processing Plants. Journal of Food Protection, 2009, 72, 2125-2131.	0.8	28
475	Molecular Typing Reveals Frequent Clustering among Human Isolates of Listeria monocytogenes in Italy. Journal of Food Protection, 2009, 72, 876-880.	0.8	1
476	Listeria Monocytogenes., 2009, , 182-198.		7
477	The Use of Flagella and Motility for Plant Colonization and Fitness by Different Strains of the Foodborne Pathogen Listeria monocytogenes. PLoS ONE, 2009, 4, e5142.	1.1	43
478	<i>lmo0038</i> ls Involved in Acid and Heat Stress Responses and Specific for <i>Listeria monocytogenes</i> Lineages I and II, and <i>Listeria ivanovii</i> . Foodborne Pathogens and Disease, 2009, 6, 365-376.	0.8	21
479	A Small-Molecule Screen Identifies the Antipsychotic Drug Pimozide as an Inhibitor of <i>Listeria monocytogenes </i> Infection. Antimicrobial Agents and Chemotherapy, 2009, 53, 756-764.	1.4	41

#	Article	IF	CITATIONS
480	Gene Transcription and Virulence Potential of <i>Listeria monocytogenes </i> Strains After Exposure to Acidic and NaCl Stress. Foodborne Pathogens and Disease, 2009, 6, 669-680.	0.8	82
481	The Role of <i>L. monocytogenes </i> Serotype 4b <i> gtc </i> A in Gastrointestinal Listeriosis in A/J Mice. Foodborne Pathogens and Disease, 2009, 6, 39-48.	0.8	24
482	CcpC-Dependent Regulation of Citrate Synthase Gene Expression in <i>Listeria monocytogenes </i> Journal of Bacteriology, 2009, 191, 862-872.	1.0	10
483	Ceramide activates JNK to inhibit a cAMPâ€gated K ⁺ conductance and Cl ^{â€} secretion in intestinal epithelia. FASEB Journal, 2009, 23, 259-270.	0.2	9
484	<i>Listeria monocytogenes</i> 6-Phosphogluconolactonase Mutants Induce Increased Activation of a Host Cytosolic Surveillance Pathway. Infection and Immunity, 2009, 77, 3014-3022.	1.0	18
485	Virulent Bacteriophage for Efficient Biocontrol of <i>Listeria monocytogenes</i> in Ready-To-Eat Foods. Applied and Environmental Microbiology, 2009, 75, 93-100.	1.4	378
486	Comparative Genome Analysis of <i>Listeria </i> Bacteriophages Reveals Extensive Mosaicism, Programmed Translational Frameshifting, and a Novel Prophage Insertion Site. Journal of Bacteriology, 2009, 191, 7206-7215.	1.0	133
487	Glycerol-Preserved Arterial Allografts Evaluated in the Infrarenal Rat Aorta. European Surgical Research, 2009, 42, 78-86.	0.6	6
488	Communication and Autoinduction in the species Listeria monocytogenes. Communicative and Integrative Biology, 2009, 2, 371-374.	0.6	49
489	Chapter 1 Multiple Effector Mechanisms Induced by Recombinant Listeria monocytogenes Anticancer Immunotherapeutics. Advances in Applied Microbiology, 2009, 66, 1-27.	1.3	26
491	Expression of Internalin a and Biofilm Formation among <i>Listeria Monocytogenes</i> Clinical Isolates. International Journal of Immunopathology and Pharmacology, 2009, 22, 183-193.	1.0	54
492	Characterization of the Interferon-Producing Cell in Mice Infected with Listeria monocytogenes. PLoS Pathogens, 2009, 5, e1000355.	2.1	94
493	Prediction of Proteins Putatively Involved in the Thiol: Disulfide Redox Metabolism of a Bacterium (Listeria): The CXXC Motif as Query Sequence. In Silico Biology, 2009, 9, 407-414.	0.4	17
494	<i>Listeria monocytogenes</i> i > if ^B Modulates PrfA-Mediated Virulence Factor Expression. Infection and Immunity, 2009, 77, 2113-2124.	1.0	104
495	Listeriolysin O affects barrier function and induces chloride secretion in HT-29/B6 colon epithelial cells. American Journal of Physiology - Renal Physiology, 2009, 296, G1350-G1359.	1.6	22
496	The Propeptide of the Metalloprotease of <i>Listeria monocytogenes < /i>Controls Compartmentalization of the Zymogen during Intracellular Infection. Journal of Bacteriology, 2009, 191, 3594-3603.</i>	1.0	10
497	lmo1273, a novel gene involved in Listeria monocytogenes virulence. Microbiology (United Kingdom), 2009, 155, 891-902.	0.7	6
498	Reconciling Ecological and Genomic Divergence among Lineages of Listeria under an "Extended Mosaic Genome Concept". Molecular Biology and Evolution, 2009, 26, 2605-2615.	3.5	23

#	Article	IF	CITATIONS
499	The Posttranslocation Chaperone PrsA2 Contributes to Multiple Facets of <i>Listeria monocytogenes </i> Pathogenesis. Infection and Immunity, 2009, 77, 2612-2623.	1.0	57
500	Risk Factors for Mortality among Patients with Nonperinatal Listeriosis in Los Angeles County, 1992–2004. Clinical Infectious Diseases, 2009, 48, 1507-1515.	2.9	43
501	Complex Phenotypic and Genotypic Responses of <i>Listeria monocytogenes</i> Strains Exposed to the Class IIa Bacteriocin Sakacin P. Applied and Environmental Microbiology, 2009, 75, 6973-6980.	1.4	53
502	Development of a <i>mariner</i> -Based Transposon and Identification of <i>Listeria monocytogenes</i> Determinants, Including the Peptidyl-Prolyl Isomerase PrsA2, That Contribute to Its Hemolytic Phenotype. Journal of Bacteriology, 2009, 191, 3950-3964.	1.0	93
503	Listeria as an Enteroinvasive Gastrointestinal Pathogen. Current Topics in Microbiology and Immunology, 2009, 337, 173-195.	0.7	98
504	Chronic prosthetic joint infection caused by Listeria monocytogenes. Journal of Medical Microbiology, 2009, 58, 138-141.	0.7	22
505	AListeria monocytogenesStrain Is Still Virulent despite Nonfunctional Major Virulence Genes. Journal of Infectious Diseases, 2009, 200, 1944-1948.	1.9	11
506	Growth, survival, proliferation and pathogenesis of Listeria monocytogenes under low oxygen or anaerobic conditions: A review. Anaerobe, 2009, 15, 7-17.	1.0	79
507	Molecular characteristics and virulence potential of Listeria monocytogenes isolates from Chinese food systems. Food Microbiology, 2009, 26, 103-111.	2.1	63
508	Influence of acid stress on survival, expression of virulence genes and invasion capacity into Caco-2 cells of Listeria monocytogenes strains of different origins. International Journal of Food Microbiology, 2009, 134, 140-146.	2.1	47
509	Insertional mutagenesis of Listeria monocytogenes 568 reveals genes that contribute to enhanced thermotolerance. International Journal of Food Microbiology, 2009, 136, 1-9.	2.1	12
510	TAM receptors are dispensable in the phagocytosis and killing of bacteria. Cellular Immunology, 2009, 259, 128-134.	1.4	15
511	Cytoskeleton rearrangements during <i>Listeria</i> infection: Clathrin and septins as new players in the game. Cytoskeleton, 2009, 66, 816-823.	4.4	37
512	Î²â€Łactones Decrease the Intracellular Virulence of <i>Listeria monocytogenes</i> in Macrophages. ChemMedChem, 2009, 4, 1260-1263.	1.6	33
513	PCR experion automated electrophoresis system to detect <i>Listeria monocytogenes</i> in foods. Journal of Separation Science, 2009, 32, 3817-3821.	1.3	26
514	Development of a nucleic acid lateral flow immunoassay for simultaneous detection of Listeria spp. and Listeria monocytogenes in food. European Food Research and Technology, 2009, 229, 867-874.	1.6	68
515	Isolation and 2â€Dâ€DIGE proteomic analysis of intracellular and extracellular forms of <i>Listeria monocytogenes</i> . Proteomics, 2009, 9, 5484-5496.	1.3	18
516	Listeriolysin O as cytotoxic component of an immunotoxin. Protein Science, 2009, 18, 1210-1220.	3.1	17

#	Article	IF	Citations
517	Screening and characterization of monoclonal antibodies to the surface antigens of Listeria monocytogenesserotype 4b. Journal of Applied Microbiology, 2009, 106, 1705-1714.	1.4	11
518	AgrDâ€dependent quorum sensing affects biofilm formation, invasion, virulence and global gene expression profiles in <i>Listeria monocytogenes</i> . Molecular Microbiology, 2009, 71, 1177-1189.	1.2	158
519	<i>Listeria monocytogenes</i> <scp>l</scp> â€forms respond to cell wall deficiency by modifying gene expression and the mode of division. Molecular Microbiology, 2009, 73, 306-322.	1.2	61
520	Transcriptional and postâ€transcriptional regulation of the GmaR antirepressor governs temperatureâ€dependent control of flagellar motility in <i>Listeria monocytogenes</i> Microbiology, 2009, 74, 421-435.	1.2	43
521	<i>Listeria monocytogenes</i> CtaP is a multifunctional cysteine transportâ€associated protein required for bacterial pathogenesis. Molecular Microbiology, 2009, 74, 956-973.	1.2	49
522	The bacterial virulence factor InIC perturbs apical cell junctions and promotes cell-to-cell spread of Listeria. Nature Cell Biology, 2009, 11, 1212-1218.	4.6	168
523	ORIGINAL ARTICLE: Pregnancy Does not Deter the Development of a Potent Maternal Protective CD8 ⁺ Tâ€Cell Acquired Immune Response Against <i>Listeria Monocytogenes</i> Preferential Placental Colonization. American Journal of Reproductive Immunology, 2010, 63, 54-65.	1.2	11
524	Global phenotypic characterization of bacteria. FEMS Microbiology Reviews, 2009, 33, 191-205.	3.9	349
525	Innate recognition of intracellular pathogens: detection and activation of the first line of defense. Apmis, 2009, 117, 323-337.	0.9	83
526	Viability of Listeria monocytogenesâ€Âfin co-culture with Acanthamoebaâ€Âfspp FEMS Microbiology Ecology, 2009, 70, 20-29.	1.3	31
527	Studies on the susceptibility of different culture morphotypes of <i>Listeria monocytogenes </i> â€Âfto uptake and survival in human polymorphonuclear leukocytes. FEMS Immunology and Medical Microbiology, 2009, 57, 183-192.	2.7	9
528	<i>Listeria monocytogenes</i> infection in the face of innate immunity. Cellular Microbiology, 2009, 11, 703-709.	1.1	71
529	APPENDIXâ€ <i>f</i> 2. Transfusion, 2009, 49, 45S-233S.	0.8	2
530	Expression of LAP, a SecA2-dependent secretory protein, is induced under anaerobic environment. Microbes and Infection, 2009, 11, 859-867.	1.0	86
531	A correlation between the virulence and the adhesion of Listeria monocytogenes to silicon nitride: An atomic force microscopy study. Colloids and Surfaces B: Biointerfaces, 2009, 73, 237-243.	2.5	45
532	The origin of Listeria monocytogenes 4b isolates is signified by subproteomic profiling. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794, 1530-1536.	1.1	26
533	Lessons from nature: "Pathogen-Mimetic―systems for mucosal Nano-medicines. Advanced Drug Delivery Reviews, 2009, 61, 172-192.	6.6	36
534	Comparative Proteomic Analysis of Listeria monocytogenes Strains F2365 and EGD. Applied and Environmental Microbiology, 2009, 75, 366-373.	1.4	41

#	Article	IF	CITATIONS
535	Listeria monocytogenes Phosphatidylinositol-Specific Phospholipase C: Kinetic Activation and Homing in on Different Interfaces. Biochemistry, 2009, 48, 3578-3592.	1.2	12
536	A Stably Engineered, Suicidal Strain of <i>Listeria monocytogenes</i> Delivers Protein and/or DNA to Fully Differentiated Intestinal Epithelial Monolayers. Molecular Pharmaceutics, 2009, 6, 1052-1061.	2.3	11
537	Molecular Mechanisms of Bacterial Infection via the Gut. Current Topics in Microbiology and Immunology, 2009, , .	0.7	4
538	The role of horizontal gene transfer in the evolution of selected foodborne bacterial pathogens. Food and Chemical Toxicology, 2009, 47, 951-968.	1.8	63
539	Horizontal gene transfer of virulence determinants in selected bacterial foodborne pathogens. Food and Chemical Toxicology, 2009, 47, 969-977.	1.8	47
540	Genotypic characterization of Listeria monocytogenes isolated from milk and ready-to-eat indigenous milk products. Food Control, 2009, 20, 835-839.	2.8	24
541	Survey of Listeria monocytogenes in ready-to-eat products: Prevalence by brands and retail establishments for exposure assessment of listeriosis in Northern Spain. Food Control, 2009, 20, 986-991.	2.8	88
542	Fine-tuning the safety and immunogenicity of Listeria monocytogenes-based neonatal vaccine platforms. Vaccine, 2009, 27, 919-927.	1.7	8
544	The ability of Listeria monocytogenes PI-PLC to facilitate escape from the macrophage phagosome is dependent on host PKCβ. Microbial Pathogenesis, 2009, 46, 1-5.	1.3	37
545	Prevalence of <i>Listeria </i> in Chinese Food Products from 13 Provinces Between 2000 and 2007 and Virulence Characterization of <i>Listeria monocytogenes </i> lisolates. Foodborne Pathogens and Disease, 2009, 6, 7-14.	0.8	61
546	Targeted Capture of Pathogenic Bacteria Using a Mammalian Cell Receptor Coupled with Dielectrophoresis on a Biochip. Analytical Chemistry, 2009, 81, 3094-3101.	3.2	70
547	Prevalence of <i>Listeria </i> spp Including <i>Listeria monocytogenes </i> from Apparently Healthy Sheep of Gujarat State, India. Zoonoses and Public Health, 2009, 56, 515-524.	0.9	5
548	Recent advances in the rapid diagnosis of various infectious diseases by PNA FISH. Reviews in Medical Microbiology, 2009, 20, 56-62.	0.4	3
549	A survey of laboratory-confirmed isolates of invasive listeriosis in Israel, 1997–2007. Epidemiology and Infection, 2009, 137, 577-580.	1.0	11
552	Differentiation of propeptide residues regulating the compartmentalization, maturation and activity of the broad-range phospholipase C of <i>Listeria monocytogenes</i> . Biochemical Journal, 2010, 432, 557-566.	1.7	14
553	Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Analytical and Bioanalytical Chemistry, 2010, 397, 1113-1135.	1.9	339
554	A method based on the ligation detection reaction–universal array (LDR–UA) for the detection and characterization of Listeria and Campylobacter strains. European Food Research and Technology, 2010, 231, 985-998.	1.6	1
555	Oleanolic acid and ursolic acid affect peptidoglycan metabolism in Listeria monocytogenes. Antonie Van Leeuwenhoek, 2010, 97, 61-68.	0.7	61

#	Article	IF	CITATIONS
556	Use of a phospholipase-C assay, in vivo pathogenicity assays and PCR in assessing the virulence of Listeria spp Veterinary Journal, 2010, 184, 366-370.	0.6	17
557	High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Genomics, 2010, 11, 120.	1.2	306
558	Comparative genomics of the bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and limited gene loss. BMC Genomics, 2010, 11, 688.	1.2	174
559	Listeria monocytogenes virulence factor Listeriolysin O favors bacterial growth in co-culture with the ciliate Tetrahymena pyriformis, causes protozoan encystment and promotes bacterial survival inside cysts. BMC Microbiology, 2010, 10, 26.	1.3	46
560	The heme sensing response regulator HssR in Staphylococcus aureus but not the homologous RR23 in Listeria monocytogenes modulates susceptibility to the antimicrobial peptide plectasin. BMC Microbiology, 2010, 10, 307.	1.3	17
561	Internalin profiling and multilocus sequence typing suggest four Listeria innocua subgroups with different evolutionary distances from Listeria monocytogenes. BMC Microbiology, 2010, 10, 97.	1.3	20
562	Polymorphism of actA gene is not related to in vitro virulence of Listeria monocytogenes. International Journal of Food Microbiology, 2010, 137, 100-105.	2.1	15
563	Certain dietary carbohydrates promote Listeria infection in a guinea pig model, while others prevent it. International Journal of Food Microbiology, 2010, 140, 218-224.	2.1	28
564	The effect of bacteriocin-producing Lactobacillus plantarum strains on the intracellular pH of sessile and planktonic Listeria monocytogenes single cells. International Journal of Food Microbiology, 2010, 141, S53-S59.	2.1	70
565	sigB absence decreased Listeria monocytogenes EGD-e heat resistance but not its Pulsed Electric Fields resistance. International Journal of Food Microbiology, 2010, 141, 32-38.	2.1	28
566	Prevalence and characterization of antimicrobial resistance of foodborne Listeria monocytogenes isolates in Hebei province of Northern China, 2005–2007. International Journal of Food Microbiology, 2010, 144, 310-316.	2.1	72
567	Effects of rhynchophylline and isorhynchophylline on nitric oxide and endothelin-1 secretion from RIMECs induced by Listeriolysin O in vitro. Veterinary Microbiology, 2010, 143, 262-269.	0.8	13
568	The lectin-like domain of TNF protects from listeriolysin-induced hyperpermeability in human pulmonary microvascular endothelial cells — A crucial role for protein kinase C-α inhibition. Vascular Pharmacology, 2010, 52, 207-213.	1.0	25
569	<i>Listeria monocytogenes</i> is sensed by the NLRP3 and AIM2 inflammasome. European Journal of Immunology, 2010, 40, 1545-1551.	1.6	221
572	Proteomics for the elucidation of cold adaptation mechanisms in Listeria monocytogenes. Journal of Proteomics, 2010, 73, 2021-2030.	1.2	112
573	Inactivation of several strains of Listeria monocytogenes attached to the surface of packaging material by Na-Chlorophyllin-based photosensitization. Journal of Photochemistry and Photobiology B: Biology, 2010, 101, 326-331.	1.7	52
574	A PCR METHOD FOR THE DETECTION OF <i>LISTERIA MONOCYTOGENES</i> BASED ON A NOVEL TARGET SEQUENCE IDENTIFIED BY COMPARATIVE GENOMIC ANALYSIS. Journal of Food Safety, 2010, 30, 832-847.	1.1	6
575	Typing of <i>Listeria monocytogenes </i> strains isolated in Italy by <i>inl </i> A gene characterization and evaluation of a new cost-effective approach to antisera selection for serotyping. Journal of Applied Microbiology, 2010, 108, 1602-1611.	1.4	29

#	ARTICLE	IF	CITATIONS
576	smcL as a novel diagnostic marker for quantitative detection of Listeria ivanovii in biological samples. Journal of Applied Microbiology, 2010, 109, 863-872.	1.4	15
577	Evidence for the involvement of ActA in maturation of the Listeria monocytogenes phagosome. Cell Research, 2010, 20, 109-112.	5.7	14
578	Neuropathogenesis of Naturally Occurring Encephalitis Caused by <i>Listeria monocytogenes</i> li> in Ruminants. Brain Pathology, 2010, 20, 378-390.	2.1	79
579	Inhibition of <i>Listeria monocytogenes</i> by Food Antimicrobials Applied Singly and in Combination. Journal of Food Science, 2010, 75, M557-63.	1.5	90
580	Listeria monocytogenes: Knowledge Gained Through DNA Sequence-Based Subtyping, Implications, and Future Considerations. Journal of AOAC INTERNATIONAL, 2010, 93, 1275-1286.	0.7	18
581	Maltose and Maltodextrin Utilization by Listeria monocytogenes Depend on an Inducible ABC Transporter which is Repressed by Glucose. PLoS ONE, 2010, 5, e10349.	1.1	58
582	The Combination of Lactate and Diacetate Synergistically Reduces Cold Growth in Brain Heart Infusion Broth across Listeria monocytogenes Lineages. Journal of Food Protection, 2010, 73, 631-640.	0.8	12
583	Quantitative Microbial Risk Assessment for Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes in Leafy Green Vegetables Consumed at Salad Bars. Journal of Food Protection, 2010, 73, 274-285.	0.8	79
584	Listeria monocytogenes Contamination in Pork Can Originate from Farms. Journal of Food Protection, 2010, 73, 641-648.	0.8	49
585	Prevalence of Listeria monocytogenes in Retailed Meat in the Tokyo Metropolitan Area. Journal of Food Protection, 2010, 73, 1688-1693.	0.8	24
587	Complementation of <i>Listeria monocytogenes </i> Null Mutants with Selected <i>Listeria seeligeri </i> Virulence Genes Suggests Functional Adaptation of Hly and PrfA and Considerable Diversification of <i>prfA </i> Regulation in <i>L. seeligeri </i> Applied and Environmental Microbiology, 2010, 76, 5124-5139.	1.4	3
588	<i>Listeria monocytogenes</i> PrsA2 Is Required for Virulence Factor Secretion and Bacterial Viability within the Host Cell Cytosol. Infection and Immunity, 2010, 78, 4944-4957.	1.0	54
589	LAP, an alcohol acetaldehyde dehydrogenase enzyme in Listeria, promotes bacterial adhesion to enterocyte-like Caco-2 cells only in pathogenic species. Microbiology (United Kingdom), 2010, 156, 2782-2795.	0.7	100
590	<i>Listeria seeligeri</i> Isolates from Food Processing Environments Form Two Phylogenetic Lineages. Applied and Environmental Microbiology, 2010, 76, 3044-3047.	1.4	7
591	Listeria monocytogenes does not survive ingestion by Acanthamoeba polyphaga. Microbiology (United) Tj ETQq0	0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	/Overlock 10
592	A Population Genetics-Based and Phylogenetic Approach to Understanding the Evolution of Virulence in the Genus <i>Listeria</i> . Applied and Environmental Microbiology, 2010, 76, 6085-6100.	1.4	94
593	Expression of two Listeria monocytogenes antigens (P60 and LLO) in Lactococcus lactis and examination for use as live vaccine vectors. Journal of Medical Microbiology, 2010, 59, 904-912.	0.7	23
594	Contribution of Chitinases to <i>Listeria monocytogenes</i> Pathogenesis. Applied and Environmental Microbiology, 2010, 76, 7302-7305.	1.4	74

#	Article	IF	CITATIONS
595	Importance of SigB for <i>Listeria monocytogenes</i> Static and Continuous-Flow Biofilm Formation and Disinfectant Resistance. Applied and Environmental Microbiology, 2010, 76, 7854-7860.	1.4	105
596	Critical Role for the Host GTPase-Activating Protein ARAP2 in InlB-Mediated Entry of <i>Listeria monocytogenes</i> . Infection and Immunity, 2010, 78, 4532-4541.	1.0	18
597	The Stress-Induced Virulence Protein InlH Controls Interleukin-6 Production during Murine Listeriosis. Infection and Immunity, 2010, 78, 1979-1989.	1.0	38
598	Rhombencephalitis Caused by i>Listeria monocytogenes / i> in Humans and Ruminants: A Zoonosis on the Rise?. Interdisciplinary Perspectives on Infectious Diseases, 2010, 2010, 1-22.	0.6	97
599	Peyer's Patches: The Immune Sensors of the Intestine. International Journal of Inflammation, 2010, 2010, 1-12.	0.9	326
600	Characterization of Listeria monocytogenesisolates of food and human origins from Brazil using molecular typing procedures andin vitrocell culture assays. International Journal of Environmental Health Research, 2010, 20, 43-59.	1.3	25
601	The Opportunistic Pathogen <i>Listeria monocytogenes</i> : Pathogenicity and Interaction with the Mucosal Immune System. International Journal of Inflammation, 2010, 2010, 1-12.	0.9	67
602	Temperature-Dependent Requirement for Catalase in Aerobic Growth of <i>Listeria monocytogenes</i> F2365. Applied and Environmental Microbiology, 2010, 76, 6998-7003.	1.4	47
603	Efficacy of Amphiphilic Core-Shell Nanostructures Encapsulating Gentamicin in an <i>In Vitro Salmonella</i> and <i>Listeria</i> Intracellular Infection Model. Antimicrobial Agents and Chemotherapy, 2010, 54, 3524-3526.	1.4	12
604	Multilocus Sequence Typing of Outbreak-Associated <i>Listeria monocytogenes </i> li>Isolates to Identify Epidemic Clones. Foodborne Pathogens and Disease, 2010, 7, 257-265.	0.8	43
605	Evaluation of Paramagnetic Beads Coated with RecombinantListeriaPhage Endolysin–Derived Cell-Wall-Binding Domain Proteins for Separation ofListeria monocytogenesfrom Raw Milk in Combination with Culture-Based and Real-Time Polymerase Chain Reaction–Based Quantification. Foodborne Pathogens and Disease, 2010, 7, 1019-1024.	0.8	54
606	Survival of <i>Listeria monocytogenes </i> in Simulated Gastrointestinal System and Transcriptional Profiling of Stress- and Adhesion-Related Genes. Foodborne Pathogens and Disease, 2010, 7, 267-274.	0.8	21
607	Reduced Host Cell Invasiveness and Oxidative Stress Tolerance in Double and Triple <i>csp</i> Gene Family Deletion Mutants of <i>Listeria monocytogenes</i> Foodborne Pathogens and Disease, 2010, 7, 775-783.	0.8	49
608	Managing Infections in Patients With Hematological Malignancies. , 2010, , .		1
609	Serovar 4b Complex Predominates Among <i>Listeria monocytogenes </i> li>Isolates from Imported Aquatic Products in China. Foodborne Pathogens and Disease, 2010, 7, 31-41.	0.8	23
610	Cooperative Regulation of the Induction of the Novel Antibacterial Listericin by Peptidoglycan Recognition Protein LE and the JAK-STAT Pathway. Journal of Biological Chemistry, 2010, 285, 15731-15738.	1.6	41
611	α-Galactosylceramide Promotes Killing of <i>Listeria monocytogenes</i> Within the Macrophage Phagosome through Invariant NKT-Cell Activation. Infection and Immunity, 2010, 78, 2667-2676.	1.0	17
612	<i>Listeria monocytogenes</i> Uses Listeria Adhesion Protein (LAP) To Promote Bacterial Transepithelial Translocation and Induces Expression of LAP Receptor Hsp60. Infection and Immunity, 2010, 78, 5062-5073.	1.0	95

#	Article	IF	CITATIONS
613	Rapid Multiplex Detection and Differentiation of <i>Listeria</i> Cells by Use of Fluorescent Phage Endolysin Cell Wall Binding Domains. Applied and Environmental Microbiology, 2010, 76, 5745-5756.	1.4	148
614	Poor Invasion of Trophoblastic Cells but Normal Plaque Formation in Fibroblastic Cells despite <i>actA</i> Deletion in a Group of <i>Listeria monocytogenes</i> Processing Environments. Applied and Environmental Microbiology, 2010, 76, 3391-3397.	1.4	17
615	Antibody Targeting the Ferritin-Like Protein Controls <i>Listeria</i> li>Infection. Infection and Immunity, 2010, 78, 3306-3314.	1.0	17
616	Listeria monocytogenes Internalin B Activates Junctional Endocytosis to Accelerate Intestinal Invasion. PLoS Pathogens, 2010, 6, e1000900.	2.1	86
617	Genome Organization and Characterization of the Virulent Lactococcal Phage 1358 and Its Similarities to <i>Listeria</i> Phages. Applied and Environmental Microbiology, 2010, 76, 1623-1632.	1.4	34
618	Human Listeriosis Caused by <i>Listeria ivanovii </i> . Emerging Infectious Diseases, 2010, 16, 136-138.	2.0	182
619	Harnessing Listeria monocytogenes to target tumors. Cancer Biology and Therapy, 2010, 9, 257-265.	1.5	24
620	<p class="p1"> Efficacy of a <i>Lactococcus lactis</i> î'' <i>pyrG</i> vaccine delivery platform expressing chromosomally integrated <i>hly</i> from <i>Listeria monocytogenes</i> . Bioengineered Bugs, 2010, 1, 66-74.	2.0	27
621	Cholesterol Oxidase: Structure and Function. Sub-Cellular Biochemistry, 2010, 51, 137-158.	1.0	29
622	Inhibition of Listeria monocytogenes infection by neurological drugs. International Journal of Antimicrobial Agents, 2010, 35, 292-296.	1.1	24
623	Influence of Sublethal Concentrations of Common Disinfectants on Expression of Virulence Genes in <i>Listeria monocytogenes</i> . Applied and Environmental Microbiology, 2010, 76, 303-309.	1.4	60
624	Variability of <i>Listeria monocytogenes </i> virulence: a result of the evolution between saprophytism and virulence?. Future Microbiology, 2010, 5, 1799-1821.	1.0	37
625	Phenotypic and molecular typing of Listeria monocytogenes isolated from the processing environment and products of a sandwich-producing plant. Food Control, 2010, 21, 1519-1523.	2.8	33
626	Listerial Keratoconjunctivitis and Uveitis (Silage Eye). Veterinary Clinics of North America - Food Animal Practice, 2010, 26, 505-510.	0.5	14
627	Mechanisms of meningeal invasion by a bacterial extracellular pathogen, the example of Neisseria meningitidis. Progress in Neurobiology, 2010, 91, 130-139.	2.8	52
628	Encephalomyelitis Resembling Human and Ruminant Rhombencephalitis Caused by Listeria monocytogenes in a Feline Leukemia Virus-Infected Cat. Journal of Veterinary Internal Medicine, 2010, 24, 983-985.	0.6	7
629	Phospholipid Hydrolysis Caused by <i> Clostridium perfringens < li > $l±$-Toxin Facilitates the Targeting of Perfringolysin O to Membrane Bilayers. Biochemistry, 2010, 49, 9498-9507.</i>	1.2	32
630	<i>Galleria mellonella</i> as a Model System for Studying <i>Listeria</i> Pathogenesis. Applied and Environmental Microbiology, 2010, 76, 310-317.	1.4	208

#	Article	IF	CITATIONS
631	A secretome-based methodology may provide a better characterization of the virulence of Listeria monocytogenes: Preliminary results. Talanta, 2010, 83, 457-463.	2.9	18
632	Synthetic Human Chorionic Gonadotropin–Related Oligopeptides Impair Early Innate Immune Responses to <i>Listeria monocytogenes</i> i>in Mice. Journal of Infectious Diseases, 2010, 201, 1072-1080.	1.9	40
633	Listeriosis., 2010,, 470-488.		1
634	Aerosol-based efficient delivery of telithromycin, a ketolide antimicrobial agent, to lung epithelial lining fluid and alveolar macrophages for treatment of respiratory infections. Drug Development and Industrial Pharmacy, 2010, 36, 861-866.	0.9	14
635	Anti-listerial activity of coatings entrapping living bacteria. Soft Matter, 2011, 7, 8542.	1.2	18
636	Gene Scanning of an Internalin B Gene Fragment Using High-Resolution Melting Curve Analysis as a Tool for Rapid Typing of Listeria monocytogenes. Journal of Molecular Diagnostics, 2011, 13, 57-63.	1.2	19
638	The high prevalence of Listeria monocytogenes peritonitis in cirrhotic patients of an Egyptian Medical Center. Journal of Infection and Public Health, 2011, 4, 211-216.	1.9	18
639	Incidence and genetic variability of Listeria species from three milk processing plants. Food Control, 2011, 22, 1900-1904.	2.8	27
640	Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. International Journal of Medical Microbiology, 2011, 301, 79-96.	1.5	628
641	Contribution of Listeria monocytogenes RecA to acid and bile survival and invasion of human intestinal Caco-2 cells. International Journal of Medical Microbiology, 2011, 301, 334-340.	1.5	32
642	Autolysin amidase of Listeria monocytogenes promotes efficient colonization of mouse hepatocytes and enhances host immune response. International Journal of Medical Microbiology, 2011, 301, 480-487.	1.5	16
643	Adaptation of Listeria monocytogenes to oxidative and nitrosative stress in IFN- \hat{I}^3 -activated macrophages. International Journal of Medical Microbiology, 2011, 301, 547-555.	1.5	10
644	Growth temperature-dependent expression of structural variants of Listeria monocytogenes lipoteichoic acid. Immunobiology, 2011, 216, 24-31.	0.8	16
645	Regulation of Listeria virulence: PrfA master and commander. Current Opinion in Microbiology, 2011, 14, 118-127.	2.3	278
646	Proteomic expression profiles of virulent and avirulent strains of Listeria monocytogenes isolated from macrophages. Journal of Proteomics, 2011, 74, 1906-1917.	1.2	25
647	An in silico DNA vaccine against Listeria monocytogenes. Vaccine, 2011, 29, 6948-6958.	1.7	33
648	Quantification of cell infection caused by Listeria monocytogenes invasion. Journal of Biotechnology, 2011, 154, 76-83.	1.9	4
649	Vasculitis: Endothelial Dysfunction During Rickettsial Infection. , 2011, , .		1

#	Article	IF	CITATIONS
650	Toxicity of Oxazolidinone Linezolid on Pathogenic Microorganism Listeria ivanovii. International Journal of Biology, 2011, 3, .	0.1	0
651	Isolation and molecular characterization of Listeria spp. from animals, food and environmental samples. Veterinarni Medicina, 2011, 56, 386-394.	0.2	21
652	Detection and extraction of anti-listeral compounds from <i>Calligonum comosum</i> , a medical plant from arid regions of Tunisia. Tropical Journal of Obstetrics and Gynaecology, 2011, 8, .	0.3	8
653	Innate IFN- \hat{I}^3 -Producing Cells in the Spleen of Mice Early after Listeria monocytogenes Infection: Importance of Microenvironment of the Cells Involved in the Production of Innate IFN- \hat{I}^3 . Frontiers in Immunology, 2011, 2, 26.	2.2	17
654	Tnf-a production and apoptosis in hepatocytes after listeria monocytogenes and salmonella typhimurium invasion. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2011, 53, 107-112.	0.5	17
655	Changes in Gene Expression during Adaptation of Listeria monocytogenes to the Soil Environment. PLoS ONE, 2011, 6, e24881.	1.1	51
656	Inflammatory Monocytes and Neutrophils Are Licensed to Kill during Memory Responses In Vivo. PLoS Pathogens, 2011, 7, e1002457.	2.1	56
657	Blue and Red Light Modulates SigB-Dependent Gene Transcription, Swimming Motility and Invasiveness in Listeria monocytogenes. PLoS ONE, 2011, 6, e16151.	1.1	79
658	Autophagy targeting of Listeria monocytogenesand the bacterial countermeasure. Autophagy, 2011, 7, 310-314.	4.3	42
659	Investigating foodborne pathogens using comparative genomics. , 2011, , 275-291.		0
660	Molecular biology of surface colonization by ⟨i⟩Listeria monocytogenes⟨/i⟩: an additional facet of an opportunistic Gramâ€positive foodborne pathogen. Environmental Microbiology, 2011, 13, 835-850.	1.8	143
661	Defensins enable macrophages to inhibit the intracellular proliferation of Listeria monocytogenes. Cellular Microbiology, 2011, 13, 635-651.	1.1	68
662	Novel listerial genetic loci conferring enhanced barotolerance in Escherichia coli. Journal of Applied Microbiology, 2011, 110, 618-630.	1.4	10
663	Human heat-shock protein 60 receptor-coated paramagnetic beads show improved capture of Listeria monocytogenes in the presence of other Listeria in food. Journal of Applied Microbiology, 2011, 111, 93-104.	1.4	21
664	The distribution of Eâ€cadherin expression in listeric rhombencephalitis of ruminants indicates its involvement in <i>Listeria monocytogenes</i> neuroinvasion. Neuropathology and Applied Neurobiology, 2011, 37, 753-767.	1.8	16
665	The novel <i>Listeria monocytogenes</i> bile sensor BrtA controls expression of the cholic acid efflux pump MdrT. Molecular Microbiology, 2011, 81, 129-142.	1.2	65
666	Mutational analysis of glucose transport regulation and glucoseâ€mediated virulence gene repression in ⟨i⟩Listeria monocytogenes⟨/i⟩. Molecular Microbiology, 2011, 81, 274-293.	1.2	62
667	RESPONSE SURFACE MODELING OF <i>LISTERIA MONOCYTOGENES</i> INACTIVATION ON LETTUCE TREATED WITH ELECTROLYZED OXIDIZING WATER. Journal of Food Process Engineering, 2011, 34, 1729-1745.	1.5	22

#	Article	IF	CITATIONS
668	Listeria monocytogenes adapts to long-term stationary phase survival without compromising bacterial virulence. FEMS Microbiology Letters, 2011, 323, 171-179.	0.7	29
669	Microbial control of food-related surfaces: Na-Chlorophyllin-based photosensitization. Journal of Photochemistry and Photobiology B: Biology, 2011, 105, 69-74.	1.7	32
670	Unsuspected Infection Due to Listeria monocytogenes in a Prosthetic Knee Joint. Clinical Microbiology Newsletter, 2011, 33, 60-62.	0.4	0
671	Effect of osmotic stress and culture density on invasiveness of Listeria monocytogenes strains. International Journal of Food Microbiology, 2011, 144, 440-445.	2.1	19
672	The inhibitory effect of natural microflora of food on growth of Listeria monocytogenes in enrichment broths. International Journal of Food Microbiology, 2011, 145, 98-105.	2.1	48
673	Multiple-locus variable number of tandem repeat analysis (MLVA) of Listeria monocytogenes directly in food samples. International Journal of Food Microbiology, 2011, 148, 8-14.	2.1	33
674	Release of ActA into a medium via membrane anchor cleavage is required for Listeria monocytogenes host cell invasion. Molecular Genetics, Microbiology and Virology, 2011, 26, 111-119.	0.0	3
675	Virulence Regulator PrfA is Essential for Biofilm Formation in Listeria monocytogenes but not in Listeria innocua. Current Microbiology, 2011, 63, 186-192.	1.0	26
676	Establishment of intestinal homeostasis during the neonatal period. Cellular and Molecular Life Sciences, 2011, 68, 3699-3712.	2.4	49
677	Factors affecting survival of Listeria monocytogenes and Listeria innocua in soil samples. Archives of Microbiology, 2011, 193, 775-785.	1.0	68
678	Effect of Vaccination in Environmentally Induced Diseases. Bulletin of Mathematical Biology, 2011, 73, 1101-1117.	0.9	2
679	Arcanolysin is a cholesterol-dependent cytolysin of the human pathogen Arcanobacterium haemolyticum. BMC Microbiology, 2011, 11, 239.	1.3	21
680	Structural changes of <i>Listeria monocytogenes</i> sortase A: A key to understanding the catalytic mechanism. Proteins: Structure, Function and Bioinformatics, 2011, 79, 1564-1572.	1.5	9
681	Analysis of the serine/threonine/tyrosine phosphoproteome of the pathogenic bacterium <i>Listeria monocytogenes</i> reveals phosphorylated proteins related to virulence. Proteomics, 2011, 11, 4155-4165.	1.3	74
682	Generation of a <i>Listeria</i> vaccine strain by enhanced caspaseâ€1 activation. European Journal of Immunology, 2011, 41, 1934-1940.	1.6	34
683	Serine/threonine protein kinase PrkA of the human pathogen Listeria monocytogenes: Biochemical characterization and identification of interacting partners through proteomic approaches. Journal of Proteomics, 2011, 74, 1720-1734.	1.2	70
684	Novel approach to decontaminate food-packaging from pathogens in non-thermal and not chemical way: Chlorophyllin-based photosensitization. Journal of Food Engineering, 2011, 106, 152-158.	2.7	22
685	Significant Shift in Median Guinea Pig Infectious Dose Shown by an Outbreak-Associated <i>Listeria monocytogenes </i> Epidemic Clone Strain and a Strain Carrying a Premature Stop Codon Mutation in <i>In < </i>	1.4	34

#	Article	IF	CITATIONS
686	Mutations of the Listeria monocytogenes Peptidoglycan $i>N$ Deacetylase and $i>O$ Acetylase Result in Enhanced Lysozyme Sensitivity, Bacteriolysis, and Hyperinduction of Innate Immune Pathways. Infection and Immunity, 2011, 79, 3596-3606.	1.0	82
687	Atomic force microscopy investigations of heterogeneities in the adhesion energies measured between pathogenic and non-pathogenic <i>Listeria </i> species and silicon nitride as they correlate to virulence and adherence. Biofouling, 2011, 27, 543-559.	0.8	23
688	OatA, a Peptidoglycan O-Acetyltransferase Involved in Listeria monocytogenes Immune Escape, Is Critical for Virulence. Journal of Infectious Diseases, 2011, 204, 731-740.	1.9	98
689	Real-Time PCR Assay To Differentiate Listeriolysin S-Positive and -Negative Strains of <i>Listeria monocytogenes </i> . Applied and Environmental Microbiology, 2011, 77, 163-171.	1.4	66
690	Tracing pathogens in poultry and egg production and at the abattoir., 2011,, 465-502.		1
691	Actin Polymerization Drives Septation of <i>Listeria monocytogenes namA</i> Hydrolase Mutants, Demonstrating Host Correction of a Bacterial Defect. Infection and Immunity, 2011, 79, 1458-1470.	1.0	21
692	The Metalloprotease of Listeria monocytogenes Is Regulated by pH. Journal of Bacteriology, 2011, 193, 5090-5097.	1.0	12
693	Posttranslocation Chaperone PrsA2 Regulates the Maturation and Secretion of Listeria monocytogenes Proprotein Virulence Factors. Journal of Bacteriology, 2011, 193, 5961-5970.	1.0	36
694	The <i>N</i> -Ethyl- <i>N</i> -Nitrosourea-Induced <i>Goldenticket</i> Mouse Mutant Reveals an Essential Function of <i>Sting</i> in the <i>In Vivo</i> Interferon Response to <i>Listeria monocytogenes</i> Oyclic Dinucleotides. Infection and Immunity, 2011, 79, 688-694.	1.0	492
695	Evidence for subpopulations of Listeria monocytogenes with enhanced invasion of cardiac cells. Journal of Medical Microbiology, 2011, 60, 423-434.	0.7	23
696	A novel C-terminal mutation resulting in constitutive activation of the Listeria monocytogenes central virulence regulatory factor PrfA. Microbiology (United Kingdom), 2011, 157, 3138-3149.	0.7	14
697	Genotypic characterization of i>Listeria monocytogenes i>isolated from humans in India. Annals of Tropical Medicine and Parasitology, 2011, 105, 351-358.	1.6	10
698	TLR2 and RIP2 Pathways Mediate Autophagy of Listeria monocytogenes via Extracellular Signal-regulated Kinase (ERK) Activation. Journal of Biological Chemistry, 2011, 286, 42981-42991.	1.6	119
699	LipA, a Tyrosine and Lipid Phosphatase Involved in the Virulence of Listeria monocytogenes. Infection and Immunity, 2011, 79, 2489-2498.	1.0	31
700	Implications of the Inability of Listeria monocytogenes EGD-e To Grow Anaerobically Due to a Deletion in the Class III NrdD Ribonucleotide Reductase for Its Use as a Model Laboratory Strain. Journal of Bacteriology, 2011, 193, 2931-2940.	1.0	9
701	The cell envelope stress response mediated by the LiaFSR Lm three-component system of Listeria monocytogenes is controlled via the phosphatase activity of the bifunctional histidine kinase LiaS Lm. Microbiology (United Kingdom), 2011, 157, 373-386.	0.7	53
702	A single substitution in 5'-untranslated region of plcB is involved in enhanced broad-range phospholipase C activity in Listeria monocytogenes strain H4. Acta Biochimica Et Biophysica Sinica, 2011, 43, 275-283.	0.9	0
703	Differential gene expression analysis of Paracoccidioides brasiliensis during keratinocyte infection. Journal of Medical Microbiology, 2011, 60, 269-280.	0.7	10

#	ARTICLE	IF	Citations
704	Ruminant Rhombencephalitis-Associated Listeria monocytogenes Alleles Linked to a Multilocus Variable-Number Tandem-Repeat Analysis Complex. Applied and Environmental Microbiology, 2011, 77, 8325-8335.	1.4	48
705	Complete Genome Sequence of the Animal Pathogen Listeria ivanovii, Which Provides Insights into Host Specificities and Evolution of the Genus Listeria. Journal of Bacteriology, 2011, 193, 6787-6788.	1.0	25
706	Spatial Patterns of Microbial Retention on Polymer Surfaces. Journal of Adhesion Science and Technology, 2011, 25, 2255-2280.	1.4	5
707	Listeriosis Outbreak in Dairy Cattle Caused by an Unusual <i>Listeria Monocytogenes</i> Serotype 4b Strain. Journal of Veterinary Diagnostic Investigation, 2011, 23, 155-158.	0.5	41
708	Identification and Role of Regulatory Non-Coding RNAs in Listeria monocytogenes. International Journal of Molecular Sciences, 2011, 12, 5070-5079.	1.8	17
709	In Vitro Anti-Listerial Activities of Crude n-Hexane and Aqueous Extracts of Garcinia kola (heckel) Seeds. International Journal of Molecular Sciences, 2011, 12, 6952-6965.	1.8	3
710	The Pore-Forming Toxin Listeriolysin O Mediates a Novel Entry Pathway of L. monocytogenes into Human Hepatocytes. PLoS Pathogens, 2011, 7, e1002356.	2.1	116
711	Incidence of Listeriosis and Related Mortality Among Groups at Risk of Acquiring Listeriosis. Clinical Infectious Diseases, 2012, 54, 652-660.	2.9	220
712	Toxoplasma Co-opts Host Cells It Does Not Invade. PLoS Pathogens, 2012, 8, e1002825.	2.1	138
713	Membrane Damage during Listeria monocytogenes Infection Triggers a Caspase-7 Dependent Cytoprotective Response. PLoS Pathogens, 2012, 8, e1002628.	2.1	33
714	Unveiling the Expression Characteristics of IspC, a Cell Wall-Associated Peptidoglycan Hydrolase in Listeria monocytogenes, during Growth under Stress Conditions. Applied and Environmental Microbiology, 2012, 78, 7833-7840.	1.4	4
715	Hyperinduction of Host Beta Interferon by a Listeria monocytogenes Strain Naturally Overexpressing the Multidrug Efflux Pump MdrT. Infection and Immunity, 2012, 80, 1537-1545.	1.0	63
716	Targeting of the central nervous system by <i>Listeria monocytogenes </i> . Virulence, 2012, 3, 213-221.	1.8	136
717	Characterization and Antimicrobial Resistance of <i>Listeria monocytogenes</i> Isolated from Retail Beef Meat in Poland. Foodborne Pathogens and Disease, 2012, 9, 681-685.	0.8	28
718	Identification of Components of the Host Type IA Phosphoinositide 3-Kinase Pathway That Promote Internalization of Listeria monocytogenes. Infection and Immunity, 2012, 80, 1252-1266.	1.0	33
719	Inducible Renitence Limits <i>Listeria monocytogenes</i> Escape from Vacuoles in Macrophages. Journal of Immunology, 2012, 189, 4488-4495.	0.4	28
720	Modeling the Growth of Listeria monocytogenes in Soft Blue-White Cheese. Applied and Environmental Microbiology, 2012, 78, 8508-8514.	1.4	35
721	Resveratrol Inhibits Inflammation Induced by Heat-Killed <i>Listeria monocytogenes</i> Medicinal Food, 2012, 15, 788-794.	0.8	16

#	Article	IF	Citations
722	Bactericidal Antibiotics Do Not Appear To Cause Oxidative Stress in Listeria monocytogenes. Applied and Environmental Microbiology, 2012, 78, 4353-4357.	1.4	18
723	Clostridium perfringens Alpha-toxin Recognizes the GM1a-TrkA Complex. Journal of Biological Chemistry, 2012, 287, 33070-33079.	1.6	43
724	Development of a Single-Gene, Signature-Tag-Based Approach in Combination with Alanine Mutagenesis To Identify Listeriolysin O Residues Critical for the <i>In Vivo </i> Survival of Listeria monocytogenes. Infection and Immunity, 2012, 80, 2221-2230.	1.0	16
725	PFGE analysis of Listeria monocytogenes isolates of clinical, animal, food and environmental origin from Ireland. Journal of Medical Microbiology, 2012, 61, 540-547.	0.7	48
726	A New Rapid Real-Time PCR Method for Detection of Listeria monocytogenes Targeting the hlyA Gene. Food Science and Technology Research, 2012, 18, 47-57.	0.3	17
727	Endolysins as Antimicrobials. Advances in Virus Research, 2012, 83, 299-365.	0.9	291
728	Synthesis of chiral \hat{I}^2 -chalcogen amine derivatives and Gram-positive bacteria activity. Tetrahedron, 2012, 68, 10444-10448.	1.0	21
729	Subinhibitory concentrations of antibiotics affect stress and virulence gene expression in <i>Listeria monocytogenes</i> and cause enhanced stress sensitivity but do not affect Caco-2 cell invasion. Journal of Applied Microbiology, 2012, 113, 1273-1286.	1.4	19
730	Microarray-based transcriptome of Listeria monocytogenesadapted to sublethal concentrations of acetic acid, lactic acid, and hydrochloric acid. Canadian Journal of Microbiology, 2012, 58, 1112-1123.	0.8	31
731	Modern Approaches in Probiotics Research to Control Foodborne Pathogens. Advances in Food and Nutrition Research, 2012, 67, 185-239.	1.5	39
732	HmgR, a key enzyme in the mevalonate pathway for isoprenoid biosynthesis, is essential for growth of Listeria monocytogenes EGDe. Microbiology (United Kingdom), 2012, 158, 1684-1693.	0.7	36
733	Engagement of heterogeneous nuclear ribonucleoprotein M with listeriolysin O induces type I interferon expression and restricts Listeria monocytogenes growth in host cells. Immunobiology, 2012, 217, 972-981.	0.8	8
734	Bacteriophage P70: Unique Morphology and Unrelatedness to Other Listeria Bacteriophages. Journal of Virology, 2012, 86, 13099-13102.	1.5	27
735	Phospholipases C and sphingomyelinases: Lipids as substrates and modulators of enzyme activity. Progress in Lipid Research, 2012, 51, 238-266.	5.3	55
736	Lactococcus lactis-based vaccines from laboratory bench to human use: An overview. Vaccine, 2012, 30, 685-690.	1.7	56
737	Antimicrobial activities of therapeutic herbal plants against Listeria monocytogenes and the herbal plant cytotoxicity on Caco-2 cell. Letters in Applied Microbiology, 2012, 55, 47-55.	1.0	7
738	Bacteriophage endolysins as novel antimicrobials. Future Microbiology, 2012, 7, 1147-1171.	1.0	554
739	p47phox Directs Murine Macrophage Cell Fate Decisions. American Journal of Pathology, 2012, 180, 1049-1058.	1.9	28

#	Article	IF	CITATIONS
740	Listeria monocytogenes cell wall constituents exert a charge effect on electroporation threshold. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 689-694.	1.4	29
741	Interaction of Listeria monocytogenes autolysin amidase with glycosaminoglycans promotes listerial adhesion to mouse hepatocytes. Biochimie, 2012, 94, 1291-1299.	1.3	17
742	Effectiveness of two sanitation procedures for decreasing the microbial contamination levels (including Listeria monocytogenes) on food contact and non-food contact surfaces in a dessert-processing factory. Food Control, 2012, 23, 26-31.	2.8	28
743	Use of epifluorescence microscopy to assess the effectiveness of phage P100 in controlling Listeria monocytogenes biofilms on stainless steel surfaces. Food Control, 2012, 23, 470-477.	2.8	55
744	Genetic relatedness among Listeria monocytogenes isolated in foods and food production chain in southern Rio Grande do Sul, Brazil. Food Control, 2012, 28, 171-177.	2.8	17
745	Animal models of listeriosis: a comparative review of the current state of the art and lessons learned. Veterinary Research, 2012, 43, 18.	1.1	49
746	Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes. BMC Genomics, 2012, 13, 144.	1.2	88
747	Highly specific fiber optic immunosensor coupled with immunomagnetic separation for detection of low levels of Listeria monocytogenes and L. ivanovii. BMC Microbiology, 2012, 12, 275.	1.3	52
748	Identification of a ferritin-like protein of Listeria monocytogenes as a mediator of \hat{l}^2 -lactam tolerance and innate resistance to cephalosporins. BMC Microbiology, 2012, 12, 278.	1.3	21
749	Re-evaluation of the significance of penicillin binding protein 3 in the susceptibility of Listeria monocytogenes to \hat{l}^2 -lactam antibiotics. BMC Microbiology, 2012, 12, 57.	1.3	16
750	Development of a Paper-Based Analytical Device for Colorimetric Detection of Select Foodborne Pathogens. Analytical Chemistry, 2012, 84, 2900-2907.	3.2	411
751	Genome-wide transcriptional profiling of the cell envelope stress response and the role of LisRK and CesRK in Listeria monocytogenes. Microbiology (United Kingdom), 2012, 158, 963-974.	0.7	52
752	Fighting Outbreaks with Bacterial Genomics: Case Review and Workflow Proposal. Public Health Genomics, 2012, 15, 341-351.	0.6	10
7 54	Detection of virulence-associated genes and epidemic clone markers in Listeria monocytogenes isolates from PDO Gorgonzola cheese. International Journal of Food Microbiology, 2012, 160, 76-79.	2.1	34
755	Recombinant Probiotic Expressing Listeria Adhesion Protein Attenuates Listeria monocytogenes Virulence In Vitro. PLoS ONE, 2012, 7, e29277.	1.1	82
756	Resveratrol and Some Glucosyl, Glucosylacyl, and Glucuronide Derivatives Reduce Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes Scott A Adhesion to Colonic Epithelial Cell Lines. Journal of Agricultural and Food Chemistry, 2012, 60, 7367-7374.	2.4	30
757	Optimizing the balance between host and environmental survival skills: lessons learned fromListeria monocytogenes. Future Microbiology, 2012, 7, 839-852.	1.0	52
758	<i>Lm</i> -LLO-Based Immunotherapies and HPV-Associated Disease. Journal of Oncology, 2012, 2012, 1-10.	0.6	44

#	Article	IF	Citations
759	In VitroAntilisterial Properties of Crude Methanol Extracts of Garcinia kola (Heckel) Seeds. Scientific World Journal, The, 2012, 2012, 1-7.	0.8	5
760	Toward a Systemic Understanding of Listeria monocytogenes Metabolism during Infection. Frontiers in Microbiology, 2012, 3, 23.	1.5	45
761	The biofilm formation ability of Listeria monocytogenes isolated from meat, poultry, fish and processing plant environments is related to serotype and pathogenic profile of the strains. Veterinary Science Development, 2012, 2, 12.	0.0	4
762	Genetically Related Listeria Monocytogenes Strains Isolated from Lethal Human Cases and Wild Animals. , 2012, , .		18
763	Outdoor environment as a source of Listeria monocytogenes in food chain. Czech Journal of Food Sciences, 2012, 30, 83-88.	0.6	20
764	Distribuci \tilde{A}^3 n de serotipos de Listeria monocytogenes aislados de alimentos, Colombia, 2000-2009. Biomedica, 2012, 32, .	0.3	7
765	Aerosol-Based Efficient Delivery of Clarithromycin, a Macrolide Antimicrobial Agent, to Lung Epithelial Lining Fluid and Alveolar Macrophages for Treatment of Respiratory Infections. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2012, 25, 110-115.	0.7	19
766	Single Cell Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Analytical Chemistry, 2012, 84, 6293-6297.	3.2	176
767	The mammalian microRNA response to bacterial infections. RNA Biology, 2012, 9, 742-750.	1.5	183
768	Development of Vaccine Delivery Vehicles Based on Lactic Acid Bacteria. Molecular Biotechnology, 2012, 51, 183-199.	1.3	42
769	Rapid molecular identification of Listeria species by use of real-time PCR and high-resolution melting analysis. FEMS Microbiology Letters, 2012, 330, 72-80.	0.7	33
770	EXPRESSION OF VIRULENCE GENES OF <i>LISTERIA MONOCYTOGENES</i> IN FOOD. Journal of Food Safety, 2012, 32, 161-168.	1.1	40
771	The genome sequence of the lactic acid bacterium, Carnobacterium maltaromaticum ATCC 35586 encodes potential virulence factors. International Journal of Food Microbiology, 2012, 152, 107-115.	2.1	39
772	Strain dependent expression of stress response and virulence genes of Listeria monocytogenes in meat juices as determined by microarray. International Journal of Food Microbiology, 2012, 152, 116-122.	2.1	61
773	Initial adhesion of Listeria monocytogenes to solid surfaces under liquid flow. International Journal of Food Microbiology, 2012, 152, 181-188.	2.1	29
774	Prevalence, populations and pheno- and genotypic characteristics of Listeria monocytogenes isolated from ready-to-eat vegetables marketed in São Paulo, Brazil. International Journal of Food Microbiology, 2012, 155, 1-9.	2.1	92
775	Plant-derived antimicrobials reduce Listeria monocytogenes virulence factors in vitro, and down-regulate expression of virulence genes. International Journal of Food Microbiology, 2012, 157, 88-94.	2.1	79
776	Clinical Development of Listeria monocytogenes–Based Immunotherapies. Seminars in Oncology, 2012, 39, 311-322.	0.8	58

#	Article	IF	CITATIONS
777	Nanomedicine for intracellular therapy. FEMS Microbiology Letters, 2012, 332, 1-9.	0.7	26
778	Application of subproteomics in the characterization of Gram-positive bacteria. Journal of Proteomics, 2012, 75, 2803-2810.	1.2	13
779	Precise detection of L. monocytogenes hitting its highly conserved region possessing several specific antibody binding sites. Journal of Theoretical Biology, 2012, 305, 15-23.	0.8	23
780	Reprint of: Novel approach to decontaminate food-packaging from pathogens in non-thermal and not chemical way: Chlorophyllin-based photosensitization. Journal of Food Engineering, 2012, 110, 317-323.	2.7	4
781	Allosteric mutants show that PrfA activation is dispensable for vacuole escape but required for efficient spread and <i>Listeria</i> survival <i>in vivo</i> Molecular Microbiology, 2012, 85, 461-477.	1.2	25
782	Activation of the unfolded protein response by Listeria monocytogenes. Cellular Microbiology, 2012, 14, 949-964.	1.1	107
783	Listeria bacteriophage peptidoglycan hydrolases feature high thermoresistance and reveal increased activity after divalent metal cation substitution. Applied Microbiology and Biotechnology, 2012, 93, 633-643.	1.7	62
784	Influence of planktonic and sessile Listeria monocytogenes on Caenorhabditis elegans. Archives of Microbiology, 2013, 195, 19-26.	1.0	8
785	Cellular and molecular investigations of the adhesion and mechanics of Listeria monocytogenes lineages' I and II environmental and epidemic strains. Journal of Colloid and Interface Science, 2013, 394, 554-563.	5.0	11
786	On the behavior of Listeria innocua and Lactobacillus acidophilus co-inoculated in a dairy dessert and the potential impacts on food safety and product's functionality. Food Control, 2013, 34, 331-335.	2.8	27
787	Simultaneous detection of Listeria species isolated from meat processed foods using multiplex PCR. Food Control, 2013, 32, 659-664.	2.8	65
788	Acid shock of Listeria monocytogenes at low environmental temperatures induces prfA, epithelial cell invasion, and lethality towards Caenorhabditis elegans. BMC Genomics, 2013, 14, 285.	1.2	29
789	Sphingolipids in Disease. Handbook of Experimental Pharmacology, 2013, , .	0.9	7
790	Mass spectrometry imaging with high resolution in mass and space. Histochemistry and Cell Biology, 2013, 139, 759-783.	0.8	294
791	Effects of high hydrostatic pressure and varying concentrations of sodium nitrite from traditional and vegetable-based sources on the growth of Listeria monocytogenes on ready-to-eat (RTE) sliced ham. Meat Science, 2013, 94, 69-76.	2.7	43
792	PrfA Led to Reduced Biofilm Formation and Contributed to Altered Gene Expression Patterns in Biofilm-Forming Listeria monocytogenes. Current Microbiology, 2013, 67, 372-378.	1.0	32
793	Genome sequencing identifies Listeria fleischmannii subsp. coloradonensis subsp. nov., isolated from a ranch. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 3257-3268.	0.8	46
794	The transcriptional response of virulence genes in Listeria monocytogenes during inactivation by nisin. Food Control, 2013, 31, 519-524.	2.8	16

#	Article	IF	CITATIONS
795	Role of Pore-Forming Toxins in Bacterial Infectious Diseases. Microbiology and Molecular Biology Reviews, 2013, 77, 173-207.	2.9	339
796	Assessing in-house monitoring efficiency by tracing contamination rates in cheese lots recalled during an outbreak of listeriosis in Austria. International Journal of Food Microbiology, 2013, 167, 353-358.	2.1	15
797	Survival of Listeria monocytogenes Cells and the Effect of Extended Frozen Storage (â^20Â^°C) on the Expression of Its Virulence Gene. Applied Biochemistry and Biotechnology, 2013, 170, 1174-1183.	1.4	15
798	Nucleic acid aptamers for capture and detection of Listeria spp. Journal of Biotechnology, 2013, 167, 454-461.	1.9	71
799	Characterization of Listeria monocytogenes isolated from Ganges water, human clinical and milk samples at Varanasi, India. Infection, Genetics and Evolution, 2013, 14, 83-91.	1.0	65
800	<i>Listeria monocytogenes</i> : Cultivation and Laboratory Maintenance. Current Protocols in Microbiology, 2013, 31, 9B.2.1-9B.2.7.	6.5	28
801	Strain variability of the behavior of foodborne bacterial pathogens: A review. International Journal of Food Microbiology, 2013, 167, 310-321.	2.1	108
802	Proteomic Identification of <i>Listeria monocytogenes </i> Surface-Associated Proteins. Proteomics, 2013, 13, n/a-n/a.	1.3	12
803	The effect of sublethal concentrations of benzalkonium chloride on invasiveness and intracellular proliferation of Listeria monocytogenes. Food Control, 2013, 31, 230-235.	2.8	28
804	Anti-infective properties of bacteriocins: an update. Cellular and Molecular Life Sciences, 2013, 70, 2947-2967.	2.4	123
805	Fate of Listeria monocytogenes in Gouda microcheese: No growth, andÂsubstantial inactivation after extended ripening times. International Dairy Journal, 2013, 32, 192-198.	1.5	26
806	Reassessment of the Listeria monocytogenespan-genome reveals dynamic integration hotspots and mobile genetic elements as major components of the accessory genome. BMC Genomics, 2013, 14, 47.	1.2	212
807	Use of ferulic acid as a novel candidate of growth inhibiting agent against Listeria monocytogenes in ready-to-eat food. Food Control, 2013, 33, 244-248.	2.8	40
808	Bacterial invasion factors: Tools for crossing biological barriers and drug delivery?. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 242-250.	2.0	20
809	Bacterial Infections and Ceramide. Handbook of Experimental Pharmacology, 2013, , 305-320.	0.9	19
810	Isolation and characterization of Listeria monocytogenes from tropical seafood of Kerala, India. Annals of Microbiology, 2013, 63, 1093-1098.	1.1	20
811	The surface proteins InIA and InIB are interdependently required for polar basolateral invasion by Listeria monocytogenes in a human model of the blood–cerebrospinal fluid barrier. Microbes and Infection, 2013, 15, 291-301.	1.0	56
812	Occurrence of mutations impairing sigma factor B (SigB) function upon inactivation of Listeria monocytogenes genes encoding surface proteins. Microbiology (United Kingdom), 2013, 159, 1328-1339.	0.7	12

#	Article	IF	CITATIONS
813	Ecological and genetic mechanisms of development of epidemiologically significant strains of sapronosis causative agents. Biology Bulletin Reviews, 2013, 3, 125-138.	0.3	8
814	The effect of milk components and storage conditions on the virulence of Listeria monocytogenes as determined by a Caco-2 cell assay. International Journal of Food Microbiology, 2013, 166, 59-64.	2.1	27
815	Listeria. , 2013, , 219-235.		1
816	Live-attenuated <i>Listeria</i> -based immunotherapy. Expert Review of Vaccines, 2013, 12, 493-504.	2.0	37
817	Pulsed-field gel electrophoresis pattern similarities betweenListeria monocytogenesisolated from human patients and poultry in Chile. CYTA - Journal of Food, 2013, 11, 14-18.	0.9	5
818	Atypical cerebral listeriosis associated with Listeria innocua in a beef bull. Research in Veterinary Science, 2013, 94, 111-114.	0.9	19
819	OF MICE AND MEN: DISSECTING THE INTERACTION BETWEEN LISTERIA MONOCYTOGENES INTERNALIN A AND E-CADHERIN. Computational and Structural Biotechnology Journal, 2013, 6, e201303022.	1.9	1
820	Assessment of pressure-induced inactivation of Listeria monocytogenes exposed to low pHs. Food Science and Biotechnology, 2013, 22, 99-105.	1.2	13
821	Microbial profile in women with puerperal sepsis in Gadarif State, Eastern Sudan. Annals of Tropical Medicine and Public Health, 2013, 6, 460.	0.1	1
822	The Pore-Forming Haemolysins of Bacillus Cereus: A Review. Toxins, 2013, 5, 1119-1139.	1.5	134
823	Use of Immunoperoxidase Technique in Smears Prepared from Vaginal Secretions in Early Diagnosis of Listerial Abortions in Cattle. Kafkas Universitesi Veteriner Fakultesi Dergisi, 2013, , .	0.0	0
824	Roles of Autophagy in Elimination of Intracellular Bacterial Pathogens. Frontiers in Immunology, 2013, 4, 97.	2.2	122
825	Incidence of Listeria monocytogenes and Listeria spp. in a Small-Scale Mushroom Production Facility. Journal of Food Protection, 2013, 76, 608-615.	0.8	45
826	Impact of the Listeria monocytogenes Protein InIC on Infection in Mice. Infection and Immunity, 2013, 81, 1334-1340.	1.0	20
827	Ruminant Rhombencephalitis-Associated Listeria monocytogenes Strains Constitute a Genetically Homogeneous Group Related to Human Outbreak Strains. Applied and Environmental Microbiology, 2013, 79, 3059-3066.	1.4	46
828	Listeria monocytogenes aguA1, but Not aguA2, Encodes a Functional Agmatine Deiminase. Journal of Biological Chemistry, 2013, 288, 26606-26615.	1.6	20
829	Listeria monocytogenes strains encoding premature stop codons in inlA invade mice and guinea pig fetuses in orally dosed dams. Journal of Medical Microbiology, 2013, 62, 1799-1806.	0.7	22
830	Prevalence of Listeria monocytogenes in the crayfish (Astacus leptodactylus) by polymerase chain reaction in Iran. International Journal of Biosciences, 2013, 3, 160-169.	0.4	2

#	Article	IF	Citations
831	Pathogenesis of listeriosis during pregnancy. Animal Health Research Reviews, 2013, 14, 30-39.	1.4	35
832	Crystallization and X-ray crystallographic analysis of the cholesterol-dependent cytolysin listeriolysin O fromListeria monocytogenes. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 1212-1215.	0.7	6
833	A Differential Fluorescence-Based Genetic Screen Identifies Listeria monocytogenes Determinants Required for Intracellular Replication. Journal of Bacteriology, 2013, 195, 3331-3340.	1.0	11
834	Listeriosis during Pregnancy: A Public Health Concern. ISRN Obstetrics & Gynecology, 2013, 2013, 1-6.	1.2	87
835	Comparative Analysis of the Exoproteomes of Listeria monocytogenes Strains Grown at Low Temperatures. Foodborne Pathogens and Disease, 2013, 10, 428-434.	0.8	22
836	Fibronectinâ€binding protein, FbpA, is the adhesin responsible for pathogenesis of <i>Listeria monocytogenes</i> infection. Microbiology and Immunology, 2013, 57, 253-262.	0.7	28
837	Prevalence and Antimicrobial Susceptibility of Foodborne Bacteria in Wild Boars (<i>Sus scrofa</i>) and Wild Deer (<i>Cervus nippon</i>) in Japan. Foodborne Pathogens and Disease, 2013, 10, 985-991.	0.8	56
838	Salt stress-induced invasiveness of major <i>Listeria monocytogenes</i> serotypes. Letters in Applied Microbiology, 2013, 56, 216-221.	1.0	21
839	Listeriolysin O as a strong immunogenic molecule for the development of new anti-tumor vaccines. Human Vaccines and Immunotherapeutics, 2013, 9, 1058-1068.	1.4	20
840	<i>Listeria</i> phages. Bacteriophage, 2013, 3, e26861.	1.9	70
841	Molecular mechanisms of cell–cell spread of intracellular bacterial pathogens. Open Biology, 2013, 3, 130079.	1.5	62
842	Molecular Approaches to the Identification of Pathogenic and Nonpathogenic Listeriae. Microbiology Insights, 2013, 6, MBI.S10880.	0.9	13
843	Prevalence and Characterization of Foodborne Pathogens in Dairy Cattle in the Eastern Part of Japan. Journal of Veterinary Medical Science, 2013, 75, 543-546.	0.3	10
845	Efecto de tiempo y temperatura de cocci \tilde{A}^3 n en chorizo inoculados artificialmente con Listeria monocytogenes. Universitas Scientiarum, 2013, 14, 198.	0.2	0
846	Structural features of the two-component system LisR/LisK suggests multiple responses for the adaptation and survival of Listeria monocytogenes. Universitas Scientiarum, 2013, 18, 189.	0.2	2
847	Route of Infection Determines the Impact of Type I Interferons on Innate Immunity to Listeria monocytogenes. PLoS ONE, 2013, 8, e65007.	1.1	42
848	CD14-Dependent Monocyte Isolation Enhances Phagocytosis of Listeria monocytogenes by Proinflammatory, GM-CSF-Derived Macrophages. PLoS ONE, 2013, 8, e66898.	1.1	41
849	A Mariner Transposon-Based Signature-Tagged Mutagenesis System for the Analysis of Oral Infection by Listeria monocytogenes. PLoS ONE, 2013, 8, e75437.	1.1	14

#	Article	IF	CITATIONS
850	Puerperal Sepsis in a Rural Hospital in Sudan. Materia Socio-medica, 2013, 25, 19.	0.3	10
851	Suppression of Listeria monocytogenes by the Native Micro-Flora in Teewurst Sausage. Foods, 2013, 2, 478-487.	1.9	2
852	Age-Dependent Differences in Systemic and Cell-Autonomous Immunity toL. monocytogenes. Clinical and Developmental Immunology, 2013, 2013, 1-13.	3.3	11
853	Listeria., 2013, , 199-216.		9
854	Cold Plasma Therapy. , 2014, , 343-367.		3
855	ldentification of Listeria monocytogenes Determinants Required for Biofilm Formation. PLoS ONE, 2014, 9, e113696.	1.1	48
856	Detection of Very Long Antisense Transcripts by Whole Transcriptome RNA-Seq Analysis of Listeria monocytogenes by Semiconductor Sequencing Technology. PLoS ONE, 2014, 9, e108639.	1.1	23
857	Prediction of B-Cell Epitopes in Listeriolysin O, a Cholesterol Dependent Cytolysin Secreted by <i>Listeria monocytogenes</i> . Advances in Bioinformatics, 2014, 2014, 1-9.	5.7	3
858	Exploring the chicken embryo as a possible model for studying Listeria monocytogenes pathogenicity. Frontiers in Cellular and Infection Microbiology, 2014, 4, 170.	1.8	10
859	Transcriptome analysis of Listeria monocytogenes exposed to biocide stress reveals a multi-system response involving cell wall synthesis, sugar uptake, and motility. Frontiers in Microbiology, 2014, 5, 68.	1.5	75
860	Listeria monocytogenesâ~†., 2014, , .		0
861	Listeria monocytogenes. Human Vaccines and Immunotherapeutics, 2014, 10, 1036-1046.	1.4	7
862	DExD-box RNA-helicases in <i>Listeria monocytogenes</i> ener important for growth, ribosomal maturation, rRNA processing and virulence factor expression. RNA Biology, 2014, 11, 1457-1466.	1.5	29
863	Virulence and genotypic characterization of Listeria monocytogenes isolated from vegetable and soil samples. BMC Microbiology, 2014, 14, 241.	1.3	58
864	Systemic Listeria monocytogenes infection in a 2-year-old immunocompetent child. Infection, 2014, 42, 1055-1059.	2.3	5
865	Potential of cell-free supernatants from cultures of selected lactic acid bacteria and yeast obtained from local fermented foods as inhibitors of Listeria monocytogenes, Salmonella spp. and Staphylococcus aureus. BMC Research Notes, 2014, 7, 606.	0.6	49
866	Listeria monocytogenes and the Genus Listeria. , 2014, , 241-259.		4
867	MICROBIOLOGICAL SAFETY OF MEAT Listeria monocytogenes. , 2014, , 348-356.		1

#	Article	IF	Citations
868	Gene Transcription Patterns of pH- and Salt-Stressed Listeria monocytogenes Cells in Simulated Gastric and Pancreatic Conditions. Journal of Food Protection, 2014, 77, 254-261.	0.8	4
869	Rapid Detection of Listeria monocytogenes by Real-Time PCR in Processed Meat and Dairy Products. Journal of Food Protection, 2014, 77, 453-458.	0.8	20
870	Low Occurrence of Listeria monocytogenes on Bovine Hides and Carcasses in Minas Gerais State, Brazil: Molecular Characterization and Antimicrobial Resistance. Journal of Food Protection, 2014, 77, 1148-1152.	0.8	17
871	Delivery of Selective Agents via Time-Delayed Release Tablets Improves Recovery of Listeria monocytogenes Injured by Acid and Nitrite. Journal of Food Protection, 2014, 77, 772-780.	0.8	1
872	The Listeria Small RNA Rli27 Regulates a Cell Wall Protein inside Eukaryotic Cells by Targeting a Long 5′-UTR Variant. PLoS Genetics, 2014, 10, e1004765.	1.5	48
873	Monitoring occurrence and persistence of Listeria monocytogenes in foods and food processing environments in the Republic of Ireland. Frontiers in Microbiology, 2014, 5, 436.	1.5	118
874	Comparison of Listeria monocytogenes Isolates across the Island of Ireland. Journal of Food Protection, 2014, 77, 1402-1406.	0.8	4
875	Genome Sequences of Three Frequently Used Listeria monocytogenes and Listeria ivanovii Strains. Genome Announcements, 2014, 2, .	0.8	9
876	Draft Genome Sequence of Listeria monocytogenes Strain LI0521 (syn. HPB7171), Isolated in 1983 during an Outbreak in Massachusetts Caused by Contaminated Cheese. Genome Announcements, 2014, 2, .	0.8	10
877	Whole-Genome Sequence of Listeria monocytogenes Type Strain 53 XXIII. Genome Announcements, 2014, 2, .	0.8	O
878	The <i>Drosophila</i> Deubiquitinating Enzyme dUSP36 Acts in the Hemocytes for Tolerance to <i>Listeria monocytogenes</i> Infections. Journal of Innate Immunity, 2014, 6, 632-638.	1.8	8
879	Geographical and Meteorological Factors Associated with Isolation of Listeria Species in New York State Produce Production and Natural Environments. Journal of Food Protection, 2014, 77, 1919-1928.	0.8	89
880	Impact of <i>Sod</i> on the Expression of Stressâ€Related Genes in <i>Listeria monocytogenes</i> 4b G with/without Paraquat Treatment. Journal of Food Science, 2014, 79, M1745-9.	1.5	12
881	<i>Listeria monocytogenes</i> antagonizes the human GTPase Cdc42 to promote bacterial spread. Cellular Microbiology, 2014, 16, 1068-1079.	1.1	23
882	Role of <scp>PdxR</scp> in the activation of vitamin <scp>B</scp> ₆ biosynthesis in <scp><i>L</i></scp> <ii>steria monocytogenes. Molecular Microbiology, 2014, 92, 1113-1128.</ii>	1.2	38
883	Multifaceted Activity of Listeriolysin O, the Cholesterol-Dependent Cytolysin of Listeria monocytogenes. Sub-Cellular Biochemistry, 2014, 80, 161-195.	1.0	64
884	Identification of the haemolytic activity of <i><scp>M</scp>alassezia</i> species. Mycoses, 2014, 57, 163-168.	1.8	11
885	<i>Listeria monocytogenes</i> in Aquatic Food Products—A Review. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 798-813.	5.9	125

#	Article	IF	CITATIONS
886	Role of host GTPases in infection by <i>Lii>isteria monocytogenes</i> . Cellular Microbiology, 2014, 16, 1311-1320.	1.1	28
887	Quantitative Proteome Analyses Identify PrfA-Responsive Proteins and Phosphoproteins in <i>Listeria monocytogenes</i> . Journal of Proteome Research, 2014, 13, 6046-6057.	1.8	28
888	The surface protein Lmo1941 with LysM domain influences cell wall structure and susceptibility of <i>Listeria monocytogenes</i> to cephalosporins. FEMS Microbiology Letters, 2014, 357, n/a-n/a.	0.7	3
889	<i>Listeria monocytogenes</i> in Vacuumâ€Packed Smoked Fish Products: Occurrence, Routes of Contamination, and Potential Intervention Measures. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 172-189.	5.9	39
890	The Pore-Forming Toxin Listeriolysin O Is Degraded by Neutrophil Metalloproteinase-8 and Fails To Mediate <i>Listeria monocytogenes</i> Intracellular Survival in Neutrophils. Journal of Immunology, 2014, 192, 234-244.	0.4	29
891	Prevalence, pathogenic capability, virulence genes, biofilm formation, and antibiotic resistance of <i>Listeria </i> ion goat and sheep milk confirms need of hygienic milking conditions. Pathogens and Global Health, 2014, 108, 21-29.	1.0	44
892	To Eat or Not to Eat. JAMA Pediatrics, 2014, 168, 109.	3.3	1
893	The fate of Listeria monocytogenes in brine and on Gouda cheese following artificial contamination during brining. International Dairy Journal, 2014, 39, 253-258.	1.5	13
894	Expression of Porcine Respiratory and Reproductive Syndrome Virus Membrane-Associated Proteins in Listeria ivanovii via a Genome Site-Specific Integration and Expression System. Journal of Molecular Microbiology and Biotechnology, 2014, 24, 191-195.	1.0	11
895	Role of the <i>Listeria monocytogenes </i> 2-Cys peroxiredoxin homologue in protection against oxidative and nitrosative stress and in virulence. Pathogens and Disease, 2014, 70, 70-74.	0.8	22
896	Opportunistic infections in patients with pemphigus. Journal of the American Academy of Dermatology, 2014, 71, 284-292.	0.6	40
897	Listeria ivanovii ATCC 19119 strain behaviour is modulated by iron and acid stress. Food Microbiology, 2014, 42, 66-71.	2.1	4
898	Misregulation of the broad-range phospholipase C activity increases the susceptibility of Listeria monocytogenes to intracellular killing by neutrophils. Microbes and Infection, 2014, 16, 104-113.	1.0	7
899	<scp><i>L</i></scp> <i>i>Li>isteria</i> hage <scp>A</scp> 511, a model for the contractile tail machineries of <scp>SPO</scp> 1â€related bacteriophages. Molecular Microbiology, 2014, 92, 84-99.	1.2	55
900	Antimicrobial effect of blueberry (Vaccinium corymbosum L.) extracts against the growth of Listeria monocytogenes and Salmonella Enteritidis. Food Control, 2014, 35, 159-165.	2.8	97
901	Isolation of <i>Listeria monocytogenes</i> from Food and Water: Official and Experimental Protocols. Current Protocols in Microbiology, 2014, 33, 9B.5.1-19.	6.5	6
902	MACPF/CDC Proteins - Agents of Defence, Attack and Invasion. Sub-Cellular Biochemistry, 2014, , .	1.0	9
903	Highâ€Throughput Screening of Metalâ€ <i>N</i> à€Heterocyclic Carbene Complexes against Biofilm Formation by Pathogenic Bacteria. ChemMedChem, 2014, 9, 1140-1144.	1.6	24

#	Article	IF	CITATIONS
904	Structural and molecular insights into novel surfaceâ€exposed mucus adhesins from <scp><i>L</i></scp> <i>actobacillus reuteri</i> human strains. Molecular Microbiology, 2014, 92, 543-556.	1.2	29
905	In Vitro and In Vivo Antibacterial and Antifungal Screening of Natural Plant Products: Prospective Standardization of Basic Methods. Springer Protocols, 2014, , 275-291.	0.1	4
906	Prevalence and characterization of Listeria monocytogenes isolated from retail-level ready-to-eat foods in South China. Food Control, 2014, 38, 1-7.	2.8	69
907	ldentification of six <i>Listeria</i> species by real-time PCR assay. Letters in Applied Microbiology, 2014, 58, 535-540.	1.0	15
908	Confirmed low prevalence of Listeria mastitis in she-camel milk delivers a safe, alternative milk for human consumption. Acta Tropica, 2014, 130, 1-6.	0.9	20
909	Evaluation of the anti-Listeria potentials of some plant-derived triterpenes. Annals of Clinical Microbiology and Antimicrobials, 2014, 13, 37.	1.7	9
910	Tracing innate immune defences along the path of <i>Listeria monocytogenes</i> infection. Immunology and Cell Biology, 2014, 92, 563-569.	1.0	16
911	Listeria monocytogenes Is Resistant to Lysozyme through the Regulation, Not the Acquisition, of Cell Wall-Modifying Enzymes. Journal of Bacteriology, 2014, 196, 3756-3767.	1.0	58
912	Screening in Planarians Identifies MORN2 as a Key Component in LC3-Associated Phagocytosis and Resistance to Bacterial Infection. Cell Host and Microbe, 2014, 16, 338-350.	5.1	95
913	Deletion of the membrane protein Lmo0412 increases the virulence of Listeria monocytogenes. Microbes and Infection, 2014, 16, 623-632.	1.0	9
914	Listériose humaine: Une zoonose d'origine alimentaire. Revue Francophone Des Laboratoires, 2014, 2014, 37-44.	0.0	5
915	Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 1. Advances in Biochemical Engineering/Biotechnology, 2014, , .	0.6	4
916	Is the Exoproteome Important for Bacterial Pathogenesis? Lessons Learned from Interstrain Exoprotein Diversity inListeria monocytogenesGrown at Different Temperatures. OMICS A Journal of Integrative Biology, 2014, 18, 553-569.	1.0	10
917	Biofilm Formation under Different Temperature Conditions by a Single Genotype of Persistent Listeria monocytogenes Strains. Journal of Food Protection, 2014, 77, 133-140.	0.8	25
918	Prevalence and Contamination Patterns of <i>Listeria monocytogenes</i> in <i>Flammulina velutipes</i> Plants. Foodborne Pathogens and Disease, 2014, 11, 620-627.	0.8	27
919	Laboratory diagnosis of ruminant abortion in Europe. Veterinary Journal, 2014, 200, 218-229.	0.6	51
920	A Study on Detection of Pathogenic Listeria monocytogenes in Ovine's of Kashmir Region Having Abortion or History of Abortion. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2014, 84, 311-316.	0.4	7
921	Atypical Listeria innocua strains possess an intact LIPI-3. BMC Microbiology, 2014, 14, 58.	1.3	39

#	Article	IF	CITATIONS
922	Detection of Bacteria with Bioluminescent Reporter Bacteriophage. Advances in Biochemical Engineering/Biotechnology, 2014, 144, 155-171.	0.6	10
923	An educationally inspired illustration of two-dimensional Quantitative Microbiological Risk Assessment (QMRA) and sensitivity analysis. International Journal of Food Microbiology, 2014, 190, 31-43.	2.1	16
924	Structural Details of Human Tuba Recruitment by InlC of Listeria monocytogenes Elucidate Bacterial Cell-Cell Spreading. Structure, 2014, 22, 304-314.	1.6	25
925	The Listeria monocytogenes LPXTG surface protein Lmo1413 is an invasin with capacity to bind mucin. International Journal of Medical Microbiology, 2014, 304, 393-404.	1.5	23
926	Clay mineral type effect on bacterial enteropathogen survival in soil. Science of the Total Environment, 2014, 468-469, 302-305.	3.9	45
927	Listeria monocytogenes. Methods in Molecular Biology, 2014, , .	0.4	6
928	Selection and characterization of DNA aptamers specific for Listeria species. Analytical Biochemistry, 2014, 459, 39-45.	1.1	56
929	Toxin production and growth of pathogens subjected to temperature fluctuations simulating consumer handling of cold cuts. International Journal of Food Microbiology, 2014, 185, 82-92.	2.1	22
930	Basic Studies on the Quality and Safety of Foods Stored and Distributed at Low temperature. Journal of the Japanese Society for Food Science and Technology, 2014, 61, 101-107.	0.1	0
931	The bacterial pathogen Listeria monocytogenes and the interferon family: type I, type II and type III interferons. Frontiers in Cellular and Infection Microbiology, 2014, 4, 50.	1.8	86
932	Phages of Listeria offer novel tools for diagnostics and biocontrol. Frontiers in Microbiology, 2014, 5, 159.	1.5	36
933	What Genomics Has Taught Us about Intracellular Pathogens: the Example of Listeria monocytogenes. , 2014, , 361-391.		0
934	Contamination of Poultry Products with <i>Listeria monocytogenes</i> at Poultry Processing Plants. Journal of Veterinary Medical Science, 2014, 76, 129-132.	0.3	7
935	12. Listeria monocytogenes in game meat cured sausages. , 2014, , 167-174.		1
936	<scp>PrfA</scp> regulation offsets the cost of <scp><i>L</i></scp> <i>isteria</i> virulence outside the host. Environmental Microbiology, 2015, 17, 4566-4579.	1.8	56
939	Aminopeptidase T of M29 Family Acts as A Novel Intracellular Virulence Factor for Listeria monocytogenes Infection. Scientific Reports, 2015, 5, 17370.	1.6	23
940	Risk assessment of <i>Listeria monocytogenes</i> in poultry and beef. British Food Journal, 2015, 117, 779-792.	1.6	10
941	Bacteriophage predation promotes serovar diversification in <scp><i>L</i></scp> <i>isteria monocytogenes</i> . Molecular Microbiology, 2015, 97, 33-46.	1.2	54

#	Article	IF	CITATIONS
942	Development of ListeriaBase and comparative analysis of Listeria monocytogenes. BMC Genomics, 2015, 16, 755.	1.2	8
943	Total phenolic and flavonoid content and antibacterial activity of Punica granatum L. var. pleniflora flowers (Golnar) against bacterial strains causing foodborne diseases. BMC Complementary and Alternative Medicine, 2015, 15, 366.	3.7	71
944	Design and Stereoselective Synthesis of ProMâ€2: A Spirocyclic Diproline Mimetic with Polyproline Type II (PPII) Helix Conformation. Chemistry - A European Journal, 2015, 21, 8464-8470.	1.7	16
945	Identification of high-risk <i>Listeria monocytogenes</i> serotypes in lineage I (serotype 1/2a, 1/2c, 3a) Tj ETQq1 1	0.784314 1.4	rgBT /Over
947	Development of a Loopâ€Mediated Isothermal Amplification Assay Based on Imo0460 Sequence for Detection of <scp><i>I></i><td>1.1</td><td>11</td></scp>	1.1	11
948	Identification of Listeria spp. strains isolated from meat products and meat production plants by multiplex polymerase chain reaction. Italian Journal of Food Safety, 2015, 4, 5498.	0.5	5
949	Incidence of Listeria monocytogenes in Meat Product Samples by Real-Time PCR. Modern Chemistry & Applications, 2015, 03, .	0.2	0
950	Biopreservation of Fresh Orange Juice Using Antilisterial Bacteriocins 101 and Antilisterial Bacteriocin 103 Purified from Leuconostoc mesenteroides. Journal of Food Processing & Technology, 2015, 06, .	0.2	2
951	Isolation of <i>Listeria monocytogenes</i> recovered from some ready-to-eat foods sold in Kano, north-western Nigeria. Bayero Journal of Pure and Applied Sciences, 2015, 7, 8.	0.1	2
952	Peptides extracted from <i>Artemisia herba alba</i> have antimicrobial activity against foodborne pathogenic gram-positive bacteria. Tropical Journal of Obstetrics and Gynaecology, 2015, 12, 68.	0.3	O
953	Listeria Meningitis Complicating Alemtuzumab Treatment in Multiple Sclerosisâ€"Report of Two Cases. International Journal of Molecular Sciences, 2015, 16, 14669-14676.	1.8	69
954	Molecular epidemiology and genetic diversity of Listeria monocytogenes isolates from a wide variety of ready-to-eat foods and their relationship to clinical strains from listeriosis outbreaks in Chile. Frontiers in Microbiology, 2015, 6, 384.	1.5	96
955	Prevalence, enumeration, and pheno- and genotypic characteristics of Listeria monocytogenes isolated from raw foods in South China. Frontiers in Microbiology, 2015, 6, 1026.	1.5	43
956	A tail of two phages: genomic and functional analysis of Listeria monocytogenes phages vB_LmoS_188 and vB_LmoS_293 reveal the receptor-binding proteins involved in host specificity. Frontiers in Microbiology, 2015, 6, 1107.	1.5	17
957	The Mutualistic Side of Wolbachia–Isopod Interactions: Wolbachia Mediated Protection Against Pathogenic Intracellular Bacteria. Frontiers in Microbiology, 2015, 6, 1388.	1.5	25
958	DNase-Sensitive and -Resistant Modes of Biofilm Formation by Listeria monocytogenes. Frontiers in Microbiology, 2015, 6, 1428.	1.5	38
959	Solitary Supratentorial <i>Listeria Monocytogenes </i> Patient. Baylor University Medical Center Proceedings, 2015, 28, 337-339.	0.2	5
960	Listeriolysin O Affects the Permeability of Caco-2 Monolayer in a Pore-Dependent and Ca2+-Independent Manner. PLoS ONE, 2015, 10, e0130471.	1.1	21

#	Article	IF	CITATIONS
961	Prospective uses of recombinant Lactococcus lactis expressing both listeriolysin O and mutated internalin A from Listeria monocytogenes as a tool for DNA vaccination. Genetics and Molecular Research, 2015, 14, 18485-18493.	0.3	5
962	Occurrence, Persistence, and Virulence Potential of (i) Listeria ivanovii (i) in Foods and Food Processing Environments in the Republic of Ireland. BioMed Research International, 2015, 2015, 1-10.	0.9	20
963	Pneumonia by <i>Listeria monocytogenes</i> : A Common Infection by an Uncommon Pathogen. Case Reports in Infectious Diseases, 2015, 2015, 1-3.	0.2	6
964	Transcriptome and Histopathological Changes in Mouse Brain Infected with Neospora caninum. Scientific Reports, 2015, 5, 7936.	1.6	16
965	Listeriolysin O mediates cytotoxicity against human brain microvascular endothelial cells. FEMS Microbiology Letters, 2015, 362, fnv084.	0.7	8
966	Crucial Roles of TNFAIP8 Protein in Regulating Apoptosis and <i>Listeria </i> Infection. Journal of Immunology, 2015, 194, 5743-5750.	0.4	29
967	Bioprospects of Coastal Eubacteria. , 2015, , .		3
968	Ceramide and sphingosine in pulmonary infections. Biological Chemistry, 2015, 396, 611-620.	1.2	41
969	Activation of PrfA results in overexpression of virulence factors but does not rescue the pathogenicity of Listeria monocytogenes M7. Journal of Medical Microbiology, 2015, 64, 818-827.	0.7	7
970	Novel inhibitor discovery and the conformational analysis of inhibitors of listeriolysin O via protein-ligand modeling. Scientific Reports, 2015, 5, 8864.	1.6	22
971	Genome Sequence of Listeria monocytogenes Strain HPB5415, Collected during a 2008 Listeriosis Outbreak in Canada. Genome Announcements, 2015, 3, .	0.8	4
972	Draft Genome Sequence of Listeria monocytogenes LM201, Isolated from Foodstuff. Genome Announcements, 2015, 3, .	0.8	6
973	Invasiveness of Listeria monocytogenes strains isolated from animals in Poland. Polish Journal of Veterinary Sciences, 2015, 18, 697-702.	0.2	4
974	The Bacillus cereus Group. , 2015, , 1041-1078.		5
975	A novel method to detect Listeria monocytogenes via superparamagnetic lateral flow immunoassay. Analytical and Bioanalytical Chemistry, 2015, 407, 529-535.	1.9	65
976	Structure and Mechanism of the Caseinolytic Protease ClpP1/2 Heterocomplex from <i>Listeria monocytogenes</i> . Angewandte Chemie - International Edition, 2015, 54, 3598-3602.	7.2	32
977	Contribution of the multiple Type I signal peptidases to the secretome of Listeria monocytogenes: Deciphering their specificity for secreted exoproteins by exoproteomic analysis. Journal of Proteomics, 2015, 117, 95-105.	1.2	17
978	<scp><i>L</i></scp> <ii>i>L<ii>i>isteria monocytogenes@dependent regulation. Molecular Microbiology, 2015, 96, 728-743.</ii></ii>	1.2	80

#	Article	IF	Citations
979	Listeria monocytogenes isolated from food samples from a Romanian black market show distinct virulence profiles. International Journal of Food Microbiology, 2015, 209, 44-51.	2.1	39
980	Rapid detection and differentiation of Listeria monocytogenes and Listeria species in deli meats by a new multiplex PCR method. Food Control, 2015, 52, 78-84.	2.8	32
981	Host endoplasmic reticulum COPII proteins control cell-to-cell spread of the bacterial pathogen <i>Listeria monocytogenes</i> Cellular Microbiology, 2015, 17, 876-892.	1.1	20
982	Haemolytic and coâ€haemolytic (<scp>CAMP</scp> â€like) activity in dermatophytes. Mycoses, 2015, 58, 40-47.	1.8	11
983	Complete Genome Sequence of Listeria monocytogenes NTSN, a Serovar 4b and Animal Source Strain. Genome Announcements, 2015, 3, .	0.8	1
984	Genotypic Analyses and Virulence Characterization of Listeria monocytogenes Isolates from Crayfish (Procambarus clarkii). Current Microbiology, 2015, 70, 704-709.	1.0	6
985	A <i>prl</i> Mutation in SecY Suppresses Secretion and Virulence Defects of Listeria monocytogenes secA2 Mutants. Journal of Bacteriology, 2015, 197, 932-942.	1.0	22
986	Bacteriocin production and inhibition of Listeria monocytogenes by Lactobacillus sakei subsp. sakei 2a in a potentially synbiotic cheese spread. Food Microbiology, 2015, 48, 143-152.	2.1	72
987	Genome Sequences of the Listeria ivanovii subsp. ivanovii Type Strain and Two Listeria ivanovii subsp. londoniensis Strains. Genome Announcements, 2015, 3, .	0.8	14
988	Survival Strategies of Intracellular Bacterial Pathogens. , 2015, , 491-515.		0
989	Receptor binding proteins of Listeria monocytogenes bacteriophages A118 and P35 recognize serovar-specific teichoic acids. Virology, 2015, 477, 110-118.	1.1	47
990	Outbreak investigation identifies a single Listeria monocytogenes strain in sheep with different clinical manifestations, soil and water. Veterinary Microbiology, 2015, 179, 69-75.	0.8	29
991	Rapid detection and identification methods for Listeria monocytogenes in the food chain – A review. Food Control, 2015, 55, 103-114.	2.8	140
992	Structural and Biochemical Analysis of the Essential Diadenylate Cyclase CdaA from Listeria monocytogenes. Journal of Biological Chemistry, 2015, 290, 6596-6606.	1.6	62
993	Listeria monocytogenes varies among strains to maintain intracellular pH homeostasis under stresses by different acids as analyzed by a high-throughput microplate-based fluorometry. Frontiers in Microbiology, 2015, 6, 15.	1.5	53
994	Characterization of specific alleles in InlA and PrfA of Listeria monocytogenes isolated from foods in Osaka, Japan and their ability to invade Caco-2 cells. International Journal of Food Microbiology, 2015, 211, 18-22.	2.1	22
995	Lamellipodin Is Important for Cell-to-Cell Spread and Actin-Based Motility in Listeria monocytogenes. Infection and Immunity, 2015, 83, 3740-3748.	1.0	16
996	Complete Genome Sequences of vB_LmoS_188 and vB_LmoS_293 , Two Bacteriophages with Specificity for Listeria monocytogenes Strains of Serotypes 4b and 4e. Genome Announcements, 2015, 3, .	0.8	28

#	Article	IF	CITATIONS
997	The challenge of challenge testing to monitor Listeria monocytogenes growth on ready-to-eat foods in Europe by following the European Commission (2014) Technical Guidance document. Food Research International, 2015, 75, 233-243.	2.9	54
998	Using the chicken embryo to assess virulence of Listeria monocytogenes and to model other microbial infections. Nature Protocols, 2015, 10, 1155-1164.	5.5	27
999	Listeriosis in animals, its public health significance (food-borne zoonosis) and advances in diagnosis and control: a comprehensive review. Veterinary Quarterly, 2015, 35, 211-235.	3.0	106
1000	The Human P-Glycoprotein Transporter Enhances the Type I Interferon Response to Listeria monocytogenes Infection. Infection and Immunity, 2015, 83, 2358-2368.	1.0	14
1001	Antimicrobial susceptibility of <i>Listeria monocytogenes </i> isolates from human cases in northern Italy, 2008–2010: MIC determination according to EUCAST broth microdilution method. Journal of Chemotherapy, 2015, 27, 201-206.	0.7	9
1002	Selection and Characterization of Phage-Resistant Mutant Strains of Listeria monocytogenes Reveal Host Genes Linked to Phage Adsorption. Applied and Environmental Microbiology, 2015, 81, 4295-4305.	1.4	78
1003	An essential role of a ferritin-like protein in acid stress tolerance of Listeria monocytogenes. Archives of Microbiology, 2015, 197, 347-351.	1.0	12
1004	[99mTc]Annexin V-128 SPECT Monitoring of Splenic and Disseminated Listeriosis in Mice: a Model of Imaging Sepsis. Molecular Imaging and Biology, 2015, 17, 345-354.	1.3	7
1005	Antibiotic Resistance of (i) Listeria monocytogenes (i) Isolated from Meat-Processing Environments, Beef Products, and Clinical Cases in Brazil. Microbial Drug Resistance, 2015, 21, 458-462.	0.9	25
1006	An update on the transport and metabolism of iron in Listeria monocytogenes: the role of proteins involved in pathogenicity. BioMetals, 2015, 28, 587-603.	1.8	40
1007	Avoidance of Autophagy Mediated by PlcA or ActA Is Required for Listeria monocytogenes Growth in Macrophages. Infection and Immunity, 2015, 83, 2175-2184.	1.0	82
1008	VirR-Mediated Resistance of Listeria monocytogenes against Food Antimicrobials and Cross-Protection Induced by Exposure to Organic Acid Salts. Applied and Environmental Microbiology, 2015, 81, 4553-4562.	1.4	61
1009	Biocidal Properties of a Glycosylated Surface: Sophorolipids on Au(111). ACS Applied Materials & Samp; Interfaces, 2015, 7, 18086-18095.	4.0	24
1010	Non-thermal microwave argon plasma affects interactions of Listeria monocytogenes with mammalian cells but it does not kill the intracellular pathogen. Clinical Plasma Medicine, 2015, 3, 87-92.	3.2	0
1011	Prevalence and Distribution of Listeria monocytogenes <i>inlA</i> Alleles Prone to Phase Variation and <i>inlA</i> Alleles with Premature Stop Codon Mutations among Human, Food, Animal, and Environmental Isolates. Applied and Environmental Microbiology, 2015, 81, 8339-8345.	1.4	51
1012	Spreading of multiple Listeria monocytogenes abscesses via central nervous system fiber tracts: case report. Journal of Neurosurgery, 2015, 123, 1593-1599.	0.9	21
1013	Prevalence, antimicrobial susceptibility and virulotyping of Listeria species and Listeria monocytogenes isolated from open-air fish markets. BMC Microbiology, 2015, 15, 144.	1.3	100
1014	Evaluation of DNA extraction methods for PCR-based detection of <i>Listeria monocytogenes</i> from vegetables. Letters in Applied Microbiology, 2015, 60, 265-272.	1.0	20

#	Article	IF	Citations
1015	The Listeria monocytogenes Hibernation-Promoting Factor Is Required for the Formation of 100S Ribosomes, Optimal Fitness, and Pathogenesis. Journal of Bacteriology, 2015, 197, 581-591.	1.0	38
1016	Molecular identification of bacteriocins produced by Lactococcus lactis dairy strains and their technological and genotypic characterization. Food Control, 2015, 51, 1-8.	2.8	29
1017	Listeria booriae sp. nov. and Listeria newyorkensis sp. nov., from food processing environments in the USA. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 286-292.	0.8	100
1018	Phages in the global fruit and vegetable industry. Journal of Applied Microbiology, 2015, 118, 537-556.	1.4	40
1019	Presence of Listeria monocytogenes in Chilean food matrices. Food Control, 2015, 50, 331-335.	2.8	22
1020	Fisetin Inhibits Listeria monocytogenes Virulence by Interfering With the Oligomerization of Listeriolysin O. Journal of Infectious Diseases, 2015, 211, 1376-1387.	1.9	78
1021	The roles of noncoding RNA Rli60 in regulating the virulence of Listeria monocytogenes. Journal of Microbiology, Immunology and Infection, 2016, 49, 502-508.	1.5	10
1022	Listeria monocytogenes Isolates Carrying Virulence-Attenuating Mutations in Internalin A Are Commonly Isolated from Ready-to-Eat Food Processing Plant and Retail Environments. Journal of Food Protection, 2016, 79, 1733-1740.	0.8	20
1023	Listeria: Listeriosis. , 2016, , 561-566.		1
1024	Molecular Characterization and Phylogenetic Analysis of (i) Listeria monocytogenes (i) Isolated from Milk and Milk Products in Kaduna, Nigeria. Canadian Journal of Infectious Diseases and Medical Microbiology, 2016, 2016, 1-7.	0.7	16
1025	Protective Effect of Carnobacterium spp. against Listeria monocytogenes during Host Cell Invasion Using In vitro HT29 Model. Frontiers in Cellular and Infection Microbiology, 2016, 6, 88.	1.8	14
1026	Temperature Significantly Affects the Plaquing and Adsorption Efficiencies of Listeria Phages. Frontiers in Microbiology, 2016, 7, 631.	1.5	50
1027	Listeria ivanovii Infection in Mice: Restricted to the Liver and Lung with Limited Replication in the Spleen. Frontiers in Microbiology, 2016, 7, 790.	1.5	11
1028	Comparative Genomics of the Listeria monocytogenes ST204 Subgroup. Frontiers in Microbiology, 2016, 7, 2057.	1.5	34
1029	A Look inside the Listeria monocytogenes Biofilms Extracellular Matrix. Microorganisms, 2016, 4, 22.	1.6	71
1030	IL-12p40/IL-10 Producing preCD8î±/Clec9A+ Dendritic Cells Are Induced in Neonates upon Listeria monocytogenes Infection. PLoS Pathogens, 2016, 12, e1005561.	2.1	22
1031	Endothelial Cells Use a Formin-Dependent Phagocytosis-Like Process to Internalize the Bacterium Listeria monocytogenes. PLoS Pathogens, 2016, 12, e1005603.	2.1	54
1032	<i>Listeria monocytogenes</i> in Different Specimens from Healthy Red Deer and Wild Boars. Foodborne Pathogens and Disease, 2016, 13, 391-397.	0.8	30

#	Article	IF	CITATIONS
1033	Phlegmonous Gastritis. Infectious Diseases in Clinical Practice, 2016, 24, e17-e19.	0.1	2
1034	Isotopologue profiling of the listerial <scp>N</scp> â€metabolism. Molecular Microbiology, 2016, 100, 315-327.	1.2	13
1035	Burkholderia pseudomallei Rapidly Infects the Brain Stem and Spinal Cord via the Trigeminal Nerve after Intranasal Inoculation. Infection and Immunity, 2016, 84, 2681-2688.	1.0	44
1036	<i>Listeria monocytogenes</i> remodels the cell surface in the bloodâ€stage. Environmental Microbiology Reports, 2016, 8, 641-648.	1.0	15
1037	Virulence markers of opportunistic black yeast in <i>Exophiala</i> . Mycoses, 2016, 59, 343-350.	1.8	17
1038	Genome Sequences of Five Nonvirulent <i>Listeria monocytogenes</i> Serovar 4 Strains. Genome Announcements, 2016, 4, .	0.8	4
1039	SpoVG Is a Conserved RNA-Binding Protein That Regulates Listeria monocytogenes Lysozyme Resistance, Virulence, and Swarming Motility. MBio, 2016, 7, e00240.	1.8	37
1041	Passive immunization with anti-ActA and anti-listeriolysin O antibodies protects against Listeria monocytogenes infection in mice. Scientific Reports, 2016, 6, 39628.	1.6	5
1042	Determination of virulence and antibiotic resistance pattern of biofilm producing Listeria species isolated from retail raw milk. BMC Microbiology, 2016, 16, 263.	1.3	29
1043	Structural basis for glutathione-mediated activation of the virulence regulatory protein PrfA in <i>Listeria</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14733-14738.	3.3	71
1044	Development of activate-at-home-type edible antimicrobial films: An example pH-triggering mechanism formed for smoked salmon slices using lysozyme in whey protein films. Food Hydrocolloids, 2016, 60, 170-178.	5.6	37
1045	The intrinsic cephalosporin resistome of <i>Listeria monocytogenes</i> in the context of stress response, gene regulation, pathogenesis and therapeutics. Journal of Applied Microbiology, 2016, 120, 251-265.	1.4	50
1046	Hygiene and Safety in the Meat Processing Environment from Butcher Shops: Microbiological Contamination and Listeria monocytogenes. Journal of Food Protection, 2016, 79, 628-634.	0.8	12
1047	Minimal inhibitory concentrations of undissociated lactic, acetic, citric and propionic acid for Listeria monocytogenes under conditions relevant to cheese. Food Microbiology, 2016, 58, 63-67.	2.1	40
1048	How NaCl and water content determine water activity during ripening of Gouda cheese, and the predicted effect on inhibition of Listeria monocytogenes. Journal of Dairy Science, 2016, 99, 5192-5201.	1.4	24
1049	Attenuating Listeria monocytogenes Virulence by Targeting the Regulatory Protein PrfA. Cell Chemical Biology, 2016, 23, 404-414.	2.5	35
1050	Virulence Gene-Associated Mutant Bacterial Colonies Generate Differentiating Two-Dimensional Laser Scatter Fingerprints. Applied and Environmental Microbiology, 2016, 82, 3256-3268.	1.4	17
1051	In vivo efficacy of trans-cinnamaldehyde, carvacrol, and thymol in attenuating Listeria monocytogenes infection in a Galleria mellonella model. Journal of Natural Medicines, 2016, 70, 667-672.	1.1	19

#	Article	IF	CITATIONS
1052	The Continuous Challenge of Characterizing the Foodborne Pathogen (i) Listeria monocytogenes (i). Foodborne Pathogens and Disease, 2016, 13, 405-416.	0.8	44
1053	ActA of Listeria monocytogenes and Its Manifold Activities as an Important Listerial Virulence Factor. Current Topics in Microbiology and Immunology, 2016, 399, 113-132.	0.7	26
1054	Stress adaptation of Listeria monocytogenes in acidic ready-to-eat products., 2016, , 167-182.		3
1055	Innate and adaptive immunologic functions of complement in the host response to Listeria monocytogenes infection. Immunobiology, 2016, 221, 1407-1417.	0.8	26
1056	<i>Listeria monocytogenes</i> i>isolates from food and food environment harbouring <i>tetM</i> and <i>ermB</i> resistance genes. Letters in Applied Microbiology, 2016, 62, 23-29.	1.0	43
1057	<i>Listeria</i> Infections in Neonates. NeoReviews, 2016, 17, e515-e520.	0.4	8
1058	Assessment of the Incubation Period for Invasive Listeriosis: Table 1 Clinical Infectious Diseases, 2016, 63, 1487-1489.	2.9	33
1060	Opposing roles of IL-10 in acute bacterial infection. Cytokine and Growth Factor Reviews, 2016, 32, 17-30.	3.2	61
1061	Strategies Used by Bacteria to Grow in Macrophages. Microbiology Spectrum, 2016, 4, .	1.2	75
1062	Oral exposure to Listeria monocytogenes in aged IL-17RKO mice: A possible murine model to study listeriosis in susceptible populations. Microbial Pathogenesis, 2016, 99, 236-246.	1.3	9
1063	Listeria monocytogenes Strains Underrepresented during Selective Enrichment with an ISO Method Might Dominate during Passage through Simulated Gastric Fluid and <i>In Vitro</i> Infection of Caco-2 Cells. Applied and Environmental Microbiology, 2016, 82, 6846-6858.	1.4	22
1064	Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen. Biosensors and Bioelectronics, 2016, 86, 1061-1066.	5.3	102
1065	Plant Natural Products Targeting Bacterial Virulence Factors. Chemical Reviews, 2016, 116, 9162-9236.	23.0	333
1066	Involvement of Antimicrobial Drug Efflux Systems in Bacterial Fitness and Virulence. , 2016, , 701-727.		2
1067	Listeria monocytogenes sequence type 1 is predominant in ruminant rhombencephalitis. Scientific Reports, 2016, 6, 36419.	1.6	105
1069	The microbiome during pregnancy and early postnatal life. Seminars in Fetal and Neonatal Medicine, 2016, 21, 373-379.	1.1	74
1070	Comparison of the experimentally obtained growth model of Listeria monocytogenes on cucumber and zucchini with existing model generated by ComBase Predictor. European Food Research and Technology, 2016, 242, 289-293.	1.6	3
1071	High pressure destruction kinetics along with combined effect of potassium sorbate and high pressure against Listeria monocytogenes in Indian white prawn muscle. Annals of Microbiology, 2016, 66, 245-251.	1.1	10

#	Article	IF	CITATIONS
1072	<i>Listeria monocytogenes</i> MerR-Like Regulator NmlR _{lm} : Its Transcriptome and Role in Stress Response. Foodborne Pathogens and Disease, 2016, 13, 369-378.	0.8	7
1073	Prevalence and molecular characterization of Listeria spp. and Listeria monocytogenes isolated from fish, shrimp, and cooked ready-to-eat (RTE) aquatic products in Iran. LWT - Food Science and Technology, 2016, 73, 205-211.	2.5	38
1074	Listeria monocytogenes DNA Glycosylase AdlP Affects Flagellar Motility, Biofilm Formation, Virulence, and Stress Responses. Applied and Environmental Microbiology, 2016, 82, 5144-5152.	1.4	9
1075	Identification of Surface Protein Biomarkers of Listeria monocytogenes via Bioinformatics and Antibody-Based Protein Detection Tools. Applied and Environmental Microbiology, 2016, 82, 5465-5476.	1.4	11
1076	Inhibition mechanism of Listeria monocytogenes by a bioprotective bacteria Lactococcus piscium CNCM I-4031. Food Microbiology, 2016, 53, 70-78.	2.1	62
1077	Listeria monocytogenes $\hat{a} \in \mathbb{C}$ An examination of food chain factors potentially contributing to antimicrobial resistance. Food Microbiology, 2016, 54, 178-189.	2.1	92
1078	Processing-Dependent and Clonal Contamination Patterns of Listeria monocytogenes in the Cured Ham Food Chain Revealed by Genetic Analysis. Applied and Environmental Microbiology, 2016, 82, 822-831.	1.4	44
1079	Tolerance of Listeria monocytogenes to Quaternary Ammonium Sanitizers Is Mediated by a Novel Efflux Pump Encoded by emrE. Applied and Environmental Microbiology, 2016, 82, 939-953.	1.4	116
1080	Characterization of antimicrobial activity against Listeria and cytotoxicity of native melittin and its mutant variants. Colloids and Surfaces B: Biointerfaces, 2016, 143, 194-205.	2.5	31
1081	Genome analysis of Listeria ivanovii strain G770 that caused a deadly aortic prosthesis infection. New Microbes and New Infections, 2016, 10, 87-92.	0.8	20
1082	<i>LMOh7858_0369</i> , a gene encoding a putative leucine-rich repeat-containing protein, is required for virulence of <i>Listeria monocytogenes</i> . FEMS Microbiology Letters, 2016, 363, fnw060.	0.7	2
1083	Pathogen–nematode interaction: Nitrogen supply of <i>Listeria monocytogenes</i> during growth in <i>Caenorhabditis elegans</i> Environmental Microbiology Reports, 2016, 8, 20-29.	1.0	6
1084	The potential influence of two Enterococcus faecium on the growth of Listeria monocytogenes. Food Control, 2016, 67, 18-24.	2.8	18
1085	Microbial sphingomyelinase induces RhoA-mediated reorganization of the apical brush border membrane and is protective against invasion. Molecular Biology of the Cell, 2016, 27, 1120-1130.	0.9	5
1086	Biodiversity and hypervirulence of Listeria monocytogenes. Nature Genetics, 2016, 48, 229-230.	9.4	8
1087	Simultaneous detection of pathogenic Listeria including atypical Listeria innocua in vegetables by a quadruplex PCR method. LWT - Food Science and Technology, 2016, 69, 601-607.	2.5	17
1088	Inhibition of sortase A by chalcone prevents Listeria monocytogenes infection. Biochemical Pharmacology, 2016, 106, 19-29.	2.0	35
1089	<i>Listeria monocytogenes</i> mutants defective in gallbladder replication represent safety-enhanced vaccine delivery platforms. Human Vaccines and Immunotherapeutics, 2016, 12, 2059-2063.	1.4	10

#	Article	IF	CITATIONS
1090	The role of Listeria monocytogenes cell wall surface anchor protein LapB in virulence, adherence, and intracellular replication. Microbial Pathogenesis, 2016, 92, 19-25.	1.3	14
1091	Enteric listeriosis in grazing steers supplemented with spoiled silage. Journal of Veterinary Diagnostic Investigation, 2016, 28, 65-69.	0.5	14
1092	Exoproteome analysis reveals higher abundance of proteins linked to alkaline stress in persistent Listeria monocytogenes strains. International Journal of Food Microbiology, 2016, 218, 17-26.	2.1	30
1093	The role of infection in miscarriage. Human Reproduction Update, 2016, 22, 116-133.	5.2	278
1094	Multisystemic Listeriosis in a Common Brushtail Possum (<i>Trichosurus vulpecula</i>) and Two Common Ringtail Possums (<i>Pseudocheirus peregrinus</i>). Veterinary Pathology, 2016, 53, 677-681.	0.8	1
1095	An unusual presentation of paediatric Listeria meningitis with selective spinal grey matter involvement and acute demyelinating polyneuropathy. European Journal of Paediatric Neurology, 2016, 20, 196-199.	0.7	8
1096	Screening and characterisation of bacteriophage P100 insensitive Listeria monocytogenes isolates in Austrian dairy plants. Food Control, 2016, 59, 108-117.	2.8	31
1097	Antimicrobial resistance profiles of Listeria monocytogenes isolated from ready-to-eat products in Poland in 2007–2011. Food Control, 2016, 59, 7-11.	2.8	17
1098	Epithelial cell extrusion: Pathways and pathologies. Seminars in Cell and Developmental Biology, 2017, 67, 132-140.	2.3	121
1099	Human pathogens in plant biofilms: Formation, physiology, and detection. Biotechnology and Bioengineering, 2017, 114, 1403-1418.	1.7	18
1100	Applicability of commercial phage-based products against Listeria monocytogenes for improvement of food safety in Spanish dry-cured ham and food contact surfaces. Food Control, 2017, 73, 1474-1482.	2.8	57
1101	Prevalence, Virulence Potential, and Antibiotic Susceptibility Profile of <i>Listeria monocytogenes </i> Isolated From Bovine Raw Milk Samples Obtained From Rajasthan, India. Foodborne Pathogens and Disease, 2017, 14, 132-140.	0.8	34
1102	A 3-year multi-food study of the presence and persistence of Listeria monocytogenes in 54 small food businesses in Ireland. International Journal of Food Microbiology, 2017, 249, 18-26.	2.1	62
1103	Recombinase Polymerase Amplification-Based Assay for Rapid Detection of Listeria monocytogenes in Food Samples. Food Analytical Methods, 2017, 10, 1972-1981.	1.3	42
1104	Pregnancyâ€related listeriosis. Birth Defects Research, 2017, 109, 324-335.	0.8	45
1105	Comparative diagnostic efficacy of recombinant LLO and PI-PLC-based ELISAs for detection of listeriosis in animals. Journal of Microbiological Methods, 2017, 137, 40-45.	0.7	6
1106	Meat Safetyâ€"I Foodborne Pathogens and Other Biological Issues. , 2017, , 521-552.		15
1107	Microbiological Safety of Fruit and Vegetables in the Field, During Harvest, and Packaging: A Global Issue., 2017,, 27-48.		4

#	ARTICLE	IF	CITATIONS
1108	Rapid detection of <i>Listeria monocytogenes</i> using fluorescence immunochromatographic assay combined with immunomagnetic separation technique. International Journal of Food Science and Technology, 2017, 52, 1559-1566.	1.3	36
1109	Closing gaps for performing a risk assessment on Listeria monocytogenes in readyâ€toâ€eat (RTE) foods: activity 3, the comparison of isolates from different compartments along the food chain, and from humans using whole genome sequencing (WGS) analysis. EFSA Supporting Publications, 2017, 14, 1151E.	0.3	72
1110	Prevalence, antimicrobial susceptibility and multiplex PCR-serotyping of Listeria monocytogenes isolated from humans, foods and livestock in Iran. Microbial Pathogenesis, 2017, 107, 425-429.	1.3	31
1111	Prevalence and serotype distribution of Listeria monocytogenes isolated from foods in Montevideo-Uruguay. Brazilian Journal of Microbiology, 2017, 48, 689-694.	0.8	50
1112	Stress Survival Islet 2, Predominantly Present in Listeria monocytogenes Strains of Sequence Type 121, Is Involved in the Alkaline and Oxidative Stress Responses. Applied and Environmental Microbiology, 2017, 83, .	1.4	104
1113	Full-Genome Sequence of Listeria monocytogenes Strain H34, Isolated from a Newborn with Sepsis in Uruguay. Genome Announcements, 2017, 5, .	0.8	1
1114	Variability in Human Host Susceptibility to Listeria monocytogenes Infections., 2017,, 419-449.		2
1115	Commensal microbes provide first line defense against <i>Listeria monocytogenes</i> infection. Journal of Experimental Medicine, 2017, 214, 1973-1989.	4.2	173
1116	Biofilm formation and microscopic analysis of biofilms formed by Listeria monocytogenes in a food processing context. LWT - Food Science and Technology, 2017, 84, 47-57.	2.5	46
1117	Probiotic engineering: towards development of robust probiotic strains with enhanced functional properties and for targeted control of enteric pathogens. Gut Pathogens, 2017, 9, 28.	1.6	113
1118	Occurrence and phenotypic and molecular characterization of Listeria monocytogenes and Salmonella spp. in slaughterhouses in southern Brazil. Food Research International, 2017, 100, 96-101.	2.9	21
1119	PCR-based methodologies for detection and characterization of Listeria monocytogenes and Listeria ivanovii in foods and environmental sources. Food Science and Human Wellness, 2017, 6, 39-59.	2.2	41
1120	Antimicrobial medium- and long-chain free fatty acids prevent PrfA-dependent activation of virulence genes in Listeria monocytogenes. Research in Microbiology, 2017, 168, 547-557.	1.0	25
1121	Rhombencephalitis caused by Listeria monocytogenes in a pastured bull. Journal of Veterinary Diagnostic Investigation, 2017, 29, 228-231.	0.5	5
1122	Behaviour of <i>Listeria monocytogenes</i> in Lighvan cheese following artificial contamination during making, ripening and storage in different conditions. International Journal of Dairy Technology, 2017, 70, 365-371.	1.3	3
1123	<i>Listeria</i> spp. contamination in a butcher shop environment and <i>Listeria monocytogenes</i> adhesion ability and sensitivity to foodâ€contact surface sanitizers. Journal of Food Safety, 2017, 37, e12313.	1.1	8
1124	Copper-catalyzed azide–alkyne cycloaddition (CuAAC) under mild condition in water: Synthesis, catalytic application and biological activities. Journal of Organometallic Chemistry, 2017, 853, 49-63.	0.8	19
1125	Salmonella spp. and Listeria monocytogenes shedding in domestic ruminants and characterization of potentially pathogenic strains. Veterinary Microbiology, 2017, 210, 71-76.	0.8	35

#	Article	IF	CITATIONS
1126	OrfX, a Nucleomodulin Required for Listeria monocytogenes Virulence. MBio, 2017, 8, .	1.8	35
1127	Natural variants of Listeria monocytogenes internalin B with different ability to stimulate cell proliferation and cytoskeleton rearrangement in HEp-2 cells. Molecular Genetics, Microbiology and Virology, 2017, 32, 80-86.	0.0	7
1128	Draft Genome Sequences of 25 Listeria monocytogenes Isolates Associated with Human Clinical Listeriosis in Ireland. Genome Announcements, 2017, 5, .	0.8	2
1129	Prevalence and methodologies for detection, characterization and subtyping of Listeria monocytogenes and L. ivanovii in foods and environmental sources. Food Science and Human Wellness, 2017, 6, 97-120.	2.2	44
1130	Structural and functional diversity in Listeria cell wall teichoic acids. Journal of Biological Chemistry, 2017, 292, 17832-17844.	1.6	55
1131	Thermal Inactivation of Listeria monocytogenes in Whole Oysters (Crassostrea belcheri) and Pasteurization Effects on Meat Quality. Journal of Aquatic Food Product Technology, 2017, 26, 1107-1120.	0.6	12
1132	The first report on Listeria monocytogenes producing siderophores and responds positively to N-acyl homoserine lactone (AHL) molecules by enhanced biofilm formation. Archives of Microbiology, 2017, 199, 1409-1415.	1.0	8
1133	Listeria monocytogenes and Shigella flexneri Activate the NLRP1B Inflammasome. Infection and Immunity, 2017, 85, .	1.0	41
1134	Genome Sequence of Listeria monocytogenes Strain F4244, a 4b Serotype. Genome Announcements, 2017, 5, .	0.8	12
1135	The Protein Expression Level of a Heterogeneous Gene Inserted in LIPI-1 of the <i>Listeria ivanovii</i> Genome Relies on Its Insertion Orientation. Journal of Molecular Microbiology and Biotechnology, 2017, 27, 269-276.	1.0	2
1136	Autophagy and Bacterial Pathogenesis: An Interactive Overview., 2017,, 91-107.		0
1137	Whole genome sequence analysis; an improved technology that identifies underlying genotypic differences between closely related Listeria monocytogenes strains. Innovative Food Science and Emerging Technologies, 2017, 44, 89-96.	2.7	8
1138	Physiological and Molecular Understanding of Bacterial Polysaccharide Monooxygenases. Microbiology and Molecular Biology Reviews, 2017, 81, .	2.9	63
1139	Fungal chitosan and Lycium barbarum extract as anti-Listeria and quality preservatives in minced catfish. International Journal of Biological Macromolecules, 2017, 104, 854-861.	3.6	19
1140	Spatially explicit uncertainty modeling of zoonotic pathogen distribution: a case of Listeria monocytogenes in New York State, USA. Applied Geomatics, 2017, 9, 27-41.	1.2	3
1141	Hepcidin-(In)dependent Mechanisms of Iron Metabolism Regulation during Infection by Listeria and Salmonella. Infection and Immunity, 2017, 85, .	1.0	29
1142	Diffusible substances from lactic acid bacterial cultures exert strong inhibitory effects on Listeria monocytogenes and Salmonella enterica serovar enteritidis in a co-culture model. BMC Microbiology, 2017, 17, 35.	1.3	10
1143	Whole genome sequencing analyses of Listeria monocytogenes that persisted in a milkshake machine for a year and caused illnesses in Washington State. BMC Microbiology, 2017, 17, 134.	1.3	47

#	Article	IF	CITATIONS
1144	<i>Listeria</i> Placental Infection. MBio, 2017, 8, .	1.8	49
1145	The development of small-molecule modulators for ClpP protease activity. Molecular BioSystems, 2017, 13, 23-31.	2.9	49
1146	Comparative Genomics Reveals the Diversity of Restriction-Modification Systems and DNA Methylation Sites in Listeria monocytogenes. Applied and Environmental Microbiology, 2017, 83, .	1.4	31
1147	Listeria monocytogenes infection of HD11, chicken macrophage-like cells. Poultry Science, 2017, 96, 950-956.	1.5	8
1148	IL-37 impairs host resistance to Listeria infection by suppressing macrophage function. Biochemical and Biophysical Research Communications, 2017, 485, 563-568.	1.0	6
1149	Structure to function of an α-glucan metabolic pathway that promotes Listeria monocytogenes pathogenesis. Nature Microbiology, 2017, 2, 16202.	5.9	33
1150	Prevalence and tracing of persistent <i>Listeria monocytogenes</i> strains in meat processing facility production chain. Journal of Food Safety, 2017, 37, e12315.	1.1	25
1151	Mitogen-activated protein kinases are required for effective infection of human choroid plexus epithelial cells by Listeria monocytogenes. Microbes and Infection, 2017, 19, 18-33.	1.0	26
1152	Evaluation of the safety and adjuvant effect of a detoxified listeriolysin O mutant on the humoral response to dengue virus antigens. Clinical and Experimental Immunology, 2017, 188, 109-126.	1.1	5
1153	Natural products as mediators of disease. Natural Product Reports, 2017, 34, 194-219.	5.2	59
1154	Listeria infection presenting as myositis and rhabdomyolysis, needing renal replacement. British Journal of Hospital Medicine (London, England: 2005), 2017, 78, 722-723.	0.2	1
1155	Naturally occurring InlB variants that support intragastric <i>Listeria monocytogenes</i> infection in mice. FEMS Microbiology Letters, 2017, 364, fnx011.	0.7	13
1156	From the microbiome to the central nervous system, an update on the epidemiology and pathogenesis of bacterial meningitis in childhood. F1000Research, 2017, 6, 86.	0.8	7
1157	Strategies Used by Bacteria to Grow in Macrophages. , 2017, , 701-725.		7
1158	Simple Screening of Listeria monocytogenes Based on a Fluorescence Assay via a Laminated Lab-On-Paper Chip. Biosensors, 2017, 7, 56.	2.3	10
1159	A Novel Role of Listeria monocytogenes Membrane Vesicles in Inhibition of Autophagy and Cell Death. Frontiers in Cellular and Infection Microbiology, 2017, 7, 154.	1.8	45
1160	MicroRNA-21 Limits Uptake of Listeria monocytogenes by Macrophages to Reduce the Intracellular Niche and Control Infection. Frontiers in Cellular and Infection Microbiology, 2017, 7, 201.	1.8	35
1161	Thioredoxin A Is Essential for Motility and Contributes to Host Infection of Listeria monocytogenes via Redox Interactions. Frontiers in Cellular and Infection Microbiology, 2017, 7, 287.	1.8	46

#	Article	IF	CITATIONS
1162	InlL from Listeria monocytogenes Is Involved in Biofilm Formation and Adhesion to Mucin. Frontiers in Microbiology, 2017, 8, 660.	1.5	59
1163	Bacteriocin-Producing Enterococcus faecium LCW 44: A High Potential Probiotic Candidate from Raw Camel Milk. Frontiers in Microbiology, 2017, 8, 865.	1.5	53
1164	Complete Circular Genome Sequence and Temperature Independent Adaptation to Anaerobiosis of Listeria weihenstephanensis DSM 24698. Frontiers in Microbiology, 2017, 8, 1672.	1.5	1
1165	Thermal-Stability and Reconstitution Ability of Listeria Phages P100 and A511. Frontiers in Microbiology, 2017, 8, 2375.	1.5	34
1166	Route of Injection Affects the Impact of InlB Internalin Domain Variants on Severity of <i>Listeria monocytogenes </i> Infection in Mice. BioMed Research International, 2017, 2017, 1-8.	0.9	6
1167	Pathway Interaction Network Analysis Identifies Dysregulated Pathways in Human Monocytes Infected by <i>Listeria monocytogenes </i> . Computational and Mathematical Methods in Medicine, 2017, 2017, 1-8.	0.7	0
1168	Comparative experimental infection of Listeria monocytogenes and Listeria ivanovii in bovine trophoblasts. PLoS ONE, 2017, 12, e0176911.	1.1	24
1169	Small molecules targeting LapB protein prevent Listeria attachment to catfish muscle. PLoS ONE, 2017, 12, e0189809.	1.1	4
1170	Listeria monocytogenes Brain Abscess within a Metastatic Intracerebellar Space-Occupying Lesion in a Patient with Carcinoma Lung: First Case Report from India. Indian Journal of Neurosurgery, 2017, 06, 129-134.	0.1	0
1171	Growing Importance of Listeriosis as Food borne Disease. Journal of Experimental Food Chemistry, 2017, 03, .	0.5	4
1172	GNP-GAPDH1-22 nanovaccines prevent neonatal listeriosis by blocking microglial apoptosis and bacterial dissemination. Oncotarget, 2017, 8, 53916-53934.	0.8	17
1173	Development of multiple cross displacement amplification label-based gold nanoparticles lateral flow biosensor for detection of Listeria monocytogenes . International Journal of Nanomedicine, 2017, Volume 12, 473-486.	3.3	45
1174	Presença de <i>Listeria</i> <i>monocytogenes</i> em Queijos de Pasta Mole da Região a Sul do Tejo. Portuguese Journal of Public Health, 2017, 35, 37-43.	1.7	2
1175	SNX10 promotes phagosome maturation in macrophages and protects mice against <i>Listeria monocytogenes</i> i>infection. Oncotarget, 2017, 8, 53935-53947.	0.8	21
1176	<i>Listeria monocytogenes</i> serotype 4b strains replicate in monocytes/macrophages more than the other serotypes. Journal of Veterinary Medical Science, 2017, 79, 962-969.	0.3	12
1177	Whole genome sequencing as a typing tool for foodborne pathogens like Listeria monocytogenes – The way towards global harmonisation and data exchange. Trends in Food Science and Technology, 2018, 73, 67-75.	7.8	93
1178	Prevalence of Listeria monocytogenes in cerebrospinal fluid obtained from hospitalized patients. Comparative Clinical Pathology, 2018, 27, 505-511.	0.3	0
1179	Invasion of the Brain by $\langle i \rangle$ Listeria monocytogenes $\langle i \rangle$ Is Mediated by InIF and Host Cell Vimentin. MBio, 2018, 9, .	1.8	72

#	Article	IF	CITATIONS
1180	Structure-Based Design of Inhibitors Targeting PrfA, the Master Virulence Regulator of <i>Listeria monocytogenes</i> . Journal of Medicinal Chemistry, 2018, 61, 4165-4175.	2.9	22
1181	Key pathogenic bacteria associated with dairy foods: On-farm ecology and products associated with foodborne pathogen transmission. International Dairy Journal, 2018, 84, 28-35.	1.5	12
1182	Tomatidine Is a Lead Antibiotic Molecule That Targets Staphylococcus aureus ATP Synthase Subunit C. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	54
1183	Metabolic Host Response to Intracellular Infections. Experientia Supplementum (2012), 2018, 109, 319-350.	0.5	0
1184	Structural insights into the binding and catalytic mechanisms of the <i>Listeria monocytogenes</i> bacteriophage glycosyl hydrolase PlyP40. Molecular Microbiology, 2018, 108, 128-142.	1.2	12
1185	Listeria monocytogenes contamination of readyâ€toâ€eat foods and the risk for human health in the EU. EFSA Journal, 2018, 16, e05134.	0.9	217
1186	A G-quadruplex DNAzyme-based LAMP biosensing platform for a novel colorimetric detection of <i>Listeria monocytogenes </i> Analytical Methods, 2018, 10, 848-854.	1.3	22
1187	Lack of functional selectin-ligand interactions enhances innate immune resistance to systemic <i>Listeria monocytogenes</i> infection. Journal of Leukocyte Biology, 2018, 103, 355-368.	1.5	3
1188	Bioactive secondary metabolites from new terrestrial Streptomyces sp. TN82 strain: Isolation, structure elucidation and biological activity. Medicinal Chemistry Research, 2018, 27, 1085-1092.	1.1	12
1189	Expression of genes associated with stress conditions by Listeria monocytogenes in interaction with nisin producer Lactococcus lactis. Food Research International, 2018, 105, 897-904.	2.9	21
1190	Antibiotic susceptibility of 259 Listeria monocytogenes strains isolated from food, food-processing plants and human samples in Germany. Journal of Infection and Public Health, 2018, 11, 572-577.	1.9	76
1191	Solar irradiance limits the long-term survival ofListeria monocytogenesin seawater. Letters in Applied Microbiology, 2018, 66, 169-174.	1.0	1
1192	Immunotherapy for Prostate Cancer: An Evolving Landscape. , 2018, , 593-606.		2
1193	The VirAB ABC Transporter Is Required for VirR Regulation of Listeria monocytogenes Virulence and Resistance to Nisin. Infection and Immunity, 2018, 86, .	1.0	38
1194	Comparison of listeriolysin O and phospholipases PlcA and PlcB activities, and initial intracellular growth capability among food and clinical strains of <i>Listeria monocytogenes </i> . Journal of Applied Microbiology, 2018, 124, 899-909.	1.4	8
1195	Expanding horizons of active packaging: Design of consumer-controlled release systems helps risk management of susceptible individuals. Food Hydrocolloids, 2018, 79, 291-300.	5.6	16
1196	<i>Listeria monocytogenes</i> –Induced Rhombencephalitis in a Patient With Multiple Sclerosis Treated With Dimethyl Fumarate. JAMA Neurology, 2018, 75, 762.	4.5	10
1197	Bacteriocinogenic Enterococcus faecium inhibits the virulence property of Listeria monocytogenes. LWT - Food Science and Technology, 2018, 89, 87-92.	2.5	16

#	ARTICLE	IF	CITATIONS
1198	MALDI-TOF mass spectrometry-based identification of Listeria species in surveillance: A prospective study. Journal of Microbiological Methods, 2018, 144, 29-32.	0.7	38
1199	Metabolic adaptation of intracellular bacteria and fungi to macrophages. International Journal of Medical Microbiology, 2018, 308, 215-227.	1.5	25
1200	Isolation of phage-display library-derived scFv antibody specific to <i>Listeria monocytogenes</i> by a novel immobilized method. Journal of Applied Microbiology, 2018, 124, 591-597.	1.4	6
1201	Host cell perforation by listeriolysin O (LLO) activates a Ca ²⁺ -dependent cPKC/Rac1/Arp2/3 signaling pathway that promotes <i>Listeria monocytogenes</i> internalization independently of membrane resealing. Molecular Biology of the Cell, 2018, 29, 270-284.	0.9	26
1202	Listeria monocytogenes in Medical Research. , 2018, , .		0
1203	Detection of Listeria spp. in cattle and environment of pasture-based dairy farms. Pesquisa Veterinaria Brasileira, 2018, 38, 1736-1741.	0.5	13
1204	Ultrasensitive and Fast Diagnostics of Viable Listeria Cells by CBD Magnetic Separation Combined with A511::luxAB Detection. Viruses, 2018, 10, 626.	1.5	31
1205	A Multi-well Format Polyacrylamide-based Assay for Studying the Effect of Extracellular Matrix Stiffness on the Bacterial Infection of Adherent Cells. Journal of Visualized Experiments, 2018, , .	0.2	8
1206	Intracellular pHluorin as Sensor for Easy Assessment of Bacteriocin-Induced Membrane-Damage in Listeria monocytogenes. Frontiers in Microbiology, 2018, 9, 3038.	1.5	14
1207	Listeria monocytogenes Relies on the Heme-Regulated Transporter hrtAB to Resist Heme Toxicity and Uses Heme as a Signal to Induce Transcription of Imo1634, Encoding Listeria Adhesion Protein. Frontiers in Microbiology, 2018, 9, 3090.	1.5	16
1208	Pathogenic potential of <i>Listeria monocytogenes</i> isolated from cattle faeces in Adoekiti. African Journal of Clinical and Experimental Microbiology, 2018, 19, 104.	0.1	2
1209	Genomic Diversity of Listeria monocytogenes Isolated from Clinical and Non-Clinical Samples in Chile. Genes, 2018, 9, 396.	1.0	24
1210	Genes significantly associated with lineage II food isolates of Listeria monocytogenes. BMC Genomics, 2018, 19, 708.	1.2	43
1211	Listeria monocytogenes Infection of the Brain. Journal of Visualized Experiments, 2018, , .	0.2	6
1212	Frozen food dangers. British Journal of Nursing, 2018, 27, 974-974.	0.3	0
1213	The olfactory epithelium as a port of entry in neonatal neurolisteriosis. Nature Communications, 2018, 9, 4269.	5.8	32
1214	High resolution melting analysis for the characterization of lineage II Listeria monocytogenes serovars 1/2a and 1/2c based on single nucleotide polymorphisms identification within the Listeria Pathogenicity Island-1 and inIAB operon: a novel approach for. Journal of Applied Microbiology, 2018, 125, 1920-1937.	1.4	3
1215	Attenuation of Listeria monocytogenes Virulence by Cannabis sativa L. Essential Oil. Frontiers in Cellular and Infection Microbiology, 2018, 8, 293.	1.8	46

#	Article	IF	Citations
1216	Epistatic control of intrinsic resistance by virulence genes in Listeria. PLoS Genetics, 2018, 14, e1007525.	1.5	31
1217	A disconnect between precursor frequency, expansion potential, and site-specific CD4+ T cell responses in aged mice. PLoS ONE, 2018, 13, e0198354.	1.1	1
1218	Antimicrobial Resistance in Listeria Species. , 2018, , 237-259.		2
1219	Rapid Detection of Listeria in Ice Cream in 13 Hours Using the Roka Listeria Detection Assay. Journal of AOAC INTERNATIONAL, 2018, 101, 1806-1812.	0.7	1
1220	With-in host dynamics of L. monocytogenes and thresholds for distinct infection scenarios. Journal of Theoretical Biology, 2018, 454, 80-90.	0.8	1
1221	The impact of shelf life on exposure as revealed from quality control data associated with the quargel outbreak. International Journal of Food Microbiology, 2018, 279, 64-69.	2.1	7
1222	Single and binary applications of essential oils effectively control Listeria monocytogenes biofilms. Industrial Crops and Products, 2018, 121, 452-460.	2.5	21
1223	Foodborne Microbial Pathogens. Food Science Text Series, 2018, , .	0.3	62
1224	Implicated Food Products for Listeriosis and Changes in Serovars <i>of Listeria monocytogenes</i> Affecting Humans in Recent Decades. Foodborne Pathogens and Disease, 2018, 15, 387-397.	0.8	44
1225	Insights into the Genome Sequence of <i>Chromobacterium amazonense </i> Isolated from a Tropical Freshwater Lake. International Journal of Genomics, 2018, 2018, 1-10.	0.8	5
1226	Prevalence, Potential Virulence, and Genetic Diversity of Listeria monocytogenes Isolates From Edible Mushrooms in Chinese Markets. Frontiers in Microbiology, 2018, 9, 1711.	1.5	48
1227	Relative Roles of Listeriolysin O, InIA, and InIB in Listeria monocytogenes Uptake by Host Cells. Infection and Immunity, 2018, 86, .	1.0	37
1228	Antimicrobial Resistance in <i>Listeria</i> Species. Microbiology Spectrum, 2018, 6, .	1.2	32
1229	Tunicamycin Mediated Inhibition of Wall Teichoic Acid Affects Staphylococcus aureus and Listeria monocytogenes Cell Morphology, Biofilm Formation and Virulence. Frontiers in Microbiology, 2018, 9, 1352.	1.5	60
1230	Genetic Separation of Listeria monocytogenes Causing Central Nervous System Infections in Animals. Frontiers in Cellular and Infection Microbiology, 2018, 8, 20.	1.8	22
1231	The Small Regulatory RNAs LhrC1–5 Contribute to the Response of Listeria monocytogenes to Heme Toxicity. Frontiers in Microbiology, 2018, 9, 599.	1.5	24
1232	Virulence Gene Sequencing Highlights Similarities and Differences in Sequences in Listeria monocytogenes Serotype 1/2a and 4b Strains of Clinical and Food Origin From 3 Different Geographic Locations. Frontiers in Microbiology, 2018, 9, 1103.	1.5	37
1233	Phenotypic and Genotypic Analysis of Antimicrobial Resistance among Listeria monocytogenes Isolated from Australian Food Production Chains. Genes, 2018, 9, 80.	1.0	60

#	Article	IF	CITATIONS
1234	Genomic Characterization of Listeria monocytogenes Isolates Associated with Clinical Listeriosis and the Food Production Environment in Ireland. Genes, 2018, 9, 171.	1.0	73
1235	Multifaceted Defense against Listeria monocytogenes in the Gastro-Intestinal Lumen. Pathogens, 2018, 7, 1.	1.2	40
1236	Vertical Transmission of Listeria monocytogenes: Probing the Balance between Protection from Pathogens and Fetal Tolerance. Pathogens, 2018, 7, 52.	1.2	27
1237	Anticancer Activity of Bacterial Proteins and Peptides. Pharmaceutics, 2018, 10, 54.	2.0	133
1238	Listeria monocytogenes InlP interacts with afadin and facilitates basement membrane crossing. PLoS Pathogens, 2018, 14, e1007094.	2.1	35
1239	Current Knowledge on Listeria monocytogenes Biofilms in Food-Related Environments: Incidence, Resistance to Biocides, Ecology and Biocontrol. Foods, 2018, 7, 85.	1.9	98
1240	Listeria monocytogenes : A Food-Borne Pathogen. , 2018, , 157-192.		11
1241	P27 (MBOV_RS03440) is a novel fibronectin binding adhesin of Mycoplasma bovis. International Journal of Medical Microbiology, 2018, 308, 848-857.	1.5	18
1242	Mechanisms of Blood Brain Barrier Disruption by Different Types of Bacteria, and Bacterial–Host Interactions Facilitate the Bacterial Pathogen Invading the Brain. Cellular and Molecular Neurobiology, 2018, 38, 1349-1368.	1.7	111
1243	Protective Role of $\langle i \rangle \hat{i}^3 \hat{i}^2 \langle l \rangle$ T Cells in Different Pathogen Infections and Its Potential Clinical Application. Journal of Immunology Research, 2018, 2018, 1-15.	0.9	50
1244	Matrix stiffness modulates infection of endothelial cells by <i>Listeria monocytogenes</i> via expression of cell surface vimentin. Molecular Biology of the Cell, 2018, 29, 1571-1589.	0.9	31
1245	<i>Listeria monocytogenes</i> Brain Abscess: Controversial Issues for the Treatmentâ€"Two Cases and Literature Review. Case Reports in Infectious Diseases, 2018, 2018, 1-9.	0.2	12
1246	Listeria monocytogenes impairs enzymes of the phosphotransfer network and alters antioxidant/oxidant status in cattle brain structures. Microbial Pathogenesis, 2018, 124, 284-290.	1.3	10
1247	Search and Subvert: Minimalist Bacterial Phosphatidylinositol-Specific Phospholipase C Enzymes. Chemical Reviews, 2018, 118, 8435-8473.	23.0	25
1248	Listeria monocytogenes Isolated from Illegally Imported Food Products into the European Union Harbor Different Virulence Factor Variants. Genes, 2018, 9, 428.	1.0	15
1249	The Epidemiology of <i>Listeria monocytogenes </i> ii> in China. Foodborne Pathogens and Disease, 2018, 15, 459-466.	0.8	7 5
1250	Epidemiology of Listeria monocytogenes prevalence in foods, animals and human origin from Iran: a systematic review and meta-analysis. BMC Public Health, 2018, 18, 1057.	1.2	30
1251	Developing Anti-virulence Chemotherapies by Exploiting the Diversity of Microbial Quorum Sensing Systems., 2018,, 151-208.		1

#	Article	IF	CITATIONS
1252	The Intestinal Microbiome., 2018, , 1083-1089.e3.		0
1253	The occurrence, transmission, virulence and antibiotic resistance of Listeria monocytogenes in fish processing plant. International Journal of Food Microbiology, 2018, 282, 71-83.	2.1	39
1254	Antilisterial Bacteriocins for Food Security: The Case of Sakacin A. , 2019, , 385-392.		2
1255	Identification and metagenetic characterisation of Listeria monocytogenes-harbouring communities present in food-related industrial environments. Food Control, 2019, 95, 6-17.	2.8	23
1256	Prevalence, molecular characterization, genetic heterogeneity and antimicrobial resistance of <i>Listeria monocytogenes < /i> associated with fish and fishery environment in Kerala, India. Letters in Applied Microbiology, 2019, 69, 286-293.</i>	1.0	26
1257	Pharmacological effects of ginseng on infectious diseases. Inflammopharmacology, 2019, 27, 871-883.	1.9	33
1258	From Phenylthiazoles to Phenylpyrazoles: Broadening the Antibacterial Spectrum toward Carbapenem-Resistant Bacteria. Journal of Medicinal Chemistry, 2019, 62, 7998-8010.	2.9	41
1259	Listeria monocytogenesin dairy plants in Southern Brazil: Occurrence, virulence potential, and genetic diversity. Journal of Food Safety, 2019, 39, e12695.	1.1	5
1260	Rapid metagenomics analysis of EMS vehicles for monitoring pathogen load using nanopore DNA sequencing. PLoS ONE, 2019, 14, e0219961.	1.1	9
1261	Tandem mass tag-based quantitative proteomic analysis reveal the inhibition mechanism of thyme essential oil against flagellum of Listeria monocytogenes. Food Research International, 2019, 125, 108508.	2.9	21
1262	pH-triggered endosomal escape of pore-forming Listeriolysin O toxin-coated gold nanoparticles. Journal of Nanobiotechnology, 2019, 17, 108.	4.2	19
1263	Phage resistance at the cost of virulence: Listeria monocytogenes serovar 4b requires galactosylated teichoic acids for InlB-mediated invasion. PLoS Pathogens, 2019, 15, e1008032.	2.1	78
1264	The Novel Internalins InIP1 and InIP4 and the Internalin-Like Protein InIP3 Enhance the Pathogenicity of Listeria monocytogenes. Frontiers in Microbiology, 2019, 10, 1644.	1.5	12
1265	Source tracking on a dairy farm reveals a high occurrence of subclinical mastitis due to hypervirulent <i>Listeria monocytogenes</i> clonal complexes. Journal of Applied Microbiology, 2019, 127, 1349-1361.	1.4	20
1266	Cross Talk between SigB and PrfA in Listeria monocytogenes Facilitates Transitions between Extra- and Intracellular Environments. Microbiology and Molecular Biology Reviews, 2019, 83, .	2.9	53
1267	The occurrence ofListeria monocytogenesin goats, farm environment and invertebrates. Biological Rhythm Research, 2019, , 1-10.	0.4	7
1268	Phylogenetically Defined Isoforms of Listeria monocytogenes Invasion Factor InlB Differently Activate Intracellular Signaling Pathways and Interact with the Receptor gC1q-R. International Journal of Molecular Sciences, 2019, 20, 4138.	1.8	12
1269	Elucidation of the Interleukin 12 Production Mechanism during Intracellular Bacterial Infection in Amberjack, Seriola dumerili. Infection and Immunity, 2019, 87, .	1.0	2

#	Article	IF	CITATIONS
1270	How Safe is Chicken Litter for Land Application as an Organic Fertilizer? A Review. International Journal of Environmental Research and Public Health, 2019, 16, 3521.	1.2	97
1271	Inhibitory Effect of Thymoquinone on Listeria monocytogenes ATCC 19115 Biofilm Formation and Virulence Attributes Critical for Human Infection. Frontiers in Cellular and Infection Microbiology, 2019, 9, 304.	1.8	31
1272	STAT4 Directs a Protective Innate Lymphoid Cell Response to Gastrointestinal Infection. Journal of Immunology, 2019, 203, 2472-2484.	0.4	13
1273	Sequelae of Fetal Infection in a Non-human Primate Model of Listeriosis. Frontiers in Microbiology, 2019, 10, 2021.	1.5	9
1274	Aurantimycin resistance genes contribute to survival of <i>Listeria monocytogenes </i> during life in the environment. Molecular Microbiology, 2019, 111, 1009-1024.	1.2	16
1275	Stable Colloidal Copper Nanoparticles Functionalized with Siloxane Groups and Their Microbicidal Activity. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 964-978.	1.9	7
1276	The LhrC sRNAs control expression of T cell-stimulating antigen TcsA in <i>Listeria monocytogenes</i> by decreasing <i>tcsA</i> mRNA stability. RNA Biology, 2019, 16, 270-281.	1.5	18
1277	Different epithelial cell response to membrane vesicles produced by Listeria monocytogenes cultured with or without salt stress. Microbial Pathogenesis, 2019, 133, 103554.	1.3	5
1278	The Biosynthesis of Flavin Cofactors in Listeria monocytogenes. Journal of Molecular Biology, 2019, 431, 2762-2776.	2.0	13
1279	<i>Listeria</i> contamination in chevon and mutton from retail meat shops and slaughter house environment of Punjab, India. FEMS Microbiology Letters, 2019, 366, .	0.7	6
1280	Development and Application of an Active Plastic Multilayer Film by Coating a Plantaricin BMâ€1 for Chilled Meat Preservation. Journal of Food Science, 2019, 84, 1864-1870.	1.5	17
1281	Listeria monocytogenes risk assessment on cold smoked and salt-cured fishery products in Finland - A repeated exposure model. International Journal of Food Microbiology, 2019, 304, 97-105.	2.1	8
1282	Distribution, adhesion, virulence and antibiotic resistance of persistent Listeria monocytogenes in a pig slaughterhouse in Brazil. Food Microbiology, 2019, 84, 103234.	2.1	22
1283	Cross-resistance to phage infection in Listeria monocytogenes serotype 1/2a mutants. Food Microbiology, 2019, 84, 103239.	2.1	27
1284	Reasonable drug analysis of Listeria monocytogenes meningitis related to mantle cell lymphoma. Journal of Infection and Public Health, 2019, 12, 744-747.	1.9	0
1285	Development of flexible antimicrobial zein coatings with essential oils for the inhibition of critical pathogens on the surface of whole fruits: Test of coatings on inoculated melons. Food Packaging and Shelf Life, 2019, 20, 100316.	3.3	44
1286	<i>Lactobacillus casei</i> expressing Internalins A and B reduces <i>Listeria monocytogenes</i> interaction with Cacoâ€2 cells <i>inAvitro</i> Microbial Biotechnology, 2019, 12, 715-729.	2.0	14
1287	Combined effect of temperature, water activity and salt content on the growth and gene expression of Listeria monocytogenes in a dry-cured ham model system. Meat Science, 2019, 155, 16-19.	2.7	15

#	Article	IF	CITATIONS
1288	Quantifying bacterial fitness in intracellular dynamics*., 2019,,.		0
1289	Association of Listeria monocytogenes LIPI-1 and LIPI-3 marker llsX with invasiveness. Current Microbiology, 2019, 76, 637-643.	1.0	23
1290	Characterization of the biofilm phenotype of a Listeria monocytogenes mutant deficient in agr peptide sensing. MicrobiologyOpen, 2019, 8, e00826.	1,2	20
1291	Processing plant and machinery sanitation and hygiene practices associate with Listeria monocytogenes occurrence in ready-to-eat fish products. Food Microbiology, 2019, 82, 455-464.	2.1	20
1292	Participation of Bacterial Lipases, Sphingomyelinases, and Phospholipases in Gram-Positive Bacterial Pathogenesis., 2019, , 1-17.		0
1293	Resistance to benzalkonium chloride and cadmium chloride in <i>Listeria monocytogenes</i> isolates from food and food-processing environments in southern Brazil. Canadian Journal of Microbiology, 2019, 65, 429-435.	0.8	16
1294	Hyperinvasiveness ofListeria monocytogenessequence type 1 is independent of lineage lâ€specific genes encoding internalinâ€like proteins. MicrobiologyOpen, 2019, 8, e790.	1.2	7
1295	An elegant nitroreductase responsive fluorescent probe for selective detection of pathogenic Listeria in vitro and in vivo. Talanta, 2019, 198, 472-479.	2.9	21
1296	Application of an Environmental Phage-Based Assay (Sample6 Detect HT/L) for the Detection of Listeria spp. in Ice Cream. Journal of AOAC INTERNATIONAL, 2019, 102, 1132-1137.	0.7	3
1297	Distribution of extracellular DNA in Listeria monocytogenes biofilm. Czech Journal of Food Sciences, 2019, 37, 409-416.	0.6	3
1298	Characterization of the pathogenesis and immune response to Listeria monocytogenes strains isolated from a sustained national outbreak. Scientific Reports, 2019, 9, 19587.	1.6	18
1299	Mutation of the Transcriptional Regulator Ytol Rescues Listeria monocytogenes Mutants Deficient in the Essential Shared Metabolite 1,4-Dihydroxy-2-Naphthoate (DHNA). Infection and Immunity, 2019, 88, .	1.0	9
1300	Listeria monocytogenes. , 2019, , 451-486.		1
1301	Whole-Genome Sequencing-Based Characterization of 100 Listeria monocytogenes Isolates Collected from Food Processing Environments over a Four-Year Period. MSphere, 2019, 4, .	1.3	82
1302	Efficacy of Synthetic Furanones on Listeria monocytogenes Biofilm Formation. Foods, 2019, 8, 647.	1.9	9
1303	Detection of Listeria spp. and L. monocytogenes in pooled test portion samples of processed dairy products. International Journal of Food Microbiology, 2019, 289, 30-39.	2.1	14
1304	Direct or DNA Extraction-Free Amplification and Quantification of Foodborne Pathogens. Methods in Molecular Biology, 2019, 1918, 21-33.	0.4	1
1306	Occurrence and characterization of Listeria monocytogenes from beef jerky processing line. Journal of Food Science and Technology, 2019, 56, 436-442.	1.4	6

#	Article	IF	CITATIONS
1307	Characterization of the bacteriocin produced by Enterococcus italicus ONU547 isolated from Thai fermented cabbage. Folia Microbiologica, 2019, 64, 535-545.	1.1	9
1308	Influence of agronomic practices and pre-harvest conditions on the attachment and development of Listeria monocytogenes in vegetables. Annals of Microbiology, 2019, 69, 185-199.	1.1	37
1309	Oxygen deprivation influences the survival of Listeria monocytogenes in gerbils1. Translational Animal Science, 2019, 3, 304-314.	0.4	3
1310	Pathogenicity, genotyping and antibacterial susceptibility of the Listeria spp. recovered from stray dogs. Microbial Pathogenesis, 2019, 126, 123-133.	1.3	6
1311	Global transcriptomic response of Listeria monocytogenes during growth on cantaloupe slices. Food Microbiology, 2019, 77, 192-201.	2.1	18
1312	Retrospective investigation of listeriosis outbreaks in small ruminants using different analytical approaches for whole genome sequencing-based typing of Listeria monocytogenes. Infection, Genetics and Evolution, 2020, 77, 104047.	1.0	15
1313	Development of a duplex lateral flow dipstick test for the detection and differentiation of Listeria spp. and Listeria monocytogenes in meat products based on loop-mediated isothermal amplification. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1139, 121834.	1.2	19
1314	In vitro and in vivo characterisation of Listeria monocytogenes outbreak isolates. Food Control, 2020, 107, 106784.	2.8	19
1315	Large-Scale Comparison of Toxin and Antitoxins in Listeria monocytogenes. Toxins, 2020, 12, 29.	1.5	4
1316	Lactolisterin BU-producer Lactococcus lactis subsp. lactis BGBU1-4: Bio-control of Listeria monocytogenes and Staphylocococcus aureus in fresh soft cheese and effect on immunological response of rats. Food Control, 2020, 111, 107076.	2.8	14
1317	Public health impact of foodborne exposure to naturally occurring virulence-attenuated Listeria monocytogenes: inference from mouse and mathematical models. Interface Focus, 2020, 10, 20190046.	1.5	4
1318	Combined Enrichment and Quantitative Polymerase Chain Reaction to Improve Sensitivity and Reduce Time of Detection of <i>Listeria monocytogenes</i> in Mushrooms. Foodborne Pathogens and Disease, 2020, 17, 276-283.	0.8	6
1319	Strain Variability of <i>Listeria monocytogenes</i> under NaCl Stress Elucidated by a High-Throughput Microbial Growth Data Assembly and Analysis Protocol. Applied and Environmental Microbiology, 2020, 86, .	1.4	15
1320	In Vitro Gene Transcription of Listeria monocytogenes After Exposure to Human Gastric and Duodenal Aspirates. Journal of Food Protection, 2020, 83, 89-100.	0.8	4
1321	QDs embedded copolymer nanospheres prepared with a simple self-stable precipitation polymerization method for Listeria monocytogenes detection. Optical Materials, 2020, 99, 109582.	1.7	6
1322	A review of Listeria monocytogenes from meat and meat products: Epidemiology, virulence factors, antimicrobial resistance and diagnosis. Onderstepoort Journal of Veterinary Research, 2020, 87, e1-e20.	0.6	84
1323	Postpartum listeria meningitis. IDCases, 2020, 21, e00896.	0.4	3
1324	An agent-based simulator for the gastrointestinal pathway of Listeria monocytogenes. International Journal of Food Microbiology, 2020, 333, 108776.	2.1	2

#	Article	IF	CITATIONS
1325	Broad range of substrate specificities in papain and fig latex enzymes preparations improve enumeration of Listeria monocytogenes. International Journal of Food Microbiology, 2020, 334, 108851.	2.1	6
1326	In silico identification of novel PrfA inhibitors to fight listeriosis: A virtual screening and molecular dynamics studies. Journal of Molecular Graphics and Modelling, 2020, 101, 107728.	1.3	1
1327	Susceptibility to Intracellular Infections: Contributions of TNF to Immune Defense. Frontiers in Microbiology, 2020, 11, 1643.	1.5	19
1328	Residential Refrigerator Performance Based on Microbial Indicators of Ground Beef Preservation Assessed Using Predictive Microbiology Tools. Food and Bioprocess Technology, 2020, 13, 2172-2185.	2.6	9
1329	Does Shiga Toxin-Producing Escherichia coli and Listeria monocytogenes Contribute Significantly to the Burden of Antimicrobial Resistance in Uruguay?. Frontiers in Veterinary Science, 2020, 7, 583930.	0.9	14
1330	Population Structure of Non-ST6 Listeria monocytogenes Isolated in the Red Meat and Poultry Value Chain in South Africa. Microorganisms, 2020, 8, 1152.	1.6	13
1331	Antimicrobial effect of spore-forming probiotics Bacillus laterosporus and Bacillus megaterium against Listeria monocytogenes. Archives of Microbiology, 2020, 202, 2791-2797.	1.0	7
1332	Serotyping and antibiotic resistance of <i>Listeria monocytogenes</i> isolated from raw water buffalo milk and milk products. Journal of Food Science, 2020, 85, 2889-2895.	1.5	11
1333	Listeria monocytogenes Infection of Bat Pipistrellus nathusii Epithelial cells Depends on the Invasion Factors InIA and InIB. Pathogens, 2020, 9, 867.	1.2	7
1334	Valproic acid inhibits interferon- \hat{I}^3 production by NK cells and increases susceptibility to Listeria monocytogenes infection. Scientific Reports, 2020, 10, 17802.	1.6	3
1335	Neurolisteriosis in a previously asymptomatic patient with serum IgM deficiency: a case report. BMC Neurology, 2020, 20, 323.	0.8	1
1336	Brainstem Encephalitis Caused by Listeria monocytogenes. Pathogens, 2020, 9, 715.	1.2	15
1337	Bio-inspired facile fabrication of silver nanoparticles from <i>in vitro</i> grown shoots of <i>Tamarix nilotica</i> : explication of its potential in impeding growth and biofilms of <i>Listeria monocytogenes</i> and assessment of wound healing ability. RSC Advances, 2020, 10, 30139-30149.	1.7	12
1338	Growth Potential of Listeria monocytogenes in Three Different Salmon Products. Foods, 2020, 9, 1048.	1.9	10
1339	Interaction of Macrophages and Cholesterol-Dependent Cytolysins: The Impact on Immune Response and Cellular Survival. Toxins, 2020, 12, 531.	1.5	19
1340	Why Are Some Listeria monocytogenes Genotypes More Likely To Cause Invasive (Brain, Placental) Infection?. MBio, 2020, 11, .	1.8	14
1341	Chitin Attenuates Expression of Listeria monocytogenes Virulence Genes in vitro. Frontiers in Microbiology, 2020, 11, 588906.	1.5	0
1342	Whole-Genome Sequencing-Based Characterization of Listeria monocytogenes from Fish and Fish Production Environments in Poland. International Journal of Molecular Sciences, 2020, 21, 9419.	1.8	18

#	Article	IF	CITATIONS
1343	LisRK is required for optimal fitness of <i>Listeria monocytogenes </i> li>in soil. FEMS Microbiology Letters, 2020, 367, .	0.7	7
1344	Aspectos actuales de la listeriosis. Medicina ClÃnica, 2020, 154, 453-458.	0.3	18
1345	Glycotyping and Specific Separation of Listeria monocytogenes with a Novel Bacteriophage Protein Tool Kit. Applied and Environmental Microbiology, 2020, 86, .	1.4	31
1346	Fluorescent Janus emulsions for biosensing of <i>Listeria monocytogenes</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11923-11930.	3.3	28
1347	Current aspects of listeriosis. Medicina ClÃnica (English Edition), 2020, 154, 453-458.	0.1	10
1348	Bacteria as a double-action sword in cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188388.	3.3	38
1349	Development of gel-based pads loaded with lysozyme and green tea extract: Characterization of pads and test of their antilisterial potential on cold-smoked salmon. LWT - Food Science and Technology, 2020, 128, 109471.	2.5	1
1350	Atomic Force Microscopy Investigation of the Contributions of Listeria monocytogenes Cell-Wall Biomacromolecules to Their Adherence and Mechanics. Journal of Physical Chemistry B, 2020, 124, 5872-5883.	1.2	1
1351	Diverse Localization and Protein Binding Abilities of Glyceraldehyde-3-Phosphate Dehydrogenase in Pathogenic Bacteria: The Key to its Multifunctionality?. Frontiers in Cellular and Infection Microbiology, 2020, 10, 89.	1.8	36
1352	The Role of Autophagy and Autophagy Receptor NDP52 in Microbial Infections. International Journal of Molecular Sciences, 2020, 21, 2008.	1.8	13
1353	Phylogenetic Analysis and Antibiotics Resistance of <i>Listeria Monocytogenes</i> Contaminating Chicken Meat in Surabaya, Indonesia. Veterinary Medicine International, 2020, 2020, 1-7.	0.6	1
1354	Two Prevalent Listeria ivanovii subsp. ivanovii Clonal Strains With Different Virulence Exist in Wild Rodents and Pikas of China. Frontiers in Veterinary Science, 2020, 7, 88.	0.9	11
1355	Rapid Detection of Hypervirulent Serovar 4h Listeria monocytogenes by Multiplex PCR. Frontiers in Microbiology, 2020, 11, 1309.	1.5	14
1356	PlcA-based nanofabricated electrochemical DNA biosensor for the detection of Listeria monocytogenes in raw milk samples. 3 Biotech, 2020, 10, 327.	1.1	14
1357	Listeria monocytogenes Virulence, Antimicrobial Resistance and Environmental Persistence: A Review. Pathogens, 2020, 9, 528.	1.2	72
1358	Listeria monocytogenes septicemia and meningoencephalitis associated with relapsed and refractory follicular lymphoma. Journal of Infection and Chemotherapy, 2020, 26, 619-621.	0.8	6
1359	Bacteria and cancer: Different sides of the same coin. Life Sciences, 2020, 246, 117398.	2.0	38
1360	Bacteriocins of Listeria monocytogenes and Their Potential as a Virulence Factor. Toxins, 2020, 12, 103.	1.5	10

#	Article	IF	CITATIONS
1361	Genomic-based identification of environmental and clinical Listeria monocytogenes strains associated with an abortion outbreak in beef heifers. BMC Veterinary Research, 2020, 16, 70.	0.7	14
1362	Overview of listeriosis in the Southern African Hemisphere—Review. Journal of Food Safety, 2020, 40, e12732.	1.1	29
1363	A Proteogenomic Resource Enabling Integrated Analysis of <i>Listeria</i> Genotype–Proteotype–Phenotype Relationships. Journal of Proteome Research, 2020, 19, 1647-1662.	1.8	10
1364	Variation in growth and evaluation of crossâ€protection in <i>Listeria monocytogenes</i> under salt and bile stress. Journal of Applied Microbiology, 2020, 129, 367-377.	1.4	7
1365	Listeriosis Outbreak in South Africa: A Comparative Analysis with Previously Reported Cases Worldwide. Microorganisms, 2020, 8, 135.	1.6	57
1366	Susceptibility of aging mice to listeriosis: Role of anti-inflammatory responses with enhanced Treg-cell expression of CD39/CD73 and Th-17 cells. International Journal of Medical Microbiology, 2020, 310, 151397.	1.5	19
1367	<i>Listeria monocytogenes</i> exploits host exocytosis to promote cell-to-cell spread. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117 , 3789 - 3796 .	3.3	23
1368	A Structural Study on the Listeria Monocytogenes Internalin Aâ€"Human E-cadherin Interaction: A Molecular Tool to Investigate the Effects of Missense Mutations. Toxins, 2020, 12, 60.	1.5	7
1369	An innovative design and application of natural antimicrobial gelatin based filling to control risk of listeriosis from caramel apples. Food Hydrocolloids, 2020, 107, 105938.	5.6	3
1370	Engineered Reporter Phages for Rapid Bioluminescence-Based Detection and Differentiation of Viable <i>Listeria</i> Cells. Applied and Environmental Microbiology, 2020, 86, .	1.4	45
1371	Contributions of a LysR Transcriptional Regulator to Listeria monocytogenes Virulence and Identification of Its Regulons. Journal of Bacteriology, 2020, 202, .	1.0	18
1372	Heterogeneity, Characteristics, and Public Health Implications of Listeria monocytogenes in Ready-to-Eat Foods and Pasteurized Milk in China. Frontiers in Microbiology, 2020, 11, 642.	1.5	28
1373	A Novel Growth-Based Selection Strategy Identifies New Constitutively Active Variants of the Major Virulence Regulator PrfA in Listeria monocytogenes. Journal of Bacteriology, 2020, 202, .	1.0	5
1374	Role of the Choroid Plexus in Health and Disease. Physiology in Health and Disease, 2020, , .	0.2	5
1375	Solid organ donation after death from listeria encephalitis: A case report. Transplant Infectious Disease, 2020, 22, e13295.	0.7	2
1376	Direct Metatranscriptome RNA-seq and Multiplex RT-PCR Amplicon Sequencing on Nanopore MinION – Promising Strategies for Multiplex Identification of Viable Pathogens in Food. Frontiers in Microbiology, 2020, 11, 514.	1.5	26
1377	The Response to Oxidative Stress in Listeria monocytogenes Is Temperature Dependent. Microorganisms, 2020, 8, 521.	1.6	18
1378	Molecular Mechanisms of Intercellular Dissemination of Bacterial Pathogens. Trends in Microbiology, 2021, 29, 127-141.	3.5	23

#	Article	IF	CITATIONS
1379	Inactivation of the gene encoding the cationic antimicrobial peptide resistance factor MprF increases biofilm formation but reduces invasiveness of <i>Listeria monocytogenes</i> Microbiology, 2021, 130, 464-477.	1.4	5
1380	Systemic <i>Listeria monocytogenes</i> journal of Veterinary Diagnostic Investigation, 2021, 33, 120-123.	0.5	2
1381	Isolation, identification, and control of a resistant bacterium strain found in Ku shui rose pure dew. Journal of Food Processing and Preservation, 2021, 45, e15061.	0.9	3
1382	Antilisterial effects of lysozyme-nisin combination at temperature and pH ranges optimal for lysozyme activity: Test of key findings to inactivate Listeria in raw milk. LWT - Food Science and Technology, 2021, 137, 110447.	2.5	3
1383	Genetic diversity, biofilm and virulence characteristics of Listeria monocytogenes in salmon sushi. Food Research International, 2021, 140, 109871.	2.9	14
1384	How to Move from Cell to Cell without Leaving the Intracellular Space: Lessons from Intracellular Parasites. Molecular Genetics, Microbiology and Virology, 2021, 36, 1-9.	0.0	0
1385	Listeria., 2021,, 201-220.		5
1386	Listeria and Erysipelothrix. , 2021, , .		O
1387	Physicochemical and Active Properties of Gelatine-Based Composite Gels Loaded with Lysozyme and Green Tea Polyphenols. Food Technology and Biotechnology, 2021, 59, 337-348.	0.9	3
1388	Listeriosis Cases and Genetic Diversity of Their L. monocytogenes Isolates in China, 2008–2019. Frontiers in Cellular and Infection Microbiology, 2021, 11, 608352.	1.8	19
1389	Effect of E-beam treatment on expression of virulence and stress-response genes of Listeria monocytogenes in dry-cured ham. International Journal of Food Microbiology, 2021, 340, 109057.	2.1	6
1391	Prevalence and Genetic Diversity of Listeria monocytogenes Isolated From Retail Pork in Wuhan, China. Frontiers in Microbiology, 2021, 12, 620482.	1.5	13
1393	Production of Membrane Vesicles in Listeria monocytogenes Cultured with or without Sub-Inhibitory Concentrations of Antibiotics and Their Innate Immune Responses In Vitro. Genes, 2021, 12, 415.	1.0	6
1394	The Genus Listeria. , 2021, , 411-442.		8
1396	Dynamic kinetic analysis of growth of Listeria monocytogenes in pasteurized cow milk. Journal of Dairy Science, 2021, 104, 2654-2667.	1.4	6
1397	Increased Listeria monocytogenes Dissemination and Altered Population Dynamics in Muc2-Deficient Mice. Infection and Immunity, 2021, 89, .	1.0	11
1398	Mint3 depletion-mediated glycolytic and oxidative alterations promote pyroptosis and prevent the spread of Listeria monocytogenes infection in macrophages. Cell Death and Disease, 2021, 12, 404.	2.7	9
1399	Role of probiotics in prevention and treatment of enteric infections: a comprehensive review. 3 Biotech, 2021, 11, 242.	1.1	28

#	Article	IF	CITATIONS
1400	Elements in the LftR Repressor Operator Interface Contributing to Regulation of Aurantimycin Resistance in Listeria monocytogenes. Journal of Bacteriology, 2021, 203, .	1.0	2
1401	Recent Advances in Peptide Nucleic Acids as Antibacterial Agents. Current Medicinal Chemistry, 2021, 28, 1104-1125.	1.2	4
1402	Listeria monocytogenes Menl Encodes a DHNA-CoA Thioesterase Necessary for Menaquinone Biosynthesis, Cytosolic Survival, and Virulence. Infection and Immunity, 2021, 89, .	1.0	15
1403	Presence and Characterization of Zoonotic Bacterial Pathogens in Wild Boar Hunting Dogs (Canis) Tj ETQq1 1 0.	784314 rg 1.0	BŢ/Overloc
1404	Plasma-Treated Water Affects Listeria monocytogenes Vitality and Biofilm Structure. Frontiers in Microbiology, 2021, 12, 652481.	1.5	10
1405	Environmental dissemination of pathogenic Listeria monocytogenes in flowing surface waters in Switzerland. Scientific Reports, 2021, 11, 9066.	1.6	39
1406	Absence of TNF Leads to Alternative Activation in Peritoneal Macrophages in Experimental Listeria Monocytogenes Infection. Immunological Investigations, 2021, , 1-18.	1.0	3
1407	Caffeine-loaded gold nanoparticles: antibiofilm and anti-persister activities against pathogenic bacteria. Applied Microbiology and Biotechnology, 2021, 105, 3717-3731.	1.7	15
1408	Transcriptome Analysis of Listeria monocytogenes Exposed to Beef Fat Reveals Antimicrobial and Pathogenicity Attenuation Mechanisms. Applied and Environmental Microbiology, 2021, 87, .	1.4	4
1409	Characterization of the roles of activated charcoal and Chelex in the induction of PrfA regulon expression in complex medium. PLoS ONE, 2021, 16, e0250989.	1.1	3
1410	Listeria cossartiae sp. nov., Listeria immobilis sp. nov., Listeria portnoyi sp. nov. and Listeria rustica sp. nov., isolated from agricultural water and natural environments. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	0.8	54
1411	<i>Campylobacter</i> spp. and <i>Listeria</i> spp. Contamination of Commercial Chickens. Nippon Juishikai Zasshi Journal of the Japan Veterinary Medical Association, 2021, 74, 321-326.	0.0	0
1412	Activation of the Listeria monocytogenes Stressosome in the Intracellular Eukaryotic Environment. Applied and Environmental Microbiology, 2021, 87, e0039721.	1.4	8
1413	Developmental trend of immunoassays for monitoring hazards in food samples: A review. Trends in Food Science and Technology, 2021, 111, 68-88.	7.8	68
1414	Listeria Monocytogenes Brain Abscesses in a Patient with Disseminated Non-Small Cellular Lung Cancer: MRI Findings. Diagnostics, 2021, 11, 1115.	1.3	4
1415	Autochthonous Enterococcus durans PFMI565 and Lactococcus lactis subsp. lactis BGBU1–4 in Bio-Control of Listeria monocytogenes in Ultrafiltered Cheese. Foods, 2021, 10, 1448.	1.9	9
1416	Validation of the Clear Safety <i>Listeria</i> Method for Detection of <i>Listeria</i> Species in Hot Dogs and on Environmental Surface Matrixes: AOAC <i>Performance Tested Method</i> SM 091901. Journal of AOAC INTERNATIONAL, 2022, 105, 211-229.	0.7	0
1417	Pathology in Practice. Journal of the American Veterinary Medical Association, 2021, 258, 1201-1203.	0.2	1

#	Article	IF	CITATIONS
1418	Molecular Mechanisms of Mast Cell Activation by Cholesterol-Dependent Cytolysins. Frontiers in Immunology, 2021, 12, 670205.	2.2	3
1419	Counteracting Bacterial Motility: A Promising Strategy to Narrow Listeria monocytogenes Biofilm in Food Processing Industry. Frontiers in Microbiology, 2021, 12, 673484.	1.5	7
1420	TLR2 Regulates Mast Cell IL-6 and IL-13 Production During Listeria monocytogenes Infection. Frontiers in Immunology, 2021, 12, 650779.	2.2	8
1421	Glucose Decoration on Wall Teichoic Acid Is Required for Phage Adsorption and InlB-Mediated Virulence in Listeria ivanovii. Journal of Bacteriology, 2021, 203, e0013621.	1.0	2
1422	Wine Pomace Product Inhibit Listeria monocytogenes Invasion of Intestinal Cell Lines Caco-2 and SW-480. Foods, 2021, 10, 1485.	1.9	2
1423	Proteomic Characterization of Antibiotic Resistance in Listeria and Production of Antimicrobial and Virulence Factors. International Journal of Molecular Sciences, 2021, 22, 8141.	1.8	8
1424	Lactobacillus plantarum in Dual-Species Biofilms With Listeria monocytogenes Enhanced the Anti-Listeria Activity of a Commercial Disinfectant Based on Hydrogen Peroxide and Peracetic Acid. Frontiers in Microbiology, 2021, 12, 631627.	1.5	4
1425	The molecular mechanisms of listeriolysin O-induced lipid membrane damage. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183604.	1.4	16
1426	Time-Resolved Proteome Analysis of <i>Listeria monocytogenes</i> during Infection Reveals the Role of the AAA+ Chaperone ClpC for Host Cell Adaptation. MSystems, 2021, 6, e0021521.	1.7	6
1428	Distribución y caracterización fenotÃpica y genotÃpica de Listeria monocytogenes aislada de alimentos, Colombia, 2010-2018. Biomedica, 2021, 41, 165-179.	0.3	0
1429	Detoxification of methylglyoxal by the glyoxalase system is required for glutathione availability and virulence activation in Listeria monocytogenes. PLoS Pathogens, 2021, 17, e1009819.	2.1	24
1430	Amino acid substitutions in ribosomal protein RpsU enable switching between high fitness and multiple-stress resistance in Listeria monocytogenes. International Journal of Food Microbiology, 2021, 351, 109269.	2.1	7
1431	Prevalence and molecular characterization of <i>Listeria monocytogenes</i> isolated from wastewater of cattle slaughterhouses in Turkey. Journal of Applied Microbiology, 2022, 132, 1518-1525.	1.4	11
1432	Evaluation of Enterococcus strains newly isolated from Egyptian sources for bacteriocin production and probiotic potential. Biocatalysis and Agricultural Biotechnology, 2021, 35, 102058.	1.5	8
1433	Hofbauer Cells Spread Listeria monocytogenes among Placental Cells and Undergo Pro-Inflammatory Reprogramming while Retaining Production of Tolerogenic Factors. MBio, 2021, 12, e0184921.	1.8	12
1434	Virulence Pattern Analysis of Three Listeria monocytogenes Lineage I Epidemic Strains with Distinct Outbreak Histories. Microorganisms, 2021, 9, 1745.	1.6	1
1435	The redox-responsive transcriptional regulator Rex represses fermentative metabolism and is required for Listeria monocytogenes pathogenesis. PLoS Pathogens, 2021, 17, e1009379.	2.1	9
1436	Conditions of In Vitro Biofilm Formation by Serogroups of Listeria monocytogenes Isolated from Hass Avocados Sold at Markets in Mexico. Foods, 2021, 10, 2097.	1.9	4

#	Article	IF	CITATIONS
1437	Photoactivated Carbon Dots for Inactivation of Foodborne Pathogens <i>Listeria </i> and Salmonella. Applied and Environmental Microbiology, 2021, 87, e0104221.	1.4	12
1438	Distribution, contamination routes, and seasonal influence of persistent Listeria monocytogenes in a commercial fresh Hypsizigus marmoreus production facility. Food Control, 2021, 127, 108118.	2.8	10
1439	Characterization and Genetic Diversity of Listeria monocytogenes Isolated from Cattle Abortions in Latvia, 2013–2018. Veterinary Sciences, 2021, 8, 195.	0.6	10
1440	Listeria monocytogenes crosses blood brain barrier through Rho GTPases induced migration of macrophages and inflammatory interleukin expression. Microbial Pathogenesis, 2021, 159, 105143.	1.3	6
1441	Anti-inflammatory activity of caffeine (1,3,7-trimethylxanthine) after experimental challenge with virulent Listeria monocytogenes in Swiss mice. International Immunopharmacology, 2021, 100, 108090.	1.7	11
1442	Prospect of microbial food borne diseases in Pakistan: a review. Brazilian Journal of Biology, 2021, 81, 940-953.	0.4	22
1443	Enzybiotics: Endolysins and Bacteriocins. , 2021, , 989-1030.		8
1444	How to move from cell to cell without leaving the intracellular space: lessons from intracellular parasites. Molekuliarnaia Genetika, Mikrobiologiia I Virusologiia, 2021, 39, 3.	0.1	0
1445	Topically Acquired Bacterial Infections from Aquaculture: A Synopsis with Relevance to the Arabian Peninsula., 2021,, 1261-1290.		0
1446	<i>Listeria monocytogenes</i> Bacteremia During Isatuximab Therapy in a Patient with Multiple Myeloma. Internal Medicine, 2021, 60, 3605-3608.	0.3	3
1447	Prevalence, Virulence and Antimicrobial Susceptibility of Salmonella spp., Yersinia enterocolitica and Listeria monocytogenes in European Wild Boar (Sus scrofa) Hunted in Tuscany (Central Italy). Pathogens, 2021, 10, 93.	1.2	22
1449	Listeriosis. , 0, , 255-259.		3
1450	The Manâ€PTS subunit â¡C is responsible for the sensitivity of <i>Listeria monocytogenes</i> to durancin GL. Food Science and Nutrition, 2020, 8, 150-161.	1.5	6
1451	Listeria monocytogenes and the Genus Listeria. , 2006, , 404-476.		23
1452	Listeriosis., 2007,, 13-32.		6
1453	Use of Bacteriophage Cell Wall-Binding Proteins for Rapid Diagnostics of Listeria. Methods in Molecular Biology, 2014, 1157, 141-156.	0.4	15
1454	Vaccination Studies: Detection of a Listeria monocytogenes-Specific T Cell Immune Response Using the ELISPOT Technique. Methods in Molecular Biology, 2014, 1157, 263-274.	0.4	1
1456	Listeria monocytogenes., 2006,, 125-149.		4

#	Article	IF	CITATIONS
1457	Prevalence and Persistence of Listeria monocytogenes in Dairy and Other Ready-to-Eat Food Products in Africa., 2016,, 349-362.		4
1458	Enzybiotics: Endolysins and Bacteriocins. , 2018, , 1-42.		4
1459	Mitigation of Foodborne Illnesses by Probiotics. , 2017, , 603-634.		2
1460	Strain-Specific Virulence Differences in Listeria monocytogenes: Current Perspectives in Addressing an Old and Vexing Issue., 2017,, 61-92.		3
1461	Bacterial infections of the liver. , 2008, , 143-160.		3
1462	Role of Listeria monocytogenes Exotoxins in Virulence. , 2016, , 1-20.		4
1463	Role of Listeria monocytogenes Exotoxins in Virulence. , 2016, , 1-20.		2
1464	MICROBIOLOGICAL SAFETY OF MEAT Listeria monocytogenes. , 2004, , 804-814.		3
1465	Acute Meningitis., 2010,, 1189-1229.		12
1466	Listeriolysin. , 2006, , 700-716.		5
1467	Listeria monocytogenes infections. , 2006, , 313-340.		4
1468	Acute Meningitis. , 2015, , 1097-1137.e8.		16
1469	Role and regulation of the stress activated sigma factor sigma B (ifB) in the saprophytic and host-associated life stages of Listeria monocytogenes. Advances in Applied Microbiology, 2019, 106, 1-48.	1.3	47
1471	Listeria costaricensis sp. nov International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 844-850.	0.8	39
1472	Listeria thailandensis sp. nov International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 74-81.	0.8	55
1473	Listeria valentina sp. nov., isolated from a water trough and the faeces of healthy sheep. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 5868-5879.	0.8	47
1474	Eugenol in combination with lactic acid bacteria attenuates Listeria monocytogenes virulence in vitro and in invertebrate model Galleria mellonella. Journal of Medical Microbiology, 2016, 65, 443-455.	0.7	23
1475	Hyperinvasiveness and increased intercellular spread of Listeria monocytogenes sequence type 1 are independent of listeriolysin S, internalin F and internalin J1. Journal of Medical Microbiology, 2017, 66, 1053-1062.	0.7	33

#	Article	IF	CITATIONS
1476	The interaction between Listeria monocytogenes and the host gastrointestinal tract. Microbiology (United Kingdom), 2009, 155, 2463-2475.	0.7	103
1477	Recombination and positive selection contribute to evolution of Listeria monocytogenes inlA. Microbiology (United Kingdom), 2007, 153, 2666-2678.	0.7	68
1478	A novel cell wall-anchored peptidoglycan hydrolase (autolysin), IspC, essential for Listeria monocytogenes virulence: genetic and proteomic analysis. Microbiology (United Kingdom), 2008, 154, 1900-1913.	0.7	46
1482	<i>Listeria monocytogenes</i> High Hydrostatic Pressure Resistance and Survival Strategies. , 0, , 101-115.		1
1483	Listeria Phages: Basics and Applications. , 0, , 362-379.		10
1484	Genomics of Listeria monocytogenes and Other Members of the Genus Listeria., 0,, 125-145.		3
1486	Indoleamine 2,3-dioxygenase–expressing dendritic cells form suppurative granulomas following Listeria monocytogenes infection. Journal of Clinical Investigation, 2006, 116, 3160-3170.	3.9	123
1487	Phenotype MicroArrays., 2003, , 135-146.		2
1489	Comparative Genomics and Evolution of Virulence. , 2008, , 311-335.		2
1491	Stress Responses. , 2008, , 61-96.		2
1492	Phenotypic Identification., 2008, , 139-168.		6
1493	Virulence Determination. , 2008, , 241-270.		4
1494	InlB, a surface protein of <i>Listeria monocytogenes </i> that behaves as an invasin and a growth factor. Journal of Cell Science, 2002, 115, 3357-3367.	1.2	104
1495	Listeriolysin O Is Necessary and Sufficient to Induce Autophagy during Listeria monocytogenes Infection. PLoS ONE, 2010, 5, e8610.	1.1	88
1496	Constitutive Activation of PrfA Tilts the Balance of Listeria monocytogenes Fitness Towards Life within the Host versus Environmental Survival. PLoS ONE, 2010, 5, e15138.	1.1	60
1497	A Small RNA Controls Expression of the Chitinase ChiA in Listeria monocytogenes. PLoS ONE, 2011, 6, e19019.	1.1	67
1498	N-Terminal Gly224–Gly411 Domain in Listeria Adhesion Protein Interacts with Host Receptor Hsp60. PLoS ONE, 2011, 6, e20694.	1.1	36
1499	Probing the Role of Protein Surface Charge in the Activation of PrfA, the Central Regulator of Listeria monocytogenes Pathogenesis. PLoS ONE, 2011, 6, e23502.	1.1	22

#	Article	IF	CITATIONS
1500	Universal Stress Proteins Are Important for Oxidative and Acid Stress Resistance and Growth of Listeria monocytogenes EGD-e In Vitro and In Vivo. PLoS ONE, 2011, 6, e24965.	1.1	63
1501	Generation of Variants in Listeria monocytogenes Continuous-Flow Biofilms Is Dependent on Radical-Induced DNA Damage and RecA-Mediated Repair. PLoS ONE, 2011, 6, e28590.	1.1	21
1502	Monoclonal Antibodies Recognizing the Surface Autolysin IspC of Listeria monocytogenes Serotype 4b: Epitope Localization, Kinetic Characterization, and Cross-Reaction Studies. PLoS ONE, 2013, 8, e55098.	1,1	15
1503	Clostridium perfringens Alpha-Toxin Induces Gm1a Clustering and Trka Phosphorylation in the Host Cell Membrane. PLoS ONE, 2015, 10, e0120497.	1.1	16
1504	Control of Relative Air Humidity as a Potential Means to Improve Hygiene on Surfaces: A Preliminary Approach with Listeria monocytogenes. PLoS ONE, 2016, 11, e0148418.	1,1	42
1505	Assessment of Listeria monocytogenes virulence in the Galleria mellonella insect larvae model. PLoS ONE, 2017, 12, e0184557.	1.1	22
1506	Potential role of chitinases and chitin-binding proteins in host-microbial interactions during the development of intestinal inflammation. Histology and Histopathology, 2011, 26, 1453-64.	0.5	60
1507	Isolation and Identification of pathogenic Listeria monocytogenes from diarrhoeal cases in human infants and young animals. Advances in Animal and Veterinary Sciences, 2014, 2, 5-10.	0.1	5
1508	Formulaci \tilde{A}^3 n mixta de bacterias l \tilde{A}_i cticas para el control de Listeria monocytogenes. Revista Colombiana De Biotecnolog \tilde{A} a, 2017, 19, 38-41.	0.5	2
1509	Isolation of Brucella melitensis strains from Syrian bovine milk samples. Bulgarian Journal of Veterinary Medicine, 2015, 18, 40-48.	0.1	9
1510	Occurrence of Listeria monocytogenes in silages assessed by fluorescent in situ hybridization. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2008, 60, 267-269.	0.1	5
1512	Occurrence and characteristics of Listeria monocytogenes in ready-to-eat food from retail market in the Czech Republic. Czech Journal of Food Sciences, 2009, 27, SII3-SII7.	0.6	8
1513	Listeria monocytogenes as the possible cause of the spontanous abortion in female of the fertile age. Bosnian Journal of Basic Medical Sciences, 2018, 5, 89-92.	0.6	4
1514	The Effect of Silver Nanoparticles on <i>Listeria monocytogenes</i> PCM2191 Peptidoglycan Metabolism and Cell Permeability. Polish Journal of Microbiology, 2018, 67, 315-320.	0.6	13
1515	Prevalence and Virulence Gene Profiling of Listeria monocytogenes from Fish and Meat Samples from Aizawl, Mizoram. Journal of Pure and Applied Microbiology, 2020, 14, 1359-1365.	0.3	4
1516	Listeria monocytogenes en queso amarillo madurado tipo Edam y su resistencia al pH y salinidad. Nova, 2009, 7, 71.	0.2	1
1517	Determinación de Listeria monocytogenes en quesos blancos artesanales expendidos en la plaza de mercado de Cáqueza, Cundinamarca. Nova, 2006, 4, 80.	0.2	3
1518	Resistencia Antimicrobiana y a Desinfectantes de Spp Nova, 2008, 6, 201-218.	0.2	4

#	Article	IF	Citations
1519	Isolation of listeria monocytogenes in neural forms of listeriosis and abortions in ruminants. Acta Veterinaria, 2006, 56, 343-351.	0.2	1
1520	Listeria monocytogenes in milk and dairy products. Biotechnology in Animal Husbandry, 2011, 27, 1067-1082.	0.5	29
1521	Antibiotic Susceptibility Profiles of Listeria monocytogenes Strains Isolated from Food Products and Clinical Samples. Romanian Journal of Laboratory Medicine, 2014, 22, .	0.1	5
1522	Prevalence of food contamination with Listeria spp. in Kermanshah, Islamic Republic of Iran. Eastern Mediterranean Health Journal, 2013, 19, 474-477.	0.3	11
1523	The role of the activated macrophage in clearing Listeria monocytogenes infection. Frontiers in Bioscience - Landmark, 2007, 12, 2683.	3.0	84
1524	Prevalence of Listeria monocytogenes in Raw Meats Marketed in Bangkok and Characterization of the Isolates by Phenotypic and Molecular Methods. Journal of Health, Population and Nutrition, 2011, 29, 26-38.	0.7	51
1525	Natural Plant-Derived Chemical Compounds as Listeria monocytogenes Inhibitors In Vitro and in Food Model Systems. Pathogens, 2021, 10, 12.	1.2	23
1526	Isolation and Identification of Listeria monocytogenes in Processed Meat by a Combined Cultural-molecular Method. American Journal of Infectious Diseases, 2007, 3, 159-164.	0.1	1
1527	Listeria monocytogenes: An emerging food-borne pathogen and its public health implications. Journal of Infection in Developing Countries, 2016, 10, 149-154.	0.5	33
1528	Histopathology and Pathogenesis of Listeriosis Caused by Listeria monocytogenes Isolated from Raw Milk in Mice. Pakistan Journal of Biological Sciences, 2006, 9, 2181-2183.	0.2	3
1529	Outbreaks of listeriosis associated with deli meats and cheese: an overview. AIMS Microbiology, 2016, 2, 230-250.	1.0	16
1530	Antimicrobial Activity of Wild Plant Seed Extracts against Human Bacterial and Plant Fungal Pathogens. American Journal of Plant Sciences, 2017, 08, 1572-1592.	0.3	6
1531	Molecular Characterization of Listeria Species Isolated from Frozen Fish. Alexandria Journal of Veterinary Sciences, 2014, 40, 1.	0.0	8
1532	Characterization of Listeria monocytogenes isolates by CAMP test. Veterinary World, 2011, , 301.	0.7	4
1533	Identification of Listeria monocytogenesVirulence Factors in Women With Abortion by Polymerase Chain Reaction. Archives of Clinical Infectious Diseases, 2014, 9, .	0.1	8
1534	Antimicrobial Activity of Oleanolic Acid on Listeria monocytogenes under Sublethal Stresses of NaCl and pH. Korean Journal for Food Science of Animal Resources, 2010, 30, 717-721.	1.5	7
1535	The Effects of Sodium Chloride on the Physiological Characteristics of Listeria monocytogenes. Korean Journal for Food Science of Animal Resources, 2013, 33, 395-402.	1.5	3
1536	Prevalence and Genetic Characteristics of Meatborne Listeria monocytogenes Isolates from Livestock Farms in Korea. Korean Journal for Food Science of Animal Resources, 2016, 36, 779-786.	1.5	11

#	Article	IF	CITATIONS
1537	Isolation and Characterization of Listeria phages for Control of Growth of Listeria monocytogenes in Milk. Korean Journal for Food Science of Animal Resources, 2017, 37, 320-328.	1.5	30
1538	Prevalence of Listeria monocytogenes in ready-to-eat food of animal origin. Tehnologija Mesa, 2014, 55, 117-122.	0.1	13
1539	Molecular docking based virtual screening of compounds for inhibiting sortase A in L. monocytogenes. Bioinformation, 2015, 11, 501-505.	0.2	15
1540	Detection of Listeria monocytogenes in ready-to-eat foods sampled from a catering service in Apulia, Italy. Annali Di Igiene: Medicina Preventiva E Di Comunita, 2015, 27, 590-4.	0.5	1
1541	Self-recognition drives the preferential accumulation of promiscuous CD4+ T-cells in aged mice. ELife, 2015, 4, e05949.	2.8	29
1542	Listeria spp. in Raw Cow and Goat Meat in Port Harcourt, Nigeria. British Biotechnology Journal, 2014, 4, 204-214.	0.4	9
1543	Occurrence and Molecular Characterisation of Listeria Species in Some Fresh-cut Vegetables and Environmental Samples. Journal of Advances in Microbiology, 2018, 12, 1-12.	0.2	4
1544	Adaptive Mechanisms of Listeria monocytogenes to Stressors: An Overview. South Asian Journal of Research in Microbiology, 0, , 1-8.	0.0	1
1545	Bacterial Isolates from Seafood in Scotland. IOSR Journal of Pharmacy and Biological Sciences, 2017, 12, 28-35.	0.1	1
1546	Pathogenicity and virulence of <i>Listeria monocytogenes</i> : A trip from environmental to medical microbiology. Virulence, 2021, 12, 2509-2545.	1.8	66
1547	Listeria monocytogenes Requires the RsbX Protein To Prevent SigB Activation under Nonstressed Conditions. Journal of Bacteriology, 2022, 204, JB0048621.	1.0	12
1548	Surveillance of Listeria monocytogenes: Early Detection, Population Dynamics, and Quasimetagenomic Sequencing during Selective Enrichment. Applied and Environmental Microbiology, 2021, 87, e0177421.	1.4	9
1549	Harnessing Whole Genome Sequence Data for Facility-Specific Signatures for Listeria monocytogenes: A Case Study With Turkey Processing Plants in the United States. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	5
1550	Role of internalin proteins in the pathogenesis of <i>Listeria monocytogenes</i> . Molecular Microbiology, 2021, 116, 1407-1419.	1.2	40
1551	Genomic characteristics of Listeria monocytogenes isolated during mushroom (Agaricus bisporus) production and processing. International Journal of Food Microbiology, 2021, 360, 109438.	2.1	16
1552	Listeriaspp.: DNA Probes and Conventional PCR Assays. , 2004, , 726-729.		0
1553	PATOGENESIS DE Listeria monocytogenes, MICROORGANISMO ZOONOTICO EMERGENTE Revista MVZ Cordoba, 2005, 10, .	0.2	6
1554	Listeriosis. , 2006, , 465-483.		3

#	Article	IF	CITATIONS
1555	Listeria., 2006,, 406-428.		1
1556	Listeria monocytogenesTechniques to Analyze Bacterial Infection in vitro. , 2006, , 407-415.		1
1557	Listeria and Erysipelothrix Infections. , 2007, , 1-5.		0
1558	Microbiology of Infective Endocarditis and Clinical Correlates: Gram-Positive Organisms. Infectious Disease and Therapy, 2007, , 13-50.	0.0	2
1559	Listeria monocytogenes. , 2008, , 761-765.		0
1560	Infektionen in der Schwangerschaft. , 2008, , 987-1015.		0
1561	Bacteriemia primaria por Listeria monocytogenes en paciente con cirrosis hepática: Caso clÃnico. Revista Medica De Chile, 2008, 136, .	0.1	1
1562	Genotypic Identification., 2008, , 169-201.		0
1563	Anti-Infective Vaccine Strategies. , 2008, , 449-480.		0
1564	Genetic Manipulations., 2008,, 273-309.		0
1568	APPROACH TO PATIENTS WITH GASTROINTESTINAL TRACT INFECTIONS AND FOOD POISONING. , 2009, , 621-653.		2
1569	Sýt ve Süt Ürünlerinde Listeria monocytogenes Varlığının Belirlenmesi, Antibiyotik Duyarlılık Profillerinin Saptanması, Izolatların Serolojik ve Moleküler Yöntemlerle Tiplendirilmesi. Kafkas Universitesi Veteriner Fakultesi Dergisi, 2009, , .	0.0	0
1570	Frequency of isolation of listeria species in different retail foods in Colombia. International Journal of Natural and Applied Sciences, 2009, 4, .	0.0	6
1571	In Vitro Antilisterial Potential of a Marine Isolate of Aspergillus sp. Collected from the South Coast of Korea. Korean Journal of Environmental Agriculture, 2009, 28, 75-81.	0.0	0
1572	Identification of Inhibitory Effect on Streptococcus mutans by Oleanolic Acid. Journal of Life Science, 2010, 20, 321-325.	0.2	2
1575	Infecção natural por Listeria monocytogenes em cobaios Cavia porcellus. Ciencia Rural, 2011, 41, 682-685.	0.3	0
1576	Leuconostoc., 2011,, 297-306.		0
1577	Investigation of the presence of rod-shaped bacteria on food surface via elastic light scattering. Advances in Bioscience and Biotechnology (Print), 2012, 03, 344-352.	0.3	1

#	Article	IF	CITATIONS
1578	Study the influence of some Listeria monocytogenes antigens on the side effects of Mitomycin C. The Iraqi Journal of Veterinary Medicine, 2012, 36, 347-354.	0.0	1
1579	IF THE MIND KNOWS, THE EYES CAN SEE – THE FIRST CASE OF NEONATAL LISTEROSIS REPORTED FROM EASTERN INDIA. Journal of Evolution of Medical and Dental Sciences, 2012, 1, 761-763.	0.1	0
1580	Microbiological Safety of Foods. , 2013, , 43-80.		1
1582	Listeriosis in Pregnancy: A Deadly and Under Diagnosed Gastrointestinal Infection. Journal of Gastrointestinal Infections, 2014, 4, 12-15.	0.1	O
1583	Ocorrência e diferenciação de espécies de Listeria spp. em salsichas tipo hot dog a granel e em amostras de carne moÃda bovina comercializadas no Distrito Federal. Ciencia Rural, 2014, 44, 147-152.	0.3	4
1584	Listeria and Erysipelothrix Infectionsâ~†., 2014, , .		0
1585	Listeria monocytogenes, Listeriosis and Control Strategies: What the Retail Deli and Food Safety Manager Need to Know., 2014, , 43-58.		2
1586	Listeriosis in Pregnancy: A Deadly and Under Diagnosed Gastrointestinal Infection. Journal of Gastrointestinal Infections, 2014, 4, 12-15.	0.1	0
1587	Gastric Fluid and Heat Stress Response of Listeria monocytogenes Inoculated on Frankfurters Formulated with 10%, 20%, and 30% Fat Content. Korean Journal for Food Science of Animal Resources, 2014, 34, 20-25.	1.5	2
1588	MIRTINAS VAIKO LISTERIOZÄ–S ATVEJIS PO INKSTO TRANSPLANTACIJOS. Medicinos Teorija Ir Praktika, 2014, 20, 176-179.	0.0	O
1589	Prevalence and Antibiotic Resistance Patterns in Listeria Monocytogenes Isolated from Food. Han'gug Sigpum Wi'saeng Anjeonseong Haghoeji, 2014, 29, 26-30.	0.1	1
1590	Macrophages: Microbial Recognition and Response. , 0, , 27-50.		O
1591	The Interaction of Bile Salts with Pathogenic and Nonpathogenic Intestinal Bacteria., 0,, 183-200.		0
1592	Evolution of Listeria monocytogenes. , 0, , 489-499.		0
1593	Regulation of Virulence Genes in Pathogenic <i>Listeria</i> spp, 0, , 634-645.		0
1594	Listeria monocytogenes. , 0, , 503-545.		3
1595	Rol de la Tropomiosina y del Adaptador NEDD9 durante la invasión celular de Listeria Mnocytogenes. TecnologÃa En Marcha, 2014, 27, 41.	0.1	0
1597	Isolation of Listeria monocytogenes of Karun River (Enviromental Sources Rural and Urban) by Culture and PCR Assay. International Journal of Enteric Pathogens, 2015, 3, .	0.2	3

#	ARTICLE	IF	CITATIONS
1598	Listeria., 2015,, 653-690.		0
1599	Bacterial Zoonoses., 0,, 175-291.		0
1600	PrfA and the Listeria monocytogenes Switch from Environmental Bacterium to Intracellular Pathogen. , 0, , 363-385.		0
1601	The Role of Alternative Sigma Factors in Pathogen Virulence. , 2017, , 229-303.		2
1602	Natural variants of Listeria mono-cytogenes internalin b with a different ability to stimu-late cell proliferation and cytoskeleton rearrangement in hep-2 cells. Molekuliarnaia Genetika, Mikrobiologiia I Virusologiia, 2017, 35, 53.	0.1	1
1603	Foodborne Pathogens and Host Predilection. , 2017, , 495-530.		O
1604	A Highly Quantitative Multi-Well Format Assay for Studying the Effect of Extracellular Matrix Mechanics on the Bacterial Infection of Endothelial Cells. Athens Journal of Sciences, 2017, 4, 7-20.	0.1	0
1605	Existence and Virulence Designation of Listeria Monocytogenes in Retail Chilled Pork Byproducts in Cairo Porcine Markets with Trials of Using Lactobacillus Probiotic as Anti-Listerial Meat Perservative. IOSR Journal of Environmental Science, Toxicology and Food Technology, 2017, 11, 19-23.	0.1	O
1606	Study the ultrastructure changes in the liver of mice post infection with Listeria monocytogenes. The Iraqi Journal of Veterinary Medicine, 2017, 41, 155-159.	0.0	0
1608	Cloning and Expression of Listeriolysin O in Lactobacillus plantarum. International Journal of Enteric Pathogens, 2017, 5, 115-120.	0.2	2
1610	Role of Listeria monocytogenes Exotoxins in Virulence. Toxinology, 2018, , 297-316.	0.2	1
1612	Listeria monocytogenes cells under nutrient deprivation showed reduced ability to infect the human intestinal cell line HT-29. Journal of Medical Microbiology, 2018, 67, 110-117.	0.7	O
1613	Molecular detection of serotype groups of Listeria monocytogenes isolated from gallbladder of cattle and sheep in Iraq. Veterinary World, 2018, 11, 431-436.	0.7	6
1614	Phenotypic and genotypic characterization of listeria species isolated from poultry and milk products. Benha Veterinary Medical Journal, 2018, 34, 201-212.	0.0	1
1615	Optimization and Molecular Detection of Neuraminidase Gene in Listeria Monocytogenes. International Journal of Infection, 2018, In Press, .	0.4	2
1616	Isolation of Salmonella Typhimurium, Listeria monocytogenes and coagulase-positive Staphylococcus from salami sold at street fairs in Porto Alegre, Brazil. Arquivos Do Instituto Biologico, 0, 86, .	0.4	5
1617	Listeriosis. Modern perception of epidemiological threat. Postepy Mikrobiologii, 2018, 57, 106-116.	0.1	4
1620	Laboratory Studies to Identify Listeria in Food Product. Bulletin of Science and Practice, 2019, 5, 192-199.	0.0	0

#	Article	IF	CITATIONS
1622	Characterisation of Listeria monocytogenes from Food and Human Clinical Samples at Duhok, Kurdistan Region of Iraq. Journal of Pure and Applied Microbiology, 2019, 13, 2215-2226.	0.3	3
1623	Emerging and Reemerging Bacterial Pathogens of Humans in Environmental and Hospital Settings. , 2020, , 29-67.		0
1624	Roles of the Choroid Plexus in CNS Infections. Physiology in Health and Disease, 2020, , 251-269.	0.2	0
1626	Prevalence, virulence and antibiotic susceptibility of Listeria monocytogenes isolated from sheep. Mansoura Veterinary Medical Journal, 2020, 21, 48-52.	0.2	1
1627	Acute neonatal Listeria monocytogenes infection causes long-term, organ-specific changes in immune cell subset composition. European Journal of Microbiology and Immunology, 2020, 10, 98-106.	1.5	5
1628	<i>Listeria monocytogenes</i> meningoencephalomyelitis most likely due to septic spread as a rare cause of neurological disease and fever in an adult horse. Veterinary Record Case Reports, 2020, 8, e001028.	0.1	1
1629	Prevalence, virulence and antibiotic susceptibility of Listeria monocytogenes isolated from sheep. Mansoura Veterinary Medical Journal, 2020, 21, 48-52.	0.2	0
1630	Genomic Determinants of Pathogenicity and Antimicrobial Resistance for 60 Global Listeria monocytogenes Isolates Responsible for Invasive Infections. Frontiers in Cellular and Infection Microbiology, 2021, 11, 718840.	1.8	22
1631	Anti-infective activity of Cratylia argentea lectin (CFL) against experimental infection with virulent Listeria monocytogenes in Swiss mice. Phytomedicine, 2021, 94, 153839.	2.3	0
1632	Genomic Diversity of Listeria monocytogenes Isolates From Slovakia (2010 to 2020). Frontiers in Microbiology, 2021, 12, 729050.	1.5	8
1634	Human Short Peptidoglycan Recognition Protein PGLYRP1/Tag-7/PGRP-S Inhibits Listeria monocytogenes Intracellular Survival in Macrophages. Frontiers in Cellular and Infection Microbiology, 2020, 10, 582803.	1.8	4
1635	Combining loop-mediated isothermal amplification and nanozyme-strip for ultrasensitive and rapid detection of viable Listeria monocytogenes cells and biofilms. LWT - Food Science and Technology, 2022, 154, 112641.	2.5	7
1636	Biological control of Listeria monocytogenes in soil model systems by Enterococcus mundtii strains expressing mundticin KS production. Applied Soil Ecology, 2022, 170, 104293.	2.1	2
1637	Prevalence, virulence genes, and antimicrobial resistance profile of Listeria monocytogenes isolated from retail poultry shops in Beni-Suef city, Egypt. Journal of Advanced Veterinary and Animal Research, 2020, 7, 710.	0.5	5
1638	Participation of Bacterial Lipases, Sphingomyelinases, and Phospholipases in Gram-Positive Bacterial Pathogenesis., 2020,, 205-221.		1
1639	Retrospective allergy diagnosis of lysteriosis and lysteria carrying in animals. BIO Web of Conferences, 2020, 27, 00054.	0.1	O
1640	Listeriosis. , 2020, , 338-345.		0
1641	Identification of Listeria monocytogenes in cattle meat using biochemical methods and amplification of the hemolysin gene. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20180557.	0.3	3

#	Article	IF	CITATIONS
1643	Isolation and Characterization of Listeria monocytogenes Phage vB_LmoH_P61, a Phage With Biocontrol Potential on Different Food Matrices. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	7
1645	Detection and extraction of anti-Listerial compounds from Calligonum comosum, a medicinal plant from arid regions of Tunisia. African Journal of Traditional Complementary and Alternative Medicines, 2011, 8, 322-7.	0.2	3
1646	Meningoencephalitis due to Listeria monocytogenes in a pregnant rhesus macaque (Macaca mulatta). Comparative Medicine, 2012, 62, 443-7.	0.4	7
1647	Listeria monocytogenes - characterization of strains isolated from clinical severe cases. Journal of Medicine and Life, 2014, 7 Spec No. 2, 42-8.	0.4	0
1648	Prevalence of Listeria monocytogenes in raw milk in Kerman, Iran. Veterinary Research Forum, 2015, 6, 223-6.	0.3	10
1649	Antibacterial effects of microbial synthesized silver-copper nanoalloys on and. Iranian Journal of Microbiology, 2018, 10, 171-179.	0.8	3
1650	The investigation of molecular characterization of presumptive isolates from a food-processing environment. Iranian Journal of Veterinary Research, 2019, 20, 46-50.	0.4	1
1651	Frequency of Isolated from Diarrhea Samples of Pediatric Patients at Central Iran. Reports of Biochemistry and Molecular Biology, 2019, 8, 172-177.	0.5	1
1653	Accurate classification of Listeria species by MALDI-TOF mass spectrometry incorporating denoising autoencoder and machine learning. Journal of Microbiological Methods, 2022, 192, 106378.	0.7	6
1654	Rhizobacteria Impact Colonization of Listeria monocytogenes on Arabidopsis thaliana Roots. Applied and Environmental Microbiology, 2021, 87, e0141121.	1.4	2
1655	Diversity of Listeria monocytogenes Strains Isolated from Food Products in the Central European Part of Russia in 2000–2005 and 2019–2020. Foods, 2021, 10, 2790.	1.9	8
1656	Application of bacteriophages in food production and their potential as biocontrol agents in the organic farming industry. Biological Control, 2022, 165, 104817.	1.4	5
1657	Proteomic analysis of hexahydro- \hat{l}^2 -acids/hydroxypropyl- \hat{l}^2 -cyclodextrin inhibit Listeria monocytogenes. Applied Microbiology and Biotechnology, 2022, 106, 755-771.	1.7	3
1658	Virulence Potential and Intercellular Spread of Listeria Monocytogenes. International Journal of Current Microbiology and Applied Sciences, 2020, 9, 527-531.	0.0	1
1659	Modified techniques in quantification of intracellular Listeria monocytogenes in vitro infection. Tap Chi Cong Nghe Sinh Hoc, 2020, 17, 767-774.	0.0	0
1661	<i>Listeria innocua</i> isolated from diseased ruminants harbour minor virulence genes of <i>L. monocytogenes</i> Veterinary Medicine and Science, 2022, 8, 735-740.	0.6	10
1662	The synergistic antibacterial effect and inhibition of biofilm formation of nisin in combination with terpenes against Listeria monocytogenes. Letters in Applied Microbiology, 2022, 75, 632-642.	1.0	9
1663	Listeria monocytogenes Invasion Into Sheep Kidney Epithelial Cells Depends on InlB, and Invasion Efficiency Is Modulated by Phylogenetically Defined InlB Isoforms. Frontiers in Microbiology, 2022, 13, 825076.	1.5	3

#	ARTICLE	IF	CITATIONS
1664	Characterization of <i>Listeria monocytogenes</i> isolated from wildlife in central New York. Veterinary Medicine and Science, 2022, 8, 1319-1329.	0.6	8
1665	Nonhemolytic Listeria monocytogenes—Prevalence Rate, Reasons Underlying Atypical Phenotype, and Methods for Accurate Hemolysis Assessment. Microorganisms, 2022, 10, 483.	1.6	2
1666	Epidemiological study on Listeria monocytogenes in Egyptian dairy cattle farms' insights into genetic diversity of multi-antibiotic-resistant strains by ERIC-PCR. Environmental Science and Pollution Research, 2022, 29, 54359-54377.	2.7	11
1667	Evaluation of VITEK® 2 and MALDI-TOF/MS automated methodologies in the identification of atypical Listeria spp. isolated from food in different regions of Brazil. Journal of Microbiological Methods, 2022, 194, 106434.	0.7	5
1669	Bioabsorption of Subcutaneous Nanofibrous Scaffolds Influences the Engraftment and Function of Neonatal Porcine Islets. Polymers, 2022, 14, 1120.	2.0	9
1671	Quantitative Microbial Risk Assessment of Listeria monocytogenes and Enterohemorrhagic Escherichia coli in Yogurt. Foods, 2022, 11, 971.	1.9	4
1672	Molecular characterization and hematological analysis of Listeria monocytogenes infection in dairy cows in Punjab (Pakistan). Archives of Microbiology, 2022, 204, 201.	1.0	O
1673	Prevalence and Clonal Diversity of over 1,200 Listeria monocytogenes Isolates Collected from Public Access Waters near Produce Production Areas on the Central California Coast during 2011 to 2016. Applied and Environmental Microbiology, 2022, 88, e0035722.	1.4	24
1674	Caracterização de bactérias ácido láticas autóctones de Bom Jesus do Itabapoana/RJ: ação antagonista contra Listeria monocytogenes e provas bioquÃmicas. Vértices, 2022, 24, 194-208.	0.1	3
1675	Impact of Epithelial Cell Shedding on Intestinal Homeostasis. International Journal of Molecular Sciences, 2022, 23, 4160.	1.8	20
1676	ZEA and DON inhibited inflammation after L. monocytogenes infection and induced ribosomal hyperfunction. Ecotoxicology and Environmental Safety, 2022, 236, 113470.	2.9	6
1677	Rapid detection of Listeria monocytogenes, Salmonella, Campylobacter spp., and Escherichia coli in food using biosensors. Food Control, 2022, 137, 108962.	2.8	22
1678	Isolation and multidrug drug resistance profile of Listeria species in selected Dairy Farm's Operational stages in Oromia Regional State, Ethiopia. Scientific African, 2022, 16, e01167.	0.7	3
1679	Intensified inactivation efficacy of pulsed ohmic heating for pathogens in soybean milk due to sodium lactate. Food Control, 2022, 137, 108936.	2.8	9
1680	Antibacterial properties of cyclolinopeptides from flaxseed oil and their application on beef. Food Chemistry, 2022, 385, 132715.	4.2	7
1681	Acute Exposure to the Food-Borne Pathogen Listeria monocytogenes Does Not Induce α-Synuclein Pathology in the Colonic ENS of Nonhuman Primates. Journal of Inflammation Research, 2021, Volume 14, 7265-7279.	1.6	2
1682	Bioactivity of Essential Oils for Mitigation of Listeria monocytogenes Isolated from Fresh Retail Chicken Meat. Foods, 2021, 10, 3006.	1.9	6
1683	Ruminantâ€associated <i>Listeria monocytogenes</i> isolates belong preferentially to dairyâ€associated hypervirulent clones: a longitudinal study in 19 farms. Environmental Microbiology, 2021, 23, 7617-7631.	1.8	17

#	Article	IF	CITATIONS
1684	Non-coding RNA regulates phage sensitivity in Listeria monocytogenes. PLoS ONE, 2021, 16, e0260768.	1.1	3
1685	<i>Listeria monocytogenes</i> at the interface between ruminants and humans: A comparative pathology and pathogenesis review. Veterinary Pathology, 2022, 59, 186-210.	0.8	13
1687	Distribution and genotypic diversity of Listeria monocytogenes strains isolated from humans and ruminants with common clinical and pathological phenotypes (neurolisterioses and abortions) (review). Agricultural Science Euro-North-East, 2022, 23, 145-158.	0.2	0
1747	Etiology, Clinical Manifestations and Microbiological Profile of Cardiac Device Infections. Clinical Microbiology (Los Angeles, Calif), 2016, 5, .	0.2	O
1749	Development of a fluorescent test strip sensor based on surface positively-charged magnetic bead separation for the detection of <i>Listeria monocytogenes</i> . Analytical Methods, 2022, 14, 2188-2194.	1.3	2
1751	Ampicillin Treatment of Intracellular Listeria monocytogenes Triggers Formation of Persistent, Drug-Resistant L-Form Cells. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	4
1752	Intracellular infection and immune system cues rewire adipocytes to acquire immune function. Cell Metabolism, 2022, 34, 747-760.e6.	7.2	21
1753	The Complex Role of Lactic Acid Bacteria in Food Detoxification. Nutrients, 2022, 14, 2038.	1.7	32
1754	<i>Listeria monocytogenes</i> in foodsâ€"From culture identification to wholeâ€genome characteristics. Food Science and Nutrition, 2022, 10, 2825-2854.	1.5	7
1755	Analysis of Derivatized Wall Teichoic Acids Confirms that a Mutation in Phage-Resistant <i>Listeria monocytogenes</i> Impacts Rhamnose Decoration. ACS Omega, 2022, 7, 17002-17013.	1.6	3
1756	<i>Listeria monocytogenes</i> septicemia and meningitis induced from immunosuppressant treatments in a patient with neuromyelitis optica spectrum disorder: A case report. International Journal of Case Reports and Images, 2022, 13, 1-5.	0.0	0
1757	The applicability of predictive microbiology tools for analysing Listeria monocytogenes contamination in butter produced by the traditional batch churning method. International Dairy Journal, 2022, 132, 105400.	1.5	2
1758	Case Report: Refractory Listeria innocua Meningoencephalitis in a Three-Year-Old Boy. Frontiers in Pediatrics, 2022, 10, .	0.9	0
1759	Involvement of a putative ATP-Binding Cassette (ABC) Involved in manganese transport in virulence of Listeria monocytogenes. PLoS ONE, 2022, 17, e0268924.	1.1	1
1760	TMT-Based Quantitative Proteomic Analysis of Intestinal Organoids Infected by Listeria monocytogenes Strains with Different Virulence. International Journal of Molecular Sciences, 2022, 23, 6231.	1.8	6
1761	Application of metagenomic next-generation sequencing for the diagnosis of intracranial infection of Listeria monocytogenes. Annals of Translational Medicine, 2022, 10, 672-672.	0.7	3
1762	The Determination of Presence of Listeria monocytogenes in Ground Meat Sold in Istanbul. Gazi University Journal of Science, 0, , .	0.6	0
1764	Hyperspectral imaging and machine learning in food microbiology: Developments and challenges in detection of bacterial, fungal, and viral contaminants. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 3717-3745.	5.9	25

#	Article	IF	CITATIONS
1765	Exosomally Targeting microRNA23a Ameliorates Microvascular Endothelial Barrier Dysfunction Following Rickettsial Infection. Frontiers in Immunology, 0, 13, .	2.2	5
1766	Isolation, discrimination, and molecular detection of Listeria species from slaughtered cattle in Namwala District, Zambia. BMC Microbiology, 2022, 22, .	1.3	8
1767	TORCH, Anti-cardiolepin, and Anti-phospholipids in Women with Repeated Miscarriage in Mosul City. Open Access Macedonian Journal of Medical Sciences, 2022, 10, 971-976.	0.1	0
1768	Risk factors associated with early mortality after recovery from severe listeriosis: a multicentre 17-year longitudinal study. Infection, 2023, 51, 181-191.	2.3	1
1769	InlB protein secreted by Listeria monocytogenes controls the pathogen interaction with macrophages. Bulletin of Russian State Medical University, 2022, , .	0.3	0
1770	Architectural Features and Resistance to Food-Grade Disinfectants in Listeria monocytogenes-Pseudomonas spp. Dual-Species Biofilms. Frontiers in Microbiology, 0, 13, .	1.5	2
1771	Analysis of 90 Listeria monocytogenes contaminated in poultry and livestock meat through whole-genome sequencing. Food Research International, 2022, 159, 111641.	2.9	8
1772	Recombinant Listeria ivanovii strain expressing listeriolysin O in place of ivanolysin O might be a potential antigen carrier for vaccine construction. Frontiers in Microbiology, 0, 13, .	1.5	0
1773	A systematic review and meta-analysis of the prevalence of Listeria monocytogenes in South-East Asia; a one-health approach of human-animal-food-environment. One Health, 2022, 15, 100417.	1.5	11
1774	Assessment of multidrug-resistant Listeria monocytogenes in milk and milk product and One Health perspective. PLoS ONE, 2022, 17, e0270993.	1.1	26
1775	Novel internalin P homologs in Listeria. Microbial Genomics, 2022, 8, .	1.0	0
1776	Infection with Listeria monocytogenes alters the placental transcriptome and eicosanome. Placenta, 2022, 128, 29-35.	0.7	1
1777	Virulence Characteristics and Distribution of the Pathogen ListeriaÂivanovii in the Environment and in Food. Microorganisms, 2022, 10, 1679.	1.6	2
1778	Analysis of Sanitizer Rotation on the Susceptibility, Biofilm Forming Ability and Caco-2 Cell Adhesion and Invasion of Listeria. Pathogens, 2022, 11, 961.	1.2	1
1779	Meat safetyâ€"I Foodborne pathogens and other biological issues. , 2023, , 549-590.		2
1780	Growth of food-borne pathogens Listeria and Salmonella and spore-forming Paenibacillus and Bacillus in commercial plant-based milk alternatives. Food Microbiology, 2023, 109, 104143.	2.1	11
1781	Listeriosis: The Dark Side of Refrigeration and Ensiling. , 2022, , 1-39.		0
1782	A <i>Listeria ivanovii</i> balancedâ€lethal system may be a promising antigen carrier for vaccine construction. Microbial Biotechnology, 0, , .	2.0	1

#	Article	IF	CITATIONS
1783	First Report of Septicaemic Listeriosis in a Loggerhead Sea Turtle (Caretta caretta) Stranded along the Adriatic Coast: Strain Detection and Sequencing. Animals, 2022, 12, 2364.	1.0	4
1784	<i>Listeria monocytogenes</i> genes supporting growth under standard laboratory cultivation conditions and during macrophage infection. Genome Research, 2022, 32, 1711-1726.	2.4	8
1785	Listeria monocytogenes Infection Alters the Content and Function of Extracellular Vesicles Produced by Trophoblast Stem Cells. Infection and Immunity, 2022, 90, .	1.0	3
1786	Extracellular vesicles from Listeria monocytogenes-infected dendritic cells alert the innate immune response. Frontiers in Immunology, 0, 13, .	2.2	3
1787	Genetic Diversity and Potential Virulence of Listeria monocytogenes Isolates Originating from Polish Artisanal Cheeses. Foods, 2022, 11, 2805.	1.9	2
1788	Fatal <i>Listeria monocytogenes</i> septicemia and meningitis complicated by <i>Candida glabrata</i> fungemia: a case report. Current Medical Research and Opinion, 2022, 38, 2119-2121.	0.9	3
1789	Characterization of the glmS ribozymes from Listeria monocytogenes and Clostridium difficile. Chemistry - A European Journal, 0, , .	1.7	4
1791	A Review on Impacts, Resistance Pattern and Spoilage of Vegetables Associated Microbes. International Journal of Innovations in Science and Technology, 2022, 4, 763-788.	0.1	0
1792	Identification of genetic elements required for Listeria monocytogenes growth under limited nutrient conditions and virulence by a screening of transposon insertion library. Frontiers in Microbiology, $0,13,1$	1.5	2
1793	Antimicrobial Resistance of Listeria monocytogenes from Animal Foods to First- and Second-Line Drugs in the Treatment of Listeriosis from 2008 to 2021: A Systematic Review and Meta-Analysis. Canadian Journal of Infectious Diseases and Medical Microbiology, 2022, 2022, 1-13.	0.7	2
1794	New Insights into Listeria monocytogenes Antimicrobial Resistance, Virulence Attributes and Their Prospective Correlation. Antibiotics, 2022, 11, 1447.	1.5	2
1795	Structural basis of flagellar motility regulation by the MogR repressor and the GmaR antirepressor in <i>Listeria monocytogenes</i> . Nucleic Acids Research, 2022, 50, 11315-11330.	6.5	6
1796	Pathogens and their sources in freshwater fish, sea finfish, shellfish, and algae., 2023, , 471-492.		1
1797	Characterisation of Listeria monocytogenes Isolates from Hunted Game and Game Meat from Finland. Foods, 2022, 11, 3679.	1.9	3
1799	Serotype-identifying ions in Listeria monocytogenes using matrix-associated laser desorption ionization-time of flight mass spectrometry. Heliyon, 2022, , e11769.	1.4	1
1800	Novel neurolisteriosis therapy using SPION as a drivable nanocarrier in gallic acid delivery to CNS. Journal of Controlled Release, 2023, 353, 507-517.	4.8	3
1801	Hybridization chain reaction-assisted enzyme cascade genosensor for the detection of Listeria monocytogenes. Talanta, 2023, 254, 124193.	2.9	4
1802	Influence of temperature on regulation of key virulence and stress response genes in Listeria monocytogenes biofilms. Food Microbiology, 2023, 111, 104190.	2.1	5

#	Article	IF	CITATIONS
1803	Genetic diversity and known virulence genes in Listeria innocua strains isolated from cattle abortions and farm environment. Veterinary and Animal Science, 2023, 19, 100276.	0.6	3
1805	Comparative Genomics Reveal the Utilization Ability of Variable Carbohydrates as Key Genetic Features of Listeria Pathogens in Their Pathogenic Lifestyles. Pathogens, 2022, 11, 1430.	1.2	1
1806	Assessment of the molecular epidemiology and genetic multiplicity of Listeria monocytogenes recovered from ready-to-eat foods following the South African listeriosis outbreak. Scientific Reports, 2022, 12, .	1.6	6
1807	Listeria monocytogenesâ€"How This Pathogen Uses Its Virulence Mechanisms to Infect the Hosts. Pathogens, 2022, 11, 1491.	1.2	14
1808	Bovine neutrophil chemotaxis to Listeria monocytogenes in neurolisteriosis depends on microglia-released rather than bacterial factors. Journal of Neuroinflammation, 2022, 19, .	3.1	0
1809	Human Listeriosis. Clinical Microbiology Reviews, 2023, 36, .	5.7	42
1810	Association between Pet Ownership and Threatened Abortion in Pregnant Women: The China Birth Cohort Study. International Journal of Environmental Research and Public Health, 2022, 19, 16374.	1.2	1
1812	Treatment of Listeria monocytogenes bacteremia with oral levofloxacin in an immunocompromised patient. IDCases, 2023, 31, e01680.	0.4	1
1813	Prevalence of Listeria monocytogenes, Salmonella spp., Shiga toxin-producing Escherichia coli, and Campylobacter spp. in raw milk in the United States between 2000 and 2019: A systematic review and meta-analysis. Journal of Food Protection, 2023, 86, 100014.	0.8	7
1815	Hemolysin function of Listeria is related to biofilm formation: transcriptomics analysis. Veterinary Research, 2022, 53, .	1.1	0
1816	Evaluation of Chitosan Nanoparticle Antimicrobial Effect on Isolated Listeria monocytogenes Bacteria from Pregnant Women and L. monocytogenes ATCC 7644. Iranian Journal of Public Health, 0, , .	0.3	1
1817	Prevalence and contamination patterns of Listeria monocytogenes in Pleurotus eryngii (king oyster) Tj ETQq1 1	0.784314 1.5	rgBT /Overlo
1818	Assessment of the influence of selected stress factors on the growth and survival of Listeria monocytogenes. BMC Microbiology, 2023, 23, .	1.3	1
1819	In Vitro and In Vivo Virulence Study of Listeria monocytogenes Isolated from the Andalusian Outbreak in 2019. Tropical Medicine and Infectious Disease, 2023, 8, 58.	0.9	1
1820	Inhibition of Listeria monocytogenes Growth, Adherence and Invasion in Caco-2 Cells by Potential Probiotic Lactic Acid Bacteria Isolated from Fecal Samples of Healthy Neonates. Microorganisms, 2023, 11, 363.	1.6	1
1821	Mortality risk factors related to listeriosis â€" A meta-analysis. Journal of Infection and Public Health, 2023, 16, 771-783.	1.9	8
1822	Contrasting Genetic Diversity of <i>Listeria</i> Pathogenicity Islands 3 and 4 Harbored by Nonpathogenic <i>Listeria</i> spp Applied and Environmental Microbiology, 2023, 89, .	1.4	4
1823	Isoflavone glucoside genistin, an inhibitor targeting Sortase A and Listeriolysin O, attenuates the virulence of Listeria monocytogenes in vivo and in vitro. Biochemical Pharmacology, 2023, 209, 115447.	2.0	5

#	Article	IF	CITATIONS
1824	Recent Advances in the Detection of <i>Listeria monocytogenes</i> . Infectious Diseases, 0, , .	4.0	1
1825	Contamination of Zophobas morio Larvae Rearing Substrate with Listeria monocytogenes: A Preliminary Study. Animals, 2023, 13, 1198.	1.0	1
1827	Listeria monocytogenes clones circulating inÂthe natural environment ofÂthe Czech Republic and Slovakia. Czech Journal of Food Sciences, 0, , .	0.6	0
1828	Listeria monocytogenes: An Inconvenient Hurdle for the Dairy Industry. Dairy, 2023, 4, 316-344.	0.7	6
1843	Microbiological safety of meat Listeria monocytogenes. , 2023, , .		0
1861	Listeriosis: The Dark Side of Refrigeration and Ensiling. , 2023, , 373-410.		0
1873	Listeria monocytogenes cell-to-cell spread. , 2024, , 391-406.		0
1874	Survival strategies of intracellular bacterial pathogens. , 2024, , 457-488.		1
1879	Early-Onset Sepsis. , 2024, , 251-256.		0
1882	Animal Modeling of Infectious Diseases. , 2024, , 20-54.		0
1885	Immunopathology of Reproductive Disorders of Animals. , 2024, , 293-372.		0