Biofilm Formation by the Fungal Pathogen Candida albiand Drug Resistance

Journal of Bacteriology 183, 5385-5394

DOI: 10.1128/jb.183.18.5385-5394.2001

Citation Report

#	Article	IF	CITATIONS
1	Virulence in Candida species. Trends in Microbiology, 2001, 9, 591-596.	7.7	143
3	Antifungal Susceptibility of Candida Biofilms: Unique Efficacy of Amphotericin B Lipid Formulations and Echinocandins. Antimicrobial Agents and Chemotherapy, 2002, 46, 1773-1780.	3.2	692
4	Comparison of Biofilms Formed by Candidaalbicans and Candidaparapsilosis on Bioprosthetic Surfaces. Infection and Immunity, 2002, 70, 878-888.	2.2	418
5	Action of Chlorhexidine Digluconate against Yeast and Filamentous Forms in an Early-Stage Candida albicans Biofilm. Antimicrobial Agents and Chemotherapy, 2002, 46, 3522-3531.	3.2	45
6	Proteomic Analysis Reveals Differential Protein Expression by Bacillus cereus during Biofilm Formation. Applied and Environmental Microbiology, 2002, 68, 2770-2780.	3.1	152
7	All Catheter-Related Candidemia Is Not the Same: Assessment of the Balance between the Risks and Benefits of Removal of Vascular Catheters. Clinical Infectious Diseases, 2002, 34, 600-602.	5.8	68
8	Conservative management of polymicrobial peritonitis complicating peritoneal dialysis—a series of 140 consecutive cases. American Journal of Medicine, 2002, 113, 728-733.	1.5	56
9	The physiology and collective recalcitrance of microbial biofilm communities. Advances in Microbial Physiology, 2002, 46, 203-256.	2.4	213
10	Evolution of Drug Resistance in Candida Albicans. Annual Review of Microbiology, 2002, 56, 139-165.	7.3	134
11	The genetic basis of fluconazole resistance development in Candida albicans. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2002, 1587, 240-248.	3.8	197
12	Host–microbe interactions: fungi invasive human fungal opportunistic infections. Current Opinion in Microbiology, 2002, 5, 355-358.	5.1	43
13	Resistance of human fungal pathogens to antifungal drugs. Current Opinion in Microbiology, 2002, 5, 379-385.	5.1	162
14	Candida biofilms. Current Opinion in Microbiology, 2002, 5, 608-611.	5.1	220
15	Yeast and drug discovery. Functional and Integrative Genomics, 2002, 2, 199-211.	3.5	82
17	Reduction of potential respiratory pathogens by oral hygienic treatment in patients undergoing endotracheal anesthesia. Journal of Anesthesia, 2003, 17, 84-91.	1.7	28
18	Influence of antifungal polyenes on the adhesion of Candida albicans and Candida glabrata to human epithelial cells in vitro. Archives of Oral Biology, 2003, 48, 805-814.	1.8	25
19	Glycocalyx morphology of Candida albicans. Microscopy Research and Technique, 2003, 61, 409-413.	2.2	4
20	Clonal identity of <i>Candida albicans</i> in the oral cavity and the gastrointestinal tract of preâ€school children. Oral Microbiology and Immunology, 2003, 18, 302-308.	2.8	46

#	Article	IF	CITATIONS
21	Changes in Candida albicans colonization and morphology under influence of voriconazole. Veranderungen in der Kolonisation und Morphologie von Candida albicans unter dem Einfluss von Voriconazol. Mycoses, 2003, 46, 370-374.	4.0	6
22	Formation of Candida albicans biofilms on non-shedding oral surfaces. European Journal of Oral Sciences, 2003, 111, 465-471.	1.5	73
23	Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiology (United Kingdom), 2003, 149, 353-362.	1.8	248
24	Uses and Limitations of the XTT Assay in Studies of Candida Growth and Metabolism. Journal of Clinical Microbiology, 2003, 41, 506-508.	3.9	287
25	A method for discrimination of subpopulations of Candida albicans biofilm cells that exhibit relative levels of phenotypic resistance to chlorhexidine. Journal of Microbiological Methods, 2003, 53, 313-325.	1.6	36
26	Candida biofilms and their role in infection. Trends in Microbiology, 2003, 11, 30-36.	7.7	985
27	Sixty Alleles of the ALS7 Open Reading Frame in Candida albicans: ALS7 Is a Hypermutable Contingency Locus. Genome Research, 2003, 13, 2005-2017.	5.5	68
28	Catheter-Related Sepsis Due to <i>Rhodotorula glutinis</i> . Journal of Clinical Microbiology, 2003, 41, 857-859.	3.9	40
29	Resistance and tolerance mechanisms to antifungal drugs in fungal pathogens. The Mycologist, 2003, 17, 74-78.	0.4	29
30	Reduced Water Availability Influences the Dynamics, Development, and Ultrastructural Properties of Pseudomonas putida Biofilms. Journal of Bacteriology, 2003, 185, 6199-6204.	2.2	81
31	Mechanism of Fluconazole Resistance in Candida albicans Biofilms: Phase-Specific Role of Efflux Pumps and Membrane Sterols. Infection and Immunity, 2003, 71, 4333-4340.	2.2	462
32	Dynamics of a microbial biofilm in a rotating biological contactor for the treatment of winery effluent. Water S A, 2004, 30, 407.	0.4	25
33	Fungal Biofilms and Drug Resistance. Emerging Infectious Diseases, 2004, 10, 14-19.	4.3	241
34	Immunopathogenesis of Oropharyngeal Candidiasis in Human Immunodeficiency Virus Infection. Clinical Microbiology Reviews, 2004, 17, 729-759.	13.6	176
35	Candida albicans Biofilms: a Developmental State Associated With Specific and Stable Gene Expression Patterns. Eukaryotic Cell, 2004, 3, 536-545.	3.4	343
36	Penetration of Candida Biofilms by Antifungal Agents. Antimicrobial Agents and Chemotherapy, 2004, 48, 3291-3297.	3.2	208
37	Influence of Acetylsalicylic Acid (Aspirin) on Biofilm Production by <i>Candida</i> Species. Journal of Chemotherapy, 2004, 16, 134-138.	1.5	35
38	Adherence of <i>Candida albicans</i> to Silicone Induces Immediate Enhanced Tolerance to Fluconazole. Antimicrobial Agents and Chemotherapy, 2004, 48, 3358-3366.	3.2	104

3

#	ARTICLE	IF	Citations
39	Rabbit Model of Candida albicans Biofilm Infection: Liposomal Amphotericin B Antifungal Lock Therapy. Antimicrobial Agents and Chemotherapy, 2004, 48, 1727-1732.	3.2	183
40	Deletion of the NOT4 gene impairs hyphal development and pathogenicity in Candida albicans. Microbiology (United Kingdom), 2004, 150, 229-240.	1.8	36
41	Susceptibility of Candida albicans biofilms grown in a constant depth film fermentor to chlorhexidine, fluconazole and miconazole: a longitudinal study. Journal of Antimicrobial Chemotherapy, 2004, 53, 383-385.	3.0	86
42	Development and Characterization of an In Vivo Central Venous Catheter <i>Candida albicans</i> Biofilm Model. Infection and Immunity, 2004, 72, 6023-6031.	2.2	358
44	Resolution of persistent periapical infection by endodontic surgery. International Endodontic Journal, 2004, 37, 61-69.	5.0	31
45	The Candida albicans CaACE2 gene affects morphogenesis, adherence and virulence. Molecular Microbiology, 2004, 53, 969-983.	2.5	166
46	The Yak1p kinase controls expression of adhesins and biofilm formation in Candida glabrata in a Sir4p-dependent pathway. Molecular Microbiology, 2004, 55, 1259-1271.	2.5	119
47	Origins of variation in the fungal cell surface. Nature Reviews Microbiology, 2004, 2, 533-540.	28.6	177
48	Biofilm: the microbial ?bunker? for intravascular catheter-related infection. Supportive Care in Cancer, 2004, 12, 701-707.	2.2	31
49	Simple and reliable detection of slime production of Candida spp. directly from blood culture bottles: Comparison of visual tube method and transmission electron microscopy. Mycopathologia, 2004, 158, 279-284.	3.1	5
50	Candida Infections of Medical Devices. Clinical Microbiology Reviews, 2004, 17, 255-267.	13.6	931
51	Reservoir ofCandidaalbicansinfection in a vascular bypass graft demonstrates a stable karyotype over six months. Medical Mycology, 2004, 42, 255-260.	0.7	6
52	Management of Resistant Candida Infections. , 2004, , 271-296.		0
53	Efficacy of antiseptics and disinfectants on clinical and environmental yeast isolates in planktonic and biofilm conditions. Journal of Medical Microbiology, 2004, 53, 1013-1018.	1.8	56
54	biofilm resistance. Drug Resistance Updates, 2004, 7, 301-309.	14.4	186
56	Fungal Biofilm Formation on Cochlear Implant Hardware After Antibiotic-Induced Fungal Overgrowth Within the Middle Ear. Pediatric Infectious Disease Journal, 2004, 23, 774-778.	2.0	26
57	Economic Impact of Biofilms on Treatment Costs. , 2005, , 21-38.		2
58	Hospital disinfection: efficacy and safety issues. Current Opinion in Infectious Diseases, 2005, 18, 320-325.	3.1	55

#	Article	IF	CITATIONS
59	Anidulafungin. Infectious Diseases in Clinical Practice, 2005, 13, 165-178.	0.3	10
60	Effect of albumin on the photodynamic inactivation of microorganisms by a cationic porphyrin. Journal of Photochemistry and Photobiology B: Biology, 2005, 79, 51-57.	3.8	73
61	DNA array analysis of Candida albicansgene expression in response to adherence to polystyrene. FEMS Microbiology Letters, 2005, 245, 25-32.	1.8	34
62	Composition of in vitro denture plaque biofilms and susceptibility to antifungals. FEMS Microbiology Letters, 2005, 242, 345-351.	1.8	52
63	Coating of a surface with 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymer significantly reduces retention of human pathogenic microorganisms. FEMS Microbiology Letters, 2005, 248, 37-45.	1.8	94
64	Candida, still number one - what do we know and where are we going from there?. Candida, immer noch Nummer Eins: Was wissen wir, und wie geht es weiter?. Mycoses, 2005, 48, 3-11.	4.0	64
65	Regulation of Cell-Surface Genes and Biofilm Formation by the C. albicans Transcription Factor Bcr1p. Current Biology, 2005, 15, 1150-1155.	3.9	424
66	Candida albicans Biofilms: More Than Filamentation. Current Biology, 2005, 15, R453-R455.	3.9	102
67	Colonization of Candida species in denture wearers with emphasis on HIV infection: A literature review. Journal of Prosthetic Dentistry, 2005, 93, 288-293.	2.8	60
68	Anaerobic Growth of Candida albicans Does Not Support Biofilm Formation Under Similar Conditions Used for Aerobic Biofilm. Current Microbiology, 2005, 51, 100-104.	2.2	33
69	Transcriptional profiling of Saccharomyces cerevisiae cells under adhesion-inducing conditions. Molecular Genetics and Genomics, 2005, 273, 382-393.	2.1	22
70	Pseudomonas aeruginosa, Candida albicans, and device-related nosocomial infections: implications, trends, and potential approaches for control. Journal of Industrial Microbiology and Biotechnology, 2005, 32, 309-318.	3.0	94
71	The use of new probes and stains for improved assessment of cell viability and extracellular polymeric substances in Candida albicans biofilms. Mycopathologia, 2005, 159, 353-360.	3.1	99
72	Characterization of Switch Phenotypes in Candida albicans Biofilms. Mycopathologia, 2005, 160, 191-200.	3.1	15
73	Imaging of the Development and Therapeutic Response of an In Vivo Fungal Catheter Biofilm. Microscopy Today, 2005, 13, 30-33.	0.3	0
74	Construction and real-time RT-PCR validation of Candida albicans PALS-GFP reporter strains and their use in flow cytometry analysis of ALS gene expression in budding and filamenting cells. Microbiology (United Kingdom), 2005, 151, 1051-1060.	1.8	57
75	Anti-metabolic activity of caspofungin against Candida albicans and Candida parapsilosis biofilms. Journal of Antimicrobial Chemotherapy, 2005, 56, 507-512.	3.0	64
76	Genome-Wide Transcription Profiling of the Early Phase of Biofilm Formation by Candida albicans. Eukaryotic Cell, 2005, 4, 1562-1573.	3.4	142

#	Article	IF	CITATIONS
77	Phenotype switching affects biofilm formation by Candida parapsilosis. Microbiology (United) Tj ETQq0 0 0 rgBT	/Overlock	19Jf 50 742
78	Systemic Fungal Infections Caused by Candida Species: Epidemiology, Infection Process and Virulence Attributes. Current Drug Targets, 2005, 6, 863-874.	2.1	208
79	Microbial Biofilms in Medicine. , 2005, , 1-28.		6
80	Microplate Alamar Blue Assay for Staphylococcus epidermidis Biofilm Susceptibility Testing. Antimicrobial Agents and Chemotherapy, 2005, 49, 2612-2617.	3.2	284
81	Thriving in Adolescence. Journal of Early Adolescence, 2005, 25, 94-112.	1.9	79
82	Specific Antibody Can Prevent Fungal Biofilm Formation and This Effect Correlates with Protective Efficacy. Infection and Immunity, 2005, 73, 6350-6362.	2.2	155
83	Yeast wall protein 1 of Candida albicans. Microbiology (United Kingdom), 2005, 151, 1631-1644.	1.8	123
84	Candida albicans Biofilm-Defective Mutants. Eukaryotic Cell, 2005, 4, 1493-1502.	3.4	160
85	Sensitivity of <i>Candida albicans</i> Germ Tubes and Biofilms to Photofrin-Mediated Phototoxicity. Antimicrobial Agents and Chemotherapy, 2005, 49, 4288-4295.	3.2	88
86	Adhesion and biofilm formation of Candida albicans on native and Pluronic-treated polystyrene. Biofilms, 2005, 2, 63-71.	0.6	25
87	cDNA Microarray Analysis of Differential Gene Expression in Candida albicans Biofilm Exposed to Farnesol. Antimicrobial Agents and Chemotherapy, 2005, 49, 584-589.	3.2	212
88	In Vitro Method To Study Antifungal Perfusion in <i>Candida</i> Biofilms. Journal of Clinical Microbiology, 2005, 43, 818-825.	3.9	80
89	<i>Candida</i> Biofilms: an Update. Eukaryotic Cell, 2005, 4, 633-638.	3.4	612
90	<i>Candida</i> biofilm: a well-designed protected environment. Medical Mycology, 2005, 43, 191-208.	0.7	132
91	Quantification of ALS1 gene expression in Candida albicans biofilms by RT-PCR using hybridisation probes on the LightCyclerâ,,¢. Molecular and Cellular Probes, 2005, 19, 153-162.	2.1	46
92	Modification of Surface Properties of Biomaterials Influences the Ability of Candida albicans To Form Biofilms. Applied and Environmental Microbiology, 2005, 71, 8795-8801.	3.1	126
93	Effects of Fresh Garlic Extract on Candida albicans Biofilms. Antimicrobial Agents and Chemotherapy, 2005, 49, 473-473.	3.2	40
94	ALTERNATIVE <i>CANDIDA ALBICANS</i> LIFESTYLES: Growth on Surfaces. Annual Review of Microbiology, 2005, 59, 113-133.	7.3	224

#	Article	IF	Citations
95	Echinocandins for Candidemia in Adults without Neutropenia. New England Journal of Medicine, 2006, 355, 1154-1159.	27.0	102
96	Biofilm production by clinical isolates of <i>Candida </i> species. Medical Mycology, 2006, 44, 99-101.	0.7	48
97	In vitro effects of micafungin against Candida biofilms on polystyrene and central venous catheter sections. International Journal of Antimicrobial Agents, 2006, 28, 568-573.	2.5	54
98	Candida albicans biofilm development, modeling a host–pathogen interaction. Current Opinion in Microbiology, 2006, 9, 340-345.	5.1	190
99	How to build a biofilm: a fungal perspective. Current Opinion in Microbiology, 2006, 9, 588-594.	5.1	453
100	Correlating Yeast Cell Stress Physiology to Changes in the Cell Surface Morphology: Atomic Force Microscopic Studies. Scientific World Journal, The, 2006, 6, 777-780.	2.1	9
101	Bacterial Biofilms in Chronic Rhinosinusitis. Annals of Otology, Rhinology and Laryngology, 2006, 115, 35-39.	1.1	47
102	Biofilms and their Role in the Resistance of Pathogenic Candida to Antifungal Agents. Current Drug Targets, 2006, 7, 465-670.	2.1	118
103	Candida albicans and Candida dubliniensis: comparison of biofilm formation in terms of biomass and activity. British Journal of Biomedical Science, 2006, 63, 5-11.	1.3	50
104	(B1) Candida and Mycotic Infections. Advances in Dental Research, 2006, 19, 130-138.	3.6	27
105	Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR. BMC Molecular Biology, 2006, 7, 25.	3.0	139
106	In vitro evaluation of virulence attributes of Candida spp. isolated from patients affected by diabetes mellitus. Oral Microbiology and Immunology, 2006, 21, 183-189.	2.8	34
107	Genetics and genomics of Candida albicans biofilm formation. Cellular Microbiology, 2006, 8, 1382-1391.	2.1	237
108	The Effect of Complete Dentures with a Metal Palate on Candida Species Growth in HIV-Infected Patients. Journal of Prosthodontics, 2006, 15, 306-315.	3.7	28
109	Interspecies variation in Candida biofilm formation studied using the Calgary biofilm device. Apmis, 2006, 114, 298-306.	2.0	70
110	Candidabiofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Research, 2006, 6, 979-986.	2.3	482
111	Effect of farnesol on Candida dubliniensisbio film formation and fluconazole resistance. FEMS Yeast Research, 2006, 6, 1063-1073.	2.3	105
112	Biofilm formation by Candida albicansmutants for genes coding fungal proteins exhibiting the eight-cysteine-containing CFEM domain. FEMS Yeast Research, 2006, 6, 1074-1084.	2.3	90

#	Article	IF	CITATIONS
113	Metal resistance in Candida biofilms. FEMS Microbiology Ecology, 2006, 55, 479-491.	2.7	84
114	Pore formers promoted release of an antifungal drug from functionalized polyurethanes to inhibit Candida colonization. Journal of Applied Microbiology, 2006, 100, 615-622.	3.1	35
115	Influence of starvation, surface attachment and biofilm growth on the biocide susceptibility of the biodeteriogenic yeast Aureobasidium pullulans. Journal of Applied Microbiology, 2006, 101, 319-330.	3.1	11
116	Shear-flow induced detachment of Saccharomyces cerevisiae from stainless steel: Influence of yeast and solid surface properties. Colloids and Surfaces B: Biointerfaces, 2006, 49, 126-135.	5.0	65
117	The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the calgary biofilm device. Biological Procedures Online, 2006, 8, 194-215.	2.9	121
118	Opportunistic fungi and fungal infections: the challenge of a single, general antifungal vaccine. Expert Review of Vaccines, 2006, 5, 859-867.	4.4	30
119	Non-glucan Attached Proteins of Candida albicans Biofilm Formed on Various Surfaces. Mycopathologia, 2006, 161, 3-10.	3.1	26
120	Effect of pepstatin A on the virulence factors of Candida albicans strains isolated from vaginal environment of patients in three different clinical conditions. Mycopathologia, 2006, 162, 75-82.	3.1	15
121	Effect of aqueous extract from Neem (Azadirachta indica A. Juss) on hydrophobicity, biofilm formation and adhesion in composite resin by Candida albicans. Archives of Oral Biology, 2006, 51, 482-490.	1.8	71
122	Adsorption behavior of antimicrobial peptide histatin 5 on PMMA. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 77B, 47-54.	3.4	49
123	Candida albicans Biofilms Produce Antifungal-Tolerant Persister Cells. Antimicrobial Agents and Chemotherapy, 2006, 50, 3839-3846.	3.2	436
124	Alcohol Dehydrogenase Restricts the Ability of the Pathogen Candida albicans To Form a Biofilm on Catheter Surfaces through an Ethanol-Based Mechanism. Infection and Immunity, 2006, 74, 3804-3816.	2.2	135
125	Inhibition of Fungal Colonization by Pseudoalteromonas tunicata Provides a Competitive Advantage during Surface Colonization. Applied and Environmental Microbiology, 2006, 72, 6079-6087.	3.1	60
126	Critical Role of Bcr1-Dependent Adhesins in C. albicans Biofilm Formation In Vitro and In Vivo. PLoS Pathogens, 2006, 2, e63.	4.7	443
127	Biofilm Formation by the Emerging Fungal Pathogen Trichosporon asahii: Development, Architecture, and Antifungal Resistance. Antimicrobial Agents and Chemotherapy, 2006, 50, 3269-3276.	3.2	198
128	The Opi1p Transcription Factor Affects Expression of FLO11, Mat Formation, and Invasive Growth in Saccharomyces cerevisiae. Eukaryotic Cell, 2006, 5, 1266-1275.	3.4	31
129	Protein O- Mannosyltransferase Isoforms Regulate Biofilm Formation in Candida albicans. Antimicrobial Agents and Chemotherapy, 2006, 50, 3488-3491.	3.2	34
130	Susceptibility of Cryptococcus neoformans Biofilms to Antifungal Agents In Vitro. Antimicrobial Agents and Chemotherapy, 2006, 50, 1021-1033.	3.2	177

#	Article	IF	Citations
131	<i>Cryptococcus neoformans</i> Cells in Biofilms Are Less Susceptible than Planktonic Cells to Antimicrobial Molecules Produced by the Innate Immune System. Infection and Immunity, 2006, 74, 6118-6123.	2.2	91
132	A Small Subpopulation of Blastospores in Candida albicans Biofilms Exhibit Resistance to Amphotericin B Associated with Differential Regulation of Ergosterol and \hat{l}^2 -1,6-Glucan Pathway Genes. Antimicrobial Agents and Chemotherapy, 2006, 50, 3708-3716.	3.2	91
133	Talking to Themselves: Autoregulation and Quorum Sensing in Fungi. Eukaryotic Cell, 2006, 5, 613-619.	3.4	237
134	Bacterial Community Structure on Membrane Surface and Characteristics of Strains Isolated from Membrane Surface in Submerged Membrane Bioreactor. Separation Science and Technology, 2006, 41, 1527-1549.	2.5	47
135	Antibiofilm Activity of GlmU Enzyme Inhibitors against Catheter-Associated Uropathogens. Antimicrobial Agents and Chemotherapy, 2006, 50, 1835-1840.	3.2	88
136	Role for Cell Density in Antifungal Drug Resistance in Candida albicans Biofilms. Antimicrobial Agents and Chemotherapy, 2007, 51, 2454-2463.	3.2	147
137	Antifungal hydrogels. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12994-12998.	7.1	101
138	Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. Journal of Medical Microbiology, 2007, 56, 1205-1212.	1.8	222
139	\hat{l}^2 â€ $\frac{1}{4}$,3 Glucan as a Test for Central Venous Catheter Biofilm Infection. Journal of Infectious Diseases, 2007, 195, 1705-1712.	4.0	85
140	Interaction of Candida albicans with Adherent Human Peripheral Blood Mononuclear Cells Increases C. albicans Biofilm Formation and Results in Differential Expression of Pro- and Anti-Inflammatory Cytokines. Infection and Immunity, 2007, 75, 2612-2620.	2.2	122
141	Metal Ions May Suppress or Enhance Cellular Differentiation in Candida albicans and Candida tropicalis Biofilms. Applied and Environmental Microbiology, 2007, 73, 4940-4949.	3.1	58
142	Paradoxical Growth Effect of Caspofungin Observed on Biofilms and Planktonic Cells of Five Different Candida Species. Antimicrobial Agents and Chemotherapy, 2007, 51, 3081-3088.	3.2	108
143	Eap1p, an Adhesin That Mediates Candida albicans Biofilm Formation In Vitro and In Vivo. Eukaryotic Cell, 2007, 6, 931-939.	3.4	124
144	Anticandidal Immunity and Vaginitis: Novel Opportunities for Immune Intervention. Infection and Immunity, 2007, 75, 4675-4686.	2.2	44
145	Biofilms associated with the final stages of Baker's compressed yeast production. British Food Journal, 2007, 109, 20-30.	2.9	7
146	In vitro biofilm characterization and activity of antifungal agents alone and in combination against sessile and planktonic clinical Candida albicans isolates. Diagnostic Microbiology and Infectious Disease, 2007, 57, 277-281.	1.8	59
147	The Bacterial Response to the Chalcogen Metalloids Se and Te. Advances in Microbial Physiology, 2007, 53, 1-312.	2.4	152
148	Biofilm development by clinical isolates of Malassezia pachydermatis. Medical Mycology, 2007, 45, 357-361.	0.7	73

#	Article	IF	CITATIONS
149	Microplate Alamar blue assay for susceptibility testing of <i>Candida albicans </i> biofilms. Medical Mycology, 2007, 45, 603-607.	0.7	36
150	Candida albicansAls proteins mediate aggregation with bacteria and yeasts. Medical Mycology, 2007, 45, 363-370.	0.7	106
151	Biofilm formation by fluconazole-resistant Candida albicans strains is inhibited by fluconazole. Journal of Antimicrobial Chemotherapy, 2007, 59, 441-450.	3.0	43
152	Putative Role of \hat{I}^2 -1,3 Glucans in Candida albicans Biofilm Resistance. Antimicrobial Agents and Chemotherapy, 2007, 51, 510-520.	3.2	362
153	Traitement des candidémies chez un patient porteur d'un cathéter vasculaire. Journal De Mycologie Medicale, 2007, 17, 42-49.	1.5	6
154	Potential of photodynamic therapy in treatment of fungal infections of the mouth. Design and characterisation of a mucoadhesive patch containing toluidine blue O. Journal of Photochemistry and Photobiology B: Biology, 2007, 86, 59-69.	3.8	148
155	<i>Candida albicans</i> inactivation and cell membrane integrity damage by microwave irradiation. Mycoses, 2007, 50, 140-147.	4.0	49
156	An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus. Cellular Microbiology, 2007, 9, 1588-1600.	2.1	231
157	Effects of a nanoparticulate silica substrate on cell attachment of Candida albicans. Journal of Applied Microbiology, 2007, 102, 757-765.	3.1	69
158	The strange case of a biofilm-forming strain of <i>Pichia fermentans </i> , which controls <i>Monilinia </i> brown rot on apple but is pathogenic on peach fruit. FEMS Yeast Research, 2007, 7, 1389-1398.	2.3	69
159	A subpopulation of Candida albicans and Candida tropicalis biofilm cells are highly tolerant to chelating agents. FEMS Microbiology Letters, 2007, 272, 172-181.	1.8	41
160	Dietary sugars, serum and the biocide chlorhexidine digluconate modify the population and structural dynamics of mixed <i>Candida albicans</i> and <i>Escherichia coli</i> biofilms. Apmis, 2007, 115, 1241-1251.	2.0	24
161	Characteristics of dual species Candida biofilms on denture acrylic surfaces. Archives of Oral Biology, 2007, 52, 1200-1208.	1.8	67
164	In vitro inhibitory activity of EDTA against planktonic and adherent cells of Candida sp Annals of Microbiology, 2007, 57, 115-119.	2.6	8
165	The effect of chlorhexidine and gentian violet on the adherence of Candida spp. to urinary catheters. Mycopathologia, 2007, 163, 261-266.	3.1	26
166	Antifungal susceptibility of Candida albicans biofilms on titanium discs with different surface roughness. Clinical Oral Investigations, 2007, 11, 361-368.	3.0	44
167	Prevention of Candida albicans biofilm by plant oils. Mycopathologia, 2008, 165, 13-19.	3.1	70
168	Fungal-bacterial biofilms: their development for novel biotechnological applications. World Journal of Microbiology and Biotechnology, 2008, 24, 739-743.	3.6	140

#	Article	IF	CITATIONS
169	Can we produce an image of bacteria with radiopharmaceuticals?. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35, 1051-1055.	6.4	32
170	ldentity, beer spoiling and biofilm forming potential of yeasts from beer bottling plant associated biofilms. Antonie Van Leeuwenhoek, 2008, 93, 151-161.	1.7	32
171	<i>Candida albicans</i> biofilm formation is associated with increased antiâ€oxidative capacities. Proteomics, 2008, 8, 2936-2947.	2.2	86
172	Plasma Deposition of Silver Nanoparticles onto Stainless Steel for the Prevention of Fungal Biofilms: A Case Study on <i>Saccharomyces cerevisiae</i> . Plasma Processes and Polymers, 2008, 5, 228-238.	3.0	38
173	Multidrug Tolerance of Biofilms and Persister Cells. Current Topics in Microbiology and Immunology, 2008, 322, 107-131.	1.1	623
174	Biofilm lifestyle of <i>Candida:</i> a mini review. Oral Diseases, 2008, 14, 582-590.	3.0	269
175	Characteristics of biofilm formation by Candida tropicalis and antifungal resistance. FEMS Yeast Research, 2008, 8, 442-450.	2.3	131
176	Iron deprivation induces <i>EFG1</i> -mediated hyphal development in <i>Candida albicans</i> without affecting biofilm formation. FEMS Yeast Research, 2008, 8, 744-755.	2.3	48
177	Respiratory Deficiency Enhances the Sensitivity of the Pathogenic Fungus <i>Candida</i> to Photodynamic Treatment. Photochemistry and Photobiology, 2008, 84, 1141-1148.	2.5	30
178	<i>Phytophthora parasitica</i> biofilm formation: installation and organization of microcolonies on the surface of a host plant. Environmental Microbiology, 2008, 10, 2164-2171.	3.8	33
179	Complementary Adhesin Function in C. albicans Biofilm Formation. Current Biology, 2008, 18, 1017-1024.	3.9	293
180	Candida Biofilms: Is Adhesion Sexy?. Current Biology, 2008, 18, R717-R720.	3.9	32
181	Formación de biopelÃɛulas de Candida albicans en condiciones de flujo utilizando un aparato de Robbins modificado mejorado. Revista Iberoamericana De Micologia, 2008, 25, 37-40.	0.9	40
183	Discovering the secrets of the <i>Candida albicans</i> agglutinin-like sequence (ALS) gene family – a sticky pursuit. Medical Mycology, 2008, 46, 1-15.	0.7	307
184	Fungal biofilm inhibition by a component naturally produced by Candida albicans yeasts growing as a biofilm. International Journal of Antimicrobial Agents, 2008, 31, 166-170.	2.5	11
185	In vitro activity of baicalein against Candida albicans biofilms. International Journal of Antimicrobial Agents, 2008, 32, 73-77.	2.5	85
186	Bacterial Biofilms. Current Topics in Microbiology and Immunology, 2008, , .	1.1	37
187	Variation of cell surface hydrophobicity and biofilm formation among genotypes of <i>Candida albicans </i> hisand <i>Candida dubliniensis </i> hunder antifungal treatment. Canadian Journal of Microbiology, 2008, 54, 718-724.	1.7	34

#	Article	IF	CITATIONS
188	Screening for antibacterial and antifungal activities in marine benthic invertebrates from northern Norway. Journal of Invertebrate Pathology, 2008, 99, 286-293.	3.2	37
189	In vitro growth and analysis of Candida biofilms. Nature Protocols, 2008, 3, 1909-1924.	12.0	205
190	Candidiasis mucocutáneas. Piel, 2008, 23, 460-470.	0.0	3
191	Increased Filamentous Growth of Candida albicans in Simulated Microgravity. Genomics, Proteomics and Bioinformatics, 2008, 6, 42-50.	6.9	42
192	<i>Aspergillus fumigatus</i> Forms Biofilms with Reduced Antifungal Drug Susceptibility on Bronchial Epithelial Cells. Antimicrobial Agents and Chemotherapy, 2008, 52, 4130-4136.	3.2	203
193	The Yak1 Kinase Is Involved in the Initiation and Maintenance of Hyphal Growth in <i>Candida albicans</i> . Molecular Biology of the Cell, 2008, 19, 2251-2266.	2.1	59
194	<i>Fusarium</i> and <i>Candida albicans</i> Biofilms on Soft Contact Lenses: Model Development, Influence of Lens Type, and Susceptibility to Lens Care Solutions. Antimicrobial Agents and Chemotherapy, 2008, 52, 171-182.	3.2	188
195	In VitroInteractions of Approved and Experimental Drugs againstCandida albicansandAspergillusspp Journal of Chemotherapy, 2008, 20, 137-139.	1.5	0
196	In Vitro Activity of Anidulafungin against <i>Candida albicans</i> Biofilms. Antimicrobial Agents and Chemotherapy, 2008, 52, 2242-2243.	3.2	43
197	Efungumab and caspofungin: pre-clinical data supporting synergy. Journal of Antimicrobial Chemotherapy, 2008, 61, 1132-1139.	3.0	50
198	Phase-dependent antifungal activity against Aspergillus fumigatus developing multicellular filamentous biofilms. Journal of Antimicrobial Chemotherapy, 2008, 62, 1281-1284.	3.0	105
199	Biofilm formation by a biotechnologically important tropical marine yeast isolate, Yarrowia lipolytica NCIM 3589. Water Science and Technology, 2008, 58, 1221-1229.	2.5	20
200	<i>Candida albicans</i> Als Adhesins Have Conserved Amyloid-Forming Sequences. Eukaryotic Cell, 2008, 7, 776-782.	3.4	120
201	Susceptibility of clinical isolates of Candida species to fluconazole and detection of Candida albicans ERG11 mutations. Journal of Antimicrobial Chemotherapy, 2008, 61, 798-804.	3.0	90
202	Reduced Biocide Susceptibility in <i>Candida albicans</i> Biofilms. Antimicrobial Agents and Chemotherapy, 2008, 52, 3411-3413.	3.2	61
203	Cell Density and Cell Aging as Factors Modulating Antifungal Resistance of <i>Candida albicans < /i> Biofilms. Antimicrobial Agents and Chemotherapy, 2008, 52, 3259-3266.</i>	3.2	93
204	Differential Activities of Newer Antifungal Agents against Candida albicans and Candida parapsilosis Biofilms. Antimicrobial Agents and Chemotherapy, 2008, 52, 357-360.	3.2	114
205	Biofilm formation by a biotechnologically important tropical marine yeast isolate, Yarrowia lipolytica NCIM 3589. Water Science and Technology, 2008, 58, 2467-2475.	2.5	5

#	Article	IF	CITATIONS
206	Biofilms: microbes and disease. Brazilian Journal of Infectious Diseases, 2008, 12, 526-530.	0.6	143
207	Improvement of XTT assay performance for studies involving Candida albicans biofilms. Brazilian Dental Journal, 2008, 19, 364-369.	1.1	105
208	Scintigraphic Imaging of Vertebral Osteomyelitis With 111In-Biotin. Spine, 2008, 33, E198-E204.	2.0	41
209	A Novel Immune Evasion Strategy of Candida albicans: Proteolytic Cleavage of a Salivary Antimicrobial Peptide. PLoS ONE, 2009, 4, e5039.	2.5	115
210	In vitro antifungal action of different substances over microwaved-cured acrylic resins. Journal of Applied Oral Science, 2009, 17, 432-435.	1.8	24
211	Human fungal pathogenCandida albicansin the postgenomic era: an overview. Expert Review of Anti-Infective Therapy, 2009, 7, 121-134.	4.4	11
212	Hypoxic Adaptation by Efg1 Regulates Biofilm Formation by <i>Candida albicans</i> . Applied and Environmental Microbiology, 2009, 75, 3663-3672.	3.1	74
213	<i>Candida albicans</i> and <i>Staphylococcus aureus</i> Form Polymicrobial Biofilms: Effects on Antimicrobial Resistance. Antimicrobial Agents and Chemotherapy, 2009, 53, 3914-3922.	3.2	445
214	Antibody-Mediated Immobilization of Cryptococcus neoformans Promotes Biofilm Formation. Applied and Environmental Microbiology, 2009, 75, 2528-2533.	3.1	20
215	Correlation between Biofilm Formation and the Hypoxic Response in <i>Candida parapsilosis</i> Eukaryotic Cell, 2009, 8, 550-559.	3.4	83
216	Conserved WCPL and CX4C Domains Mediate Several Mating Adhesin Interactions in Saccharomyces cerevisiae. Genetics, 2009, 182, 173-189.	2.9	16
217	Simvastatin Inhibits Candida albicans Biofilm In Vitro. Pediatric Research, 2009, 66, 600-604.	2.3	30
218	Effect of tunicamycin on Candida albicans biofilm formation and maintenance. Journal of Antimicrobial Chemotherapy, 2009, 63, 473-479.	3.0	40
219	<i>Streptococcus gordonii</i> Modulates <i>Candida albicans</i> Biofilm Formation through Intergeneric Communication. Infection and Immunity, 2009, 77, 3696-3704.	2.2	257
220	Parenteral Lipid Emulsion Induces Germination of <i>Candida albicans </i> I) and Increases Biofilm Formation on Medical Catheter Surfaces. Journal of Infectious Diseases, 2009, 200, 473-480.	4.0	51
221	<i>Candida albicans</i> biofilm formation and its clinical consequences. Future Microbiology, 2009, 4, 1235-1237.	2.0	65
222	Identification of Fungicide Targets in Pathogenic Fungi., 2009,, 233-245.		2
223	Time Course Global Gene Expression Analysis of an In Vivo <i>Candida</i> Biofilm. Journal of Infectious Diseases, 2009, 200, 307-313.	4.0	156

#	Article	IF	CITATIONS
224	In Vitro Activity of Micafungin against Planktonic and Sessile <i>Candida albicans</i> Isolates. Antimicrobial Agents and Chemotherapy, 2009, 53, 2638-2639.	3.2	20
225	Farnesol-Induced Apoptosis in <i>Candida albicans</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 2392-2401.	3.2	210
226	Biofilm Formation by <i>Pneumocystis</i> spp. Eukaryotic Cell, 2009, 8, 197-206.	3.4	92
227	Synergistic activity of lysozyme and antifungal agents against Candida albicans biofilms on denture acrylic surfaces. Archives of Oral Biology, 2009, 54, 115-126.	1.8	41
228	Sensitivity of Candida albicans biofilm cells grown on denture acrylic to antifungal proteins and chlorhexidine. Archives of Oral Biology, 2009, 54, 588-594.	1.8	89
229	Architectural analysis, viability assessment and growth kinetics of Candida albicans and Candida glabrata biofilms. Archives of Oral Biology, 2009, 54, 1052-1060.	1.8	97
230	Monitoring ALS1 and ALS3 Gene Expression During InÂVitro Candida albicans Biofilm Formation Under Continuous Flow Conditions. Mycopathologia, 2009, 167, 9-17.	3.1	43
231	Design of a Simple Model of Candida albicans Biofilms Formed under Conditions of Flow: Development, Architecture, and Drug Resistance. Mycopathologia, 2009, 168, 101-109.	3.1	70
232	Covalently linked cell wall proteins of <i>Candida albicans < $i\rangle$ and their role in fitness and virulence. FEMS Yeast Research, 2009, 9, 1013-1028.</i>	2.3	141
233	The antagonistic effect of <i> Saccharomyces boulardii < /i > on <i> Candida albicans < /i > filamentation, adhesion and biofilm formation. FEMS Yeast Research, 2009, 9, 1312-1321.</i></i>	2.3	50
234	Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Research, 2009, 9, 1029-1050.	2.3	234
235	The expression of genes involved in the ergosterol biosynthesis pathway in <i>Candida albicans</i> and <i>Candida dubliniensis</i> biofilms exposed to fluconazole. Mycoses, 2009, 52, 118-128.	4.0	54
236	Shear stress modulates the thickness and architecture of <i>Candida albicans</i> biofilms in a phaseâ€dependent manner. Mycoses, 2009, 52, 440-446.	4.0	28
237	Microbiological, Clinical, and Surgical Features of Fungal Prosthetic Joint Infections: A Multi-Institutional Experience. Journal of Bone and Joint Surgery - Series A, 2009, 91, 142-149.	3.0	192
238	Biofilms of non- <i>Candida albicans Candida</i> species: quantification, structure and matrix composition. Medical Mycology, 2009, 47, 681-689.	0.7	318
239	Amphotericin B lipid complex is efficacious in the treatment of Candida albicans biofilms using a model of catheter-associated Candida biofilms. International Journal of Antimicrobial Agents, 2009, 33, 149-153.	2.5	73
240	Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans. International Journal of Antimicrobial Agents, 2009, 34, 333-339.	2.5	38
241	Antibacterial agents in patients with swine flu. International Journal of Antimicrobial Agents, 2009, 34, 616.	2.5	4

#	Article	IF	CITATIONS
242	The characteristics of <i>Aspergillus fumigatus </i> mycetoma development: is this a biofilm?. Medical Mycology, 2009, 47, S120-S126.	0.7	109
243	Outcome of Antimicrobial Therapy in Documented Biofilm-Associated Infections. Drugs, 2009, 69, 1351-1361.	10.9	37
244	Antifungal Targets, Mechanisms of Action, and Resistance in Candida albicans., 2009,, 347-407.		5
245	Our Current Understanding of Fungal Biofilms. Critical Reviews in Microbiology, 2009, 35, 340-355.	6.1	429
246	Penetration of Antifungal Agents Through Candida Biofilms. Methods in Molecular Biology, 2009, 499, 37-44.	0.9	8
247	Candida albicans. Methods in Molecular Biology, 2009, 499, v.	0.9	5
248	Expression of CgCDR1, CgCDR2, and CgERG11 in Candida glabratabio films formed by bloodstream isolates. Medical Mycology, 2009, 47, 545-548.	0.7	25
249	The effects of tea polyphenols on <i>Candida albicans</i> i>: inhibition of biofilm formation and proteasome inactivation. Canadian Journal of Microbiology, 2009, 55, 1033-1039.	1.7	103
250	<i>In-vivo</i> Candida biofilms in scanning electron microscopy. Medical Mycology, 2009, 47, 690-696.	0.7	30
251	Biofilm formation in clinical Candida isolates and its association with virulence. Microbes and Infection, 2009, 11, 753-761.	1.9	168
252	Characteristics of <i>Candida albicans</i> Biofilms Grown in a Synthetic Urine Medium. Journal of Clinical Microbiology, 2009, 47, 4078-4083.	3.9	48
253	Propranolol inhibits Candida albicans adherence and biofilm formation on biotic and abiotic surfaces. International Journal of Antimicrobial Agents, 2009, 34, 614-616.	2.5	5
254	The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. International Journal of Antimicrobial Agents, 2009, 34, 103-110.	2.5	665
255	Increased Resistance of Contact Lens-Related Bacterial Biofilms to Antimicrobial Activity of Soft Contact Lens Care Solutions. Cornea, 2009, 28, 918-926.	1.7	143
256	The Inhibitory Effect of a Macrocyclic Bisbibenzyl Riccardin D on the Biofilms of <i>Candida albicans</i> Biological and Pharmaceutical Bulletin, 2009, 32, 1417-1421.	1.4	36
257	Anti-Candida Activity of Essential Oils. Mini-Reviews in Medicinal Chemistry, 2009, 9, 1292-1305.	2.4	53
258	Scanning Electron and Confocal Scanning Laser Microscopy Imaging of the Ultrastructure and Viability of Vaginal <i>Candida albicans</i> and Non- <i>Albicans</i> Species Adhered to an Intrauterine Contraceptive Device. Microscopy and Microanalysis, 2010, 16, 537-549.	0.4	11
259	Pseudomonas aeruginosa and Candida Species Interaction, an Approach for the Prevention of Nosocomial Pneumonia. Clinical Pulmonary Medicine, 2010, 17, 136-139.	0.3	0

#	Article	IF	CITATIONS
260	Photodynamic inactivation of four Candida species induced by photogem $\hat{A}^{\text{@}}.$ Brazilian Journal of Microbiology, 2010, 41, 42-49.	2.0	32
261	Cell Surface Hydrophobicity and Adhesion: A Study on Fifty Clinical Isolates of Candida albicans. Medical Mycology Journal, 2010, 51, 131-136.	0.7	38
262	InÂVitro Biofilm Activity of Non-Candida albicans Candida Species. Current Microbiology, 2010, 61, 534-540.	2.2	82
263	Sexual reproduction in the Candida clade: cryptic cycles, diverse mechanisms, and alternative functions. Cellular and Molecular Life Sciences, 2010, 67, 3275-3285.	5.4	30
264	Cyclodextrin-functionalized biomaterials loaded with miconazole prevent Candida albicans biofilm formation in vitro. Acta Biomaterialia, 2010, 6, 1398-1404.	8.3	56
265	Comparative antimicrobial susceptibility of biofilm versus planktonic forms of Salmonella enterica strains isolated from children with gastroenteritis. European Journal of Clinical Microbiology and Infectious Diseases, 2010, 29, 1401-1405.	2.9	302
266	Antifungal drug resistance of oral fungi. Odontology / the Society of the Nippon Dental University, 2010, 98, 15-25.	1.9	131
267	Susceptibility of Candida biofilms to histatin 5 and fluconazole. Antonie Van Leeuwenhoek, 2010, 97, 413-417.	1.7	32
268	Fungal Biofilms in the Clinical Lab Setting. Current Fungal Infection Reports, 2010, 4, 137-144.	2.6	7
269	Fungal Biofilms: Relevance in the Setting of Human Disease. Current Fungal Infection Reports, 2010, 4, 266-275.	2.6	75
270	Examination of Potential Virulence Factors of Candida tropicalis Clinical Isolates From Hospitalized Patients. Mycopathologia, 2010, 169, 175-182.	3.1	82
271	Candida albicans virulence and drug-resistance requires the O-acyltransferase Gup1p. BMC Microbiology, 2010, 10, 238.	3.3	33
272	Parylene coating hinders Candida albicans adhesion to silicone elastomers and denture bases resin. Archives of Oral Biology, 2010, 55, 401-409.	1.8	45
273	Characterising the cleaning mechanisms of yeast and the implications for Cleaning In Place (CIP). Food and Bioproducts Processing, 2010, 88, 365-374.	3.6	30
274	Bioactivity and architecture of <i>Candida albicans</i> biofilms developed on poly(methyl) Tj ETQq0 0 0 rgBT /Ov 2010, 94B, 149-156.	verlock 10 3.4	Tf 50 187 Td 21
275	Interaction of Candida parapsilosis isolates with human hair and nail surfaces revealed by scanning electron microscopy analysis. Micron, 2010, 41, 604-608.	2.2	26
276	The use of chitosan to damage Cryptococcus neoformans biofilms. Biomaterials, 2010, 31, 669-679.	11.4	119
277	Structural analysis of biofilms and pellets of Aspergillus niger by confocal laser scanning microscopy and cryo scanning electron microscopy. Bioresource Technology, 2010, 101, 1920-1926.	9.6	69

#	Article	IF	CITATIONS
278	Multiple effects of amprenavir against <i>Candida albicans</i> . FEMS Yeast Research, 2010, 10, 221-224.	2.3	32
279	The combination of minocycline and fluconazole causes synergistic growth inhibition against Candida albicans: an in vitroâ€finteraction of antifungal and antibacterial agents. FEMS Yeast Research, 2010, 10, 885-893.	2.3	55
280	Participation of the Candida albicans surface antigen in adhesion, the first phase of biofilm development. FEMS Immunology and Medical Microbiology, 2010, 59, 485-492.	2.7	17
281	Experiments on <i>in vivo</i> biofilm formation and <i>in vitro</i> adhesion of <i>Candida</i> species on polysiloxane liners. Gerodontology, 2010, 27, 283-291.	2.0	15
282	The relationship between oral hygiene and oral colonization with <i>Candida</i> species in healthy adult subjects*. International Journal of Dental Hygiene, 2010, 8, 128-133.	1.9	39
283	The biofilm matrix. Nature Reviews Microbiology, 2010, 8, 623-633.	28.6	7,296
284	Antifungal activity of amphotericin B, caspofungin and posaconazole on <i>Candida albicans</i> biofilms in intermediate and mature development phases. Mycoses, 2010, 53, 208-214.	4.0	61
285	Interactions between Human Phagocytes and <i>Candida albicans </i> Biofilms Alone and in Combination with Antifungal Agents. Journal of Infectious Diseases, 2010, 201, 1941-1949.	4.0	96
286	Role of Fks1p and Matrix Glucan in <i>Candida albicans</i> Biofilm Resistance to an Echinocandin, Pyrimidine, and Polyene. Antimicrobial Agents and Chemotherapy, 2010, 54, 3505-3508.	3.2	188
287	Medical devices modified at the surface by \hat{I}^3 -ray grafting for drug loading and delivery. Expert Opinion on Drug Delivery, 2010, 7, 173-185.	5.0	82
288	Interaction of <i>Candida albicans</i> Biofilms with Antifungals: Transcriptional Response and Binding of Antifungals to Beta-Glucans. Antimicrobial Agents and Chemotherapy, 2010, 54, 2096-2111.	3.2	165
289	Heterologous Expression of Candida albicans Cell Wall-Associated Adhesins in Saccharomyces cerevisiae Reveals Differential Specificities in Adherence and Biofilm Formation and in Binding Oral Streptococcus gordonii. Eukaryotic Cell, 2010, 9, 1622-1634.	3.4	96
290	Candida albicans biofilm formation in a new in vivo rat model. Microbiology (United Kingdom), 2010, 156, 909-919.	1.8	97
291	Overexpression of <i>CDR1</i> and <i>CDR2</i> Genes Plays an Important Role in Fluconazole Resistance in <i>Candida albicans</i> with G487T and T916C Mutations. Journal of International Medical Research, 2010, 38, 536-545.	1.0	61
292	<i>Candida</i> Infections of the Genitourinary Tract. Clinical Microbiology Reviews, 2010, 23, 253-273.	13.6	519
293	Development and Validation of an <i>In Vivo Candida albicans</i> Biofilm Denture Model. Infection and Immunity, 2010, 78, 3650-3659.	2.2	138
294	Fungicidal activity of miconazole against Candida spp. biofilms. Journal of Antimicrobial Chemotherapy, 2010, 65, 694-700.	3.0	93
295	Candida albicans <i>PEP12</i> Is Required for Biofilm Integrity and <i>In Vivo</i> Virulence. Eukaryotic Cell, 2010, 9, 266-277.	3.4	32

#	Article	IF	CITATIONS
296	The Transcriptional Regulator Nrg1p Controls Candida albicans Biofilm Formation and Dispersion. Eukaryotic Cell, 2010, 9, 1531-1537.	3.4	86
297	Dispersion as an Important Step in the Candida albicans Biofilm Developmental Cycle. PLoS Pathogens, 2010, 6, e1000828.	4.7	359
298	Water-soluble phthalocyanine complexes of Ga(III) and In(III) in the photodynamic inactivation of pathogenic fungus. , 2010, , .		6
299	Transcriptional response of Candida albicans biofilms following exposure to 2-amino-nonyl-6-methoxyl-tetralin muriate. Acta Pharmacologica Sinica, 2010, 31, 616-628.	6.1	8
301	Advanced Microscopy of Microbial Cells. Advances in Biochemical Engineering/Biotechnology, 2010, 124, 21-54.	1.1	8
302	Candida albicans forms biofilms on the vaginal mucosa. Microbiology (United Kingdom), 2010, 156, 3635-3644.	1.8	254
303	Temperature affects the susceptibility of <i>Cryptococcus neoformans </i> biofilms to antifungal agents. Medical Mycology, 2010, 48, 421-426.	0.7	33
304	Yeast Biofilms. , 2010, , 121-144.		1
305	In vitro and in vivo model systems to study microbial biofilm formation. Journal of Microbiological Methods, 2010, 83, 89-105.	1.6	362
306	Transcriptional response to fluconazole and amphotericin B in Candida albicans biofilms. Research in Microbiology, 2010, 161, 284-292.	2.1	39
307	Activity of antimicrobial peptide mimetics in the oral cavity: I. Activity against biofilms of <i>Candida albicans</i> . Molecular Oral Microbiology, 2010, 25, 418-425.	2.7	41
308	Silicone colonization by non-Candida albicans Candida species in the presence of urine. Journal of Medical Microbiology, 2010, 59, 747-754.	1.8	68
310	Pathogenic Yeasts., 2010,,.		8
311	The Use of Nanoparticles to Control Oral Biofilm Formation. Journal of Dental Research, 2010, 89, 1175-1186.	5.2	385
312	Polyelectrolyte Multilayers Fabricated from Antifungal \hat{l}^2 -Peptides: Design of Surfaces that Exhibit Antifungal Activity Against Candida albicans. Biomacromolecules, 2010, 11, 2321-2328.	5.4	72
313	New Approaches to <i>Candida</i> and Oral Mycotic Infections. Advances in Dental Research, 2011, 23, 152-158.	3.6	7
314	<i>Candida tropicalis</i> biofilms: artificial urine, urinary catheters and flow model. Medical Mycology, 2011, 49, 1-9.	0.7	33
315	Biofilm formation by the yeast <i>Rhodotorula mucilaginosa</i> : process, repeatability and cell attachment in a continuous biofilm reactor. Biofouling, 2011, 27, 979-991.	2.2	16

#	Article	IF	CITATIONS
316	Influence of liposomal formulation variables on the interaction with <i>Candida albicans </i> li>in biofilm; a multivariate approach. Journal of Liposome Research, 2011, 21, 9-16.	3.3	4
317	Quorum Sensing. Methods in Molecular Biology, 2011, , .	0.9	36
318	Linking Quorum Sensing Regulation and Biofilm Formation by Candida albicans. Methods in Molecular Biology, 2011, 692, 219-233.	0.9	44
319	Optimizing a Candida Biofilm Microtiter Plate Model for Measurement of Antifungal Susceptibility by Tetrazolium Salt Assay. Journal of Clinical Microbiology, 2011, 49, 1426-1433.	3.9	127
320	Non-aggregated Ga(III)-phthalocyanines in the photodynamic inactivatio planktonic and biofilm cultures of pathogenic microorganisms. Photochemical and Photobiological Sciences, 2011, 10, 91-102.	2.9	101
322	Biofilm production and evaluation of antifungal susceptibility amongst clinical (i) Candida (li) spp. isolates, including strains of the (i) Candida parapsilosis (li) complex. Medical Mycology, 2011, 49, 253-262.	0.7	149
323	Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of <i>Candida albicans </i> li>and <i>Candida glabrata </i> li>. Biofouling, 2011, 27, 711-719.	2.2	186
324	Blocking of Candida albicans biofilm formation by cis-2-dodecenoic acid and trans-2-dodecenoic acid. Journal of Medical Microbiology, 2011, 60, 1643-1650.	1.8	23
325	Increased susceptibility to Candida infection following cecal ligation and puncture. Biochemical and Biophysical Research Communications, 2011, 414, 37-43.	2.1	25
326	Sodium butyrate inhibits pathogenic yeast growth and enhances the functions of macrophages. Journal of Antimicrobial Chemotherapy, 2011, 66, 2573-2580.	3.0	92
327	Biofilm formation by five species of Candida on three clinical materials. Journal of Microbiological Methods, 2011, 86, 238-242.	1.6	75
328	Candida albicans biofilms formed into catheters and probes and their resistance to amphotericin B. Journal De Mycologie Medicale, 2011, 21, 182-187.	1.5	19
329	Adherence and biofilm formation of non-Candida albicans Candida species. Trends in Microbiology, 2011, 19, 241-247.	7.7	208
330	Importance of Candida–bacterial polymicrobial biofilms in disease. Trends in Microbiology, 2011, 19, 557-563.	7.7	266
331	Candida Biofilms on Oral Biomaterials. , 0, , .		3
332	Effect of Amphotericin B Alone or in Combination with Rifampicin or Clarithromycin Against <i>Candida</i> Species Biofilms. International Journal of Artificial Organs, 2011, 34, 766-770.	1.4	20
333	A Role for Amyloid in Cell Aggregation and Biofilm Formation. PLoS ONE, 2011, 6, e17632.	2.5	108
334	In Vivo Systematic Analysis of Candida albicans Zn2-Cys6 Transcription Factors Mutants for Mice Organ Colonization. PLoS ONE, 2011, 6, e26962.	2.5	44

#	Article	IF	CITATIONS
335	Conserved and Divergent Roles of Bcr1 and CFEM Proteins in Candida parapsilosis and Candida albicans. PLoS ONE, 2011, 6, e28151.	2.5	76
336	Farnesol-Induced Apoptosis in Candida albicans Is Mediated by Cdr1-p Extrusion and Depletion of Intracellular Glutathione. PLoS ONE, 2011, 6, e28830.	2.5	63
337	Bisbibenzyls, a New Type of Antifungal Agent, Inhibit Morphogenesis Switch and Biofilm Formation through Upregulation of DPP3 in Candida albicans. PLoS ONE, 2011, 6, e28953.	2.5	45
338	Biofilm Formation of Candida spp. Isolates from Patients at a Cardiothoracic Intensive Care Unit. International Journal of Artificial Organs, 2011, 34, 818-823.	1.4	8
340	Fungicidal effect of photodynamic therapy against fluconazole-resistant Candida albicans and Candida glabrata. Mycoses, 2011, 54, 123-130.	4.0	132
341	Adherence ability of Candida africana: a comparative study with Candida albicans and Candida dubliniensis. Mycoses, 2011, 54, e57-e61.	4.0	22
342	Effect of serum and surface characteristics on Candida albicans biofilm formation. Mycoses, 2011, 54, e154-e162.	4.0	48
343	A morphogenetic regulatory role for ethyl alcohol in Candida albicans. Mycoses, 2011, 54, e697-e703.	4.0	40
344	Efficacy of anidulafungin against biofilms of different Candida species in long-term trials of continuous flow cultivation. Mycoses, 2011, 54, e821-e827.	4.0	15
345	Aspergillus biofilms: clinical and industrial significance. FEMS Microbiology Letters, 2011, 324, 89-97.	1.8	114
346	Flo11p adhesin required for meiotic differentiation in Saccharomyces cerevisiae minicolonies grown on plastic surfaces. FEMS Yeast Research, 2011, 11, 223-232.	2.3	10
347	ADH1 expression inversely correlates with CDR1 and CDR2 in Candida albicans from chronic oral candidosis in APECED (APS-I) patients. FEMS Yeast Research, 2011, 11, 494-498.	2.3	9
348	Genetic control of Candida albicans biofilm development. Nature Reviews Microbiology, 2011, 9, 109-118.	28.6	509
349	Investigation of the Photodynamic Effects of Curcumin Against <i>Candida albicans</i> Photochemistry and Photobiology, 2011, 87, 895-903.	2.5	188
350	Comparison between allicin and fluconazole in Candida albicans biofilm inhibition and in suppression of HWP1 gene expression. Phytomedicine, 2011, 19, 56-63.	5.3	48
351	Photodynamic efficacy of water-soluble Si(IV) and Ge(IV) phthalocyanines towards Candida albicans planktonic and biofilm cultures. European Journal of Medicinal Chemistry, 2011, 46, 4430-4440.	5.5	53
352	In vitro synergism between berberine and miconazole against planktonic and biofilm Candida cultures. Archives of Oral Biology, 2011, 56, 565-572.	1.8	69
353	Bioactivity and cellular structure of Candida albicans and Candida glabrata biofilms grown in the presence of fluconazole. Archives of Oral Biology, 2011, 56, 1274-1281.	1.8	23

#	Article	IF	CITATIONS
354	Interface of Candida albicans Biofilm Matrix-Associated Drug Resistance and Cell Wall Integrity Regulation. Eukaryotic Cell, 2011, 10, 1660-1669.	3.4	139
355	Acetaldehyde inhibits the yeast-to-hypha conversion and biofilm formation in Candida albicans. Mycoscience, 2011, 52, 356-360.	0.8	10
356	Investigation of Extracellular Phospholipase and Proteinase Activities of Candida Species Isolated from Individuals Denture Wearers and Genotypic Distribution of Candida albicans Strains. Current Microbiology, 2011, 62, 1308-1314.	2.2	19
357	Efficacy of Zosteric Acid Sodium Salt on the Yeast Biofilm Model Candida albicans. Microbial Ecology, 2011, 62, 584-598.	2.8	44
358	Amphotericin B Delivery From Bone Cement Increases With Porosity but Strength Decreases. Clinical Orthopaedics and Related Research, 2011, 469, 3002-3007.	1.5	50
359	<i>Candida albicans</i> Tpk1p and Tpk2p isoforms differentially regulate pseudohyphal development, biofilm structure, cell aggregation and adhesins expression. Yeast, 2011, 28, 293-308.	1.7	40
360	A novel assay of biofilm antifungal activity reveals that amphotericin B and caspofungin lyse <i>Candida albicans</i> cells in biofilms. Yeast, 2011, 28, 561-568.	1.7	31
361	Susceptibility of clinical isolates of <i>Candida</i> to photodynamic effects of curcumin. Lasers in Surgery and Medicine, 2011, 43, 927-934.	2.1	121
362	Inhibition of Candida albicans CC biofilms formation in polystyrene plate surfaces by biosurfactant produced by Trichosporon montevideense CLOA72. Colloids and Surfaces B: Biointerfaces, 2011, 84, 467-476.	5.0	32
363	Effects of Fluconazole, Amphotericin B, and Caspofungin on Candida albicans Biofilms under Conditions of Flow and on Biofilm Dispersion. Antimicrobial Agents and Chemotherapy, 2011, 55, 3591-3593.	3.2	91
364	Survey of fungi and yeast in polymicrobial infections in chronic wounds. Journal of Wound Care, 2011, 20, 40-47.	1.2	155
365	Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin. Journal of Medical Microbiology, 2011, 60, 1261-1269.	1.8	103
366	Characterization of the Poly- \hat{l}^2 -1,6- <i>N</i> -Acetylglucosamine Polysaccharide Component of Burkholderia Biofilms. Applied and Environmental Microbiology, 2011, 77, 8303-8309.	3.1	50
367	A murine model for catheter-associated candiduria. Journal of Medical Microbiology, 2011, 60, 1523-1529.	1.8	38
368	Cell surface hydrophobicity: a predictor of biofilm production in Candida isolates?. Journal of Medical Microbiology, 2011, 60, 689-690.	1.8	47
369	Activities of Triazole-Echinocandin Combinations against Candida Species in Biofilms and as Planktonic Cells. Antimicrobial Agents and Chemotherapy, 2011, 55, 1968-1974.	3.2	46
370	The <i>Candida albicans</i> i>Dse1 Protein Is Essential and Plays a Role in Cell Wall Rigidity, Biofilm Formation, and Virulence. Interdisciplinary Perspectives on Infectious Diseases, 2011, 2011, 1-9.	1.4	11
371	Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile. Microbiology (United Kingdom), 2011, 157, 2297-2307.	1.8	96

#	Article	IF	CITATIONS
372	Susceptibility of Pneumocystis to Echinocandins in Suspension and Biofilm Cultures. Antimicrobial Agents and Chemotherapy, 2011, 55, 4513-4518.	3.2	34
373	Modeled Microgravity Increases Filamentation, Biofilm Formation, Phenotypic Switching, and Antimicrobial Resistance in <i>Candida albicans</i> i>. Astrobiology, 2011, 11, 825-836.	3.0	42
374	A rabbit model for evaluation of catheter-associated fungal biofilms. Virulence, 2011, 2, 466-474.	4.4	16
375	Spatial Patterns of Microbial Retention on Polymer Surfaces. Journal of Adhesion Science and Technology, 2011, 25, 2255-2280.	2.6	5
376	Alternative Mating Type Configurations (a/l̂ \pm versus a/a or l̂ \pm /l̂ \pm) of Candida albicans Result in Alternative Biofilms Regulated by Different Pathways. PLoS Biology, 2011, 9, e1001117.	5.6	73
377	Candida albicans Als3, a Multifunctional Adhesin and Invasin. Eukaryotic Cell, 2011, 10, 168-173.	3.4	263
378	A Candida Biofilm-Induced Pathway for Matrix Glucan Delivery: Implications for Drug Resistance. PLoS Pathogens, 2012, 8, e1002848.	4.7	240
379	Nonsex Genes in the Mating Type Locus of Candida albicans Play Roles in a/ \hat{l} ± Biofilm Formation, Including Impermeability and Fluconazole Resistance. PLoS Pathogens, 2012, 8, e1002476.	4.7	27
380	Fungal Biofilm Resistance. International Journal of Microbiology, 2012, 2012, 1-14.	2.3	403
381	<i>Candida albicans</i> : A Model Organism for Studying Fungal Pathogens. , 2012, 2012, 1-15.		105
382	A sticky situation. Transcription, 2012, 3, 315-322.	3.1	91
383	Phytosphingosine-1-Phosphate Is a Signaling Molecule Involved in Miconazole Resistance in Sessile Candida albicans Cells. Antimicrobial Agents and Chemotherapy, 2012, 56, 2290-2294.	3.2	14
384	Antimicrobial Action of Chelating Agents: Repercussions on the Microorganism Development, Virulence and Pathogenesis. Current Medicinal Chemistry, 2012, 19, 2715-2737.	2.4	58
385	Azole Antimycotics - A Highway to New Drugs or a Dead End?. Current Medicinal Chemistry, 2012, 19, 1378-1388.	2.4	30
386	Impact of Treatment Strategy on Outcomes in Patients with Candidemia and Other Forms of Invasive Candidiasis: A Patient-Level Quantitative Review of Randomized Trials. Clinical Infectious Diseases, 2012, 54, 1110-1122.	5.8	649
387	Development of a 96-well catheter-based microdilution method to test antifungal susceptibility of Candida biofilms. Journal of Antimicrobial Chemotherapy, 2012, 67, 149-153.	3.0	28
388	Concepts and Principles of Photodynamic Therapy as an Alternative Antifungal Discovery Platform. Frontiers in Microbiology, 2012, 3, 120.	3.5	200
389	Chemical Composition, Antifungal and Antibiofilm Activities of the Essential Oil of <i>Mentha piperita </i> L ISRN Pharmaceutics, 2012, 2012, 1-6.	1.0	93

#	Article	IF	CITATIONS
390	Host-Fungal Interactions: Pathogenicity versus Immunity. International Journal of Microbiology, 2012, 2012, 1-2.	2.3	2
391	Effect of Sodium Fluoride, Ampicillin, and Chlorhexidine on Streptococcus mutans Biofilm Detachment. Antimicrobial Agents and Chemotherapy, 2012, 56, 4532-4535.	3.2	26
392	Efficacy of Care Solutions Against Contact Lens-Associated Fusarium Biofilms. Optometry and Vision Science, 2012, 89, 382-391.	1.2	26
393	Candida albicans Biofilm Chip (Ca BChip) for High-throughput Antifungal Drug Screening. Journal of Visualized Experiments, 2012, , e3845.	0.3	8
394	Multi-species biofilm of Candida albicans and non-Candida albicans Candida species on acrylic substrate. Journal of Applied Oral Science, 2012, 20, 70-75.	1.8	65
395	<i>In Vitro</i> Efficacy of Continuous Mild Heat Stress on the Antifungal Susceptibility of <i>Candida albicans</i> Biofilm Formation. Biological and Pharmaceutical Bulletin, 2012, 35, 1371-1373.	1.4	4
396	Retigeric Acid B Enhances the Efficacy of Azoles Combating the Virulence and Biofilm Formation of <i>Candida albicans</i> . Biological and Pharmaceutical Bulletin, 2012, 35, 1794-1801.	1.4	32
397	Gold nanoparticles enhance methylene blue– induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm. International Journal of Nanomedicine, 2012, 7, 3245.	6.7	141
398	Antifungal Activity against Candida Biofilms. International Journal of Artificial Organs, 2012, 35, 780-791.	1.4	26
399	<i>Candida</i> Biofilms and the Host: Models and New Concepts for Eradication. International Journal of Microbiology, 2012, 2012, 1-16.	2.3	85
400	The effect of histatin 5, adsorbed on PMMA and hydroxyapatite, on <i>Candida albicans</i> colonization. Yeast, 2012, 29, 459-466.	1.7	20
401	Effects of lactoferricin B against keratitis-associated fungal biofilms. Journal of Infection and Chemotherapy, 2012, 18, 698-703.	1.7	38
402	The effect of antifungal agents on surface properties of poly(methyl methacrylate) and its relation to adherence of Candida albicans. Journal of Prosthodontic Research, 2012, 56, 272-280.	2.8	29
403	Biofilm formation of Malassezia pachydermatis from dogs. Veterinary Microbiology, 2012, 160, 126-131.	1.9	34
404	Hybrid Nanomaterial for Stabilizing the Antibiofilm Activity of Eugenia carryophyllata Essential Oil. IEEE Transactions on Nanobioscience, 2012, 11, 360-365.	3.3	36
405	Mutagenesis of Trichoderma Virideby Ultraviolet and Plasma. Plasma Science and Technology, 2012, 14, 353-356.	1.5	4
406	The anti-Candida activity of Thymbra capitata essential oil: Effect upon pre-formed biofilm. Journal of Ethnopharmacology, 2012, 140, 379-383.	4.1	59
407	A Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans. Cell, 2012, 148, 126-138.	28.9	607

#	Article	IF	CITATIONS
408	Photodynamic inactivation for controlling Candida albicans infections. Fungal Biology, 2012, 116, 1-10.	2.5	112
409	The "Finger,―a Unique Multicellular Morphology of Candida albicans Induced by CO ₂ and Dependent upon the Ras1-Cyclic AMP Pathway. Eukaryotic Cell, 2012, 11, 1257-1267.	3.4	10
410	The Use of Antimicrobial Nanoparticles to Control Oral Infections., 2012,, 395-425.		7
411	Proteins for Bioinspired Adhesive Formulations. Journal of Adhesion, 2012, 88, 294-307.	3.0	3
412	Adhesion of <i>Histoplasma capsulatum </i> to pneumocytes and biofilm formation on an abiotic surface. Biofouling, 2012, 28, 711-718.	2.2	64
413	Assessment of Dentifrices Against Candida Biofilm. Applied Biochemistry and Biotechnology, 2012, 167, 1688-1698.	2.9	5
414	Contact-Free Inactivation of Candida albicans Biofilms by Cold Atmospheric Air Plasma. Applied and Environmental Microbiology, 2012, 78, 4242-4247.	3.1	96
415	Insight into the Antiadhesive Effect of Yeast Wall Protein 1 of Candida albicans. Eukaryotic Cell, 2012, 11, 795-805.	3.4	44
416	CdTe/CdS-MPA quantum dots as fluorescent probes to label yeast cells: synthesis, characterization and conjugation with Concanavalin A. , 2012, , .		2
417	The effect of biomaterials and antifungals on biofilm formation by Candida species: a review. European Journal of Clinical Microbiology and Infectious Diseases, 2012, 31, 2513-2527.	2.9	62
418	In Vivo Inhibitory Effect on the Biofilm Formation of Candida albicans by Liverwort Derived Riccardin D. PLoS ONE, 2012, 7, e35543.	2.5	23
419	An ORMOSIL-Containing Orthodontic Acrylic Resin with Concomitant Improvements in Antimicrobial and Fracture Toughness Properties. PLoS ONE, 2012, 7, e42355.	2.5	43
421	Impact of Yeast Glycosylation Pathway on Cell Integrity and Morphology. , 2012, , .		0
422	Exopolysaccharide matrix of developed candida albicans biofilms after exposure to antifungal agents. Brazilian Dental Journal, 2012, 23, 716-722.	1.1	15
423	Modeling of Fungal Biofilms Using a Rat Central Vein Catheter. Methods in Molecular Biology, 2012, 845, 547-556.	0.9	17
424	Effect of triazine derivative added to denture materials on a microcosm biofilm model. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 1328-1333.	3.4	10
425	<i>Candida</i> species: new insights into biofilm formation. Future Microbiology, 2012, 7, 755-771.	2.0	69
426	Biofilm formation by Candida albicans on various prosthetic materials and its fluconazole sensitivity: a kinetic study. Mycoscience, 2012, 53, 220-226.	0.8	40

#	Article	IF	CITATIONS
427	Addition of DNase improves the <i>in vitro</i> activity of antifungal drugs against <i>Candida albicans</i> biofilms. Mycoses, 2012, 55, 80-85.	4.0	146
428	Fluorescent proteins as in-vivo and in-situ reporters to study the development of a Saccharomyces cerevisiae yeast biofilm and its invasion by the bacteria Escherichia coli. FEMS Microbiology Ecology, 2012, 80, 342-351.	2.7	2
429	<i>Saccharomyces cerevisiae</i> ê° a model to uncover molecular mechanisms for yeast biofilm biology. FEMS Immunology and Medical Microbiology, 2012, 65, 169-182.	2.7	66
430	<i>Candida glabrata, Candida parapsilosis</i> and <i>Candida tropicalis</i> pathogenicity and antifungal resistance. FEMS Microbiology Reviews, 2012, 36, 288-305.	8.6	714
431	A Comparative In Vitro Study of Two Denture Cleaning Techniques as an Effective Strategy for Inhibiting <i>Candida albicans</i> Biofilms on Denture Surfaces and Reducing Inflammation. Journal of Prosthodontics, 2012, 21, 516-522.	3.7	31
432	Ambroxol influences voriconazole resistance of Candida parapsilosis biofilm. FEMS Yeast Research, 2012, 12, 430-438.	2.3	32
433	Update on infectious risks associated with dental unit waterlines. FEMS Immunology and Medical Microbiology, 2012, 65, 196-204.	2.7	48
434	Exploring the applications of invertebrate host-pathogen models for <i>in vivo </i> biofilm infections: Table 1. FEMS Immunology and Medical Microbiology, 2012, 65, 205-214.	2.7	29
435	Population dynamics and the evolution of antifungal drug resistance in Candida albicans. FEMS Microbiology Letters, 2012, 333, 85-93.	1.8	24
436	Assessment of in vitro biofilm formation by Candida species isolates from vulvovaginal candidiasis and ultrastructural characteristics. Micron, 2012, 43, 497-502.	2.2	48
437	Antifungal susceptibility of <i>Candida albicans</i> in biofilms. Mycoses, 2012, 55, 199-204.	4.0	136
438	<i>Candida</i> biofilms associated with CVC and medical devices. Mycoses, 2012, 55, 46-57.	4.0	44
439	A novel flow cytometric protocol for assessment of yeast cell adhesion. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2012, 81A, 265-270.	1.5	15
440	Candida and invasive candidiasis: back to basics. European Journal of Clinical Microbiology and Infectious Diseases, 2012, 31, 21-31.	2.9	90
441	Photodynamic inactivation of microorganisms present on complete dentures. A clinical investigation. Lasers in Medical Science, 2012, 27, 161-168.	2.1	50
442	Voriconazole Is Cytotoxic at Locally Delivered Concentrations: A Pilot Study. Clinical Orthopaedics and Related Research, 2013, 471, 3165-3170.	1.5	11
443	Biofilm formation by <i> Aspergillus fumigatus </i> . Medical Mycology, 2014, 52, 1-8.	0.7	110
444	Physiological tests for yeast brewery cells immobilized on modified chamotte carrier. Antonie Van Leeuwenhoek, 2013, 104, 703-714.	1.7	16

#	Article	IF	CITATIONS
445	The Clinical Importance of Fungal Biofilms. Advances in Applied Microbiology, 2013, 84, 27-83.	2.4	41
446	Biofilm formation by oral clinical isolates of Candida species. Archives of Oral Biology, 2013, 58, 1318-1326.	1.8	45
447	Chloroquine sensitizes biofilms of Candida albicans to antifungal azoles. Brazilian Journal of Infectious Diseases, 2013, 17, 395-400.	0.6	32
448	Early detection of Candida albicans biofilms at porous electrodes. Analytical Biochemistry, 2013, 433, 192-201.	2.4	15
449	Secretory products of <i><scp>E</scp>scherichia coli</i> biofilm modulate <i><scp>C</scp>andida</i> biofilm formation and hyphal development. Journal of Investigative and Clinical Dentistry, 2013, 4, 186-199.	1.8	44
450	BDSF inhibits Candida albicans adherence to urinary catheters. Microbial Pathogenesis, 2013, 64, 33-38.	2.9	21
451	Antifungal therapy with an emphasis on biofilms. Current Opinion in Pharmacology, 2013, 13, 726-730.	3.5	132
452	Recent insights into Candida albicans biofilm resistance mechanisms. Current Genetics, 2013, 59, 251-264.	1.7	230
453	Cytotoxicity of Brazilian plant extracts against oral microorganisms of interest to dentistry. BMC Complementary and Alternative Medicine, 2013, 13, 208.	3.7	37
454	Photodynamic inactivation of clinical isolates of <i> Candida </i> using Photodithazine < sup > \hat{A}^{\otimes} . Biofouling, 2013, 29, 1057-1067.	2.2	55
455	Association of <i>Thymbra capitata </i> essential oil and chitosan (TCCH hydrogel): a putative therapeutic tool for the treatment of vulvovaginal candidosis. Flavour and Fragrance Journal, 2013, 28, 354-359.	2.6	17
456	Involvement of Heat Shock Proteins in <i>Candida albicans</i> Biofilm Formation. Journal of Molecular Microbiology and Biotechnology, 2013, 23, 396-400.	1.0	23
457	In vitro effectiveness of Anidulafungin against Candida sp. biofilms. Journal of Antibiotics, 2013, 66, 701-704.	2.0	12
458	Mechanisms of <i>Candida</i> biofilm drug resistance. Future Microbiology, 2013, 8, 1325-1337.	2.0	317
459	Clinical isolates and laboratory reference < i> Candida < /i> species and strains have varying abilities to form biofilms. FEMS Yeast Research, 2013, 13, 689-699.	2.3	76
460	Expression of $\langle i \rangle$ UME6 $\langle li \rangle$, a Key Regulator of Candida albicans Hyphal Development, Enhances Biofilm Formation via Hgc1- and Sun41-Dependent Mechanisms. Eukaryotic Cell, 2013, 12, 224-232.	3.4	68
461	Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by <i>Candida albicans</i> . Biofouling, 2013, 29, 87-96.	2.2	139
462	Role of Matrix \hat{l}^2 -1,3 Glucan in Antifungal Resistance of Non-albicans Candida Biofilms. Antimicrobial Agents and Chemotherapy, 2013, 57, 1918-1920.	3.2	93

#	Article	IF	CITATIONS
463	Nanoparticles and the Control of Oral Biofilms. , 2013, , 203-227.		7
464	Photodynamic Inactivation of Planktonic Cultures and Biofilms of <i>Candida albicans</i> Mediated by Aluminumâ€Chlorideâ€Phthalocyanine Entrapped in Nanoemulsions. Photochemistry and Photobiology, 2013, 89, 111-119.	2.5	42
465	Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. Journal of Medical Microbiology, 2013, 62, 10-24.	1.8	897
466	Effect of water-aging on the antimicrobial activities of an ORMOSIL-containing orthodontic acrylic resin. Acta Biomaterialia, 2013, 9, 6964-6973.	8.3	32
467	Online monitoring of biofilm growth and activity using a combined multi-channel impedimetric and amperometric sensor. Biosensors and Bioelectronics, 2013, 47, 157-163.	10.1	48
468	Voriconazole Is Delivered From Antifungal-Loaded Bone Cement. Clinical Orthopaedics and Related Research, 2013, 471, 195-200.	1.5	45
469	Role of cell surface hydrophobicity in Candida albicans biofilm. Open Life Sciences, 2013, 8, 259-262.	1.4	20
470	Microbial interactions in building of communities. Molecular Oral Microbiology, 2013, 28, 83-101.	2.7	151
471	Candida Biofilm Disrupting Ability of Di-rhamnolipid (RL-2) Produced from Pseudomonas aeruginosa DSVP20. Applied Biochemistry and Biotechnology, 2013, 169, 2374-2391.	2.9	49
472	In Vitro Fluconazole Susceptibility of 1,903 Clinical Isolates of Candida albicans and the Identification of ERG11 Mutations. Microbial Drug Resistance, 2013, 19, 266-273.	2.0	35
473	Development and reproduction of Saprolegnia species in biofilms. Veterinary Microbiology, 2013, 163, 133-141.	1.9	22
474	Effect of different pre-irradiation times on curcumin-mediated photodynamic therapy against planktonic cultures and biofilms of Candida spp. Archives of Oral Biology, 2013, 58, 200-210.	1.8	98
475	Fungicidal photodynamic effect of a twofold positively charged porphyrin against <i>Candida albicans</i> planktonic cells and biofilms. Future Microbiology, 2013, 8, 785-797.	2.0	57
476	Influence of the photothermal effect of a gold nanorod cluster on biofilm disinfection. Nanotechnology, 2013, 24, 195104.	2.6	36
477	Determination of biofilm production by <i>Candida tropicalis</i> isolated from hospitalized patients and its relation to cellular surface hydrophobicity, plastic adherence and filamentation ability. Yeast, 2013, 30, 331-339.	1.7	33
478	Candidiasis drug discovery and development: new approaches targeting virulence for discovering and identifying new drugs. Expert Opinion on Drug Discovery, 2013, 8, 1117-1126.	5.0	121
479	Candida albicans biofilms: building a heterogeneous, drug-tolerant environment. Current Opinion in Microbiology, 2013, 16, 398-403.	5.1	93
480	Dairy Biofilm: Impact of Microbial Community on Raw Milk Quality. Journal of Food Quality, 2013, 36, 282-290.	2.6	17

#	ARTICLE	IF	CITATIONS
481	<i>Pleurotus ostreatus</i> biofilm-forming ability and ultrastructure are significantly influenced by growth medium and support type. Journal of Applied Microbiology, 2013, 114, 1750-1762.	3.1	12
482	<i>In Vitro</i> Activity of Xanthorrhizol Isolated from the Rhizome of Javanese Turmeric (<i>Curcuma) Tj ETQq1 1 1061-1066.</i>	0.784314 5.8	rgBT /Overl 23
483	Effect of alkylphospholipids on Candida albicans biofilm formation and maturation. Journal of Antimicrobial Chemotherapy, 2013, 68, 113-125.	3.0	64
484	Ras Signaling Gets Fine-Tuned: Regulation of Multiple Pathogenic Traits of Candida albicans. Eukaryotic Cell, 2013, 12, 1316-1325.	3.4	62
485	Innovative Strategies to Overcome Biofilm Resistance. BioMed Research International, 2013, 2013, 1-13.	1.9	146
486	Comparative Evolution of Morphological Regulatory Functions in Candida Species. Eukaryotic Cell, 2013, 12, 1356-1368.	3.4	55
487	Improved Gene Ontology Annotation for Biofilm Formation, Filamentous Growth, and Phenotypic Switching in Candida albicans. Eukaryotic Cell, 2013, 12, 101-108.	3.4	20
488	The Use of Chitosan to Enhance Photodynamic Inactivation against Candida albicans and Its Drug-Resistant Clinical Isolates. International Journal of Molecular Sciences, 2013, 14, 7445-7456.	4.1	46
489	Species-Specific and Drug-Specific Differences in Susceptibility of Candida Biofilms to Echinocandins: Characterization of Less Common Bloodstream Isolates. Antimicrobial Agents and Chemotherapy, 2013, 57, 2562-2570.	3.2	60
490	Molecular Identification, Antifungal Susceptibility Profile, and Biofilm Formation of Clinical and Environmental Rhodotorula Species Isolates. Antimicrobial Agents and Chemotherapy, 2013, 57, 382-389.	3.2	86
491	Impact of Environmental Conditions on the Form and Function of Candida albicans Biofilms. Eukaryotic Cell, 2013, 12, 1389-1402.	3.4	45
492	High-Throughput Nano-Biofilm Microarray for Antifungal Drug Discovery. MBio, 2013, 4, .	4.1	37
493	Control of Candida albicans Metabolism and Biofilm Formation by Pseudomonas aeruginosa Phenazines. MBio, 2013, 4, e00526-12.	4.1	208
494	Characterization of Pleurotus ostreatus Biofilms by Using the Calgary Biofilm Device. Applied and Environmental Microbiology, 2013, 79, 6083-6092.	3.1	10
495	Candida albicansFungaemia following Traumatic Urethral Catheterisation in a Paraplegic Patient with Diabetes Mellitus and Candiduria Treated by Caspofungin. Case Reports in Infectious Diseases, 2013, 2013, 1-6.	0.5	6
496	Bacterialâ€induced epithelial damage promotes fungal biofilm formation in a sheep model of sinusitis. International Forum of Allergy and Rhinology, 2013, 3, 341-348.	2.8	28
497	Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence, 2013, 4, 223-229.	4.4	342
498	Nanoscale Observations of Extracellular Polymeric Substances Deposition on Phyllosilicates by an Ectomycorrhizal Fungus. Geomicrobiology Journal, 2013, 30, 721-730.	2.0	26

#	Article	IF	Citations
499	The Eagle-like effect of echinocandins: what's in a name?. Expert Review of Anti-Infective Therapy, 2013, 11, 1179-1191.	4.4	24
500	Antifungal susceptibility of <i>Malassezia pachydermatis </i> biofilm. Medical Mycology, 2013, 51, 863-867.	0.7	54
501	Characterization of biofilms in drug-sensitive and drug-resistant strains of <i>Candida albicans </i> Journal of Chemotherapy, 2013, 25, 87-95.	1.5	18
502	Biofilm Associated Microorganisms on Removable Oral Orthodontic Appliances in Children in the Mixed Dentition. Journal of Clinical Pediatric Dentistry, 2013, 37, 335-340.	1.0	18
503	Effect of Tetrandrine against Candida albicans Biofilms. PLoS ONE, 2013, 8, e79671.	2.5	56
504	Spaceflight Enhances Cell Aggregation and Random Budding in Candida albicans. PLoS ONE, 2013, 8, e80677.	2.5	80
505	Biofilm Formation by Filamentous Fungi Recovered from a Water System. Journal of Mycology, 2013, 2013, 1-9.	0.5	20
506	Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation. International Journal of Nanomedicine, 2013, 8, 1645.	6.7	59
507	BIOFILMS PRODUCED BY CANDIDA YEASTS AND ITS CONSEQUENCES: A REVIEW. Journal of Health and Allied Sciences NU, 2013, 03, 113-121.	0.4	0
508	Sensitization of Candida albicans biofilms to fluconazole by terpenoids of plant origin. Journal of General and Applied Microbiology, 2014, 60, 163-168.	0.7	57
509	Biofilm-forming ability and adherence to poly-(methyl-methacrylate) acrylic resin materials of oral <i>Candida albicans</i> strains isolated from HIV positive subjects. Journal of Advanced Prosthodontics, 2014, 6, 30.	2.6	14
510	In Vitro and In Vivo Activity of a Novel Antifungal Small Molecule against Candida Infections. PLoS ONE, 2014, 9, e85836.	2.5	78
511	Continuous Drip Flow System to Develop Biofilm ofE. faecalisunder Anaerobic Conditions. Scientific World Journal, The, 2014, 2014, 1-5.	2.1	7
512	Normal bacterial flora may inhibit Candida albicans biofilm formation by Autoinducer-2. Frontiers in Cellular and Infection Microbiology, 2014, 4, 117.	3.9	7
513	Host Pathogen Relations: Exploring Animal Models for Fungal Pathogens. Pathogens, 2014, 3, 549-562.	2.8	12
514	Influence of Bacterial Presence on Biofilm Formation of <i>Candida albicans </i> Journal, 2014, 55, 449.	2.2	34
515	Expression of neuronal protein Tau in Candida albicans. Journal of Yeast and Fungal Research, 2014, 5, 67-73.	0.6	0
516	Candida species biofilm and Candida albicans ALS3 polymorphisms in clinical isolates. Brazilian Journal of Microbiology, 2014, 45, 1371-1377.	2.0	17

#	Article	IF	CITATIONS
517	Management of infected non-union of the proximal femur: A combination of therapeutic techniques. Injury, 2014, 45, 2101-2105.	1.7	13
518	Candida albicans: Molecular interactions with Pseudomonas aeruginosa and Staphylococcus aureus. Fungal Biology Reviews, 2014, 28, 85-96.	4.7	40
519	Saccharomyces cerevisiae biofilm tolerance towards systemic antifungals depends on growth phase. BMC Microbiology, 2014, 14, 305.	3.3	35
520	The Peptide-binding Cavity Is Essential for Als3-mediated Adhesion of Candida albicans to Human Cells. Journal of Biological Chemistry, 2014, 289, 18401-18412.	3.4	69
521	Sub-inhibitory Concentrations of Antifungals Suppress Hemolysin Activity of Oral Candida albicans and Candida tropicalis Isolates from HIV-Infected Individuals. Mycopathologia, 2014, 178, 207-215.	3.1	9
522	Inhibition of biofilm formation and lipase in Candida albicans by culture filtrate of Staphylococcus epidermidis in vitro. International Journal of Applied & Basic Medical Research, 2014, 4, 27.	0.5	6
523	Oral Mycobiome Analysis of HIV-Infected Patients: Identification of Pichia as an Antagonist of Opportunistic Fungi. PLoS Pathogens, 2014, 10, e1003996.	4.7	278
524	Effects of <i>Mentha suaveolens </i> Essential Oil Alone or in Combination with Other Drugs in <i>Candida albicans </i> Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-9.	1.2	41
525	Essential Functional Modules for Pathogenic and Defensive Mechanisms in Candida albicans Infections. BioMed Research International, 2014, 2014, 1-15.	1.9	7
526	Antimicrobial and Antiproliferative Potential of <i>Anadenanthera colubrina</i> (Vell.) Brenan. Evidence-based Complementary and Alternative Medicine, 2014, 2014, 1-7.	1.2	15
527	Two-Dimensionality of Yeast Colony Expansion Accompanied by Pattern Formation. PLoS Computational Biology, 2014, 10, e1003979.	3.2	40
528	A Histone Deacetylase Complex Mediates Biofilm Dispersal and Drug Resistance in Candida albicans. MBio, 2014, 5, e01201-14.	4.1	70
529	Biofilm sensor for deep sea. , 2014, , .		3
530	<i>O</i> -Mannosylation in Candida albicans Enables Development of Interkingdom Biofilm Communities. MBio, 2014, 5, e00911.	4.1	64
531	Enteric gramâ€negative bacilli suppress <i>Candida</i> biofilms on Foley urinary catheters. Apmis, 2014, 122, 47-58.	2.0	12
532	Fungal Biofilms, Drug Resistance, and Recurrent Infection. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a019729-a019729.	6.2	196
533	Management of Fungal or Atypical Periprosthetic Joint Infections. Journal of Orthopaedic Research, 2014, 32, S147-51.	2.3	6
534	Biofilm formation by <i>Fusarium oxysporum</i> f.Âsp. <i>cucumerinum</i> and susceptibility to environmental stress. FEMS Microbiology Letters, 2014, 350, 138-145.	1.8	47

#	Article	IF	CITATIONS
535	Methodologies to generate, extract, purify and fractionate yeast ECM for analytical use in proteomics and glycomics. BMC Microbiology, 2014, 14, 244.	3.3	11
536	Cell Viability of Candida albicans Against the Antifungal Activity of Thymol. Brazilian Dental Journal, 2014, 25, 277-281.	1.1	27
537	Future directions for anti-biofilm therapeutics targeting <i>Candida</i> . Expert Review of Anti-Infective Therapy, 2014, 12, 375-382.	4.4	71
538	Management of Fungal or Atypical Periprosthetic Joint Infections. Journal of Arthroplasty, 2014, 29, 112-114.	3.1	23
539	Human dental biofilm: Screening, characterization, in vitro biofilm formation and antifungal resistance of Candida spp Saudi Journal for Dental Research, 2014, 5, 55-70.	1.2	13
540	Human pathogenic viruses are retained in and released by Candida albicans biofilm in vitro. Virus Research, 2014, 179, 153-160.	2.2	22
541	Control of microorganisms of oral health interest with Arctium lappa L. (burdock) extract non-cytotoxic to cell culture of macrophages (RAW 264.7). Archives of Oral Biology, 2014, 59, 808-814.	1.8	24
542	Microbial Biofilms. Methods in Molecular Biology, 2014, , .	0.9	11
543	Detection of Biofilm Production of Yersinia enterocolitica Strains Isolated from Infected Children and Comparative Antimicrobial Susceptibility of Biofilm Versus Planktonic Forms. Molecular Diagnosis and Therapy, 2014, 18, 309-314.	3.8	19
544	In Vitro Effect of Amphotericin B on Candida albicans, Candida glabrata and Candida parapsilosis Biofilm Formation. Mycopathologia, 2014, 177, 19-27.	3.1	23
545	Inhibition of Candida albicans virulence factors by novel levofloxacin derivatives. Applied Microbiology and Biotechnology, 2014, 98, 6775-6785.	3.6	45
546	Inhibition of Fungal Biofilms. Springer Series on Biofilms, 2014, , 273-289.	0.1	1
547	Antibiofilm Agents. Springer Series on Biofilms, 2014, , .	0.1	10
548	Candida glabrata: a review of its features and resistance. European Journal of Clinical Microbiology and Infectious Diseases, 2014, 33, 673-688.	2.9	216
549	Bacterial adherence and biofilm formation on medical implants: A review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2014, 228, 1083-1099.	1.8	376
550	Antifungal activity of phenolic compounds identified in flowers from North Eastern Portugal against <i>Candida</i> species. Future Microbiology, 2014, 9, 139-146.	2.0	78
551	Antifungal Activity of Endosequence Root Repair Material and Mineral Trioxide Aggregate. Journal of Endodontics, 2014, 40, 1815-1819.	3.1	17
552	A Fiber-Optic Sensor for Accurately Monitoring Biofilm Growth in a Hydrogen Production Photobioreactor. Analytical Chemistry, 2014, 86, 3994-4001.	6.5	36

#	Article	IF	CITATIONS
553	Silver colloidal nanoparticle stability: influence on Candida biofilms formed on denture acrylic. Medical Mycology, 2014, 52, 627-635.	0.7	22
554	<i>In Vitro</i> Analyses of Mild Heat Stress in Combination with Antifungal Agents against Aspergillus fumigatus Biofilm. Antimicrobial Agents and Chemotherapy, 2014, 58, 1443-1450.	3.2	10
555	Rat Indwelling Urinary Catheter Model of Candida albicans Biofilm Infection. Infection and Immunity, 2014, 82, 4931-4940.	2.2	38
556	Induction of Candida albicans biofilm formation on silver-coated vascular grafts. Journal of Antimicrobial Chemotherapy, 2014, 69, 1282-1285.	3.0	10
557	Novel Nystatin A1 derivatives exhibiting low host cell toxicity and antifungal activity in an in vitro model of oral candidosis. Medical Microbiology and Immunology, 2014, 203, 341-355.	4.8	16
558	The role of Mss11 in Candida albicans biofilm formation. Molecular Genetics and Genomics, 2014, 289, 807-819.	2.1	13
559	Sexual biofilm formation in <scp><i>C</i></scp> <i>andida tropicalis</i>) opaque cells. Molecular Microbiology, 2014, 92, 383-398.	2.5	12
560	Synergistic Activity of the Tyrocidines, Antimicrobial Cyclodecapeptides from Bacillus aneurinolyticus, with Amphotericin B and Caspofungin against Candida albicans Biofilms. Antimicrobial Agents and Chemotherapy, 2014, 58, 3697-3707.	3.2	48
561	Candida albicans Niche Specialization: Features That Distinguish Biofilm Cells from Commensal Cells. Current Fungal Infection Reports, 2014, 8, 179-184.	2.6	17
562	New pharmacological properties of Medicago sativa and Saponaria officinalis saponin-rich fractions addressed to Candida albicans. Journal of Medical Microbiology, 2014, 63, 1076-1086.	1.8	37
563	Effect of ferrocene-substituted porphyrin RL-91 on Candida albicans biofilm formation. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3506-3511.	2.2	7
564	Arachidonic acid affects biofilm formation and PGE2 level in Candida albicans and non-albicans species in presence of subinhibitory concentration of fluconazole and terbinafine. Brazilian Journal of Infectious Diseases, 2014, 18, 287-293.	0.6	44
565	Polymer multilayers loaded with antifungal \hat{l}^2 -peptides kill planktonic Candida albicans and reduce formation of fungal biofilms on the surfaces of flexible catheter tubes. Journal of Controlled Release, 2014, 191, 54-62.	9.9	48
566	<i>Candida</i> Biofilms: Development, Architecture, and Resistance. Microbiology Spectrum, 2015, 3, .	3.0	114
567	A novel small molecule inhibitor of Candida albicans biofilm formation, filamentation and virulence with low potential for the development of resistance. Npj Biofilms and Microbiomes, 2015, 1, .	6.4	102
568	Quantitative differential proteomics of yeast extracellular matrix: there is more to it than meets the eye. BMC Microbiology, 2015, 15, 271.	3.3	14
569	Fungal Biofilms: <i>In Vivo</i> Models for Discovery of Anti-Biofilm Drugs. Microbiology Spectrum, 2015, 3, .	3.0	49
570	New "haploid biofilm model―unravels IRA2 as a novel regulator of Candida albicans biofilm formation. Scientific Reports, 2015, 5, 12433.	3.3	24

#	Article	IF	Citations
571	Effectiveness of the Photoactive Dye Methylene Blue <i>versus</i> Caspofungin on the <i><scp>C</scp>andida parapsilosis</i> Biofilm <i>inÂvitro</i> and <i>exÂvivo</i> Photochemistry and Photobiology, 2015, 91, 1181-1190.	2.5	20
572	Confocal analysis of the exopolysaccharide matrix of <i>Candida albicans</i> biofilms. Journal of Investigative and Clinical Dentistry, 2015, 6, 179-185.	1.8	9
573	Pulsed light for the inactivation of fungal biofilms of clinically important pathogenic <i>Candida</i> Species. Yeast, 2015, 32, 533-540.	1.7	7
574	Elimination of Bloodstream Infections Associated with Candida albicans Biofilm in Intravascular Catheters. Pathogens, 2015, 4, 457-469.	2.8	33
575	The Role of Antifungals against Candida Biofilm in Catheter-Related Candidemia. Antibiotics, 2015, 4, 1-17.	3.7	39
576	Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy. Sensors, 2015, 15, 29635-29647.	3.8	32
577	From Biology to Drug Development: New Approaches to Combat the Threat of Fungal Biofilms. Microbiology Spectrum, 2015, 3, .	3.0	24
578	How Biofilms Evade Host Defenses. Microbiology Spectrum, 2015, 3, .	3.0	121
579	Fungal Biofilms:In VivoModels for Discovery of Anti-Biofilm Drugs. , 2015, , 33-49.		3
580	<i>Candida albicans</i> Biofilm Development and Its Genetic Control., 0,, 99-114.		4
581	From Biology to Drug Development: New Approaches to Combat the Threat of Fungal Biofilms. , 2015, , 373-388.		1
582	How Biofilms Evade Host Defenses. , 0, , 287-300.		8
583	Potent Activities of Roemerine against Candida albicans and the Underlying Mechanisms. Molecules, 2015, 20, 17913-17928.	3.8	32
584	Host-pathogen interactions between the human innate immune system and Candida albicans $\hat{\epsilon}$ understanding and modeling defense and evasion strategies. Frontiers in Microbiology, 2015, 6, 625.	3.5	83
585	Histatin 5 inhibits adhesion of C. albicans to Reconstructed Human Oral Epithelium. Frontiers in Microbiology, 2015, 6, 885.	3.5	21
586	Candida glabrata susceptibility to antifungals and phagocytosis is modulated by acetate. Frontiers in Microbiology, 2015, 6, 919.	3.5	45
587	Screening of Pharmacologically Active Small Molecule Compounds Identifies Antifungal Agents Against Candida Biofilms. Frontiers in Microbiology, 2015, 6, 1453.	3.5	27
588	<i>Candida albicans</i> Biofilm Development and Its Genetic Control. Microbiology Spectrum, 2015, 3, .	3.0	71

#	Article	IF	CITATIONS
589	Role of SFP1 in the Regulation of Candida albicans Biofilm Formation. PLoS ONE, 2015, 10, e0129903.	2.5	28
590	Gold Nanoparticle-Photosensitizer Conjugate Based Photodynamic Inactivation of Biofilm Producing Cells: Potential for Treatment of C. albicans Infection in BALB/c Mice. PLoS ONE, 2015, 10, e0131684.	2.5	92
591	Influence of Culture Media on Biofilm Formation by <i>Candida</i> Species and Response of Sessile Cells to Antifungals and Oxidative Stress. BioMed Research International, 2015, 2015, 1-15.	1.9	44
592	Antimicrobial Activity Evaluation on Silver Doped Hydroxyapatite/Polydimethylsiloxane Composite Layer. BioMed Research International, 2015, 2015, 1-13.	1.9	36
593	Hydrophobic properties of Candida spp. under the influence of selected essential oils. Acta Biochimica Polonica, 2015, 62, 663-668.	0.5	9
594	Simultaneous monitoring of Staphylococcus aureus growth in a multi-parametric microfluidic platform using microscopy and impedance spectroscopy. Bioelectrochemistry, 2015, 105, 56-64.	4.6	14
595	FocVel1 influences asexual production, filamentous growth, biofilm formation, and virulence in Fusarium oxysporum f. sp. cucumerinum. Frontiers in Plant Science, 2015, 6, 312.	3.6	16
596	Silver Nanoparticles to Fight Candida Coinfection in the Oral Cavity. , 2015, , 283-295.		0
597	Kinetics of biofilm formation by drinking water isolated <i>Penicillium expansum</i> . Biofouling, 2015, 31, 349-362.	2.2	19
598	Sustained Release of a Novel Anti-Quorum-Sensing Agent against Oral Fungal Biofilms. Antimicrobial Agents and Chemotherapy, 2015, 59, 2265-2272.	3.2	23
599	Fungal periprosthetic joint infection of the hip: a systematic review. Orthopedic Reviews, 2015, 7, 5748.	1.3	34
600	An expanded regulatory network temporally controls <scp><i>C</i></scp> <i>andida albicans</i>	2.5	140
601	Role of Echinocandins in Fungal Biofilm–Related Disease: Vascular Catheter–Related Infections, Immunomodulation, and Mucosal Surfaces. Clinical Infectious Diseases, 2015, 61, S622-S629.	5.8	28
602	The Role of Echinocandins in Candida Biofilm–Related Vascular Catheter Infections: In Vitro and In Vivo Model Systems. Clinical Infectious Diseases, 2015, 61, S618-S621.	5.8	39
603	Antibiofilm Activity of Low-Amperage Continuous and Intermittent Direct Electrical Current. Antimicrobial Agents and Chemotherapy, 2015, 59, 4610-4615.	3.2	32
604	Patterns of Candida biofilm on intrauterine devices. Journal of Medical Microbiology, 2015, 64, 375-381.	1.8	19
605	Inhibition of <i>Candida albicans</i> alhesion on medical-grade silicone by a <i>Lactobacillus</i> derived biosurfactant. Journal of Applied Microbiology, 2015, 118, 1116-1125.	3.1	84
607	Elemental biochemical analysis of the polysaccharides in the extracellular matrix of the yeast <i>Saccharomyces cerevisiae</i> . Journal of Basic Microbiology, 2015, 55, 685-694.	3.3	12

#	Article	IF	CITATIONS
608	Ultrasound-assisted treatment of sternocutaneous fistula in post-sternotomy cardiac surgery patients. European Journal of Cardio-thoracic Surgery, 2015, 47, e180-e187.	1.4	8
609	Delicate Metabolic Control and Coordinated Stress Response Critically Determine Antifungal Tolerance of Candida albicans Biofilm Persisters. Antimicrobial Agents and Chemotherapy, 2015, 59, 6101-6112.	3.2	67
610	New strategies for local treatment of vaginal infections. Advanced Drug Delivery Reviews, 2015, 92, 105-122.	13.7	143
611	Self-assembled amphotericin B-loaded polyglutamic acid nanoparticles: preparation, characterization and in vitro potential against Candida albicans. International Journal of Nanomedicine, 2015, 10, 1769.	6.7	32
612	Involvement of glycolysis/gluconeogenesis and signaling regulatory pathways in Saccharomyces cerevisiae biofilms during fermentation. Frontiers in Microbiology, 2015, 6, 139.	3.5	36
613	Species spectrum and antifungal susceptibility profile of vaginal isolates of Candida in Kuwait. Journal De Mycologie Medicale, 2015, 25, 23-28.	1.5	34
614	Microbial colonization of irradiated pathogenic yeast to catheter surfaces: Relationship between adherence, cell surface hydrophobicity, biofilm formation and antifungal susceptibility. A scanning electron microscope analysis. International Journal of Radiation Biology, 2015, 91, 519-527.	1.8	5
615	Community participation in biofilm matrix assembly and function. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4092-4097.	7.1	139
616	Candida Survival Strategies. Advances in Applied Microbiology, 2015, 91, 139-235.	2.4	126
617	Mutation of G234 amino acid residue inCandida albicansdrug-resistance-related protein Rta2p is associated with fluconazole resistance and dihydrosphingosine transport. Virulence, 2015, 6, 599-607.	4.4	4
618	Photodynamic inactivation of a multispecies biofilm using Photodithazine \hat{A}^{\otimes} and LED light after one and three successive applications. Lasers in Medical Science, 2015, 30, 2303-2312.	2.1	33
619	Nosocomial Candidiasis: Antifungal Stewardship and the Importance of Rapid Diagnosis. Medical Mycology, 2016, 54, myv076.	0.7	119
620	<i>Candida albicans</i> Biofilms and Human Disease. Annual Review of Microbiology, 2015, 69, 71-92.	7.3	768
621	Natural product solasodine-3- <i>O</i> - \hat{l}^2 -D-glucopyranoside inhibits the virulence factors of <i>Candida albicans</i> . FEMS Yeast Research, 2015, 15, fov060.	2.3	34
622	Co-occurence of filamentation defects and impaired biofilms in <i>Candida albicans</i> protein kinase mutants. FEMS Yeast Research, 2015, 15, fov092.	2.3	14
623	Functional Analysis of the Exocyst Subunit Sec15 in Candida albicans. Eukaryotic Cell, 2015, 14, 1228-1239.	3.4	6
624	CdTe quantum dots conjugated to concanavalin A as potential fluorescent molecular probes for saccharides detection in Candida albicans. Journal of Photochemistry and Photobiology B: Biology, 2015, 142, 237-243.	3.8	47
625	Novel mechanisms of surfactants against Candida albicans growth and morphogenesis. Chemico-Biological Interactions, 2015, 227, 1-6.	4.0	33

#	Article	IF	CITATIONS
626	A new model of in vitro fungal biofilms formed on human nail fragments allows reliable testing of laser and light therapies against onychomycosis. Lasers in Medical Science, 2015, 30, 1031-1039.	2.1	45
627	Candida biofilm formation on voice prostheses. Journal of Medical Microbiology, 2015, 64, 199-208.	1.8	48
628	Antimicrobial photodynamic therapy against pathogenic bacterial suspensions and biofilms using chloro-aluminum phthalocyanine encapsulated in nanoemulsions. Lasers in Medical Science, 2015, 30, 549-559.	2.1	54
629	<i>Candida albicans</i> aspects of novel silane system–coated titanium and zirconia implant surfaces. Clinical Oral Implants Research, 2015, 26, 332-341.	4.5	48
630	The effect of antifungal combination on transcripts of a subset of drug-resistance genes in clinical isolates of Candida species induced biofilms. Saudi Pharmaceutical Journal, 2015, 23, 55-66.	2.7	13
631	Susceptibility of Candida albicans and Candida glabrata biofilms to silver nanoparticles in intermediate and mature development phases. Journal of Prosthodontic Research, 2015, 59, 42-48.	2.8	50
632	Vulvovaginal <i><scp>C</scp>andida albicans</i> pathogenesis, immunity and vaccine prospects. BJOG: an International Journal of Obstetrics and Gynaecology, 2015, 122, 785-794.	2.3	158
633	<i>N</i> â€trimethylchitosan/Alginate Layerâ€byâ€Layer Self Assembly Coatings Act as "Fungal Repellents―to Prevent Biofilm Formation on Healthcare Materials. Advanced Healthcare Materials, 2015, 4, 469-475.	⁰ 7.6	24
634	Antifungal Therapy., 0, , .		3
635	Novel strategies to fight <i>Candida</i> species infection. Critical Reviews in Microbiology, 2016, 42, 594-606.	6.1	60
636	Incidence of Candida species colonization in neonatal intensive care unit at Riyadh Hospital, Saudi Arabia. Medical Journal of Indonesia, 2016, 25, 171-81.	0.5	0
637	Biofilm Formation as a Pathogenicity Factor of Medically Important Fungi., 0,,.		8
638	A review of the virulence factors of pathogenic fungi. African Journal of Clinical and Experimental Microbiology, 2016, 18, 53.	0.3	5
639	The Comparative Evaluation of the Antimicrobial Effect of Propolis with Chlorhexidine against Oral Pathogens: An In Vitro Study. BioMed Research International, 2016, 2016, 1-8.	1.9	66
640	Enamel Based Composite Layers Deposited on Titanium Substrate with Antifungal Activity. Journal of Spectroscopy, 2016, 2016, 1-13.	1.3	17
641	Antifungal Activity of Lactic Acid Bacteria Strains Isolated from Natural Honey against Pathogenic <i>Candida Species / i>. Mycobiology, 2016, 44, 302-309.</i>	1.7	74
642	The spherical nanoparticle-encapsulated chlorhexidine enhances anti-biofilm efficiency through an effective releasing mode and close microbial interactions. International Journal of Nanomedicine, 2016, 11, 2471.	6.7	27
643	Thiazolidinedione-8 Alters Symbiotic Relationship in C. albicans-S. mutans Dual Species Biofilm. Frontiers in Microbiology, 2016, 7, 140.	3.5	41

#	Article	IF	CITATIONS
644	The effect of acrylic resins containing nanochitosan particles on the formation of Candida species biofilms isolated from the mouths of Subjects. Current Medical Mycology, 2016, 2, 0-0.	0.8	11
645	Study of budding yeast colony formation and its characterizations by using circular granular cell. Journal of Physics: Conference Series, 2016, 694, 012079.	0.4	2
646	The Rasputin Effect: When Commensals and Symbionts Become Parasitic. Advances in Environmental Microbiology, 2016, , .	0.3	20
647	Fungal quorum sensing molecules: Role in fungal morphogenesis and pathogenicity. Journal of Basic Microbiology, 2016, 56, 440-447.	3.3	151
648	Rechargeable anticandidal denture material with sustained release in saliva. Oral Diseases, 2016, 22, 391-398.	3.0	10
649	ZCF32, a fungus specific Zn(II)2 Cys6 transcription factor, is a repressor of the biofilm development in the human pathogen Candida albicans. Scientific Reports, 2016, 6, 31124.	3.3	11
650	Tramadol, an Opioid Receptor Agonist: An Inhibitor of Growth, Morphogenesis, and Biofilm Formation in the Human Pathogen, Candida albicans. Assay and Drug Development Technologies, 2016, 14, 567-572.	1.2	10
651	The Perfect Slime: Microbial Extracellular Polymeric Substances (EPS). Water Intelligence Online, 2016, 15, 9781780407425-9781780407425.	0.3	30
652	The synthesis, regulation, and functions of sterols in <i>Candida albicans</i> : Well-known but still lots to learn. Virulence, 2016, 7, 649-659.	4.4	92
653	Inhibition of Candida albicans biofilm development by unencapsulated Enterococcus faecalis cps2. Journal of Dental Sciences, $2016, 11, 323-330$.	2.5	20
654	Anti-biofilm activity of the metabolites of Streptomyces chrestomyceticus strain ADP4 against Candida albicans. Journal of Bioscience and Bioengineering, 2016, 122, 434-440.	2.2	21
655	Photodynamic inactivation of a multispecies biofilm using curcumin and LED light. Lasers in Medical Science, 2016, 31, 997-1009.	2.1	48
656	Antibiofilm activity of carboxymethyl chitosan on the biofilms of non-Candida albicans Candida species. Carbohydrate Polymers, 2016, 149, 77-82.	10.2	32
657	Fungal Biofilms: Update on Resistance. Advances in Experimental Medicine and Biology, 2016, 931, 37-47.	1.6	39
658	Inhibitory effect of Murraya koenigii against Candida albicans virulence and biofilm development. Biologia (Poland), 2016, 71, 256-264.	1.5	17
659	Effect of 5-aminolevulinic acid photodynamic therapy on Candida albicans biofilms: An in vitro study. Photodiagnosis and Photodynamic Therapy, 2016, 15, 40-45.	2.6	34
660	Chitosan Derivatives Active against Multidrug-Resistant Bacteria and Pathogenic Fungi: <i>In Vivo</i> Evaluation as Topical Antimicrobials. Molecular Pharmaceutics, 2016, 13, 3578-3589.	4.6	71
661	<i>Candida albicans</i> responds to glycostructure damage by Ace2â€mediated feedback regulation of Cek1 signaling. Molecular Microbiology, 2016, 102, 827-849.	2.5	23

#	Article	IF	CITATIONS
662	Null mutants of Candida albicansfor cell-wall-related genes form fragile biofilms that display an almost identical extracellular matrix proteome. FEMS Yeast Research, 2016, 16, fow 075.	2.3	11
663	The Synergistic Effect of Azoles and Fluoxetine against Resistant Candida albicans Strains Is Attributed to Attenuating Fungal Virulence. Antimicrobial Agents and Chemotherapy, 2016, 60, 6179-6188.	3.2	65
664	Prevention of polymicrobial biofilms composed of <i>Pseudomonas aeruginosa </i> fungi by essential oils from selected Citrus species. Pathogens and Disease, 2016, 74, ftw102.	2.0	34
665	Comparative Ploidy Proteomics of Candida albicans Biofilms Unraveled the Role of the AHP1 Gene in the Biofilm Persistence Against Amphotericin B. Molecular and Cellular Proteomics, 2016, 15, 3488-3500.	3.8	37
666	Influence of culture conditions for clinically isolated non-albicans Candida biofilm formation. Journal of Microbiological Methods, 2016, 130, 123-128.	1.6	18
667	Fungal biofilm composition and opportunities in drug discovery. Future Medicinal Chemistry, 2016, 8, 1455-1468.	2.3	27
669	Differential effects of antifungal agents on expression of genes related to formation of <i>Candida albicans</i> biofilms. Mycoses, 2016, 59, 43-47.	4.0	2
670	Bioactive properties and functional constituents of Hypericum androsaemum L.: A focus on the phenolic profile. Food Research International, 2016, 89, 422-431.	6.2	19
671	Evaluation of the Influence of Antifungal Drugs on Growth of Candida albicans in the Biofilm. BioNanoScience, 2016, 6, 588-590.	3.5	2
672	Miltefosine inhibits Candida albicans and non-albicans Candida spp. biofilms and impairs the dispersion of infectious cells. International Journal of Antimicrobial Agents, 2016, 48, 512-520.	2.5	45
673	Inhibitory Effect of Sophorolipid on Candida albicans Biofilm Formation and Hyphal Growth. Scientific Reports, 2016, 6, 23575.	3.3	136
674	Budding yeast colony growth study based on circular granular cell. Journal of Physics: Conference Series, 2016, 739, 012026.	0.4	4
675	Disinfectants to Fight Oral Candida Biofilms. Advances in Experimental Medicine and Biology, 2016, 931, 83-93.	1.6	5
676	Molecular cloning and functional analysis of two phosphate transporter genes from Rhizopogon luteolus and Leucocortinarius bulbiger, two ectomycorrhizal fungi of Pinus tabulaeformis. Mycorrhiza, 2016, 26, 633-644.	2.8	15
677	Plasticity of Candida albicans Biofilms. Microbiology and Molecular Biology Reviews, 2016, 80, 565-595.	6.6	63
678	Significance of polymethylmethacrylate (PMMA) modification by zinc oxide nanoparticles for fungal biofilm formation. International Journal of Pharmaceutics, 2016, 510, 323-335.	5. 2	60
679	Assessment of biofilm formation by <i>Scedosporium apiospermum</i> , <i>S. aurantiacum</i> , <i>S. minutisporum</i> and <i>Lomentospora prolificans</i> Biofouling, 2016, 32, 737-749.	2.2	54
680	Polymicrobial biofilm formation by <i>Candida albicans, Actinomyces naeslundii</i> , and <i>Streptococcus mutans</i> i>is <i>Candida albicans</i> strain and medium dependent. Medical Mycology, 2016, 54, 856-864.	0.7	29

#	Article	IF	CITATIONS
681	Effect of a denture base acrylic resin containing silver nanoparticles on <i>Candida albicans</i> adhesion and biofilm formation. Gerodontology, 2016, 33, 209-216.	2.0	76
682	Influence of melaleuca and copaiba oils on <i><scp>C</scp>andida albicans</i> adhesion. Gerodontology, 2016, 33, 380-385.	2.0	16
683	Comparative evaluation of antifungal action of tea tree oil, chlorhexidine gluconate and fluconazole on heat polymerized acrylic denture base resin – an ⟨i⟩in vitro⟨/i⟩ study. Gerodontology, 2016, 33, 402-409.	2.0	19
684	Effect of surface roughness on the hydrophobicity of a dentureâ€base acrylic resin and <i><scp>C</scp>andida albicans</i> colonization. Journal of Investigative and Clinical Dentistry, 2016, 7, 141-148.	1.8	40
685	Antifungal Lock Therapy With Liposomal Amphotericin B: A Prospective Trial. Journal of the Pediatric Infectious Diseases Society, 2016, 5, 80-84.	1.3	12
686	Influence of Candida krusei and Candida glabrata on Candida albicans gene expression in in vitro biofilms. Archives of Oral Biology, 2016, 64, 92-101.	1.8	31
687	In vitro interactions between anidulafungin and nonsteroidal anti-inflammatory drugs on biofilms of Candida spp Bioorganic and Medicinal Chemistry, 2016, 24, 1002-1005.	3.0	36
688	Role of <i>Candida albicans</i> secreted aspartyl protease Sap9 in interkingdom biofilm formation. Pathogens and Disease, 2016, 74, ftw005.	2.0	41
689	Intraluminal Release of an Antifungal \hat{l}^2 -Peptide Enhances the Antifungal and Anti-Biofilm Activities of Multilayer-Coated Catheters in a Rat Model of Venous Catheter Infection. ACS Biomaterials Science and Engineering, 2016, 2, 112-121.	5.2	29
690	Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes and Infection, 2016, 18, 310-321.	1.9	441
691	<i>In vitro</i> activity of Caspofungin combined with Fluconazole on mixed <i>Candida albicans</i> and <i>Candida glabrata</i> biofilm. Medical Mycology, 2016, 54, 384-393.	0.7	11
692	Moonlight-like proteins of the cell wall protect sessile cells of Candida from oxidative stress. Microbial Pathogenesis, 2016, 90, 22-33.	2.9	28
693	The role of biofilms in onychomycosis. Journal of the American Academy of Dermatology, 2016, 74, 1241-1246.	1.2	76
694	Management of <i>Candida</i> biofilms: state of knowledge and new options for prevention and eradication. Future Microbiology, 2016, 11, 235-251.	2.0	23
695	Interaction of Candida albicans with periodontal ligament fibroblasts limits biofilm formation over elastomer silicone disks. Archives of Oral Biology, 2016, 63, 47-52.	1.8	3
696	Antifungal Quinoline Alkaloids from <i>Waltheria indica</i> . Journal of Natural Products, 2016, 79, 300-307.	3.0	83
697	Sustained Nitric Oxide-Releasing Nanoparticles Induce Cell Death in Candida albicans Yeast and Hyphal Cells, Preventing Biofilm Formation <i>In Vitro</i> and in a Rodent Central Venous Catheter Model. Antimicrobial Agents and Chemotherapy, 2016, 60, 2185-2194.	3.2	38
698	Interaction of Candida albicans with host cells: virulence factors, host defense, escape strategies, and the microbiota. Journal of Microbiology, 2016, 54, 149-169.	2.8	186

#	Article	IF	CITATIONS
699	Inhibition of multispecies biofilms by a fluoride-releasing dental prosthesis copolymer. Journal of Dentistry, 2016, 48, 62-70.	4.1	29
700	Pathogenesis of <i>Candida albicans </i> biofilm. Pathogens and Disease, 2016, 74, ftw018.	2.0	323
701	Reliability of the agar based method to assess the production of degradative enzymes in clinical isolates of Candida albicans. Medical Mycology, 2016, 54, 266-274.	0.7	1
702	Candida albicans Amphotericin B-Tolerant Persister Formation is Closely Related to Surface Adhesion. Mycopathologia, 2016, 181, 41-49.	3.1	21
703	Inactivation of Candida albicans Biofilms on Polymethyl Methacrylate and Enhancement of the Drug Susceptibility by Cold Ar/O2 Plasma Jet. Plasma Chemistry and Plasma Processing, 2016, 36, 383-396.	2.4	10
705	In Vitro Models for Candida Biofilm Development. Methods in Molecular Biology, 2016, 1356, 95-105.	0.9	17
706	Growth, biofilm formation, antifungal susceptibility and oxidative stress resistance of Candida glabrata are affected by different glucose concentrations. Infection, Genetics and Evolution, 2016, 40, 331-338.	2.3	27
707	Three <i>Fusarium oxysporum</i> mitogenâ€activated protein kinases (MAPKs) have distinct and complementary roles in stress adaptation and crossâ€kingdom pathogenicity. Molecular Plant Pathology, 2017, 18, 912-924.	4.2	77
708	Carbon nanotube-based electrochemical biosensors for determination of Candida albicans's quorum sensing molecule. Sensors and Actuators B: Chemical, 2017, 244, 565-570.	7.8	18
709	Antifungal activity of substituted aurones. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 901-903.	2.2	35
710	The role of Alg13 N-acetylglucosaminyl transferase in the expression of pathogenic features of Candida albicans. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 789-801.	2.4	4
711	Biological activities of <i>Rosmarinus officinalis</i> L. (rosemary) extract as analyzed in microorganisms and cells. Experimental Biology and Medicine, 2017, 242, 625-634.	2.4	46
712	In Vivo Candida Device Biofilm Models. , 2017, , 93-113.		0
713	Effect of quantity of food residues on resistance to desiccation, disinfectants, and UV-C irradiation of spoilage yeasts adhered to a stainless steel surface. LWT - Food Science and Technology, 2017, 80, 169-177.	5.2	11
714	Influence of growth conditions on adhesion of yeast Candida spp. and Pichia spp. to stainless steel surfaces. Food Microbiology, 2017, 65, 179-184.	4.2	17
715	Alternating Current Electrophoretic Deposition for the Immobilization of Antimicrobial Agents on Titanium Implant Surfaces. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8533-8546.	8.0	21
716	Candida and its dual lifestyle as a commensal and a pathogen. Research in Microbiology, 2017, 168, 802-810.	2.1	58
717	Morphogenesis in C. albicans. , 2017, , 41-62.		7

#	Article	IF	Citations
718	Candida albicans Biofilms. , 2017, , 63-75.		4
719	Candida Biofilm Tolerance: Comparison of Planktonic and Biofilm Resistance Mechanisms., 2017,, 77-92.		4
720	Identification of proteins involved in the adhesionof Candida species to different medical devices. Microbial Pathogenesis, 2017, 107, 293-303.	2.9	21
721	Susceptibility of Candida albicans from Cystic Fibrosis Patients. Mycopathologia, 2017, 182, 863-867.	3.1	1
722	The Role of Biofilm Matrix in Mediating Antifungal Resistance. , 2017, , 369-384.		2
723	Single-Stage Revision for Chronic Fungal Periprosthetic Joint Infection: An Average of 5 Years of Follow-Up. Journal of Arthroplasty, 2017, 32, 2523-2530.	3.1	45
724	Efficiency of four currently used decontamination conditionings in Romania against Aspergillus and Candida strains. Journal De Mycologie Medicale, 2017, 27, 357-363.	1.5	2
725	<i>Equisetum giganteum</i> influences the ability of <i>Candida albicans</i> in forming biofilms over the denture acrylic resin surface. Pharmaceutical Biology, 2017, 55, 1698-1702.	2.9	7
726	Influence of serum and polystyrene plate type on stability of Candida albicans biofilms. Journal of Microbiological Methods, 2017, 139, 8-11.	1.6	15
727	Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deepâ€UV fluorescence imaging study. Colloids and Surfaces B: Biointerfaces, 2017, 155, 341-348.	5.0	11
728	Bacterial Infections: Few Concepts. , 2017, , 13-37.		0
729	Yeast Biofilms in the Context of Human Health and Disease. , 2017, , 137-162.		3
730	The Role of Resistance in Candida Infections: Epidemiology and Treatment. , 2017, , 1075-1097.		4
731	<i>In Vitro</i> Antibiofilm Activity of Eucarobustol E against Candida albicans. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	51
732	A pre-therapeutic coating for medical devices that prevents the attachment of Candida albicans. Annals of Clinical Microbiology and Antimicrobials, 2017, 16, 41.	3.8	29
733	Fungal Biofilms: Inside Out. Microbiology Spectrum, 2017, 5, .	3.0	25
734	The global regulator Ncb2 escapes from the core promoter and impacts transcription in response to drug stress in Candida albicans. Scientific Reports, 2017, 7, 46084.	3.3	7
735	Virulence factors of fluconazole-susceptible and fluconazole-resistant Candida albicans after antimicrobial photodynamic therapy. Lasers in Medical Science, 2017, 32, 815-826.	2.1	16

#	ARTICLE	IF	Citations
736	Human α-Defensin 6 Self-Assembly Prevents Adhesion and Suppresses Virulence Traits of <i>Candida albicans</i> . Biochemistry, 2017, 56, 1033-1041.	2.5	25
737	Future therapies targeted towards eliminating <i>Candida </i> biofilms and associated infections. Expert Review of Anti-Infective Therapy, 2017, 15, 299-318.	4.4	21
738	Glucose modulates antimicrobial photodynamic inactivation of Candida albicans in biofilms. Photodiagnosis and Photodynamic Therapy, 2017, 17, 173-179.	2.6	23
739	Antifungal Effects of Synthetic Human Beta-defensin-3-C15 Peptide on Candida albicans –infected Root Dentin. Journal of Endodontics, 2017, 43, 1857-1861.	3.1	12
740	Antimicrobial and antibiofilm activities of nanoemulsions containing Eucalyptus globulus oil against Pseudomonas aeruginosa and Candida spp Microbial Pathogenesis, 2017, 112, 230-242.	2.9	56
741	Anti-biofilm activity of a sophorolipid-amphotericin B niosomal formulation against <i>Candida albicans</i> . Biofouling, 2017, 33, 768-779.	2.2	60
742	Candida albicans Sacral Osteomyelitis Causing Necrosis of a Sacral Nerve Root. JBJS Case Connector, 2017, 7, e48-e48.	0.3	2
743	Mechanisms involved in the triggering of neutrophil extracellular traps (NETs) by Candida glabrata during planktonic and biofilm growth. Scientific Reports, 2017, 7, 13065.	3.3	51
744	Antimicrobial and synergistic activity of essential oils of Aloysia triphylla and Lippia alba against Aeromonas spp Microbial Pathogenesis, 2017, 113, 29-33.	2.9	41
745	Caspofungin on ARGET-ATRP grafted PHEMA polymers: Enhancement and selectivity of prevention of attachment of <i>Candida albicans</i> <ion>li>. Biointerphases, 2017, 12, 05G602. </ion>	1.6	18
746	The vaccines and antibodies associated with Als3p for treatment of Candida albicans infections. Vaccine, 2017, 35, 5786-5793.	3.8	28
747	Protocol for Identifying Natural Agents That Selectively Affect Adhesion, Thickness, Architecture, Cellular Phenotypes, Extracellular Matrix, and Human White Blood Cell Impenetrability of Candida albicans Biofilms. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	8
748	Antibacterial activity of food-grade chitosan against Vibrio parahaemolyticus biofilms. Microbial Pathogenesis, 2017, 110, 291-297.	2.9	53
749	The essential oil of Allium sativum as an alternative agent against Candida isolated from dental prostheses. Revista Iberoamericana De Micologia, 2017, 34, 158-164.	0.9	14
751	The carboxylic acid transporters Jen1 and Jen2 affect the architecture and fluconazole susceptibility of <i>Candida albicans</i> biofilm in the presence of lactate. Biofouling, 2017, 33, 943-954.	2.2	12
752	Assessment of silibinin as a potential antifungal agent and investigation of its mechanism of action. IUBMB Life, 2017, 69, 631-637.	3.4	25
753	Incorporation of triclosan and acridine orange into liposomes for evaluating the susceptibility of Candida albicans. Journal of Photochemistry and Photobiology B: Biology, 2017, 173, 514-521.	3.8	8
7 54	Adhesion of bacteria to surfaces and biofilm formation on medical devices., 2017,, 47-95.		20

#	Article	IF	CITATIONS
755	Portrait of Candida Species Biofilm Regulatory Network Genes. Trends in Microbiology, 2017, 25, 62-75.	7.7	108
756	Exploring Morphological and Biochemical Linkages in Fungal Growth with Labelâ€Free Light Sheet Microscopy and Raman Spectroscopy. ChemPhysChem, 2017, 18, 72-78.	2.1	26
757	The Role of In Vitro Susceptibility Testing in the Management of Candida and Aspergillus. Journal of Infectious Diseases, 2017, 216, S452-S457.	4.0	14
758	Candida Albicans Biofilm as a Clinical Challenge. , 2017, , 247-264.		1
759	Time-Lapse Tracking of <i>Candida tropicalis</i> Biofilm Formation and the Antifungal Efficacy of Liposomal Amphotericin B. Japanese Journal of Infectious Diseases, 2017, 70, 559-564.	1.2	5
760	Fungal Biofilms: Inside Out. , 2017, , 873-886.		6
761	Adherence of <i>Candida </i> to complete denture surfaces <i>in vitro </i> : A comparison of conventional and CAD/CAM complete dentures. Journal of Advanced Prosthodontics, 2017, 9, 402.	2.6	74
762	<i>Candida</i> Species From Eye Infections: Drug Susceptibility, Virulence Factors, and Molecular Characterization., 2017, 58, 4201.		21
763	Biofilm Bioprocesses., 2017,, 143-175.		5
764	Real-Time Approach to Flow Cell Imaging of Candida albicans Biofilm Development. Journal of Fungi (Basel, Switzerland), 2017, 3, 13.	3.5	19
765	Fungal Biofilms and Polymicrobial Diseases. Journal of Fungi (Basel, Switzerland), 2017, 3, 22.	3.5	150
766	Conserved Inhibition of Neutrophil Extracellular Trap Release by Clinical Candida albicans Biofilms. Journal of Fungi (Basel, Switzerland), 2017, 3, 49.	3.5	30
767	The Structure-Activity Relationship of Pterostilbene Against Candida albicans Biofilms. Molecules, 2017, 22, 360.	3.8	13
768	Antifungal and Anti-Biofilm Activities of Acetone Lichen Extracts against Candida albicans. Molecules, 2017, 22, 651.	3.8	37
769	Antibiofilm Activity and Mechanism of Action of the Disinfectant Chloramine T on Candida spp., and Its Toxicity against Human Cells. Molecules, 2017, 22, 1527.	3.8	9
770	Synergistic Antifungal Effect of Fluconazole Combined with Licofelone against Resistant Candida albicans. Frontiers in Microbiology, 2017, 8, 2101.	3. 5	34
771	Repurposing Approach Identifies Auranofin with Broad Spectrum Antifungal Activity That Targets Mia40-Erv1 Pathway. Frontiers in Cellular and Infection Microbiology, 2017, 7, 4.	3.9	73
772	Enhanced Killing and Antibiofilm Activity of Encapsulated Cinnamaldehyde against Candida albicans. Frontiers in Microbiology, 2017, 8, 1641.	3 . 5	60

#	Article	IF	CITATIONS
773	An Update on Candida tropicalis Based on Basic and Clinical Approaches. Frontiers in Microbiology, 2017, 8, 1927.	3.5	177
774	The N-Terminus of Human Lactoferrin Displays Anti-biofilm Activity on Candida parapsilosis in Lumen Catheters. Frontiers in Microbiology, 2017, 8, 2218.	3.5	18
775	Fluconazole-Pyridoxine Bis-Triazolium Compounds with Potent Activity against Pathogenic Bacteria and Fungi Including Their Biofilm-Embedded Forms. Journal of Chemistry, 2017, 2017, 1-15.	1.9	11
776	A Sustained-Release Membrane of Thiazolidinedione-8: Effect on Formation of a Candida/Bacteria Mixed Biofilm on Hydroxyapatite in a Continuous Flow Model. BioMed Research International, 2017, 2017, 1-9.	1.9	24
777	Candida glabrata Biofilms: How Far Have We Come?. Journal of Fungi (Basel, Switzerland), 2017, 3, 11.	3.5	80
778	Organic Nanocarriers for the Delivery of Antiinfective Agents. , 2017, , 369-393.		1
779	Yeast casein kinase 2 governs morphology, biofilm formation, cell wall integrity, and host cell damage of Candida albicans. PLoS ONE, 2017, 12, e0187721.	2.5	24
780	Herpes simplex virus-1 entrapped in Candida albicans biofilm displays decreased sensitivity to antivirals and UVA1 laser treatment. Annals of Clinical Microbiology and Antimicrobials, 2017, 16, 72.	3.8	10
781	Consequences of lysine auxotrophy for Candida albicans adherence and biofilm formation. Acta Biochimica Polonica, 2017, 64, 323-329.	0.5	2
782	The Effect of Novel Heterocyclic Compounds on Cryptococcal Biofilm. Journal of Fungi (Basel,) Tj ETQq1 1 0.7843	14.rgBT /0	Overlock 10
782 783	The Effect of Novel Heterocyclic Compounds on Cryptococcal Biofilm. Journal of Fungi (Basel,) Tj ETQq1 1 0.7843 Fungal Biofilms., 2017,, 326-326.	14 rgBT /0	Overlock 1
		14 rgBT /(
783	Fungal Biofilms. , 2017, , 326-326. Fighting biofilms with lantibiotics and other groups of bacteriocins. Npj Biofilms and Microbiomes,	0.0	0
783 784	Fungal Biofilms., 2017, , 326-326. Fighting biofilms with lantibiotics and other groups of bacteriocins. Npj Biofilms and Microbiomes, 2018, 4, 9. Efficacy of 7â€benzyloxyindole and other halogenated indoles to inhibit ⟨i⟩Candida albicans⟨/i⟩ biofilm	6.4	0
783 784 785	Fungal Biofilms., 2017, , 326-326. Fighting biofilms with lantibiotics and other groups of bacteriocins. Npj Biofilms and Microbiomes, 2018, 4, 9. Efficacy of 7â€benzyloxyindole and other halogenated indoles to inhibit ⟨i⟩ Candida albicans⟨/i⟩ biofilm and hyphal formation. Microbial Biotechnology, 2018, 11, 1060-1069. Time-kill assays of amphotericin B plus anidulafungin against Candida tropicalis biofilms formed on	6.4	0 154 35
783 784 785	Fungal Biofilms., 2017, , 326-326. Fighting biofilms with lantibiotics and other groups of bacteriocins. Npj Biofilms and Microbiomes, 2018, 4, 9. Efficacy of 7â€benzyloxyindole and other halogenated indoles to inhibit ⟨i⟩ Candida albicans⟨/i⟩ biofilm and hyphal formation. Microbial Biotechnology, 2018, 11, 1060-1069. Time-kill assays of amphotericin B plus anidulafungin against Candida tropicalis biofilms formed on two different biomaterials. International Journal of Artificial Organs, 2018, 41, 23-27. Design of Nanofiber Coatings for Mitigation of Microbial Adhesion: Modeling and Application to	6.4 4.2	0 154 35
783 784 785 786	Fungal Biofilms., 2017, , 326-326. Fighting biofilms with lantibiotics and other groups of bacteriocins. Npj Biofilms and Microbiomes, 2018, 4, 9. Efficacy of 7â€benzyloxyindole and other halogenated indoles to inhibit ⟨i⟩ Candida albicans⟨li⟩ biofilm and hyphal formation. Microbial Biotechnology, 2018, 11, 1060-1069. Time-kill assays of amphotericin B plus anidulafungin against Candida tropicalis biofilms formed on two different biomaterials. International Journal of Artificial Organs, 2018, 41, 23-27. Design of Nanofiber Coatings for Mitigation of Microbial Adhesion: Modeling and Application to Medical Catheters. ACS Applied Materials & Candida ⟨li⟩ Species Biofilm Matrix Mannan-Glucan Complex	6.4 4.2 1.4 8.0	0 154 35 3

#	Article	IF	CITATIONS
791	New bio-active, antimicrobial and adherent coatings of nanostructured carbon double-reinforced with silver and silicon by Matrix-Assisted Pulsed Laser Evaporation for medical applications. Applied Surface Science, 2018, 441, 871-883.	6.1	22
792	Comparative Study of the Effects of Fluconazole and Voriconazole on Candida glabrata, Candida parapsilosis and Candida rugosa Biofilms. Mycopathologia, 2018, 183, 499-511.	3.1	12
793	DST659 genotype of Candida albicans showing positive association between biofilm formation and dominance in Taiwan. Medical Mycology, 2018, 56, 972-978.	0.7	7
794	Chiloscyphenol A derived from Chinese liverworts exerts fungicidal action by eliciting both mitochondrial dysfunction and plasma membrane destruction. Scientific Reports, 2018, 8, 326.	3.3	14
795	Relative Abundances of Candida albicans and Candida glabrata in <i>In Vitro</i> Coculture Biofilms Impact Biofilm Structure and Formation. Applied and Environmental Microbiology, 2018, 84, .	3.1	25
796	Photodynamic Antimicrobial Chemotherapy (PACT), using Toluidine blue O inhibits the viability of biofilm produced by Candida albicans at different stages of development. Photodiagnosis and Photodynamic Therapy, 2018, 21, 182-189.	2.6	37
797	Antimicrobial activity of denture adhesive associated with <i>Equisetum giganteum</i> - and <i>Punica granatum</i> -enriched fractions against <i>Candida albicans</i> biofilms on acrylic resin surfaces. Biofouling, 2018, 34, 62-73.	2.2	19
798	Biofilms and beyond: expanding echinocandin utility. Journal of Antimicrobial Chemotherapy, 2018, 73, i73-i81.	3.0	23
799	Metal TiO ₂ Nanotube Layers for the Treatment of Dental Implant Infections. ACS Applied Materials & Samp; Interfaces, 2018, 10, 17089-17099.	8.0	39
800	Risk assessment for the spread of Candida sp. in dental chair unit waterlines using molecular techniques. International Dental Journal, 2018, 68, 386-392.	2.6	6
801	Cytotoxic potential of denture base and reline acrylic resins after immersion in disinfectant solutions. Journal of Prosthetic Dentistry, 2018, 120, 155.e1-155.e7.	2.8	16
802	Mitogen activated protein kinases (MAPK) and protein phosphatases are involved in Aspergillus fumigatus adhesion and biofilm formation. Cell Surface, 2018, 1, 43-56.	3.0	20
803	Quantum dot–Cramoll lectin as novel conjugates to glycobiology. Journal of Photochemistry and Photobiology B: Biology, 2018, 178, 85-91.	3.8	16
804	Development and regulation of single- and multi-species Candida albicans biofilms. Nature Reviews Microbiology, 2018, 16, 19-31.	28.6	405
805	Biofilm-forming capacity of blood–borne Candida albicans strains and effects of antifungal agents. Revista Argentina De Microbiologia, 2018, 50, 62-69.	0.7	12
806	In vitro activity of micafungin against biofilms of Candida albicans, Candida glabrata, and Candida parapsilosis at different stages of maturation. Folia Microbiologica, 2018, 63, 209-216.	2.3	11
807	Efficacy of carboxymethyl chitosan against Candida tropicalis and Staphylococcus epidermidis monomicrobial and polymicrobial biofilms. International Journal of Biological Macromolecules, 2018, 110, 150-156.	7.5	18
808	Differences in growth physiology and aggregation of <i>Pichia pastoris</i> cells between solidâ€state and submerged fermentations under aerobic conditions. Journal of Chemical Technology and Biotechnology, 2018, 93, 527-532.	3.2	9

#	Article	IF	Citations
809	Biofilm-related disease. Expert Review of Anti-Infective Therapy, 2018, 16, 51-65.	4.4	299
810	A representative of arylcyanomethylenequinone oximes effectively inhibits growth and formation of hyphae in Candida albicans and influences the activity of protein kinases in vitro. Saudi Pharmaceutical Journal, 2018, 26, 244-252.	2.7	7
811	CD101, a Novel Echinocandin, Possesses Potent Antibiofilm Activity against Early and Mature Candida albicans Biofilms. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	18
812	Î ² -1,3-glucanase disrupts biofilm formation and increases antifungal susceptibility of Candida albicans DAY185. International Journal of Biological Macromolecules, 2018, 108, 942-946.	7.5	22
813	Epigenetic determinants of phenotypic plasticity in Candida albicans. Fungal Biology Reviews, 2018, 32, 10-19.	4.7	19
814	Chemical Analysis of Red Ginger (<i>Zingiber officinale</i> Roscoe var <i>rubrum</i>) Essential Oil and Its Anti-biofilm Activity against <i>Candida albicans</i> Natural Product Communications, 2018, 13, 1934578X1801301.	0.5	7
815	Influence of Cell Surface Hydrophobicity on Adhesion and Biofilm Formation inCandida albicansand Several Bacterial Species. Journal of Bacteriology and Virology, 2018, 48, 73.	0.1	3
816	Repositioning of Solifenacin and Hydroxyzine as Antibiofilm Agents in Candida albicans. Fungal Genomics & Biology, 2018, 08, .	0.4	O
818	Caenorhabditis elegans as a Model Host to Monitor the Candida Infection Processes. Journal of Fungi (Basel, Switzerland), 2018, 4, 123.	3.5	33
819	The Significance of Lipids to Biofilm Formation in Candida albicans: An Emerging Perspective. Journal of Fungi (Basel, Switzerland), 2018, 4, 140.	3.5	45
820	The possible molecular mechanisms of farnesol on the antifungal resistance of C. albicans biofilms: the regulation of CYR1 and PDE2. BMC Microbiology, 2018, 18, 203.	3.3	21
821	Effectiveness of Phytoactive Molecules on Transcriptional Expression, Biofilm Matrix, and Cell Wall Components of <i>Candida glabrata</i>	3.5	39
822	Green Tea Polyphenols and Padma Hepaten Inhibit <i> Candida albicans</i> Biofilm Formation. Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-8.	1.2	13
824	Antibiofilm and Antivirulence Activities of 6-Gingerol and 6-Shogaol Against Candida albicans Due to Hyphal Inhibition. Frontiers in Cellular and Infection Microbiology, 2018, 8, 299.	3.9	75
826	Temporal Expression of Genes in Biofilm-Forming Ocular <i>Candida albicans</i> Isolated From Patients With Keratitis and Orbital Cellulitis., 2018, 59, 528.		10
827	Atividade antimicrobiana e antibiofilme de nanopartÃculas de prata sobre isolados de Aeromonas spp. obtidos de organismos aquáticos. Pesquisa Veterinaria Brasileira, 2018, 38, 244-249.	0.5	8
828	Peptideâ€Based Approaches to Fight Biofouling. Advanced Materials Interfaces, 2018, 5, 1800073.	3.7	94
829	Susceptibility of <i>Candida glabrata </i> biofilms to echinocandins: alterations in the matrix composition. Biofouling, 2018, 34, 569-578.	2.2	23

#	Article	IF	CITATIONS
830	Comparative analysis of proteinase, phospholipase, hydrophobicity and biofilm forming ability in Candida species isolated from clinical specimens. Journal De Mycologie Medicale, 2018, 28, 437-442.	1.5	36
831	Biofilm formation and toxin production provide a fitness advantage in mixed colonies of environmental yeast isolates. Ecology and Evolution, 2018, 8, 5541-5550.	1.9	22
832	Nonphotodynamic Roles of Methylene Blue: Display of Distinct Antimycobacterial and Anticandidal Mode of Actions. Journal of Pathogens, 2018, 2018, 1-13.	1.4	12
833	Application of 460�nm visible light for the elimination of Candida�albicans in�vitro and in�vivo. Molecular Medicine Reports, 2018, 18, 2017-2026.	2.4	9
834	Two-Stage Exchange Arthroplasty Is a Favorable Treatment OptionÂUpon Diagnosis of a Fungal Periprosthetic Joint Infection. Journal of Arthroplasty, 2018, 33, 3555-3560.	3.1	27
835	Enhancing antibiofilm activity with functional chitosan nanoparticles targeting biofilm cells and biofilm matrix. Carbohydrate Polymers, 2018, 200, 35-42.	10.2	71
836	Echinocandins for management of invasive candidiasis in patients with liver disease and liver transplantation. Infection and Drug Resistance, 2018, Volume 11, 805-819.	2.7	14
837	The Interface between Fungal Biofilms and Innate Immunity. Frontiers in Immunology, 2017, 8, 1968.	4.8	98
838	Genomic and Phenotypic Variation in Morphogenetic Networks of Two Candida albicans Isolates Subtends Their Different Pathogenic Potential. Frontiers in Immunology, 2018, 8, 1997.	4.8	23
839	Candida Biofilms: Threats, Challenges, and Promising Strategies. Frontiers in Medicine, 2018, 5, 28.	2.6	400
840	Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Frontiers in Microbiology, 2018, 9, 1299.	3.5	286
841	Biofilm Formation and Resistance to Fungicides in Clinically Relevant Members of the Fungal Genus Fusarium. Journal of Fungi (Basel, Switzerland), 2018, 4, 16.	3.5	32
842	Alternative Oxidase Promotes Biofilm Formation of Candida albicans. Current Medical Science, 2018, 38, 443-448.	1.8	3
843	<i>In Vitro</i> Culturing and Screening of <i>Candida albicans</i> Biofilms. Current Protocols in Microbiology, 2018, 50, e60.	6.5	72
844	Fracture resistant, antibiofilm adherent, self-assembled PMMA/ZnO nanoformulations for biomedical applications: physico-chemical and biological perspectives of nano reinforcement. Nanotechnology, 2018, 29, 305704.	2.6	18
845	Successful treatment for acute prosthetic joint infection due to MRSA and Candida albicans : a case report and literature review. Therapeutics and Clinical Risk Management, 2018, Volume 14, 1133-1139.	2.0	4
846	A phenylthiazole derivative demonstrates efficacy on treatment of the cryptococcosis & amp; candidiasis in animal models. Future Science OA, 2018, 4, FSO305.	1.9	15
847	On-demand release of Candida albicans biofilms from urinary catheters by mechanical surface deformation. Biofouling, 2018, 34, 595-604.	2.2	2

#	Article	IF	CITATIONS
848	<i>In Vitro $$ /i> and $$ <i>In Vivo $$ /i> Activity of a Novel Catheter Lock Solution against Bacterial and Fungal Biofilms. Antimicrobial Agents and Chemotherapy, 2018, 62, .</i></i>	3.2	19
849	Inhibition of Candida albicans biofilm and hyphae formation by biocompatible oligomers. Letters in Applied Microbiology, 2018, 67, 123-129.	2.2	12
850	lons released from a S-PRG filler induces oxidative stress in Candida albicans inhibiting its growth and pathogenicity. Cell Stress and Chaperones, 2018, 23, 1337-1343.	2.9	23
851	D-Cateslytin: a new antifungal agent for the treatment of oral Candida albicans associated infections. Scientific Reports, 2018, 8, 9235.	3.3	19
852	Rational modification of a lead molecule: Improving the antifungal activity of indole $\hat{a}\in$ " triazole $\hat{a}\in$ " amino acid conjugates. European Journal of Medicinal Chemistry, 2018, 155, 658-669.	5.5	13
853	Insights into the social life and obscure side of Scedosporium/Lomentospora species: ubiquitous, emerging and multidrug-resistant opportunistic pathogens. Fungal Biology Reviews, 2019, 33, 16-46.	4.7	28
854	Two negative regulators of biofilm development exhibit functional divergence in conferring virulence potential toCandida albicans. FEMS Yeast Research, 2019, 19, .	2.3	5
855	Cholic Acid-Peptide Conjugates as Potent Antimicrobials against Interkingdom Polymicrobial Biofilms. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	38
856	Disparate Candida albicans Biofilm Formation in Clinical Lipid Emulsions Due to Capric Acid-Mediated Inhibition. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	10
857	Antimicrobial and antibiofilm activities of prenylated flavanones from Macaranga tanarius. Phytomedicine, 2019, 63, 153033.	5. 3	32
858	Facilitators of adaptation and antifungal resistance mechanisms in clinically relevant fungi. Fungal Genetics and Biology, 2019, 132, 103254.	2.1	51
859	Longitudinal Survey of Fungi in the Human Gut: ITS Profiling, Phenotyping, and Colonization. Frontiers in Microbiology, 2019, 10, 1575.	3.5	101
861	Animal Infections: The Role of Fungal Biofilms. Fungal Biology, 2019, , 149-162.	0.6	0
862	P.097 Metabolomic and lipidomic profiling of high and low grade gliomas - a matched serum and tissue clinical study. Canadian Journal of Neurological Sciences, 2019, 46, S39.	0.5	0
863	Electrochemical Strategy for Eradicating Fluconazole-TolerantCandida albicansUsing Implantable Titanium. ACS Applied Materials & Interfaces, 2019, 11, 40997-41008.	8.0	5
864	Inhibitory Effect of 5-Aminoimidazole-4-Carbohydrazonamides Derivatives Against Candida spp. Biofilm on Nanohydroxyapatite Substrate. Mycopathologia, 2019, 184, 775-786.	3.1	7
865	Rhesus Theta Defensin 1 Promotes Long Term Survival in Systemic Candidiasis by Host Directed Mechanisms. Scientific Reports, 2019, 9, 16905.	3.3	22
866	Probiotic Yeasts Inhibit Virulence of Non <i>-albicans Candida</i> Species. MBio, 2019, 10, .	4.1	48

#	Article	IF	CITATIONS
867	Digital Design of a Universal Rat Intraoral Device for Therapeutic Evaluation of a Topical Formulation against <i>Candida</i> -Associated Denture Stomatitis. Infection and Immunity, 2019, 87, .	2.2	15
868	Flocculation of <i>Saccharomyces cerevisiae</i> is dependent on activation of Slt2 and Rlm1 regulated by the cell wall integrity pathway. Molecular Microbiology, 2019, 112, 1350-1369.	2.5	14
869	Time-Dependent Changes in Morphostructural Properties and Relative Abundances of Contributors in Pleurotus ostreatus/Pseudomonas alcaliphila Mixed Biofilms. Frontiers in Microbiology, 2019, 10, 1819.	3.5	6
870	Determination of optimum incubation time for formation of Pseudomonas aeruginosa and Streptococcus pyogenes biofilms in microtiter plate. Bulletin of the National Research Centre, 2019, 43, .	1.8	13
871	Meso-Raman approach for rapid yeast cells identification. Biophysical Chemistry, 2019, 254, 106249.	2.8	5
872	Proteomic analysis uncovers the modulation of ergosterol, sphingolipid and oxidative stress pathway by myristic acid impeding biofilm and virulence in Candida albicans. Journal of Proteomics, 2019, 208, 103503.	2.4	52
873	A thin-film extensional flow model for biofilm expansion by sliding motility. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20190175.	2.1	11
874	Effect of loureirin A against Candida albicans biofilms. Chinese Journal of Natural Medicines, 2019, 17, 616-623.	1.3	19
875	Metagenomic quorum quenching enzymes affect biofilm formation of Candida albicans and Staphylococcus epidermidis. PLoS ONE, 2019, 14, e0211366.	2.5	23
876	Synergistic Antifungal Effect of Amphotericin B-Loaded Poly(Lactic-Co-Glycolic Acid) Nanoparticles and Ultrasound against Candida albicans Biofilms. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	46
877	The Anti-Candida albicans Agent 4-AN Inhibits Multiple Protein Kinases. Molecules, 2019, 24, 153.	3.8	5
878	Effect of Clove and Thyme Essential Oils on Candida Biofilm Formation and the Oil Distribution in Yeast Cells. Molecules, 2019, 24, 1954.	3.8	41
879	Small-Molecule Morphogenesis Modulators Enhance the Ability of 14-Helical \hat{l}^2 -Peptides To Prevent Candida albicans Biofilm Formation. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	7
880	Antifungal effect of photodynamic therapy mediated by curcumin on Candida albicans biofilms in vitro. Photodiagnosis and Photodynamic Therapy, 2019, 27, 280-287.	2.6	29
881	Anti-candidal and anti-virulence efficiency of selected seaweeds against azole resistance Candida albicans. Biocatalysis and Agricultural Biotechnology, 2019, 20, 101195.	3.1	11
882	Biofilm characterization of Fusarium solani keratitis isolate: increased resistance to antifungals and UV light. Journal of Microbiology, 2019, 57, 485-497.	2.8	40
883	Filamentous Non-albicans Candida Species Adhere to Candida albicans and Benefit From Dual Biofilm Growth. Frontiers in Microbiology, 2019, 10, 1188.	3.5	22
884	Optimization of Innovative Three-Dimensionally-Structured Hybrid Vesicles to Improve the Cutaneous Delivery of Clotrimazole for the Treatment of Topical Candidiasis. Pharmaceutics, 2019, 11, 263.	4.5	16

#	Article	IF	CITATIONS
885	Novel azanaphtoquinone compounds with aromatic amino moiety: Synthesis, structural characterization, and antimicrobial features. Journal of Molecular Structure, 2019, 1195, 411-416.	3.6	4
886	Fractal analysis and mathematical models for the investigation of photothermal inactivation of Candida albicans using carbon nanotubes. Colloids and Surfaces B: Biointerfaces, 2019, 180, 393-400.	5.0	8
887	Filamentation Regulatory Pathways Control Adhesion-Dependent Surface Responses in Yeast. Genetics, 2019, 212, 667-690.	2.9	20
888	Anti-biofilm activity of garlic extract loaded nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 102009.	3.3	36
889	Identification of ability to form biofilm in <i>Candida parapsilosis</i> epidermidis by Raman spectroscopy. Future Microbiology, 2019, 14, 509-517.	2.0	16
890	Inhibition of adhesionâ€specific genes by <i>Solidago virgaurea</i> extract causes loss of <i>Candida albicans</i> biofilm integrity. Journal of Applied Microbiology, 2019, 127, 68-77.	3.1	5
891	Inhibition of Biofilm Formation by $\langle i \rangle$ Candida albicans $\langle i \rangle$ and Polymicrobial Microorganisms by Nepodin via Hyphal-Growth Suppression. ACS Infectious Diseases, 2019, 5, 1177-1187.	3.8	49
892	Nanoparticles and the control of oral biofilms. , 2019, , 243-275.		3
893	Polyphenols Inhibit Candida albicans and Streptococcus mutans Biofilm Formation. Dentistry Journal, 2019, 7, 42.	2.3	27
894	Phenotypic characteristics and transcriptome profile of Cryptococcus gattii biofilm. Scientific Reports, 2019, 9, 6438.	3.3	22
895	Design, synthesis, and antimicrobial evaluation of 1,4-dihydroindeno[1,2- <i>c</i>) pyrazole tethered carbohydrazide hybrids: exploring their <i>in silico</i> ADMET, ergosterol inhibition and ROS inducing potential. MedChemComm, 2019, 10, 806-813.	3.4	19
896	Live Cell Analysis of Shear Stress on Pseudomonas aeruginosa Using an Automated Higher-Throughput Microfluidic System. Journal of Visualized Experiments, 2019, , .	0.3	3
897	Effects of a Novel Probiotic Combination on Pathogenic Bacterial-Fungal Polymicrobial Biofilms. MBio, 2019, 10, .	4.1	48
898	Benthic hotspots in the pelagic zone: Light and phosphate availability alter aggregates of microalgae and suspended particles in a shallow turbid lake. Limnology and Oceanography, 2019, 64, 585-596.	3.1	13
899	Biofilm formation by staphylococci in health-related environments and recent reports on their control using natural compounds. Critical Reviews in Microbiology, 2019, 45, 201-222.	6.1	47
900	Inherent Guanidine Nanogels with Durable Antibacterial and Bacterially Antiadhesive Properties. Advanced Functional Materials, 2019, 29, 1806594.	14.9	93
901	Improving Polymethyl Methacrylate Resin Using a Novel Titanium Dioxide Coating. Journal of Prosthodontics, 2019, 28, 1011-1017.	3.7	31
902	Sugar Sensing and Signaling in Candida albicans and Candida glabrata. Frontiers in Microbiology, 2019, 10, 99.	3.5	63

#	Article	IF	CITATIONS
903	Synthesis of new bisâ€pyrazole linked hydrazides and their in vitro evaluation as antimicrobial and antiâ€biofilm agents: A mechanistic role on ergosterol biosynthesis inhibition in <i>Candida albicans</i> . Chemical Biology and Drug Design, 2019, 94, 1339-1351.	3.2	10
904	<scp>RNA</scp> aptamers selected against yeast cells inhibit <i>Candida albicans</i> biofilm formation in vitro. MicrobiologyOpen, 2019, 8, e00812.	3.0	12
905	<i>Candida albicans</i> Biofilms Are Generally Devoid of Persister Cells. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	18
906	EFFECT OF JAVANESE TURMERIC ETHANOL EXTRACT ON THE ERADICATION OF CANDIDA ALBICANS BIOFILMS IN EARLY, INTERMEDIATE, AND MATURATION PHASES. International Journal of Applied Pharmaceutics, 0, , 1-4.	0.3	0
908	Global Transcriptomic Analysis of the Candida albicans Response to Treatment with a Novel Inhibitor of Filamentation. MSphere, $2019,4,.$	2.9	18
909	Characteristics of monolayer formation in vitro by the chytrid Batrachochytrium dendrobatidis. Biofilm, 2019, 1, 100009.	3.8	4
910	A closer look in the antimicrobial properties of deep eutectic solvents based on fatty acids. Sustainable Chemistry and Pharmacy, 2019, 14, 100192.	3.3	36
912	Fabricating Ultra-Smooth Diamond-Like Carbon Film and Investigating its Antifungal and Antibiofilm Activity. Journal of Biomimetics, Biomaterials and Biomedical Engineering, 2019, 43, 109-123.	0.5	2
913	Gut dysbiosis, leaky gut, and intestinal epithelial proliferation in neurological disorders: towards the development of a new therapeutic using amino acids, prebiotics, probiotics, and postbiotics. Reviews in the Neurosciences, 2019, 30, 179-201.	2.9	76
914	Does the composition of polystyrene trays affect Candida spp. biofilm formation?. Medical Mycology, 2019, 57, 504-509.	0.7	3
915	Activity of coumarin against Candida albicans biofilms. Journal De Mycologie Medicale, 2019, 29, 28-34.	1.5	34
916	Investigation of Antimicrobial activity of CTAB assisted hydrothermally derived Nano BaTiO ₃ . Materials Research Express, 2019, 6, 025408.	1.6	11
917	Conserved Role for Biofilm Matrix Polysaccharides in <i>Candida auris</i> Drug Resistance. MSphere, 2019, 4, .	2.9	81
918	Candida sp. Infections in Patients with Diabetes Mellitus. Journal of Clinical Medicine, 2019, 8, 76.	2.4	166
919	Hip and Knee Section, Fungal Periprosthetic Joint Infection, Diagnosis and Treatment: Proceedings of International Consensus on Orthopedic Infections. Journal of Arthroplasty, 2019, 34, S387-S391.	3.1	25
920	The synergistic antifungal effects of sodium phenylbutyrate combined with azoles against Candida albicans via the regulation of the Ras–cAMP–PKA signalling pathway and virulence. Canadian Journal of Microbiology, 2019, 65, 105-115.	1.7	20
921	Oxidative and nitrosative stress responses during macrophage– <i>Candida albicans</i> biofilm interaction. Medical Mycology, 2019, 57, 101-113.	0.7	21
922	Antimicrobial Activity of Ozone against Pathogenic Oral Microorganisms on Different Denture Base Resins. Ozone: Science and Engineering, 2020, 42, 43-53.	2.5	2

#	Article	IF	CITATIONS
923	Octyl gallate triggers dysfunctional mitochondria leading to ROS driven membrane damage and metabolic inflexibility along with attenuated virulence in Candida albicans. Medical Mycology, 2020, 58, 380-392.	0.7	11
924	Use of the natural products from the leaves of the fruitfull tree Persea americana against Candida sp. biofilms using acrylic resin discs. Science of the Total Environment, 2020, 703, 134779.	8.0	9
925	Simple Carbohydrate Derivatives Diminish the Formation of Biofilm of the Pathogenic Yeast Candida albicans. Antibiotics, 2020, 9, 10.	3.7	6
926	The effect of sophorolipids against microbial biofilms on medical-grade silicone. Journal of Biotechnology, 2020, 309, 34-43.	3.8	40
927	Polymicrobial interactions involving fungi and their importance for the environment and in human disease. Microbial Pathogenesis, 2020, 140, 103942.	2.9	12
928	Role of LuxRâ€type regulators in fish pathogenic <i>Aeromonas hydrophila</i> . Journal of Fish Diseases, 2020, 43, 215-225.	1.9	18
929	Biofilm formation by potentially probiotic Saccharomyces cerevisiae strains. Food Microbiology, 2020, 87, 103393.	4.2	22
930	Qualitative and quantitative change of the tolerance to liposomal amphotericin B triggered by biofilm maturation in C. parapsilosis. Medical Mycology, 2020, 58, 827-834.	0.7	2
931	Successive applications of Antimicrobial Photodynamic Therapy effects the susceptibility of Candida albicans grown in medium with or without fluconazole. Photodiagnosis and Photodynamic Therapy, 2020, 32, 102018.	2.6	7
932	Recent advances in pH-responsive nanomaterials for anti-infective therapy. Journal of Materials Chemistry B, 2020, 8, 10700-10711.	5.8	63
933	In Vitro Activity of Carbosilane Cationic Dendritic Molecules on Prevention and Treatment of Candida Albicans Biofilms. Pharmaceutics, 2020, 12, 918.	4.5	17
934	A Biodegradable Antifungal-Loaded Sol–Gel Coating for the Prevention and Local Treatment of Yeast Prosthetic-Joint Infections. Materials, 2020, 13, 3144.	2.9	6
935	How Biofilm Growth Affects Candida-Host Interactions. Frontiers in Microbiology, 2020, 11, 1437.	3.5	42
936	Combination Therapy to Treat Fungal Biofilm-Based Infections. International Journal of Molecular Sciences, 2020, 21, 8873.	4.1	30
937	Antibiofilm and antifungal activities of mediumâ€chain fatty acids against <i>Candida albicans</i> via mimicking of the quorumâ€sensing molecule farnesol. Microbial Biotechnology, 2021, 14, 1353-1366.	4.2	62
938	<i>In Situ</i> Imaging of Candida albicans Hyphal Growth via Atomic Force Microscopy. MSphere, 2020, 5, .	2.9	5
939	Promising Therapeutic Strategies Against Microbial Biofilm Challenges. Frontiers in Cellular and Infection Microbiology, 2020, 10, 359.	3.9	86
940	Biofilm Formation by Histoplasma capsulatum in Different Culture Media and Oxygen Atmospheres. Frontiers in Microbiology, 2020, $11,1455$.	3.5	7

#	Article	IF	Citations
941	Boesenbergia rotunda extract inhibits Candida albicans biofilm formation by pinostrobin and pinocembrin. Journal of Ethnopharmacology, 2020, 261, 113193.	4.1	36
942	Anti-biofilm activity of chlorhexidine digluconate against Candida albicans vaginal isolates. PLoS ONE, 2020, 15, e0238428.	2.5	14
943	Candida albicans Virulence Factors and Pathogenicity for Endodontic Infections. Microorganisms, 2020, 8, 1300.	3.6	32
944	Neutrophils From Patients With Invasive Candidiasis Are Inhibited by Candida albicans Biofilms. Frontiers in Immunology, 2020, 11, 587956.	4.8	7
945	Nanoscale Surface Roughness Influences <i>Candida albicans</i> Biofilm Formation. ACS Applied Bio Materials, 2020, 3, 8581-8591.	4.6	15
946	Transcriptional Circuits Regulating Developmental Processes in Candida albicans. Frontiers in Cellular and Infection Microbiology, 2020, 10, 605711.	3.9	26
947	Amino acid-functionalized polyampholytes as natural broad-spectrum antimicrobial agents for high-efficient personal protection. Green Chemistry, 2020, 22, 6357-6371.	9.0	43
948	Risk Factors for Fungal Prosthetic Joint Infection. Journal of Bone and Joint Infection, 2020, 5, 76-81.	1.5	19
949	Piperine Impedes Biofilm Formation and Hyphal Morphogenesis of Candida albicans. Frontiers in Microbiology, 2020, 11, 756.	3.5	44
950	Precision Antifungal Treatment Significantly Extends Voice Prosthesis Lifespan in Patients Following Total Laryngectomy. Frontiers in Microbiology, 2020, 11, 975.	3.5	7
951	Combination of Antifungal Drugs and Protease Inhibitors Prevent Candida albicans Biofilm Formation and Disrupt Mature Biofilms. Frontiers in Microbiology, 2020, 11, 1027.	3.5	34
952	Antioxidant and antimicrobial activity of two Asplenium species. South African Journal of Botany, 2020, 132, 180-187.	2.5	13
953	Use of internally validated in vitro biofilm models to assess antibiofilm performance of silver-containing gelling fibre dressings. Journal of Wound Care, 2020, 29, 154-161.	1.2	10
954	A Novel Antimicrobial Peptide Scyreprocin From Mud Crab Scylla paramamosain Showing Potent Antifungal and Anti-biofilm Activity. Frontiers in Microbiology, 2020, 11, 1589.	3.5	26
955	Effect of phenotypic switching on biofilm traits in Candida tropicalis. Microbial Pathogenesis, 2020, 149, 104346.	2.9	5
956	Clarifying and Imaging Candida albicans Biofilms. Journal of Visualized Experiments, 2020, , .	0.3	3
958	Synthesis of gold-silver nanoalloys under microwave-assisted irradiation by deposition of silver on gold nanoclusters/triple helix glucan and antifungal activity. Carbohydrate Polymers, 2020, 238, 116169.	10.2	29
959	Antifungal photodynamic activities of phthalocyanine derivatives on Candida albicans. Photodiagnosis and Photodynamic Therapy, 2020, 30, 101715.	2.6	22

#	Article	IF	Citations
960	Candida and Candidiasis—Opportunism Versus Pathogenicity: A Review of the Virulence Traits. Microorganisms, 2020, 8, 857.	3.6	75
961	Transcriptome Analyses of Candida albicans Biofilms, Exposed to Arachidonic Acid and Fluconazole, Indicates Potential Drug Targets. G3: Genes, Genomes, Genetics, 2020, 10, 3099-3108.	1.8	11
962	Fungistatic Action of N-Acetylcysteine on Candida albicans Biofilms and Its Interaction with Antifungal Agents. Microorganisms, 2020, 8, 980.	3.6	9
963	Dissolving microneedle-mediated dermal delivery of itraconazole nanocrystals for improved treatment of cutaneous candidiasis. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 154, 50-61.	4.3	108
964	Candida albicans Mrv8, is involved in epithelial damage and biofilm formation. FEMS Yeast Research, 2020, 20, .	2.3	4
965	Interactions of microorganisms with host mucins: a focus on <i>Candida albicans</i> Microbiology Reviews, 2020, 44, 645-654.	8.6	15
966	Contributions of the Biofilm Matrix to Candida Pathogenesis. Journal of Fungi (Basel, Switzerland), 2020, 6, 21.	3.5	58
967	In vitro and in vivo activity of a possible novel antifungal small molecule against Candida albicans. Journal De Mycologie Medicale, 2020, 30, 100939.	1.5	1
968	Cationic chitosan derivatives as potential antifungals: A review of structural optimization and applications. Carbohydrate Polymers, 2020, 236, 116002.	10.2	106
969	On Commensalism of Candida. Journal of Fungi (Basel, Switzerland), 2020, 6, 16.	3.5	58
970	Impediment to growth and yeast-to-hyphae transition in <i>Candida albicans</i> by copper oxide nanoparticles. Biofouling, 2020, 36, 56-72.	2.2	40
971	Combined effect of lasioglossin LL-III derivative with azoles against Candida albicans virulence factors: biofilm formation, phospholipases, proteases and hemolytic activity. FEMS Yeast Research, 2020, 20, .	2.3	15
972	Hypochlorous acid-generating electrochemical scaffold eliminates <i>Candida albicans</i> biofilms. Journal of Applied Microbiology, 2020, 129, 776-786.	3.1	18
973	The Effectiveness of Chlorhexidine and Air Polishing System in the Treatment of Candida albicans Infected Dental Implants: An Experimental In Vitro Study. Antibiotics, 2020, 9, 179.	3.7	12
974	Transcriptome Profile of Yeast Strain Used for Biological Wine Aging Revealed Dynamic Changes of Gene Expression in Course of Flor Development. Frontiers in Microbiology, 2020, 11, 538.	3.5	11
975	Under oil open-channel microfluidics empowered by exclusive liquid repellency. Science Advances, 2020, 6, eaay9919.	10.3	34
976	Construction of Alizarin Conjugated Graphene Oxide Composites for Inhibition of Candida albicans Biofilms. Biomolecules, 2020, 10, 565.	4.0	15
977	Biofilm Formed by Candida haemulonii Species Complex: Structural Analysis and Extracellular Matrix Composition. Journal of Fungi (Basel, Switzerland), 2020, 6, 46.	3.5	11

#	Article	IF	Citations
978	Analysis of biofilm formation by <i>Sporothrix schenckii </i> Medical Mycology, 2021, 59, 31-40.	0.7	4
979	Antifungal Activity of Synthetic Scorpion Venom-Derived Peptide Analogues Against Candida albicans. International Journal of Peptide Research and Therapeutics, 2021, 27, 281-291.	1.9	5
980	Biocompatible silver nanoparticles incorporated in acrylic resin for dental application inhibit Candida albicans biofilm. Materials Science and Engineering C, 2021, 118, 111341.	7.3	37
981	The enhancing antifungal effect of AD1 aptamer-functionalized amphotericin B-loaded PLGA-PEG nanoparticles with a low-frequency and low-intensity ultrasound exposure on C.albicans biofilm through targeted effect. NanoImpact, 2021, 21, 100275.	4.5	7
982	Dual antifungal activity against <i>Candida albicans</i> i>of copper metallic nanostructures and hierarchical copper oxide marigoldâ€ike nanostructures grown in situ in the culture medium. Journal of Applied Microbiology, 2021, 130, 1883-1892.	3.1	22
984	Heat Shock Protein 60, Insights to Its Importance in Histoplasma capsulatum: From Biofilm Formation to Host-Interaction. Frontiers in Cellular and Infection Microbiology, 2020, 10, 591950.	3.9	8
985	Cellular quiescence in budding yeast. Yeast, 2021, 38, 12-29.	1.7	42
986	New perspectives on the topical management of recurrent candidiasis. Drug Delivery and Translational Research, 2021, 11, 1568-1585.	5 . 8	10
987	Human Fungal Pathogens: Diversity, Genomics, and Preventions. Fungal Biology, 2021, , 371-394.	0.6	3
988	Nitrite-enhanced copper-based Fenton reactions for biofilm removal. Chemical Communications, 2021, 57, 5514-5517.	4.1	6
989	Enhanced clearing of <i>Candida</i> biofilms on a 3D urothelial cell <i>in vitro</i> model using lysozyme-functionalized fluconazole-loaded shellac nanoparticles. Biomaterials Science, 2021, 9, 6927-6939.	5.4	9
990	<i>Candida albicans</i> Bgl2p, Ecm33p, and Als1p proteins are involved in adhesion to saliva-coated hydroxyapatite. Journal of Oral Microbiology, 2021, 13, 1879497.	2.7	6
991	Non-antifungal drugs inhibit growth, morphogenesis and biofilm formation in Candida albicans. Journal of Antibiotics, 2021, 74, 346-353.	2.0	5
993	Clinical Characteristics and Relevance of Oral Candida Biofilm in Tongue Smears. Journal of Fungi (Basel, Switzerland), 2021, 7, 77.	3. 5	12
994	Formation, Resistance, and Pathogenicity of Fungal Biofilms: Current Trends and Future Challenges. Fungal Biology, 2021, , 411-438.	0.6	1
995	Molecular Characterization of Medically Important Fungi: Current Research and Future Prospects. Fungal Biology, 2021, , 335-369.	0.6	0
996	The Interplay Between Sugar and Yeast Infections: Do Diabetics Have a Greater Predisposition to Develop Oral and Vulvovaginal Candidiasis?. Cureus, 2021, 13, e13407.	0.5	7
997	Phenomic profiling of a novel sibling species within the Scedosporium complex in Thailand. BMC Microbiology, 2021, 21, 42.	3.3	0

#	Article	IF	CITATIONS
998	Small molecule natural products in human nasal/oral microbiota. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	3.0	7
999	Anti-Biofilm Activity of Cannabidiol against Candida albicans. Microorganisms, 2021, 9, 441.	3.6	30
1000	The Disinfectant Effect of Modified Hydrothermal Nanotitania Extract on Candida albicans. BioMed Research International, 2021, 2021, 1-5.	1.9	2
1001	Efficacy of lowâ€molecular weight chitosan against <i>Candida albicans</i> biofilm on polymethyl methacrylate resin. Australian Dental Journal, 2021, 66, 262-269.	1.5	13
1002	Single-Stage Revision With Fluconazole Monotherapy in Fungal Prosthetic Knee Joint Infections. Arthroplasty Today, 2021, 7, 238-241.	1.6	3
1003	Fibrin Biopolymer Incorporated with Antimicrobial Agents: A Proposal for Coating Denture Bases. Materials, 2021, 14, 1618.	2.9	8
1004	Nanomaterials for skin antifungal therapy: An updated review. Journal of Applied Pharmaceutical Science, 0, , .	1.0	0
1005	Book Chapter Candida Onychomycosis: Mini Review. , 0, , .		1
1006	Visualization of microbial biofilms in case of digestive disorders in lambs. Veterinary Science Today, 2021, 1, 59-67.	0.2	1
1007	Consecutive treatments with photodynamic therapy and nystatin altered the expression of virulence and ergosterol biosynthesis genes of a fluconazole-resistant Candida albicans in vivo. Photodiagnosis and Photodynamic Therapy, 2021, 33, 102155.	2.6	8
1008	Turbinmicin inhibits Candida biofilm growth by disrupting fungal vesicle–mediated trafficking. Journal of Clinical Investigation, 2021, 131, .	8.2	29
1009	Phytochemical and Antibiofilm Activity of Aloe barbadensismiller (Aloe vera) on Candida albicans Isolated from Urinary Catheter. Journal of Pharmaceutical Research International, 0, , 93-103.	1.0	O
1010	The architecture of a mixed fungal–bacterial biofilm is modulated by quorumâ€sensing signals. Environmental Microbiology, 2021, 23, 2433-2447.	3.8	18
1012	The serine peptidase inhibitor N-ï•tosyl-l-phenylalanine chloromethyl ketone (TPCK) affects the cell biology of Candida haemulonii species complex. Fungal Biology, 2021, 125, 378-388.	2.5	1
1013	Mimicking biofilm formation and development: Recent progress in inÂvitro and inÂvivo biofilm models. IScience, 2021, 24, 102443.	4.1	114
1014	Effects of Itraconazole and Micafungin on Aspergillus fumigatus Biofilms. Mycopathologia, 2021, 186, 387-397.	3.1	6
1015	Multiple roles of ABC transporters in yeast. Fungal Genetics and Biology, 2021, 150, 103550.	2.1	32
1016	Heparin-mediated antibiotic delivery from an electrochemically-aligned collagen sheet. Bio-Medical Materials and Engineering, 2021, 32, 159-170.	0.6	1

#	Article	IF	Citations
1017	Dynamics and metabolic profile of oral keratinocytes (NOK-si) and Candida albicans after interaction in co-culture. Biofouling, 2021, 37, 572-589.	2.2	2
1019	The relationship between biofilm formation and mortality in patients with Candida tropicalis candidemia. Microbial Pathogenesis, 2021, 155, 104889.	2.9	16
1020	Analysis of Pathogenic Bacterial and Yeast Biofilms Using the Combination of Synchrotron ATR-FTIR Microspectroscopy and Chemometric Approaches. Molecules, 2021, 26, 3890.	3.8	28
1021	Inhibition of polymicrobial biofilm formation by saw palmetto oil, lauric acid and myristic acid. Microbial Biotechnology, 2022, 15, 590-602.	4.2	32
1022	Risk factors and biofilm formation analyses of hospital-acquired infection of Candida pelliculosa in a neonatal intensive care unit. BMC Infectious Diseases, 2021, 21, 620.	2.9	7
1023	Computational Drug Repurposing Resources and Approaches for Discovering Novel Antifungal Drugs against Candida albicans N-Myristoyl Transferase. Journal of Pure and Applied Microbiology, 2021, 15, 556-579.	0.9	2
1024	p-Coumaric acid loaded into liquid crystalline systems as a novel strategy to the treatment of vulvovaginal candidiasis. International Journal of Pharmaceutics, 2021, 603, 120658.	5.2	12
1025	Functionalized Chitosan Nanomaterials: A Jammer for Quorum Sensing. Polymers, 2021, 13, 2533.	4.5	22
1026	Synergistic potential of essential oils with antibiotics to combat fungal pathogens: Present status and future perspectives. Phytotherapy Research, 2021, 35, 6089-6100.	5.8	17
1027	Bacterial streamers as colloidal systems: Five grand challenges. Journal of Colloid and Interface Science, 2021, 594, 265-278.	9.4	14
1028	Highâ€Throughput Computational Analysis of Biofilm Formation from Timeâ€Lapse Microscopy. Current Protocols, 2021, 1, e194.	2.9	3
1029	Adhesins in the virulence of opportunistic fungal pathogens of human. Mycology, 2021, 12, 296-324.	4.4	11
1030	Where the infection is isolated rather than the specific species correlates with adherence strength, whereas biofilm density remains static in clinically isolated <i>Candida</i> and arthroconidial yeasts. Canadian Journal of Microbiology, 2021, 67, 497-505.	1.7	2
1031	Mixed bacterial-fungal infection following total hip arthroplasty: A case report. Chinese Journal of Traumatology - English Edition, 2021, 25, 32-32.	1.4	1
1032	Suppression of hyphal formation and virulence of <i>Candida albicans </i> by natural and synthetic compounds. Biofouling, 2021, 37, 626-655.	2.2	13
1033	New phenomena for clinicians, model of Candida albicans mobilization before and after biofilm formation in the intestinal mucosa of Wistar rats (Rattus norvegicus). International Journal of One Health, 0, , 165-170.	0.6	2
1034	Quorum Sensing in Fungal Species. Annual Review of Microbiology, 2021, 75, 449-469.	7.3	34
1035	CO2 enhances the formation, nutrient scavenging and drug resistance properties of C. albicans biofilms. Npj Biofilms and Microbiomes, 2021, 7, 67.	6.4	9

#	Article	IF	CITATIONS
1036	Microbial Warfare on Three Fronts: Mixed Biofilm of Aspergillus fumigatus and Staphylococcus aureus on Primary Cultures of Human Limbo-Corneal Fibroblasts. Frontiers in Cellular and Infection Microbiology, 2021, 11, 646054.	3.9	3
1037	Photodynamic Inactivation of an Endodontic Bacteria Using Diode Laser and Indocyanine Green-Loaded Nanosphere. International Journal of Molecular Sciences, 2021, 22, 8384.	4.1	10
1038	Synergistic Antifungal Activity of Chito-Oligosaccharides and Commercial Antifungals on Biofilms of Clinical Candida Isolates. Journal of Fungi (Basel, Switzerland), 2021, 7, 718.	3.5	5
1039	Gene expression of Candida albicans strains isolates from patients with denture stomatitis submitted to treatments with photodynamic therapy and nystatin. Photodiagnosis and Photodynamic Therapy, 2021, 35, 102292.	2.6	5
1040	Lichen Polyphenolic Compounds for the Eradication of Candida albicans Biofilms. Frontiers in Cellular and Infection Microbiology, 2021, 11, 698883.	3.9	10
1041	In vitro antifungal effect of a plant-based product, CIN-102, on antifungal resistant filamentous fungi and their biofilms. Journal of Medical Microbiology, 2021, 70, .	1.8	1
1042	Research progress of the biosynthetic strains and pathways of bacterial cellulose. Journal of Industrial Microbiology and Biotechnology, 2022, 49, .	3.0	25
1043	Role of Antifungal Combinations in Difficult to Treat Candida Infections. Journal of Fungi (Basel,) Tj ETQq1 1 0.784	314 rgBT	/Oyerlock 1
1044	Recent advances in hydrogel-based anti-infective coatings. Journal of Materials Science and Technology, 2021, 85, 169-183.	10.7	40
1045	Antimicrobial Properties of Antidepressants and Antipsychoticsâ€"Possibilities and Implications. Pharmaceuticals, 2021, 14, 915.	3.8	17
1046	<scp> <i>BSC2</i> </scp> induces multidrug resistance via contributing to the formation of biofilm in <scp> <i>Saccharomyces cerevisiae</i> </scp> . Cellular Microbiology, 2021, 23, e13391.	2.1	1
1047	Antifungal Effect of Piezoelectric Charges on PMMA Dentures. ACS Biomaterials Science and Engineering, 2021, 7, 4838-4846.	5.2	11
1048	The formation kinetics and control of biofilms by three dominant fungi species isolated from groundwater. Journal of Environmental Sciences, 2021, 109, 148-160.	6.1	13
1049	Inactivation of fungal spores in water with peracetic acid: Efficiency and mechanism. Chemical Engineering Journal, 2022, 427, 131753.	12.7	37
1050	Antibiofilm peptides as a promising strategy: comparative research. Applied Microbiology and Biotechnology, 2021, 105, 1647-1656.	3.6	12
1051	<i>Candida albicans</i> biofilms and polymicrobial interactions. Critical Reviews in Microbiology, 2021, 47, 91-111.	6.1	96
1052	Candida parapsilosis Colony Morphotype Forecasts Biofilm Formation of Clinical Isolates. Journal of Fungi (Basel, Switzerland), 2021, 7, 33.	3.5	9
1054	Animal Models to Investigate Fungal Biofilm Formation. Methods in Molecular Biology, 2014, 1147, 141-157.	0.9	11

#	Article	IF	CITATIONS
1055	Flucytosine: Site of Action, Mechanism of Resistance and Use in Combination Therapy. , 2009, , 313-326.		2
1056	Candida Biofilm Analysis in the Artificial Throat Using FISH. Methods in Molecular Biology, 2009, 499, 45-54.	0.9	5
1057	Conditions for Optimal Candida Biofilm Development in Microtiter Plates. Methods in Molecular Biology, 2009, 499, 55-62.	0.9	19
1058	Chiral Stereochemical Strategy for Antimicrobial Adhesion. , 2020, , 431-456.		5
1059	Virulence and Pathogenicity of Fungal Pathogens with Special Reference to Candida albicans. , 2010, , 21-45.		30
1060	The Effects of Photodynamic Therapy in Oral Biofilms. Springer Series on Biofilms, 2014, , 449-468.	0.1	1
1061	Hospital Environment., 2016,, 193-210.		2
1062	Antimicrobial photodynamic therapy reduces gene expression of Candida albicans in biofilms. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101825.	2.6	20
1063	Amphotericin B, fluconazole, and nystatin as development inhibitors of Candida albicans biofilms on a dental prosthesis reline material: Analytical models inÂvitro. Journal of Prosthetic Dentistry, 2022, 127, 320-330.	2.8	8
1064	Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. Medical Mycology, 0, , 1-9.	0.7	11
1065	In-vivo Candida biofilms in scanning electron microscopy. Medical Mycology, 0, , 1-7.	0.7	1
1066	Temperature affects the susceptibility of Cryptococcus neoformans biofilms to antifungal agents. Medical Mycology, 2010, 48, 1-7.	0.7	18
1067	Miltefosine is effective against Candida albicans and Fusarium oxysporum nail biofilms in vitro. Journal of Medical Microbiology, 2015, 64, 1436-1449.	1.8	29
1068	In vitro biofilm production of Candida bloodstream isolates: any association with clinical characteristics?. Journal of Medical Microbiology, 2016, 65, 272-277.	1.8	25
1069	Candida auris: a comparison between planktonic and biofilm susceptibility to antifungal drugs. Journal of Medical Microbiology, 2019, 68, 1353-1358.	1.8	47
1070	Candida albicans SNO1 and SNZ1 expressed in stationary-phase planktonic yeast cells and base of biofilm. Microbiology (United Kingdom), 2006, 152, 2031-2038.	1.8	23
1073	Biofilm Formation in <i>Aspergillus fumigatus</i> , 0, , 149-158.		4
1074	Fungal Biofilms: Agents of Disease and Drug Resistance. , 0, , 177-185.		3

#	Article	IF	CITATIONS
1075	Mucosal Immunity to <i>Candida albicans </i> ., 0, , 137-154.		4
1076	Adhesins in Opportunistic Fungal Pathogens. , 0, , 243-P2.		9
1077	<i>Candida Biofilms</i> : Development, Architecture, and Resistance., 0,, 115-134.		1
1082	Bacterial adherence and biofilm formation on medical implants: A review. , 0, .		1
1084	N-acetylcysteine Inhibits and Eradicates <i> Candida albicans </i> Biofilms. American Journal of Infectious Diseases and Microbiology, 2014, 2, 122-130.	0.2	11
1085	Development of a High-Throughput Candida albicans Biofilm Chip. PLoS ONE, 2011, 6, e19036.	2.5	38
1086	A Murine Model of Candida glabrata Vaginitis Shows No Evidence of an Inflammatory Immunopathogenic Response. PLoS ONE, 2016, 11, e0147969.	2.5	30
1087	An Optimized Lock Solution Containing Micafungin, Ethanol and Doxycycline Inhibits Candida albicans and Mixed C. albicans – Staphyloccoccus aureus Biofilms. PLoS ONE, 2016, 11, e0159225.	2.5	14
1088	Inhibition of Candida albicans Biofilm Formation by the Synthetic Lactoferricin Derived Peptide hLF1-11. PLoS ONE, 2016, 11, e0167470.	2.5	52
1089	A new approach by optical coherence tomography for elucidating biofilm formation by emergent Candida species. PLoS ONE, 2017, 12, e0188020.	2.5	13
1090	Anti-infective Surface Coatings: Design and Therapeutic Promise against Device-Associated Infections. PLoS Pathogens, 2016, 12, e1005598.	4.7	43
1091	Fungal Super Glue: The Biofilm Matrix and Its Composition, Assembly, and Functions. PLoS Pathogens, 2016, 12, e1005828.	4.7	93
1092	The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps. PLoS Pathogens, 2016, 12, e1005884.	4.7	105
1093	Effects of farnesol and lyticase on the formation of Candida albicans biofilm. Veterinary World, 2020, 13, 1030-1036.	1.7	20
1094	Antifungal effect of plant extracts on Candida albicans biofilm on acrylic resin. Ciência Odontológica Brasileira, 2013, 16, 77-83.	0.0	3
1095	Similar environments but diverse fates: Responses of budding yeast to nutrient deprivation. Microbial Cell, 2016, 3, 302-328.	3.2	29
1096	Ras signalling in pathogenic yeasts. Microbial Cell, 2018, 5, 63-73.	3.2	25
1097	In Vitro Models to Study Candida albicans Biofilms. Journal of Pharmaceutics and Drug Development, 2015, 3, .	0.1	2

#	Article	IF	CITATIONS
1098	Periprosthetic fungal infections: Be alert (Clinical cases and review of the literature). SA Orthopaedic Journal, $2016, 15, .$	0.1	2
1099	Disease-Causing Fungi in Homes and Yards in the Midwestern United States. Journal of Patient-centered Research and Reviews, 2016, 3, 99-110.	0.9	6
1100	Fungi pathogenic to humans: molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus Acta Biochimica Polonica, 2009, 56, .	0.5	151
1101	In vitro and in vivo effects of suloctidil on growth and biofilm formation of the opportunistic fungus Candida albicans. Oncotarget, 2017, 8, 69972-69982.	1.8	16
1102	RNAi technology: A Novel approaches against fungal infections. Research in Molecular Medicine, 2014, 2, 1-10.	0.2	1
1103	Nano-biofilm Arrays as a Novel Universal Platform for Microscale Microbial Culture and High-Throughput Downstream Applications. Current Medicinal Chemistry, 2019, 26, 2529-2535.	2.4	3
1104	Prevention of Candida albicans Biofilm Formation. The Open Mycology Journal, 2011, 5, 9-20.	0.8	20
1105	Susceptibility Profile of Candida albicans Biofilms on Polyvinyl Chloride Endotracheal Tube to Antifungal Azoles. Journal of Pure and Applied Microbiology, 2020, 14, 1143-1148.	0.9	1
1106	Inhibition of Candida albicans cell growth and biofilm formation by a bioactive extract produced by soil Streptomyces strain GCAL-25. Archives of Biological Sciences, 2018, 70, 387-396.	0.5	6
1107	Studies of biofilms and phenotypic characteristics of Candida fungi. Veterinary Science Today, 2020, , 132-138.	0.2	3
1108	History of Antifungals. , 2009, , 1-10.		1
1109	Antifungal Drug Resistance. , 2009, , 63-86.		2
1110	A Screen for Small Molecules to Target Candida albicans Biofilms. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /Ove	erlock 10 T	f 50 262 Td
1111	A Selective Serotonin Reuptake Inhibitor, a Proton Pump Inhibitor, and Two Calcium Channel Blockers Inhibit Candida albicans Biofilms. Microorganisms, 2020, 8, 756.	3.6	9
1112	Antibiotic-Loaded Cement in Total Hip Replacement: Current Indications, Efficacy, and Complications. Orthopedics, 2005, 28, s873-7.	1.1	24
1113	Inhibition of Candida albicans biofilm by lipopeptide AC7 coated medical-grade silicone in combination with farnesol. AIMS Bioengineering, 2018, 5, 192-208.	1.1	18
1114	ALS1 and ALS3 gene expression and biofilm formation in Candida albicans isolated from vulvovaginal candidiasis. Advanced Biomedical Research, 2016, 5, 105.	0.5	27
1115	Inhibitory Activity of Cold Atmospheric Plasma on Candida albicans. Walailak Journal of Science and Technology, 2018, 16, 401-408.	0.5	3

#	Article	IF	CITATIONS
1116	Evaluation and Comparison of Effect of Delmopinol Application on Adherence of Candida albicans on Denture Fitting Surface on Three Types of Acrylic Resin: An in vitro Study. International Journal of Prosthodontics and Restorative Dentistry, 2012, 2, 129-135.	0.1	1
1117	High Throughput Screening of Antifungal Metabolites Against Colletotrichum gloeosporioides. Plant Pathology Journal, 2008, 24, 24-30.	1.7	1
1118	Resistance of Candida albicans Biofilms to Drugs and the Host Immune System. Jundishapur Journal of Microbiology, 2016, 9, e37385.	0.5	45
1119	The evolution of drug resistance in clinical isolates of Candida albicans. ELife, 2015, 4, e00662.	6.0	268
1120	Biofilm modeling systems. Korean Journal of Microbiology, 2016, 52, 125-139.	0.2	10
1121	Hedera rhombea inhibits the biofilm formation of Candida, thereby increases the susceptibility to antifungal agent, and reduces infection. PLoS ONE, 2021, 16, e0258108.	2.5	4
1122	Combination of AgNPs and Domiphen is Antimicrobial Against Biofilms of Common Pathogens. International Journal of Nanomedicine, 2021, Volume 16, 7181-7194.	6.7	14
1123	Impact of High-Dose Anti-Infective Agents on the Osteogenic Response of Mesenchymal Stem Cells. Antibiotics, 2021, 10, 1257.	3.7	3
1124	Susceptibility testing of fungi - current status and open questions., 2003, Spec No, 191-241.		3
1125	Economic Impact of Biofilms on Treatment Costs. , 2005, , 39-56.		2
1126	Candida., 2005,, 171-184.		1
1127	Passaging HuES Human Embryonic Stem Cell-lines with Trypsin. Journal of Visualized Experiments, 2006, , 49.	0.3	1
1129	The Role of Resistance in Candida Infections: Epidemiology and Treatment. , 2009, , 931-951.		1
1130	Mechanisms of Multidrug Resistance in Fungal Pathogens. , 2010, , 327-358.		0
1131	Experimental Animal Models of Invasive Fungal Infections. , 2009, , 49-62.		1
1132	Fungal Biofilms and Catheter-Associated Infections. , 2009, , 149-162.		0
1133	Fungal Infections of the Genitourinary Tract. , 2009, , 445-458.		3
1135	Inhibitory effects of <l>Tribulus terrestris</l> L. steroid saponin TTS-12 on formation of <l>Candida albicans</l> biofilm. Academic Journal of Second Military Medical University, 2010, 30, 132-135.	0.0	O

#	Article	IF	CITATIONS
1137	Biomedical Implications of the Porosity of Microbial Bioï¬lms. , 2010, , 153-204.		0
1138	Candida albicans Biofilms, Heterogeneity and Antifungal Drug Tolerance. The Open Mycology Journal, 2011, 5, 21-28.	0.8	1
1140	Indole, a bacterial signaling molecule, exhibits inhibitory activity against growth, dimorphism and biofilm formation in Candida albicans. African Journal of Microbiology Research, 2012, 6, .	0.4	2
1141	Inhibition of Candida albicans Biofilm Formation by Coptidis chinensis through Damaging the Integrity of Cell Membrane. Korean Journal of Microbiology, 2013, 49, 17-23.	0.2	2
1142	Biofilms: Formation, Properties, Impact on Industries, Strategies for Control. Mapana Journal of Sciences, 2013, 12, 29-54.	0.1	1
1143	The Role of Biofilm Matrix in Mediating Antifungal Resistance. , 2014, , 1-14.		0
1144	In Vitro Screening of Antifungal Compounds Able to Counteract Biofilm Development. Methods in Molecular Biology, 2014, 1147, 187-201.	0.9	0
1145	Antibacterial and anti-inflammatory effects of Platycodon grandiflorum extracts. Journal of Digital Convergence, 2014, 12, 359-366.	0.1	4
1146	Biofilm Formation in Candida albicans. , 0, , 299-315.		0
1147	Postgenomic Strategies for Genetic Analysis: Insight from Saccharomyces cerevisiae and Candida albicans., 0,, 35-P1.		0
1148	Early detection of biofilm formation of selected bacterial isolates through a new screening method using â€~image J'. Malaysian Journal of Microbiology, 2014, , .	0.1	0
1149	Candida infections: Novel virulence factors and mechanisms of azole resistance. Malaysian Journal of Microbiology, 2014, , .	0.1	0
1150	Antifungal Activity of Rheum undulatum on Candida albicans by the Changes in Membrane Permeability. Korean Journal of Microbiology, 2014, 50, 360-367.	0.2	1
1151	The Impact of Antifungal Agents on the Morphology Dimorphism of Vaginal Candida Albicans International Journal of Gynecological and Obstetrical Research, 2015, 3, 39-42.	0.1	0
1152	Quantitative analysis of biofilm formation by oropharyngeal Candida albicans isolates under static conditions by confocal. Current Issues in Pharmacy and Medical Sciences, 2015, 26, 54-56.	0.4	0
1153	Incidence of Candida Species in Urinary Tract Infections and Their Control by Using Bioactive Compounds Occurring in Medicinal Plants. , 2015, , 79-93.		0
1154	Incidence of Candida Species in Urinary Tract Infections and Their Control by Using Bioactive Compounds Occurring in Medicinal Plants., 2015,, 87-101.		0
1155	Silver and Polyphosphate Nanoparticles. , 0, , 7263-7274.		O

#	Article	IF	CITATIONS
1156	Reconstitution of the immunological defence and <i> Candida albicans </i> infection in oral mucosa of HIV+ patients under HAART. JORDI - Journal of Oral Diagnosis, 2016, 1 , .	0.0	0
1157	Opportunisitic Pathogens of Humans. Advances in Environmental Microbiology, 2016, , 301-357.	0.3	0
1158	Laser for Onychomycosis. , 2016, , 1-19.		0
1159	Inhibitory effect of jengkol leaf (Pithecellobium jiringa) extract to inhibit Candida albicans biofilm. Dental Journal: Majalah Kedokteran Gigi, 2016, 49, 148.	0.2	0
1160	In vitro photodynamic inactivation effects of cationic benzylidene cyclopentanone photosensitizers on clinical fluconazole-resistant Candida albicans planktonic cells and biofilms. , 2016, , .		0
1161	Methods of Determination of Biofilm Formation by Candida albicans. Research Journal of Microbiology, 2016, 12, 90-96.	0.2	3
1162	Purified bioactive compounds from Mentha spp. oils as a source of Candidosis treatment. A brief review. Revista Fitos, $2017,11,1$	0.1	0
1163	<i>Candida</i> Biofilms., 2017, , 103-128.		0
1165	Evaluation of the Ability of Malassezia Species in Biofilm Formation. Archives of Clinical Infectious Diseases, 2017, In Press, .	0.2	1
1166	Laser for Onychomycosis. Clinical Approaches and Procedures in Cosmetic Dermatology, 2018, , 267-284.	0.0	0
1167	<i>In-Vitro</i> Comparison of Antifungal Activity of Herbs (Darehald and Pomegranate) with Azoles. International Journal of Clinical Medicine, 2018, 09, 703-715.	0.2	0
1168	Biofilm formation on dental materials. Acta Stomatologica Naissi, 2018, 34, 1821-1831.	0.2	2
1169	Adherence and Biofilm Formation in Candida albicans Strains Isolated from Different Infection Sites in Hospitalized Patients. Revista De Chimie (discontinued), 2018, 68, 2832-2835.	0.4	0
1170	Viability Kinetic Profile, Morphological Structure, and Physicochemical Characterization of Candida albicans Biofilm on Latex Silicone Surfaces. Annual Research & Review in Biology, 2018, 24, 1-8.	0.4	0
1172	Resistance to Oral Pathogens Among Dentures Wearers. Journal of Pure and Applied Microbiology, 2018, 12, 961-967.	0.9	0
1175	Antifungal and anti-biofilm effects of shallot (Allium ascalonicum) aqueous extract on Candida albicans. Journal of HerbMed Pharmacology, 2018, 7, 236-242.	0.9	4
1177	Candida albicans Biofilm: Risks, Complications and Preventive Strategies., 2019,, 121-128.		0
1178	Candida Pathogenicity and Alternative Therapeutic Strategies. , 2019, , 135-146.		2

#	Article	IF	CITATIONS
1179	Detection of Candida albicans biofilm proteins induced by glucose, lactose, soy protein, and iron. Journal of Clinical and Experimental Dentistry, 2019, 11, 0-0.	1.2	1
1180	Experimental animal models of invasive fungal infections. , 2019, , 49-61.		0
1181	In vitro Resistance Pattern of Selected Antifungal Azoles against Candida albicans Biofilms on Silicone Nasogastric Tube. Journal of Pure and Applied Microbiology, 2019, 13, 1881-1891.	0.9	1
1182	The prevalence of selected genes involved in biofilm formation in Candida albicans isolated from the oral cavity. Current Issues in Pharmacy and Medical Sciences, 2019, 32, 179-182.	0.4	0
1183	Effect of Silver Nanoparticles on Some Physical& Biological Properties of Fluid Denture Base Material. Al-Kitab Journal for Pure Sciences, 2023, 4, 27-40.	0.3	14
1184	Feasibility Study on Long-Term Continuous Ethanol Production from Cassava Supernatant by Immobilized Yeast Cells in Packed Bed Reactor. Journal of Microbiology and Biotechnology, 2020, 30, 1227-1234.	2.1	3
1185	Coordination of fungal biofilm development by extracellular vesicle cargo. Nature Communications, 2021, 12, 6235.	12.8	42
1186	Catechol thwarts virulent dimorphism in Candida albicans and potentiates the antifungal efficacy of azoles and polyenes. Scientific Reports, 2021, 11, 21049.	3.3	10
1187	Regulatory network controls microbial biofilm development, with <i>Candida albicans</i> as a representative: from adhesion to dispersal. Bioengineered, 2022, 13, 253-267.	3.2	9
1189	How do terminal modifications of short designed IIKK peptide amphiphiles affect their antifungal activity and biocompatibility?. Journal of Colloid and Interface Science, 2022, 608, 193-206.	9.4	4
1190	Polymeric compositions of medical devices account for the variations in Candida albicans biofilm structural morphology. Current Research in Environmental and Applied Mycology, 2020, 10, 1-9.	0.6	1
1193	Improved Production of Two Anti- <i>Candida</i> Lipopeptide Homologues Co- Produced by the Wild-Type <i>Bacillus subtilis</i> RLID 12.1 under Optimized Conditions. Current Pharmaceutical Biotechnology, 2020, 21, 438-450.	1.6	7
1194	Biofilm Formation Mechanism in Fungi. Anatolian Journal of Botany, 0, , .	0.7	3
1195	Effects of simulated microgravity by RCCS on the biological features of Candida albicans. International Journal of Clinical and Experimental Pathology, 2014, 7, 3781-90.	0.5	4
1196	Identification of medicinal species and antifungal property of a Dong ethnic drug. International Journal of Clinical and Experimental Medicine, 2014, 7, 5004-9.	1.3	1
1197	Implications of the presence of yeasts in tracheobronchial secretions of critically ill intubated patients. EXCLI Journal, 2019, 18, 801-811.	0.7	4
1198	The Glucocorticoid PYED-1 Disrupts Mature Biofilms of Candida spp. and Inhibits Hyphal Development in Candida albicans. Antibiotics, 2021, 10, 1396.	3.7	0
1199	Assessment of nonreleasing antifungal surface coatings bearing covalently attached pharmaceuticals. Biointerphases, 2021, 16, 061001.	1.6	3

#	Article	IF	CITATIONS
1200	Adenophora triphylla var. japonica Inhibits Candida Biofilm Formation, Increases Susceptibility to Antifungal Agents and Reduces Infection. International Journal of Molecular Sciences, 2021, 22, 12523.	4.1	9
1201	CHROMIUM REDUCTION USING BACTERIAL BIOFILMS. , 2020, 5, 198-202.		0
1202	In vitro Antifungal Activity of a Novel Antimicrobial Peptide AMP-17 Against Planktonic Cells and Biofilms of Cryptococcus neoformans. Infection and Drug Resistance, 2022, Volume 15, 233-248.	2.7	3
1203	Hydration Mechanism in Blood-Compatible Polymers Undergoing Phase Separation. Langmuir, 2022, 38, 1090-1098.	3.5	6
1204	Candida albicans biofilm formation and growth optimization for functional studies using response surface methodology. Journal of Applied Microbiology, 2022, 132, 3277-3292.	3.1	7
1205	The Anticancer Agent 3,3'-Diindolylmethane Inhibits Multispecies Biofilm Formation by Acne-Causing Bacteria and Candida albicans. Microbiology Spectrum, 2022, 10, e0205621.	3.0	18
1206	Intestinal Infection of Candida albicans: Preventing the Formation of Biofilm by C. albicans and Protecting the Intestinal Epithelial Barrier. Frontiers in Microbiology, 2021, 12, 783010.	3.5	6
1207	Spiked Nanostructures Disrupt Fungal Biofilm and Impart Increased Sensitivity to Antifungal Treatment. Advanced Materials Interfaces, 0, , 2102353.	3.7	7
1208	Evolution of antimicrobial drug resistance in human pathogenic fungi., 2022,, 53-70.		1
1209	Combating human fungal infections. , 2022, , 103-128.		0
1210	Mechanical properties, corrosion resistance, and antiâ€adherence characterization of pure titanium fabricated by casting, milling, and selective laser melting. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1523-1534.	3.4	6
1211	Sodium houttuyfonate enhances the mono-therapy of fluconazole on oropharyngeal candidiasis (OPC) through HIF-1 $\hat{l}\pm$ /IL-17 axis by inhibiting cAMP mediated filamentation in <i>Candida albicans-Candida glabrata</i> dual biofilms. Virulence, 2022, 13, 428-443.	4.4	9
1212	Drug-dependent growth curve reshaping reveals mechanisms of antifungal resistance in Saccharomyces cerevisiae. Communications Biology, 2022, 5, 292.	4.4	1
1213	Insights From the Lactobacillus johnsonii Genome Suggest the Production of Metabolites With Antibiofilm Activity Against the Pathobiont Candida albicans. Frontiers in Microbiology, 2022, 13, 853762.	3.5	23
1214	Appraisal of Cinnamaldehyde Analogs as Dual-Acting Antibiofilm and Anthelmintic Agents. Frontiers in Microbiology, 2022, 13, 818165.	3.5	4
1215	SAGA Complex Subunits in Candida albicans Differentially Regulate Filamentation, Invasiveness, and Biofilm Formation. Frontiers in Cellular and Infection Microbiology, 2022, 12, 764711.	3.9	7
1216	Caspofungin resistance in Candida albicans: genetic factors and synergistic compounds for combination therapies. Brazilian Journal of Microbiology, 2022, 53, 1101-1113.	2.0	6
1217	In Vitro Fiber-Probe-Based Identification of Pathogens in Biofilms by Raman Spectroscopy. Analytical Chemistry, 2022, 94, 5375-5381.	6.5	9

#	Article	IF	CITATIONS
1218	Changes in the incidence of Candida-related central line-associated bloodstream infections in Pediatric Intensive Care Unit: Could central line bundle have a role?. Journal De Mycologie Medicale, 2022, 32, 101277.	1.5	5
1219	Healthy Vaginal Microbiota and Influence of Probiotics Across the Female Life Span. Frontiers in Microbiology, 2022, 13, 819958.	3.5	41
1220	Effective inactivation of fungal spores by the combined UV/PAA: Synergistic effect and mechanisms. Journal of Hazardous Materials, 2022, 430, 128515.	12.4	20
1221	Lactobacillus iners Cell-Free Supernatant Enhances Biofilm Formation and Hyphal/Pseudohyphal Growth by Candida albicans Vaginal Isolates. Microorganisms, 2021, 9, 2577.	3.6	13
1222	A Role for Secreted Immune Effectors in Microbial Biofilm Formation Revealed by Simple In Vitro Assays. Methods in Molecular Biology, 2022, 2421, 127-140.	0.9	2
1223	Antifungal Carvacrol Loaded Chitosan Nanoparticles. Antibiotics, 2022, 11, 11.	3.7	13
1224	Biofilm inhibition in Candida albicans with biogenic hierarchical zinc-oxide nanoparticles. Materials Science and Engineering C, 2022, 134, 112592.	7.3	22
1225	Antifungal biofilm strategies: a less explored area in wound management. Current Pharmaceutical Biotechnology, 2022, 23, .	1.6	1
1226	An Experimental Study of Photoactivated Disinfection in the Treatment of Acute Pseudomembranous Stomatitis. Photochemistry and Photobiology, 2022, 98, 1418-1425.	2.5	1
1227	Antifungal activity of dexamethasone against fluconazole-resistant <i>Candida albicans</i> Âand its activity against biofilms. Future Microbiology, 2022, 17, 607-620.	2.0	3
1258	Effect of Voriconazole on Biofilm of Filamentous Species Isolated from Keratitis. Archives of Clinical Infectious Diseases, 2022, 16, .	0.2	0
1259	Phytopigment Alizarin Inhibits Multispecies Biofilm Development by Cutibacterium acnes, Staphylococcus aureus, and Candida albicans. Pharmaceutics, 2022, 14, 1047.	4.5	12
1260	Poly(methyl methacrylate) with Oleic Acid as an Efficient Candida albicans Biofilm Repellent. Materials, 2022, 15, 3750.	2.9	4
1261	Efficacy assessment of different time-cycles of nebulized hydrogen peroxide against bacterial and yeast biofilm. Journal of Hospital Infection, 2022, , .	2.9	0
1262	Study of the effect of ethanol alcohols on yeasts and fungi isolated from the nail. International Journal of Health Sciences, 0, , 6902-6910.	0.1	0
1263	The Antibiofilm Role of Biotics Family in Vaginal Fungal Infections. Frontiers in Microbiology, 2022, 13,	3.5	6
1264	Microbial Analysis of Obturators During Maxillofacial Prosthodontic Treatment Over an 8-Year Period. Cleft Palate-Craniofacial Journal, 2023, 60, 1426-1441.	0.9	1
1265	Rheology of <i>Candida albicans</i> fungal biofilms. Journal of Rheology, 2022, 66, 683-697.	2.6	4

#	Article	IF	CITATIONS
1267	Antifungal Activity of the Frog Skin Peptide Temporin G and Its Effect on Candida albicans Virulence Factors. International Journal of Molecular Sciences, 2022, 23, 6345.	4.1	5
1268	Proteomic profile of Candida albicans biofilm. Journal of Proteomics, 2022, 265, 104661.	2.4	5
1269	Physiology of biofilm produced by various microbes. , 2022, , 27-35.		2
1270	Antimicrobial Properties of Silver-Modified Denture Base Resins. Nanomaterials, 2022, 12, 2453.	4.1	11
1271	Natural Compounds: A Hopeful Promise as an Antibiofilm Agent Against Candida Species. Frontiers in Pharmacology, 0, 13, .	3.5	15
1272	Investigations of ALS1 and HWP1 genes in clinical isolates of Candida albicans. Turkish Journal of Medical Sciences, 0, , .	0.9	6
1273	Engineering Antimicrobial Polymer Nanocomposites: <i>In Situ</i> Synthesis, Disruption of Polymicrobial Biofilms, and <i>In Vivo</i> Activity. ACS Applied Materials & Disruption of 34527-34537.	8.0	5
1275	Biofilm formation, multidrug-resistance and clinical infections of Staphylococcus haemolyticus: A brief review. Research, Society and Development, 2022, 11, e228111133605.	0.1	2
1276	Possible Contribution of Alternative Transcript Isoforms in Mature Biofilm Growth Phase of Candida glabrata. Indian Journal of Microbiology, 2022, 62, 583-601.	2.7	1
1277	N-acetylglucosamine kinase, Hxk1Âis a multifaceted metabolic enzyme in model pathogenic yeast Candida albicans. Microbiological Research, 2022, 263, 127146.	5.3	1
1278	Modulation of sensitivity to gaseous signaling by sterol-regulatory hypoxic transcription factors in Aspergillus nidulans biofilm cells. Fungal Genetics and Biology, 2022, 163, 103739.	2.1	1
1279	Zn(II) and Cd(II) Complexes of AMT1/MAC1 Homologous Cys/His-Rich Domains: So Similar yet So Different. Inorganic Chemistry, 2022, 61, 14333-14343.	4.0	1
1280	Aplicação de extratos vegetais na eliminação do biofilme por Candida albicans em resinas dentárias. Conjeturas, 2022, 22, 536-547.	0.0	0
1281	A common vesicle proteome drives fungal biofilm development. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	14
1282	Biocontrol of Candida albicans by Antagonistic Microorganisms and Bioactive Compounds. Antibiotics, 2022, 11, 1238.	3.7	7
1283	Simulated vaginal fluid: Candida resistant strains' biofilm characterization and vapor phase of essential oil effect. Journal De Mycologie Medicale, 2023, 33, 101329.	1.5	5
1284	The Antimicrobial Peptide AMP-17 Derived from Musca domestica Inhibits Biofilm Formation and Eradicates Mature Biofilm in Candida albicans. Antibiotics, 2022, 11, 1474.	3.7	4
1285	Bacterial infiltration and detorque at the implant abutment morse taper interface after masticatory simulation. Scientific Reports, 2022, 12, .	3.3	1

#	Article	IF	CITATIONS
1286	All-Trans Retinoic Acid Effect on Candida albicans Growth and Biofilm Formation. Journal of Fungi (Basel, Switzerland), 2022, 8, 1049.	3.5	8
1287	Time to Conquer Fungal Infectious Diseases: Employing Nanoparticles as Powerful and Versatile Antifungal Nanosystems against a Wide Variety of Fungal Species. Sustainability, 2022, 14, 12942.	3.2	21
1288	Comparison of cell viability assessment and visualization of Aspergillus niger biofilm with two fluorescent probe staining methods. Biofilm, 2022, 4, 100090.	3.8	8
1289	Elimination of E. faecalis and C. albicans Biofilm: A Comparison Between Single and Multiple File Systems in an Ex Vivo Study. Odovtos International Journal of Dental Sciences, 0, , 311-322.	0.1	0
1290	Extracellular Vesicles Contribute to Mixed-Fungal Species Competition during Biofilm Initiation. MBio, 2022, 13, .	4.1	3
1291	In vitro ability of Fusarium keratoplasticum to form biofilms in venous catheter. Microbial Pathogenesis, 2022, 173, 105868.	2.9	1
1292	Metabolomics profiling of culture medium reveals association of methionine and vitamin B metabolisms with virulent phenotypes of clinical bloodstream-isolated Candida albicans. Research in Microbiology, 2023, 174, 104009.	2.1	2
1294	Antibiofilm effects of berberine-loaded chitosan nanoparticles against Candida albicans biofilm. LWT - Food Science and Technology, 2023, 173, 114237.	5.2	5
1295	Autophagy regulation of <i>ATG13</i> and <i>ATG27</i> on biofilm formation and antifungal resistance in <i>Candida albicans</i> Biofouling, 2022, 38, 926-939.	2.2	5
1297	Nascent Nanoformulations as an Insight Into the Limitations of the Conventional Systemic Antifungal Therapies. Current Drug Targets, 2022, 24, .	2.1	0
1298	In Silico and In Vitro Analysis of Sulforaphane Anti-Candida Activity. Antibiotics, 2022, 11, 1842.	3.7	2
1299	Transcript profiling reveals the role of PDB1, a subunit of the pyruvate dehydrogenase complex, in Candida albicans biofilm formation. Research in Microbiology, 2023, 174, 104014.	2.1	2
1300	Interactions among microorganisms open up a new world for antiâ€infectious therapy. FEBS Journal, 0, ,	4.7	3
1301	Mechanisms of Antifungal Properties of Metal Nanoparticles. Nanomaterials, 2022, 12, 4470.	4.1	20
1302	Menthol-based deep eutectic systems as antimicrobial and anti-inflammatory agents for wound healing. European Journal of Pharmaceutical Sciences, 2023, 182, 106368.	4.0	4
1303	Alteration of Cell Membrane Permeability by Cetyltrimethylammonium Chloride Induces Cell Death in Clinically Important Candida Species. International Journal of Environmental Research and Public Health, 2023, 20, 27.	2.6	4
1304	Osteoarticular Mycoses. Clinical Microbiology Reviews, 2022, 35, .	13.6	13
1305	Epidemiology of Fungal Periprosthetic Joint Infection: A Systematic Review of the Literature. Microorganisms, 2023, 11, 84.	3.6	4

#	Article	IF	CITATIONS
1307	Microbial Biofilm—a modern sustainable approach for bioremediation in 21st century. , 2022, , 65-92.		0
1308	Fungal diseases and antifungal drugs. , 2023, , 33-64.		0
1309	Sources of Antifungal Drugs. Journal of Fungi (Basel, Switzerland), 2023, 9, 171.	3.5	15
1311	Molecular mechanism of biofilm formation of pathogenic microorganisms and their role in host pathogen interaction., 2023,, 569-586.		O
1312	Polymicrobial biofilms: Impact on fungal pathogenesis. , 2023, , 521-567.		2
1313	Oral biofilms: Architecture and control. , 2023, , 485-507.		0
1314	Modulating the Microbiome for Crohn's Disease Treatment. Gastroenterology, 2023, 164, 828-840.	1.3	7
1315	Desinfectantes convencionales y alternativas sobre el desarrollo de cÃ;ndida albicans. Techno Review: International Technology, Science and Society Review = Revista Internacional De TecnologÃa, Ciencia Y Sociedad, 2023, 13, 1-12.	0.2	0
1316	Antifouling Systems Based on a Polyhedral Oligomeric Silsesquioxane-Based Hexyl Imidazolium Salt Adsorbed on Copper Nanoparticles Supported on Titania. Nanomaterials, 2023, 13, 1291.	4.1	3
1317	Nitric oxide-loaded nano- and microparticle platforms serving as potential new antifungal therapeutics. Fungal Biology, 2023, 127, 1224-1230.	2.5	5
1318	The Gcn5-Ada2-Ada3 histone acetyltransferase module has divergent roles in pathogenesis of <i>Candida glabrata</i> . Medical Mycology, 2023, 61, .	0.7	0
1319	Effect of Probiotic Lactobacillus plantarum on Streptococcus mutans and Candida albicans Clinical Isolates from Children with Early Childhood Caries. International Journal of Molecular Sciences, 2023, 24, 2991.	4.1	6
1320	Silver nanoparticles in denture adhesive: An antimicrobial approach against Candida albicans. Journal of Dentistry, 2023, 131, 104445.	4.1	8
1321	Antifungal Properties of Biogenic Selenium Nanoparticles Functionalized with Nystatin for the Inhibition of Candida albicans Biofilm Formation. Molecules, 2023, 28, 1836.	3.8	7
1322	Escherichia coli, but Not Staphylococcus aureus, Functions as a Chelating Agent That Exhibits Antifungal Activity against the Pathogenic Yeast Candida albicans. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /0	Over s cook 1() Tf350 177 To
1323	Limosilactobacillus reuteri 29A Cell-Free Supernatant Antibiofilm and Antagonistic Effects in Murine Model of Vulvovaginal Candidiasis. Probiotics and Antimicrobial Proteins, 2023, 15, 1681-1699.	3.9	2
1324	Morphogenic plasticity: the pathogenic attribute of Candida albicans. Current Genetics, 2023, 69, 77-89.	1.7	5
1325	Biosensor-Enabled Discovery of CaERG6 Inhibitors and Their Antifungal Mode of Action against <i>Candida albicans</i> . ACS Infectious Diseases, 2023, 9, 785-800.	3.8	1

#	Article	IF	CITATIONS
1326	Analysis of Candida Antifungal Resistance Using Animal Infection Models. Methods in Molecular Biology, 2023, , 225-238.	0.9	O
1327	Relationships between Secreted Aspartyl Proteinase 2 and General Control Nonderepressible 4 gene in the Candida albicans resistant to itraconazole under planktonic and biofilm conditions. Brazilian Journal of Microbiology, 2023, 54, 619-627.	2.0	0
1328	Antifungal therapy of Candida biofilms: Past, present and future. Biofilm, 2023, 5, 100126.	3.8	8
1329	Enhancing antimicrobial photodynamic therapy with phenothiazinium dyes and sodium dodecyl sulfate against Candida albicans at various growth stages. Photodiagnosis and Photodynamic Therapy, 2023, 42, 103628.	2.6	1
1330	Application of Rosmarinic Acid with Its Derivatives in the Treatment of Microbial Pathogens. Molecules, 2023, 28, 4243.	3.8	8
1331	Anti-adherent activity of nano-coatings deposited by thermionic vacuum arc plasma on <i>C. albicans</i> biofilm formation. International Journal of Artificial Organs, 0, , 039139882311780.	1.4	0
1332	Microbiological evaluation in invisible aligner chemical cleaning methods against Candida albicans and Streptococcus mutans. American Journal of Orthodontics and Dentofacial Orthopedics, 2023, , .	1.7	0
1333	Probiotics for Vaginal Health., 2023, , 393-419.		0
1334	Discovery and development of novel substituted monohydrazides as potent antifungal agents. RSC Medicinal Chemistry, 0, , .	3.9	0
1335	Aqueous spice extracts as alternative antimycotics to control highly drug resistant extensive biofilm forming clinical isolates of Candida albicans. PLoS ONE, 2023, 18, e0281035.	2.5	0
1336	Risk of urogenital infections in non-diabetic patients treated with sodium glucose transporter 2 (SGLT2) inhibitors. Systematic review and meta-analysis. Archivio Italiano Di Urologia Andrologia, 2023, 95, .	0.8	0
1337	Treatment Outcomes of Fungal Periprosthetic Joint Infection. Journal of Arthroplasty, 2023, , .	3.1	1
1338	Phosphatase-degradable nanoparticles: A game-changing approach for the delivery of antifungal proteins. Journal of Colloid and Interface Science, 2023, 646, 290-300.	9.4	3
1339	Losartan Plays a Fungistatic and Fungicidal Activity Against <i>Candida albicans</i> Biofilms: Drug Repurposing for Localized Candidosis. Assay and Drug Development Technologies, 2023, 21, 157-165.	1.2	0
1340	A Simple and Reproducible Stereomicroscopic Method to Assess Fungal Biofilms: Application to Antifungal Susceptibility Testing. Bio-protocol, 2023, 13 , .	0.4	0
1341	Does Streptococcus oralis supernatant influence on the proliferation and virulence of Candida albicans?. Archives of Oral Biology, 2023, 154, 105763.	1.8	0
1342	Application of organoselenium in inhibiting <i>Candida albicans</i> biofilm adhesion on 3D printed denture base material. Journal of Prosthodontics, 0, , .	3.7	1
1343	Screening antibiofilm activity of invasive plants growing at the Slope Merapi Mountain, Central Java, against Candida albicans. BMC Complementary Medicine and Therapies, 2023, 23, .	2.7	1

#	Article	IF	CITATIONS
1344	Synergistic effect of chlorhexidine and azoles on candida biofilm on titanium surface. Journal De Mycologie Medicale, 2023, , 101417.	1.5	0
1346	Medicinal benefits, biological, and nanoencapsulation functions of riboflavin with its toxicity profile: A narrative review. Nutrition Research, 2023, 119, 1-20.	2.9	2
1347	Color Stability, Physical Properties and Antifungal Effects of ZrO2 Additions to Experimental Maxillofacial Silicones: Comparisons with TiO2. Prosthesis, 2023, 5, 916-938.	2.9	1
1348	Apoptosis of Multiâ€Drug Resistant <i>Candida</i> Species on Microstructured Titanium Surfaces. Advanced Materials Interfaces, 2023, 10, .	3.7	4
1349	Candida Biofilm Eye Infection: Main Aspects and Advance in Novel Agents as Potential Source of Treatment. Antibiotics, 2023, 12, 1277.	3.7	1
1350	Impacts of extracellular polymeric substances on the behaviors of micro/nanoplastics in the water environment. Environmental Pollution, 2023, 338, 122691.	7.5	1
1351	Study on the evolution process of corrosion behavior under the sulfate reducing bacteria biofilm in shale gas gathering pipelines. Journal of Adhesion Science and Technology, 0 , $1-29$.	2.6	0
1354	Recent progress in carbon dots for anti-pathogen applications in oral cavity. Frontiers in Cellular and Infection Microbiology, 0, 13 , .	3.9	1
1355	Occidiofungin inhibition of $\langle i \rangle$ Candida $\langle i \rangle$ biofilm formation on silicone elastomer surface. Microbiology Spectrum, 0, , .	3.0	0
1356	Role of the extracellular matrix in <i>Candida</i> biofilm antifungal resistance. FEMS Microbiology Reviews, 2023, 47, .	8.6	2
1357	Candida causes recurrent vulvovaginal candidiasis by forming morphologically disparate biofilms on the human vaginal epithelium. Biofilm, 2023, 6, 100162.	3.8	1
1358	Candida albicans and Antifungal Peptides. Infectious Diseases and Therapy, 2023, 12, 2631-2648.	4.0	1
1359	Anti-Biofilm Activity of Cocultimycin A against Candida albicans. International Journal of Molecular Sciences, 2023, 24, 17026.	4.1	1
1360	Antimicrobial dental composites with K18-methyl methacrylate and K18-filler. Dental Materials, 2024, 40, 59-65.	3.5	0
1361	Efficacy of DAIR in managing Candida parapsilosis-infected total knee arthroplasty with five-year follow-up: A case report and review of literature. Medicine (United States), 2023, 102, e36246.	1.0	0
1362	Molecular Mechanisms Associated with Antifungal Resistance in Pathogenic Candida Species. Cells, 2023, 12, 2655.	4.1	2
1363	Understanding fluconazole tolerance in Candida albicans: implications for effective treatment of candidiasis and combating invasive fungal infections. Journal of Global Antimicrobial Resistance, 2023, 35, 314-321.	2.2	1
1364	Etiology, pathology, and host-impaired immunity in medical implant-associated infections. Journal of Infection and Public Health, 2024, 17, 189-203.	4.1	0

#	Article	IF	CITATIONS
1365	New Biocide Based on Tributyltin(IV) Ferulate-Loaded Halloysite Nanotubes for Preserving Historical Paper Artworks. Molecules, 2023, 28, 7953.	3.8	1
1366	Bibliometric Analysis and Thematic Review of <i>Candida</i> Pathogenesis: Fundamental Omics to Applications as Potential Antifungal Drugs and Vaccines. Medical Mycology, 0, , .	0.7	0
1367	Identification of prosthetic joint infection by Candida using metagenomic shotgun sequencing. Access Microbiology, 2023, 5, .	0.5	0
1368	Antibiofilm activity of lawsone against polymicrobial enterohemorrhagic Escherichia coli O157:H7 and Candida albicans by suppression of curli production and hyphal growth. Phytomedicine, 2024, 124, 155306.	5.3	1
1369	Assessing the efficacy of gutiferone E in photodynamic therapy for oral candidiasis. Journal of Photochemistry and Photobiology B: Biology, 2023, , 112834.	3.8	0
1370	Mucus-Permeable Sonodynamic Therapy Mediated Amphotericin B-Loaded PEGylated PLGA Nanoparticles Enable Eradication of Candida albicans Biofilm. International Journal of Nanomedicine, 0, Volume 18, 7941-7963.	6.7	1
1371	ROS mediated anticandidal efficacy of 3-Bromopyruvate prevents vulvovaginal candidiasis in mice model. PLoS ONE, 2023, 18, e0295922.	2.5	0
1372	Inhibiting pathogenicity of vaginal <i>Candida albicans</i> by lactic acid bacteria and <scp>MS</scp> analysis of their extracellular compounds. Apmis, 2024, 132, 161-186.	2.0	0
1373	Mechanisms of antifungal resistance. , 2024, , 2847-2864.		0
1374	CdSe@CdS core-shell quantum dots as antifungal agents: significance of particle size and shell thickness. Journal of Nanoparticle Research, 2024, 26, .	1.9	0
1375	The application of synthetic antibacterial minerals to combat topical infections: exploring a mouse model of MRSA infection. Scientific Reports, 2024, 14, .	3.3	0
1376	Evaluation of surface energy and surface stability and adherence of Candida albicans to octa fluoro pentyl (meth) acrylate-coated PEEK using plasma spray. Dental Research Journal, 2024, 21, .	0.6	0
1377	Impact of multiscale surface topography characteristics on Candida albicans biofilm formation: From cell repellence to fungicidal activity. Acta Biomaterialia, 2024, 177, 20-36.	8.3	0
1378	Cell-free supernatants of probiotic consortia impede hyphal formation and disperse biofilms of vulvovaginal candidiasis causing Candida in an ex-vivo model. Antonie Van Leeuwenhoek, 2024, 117, .	1.7	0
1379	Transcriptomic meta-analysis to identify potential antifungal targets in Candida albicans. BMC Microbiology, 2024, 24, .	3.3	0
1380	A review on antimicrobial strategies in mitigating biofilm-associated infections on medical implants. Current Research in Microbial Sciences, 2024, 6, 100231.	2.3	0
1381	Paracoccidioides spp.: the structural characterization of extracellular matrix, expression of glucan synthesis and associated genes and adhesins during biofilm formation. Frontiers in Microbiology, 0, 15, .	3.5	0
1382	2-aryloxazolines inhibit Candida clinical isolates growth and morphogenesis of Candida albicans and Candida tropicalis., 2024, 3, 100062.		0

#	Article	IF	CITATIONS
138	Antifungal drug resistance in <i>Candida</i> : a special emphasis on amphotericin B. Apmis, 2024, 132, 291-316.	2.0	0

Candida tropicalis Affects Candida albicans Virulence by Limiting Its Capacity to Adhere to the Host
Intestinal Surface, Leading to Decreased Susceptibility to Colitis in Mice. Journal of Fungi (Basel,) Tj ETQq1 1 0.7843154 rgBT © Verlock