Polyploid formation in cotton is not accompanied by ra

Genome 44, 321-330 DOI: 10.1139/g01-011

Citation Report

#	Article	IF	CITATIONS
1	Genomic change and gene silencing in polyploids. Trends in Genetics, 2001, 17, 675-677.	6.7	147
2	Polyploid evolution: Keeping the peace at genomic reunions. Current Biology, 2001, 11, R925-R928.	3.9	81
3	A Sense of Self. Plant Cell, 2001, 13, 1699-1704.	6.6	62
4	Retrotransposons and Genomic Stability in Populations of the Young Allopolyploid Species Spartina anglica C.E. Hubbard (Poaceae). Molecular Biology and Evolution, 2002, 19, 1218-1227.	8.9	168
5	Non-Mendelian Phenomena in Allopolyploid Genome Evolution. Current Genomics, 2002, 3, 489-505.	1.6	144
6	The origin of tobacco's T genome is traced to a particular lineage within <i>Nicotiana tomentosiformis</i> (Solanaceae). American Journal of Botany, 2002, 89, 921-928.	1.7	108
7	cDNA microarray analysis of global gene expression in sarcomas. Current Opinion in Oncology, 2002, 14, 406-411.	2.4	16
8	Differential Evolutionary Dynamics of Duplicated Paralogous Adh Loci in Allotetraploid Cotton (Gossypium). Molecular Biology and Evolution, 2002, 19, 597-607.	8.9	64
9	Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Molecular Genetics and Genomics, 2002, 268, 543-552.	2.1	250
10	Molecular evidence for the hybrid origin of a new endemic species of Stylosanthes Sw. (Fabaceae) from the Mexican YucatÃ _i n Peninsula. Botanical Journal of the Linnean Society, 2002, 140, 1-13.	1.6	13
11	Six active phage-type RNA polymerase genes in Nicotiana tabacum. Plant Journal, 2002, 30, 625-637.	5.7	94
12	Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Molecular Biology, 2003, 52, 401-414.	3.9	171
13	FISH analysis of meiosis in Arabidopsis allopolyploids. Chromosome Research, 2003, 11, 217-226.	2.2	81
14	Multiple origins of allopolyploid Aegilops triuncialis. Theoretical and Applied Genetics, 2003, 106, 804-810.	3.6	29
15	Effects of reunited diverged regulatory hierarchies in allopolyploids and species hybrids. Trends in Genetics, 2003, 19, 597-600.	6.7	114
16	Understanding mechanisms of novel gene expression in polyploids. Trends in Genetics, 2003, 19, 141-147.	6.7	812
17	Evolutionary dynamics of duplicated genes in plants. Molecular Phylogenetics and Evolution, 2003, 29, 396-409.	2.7	96
18	Epigenetic phenomena and the evolution of plant allopolyploids. Molecular Phylogenetics and Evolution, 2003, 29, 365-379.	2.7	278

TION RE

2

	CITATION	Report	
#	Article	IF	CITATIONS
19	Assessing elevated CO 2 responses using metaâ€analysis. New Phytologist, 2003, 160, 6-7.	7.3	6
20	Drought damage and recovery – a conceptual model. New Phytologist, 2003, 160, 7-14.	7.3	24
21	Canopy gaps to climate change – extreme events, ecology and evolution. New Phytologist, 2003, 160, 2-4.	7.3	27
22	Speciation – a rebirth. New Phytologist, 2003, 160, 14-17.	7.3	7
23	Attraction, predation and marriages of convenience. New Phytologist, 2003, 160, 17-19.	7.3	0
24	Welcome to new editors – development, ecoâ€devo and environmental adaptation. New Phytologist, 2003, 160, 1-2.	7.3	19
25	Taxonomic misidentification in public DNA databases. New Phytologist, 2003, 160, 4-5.	7.3	214
26	Plant polyploidy: gene expression and genetic redundancy. Heredity, 2003, 91, 91-92.	2.6	23
27	Polyploidy: some things old to go with the new. Taxon, 2003, 52, 411-413.	0.7	2
28	New Trends in Plant Systematics. Taxon, 2003, 52, 3-7.	0.7	1
29	Polyploidy: Some Things Old to Go with the New. Taxon, 2003, 52, 411.	0.7	1
30	Rapid genomic changes in interspecific and intergeneric hybrids and allopolyploids of Triticeae. Genome, 2003, 46, 716-723.	2.0	82
31	Rate Variation Among Nuclear Genes and the Age of Polyploidy in Gossypium. Molecular Biology and Evolution, 2003, 20, 633-643.	8.9	325
32	Do the different parental â€~heteromes' cause genomic shock in newly formed allopolyploids?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1149-1155.	4.0	155
33	Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4389-4394.	7.1	980
34	New Trends in Plant Systematics. Taxon, 2003, 52, 3.	0.7	2
35	What happens to genes in duplicated genomes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4369-4371.	7.1	51
36	Expression Patterns of α2,3-Sialyltransferases and α1,3-Fucosyltransferases Determine the Mode of Sialyl Lewis X Inhibition by Disaccharide Decoys. Journal of Biological Chemistry, 2003, 278, 23352-23359.	3.4	47

#	Article	IF	CITATIONS
37	The use of multiple alien chromosome addition aneuploids facilitates genetic linkage mapping of the Gossypium G genome. Genome, 2003, 46, 774-791.	2.0	30
38	Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4649-4654.	7.1	793
39	LGI1, a Putative Tumor Metastasis Suppressor Gene, Controls in Vitro Invasiveness and Expression of Matrix Metalloproteinases in Glioma Cells through the ERK1/2 Pathway. Journal of Biological Chemistry, 2004, 279, 23151-23157.	3.4	93
40	Dynamic Changes in the Distribution of a Satellite Homologous to Intergenic 26-18S rDNA Spacer in the Evolution of Nicotiana. Genetics, 2004, 166, 1935-1946.	2.9	64
41	Organ-Specific Silencing of Duplicated Genes in a Newly Synthesized Cotton Allotetraploid. Genetics, 2004, 168, 2217-2226.	2.9	242
42	Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 18240-18245.	7.1	251
43	Genomic changes in synthetic Arabidopsis polyploids. Plant Journal, 2005, 41, 221-230.	5.7	320
44	Spartina anglica C. E. Hubbard: a natural model system for analysing early evolutionary changes that affect allopolyploid genomes. Biological Journal of the Linnean Society, 2004, 82, 475-484.	1.6	179
45	Evolution of the perennial soybean polyploid complex (Glycine subgenus Glycine): a study of contrasts. Biological Journal of the Linnean Society, 2004, 82, 583-597.	1.6	107
46	Genome evolution in allotetraploid Nicotiana. Biological Journal of the Linnean Society, 0, 82, 599-606.	1.6	163
47	Genome downsizing in polyploid plants. Biological Journal of the Linnean Society, 0, 82, 651-663.	1.6	579
48	Progress in the use of microarray technology to study the neurobiology of disease. Nature Neuroscience, 2004, 7, 434-439.	14.8	145
49	A cluster of differentially expressed signal transduction genes identified by microarray analysis in a rat genetic model of alcoholism. Pharmacogenomics Journal, 2004, 4, 208-218.	2.0	50
50	Meiotic pairing in the hybrid (Zea diploperennis×Zea perennis)×Zea mays and its reciprocal. Hereditas, 2004, 141, 135-141.	1.4	3
51	Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat. Science in China Series C: Life Sciences, 2004, 47, 553.	1.3	56
52	Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theoretical and Applied Genetics, 2004, 108, 280-291.	3.6	219
53	Hybridization, polyploidy and speciation in Spartina (Poaceae). New Phytologist, 2004, 161, 165-172.	7.3	213
54	Advances in the study of polyploidy since <i>Plant speciation</i> . New Phytologist, 2004, 161, 173-191.	7.3	640

		CITATION REPORT		
#	Article		IF	Citations
55	The Effect of Stress on Genome Regulation and Structure. Annals of Botany, 2004, 94,	481-495.	2.9	262
56	One or more species in the arctic grass genus <i>Dupontia</i> ? – a contribution to t Flora project. Taxon, 2004, 53, 365-382.	he Panarctic	0.7	35
57	Polyploidization-induced genome variation in triticale. Genome, 2004, 47, 839-848.		2.0	95
58	Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seed methylation-sensitive amplification polymorphism (MSAP). Plant Science, 2004, 166, 1	ls using 69-178.	3.6	109
59	From Diploids to Allopolyploids: The Emergence of Efficient Pairing Control Genes in Pl Reviews in Plant Sciences, 2004, 23, 21-45.	ants. Critical	5.7	96
60	Hybrid speciation in plants: new insights from molecular studies. New Phytologist, 200)5, 165, 411-423.	7.3	230
61	Preferential elimination of repeated DNA sequences from the paternal, <i>Nicotiana tomentosiformis</i> genome donor of a synthetic, allotetraploid tobacco. New Phytolo 291-303.	ogist, 2005, 166,	7.3	143
62	AFLP analyses demonstrate genetic divergence, hybridization, and multiple polyploidiz evolution of Achillea (Asteraceaeâ€Anthemideae). New Phytologist, 2005, 166, 273-29	ation in the 90.	7.3	96
63	Ancient and recent polyploidy in angiosperms. New Phytologist, 2005, 166, 5-8.		7.3	90
64	An emerging focus on plant ecological development. New Phytologist, 2005, 166, 1-5.		7.3	46
65	Genetic and epigenetic consequences of recent hybridization and polyploidy in <i>Spa (Poaceae). Molecular Ecology, 2005, 14, 1163-1175.</i>	rtina	3.9	399
66	Hybridization and genome size evolution: timing and magnitude of nuclear DNA conte Helianthus homoploid hybrid species. New Phytologist, 2005, 167, 623-630.	nt increases in	7.3	112
67	Sequence Divergence of Microsatellites and Phylogeny Analysis in Tetraploid Cotton S Putative Diploid Ancestors. Journal of Integrative Plant Biology, 2005, 47, 1418-1430.	pecies and Their	8.5	9
68	Novel patterns of gene expression in polyploid plants. Trends in Genetics, 2005, 21, 53	9-543.	6.7	316
69	Cleaved AFLP (cAFLP), a modified amplified fragment length polymorphism analysis for Theoretical and Applied Genetics, 2005, 111, 1385-1395.	[·] cotton.	3.6	24
70	Analysis of DNA methylation related to rice adult plant resistance to bacterial blight ba methylation-sensitive AFLP (MSAP) analysis. Molecular Genetics and Genomics, 2005,		2.1	131
71	Allopolyploidy in Wheat Induces Rapid and Heritable Alterations in DNA Methylation Pa Cellular Genes and Mobile Elements. Russian Journal of Genetics, 2005, 41, 890-896.	atterns of	0.6	16
72	Autopolyploidy in cabbage (Brassica oleracea L.) does not alter significantly the protect tissues. Proteomics, 2005, 5, 2131-2139.	mes of green	2.2	78

#	Article	IF	CITATIONS
73	Genetic Variation in Echinacea angustifolia Along a Climatic Gradient. Annals of Botany, 2005, 96, 467-477.	2.9	25
74	Extensive de Novo Genomic Variation in Rice Induced by Introgression From Wild Rice (Zizania latifolia) Tj ETQq1	1 0,7843	14.rgBT /Ove
75	Contributions of Domesticated Plant Studies to our Understanding of Plant Evolution. Annals of Botany, 2005, 96, 953-963.	2.9	102
76	Comparative genomics of Gossypium and Arabidopsis: Unraveling the consequences of both ancient and recent polyploidy. Genome Research, 2005, 15, 1198-1210.	5.5	54
77	Antisense Suppression of a (+)-δ-Cadinene Synthase Gene in Cotton Prevents the Induction of This Defense Response Gene during Bacterial Blight Infection But Not Its Constitutive Expression. Plant Physiology, 2005, 138, 516-528.	4.8	89
78	A comprehensive analysis of gene expression alterations in a newly synthesized Paspalum notatum autotetraploid. Plant Science, 2005, 169, 211-220.	3.6	46
79	Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenetic and Genome Research, 2005, 109, 236-249.	1.1	169
80	Polyploidy in Plants. , 2005, , 371-426.		83
81	Contribution of transcriptional regulation to natural variations in Arabidopsis. Genome Biology, 2005, 6, R32.	9.6	47
82	Patterns of Sequence Loss and Cytosine Methylation within a Population of Newly Resynthesized <i>Brassica napus</i> Allopolyploids. Plant Physiology, 2006, 140, 336-348.	4.8	250
83	Survey of microarray technologies suitable to elucidate transcriptional networks as exemplified by studying KRAB zinc finger gene families. Proteomics, 2006, 6, 4704-4715.	2.2	9
84	CRYPTIC INTERSPECIFIC INTROGRESSION AND GENETIC DIFFERENTIATION WITHIN GOSSYPIUM ARIDUM (MALVACEAE) AND ITS RELATIVES. Evolution; International Journal of Organic Evolution, 2006, 60, 505-517.	2.3	34
85	Reciprocal hybridization at different times between Senecio flavus and Senecio glaucus gave rise to two polyploid species in north Africa and southâ€west Asia. New Phytologist, 2006, 169, 431-441.	7.3	35
86	Microarray analysis reveals differential gene expression in hybrid sunflower species. Molecular Ecology, 2006, 15, 1213-1227.	3.9	116
87	Homoeologous gene silencing in hexaploid wheat. Plant Journal, 2006, 47, 897-906.	5.7	153
88	Innovation in anti-herbivore defense systems during neopolypoloidy - the functional consequences of instantaneous speciation. Plant Journal, 2006, 47, 196-210.	5.7	30
89	Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. BioEssays, 2006, 28, 240-252.	2.5	371
90	NUCLEAR CYTOPLASMIC INTERACTION HYPOTHESIS AND THE ROLE OF TRANSLOCATIONS IN NICOTIANA ALLOPOLYPLOIDS. , 2006, , 319-326.		9

#	Article	IF	CITATIONS
91	Infraspecific DNA Methylation Polymorphism in Cotton (Gossypium hirsutum L.). Journal of Heredity, 2006, 97, 444-450.	2.4	114
92	CRYPTIC INTERSPECIFIC INTROGRESSION AND GENETIC DIFFERENTIATION WITHIN GOSSYPIUM ARIDUM (MALVACEAE) AND ITS RELATIVES. Evolution; International Journal of Organic Evolution, 2006, 60, 505.	2.3	3
93	A genetic appraisal of a new synthetic <i>Nicotiana tabacum</i> (Solanaceae) and the Kostoff synthetic tobacco. American Journal of Botany, 2006, 93, 875-883.	1.7	43
94	Evolution and Expression of Homeologous Loci in Tragopogon miscellus (Asteraceae), a Recent and Reciprocally Formed Allopolyploid. Genetics, 2006, 173, 1599-1611.	2.9	166
96	Protein 4.1B suppresses prostate cancer progression and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12784-12789.	7.1	63
97	FrequencyÂand fidelity of alien chromosome transmission in Gossypium hexaploid bridging populations. Genome, 2007, 50, 479-491.	2.0	16
98	Extent and pattern of genetic differentiation within and between phenotypic populations of <i>Leymus chinensis</i> (Poaceae) revealed by AFLP analysis. Canadian Journal of Botany, 2007, 85, 813-821.	1.1	7
99	Gene Expression Profiling of Epstein-Barr Virus-positive and -negative Monomorphic B-cell Posttransplant Lymphoproliferative Disorders. Diagnostic Molecular Pathology, 2007, 16, 158-168.	2.1	78
100	Genetic relationships of D-genome species based on two types of EST-SSR markers derived from G. arboreum and G. raimondii in Gossypium. Plant Science, 2007, 172, 808-814.	3.6	15
101	Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids. Plant Science, 2007, 172, 930-938.	3.6	104
102	Genome rearrangements derived from autopolyploidization in Paspalum sp Plant Science, 2007, 172, 970-977.	3.6	52
104	Genome polymorphisms and gene differential expression in a â€~back-and-forth' ploidy-altered series of weeping lovegrass (Eragrostis curvula). Journal of Plant Physiology, 2007, 164, 1051-1061.	3.5	28
105	Use of fluorescence in situ hybridization as a tool for introgression analysis and chromosome identification in coffee (<i>Coffea arabica</i> L.). Genome, 2007, 50, 619-626.	2.0	25
107	Toward Sequencing Cotton (<i>Gossypium</i>) Genomes: Figure 1 Plant Physiology, 2007, 145, 1303-1310.	4.8	390
108	Genetic and epigenetic alterations after hybridization and genome doubling. Taxon, 2007, 56, 649-656.	0.7	52
109	Plant evolution by means of hybridization. Systematics and Biodiversity, 2007, 5, 243-253.	1.2	38
110	Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome. Plant Journal, 2007, 50, 574-585.	5.7	154
111	Population decline despite high genetic diversity in the new allopolyploid species Senecio cambrensis (Asteraceae). Molecular Ecology, 2007, 16, 1023-1033.	3.9	35

#	Article	IF	CITATIONS
112	Chromosomal stasis in diploids contrasts with genome restructuring in auto―and allopolyploid taxa of Hepatica (Ranunculaceae). New Phytologist, 2007, 174, 669-682.	7.3	65
113	Sequence of events leading to nearâ€complete genome turnover in allopolyploid <i>Nicotiana</i> within five million years. New Phytologist, 2007, 175, 756-763.	7.3	158
114	Detection and mapping of homologous and homoeologous segments in homoeologous groups of allotetraploid cotton by BAC-FISH. BMC Genomics, 2007, 8, 178.	2.8	24
115	Optimising the analysis of transcript data using high density oligonucleotide arrays and genomic DNA-based probe selection. BMC Genomics, 2007, 8, 344.	2.8	11
116	Human Genetics: The Hidden Text of Genome-wide Associations. Current Biology, 2007, 17, R929-R932.	3.9	15
117	Polyploidy: Doubling up for Evolutionary Success. Current Biology, 2007, 17, R927-R929.	3.9	68
118	The plant genome's methylation status and response to stress: implications for plant improvement. Current Opinion in Plant Biology, 2007, 10, 317-322.	7.1	173
119	Genomic changes at early stages of formation of allopolyploid Aegilops longissima × Triticum urartu. Russian Journal of Genetics, 2007, 43, 798-804.	0.6	1
120	Ancestry Influences the Fate of Duplicated Genes Millions of Years After Polyploidization of Clawed Frogs (Xenopus). Genetics, 2007, 176, 1119-1130.	2.9	59
121	Nuclear DNA content in allopolyploid species and synthetic hybrids in the grass genus Paspalum. Plant Systematics and Evolution, 2007, 265, 109-121.	0.9	30
122	Cytological diploidization and rapid genome changes of the newly synthesized allotetraploids CucumisÂ×Âhytivus. Planta, 2007, 225, 603-614.	3.2	53
123	Gene expression in diplosporous and sexual Eragrostis curvula genotypes with differing ploidy levels. Plant Molecular Biology, 2008, 67, 11-23.	3.9	53
124	Utility of the methylationâ€sensitive amplified polymorphism (MSAP) marker for detection of DNA methylation polymorphism and epigenetic population structure in a wild barley species (<i>Hordeum) Tj ETQq0 C</i>) OirgBT /C	weenlock 10 Th
125	ATG-anchored AFLP (ATG-AFLP) analysis in cotton. Plant Cell Reports, 2008, 27, 1645-1653.	5.6	8
126	Wild and agronomically important <i>Agave</i> species (Asparagaceae) show proportional increases in chromosome number, genome size, and genetic markers with increasing ploidy. Botanical Journal of the Linnean Society, 2008, 158, 215-222.	1.6	44
127	Genomic Clues to the Evolutionary Success of Polyploid Plants. Current Biology, 2008, 18, R435-R444.	3.9	294
128	Genomic and genic sequence variation in synthetic hexaploid wheat (AABBDD) as compared to their parental species. Progress in Natural Science: Materials International, 2008, 18, 533-538.	4.4	8
129	Brassica oleracea displays a high level of DNA methylation polymorphism. Plant Science, 2008, 174, 61-70.	3.6	137

#	Article	IF	CITATIONS
130	Evolutionary Genetics of Genome Merger and Doubling in Plants. Annual Review of Genetics, 2008, 42, 443-461.	7.6	618
131	Changes of cytosine methylation induced by wide hybridization and allopolyploidy in Cucumis. Genome, 2008, 51, 789-799.	2.0	26
132	Genetic and epigenetic changes of rDNA in a synthetic allotetraploid, <i>Aegilops sharonensis</i> × <i>Ae.Âumbellulata</i> . Genome, 2008, 51, 261-271.	2.0	32
133	Variations of tandem repeat, regulatory element, and promoter regions revealed by wheat–rye amphiploids. Genome, 2008, 51, 399-408.	2.0	38
134	Evolution of rDNA in Nicotiana Allopolyploids: A Potential Link between rDNA Homogenization and Epigenetics. Annals of Botany, 2008, 101, 815-823.	2.9	148
135	Insights into the evolution of duplicate gene expression in polyploids from GossypiumThis paper is one of a selection of papers published in the Special Issue on Systematics Research Botany, 2008, 86, 827-834.	1.0	8
136	Plasticity in salt tolerance traits allows for invasion of novel habitat by Japanese knotweed s. l. (Fallopia japonica and F.xbohemica, Polygonaceae). American Journal of Botany, 2008, 95, 931-942.	1.7	98
137	Genomic Origin and Organization of the Allopolyploid Primula egaliksensis Investigated by in situ Hybridization. Annals of Botany, 2008, 101, 919-927.	2.9	28
138	Genome evolution and speciation genetics of clawed frogs (Xenopus and Silurana). Frontiers in Bioscience - Landmark, 2008, Volume, 4687.	3.0	100
139	Transgene-Induced Gene Silencing Is Not Affected by a Change in Ploidy Level. PLoS ONE, 2008, 3, e3061.	2.5	4
139 140	Transgene-Induced Gene Silencing Is Not Affected by a Change in Ploidy Level. PLoS ONE, 2008, 3, e3061. Phylogenetic relationships of diploid and polyploid species in <i>Ludwigia</i> sect. <i>Isnardia</i> (Onagraceae) based on chloroplast and nuclear DNAs. Taxon, 2009, 58, 1216-1226.	2.5 0.7	4
	Phylogenetic relationships of diploid and polyploid species in <i>Ludwigia</i> sect. <i>Isnardia</i>		
140	Phylogenetic relationships of diploid and polyploid species in <i>Ludwigia</i> sect. <i>Isnardia</i> (Onagraceae) based on chloroplast and nuclear DNAs. Taxon, 2009, 58, 1216-1226. Mitotic instability in resynthesized and natural polyploids of the genus <i>Arabidopsis</i>	0.7	8
140 141	Phylogenetic relationships of diploid and polyploid species in <i>Ludwigia</i> sect. <i>Isnardia</i> (Onagraceae) based on chloroplast and nuclear DNAs. Taxon, 2009, 58, 1216-1226. Mitotic instability in resynthesized and natural polyploids of the genus <i>Arabidopsis</i> (Brassicaceae). American Journal of Botany, 2009, 96, 1656-1664. Reciprocal Silencing, Transcriptional Bias and Functional Divergence of Homeologs in Polyploid	0.7	8 32
140 141 142	Phylogenetic relationships of diploid and polyploid species in <i>Ludwigia</i> sect. <i>Isnardia</i> (Onagraceae) based on chloroplast and nuclear DNAs. Taxon, 2009, 58, 1216-1226. Mitotic instability in resynthesized and natural polyploids of the genus <i>Arabidopsis</i> (Brassicaceae). American Journal of Botany, 2009, 96, 1656-1664. Reciprocal Silencing, Transcriptional Bias and Functional Divergence of Homeologs in Polyploid Cotton (Gossypium). Genetics, 2009, 182, 503-517. Phenotypic, genetic and genomic consequences of natural and synthetic polyploidization of Nicotiana	0.7 1.7 2.9	8 32 212
140 141 142 143	Phylogenetic relationships of diploid and polyploid species in <i>Ludwigia</i> sect. <i>Isnardia</i> (Onagraceae) based on chloroplast and nuclear DNAs. Taxon, 2009, 58, 1216-1226. Mitotic instability in resynthesized and natural polyploids of the genus <i>Arabidopsis</i> (Brassicaceae). American Journal of Botany, 2009, 96, 1656-1664. Reciprocal Silencing, Transcriptional Bias and Functional Divergence of Homeologs in Polyploid Cotton (Gossypium). Genetics, 2009, 182, 503-517. Phenotypic, genetic and genomic consequences of natural and synthetic polyploidization of Nicotiana attenuata and Nicotiana obtusifolia. Annals of Botany, 2009, 103, 1207-1217.	0.7 1.7 2.9	8 32 212 75
140 141 142 143 144	 Phylogenetic relationships of diploid and polyploid species in <i>Ludwigia</i> sect. <i>Isnardia</i> (Onagraceae) based on chloroplast and nuclear DNAs. Taxon, 2009, 58, 1216-1226. Mitotic instability in resynthesized and natural polyploids of the genus <i>Arabidopsis</i> (Brassicaceae). American Journal of Botany, 2009, 96, 1656-1664. Reciprocal Silencing, Transcriptional Bias and Functional Divergence of Homeologs in Polyploid Cotton (Gossypium). Genetics, 2009, 182, 503-517. Phenotypic, genetic and genomic consequences of natural and synthetic polyploidization of Nicotiana attenuata and Nicotiana obtusifolia. Annals of Botany, 2009, 103, 1207-1217. Evolution and Natural History of the Cotton Genus. , 2009, , 3-22. 	0.7 1.7 2.9 2.9	8 32 212 75 169

#	ARTICLE	IF	CITATIONS
148	Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). Biological Invasions, 2009, 11, 1159-1173.	2.4	202
149	Fine mapping of open-bud duplicate genes in homoelogous chromosomes of tetraploid cotton. Euphytica, 2009, 165, 325-331.	1.2	16
150	Analysis of DNA methylation patterns of PLBs derived from Cymbidium hybridium based on MSAP. Plant Cell, Tissue and Organ Culture, 2009, 98, 67-77.	2.3	21
151	A large number of tetraploid Arabidopsis thaliana lines, generated by a rapid strategy, reveal high stability of neo-tetraploids during consecutive generations. Theoretical and Applied Genetics, 2009, 118, 1107-1119.	3.6	58
152	Genomic expression dominance in allopolyploids. BMC Biology, 2009, 7, 18.	3.8	232
153	The complex nature of allopolyploid plant genomes. Heredity, 2009, 103, 100-101.	2.6	13
154	Expression changes of duplicated genes in allotetraploids of Brassica detected by SRAP-cDNA technique. Molecular Biology, 2009, 43, 1-7.	1.3	8
155	Clonal genetic diversity and populational genetic differentiation in <i>Phragmites australis </i> distributed in the Songnen Prairie in northeast China as revealed by amplified fragment length polymorphism and sequenceâ€specific amplification polymorphism molecular markers. Annals of Applied Biology, 2009, 154, 43-55.	2.5	14
156	Polyploidy and genome restructuring: a variety of outcomes. Current Opinion in Genetics and Development, 2009, 19, 600-606.	3.3	58
157	EST-SSR sequences revealed the relationship of D-genome in diploid and tetraploid Species in Gossypium. Plant Science, 2009, 176, 397-405.	3.6	11
158	Rapid cytological diploidization in newly formed allopolyploids of the wheat (<i>Aegilops</i> - <i>Triticum</i>) group. Genome, 2009, 52, 926-934.	2.0	28
159	Order Out of Chaos in the Hybrid Plant Nucleus. Cytogenetic and Genome Research, 2009, 126, 376-389.	1.1	33
160	Rapid genomic changes in polyploid wheat and related species: implications for genome evolution and genetic improvement. Journal of Genetics and Genomics, 2009, 36, 519-528.	3.9	54
161	Intraspecific hybrids of Arabidopsis thaliana revealed no gross alterations in endopolyploidy, DNA methylation, histone modifications and transcript levels. Theoretical and Applied Genetics, 2010, 120, 215-226.	3.6	38
162	Synthesis of a Brassica trigenomic allohexaploid (B. carinataÂ×ÂB. rapa) de novo and its stability in subsequent generations. Theoretical and Applied Genetics, 2010, 121, 1431-1440.	3.6	70
163	Structure and size variations between 12A and 12D homoeologous chromosomes based on high-resolution cytogenetic map in allotetraploid cotton. Chromosoma, 2010, 119, 255-266.	2.2	32
164	Cytomixis-like chromosomes/chromatin elimination from pollen mother cells (PMCs) in wheat-rye allopolyploids. Nucleus (India), 2010, 53, 69-83.	2.2	22
165	DNA-methylation changes in grapevine somaclones following in vitro culture and thermotherapy. Plant Cell, Tissue and Organ Culture, 2010, 101, 11-22.	2.3	71

	CITATION REF	PORT	
#	Article	IF	CITATIONS
166	Genomic and expression plasticity of polyploidy. Current Opinion in Plant Biology, 2010, 13, 153-159.	7.1	283
167	Homeolog loss and expression changes in natural populations of the recently and repeatedly formed allotetraploid Tragopogon mirus (Asteraceae). BMC Genomics, 2010, 11, 97.	2.8	82
168	Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytologist, 2010, 186, 18-28.	7.3	285
169	Transcriptomic changes following recent natural hybridization and allopolyploidy in the salt marsh species <i>Spartinaâ€f×â€ftownsendii</i> and <i>Spartina anglica</i> (Poaceae). New Phytologist, 2010, 186, 161-174.	7.3	129
170	The first meiosis of resynthesized <i>Brassica napus</i> , a genome blender. New Phytologist, 2010, 186, 102-112.	7.3	267
171	Newly synthesized wheat allohexaploids display progenitorâ€dependent meiotic stability and aneuploidy but structural genomic additivity. New Phytologist, 2010, 186, 86-101.	7.3	124
172	Gene copy number evolution during tetraploid cotton radiation. Heredity, 2010, 105, 463-472.	2.6	24
173	Spatio-temporal patterns of genome evolution in allotetraploid species of the genus Oryza. Plant Journal, 2010, 63, 430-442.	5.7	48
174	Genome elimination during microsporogenesis in two pentaploid accessions of Brachiaria decumbens (Poaceae). Genetics and Molecular Research, 2010, 9, 2364-2371.	0.2	8
175	Comparative Mapping Reveals Autosomal Origin of Sex Chromosome in Octoploid Fragaria virginiana. Journal of Heredity, 2010, 101, S107-S117.	2.4	59
176	Cotton Genomics. Biotechnology in Agriculture and Forestry, 2010, , 45-63.	0.2	0
177	A triptych of the evolution of plant transposable elements. Trends in Plant Science, 2010, 15, 471-478.	8.8	254
178	Generality and characteristics of genetic and epigenetic changes in newly synthesized allotetraploid wheat lines. Journal of Genetics and Genomics, 2010, 37, 737-748.	3.9	15
179	Homoeolog-specific retention and use in allotetraploid Arabidopsis suecica depends on parent of origin and network partners. Genome Biology, 2010, 11, R125.	9.6	83
180	An Interspecific Plant Hybrid Shows Novel Changes in Parental Splice Forms of Genes for Splicing Factors. Genetics, 2010, 184, 975-983.	2.9	17
181	Size matters in Triticeae polyploids: larger genomes have higher remodeling. Genome, 2011, 54, 175-183.	2.0	48
182	A genetic map of an Australian wild Gossypium C genome and assignment of homoeologies with tetraploid cultivated cotton. Genome, 2011, 54, 779-794.	2.0	10
183	Genomic profiling in Down syndrome acute lymphoblastic leukemia identifies histone gene deletions associated with altered methylation profiles. Leukemia, 2011, 25, 1555-1563.	7.2	43

#	Article	IF	Citations
184	Chromosomal and genome-wide molecular changes associated with initial stages of allohexaploidization in wheat can be transit and incidental. Genome, 2011, 54, 692-699.	2.0	38
185	Additive inheritance of histone modifications in <i>Arabidopsis thaliana</i> intraâ€specific hybrids. Plant Journal, 2011, 67, 691-700.	5.7	48
186	Nonadditive changes to cytosine methylation as a consequence of hybridization and genome duplication in Senecio (Asteraceae). Molecular Ecology, 2011, 20, 105-113.	3.9	84
187	Differential contributions to the transcriptome of duplicated genes in response to abiotic stresses in natural and synthetic polyploids. New Phytologist, 2011, 190, 1045-1057.	7.3	116
188	Polyploid formation pathways have an impact on genetic rearrangements in resynthesized <i>Brassica napus</i> . New Phytologist, 2011, 191, 884-894.	7.3	96
189	Allopolyploid origins of the <i>Galeopsis</i> tetraploids – revisiting Müntzing's classical textbook example using molecular tools. New Phytologist, 2011, 191, 1150-1167.	7.3	31
190	Identification of exotic genetic components and DNA methylation pattern analysis of three cotton introgression lines from Gossypium bickii. Molecular Biology, 2011, 45, 204-210.	1.3	3
191	Effect of DNA methylation on molecular diversity of watermelon heirlooms and stability of methylation specific polymorphisms across the genealogies. Euphytica, 2011, 177, 79-89.	1.2	10
192	Characterization of resistance gene analogs from Gossypium arboreum and their evolutionary relationships with homologs from tetraploid cottons. Euphytica, 2011, 178, 351-362.	1.2	7
193	DNA Methylation in Genomes of Several Annual Herbaceous and Woody Perennial Plants of Varying Ploidy as Detected by MSAP. Plant Molecular Biology Reporter, 2011, 29, 784-793.	1.8	43
194	Proteomic Changes in Newly Synthesized Brassica napus Allotetraploids and Their Early Generations. Plant Molecular Biology Reporter, 2011, 29, 927-935.	1.8	28
195	Altered gene expression and ecological divergence in sibling allopolyploids of Dactylorhiza (Orchidaceae). BMC Evolutionary Biology, 2011, 11, 113.	3.2	61
196	Snapshot of DNA methylation changes associated with hybridization in <i>Xenopus</i> . Physiological Genomics, 2011, 43, 1276-1280.	2.3	17
197	Extensive and Heritable Epigenetic Remodeling and Genetic Stability Accompany Allohexaploidization of Wheat. Genetics, 2011, 188, 499-510.	2.9	72
198	Next Generation Sequencing Reveals Genome Downsizing in Allotetraploid Nicotiana tabacum, Predominantly through the Elimination of Paternally Derived Repetitive DNAs. Molecular Biology and Evolution, 2011, 28, 2843-2854.	8.9	150
199	Wild Crop Relatives: Genomic and Breeding Resources. , 2011, , .		7
200	Gossypium. , 2011, , 109-122.		0
201	Molecular Tools for Exploring Polyploid Genomes in Plants. International Journal of Molecular Sciences, 2012, 13, 10316-10335.	4.1	40

#	Article	IF	CITATIONS
202	Microsatellite Mutation Rate during Allohexaploidization of Newly Resynthesized Wheat. International Journal of Molecular Sciences, 2012, 13, 12533-12543.	4.1	17
203	Comparative proteomics of the recently and recurrently formed natural allopolyploid <i>Tragopogon mirus</i> (Asteraceae) and its parents. New Phytologist, 2012, 196, 292-305.	7.3	79
204	Nextâ€generation sequencing and genome evolution in allopolyploids. American Journal of Botany, 2012, 99, 372-382.	1.7	77
205	Genome synteny and evolution of AABB allotetraploids in Hibiscus section Furcaria revealed by interspecific hybridization, ISSR and SSR markers. Plant Systematics and Evolution, 2012, 298, 1257-1270.	0.9	14
206	Variation of DNA methylation and phenotypic traits following unilateral sexual polyploidization in Medicago. Euphytica, 2012, 186, 731-739.	1.2	3
207	Identification of genes that were differentially expressed and associated with fiber yield and quality using cDNA-AFLP and a backcross inbred line population. Molecular Breeding, 2012, 30, 975-985.	2.1	7
208	Jeans, Genes, and Genomes: Cotton as a Model for Studying Polyploidy. , 2012, , 181-207.		50
209	Evolutionary Implications of Genome and Karyotype Restructuring in Nicotiana tabacum L. , 2012, , 209-224.		6
210	Allopolyploid Speciation in Action: The Origins and Evolution of Senecio cambrensis. , 2012, , 245-270.		22
211	Polyploidy and Genome Evolution. , 2012, , .		93
212	Duplications and Turnover in Plant Genomes. , 2012, , 155-169.		34
213	Concerted Evolution of Multigene Families and Homoeologous Recombination. , 2012, , 171-193.		58
214	A microsatellite linkage map for the cultivated strawberry (FragariaÂ×Âananassa) suggests extensive regions of homozygosity in the genome that may have resulted from breeding and selection. Theoretical and Applied Genetics, 2012, 124, 1229-1240.	3.6	80
215	Nonâ€random distribution of extensive chromosome rearrangements in <i>Brassica napus</i> depends on genome organization. Plant Journal, 2012, 70, 691-703.	5.7	43
216	Global transgenerational gene expression dynamics in two newly synthesized allohexaploid wheat (Triticum aestivum) lines. BMC Biology, 2012, 10, 3.	3.8	75
217	Lessons from Natural and Artificial Polyploids in Higher Plants. Cytogenetic and Genome Research, 2013, 140, 204-225.	1.1	72
218	Nucleolar dominance and different genome behaviors in hybrids and allopolyploids. Plant Cell Reports, 2013, 32, 1661-1673.	5.6	30
219	Doubled haploids of novel trigenomic Brassica derived from various interspecific crosses. Plant Cell, Tissue and Organ Culture, 2013, 113, 501-511.	2.3	31

~		~	
(15	ГАТ	DEI	PORT
	IAL	NL	PORT

#	Article	IF	CITATIONS
220	Molecular analysis of genomic changes in synthetic autotetraploidPhlox drummondiiâ€Hook. Biological Journal of the Linnean Society, 2013, 110, 591-605.	1.6	23
221	The Plant Nucleus at War and Peace: Genome Organization in the Interphase Nucleus. , 2013, , 13-31.		3
222	Significance and Biological Consequences of Polyploidization in Land Plant Evolution. , 2013, , 277-293.		34
223	Genetic and Epigenetic Aspects of Polyploid Evolution in Plants. Cytogenetic and Genome Research, 2013, 140, 270-285.	1.1	155
225	Parental origin and genomic evolution of tetraploidGossypiumspecies by molecular marker and GISH analyses. Caryologia, 2013, 66, 368-374.	0.3	22
226	Complete asynapsis resulting in 2n pollen formation in Paspalum jesuiticum Parodi (Poaceae). Genetics and Molecular Research, 2014, 13, 255-261.	0.2	7
227	An Interspecific Fungal Hybrid Reveals Cross-Kingdom Rules for Allopolyploid Gene Expression Patterns. PLoS Genetics, 2014, 10, e1004180.	3.5	68
228	The <i>BOY NAMED SUE</i> Quantitative Trait Locus Confers Increased Meiotic Stability to an Adapted Natural Allopolyploid of <i>Arabidopsis</i> . Plant Cell, 2014, 26, 181-194.	6.6	81
229	The polyploidy revolution then…and now: Stebbins revisited. American Journal of Botany, 2014, 101, 1057-1078.	1.7	421
230	Rapid Genetic and Epigenetic Alterations under Intergeneric Genomic Shock in Newly Synthesized Chrysanthemum morifolium × Leucanthemum paludosum Hybrids (Asteraceae). Genome Biology and Evolution, 2014, 6, 247-259.	2.5	40
231	Polyploid Speciation and Genome Evolution: Lessons from Recent Allopolyploids. , 2014, , 87-113.		16
232	Near-Absent Levels of Segregational Variation Suggest Limited Opportunities for the Introduction of Genetic Variation Via Homeologous Chromosome Pairing in Synthetic Neoallotetraploid Mimulus. G3: Genes, Genomes, Genetics, 2014, 4, 509-522.	1.8	11
233	Methylation-Sensitive Amplified Polymorphism (MSAP) Marker to Investigate Drought-Stress Response in Montepulciano and Sangiovese Grape Cultivars. Methods in Molecular Biology, 2014, 1112, 151-164.	0.9	7
234	Triparental origin of triploid onion, Allium × cornutum (Clementi ex Visiani, 1842), as evidenced by molecular, phylogenetic and cytogenetic analyses. BMC Plant Biology, 2014, 14, 24.	3.6	29
235	Genome rearrangements derived from homoeologous recombination following allopolyploidy speciation in coffee. Plant Journal, 2014, 78, 674-685.	5.7	53
236	Genetic and epigenetic changes in a genomic region containing MIR172 in Arabidopsis allopolyploids and their progenitors. Heredity, 2014, 112, 207-214.	2.6	9
237	Morphological, cytological and molecular analyses of a synthetic hexaploid derived from an interspecific hybrid between Gossypium hirsutum and Gossypium anomalum. Crop Journal, 2014, 2, 272-277.	5.2	15
238	Phenotypic and genetic variation occurred during wide hybridisation and allopolyploidisation between Brassica rapa and Brassica nigra. Scientia Horticulturae, 2014, 176, 22-31.	3.6	8

#	Article	IF	Citations
239	The widespread crucifer species <i><scp>C</scp>ardamine flexuosa</i> is an allotetraploid with a conserved subgenomic structure. New Phytologist, 2014, 201, 982-992.	7.3	67
240	Genetic Mechanisms of Allopolyploid Speciation Through Hybrid Genome Doubling. International Review of Cell and Molecular Biology, 2014, 309, 199-258.	3.2	13
241	Polyploidy in the Arabidopsis genus. Chromosome Research, 2014, 22, 117-134.	2.2	79
242	Genetic response of Paspalum plicatulum to genome duplication. Genetica, 2014, 142, 227-234.	1.1	2
243	PLOIDY AND GENE EXPRESSION IN CLEMENTINE. Acta Horticulturae, 2015, , 605-611.	0.2	1
244	Spontaneous and Divergent Hexaploid Triticales Derived from Common Wheat × Rye by Complete Elimination of D-Genome Chromosomes. PLoS ONE, 2015, 10, e0120421.	2.5	26
245	Analysis of [Gossypium capitis-viridis × (G.hirsutum × G.australe)2] Trispecific Hybrid and Selected Characteristics. PLoS ONE, 2015, 10, e0127023.	2.5	4
246	Limited DNA methylation variation and the transcription of MET1 and DDM1 in the genus Chrysanthemum (Asteraceae): following the track of polyploidy. Frontiers in Plant Science, 2015, 6, 668.	3.6	7
247	Development of chromosome-specific markers with high polymorphism for allotetraploid cotton based on genome-wide characterization of simple sequence repeats in diploid cottons (Gossypium) Tj ETQq0 0 C	∣rg B 8 /Ove	erl æc k 10 Tf 5
248	Epigenetic and developmental regulation in plant polyploids. Current Opinion in Plant Biology, 2015, 24, 101-109.	7.1	173
249	Polyploidy in Crop Improvement and Evolution. , 2015, , 619-638.		9
250	Evaluating the relationship between diploid and tetraploid <i>Vaccinium oxycoccos</i> (Ericaceae) in eastern Canada. Botany, 2015, 93, 623-636.	1.0	16
251	DNA methylation changes in fusarium wilt resistant and sensitive chickpea genotypes (Cicer arietinum) Tj ETQq0	0 0 rgBT	Overlock 10
252	Epigenetic Patterns in Genetically Imbalanced Polyploid Dog Rose Hybrids (<i>Rosa</i> L. sect.) Tj ETQq1 1 0.784 Methylation-Sensitive Amplified Polymorphisms. International Journal of Plant Sciences, 2015, 176, 433-445.	4314 rgBT 1.3	/Overlock 10 5
253	Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015, 33, 531-537.	17.5	1,560
254	Extensive reprogramming of cytosine methylation in Oryza allotetraploids. Genes and Genomics, 2015, 37, 517-524.	1.4	4
255	Islet implantation in a pocket. Nature Biotechnology, 2015, 33, 493-494.	17.5	4
256	Unraveling the fabric of polyploidy. Nature Biotechnology, 2015, 33, 491-493.	17.5	17

#	Article	IF	CITATIONS
257	Genetic and Epigenetic Changes in Somatic Hybrid Introgression Lines Between Wheat and Tall Wheatgrass. Genetics, 2015, 199, 1035-1045.	2.9	33
258	Speciation by genome duplication: Repeated origins and genomic composition of the recently formed allopolyploid species <i>Mimulus peregrinus</i> . Evolution; International Journal of Organic Evolution, 2015, 69, 1487-1500.	2.3	72
259	Application of ISSR-PCR, IRAP-PCR, REMAP-PCR, and ITAP-PCR in the assessment of genomic changes in the early generation of triticale. Biologia Plantarum, 2015, 59, 708-714.	1.9	3
260	Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E7022-9.	7.1	137
261	Experimental Evolution Reveals Interplay between Sch9 and Polyploid Stability in Yeast. PLoS Genetics, 2016, 12, e1006409.	3.5	24
262	The importance of reproductive barriers and the effect of allopolyploidization on crop breeding. Breeding Science, 2016, 66, 333-349.	1.9	28
263	Polyploidy: Pitfalls and paths to a paradigm. American Journal of Botany, 2016, 103, 1146-1166.	1.7	271
264	Analysis of cytosine methylation in early generations of resynthesized Brassica napus. Journal of Integrative Agriculture, 2016, 15, 1228-1238.	3.5	16
265	Inter-genomic DNA Exchanges and Homeologous Gene Silencing Shaped the Nascent Allopolyploid Coffee Genome (<i>Coffea arabica</i> L.). G3: Genes, Genomes, Genetics, 2016, 6, 2937-2948.	1.8	27
266	Comparative analysis of resistance gene analogues encoding <scp>NBS‣RR</scp> domains in cotton. Journal of the Science of Food and Agriculture, 2016, 96, 530-538.	3.5	19
267	Genomic incompatibilities in the diploid and tetraploid offspring of the goldfish × common carp cross. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1327-1332.	7.1	119
268	The Impact of Open Pollination on the Structural Evolutionary Dynamics, Meiotic Behavior, and Fertility of Resynthesized Allotetraploid <i>Brassica napus</i> L G3: Genes, Genomes, Genetics, 2017, 7, 705-717.	1.8	28
269	Rapid gene expression change in a novel synthesized allopolyploid population of cultivated peanut×Arachis doigoi cross by cDNA-SCoT and HFO-TAG technique. Journal of Integrative Agriculture, 2017, 16, 1093-1102.	3.5	9
270	Epigenomic and functional analyses reveal roles of epialleles in the loss of photoperiod sensitivity during domestication of allotetraploid cottons. Genome Biology, 2017, 18, 99.	8.8	153
272	Cytogenetic and molecular evidences revealing genomic changes after autopolyploidization: a case study of synthetic autotetraploid Phlox drummondii Hook. Physiology and Molecular Biology of Plants, 2017, 23, 641-650.	3.1	19
273	Polyploidy and Genomic Changes. , 2017, , 69-87.		0
274	Future Prospects in Polyploidy Research. , 2017, , 101-104.		1
275	How genetic variation is affected by geographic environments and ploidy level in Erianthus arundinaceus?. PLoS ONE, 2017, 12, e0178451.	2.5	7

#	Article	IF	CITATIONS
276	Asymmetrical changes of gene expression, small <scp>RNA</scp> s and chromatin in two resynthesized wheat allotetraploids. Plant Journal, 2018, 93, 828-842.	5.7	40
277	Reorganization of wheat and rye genomes in octoploid triticale (×ÂTriticosecale). Planta, 2018, 247, 807-829.	3.2	16
278	Maternal doubled haploid production in interploidy hybridization between Brassica napus and Brassica allooctaploids. Planta, 2018, 247, 113-125.	3.2	27
280	Effects of ploidy variation on promoter DNA methylation and gene expression in rice (Oryza sativa L.). BMC Plant Biology, 2018, 18, 314.	3.6	6
281	Homoeologous Exchanges and Gene Losses Generate Diversity and Differentiate the B. napus Genome from that of Its Ancestors. Compendium of Plant Genomes, 2018, , 131-148.	0.5	5
282	Stress related epigenetic changes may explain opportunistic success in biological invasions in Antipode mussels. Scientific Reports, 2018, 8, 10793.	3.3	25
283	Whole Genome Incorporation and Epigenetic Stability in a Newly Synthetic Allopolyploid of Gynogenetic Gibel Carp. Genome Biology and Evolution, 2018, 10, 2394-2407.	2.5	14
284	A new biological species in the Mercurialis annua polyploid complex: functional divergence in inflorescence morphology and hybrid sterility. Annals of Botany, 2019, 124, 165-178.	2.9	3
285	Changes in DNA methylation patterns affect ripening time in Satsuma mandarin fruit. Plant Breeding, 2019, 138, 967-978.	1.9	4
286	Extensive intraspecific gene order and gene structural variations in upland cotton cultivars. Nature Communications, 2019, 10, 2989.	12.8	144
286 287		12.8 0.3	144 15
	Communications, 2019, 10, 2989. Parental origin and genome evolution of several Eurasian hexaploid species of Chenopodium		
287	Communications, 2019, 10, 2989. Parental origin and genome evolution of several Eurasian hexaploid species of Chenopodium (Chenopodiaceae). Phytotaxa, 2019, 392, 163. Divergent gene expression levels between diploid and autotetraploid <i>Tolmiea</i>	0.3	15
287 288	Communications, 2019, 10, 2989. Parental origin and genome evolution of several Eurasian hexaploid species of Chenopodium (Chenopodiaceae). Phytotaxa, 2019, 392, 163. Divergent gene expression levels between diploid and autotetraploid <i>Tolmiea</i> relative to the total transcriptome, the cell, and biomass. American Journal of Botany, 2019, 106, 280-291. Parental transposable element loads influence their dynamics in young <i>Nicotiana</i> hybrids and	0.3	15 30
287 288 289	Communications, 2019, 10, 2989. Parental origin and genome evolution of several Eurasian hexaploid species of Chenopodium (Chenopodiaceae). Phytotaxa, 2019, 392, 163. Divergent gene expression levels between diploid and autotetraploid <i>Tolmiea</i> relative to the total transcriptome, the cell, and biomass. American Journal of Botany, 2019, 106, 280-291. Parental transposable element loads influence their dynamics in young <i>Nicotiana</i> hybrids and allotetraploids. New Phytologist, 2019, 221, 1619-1633. Assessing the Response of Small RNA Populations to Allopolyploidy Using Resynthesized Brassica	0.3 1.7 7.3	15 30 23
287 288 289 290	Communications, 2019, 10, 2989. Parental origin and genome evolution of several Eurasian hexaploid species of Chenopodium (Chenopodiaceae). Phytotaxa, 2019, 392, 163. Divergent gene expression levels between diploid and autotetraploid <i>Tolmiea</i> relative to the total transcriptome, the cell, and biomass. American Journal of Botany, 2019, 106, 280-291. Parental transposable element loads influence their dynamics in young <i>Nicotiana</i> hybrids and allotetraploids. New Phytologist, 2019, 221, 1619-1633. Assessing the Response of Small RNA Populations to Allopolyploidy Using Resynthesized Brassica napus Allotetraploids. Molecular Biology and Evolution, 2019, 36, 709-726. Genomic divergence in cotton germplasm related to maturity and heterosis. Journal of Integrative	0.3 1.7 7.3 8.9	15 30 23 22
287 288 289 290 291	Communications, 2019, 10, 2989. Parental origin and genome evolution of several Eurasian hexaploid species of Chenopodium (Chenopodiaceae). Phytotaxa, 2019, 392, 163. Divergent gene expression levels between diploid and autotetraploid <i>Tolmiea</i> relative to the total transcriptome, the cell, and biomass. American Journal of Botany, 2019, 106, 280-291. Parental transposable element loads influence their dynamics in young <i>Nicotiana</i> hybrids and allotetraploids. New Phytologist, 2019, 221, 1619-1633. Assessing the Response of Small RNA Populations to Allopolyploidy Using Resynthesized Brassica napus Allotetraploids. Molecular Biology and Evolution, 2019, 36, 709-726. Genomic divergence in cotton germplasm related to maturity and heterosis. Journal of Integrative Plant Biology, 2019, 61, 929-942. Interspecific hybridisation and LTR-retrotransposon mobilisation-related structural variation in	0.3 1.7 7.3 8.9 8.5	15 30 23 22 21

#	Article	IF	CITATIONS
295	Screening diversity and distribution of Copia retrotransposons reveals a specific amplification of BARE1 elements in genomes of the polyploid Hordeum murinum complex. Genetica, 2020, 148, 109-123.	1.1	0
296	Evolution and Diversity of the Cotton Genome. , 2021, , 25-78.		21
297	Wholeâ€Genome Sequence of Synthesized Allopolyploids in <i>Cucumis</i> Reveals Insights into the Genome Evolution of Allopolyploidization. Advanced Science, 2021, 8, 2004222.	11.2	24
298	The genetic background of the phenotypic variability observed in apple autotetraploids. Acta Horticulturae, 2021, , 177-186.	0.2	3
299	ARPEGGIO: Automated Reproducible Polyploid EpiGenetic Guldance workflOw. BMC Genomics, 2021, 22, 547.	2.8	4
300	Reconstruction of ancestral karyotype illuminates chromosome evolution in the genus <i>Cucumis</i> . Plant Journal, 2021, 107, 1243-1259.	5.7	23
301	Gradual evolution of allopolyploidy in Arabidopsis suecica. Nature Ecology and Evolution, 2021, 5, 1367-1381.	7.8	64
302	Differences between diploid donors are the main contributing factor for subgenome asymmetry measured in either gene ratio or relative diversity in allopolyploids. Genome, 2021, 64, 847-856.	2.0	1
303	Perspectives on Ecological and Evolutionary Systems Biology. , 0, , 331-349.		8
304	Retrotransposonâ€based genetic diversity of <i>Deschampsia antarctica</i> Desv. from King George Island (Maritime Antarctic). Ecology and Evolution, 2021, 11, 648-663.	1.9	9
305	Structural and Functional Evolution of Resynthesized Polyploids. , 2011, , 195-214.		12
306	Dynamic Changes in the Distribution of a Satellite Homologous to Intergenic 26-18S rDNA Spacer in the Evolution of Nicotiana. Genetics, 2004, 166, 1935-1946.	2.9	9
309	Genomic Change, Retrotransposon Mobilization and Extensive Cytosine Methylation Alteration in Brassica napus Introgressions from Two Intertribal Hybridizations. PLoS ONE, 2013, 8, e56346.	2.5	29
310	QTL mapping for flowering-time and photoperiod insensitivity of cotton Gossypium darwinii Watt. PLoS ONE, 2017, 12, e0186240.	2.5	11
311	Genetic Relationships of Codiaeum variegatum Cultivars Analyzed by Amplified Fragment Length Polymorphism Markers. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 868-874.	1.0	8
312	Cytogenetic maps of homoeologous chromosomes A h01 and D h01 and their integration with the genome assembly in Gossypium hirsutum. Comparative Cytogenetics, 2017, 11, 405-420.	0.8	2
313	Genetic and epigenetic regulation of phenotypic variation in invasive plants – linking research trends towards a unified framework. NeoBiota, 0, 49, 77-103.	1.0	22
314	Genomic Variation in F ₁ Hybrid and Amphidiploid between <1>Aegilops tauschii 1 and <1>Secale cereale 1 . Acta Agronomica Sinica(China), 2013, 38, 996-1002.	0.3	0

#	Article	IF	CITATIONS
315	Molecular Tools for Exploring Polyploid Genomes in Plants. , 2014, , 73-97.		0
316	Extent and Pattern of DNA Cytosine Methylation Changes Between Non-pollinated and Pollinated Ovaries from Cymbidium hybridium. Lecture Notes in Electrical Engineering, 2015, , 607-616.	0.4	0
319	Effects of ploidy variation on DNA methylation and gene expression in Pear (Pyrus communis L.). Scientia Horticulturae, 2022, 293, 110713.	3.6	4
320	Tracing the Evolution of the Angiosperm Genome from the Cytogenetic Point of View. Plants, 2022, 11, 784.	3.5	7
321	Does one subgenome become dominant in the formation and evolution of a polyploid?. Annals of Botany, 2022, , .	2.9	4
322	Comparative genomic analyses reveal cis-regulatory divergence after polyploidization in cotton. Crop Journal, 2022, , .	5.2	Ο
324	Comparative analysis of genome sequences of the two cultivated tetraploid cottons, Gossypium hirsutum (L.) and G. barbadense (L.). Industrial Crops and Products, 2023, 196, 116471.	5.2	2