Nearly 100% internal phosphorescence efficiency in an

Journal of Applied Physics 90, 5048-5051 DOI: 10.1063/1.1409582

Citation Report

#	Article	IF	CITATIONS
2	High efficiency, long lifetime phosphorescent OLEDs. , 0, , .		1
3	The outlook for minor pesticide uses in the UK and Europe. Outlooks on Pest Management, 2001, 12, 224-228.	0.2	Ο
4	Efficient organic light emitting diodes and photodetectors. , 0, , .		0
5	Efficient organic light emitting diodes and photodetectors. , 0, , .		Ο
6	Integrated organic light-emitting device/fluorescence-based chemical sensors. Applied Physics Letters, 2002, 81, 4652-4654.	1.5	57
7	Cyclometalated Ir complexes in polymer organic light-emitting devices. Journal of Applied Physics, 2002, 92, 1570-1575.	1.1	174
8	High operational stability of electrophosphorescent devices. Applied Physics Letters, 2002, 81, 162-164.	1.5	251
9	A possible mechanism for enhanced electrofluorescence emission through triplet–triplet annihilation in organic electroluminescent devices. Applied Physics Letters, 2002, 81, 3137-3139.	1.5	121
10	52.3: Display Properties of High-efficiency Electrophosphorescent Diodes. Digest of Technical Papers SID International Symposium, 2002, 33, 1365.	0.1	9
11	52.1: Invited Paper: Electrophosphorescent Organic Light Emitting Devices. Digest of Technical Papers SID International Symposium, 2002, 33, 1357.	0.1	4
12	37.3: High Performance 2.2ʺ QCIF Full Color AMOLED Display based on Electrophosphorescence. Digest of Technical Papers SID International Symposium, 2002, 33, 1096.	0.1	10
13	Materials for Solid State Lighting. Materials Research Society Symposia Proceedings, 2002, 722, 211.	0.1	2
14	<title>Recent progress in flexible displays</title> . , 2002, , .		1
15	Divalent Osmium Complexes:Â Synthesis, Characterization, Strong Red Phosphorescence, and Electrophosphorescence. Journal of the American Chemical Society, 2002, 124, 14162-14172.	6.6	218
16	Quenching effects in organic electrophosphorescence. Physical Review B, 2002, 66, .	1.1	284
17	Bis-cyclometalated Ir(III) Complexes as Efficient Singlet Oxygen Sensitizers. Journal of the American Chemical Society, 2002, 124, 14828-14829.	6.6	241
18	Light up-conversion from near-infrared to blue using a photoresponsive organic light-emitting device. Applied Physics Letters, 2002, 81, 769-771.	1.5	45
19	Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers. Journal of Applied Physics, 2002, 92, 87-93.	1.1	371

TATION REDO

#	Article	IF	Citations
20	Carrier Mobilities in Organic Electron Transport Materials Determined from Space Charge Limited Current. Japanese Journal of Applied Physics, 2002, 41, 5626-5629.	0.8	111
21	Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. Journal of Applied Physics, 2002, 91, 3324-3327.	1.1	616
22	Passive-Matrix Polymer Light-Emitting Displays. MRS Bulletin, 2002, 27, 864-869.	1.7	46
23	High-efficiency organic light-emitting diodes. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8, 346-361.	1.9	193
24	Architectures for efficient electrophosphorescent organic light-emitting devices. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8, 372-377.	1.9	56
25	Electrophosphorescent p–i–n Organic Light-Emitting Devices for Very-High-Efficiency Flat-Panel Displays. Advanced Materials, 2002, 14, 1633-1636.	11.1	236
26	Fluorescence and Phosphorescence in Organic Materials. Advanced Engineering Materials, 2002, 4, 453-459.	1.6	36
27	Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature, 2002, 420, 800-803.	13.7	2,420
28	Metastable garnet in oceanic crust at the top of the lower mantle. Nature, 2002, 420, 803-806.	13.7	89
29	A light-emitting sandwich filling. Nature, 2002, 420, 753-755.	13.7	36
30	Prospects for electrically pumped organic lasers. Physical Review B, 2002, 66, .	1.1	306
31	Spin-dependent exciton formation rates in Â-conjugated materials. Journal of Physics Condensed Matter, 2003, 15, R83-R107.	0.7	95
32	Electrophosphorescence from a Polymer Guest–Host System with an Iridium Complex as Guest: Förster Energy Transfer and Charge Trapping. Advanced Functional Materials, 2003, 13, 439-444.	7.8	322
33	Liquid Crystals for Charge Transport, Luminescence, and Photonics. Advanced Materials, 2003, 15, 1135-1146.	11.1	611
34	Measuring the Efficiency of Organic Light-Emitting Devices. Advanced Materials, 2003, 15, 1043-1048.	11.1	531
35	Highly Efficient Red Electrophosphorescent Devices Based on Iridium Isoquinoline Complexes: Remarkable External Quantum Efficiency Over a Wide Range of Current. Advanced Materials, 2003, 15, 884-888.	11.1	367
36	Color Tunable Organic Light-Emitting Diodes Using Pentafluorophenyl-Substituted Iridium Complexes. Advanced Materials, 2003, 15, 1455-1458.	11.1	260
37	New Iridium Complexes as Highly Efficient Orange–Red Emitters in Organic Light-Emitting Diodes. Advanced Materials, 2003, 15, 224-228.	11.1	368

#	Article	IF	CITATIONS
39	Structural, Photophysical, and Electrophosphorescent Properties of Platinum(II) Complexes Supported by Tetradentate N2O2 Chelates. Chemistry - A European Journal, 2003, 9, 1263-1272.	1.7	106
40	Triplet Emission in Soluble Mercury(II) Polyyne Polymers. Angewandte Chemie - International Edition, 2003, 42, 4064-4068.	7.2	87
41	New charge-carrier blocking materials for high efficiency OLEDs. Organic Electronics, 2003, 4, 77-87.	1.4	335
42	High efficiency and low power consumption in active matrix organic light emitting diodes. Organic Electronics, 2003, 4, 143-148.	1.4	61
43	The road to high efficiency organic light emitting devices. Organic Electronics, 2003, 4, 45-48.	1.4	280
44	High-efficiency phosphorescent polymer light-emitting devices. Organic Electronics, 2003, 4, 105-111.	1.4	196
45	Current status of electrophosphorescent device stability. Organic Electronics, 2003, 4, 155-164.	1.4	42
46	Influence of molecular structure on the properties of dendrimer light-emitting diodes. Organic Electronics, 2003, 4, 71-76.	1.4	48
47	Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices. Organic Electronics, 2003, 4, 123-130.	1.4	218
48	Advanced light emitting diodes structures for optoelectronic applications. Thin Solid Films, 2003, 433, 22-26.	0.8	82
49	Photoresponsive organic electroluminescent devices. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 158, 215-218.	2.0	9
50	A low drive voltage, transparent, metal-free n–i–p electrophosphorescent light emitting diode. Organic Electronics, 2003, 4, 21-26.	1.4	52
51	Energy transfer and triplet exciton confinement in polymeric electrophosphorescent devices. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2681-2690.	2.4	131
52	Triplet Emission in Platinum-Containing Poly(alkynylsilanes). Macromolecules, 2003, 36, 983-990.	2.2	75
53	Iridium. , 2003, , 147-246.		3
54	Red electrophosphorescence devices based on rhenium complexes. Applied Physics Letters, 2003, 83, 365-367.	1.5	86
55	Phosphorescence Quenching by Conjugated Polymers. Journal of the American Chemical Society, 2003, 125, 7796-7797.	6.6	251
56	High-Efficiency Red-Light Emission from Polyfluorenes Grafted with Cyclometalated Iridium Complexes and Charge Transport Moiety. Journal of the American Chemical Society, 2003, 125, 636-637.	6.6	422

		Report	
#	Article	IF	CITATIONS
57	Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices. Applied Physics Letters, 2003, 83, 569-571.	1.5	602
58	Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode. Journal of the American Chemical Society, 2003, 125, 12971-12979.	6.6	1,226
59	OLED characteristics at high current density. , 0, , .		1
60	High-efficiency phosphorescent OLED technology. Journal of the Society for Information Display, 2003, 11, 297.	0.8	4
61	Novel Phosphorescent Cyclometalated Organotin(IV) and Organolead(IV) Complexes of 2,6-Bis(2â€~-indolyl)pyridine and 2,6-Bis[2â€~-(7-azaindolyl)]pyridine. Organometallics, 2003, 22, 4070-4078.	1.1	52
62	Excitonic singlet-triplet ratios in molecular and polymeric organic materials. Physical Review B, 2003, 68, .	1.1	310
63	Photoluminescence and Electroluminescence of d6Metalâ^'Organic Conjugated Oligomers:Â Correlation of Photophysics and Device Performance. Journal of Physical Chemistry B, 2003, 107, 12569-12572.	1.2	33
64	High-efficiency white phosphorescent organic light-emitting devices with greenish-blue and red-emitting layers. Applied Physics Letters, 2003, 83, 2459-2461.	1.5	295
65	Blue organic electrophosphorescence using exothermic host–guest energy transfer. Applied Physics Letters, 2003, 82, 2422-2424.	1.5	1,075
66	Guest Emission Processes in Doped Organic Light-Emitting Diodes:  Use of Phthalocyanine and Naphthalocyanine Near-IR Dopants. Journal of Physical Chemistry B, 2003, 107, 1142-1150.	1.2	37
67	Highly Phosphorescence Iridium Complexes and Their Application in Organic Light-Emitting Devices. Journal of the American Chemical Society, 2003, 125, 8790-8797.	6.6	490
68	White-electrophosphorescence devices based on rhenium complexes. Applied Physics Letters, 2003, 83, 4716-4718.	1.5	76
69	Highly efficient organic light-emitting devices. , 0, , .		0
70	Bright red-emitting electrophosphorescent device using osmium complex as a triplet emitter. Applied Physics Letters, 2003, 83, 776-778.	1.5	91
71	Origin of efficient light emission from a phosphorescent polymer/organometallic guest-host system. Physical Review B, 2003, 68, .	1.1	42
72	White organic light-emitting devices using a phosphorescent sensitizer. Applied Physics Letters, 2003, 82, 4224-4226.	1.5	110
73	Effects of exciton and charge confinement on the performance of white organic pâ^'iâ^'n electrophosphorescent emissive excimer devices. Journal of Applied Physics, 2003, 94, 3101-3109.	1.1	75
74	Ultrahigh efficiency green polymer light-emitting diodes by nanoscale interface modification. Applied Physics Letters, 2003, 83, 4695-4697.	1.5	113

IF ARTICLE CITATIONS High efficiency phosphorescent OLED technology., 0,,. 75 1 Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport. Applied 1.5 128 Physics Letters, 2003, 82, 4824-4826. Theoretical Investigation of the Spinâ€dependent Exciton Formation Rates in Polymeric Lightâ€emitting 77 0.8 0 Diodes. Journal of the Chinese Chemical Society, 2003, 50, 691-702. P-77: High Efficiency Polymer-Based Electrophosphorescent Organic Light-Emitting Diode. Digest of 0.1 Technical Papers SID International Symposium, 2003, 34, 512. 27.2: Single Dopant p-i-n White Organic Light Emitting Devices. Digest of Technical Papers SID 79 0.1 2 International Symposium, 2003, 34, 967. 33.4: Thermal Treatment for the Longer Operating Lifetime of Organic Light Emitting Diodes. Digest of Technical Papers SID International Symposium, 2003, 34, 1080. 0.1 15.3: 2.2-inch Full-Color 132×162 Passive Matrix Organic Light Emitting Diode (OLED) Display using 81 0.1 1 Phosphorescent Materials. Digest of Technical Papers SID International Symposium, 2003, 34, 750. White Light Emission from Polymer Light-emitting Devices based on Blue and Red Phosphorescent Polymers. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2003, 16, 309-314. 83 Electrophosphorescence from Tetrameric Copper (I)-Amide Cluster. Chemistry Letters, 2003, 32, 32-33. 0.7 19 84 Polymer-based Electrophosphorescent Devices., 2003, , 1-7. Charakterisierung von OLED-Schichten mittels Spektral-Ellipsometrie (Characterization of OLED) Tj ETQq0 0 0 rgBT / Qverlock 10 Tf 50 3 85 White Electrophosphorescent Devices having Multi-organic Phosphors Doped Layers. IEEJ 87 Transactions on Fundamentals and Materials, 2004, 124, 1053-1058.

88	High Efficiency White Electrophosphorescence Mechanism with Two Phosphorescent Dopants. IEEJ Transactions on Fundamentals and Materials, 2004, 124, 414-420.	0.2	1
89	High-Efficiency Organic Electroluminescent Device with Multiple Emitting Units. Japanese Journal of Applied Physics, 2004, 43, 6418-6422.	0.8	73
90	Organic Lightâ€Emitting Diodes. , 2004, , 1-5.		0
91	Fabrication and Characteristics of Increased Efficiency of Layered Polymeric Electroluminescent Diodes. Japanese Journal of Applied Physics, 2004, 43, 2315-2319.	0.8	8
91 92	Fabrication and Characteristics of Increased Efficiency of Layered Polymeric Electroluminescent Diodes. Japanese Journal of Applied Physics, 2004, 43, 2315-2319. Unusual Phosphorescence Characteristics of Ir(ppy)3in a Solid Matrix at Low Temperatures. Japanese Journal of Applied Physics, 2004, 43, L937-L939.	0.8	8 58

#	Article	IF	CITATIONS
94	Triplet exciton confinement and unconfinement by adjacent hole-transport layers. Journal of Applied Physics, 2004, 95, 7798-7802.	1.1	285
95	Highly efficient red electrophosphorescent devices based on an iridium complex with trifluoromethyl-substituted pyrimidine ligand. Applied Physics Letters, 2004, 85, 1619-1621.	1.5	46
96	Enhanced coupling of light from organic light emitting diodes using nanoporous films. Journal of Applied Physics, 2004, 96, 1649-1654.	1.1	81
97	Highly efficient organic electrophosphorescent light-emitting diodes with a reduced quantum efficiency roll off at large current densities. Applied Physics Letters, 2004, 84, 1052-1054.	1.5	60
98	Magnetic field effects on organic electrophosphorescence. Physical Review B, 2004, 70, .	1.1	69
99	Charge carrier transport in an emissive layer of green electrophosphorescent devices. Applied Physics Letters, 2004, 85, 4046-4048.	1.5	64
100	Ultraviolet amplified spontaneous emission from thin films of 4,4′-bis(9-carbazolyl)-2,2′-biphenyl and the derivatives. Applied Physics Letters, 2004, 84, 2724-2726.	1.5	40
101	Electroluminescence as a probe for elucidating electrical conductivity in a deoxyribonucleic acid-cetyltrimethylammonium lipid complex layer. Applied Physics Letters, 2004, 85, 1627-1629.	1.5	32
102	Phosphorescence Quantum Efficiency and Intermolecular Interaction of Iridium(III) Complexes in Co-Deposited Films with Organic Semiconducting Hosts. Materials Research Society Symposia Proceedings, 2004, 846, DD4.5.1.	0.1	0
103	Highly efficient phosphorescent guest-host systems for hybrid inverted organic light-emitting diodes with sputtered indium-tin-oxide anodes. , 2004, 5519, 143.		2
104	Novel Iridium Complex and Its Copolymer With N-Vinyl Carbazole for Electroluminescent Devices. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10, 121-126.	1.9	17
105	High-Efficiency White Phosphorescent Polymer Light-Emitting Devices. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10, 115-120.	1.9	27
106	Polymer Electrophosphorescent Light-Emitting Diode Using Aluminum Bis(2-Methyl-8-Quinolinato) 4-Phenylphenolate as an Electron-Transport Layer. IEEE Journal of Selected Topics in Quantum Electronics, 2004, 10, 101-106.	1.9	9
107	Polarons inï€-conjugated semiconductors: absorption spectroscopy and spin-dependent recombination. Physica Status Solidi A, 2004, 201, 1188-1204.	1.7	10
108	Solution-Processable Red Phosphorescent Dendrimers for Light-Emitting Device Applications. Advanced Materials, 2004, 16, 557-560.	11.1	175
109	Characterizing Joule Heating in Polymer Light-Emitting Diodes Using a Scanning Thermal Microscope. Advanced Materials, 2004, 16, 252-256.	11.1	43
110	High-Efficiency, Saturated Red-Phosphorescent Polymer Light-Emitting Diodes Based on Conjugated and Non-Conjugated Polymers Doped with an Ir Complex. Advanced Materials, 2004, 16, 537-541.	11.1	231
111	Highly Efficient Green Phosphorescent Organic Light-Emitting Diodes Based on Cul Complexes. Advanced Materials, 2004, 16, 432-436.	11.1	380

#	Article	IF	CITATIONS
112	First Examples of Alkenyl Pyridines as Organic Ligands for Phosphorescent Iridium Complexes. Advanced Materials, 2004, 16, 2003-2007.	11.1	45
113	White Organic Light-Emitting Devices for Solid-State Lighting. Advanced Materials, 2004, 16, 1585-1595.	11.1	1,997
114	Effect of Substitution of Methyl Groups on the Luminescence Performance of IrIII Complexes: Preparation, Structures, Electrochemistry, Photophysical Properties and Their Applications in Organic Light-Emitting Diodes (OLEDs). European Journal of Inorganic Chemistry, 2004, 2004, 3415-3423.	1.0	158
115	Electrochemiluminescence studies of the cyclometalated iridium(III) complexes with substituted 2-phenylbenzothiazole ligands. Electrochemistry Communications, 2004, 6, 827-831.	2.3	67
116	Electrophosphorescence from substituted poly(thiophene) doped with iridium or platinum complex. Thin Solid Films, 2004, 468, 226-233.	0.8	28
117	Exciton formation statistics under electrical injection in organic semiconductor thin films. Journal of Luminescence, 2004, 110, 378-383.	1.5	12
118	Solution-Processible Conjugated Electrophosphorescent Polymers. Journal of the American Chemical Society, 2004, 126, 7041-7048.	6.6	285
119	Near Field Spectroscopic Investigation of Fluorescence Quenching by Charge Carriers in Pentacene-Doped Tetracene. Journal of Physical Chemistry B, 2004, 108, 11368-11374.	1.2	13
120	Polymer-Based Blue Electrophosphorescent Light-Emitting Diodes Using a Bisorthometalated Ir(III) Complex as the Triplet Emitter. Chemistry of Materials, 2004, 16, 4642-4646.	3.2	83
121	Photophysics and Photochemistry of Stilbene-Containing Platinum Acetylides. Journal of Physical Chemistry B, 2004, 108, 4969-4978.	1.2	87
122	High-efficiency and low-voltage pâ€iâ€n electrophosphorescent organic light-emitting diodes with double-emission layers. Applied Physics Letters, 2004, 85, 3911-3913.	1.5	590
123	Very high-efficiency and low voltage phosphorescent organic light-emitting diodes based on a p-i-n junction. Journal of Applied Physics, 2004, 95, 5773-5777.	1.1	166
124	High-efficiency and low-voltage p-i-n electrophosphorescent OLEDs with double-doping emission layers. , 2004, , .		5
125	High-Efficiency Organic Electrophosphorescent Diodes Using 1,3,5-Triazine Electron Transport Materials. Chemistry of Materials, 2004, 16, 1285-1291.	3.2	216
126	Ultrahigh Energy Gap Hosts in Deep Blue Organic Electrophosphorescent Devices. Chemistry of Materials, 2004, 16, 4743-4747.	3.2	473
127	Platinum-Functionalized Random Copolymers for Use in Solution-Processible, Efficient, Near-White Organic Light-Emitting Diodes. Journal of the American Chemical Society, 2004, 126, 15388-15389.	6.6	277
128	Recent progress in high-efficiency phosphorescent OLED technology. Journal of the Society for Information Display, 2004, 12, 329.	0.8	13
129	High efficiency mer-iridium complexes for organic light-emitting diodes. Chemical Communications, 2004, , 2232.	2.2	62

#	Article	IF	CITATIONS
130	Highly efficient electrophosphorescence devices based on rhenium complexes. Applied Physics Letters, 2004, 84, 148-150.	1.5	66
131	Glucose biosensors based on organic light-emitting devices structurally integrated with a luminescent sensing element. Journal of Applied Physics, 2004, 96, 2949-2954.	1.1	93
132	5.2: A High Efficiency Phosphorescent White OLED for LCD Backlight and Display Applications. Digest of Technical Papers SID International Symposium, 2004, 35, 48.	0.1	26
133	Application of strontium silicate yellow phosphor for white light-emitting diodes. Applied Physics Letters, 2004, 84, 1647-1649.	1.5	393
134	Synthesis of a high-efficiency red phosphorescent emitter for organic light-emitting diodes. Journal of Materials Chemistry, 2004, 14, 947.	6.7	133
135	Efficient Yellow Electroluminescence from a Single Layer of a Cyclometalated Iridium Complex. Journal of the American Chemical Society, 2004, 126, 2763-2767.	6.6	654
136	Carbazole Compounds as Host Materials for Triplet Emitters in Organic Light-Emitting Diodes:Â Polymer Hosts for High-Efficiency Light-Emitting Diodes. Journal of the American Chemical Society, 2004, 126, 7718-7727.	6.6	416
137	Polymer electrophosphorescence devices with high power conversion efficiencies. Applied Physics Letters, 2004, 84, 2476-2478.	1.5	145
138	Highly efficient blue electrophosphorescent devices with a novel host material. Synthetic Metals, 2004, 144, 249-252.	2.1	58
139	Luminescence Quenching of a Phosphorescent Conjugated Polyelectrolyte. Journal of the American Chemical Society, 2004, 126, 14964-14971.	6.6	119
140	Near-Infrared Photo- and Electroluminescence of Alkoxy-Substituted Poly(p-phenylene) and Nonconjugated Polymer/Lanthanide Tetraphenylporphyrin Blends. Chemistry of Materials, 2004, 16, 2938-2947.	3.2	75
141	23.3: Distinguished Paper: Red-Phosphorescent OLEDs Employing Bis(8-Quinolinolato)-Phenolato-Aluminum(III) Complexes as Emission-Layer Hosts. Digest of Technical Papers SID International Symposium, 2004, 35, 900.	0.1	22
142	Organic, polymer, and organic/inorganic hybrid light-emitting devices based on phosphorescent fluorinated platinum(II) porphyrin. , 2004, 5519, 218.		4
143	Subwavelength particle layers for improved light outcoupling of OLEDs. , 2004, , .		3
144	11.4: Coupling Efficiency Enhancement of Organic Light Emitting Devices with Refractive Microlens Array on High Index Glass Substrate. Digest of Technical Papers SID International Symposium, 2004, 35, 158.	0.1	26
145	P-107: Very Bright and Efficient Phosphorescent Organic Light-Emitting Diode with Hole Transport Layer Deposited under Relatively High Pressure. Digest of Technical Papers SID International Symposium, 2004, 35, 678.	0.1	Ο
146	Emission properties of Ir(ppy) 3 and Ir(ppy) 2 (CO)(Cl): compounds with different transition types. , 2004, 5214, 356.		9
147	Recent Progress in Phosphorescent Materials for Organic Light-Emitting Devices. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2004, 17, 307-313.	0.1	4

#	Article	IF	CITATIONS
148	22.3: High Efficiency Electrophosphorescent Organic Light Emitting Diodes using Semitransparent Ag as Anode. Digest of Technical Papers SID International Symposium, 2005, 36, 1066.	0.1	3
149	Method for fabrication of saturated RGB quantum dot light-emitting devices. , 2005, , .		15
150	High-Efficiency Phosphorescent OLEDs using Chemically Doped Layers. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2005, 18, 83-86.	0.1	26
152	Phosphorescence Decay Mechanism of Ir(ppy)3 in a Solid Matrix. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2005, 18, 47-50.	0.1	1
153	Self-Alignment Technologies of Organic Electronic Devices and Its Integrated Panels. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2005, 18, 79-82.	0.1	4
154	Synthesis and Luminescent Properties of Mercury(II) Polyynes Containing Derivatized Benzene in the Backbone. Australian Journal of Chemistry, 2005, 58, 799.	0.5	15
155	P-141: High-Efficiency and Long Lifetime Electrophosphorescent Organic Light-Emitting Diodes with Improved Hole-Electron Balance by using Alternate Multilayer Structures. Digest of Technical Papers SID International Symposium, 2005, 36, 838.	0.1	1
156	67.2: Invited Paper: High-Efficiency Phosphorescent Polymer LEDs. Digest of Technical Papers SID International Symposium, 2005, 36, 1866.	0.1	0
157	A laser induced local transfer for patterning of RGB-OLED-displays. , 2005, , .		5
158	Characterisation of thin films of organic phosphorescent materials using synchrotron radiation. Applied Surface Science, 2005, 248, 36-39.	3.1	1
159	Functional polymers: from plastic electronics to polymer-assisted therapeutics. Progress in Polymer Science, 2005, 30, 844-857.	11.8	77
160	Blue electroluminescence from spiro-configured polyfluorene derivatives with hetero-atoms. Journal of Luminescence, 2005, 115, 109-116.	1.5	26
161	Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods. Organic Electronics, 2005, 6, 3-9.	1.4	183
162	Luminescence mechanisms of green and blue organic light-emitting devices utilizing hole-blocking layers. Solid State Communications, 2005, 134, 367-372.	0.9	7
163	High-efficiency blue and white phosphorescent organic light-emitting devices. Current Applied Physics, 2005, 5, 331-336.	1.1	38
164	Characterization of electronic structure of aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq) for phosphorescent organic light emitting devices. Chemical Physics Letters, 2005, 404, 121-125.	1.2	29
165	Ab initio molecular orbital study of 1,3,5-triazine derivatives for phosphorescent organic light emitting devices. Chemical Physics Letters, 2005, 415, 137-140.	1.2	30
166	The Potential of Palladacycles:  More Than Just Precatalysts. Chemical Reviews, 2005, 105, 2527-2572.	23.0	1,239

	CITATION	I REPORT	
#	Article	IF	CITATIONS
167	Organogel of an 8-quinolinol platinum(ii) chelate derivative and its efficient phosphorescence emission effected by inhibition of dioxygen quenching. Chemical Communications, 2005, , 4149.	2.2	141
168	Temperature-Controlled Solvothermal Syntheses, Structures and Characterizations of a Novel Class of Zn Complexes Constructed from 1,4-Bis[2-(5-phenyloxazolyl)]benzene. European Journal of Inorganic Chemistry, 2005, 2005, 423-427.	1.0	49
169	Energy Transfer by a Hopping Mechanism in Dinuclear IrIII/Rull Complexes: A Molecular Wire?. ChemPhysChem, 2005, 6, 2417-2427.	1.0	93
170	Synthesis and characterization of phosphorescent cyclometalated iridium complexes containing 2,5-diphenylpyridine based ligands. Applied Organometallic Chemistry, 2005, 19, 1225-1231.	1.7	20
171	Yellow and Red Electrophosphors Based on Linkage Isomers of Phenylisoquinolinyliridium Complexes: Distinct Differences in Photophysical and Electroluminescence Properties. Advanced Functional Materials, 2005, 15, 387-395.	7.8	146
172	New Trends in the Use of Transition Metal-Ligand Complexes for Applications in Electroluminescent Devices. Advanced Materials, 2005, 17, 1109-1121.	11.1	709
173	New Dopant and Host Materials for Blue-Light-Emitting Phosphorescent Organic Electroluminescent Devices. Advanced Materials, 2005, 17, 285-289.	11.1	675
174	Synthesis and Properties of Electrophosphorescent Chelating Polymers with Iridium Complexes in the Conjugated Backbone. Chemistry - A European Journal, 2005, 11, 5007-5016.	1.7	119
175	High temperature operation and stability of phosphorescent OLEDs. Current Applied Physics, 2005, 5, 15-18.	1.1	20
176	Electronic structures of p-phenylene biphenyltetracarboximide polyimide/indium-tin oxide heterostructures grown on glass substrates for organic light-emitting devices. Solid State Communications, 2005, 135, 129-132.	0.9	3
177	X-ray excited visible luminescence spectroscopy of organic materials using a portable optical spectrometer. Journal of Synchrotron Radiation, 2005, 12, 690-695.	1.0	1
178	Synthesis of polymer-iridium complex and its electroluminescent characteristics. Polymers for Advanced Technologies, 2005, 16, 480-483.	1.6	19
181	High-efficiency solution processed electrophosphorescent organic light emitting diodes based on a simple bi-layer device architecture. , 2005, 5937, 56.		2
182	Temperature Dependence of Photoluminescence Lifetime and Quantum Efficiency in Neatfac-Ir(ppy)3Thin Films. Japanese Journal of Applied Physics, 2005, 44, 1966-1969.	0.8	28
183	High-efficiency electrophosphorescent white organic light-emitting devices with a double-doped emissive layer. Semiconductor Science and Technology, 2005, 20, 326-329.	1.0	21
184	Wearable photonics based on integrative polymeric photonic fibres. , 2005, , 136-154.		34
185	100% phosphorescence quantum efficiency of Ir(III) complexes in organic semiconductor films. Applied Physics Letters, 2005, 86, 071104.	1.5	673
186	Efficient organic light-emitting diodes with phosphorescent platinum complexes containing Nâ^§Câ^§N-coordinating tridentate ligand. Applied Physics Letters, 2005, 86, 153505.	1.5	81

ARTICLE IF CITATIONS # Singlet-singlet and singlet-heat annihilations in fluorescence-based organic light-emitting diodes 187 1.5 92 under steady-state high current density. Applied Physics Letters, 2005, 86, 213506. White organic light-emitting devices with a solution-processed and molecular host-employed 188 1.5 emission layer. Applied Physics Letters, 2005, 87, 043508. Red Phosphorescent Organic Light-Emitting Diodes Using Mixture System of Small-Molecule and 189 0.8 16 Polymer Host. Japanese Journal of Applied Physics, 2005, 44, 2790-2794. Direct Patterning of Molecular Organic Materials and Metals Using a Micromachined Printhead. 0.1 Materials Research Society Symposia Proceedings, 2005, 870, 181. A novel patterning technique for high-resolution RGB-OLED-displays: Laser induced local transfer 191 0.1 3 (LILT). Materials Research Society Symposia Proceedings, 2005, 870, 341. A novel class of phosphorescent gold(iii) alkynyl-based organic light-emitting devices with tunable colour. Chemical Communications, 2005, , 2906. 2.2 Phenoxazine-Based Emissive Donorâ[^]Acceptor Materials for Efficient Organic Light-Emitting Diodes. 193 3.2 80 Chemistry of Materials, 2005, 17, 5225-5227. Electroluminescence of 2,4-bis(4-(2â€2-thiophene-yl)phenyl)thiophene in organic light-emitting 194 1.5 60 field-effect transistors. Applied Physics Letters, 2005, 86, 093505. Iridium complexes containing p-phenylene units. The influence of the conjugation on the excited state properties. Journal of Materials Chemistry, 2005, 15, 2820. 195 95 6.7 Organic light-emitting diodes based on charge-neutral Os(ii) emitters: generation of saturated red 132 emission with very high external quantum efficiency. Journal of Materials Chemistry, 2005, 15, 460. Thin-film waveguiding mode light extraction in organic electroluminescent device using high 197 1.1 86 refractive index substrate. Journal of Applied Physics, 2005, 97, 054505. Temperature-dependent carrier-transport and light-emission processes in a phosphorescent organic 198 1.5 light-emitting device. Applied Physics Letters, 2005, 87, 173509. Oligo(fluorenyl)pyridine ligands and their tris-cyclometalated iridium(iii) complexes: synthesis, photophysical properties and electrophosphorescent devices. Journal of Materials Chemistry, 2005, 15, 199 6.7 42 4963. High-efficiency red electrophosphorescence based on neutral bis(pyrrole)-diimine platinum(ii) complex. Chemical Communications, 2005, , 1408. 2.2 Nonconjugated Hybrid of Carbazole and Fluorene:  A Novel Host Material for Highly Efficient Green 201 2.4 157 and Red Phosphorescent OLEDs. Organic Letters, 2005, 7, 5361-5364. Substituent effects of iridium complexes for highly efficient red OLEDs. Dalton Transactions, 2005, , 192 1583. Highly Efficient Red-Electrophosphorescent Devices Based on Polyfluorene Copolymers Containing 203 1.2 49 Charge-Transporting Pendant Units. Journal of Physical Chemistry B, 2005, 109, 14000-14005. Highly Efficient Electrophosphorescent Devices with Saturated Red Emission from a Neutral Osmium 204 3.2 Complex. Chemistry of Materials, 2005, 17, 3532-3536.

#	Article	IF	CITATIONS
205	Organic Light-Emitting Diodes Using Multifunctional Phosphorescent Dendrimers with Iridium-Complex Core and Charge-Transporting Dendrons. Japanese Journal of Applied Physics, 2005, 44, 4151-4154.	0.8	54
206	Efficient Red-Emitting Cyclometalated Iridium(III) Complexes Containing Lepidine-Based Ligands. Inorganic Chemistry, 2005, 44, 5677-5685.	1.9	152
207	Bright White Light through Up-Conversion of a Single NIR Source from Solâ^'Gel-Derived Thin Film Made with Ln3+-Doped LaF3 Nanoparticles. Journal of the American Chemical Society, 2005, 127, 12464-12465.	6.6	507
208	Coupling Efficiency Enhancement in Organic Light-Emitting Devices Using Microlens Array—Theory and Experiment. Journal of Display Technology, 2005, 1, 278-282.	1.3	100
209	White, phosphorescent, wet-processed, organic light-emitting diode, on a window-glass substrate. Synthetic Metals, 2005, 151, 147-151.	2.1	23
210	Architectural float glass as a substrate for organic light-emitting diodes. Synthetic Metals, 2005, 152, 69-72.	2.1	2
211	Polymer microcavities by room temperature electron-beam evaporation of TiOx and SiOx. Synthetic Metals, 2005, 153, 329-332.	2.1	1
212	Photoemission and X-ray absorption spectroscopies of phosphorescent organic iridium complexes. Synthetic Metals, 2005, 153, 233-236.	2.1	5
213	Pure red electrophosphorescent organic light-emitting diodes based on a new iridium complex. Synthetic Metals, 2005, 155, 168-171.	2.1	30
214	Synthesis and electrophosphorescent performances of alkyl-substituted bicycloiridium complexes in polymer light-emitting diodes. Synthetic Metals, 2005, 155, 196-201.	2.1	4
215	Highly efficient phosphorescent bis-cyclometalated iridium complexes based on quinoline ligands. Synthetic Metals, 2005, 155, 539-548.	2.1	65
216	Blue and Near-UV Phosphorescence from Iridium Complexes with Cyclometalated Pyrazolyl orN-Heterocyclic Carbene Ligands. Inorganic Chemistry, 2005, 44, 7992-8003.	1.9	629
217	High-efficiency p-i-n organic light-emitting diodes with long lifetime. Journal of the Society for Information Display, 2005, 13, 393.	0.8	92
218	Metal (IV) tetras (8-hydroxyquinoline) (M = Zr, Hf) used as electroluminescent material and electron-transport layer in OLEDs. Journal of the Society for Information Display, 2005, 13, 405.	0.8	5
219	Red-phosphorescent OLEDs employing bis(8-quinolinolato)phenolato-aluminum(III) complexes as emission-layer hosts. Journal of the Society for Information Display, 2005, 13, 117.	0.8	9
220	Efficient upconversion fluorescence in a blue-emitting spirobifluorene-anthracene copolymer doped with low concentrations of Pt(II)octaethylporphyrin. Journal of Chemical Physics, 2005, 123, 074902.	1.2	72
221	Modelling of the laser dynamics of electrically pumped organic semiconductor laser diodes. , 2005, , .		5
222	Red Electrophosphorescence of Conjugated Organoplatinum(II) Polymers Prepared via Direct Metalation of Poly(fluorene-co-tetraphenylporphyrin) Copolymers. Organometallics, 2005, 24, 4509-4518.	1.1	42

#	Article	IF	CITATIONS
223	High-Efficiency Electrophosphorescent Fluorene-alt-carbazole Copolymers N-Grafted with Cyclometalated Ir Complexes. Macromolecules, 2005, 38, 4072-4080.	2.2	185
224	Single-Layer Electroluminescent Devices and Photoinduced Hydrogen Production from an Ionic Iridium(III) Complex. Chemistry of Materials, 2005, 17, 5712-5719.	3.2	829
225	Color Tuning of Cyclometalated Iridium Complexes through Modification of Phenylpyrazole Derivatives and Ancillary Ligand Based on ab Initio Calculations. Organometallics, 2005, 24, 1578-1585.	1.1	138
226	Tuning the emission and morphology of cyclometalated iridium complexes and their applications to organic light-emitting diodes. Journal of Materials Chemistry, 2005, 15, 1035.	6.7	148
227	100% fluorescence efficiency of 4,4[sup Ê1]-bis[(N-carbazole)styryl]biphenyl in a solid film and the very low amplified spontaneous emission threshold. Applied Physics Letters, 2005, 86, 071110.	1.5	128
228	Photophysical and Electrochemical Properties of Heteroleptic Tris-Cyclometalated Iridium(III) Complexes. Inorganic Chemistry, 2005, 44, 4445-4447.	1.9	239
229	Triplet exciton formation and decay in polyfluorene light-emitting diodes. Physical Review B, 2005, 72, .	1.1	13
230	Highly efficient polymer light-emitting devices using ambipolar phosphorescent polymers. Applied Physics Letters, 2005, 86, 103507.	1.5	124
231	Charge injection into cathode-doped amorphous organic semiconductors. Physical Review B, 2005, 71, .	1.1	61
232	Increased electrophosphorescent efficiency in organic light emitting diodes by using an exciton-collecting structure. Journal of Applied Physics, 2005, 97, 044505.	1.1	32
233	Iridium(III) Complexes with Orthometalated Quinoxaline Ligands:Â Subtle Tuning of Emission to the Saturated Red Color. Inorganic Chemistry, 2005, 44, 1344-1353.	1.9	276
234	Synthesis, Characterization, and Photophysical Properties of Iridium Complexes with an 8-Phenylquinoline Framework. The First Six-Membered Chelated Iridium Complexes for Electroluminance. Organometallics, 2005, 24, 1329-1335.	1.1	68
235	1,4-Benzoxazino[2,3-b]phenoxazine and Its Sulfur Analogues:  Synthesis, Properties, and Application to Organic Light-Emitting Diodes. Chemistry of Materials, 2005, 17, 5504-5511.	3.2	36
236	White organic light-emitting devices with a phosphorescent multiple emissive layer. Applied Physics Letters, 2006, 89, 043504.	1.5	65
237	5.1: Fluorescent RGB OLEDs with High Performance. Digest of Technical Papers SID International Symposium, 2006, 37, 37.	0.1	33
238	Efficient Green-Blue-Light-Emitting Cationic Iridium Complex for Light-Emitting Electrochemical Cells. Inorganic Chemistry, 2006, 45, 9245-9250.	1.9	193
239	Triplet exciton energy transfer in polyfluorene doped with heavy metal complexes studied using photoluminescence and photoinduced absorption. Physical Review B, 2006, 74, .	1.1	17
240	Intermolecular Interaction and a Concentration-Quenching Mechanism of Phosphorescent Ir(III) Complexes in a Solid Film. Physical Review Letters, 2006, 96, 017404.	2.9	339

#	Article	IF	CITATIONS
241	Highly Efficient, Selective, and General Method for the Preparation of Meridional Homo- and Heteroleptic Tris-cyclometalated Iridium Complexes. Inorganic Chemistry, 2006, 45, 3155-3157.	1.9	50
242	Effect of doping profile on the lifetime of green phosphorescent organic light-emitting diodes. Applied Physics Letters, 2006, 89, 153503.	1.5	35
243	Efficient organic light-emitting devices using an iridium complex as a phosphorescent host and a platinum complex as a red phosphorescent guest. Applied Physics Letters, 2006, 88, 243511.	1.5	28
244	Polymer-Based Tris(2-phenylpyridine)iridium Complexes. Macromolecules, 2006, 39, 3140-3146.	2.2	62
245	Synthesis and Photophysical, Electrochemical, and Electrophosphorescent Properties of a Series of Iridium(III) Complexes Based on Quinoline Derivatives and Different β-Diketonate Ligands. Organometallics, 2006, 25, 3631-3638.	1.1	122
246	Polarized optical spectroscopy applied to investigate two poly(phenylene-vinylene) polymers with different side chain structures. Journal of Chemical Physics, 2006, 125, 164701.	1.2	15
247	White-electrophosphorescent devices based on copper complexes using 2-(4-biphenylyl)-5-(4-tert-butyl-phenyl)-1,3,4-oxadiazole as chromaticity-tuning layer. Applied Physics Letters, 2006, 88, 213508.	1.5	33
248	Blue Electrophosphorescence from Iridium Complex Covalently Bonded to the Poly(9-dodecyl-3-vinylcarbazole):Â Suppressed Phase Segregation and Enhanced Energy Transfer. Macromolecules, 2006, 39, 349-356.	2.2	97
249	Triplet Energy Back Transfer in Conjugated Polymers with Pendant Phosphorescent Iridium Complexes. Journal of the American Chemical Society, 2006, 128, 6647-6656.	6.6	226
250	Influence of electronic properties on the threshold behaviour of organic laser diode structures. , 2006, , .		1
251	Engineering white light-emitting Eu-doped ZnO urchins by biopolymer-assisted hydrothermal method. Applied Physics Letters, 2006, 89, 123125.	1.5	108
252	A Dibenzofuran-Based Host Material for Blue Electrophosphorescence. Organic Letters, 2006, 8, 4211-4214.	2.4	209
253	New Charge Transporting Host Material for Short Wavelength Organic Electrophosphorescence:Â 2,7-Bis(diphenylphosphine oxide)-9,9-dimethylfluorene. Chemistry of Materials, 2006, 18, 2389-2396.	3.2	200
254	EXCITONS IN CONJUGATED OLIGOMER AGGREGATES, FILMS, AND CRYSTALS. Annual Review of Physical Chemistry, 2006, 57, 217-243.	4.8	304
255	An Organic White Light-Emitting Fluorophore. Journal of the American Chemical Society, 2006, 128, 14081-14092.	6.6	198
256	Organic light-emitting diodes having exclusive near-infrared electrophosphorescence. Applied Physics Letters, 2006, 89, 083506.	1.5	130
257	Highly efficient solution processed blue organic electrophosphorescence with 14lmâ^•W luminous efficacy. Applied Physics Letters, 2006, 88, 243512.	1.5	103
258	Relativistic Study on Emission Mechanism in Palladium and Platinum Complexes. Journal of Physical Chemistry A, 2006, 110, 13295-13302.	1.1	26

#	Article	IF	CITATIONS
259	Narrow-Line and Broadband Spectra of Iridium(III) Complexes in a Shpol'skii Matrix and an Amorphous Host. Journal of Physical Chemistry A, 2006, 110, 9828-9838.	1.1	18
260	Substituent Effect on the Luminescent Properties of a Series of Deep Blue Emitting Mixed Ligand Ir(III) Complexes. Journal of Physical Chemistry B, 2006, 110, 10303-10314.	1.2	69
261	Novel Carbazole/Fluorene Hybrids:  Host Materials for Blue Phosphorescent OLEDs. Organic Letters, 2006, 8, 2799-2802.	2.4	188
262	Theoretical Studies on Photophysical Properties and Mechanism of Phosphorescence in [<i>fac</i> â€Ir(2â€phenylpyridine) ₃]. Journal of the Chinese Chemical Society, 2006, 53, 101-112.	0.8	152
263	Living Radical Polymerization of Bipolar Transport Materials for Highly Efficient Light Emitting Diodes. Chemistry of Materials, 2006, 18, 386-395.	3.2	135
264	Theoretical Studies of Phosphorescence Spectra of Tris(2,2â€~-bipyridine) Transition Metal Compounds. Inorganic Chemistry, 2006, 45, 6161-6178.	1.9	97
265	Luminescent Complexes of Iridium(III) Containing Nâ^§Câ^§N-Coordinating Terdentate Ligands. Inorganic Chemistry, 2006, 45, 8685-8699.	1.9	137
266	En Route to the Formation of High-Efficiency, Osmium(II)-Based Phosphorescent Materials. Inorganic Chemistry, 2006, 45, 10188-10196.	1.9	46
267	Phosphorescent Platinum(II) Complexes Derived from Multifunctional Chromophores:Â Synthesis, Structures, Photophysics, and Electroluminescence. Inorganic Chemistry, 2006, 45, 10922-10937.	1.9	210
268	Measurement of Electron Mobility in \${hbox{Alq}}_{3}\$ From Optical Modulation Measurements in Multilayer Organic Light-Emitting Diodes. Journal of Display Technology, 2006, 2, 341-346.	1.3	4
269	White organic LEDs and their recent advancements. Semiconductor Science and Technology, 2006, 21, R35-R47.	1.0	191
270	White organic light-emitting diodes (WOLEDs). Conference Record - IAS Annual Meeting (IEEE Industry) Tj ETQq1	1,0,7843 0.0	14 rgBT /Cive
271	Synthesis of novel Ir complexes and their application in organic light emitting diodes. Synthetic Metals, 2006, 156, 525-528.	2.1	10
272	A phosphorescent hexa-peri-hexabenzocoronene platinum complex and its time-resolved spectroscopy. Synthetic Metals, 2006, 156, 1182-1186.	2.1	25
274	Organic Blue Electrophorescence Using a Cyclic Siloxane Compound as a Host Material. Kobunshi Ronbunshu, 2006, 63, 686-690.	0.2	0
275	Blue Electrophosphorescent Light-emitting Device Using a Novel Nonconjugated Polymer as Host Materials. Chemistry Letters, 2006, 35, 404-405.	0.7	13
276	Electroluminescence materials. , 2006, , .		0
277	Fundamentals of luminescence. , 2006, , .		3

#	Article	IF	CITATIONS
278	11.4: Highly Efficient Blue Organic Electrophosphorescent Devices Based on 3,6-Bis(triphenylsilyl)Carbazole as the Host Material. Digest of Technical Papers SID International Symposium, 2006, 37, 139.	0.1	1
279	Synthesis, Characterization, and Photophysics of a New Trinuclear Mercury(II) Complex of 1,3,5-Triethynylbenzene. Australian Journal of Chemistry, 2006, 59, 434.	0.5	11
280	Spin-relaxation Process of Excited Triplet States of Ir(ppy)3. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2006, 19, 181-186.	0.1	2
281	Solution-processed Small Organic Electrophosphorescent Devices with Arylamine Polymer Buffer Layer. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2006, 19, 177-180.	0.1	2
282	High-efficiency, electrophosphorescent polymers with porphyrin–platinum complexes in the conjugated backbone: Synthesis and device performance. Journal of Polymer Science Part A, 2006, 44, 4174-4186.	2.5	33
283	Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polymer International, 2006, 55, 572-582.	1.6	829
284	Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature, 2006, 440, 908-912.	13.7	2,178
285	Coordination complexes exhibiting room-temperature phosphorescence: Evaluation of their suitability as triplet emitters in organic light emitting diodes. Coordination Chemistry Reviews, 2006, 250, 2093-2126.	9.5	1,029
286	High efficiency red electrophosphorescent polymer light-emitting diode. Chemical Physics Letters, 2006, 418, 50-53.	1.2	18
287	Photoluminescence of CdSe/ZnS core/shell quantum dots enhanced by energy transfer from a phosphorescent donor. Chemical Physics Letters, 2006, 424, 120-125.	1.2	92
288	Novel EDOT and fluorene-based electroluminescent "bricks―as materials for OLEDs. Organic Electronics, 2006, 7, 576-585.	1.4	11
289	Bathochromic effect of trifluoromethyl-substituted 2-naphthalen-1-yl-pyridine ligands in color tuning of iridium complexes. Polyhedron, 2006, 25, 2407-2414.	1.0	22
290	Organic light-emitting devices with double-block layer. Microelectronics Journal, 2006, 37, 1271-1275.	1.1	8
291	Highly efficient red electrophosphorescent device based on a new iridium complex with trifluoromethyl-substituted 2-benzo[b]thiophen-2-yl-pyridine ligand. Optical Materials, 2006, 28, 1025-1028.	1.7	14
292	Energy transfer and morphology study of a new iridium based cyclometalated phosphorescent complex. Optical Materials, 2006, 28, 1355-1361.	1.7	18
293	Reduced geminate recombination in iridium-based electrophosphorescent materials. Organic Electronics, 2006, 7, 163-172.	1.4	15
294	Influence of charge balance and microcavity effects on resultant efficiency of organic-light emitting devices. Organic Electronics, 2006, 7, 313-318.	1.4	30
295	Transient characteristics of polyfluorene-based polymer light-emitting diodes and their application for color tunable devices. Thin Solid Films, 2006, 499, 359-363.	0.8	21

#	Article	IF	CITATIONS
296	Photoluminescence properties of facial- and meridional-Ir(ppy)3 thin films. Thin Solid Films, 2006, 509, 164-167.	0.8	18
297	Optical and electroluminescent properties of a new Ir(III) complex — fac-tris[2,5-di(4-methoxyphenyl)pyridinato-C,N]iridium(III). Thin Solid Films, 2006, 497, 239-242.	0.8	7
298	Functionalization of polymers with phosphorescent iridium complexes via click chemistry. Chemical Communications, 2006, , 3933.	2.2	95
299	Tuning the saturated red emission: synthesis, electrochemistry and photophysics of 2-arylquinoline based iridium(iii) complexes and their application in OLEDs. Journal of Materials Chemistry, 2006, 16, 3332.	6.7	68
300	Enhanced Coupling of Light from Organic Electroluminescent Device Using Diffusive Particle Dispersed High Refractive Index Resin Substrate. Optical Review, 2006, 13, 104-110.	1.2	119
301	Spatial Extent of the Singlet and Triplet Excitons in Luminescent Angular-Shaped Transition-Metal Diynes and Polyynes Comprising Non-I€-Conjugated Group 16 Main Group Elements. Chemistry - A European Journal, 2006, 12, 2550-2563.	1.7	73
302	Ï€-Conjugated Chelating Polymers with Charged Iridium Complexes in the Backbones: Synthesis, Characterization, Energy Transfer, and Electrochemical Properties. Chemistry - A European Journal, 2006, 12, 4351-4361.	1.7	128
303	Synthetically Tailored Excited States: Phosphorescent, Cyclometalated Iridium(III) Complexes and Their Applications. Chemistry - A European Journal, 2006, 12, 7970-7977.	1.7	714
304	Ir-Catalyzed Borylation of CH Bonds in N-Containing Heterocycles: Regioselectivity in the Synthesis of Heteroaryl Boronate Esters. Angewandte Chemie - International Edition, 2006, 45, 489-491.	7.2	206
305	Synthesis and Electroluminescence Properties offac-Tris(2-phenylpyridine)iridium Derivatives Containing Hole-Trapping Moieties. European Journal of Inorganic Chemistry, 2006, 2006, 3676-3683.	1.0	59
306	Osmium―and Rutheniumâ€Based Phosphorescent Materials: Design, Photophysics, and Utilization in OLED Fabrication. European Journal of Inorganic Chemistry, 2006, 2006, 3319-3332.	1.0	233
308	Enhancement of External Quantum Efficiency of Red Phosphorescent Organic Light-Emitting Devices with Facially Encumbered and Bulky PtII Porphyrin Complexes. Advanced Functional Materials, 2006, 16, 515-519.	7.8	56
309	Amorphous Diphenylaminofluorene-Functionalized Iridium Complexes for High-Efficiency Electrophosphorescent Light-Emitting Diodes. Advanced Functional Materials, 2006, 16, 838-846.	7.8	181
310	High-Performance Organic Light-Emitting Diodes Based on Dioxolane-Substituted Pentacene Derivatives. Advanced Functional Materials, 2006, 16, 1943-1949.	7.8	94
311	Efficient Polymer Electrophosphorescent Devices with Interfacial Layers. Advanced Functional Materials, 2006, 16, 2156-2162.	7.8	61
312	Orange and Red Organic Light-Emitting Devices Employing Neutral Ru(II) Emitters: Rational Design and Prospects for Color Tuning. Advanced Functional Materials, 2006, 16, 1615-1626.	7.8	130
313	Highly Efficient Polymeric Electrophosphorescent Diodes. Advanced Materials, 2006, 18, 948-954.	11.1	338
314	Highly Efficient Organic Blue Electrophosphorescent Devices Based on 3,6-Bis(triphenylsilyl)carbazole as the Host Material. Advanced Materials, 2006, 18, 1216-1220.	11.1	460

ARTICLE IF CITATIONS # Red Phosphorescent Polymer Light-Emitting Diodes Based on Iridium Complex and 315 0.8 2 Poly[(9,9-dioctylfluorene)-alt-(pyridine)]. Japanese Journal of Applied Physics, 2006, 45, 5232-5237. Charge Carrier Transport in Red Electrophosphorescent Emitting Layer. Japanese Journal of Applied 0.8 Physics, 2006, 45, 5966-5969. Novel Electron-Transporting Carbazolylphenylquinolines for Phosphorescent Organic Light-Emitting 317 0.8 3 Diodes. Japanese Journal of Applied Physics, 2006, 45, 9228-9230. The effect of delocalization on the exchange energy inmeta- and para-linked Pt-containing carbazole 1.2 polymers and monomers. Journal of Chemical Physics, 2006, 124, 244701. Optimization of the Organic Lightemitting Diodes with a Red Phosphor. Molecular Crystals and Liquid 319 0.4 0 Crystals, 2006, 462, 169-177. Chapter 1 Nanotechnology and nanomaterials. Studies in Interface Science, 2006, , 1-69. Photoluminescence and Electroluminescence in Combination of Rare-Earth Metal Complexes and 321 0.1 2 Phosphorescent Molecules. Materials Research Society Symposia Proceedings, 2006, 965, 1. Design strategies for achieving high triplet energy electron transporting host materials for blue 14 electrophosphorescence., 2006,,. Highly Efficient Yellowish-White Phosphorescent Organic Light-Emitting Devices. Japanese Journal of 323 0.8 1 Applied Physics, 2006, 45, L951-L953. Investigation into the modelling of field-effect carrier mobility in disordered organic 324 semiconductors. IET Circuits, Devices and Systems, 2006, 153, 124. Material and Interface Engineering for Highly Efficient Polymer Light Emitting Diodes. Journal of 325 2.2 13 Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2006, 46, 7-26. Highly efficient and color-tuning electrophosphorescent devices based on CuI complex. Applied 1.5 124 Physics Letters, 2006, 89, 103511. High-efficiency blue light-emitting electrophosphorescent device with conjugated polymers as the 327 1.5 51 host. Applied Physics Letters, 2006, 88, 051116. Efficiency improvement of phosphorescent organic light-emitting diodes using semitransparent Ag as 1.5 anode. Ápplied Physics Letters, 2006, 88, 033509. Quantum efficiency enhancement in top-emitting organic light-emitting diodes as a result of enhanced 329 32 1.5 intrinsic quantum yield. Applied Physics Letters, 2006, 89, 263512. Highly efficient organic electroluminescent device with modified cathode. Applied Physics Letters, 2006, 88, 203502 Improved efficiency for white organic light-emitting devices based on phosphor sensitized 331 1.539 fluorescence. Applied Physics Letters, 2006, 88, 083512. Intramolecular energy transfer in heteroleptic red phosphorescent dopants. Applied Physics Letters, 1.5 2006, 89, 223517.

#	Article	IF	CITATIONS
334	Multilayer organic electrophosphorescent white light-emitting diodes without exciton-blocking layer. Applied Physics Letters, 2006, 88, 103508.	1.5	62
335	Dissociation of iridium(III) phosphorescent emitters upon adsorption on Cu(110) revealed by scanning tunneling microscopy. Applied Physics Letters, 2006, 89, 264102.	1.5	10
336	Efficient light extraction and beam shaping from flexible, optically integrated organic light-emitting diodes. Applied Physics Letters, 2006, 88, 153514.	1.5	32
337	Systematic study of the dynamics of triplet exciton transfer between conjugated host polymers and phosphorescent iridium (III) guest emitters. Physical Review B, 2006, 73, .	1.1	17
338	Polarons in π-Conjugated Semiconductors: Absorption Spectroscopy and Spin-Dependent Recombination. , 2006, , 235-256.		0
339	Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006). Pure and Applied Chemistry, 2007, 79, 293-465.	0.9	950
340	Highly efficient and high colour rendering index white organic light-emitting devices using bis(2-(2-fluorphenyl)- 1,3-benzothiozolato-N,C2′) iridium (acetylacetonate) as yellow emitter. Semiconductor Science and Technology, 2007, 22, 798-801.	1.0	7
343	Enhanced Modulation Speed of Tris(8-hydroxyquinoline)aluminum-Based Organic Light Source with Low-Work-Function Electrode. Japanese Journal of Applied Physics, 2007, 46, 7880-7884.	0.8	11
344	Efficiency Enhancement Mechanism in Yellow Organic Light-Emitting Devices with Multiple Heterostructures Acting as an Emitting Layer. Japanese Journal of Applied Physics, 2007, 46, 654-656.	0.8	6
345	High Coupling Efficiency of Microcavity Organic Light-Emitting Diode with Optical Fiber for as Light Source for Optical Interconnects. Japanese Journal of Applied Physics, 2007, 46, 642-646.	0.8	15
346	High efficiency organic light-emitting diodes with yellow phosphorescent emission based on a novel iridium complex. Semiconductor Science and Technology, 2007, 22, 25-28.	1.0	23
347	Efficient white organic light-emitting diodes comprising an ultrathin iridium complex sub-monolayer. Journal Physics D: Applied Physics, 2007, 40, 2783-2786.	1.3	16
348	Low operating voltage bright organic light-emitting diode using iridium complex doped in 4,4′-bis[N-1-napthyl-N-phenyl-amino]biphenyl. Applied Physics Letters, 2007, 91, 131105.	1.5	44
349	Enhanced light outcoupling in a thin film by texturing meshed surfaces. Applied Physics Letters, 2007, 90, 091102.	1.5	89
350	Charge carrier generation and electron blocking at interlayers in polymer solar cells. Applied Physics Letters, 2007, 90, 133502.	1.5	29
351	High efficiency phosphorescent organic light-emitting diodes using carbazole-type triplet exciton blocking layer. Applied Physics Letters, 2007, 90, 223505.	1.5	105
352	Enhanced electrophosphorescence of copper complex based devices by codoping an iridium complex. Applied Physics Letters, 2007, 90, 143505.	1.5	10
353	Observation of Excitonic Quenching by Long-Range Dipole-Dipole Interaction in Sequentially Doped Organic Phosphorescent Host-Guest System. Physical Review Letters, 2007, 99, 143003.	2.9	53

#	Article	IF	CITATIONS
354	White organic light-emitting devices with a bipolar transport layer between blue fluorescent and orange phosphorescent emitting layers. Applied Physics Letters, 2007, 91, 023505.	1.5	74
355	Efficient plastic scintillators utilizing phosphorescent dopants. Applied Physics Letters, 2007, 90, 012117.	1.5	39
356	Highly efficient red electrophosphorescence from a solution-processed zwitterionic cyclometalated iridium(III) complex. Applied Physics Letters, 2007, 91, 211106.	1.5	24
357	Combinatorial preparation and characterization of thin-film multilayer electro-optical devices. Review of Scientific Instruments, 2007, 78, 072216.	0.6	21
358	Single-Step Triplet-Triplet Annihilation: An Intrinsic Limit for the High Brightness Efficiency of Phosphorescent Organic Light Emitting Diodes. Physical Review Letters, 2007, 98, 197402.	2.9	143
359	Enhancement of the Color Stabilization in Yellow Organic Light-Emitting with N, N′-bis-(1-naphthyl)-N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine/5,6,11,12-tetraphenylnaphthacene Multiple Heterostructures Acti as an Emitting Layer. Molecular Crystals and Liquid Crystals, 2007, 470, 269-277.	n g). 4	5
360	Efficiency enhancement and voltage reduction in white organic light-emitting devices. Applied Physics Letters, 2007, 90, 203510.	1.5	36
361	Transient property of optically pumped organic film of different fluorescence lifetimes. Applied Physics Letters, 2007, 90, 231105.	1.5	12
362	Low roll-off of efficiency at high current density in phosphorescent organic light emitting diodes. Applied Physics Letters, 2007, 90, 223508.	1.5	204
363	Energy Transfer Employing Europium Complex and Blue Phosphorescent Dye and Its Application in White Organic Light-Emitting Diodes. Japanese Journal of Applied Physics, 2007, 46, 2673-2677.	0.8	5
364	Cyclometallated Organoiridium Complexes as Emitters in Electrophosphorescent Devices. , 0, , 131-161.		1
365	Pyridyl Azolate Based Luminescent Complexes: Strategic Design, Photophysics, and Applications. , 0, , 185-220.		0
367	Small Molecule-based Organic Electrophosphorescent Devices fabricated by Spin Coating. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2007, 20, 39-42.	0.1	9
368	Blue Organic Electrophosphorescence Diodes using Diarylamino-substituted Heterocyclic Compounds as Host Material. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2007, 20, 47-51.	0.1	18
369	Organic Electronic Devices Based on Polymeric Material and Tunable Photonic Crystal. Japanese Journal of Applied Physics, 2007, 46, 5655.	0.8	28
370	P-179: Low Blur Effect and High Light Extraction Efficiency Enhancement of Organic Light Emitting Displays with Novel Microstructure Attachment. Digest of Technical Papers SID International Symposium, 2007, 38, 867-870.	0.1	1
371	P-174: Triplet Exciton Diffusion in Hybrid Fluorescent/Phosphorescent OLEDs. Digest of Technical Papers SID International Symposium, 2007, 38, 849-851.	0.1	4
372	Pâ€152: Efficient Blue Phosphorescent OLEDs Employing Novel Oligocarbazoles as Highâ€Tripletâ€Energy Host Materials. Digest of Technical Papers SID International Symposium, 2007, 38, 772-775.	0.1	1

#	Article	IF	CITATIONS
373	Pâ€154: Efficient White OLEDs Employing Phosphorescent Sensitization. Digest of Technical Papers SID International Symposium, 2007, 38, 780-783.	0.1	0
374	P-168: Investigation of High-Efficiency Electrophosphorescent Organic Light-emitting Diodes with Double-Emission Layers. Digest of Technical Papers SID International Symposium, 2007, 38, 826-829.	0.1	0
375	Improved efficiency in red phosphorescent organic light-emitting devices using double doping structure. Synthetic Metals, 2007, 157, 228-230.	2.1	8
376	A blue organic emitting diode derived from new styrylamine type dopant materials. Synthetic Metals, 2007, 157, 558-563.	2.1	16
377	Synthesis and characterization of red phosphorescent-conjugated polymers containing charged iridium complexes and carbazole unit. Synthetic Metals, 2007, 157, 813-822.	2.1	19
378	New host materials with high triplet energy level for blue-emitting electrophosphorescent device. Synthetic Metals, 2007, 157, 743-750.	2.1	36
379	Influence of carrier-injection efficiency on modulation rate of organic light source. Optics Letters, 2007, 32, 1905.	1.7	11
380	Efficient White OLEDs Employing Phosphorescent Sensitization. Journal of Display Technology, 2007, 3, 193-199.	1.3	26
381	Light Extraction From Solution-Based Processable Electrophosphorescent Organic Light-Emitting Diodes. Journal of Display Technology, 2007, 3, 200-210.	1.3	9
382	Optimization of the Luminescence Efficiencies in Solution-Processed Phosphorescent Dendrimers. Journal of Display Technology, 2007, 3, 233-237.	1.3	16
383	Organic Light-Emitting Diodes Fabricated by a Solution Process and Their Stress Tolerance. Journal of Display Technology, 2007, 3, 238-244.	1.3	11
384	Luminescent organometallic poly(aryleneethynylene)s: functional properties towards implications in molecular optoelectronics. Dalton Transactions, 2007, , 4495.	1.6	205
385	Color tuning associated with heteroleptic cyclometalated Ir(iii) complexes: influence of the ancillary ligand. Dalton Transactions, 2007, , 1881.	1.6	110
386	Excimer-Based White Phosphorescent Organic Light-Emitting Diodes with Nearly 100 % Internal Quantum Efficiency. Advanced Materials, 2007, 19, 197-202.	11.1	494
387	Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters. Physical Review B, 2007, 75, .	1.1	724
388	Recent progress in solution processable organic light emitting devices. Journal of Applied Physics, 2007, 102, .	1.1	187
389	Spin-orbit coupling routes and OLED performance: studies of blue-light emitting Ir(III) and Pt(II) complexes. Proceedings of SPIE, 2007, , .	0.8	32
390	Photochemistry and Photophysics of Coordination Compounds II. , 2007, , .		53

#	Article	IF	CITATIONS
391	Transition Metal Complexes for Photovoltaic and Light Emitting Applications. Structure and Bonding, 2007, , 113-175.	1.0	130
392	Organic materials for blue emission OLEDs. Proceedings of SPIE, 2007, , .	0.8	0
393	A Deep Red Phosphorescent Ir(III) Complex for Use in Polymer Light-Emitting Diodes:Â Role of the Arylsilyl Substituents. Journal of Organic Chemistry, 2007, 72, 6241-6246.	1.7	70
394	Efficient Electrogenerated Chemiluminescence from Bis-Cyclometalated Iridium(III) Complexes with Substituted 2-Phenylquinoline Ligands. Journal of Physical Chemistry C, 2007, 111, 2280-2286.	1.5	84
395	OLED Device Operational Lifetime: Insights and Challenges. , 2007, , .		38
396	Preparation and Luminescence Characteristics of Ca 3 Y 2 (BO 3) 4 :Eu 3+ Phosphor. Chinese Physics Letters, 2007, 24, 2977-2979.	1.3	9
397	Norbornene-Based Copolymers with Iridium Complexes and Bis(carbazolyl)fluorene Groups in Their Side-Chains and Their Use in Light-Emitting Diodes. Chemistry of Materials, 2007, 19, 5602-5608.	3.2	65
398	Lifetime improvement of green phosphorescent organic light-emitting diodes by charge confining device structure. Applied Physics Letters, 2007, 90, 203511.	1.5	29
399	High-Efficiency Green Phosphorescent Organic Light-Emitting Devices with Chemically Doped Layers. Japanese Journal of Applied Physics, 2007, 46, 1186-1188.	0.8	117
400	High Luminous Efficiency Blue Organic Light-Emitting Devices Using High Triplet Excited Energy Materials. Japanese Journal of Applied Physics, 2007, 46, L117-L119.	0.8	122
401	Well Defined Carbazol-3,9-Diyl Based Oligomers as Host Materials for Organic Electro-Phosphorescent Devices. Molecular Crystals and Liquid Crystals, 2007, 468, 77/[429]-86/[438].	0.4	1
402	Synthesis, structure and electroluminescent properties of cyclometalated iridium complexes possessing sterically hindered ligands. Dalton Transactions, 2007, , 3025.	1.6	32
403	Highly Efficient Light-Harvesting System Based on a Phosphorescent Acceptor Coupled with Dendrimer Donors via Singletâ^'Singlet and Tripletâ^'Triplet Energy Transfer. Chemistry of Materials, 2007, 19, 3673-3680.	3.2	109
404	Sensitization of Lanthanide Luminescence in Heterotrinuclear PtLn ₂ (Ln = Eu, Nd, Yb) Complexes with Terpyridyl-Functionalized Alkynyl by Energy Transfer from a Platinum(II) Alkynyl Chromophore. Organometallics, 2007, 26, 4483-4490.	1.1	57
405	Radiative recombination and lifetime of a triplet excitation mediated by spin-orbit coupling in amorphous semiconductors. Physical Review B, 2007, 76, .	1.1	22
406	Triplet State Properties of the OLED Emitter Ir(btp)2(acac):Â Characterization by Site-Selective Spectroscopy and Application of High Magnetic Fields. Inorganic Chemistry, 2007, 46, 5076-5083.	1.9	88
407	Tuning Photophysical and Electrochemical Properties of Cationic Iridium(III) Complex Salts with Imidazolyl Substituents by Proton and Anions. Organometallics, 2007, 26, 5922-5930.	1.1	122
408	A Highly Selective and Multisignaling Opticalâ^'Electrochemical Sensor for Hg2+Based on a Phosphorescent Iridium(III) Complex. Organometallics, 2007, 26, 2077-2081.	1.1	190

ARTICLE IF CITATIONS # The Evolution of Organometallic Complexes in Organic Light-Emitting Devices. MRS Bulletin, 2007, 32, 409 1.7 107 694-701. Cyclometallated Iridium and Platinum Complexes with Noninnocent Ligands. Inorganic Chemistry, 2007, 46, 3865-3875. Phosphorescent Resonant Energy Transfer between Iridium Complexes. Journal of Physical Chemistry 411 1.1 40 A, 2007, 111, 1381-1388. Enhancements in the Electron-Transfer Kinetics of Uranium-Based Redox Couples Induced by Tetraketone Ligands with Potential Chelate Effect. Journal of Physical Chemistry C, 2007, 111, 18812-18820 Ultra High Efficiency Green Organic Light-Emitting Devices. Japanese Journal of Applied Physics, 2007, 413 0.8 351 46, L10-L12. Highly efficient solution-processed phosphorescent multilayer organic light-emitting diodes based on small-molecule hosts. Applied Physics Letters, 2007, 91, . 1.5 128 415 Organometallic Complexes for Optoelectronic Applications., 2007, , 101-194. 48 Relativistic Study on Emission Mechanism in Tris(2-phenylpyridine)iridium. Journal of Physical 1.5 68 Chemistry C, 2007, 111, 6897-6903. 417 Photochemistry and Photophysics of Coordination Compounds: Iridium., 2007, , 143-203. 892 High-Efficiency Phosphorescent Polymer LEDs., 0,, 311-328. Controlling Phosphorescence Color and Quantum Yields in Cationic Iridium Complexes:Â A Combined 419 237 1.9 Experimental and Theoretical Study. Inorganic Chemistry, 2007, 46, 5989-6001. Novel host material for highly efficient blue phosphorescent OLEDs. Journal of Materials Chemistry, 138 2007, 17, 1692. Phosphorescent Dyes for Organic Light-Emitting Diodes. Chemistry - A European Journal, 2007, 13, 423 1.7 747 380-395. Organogels of 8-Quinolinol/Metal(II)â€"Chelate Derivatives That Show Electron- and Light-Emitting 424 1.7 76 Properties. Chemistry - A European Journal, 2007, 13, 4155-4162. Highly Branched Phosphorescent Dendrimers for Efficient Solution-Processed Organic Light-Emitting 425 7.8 80 Diodes. Advanced Functional Materials, 2007, 17, 1149-1152. Efficient Organic Light-Emitting Diodes based on Sublimable Charged Iridium Phosphorescent Emitters. 426 154 Advanced Functional Materials, 2007, 17, 315-323. A Novel Fluoreneâ€Triphenylamine Hybrid That is a Highly Efficient Host Material for Blueâ€, Greenâ€, and 427 7.8 136 Redâ€Lightâ€Emitting Electrophosphorescent Devices. Advanced Functional Materials, 2007, 17, 3514-3520. High Performance Polymer Electrophosphorescent Devices with <i>tert</i>â€Butyl Group Modified 44 Iridium Complexes as Emitters. Advanced Functional Materials, 2007, 17, 3319-3325.

#	Article	IF	CITATIONS
429	3-(9-Carbazolyl)carbazoles and 3,6-Di(9-carbazolyl)carbazoles as Effective Host Materials for Efficient Blue Organic Electrophosphorescence. Advanced Materials, 2007, 19, 862-866.	11.1	439
430	Highly Efficient and Low-Voltage Phosphorescent Organic Light-Emitting Diodes Using an Iridium Complex as the Host Material. Advanced Materials, 2007, 19, 276-280.	11.1	181
431	The Development of Light-Emitting Dendrimers for Displays. Advanced Materials, 2007, 19, 1675-1688.	11.1	460
432	Enhanced Photogeneration of Triplet Excitons in an Oligothiophene–Fullerene Blend. ChemPhysChem, 2007, 8, 1497-1503.	1.0	35
433	High efficiency electrophosphorescent red organic light-emitting devices with double-emission layers. Solid-State Electronics, 2007, 51, 1129-1132.	0.8	16
434	Novel fluorene/carbazole hybrids with steric bulk as host materials for blue organic electrophosphorescent devices. Tetrahedron, 2007, 63, 10161-10168.	1.0	55
435	Synthesis and blue electroluminescent properties of zinc (II) [2-(2-hydroxyphenyl)benzoxazole]. Thin Solid Films, 2007, 515, 5070-5074.	0.8	8
436	Intense and efficient ultraviolet electroluminescence from organic light-emitting devices with fluorinated copper phthalocyanine as hole injection layer. Thin Solid Films, 2007, 515, 3932-3935.	0.8	40
437	Synthesis of a red electrophosphorescent heteroleptic iridium complex and its application in efficient polymer light-emitting diodes. Thin Solid Films, 2007, 515, 7347-7351.	0.8	7
438	A multicomponent rhenium-based triplet emitter for organic electroluminescence. Chemical Physics Letters, 2007, 435, 54-58.	1.2	27
439	Charge-carrier injection characteristics at organic/organic heterojunction interfaces in organic light-emitting diodes. Chemical Physics Letters, 2007, 435, 327-330.	1.2	33
440	Highly efficient saturated red electrophosphorescence from isoquinoline-based iridium complex containing triphenylamino units in polymer light-emitting devices. Chemical Physics Letters, 2007, 441, 277-281.	1.2	14
441	Synthesis and phosphorescent properties of two novel iridium(III) complexes bearing bulky tert-butyl substituents. Chinese Chemical Letters, 2007, 18, 1119-1123.	4.8	3
442	Very low amplified spontaneous emission threshold and electroluminescence characteristics of $1,1\hat{a}\in^2$ -diphenyl substituted fluorene derivatives. Optical Materials, 2007, 30, 630-636.	1.7	11
443	Tuning iridium(III) complexes containing 2-benzo[b]thiophen-2-yl-pyridine based ligands in the red region. Inorganica Chimica Acta, 2007, 360, 3149-3154.	1.2	27
444	A study on the characteristics of OLEDs using Ir complex for blue phosphorescence. Current Applied Physics, 2007, 7, 380-383.	1.1	22
445	Control of emission outcoupling in liquid-crystalline fluorescent polymer films. Organic Electronics, 2007, 8, 317-324.	1.4	9
446	Enhanced light extraction from organic light-emitting devices by using microcontact printed silica colloidal crystals. Organic Electronics, 2007, 8, 635-639.	1.4	51

CITATION REPORT IF CITATIONS Efficient fluorescent white organic light-emitting diodes using co-host/emitter dual-role possessed 1.4 40 di(triphenyl-amine)-1,4-divinyl-naphthalene. Organic Electronics, 2007, 8, 735-742. Decay dynamics of photo-luminescence in tris(2-phenylpyridine)iridium phosphor. Journal of 1.5 Luminescence, 2007, 122-123, 440-443. Synthesis and green electrophosphorescence of a novel cyclometalated iridium complex in polymer 1.58 light-emitting diodes. Journal of Luminescence, 2007, 126, 687-694. Triplet-Polaron Quenching in Conjugated Polymers. Journal of Physical Chemistry B, 2007, 111, 1.2 Novel light-emitting electrophosphorescent copolymers based on carbazole with an Ir complex on the 6.7 55 backbone. Journal of Materials Chemistry, 2007, 17, 2824. Highly phosphorescent perfect green emitting iridium(iii) complex for application in OLEDs. Chemical Communications, 2007, , 3276. 2.2 Synthesis of host polymers and guests for electrophosphorescence. Macromolecular Research, 2007, 1.0 3 Electromodulation of photoluminescence in vacuum-evaporated films of fac-tris(2-phenylpyridine)iridium(III). Chemical Physics, 2007, 337, 151-160. Morphology-dependent photoluminescence property of red-emitting LnOCI:Eu (Ln=La and Gd). Journal 1.4 44 of Solid State Chemistry, 2007, 180, 3529-3534. Highly enhanced blue-emission of LnOCI:Tm prepared by dehydration of Ln(OH)2CI:Tm (Ln=La and Gd). 1.7 Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 151, 163-168. Small molecular and polymer organic light-emitting diodes based on novel iridium complex phosphor. 2.0 8 Displays, 2008, 29, 493-496.

458	Optical materials for organic light-emitting devices. Optical Materials, 2008, 30, 792-799.	1.7	39
459	New host copolymers containing pendant triphenylamine and carbazole for efficient green phosphorescent OLEDs. Polymer, 2008, 49, 4211-4217.	1.8	26
460	Driving voltage reduction and efficiency increase by narrow bandgap host materials in phosphorescent organic light-emitting diodes. Thin Solid Films, 2008, 517, 896-900.	0.8	14
461	Bright white light electroluminescent devices based on efficient management of singlet and triplet excitons. Optical and Quantum Electronics, 2008, 40, 967-972.	1.5	0
462	Synthesis, Characterization and Photoluminescence of Dimeric and Polymeric Metallaynes of Group 10–12 Metals Containing Conjugation-breaking Diphenylmethane Unit. Journal of Inorganic and Organometallic Polymers and Materials, 2008, 18, 155-162.	1.9	7
463	An effective intermediate Al/Au electrode for stacked color-tunable organic light emitting devices. Applied Physics A: Materials Science and Processing, 2008, 91, 501-506.	1.1	5
464	Synthesis and Photophysical Properties of 3,6-Diphenyl-9-hexyl-9H-carbazole Derivatives Bearing Electron Withdrawing Groups. Monatshefte Für Chemie, 2008, 139, 223-231.	0.9	13

ARTICLE

12075-12080.

15, 129-133.

#

447

448

449

451

453

454

455

#	Article	IF	CITATIONS
465	Molecular design of efficient whiteâ€lightâ€emitting fluoreneâ€based copolymers by mixing singlet and triplet emission. Journal of Polymer Science Part A, 2008, 46, 453-463.	2.5	49
466	Highly soluble greenâ€emitting Ir(III) complexes with 9â€(6â€phenylâ€pyridinâ€3â€ylmethyl)â€9 <i>H</i> â€carba: ligands and their application to polymer lightâ€emitting diodes. Journal of Polymer Science Part A, 2008, 46, 7419-7428.	zole 2.5	14
467	Deepâ€red lightâ€emitting phosphorescent dendrimer encapsulated trisâ€[2â€benzo[<i>b</i>]thiophenâ€2â€ylâ€pyridyl] iridium (III) core for lightâ€emitting device applications. Journal of Polymer Science Part A, 2008, 46, 7517-7533.	2.5	31
468	Photodegradationâ€induced photoluminescence behaviors of ï€â€conjugated polymers upon the doping of organometallic triplet emitters. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 2395-2403.	2.4	4
469	Exciton dynamics in blends of phosphorescent emitters. Physica Status Solidi (B): Basic Research, 2008, 245, 810-813.	0.7	4
470	Iridiumâ€Functionalized Polyfluorenes: Advantages and Limitations of the Suzuki and Yamamoto Approaches. Macromolecular Chemistry and Physics, 2008, 209, 258-271.	1.1	32
471	Synthesis of <i>α</i> â€(Fluorophenyl)pyridine by Palladium atalyzed Cross oupling Reaction. Chinese Journal of Chemistry, 2008, 26, 1101-1104.	2.6	3
472	The Origin of the Improved Efficiency and Stability of Triphenylamineâ€5ubstituted Anthracene Derivatives for OLEDs: A Theoretical Investigation. ChemPhysChem, 2008, 9, 2601-2609.	1.0	93
473	Self-Assembly of Luminescent Platinum-Salen Schiff-Base Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 523-528.	1.0	24
474	A Series of Redâ€Lightâ€Emitting Ionic Iridium Complexes: Structures, Excited State Properties, and Application in Electroluminescent Devices. European Journal of Inorganic Chemistry, 2008, 2008, 2177-2185.	1.0	50
475	A Highly Efficient Host/Dopant Combination for Blue Organic Electrophosphorescence Devices. Advanced Functional Materials, 2008, 18, 485-491.	7.8	120
476	Redâ€Lightâ€Emitting Iridium Complexes with Holeâ€Transporting 9â€Arylcarbazole Moieties for Electrophosphorescence Efficiency/Color Purity Tradeâ€off Optimization. Advanced Functional Materials, 2008, 18, 319-331.	7.8	225
477	An Organic Lightâ€Emitting Diode with Fieldâ€Effect Electron Transport. Advanced Functional Materials, 2008, 18, 136-144.	7.8	43
478	Rational Design of Chelating Phosphine Functionalized Os ^(II) Emitters and Fabrication of Orange Polymer Lightâ€Emitting Diodes Using Solution Process. Advanced Functional Materials, 2008, 18, 183-194.	7.8	45
479	Electrophosphorescent Polyfluorenes Containing Osmium Complexes in the Conjugated Backbone. Advanced Functional Materials, 2008, 18, 1430-1439.	7.8	85
480	Optimization of Orangeâ€Emitting Electrophosphorescent Copolymers for Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2008, 18, 3056-3062.	7.8	67
481	Organic Lightâ€Emitting Diodes with Fieldâ€Effectâ€Assisted Electron Transport Based on <i>l±â€bi;</i> , <i>ï‰â€bi;</i> â€Diperfluorohexylâ€quaterthiophene. Advanced Functional Materials, 2008, 18, 3645-3652.	7.8	15
482	Advanced Device Architecture for Highly Efficient Organic Lightâ€Emitting Diodes with an Orangeâ€Emitting Crosslinkable Iridium(III) Complex. Advanced Materials, 2008, 20, 129-133.	11.1	144

#	Article	IF	CITATIONS
483	Pyridineâ€Containing Triphenylbenzene Derivatives with High Electron Mobility for Highly Efficient Phosphorescent OLEDs. Advanced Materials, 2008, 20, 2125-2130.	11.1	590
484	Waterâ€Soluble Polyfluorenes as an Electron Injecting Layer in PLEDs for Extremely High Quantum Efficiency. Advanced Materials, 2008, 20, 1624-1629.	11.1	83
485	Controlling the Radiative Rate of Deepâ€Blue Electrophosphorescent Organometallic Complexes by Singletâ€Triplet Gap Engineering. Advanced Materials, 2008, 20, 3325-3330.	11.1	193
486	Highly Efficient Organic Blueâ€and Whiteâ€Lightâ€Emitting Devices Having a Carrier―and Excitonâ€Confining Structure for Reduced Efficiency Rollâ€Off. Advanced Materials, 2008, 20, 4189-4194.	11.1	300
487	Enhanced green electrophosphorescence by using polyfluorene host via interfacial energy transfer from polyvinylcarbazole. Organic Electronics, 2008, 9, 1002-1009.	1.4	32
488	The heteroleptic complexes containing 2,3-diphenylquinoline derivatives as phosphorescent materials. Journal of Physics and Chemistry of Solids, 2008, 69, 1320-1324.	1.9	6
489	Efficient small molecular and polymer organic devices using bis[2-(4-tert-butylphenyl)benzothiazolato-N,C2′] iridium (III) (acetylacetonate) dye as emitter. Journal of Luminescence, 2008, 128, 1379-1383.	1.5	5
490	Relationship between dopant energy levels and device performances of triplet mixed host devices. Journal of Luminescence, 2008, 128, 2035-2037.	1.5	4
491	Ultrafast luminescence in Ir(ppy)3. Chemical Physics Letters, 2008, 450, 292-296.	1.2	96
492	Evidence for enhanced dipolar interactions between Pt centers in binuclear phosphorescent complexes. Chemical Physics Letters, 2008, 458, 323-328.	1.2	7
493	Measurement of photoluminescence efficiency of Ir(III) phenylpyridine derivatives in solution and solid-state films. Chemical Physics Letters, 2008, 460, 155-157.	1.2	138
494	Light emission mechanism of heteroleptic red phosphorescent dopant materials. Current Applied Physics, 2008, 8, 471-474.	1.1	0
495	Towards a phosphorescent cyclometalated iridium complex containing a modified polymerizable acetylacetonato ligand. Inorganic Chemistry Communication, 2008, 11, 231-234.	1.8	16
496	Formation and luminescence of 1D helical polymeric excimer from Pt-MeO-salen precursor. Inorganic Chemistry Communication, 2008, 11, 699-702.	1.8	6
497	High-efficiency red phosphorescent organic light-emitting diodes based on metal-microcavity structure. Solid-State Electronics, 2008, 52, 211-214.	0.8	2
498	Synthesis, characterization, photophysical and electrochemical properties of new phosphorescent dopants for OLEDs. Tetrahedron Letters, 2008, 49, 2710-2713.	0.7	23
499	Effect of fabrication process on characteristics of phosphorescence organic light emitting diodes with methoxy-substituted starburst low-molecule as a host. Thin Solid Films, 2008, 516, 2772-2775.	0.8	3
500	Enhancement of the light extraction efficiency in organic light emitting diodes utilizing a porous alumina film. Thin Solid Films, 2008, 516, 3633-3636.	0.8	11

#	Article	IF	CITATIONS
501	Highly efficient white organic light-emitting devices based on a multiple-emissive-layer structure. Thin Solid Films, 2008, 516, 5133-5136.	0.8	5
502	Green and blue-green phosphorescent heteroleptic iridium complexes containing carbazole-functionalized β-diketonate for non-doped organic light-emitting diodes. Organic Electronics, 2008, 9, 171-182.	1.4	33
503	Green phosphorescent iridium dendrimers containing dendronized benzoimidazole-based ligands for OLEDs. Organic Electronics, 2008, 9, 557-568.	1.4	32
504	Multiple exciton generation regions in phosphorescent white organic light emitting devices. Organic Electronics, 2008, 9, 994-1001.	1.4	22
505	The blue aluminum and gallium chelates for OLEDs. Inorganica Chimica Acta, 2008, 361, 1020-1035.	1.2	25
506	Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview. Journal Physics D: Applied Physics, 2008, 41, 133001.	1.3	266
507	100% internal quantum efficiency and stable efficiency roll-off in phosphorescent light-emitting diodes using a high triplet energy hole transport material. Applied Physics Letters, 2008, 93, 063306.	1.5	55
508	Fastâ€response organic–inorganic hybrid lightâ€emitting diode. Physica Status Solidi - Rapid Research Letters, 2008, 2, 290-292.	1.2	11
509	Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nature Photonics, 2008, 2, 483-487.	15.6	525
510	A look on the bright side. IEEE Industry Applications Magazine, 2008, 14, 12-17.	0.3	2
510 511	A look on the bright side. IEEE Industry Applications Magazine, 2008, 14, 12-17. Upconversion-induced fluorescence in multicomponent systems: Steady-state excitation power threshold. Physical Review B, 2008, 78, .	0.3	2 398
510 511 512	A look on the bright side. IEEE Industry Applications Magazine, 2008, 14, 12-17. Upconversion-induced fluorescence in multicomponent systems: Steady-state excitation power threshold. Physical Review B, 2008, 78, . Light extraction and optical loss mechanisms in organic light-emitting diodes. Proceedings of SPIE, 2008, , .	0.3 1.1 0.8	2 398 13
510511512513	A look on the bright side. IEEE Industry Applications Magazine, 2008, 14, 12-17. Upconversion-induced fluorescence in multicomponent systems: Steady-state excitation power threshold. Physical Review B, 2008, 78, . Light extraction and optical loss mechanisms in organic light-emitting diodes. Proceedings of SPIE, 2008, , . Self-Assembly of Rodâ ^{-,} Coil Block Copolymers and Their Application in Electroluminescent Devices. Macromolecules, 2008, 41, 7152-7159.	0.3 1.1 0.8 2.2	2 398 13 70
 510 511 512 513 514 	A look on the bright side. IEEE Industry Applications Magazine, 2008, 14, 12-17. Upconversion-induced fluorescence in multicomponent systems: Steady-state excitation power threshold. Physical Review B, 2008, 78, . Light extraction and optical loss mechanisms in organic light-emitting diodes. Proceedings of SPIE, 2008, Self-Assembly of Rodâ [°] Coil Block Copolymers and Their Application in Electroluminescent Devices. Macromolecules, 2008, 41, 7152-7159. Investigations of white light emitting europium doped zinc oxide nanoparticles. Journal Physics D: Applied Physics, 2008, 41, 015301.	0.3 1.1 0.8 2.2 1.3	2 398 13 70 38
 510 511 512 513 514 515 	A look on the bright side. IEEE Industry Applications Magazine, 2008, 14, 12-17. Upconversion-induced fluorescence in multicomponent systems: Steady-state excitation power threshold. Physical Review B, 2008, 78, . Light extraction and optical loss mechanisms in organic light-emitting diodes. Proceedings of SPIE, 2008, , . Self-Assembly of Rodá ^{-,} Coil Block Copolymers and Their Application in Electroluminescent Devices. Macromolecules, 2008, 41, 7152-7159. Investigations of white light emitting europium doped zinc oxide nanoparticles. Journal Physics D: Applied Physics, 2008, 41, 015301. Temperature dependence of electron mobility, electroluminescence and photoluminescence of Alq ₃	0.3 1.1 0.8 2.2 1.3 1.3	2 398 13 70 38
 510 511 512 513 514 515 516 	A look on the bright side. IEEE Industry Applications Magazine, 2008, 14, 12-17. Upconversion-induced fluorescence in multicomponent systems: Steady-state excitation power threshold. Physical Review B, 2008, 78, . Light extraction and optical loss mechanisms in organic light-emitting diodes. Proceedings of SPIE, 2008, , . Self-Assembly of Rodã Coil Block Copolymers and Their Application in Electroluminescent Devices. Macromolecules, 2008, 41, 7152-7159. Investigations of white light emitting europium doped zinc oxide nanoparticles. Journal Physics D: Applied Physics, 2008, 41, 015301. Temperature dependence of electron mobility, electroluminescence and photoluminescence of Alq ₃ in OLED. Journal Physics D: Applied Physics, 2008, 41, 235109. Dendritic macromolecules for organic light-emitting diodes. Chemical Society Reviews, 2008, 37, 2543.	0.3 1.1 0.8 2.2 1.3 1.3 1.3	2 398 13 70 38 25
 510 511 512 513 514 515 516 517 	A look on the bright side. IEEE Industry Applications Magazine, 2008, 14, 12-17. Upconversion-induced fluorescence in multicomponent systems: Steady-state excitation power threshold. Physical Review B, 2008, 78, . Light extraction and optical loss mechanisms in organic light-emitting diodes. Proceedings of SPIE, 2008, Self-Assembly of Rodâ ⁻¹ Coil Block Copolymers and Their Application in Electroluminescent Devices. Macromolecules, 2008, 41, 7152-7159. Investigations of white light emitting europium doped zinc oxide nanoparticles. Journal Physics D: Applied Physics, 2008, 41, 015301. Temperature dependence of electron mobility, electroluminescence and photoluminescence of Alq ₃ in OLED. Journal Physics D: Applied Physics, 2008, 41, 235109. Dendritic macromolecules for organic light-emitting diodes. Chemical Society Reviews, 2008, 37, 2543. Structurally Integrated Photoluminescent Chemical and Biological Sensors: An Organic Light-Emitting Diode-Based Platform. , 2008, 61-96.	0.3 1.1 0.8 2.2 1.3 1.3 1.3	2 398 13 70 38 25 211 1

ARTICLE IF CITATIONS Nearly 100% internal phosphorescence efficiency in a polymer light-emitting diode using a new iridium 519 6.7 98 complex phosphor. Journal of Materials Chemistry, 2008, 18, 1636. Crosslinkable hole-transporting materials for solution processed polymer light-emitting diodes. 6.7 Journal of Materials Chemistry, 2008, 18, 4495. Influence of charge balance and exciton distribution on efficiency and lifetime of phosphorescent 521 1.1 212 organic light-emitting devices. Journal of Applied Physics, 2008, 104, . Intrinsic luminance loss in phosphorescent small-molecule organic light emitting devices due to 1.1 bimolecular annihilation reactions. Journal of Applied Physics, 2008, 103, . Luminescence properties of the TRIMEB inclusion compound of a europium tris-Î²-diketonate. Journal of 523 1.5 5 Non-Crystalline Solids, 2008, 354, 2736-2739. Organic light emitting diodes with europium (III) emissive layers based on \hat{l}^2 -diketonate complexes: The influence of the central ligand. Journal of Non-Crystalline Solids, 2008, 354, 2897-2900. 524 1.5 Triindolylmethane-based high triplet energy glass-forming electroactive molecular materials. 525 2.1 48 Synthetic Metals, 2008, 158, 226-232. New asymmetric monostyrylamine dopants for blue light-emitting organic electroluminescence 2.1 device. Synthetic Metals, 2008, 158, 369-374. Vinyl polymer containing 1,4-distyrylbenzene chromophores: Synthesis, optical, electrochemical 527 2.1 9 properties and its blend with PVK and Ir(ppy)3. Synthetic Metals, 2008, 158, 411-416. Poly(4-vinyltriphenylamine): Optical, electrochemical properties and its new application as a host 2.1 material of green phosphorescent Ir(ppy)3 dopant. Synthetic Metals, 2008, 158, 565-571. Synthesis, characterization and photoluminescence of poly(VK-(ppy)2Ir(N-phMA)). Synthetic Metals, 529 2.1 11 2008, 158, 1022-1027. 2-Phenylpyrimidine skeleton-based electron-transport materials for extremely efficient green organic 2.2 130 light-emitting devices. Chemical Communications, 2008, , 5821. Luminous power efficiency optimization of a white organic light-emitting diode by tuning its spectrum 531 2.1 4 and its extraction efficiency. Applied Optics, 2008, 47, 1947. Ink-jet-printable phosphorescent organic light-emitting-diode devices. Journal of the Society for Information Display, 2008, 16, 1229. 0.8 23 Pyridine-Containing Bipolar Host Materials for Highly Efficient Blue Phosphorescent OLEDs. 533 3.2 491 Chemistry of Materials, 2008, 20, 1691-1693. Roll-Off Characteristics of Electroluminescence Efficiency of Organic Blue Electrophosphorescence 534 Diodes. Japanese Journal of Applied Physics, 2008, 47, 7363-7365. An electron-transporting host material compatible with diverse triplet emitters used for highly 535 2.230 efficient red- and green-electrophosphorescent devices. Chemical Communications, 2008, , 4956. Efficient simple structure red phosphorescent organic light emitting devices with narrow band-gap 1.5 fluorescent host. Applied Physics Letters, 2008, 92, .

#	Article	IF	CITATIONS
537	Stable efficiency roll-off in phosphorescent organic light-emitting diodes. Applied Physics Letters, 2008, 92, 023513.	1.5	98
538	A solution-processable bipolar molecular glass as a host material for white electrophosphorescent devices. Journal of Materials Chemistry, 2008, 18, 3461.	6.7	54
539	Aluminium–salen luminophores as new hole-blocking materials for phosphorescent OLEDs. Dalton Transactions, 2008, , 1818.	1.6	47
540	Polymers Derived from 3,6-Fluorene and Tetraphenylsilane Derivatives: Solution-Processable Host Materials for Green Phosphorescent OLEDs. Macromolecules, 2008, 41, 3801-3807.	2.2	71
541	Quantum efficiency roll-off at high brightness in fluorescent and phosphorescent organic light emitting diodes. Physical Review B, 2008, 77, .	1.1	350
542	Investigation into the Phosphorescence of a Series of Regioisomeric Iridium(III) Complexes. Organometallics, 2008, 27, 2980-2989.	1.1	38
543	Ab Initio Prediction of the Emission Color in Phosphorescent Iridium(III) Complexes for OLEDs. Journal of Physical Chemistry B, 2008, 112, 13181-13183.	1.2	32
544	Highly Efficient Organic Light-Emitting Diodes Doped with Thiophene/Phenylene Co-Oligomer. Chemistry of Materials, 2008, 20, 2881-2883.	3.2	14
545	Highly Photoluminescent Metal–Polymer Complexes prepared with a Facile Chemical Vapor Deposition Polymerization Process. Chemistry of Materials, 2008, 20, 2435-2437.	3.2	9
546	Transparent Active Matrix Organic Light-Emitting Diode Displays Driven by Nanowire Transistor Circuitry. Nano Letters, 2008, 8, 997-1004.	4.5	213
547	Inductive Effects of Diphenylphosphoryl Moieties on Carbazole Host Materials: Design Rules for Blue Electrophosphorescent Organic Light-Emitting Devices. Journal of Physical Chemistry C, 2008, 112, 7989-7996.	1.5	100
548	Organic-Inorganic Flexible and Transparent Electronics. , 2008, , .		1
549	Molecular Packing Effects on the Optical Spectra and Triplet Dynamics in Oligofluorene Films. Journal of Physical Chemistry B, 2008, 112, 11605-11609.	1.2	19
550	Synthesis, Separation, and Circularly Polarized Luminescence Studies of Enantiomers of Iridium(III) Luminophores. Inorganic Chemistry, 2008, 47, 2039-2048.	1.9	131
551	Crosslinkable Fluorene-Based Derivatives as Materials for Light Emitting Diodes. Molecular Crystals and Liquid Crystals, 2008, 497, 202/[534]-210/[542].	0.4	0
552	Luminescence characteristics of Eu 3+ activated borate phosphor for white light emitting diode. Chinese Physics B, 2008, 17, 1907-1910.	0.7	12
553	Phosphorescent Organic Light Emitting Diode Using Vinyl Derivatives of Hole Transport and Dopant Materials. Japanese Journal of Applied Physics, 2008, 47, 1279-1283.	0.8	17
554	Enhanced Fluorescence of Ni(II) Complex Compounds in the Presence of DNA Components. Molecular Crystals and Liquid Crystals, 2008, 486, 230/[1272]-238/[1280].	0.4	0

#	Article	IF	CITATIONS
555	A New Phosphorescent Iridium Complex and Its Orange and White Light-Emitting Devices. Molecular Crystals and Liquid Crystals, 2008, 492, 328/[692]-336/[700].	0.4	0
556	High-efficiency blue fluorescent organic light emitting devices based on double emission layers. Journal Physics D: Applied Physics, 2008, 41, 055103.	1.3	17
557	Efficient deep-blue phosphorescent organic light-emitting device with improved electron and exciton confinement. Applied Physics Letters, 2008, 92, .	1.5	138
558	Efficient white organic light-emitting devices using a thin 4,4′-bis(2,2′-diphenylvinyl)-1,1′-diphenyl layer. Journal Physics D: Applied Physics, 2008, 41, 045104.	1.3	8
559	Study on Organic Triplet Exciton Emission and Quenching Processes by Low-temperature Photo- and Electroluminescence Spectroscopy. Materials Research Society Symposia Proceedings, 2008, 1115, 53101.	0.1	0
560	Organic Light-Emitting Devices for Solid-State Lighting. MRS Bulletin, 2008, 33, 663-669.	1.7	381
561	Efficient white organic light-emitting diodes based on iridium complex sensitized copper complex. Journal Physics D: Applied Physics, 2008, 41, 085103.	1.3	8
562	Near-Infrared Emission from Organic Light-Emitting Diodes Based on Copper Phthalocyanine with a Periodically Arranged Alq ₃ :CuPc/DCM Multilayer Structure. Chinese Physics Letters, 2008, 25, 715-718.	1.3	9
563	Improved efficiency and colour purity of blue electrophosphorescent devices by codoping a fluorescent emitter. Journal Physics D: Applied Physics, 2008, 41, 125108.	1.3	0
564	Spectral Characteristics of White Organic Light-emitting Diodes Based on Novel Phosphorescent Sensitizer. Chinese Journal of Chemical Physics, 2008, 21, 510-514.	0.6	5
565	Efficient red phosphorescent organic light emitting diodes with double emission layers. Journal Physics D: Applied Physics, 2008, 41, 155111.	1.3	10
566	White electrophosphorescent devices based on tricolour emissive layers. Journal Physics D: Applied Physics, 2008, 41, 025104.	1.3	7
567	Deep-red to near-infrared electrophosphorescence based on bis(8-hydroxyquinolato) platinum(II) complexes. Applied Physics Letters, 2008, 92, 163305.	1.5	28
568	Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency. Journal of Applied Physics, 2008, 104, .	1.1	236
569	Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes. Journal of Applied Physics, 2008, 104, 093111.	1.1	58
570	Low roll-off power efficiency organic light-emitting diodes consisted of nondoped ultrathin phosphorescent layer. Applied Physics Letters, 2008, 92, 133308.	1.5	36
571	Multifunctional metallophosphors with anti-triplet–triplet annihilation properties for solution-processable electroluminescent devices. Journal of Materials Chemistry, 2008, 18, 1799.	6.7	108
572	The reduced triplet-triplet annihilation of electrophosphorescent device doped by an iridium complex with active hydrogen. Applied Physics Letters, 2008, 93, 153303.	1.5	25

#	Article	IF	Citations
573	Highly efficient red organic light-emitting devices based on a fluorene-triphenylamine host doped with an Os(II) phosphor. Applied Physics Letters, 2008, 92, 233303.	1.5	44
574	Reduced efficiency roll-off in phosphorescent organic light emitting diodes at ultrahigh current densities by suppression of triplet-polaron quenching. Applied Physics Letters, 2008, 93, .	1.5	58
575	Electron and hole transport in a wide bandgap organic phosphine oxide for blue electrophosphorescence. Applied Physics Letters, 2008, 92, .	1.5	129
576	Triplet host engineering for triplet exciton management in phosphorescent organic light-emitting diodes. Journal of Applied Physics, 2008, 103, 054502.	1.1	37
577	Electroluminescence characteristics of n-type matrix materials doped with iridium-based green and red phosphorescent emitters. Journal of Applied Physics, 2008, 103, 054510.	1.1	30
578	Cavity effects on light extraction in organic light emitting devices. Applied Physics Letters, 2008, 92, .	1.5	40
579	Low-voltage, high-efficiency blue phosphorescent organic light-emitting devices. Applied Physics Letters, 2008, 92, 173305.	1.5	14
580	High efficiency deep-blue organic light-emitting diode with a blue dye in low-polarity host. Applied Physics Letters, 2008, 92, .	1.5	27
581	Effects of ultraviolet light irradiation on poly(vinlycarbazole). Applied Physics Letters, 2008, 92, 053303.	1.5	15
582	Very high-efficiency organic light-emitting diodes based on cyclometallated rhenium (I) complex. Applied Physics Letters, 2008, 92, 083302.	1.5	33
583	Low voltage and very high efficiency deep-blue phosphorescent organic light-emitting devices. Applied Physics Letters, 2008, 93, 133309.	1.5	66
584	Highly efficient bilayer green phosphorescent organic light emitting devices. Applied Physics Letters, 2008, 92, 113311.	1.5	59
585	Effects of interlayers on phosphorescent blue organic light-emitting diodes. Applied Physics Letters, 2008, 92, 203305.	1.5	53
586	Triplet Exciton Diffusion and Phosphorescence Quenching in Iridium(III)-Centered Dendrimers. Physical Review Letters, 2008, 100, 017402.	2.9	65
587	Highly efficient green phosphorescent organic light-emitting diodes with simplified device geometry. Applied Physics Letters, 2008, 92, .	1.5	23
588	Temperature dependence of the triplet diffusion and quenching rates in films of an <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:miw="http: 1998="" display="inline" math="" mathml"="" www.w3.org=""><mml:mrow><mml:mrow><mml:miw="http: 1998="" display="inline" math="" mathml"="" www.w3.org=""><mml:mrow><mml:mrow><mml:mrow><mml:miw="http: 1998="" display="inline" math="" mathml"="" www.w3.org=""><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:miw="http: 1998="" display="inline" math="" mathml"="" www.w3.org=""><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mro< td=""><td>1.1 1ml:mo>)<</td><td>/mml:mo><</td></mml:mro<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:miw="http:></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:miw="http:></mml:mrow></mml:mrow></mml:mrow></mml:miw="http:></mml:mrow></mml:mrow></mml:miw="http:></mml:mrow></mml:math>	1.1 1ml:mo>)<	/mml:mo><
589	High Current Density in Light-Emitting Transistors of Organic Single Crystals. Physical Review Letters, 2008, 100, 066601.	2.9	216
590	Pâ€204: <i>Distinguished Poster Paper</i> : A Near Infrared OLED for Day/Night Display. Digest of Technical Papers SID International Symposium, 2008, 39, 1975-1977.	0.1	2

#	Article	IF	CITATIONS
591	Pâ€⊋48L: <i>Lateâ€News Student Poster</i> : Highâ€Efficiency Deepâ€Blue Organic Light Emitting Diode with a Novel Blue Dye in Lowâ€Polarity Host. Digest of Technical Papers SID International Symposium, 2008, 39, 2071-2073.	0.1	0
592	22.2: Printable Phosphorescent Organic Light Emitting Devices. Digest of Technical Papers SID International Symposium, 2008, 39, 295.	0.1	2
593	68.1: <i>Invited Paper</i> : Energy Transfer in Organic Phosphorescent Hostâ€Guest Systems. Digest of Technical Papers SID International Symposium, 2008, 39, 1038-1041.	0.1	0
594	Highly-efficient green phosphorescent organic light-emitting diodes with hybrid device geometry. Proceedings of SPIE, 2008, , .	0.8	0
596	Phosphorescent Organic Light-emitting Devices: Triplet Energy Management. Electrochemistry, 2008, 76, 24-31.	0.6	13
597	Highly efficient, charge balanced blue phosphorescent OLEDs employing wide band gap host with p-i-n architecture. , 2008, , .		0
598	Correlation of photoluminescent quantum efficiency and device characteristics for the soluble electrophosphorescent light emitter with interfacial layers. Journal of Applied Physics, 2008, 104, 024511.	1.1	7
599	An effective intermediate Al/Au electrode for stacked color-tunable organic light emitting devices. , 2008, , .		2
600	The Preparation of (8â€Hydroxyquinolinato)Bis(2â€Phenylpyridyl)Iridium Complexes and Their Photophysical Properties. Journal of the Chinese Chemical Society, 2008, 55, 439-448.	0.8	14
601	High-performance OLEDs and their application to lighting. Proceedings of SPIE, 2008, , .	0.8	9
602	Highly Efficient Phosphorescent Organic Light-Emitting Diodes Using Alkyl-Substituted Iridium Complexes as a Solution-Processible Host Material. Applied Physics Express, 2008, 1, 021805.	1.1	8
603	High efficient two color white phosphorescent organic light emitting diode. Journal of Applied Physics, 2008, 104, 064505.	1.1	3
604	Diffusion Enhanced Upconversion in Organic Systems. International Journal of Photoenergy, 2008, 2008, 2008, 1-5.	1.4	5
605	Improving efficiency roll-off in organic light emitting devices with a fluorescence-interlayer-phosphorescence emission architecture. Applied Physics Letters, 2009, 95, 133304.	1.5	22
606	Top-emission Si-based phosphor organic light emitting diode with Au doped ultrathin n-Si film anode and bottom Al mirror. Applied Physics Letters, 2009, 95, 033307.	1.5	11
607	Enhanced efficiency and reduced roll-off in blue and white phosphorescent organic light-emitting diodes with a mixed host structure. Applied Physics Letters, 2009, 94, .	1.5	106
608	Correlation of lifetime and recombination zone in green phosphorescent organic light-emitting diodes. Applied Physics Letters, 2009, 94, 093501.	1.5	15
609	Highly efficient and stable organic light-emitting diode using 4,4′-bis(N-carbazolyl)-9,9′-spirobifluorene as a thermally stable host material. Applied Physics Letters, 2009, 94,	1.5	24

#	Article	IF	CITATIONS
610	High efficiency electroluminescence devices using a series of Ir(III)-tetrazolate phosphors: Mechanisms for the drive current evolution of quantum yield. Applied Physics Letters, 2009, 94, 083306.	1.5	9
611	Synthesis and characterization of a novel organic phosphorescent Iridium(III) complex. , 2009, , .		0
612	Singlet energy transfer and singlet-singlet annihilation in light-emitting blends of organic semiconductors. Applied Physics Letters, 2009, 95, 183305.	1.5	22
613	Highly efficient simpleâ€structure red phosphorescent OLEDs with an extremely low doping technology. Journal of Information Display, 2009, 10, 87-91.	2.1	4
614	Synthesis and the Luminescent Study of the Iridium Complexes Containing 2,3-Diphenylquinoline Derivatives and the New Ancillary Ligand for OLED. Molecular Crystals and Liquid Crystals, 2009, 514, 14/[344]-24/[354].	0.4	1
615	Nondoped Electrophosphorescent Organic Light-Emitting Diodes Based on Platinum Complexes. Chinese Physics Letters, 2009, 26, 077804.	1.3	4
616	Adamantane Derivative as Host Material for Efficient Deep-Blue Phosphorescent Organic Light Emitting Diodes. Materials Research Society Symposia Proceedings, 2009, 1212, 1.	0.1	0
617	Improved performance of organic light emitting devices using triazole/ Cs 2 CO 3 /Al cathode. , 2009, , .		0
618	Enhanced electroluminescence and reduced efficiency roll-off in electrophosphorescent devices using a very high electron mobility material as emitter host and electron transporter. Journal Physics D: Applied Physics, 2009, 42, 065103.	1.3	5
619	Highly efficient pure yellow electrophosphorescent device by utilizing an electron blocking material. Semiconductor Science and Technology, 2009, 24, 105019.	1.0	4
620	Simple high efficiency red phosphorescent organic light-emitting diodes without LiF electron injection layer. Journal Physics D: Applied Physics, 2009, 42, 225103.	1.3	10
621	Efficient white organic light-emitting devices based on blue, orange, red phosphorescent dyes. Journal Physics D: Applied Physics, 2009, 42, 055115.	1.3	5
622	Highly Efficient Deep-Blue Phosphorescent Organic Light-Emitting Diodes Using Iridium(III) Bis[(5-cyano-4-fluorophenyl)pyridinato- <i>N</i> , <i>C</i> ^{2'}]picolinate as an Emitter. Japanese Journal of Applied Physics, 2009, 48, 082103.	0.8	14
623	Achieving highly efficient white organic light-emitting diodes with reduced efficiency roll-off. Journal Physics D: Applied Physics, 2009, 42, 065106.	1.3	17
624	Rubidium-Carbonate-Doped 4,7-Diphenyl-1,10-phenanthroline Electron Transporting Layer for High-Efficiency p-i-n Organic Light Emitting Diodes. Electrochemical and Solid-State Letters, 2009, 12, J8.	2.2	40
625	Fluorinated Poly(N-vinylcarbazole) Host for Triplet Energy Confinement on Phosphorescent Emitter in Organic Light-emitting Diodes. Materials Research Society Symposia Proceedings, 2009, 1197, 19.	0.1	0
626	Design of new anchored p-dopants for high power efficiency OLEDs. Proceedings of SPIE, 2009, , .	0.8	2
627	Organic Devices for Integrated Photonics. Proceedings of the IEEE, 2009, 97, 1627-1636.	16.4	4

#	Article	IF	CITATIONS
628	Efficiency and Stability of p-i-n Type Organic Light Emitting Diodes for Display and Lighting Applications. Proceedings of the IEEE, 2009, 97, 1606-1626.	16.4	110
629	Harvesting Excitons Via Two Parallel Channels for Efficient White Organic LEDs with Nearly 100% Internal Quantum Efficiency: Fabrication and Emissionâ€Mechanism Analysis. Advanced Functional Materials, 2009, 19, 84-95.	7.8	386
630	New Approach Toward Fast Response Lightâ€Emitting Electrochemical Cells Based on Neutral Iridium Complexes via Cation Transport. Advanced Functional Materials, 2009, 19, 711-717.	7.8	63
631	Synthesis and Characterization of Redâ€Emitting Iridium(III) Complexes for Solutionâ€Processable Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2009, 19, 2205-2212.	7.8	90
632	Highly Emitting Neutral Dinuclear Rhenium Complexes as Phosphorescent Dopants for Electroluminescent Devices. Advanced Functional Materials, 2009, 19, 2607-2614.	7.8	88
633	Phenylcarbazoleâ€Based Phosphine Oxide Host Materials For High Efficiency In Deep Blue Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2009, 19, 3644-3649.	7.8	187
634	Simple and Efficient Generation of White Light Emission From Organophosphorus Building Blocks. Advanced Functional Materials, 2009, 19, 3625-3631.	7.8	89
635	Nearly 100% Internal Quantum Efficiency in an Organic Blue‣ight Electrophosphorescent Device Using a Weak Electron Transporting Material with a Wide Energy Gap. Advanced Materials, 2009, 21, 1271-1274.	11.1	347
636	Low Thresholds in Polymer Lasers on Conductive Substrates by Distributed Feedback Nanoimprinting: Progress Toward Electrically Pumped Plastic Lasers. Advanced Materials, 2009, 21, 799-802.	11.1	143
637	Manipulating Charges and Excitons within a Singleâ€Host System to Accomplish Efficiency/CRI/Colorâ€Stability Tradeâ€off for Highâ€Performance OWLEDs. Advanced Materials, 2009, 21, 2397-2401.	11.1	183
638	Recent Developments in the Application of Phosphorescent Iridium(III) Complex Systems. Advanced Materials, 2009, 21, 4418-4441.	11.1	693
639	Phosphorescent Lightâ€Emitting Transistors: Harvesting Triplet Excitons. Advanced Materials, 2009, 21, 4957-4961.	11.1	44
640	Solutionâ€Processable Carbazoleâ€Based Conjugated Dendritic Hosts for Powerâ€Efficient Blueâ€Electrophosphorescent Devices. Advanced Materials, 2009, 21, 4983-4986.	11.1	141
641	Tuning the Emission Color of Iridium(III) Complexes with Ancillary Ligands: A Combined Experimental and Theoretical Study. European Journal of Inorganic Chemistry, 2009, 2009, 2407-2414.	1.0	27
642	Novel Red Lightâ€Emitting Fluoreneâ€ <i>alt</i> â€Carbazole Copolymers with Carbazole <i>N</i> â€Graft Cyclometalated Ir Complexes. Macromolecular Chemistry and Physics, 2009, 210, 457-466.	1.1	13
643	Synthesis and Characterization of Oxetaneâ€Functionalized Phosphorescent Ir(III) omplexes. Macromolecular Chemistry and Physics, 2009, 210, 531-541.	1.1	24
644	Organic/Organic′ Heterojunctions: Organic Light Emitting Diodes and Organic Photovoltaic Devices. Macromolecular Rapid Communications, 2009, 30, 717-731.	2.0	183
645	Development of organic lightâ€emitting diodes for electroâ€optical integrated devices. Laser and Photonics Reviews, 2010, 4, 300-310.	4.4	48
#	Article	IF	CITATIONS
-----	---	------	-----------
646	Spectroscopic properties of cyclometallated iridium complexes by TDDFT. Computational and Theoretical Chemistry, 2009, 914, 74-86.	1.5	31
647	Triplet dynamics and charge carrier trapping in triplet-emitter doped conjugated polymers. Chemical Physics, 2009, 358, 147-155.	0.9	12
648	Theoretical study on the electronic structures and optical properties of blue phosphorescent iridium(III) complexes. Journal of Molecular Structure, 2009, 919, 204-209.	1.8	3
649	Phosphorescent, green-emitting Ir(III) complexes with carbazolyl-substituted 2-phenylpyridine ligands: Effect of binding mode of the carbazole group on photoluminescence and electrophosphorescence. Dyes and Pigments, 2009, 83, 218-224.	2.0	20
650	Theoretical study on the absorption spectra of fac-Ir(ppy)3 in the amorphous phase of organic electro-luminescent devices. Research on Chemical Intermediates, 2009, 35, 851-863.	1.3	17
651	Synthesis, Optical Properties and Photophysics of Group 10–12 Transition Metal Complexes and Polymer Derived from a Central Tris(p-ethynylphenyl)amine Unit. Journal of Inorganic and Organometallic Polymers and Materials, 2009, 19, 46-54.	1.9	11
652	Theoretical studies on electronic structures and spectroscopic properties of a series of novel β-diketonate Os(II) complexes. Theoretical Chemistry Accounts, 2009, 122, 31-42.	0.5	4
653	Studies on organic lightâ€emitting diodes based on rubreneâ€doped zinc quinolate. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1660-1663.	0.8	4
654	Theoretical study on the spectroscopic properties and electronic structures of heteroleptic phosphorescent Ir(III) complexes. International Journal of Quantum Chemistry, 2009, 109, 1167-1176.	1.0	18
655	Phosphorescent organic lightâ€emitting diodes using an iridium complex polymer as the solutionâ€processible host material. Journal of Polymer Science Part A, 2009, 47, 4358-4365.	2.5	15
656	A wide band gap polymer derived from 3,6 arbazole and tetraphenylsilane as host for green and blue phosphorescent complexes. Journal of Polymer Science Part A, 2009, 47, 4784-4792.	2.5	33
657	A dual-emissive-materials design concept enables tumour hypoxia imaging. Nature Materials, 2009, 8, 747-751.	13.3	941
658	Photopatterned PLED arrays for biosensing applications. Microelectronic Engineering, 2009, 86, 1511-1514.	1.1	5
659	Energetics of metal–organic interfaces: New experiments and assessment of the field. Materials Science and Engineering Reports, 2009, 64, 1-31.	14.8	573
660	Triplet states in organic semiconductors. Materials Science and Engineering Reports, 2009, 66, 71-109.	14.8	448
661	A review on the light extraction techniques in organic electroluminescent devices. Optical Materials, 2009, 32, 221-233.	1.7	338
662	Highly efficient, orange–red organic light-emitting diodes using a series of green-emission iridium complexes as hosts. Organic Electronics, 2009, 10, 247-255.	1.4	41
663	An efficient bis(2-phenylquinoline) (acetylacetonate) iridium(III)-based red organic light-emitting diode with alternating guest:host emitting layers. Organic Electronics, 2009, 10, 320-325.	1.4	9

#	Article	IF	CITATIONS
664	Effect of electron injection and transport materials on efficiency of deep-blue phosphorescent organic light-emitting devices. Organic Electronics, 2009, 10, 686-691.	1.4	65
665	Efficient red electrophosphorescence from a fluorene-based bipolar host material. Organic Electronics, 2009, 10, 871-876.	1.4	104
666	Improved efficiency in solution processed green phosphorescent organic light-emitting diodes using a double layer emitting structure fabricated by a stamp transfer printing process. Organic Electronics, 2009, 10, 978-981.	1.4	8
667	Improving the performance of blue phosphorescent organic light-emitting devices using a composite emitter. Organic Electronics, 2009, 10, 1158-1162.	1.4	40
668	Yellow organic light-emitting diodes based on phosphorescent iridium(III) pyrazine complexes: Fine tuning of emission color. Inorganica Chimica Acta, 2009, 362, 2231-2236.	1.2	19
669	Enhancement of efficiency in blue organic light-emitting devices with nanoscale barrier and trapping layers embedded in an emitting layer and a hole transport layer. Thin Solid Films, 2009, 517, 5326-5329.	0.8	2
670	Enhanced performance of organic light-emitting diodes by inserting wide-energy-gap interlayer between hole-transport layer and light-emitting layer. Thin Solid Films, 2009, 518, 545-547.	0.8	3
671	Visible to near-infrared organic light-emitting diodes using phosphorescent materials by solution process. Thin Solid Films, 2009, 518, 551-554.	0.8	8
672	High light electroluminescence of novel Cu(I) complexes. Journal of Luminescence, 2009, 129, 181-186.	1.5	51
673	High performance polymer light-emitting diodes doped with a novel phosphorescent iridium complex. Journal of Luminescence, 2009, 129, 820-825.	1.5	11
674	Ideal host and guest system in phosphorescent OLEDs. Organic Electronics, 2009, 10, 240-246.	1.4	186
675	Highly branched green phosphorescent tris-cyclometalated iridium(III) complexes for solution-processed organic light-emitting diodes. Organic Electronics, 2009, 10, 594-606.	1.4	27
676	Near-white and tunable electrophosphorescence from bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II)-based organic light emitting diodes. Organic Electronics, 2009, 10, 863-870.	1.4	49
677	Efficient single layer RGB phosphorescent organic light-emitting diodes. Organic Electronics, 2009, 10, 1146-1151.	1.4	45
678	Stable efficiency roll-off in blue phosphorescent organic light-emitting diodes by host layer engineering. Organic Electronics, 2009, 10, 1529-1533.	1.4	92
679	Four-coordinate boron compounds derived from 2-(2-pyridyl)phenol ligand as novel hole-blocking materials for phosphorescent OLEDs. Journal of Organometallic Chemistry, 2009, 694, 1922-1928.	0.8	34
680	Cyclometallated iridium complexes for conversion of light into electricity and electricity into light. Journal of Organometallic Chemistry, 2009, 694, 2661-2670.	0.8	206
681	Synthesis and characterization of cyclometalated iridium(III) complexes containing pyrimidine-based ligands. Journal of Organometallic Chemistry, 2009, 694, 2757-2769.	0.8	18

#	Article	IF	CITATIONS
682	Application of heteroleptic iridium complexes with fluorenyl-modified 1-phenylisoquinoline ligand for high-efficiency red polymer light-emitting devices. Journal of Organometallic Chemistry, 2009, 694, 3172-3178.	0.8	5
683	Highly efficient phosphorescent iridium (III) diazine complexes for OLEDs: Different photophysical property between iridium (III) pyrazine complex and iridium (III) pyrimidine complex. Journal of Organometallic Chemistry, 2009, 694, 3050-3057.	0.8	59
684	The evolution of β-diketone or β-diketophenol ligands and related complexes. Coordination Chemistry Reviews, 2009, 253, 1099-1201.	9.5	280
685	Thickness dependence of PL efficiency of organic thin films. Chemical Physics, 2009, 355, 25-30.	0.9	19
686	Triplet state relaxation processes of the OLED emitter Pt(4,6-dFppy)(acac). Chemical Physics Letters, 2009, 468, 46-51.	1.2	32
687	Photoluminescence characteristics of tris(2-phenylquinoline)iridium(III) dispersed in an iridium complex host layer. Chemical Physics Letters, 2009, 483, 224-226.	1.2	27
688	The effect of driving voltage on the electroluminescent property of a blend of poly(9-vinylcarbazole) and 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole. Current Applied Physics, 2009, 9, 1038-1041.	1.1	20
689	Amidinate-ligated iridium(iii) bis(2-pyridyl)phenyl complex as an excellent phosphorescent material for electroluminescence devices. Chemical Communications, 2009, , 3699.	2.2	116
690	Different electronic structures and spectroscopic properties of cationic [M(ppy)2(Nâ^§N)]+ (M = Rh, Ir;) Tj ETQqC	0.0 rgBT /	Overlock 10

691	Highly Efficient Phosphorescent Light-Emitting Diodes by Using an Electron-Transport Material with High Electron Affinity. Journal of Physical Chemistry C, 2009, 113, 18448-18450.	1.5	25
692	A Study on the Phosphorescent Blue Organic Light-Emitting Diodes Using Various Host Materials. Molecular Crystals and Liquid Crystals, 2009, 507, 345-352.	0.4	9
693	Dynamic Behavior of Electroluminescence from Phosphor-Sensitized Red Fluorescent Organic Light-Emitting Diodes. Journal of Physical Chemistry C, 2009, 113, 11520-11523.	1.5	8
694	Triphenylsilyl- and Trityl-Substituted Carbazole-Based Host Materials for Blue Electrophosphorescence. ACS Applied Materials & Interfaces, 2009, 1, 567-574.	4.0	112
695	Phosphine-Oxide-Containing Bipolar Host Material for Blue Electrophosphorescent Devices. Chemistry of Materials, 2009, 21, 1017-1022.	3.2	140
696	Effect of the Charge Balance on High-Efficiency Blue-Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2009, 1, 1169-1172.	4.0	93
697	Silicon-Based Blue Phosphorescence Host Materials: Structure and Photophysical Property Relationship on Methyl/Phenylsilanes Adorned with 4-(<i>N</i> -Carbazolyl)phenyl Groups and Optimization of Their Electroluminescence by Peripheral 4-(<i>N</i> -Carbazolyl)phenyl Numbers. Journal of Physical Chemistry C, 2009, 113, 19686-19693.	1.5	56
698	Blue Light Emitting Ir(III) Compounds for OLEDs - New Insights into Ancillary Ligand Effects on the Emitting Triplet State. Journal of Physical Chemistry A, 2009, 113, 5927-5932.	1.1	150
699	The Blue Phosphorescent Iridium Complexes Containing New Triazole Ligands for OLEDs. Molecular Crystals and Liquid Crystals, 2009, 504, 59-66.	0.4	10

ARTICLE IF CITATIONS # High-Triplet-Energy Dendrons: Enhancing the Luminescence of Deep Blue Phosphorescent Iridium(III) 700 6.6 188 Complexes. Journal of the American Chemical Society, 2009, 131, 16681-16688. Energy Transfer from Ce 3+ to Eu 2+ in LiSrBO 3 and Its Potential Application in UV-LED-Based White 1.3 LEDs. Chinese Physics Letters, 2009, 26, 117802. Acridinone/Amine(carbazole)-Based Bipolar Molecules: Efficient Hosts for Fluorescent and 702 2.4 39 Phosphorescent Emitters. Organic Letters, 2009, 11, 4310-4313. Phenylbenzimidazole-Based New Bipolar Host Materials for Efficient Phosphorescent Organic Light-Emitting Diodes. Chemistry of Materials, 2009, 21, 2452-2458. Improved performance of blue phosphorescent organic light-emitting diodes with a mixed host 704 1.5 59 system. Applied Physics Letters, 2009, 95, . High-efficiency turquoise-blue electrophosphorescence from a Pt(II)-pyridyltriazolate complex in a 1.5 phosphine oxide host. Applied Physics Letters, 2009, 95, . Enhanced performance of organic light-emitting diodes using two-dimensional zinc sulfide photonic 706 1.1 5 crystals. Journal of Applied Physics, 2009, 106, . Direct evidence for degradation of polaron excited states in organic light emitting diodes. Journal of 1.1 171 Applied Physics, 2009, 105, . Effect of doping concentration on device performances of triplet mixed host devices. Synthetic 708 2.1 4 Metals, 2009, 159, 1295-1297. Investigation of double emissive layer structures on phosphorescent blue organic light-emitting 2.1 diodes. Synthetic Metals, 2009, 159, 1460-1463. Solution processable organic electro-phosphorescent iridium complex based on a benzothiazole 710 2.1 13 derivative. Synthetic Metals, 2009, 159, 1517-1521. Efficiency improvement of blue phosphorescent organic light emitting diodes by using a stacked 2.1 emitting structure. Synthetic Metals, 2009, 159, 1636-1639. Low driving voltage and efficient orange-red phosphorescent organic light-emitting devices based on 712 2.1 24 a benzotriazole iridium complex. Synthetic Metals, 2009, 159, 1782-1785. Highly efficient white light with sharp red–green–blue emissions from iridium complexes doped carbazole-grafted poly(para-phenylene). Synthetic Metals, 2009, 159, 1940-1943. 2.1 High efficiency deep blue phosphorescent organic light-emitting diodes using a double emissive layer 714 2.1 5 structure. Synthetic Metals, 2009, 159, 1956-1959. Photoreactive main chain conjugated polymer containing oxetane moieties in the side chain and its application to green electrophosphorescence devices. Synthetic Metals, 2009, 159, 2147-2152. 716 Organic light-emitting diode with liquid emitting layer. Applied Physics Letters, 2009, 95, . 1.581 High efficiency deep-blue and white phosphorescent OLEDs., 2009, , .

# 718	ARTICLE Functional metallophosphors for effective charge carrier injection/transport: new robust OLED materials with emerging applications. Journal of Materials Chemistry, 2009, 19, 4457.	IF 6.7	CITATIONS
719	Wide-Energy-Gap Host Materials for Blue Phosphorescent Organic Light-Emitting Diodes. Chemistry of Materials, 2009, 21, 1333-1342.	3.2	77
720	A Fully Diarylmethylene-Bridged Triphenylamine Derivative as Novel Host for Highly Efficient Green Phosphorescent OLEDs. Organic Letters, 2009, 11, 1503-1506.	2.4	78
721	A new class of non-conjugated bipolar hybrid hosts for phosphorescent organic light-emitting diodes. Journal of Materials Chemistry, 2009, 19, 8772.	6.7	69
722	1,3,5-Triazine derivatives as new electron transport–type host materials for highly efficient green phosphorescent OLEDs. Journal of Materials Chemistry, 2009, 19, 8112.	6.7	174
723	Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum. Nano Letters, 2009, 9, 2532-2536.	4.5	796
724	Solution-Processable, High-Molecule-Based Trifluoromethyl-Iridium Complex for Extraordinarily High Efficiency Blue-Green Organic Light-Emitting Diode. Chemistry of Materials, 2009, 21, 2565-2567.	3.2	71
725	Nonconjugated Carbazoles: A Series of Novel Host Materials for Highly Efficient Blue Electrophosphorescent OLEDs. Journal of Physical Chemistry C, 2009, 113, 6761-6767.	1.5	86
726	Emission Color Tuning and Deep Blue Dopant Materials Based on 1,6-Bis(N-phenyl-p-(R)-phenylamino)pyrene. Journal of Organic Chemistry, 2009, 74, 8472-8475.	1.7	69
727	Blue Phosphorescent Ir(III) Complex with High Color Purity: <i>fac</i> -Tris(2′,6′-difluoro-2,3′-bipyridinato- <i>N,C</i> ^{4′})iridium(III). Inorganic Chemist 2009, 48, 1030-1037.	ry i, .9	190
728	Photophysical study of iridium complexes by absolute photoluminescence quantum yield measurements using an integrating sphere. Proceedings of SPIE, 2009, , .	0.8	7
729	Bright white light emission from In ₂ S ₃ : Eu ³⁺ nanoparticles. Journal Physics D: Applied Physics, 2009, 42, 145116.	1.3	23
730	Norbornene-Based Copolymers Containing Platinum Complexes and Bis(carbazolyl)benzene Groups in Their Side-Chains. Macromolecules, 2009, 42, 6855-6864.	2.2	66
731	A study on the preparation and photophysical properties of an iridium(iii) complexed homopolymer. Journal of Materials Chemistry, 2009, 19, 4952.	6.7	22
732	Efficient deepâ€blue organic lightâ€emitting diodes with doubleâ€emission layers. Journal of Information Display, 2009, 10, 107-110.	2.1	1
733	Dendritic Ir(iii) complexes functionalized with triphenylsilylphenyl groups: Synthesis, DFT calculation and comprehensive structure-property correlation. Journal of Materials Chemistry, 2009, 19, 8347.	6.7	58
734	lr(ppy) ₃ phosphorescent microrods and nanowires: promising micro-phosphors. Journal of Materials Chemistry, 2009, 19, 89-96.	6.7	61
735	Very high-efficiency red-electroluminescence devices based on an amidinate-ligated phosphorescent iridium complex. Journal of Materials Chemistry, 2009, 19, 8072.	6.7	81

#	Article	IF	CITATIONS
736	Silane coupling di-carbazoles with high triplet energy as host materials for highly efficient blue phosphorescent devices. Journal of Materials Chemistry, 2009, 19, 6143.	6.7	58
737	A high-efficiency and low-operating-voltage green electrophosphorescent device employing a pure-hydrocarbon host material. Chemical Communications, 2009, , 3892.	2.2	47
738	A phosphine oxide derivative as a universal electron transport material for organic light-emitting diodes. Journal of Materials Chemistry, 2009, 19, 5940.	6.7	40
739	Novel green-light-emitting hyperbranched polymers with iridium complex as core and 3,6-carbazole-co-2,6-pyridine unit as branch. Journal of Materials Chemistry, 2009, 19, 531-537.	6.7	53
740	A 5.8â€in. phosphorescent color AMOLED display fabricated by inkâ€jet printing on plastic substrate. Journal of the Society for Information Display, 2009, 17, 1037-1042.	0.8	30
741	Printable phosphorescent organic light-emitting devices. Journal of the Society for Information Display, 2009, 17, 167.	0.8	20
742	Phosphorescent iridium(<scp>iii</scp>) complexes: toward high phosphorescence quantum efficiency through ligand control. Dalton Transactions, 2009, , 1267-1282.	1.6	602
743	Ultrafast Intersystem Crossing in a Red Phosphorescent Iridium Complex. Journal of Physical Chemistry A, 2009, 113, 2-4.	1.1	83
744	23.3: High Efficiency Green Phosphorescent OLEDs. Digest of Technical Papers SID International Symposium, 2009, 40, 314-316.	0.1	6
745	23.4: <i>Invited Paper</i> : Ideal Hostâ€Dopant System for Highly Efficient Phosphorescent OLEDs. Digest of Technical Papers SID International Symposium, 2009, 40, 317-320.	0.1	0
746	46.4: OLEDs Containing an Emissive Dinuclear Copper(<i>I</i>) Dopant. Digest of Technical Papers SID International Symposium, 2009, 40, 691-694.	0.1	2
747	Full-wave simulation of enhanced outcoupling of organic light-emitting devices with an embedded low-index grid. Applied Physics Letters, 2009, 94, .	1.5	28
748	Effect of Charge-transporting Molecules on Electrophosphorescence in a Device Fabricated Using Third-generation Dendrimer Encapsulated Tris[2-benzo[<i>b</i>]thiophen-2-ylpyridyl]iridium Complex. Chemistry Letters, 2009, 38, 314-315.	0.7	5
749	Organic Light Emitting Diodes: materials, device structures and light extraction. International Journal of Materials and Product Technology, 2009, 34, 454.	0.1	1
750	Performance optimization of polymer doped electrophosphorescent organic light emitting diodes. Proceedings of SPIE, 2009, , .	0.8	0
751	46.5L: <i>Lateâ€News Paper</i> : Confinement of Tripletâ€Excited States by Fluorinated Polyvinylcarbazole for High Efficiency OLEDs. Digest of Technical Papers SID International Symposium, 2009, 40, 695-698.	0.1	0
752	High efficiency blue phosphorescent organic light emitting diodes. Proceedings of SPIE, 2009, , .	0.8	2
753	Efficient white phosphorescent organic lightâ€emitting diodes for solidâ€state lighting applications using an excitonâ€confining emissiveâ€layer structure. Journal of Information Display, 2009, 10, 92-95.	2.1	10

# 754	ARTICLE High efficiency and simple architecture phosphorescent OLEDs. , 2009, , .	IF	CITATIONS 0
755	Electrophosphorescent Polymers for High-Efficiency Light-Emitting Diodes. Current Organic Chemistry, 2010, 14, 2133-2144.	0.9	10
756	Fluorescent white OLEDs with a high colorâ€rendering index using a siliconâ€cored anthracene derivative as a blue host. Journal of Information Display, 2010, 11, 123-127.	2.1	0
757	59.4: LED Drivers: From Displays to General Lighting. Digest of Technical Papers SID International Symposium, 2010, 41, 890.	0.1	0
758	5.3: Control of Emission Zone in Blue Phosphorescent OLEDs by Material Design. Digest of Technical Papers SID International Symposium, 2010, 41, 47-49.	0.1	0
759	60.1: <i>Invited Paper</i> : AMLCD and AMOLEDs: How do They Compare for Green Energy Efficiency?. Digest of Technical Papers SID International Symposium, 2010, 41, 894-897.	0.1	35
760	Synthesis, Crystal Structure and Luminescence Properties of a Cyclometalated Ir(III) Complex of 3,4-Diphenylcinnoline. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2010, 65, 511-s518.	0.3	10
761	A Novel Free Radical Probe Based on a Preluminescent Iridium Complex Bearing a Nitronyl Radical Moiety. Bulletin of the Chemical Society of Japan, 2010, 83, 762-766.	2.0	7
762	Organometallic Pt(II) and Ir(III) Triplet Emitters for OLED Applications and the Role of Spin–Orbit Coupling: A Study Based on High-Resolution Optical Spectroscopy. Topics in Organometallic Chemistry, 2010, , 193-235.	0.7	201
763	Quantum Dots and Their Multimodal Applications: A Review. Materials, 2010, 3, 2260-2345.	1.3	986
764	Phenyl-substituted fluorene-dimer cored anthracene derivatives: highly fluorescent and stable materials for high performance organic blue- and white-light-emitting diodes. Journal of Materials Chemistry, 2010, 20, 3186.	6.7	52
765	Low voltage red phosphorescent organic light-emitting devices with triphenylphosphine oxide and 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl electron transport layers. Current Applied Physics, 2010, 10, 1108-1111.	1.1	3
766	Molecular hosts for triplet emitters in organic light-emitting diodes and the corresponding working principle. Science China Chemistry, 2010, 53, 1679-1694.	4.2	36
767	Synthesis, photophysical and electrochemical properties of 2,8-diaryl-dibenzothiophene derivatives for organic electronics. Journal of Chemical Sciences, 2010, 122, 119-124.	0.7	17
768	High-Efficiency Blue Emitting Phosphorescent OLEDs. IEEE Transactions on Electron Devices, 2010, 57, 101-107.	1.6	33
769	Performance and defects in phosphorescent organic light-emitting diodes. Solid State Sciences, 2010, 12, 1873-1876.	1.5	16
770	Optical properties of 2â€aminopyridinium nitrato silver. Crystal Research and Technology, 2010, 45, 299-302.	0.6	13
771	Structure–Property Relationship of Red―and Greenâ€Emitting Iridium(III) Complexes with Respect to Their Temperature and Oxygen Sensitivity. European Journal of Inorganic Chemistry, 2010, 2010, 4875-4885.	1.0	80

#	Article	IF	CITATIONS
772	High Efficiency Blue Organic LEDs Achieved By an Integrated Fluorescence–Interlayer–Phosphorescence Emission Architecture. Advanced Functional Materials, 2010, 20, 648-655.	7.8	38
773	Correlation Between Triplet–Triplet Annihilation and Electroluminescence Efficiency in Doped Fluorescent Organic Lightâ€Emitting Devices. Advanced Functional Materials, 2010, 20, 1285-1293.	7.8	201
774	An Alternative Approach to Constructing Solution Processable Multifunctional Materials: Their Structure, Properties, and Application in Highâ€Performance Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2010, 20, 3125-3135.	7.8	34
775	Multifunctional Triphenylamine/Oxadiazole Hybrid as Host and Excitonâ€Blocking Material: High Efficiency Green Phosphorescent OLEDs Using Easily Available and Common Materials. Advanced Functional Materials, 2010, 20, 2923-2929.	7.8	159
776	Organic Infrared Upconversion Device. Advanced Materials, 2010, 22, 2260-2263.	11.1	99
777	Tuning Energy Levels of Electronâ€Transport Materials by Nitrogen Orientation for Electrophosphorescent Devices with an â€Ideal' Operating Voltage. Advanced Materials, 2010, 22, 3311-3316.	11.1	166
778	Improved Highâ€Brightness Efficiency of Phosphorescent Organic LEDs Comprising Emitter Molecules with Small Permanent Dipole Moments. Advanced Materials, 2010, 22, 3189-3193.	11.1	82
779	Unexplored Thermal Transformation Behavior of Twoâ€Dimensionally Bound Gadolinium Hydroxide Layers: Fabrication of Oriented Crystalline Films of Gadolinium Oxychloride Nanosheets Suitable for the Multicolor Luminescence with Color Tunability. Advanced Materials, 2010, 22, 3272-3276.	11.1	52
780	Pyridoindole Derivative as Electron Transporting Host Material for Efficient Deepâ€blue Phosphorescent Organic Lightâ€emitting Diodes. Advanced Materials, 2010, 22, 4775-4778.	11.1	76
781	Solutionâ€Processed Solid Solution of a Novel Carbazole Derivative for Highâ€Performance Blue Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Materials, 2010, 22, 4167-4171.	11.1	89
782	Synthesis, Photophysical and Electrophosphorescent Properties of Fluoreneâ€Based Platinum(II) Complexes. Chemistry - A European Journal, 2010, 16, 14131-14141.	1.7	55
783	Grafting aluminum(III) 8-hydroxyquinoline derivatives on MCM-41 mesoporous silica for tuning of the light emitting color. Journal of Colloid and Interface Science, 2010, 346, 384-390.	5.0	22
784	Stable efficiency roll-off in red phosphorescent organic light-emitting diodes using a spirofluorene–benzofluorene based carbazole type host material. Journal of Luminescence, 2010, 130, 2184-2187.	1.5	12
785	Red phosphorescent organic light-emitting diodes with indium tin oxide/single organic layer/Al simple device structure. Organic Electronics, 2010, 11, 36-40.	1.4	23
786	Reduced efficiency roll-off in highly efficient and color-stable hybrid WOLEDs: The influence of triplet transfer and charge-transport behavior on enhancing device performance. Organic Electronics, 2010, 11, 238-246.	1.4	72
787	Multi-layer organic light-emitting diodes processed from solution using phosphorescent dendrimers in a polymer host. Organic Electronics, 2010, 11, 1005-1009.	1.4	22
788	Outcoupling efficiency of organic light emitting diodes and the effect of ITO thickness. Organic Electronics, 2010, 11, 1010-1015.	1.4	109
789	Effects of charge balance on device performances in deep blue phosphorescent organic light-emitting diodes. Organic Electronics, 2010, 11, 1159-1164.	1.4	41

#	Article	IF	CITATIONS
790	Triplet bipolar host materials for solution processed organic light-emitting devices. Organic Electronics, 2010, 11, 1624-1630.	1.4	11
791	Pure red electrophosphorescence from polymer light-emitting diodes doped with highly emissive bis-cyclometalated iridium(III) complexes. Journal of Organometallic Chemistry, 2010, 695, 1972-1978.	0.8	35
792	KLaF4:Er an efficient upconversion phosphor. Optical Materials, 2010, 33, 42-47.	1.7	38
793	Effects of solution processing and thermal annealing on the phosphorescence of iridium(III) complex-cored dendrimer films. Organic Electronics, 2010, 11, 62-66.	1.4	5
794	Efficient phosphorescent white OLEDs with high color rendering capability. Organic Electronics, 2010, 11, 412-418.	1.4	83
795	Microdisk lasers and field effect transistors of thiophene/phenylene co-oligomers by using high temperature deposition method. Organic Electronics, 2010, 11, 1192-1198.	1.4	27
796	A phosphorescent poly(dendrimer) with increased viscosity for solution-processed OLED devices. Organic Electronics, 2010, 11, 1561-1568.	1.4	23
797	Theoretical study on photophysical properties of angular-shaped mercury(II) bis(acetylide) complexes as light-emitting materials. Chemical Physics, 2010, 368, 66-75.	0.9	6
798	Synthesis of fused phenylcarbazole phosphine oxide based high triplet energy host materials. Tetrahedron, 2010, 66, 7295-7301.	1.0	19
799	A high triplet energy phosphine oxide derivative as a host and exciton blocking material for blue phosphorescent organic light-emitting diodes. Thin Solid Films, 2010, 518, 3716-3720.	0.8	23
800	Synthesis and electrophosphorescent properties of iridium complexes based on 2-fluorenylquinoline derivatives. Thin Solid Films, 2010, 518, 3972-3977.	0.8	12
801	Blue electroluminescent materials based on 2,7-distyrylfluorene for organic light-emitting diodes. Thin Solid Films, 2010, 518, 5091-5097.	0.8	18
802	Study on energy relation between blue and red emissive layer of organic light-emitting diodes by inserting spacer layer. Thin Solid Films, 2010, 518, 7119-7123.	0.8	9
803	High quantum efficiency in simple blue phosphorescent organic light-emitting diodes without any electron injection layer. Thin Solid Films, 2010, 519, 906-910.	0.8	32
804	Red organic light emitting devices with reduced efficiency roll-off behavior by using hybrid fluorescent/phosphorescent emission structure. Thin Solid Films, 2010, 519, 872-875.	0.8	11
805	Magnetic field effects on the phosphorescence of Pt(4,6-dFppy)(acac) – Tunability of the vibrational satellite structure. Chemical Physics Letters, 2010, 484, 261-265.	1.2	19
806	Efficient Förster energy transfer from phosphorescent organic molecules to J-aggregate thin films. Chemical Physics Letters, 2010, 485, 243-246.	1.2	12
807	Triplet state properties of a red light emitting [Pt(s-thpy)(acac)] compound. Chemical Physics Letters, 2010, 486, 53-59.	1.2	24

#	Article	IF	CITATIONS
808	Singlet–triplet quenching in high intensity fluorescent organic light emitting diodes. Chemical Physics Letters, 2010, 495, 161-165.	1.2	57
809	Tunable emission of polymer light emitting diodes bearing green-emitting Ir(III) complexes: The structural role of 9-((6-(4-fluorophenyl)pyridin-3-yl)methyl)-9H-carbazole ligands. Dyes and Pigments, 2010, 85, 143-151.	2.0	39
810	Holeâ€ŧransporting hostâ€polymer series consisting of triphenylamine basic structures for phosphorescent polymer lightâ€emitting diodes. Journal of Polymer Science Part A, 2010, 48, 3417-3430.	2.5	69
811	Theoretical study on the influence of ancillary ligand on the spectroscopic properties and electronic structures of phosphorescent Pt(II) complexes. International Journal of Quantum Chemistry, 2010, 110, 1142-1151.	1.0	1
812	Organic Light Emitting Diodes for White Light Emission. , 0, , .		3
813	Luminescent Iridium Complexes and Their Applications. Topics in Organometallic Chemistry, 2010, , 113-142.	0.7	39
814	Highly efficient red phosphorescent Ir(III) complexes for oleds based on carbonylated arylpyridine ligands. , 2010, , .		0
815	Light out-coupling enhancement of organic light-emitting devices with microlens array. Applied Physics Letters, 2010, 97, .	1.5	68
816	Highly efficient orange-red phosphorescent organic light-emitting diode using 2,7-bis(carbazo-9-yl)-9,9-ditolyfluorene as the host. Applied Physics Letters, 2010, 96, 143306.	1.5	41
817	32.4: Quantum Dot Light Emitting Diodes for Fullâ€color Activeâ€matrix Displays. Digest of Technical Papers SID International Symposium, 2010, 41, 473-476.	0.1	10
818	Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces. Applied Physics Letters, 2010, 96, .	1.5	46
819	Emission zone control in blue organic electrophosphorescent devices through chemical modification of host materials. Applied Physics Letters, 2010, 96, 053306.	1.5	12
820	Internal potential distribution in organic light emitting diodes measured by dc bridge. Applied Physics Letters, 2010, 97, 153305.	1.5	8
821	Influence of the hole blocking layer on blue phosphorescent organic light-emitting devices using 3,6-di(9-carbazolyl)-9-(2-ethylhexyl)carbazole as host material. Applied Physics Letters, 2010, 96, .	1.5	48
822	Organic light-emitting diodes containing multilayers of organic single crystals. Applied Physics Letters, 2010, 96, .	1.5	51
823	Analysis of metal-oxide-based charge generation layers used in stacked organic light-emitting diodes. Journal of Applied Physics, 2010, 107, .	1.1	65
824	Fabrication of an Aspherical Microlens for OLED with Modified Etching Process. , 2010, , .		1
825	Phosphorescence Color Tuning of Ionic Iridium Complexes by Manipulating Excited State Properties. Molecular Crystals and Liquid Crystals, 2010, 530, 91/[247]-96/[252].	0.4	0

#	Article	IF	CITATIONS
826	Red Phosphorescent Iridium(III) Complexes Containing 5-Benzoyl-2-phenylpyridine Derived Ligands with Electron-Donating/-Withdrawing Moieties for Organic Light-Emitting Diodes. Molecular Crystals and Liquid Crystals, 2010, 530, 30/[186]-39/[195].	0.4	0
827	Novel Amorphous Red Electroluminescence Material Based on Pyranylidene Indene-1,3-Dione Derivative. Latvian Journal of Physics and Technical Sciences, 2010, 47, .	0.4	3
828	Tunable-white-light-emitting nanowire sources. Nanotechnology, 2010, 21, 255201.	1.3	20
829	Photoluminescence Characteristics of Organic Host Materials with Wide Energy Gaps for Organic Electrophosphorescent Devices. Japanese Journal of Applied Physics, 2010, 49, 050205.	0.8	1
830	Highly efficient, single-layer organic light-emitting devices based on a graded-composition emissive layer. Applied Physics Letters, 2010, 97, 083308.	1.5	65
831	Highly efficient orange-red organic light-emitting diode using double emissive layers with stepwise energy-level architecture. Journal of Materials Chemistry, 2010, 20, 8464.	6.7	26
832	Dendrimers Designed for Functions: From Physical, Photophysical, and Supramolecular Properties to Applications in Sensing, Catalysis, Molecular Electronics, Photonics, and Nanomedicine. Chemical Reviews, 2010, 110, 1857-1959.	23.0	1,697
833	The Triplet State of <i>fac</i> -lr(ppy) ₃ . Inorganic Chemistry, 2010, 49, 9290-9299.	1.9	343
834	Detailed studies on energy loss mechanism in phosphor-sensitized fluorescent polymer light-emitting devices. Journal of Applied Physics, 2010, 107, 054515.	1.1	2
835	High-Efficiency Nondoped Deep-Blue-Emitting Organic Electroluminescent Device. Chemistry of Materials, 2010, 22, 2138-2141.	3.2	68
836	Bis(4-(4,5-diphenyl-4H-1,2,4-triazol-3-yl)phenyl)dimethylsilane as Electron-Transport Material for Deep Blue Phosphorescent OLEDs. Journal of Physical Chemistry Letters, 2010, 1, 295-299.	2.1	21
837	Role of Substitution on the Photophysical Properties of 5,5′-Diaryl-2,2′-bipyridine (bpy*) in [Ir(ppy) ₂ (bpy*)]PF ₆ Complexes: A Combined Experimental and Theoretical Study. Inorganic Chemistry, 2010, 49, 5625-5641.	1.9	155
838	Photophysical Properties of the Series <i>fac-</i> and <i>mer-</i> (1-Phenylisoquinolinato-N ^{â^§} C ^{2′}) _{<i>x</i>(<i>x</i>= 1â^'3). Inorganic Chemistry, 2010, 49, 9151-9161.}	bя (2 -pher	ıy lpy ridinato
839	Phosphine Oxide Based Electron Transporting and Hole Blocking Materials for Blue Electrophosphorescent Organic Light Emitting Devices. Chemistry of Materials, 2010, 22, 5678-5686.	3.2	50
840	Oligo- and Polyfluorene-Tetheredfac-Ir(ppy)3: Substitution Effects. Macromolecules, 2010, 43, 8479-8487.	2.2	28
841	A Phosphorescent Poly(dendrimer) Containing Iridium(III) Complexes: Synthesis and Light-Emitting Properties. Macromolecules, 2010, 43, 6986-6994.	2.2	59
842	Small Molecular Glasses Based on Multiposition Encapsulated Phenyl Benzimidazole Iridium(III) Complexes: Toward Efficient Solution-Processable Host-Free Electrophosphorescent Diodes. Journal of Physical Chemistry B, 2010, 114, 141-150.	1.2	55
843	Highly Efficient Phosphorescent Organic Light-Emitting Diodes Hosted by 1,2,4-Triazole-Cored Triphenylamine Derivatives: Relationship between Structure and Optoelectronic Properties. Journal of Physical Chemistry C, 2010, 114, 601-609.	1.5	104

#	ARTICLE	IF	Citations
844	Blue-Emitting Iridium(III) Complexes. Journal of Physical Chemistry A, 2010, 114, 6559-6564.	1.1	44
845	Managing Charge Balance and Triplet Excitons to Achieve High-Power-Efficiency Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2010, 2, 2813-2818.	4.0	30
846	Origin of Rare and Highly Efficient Phosphorescent and Electroluminescent Iridium(III) Complexes Based on Câ^§Nâ•N Ligands, A Theoretical Explanation. Journal of Physical Chemistry A, 2010, 114, 9300-9308.	1.1	24
847	Efficient and Long-Time Stable Red Iridium(III) Complexes for Organic Light-Emitting Diodes Based on Quinoxaline Ligands. Inorganic Chemistry, 2010, 49, 397-406.	1.9	70
848	Electrochemiluminescent Functionalizable Cyclometalated Thiophene-Based Iridium(III) Complexes. Inorganic Chemistry, 2010, 49, 1439-1448.	1.9	66
849	Bipolar Host Molecules for Efficient Blue Electrophosphorescence: A Quantum Chemical Design. Journal of Physical Chemistry A, 2010, 114, 965-972.	1.1	26
850	Energy transfer from both triplet and singlet energy levels of PVK to DCM2 induced by heavy-ion. , 2010, , .		0
851	Electroluminescence of poly(N-vinylcarbazole) films: fluorescence, phosphorescence and electromers. Physical Chemistry Chemical Physics, 2010, 12, 15410.	1.3	76
852	Estimation of the mean emission zone in phosphorescent organic light-emitting diodes with a thin emitting layer. Optics Express, 2010, 18, 16715.	1.7	6
853	Enhancing waveguided light extraction in organic LEDs using an ultra-low-index grid. Optics Letters, 2010, 35, 1052.	1.7	45
854	Efficient electrophosphorescence based on 2-(9,9-diethylfluoren-2-yl)-5-trifluoromethylpyridine iridium complexes. Synthetic Metals, 2010, 160, 354-360.	2.1	19
855	White organic light-emitting devices with a bipolar transport layer between blue fluorescent and yellow phosphor-sensitized-fluorescent emitting layers. Synthetic Metals, 2010, 160, 829-831.	2.1	12
856	Pure red electroluminescence from novel heteroleptic cyclometalated platinum(II) emitters embedded in polyvinylcarbazole. Synthetic Metals, 2010, 160, 615-620.	2.1	13
857	Pure exciplex electroluminescence in blended film of small organic molecules. Synthetic Metals, 2010, 160, 722-727.	2.1	20
858	Theoretical studies on electronic and electron blocking properties of iridium complexes with phenylpyrazolato ligands. Synthetic Metals, 2010, 160, 1015-1021.	2.1	4
859	Thermally stable fluorescent blue organic light-emitting diodes using spirobifluorene based anthracene host materials with different substitution position. Synthetic Metals, 2010, 160, 1184-1188.	2.1	19
860	Polyethers containing 2-phenylindol-1-yl moieties as host materials for light emitting diodes. Synthetic Metals, 2010, 160, 1793-1796.	2.1	15
861	E-Type Delayed Fluorescence of a Phosphine-Supported Cu ₂ (μ-NAr ₂) ₂ Diamond Core: Harvesting Singlet and Triplet Excitons in OLEDs. Journal of the American Chemical Society, 2010, 132, 9499-9508.	6.6	445

#	Article	IF	CITATIONS
862	Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles. Nature Photonics, 2010, 4, 222-226.	15.6	538
863	Preparation and characterization of highly efficient blue TPBI:FIrpic organic lightâ€emitting devices. Journal of the Society for Information Display, 2010, 18, 1015-1019.	0.8	0
864	Facile Synthesis and Characterization of Phosphorescent Pt(N ^{â^§} C ^{â^§} N)X Complexes. Inorganic Chemistry, 2010, 49, 11276-11286.	1.9	137
865	Controlling charge balance and exciton recombination by bipolar host in single-layer organic light-emitting diodes. Journal of Applied Physics, 2010, 108, .	1.1	69
866	Highly efficient fluorescent-phosphorescent triplet-harvesting hybrid organic light-emitting diodes. Journal of Applied Physics, 2010, 107, .	1.1	80
867	Study of Ion-Paired Iridium Complexes (Soft Salts) and Their Application in Organic Light Emitting Diodes. Journal of the American Chemical Society, 2010, 132, 3133-3139.	6.6	135
868	Highly Luminescent Tetradentate Bis-Cyclometalated Platinum Complexes: Design, Synthesis, Structure, Photophysics, and Electroluminescence Application. Inorganic Chemistry, 2010, 49, 5107-5119.	1.9	221
869	A spiro-configured ambipolar host material for impressively efficient single-layer green electrophosphorescent devices. Physical Chemistry Chemical Physics, 2010, 12, 10685.	1.3	33
870	Carbazole endcapped heterofluorenes as host materials: theoretical study of their structural, electronic, and optical properties. Physical Chemistry Chemical Physics, 2010, 12, 15448.	1.3	51
871	Influences of ITO anode thickness on OLED efficiencies. , 2010, , .		0
872	Properties of Phosphorescence Polymer Light Emitting Diodes with PVK: lr(ppy) ₃ :PFO:lr(pq) ₂ acac Emission Layer. Molecular Crystals and Liquid Crystals, 2010, 530, 74/[230]-82/[238].	0.4	1
873	Diphenyl(1-naphthyl)phosphine Ancillary for Assembling of Red and Orange-Emitting Ir(III) Based Phosphors; Strategic Synthesis, Photophysics, and Organic Light-Emitting Diode Fabrication. Inorganic Chemistry, 2010, 49, 8713-8723.	1.9	60
874	High efficiency and low roll-off blue phosphorescent organic light-emitting devices using mixed host architecture. Applied Physics Letters, 2010, 97, .	1.5	112
875	Causes of efficiency roll-off in phosphorescent organic light emitting devices: Triplet-triplet annihilation versus triplet-polaron quenching. Applied Physics Letters, 2010, 97, .	1.5	177
876	Enhanced Electroluminescence Efficiency of Phosphorescent Organic Light-Emitting Diodes by Controlling the Triplet Energy of the Hole-Blocking Layer. IEEE Electron Device Letters, 2010, 31, 452-454.	2.2	3
877	Bis(diphenylamino)-9,9′-spirobifluorene functionalized Ir(<scp>iii</scp>) complex: a conceptual design en route to a three-in-one system possessing emitting core and electron and hole transport peripherals. Journal of Materials Chemistry, 2011, 21, 768-774.	6.7	35
878	Improved optical outcoupling of OLED microdisplays by nanostructured substrates. , 2011, , .		2
879	Carbazole–benzimidazole hybrid bipolar host materials for highly efficient green and blue phosphorescent OLEDs. Journal of Materials Chemistry, 2011, 21, 14971.	6.7	93

ARTICLE IF CITATIONS High-performance blue and green electrophosphorescence achieved by using carbazole-containing 880 6.7 32 bipolar tetraarylsilanes as host materials. Journal of Materials Chemistry, 2011, 21, 11197. Controlling the growth of low dimension nanostructures of an iridium complex. Dalton 1.6 9 Transactions, 2011, 40, 4397-4401. Effects of Symmetry of Ir (III) Complex on the Photophysical Properties and Device Performances. 882 0.4 0 Molecular Crystals and Liquid Crystals, 2011, 550, 284-293. A luminescent cyclometalated platinum(ii) complex and its green organic light emitting device with 124 high device performance. Chemical Communications, 2011, 47, 3383. Synthesis of ring-structured polysiloxane as host materials for blue phosphorescent device. Journal 884 6.7 18 of Materials Chemistry, 2011, 21, 7777. Effect of main ligands on organic photovoltaic performance of Ir(iii) complexes. New Journal of Chemistry, 2011, 35, 2557. 1.4 An effective strategy for small molecular solution-processable iridium(iii) complexes with ambipolar 886 characteristics: towards efficient electrophosphorescence and reduced efficiency roll-off. Journal 6.7 40 of Materials Chemistry, 2011, 21, 15405. Synthesis, structure and efficient electroluminescence of a heteroleptic 887 21 dipyridylamido/bis(pyridylphenyl)iridium(iii) complex. Chemical Communications, 2011, 47, 5726. Electron Injection and Transport Mechanisms of an Electron Transport Layer in OLEDs. Journal of the 888 1.3 3 Electrochemical Society, 2011, 158, H1284. First-Principles Studies on the Efficient Photoluminescent Iridium(III) Complexes with C^{â^§}Nâ•N Ligands. Inorganic Chemistry, 2011, 50, 5477-5484. Blue-Light Emission of Cu(I) Complexes and Singlet Harvesting. Inorganic Chemistry, 2011, 50, 8293-8301. 890 410 1.9 Metal–Ligand Bonding Strength of Fluoro-Substituted Cyclometalated Iridium(III) Complexes from 891 1.5 Raman and Infrared Spectra. Journal of Physical Chemistry C, 2011, 115, 17163-17174. Efficient Phosphorescent Polymer Yellow-Light-Emitting Diodes Based on Solution-Processed Small 892 4.0 49 Molecular Electron Transporting Layer. ACS Applied Materials & amp; Interfaces, 2011, 3, 410-416. Efficient Blue-Emitting Ir(III) Complexes with Phosphine Carbanion-Based Ancillary Ligand: A DFT Study. Journal of Physical Chemistry A, 2011, 115, 11689-11695. 1.1 894 Organic Semiconductors., 2011, , 448-507. 9 Efficient Phosphorescence by Reducing Intrachain Chromophore Interactions in Dendrimer-Containing Polymers. Journal of Physical Chemistry C, 2011, 115, 25464-25469. Screening structure–property correlations and device performance of Ir(iii) complexes in multi-layer 896 1.6 23 PhOLEDs. Dalton Transactions, 2011, 40, 11629. Amidate Iridium(III) Bis(2-pyridyl)phenyl Complexes: Application Examples of Amidate Ancillary Ligands 897 1.1 in Iridium(III)-Cyclometalated Complexes. Organometallics, 2011, 30, 77-83.

#	Article	IF	CITATIONS
898	Synthesis and Characterization of Neutral Luminescent Diphosphine Pyrrole- and Indole-Aldimine Copper(I) Complexes. Inorganic Chemistry, 2011, 50, 7172-7188.	1.9	98
899	A carbazole–phenylbenzimidazole hybrid bipolar universal host for high efficiency RCB and white PhOLEDs with high chromatic stability. Journal of Materials Chemistry, 2011, 21, 19249.	6.7	49
900	A phosphorescent material with high and balanced carrier mobility for efficient OLEDs. Chemical Communications, 2011, 47, 3150.	2.2	48
901	Determination of the exciton singlet-to-triplet ratio in single-layer organic light-emitting diodes. Physical Review B, 2011, 83, .	1.1	23
902	3,9′-Bicarbazole-Based Compounds with Reactive Functional Groups as Potential Cross-Linkable High Triplet Energy Hole-Transporting Materials. Molecular Crystals and Liquid Crystals, 2011, 536, 200/[432]-207/[439].	0.4	0
903	Electrochemical Tuning of Morphological and Optoelectronic Characteristics of Donor–Acceptor Spiro-Fluorene Polymer Film. Application in the Building of an Electroluminescent Device. Journal of Physical Chemistry C, 2011, 115, 21907-21914.	1.5	17
904	Fine tuning of emission color of iridium(iii) complexes from yellow to red via substituent effect on 2-phenylbenzothiazole ligands: synthesis, photophysical, electrochemical and DFT study. Dalton Transactions, 2011, 40, 7153.	1.6	55
905	Highly simplified phosphorescent organic light emitting diode with >20% external quantum efficiency at >10,000â€,cd/m2. Applied Physics Letters, 2011, 98, .	1.5	100
906	Linear and Nonlinear Optical Properties of Cationic Bipyridyl Iridium(III) Complexes: Tunable and Photoswitchable?. Inorganic Chemistry, 2011, 50, 5027-5038.	1.9	93
907	RGB Phosphorescent Organic Light-Emitting Diodes by Using Host Materials with Heterocyclic Cores: Effect of Nitrogen Atom Orientations. Chemistry of Materials, 2011, 23, 274-284.	3.2	251
908	Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Applied Physics Letters, 2011, 98, .	1.5	936
909	A series of CBP-derivatives as host materials for blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry, 2011, 21, 2266-2273.	6.7	82
910	Relating charge transport and performance in single-layer graded-composition organic light-emitting devices. Journal of Applied Physics, 2011, 110, .	1.1	17
911	Phosphazene-Based Host Materials for the Use in Blue Phosphorescent Organic Light-Emitting Diodes. Chemistry of Materials, 2011, 23, 4947-4953.	3.2	62
912	Control of the Mutual Arrangement of Cyclometalated Ligands in Cationic Iridium(III) Complexes. Synthesis, Spectroscopy, and Electroluminescence of the Different Isomers. Journal of the American Chemical Society, 2011, 133, 10543-10558.	6.6	169
913	OLED Lighting Technology. Green Energy and Technology, 2011, , 97-149.	0.4	3
915	Homoleptic tris-cyclometalated iridium complexes with 2-phenylbenzothiazole ligands for highly efficient orange OLEDs. Journal of Materials Chemistry, 2011, 21, 15494.	6.7	67
916	Growth and Morphology of Sputtered Aluminum Thin Films on P3HT Surfaces. ACS Applied Materials & amp; Interfaces, 2011, 3, 1055-1062.	4.0	45

#	Article	IF	CITATIONS
917	Red light-emitting hyperbranched fluorene-alt-carbazole copolymers with an iridium complex as the core. Polymer Chemistry, 2011, 2, 2193.	1.9	35
918	Excited-State Properties of Heteroleptic Iridium(III) Complexes Bearing Aromatic Hydrocarbons with Extended Cores. Inorganic Chemistry, 2011, 50, 10859-10871.	1.9	42
919			

#	Article	IF	CITATIONS
936	42.1 <i>Invited Paper</i> : High Efficiency Phosphorescent AMOLEDs: The Path to Long Lifetime TVs. Digest of Technical Papers SID International Symposium, 2011, 42, 606-609.	0.1	6
937	Organic lightâ€emitting devices integrated with internal scattering layers for enhancing optical outâ€coupling. Journal of the Society for Information Display, 2011, 19, 196-204.	0.8	32
938	Fast-Response Organic Light-Emitting Diode for Interactive Optical Communication. , 0, , .		2
939	Highly simplified small molecular phosphorescent organic light emitting devices with a solution-processed single layer. AlP Advances, 2011, 1, 032130.	0.6	7
940	Organometallic Materials for Electroluminescent and Photovoltaic Devices. , 0, , .		2
941	High Efficiency Red Phosphorescent Organic Light-Emitting Diodes with Simple Structure. , 0, , .		2
942	Interlayer Engineering with Different Host Material Properties in Blue Phosphorescent Organic Light-Emitting Diodes. ETRI Journal, 2011, 33, 32-38.	1.2	30
943	Applying grey prediction model for forecasting emerging technology. International Journal of Foresight and Innovation Policy, 2011, 7, 271.	0.2	1
944	Thermal analysis of high intensity organic light-emitting diodes based on a transmission matrix approach. Journal of Applied Physics, 2011, 110, 124516.	1.1	23
945	Synthesis of novel twisted carbazole–quinoxaline derivatives with 1,3,5-benzene core: bipolar molecules as hosts for phosphorescent OLEDs. Tetrahedron Letters, 2011, 52, 6942-6947.	0.7	32
946	High power efficiency in single layer blue phosphorescent organic light-emitting diodes. Journal of Luminescence, 2011, 131, 2788-2791.	1.5	11
947	Simply structured, deep-blue phosphorescent organic light-emitting diode with bipolar host material. Organic Electronics, 2011, 12, 1638-1643.	1.4	17
948	Charge-carrier injection assisted by space-charge field in AC-driven organic light-emitting transistors. Organic Electronics, 2011, 12, 1724-1730.	1.4	19
949	Highly efficient phosphorescent organic light-emitting diodes using a beryllium metal–chelate complex as electron-transporting host material. Organic Electronics, 2011, 12, 1783-1787.	1.4	10
950	Above 20% external quantum efficiency in green and white phosphorescent organic light-emitting diodes using an electron transport type green host material. Organic Electronics, 2011, 12, 1893-1898.	1.4	12
951	Meta-linked CBP-derivatives as host materials for a blue iridium carbene complex. Organic Electronics, 2011, 12, 2047-2055.	1.4	67
952	The relationship between the device performance and hole mobility of host materials in mixed host system for deep blue phosphorescent organic light emitting devices. Organic Electronics, 2011, 12, 1973-1979.	1.4	18
953	The influence of the hole blocking layers on the electroluminescence stability of phosphorescent organic light emitting devices. Organic Electronics, 2011, 12, 2056-2060.	1.4	16

#	Article	IF	CITATIONS
954	Highly efficient blue organic electrophosphorescence devices using a trifluorine-replaced iridium complex. Organic Electronics, 2011, 12, 2061-2064.	1.4	18
955	Electroluminescence of organic light-emitting diodes consisting of an undoped (pbi)2Ir(acac) phosphorescent layer. Physica B: Condensed Matter, 2011, 406, 4249-4252.	1.3	6
956	Red phosphorescent organic light-emitting diodes using pyridine based electron transport type triplet host materials. Materials Chemistry and Physics, 2011, 127, 300-304.	2.0	7
957	New Zn complexes based on 1,2,4-triazoles: Synthesis, structure and luminescence. Inorganica Chimica Acta, 2011, 376, 509-514.	1.2	25
958	The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs. Coordination Chemistry Reviews, 2011, 255, 2622-2652.	9.5	1,114
959	A computational approach to the electronic and optical properties of Ru(II) and Ir(III) polypyridyl complexes: Applications to DSC, OLED and NLO. Coordination Chemistry Reviews, 2011, 255, 2704-2726.	9.5	161
960	Organic host materials for phosphorescent organic light-emitting diodes. Chemical Society Reviews, 2011, 40, 2943.	18.7	1,123
961	Molecular orientation in small-molecule organic light-emitting diodes. Journal of Materials Chemistry, 2011, 21, 19187.	6.7	527
962	Iridium(III) Complexes with Orthometalated Phenylimidazole Ligands Subtle Turning of Emission to the Saturated Green Colour. Journal of Fluorescence, 2011, 21, 507-519.	1.3	35
963	Improving organic light-emitting diode performance with patterned structures. Applied Physics A: Materials Science and Processing, 2011, 105, 323-327.	1.1	12
964	Synthesis and characterization of solution-processable highly branched iridium (III) complex cored dendrimer based on tetraphenylsilane dendron for host-free green phosphorescent organic light emitting diodes. Dyes and Pigments, 2011, 90, 139-145.	2.0	38
965	Optoelectronic properties of new functionalized heteroleptic iridium complex. Central South University, 2011, 18, 63-67.	0.5	0
966	Light-emitting diodes enhanced by localized surface plasmon resonance. Nanoscale Research Letters, 2011, 6, 199.	3.1	147
967	Capturing triplet emission in white organic light emitting devices. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1809-1812.	0.8	11
968	Bipolar Tetraarylsilanes as Universal Hosts for Blue, Green, Orange, and White Electrophosphorescence with High Efficiency and Low Efficiency Rollâ€Off. Advanced Functional Materials, 2011, 21, 1168-1178.	7.8	229
969	Critical Role of Triplet Exciton Interface Trap States in Bilayer Films of NPB and Ir(piq) ₃ . Advanced Functional Materials, 2011, 21, 2522-2526.	7.8	8
970	Investigating Morphology and Stability of Facâ€ŧris (2â€phenylpyridyl)iridium(III) Films for OLEDs. Advanced Functional Materials, 2011, 21, 2225-2231.	7.8	44
971	Improved Efficiency in Blue Phosphorescent Organic Lightâ€Emitting Devices Using Host Materials of Lower Triplet Energy than the Phosphorescent Blue Emitter. Advanced Functional Materials, 2011, 21, 3250-3258.	7.8	94

#	Article	IF	CITATIONS
972	Cyanoâ€Substituted Oligo(<i>p</i> â€phenylene vinylene) Single Crystals: A Promising Laser Material. Advanced Functional Materials, 2011, 21, 3770-3777.	7.8	98
973	Recent Progresses on Materials for Electrophosphorescent Organic Lightâ€Emitting Devices. Advanced Materials, 2011, 23, 926-952.	11.1	1,268
974	Improvement of Electroluminescence Performance of Organic Lightâ€Emitting Diodes with a Liquidâ€Emitting Layer by Introduction of Electrolyte and a Holeâ€Blocking Layer. Advanced Materials, 2011, 23, 889-893.	11.1	100
975	Hybrid Organic–Inorganic Lightâ€Emitting Diodes. Advanced Materials, 2011, 23, 1829-1845.	11.1	253
976	Highly Efficient Orange and White Organic Lightâ€Emitting Diodes Based on New Orange Iridium Complexes. Advanced Materials, 2011, 23, 2823-2827.	11.1	200
977	Highly Efficient Green and Blueâ€Green Phosphorescent OLEDs Based on Iridium Complexes with the Tetraphenylimidodiphosphinate Ligand. Advanced Materials, 2011, 23, 4041-4046.	11.1	291
978	Bipolar Host Materials: A Chemical Approach for Highly Efficient Electrophosphorescent Devices. Advanced Materials, 2011, 23, 3876-3895.	11.1	479
979	Low Driving Voltage, High Quantum Efficiency, High Power Efficiency, and Little Efficiency Rollâ€Off in Red, Green, and Deepâ€Blue Phosphorescent Organic Lightâ€Emitting Diodes Using a Highâ€Tripletâ€Energy Hole Transport Material. Advanced Materials, 2011, 23, 4568-4572.	11.1	95
980	Green Electrophosphorescent Polymers with Poly(3,6â€Carbazole) as the Backbone: A Linear Structure Does Realize High Efficiency. Advanced Materials, 2011, 23, 3726-3729.	11.1	42
981	Electroâ€active oligomers containing pendent carbazolyl or indolyl groups as host materials for OLEDs. Journal of Applied Polymer Science, 2011, 122, 908-913.	1.3	9
982	Energy Transfer Tunes Phosphorescent Color of Singleâ€Đopant White OLEDs. Chemistry - A European Journal, 2011, 17, 13971-13977.	1.7	21
983	Synthesis and optical characterization of strong red light emitting KLaF4:Eu3+ nanophosphors. Chemical Physics Letters, 2011, 508, 117-120.	1.2	68
984	Performances enhancement in OLEDs by inserting ultrathin trilayer in electron injection structure and using MoO3 as hole buffer layer. Displays, 2011, 32, 45-48.	2.0	6
985	Orange phosphorescent organic light-emitting diodes based on spirobenzofluorene type carbazole derivatives as a host material. Dyes and Pigments, 2011, 89, 29-36.	2.0	9
986	Branched diphenylsilane derivatives containing electronically isolated indolyl moieties as host materials for blue organic light emitting diodes. Dyes and Pigments, 2011, 91, 177-181.	2.0	4
987	Direct Observation of Electron Transit in Ambipolar Polymer-Based Light-Emitting Transistor by Optical Second Harmonic Generation Measurement. Physics Procedia, 2011, 14, 226-230.	1.2	0
988	Polarized phosphorescent organic light-emitting devices adopting mesogenic host–guest systems. Organic Electronics, 2011, 12, 15-21.	1.4	46
989	Analysis of chemical degradation mechanism within sky blue phosphorescent organic light emitting diodes by laser-desorption/ionization time-of-flight mass spectrometry. Organic Electronics, 2011, 12, 341-347.	1.4	118

#	Article	IF	Citations
990	Efficient blue organic light-emitting devices with a new bipolar emitter. Organic Electronics, 2011, 12, 358-363.	1.4	29
991	Efficient green OLED devices with an emissive layer comprised of phosphor-doped carbazole/bis-oxadiazole side-chain polymer blends. Organic Electronics, 2011, 12, 492-496.	1.4	43
992	Dependence of carrier recombination mechanism on the thickness of the emission layer in green phosphorescent organic light emitting devices. Organic Electronics, 2011, 12, 582-588.	1.4	25
993	Roughening the white OLED substrate's surface through sandblasting to improve the external quantum efficiency. Organic Electronics, 2011, 12, 648-653.	1.4	54
994	Increased light outcoupling efficiency in dye-doped small molecule organic light-emitting diodes with horizontally oriented emitters. Organic Electronics, 2011, 12, 809-817.	1.4	201
995	Efficient blue organic light-emitting diode using anthracene-derived emitters based on polycyclic aromatic hydrocarbons. Organic Electronics, 2011, 12, 802-808.	1.4	37
996	High-efficiency blue-green electrophosphorescent light-emitting devices using a bis-sulfone as host in the emitting layer. Organic Electronics, 2011, 12, 1314-1318.	1.4	28
997	A new N-fluorenyl carbazole host material: Synthesis, physical properties and applications for highly efficient phosphorescent organic light emitting diodes. Organic Electronics, 2011, 12, 785-793.	1.4	22
998	Host engineering for improving the performance of blue phosphorescent organic light-emitting devices. Organic Electronics, 2011, 12, 1114-1119.	1.4	24
999	Luminescent sensitization and blue shift emission of Ir(ppy)2(VPHD) by copolymerization with MMA. Journal of Luminescence, 2011, 131, 1677-1681.	1.5	1
1000	Synthesis and characterization of one star-shaped polymer with charged iridium complex as luminescent core. Journal of Luminescence, 2011, 131, 2166-2173.	1.5	6
1001	Enhancement of light-emitting efficiency using combined plasmonic Ag grating and dielectric grating. Journal of Luminescence, 2011, 131, 2382-2386.	1.5	10
1002	Synthesis and electrophosphorescent properties of iridium complexes based on phenylpyridine-based main ligand for organic light-emitting diodes. Journal of Crystal Growth, 2011, 326, 103-108.	0.7	2
1003	Multifunctional red phosphorescent bis-cyclometallated iridium complexes based on 2-phenyl-1,2,3-benzotriazole ligand and carbazolyl moieties. Tetrahedron, 2011, 67, 1852-1861.	1.0	35
1004	Triplet to singlet transition induced low efficiency roll-off in green phosphorescent organic light-emitting diodes. Thin Solid Films, 2011, 519, 2540-2543.	0.8	6
1005	Efficiency optimization of green phosphorescent organic light-emitting device. Thin Solid Films, 2011, 519, 3259-3263.	0.8	17
1006	Combination of heterojunction and mixed-host structures in one blue fluorescent organic light emitting diode to improve the power efficiency. Thin Solid Films, 2011, 519, 3816-3818.	0.8	9
1007	Enhanced efficiency in mixed host red electrophosphorescence devices. Thin Solid Films, 2011, 519, 5634-5637.	0.8	1

#	Article	IF	CITATIONS
1008	4,4′,4″-Tris(N-carbazolyl)-triphenylamine interlayer in highly efficient phosphorescent organic light emitting diodes based on tris[4-methyl-2-2(4′-trimethylsilylphenyl)pyridine]iridium complex. Thin Solid Films, 2011, 519, 6073-6076.	0.8	20
1009	Highly efficient red phosphorescent Ir(III) complexes for organic light- emitting diodes based on aryl(6-arylpyridin-3-yl)methanone ligands. Thin Solid Films, 2011, 519, 6544-6549.	0.8	7
1010	High-Efficiency Electrophosphorescence Red Organic Light-Emitting Diodes Using a Thin 1,3-Bis[2-(2,2'-bipyridin-6-yl)-1,3,4-oxadiazol-5-yl]benzene Cleaving Layer in an Ir-Complex-Doped Emitter Layer. Japanese Journal of Applied Physics, 2011, 50, 04DK19.	0.8	0
1011	Surface Potential Measurement of Tris(8-hydroxyquinolinato)aluminum and Bis[N-(1-naphthyl)-N-phenyl]benzidine Thin Films Fabricated on Indium–Tin Oxide by Kelvin Probe Force Microscopy. Japanese Journal of Applied Physics, 2011, 50, 071601.	0.8	3
1012	Highly Efficient Green Phosphorescent Organic Light-Emitting Diodes with High Electron Mobility. Japanese Journal of Applied Physics, 2011, 50, 01BC07.	0.8	2
1013	High efficiency electrophosphorescence from bilayer organic light emitting diodes. Journal Physics D: Applied Physics, 2011, 44, 365103.	1.3	5
1014	Enhancement of efficiency and stability of phosphorescent OLEDs based on heterostructured light-emitting layers. Journal Physics D: Applied Physics, 2011, 44, 115103.	1.3	14
1015	Very low color-temperature organic light-emitting diodes for lighting at night. , 2011, , .		1
1016	Metallic Bragg-gratings for light management in organic light-emitting devices. Applied Physics Letters, 2011, 99, 103303.	1.5	16
1017	Luminescence degradation in phosphorescent organic light-emitting devices by hole space charges. Journal of Applied Physics, 2011, 109, 044501-044501-6.	1.1	23
1018	Thermoelectric properties of <i>n-</i> type C60 thin films and their application in organic thermovoltaic devices. Applied Physics Letters, 2011, 99, .	1.5	83
1019	Observation of electron behavior in ambipolar polymer-based light-emitting transistor by optical second harmonic generation. Journal of Applied Physics, 2011, 110, 013715.	1.1	15
1020	Efficient organic light-emitting devices with platinum-complex emissive layer. Applied Physics Letters, 2011, 98, .	1.5	30
1021	Mechanism for the direct electron injection from Al cathode to the phosphine oxide type electron transport layer. Applied Physics Letters, 2011, 98, 073306.	1.5	5
1022	Electroluminescence Characteristics of Inorganic (p-GaN/MgO)-Organic (Alq ₃) Hybrid p-n Junction Light Emitting Diodes. Materials Research Society Symposia Proceedings, 2011, 1286, 38.	0.1	4
1023	Enhancing light extraction in organic light-emitting devices via hemispherical microlens arrays fabricated by soft lithography. Journal of Photonics for Energy, 2011, 1, 011002.	0.8	8
1024	New Bipolar Green Host Materials Containing Benzimidazole-Carbazole Moiety in Phosphorescent OLEDs. Bulletin of the Korean Chemical Society, 2011, 32, 841-846.	1.0	12
1025	Pyranylidene indene-1,3-dione derivatives as an amorphous red electroluminescence material. Journal of Photonics for Energy, 2011, 1, 011001.	0.8	3

ARTICLE IF CITATIONS Surface potential measurement of organic thin film on metal electrodes by dynamic force microscopy 1026 1.1 2 using a piezoelectric cantilever. Journal of Applied Physics, 2011, 109, 114306. High-efficiency green phosphorescent organic light-emitting devices., 2011, , . 1027 Effect of Solution Processed Hole Injection Layers on Device Performance of Phosphorescent Green 1028 3 1.3 OLEDs. Journal of the Electrochemical Society, 2011, 158, J321. Device Architecture and Materials for Organic Light-Emitting Devices., 2011,,. 1029 Pt(II) complex based phosphorescent organic light emitting diodes with external quantum efficiencies 1030 1.5 58 above 20%. Applied Physics Letters, 2011, 98, . Fabrication of a blue organic light-emitting diode with a novel thermal deposition boat. Journal of 0.6 Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 062401. Graded-host phosphorescent light-emitting diodes with high efficiency and reduced roll-off. AIP 1032 0.6 15 Advances, 2012, 2, 012192. Polystyrene Backbone Polymers Consisting of Alkyl-Substituted Triazine Side Groups for 1033 1.0 Phósphorescent OLEDs. Ádvances in Materials Science and Engineering, 2012, 2012, 1-15. Suzuki-Miyaura Reaction; Novel Synthesis of C-N and N-N Ligands for Organic Light-Emitting Devices. 1034 0.3 4 Advanced Materials Research, 0, 622-623, 236-240. Extremely High Efficiency Orange Phosphorescent Organic Light-Emitting Devices. Advanced Materials Research, 2012, 490-495, 3221-3225. Escaped and Trapped Emission of Organic Light-Emitting Diodes. Chinese Physics Letters, 2012, 29, 1036 1.3 0 024209. Photoionization of tris(2-phenylpyridine)iridium. Molecular Physics, 2012, 110, 1893-1908. 1037 0.8 White organic light emitting diodes with enhanced internal and external outcoupling for 1038 1.7 33 ultra-efficient light extraction and Lambertian emission. Optics Express, 2012, 20, A932. Extraction of guided modes from organic emission layers by compound binary gratings. Optics Letters, 2012, 37, 2646. 1039 1.7 Improving efficiency roll-off in phosphorescent OLEDs by modifying the exciton lifetime. Optics 1040 1.7 21 Letters, 2012, 37, 2019. High power efficiency phosphorescent poly(dendrimer) OLEDs. Optics Express, 2012, 20, A213. 1041 Enhanced light extraction in organic light-emitting devices: Using conductive low-index layers and 1042 micropatterned indium tin oxide electrodes with optimal taper angle. Applied Physics Letters, 2012, 100, 1.517 233303. High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from 1043 1.5 triazine-based donor–acceptor hybrid molecules. Applied Physics Letters, 2012, 101, 093306.

#	Article	IF	CITATIONS
1044	High efficiency blue phosphorescent organic light-emitting diode based on blend of hole- and electron-transporting materials as a co-host. Applied Physics Letters, 2012, 100, 213301.	1.5	54
1045	Triplets Contribute to Both an Increase and Loss in Fluorescent Yield in Organic Light Emitting Diodes. Physical Review Letters, 2012, 108, 267404.	2.9	172
1046	Identification of device degradation positions in multi-layered phosphorescent organic light emitting devices using water probes. Applied Physics Letters, 2012, 100, .	1.5	34
1047	Efficient organic light-emitting diodes through up-conversion from triplet to singlet excited states of exciplexes. Applied Physics Letters, 2012, 101, .	1.5	239
1048	Polarized Emission Behavior of Pt Complex-Doped Polymer Films. Molecular Crystals and Liquid Crystals, 2012, 563, 83-91.	0.4	1
1049	Improved Device Performances in Phosphorescent Organic Light-Emitting Diodes by Microcavity Effects. Japanese Journal of Applied Physics, 2012, 51, 09MH01.	0.8	8
1050	Highly efficient blue fluorescent OLEDs with doped double emitting layers based on p—n heterojunctions. Chinese Physics B, 2012, 21, 058503.	0.7	2
1051	Delayed Fluorescence by Reverse Intersystem Crossing and Application to Organic Light-Emitting Diodes. , 2012, , .		0
1052	A Theoretical Study on Synthesis Mechanism of <i>fac</i> -[Ir(ppy)3] from [Ir(acac)3] in the Presence of BrĄ̃,nsted Acids and Water Molecules. Bulletin of the Chemical Society of Japan, 2012, 85, 209-216.	2.0	0
1054	Synthesis and properties of a dendritic FRET donor–acceptor system with cationic iridium(<scp>iii</scp>) complex core and carbazolyl periphery. Dalton Transactions, 2012, 41, 2582-2591.	1.6	27
1055	Solution-processable carbazole-based host materials for phosphorescent organic light-emitting devices. Organic Electronics, 2012, 13, 2235-2242.	1.4	37
1056	1,3,4-Oxadiazole Containing Silanes as Novel Hosts for Blue Phosphorescent Organic Light Emitting Diodes. Organic Letters, 2012, 14, 4986-4989.	2.4	26
1057	Aqueous Self-Assembly of an Electroluminescent Double-Helical Metallopolymer. Journal of the American Chemical Society, 2012, 134, 19170-19178.	6.6	63
1058	Synthesis and characterization of new blue light emitting iridium complexes containing a trimethylsilyl group. Journal of Materials Chemistry, 2012, 22, 22721.	6.7	33
1059	Additional Insights into Luminescence Process of Polycyclic Aromatic Hydrocarbons with Carbonyl Groups: Photophysical Properties of Secondary <i>N</i> -Alkyl and Tertiary <i>N</i> , <i>N</i> -Dialkyl Carboxamides of Naphthalene, Anthracene, and Pyrene. Journal of Organic Chemistry, 2012, 77, 3986-3996.	1.7	36
1060	High efficient white organic light-emitting diodes based on triplet multiple quantum well structure. Applied Physics Letters, 2012, 101, 053310.	1.5	11
1061	White Organic Light-Emitting Diodes With Different Order of RGB-Emitting Layers. Molecular Crystals and Liquid Crystals, 2012, 569, 125-142.	0.4	9
1062	Highly efficient organic light-emitting diodes from delayed fluorescence. Nature, 2012, 492, 234-238.	13.7	6,030

#	Article	IF	CITATIONS
1063	Efficient luminescence from a copper(i) complex doped in organic light-emitting diodes by suppressing C–H vibrational quenching. Chemical Communications, 2012, 48, 5340.	2.2	92
1064	Degradation induced decrease of the radiative quantum efficiency in organic light-emitting diodes. Applied Physics Letters, 2012, 101, .	1.5	13
1065	Substituent effect on the photophysical properties, electrochemical properties and electroluminescence performance of orange-emitting iridium complexes. Dalton Transactions, 2012, 41, 6833.	1.6	51
1066	Acid induced acetylacetonato replacement in biscyclometalated iridium(iii) complexes. Dalton Transactions, 2012, 41, 3807.	1.6	24
1067	Three-carbazole-armed host materials with various cores for RGB phosphorescent organic light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 3447.	6.7	88
1069	Enhanced Electroluminescence Efficiency in a Spiroâ€Acridine Derivative through Thermally Activated Delayed Fluorescence. Angewandte Chemie - International Edition, 2012, 51, 11311-11315.	7.2	495
1070	Recent progress in the understanding of exciton dynamics within phosphorescent OLEDs. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2341-2353.	0.8	74
1071	Tuning electronic structure and photophysical properties of [lr(ppy)2(py)2]+ by substituents binding in pyridyl ligand: a computational study. Journal of Molecular Modeling, 2012, 18, 4615-4624.	0.8	3
1072	Storage of charge carriers on emitter molecules in organic light-emitting diodes. Physical Review B, 2012, 86, .	1.1	98
1073	Bismuth-loaded plastic scintillators for gamma-ray spectroscopy. Europhysics Letters, 2012, 97, 22002.	0.7	80
1074	Solution-processable iridium complexes for efficient orange-red and white organic light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 1411-1417.	6.7	69
1075	Bipolar material with spiro-fluorenyl terminals: synthesis, characterization and application for enhancement of electrophosphorescence. Journal of Materials Chemistry, 2012, 22, 23877.	6.7	20
1076	Phenylcarbazole-dipyridyl triazole hybrid as bipolar host material for phosphorescent OLEDs. Journal of Materials Chemistry, 2012, 22, 5410.	6.7	48
1077	Carbazole-based coplanar molecule (CmInF) as a universal host for multi-color electrophosphorescent devices. Journal of Materials Chemistry, 2012, 22, 215-224.	6.7	111
1078	Theoretical study on the influence of ancillary and cyclometalated ligands on the electronic structures and optoelectronic properties of heteroleptic iridium(iii) complexes. Dalton Transactions, 2012, 41, 7595.	1.6	19
1079	Fused indole derivatives as high triplet energy hole transport materials for deep blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 3099.	6.7	33
1080	Luminescent Ir(<scp>iii</scp>) complexes containing benzothiazole-based tridentate ligands: synthesis, characterization, and application to organic light-emitting diodes. Dalton Transactions, 2012, 41, 44-46.	1.6	52
1081	Fluorinated Carbazole Derivatives as Wide-Energy-Gap Host Material for Blue Phosphorescent Organic Light-Emitting Diodes. Journal of Physical Chemistry C, 2012, 116, 20681-20687.	1.5	26

#	Article	IF	Citations
1082	Highly luminescent π-conjugated dithienometalloles: photophysical properties and their application in organic light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 16810.	6.7	40
1083	Novel electron-type host material for unilateral homogeneous phosphorescent organic light-emitting diodes with low efficiency roll-off. Journal of Materials Chemistry, 2012, 22, 23129.	6.7	12
1084	A dicarbazole–triazine hybrid bipolar host material for highly efficient green phosphorescent OLEDs. Journal of Materials Chemistry, 2012, 22, 3832.	6.7	116
1085	Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor–acceptor structure. Chemical Communications, 2012, 48, 9580.	2.2	409
1086	High-efficiency single-layer organic light-emitting diode based on green fluorescent protein. Philosophical Magazine Letters, 2012, 92, 211-216.	0.5	0
1087	Benzo[k]fluoranthene-based linear acenes for efficient deep blue organic light-emitting devices. Journal of Materials Chemistry, 2012, 22, 11032.	6.7	22
1088	Simple CBP isomers with high triplet energies for highly efficient blue electrophosphorescence. Journal of Materials Chemistry, 2012, 22, 2894-2899.	6.7	106
1089	Phenylcarbazole and phosphine oxide/sulfide hybrids as host materials for blue phosphors: effectively tuning the charge injection property without influencing the triplet energy. Physical Chemistry Chemical Physics, 2012, 14, 1685-1693.	1.3	23
1090	Carbazole/iridium dendrimer side-chain phosphorescent copolymers for efficient light emitting devices. New Journal of Chemistry, 2012, 36, 407-413.	1.4	15
1091	A Diels–Alder crosslinkable host polymer for improved PLED performance: the impact on solution processed doped device and multilayer device performance. Journal of Materials Chemistry, 2012, 22, 3004.	6.7	22
1092	Computational design and selection of optimal building blocks and linking topologies for construction of high-performance host materials. RSC Advances, 2012, 2, 7860.	1.7	30
1093	Peripheral modification of 1,3,5-triazine based electron-transporting host materials for sky blue, green, yellow, red, and white electrophosphorescent devices. Journal of Materials Chemistry, 2012, 22, 15620.	6.7	49
1094	Comparison of Emission Characteristics with 4-, 5-, 6-Membered Iridium Complexes for OLEDs. Molecular Crystals and Liquid Crystals, 2012, 563, 246-256.	0.4	1
1095	Bis-Cyclometalated Iridium(III) Complexes Bearing Ancillary Guanidinate Ligands. Synthesis, Structure, and Highly Efficient Electroluminescence. Inorganic Chemistry, 2012, 51, 822-835.	1.9	47
1096	Effects of N-Substitution on Phosphorescence Efficiency and Color Tuning of a Series of Ir(III) Complexes with a Phosphite Tripod Ligand: A DFT/TDDFT Study. Journal of Physical Chemistry C, 2012, 116, 26496-26506.	1.5	39
1097	DFT and TD-DFT study on the electronic structures and phosphorescent properties of 6-phenyl-2,2′-bipyridine tridentate iridium(iii) complexes and their isomer. Dalton Transactions, 2012, 41, 8441.	1.6	34
1098	Approaching Charge Balance in Organic Light-Emitting Diodes by Tuning Charge Injection Barriers with Mixed Monolayers. Langmuir, 2012, 28, 424-430.	1.6	34
1099	Unusual Temperature-Dependent Photophysics of Oligofluorene-Substituted Tris-Cyclometalated Iridium Complexes. Macromolecules, 2012, 45, 133-141.	2.2	27

#	Article	IF	CITATIONS
1100	Homologous Series of Phenylquinoline-Carbazole Main Ligand Based On Red-Emitting Iridium(III) Complexes for Phosphorescent Organic Light-Emitting Diodes. Journal of Physical Chemistry C, 2012, 116, 7526-7533.	1.5	32
1101	Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles. Applied Physics Letters, 2012, 100, .	1.5	134
1102	Spectral- and Pulse-Shape Discrimination in Triplet-Harvesting Plastic Scintillators. IEEE Transactions on Nuclear Science, 2012, 59, 3312-3319.	1.2	41
1103	Orange phosphorescent organic light-emitting diodes with high operational stability. Organic Electronics, 2012, 13, 1506-1510.	1.4	22
1104	A novel heteroterfluorene for efficient blue and white OLEDs. Organic Electronics, 2012, 13, 1576-1582.	1.4	9
1105	Thermal properties of organic light-emitting diodes. Organic Electronics, 2012, 13, 1565-1568.	1.4	42
1106	A new diketopyrrolopyrrole-based co-polymer for ambipolar field-effect transistors and solar cells. Organic Electronics, 2012, 13, 1981-1988.	1.4	21
1107	A host material with a small singlet–triplet exchange energy for phosphorescent organic light-emitting diodes: Guest, host, and exciplex emission. Organic Electronics, 2012, 13, 1937-1947.	1.4	57
1108	Double-emission-layer green phosphorescent OLED based on LiF-doped TPBi as electron transport layer for improving efficiency and operational lifetime. Synthetic Metals, 2012, 162, 398-401.	2.1	38
1109	Synthesis and photophysical characterization of orange-emitting iridium(III) complexes containing benzothiazole ligand. Synthetic Metals, 2012, 162, 497-502.	2.1	10
1110	Efficient red phosphorescent iridium complexes for organic light-emitting diodes based on 5-benzoyl-2-phenylpyridine ligands with fluorine and methyl moieties. Synthetic Metals, 2012, 162, 715-721.	2.1	8
1111	Twisted bimesitylene-based oxadiazoles as novel host materials for phosphorescent OLEDs. Tetrahedron, 2012, 68, 7502-7508.	1.0	27
1112	High external quantum efficiency in deep blue phosphorescent organic light emitting diodes using a simple device structure. Thin Solid Films, 2012, 520, 7022-7025.	0.8	2
1113	Design of Efficient Thermally Activated Delayed Fluorescence Materials for Pure Blue Organic Light Emitting Diodes. Journal of the American Chemical Society, 2012, 134, 14706-14709.	6.6	1,370
1114	Efficient white polymer light-emitting diodes employing a silver nanowire–polymer composite electrode. Physical Chemistry Chemical Physics, 2012, 14, 14249.	1.3	40
1115	Highly Efficient and Stable Red Phosphorescent Organic Lightâ€Emitting Diodes Using Platinum Complexes. Advanced Materials, 2012, 24, 5099-5103.	11.1	160
1116	Current onfinement Structure and Extremely High Current Density in Organic Lightâ€Emitting Transistors. Advanced Materials, 2012, 24, 6141-6146.	11.1	85
1117	Cyclometalated Iridium(III)–Polyamine Complexes with Intense and Longâ€Lived Multicolor Phosphorescence: Synthesis, Crystal Structure, Photophysical Behavior, Cellular Uptake, and Transfection Properties. Chemistry - A European Journal. 2012. 18. 13342-13354.	1.7	54

#	Article	IF	CITATIONS
1118	Pâ€116: Efficiency Enhancement in ITOâ€free Green Organic Light Emitting Diodes Utilizing Nanoâ€Composite Scattering Films. Digest of Technical Papers SID International Symposium, 2012, 43, 1496-1498.	0.1	1
1119	Preparation and Characterization of White Polymer Light Emitting Diodes Using PVK:PFO:MDMO-PPV Emission Layer. Molecular Crystals and Liquid Crystals, 2012, 563, 230-237.	0.4	4
1120	Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nature Photonics, 2012, 6, 253-258.	15.6	1,355
1121	Ab Initio Studies of Triplet-State Properties for Organic Semiconductor Molecules. Journal of Physical Chemistry C, 2012, 116, 15203-15217.	1.5	20
1122	Novel bipolar host materials based on 1,3,5-triazine derivatives for highly efficient phosphorescent OLEDs with extremely low efficiency roll-off. Physical Chemistry Chemical Physics, 2012, 14, 14255.	1.3	52
1123	Comparison of electron transporting layer in white OLED with a double emissive layer structure. Displays, 2012, 33, 191-194.	2.0	7
1124	Polyether containing N-[6-(N-carbazolyl)hexyl]carbazol-3-yl side chains and its model compound as components of organic light emitting diodes. Synthetic Metals, 2012, 162, 1898-1902.	2.1	1
1125	Theoretical study on photophysical property of cuprous bis-phenanthroline coordination complexes. Organic Electronics, 2012, 13, 2627-2638.	1.4	24
1126	Carbazole and benzimidazole/oxadiazole hybrids as bipolar host materials for sky blue, green, and red PhOLEDs. Organic Electronics, 2012, 13, 2671-2681.	1.4	36
1127	Carbazole/oligocarbazoles substituted silanes as wide bandgap host materials for solution-processable electrophosphorescent devices. Organic Electronics, 2012, 13, 2825-2831.	1.4	22
1128	Determining emissive dipole orientation in organic light emitting devices by decay time measurement. Organic Electronics, 2012, 13, 3079-3084.	1.4	50
1129	Polymers with alkyl main chain pendent biphenyl carbazole or triphenylamine unit as host for polymer light emitting diodes. Polymer, 2012, 53, 4983-4992.	1.8	30
1130	Organic light-emitting diodes based on layered films of thiophene/phenylene co-oligomers. Journal of Non-Crystalline Solids, 2012, 358, 2525-2529.	1.5	16
1131	Effect of ionic liquids on the electroluminescence of yellowish-green light-emitting electrochemical cells using bis(2-(2,4-difluorophenyl)pyridine)4,7-diphenyl-1,10-phenanthroline-iridium(III) hexafluorophosphate. Materials Chemistry and Physics, 2012, 136, 173-178.	2.0	26
1132	Ratiometric optical oxygen sensing: a review in respect of material design. Analyst, The, 2012, 137, 4885.	1.7	198
1133	Solvent effects on spectral emission of PVK and PVK-Ir(ppy) 3 based OLEDs. , 2012, , .		2
1134	Synthesis and Characterization of 8-hydroxyquinoline Complexes of Tin(IV) and Their Application in Organic Light Emitting Diode. Journal of Fluorescence, 2012, 22, 1263-1270.	1.3	38
1135	The â€~double dendron' approach to host free phosphorescent poly(dendrimer) OLEDs. Polymer Chemistry, 2012, 3, 734.	1.9	16

#	Article	IF	CITATIONS
1136	Indolo[3,2-b]carbazole/benzimidazole hybrid bipolar host materials for highly efficient red, yellow, and green phosphorescent organic light emitting diodes. Journal of Materials Chemistry, 2012, 22, 8399.	6.7	85
1137	A diarylborane-substituted carbazole as a universal bipolar host material for highly efficient electrophosphorescence devices. Journal of Materials Chemistry, 2012, 22, 870-876.	6.7	96
1138	Structural, photophysical, and mesomorphic properties of luminescent platinum(II)-salen Schiff base complexes. Inorganica Chimica Acta, 2012, 392, 254-260.	1.2	29
1139	Colour tuning from green to red by substituent effects in phosphorescent tris-cyclometalated iridium(iii) complexes of carbazole-based ligands: synthetic, photophysical, computational and high efficiency OLED studies. Journal of Materials Chemistry, 2012, 22, 6419.	6.7	96
1140	Efficient phosphorescent polymer light-emitting diodes by suppressing triplet energy back transfer. Chemical Society Reviews, 2012, 41, 4797.	18.7	113
1141	Efficiency and rate of spontaneous emission in organic electroluminescent devices. Physical Review B, 2012, 85, .	1.1	254
1142	Host materials for blue phosphorescent OLEDs. Proceedings of SPIE, 2012, , .	0.8	0
1143	Phosphine oxide derivatives for organic light emitting diodes. Journal of Materials Chemistry, 2012, 22, 4233-4243.	6.7	153
1144	Synthesis and Characterization of Un-doped Deep-Blue Organic Light-Emitting Materials Containing Spirofluorene and Biphenyl or Substituted Biphenyl. Polycyclic Aromatic Compounds, 2012, 32, 589-599.	1.4	1
1145	New carbazole-based host material for low-voltage and highly efficient red phosphorescent organic light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 6351.	6.7	40
1146	Poly(dendrimers) with Phosphorescent Iridium(III) Complex-Based Side Chains Prepared via Ring-Opening Metathesis Polymerization. Macromolecules, 2012, 45, 2963-2971.	2.2	34
1147	Dinuclear iridium(iii) complexes of cyclometalated fluorenylpyridine ligands as phosphorescent dopants for efficient solution-processed OLEDs. Journal of Materials Chemistry, 2012, 22, 13529.	6.7	41
1148	New Ambipolar Hosts Based on Carbazole and 4,5-Diazafluorene Units for Highly Efficient Blue Phosphorescent OLEDs with Low Efficiency Roll-Off. Chemistry of Materials, 2012, 24, 643-650.	3.2	90
1149	Photofunctional triplet excited states of cyclometalated Ir(iii) complexes: beyond electroluminescence. Chemical Society Reviews, 2012, 41, 7061.	18.7	583
1150	Dependence of Light-Emitting Characteristics of Blue Phosphorescent Organic Light-Emitting Diodes on Electron Injection and Transport Materials. ETRI Journal, 2012, 34, 690-695.	1.2	19
1151	Effect of Photonic Structures in Organic Light-Emitting Diodes – Light Extraction and Polarization Characteristics. , 2012, , .		0
1152	Harvesting Emission in White Organic Light Emitting Devices. , 0, , .		3
1153	Cascade hole transport in efficient green phosphorescent lightâ€emitting devices achieved by layerâ€byâ€layer solution deposition using photocrosslinkable onjugated polymers containing oxetane sideâ€chain moieties. Journal of Polymer Science Part A, 2012, 50, 388-399.	2.5	3

#	Article	IF	CITATIONS
1154	Synthesis of fluoreneâ€based hyperbranched polymers for solutionâ€processable blue, green, red, and white lightâ€emitting devices. Journal of Polymer Science Part A, 2012, 50, 696-710.	2.5	39
1155	Stable and good color purity white lightâ€emitting devices based on random fluorene/spirofluorene copolymers doped with iridium complex. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 180-188.	2.4	10
1156	Spin–orbit coupling and intersystem crossing in molecules. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012, 2, 187-203.	6.2	622
1157	Soluble polynorbornenes with pendant carbazole derivatives as host materials for highly efficient blue phosphorescent organic lightâ€emitting diodes. Journal of Polymer Science Part A, 2012, 50, 2356-2365.	2.5	21
1158	Synthesis and characterization of electrophosphorescent jacketed conjugated polymers. Journal of Polymer Science Part A, 2012, 50, 3895-3903.	2.5	12
1159	Organic Semiconductors and their Applications in Photovoltaic Devices. Polymer Reviews, 2012, 52, 1-37.	5.3	100
1160	Luminescent Iridium(III) Complexes with N ^{â^§} C ^{â^§} N-Coordinated Terdentate Ligands: Dual Tuning of the Emission Energy and Application to Organic Light-Emitting Devices. Inorganic Chemistry, 2012, 51, 3813-3826.	1.9	93
1161	Spiro-configured bipolar hosts incorporating 4,5-diazafluroene as the electron transport moiety for highly efficient red and green phosphorescent OLEDs. Journal of Materials Chemistry, 2012, 22, 9658.	6.7	30
1162	A New Framework of a Heteroleptic Iridium(III)–Carbene Complex as a Triplet Emitting Material. Organometallics, 2012, 31, 5223-5226.	1.1	38
1163	Effects of Fluorination on Iridium(III) Complex Phosphorescence: Magnetic Circular Dichroism and Relativistic Time-Dependent Density Functional Theory. Inorganic Chemistry, 2012, 51, 2821-2831.	1.9	48
1164	Triplet Exciton Confinement in Green Organic Lightâ€Emitting Diodes Containing Luminescent Chargeâ€Transfer Cu(I) Complexes. Advanced Functional Materials, 2012, 22, 2327-2336.	7.8	279
1165	Os(II) Based Green to Red Phosphors: A Great Prospect for Solutionâ€Processed, Highly Efficient Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2012, 22, 3491-3499.	7.8	96
1166	Organic Materials for Deep Blue Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Materials, 2012, 24, 3169-3190.	11.1	578
1167	New Host Material for Highâ€Performance Blue Phosphorescent Organic Electroluminescent Devices. Advanced Materials, 2012, 24, 2911-2915.	11.1	149
1168	Management of Singlet and Triplet Excitons in a Single Emission Layer: A Simple Approach for a Highâ€Efficiency Fluorescence/Phosphorescence Hybrid White Organic Lightâ€Emitting Device. Advanced Materials, 2012, 24, 3410-3414.	11.1	232
1169	Extremely Efficient Indium–Tinâ€Oxideâ€Free Green Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Materials, 2012, 24, 4337-4342.	11.1	105
1170	Synthesis and Optoelectronic Properties of Hexahydroxylated 10â€ <i>O</i> â€Râ€Substituted Anthracenes via a New Modification of the Friedel–Crafts Reaction Using Oâ€Protected <i>ortho</i> â€Acetal Diarylmethanols. Chemistry - A European Journal, 2012, 18, 4866-4876.	1.7	15
1171	Comparison of Tetraphenylmethane and Tetraphenylsilane as Core Structures of Highâ€Tripletâ€Energy Hole―and Electronâ€Transport Materials. Chemistry - A European Journal, 2012, 18, 6457-6461.	1.7	19

#	ARTICLE	IF	CITATIONS
1172	PhOLEDs: Impact of the BMes ₂ Location on Emission Color. Chemistry - A European Journal, 2012, 18, 11306-11316.	1.7	71
1173	Singlet exciton diffusion length in organic light-emitting diodes. Physical Review B, 2012, 85, .	1.1	48
1174	Synthesis, crystal structure and photoluminescence of phosphorescent copper (I) complexes containing hole-transporting carbazolyl group. Inorganica Chimica Acta, 2012, 383, 78-82.	1.2	5
1175	New approach to deposition of thin luminescent films of lanthanide aromatic carboxylates. Inorganic Chemistry Communication, 2012, 16, 4-7.	1.8	18
1176	Investigation on the escaped and trapped emission in organic light-emitting devices. Optics Communications, 2012, 285, 1625-1630.	1.0	2
1177	Deuteration of molecules for neutron reflectometry on organic light-emitting diode thin films. Tetrahedron Letters, 2012, 53, 931-935.	0.7	21
1178	All fluorescent and high color rendering index white organic light-emitting devices with improved color stability at high brightness. Thin Solid Films, 2012, 520, 2966-2970.	0.8	14
1179	Near-infrared electroluminescence from double-emission-layers devices based on Ytterbium (III) complexes. Thin Solid Films, 2012, 520, 3663-3667.	0.8	20
1180	Investigation of the energy transfer mechanism in OLEDs based on a new terbium β-diketonate complex. Organic Electronics, 2012, 13, 90-97.	1.4	34
1181	An alternative way to use the triplet energy of fluorescent dyes in organic light-emitting devices via an external iodide. Organic Electronics, 2012, 13, 195-198.	1.4	1
1182	Soluble processed low-voltage and high efficiency blue phosphorescent organic light-emitting devices using small molecule host systems. Organic Electronics, 2012, 13, 586-592.	1.4	49
1183	Enhancing the efficiency of simplified red phosphorescent organic light emitting diodes by exciton harvesting. Organic Electronics, 2012, 13, 925-931.	1.4	57
1184	Anthracene derivatives as efficient emitting hosts for blue organic light-emitting diodes utilizing triplet–triplet annihilation. Organic Electronics, 2012, 13, 1197-1203.	1.4	112
1185	White Organic Lightâ€Emitting Diodes Based on Quenchâ€Resistant Fluorescent Organophosphorus Dopants. Advanced Functional Materials, 2012, 22, 567-576.	7.8	66
1186	Diffusion – the Hidden Menace in Organic Optoelectronic Devices. Advanced Materials, 2012, 24, 822-826.	11.1	35
1187	Spiroâ€Configured Bipolar Host Materials for Highly Efficient Electrophosphorescent Devices. Chemistry - an Asian Journal, 2012, 7, 133-142.	1.7	39
1189	Phosphorescent Mesomorphic Dyads Based on Tetraacetylethane Complexes of Iridium(III). Angewandte Chemie - International Edition, 2012, 51, 95-98.	7.2	61
1190	Stacked inverted top-emitting green electrophosphorescent organic light-emitting diodes on glass and flexible glass substrates. Organic Electronics, 2013, 14, 2418-2423.	1.4	29

#	Article	IF	CITATIONS
1191	Efficient and bright organic light-emitting diodes on single-layer graphene electrodes. Nature Communications, 2013, 4, 2294.	5.8	216
1192	Theoretical investigations on electronic structures and photophysical properties of N-heteroaryl carbazole derivatives as host materials. Theoretical Chemistry Accounts, 2013, 132, 1.	0.5	2
1193	Highâ€Efficiency Wet―and Dryâ€Processed Green Organic Light Emitting Diodes with a Novel Iridium Complexâ€Based Emitter. Advanced Optical Materials, 2013, 1, 657-667.	3.6	42
1194	Highly efficient white organic light-emitting devices consisting of undoped ultrathin yellow phosphorescent layer. Journal of Luminescence, 2013, 134, 665-669.	1.5	16
1195	White organic light-emitting diodes: Status and perspective. Reviews of Modern Physics, 2013, 85, 1245-1293.	16.4	540
1196	Enhanced electroluminescence based on thermally activated delayed fluorescence from a carbazole–triazine derivative. Physical Chemistry Chemical Physics, 2013, 15, 15850.	1.3	115
1197	Light-emitting electrochemical cells based on a solution-processed multilayered device and an anionic iridium (III) complex. Synthetic Metals, 2013, 177, 100-104.	2.1	23
1198	Organic Solid-State Lasers. Springer Series in Optical Sciences, 2013, , .	0.5	60
1199	Highly Enhanced Light Extraction from Surface Plasmonic Loss Minimized Organic Lightâ€Emitting Diodes. Advanced Materials, 2013, 25, 3571-3577.	11.1	166
1200	Solution Processed Organic Double Lightâ€Emitting Layer Diode Based on Crossâ€Linkable Small Molecular Systems. Angewandte Chemie - International Edition, 2013, 52, 9563-9567.	7.2	52
1201	Charge-Transfer and Ligand-Localized Photophysics in Luminescent Cyclometalated Pyrazolate-Bridged Dinuclear Platinum(II) Complexes. Organometallics, 2013, 32, 3819-3829.	1.1	92
1202	Efficient Persistent Room Temperature Phosphorescence in Organic Amorphous Materials under Ambient Conditions. Advanced Functional Materials, 2013, 23, 3386-3397.	7.8	643
1203	Siliconâ€Based Material with Spiroâ€Annulated Fluorene/Triphenylamine as Host and Excitonâ€Blocking Layer for Blue Electrophosphorescent Devices. Chemistry - A European Journal, 2013, 19, 11791-11797.	1.7	31
1204	Analysis of exciton annihilation in high-efficiency sky-blue organic light-emitting diodes with thermally activated delayed fluorescence. Organic Electronics, 2013, 14, 2721-2726.	1.4	455
1205	Highly-improved performance of TiO2 nanocrystal based quantum dot light emitting diodes. RSC Advances, 2013, 3, 12104.	1.7	14
1206	Introduction to Thin Film Transistors. , 2013, , .		83
1207	Highly efficient green organic light-emitting diodes containing luminescent tetrahedral copper(<scp>i</scp>) complexes. Journal of Materials Chemistry C, 2013, 1, 542-551.	2.7	160
1208	Key issues and recent progress of high efficient organic light-emitting diodes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 17, 69-104.	5.6	83

#	Article	IF	CITATIONS
1209	Suppression of Efficiency Roll-Off Characteristics in Thermally Activated Delayed Fluorescence Based Organic Light-Emitting Diodes Using Randomly Oriented Host Molecules. Chemistry of Materials, 2013, 25, 3038-3047.	3.2	84
1210	Highly Efficient Greenishâ€Yellow Phosphorescent Organic Lightâ€Emitting Diodes Based on Interzone Exciton Transfer. Advanced Functional Materials, 2013, 23, 3204-3211.	7.8	26
1211	TD-DFT studies on electronic and spectral properties of platinum(II) complexes with phenol and pyridine groups. Chemical Research in Chinese Universities, 2013, 29, 361-365.	1.3	6
1212	Photophysics and Photochemistry of Non-Carbonyl-Containing Coordination and Organometallic Compounds. , 2013, , 255-337.		3
1213	Luminescent Coordination and Organometallic Complexes for OLEDs. , 2013, , 607-655.		3
1214	White organic light-emitting diodes based on a yellow phosphorescence iridium complex and a high-efficiency blue fluorescence. Thin Solid Films, 2013, 537, 221-225.	0.8	0
1215	Improvement of light out-coupling in organic light-emitting diodes by printed nanosized random texture layer. Organic Electronics, 2013, 14, 187-192.	1.4	12
1216	Color optimization of single emissive white OLEDs via energy transfer between RGB fluorescent dopants. Journal of Luminescence, 2013, 143, 723-728.	1.5	30
1217	Solution-processable tandem solid-state light-emitting electrochemical cells. Organic Electronics, 2013, 14, 3379-3384.	1.4	28
1218	Molecular Topology Tuning of Bipolar Host Materials Composed of Fluoreneâ€Bridged Benzimidazole and Carbazole for Highly Efficient Electrophosphorescence. Chemistry - A European Journal, 2013, 19, 10563-10572.	1.7	48
1219	Evaluation of uniformity for organic film evaporation using two dimensional different apertures. Vacuum, 2013, 92, 26-31.	1.6	3
1220	A Spiro [Fluorene-9, 9'-Xanthene]-Based Host Material for Efficient Green and Blue Phosphorescent OLED. Applied Mechanics and Materials, 0, 331, 503-507.	0.2	6
1221	Charge carrier mobility in a two-phase disordered organic system in the low-carrier concentration regime. Physical Review B, 2013, 88, .	1.1	11
1222	Luminescent Tris(8-hydroxyquinolates) of Bismuth(III). Inorganic Chemistry, 2013, 52, 12033-12045.	1.9	14
1223	Effective Alkoxylation of Phosphorescent Heteroleptic Iridium(III) Compounds Bearing Fluorinated Bipyridine Ligands. Organometallics, 2013, 32, 6427-6436.	1.1	54
1224	Ultrathin Nondoped Emissive Layers for Efficient and Simple Monochrome and White Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2013, 5, 965-971.	4.0	120
1225	Deep Blue Exciplex Organic Lightâ€Emitting Diodes with Enhanced Efficiency; Pâ€ŧype or Eâ€ŧype Triplet Conversion to Singlet Excitons?. Advanced Materials, 2013, 25, 1455-1459.	11.1	276
1226	Bipolar Phenanthroimidazole Derivatives Containing Bulky Polyaromatic Hydrocarbons for Nondoped Blue Electroluminescence Devices with High Efficiency and Low Efficiency Roll-Off. Chemistry of Materials, 2013, 25, 4957-4965.	3.2	214

ARTICLE IF CITATIONS # Characteristics of Solution-Processed Phosphorescent Organic Light-Emitting Diodes Utilizing Low 1227 Molecular Carbazole Derivative as a Host Material. Molecular Crystals and Liquid Crystals, 2013, 581, 0.4 1 70-75. Recent Progress in Phosphorescent Organic Lightâ€Emitting Devices. European Journal of Organic 1228 1.2 242 Chemistry, 2013, 2013, 7653-7663. Novel Blue Fluorophor with High Triplet Energy Level for High Performance Single-Emitting-Layer Fluorescence and Phosphorescence Hybrid White Organic Light-Emitting Diodes. Chemistry of 1229 3.267 Materials, 2013, 25, 4454-4459. Theoretical study on the electronic structures and photophysical properties of a series of Ir(III) complexes based on substituted 2-(pyrazol-3-yl)pyridine ligand. Chemical Physics Letters, 2013, 588, 1230 1.2 68-75. Improved light outcoupling and mode analysis of top-emitting OLEDs on periodically corrugated 1231 0.8 4 substrates. Proceedings of SPIE, 2013, , . Red phosphorescent organic light-emitting diodes (PhOLEDs) based on a heteroleptic cyclometalated Iridium (III) complex. Journal of Luminescence, 2013, 143, 145-149. 1.5 Benzo[4,5]thieno[2,3-b]pyridine derivatives as host materials for high efficiency green and blue 1233 2.2 56 phosphorescent organic light-emitting diodes. Chemical Communications, 2013, 49, 1446. Polynorbornene Copolymer with Side-Chain Iridium(III) Emitters and Carbazole Hosts: A Single Emissive 1234 Layer Material for Highly Efficient Electrophosphorescent Devices. Macromolecules, 2013, 46, 674-682. Efficiency Analysis of Organic Light-Emitting Diodes Based on Optical Simulations. IEEE Journal of 1235 1.9 22 Selected Topics in Quantum Electronics, 2013, 19, 1-12. Strong Solid-State Phosphorescence of 1,2-Telluraplatinacycles Incorporated into Rigid Dibenzobarrelene and Triptycene Skeletons. European Journal of Inorganic Chemistry, 2013, 2013, 1.0 5233-5239. Investigating the Role of Emissive Layer Architecture on the Exciton Recombination Zone in Organic 1237 7.8 71 Lightâ€Emitting Devices. Advanced Functional Materials, 2013, 23, 5190-5198. Comprehensive efficiency analysis of organic light-emitting diodes featuring emitter orientation and 1238 1.5 triplet-to-singlet up-conversion. Applied Physics Letters, 2013, 103, . Structure properties of a highly luminescent yellow emitting material for OLED and its application. 1239 1.7 11 RSC Advances, 2013, 3, 215-220. Light extraction efficiency enhancement in organic light emitting diodes based on optimized multilayer structures. Optik, 2013, 124, 3287-3291. 1240 1.4 Carbazole-based polysiloxane hosts for highly efficient solution-processed blue 1241 40 2.7 electrophosphorescent devices. Journal of Materials Chemistry C, 2013, 1, 5344. Deep-Blue Phosphorescence from Perfluoro Carbonyl-Substituted Iridium Complexes. Journal of the 1242 243 American Chemical Society, 2013, 135, 14321-14328. A new electron transporting material for effective hole-blocking and improved charge balance in highly efficient phosphorescent organic light emitting diodes. Journal of Materials Chemistry C, 2013, 1243 2.7 55 1, 2217. Brightly Blue and Green Emitting Cu(I) Dimers for Singlet Harvesting in OLEDs. Journal of Physical 1244 1.1 224 Chemistry A, 2013, 117, 11823-11836.

IF

ARTICLE

4

1245 Organic light-emitting diodes (OLEDs). , 2013, , 508-534.

1246	Quantum chemical characterization and design of host materials based on phosphine oxide-substituted (triphenylamine) fluorene for (deep) blue phosphors in OLEDs. Physical Chemistry Chemical Physics, 2013, 15, 2351.	1.3	10
1247	Fabrication and Characterization of White Phosphorescent Polymer Light Emitting Diodes Using PVK:FCNIrpic:Ir(mppy)3:Ir(piq)3. Molecular Crystals and Liquid Crystals, 2013, 584, 1-8.	0.4	1
1248	Small molecular weight materials for (opto)electronic applications: overview. , 2013, , 3-82.		6
1249	Organic Luminescent Molecule with Energetically Equivalent Singlet and Triplet Excited States for Organic Light-Emitting Diodes. Physical Review Letters, 2013, 110, 247401.	2.9	198
1250	Effect of thickness variation of hole injection and hole blocking layers on the performance of fluorescent green organic light emitting diodes. Current Applied Physics, 2013, 13, 18-25.	1.1	32
1251	Micro-spherically textured organic light emitting diodes: A simple way towards highly increased light extraction. Organic Electronics, 2013, 14, 396-401.	1.4	24
1252	High efficient plastic substrate polymer white light emitting diode. Optical and Quantum Electronics, 2013, 45, 79-85.	1.5	6
1253	Theoretical studies on the electronic structures and spectral properties of a series of bis-cyclometalated iridium(III) complexes using density functional theory. Journal of Luminescence, 2013, 138, 223-228.	1.5	22
1254	Theoretical study of injection, transport, absorption and phosphorescence properties of a series of heteroleptic iridium(III) complexes in OLEDs. Chemical Physics Letters, 2013, 565, 12-17.	1.2	26
1255	Hybrid white organic light-emitting diodes with improved color stability and negligible efficiency roll-off based on blue fluorescence and yellow phosphorescence. Journal of Luminescence, 2013, 137, 59-63.	1.5	28
1256	Influences on the white emission and stability of single layer electroluminescent devices. Journal of Luminescence, 2013, 144, 69-73.	1.5	5
1257	Greenish yellow organic light emitting devices based on novel iridium complexes containing 2-cyclohexenyl-1-phenyl-1H-benzo[d]imidazole. Dyes and Pigments, 2013, 99, 1010-1015.	2.0	9
1258	An indole derivative as a high triplet energy hole transport material for blue phosphorescent organic light-emitting diodes. Thin Solid Films, 2013, 548, 603-607.	0.8	9
1259	Explaining the different efficiency behaviors of PHOLEDs with/without a hole injection barrier at the hole transport layer/emitter layer interface. Organic Electronics, 2013, 14, 2510-2517.	1.4	19
1260	Highly efficient two component phosphorescent organic light-emitting diodes based on direct hole injection into dopant and gradient doping. Organic Electronics, 2013, 14, 852-857.	1.4	26
1261	Carbazole- and phenylindole-based new host materials for phosphorescent organic light emitting diodes. Optical Materials, 2013, 35, 604-608.	1.7	12
1262	Highly efficient white organic lightâ€emitting diodes with over 100 lm/W for nextâ€generation solidâ€state lighting. Journal of the Society for Information Display, 2013, 21, 529-540.	0.8	7

#	Article	IF	CITATIONS
1263	A carbazole-functionalized Ir complex used in efficient single-layer electrophosphorescent devices. Polyhedron, 2013, 52, 144-150.	1.0	3
1264	Energy transfer and phosphorescence-quenching dynamics in a phosphorescent host–guest system. Chemical Physics Letters, 2013, 561-562, 52-56.	1.2	2
1265	High hole mobility hole transport material for organic light-emitting devices. Synthetic Metals, 2013, 180, 79-84.	2.1	55
1266	Enhancement of electroluminescence efficiency and stability in phosphorescent organic light-emitting diodes with double exciton-blocking layers. Organic Electronics, 2013, 14, 1177-1182.	1.4	35
1267	Amidate-assisted bis(2-quinolyl)phenyl iridium(III) complexes: Synthesis, structures, photophsical characterization, DFT calculations and their application in homopolymerization. Inorganic Chemistry Communication, 2013, 36, 184-187.	1.8	2
1268	Highly efficient blue and all-phosphorescent white polymer light-emitting devices based on polyfluorene host. Organic Electronics, 2013, 14, 1909-1915.	1.4	20
1269	Concentration-insensitive and low-driving-voltage OLEDs with high efficiency and little efficiency roll-off using a bipolar phosphorescent emitter. Organic Electronics, 2013, 14, 1649-1655.	1.4	19
1270	Diphenylmethyl linked high-triplet-energy material as a host for deep-blue phosphorescent organic light-emitting diodes. Thin Solid Films, 2013, 531, 541-544.	0.8	2
1271	Triplet diffusion leads to triplet–triplet annihilation in organic phosphorescent emitters. Chemical Physics Letters, 2013, 590, 106-110.	1.2	59
1272	Novel dibenzothiophene based host materials incorporating spirobifluorene for high-efficiency white phosphorescent organic light-emitting diodes. Organic Electronics, 2013, 14, 902-908.	1.4	37
1273	Controlling charge transport by using a mixed hole transport layer in phosphorescent organic light-emitting diodes. Journal of the Korean Physical Society, 2013, 62, 206-209.	0.3	1
1274	The "Enders Triazoleâ€: A well known molecule, but still a new ligand!!. Inorganic Chemistry Communication, 2013, 30, 39-41.	1.8	20
1275	Excitonic processes and their contribution to nonproportionality observed in the light yield of inorganic scintillators. European Physical Journal B, 2013, 86, 1.	0.6	3
1277	Fine-tuning the balance between carbazole and oxadiazole units in bipolar hosts to realize highly efficient green PhOLEDs. Organic Electronics, 2013, 14, 1086-1093.	1.4	28
1278	Charge and energy transfers in functional metallophosphors and metallopolyynes. Coordination Chemistry Reviews, 2013, 257, 1614-1649.	9.5	172
1279	Enhancing the efficiency of alternating current driven organic light-emitting devices by optimizing the operation frequency. Organic Electronics, 2013, 14, 809-813.	1.4	29
1280	Thin-Film Growth and Patterning Techniques for Small Molecular Organic Compounds Used in Optoelectronic Device Applications. Annual Review of Chemical and Biomolecular Engineering, 2013, 4, 289-317.	3.3	18
1281	Small-molecular blue phosphorescent dyes for organic light-emitting devices. New Journal of Chemistry, 2013, 37, 1665.	1.4	184

#	Article	IF	CITATIONS
1286	High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nature Photonics, 2013, 7, 407-412.	15.6	1,025
1287	Direct Fabrication of Organic Lightâ€Emitting Diodes on Buckled Substrates for Light Extraction. Advanced Optical Materials, 2013, 1, 404-408.	3.6	22
1288	Effect of doping different dyes in Alq3 on electroluminescence and morphology of layers using single furnace method. Journal of Luminescence, 2013, 140, 7-13.	1.5	15
1289	Printed Microlens Arrays for Enhancing Light Extraction From Organic Light-Emitting Devices. Journal of Display Technology, 2013, 9, 497-503.	1.3	15
1290	Photo-patternable electroluminescence based on one-way photoisomerization reaction of tetraoxidized triangle terarylenes. Chemical Communications, 2013, 49, 6373.	2.2	20
1291	Metal-anode-dependent spectra and efficiency in blue top-emitting organic light-emitting devices. Organic Electronics, 2013, 14, 723-729.	1.4	2
1292	Understanding the influence of doping in efficient phosphorescent organic light-emitting diodes with an organic p–i–n homojunction. Organic Electronics, 2013, 14, 1695-1703.	1.4	20
1293	Extremely Low Operating Voltage Green Phosphorescent Organic Lightâ€Emitting Devices. Advanced Functional Materials, 2013, 23, 5550-5555.	7.8	157
1294	Cyclometalated Platinum Complexes with Luminescent Quantum Yields Approaching 100%. Inorganic Chemistry, 2013, 52, 7344-7351.	1.9	141
1295	lridium(III) Emitters Based on 1,4-Disubstituted-1 <i>H</i> -1,2,3-triazoles as Cyclometalating Ligand: Synthesis, Characterization, and Electroluminescent Devices. Inorganic Chemistry, 2013, 52, 1812-1824.	1.9	76
1296	Enhanced Emission and Analyte Sensing by Cinchonine Iridium(III) Cyclometalated Complexes Bearing Bent Diphosphine Chelators. Organometallics, 2013, 32, 2908-2917.	1.1	23
1297	Acidâ€Induced Degradation and Ancillary Ligand Replacement of Biscyclometalated Iridium(III) Complexes. ChemPlusChem, 2013, 78, 413-418.	1.3	8
1298	Near-infrared phosphorescence: materials and applications. Chemical Society Reviews, 2013, 42, 6128.	18.7	566
1299	Guanidinate ligated iridium(<scp>iii</scp>) complexes with various cyclometalated ligands: synthesis, structure, and highly efficient electrophosphorescent properties with a wide range of emission colours. Journal of Materials Chemistry C, 2013, 1, 677-689.	2.7	28
1300	Color in the Corners: ITOâ€Free White OLEDs with Angular Color Stability. Advanced Materials, 2013, 25, 4006-4013.	11.1	241
1301	Direct observation of back energy transfer in blue phosphorescent materials for organic light emitting diodes by time-resolved optical waveguide spectroscopy. Applied Physics Letters, 2013, 102, 081124.	1.5	4
1302	Ligand exchange leads to efficient triplet energy transfer to CdSe/ZnS Q-dots in a poly(<i>N</i> -vinylcarbazole) matrix nanocomposite. Journal of Applied Physics, 2013, 113, .	1.1	16
1303	Synthesis and Electrophosphorescence of Iridium Complexes Containing Benzothiazole-Based Ligands. ACS Applied Materials & Interfaces, 2013, 5, 4937-4944.	4.0	67
#	Article	IF	CITATIONS
------	---	-----	-----------
1304	Spin–Orbit Coupling Analyses of the Geometrical Effects on Phosphorescence in Ir(ppy)3 and Its Derivatives. Journal of Physical Chemistry C, 2013, 117, 5314-5327.	1.5	21
1305	Fabrication of an organic light-emitting diode (OLED) from a two-dimensional lead(II) coordination polymer. Inorganica Chimica Acta, 2013, 399, 119-125.	1.2	30
1306	Highly efficient thermally activated fluorescence of a new rigid Cu(i) complex [Cu(dmp)(phanephos)]+. Dalton Transactions, 2013, 42, 9826.	1.6	153
1307	Computational design of high triplet energy host materials for phosphorescent blue emitters. Journal of Materials Chemistry C, 2013, 1, 4261.	2.7	34
1308	New tetrazole-based Cu(<scp>i</scp>) homo- and heteroleptic complexes with various P^P ligands: synthesis, characterization, redox and photophysical properties. Dalton Transactions, 2013, 42, 997-1010.	1.6	103
1309	Phosphorescent mechanism for single-dopant white OLED of FPt: electronic structure and electron exchange-induced energy transfer. Journal of Materials Chemistry C, 2013, 1, 4227.	2.7	19
1310	Highly efficient green organic light emitting diode with a novel solution processable iridium complex emitter. Journal of Materials Chemistry C, 2013, 1, 4201.	2.7	30
1311	Oxadiazole- and triazole-based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes. Journal of Materials Chemistry C, 2013, 1, 4599.	2.7	304
1312	Iridium Complexes Containing Bis(imidazoline thione) and Bis(imidazoline selone) Ligands for Visible-Light-Induced Oxidative Coupling of Benzylamines to Imines. Organometallics, 2013, 32, 3954-3959.	1.1	56
1313	Theoretical study on electronic structures and optical properties of blue phosphorescent Iridium(III) complexes with Câ^§N and Nâ^§N ligands. Journal of Luminescence, 2013, 143, 402-408.	1.5	8
1314	A host material consisting of a phosphinic amide directly linked donor–acceptor structure for efficient blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2013, 1, 2404.	2.7	56
1315	Highly efficient organic light-emitting devices by introducing traps in the hole-injection layer. RSC Advances, 2013, 3, 14616.	1.7	8
1316	Highly Efficient Blueâ€Emitting Cyclometalated Platinum(II) Complexes by Judicious Molecular Design. Angewandte Chemie - International Edition, 2013, 52, 6753-6756.	7.2	263
1317	Bipolar iridium dendrimers containing carbazolyl dendron andÂ1,2,4-triazole unit for solution-processed saturated red electrophosphorescence. Dyes and Pigments, 2013, 99, 41-51.	2.0	16
1318	Multifunctional carbazolocarbazoles as hole transporting and emitting host materials in red phosphorescent OLEDs. Journal of Materials Chemistry C, 2013, 1, 3421.	2.7	29
1319	Near independence of OLED operating voltage on transport layer thickness. Synthetic Metals, 2013, 163, 29-32.	2.1	4
1320	Electrogenerated chemiluminescence of N,N-dimethylamino functionalized tetrakis(phenylethynyl)pyrenes. Tetrahedron, 2013, 69, 5908-5912.	1.0	12
1321	Novel thieno-[3,4-b]-pyrazine derivatives for non-doped red organic light-emitting diodes. Dyes and Pigments, 2013, 96, 391-396.	2.0	18

		CITATION REPORT	
#	Article	IF	CITATIONS
1322	Efficiency Rollâ€Off in Organic Lightâ€Emitting Diodes. Advanced Materials, 2013, 25, 6801-6827.	11.1	882
1323	Direct Observation of Efficient Triplet–Triplet Energy Transfer in Phosphorescent Organic Light-Emitting Diode. Applied Physics Express, 2013, 6, 052104.	1.1	9
1324	Efficient and Stable Deepâ€Red Phosphorescent Organic Lightâ€Emitting Diodes Based on an Iridiu Complex Containing a Benzoxazoleâ€substituted Ancillary Ligand. Chemistry - an Asian Journal, 201 2575-2578.	m 3, 8, 1.7	10
1325	Promising operational stability of high-efficiency organic light-emitting diodes based on thermally activated delayed fluorescence. Scientific Reports, 2013, 3, 2127.	1.6	305
1326	Computational Design of Host Materials Suitable for Green-(Deep) Blue Phosphors through Effectively Tuning the Triplet Energy While Maintaining the Ambipolar Property. Journal of Physical Chemistry C, 2013, 117, 8420-8428.	1.5	24
1327	Photo- and Electroluminescence from 2-(Dibenzo[<i>b</i> , <i>d</i>]furan-4-yl)pyridine-Based Heteroleptic Cyclometalated Platinum(II) Complexes: Excimer Formation Drastically Facilitated by an Aromatic Diketonate Ancillary Ligand. Journal of Physical Chemistry C, 2013, 117, 532-542.	h 1.5	60
1328	Device efficiency of organic lightâ€emitting diodes: Progress by improved light outcoupling. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 44-65.	0.8	349
1329	Highly Efficient Warm White Organic Lightâ€Emitting Diodes by Triplet Exciton Conversion. Advanc Functional Materials, 2013, 23, 705-712.	ed 7.8	168
1330	Metal Complexes of Pincer Ligands: Excited States, Photochemistry, and Luminescence. Topics in Organometallic Chemistry, 2013, , 89-129.	0.7	34
1331	Single-Layer Blue Electrophosphorescent Organic Light-Emitting Diodes Based on Small-Molecule Mixed Hosts: Comparison between the Solution and Vacuum Fabrication Processes. Japanese Journa Applied Physics, 2013, 52, 012101.	al of 0.8	15
1332	Low-haze light extraction from organic light-emitting diode lighting with auxiliary electrode by selective microlens arrays. Optics Letters, 2013, 38, 4182.	1.7	10
1333	Quantitative allocation of Bragg scattering effects in highly efficient OLEDs fabricated on periodically corrugated substrates. Optics Express, 2013, 21, 16319.	1.7	40
1334	Fabrication of Light Extraction Efficiency of Organic Light-Emitting Diodes with 3D Aspherical Microlens by Using Dry Etching Process. Journal of Nanomaterials, 2013, 2013, 1-6.	1.5	3
1335	Highly efficient pin-type OLEDs. , 2013, , 173-191.		1
1336	Tailoring the hole-injection layer in organic light-emitting devices by introducing Au@SiO_2 nanoparticles. Optics Letters, 2013, 38, 5020.	1.7	7
1337	Theoretical Study on Cationic Iridium(III) Complexes with a Diphosphane Ligand – Geometry, Elec Properties, and Application for Lightâ€Emitting Electrochemical Cells. European Journal of Inorganic Chemistry, 2013, 2013, 3370-3383	tronic 1.0	17
1338	Iridium and platinum complexes for OLEDs. , 2013, , 77-113.		21
1339	Optical, photoluminescent and electroluminescent properties of organic materials. , 2013, , 245-27	3	1

~			<u> </u>	
(1-	ΓΔΤΙ	ON	REDC	лbт
\sim				

#	Article	IF	CITATIONS
1340	Electroluminescence and fluorescence emission of poly(n-vinylcarbazole) and poly(n-vinylcarbazole)-Ir(ppy)3-based organic light-emitting devices prepared with different solvents. Journal of Photonics for Energy, 2013, 3, 033599.	0.8	9
1341	Investigation of triplet harvesting and outcoupling efficiency in highly efficient two-color hybrid white organic light-emitting diodes. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1467-1475.	0.8	35
1342	Synthesis and Properties of Novel Polymer Electronic-Phosphorescent Materials. Advanced Materials Research, 0, 668, 250-254.	0.3	0
1343	To Enhance Light Extraction for Organic Light-Emitting Diodes by Body Modification of Substrate. International Journal of Photoenergy, 2013, 2013, 1-8.	1.4	10
1344	DFT/TDDFT study on the electronic structures and optoelectronic properties of a series of iridium(III) complexes based on quinoline derivatives in OLEDs. Journal of Physical Organic Chemistry, 2013, 26, 784-790.	0.9	11
1345	Effect of simultaneous excitation of singlet and triplet excitons on the operation of organic solar cells. Journal of Applied Physics, 2013, 114, .	1.1	22
1346	A trilayer architecture for polymer photoconductors. Applied Physics Letters, 2013, 102, .	1.5	17
1347	33.3L: <i>Lateâ€News Paper</i> : Optimizing Nanostructures to Enhance Optical Outcoupling of OLED Microdisplays. Digest of Technical Papers SID International Symposium, 2013, 44, 423-426.	0.1	0
1348	Molecular design of hole-transporting material for efficient and stable green phosphorescent organic light-emitting diodes. Applied Physics Letters, 2013, 103, .	1.5	15
1349	An efficient non-Lambertian organic light-emitting diode using imprinted submicron-size zinc oxide pillar arrays. Applied Physics Letters, 2013, 102, .	1.5	18
1350	Degradation mechanism in simplified phosphorescent organic light-emitting devices utilizing one material for hole transport and emitter host. Applied Physics Letters, 2013, 103, 063307.	1.5	15
1351	P.138L:Late-News Poster: Accurate Evaluation of Light-Extraction Efficiency for OLEDs with Light Out-Coupling layers. Digest of Technical Papers SID International Symposium, 2013, 44, 1460-1463.	0.1	3
1352	Paper No 10.4: Oxideâ€TFT–Driven Flexible Display Using Highly Efficient Phosphorescent OLED. Digest of Technical Papers SID International Symposium, 2013, 44, 206-209.	0.1	0
1353	Biâ€directional organic lightâ€emitting diodes with nanoparticleâ€enhanced light outcoupling. Laser and Photonics Reviews, 2013, 7, 1079-1087.	4.4	17
1354	P.143L: <i>Lateâ€News Poster</i> : Light Extraction in Organic Light Emitting Diodes using SF6/CHF3 Plasma Treated Random Pattern. Digest of Technical Papers SID International Symposium, 2013, 44, 1477-1479.	0.1	0
1356	66.2: <i>Invited Paper</i> : Highly Efficient White OLEDs with over 100 lm/W for General Lighting. Digest of Technical Papers SID International Symposium, 2013, 44, 916-919.	0.1	25
1357	66.4: Large‣ized Flexible Lighting with Highly Efficient OLEDs. Digest of Technical Papers SID International Symposium, 2013, 44, 923-926.	0.1	6
1358	Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13711-13716.	3.3	110

#	Article	IF	CITATIONS
1359	Exciton and Polaron Quenching in Dopingâ€Free Phosphorescent Organic Lightâ€Emitting Diodes from a Pt(II)â€Based Fast Phosphor. Advanced Functional Materials, 2013, 23, 5420-5428.	7.8	80
1360	Above 30% External Quantum Efficiency in Blue Phosphorescent Organic Lightâ€Emitting Diodes Using Pyrido[2,3â€ <i>b</i>]indole Derivatives as Host Materials. Advanced Materials, 2013, 25, 5450-5454.	11.1	393
1361	Triphenylene-based Host Materials for Low-voltage, Highly Efficient Red Phosphorescent Organic Light-emitting Diodes. Chemistry Letters, 2013, 42, 383-385.	0.7	9
1362	Vaporâ€Phase Microprinting of Multicolor Phosphorescent Organic Light Emitting Device Arrays. Advanced Materials, 2013, 25, 1583-1588.	11.1	20
1363	Novel host materials for blue phosphorescent OLEDs. Proceedings of SPIE, 2013, , .	0.8	16
1364	Ultrafast study of charge generation and device performance of a silole-doped fluorene-mixed layer for blue-sensitive organic photoconductive devices. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2674-2682.	0.8	3
1365	Triscyclometalated Iridium(III) Fluoroâ€6ubstituted Carbene Complexes: Character of Emitting Triplet States and Excited State Dynamics. Journal of the Chinese Chemical Society, 2013, 60, 965-973.	0.8	3
1366	Fluoreneâ€Based Asymmetric Bipolar Universal Hosts for White Organic Light Emitting Devices. Advanced Functional Materials, 2013, 23, 3096-3105.	7.8	130
1369	High-efficiency Technology of White OLEDs. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 415-419.	0.1	6
1370	Highâ€Performance Whiteâ€OLED Devices for Nextâ€Generation Solid‣tate Lighting. Information Display, 2013, 29, 38-43.	0.1	0
1371	Efficient Persistent Room Temperature Phosphorescence in Organic Materials. Kobunshi Ronbunshu, 2013, 70, 623-636.	0.2	2
1372	Display Week 2013 Review: Touch Technology. Information Display, 2013, 29, 8-12.	0.1	0
1374	Study of the Light Coupling Efficiency of OLEDs Using a Nanostructured Glass Substrate. Journal of Nanoscience, 2014, 2014, 1-4.	2.6	1
1375	Unusual Product Distribution from Friedläder Reaction of Di- and Triacetylbenzenes with 3-Aminonaphthalene-2-carbaldehyde and Properties of New Benzo[g]quinoline-Derived Aza-aromatics. Molecules, 2014, 19, 12842-12851.	1.7	6
1376	Highly efficient and concentration-insensitive organic light-emitting devices based on self-quenching-resistant orange–red iridium complex. Journal of Luminescence, 2014, 155, 47-51.	1.5	7
1377	Theoretical Studies on the Electronic Structures and Phosphorescence Properties of Three Heteroleptic Cyclometalated Iridium(III) Complexes. Molecular Crystals and Liquid Crystals, 2014, 591, 74-85.	0.4	2
1378	Poly(4-vinylphenol-co-methyl methacrylate)/titanium dioxide nanocomposite gate insulators for 6,13-bis(triisopropylsilylethynyl)-pentacene thin-film transistors. Journal of the Korean Physical Society, 2014, 65, 1956-1960.	0.3	2
1379	Pure DNA as an Efficient Electron Blocking Layer. Molecular Crystals and Liquid Crystals, 2014, 604, 213-221.	0.4	6

#	Article	IF	CITATIONS
1380	Probing the exciton distribution in organic light-emitting diodes using long-range energy transfer. Canadian Journal of Physics, 2014, 92, 845-848.	0.4	3
1381	Application of compound blue for white OLED. Canadian Journal of Physics, 2014, 92, 947-950.	0.4	2
1382	A large perturbation on electronic and photophysical properties of Ir(III) carbene complexes caused by the variation of N-substitution in N , N ′-heteroaromatic ligands. Chemical Physics Letters, 2014, 610-611, 394-400.	1.2	2
1383	Surface plasmon polariton modification in top-emitting organic light-emitting diodes for enhanced light outcoupling. , 2014, , .		3
1384	Green Phosphorescent Organic Light-Emitting Diode Based on Interlayer Emitting Layer Blend of Hole- and Electron-Transporting Materials as a Co-Host of the Three Emitting Layers. ECS Journal of Solid State Science and Technology, 2014, 3, Q212-Q214.	0.9	0
1385	Improved light extraction from white organic light-emitting devices using a binary random phase array. Applied Physics Letters, 2014, 104, 063301.	1.5	3
1386	Highly Efficient Yellow Organic Light Emitting Diode with a Novel Wet―and Dryâ€Process Feasible Iridium Complex Emitter. Advanced Functional Materials, 2014, 24, 555-562.	7.8	75
1387	Coherent mode coupling in highly efficient top-emitting OLEDs on periodically corrugated substrates. Optics Express, 2014, 22, 7524.	1.7	62
1388	Light outcoupling enhancement from top-emitting organic light-emitting diodes made on a nano-sized stochastic texture surface. Optics Express, 2014, 22, A1687.	1.7	16
1389	Elucidation on Joule heating and its consequences on the performance of organic light emitting diodes. Journal of Applied Physics, 2014, 115, 034518.	1.1	19
1390	A Nonâ€Ðoped Phosphorescent Organic Lightâ€Emitting Device with Above 31% External Quantum Efficiency. Advanced Materials, 2014, 26, 8107-8113.	11.1	146
1391	Pâ€156: Blue Phosphorescence OLED with Interfacial Mixed Layer between EML and ETL. Digest of Technical Papers SID International Symposium, 2014, 45, 1568-1570.	0.1	Ο
1392	Mitochondria-targeting phosphorescent iridium(<scp>iii</scp>) complexes for living cell imaging. Dalton Transactions, 2014, 43, 16872-16879.	1.6	33
1393	Using an ultra-thin non-doped orange emission layer to realize high efficiency white organic light-emitting diodes with low efficiency roll-off. Journal of Applied Physics, 2014, 115, 244512.	1.1	41
1394	Bipolar Hosts Based on a Rigid 9,10â€Dihydroanthracene Scaffold for Fullâ€Color Electrophosphorescent Devices. Israel Journal of Chemistry, 2014, 54, 942-951.	1.0	8
1395	High-Performance Flexible Organic Light-Emitting Diodes Using Embedded Silver Network Transparent Electrodes. ACS Nano, 2014, 8, 12796-12805.	7.3	154
1396	Pâ€145: Light Extraction from Organic Light Emitting Diode Lighting with Low Haze by Selective Microlens Arrays. Digest of Technical Papers SID International Symposium, 2014, 45, 1530-1532.	0.1	0
1397	Thiophene/Phenylene Co-Oligomers as Novel Photovoltaic Materials. Molecular Crystals and Liquid Crystals, 2014, 597, 20-28.	0.4	8

#	Article	IF	CITATIONS
1398	Photophysics of Organometallic Platinum(II) Derivatives of the Diketopyrrolopyrrole Chromophore. Journal of Physical Chemistry A, 2014, 118, 11735-11743.	1.1	36
1399	Recent Advances in Multicolor Emission and Color Tuning of Heteroleptic Iridium Complexes. Israel Journal of Chemistry, 2014, 54, 885-896.	1.0	17
1400	Effect of interfacial mixed layer in blue phosphorescent organic light-emitting diodes. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2541-2545.	0.8	3
1401	Nanocrystallized Organic Thin Films as Effective Light Outcoupling Layers for Organic Lightâ€Emitting Diodes. Israel Journal of Chemistry, 2014, 54, 847-854.	1.0	5
1402	Enhanced Hybrid Blue Organic Light Emitting Diodes with a Multi-Emitting Layer Using Fluorescent and Phosphorescent Emitters. Molecular Crystals and Liquid Crystals, 2014, 601, 223-230.	0.4	0
1403	We Want Our Photons Back: Simple Nanostructures for White Organic Lightâ€Emitting Diode Outcoupling. Advanced Functional Materials, 2014, 24, 2553-2559.	7.8	67
1404	High brightness phosphorescent organic light emitting diodes on transparent and flexible cellulose films. Nanotechnology, 2014, 25, 094012.	1.3	59
1405	Effect of contact resistance on mobility determination by impedance spectroscopy. Japanese Journal of Applied Physics, 2014, 53, 02BE02.	0.8	5
1406	Organic Light - Emitting Diodes and their Applications. Defect and Diffusion Forum, 2014, 357, 29-93.	0.4	7
1407	Close-Spaced Sublimation of Organic Materials for Organic Light-Emitting Devices. Molecular Crystals and Liquid Crystals, 2014, 601, 215-222.	0.4	0
1408	Triplet Harvesting in White Organic Light-Emitting Diodes. Materials Research Society Symposia Proceedings, 2014, 1629, 1.	0.1	0
1409	TADF for singlet harvesting: next generation OLED materials based on brightly green and blue emitting Cu(I) and Ag(I) compounds. Proceedings of SPIE, 2014, , .	0.8	22
1410	Graphene composite anode for flexible polymer light emitting diode. Proceedings of SPIE, 2014, , .	0.8	0
1411	Improved Light Outcoupling from OLED by Non-Wave-Guiding Anode Designs. Materials Research Society Symposia Proceedings, 2014, 1627, 1.	0.1	1
1412	Recent advances in white organic light-emitting diodes employing a single-emissive material. Journal of Photonics for Energy, 2014, 4, 040991.	0.8	20
1413	A significant improvement of luminance vs current density efficiency of a BioLED. Optical Materials, 2014, 36, 1027-1033.	1.7	26
1414	Metallopolymers with transition metals in the side-chain by living and controlled polymerization techniques. Progress in Polymer Science, 2014, 39, 1742-1796.	11.8	149
1415	Highly efficient green and red phosphorescent OLEDs using novel bipolar blue fluorescent materials as hosts. Synthetic Metals, 2014, 193, 89-93.	2.1	5

			_
#	Article	IF	CITATIONS
1416	Photophysical characterization of [Ir(ppy)2(dmb)][PF6] towards application in light-emitting electrochemical cells (LECs). Inorganic Chemistry Communication, 2014, 43, 162-164.	1.8	15
1417	A simple effective method to improve light out-coupling in organic light-emitting diodes by introducing pyramid-based texture structure. Organic Electronics, 2014, 15, 1113-1119.	1.4	21
1418	3,6-Bis(indol-1-yl)-9-phenylcarbazoles as electroactive materials for electrophosphorescent diodes. Dyes and Pigments, 2014, 100, 66-72.	2.0	7
1419	Red organic light emitting device based on TPP and a new host material. Applied Physics A: Materials Science and Processing, 2014, 114, 445-451.	1.1	13
1420	Structural and optical properties of Er3+/Yb3+ doped barium titanate phosphor prepared by co-precipitation method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 124, 285-291.	2.0	73
1421	H- and J-Aggregate Behavior in Polymeric Semiconductors. Annual Review of Physical Chemistry, 2014, 65, 477-500.	4.8	834
1422	Progress in next-generation organic electroluminescent materials: material design beyond exciton statistics. Science China Chemistry, 2014, 57, 335-345.	4.2	100
1423	Bis(1-phenyl-1H-benzo[d]imidazole)phenylphosphine oxide interlayer for effective hole blocking in efficient phosphorescent organic light emitting diodes based on widely used charge transporting layers. Synthetic Metals, 2014, 190, 39-43.	2.1	6
1424	Molecular Structureâ€Dependent Charge Injection and Doping Efficiencies of Organic Semiconductors: Impact of Side Chain Substitution. Advanced Materials Interfaces, 2014, 1, 1300128.	1.9	22
1425	Regiospecific Formation and Unusual Optical Properties of 2,5â€Bis(arylethynyl)rhodacyclopentadienes: A New Class of Luminescent Organometallics. Chemistry - A European Journal, 2014, 20, 3652-3666.	1.7	28
1426	Simultaneously Enhancing Light Extraction and Device Stability of Organic Lightâ€Emitting Diodes using a Corrugated Polymer Nanosphere Templated PEDOT:PSS Layer. Advanced Energy Materials, 2014, 4, 1301345.	10.2	19
1427	Orthogonal Resonator Modes and Low Lasing Threshold in Highly Emissive Distyrylbenzeneâ€Based Molecular Crystals. Advanced Optical Materials, 2014, 2, 542-548.	3.6	32
1428	High Yields of Singlet Excitons in Organic Electroluminescence through Two Paths of Cold and Hot Excitons. Advanced Optical Materials, 2014, 2, 510-515.	3.6	216
1429	Improved efficiency and lifetime for green phosphorescent organic light-emitting diodes using charge control layer. Displays, 2014, 35, 79-83.	2.0	5
1430	Synthesis of yellow emitting bis-pyrimidine based purely organic phosphors. Journal of Luminescence, 2014, 149, 61-68.	1.5	6
1431	Highâ€Performance Hybrid White Organic Lightâ€Emitting Devices without Interlayer between Fluorescent and Phosphorescent Emissive Regions. Advanced Materials, 2014, 26, 1617-1621.	11.1	231
1432	Luminous Butterflies: Efficient Exciton Harvesting by Benzophenone Derivatives for Fullâ€Color Delayed Fluorescence OLEDs. Angewandte Chemie - International Edition, 2014, 53, 6402-6406.	7.2	473
1433	Triplet–triplet exciton dynamics in single-walled carbon nanotubes. Nature Photonics, 2014, 8, 139-144. 	15.6	57

#	Article	IF	Citations
1434	Substituent effects on the photophysical and electrochemical properties of iridium(III) complexes containing an arylcarbazolyl moiety. Dyes and Pigments, 2014, 109, 13-20.	2.0	10
1436	Dopingâ€Free Organic Lightâ€Emitting Diodes with Very High Power Efficiency, Simple Device Structure, and Superior Spectral Performance. Advanced Functional Materials, 2014, 24, 4746-4752.	7.8	70
1437	Photophysical Investigation of the Thermally Activated Delayed Emission from Films of mâ€MTDATA:PBD Exciplex. Advanced Functional Materials, 2014, 24, 2343-2351.	7.8	136
1438	Efficient π-conjugated interrupted host polymer by metal-free polymerization for blue/green phosphorescent light-emitting diodes. Journal of Polymer Science Part A, 2014, 52, 1037-1046.	2.5	9
1439	Novel 9,9′-(1,3-phenylene)bis-9H-carbazole-containing copolymers as hole-transporting and host materials for blue phosphorescent polymer light-emitting diodes. Journal of Polymer Science Part A, 2014, 52, 707-718.	2.5	8
1440	Novel heteroleptic iridium(III) complexes with a 2-(1H-pyrazol-5-yl)pyridine derivative containing a carbazole group as ancillary ligand: Synthesis and application for polymer light-emitting diodes. Synthetic Metals, 2014, 187, 209-216.	2.1	12
1441	High-efficiency organic light-emitting diodes with fluorescent emitters. Nature Communications, 2014, 5, 4016.	5.8	869
1442	Controlled positioning of metal nanoparticles in an organic light-emitting device for enhanced quantum efficiency. Organic Electronics, 2014, 15, 491-499.	1.4	38
1443	A star-shaped bipolar host material based on carbazole and dimesitylboron moieties for fabrication of highly efficient red, green and blue electrophosphorescent devices. Journal of Materials Chemistry C, 2014, 2, 2160-2168.	2.7	25
1444	Exciton dynamics in an energy up-converting solid state system based on diphenylanthracene doped with platinum octaethylporphyrin. Chemical Physics, 2014, 429, 57-62.	0.9	28
1445	High-efficiency deep-blue organic light-emitting diodes based on a thermally activated delayed fluorescence emitter. Journal of Materials Chemistry C, 2014, 2, 421-424.	2.7	259
1446	Excited states structure and processes: Understanding organic light-emitting diodes at the molecular level. Physics Reports, 2014, 537, 123-156.	10.3	264
1447	Orotate containing anionic luminescent iridium(<scp>iii</scp>) complexes and their use in soft salts. Dalton Transactions, 2014, 43, 784-789.	1.6	21
1448	Novel Optical Technologies for Nanofabrication. Nanostructure Science and Technology, 2014, , .	0.1	16
1449	High-Power-Efficiency Blue Electrophosphorescence Enabled by the Synergistic Combination of Phosphine-Oxide-Based Host and Electron-Transporting Materials. Chemistry of Materials, 2014, 26, 1463-1470.	3.2	68
1450	Highly efficient blue-green delayed fluorescence from copper(i) thiolate complexes: luminescence color alteration by orientation change of the aryl ring. Chemical Communications, 2014, 50, 1801.	2.2	110
1451	Oxadiazole based bipolar host materials employing planarized triarylamine donors for RGB PHOLEDs with low efficiency roll-off. Journal of Materials Chemistry C, 2014, 2, 2069-2081.	2.7	43
1452	Analyzing nanostructures in mesogenic host–guest systems for polarized phosphorescence. Organic Electronics, 2014, 15, 311-321.	1.4	17

#	Article	IF	CITATIONS
1453	Phosphorescent cyclometalated complexes for efficient blue organic light-emitting diodes. Science and Technology of Advanced Materials, 2014, 15, 054202.	2.8	25
1454	Improved efficiency in polymer light-emitting diodes using metal-enhanced fluorescence. Applied Physics Letters, 2014, 105, .	1.5	25
1455	A novel proposal for enhancement of light extraction efficiency in WOLEDs based on optimized photonic crystal structures. Optik, 2014, 125, 6977-6980.	1.4	2
1456	Singlet and Triplet Exciton Harvesting in the Thin Films of Colloidal Quantum Dots Interfacing Phosphorescent Small Organic Molecules. Journal of Physical Chemistry C, 2014, 118, 25964-25969.	1.5	13
1457	Very high efficiency phosphorescent organic light-emitting devices by using rough indium tin oxide. Applied Physics Letters, 2014, 105, .	1.5	10
1458	An Easy Route to Red Emitting Homoleptic Ir ^{III} Complex for Highly Efficient Solutionâ€Processed Phosphorescent Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2014, 20, 8260-8264.	1.7	38
1459	High morphology stability and ambipolar transporting host for use in blue phosphorescent single-layer organic light-emitting diodes. Organic Electronics, 2014, 15, 3327-3332.	1.4	15
1460	Effect of broad recombination zone in multiple quantum well structures on lifetime and efficiency of blue organic light-emitting diodes. Japanese Journal of Applied Physics, 2014, 53, 101601.	0.8	12
1461	Third-generation organic electroluminescence materials. Japanese Journal of Applied Physics, 2014, 53, 060101.	0.8	437
1462	Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics. Advanced Materials, 2014, 26, 7931-7958.	11.1	1,617
1462 1463	Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics. Advanced Materials, 2014, 26, 7931-7958. Novel ternary bipolar host material with carbazole, triazole and phosphine oxide moieties for high efficiency sky-blue OLEDs. New Journal of Chemistry, 2014, 38, 650-656.	11.1	1,617 22
1462 1463 1464	Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics. Advanced Materials, 2014, 26, 7931-7958. Novel ternary bipolar host material with carbazole, triazole and phosphine oxide moieties for high efficiency sky-blue OLEDs. New Journal of Chemistry, 2014, 38, 650-656. Tunable microcavities in organic light-emitting diodes by way of low-refractive-index polymer doping. Organic Electronics, 2014, 15, 3648-3653.	11.1 1.4 1.4	1,617 22 1
1462 1463 1464 1465	Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics. Advanced Materials, 2014, 26, 7931-7958. Novel ternary bipolar host material with carbazole, triazole and phosphine oxide moieties for high efficiency sky-blue OLEDs. New Journal of Chemistry, 2014, 38, 650-656. Tunable microcavities in organic light-emitting diodes by way of low-refractive-index polymer doping. Organic Electronics, 2014, 15, 3648-3653. A rational design of carbazole-based host materials with suitable spacer group towards highly-efficient blue phosphorescence. Journal of Materials Chemistry C, 2014, 2, 6387.	11.1 1.4 1.4 2.7	1,617 22 1 31
1462 1463 1464 1465 1466	Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics. Advanced Materials, 2014, 26, 7931-7958. Novel ternary bipolar host material with carbazole, triazole and phosphine oxide moieties for high efficiency sky-blue OLEDs. New Journal of Chemistry, 2014, 38, 650-656. Tunable microcavities in organic light-emitting diodes by way of low-refractive-index polymer doping. Organic Electronics, 2014, 15, 3648-3653. A rational design of carbazole-based host materials with suitable spacer group towards highly-efficient blue phosphorescence. Journal of Materials Chemistry C, 2014, 2, 6387. Substituent effect on the electroluminescence efficiency of amidinate-ligated bis(pyridylphenyl) iridium(iii) complexes. Journal of Materials Chemistry C, 2014, 2, 5317-5326.	11.1 1.4 1.4 2.7	1,617 22 1 31 32
1462 1463 1464 1465 1466 1467	Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics. Advanced Materials, 2014, 26, 7931-7958. Novel ternary bipolar host material with carbazole, triazole and phosphine oxide moieties for high efficiency sky-blue OLEDs. New Journal of Chemistry, 2014, 38, 650-656. Tunable microcavities in organic light-emitting diodes by way of low-refractive-index polymer doping. Organic Electronics, 2014, 15, 3648-3653. A rational design of carbazole-based host materials with suitable spacer group towards highly-efficient blue phosphorescence. Journal of Materials Chemistry C, 2014, 2, 6387. Substituent effect on the electroluminescence efficiency of amidinate-ligated bis(pyridylphenyl) iridium(iii) complexes. Journal of Materials Chemistry C, 2014, 2, 5317-5326. Enhancing the blue phosphorescence of iridium complexes with a dicyclometalated phosphite ligand via aza-substitution: a density functional theory investigation. Journal of Materials Chemistry C, 2014, 2, 8364-8372.	 11.1 1.4 1.4 2.7 2.7 2.7 	1,617 22 1 31 32 7
1462 1463 1464 1465 1466 1467	Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics. Advanced Materials, 2014, 26, 7931-7958.Novel ternary bipolar host material with carbazole, triazole and phosphine oxide moieties for high efficiency sky-blue OLEDs. New Journal of Chemistry, 2014, 38, 650-656.Tunable microcavities in organic light-emitting diodes by way of low-refractive-index polymer doping. Organic Electronics, 2014, 15, 3648-3653.A rational design of carbazole-based host materials with suitable spacer group towards highly-efficient blue phosphorescence. Journal of Materials Chemistry C, 2014, 2, 6387.Substituent effect on the electroluminescence efficiency of amidinate-ligated bis(pyridylphenyl) iridium(ii) complexes. Journal of Materials Chemistry C, 2014, 2, 5317-5326.Enhancing the blue phosphorescence of iridium complexes with a dicyclometalated phosphite ligand via aza-substitution: a density functional theory investigation. Journal of Materials Chemistry C, 2014, 2, 8364-8372.High-efficiency fluorescent organic light-emitting diodes with MoO3 and PEDOTãc‰:〉PSS composition film as a hole injection layer. Journal of Materials Chemistry C, 2014, 2, 9620-9624.	 11.1 1.4 1.4 2.7 2.7 2.7 2.7 	1,617 22 1 31 32 32 7
1462 1463 1464 1465 1466 1467 1468	Thermally Activated Delayed Fluorescence Materials Towards the Breakthrough of Organoelectronics. Advanced Materials, 2014, 26, 7931-7958. Novel ternary bipolar host material with carbazole, triazole and phosphine oxide moieties for high efficiency sky-blue OLEDs. New Journal of Chemistry, 2014, 38, 650-656. Tunable microcavities in organic light-emitting diodes by way of low-refractive-index polymer doping. Organic Electronics, 2014, 15, 3648-3653. A rational design of carbazole-based host materials with suitable spacer group towards highly-efficient blue phosphorescence. Journal of Materials Chemistry C, 2014, 2, 6387. Substituent effect on the electroluminescence efficiency of amidinate-ligated bis(pyridylphenyl) iridium(iii) complexes. Journal of Materials Chemistry C, 2014, 2, 5317-5326. Enhancing the blue phosphorescence of iridium complexes with a dicyclometalated phosphite ligand via aza-substitution: a density functional theory investigation. Journal of Materials Chemistry C, 2014, 2, 9364-8372. High-efficiency fluorescent organic light-emitting diodes with MOO3 and PEDOTAC‰36C‰PSS composition film as a hole injection layer. Journal of Materials Chemistry C, 2014, 2, 9620-9624. A theoretical analysis of the phosphorescence efficiencies of Cu(<scp>i A theoretical analysis of the phosphorescence efficiencies of Cu(<scp>i</scp></scp>	 11.1 1.4 1.4 2.7 2.7 2.7 2.7 2.7 1.6 	1,617 22 1 31 32 7 38 29

#	Article	IF	CITATIONS
1471	Synthesis, Characterization, and Oxidation of New POCN _{imine} -Type Pincer Complexes of Nickel. Organometallics, 2014, 33, 5990-6002.	1.1	38
1472	Thermo- and radioluminescent polystyrene based plastic scintillators doped with phosphorescent iridium(<scp>iii</scp>) complexes. Journal of Materials Chemistry C, 2014, 2, 6125.	2.7	33
1473	On the role of temperature in the triplet-fusion induced low-energy photon up-converted delayed luminescence of a solid state composite. , 2014, , .		0
1474	New tools for the systematic analysis and visualization of electronic excitations. II. Applications. Journal of Chemical Physics, 2014, 141, 024107.	1.2	199
1475	Tuning the electronic properties and quantum efficiency of blue Ir(iii) carbene complexes via different azole-pyridine-based N^N′ ligands. RSC Advances, 2014, 4, 6284.	1.7	8
1476	Predicting phosphorescent lifetimes and zero-field splitting of organometallic complexes with time-dependent density functional theory including spin–orbit coupling. Physical Chemistry Chemical Physics, 2014, 16, 14523-14530.	1.3	155
1477	A versatile hybrid polyphenylsilane host for highly efficient solution-processed blue and deep blue electrophosphorescence. Journal of Materials Chemistry C, 2014, 2, 8277-8284.	2.7	32
1478	Improved host material for electrophosphorescence by positional engineering of spirobifluorene–carbazole hybrids. Journal of Materials Chemistry C, 2014, 2, 8736-8744.	2.7	20
1479	Wet-process feasible novel carbazole-type molecular host for high efficiency phosphorescent organic light emitting diodes. Journal of Materials Chemistry C, 2014, 2, 8707-8714.	2.7	20
1480	A six-carbazole-decorated cyclophosphazene as a host with high triplet energy to realize efficient delayed-fluorescence OLEDs. Materials Horizons, 2014, 1, 264-269.	6.4	150
1481	A theoretical study on tuning the electronic structures and photophysical properties of newly designed platinum(<scp>ii</scp>) complexes by adding substituents on functionalized ligands as highly efficient OLED emitters. Dalton Transactions, 2014, 43, 6500-6512.	1.6	20
1482	The influence of numbers and ligation positions of the triphenylamine unit on the photophysical and electroluminescent properties of homoleptic iridium(iii) complexes: a theoretical perspective. Dalton Transactions, 2014, 43, 11915.	1.6	16
1483	Zinc complexes in OLEDs: An overview. Synthetic Metals, 2014, 195, 241-251.	2.1	76
1484	Phosphine Oxide Type Bipolar Host Material for High Quantum Efficiency in Thermally Activated Delayed Fluorescent Device. ACS Applied Materials & Interfaces, 2014, 6, 8396-8400.	4.0	60
1485	AIPE-active green phosphorescent iridium(<scp>iii</scp>) complex impregnated test strips for the vapor-phase detection of 2,4,6-trinitrotoluene (TNT). Journal of Materials Chemistry C, 2014, 2, 515-523.	2.7	72
1486	Simple and extremely efficient blue emitters based on mononuclear Cu(<scp>i</scp>)-halide complexes with delayed fluorescence. Dalton Transactions, 2014, 43, 17317-17323.	1.6	108
1487	Novel blue-emitting Eu2+-activated LaOCI:Eu materials. Journal of Materials Chemistry C, 2014, 2, 2799.	2.7	30
1488	Triplet harvesting in poly(9â€vinylcarbazole) and poly(9â€(2,3â€epoxypropyl)carbazole) doped with CdSe/ZnS quantum dots encapsulated with 16â€(<i>N</i> arbazolyl) hexadecanoic acid ligands. Journal of Polymer Science. Part B: Polymer Physics. 2014. 52, 539-551.	2.4	3

#	Article	IF	CITATIONS
1489	Colloidal Quantum Dot Light-Emitting Diodes Employing Phosphorescent Small Organic Molecules as Efficient Exciton Harvesters. Journal of Physical Chemistry Letters, 2014, 5, 2802-2807.	2.1	41
1490	Different orientation of the transition dipole moments of two similar Pt(II) complexes and their potential for high efficiency organic light-emitting diodes. Organic Electronics, 2014, 15, 3031-3037.	1.4	36
1491	Highly Efficient Intrinsic Phosphorescence from a σ-Conjugated Poly(silylene) Polymer. Journal of Physical Chemistry C, 2014, 118, 22923-22934.	1.5	6
1492	Novel Benzimidazole Derivatives as Electron-Transporting Type Host To Achieve Highly Efficient Sky-Blue Phosphorescent Organic Light-Emitting Diode (PHOLED) Device. Organic Letters, 2014, 16, 5398-5401.	2.4	41
1493	Thermally activated delayed fluorescence from 3n <i>ï€</i> * to 1n <i>ï€</i> * up-conversion and its application to organic light-emitting diodes. Applied Physics Letters, 2014, 105, .	1.5	72
1494	Triplet Exciton Diffusion in Platinum Polyyne Films. Journal of Physical Chemistry C, 2014, 118, 24282-24289.	1.5	29
1495	High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence. Applied Physics Letters, 2014, 104, 233304.	1.5	116
1496	Efficient Triplet Application in Exciplex Delayed-Fluorescence OLEDs Using a Reverse Intersystem Crossing Mechanism Based on a Δ <i>E</i> _{S–T} of around Zero. ACS Applied Materials & Interfaces, 2014, 6, 11907-11914.	4.0	125
1497	Solution-based nanostructure to reduce waveguide and surface plasmon losses in organic light-emitting diodes. Organic Electronics, 2014, 15, 3183-3190.	1.4	22
1498	Reducing the driving voltage of organic light-emitting diodes by inserting a transparent ultrathin layer of oxidized silver as a hole-injecting layer. Organic Electronics, 2014, 15, 2346-2354.	1.4	4
1499	C ^{â^§} C* Cyclometalated Platinum(II) NHC Complexes with β-Ketoimine Ligands. Organometallics, 2014, 33, 898-908.	1.1	36
1500	Phosphorescent organic light-emitting devices (PhOLEDs) based on 1-methyl-3-propyl-5-(2,4,5-trifluorophenyl)-1H-1,2,4-triazole as the cyclometalated ligand: Influence of the ancillary ligand on the emissive properties. Synthetic Metals, 2014, 195, 312-320.	2.1	8
1501	Wavelength dependency of outcoupling peak intensities for emission layers with multi-periodic photonic crystals. , 2014, , .		0
1502	Organic visible light communications: Recent progress. , 2014, , .		6
1503	Synthesis of triphenylamine based polysiloxane as a blue phosphorescent host. Polymer Chemistry, 2014, 5, 5046-5052.	1.9	19
1504	Blue-Green Iridium(III) Emitter and Comprehensive Photophysical Elucidation of Heteroleptic Cyclometalated Iridium(III) Complexes. Inorganic Chemistry, 2014, 53, 4089-4099.	1.9	116
1505	Fluorescence in Rhoda- and Iridacyclopentadienes Neglecting the Spin–Orbit Coupling of the Heavy Atom: The Ligand Dominates. Inorganic Chemistry, 2014, 53, 7055-7069.	1.9	33
1506	Highly Efficient TADF OLEDs: How the Emitter–Host Interaction Controls Both the Excited State Species and Electrical Properties of the Devices to Achieve Near 100% Triplet Harvesting and High Efficiency. Advanced Functional Materials, 2014, 24, 6178-6186.	7.8	273

#	Article	IF	CITATIONS
1507	Solutionâ€Processable Hosts Constructed by Carbazole/PO Substituted Tetraphenylsilanes for Efficient Blue Electrophosphorescent Devices. Advanced Functional Materials, 2014, 24, 5881-5888.	7.8	45
1508	Tetradentate Platinum Complexes for Efficient and Stable Excimerâ€Based White OLEDs. Advanced Functional Materials, 2014, 24, 6066-6073.	7.8	107
1509	Highly Efficient and Stable Phosphorescent Organic Light‣mitting Diodes Utilizing Reverse Intersystem Crossing of the Host Material. Advanced Optical Materials, 2014, 2, 1070-1075.	3.6	36
1510	Construction of High Tg Bipolar Host Materials with Balanced Electron–Hole Mobility Based on 1,2,4-Thiadiazole for Phosphorescent Organic Light-Emitting Diodes. Chemistry of Materials, 2014, 26, 2388-2395.	3.2	71
1511	Investigating blue phosphorescent iridium cyclometalated dopant with phenyl-imidazole ligands. Organic Electronics, 2014, 15, 3127-3136.	1.4	36
1512	CCC–Pincer–NHC Osmium Complexes: New Types of Blue-Green Emissive Neutral Compounds for Organic Light-Emitting Devices (OLEDs). Organometallics, 2014, 33, 5582-5596.	1.1	76
1513	Host to Guest Energy Transfer Mechanism in Phosphorescent and Fluorescent Organic Light-Emitting Devices Utilizing Exciplex-Forming Hosts. Journal of Physical Chemistry C, 2014, 118, 24006-24012.	1.5	55
1514	Tenfold increase in the lifetime of blue phosphorescent organic light-emitting diodes. Nature Communications, 2014, 5, 5008.	5.8	367
1515	Highly twisted biphenyl-linked carbazole–benzimidazole hybrid bipolar host materials for efficient PhOLEDs. Journal of Materials Chemistry C, 2014, 2, 8554-8563.	2.7	31
1516	Photoâ€patterning of Highly Efficient Stateâ€ofâ€ŧheâ€Art Phosphorescent OLEDs Using Orthogonal Hydrofluoroethers. Advanced Optical Materials, 2014, 2, 1043-1048.	3.6	28
1517	C ^{â^§} N-Cyclometalated Platinum(II) Complexes with Sterically Demanding 1,2-Diarylimidazole Ligands. Organometallics, 2014, 33, 3464-3473.	1.1	22
1518	Obtaining highly efficient single-emissive-layer orange and two-element white organic light-emitting diodes by the solution process. Journal of Materials Chemistry C, 2014, 2, 5036.	2.7	21
1519	A hybrid white organic light-emitting diode with above 20% external quantum efficiency and extremely low efficiency roll-off. Journal of Materials Chemistry C, 2014, 2, 7494-7504.	2.7	41
1520	Deep blue organic light-emitting diode using non anthracene-type fused-ring spiro[benzotetraphene-fluorene] with aromatic wings. Organic Electronics, 2014, 15, 2922-2931.	1.4	8
1521	Efficiency enhancement of organic light-emitting devices by using honeycomb metallic electrodes and two-dimensional photonic crystal arrays. Organic Electronics, 2014, 15, 3043-3051.	1.4	13
1522	Small Molecule Host Materials for Solution Processed Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Materials, 2014, 26, 4218-4233.	11.1	369
1523	New spiro[benzotetraphene-fluorene] Derivatives: Synthesis and Application in Sky-Blue Fluorescent Host Materials. Journal of Fluorescence, 2014, 24, 1215-1224.	1.3	7
1524	Color temperature tunable white organic light-emitting diodes. Organic Electronics, 2014, 15, 189-195.	1.4	35

ARTICLE IF CITATIONS Polymorphism and the influence of crystal structure on the luminescence of the opto-electronic 1525 1.3 15 material 4,4â€2-bis(9-carbazolyl)biphenyl. CrystEngComm, 2014, 16, 7621-7625. Chemical structure dependent electron transport in 9,10-bis(2-phenyl-1,3,4-oxadiazole) derivatives of 1.7 anthracene. RSC Advances, 2014, 4, 12206. Electronic Structures of Platinum(II) Complexes with 2-Arylpyridine and 1,3-Diketonate Ligands: A 1527 Relativistic Density Functional Study on Photoexcitation and Phosphorescent Properties. Journal of 1.5 10 Physical Chemistry C, 2014, 118, 12443-12449. Heat revolution on photophysical properties and electroluminescent performance of Ir(ppy)3-doped bipolar host of oxadiazole derivatives attaching with inert group of tert-butyl moiety. Science China Chemistry, 2014, 57, 849-856. Solutionâ€Processible 2,2â€2â€Dimethylâ€biphenyl Cored Carbazole Dendrimers as Universal Hosts for Efficient Blue, Green, and Red Phosphorescent OLEDs. Advanced Functional Materials, 2014, 24, 1529 7.8 67 3413-3421. Red electroluminescence of ruthenium sensitizer functionalized by sulfonate anchoring groups. 1.6 Dalton Transactions, 2014, 43, 9202-9215. Lowâ€Drivingâ€Voltage Blue Phosphorescent Organic Lightâ€Emitting Devices with External Quantum 1531 11.1 308 Efficiency of 30%. Advanced Materials, 2014, 26, 5062-5066. Temperature dependence of photoluminescence properties in a thermally activated delayed 1.5 fluorescence emitter. Applied Physics Letters, 2014, 104, . Theoretical Analyses on Phosphorescent Processes in Pt(thpy)2 and Its Derivatives. Journal of Physical 1533 9 1.5 Chemistry C, 2014, 118, 15412-15421. Simplified Organic Light-Emitting Devices Utilizing Ultrathin Electron Transport Layers and New 1534 Insights on Their Roles. ACS Applied Materials & amp; Interfaces, 2014, 6, 1697-1701. Structure–property relationships based on Hammett constants in cyclometalated iridium(<scp>iii</scp>) complexes: their application to the design of a fluorine-free FIrPic-like emitter. 1535 1.6 96 Dalton Transactions, 2014, 43, 5667-5679. Rational Design of Carbazole- and Carboline-Based Ambipolar Host Materials for Blue Electrophosphorescence: A Density Functional Theory Study. Journal of Physical Chemistry C, 2014, 1.5 118, 21741-21754. Resonance Energy Transfer in Hybrid Devices in the Presence of a Surface. Journal of Physical 1537 1.5 2 Chemistry C, 2014, 118, 16284-16289. Synthesis, characterization, and application of a novel orangeâ€"red iridium(III) phosphor for solution-processed single emissive layer white organic light-emitting diodes. Synthetic Metals, 2014, 2.1 197, 90-98. New universal bipolar host materials with fluorene as non-conjugated bridge for multi-color 1539 10 1.0 electrophosphorescent devices. Tetrahedron, 2014, 70, 6328-6336. Electroactive polymers containing pendant harmane, phenoxazine or carbazole rings as host 1540 materials for OLÉDs. Dyes and Pigments, 2014, 108, 121-125. Donor–acceptor-structured 1,4-diazatriphenylene derivatives exhibiting thermally activated delayed 1541 fluorescence: design and synthesis, photophysical properties and OLED characteristics. Science and 2.8 67 Technology of Advanced Materials, 2014, 15, 034202. Highly efficient bluish green phosphorescent organic light-emitting diodes based on heteroleptic 1542 1.4 iridium(III) complexes with phenylpyridine main skeleton. Organic Electronics, 2014, 15, 1687-1694.

#	Article	IF	CITATIONS
1543	Organic materials for organic electronic devices. Journal of Industrial and Engineering Chemistry, 2014, 20, 1198-1208.	2.9	95
1544	Highly improved light extraction with a reduced spectrum distortion of organic light-emitting diodes composed by the sub-visible wavelength nano-scale periodic (â^1⁄4250nm) structure and micro-lens array. Organic Electronics, 2014, 15, 111-117.	1.4	23
1545	Flexible white phosphorescent organic light emitting diodes based on multilayered graphene/PEDOT:PSS transparent conducting film. Applied Surface Science, 2014, 295, 214-218.	3.1	31
1546	Efficient and stable red organic light emitting devices from a tetradentate cyclometalated platinum complex. Organic Electronics, 2014, 15, 1862-1867.	1.4	39
1547	High-efficiency green phosphorescent organic light-emitting diodes with double-emission layer and thick N-doped electron transport layer. Thin Solid Films, 2014, 554, 27-31.	0.8	4
1548	Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nature Photonics, 2014, 8, 326-332.	15.6	2,064
1549	Efficient and Stable White Organic Lightâ€Emitting Diodes Employing a Single Emitter. Advanced Materials, 2014, 26, 2931-2936.	11.1	157
1550	Efficiency Enhancement of Organic Lightâ€Emitting Diodes Incorporating a Highly Oriented Thermally Activated Delayed Fluorescence Emitter. Advanced Functional Materials, 2014, 24, 5232-5239.	7.8	159
1551	Engineering Blue Fluorescent Bulk Emitters for OLEDs: Triplet Harvesting by Green Phosphors. Chemistry of Materials, 2014, 26, 2414-2426.	3.2	19
1552	Enhancement of external quantum efficiency and reduction of roll-off in blue phosphorescent organic light emitt diodes using TCTA inter-layer. Optical Materials, 2014, 37, 120-124.	1.7	7
1553	Effect of gold nanoparticles on the performances of the phosphorescent organic light-emitting devices. Current Applied Physics, 2014, 14, 53-56.	1.1	12
1554	Dicarbazolyldicyanobenzenes as Thermally Activated Delayed Fluorescence Emitters: Effect of Substitution Position on Photoluminescent and Electroluminescent Properties. Chemistry Letters, 2014, 43, 319-321.	0.7	58
1555	Efficient "Pure―Blue OLEDs Employing Tetradentate Pt Complexes with a Narrow Spectral Bandwidth. Advanced Materials, 2014, 26, 7116-7121.	11.1	280
1556	A phosphine oxide-substituted double spirobifluorene compound with high thermal stability. Journal of Information Display, 2015, 16, 105-109.	2.1	15
1557	Highly efficient organic light emitting diodes formed by solution processed red emitters with evaporated blue common layer structure. Scientific Reports, 2015, 5, 15903.	1.6	37
1559	Combined Electrical and Optical Analysis of the Efficiency Roll-Off in Phosphorescent Organic Light-Emitting Diodes. Physical Review Applied, 2015, 3, .	1.5	50
1560	Enhanced light emission from top-emitting organic light-emitting diodes by optimizing surface plasmon polariton losses. Physical Review B, 2015, 92, .	1.1	34
1563	Effect of gold nanorods and nanocubes on electroluminescent performances in organic light-emitting diodes and its working mechanism. AIP Advances, 2015, 5, .	0.6	15

	CITATION	Report	
#	Article	IF	CITATIONS
1564	Over 130 lm/W All-Phosphorescent White OLEDs for Next-generation Lighting. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 335-340.	0.1	28
1565	Yellow light direct hole-injection structure organic light-emitting device based on bis[2-(4-tert-butylphenyl) benzothiazolato-N,C2'] iridium (acetylicetonate) phosphor. EPJ Applied Physics, 2015, 72, 20201.	0.3	0
1566	Quantum efficiency harmonic analysis of exciton annihilation in organic light emitting diodes. Applied Physics Letters, 2015, 106, .	1.5	2
1567	Dopant effects on charge transport to enhance performance of phosphorescent white organic light emitting diodes. Journal of Applied Physics, 2015, 118, .	1.1	8
1568	High-Efficiency Sky-Blue Organic Light-Emitting Diodes Utilizing Thermally-Activated Delayed Fluorescence. IEICE Transactions on Electronics, 2015, E98.C, 971-976.	0.3	8
1569	The <scp>DFT</scp> study on nonâ€conjugated polymer host materials based on styrene derivatives for phosphorescent polymer lightâ€emitting diodes. Journal of Physical Organic Chemistry, 2015, 28, 554-563.	0.9	7
1570	34.1: <i>Invited Paper</i> : Effect of Singlet Triplet Recycling in the Charge Transfer State Manifold and Molecular Geometry on Thermally Activated Delayed Fluorescence. Digest of Technical Papers SID International Symposium, 2015, 46, 494-497.	0.1	0
1571	Correlating the Structural and PhotoÂphysical Features of Pincer Luminophores and Monodentate Ancillary Ligands in Pt ^{II} Phosphors. European Journal of Inorganic Chemistry, 2015, 2015, 5822-5831.	1.0	40
1573	P-172L:Late-News Poster: Enhanced Efficiency and Low Haze in Organic Light-Emitting Diodes by Nanoscale Corrugation. Digest of Technical Papers SID International Symposium, 2015, 46, 1699-1701.	0.1	2
1574	Development of Highly Efficient and Stable Organic Light-Emitting Diodes. Journal of the Vacuum Society of Japan, 2015, 58, 86-90.	0.3	0
1575	High Performance Organic Light-emitting Diodes Based on Thermally-activated Delayed Fluorescence Materials. Journal of the Vacuum Society of Japan, 2015, 58, 73-78.	0.3	0
1576	Thermally Activated Delayed Fluorescence in Polymers: A New Route toward Highly Efficient Solution Processable OLEDs. Advanced Materials, 2015, 27, 7236-7240.	11.1	205
1577	Characterization of light extraction efficiency for WOLEDS with lightâ€outâ€coupling layer. Journal of the Society for Information Display, 2015, 23, 1-6.	0.8	4
1578	Host Engineering for High Quantum Efficiency Blue and White Fluorescent Organic Lightâ€Emitting Diodes. Advanced Materials, 2015, 27, 4358-4363.	11.1	174
1579	Triarylboronâ€Based Fluorescent Organic Lightâ€Emitting Diodes with External Quantum Efficiencies Exceeding 20 %. Angewandte Chemie - International Edition, 2015, 54, 15231-15235.	7.2	285
1580	20.2: Ultraâ€Bright, Highly Efficient, Low Rollâ€Off Inverted Quantumâ€Dot Light Emitting Devices (QLEDs). Digest of Technical Papers SID International Symposium, 2015, 46, 270-273.	0.1	66
1581	Layered, Nanonetwork Composite Cathodes for Flexible, Highâ€Efficiency, Organic Light Emitting Devices. Advanced Functional Materials, 2015, 25, 4397-4404.	7.8	12
1582	Silver-Based Nanoparticles for Surface Plasmon Resonance in Organic Optoelectronics. Particle and Particle Systems Characterization, 2015, 32, 164-175.	1.2	106

#	Article	IF	CITATIONS
1583	Electronic structure of the polymer-cathode interface of an organic electroluminescent device investigated using operando hard x-ray photoelectron spectroscopy. Journal of Applied Physics, 2015, 118, 085308.	1.1	1
1584	[Paper] Meta-linking Strategy for Thermally Activated Delayed Fluorescence Emitters with a Small Singlet-Triplet Energy Gap. ITE Transactions on Media Technology and Applications, 2015, 3, 108-113.	0.3	21
1585	Highly efficient and stable organic light-emitting diodes with a greatly reduced amount of phosphorescent emitter. Scientific Reports, 2015, 5, 9855.	1.6	62
1586	Synthesis and spectroscopic properties of luminescent tantalum(v)-β-diketonate complexes and their use as optical sensors and the preparation of nanostructured Ta2O5. Dalton Transactions, 2015, 44, 3829-3836.	1.6	11
1587	Luminescent copper(<scp>i</scp>) halide and pseudohalide phenanthroline complexes revisited: simple structures, complicated excited state behavior. Dalton Transactions, 2015, 44, 6944-6960.	1.6	47
1588	A high-efficiency hybrid white organic light-emitting diode enabled by a new blue fluorophor. Journal of Materials Chemistry C, 2015, 3, 4283-4289.	2.7	31
1589	Deep blue fluorophores incorporating sulfone-locked triphenylamine: the key for highly efficient fluorescence–phosphorescence hybrid white OLEDs with simplified structure. Journal of Materials Chemistry C, 2015, 3, 6986-6996.	2.7	48
1590	Kinetic Monte Carlo study of triplet-triplet annihilation in organic phosphorescent emitters. Journal of Applied Physics, 2015, 117, .	1.1	31
1591	High efficiency white organic light-emitting diodes. Russian Journal of Physical Chemistry A, 2015, 89, 1115-1119.	0.1	1
1592	Optimization of hybrid blue organic light-emitting diodes based on singlet and triplet exciton diffusion length. Japanese Journal of Applied Physics, 2015, 54, 06FG09.	0.8	4
1593	The impact of 1 wt% of Ir(ppy) 3 on trapping sites and radiative recombination centres in PVK and PVK/PBD blend seen by thermoluminescence. Organic Electronics, 2015, 24, 288-296.	1.4	8
1595	Organometallics and Related Molecules for Energy Conversion. Green Chemistry and Sustainable Technology, 2015, , .	0.4	4
1596	Review of recent progress in multilayer solution-processed organic light-emitting diodes. Journal of Photonics for Energy, 2015, 5, 057611.	0.8	149
1597	Theoretical and Experimental Studies on Microcavity Organic Light-Emitting Diodes with Different Emitters. Key Engineering Materials, 0, 645-646, 1087-1092.	0.4	2
1598	Tuning the singlet–triplet energy gap of AIE luminogens: crystallization-induced room temperature phosphorescence and delay fluorescence, tunable temperature response, highly efficient non-doped organic light-emitting diodes. Physical Chemistry Chemical Physics, 2015, 17, 1134-1141.	1.3	73
1600	Photo- and Electroluminescence from Organoplatinum(II) Complexes Bearing Oligofluorene-Based Cyclometalated Ligands. Molecular Crystals and Liquid Crystals, 2015, 621, 53-58.	0.4	1
1601	Synthesis of novel s-triazine/carbazole based bipolar molecules and their application in phosphorescent OLEDs. Journal of Materials Science: Materials in Electronics, 2015, 26, 6563-6571.	1.1	4
1602	Theoretical studies on the substituent effect on the photophysical properties of two series of heteroleptic Ir(III) complexes. Polyhedron, 2015, 98, 196-202.	1.0	5

#	Article	IF	CITATIONS
1603	Single-pass and omniangle light extraction from light-emitting diodes using transformation optics. Optics Letters, 2015, 40, 5626.	1.7	2
1604	High-sensitivity and high-spatial-resolution imaging of self-assembled monolayer on platinum using radially polarized beam excited second-harmonic-generation microscopy. Applied Physics Express, 2015, 8, 112401.	1.1	7
1605	Theoretical Study of Xanthenone and Phenothiazine Derivatives for Blue TADF Emitter. Molecular Crystals and Liquid Crystals, 2015, 620, 166-170.	0.4	4
1606	Analysis of the dopant distribution in Co-deposited organic thin films by scanning transmission electron microscopy. Thin Solid Films, 2015, 596, 39-44.	0.8	0
1607	Resistive switching based on filaments in metal/PMMA/metal thin film devices. Japanese Journal of Applied Physics, 2015, 54, 120301.	0.8	9
1608	Phosphorescent Platinum(II) Complexes with C^C* Cyclometalated NHC Dibenzofuranyl Ligands: Impact of Different Binding Modes on the Decay Time of the Excited State. Chemistry - A European Journal, 2015, 21, 12881-12884.	1.7	26
1609	Theoretical investigations of the electronic structures of carbazole-based triphenylphosphine oxide derivatives, potential bipolar host materials in blue-phosphorescent devices. Journal of Molecular Modeling, 2015, 21, 320.	0.8	1
1610	Theoretical Rationalization of the Singlet–Triplet Gap in OLEDs Materials: Impact of Charge-Transfer Character. Journal of Chemical Theory and Computation, 2015, 11, 168-177.	2.3	108
1611	Charge carrier dynamics and degradation phenomena in organic light-emitting diodes doped by a thermally activated delayed fluorescence emitter. Organic Electronics, 2015, 17, 184-191.	1.4	43
1612	Zinc complexes exhibiting highly efficient thermally activated delayed fluorescence and their application to organic light-emitting diodes. Chemical Communications, 2015, 51, 3181-3184.	2.2	86
1613	Controlling singlet–triplet splitting in carbazole–oxadiazole based bipolar phosphorescent host materials. Organic Electronics, 2015, 17, 216-228.	1.4	14
1614	Enhanced light out-coupling efficiency of organic light-emitting diodes with an extremely low haze by plasma treated nanoscale corrugation. Nanoscale, 2015, 7, 2723-2728.	2.8	17
1615	Highâ€Efficiency White Organic Lightâ€Emitting Diodes Based on a Blue Thermally Activated Delayed Fluorescent Emitter Combined with Green and Red Fluorescent Emitters. Advanced Materials, 2015, 27, 2019-2023.	11.1	236
1616	Electron affinities of organic materials used for organic light-emitting diodes: A low-energy inverse photoemission study. Organic Electronics, 2015, 20, 24-30.	1.4	86
1617	Modification of the emission colour and quantum efficiency for oxazoline- and thiazoline-containing iridium complexes via different N^O ligands. RSC Advances, 2015, 5, 18464-18470.	1.7	11
1618	Nearly 100% Triplet Harvesting in Conventional Fluorescent Dopantâ€Based Organic Lightâ€Emitting Devices Through Energy Transfer from Exciplex. Advanced Materials, 2015, 27, 2025-2030.	11.1	225
1619	Nearly 100% Internal Quantum Efficiency in Undoped Electroluminescent Devices Employing Pure Organic Emitters. Advanced Materials, 2015, 27, 2096-2100.	11.1	495
1620	Reduced efficiency roll-off in all-phosphorescent white organic light-emitting diodes with an external quantum efficiency of over 20%. Journal of Materials Chemistry C, 2015, 3, 3304-3310.	2.7	61

ARTICLE IF CITATIONS Approaches for fabricating high efficiency organic light emitting diodes. Journal of Materials 1621 2.7 524 Chemistry C, 2015, 3, 2974-3002. Achieving a Significantly Increased Efficiency in Nondoped Pure Blue Fluorescent OLED: A Quasiâ€Equivalent Hybridized Excited State. Advanced Functional Materials, 2015, 25, 1755-1762. 381 Horizontal molecular orientation in solution-processed organic light-emitting diodes. Applied 1623 1.5 35 Physics Letters, 2015, 106, . Solution-Processed Blue/Deep Blue and White Phosphorescent Organic Light-Emitting Diodes (PhOLEDs) Hosted by a Polysiloxane Derivative with Pendant mCP (1,3-bis(9-carbazolyl)benzene). ACS Applied Materials & amp; Interfaces, 2015, 7, 27989-27998. 1624 4.0 44 4-Pyridyl-9,9â€2-spirobifluorenes as Host Materials for Green and Sky-Blue Phosphorescent OLEDs. 1625 1.5 59 Journal of Physical Chemistry C, 2015, 119, 5790-5805. Strategy for Designing Electron Donors for Thermally Activated Delayed Fluorescence Emitters. Journal of Physical Chemistry C, 2015, 119, 1291-1297. 1.5 Dual enhancement of electroluminescence efficiency and operational stability by rapid upconversion 1627 1.6 227 of triplet excitons in OLEDs. Scientific Reports, 2015, 5, 8429. ITO/metal/ITO anode for efficient transparent white organic light-emitting diodes. Japanese Journal of 0.8 Applied Physics, 2015, 54, 02BC04. Recent Advances in Solutionâ€Processable Dendrimers for Highly Efficient Phosphorescent Organic 1629 1.3 105 Lightâ€Emitting Diodes (PHOLEDs). Asian Journal of Organic Chémistry, 2015, 4, 394-429. Green phosphorescent organic light emitting diodes with simple structure to realize an extremely 2.1 low operating voltage. Synthetic Metals, 2015, 200, 143-147 Highly efficient white fluorescence/phosphorescence hybrid organic light emitting devices based on 1631 3 2.0 an efficient hole-transporting blue emitter. Dyes and Pigments, 2015, 115, 149-153. X-shaped benzoylbenzophenone derivatives with crossed donors and acceptors for highly efficient 1.6 64 thermally activated delayed fluorescence. Dalton Transactions, 2015, 44, 8356-8359. Formylated chloro-bridged iridium(<scp>iii</scp>) dimers as OLED materials: opening up new 1633 1.6 39 possibilities. Dalton Transactions, 2015, 44, 8419-8432. Alternating Current Driven Organic Light Emitting Diodes Using Lithium Fluoride Insulating Layers. 1634 1.6 26 Scientific Reports, 2014, 4, 7559. High-Level Ab Initio Computations of the Absorption Spectra of Organic Iridium Complexes. Journal of 1635 1.1 34 Physical Chemistry A, 2015, 119, 1023-1036. An n-type, new emerging luminescent polybenzodioxane polymer for application in solution-processed green emitting OLEDs. Journal of Materials Chemistry C, 2015, 3, 2568-2574. High efficiency non-doped deep-blue and fluorescent/phosphorescent white organic light-emitting 1637 2.133 diodes based on an anthracene derivative. Synthetic Metals, 2015, 203, 49-53. Progress and perspective of iridium-containing phosphorescent polymers for light-emitting diodes. 11.8 Progress in Polymer Science, 2015, 47, 92-121.

#	Article	IF	CITATIONS
1639	Efficient long lifetime room temperature phosphorescence of carbon dots in a potash alum matrix. Journal of Materials Chemistry C, 2015, 3, 2798-2801.	2.7	145
1640	The role of exciplex states in phosphorescent OLEDs with poly(vinylcarbazole) (PVK) host. Organic Electronics, 2015, 20, 97-102.	1.4	21
1641	Carbazole Dendrimers as Solutionâ€Processable Thermally Activated Delayedâ€Fluorescence Materials. Angewandte Chemie - International Edition, 2015, 54, 5677-5682.	7.2	281
1642	Organic Light-emitting Diodes Based on Donor-substituted Phthalimide and Maleimide Fluorophores. Chemistry Letters, 2015, 44, 1248-1250.	0.7	29
1643	Light blue and green thermally activated delayed fluorescence from 10H-phenoxaborin-derivatives and their application to organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 9122-9130.	2.7	122
1644	Highly efficient solution-processed pure red phosphorescent organic light-emitting diodes using iridium complexes based on 2,3-diphenylquinoxaline ligand. Journal of Organometallic Chemistry, 2015, 794, 197-205.	0.8	16
1645	Solution-processed blue phosphorescent OLEDs with carbazole-based polymeric host materials. Organic Electronics, 2015, 25, 21-30.	1.4	32
1646	Carbazole-based polymers as hosts for solution-processed organic light-emitting diodes: Simplicity, efficacy. Organic Electronics, 2015, 25, 345-361.	1.4	126
1647	Molecular design of large-bandgap host materials and their application to blue phosphorescent organic light-emitting diodes. Organic Electronics, 2015, 26, 218-224.	1.4	7
1648	Degradation Mechanisms and Reactions in Organic Light-Emitting Devices. Chemical Reviews, 2015, 115, 8449-8503.	23.0	519
1649	High performance yellow organic electroluminescent devices by doping iridium(III) complex into host materials with stepwise energy levels. Journal of Luminescence, 2015, 166, 259-263.	1.5	11
1650	Integrated OLED as excitation light source in fluorescent lateral flow immunoassays. Biosensors and Bioelectronics, 2015, 74, 150-155.	5.3	30
1651	Theoretical model for the external quantum efficiency of organic light-emitting diodes and its experimental validation. Organic Electronics, 2015, 25, 200-205.	1.4	12
1652	Highly phosphorescent iridium(iii) complexes based on 2-(biphenyl-4-yl)benzo[d]oxazole derivatives: synthesis, structures, properties and DFT calculations. New Journal of Chemistry, 2015, 39, 6025-6033.	1.4	14
1653			
	Design, synthesis and characterization of a new blue phosphorescent Ir complex. Journal of Materials Chemistry C, 2015, 3, 8675-8683.	2.7	14
1654	Design, synthesis and characterization of a new blue phosphorescent Ir complex. Journal of Materials Chemistry C, 2015, 3, 8675-8683. Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers. Journal of the American Chemical Society, 2015, 137, 10383-10390.	2.7	14
1654 1655	Design, synthesis and characterization of a new blue phosphorescent Ir complex. Journal of Materials Chemistry C, 2015, 3, 8675-8683. Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers. Journal of the American Chemical Society, 2015, 137, 10383-10390. Improvement in the light outcoupling efficiency of organic light-emitting diodes using a hemispherical lens and a multipatterned one-dimensional photonic crystal fabricated by autocloning. Applied Physics Express, 2015, 8, 082102.	2.7 6.6 1.1	14 41 12

#	Article	IF	CITATIONS
1657	Ideal combination of the host and dopant materials showing thermally activated delayed fluorescent behavior. Synthetic Metals, 2015, 209, 47-54.	2.1	10
1658	Thermally Activated Delayed Fluorescence Sensitized Phosphorescence: A Strategy To Break the Trade-Off between Efficiency and Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2015, 7, 15154-15159.	4.0	85
1659	Organic light-emitting diodes on shape memory polymer substrates for wearable electronics. Organic Electronics, 2015, 25, 151-155.	1.4	38
1660	Achieving high power efficiency and low roll-off OLEDs based on energy transfer from thermally activated delayed excitons to fluorescent dopants. Chemical Communications, 2015, 51, 11972-11975.	2.2	95
1661	Photophysical and electroluminescence properties of bis $(2\hat{a}\in^2,6\hat{a}\in^2-diffuoro-2,3\hat{a}\in^2-bipyridinato-N,C4\hat{a}\in^2)$ iridium(picolinate) complexes: effect of electron-withdrawing and electron-donating group substituents at the $4\hat{a}\in^2$ position of the pyridyl moiety of the cyclometalated ligand. Journal of Materials Chemistry C, 2015, 3, 7405-7420.	2.7	41
1662	Exploration of phosphorescent platinum(II) complexes functionalized by distinct main-group units to search for highly efficient blue emitters applied in organic light-emitting diodes: A theoretical study. Inorganica Chimica Acta, 2015, 435, 109-116.	1.2	13
1663	Complementary LED technologies. Nature Materials, 2015, 14, 459-462.	13.3	144
1664	Highly-efficient low-voltage organic light-emitting diode by controlling hole transporting with doped dual hole-transport layer and the impedance spectroscopy analysis. Synthetic Metals, 2015, 205, 134-138.	2.1	17
1665	Diversity of Copper(I) Complexes Showing Thermally Activated Delayed Fluorescence: Basic Photophysical Analysis. Inorganic Chemistry, 2015, 54, 4322-4327.	1.9	168
1666	High efficiency pure blue thermally activated delayed fluorescence molecules having 10H-phenoxaborin and acridan units. Chemical Communications, 2015, 51, 9443-9446.	2.2	299
1667	An isomeric strategy for enhancing phosphorescence efficiency of iridium(III) complexes with N-heterocyclic naphthyridine ligands: A theoretical study. Organic Electronics, 2015, 22, 180-190.	1.4	7
1668	Proficient electron injection lithium complexes designed by molecular energy calculation for high performance OLEDs. Organic Electronics, 2015, 21, 210-215.	1.4	5
1669	Improvement of efficiency roll-off in blue phosphorescence OLED using double dopants emissive layer. Journal of Luminescence, 2015, 160, 346-350.	1.5	16
1670	Recent advances in organic light-emitting devices comprising copper complexes: A realistic approach for low-cost and highly emissive devices?. Organic Electronics, 2015, 21, 27-39.	1.4	148
1671	Solution processed blue phosphorescent organic light emitting diodes using a Ge-based small molecular host. Journal of Materials Chemistry C, 2015, 3, 5017-5025.	2.7	16
1672	Crystallization-induced dual emission from metal- and heavy atom-free aromatic acids and esters. Chemical Science, 2015, 6, 4438-4444.	3.7	335
1673	Blue phosphorescent organic light-emitting devices based on carbazole/thioxanthene-S,S-dioxide with a high glass transition temperature. Journal of Materials Chemistry C, 2015, 3, 6192-6199.	2.7	28
1674	Charge conduction study of phosphorescent iridium compounds for organic light-emitting diodes application. Organic Electronics, 2015, 24, 7-11.	1.4	13

#	ARTICLE	IF	Citations
1675	Highly Efficient Thermally Activated Delayed Fluorescence Emitters with a Small Singlet–Triplet	0.7	57
1676	Intersystem-crossing and phosphorescence rates in fac-Ir <i>III</i> (ppy)3: A theoretical study involving multi-reference configuration interaction wavefunctions. Journal of Chemical Physics, 2015, 142, 094301.	1.2	75
1677	Computational insights into the photodeactivation dynamics of phosphors for OLEDs: a perspective. Dalton Transactions, 2015, 44, 8346-8355.	1.6	88
1678	Exciton Quenching Behavior of Thermally Activated Delayed Fluorescence Molecules by Charge Carriers. Journal of Physical Chemistry C, 2015, 119, 7631-7636.	1.5	26
1679	Solution-processable phosphorescence based on iridium-cored small molecules with the trifluoromethyl group. Optical Materials, 2015, 42, 137-143.	1.7	8
1680	Cyclometalated iridium(<scp>iii</scp>) complexes with imidazo[4,5-f][1,10]phenanthroline derivatives for mitochondrial imaging in living cells. Dalton Transactions, 2015, 44, 7538-7547.	1.6	45
1681	Wide bandgap iridium complexes varying by their ancillary ligands: Influence on their electroluminescence properties. Synthetic Metals, 2015, 204, 48-56.	2.1	4
1682	Stressing organic light-emitting diode under constant-brightness driving mode. Organic Electronics, 2015, 21, 192-197.	1.4	3
1683	High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nature Photonics, 2015, 9, 259-266.	15.6	886
1684	Extremely high chromatic-stability white organic light-emitting device with symmetrical cascade emissive layer. Organic Electronics, 2015, 23, 199-207.	1.4	21
1685	Palladium(0) NHC complexes: a new avenue to highly efficient phosphorescence. Chemical Science, 2015, 6, 3248-3261.	3.7	39
1686	Spin mixed charge transfer states of iridium complex Ir(ppy) ₃ : transient absorption and time-resolved photoluminescence. RSC Advances, 2015, 5, 34094-34099.	1.7	30
1687	"Aggregation induced phosphorescence―active "rollover―iridium(<scp>iii</scp>) complex as a multi-stimuli-responsive luminescence material. Dalton Transactions, 2015, 44, 6581-6592.	1.6	46
1690	Effect of coupling between excitons and gold nanoparticle surface plasmons on emission behavior of phosphorescent organic light-emitting diodes. Organic Electronics, 2015, 22, 154-159.	1.4	34
1691	Bipolar Host with Multielectron Transport Benzimidazole Units for Low Operating Voltage and High Power Efficiency Solution-Processed Phosphorescent OLEDs. ACS Applied Materials & Interfaces, 2015, 7, 7303-7314.	4.0	60
1692	Synthesis of dibenzothiophene-based host materials with a dimesitylborane substituent and their green PHOLED performances. Dalton Transactions, 2015, 44, 8360-8363.	1.6	13
1693	Highly sensitive explosive sensing by "aggregation induced phosphorescence―active cyclometalated iridium(<scp>iii</scp>) complexes. Journal of Materials Chemistry C, 2015, 3, 5450-5456.	2.7	39
1694	Triphenyl phosphine oxide-bridged bipolar host materials for green and red phosphorescent organic light-emitting diodes. Organic Electronics, 2015, 27, 173-182.	1.4	11

ARTICLE IF CITATIONS Doping-free hybrid white organic light-emitting diodes with fluorescent blue, phosphorescent green 1695 20 1.4 and red emission layers. Organic Electronics, 2015, 27, 207-211. Simulated evolution of fluorophores for light emitting diodes. Journal of Chemical Physics, 2015, 142, 1.2 104104. Microcavity effect using nanoparticles to enhance the efficiency of organic light-emitting diodes. 1697 19 1.7 Optics Express, 2015, 23, 19863. The Role of Electron–Hole Separation in Thermally Activated Delayed Fluorescence in 1698 Donor–Acceptor Blends. Journal of Physical Chemistry C, 2015, 119, 25591-25597. Highly Efficient Blue Electroluminescence Using Delayed-Fluorescence Emitters with Large Overlap Density between Luminescent and Ground States. Journal of Physical Chemistry C, 2015, 119, 1699 1.5116 26283-26289. Mo-doped GZO films used as anodes or cathodes for highly efficient flexible blue, green and red phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 12048-12055. 2.7 Diffusion of excitons in materials for optoelectronic device applications. Journal of Physics: 1701 0.3 1 Conference Series, 2015, 619, 012030. Electroluminescence dependence of the simplified green light organic light emitting diodes on in situ thermal treatment. Applied Surface Science, 2015, 357, 2241-2247. 3.1Purely organic electroluminescent material realizing 100% conversion from electricity to light. 1703 799 5.8 Nature Communications, 2015, 6, 8476. Reduced efficiency roll-off in phosphorescent OLEDs with a stack emitting layer facilitating triplet 1704 1.7 exciton diffusion. RSC Advances, 2015, 5, 89041-89046. Evidence for Solid State Electrochemical Degradation Within a Small Molecule OLED. Electrochimica 1705 2.6 15 Acta, 2015, 184, 86-93. Very High Brightness Quantum Dot Light-Emitting Devices via Enhanced Energy Transfer from a 4.0 Phósphorescent Sensitizer. ACS Applied Materials & amp; Interfaces, 2015, 7, 25828-25834. Light emission mechanism of mixed host organic light-emitting diodes. Applied Physics Letters, 2015, 1707 1.5 42 106,. Electronic and chemical structure of an organic light emitter embedded in an inorganic wide-bandgap semiconductor: Photoelectron spectroscopy of layered and composite structures of Ir(BPA) and ZnSe. Journal of Applied Physics, 2015, 117, . 1708 1.1 Identifying efficient blue-phosphorescent polymer light-emitting diode host materials based on carbazole derivatives with C/Si-centered substituents using density functional theory. Journal of 1709 0.8 1 Molecular Modeling, 2015, 21, 178. New Emitting Materials Based on HTL Moiety with High Hole Mobility for OLEDs. Molecular Crystals 1710 and Liquid Crystals, 2015, 618, 47-54. Organic Light-Emitting Diodes (OLEDs): Materials, Photophysics, and Device Physics., 2015, , 43-73. 1711 5 High performance inverted top-emitting organic light-emitting diodes with enhanced intrinsic 1712 quantum yield., 2015, , .

#	Article	IF	CITATIONS
1713	Degradation Mechanisms of Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Molecules. Journal of Physical Chemistry C, 2015, 119, 23845-23851.	1.5	110
1714	Enhanced light extraction from organic light-emitting devices using a sub-anode grid. Nature Photonics, 2015, 9, 758-763.	15.6	87
1715	Efficient hole-transporter for phosphorescent organic light emitting diodes with a simple molecular structure. Organic Electronics, 2015, 26, 481-486.	1.4	5
1716	Anisotropic materials in OLEDs for high outcoupling efficiency. Optics Express, 2015, 23, 21128.	1.7	32
1717	Structurally simple phenanthroimidazole-based bipolar hosts for high-performance green and red electroluminescent devices. RSC Advances, 2015, 5, 73926-73934.	1.7	14
1718	A strong hole transport type host material for high quantum efficiency blue phosphorescent organic light-emitting diodes. Journal of Industrial and Engineering Chemistry, 2015, 32, 72-76.	2.9	29
1719	Comparison of transient state and steady state exciton–exciton annihilation rates based on Förster-type energy transfer. Japanese Journal of Applied Physics, 2015, 54, 071601.	0.8	8
1720	Emissive Ir(iii) complexes bearing thienylamido groups on a 1,10-phenanthroline scaffold. Dalton Transactions, 2015, 44, 16272-16279.	1.6	7
1721	A sky-blue fluorescent small molecule for non-doped OLED using solution-processing. RSC Advances, 2015, 5, 71419-71424.	1.7	27
1722	Blue-emitting organic electrofluorescence materials: progress and prospective. Journal of Materials Chemistry C, 2015, 3, 10957-10963.	2.7	153
1723	Solution-processable supramolecular phosphorescent polymer iridium complexes for red organic light-emitting diodes. Materials Letters, 2015, 161, 572-575.	1.3	4
1724	Thermally Activated Delayed Fluorescence Materials Based on Homoconjugation Effect of Donor–Acceptor Triptycenes. Journal of the American Chemical Society, 2015, 137, 11908-11911.	6.6	331
1725	Light-Emitting Electrochemical Cells and Solution-Processed Organic Light-Emitting Diodes Using Small Molecule Organic Thermally Activated Delayed Fluorescence Emitters. Chemistry of Materials, 2015, 27, 6535-6542.	3.2	110
1726	Blue thermally activated delayed fluorescence materials based on bis(phenylsulfonyl)benzene derivatives. Chemical Communications, 2015, 51, 16353-16356.	2.2	112
1727	Contribution of triplet excitons to the efficiency of fluorescent organic light emitting diodes. Japanese Journal of Applied Physics, 2015, 54, 094301.	0.8	2
1728	C ^{â^§} C* Cyclometalated Platinum(II) Complexes with Dibenzofuranyl-1,2,4-triazol-5-ylidene Ligands: Synthesis, Characterization, and Photoluminescent Properties. Organometallics, 2015, 34, 4433-4440.	1.1	20
1729	Synthesis and investigation of intra-molecular charge transfer state properties of novel donor–acceptor–donor pyridine derivatives: the effects of temperature and environment on molecular configurations and the origin of delayed fluorescence. Physical Chemistry Chemical Physics, 2015, 17, 25572-25582.	1.3	31
1730	Solution-processable electron injection materials for organic light-emitting devices. Journal of Materials Chemistry C, 2015, 3, 11567-11576.	2.7	68

#	Article	IF	CITATIONS
1731	Correlation of the molecular structure of host materials with lifetime and efficiency of blue phosphorescent organic light-emitting diodes. Physical Chemistry Chemical Physics, 2015, 17, 24468-24474.	1.3	15
1732	Blue emitting materials based on bispiro-type anthracene derivatives for organic light emitting diodes. Dyes and Pigments, 2015, 123, 363-369.	2.0	9
1733	Origin of efficiency roll-off for FIrpic based blue organic light-emitting diodes and implications on phosphorescent molecule design. Japanese Journal of Applied Physics, 2015, 54, 101601.	0.8	2
1734	Molecular design approach of increasing the triplet energy of host materials using pyrrole as a core structure. RSC Advances, 2015, 5, 100378-100383.	1.7	7
1735	Structure–property studies of P-triarylamine-substituted dithieno[3,2-b:2′,3′-d]phospholes. RSC Advances, 2015, 5, 93797-93807.	1.7	11
1736	Easily controlled dye doped phosphorescent OLEDs with evaporation rate in single furnace. Journal of Luminescence, 2015, 160, 210-215.	1.5	3
1737	Polymerization-Enhanced Intersystem Crossing: New Strategy to Achieve Long-Lived Excitons. Macromolecular Rapid Communications, 2015, 36, 298-303.	2.0	59
1738	Highly Efficient Luminescence of Cu(I) Compounds: Thermally Activated Delayed Fluorescence Combined with Short-Lived Phosphorescence. Journal of the American Chemical Society, 2015, 137, 399-404.	6.6	394
1739	Light-emitting properties of cationic iridium complexes containing phenanthroline based ancillary ligand with blue-green and green emission colors. Optical Materials, 2015, 39, 40-45.	1.7	10
1740	Printable Displays and Light Sources for Sensor Applications: A Review. IEEE Sensors Journal, 2015, 15, 3186-3195.	2.4	22
1741	Highly efficient tandem full exciplex orange and warm white OLEDs based on thermally activated delayed fluorescence mechanism. Organic Electronics, 2015, 17, 15-21.	1.4	57
1742	Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nature Materials, 2015, 14, 330-336.	13.3	1,129
1743	Synthesis, Characterization, and Antibacterial Activity of Novel (1Hâ€Benzo[d]imidazoleâ€2â€yl)â€6â€{diethylamino)â€3Hâ€oneâ€xanthene, Phenoxazine, and Oxazine. Journal Heterocyclic Chemistry, 2015, 52, 124-129.	of4	16
1744	Recent advances of the emitters for high performance deep-blue organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 913-944.	2.7	492
1745	Construction of thermally stable 3,6-disubstituted spiro-fluorene derivatives as host materials for blue phosphorescent organic light-emitting diodes. Dyes and Pigments, 2015, 114, 222-230.	2.0	18
1746	Simplified phosphorescent organic light-emitting devices using heavy doping with an Ir complex as an emitter. RSC Advances, 2015, 5, 4261-4265.	1.7	16
1747	Application of three-coordinate copper(<scp>i</scp>) complexes with halide ligands in organic light-emitting diodes that exhibit delayed fluorescence. Dalton Transactions, 2015, 44, 8369-8378.	1.6	128
1748	Multifunctional terpyridine/diphenylamine derivatives as highly efficient blue fluorescent emitters and red phosphorescent hosts. Journal of Materials Chemistry C, 2015, 3, 1068-1076.	2.7	34

#	Article	IF	CITATIONS
1749	A photo-stable and electrochemically stable poly(dumbbell-shaped molecules) for blue electrophosphorescent host materials. Polymer Chemistry, 2015, 6, 983-988.	1.9	22
1750	Phosphine oxide functionalized pyrenes as efficient blue light emitting multifunctional materials for organic light emitting diodes. Journal of Materials Chemistry C, 2015, 3, 1208-1224.	2.7	84
1751	Efficiency enhancement of blue phosphorescent organic light-emitting diodes using mixed electron transport layer. Optical Materials, 2015, 39, 21-25.	1.7	8
1752	Efficiency phosphorescent OLEDs with a low roll-off based on a hetero-triplet iridium complex. Dyes and Pigments, 2015, 113, 649-654.	2.0	15
1753	Facile synthesis of self-host functional iridium dendrimers up to the fourth generation with N-phenylcarbazole-based polyether dendrons for non-doped phosphorescent organic light-emitting diodes. Polymer Chemistry, 2015, 6, 1180-1191.	1.9	48
1754	Mitochondria-targeted oxygen probes based on cationic iridium complexes with a 5-amino-1, 10-phenanthroline ligand. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 299, 172-182.	2.0	43
1755	FIrpic: archetypal blue phosphorescent emitter for electroluminescence. Dalton Transactions, 2015, 44, 8318-8329.	1.6	170
1756	Highly efficient Organic Light-Emitting Diodes from thermally activated delayed fluorescence using a sulfone–carbazole host material. Organic Electronics, 2015, 16, 109-112.	1.4	58
1757	Synthesis and properties of greenish-blue-emitting iridium dendrimers with N-phenylcarbazole-based polyether dendrons by a post-dendronization route. Dalton Transactions, 2015, 44, 1052-1059.	1.6	18
1758	Homoleptic tris-cyclometalated iridium(<scp>iii</scp>) complexes with phenylimidazole ligands for highly efficient sky-blue OLEDs. New Journal of Chemistry, 2015, 39, 246-253.	1.4	55
1759	Simultaneously Enhancing Color Spatial Uniformity and Operational Stability with Deterministic Quasiâ€periodic Nanocone Arrays for Tandem Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2015, 3, 87-94.	3.6	27
1760	A heterotrimetallic Ir(<scp>iii</scp>), Au(<scp>iii</scp>) and Pt(<scp>ii</scp>) complex incorporating cyclometallating bi- and tridentate ligands: simultaneous emission from different luminescent metal centres leads to broad-band light emission. Dalton Transactions, 2015, 44, 8394-8405.	1.6	26
1761	A Solution Processed Flexible Nanocomposite Electrode with Efficient Light Extraction for Organic Light Emitting Diodes. Scientific Reports, 2014, 4, 4307.	1.6	96
1762	A wet and dry processable phosphorescent green dye based organic light-emitting diodes. Dyes and Pigments, 2015, 113, 341-350.	2.0	12
1763	An Overview of Organic Light-Emitting Diodes and their Applications. , 2016, , .		0
1764	Light Emission Properties of a Cross-Conjugated Fluorene Polymer: Demonstration of Its Use in Electro-Luminescence and Lasing Devices. Polymers, 2016, 8, 43.	2.0	15
1765	Design of highly efficient RGB top-emitting organic light-emitting diodes using finite element method simulations. Optics Express, 2016, 24, 24018.	1.7	5
1766	High-performance blue organic light-emitting diodes with 20% external electroluminescence quantum efficiency based on pyrimidine-containing thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2016, 4, 7911-7916.	2.7	71

#	Article	IF	CITATIONS
1767	Novel microlens arrays with embedded Al ₂ O ₃ nanoparticles for enhancing efficiency and stability of flexible polymer light-emitting diodes. RSC Advances, 2016, 6, 65450-65458.	1.7	15
1768	Modulation of the Physicochemical Properties of Donor–Spiro–Acceptor Derivatives through Donor Unit Planarisation: Phenylacridine versus Indoloacridine—New Hosts for Green and Blue Phosphorescent Organic Lightâ€Emitting Diodes (PhOLEDs). Chemistry - A European Journal, 2016, 22, 10136-10149.	1.7	49
1769	Phosphorescent Platinum(II) Complexes with Mesoionic 1 <i>H</i> â€1,2,3â€Triazolylidene Ligands. Chemistry - A European Journal, 2016, 22, 9914-9918.	1.7	56
1770	P-157: Improved Light Extraction from Organic Light-Emitting Diodes using High Refractive Index Nanostructure. Digest of Technical Papers SID International Symposium, 2016, 47, 1717-1719.	0.1	0
1771	Room-temperature phosphorescence from purely organic materials. Chinese Chemical Letters, 2016, 27, 1231-1240.	4.8	84
1772	A Bipolar and Small Singletâ€Triplet Splitting Energy Host with Triplet Energy Lower Than a Blue Phosphor for Phosphorescent OLEDs in Panchromatic Range. Chinese Journal of Chemistry, 2016, 34, 763-770.	2.6	5
1773	Fullâ€Color Delayed Fluorescence Materials Based on Wedgeâ€Shaped Phthalonitriles and Dicyanopyrazines: Systematic Design, Tunable Photophysical Properties, and OLED Performance. Advanced Functional Materials, 2016, 26, 1813-1821.	7.8	236
1774	Platinum and Gold Complexes for OLEDs. Topics in Current Chemistry, 2016, 374, 46.	3.0	89
1775	Cu(I) complexes – Thermally activated delayed fluorescence. Photophysical approach and material design. Coordination Chemistry Reviews, 2016, 325, 2-28.	9.5	416
1776	1,2,4-Triazole-containing bipolar hosts for blue and green phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 7260-7268.	2.7	27
1777	Recent advances in white organic light-emitting diodes. Materials Science and Engineering Reports, 2016, 107, 1-42.	14.8	181
1778	Optimizing the electric field around solid and core–shell alloy nanostructures for near-field applications. Nanoscale, 2016, 8, 14836-14845.	2.8	17
1779	A cyclometalated (C^C*) platinum(<scp>ii</scp>) NHC complex decorated via different carboranes to tune the photodeactivation mechanism: a theoretical investigation. RSC Advances, 2016, 6, 113513-113521.	1.7	7
1780	Organic Electroluminescent Materials Realizing Efficient Conversion from Electricity to Light. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2016, 29, 305-310.	0.1	5
1781	Photoactive Excited States in Explosive Fe(II) Tetrazine Complexes: A Time-Dependent Density Functional Theory Study. Journal of Physical Chemistry C, 2016, 120, 28762-28773.	1.5	13
1782	Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence. Nature Communications, 2016, 7, 13680.	5.8	694
1783	Rate constant of exciton quenching of Ir(ppy) ₃ with hole measured by time-resolved luminescence spectroscopy. Japanese Journal of Applied Physics, 2016, 55, 03DD13.	0.8	7
1784	High efficiency and low roll-off green OLEDs with simple structure by utilizing thermally activated delayed fluorescence material as the universal host. Nanophotonics, 2017, 6, 1133-1140.	2.9	28

#	Article	IF	CITATIONS
1785	Realizing white organic light emitting device with direct hole injection structure by manipulating electron transport. , 2016, , .		0
1786	Enhanced out-coupling efficiency in OLEDs using ZnS nanodots. Molecular Crystals and Liquid Crystals, 2016, 635, 181-189.	0.4	0
1787	Kinetic Monte Carlo modeling of the efficiency roll-off in a multilayer white organic light-emitting device. Applied Physics Letters, 2016, 108, .	1.5	14
1788	Up to 100% Formation Ratio of Doublet Exciton in Deep-Red Organic Light-Emitting Diodes Based on Neutral π-Radical. ACS Applied Materials & Interfaces, 2016, 8, 35472-35478.	4.0	93
1790	Influence of vacuum chamber impurities on the lifetime of organic light-emitting diodes. Scientific Reports, 2016, 6, 38482.	1.6	37
1791	Increased light extraction efficiency from top-emitting organic light-emitting diodes employing a mask-free plasma-etched stochastic polymer surface. Journal of Applied Physics, 2016, 119, .	1.1	5
1792	New carbazole-indan-1,3-dione- based host materials for phosphorescent organic light emitting diodes. Molecular Crystals and Liquid Crystals, 2016, 640, 145-151.	0.4	2
1793	Bipolar and Unipolar Silylene-Diphenylene σ-π Conjugated Polymer Route for Highly Efficient Electrophosphorescence. Scientific Reports, 2016, 6, 38404.	1.6	9
1794	Highly Efficient Greenish-Yellow Phosphorescent Organic Light-Emitting Diodes Based on a Novel 2,3-Diphenylimidazo[1,2-a]Pyridine Iridium(III) Complex. Chinese Physics Letters, 2016, 33, 038501.	1.3	1
1795	Influence of material impurities in the hole-blocking layer on the lifetime of organic light-emitting diodes. Applied Physics Letters, 2016, 109, .	1.5	24
1796	The influence of torsion on excimer formation in bipolar host materials for blue phosphorescent OLEDs. Journal of Chemical Physics, 2016, 144, 214906.	1.2	9
1797	Exploring the Photodeactivation Pathways of Pt[O^N^C^N] Complexes: A Theoretical Perspective. ChemPhysChem, 2016, 17, 69-77.	1.0	18
1798	Solution processed single-emissive-layer white organic light-emitting diodes based on fluorene host: Balanced consideration for color quality and electroluminescent efficiency. Organic Electronics, 2016, 33, 235-245.	1.4	12
1799	Rational design of carbazolyl and aryl phosphine oxide (APO) based ambipolar host materials for blue electrophosphorescence: a density functional theory study. RSC Advances, 2016, 6, 35416-35424.	1.7	4
1800	Highly Twisted Carbazole–Oxadiazole Hybrids as Universal Bipolar Hosts for High Efficiency PhOLEDs. Advanced Electronic Materials, 2016, 2, 1500241.	2.6	30
1801	Molecular Engineering of F-Based Iridium(III) Complexes as a Phosphorescent Emitter. , 2016, , 177-197.		Ο
1802	Influence of the Guest on Aggregation of the Host by Exciton–Polaron Interactions and Its Effects on the Stability of Phosphorescent Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2016, 8, 14088-14095.	4.0	40
1803	Platinum(<scp>ii</scp>) cyclometallates featuring broad emission bands and their applications in color-tunable OLEDs and high color-rendering WOLEDs. Journal of Materials Chemistry C, 2016, 4, 6016-6026.	2.7	47

#	Article	IF	CITATIONS
1804	Influence of Blocking Interlayer in Blue Organic Light-Emitting Diodes with Different Thicknesses of Emitting Layer and Interlayer. Chinese Physics Letters, 2016, 33, 028501.	1.3	0
1805	Highly efficient blue and warm white organic light-emitting diodes with a simplified structure. Nanotechnology, 2016, 27, 124001.	1.3	26
1806	Investigation on the electronic structures and photophysical properties of a series of cyclometalated iridium(III) complexes based on DFT/TDDFT calculations. Journal of Luminescence, 2016, 175, 217-224.	1.5	3
1807	High-brightness solution-processed phosphorescent OLEDs with pyrimidine-based iridium(<scp>iii</scp>) complexes. RSC Advances, 2016, 6, 34970-34976.	1.7	18
1808	Distinct phosphorescence enhancement of red-emitting iridium(iii) complexes with formyl-functionalized phenylpyridine ligands. Journal of Materials Chemistry C, 2016, 4, 4709-4718.	2.7	30
1809	Exciton Transport in an Organic Semiconductor Exhibiting Thermally Activated Delayed Fluorescence. Journal of Physical Chemistry C, 2016, 120, 8502-8508.	1.5	38
1810	Electronic alteration of end-on phenyl groups of bis-triazolyl-silanes: electron-transport materials for blue phosphorescent OLEDs. Journal of Materials Chemistry C, 2016, 4, 4978-4987.	2.7	9
1811	Novel bipolar fluorescent polymers bearing N ⁺ î€P–O ^{â^'} resonance structures for fluorescent–phosphorescent (F–P) hybrid white polymer light-emitting diodes (WPLEDs). RSC Advances, 2016, 6, 38424-38429.	1.7	3
1812	Effect of CdSe/ZnS quantum dots on color purity and electrical properties of polyfluorene based hybrid light emitting diode. Organic Electronics, 2016, 34, 276-283.	1.4	9
1813	Systematic Introduction of Aromatic Rings to Diphosphine Ligands for Emission Color Tuning of Dinuclear Copper(I) Iodide Complexes. Inorganic Chemistry, 2016, 55, 5227-5236.	1.9	63
1814	Influence of the D/A ratio of 1,3,5-triphenylbenzene based starburst host materials on blue electrophosphorescent devices: a comparative study. RSC Advances, 2016, 6, 46775-46784.	1.7	6
1815	Design Strategy for High-Performance Dendritic Carbazole-Containing Alkynylplatinum(II) Complexes and Their Application in Solution-Processable Organic Light-Emitting Devices. Journal of the American Chemical Society, 2016, 138, 6281-6291.	6.6	72
1816	Solution-processable bipolar host materials composed of fluorenyl, carbazolyl and 1,3,4-oxadiazolyl derivatives: synthesis and application in phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 5091-5101.	2.7	8
1817	Clarifying the mechanism of triplet–triplet annihilation in phosphorescent organic host–guest systems: A combined experimental and simulation study. Chemical Physics Letters, 2016, 652, 142-147.	1.2	25
1818	Diphenylsulphone derivatives for a blue thermally activated delayed fluorescence. Polymer Bulletin, 2016, 73, 2439-2446.	1.7	6
1819	Copper(I) Complexes for Thermally Activated Delayed Fluorescence: From Photophysical to Device Properties. Topics in Current Chemistry, 2016, 374, 25.	3.0	133
1820	Computational studies of electronic structures and photophysical properties of luminescent iridium(III) complexes based on amidinate/bis(pyridylphenyl) ligands. Organic Electronics, 2016, 33, 281-289.	1.4	23
1821	Indolo[3,2,1-jk]carbazole based planarized CBP derivatives as host materials for PhOLEDs with low efficiency roll-off. Organic Electronics, 2016, 34, 237-245.	1.4	40

		CITATION REPORT		
#	Article		IF	CITATIONS
1822	Drastic drop of external quantum efficiency at liquid nitrogen temperature in a bilayer b phosphorescent organic light-emitting device. Synthetic Metals, 2016, 217, 244-247.	lue	2.1	5
1823	Novel bis- and tris-cyclometalated iridium(<scp>iii</scp>) complexes bearing a benzoyl fluorinated 2-phenylpyridinate ligand aimed at development of blue phosphorescent ma OLED. RSC Advances, 2016, 6, 51435-51445.	group on each iterials for	1.7	27
1824	A facile method to enhance out-coupling efficiency in organic light-emitting diodes via a random-pyramids textured layer. Journal Physics D: Applied Physics, 2016, 49, 385103.	1	1.3	7
1825	06 – 16 THz band spectroscopy of organic thermally activated delayed fluorescence r Materials Express, 2016, 6, 3045.	naterials. Optical	1.6	8
1826	Increasing the triplet lifetime and extending the ground-state absorption of biscyclomet Ir(<scp>iii</scp>) complexes for reverse saturable absorption and photodynamic therap Dalton Transactions, 2016, 45, 16366-16378.	alated y applications.	1.6	85
1827	Solution-processable deep red-emitting supramolecular phosphorescent polymer with n complex for organic light-emitting diodes. Electronic Materials Letters, 2016, 12, 615-6	ovel iridium 21.	1.0	10
1828	A new family of thermoplastic photoluminescence polymers. Polymer Chemistry, 2016,	7, 6250-6256.	1.9	36
1829	Singlet–Triplet Splitting Energy Management via Acceptor Substitution: Complanatio Design for Deepâ€Blue Thermally Activated Delayed Fluorescence Emitters and Organic Diodes Application. Advanced Functional Materials, 2016, 26, 8042-8052.	n Molecular Lightâ€Emitting	7.8	141
1830	Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. Chemical Reviews, 20 10513-10622.	116, 116,	23.0	744
1831	Blue phosphorescent OLEDs with 34.1% external quantum efficiency using a low refrac electron transporting material. Proceedings of SPIE, 2016, , .	tive index	0.8	2
1832	Quenching in single emissive white phosphorescent organic light-emitting devices. Org Electronics, 2016, 38, 230-237.	anic	1.4	7
1833	Metal halide perovskite light emitters. Proceedings of the National Academy of Sciences States of America, 2016, 113, 11694-11702.	s of the United	3.3	465
1834	Synthesis and opto-electrochemical properties of tribenzo[a,c,i]phenazine derivatives for transport materials. RSC Advances, 2016, 6, 94218-94227.	or hole	1.7	27
1835	Blue Thermally Activated Delayed Fluorescence Molecule Having Acridane and Cyanobe Chemistry Letters, 2016, 45, 1463-1466.	nzene Units.	0.7	14
1836	Highly efficient organic light emitting diodes based on a D–A–D type dibenzothiop exhibiting thermally activated delayed fluorescence with small ΔE _{ST} . Journ Chemistry C, 2016, 4, 10205-10208.	nene derivative al of Materials	2.7	35
1837	High-throughput virtual screening. Nature Materials, 2016, 15, 1056-1057.		13.3	13
1838	Controlled collective motions. Nature Materials, 2016, 15, 1057-1058.		13.3	28
1840	A Method for Reducing the Singlet–Triplet Energy Gaps of TADF Materials for Improvi Efficiency. ACS Applied Materials & Interfaces, 2016, 8, 27026-27034.	ng the Blue OLED	4.0	87

#	Article	IF	CITATIONS
1841	Analysis of the phosphorescent dye concentration dependence of triplet-triplet annihilation in organic host-guest systems. Chemical Physics Letters, 2016, 662, 221-227.	1.2	18
1842	Out-coupling membrane for large-size organic light-emitting panels with high efficiency and improved uniformity. Applied Surface Science, 2016, 389, 990-994.	3.1	3
1843	Quantum chemical design of carbazole- and pyridoindole-based ambipolar host materials for blue phosphorescent OLEDs. RSC Advances, 2016, 6, 74769-74784.	1.7	11
1844	A Dualâ€Characteristic Bidentate Ligand for a Ternary Mononuclear Europium(III) Molecular Complex – Synthesis, Photophysical, Electrochemical, and Theoretical Study. European Journal of Inorganic Chemistry, 2016, 2016, 3900-3911.	1.0	33
1845	Thermally activated delayed-fluorescence organic light-emitting diodes based on exciplex emitter with high efficiency and low roll-off. Organic Electronics, 2016, 38, 69-73.	1.4	19
1846	Simultaneous Realization of High EQE of 30%, Low Drive Voltage, and Low Efficiency Rollâ€Off at High Brightness in Blue Phosphorescent OLEDs. Advanced Optical Materials, 2016, 4, 86-90.	3.6	109
1847	Measuring and structuring the spatial coherence length of organic lightâ€emitting diodes. Laser and Photonics Reviews, 2016, 10, 82-90.	4.4	12
1848	Evolution of emission manners of organic light-emitting diodes: From emission of singlet exciton to emission of doublet exciton. Chinese Chemical Letters, 2016, 27, 1345-1349.	4.8	32
1849	Design of C^Nî€N type iridium(<scp>iii</scp>) complexes towards short-wavelength emission for high efficiency organic light-emitting diodes. RSC Advances, 2016, 6, 81869-81876.	1.7	8
1850	High-efficiency diphenylsulfon derivative-based organic light-emitting diode exhibiting thermally-activated delayed fluorescence. Journal of the Korean Physical Society, 2016, 69, 398-401.	0.3	4
1851	Controlling the emission efficiency of blue-green iridium(iii) phosphorescent emitters and applications in solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 8939-8946.	2.7	23
1852	Maleimide–based donor-ï€-acceptor-ï€-donor derivative for efficient organic light-emitting diodes. Organic Electronics, 2016, 38, 180-185.	1.4	16
1853	Adjusting Nitrogen Atom Orientations of Pyridine Ring in Tetraphenylsilane-Based Hosts for Highly Efficient Blue Phosphorescent Organic Light-Emitting Devices. ACS Applied Materials & Interfaces, 2016, 8, 24793-24802.	4.0	34
1854	Photon management in solution-processed organic light-emitting diodes: a review of light outcoupling micro- and nanostructures. Journal of Photonics for Energy, 2016, 6, 030901.	0.8	32
1855	Luminescent Europium(III) Coordination Zippers Linked with Thiopheneâ€Based Bridges. Angewandte Chemie - International Edition, 2016, 55, 12059-12062.	7.2	46
1856	Charge Recombination in Phosphorescent Organic Light-Emitting Diode Host–Guest Systems through QM/MM Simulations. Journal of Physical Chemistry C, 2016, 120, 19987-19994.	1.5	19
1857	Luminescent Metal-Containing Polymers for White Light Emission. Topics in Current Chemistry, 2016, 374, 64.	3.0	10
1858	Dual-Emissive Platinum(II) Metallacycles with Thiophene-Containing Bisacetylide Ligands. Inorganic Chemistry, 2016, 55, 8985-8993.	1.9	14

#	Article	IF	CITATIONS
1859	Magnetic Field Effect in Organic Lightâ€Emitting Diodes Based on Electron Donor–Acceptor Exciplex Chromophores Doped with Fluorescent Emitters. Advanced Functional Materials, 2016, 26, 6930-6937.	7.8	37
1860	A study on refractive index dispersion and optoelectronic parameters of the BCzVB OLED material by using solution method. Optical and Quantum Electronics, 2016, 48, 1.	1.5	9
1861	Molecular Engineering of Iridium Blue Emitters Using Aryl N-Heterocyclic Carbene Ligands. European Journal of Inorganic Chemistry, 2016, 2016, 5089-5097.	1.0	19
1862	4, 6-Bis[3-(dibenzothiophen-2-yl)phenyl] pyrimidine bipolar host for bright, efficient and low efficiency roll-off phosphorescent organic light-emitting devices. Organic Electronics, 2016, 38, 301-306.	1.4	4
1863	High luminance phosphorescent organic light emitting diodes based on Re(I) complex. Russian Journal of Physical Chemistry A, 2016, 90, 2076-2079.	0.1	0
1864	Investigation of boron modified graphene nanostructures; optoelectronic properties of graphene nanoparticles and transport properties of graphene nanosheets. Journal of Physics and Chemistry of Solids, 2016, 98, 156-166.	1.9	15
1865	Silicon-based carbazole and oxadiazole hybrid as a bipolar host material for phosphorescent organic light-emitting diodes. Organic Electronics, 2016, 38, 222-229.	1.4	11
1866	Efficient modulation of optical and electrical properties of X-shaped thermally activated delayed fluorescence emitters by substitution. Journal of Molecular Modeling, 2016, 22, 173.	0.8	2
1867	Persistent luminescence: An insight. Renewable and Sustainable Energy Reviews, 2016, 65, 135-153.	8.2	68
1868	Excitation energy transfer from long-persistent phosphors for enhancing power conversion of dye-sensitized solar cells. Physical Review B, 2016, 93, .	1.1	15
1869	Phosphorescent PtAu ₂ Complexes with Differently Positioned Carbazole–Acetylide Ligands for Solution-Processed Organic Light-Emitting Diodes with External Quantum Efficiencies of over 20%. ACS Applied Materials & Interfaces, 2016, 8, 20251-20257.	4.0	47
1870	Color Tuning of Avobenzone Boron Difluoride as an Emitter to Achieve Full olor Emission. Advanced Functional Materials, 2016, 26, 6703-6710.	7.8	81
1871	Thermally Crossâ€Linkable Host Materials for Solutionâ€Processed OLEDs: Synthesis, Characterization, and Optoelectronic Properties. European Journal of Organic Chemistry, 2016, 2016, 3737-3747.	1.2	25
1874	Circularly Polarized Phosphorescent Electroluminescence with a High Dissymmetry Factor from PHOLEDs Based on a Platinahelicene. Journal of the American Chemical Society, 2016, 138, 9743-9746.	6.6	387
1875	A highly twisted triarylborane-based biphenyl as an efficient host for blue and green phosphorescent OLEDs. Journal of Materials Chemistry C, 2016, 4, 7607-7613.	2.7	19
1876	Triptycences as thermally activated delayed fluorescence materials: Effect of π-conjugation length and donors. Chemical Physics Letters, 2016, 666, 7-12.	1.2	9
1877	Computational design of high efficiency nonplanar tri-s-triazine-based ambipolar host materials for phosphorescent blue emitters. Physical Chemistry Chemical Physics, 2016, 18, 33009-33020.	1.3	3
1878	Dynamics of Excited States for Fluorescent Emitters with Hybridized Local and Charge-Transfer Excited State in Solid Phase: A QM/MM Study. Journal of Physical Chemistry A, 2016, 120, 9422-9430.	1.1	30

#	Article	IF	CITATIONS
1879	Application of wide-energy-gap material 3,4-di(9H-carbazol-9-yl) benzonitrile in organic light-emitting diodes. Thin Solid Films, 2016, 619, 120-124.	0.8	12
1880	Horizontal molecular orientation of light-emitting oligofluorenes in spin-coated glassy organic thin films. Journal of Materials Chemistry C, 2016, 4, 11557-11565.	2.7	15
1881	Low efficiency roll-off and high performance OLEDs employing alkyl group modified iridium(<scp>iii</scp>) complexes as emitters. RSC Advances, 2016, 6, 111556-111563.	1.7	7
1882	Achieving High Performance in AC-Field Driven Organic Light Sources. Scientific Reports, 2016, 6, 24116.	1.6	18
1883	Evolution of 2, 3′-bipyridine class of cyclometalating ligands as efficient phosphorescent iridium(III) emitters for applications in organic light emitting diodes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 29, 29-47.	5.6	41
1884	Highly Efficient White Organic Light-Emitting Diodes with Ultrathin Emissive Layers and a Spacer-Free Structure. Scientific Reports, 2016, 6, 25821.	1.6	59
1885	Luminescent Europium(III) Coordination Zippers Linked with Thiophene-Based Bridges. Angewandte Chemie, 2016, 128, 12238-12241.	1.6	7
1886	Improved electroluminescence with reversed bilayers of thiophene/phenylene co-oligomer derivatives. Japanese Journal of Applied Physics, 2016, 55, 03DC13.	0.8	9
1887	Skyâ€Blue Phosphorescent OLEDs with 34.1% External Quantum Efficiency Using a Low Refractive Index Electron Transporting Layer. Advanced Materials, 2016, 28, 4920-4925.	11.1	238
1888	Benzimidazobenzothiazoleâ€Based Bipolar Hosts to Harvest Nearly All of the Excitons from Blue Delayed Fluorescence and Phosphorescent Organic Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2016, 55, 6864-6868.	7.2	123
1889	Afterglow Organic Lightâ€Emitting Diode. Advanced Materials, 2016, 28, 655-660.	11.1	417
1890	Management of Singlet and Triplet Excitons: A Universal Approach to Highâ€Efficiency All Fluorescent WOLEDs with Reduced Efficiency Rollâ€Off Using a Conventional Fluorescent Emitter. Advanced Optical Materials, 2016, 4, 1067-1074.	3.6	84
1891	Exposing the Excited‣tate Equilibrium in an Ir ^{III} Bichromophore: A Combined Time Resolved Spectroscopy and Computational Study. European Journal of Inorganic Chemistry, 2016, 2016, 1808-1818.	1.0	34
1892	Intracellular and in vivo oxygen sensing using phosphorescent iridium(III) complexes. Current Opinion in Chemical Biology, 2016, 33, 39-45.	2.8	81
1893	Dramatic efficiency improvement in single-layer orange phosphorescent organic light-emitting devices with suppressed efficiency roll-off. RSC Advances, 2016, 6, 55017-55021.	1.7	6
1894	Synthesis, characterization and electroluminescence of carbazole-benzimidazole hybrids with thiophene/phenyl linker. Dyes and Pigments, 2016, 133, 132-142.	2.0	24
1895	Heteroleptic orange light-emitting iridium complexes containing phenylbenzothiazolate ligands. Polymer Bulletin, 2016, 73, 2501-2509.	1.7	5
1896	Application of ultra-thin CdS film as buffer layer in non-doped blue organic light-emitting diodes. Journal of Materials Science: Materials in Electronics, 2016, 27, 7839-7844.	1.1	4

#	Article	IF	CITATIONS
1897	Corrugated Organic Light Emitting Diodes Using Low <i>T</i> _g Electron Transporting Materials & Interfaces, 2016, 8, 16192-16199.	4.0	11
1898	Synthesis and Electroluminescence of a Conjugated Polymer with Thermally Activated Delayed Fluorescence. Macromolecules, 2016, 49, 4373-4377.	2.2	110
1899	Interfacial Charge Transfer States in Condensed Phase Systems. Annual Review of Physical Chemistry, 2016, 67, 113-133.	4.8	176
1900	Phosphorescence quenching of neutral and cationic iridium(III) complexes by molecular oxygen and aromatic electron acceptors. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 324, 134-144.	2.0	14
1901	High-efficiency phosphorescent organic light-emitting devices with low efficiency roll-off using a thermally activated delayed fluorescence material as host. Organic Electronics, 2016, 36, 185-191.	1.4	16
1902	Improved out-coupling efficiency from a green microcavity OLED with a narrow band emission source. Organic Electronics, 2016, 37, 141-147.	1.4	30
1903	Highâ€Performance Hybrid White Organic Lightâ€Emitting Diodes with Superior Efficiency/Color Rendering Index/Color Stability and Low Efficiency Rollâ€Off Based on a Blue Thermally Activated Delayed Fluorescent Emitter. Advanced Functional Materials, 2016, 26, 3306-3313.	7.8	154
1904	Highâ€Efficiency Blue Organic Lightâ€Emitting Diodes Based on Thermally Activated Delayed Fluorescence from Phenoxaphosphine and Phenoxathiin Derivatives. Advanced Materials, 2016, 28, 4626-4631.	11.1	179
1905	Charge Balance and Exciton Confinement in Phosphorescent Organic Light Emitting Diodes. Advanced Optical Materials, 2016, 4, 889-895.	3.6	21
1906	Benzimidazobenzothiazoleâ€Based Bipolar Hosts to Harvest Nearly All of the Excitons from Blue Delayed Fluorescence and Phosphorescent Organic Lightâ€Emitting Diodes. Angewandte Chemie, 2016, 128, 6978-6982.	1.6	27
1907	Spectrally resolved thermoluminescence versus electroluminescence spectra of PVK doped with 1Âwt % of Ir(btp) 2 (acac). Organic Electronics, 2016, 31, 127-135.	1.4	9
1908	Resonance Energy Transfer Enables Efficient Planar Heterojunction Organic Solar Cells. Journal of Physical Chemistry C, 2016, 120, 87-97.	1.5	12
1909	Theoretical Insights into the Phosphorescence Quantum Yields of Cyclometalated (C ^{â^§} C*) Platinum(II) NHC Complexes: ï€-Conjugation Controls the Radiative and Nonradiative Decay Processes. Journal of Physical Chemistry C, 2016, 120, 3462-3471.	1.5	48
1910	Highly twisted pyrene derivatives for non-doped blue OLEDs. Dyes and Pigments, 2016, 128, 19-25.	2.0	24
1911	High-efficiency and superior color-stability white phosphorescent organic light-emitting diodes based on double mixed-host emission layers. Organic Electronics, 2016, 31, 136-141.	1.4	17
1912	Highly efficient pure red organic light-emitting devices based on tris(1-phenyl-isoquinoline) iridium(III) with another wide gap iridium(III) complex as sensitizer. Dyes and Pigments, 2016, 128, 26-32.	2.0	18
1913	A multi-stimuli responsive "AlE―active salicylaldehyde-based Schiff base for sensitive detection of fluoride. Sensors and Actuators B: Chemical, 2016, 228, 539-550.	4.0	78
1914	Highly Efficient Nondoped Green Organic Light-Emitting Diodes with Combination of High Photoluminescence and High Exciton Utilization. ACS Applied Materials & Interfaces, 2016, 8, 3041-3049.	4.0	126

#	Article	IF	CITATIONS
1915	Achieving Extreme Utilization of Excitons by an Efficient Sandwich-Type Emissive Layer Architecture for Reduced Efficiency Roll-Off and Improved Operational Stability in Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 3150-3159.	4.0	34
1916	Simultaneous Enhancement of Efficiency and Stability of Phosphorescent OLEDs Based on Efficient Förster Energy Transfer from Interface Exciplex. ACS Applied Materials & Interfaces, 2016, 8, 3825-3832.	4.0	112
1917	Lifetime improvement mechanism in organic light-emitting diodes with mixed materials at a heterojunction interface. Japanese Journal of Applied Physics, 2016, 55, 02BB08.	0.8	2
1918	Molecular design of host materials for stable blue phosphorescent organic light-emitting diodes. Dyes and Pigments, 2016, 125, 274-281.	2.0	13
1919	Fluoranthene derivatives as blue fluorescent materials for non-doped organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 193-200.	2.7	34
1920	Surface modification and characterization of 8-hydroxyquinoline aluminum/nano-TiO2. Journal of Luminescence, 2016, 171, 131-137.	1.5	9
1921	Highly efficient white transparent organic light emitting diodes with nano-structured substrate. Organic Electronics, 2016, 29, 72-78.	1.4	9
1922	Pyrene–Oxadiazoles for Organic Light-Emitting Diodes: Triplet to Singlet Energy Transfer and Role of Hole-Injection/Hole-Blocking Materials. Journal of Organic Chemistry, 2016, 81, 603-614.	1.7	66
1923	Push-pull effect on the geometrical, optical and charge transfer properties of disubstituted derivatives of mer-tris(4-hydroxy-1,5-naphthyridinato) aluminum (mer-AlND3). Open Chemistry, 2016, 14, 20-32.	1.0	6
1924	High-triplet-energy host materials derived from directly-coupled carbazole-pyridoindole moieties. Dyes and Pigments, 2016, 130, 183-190.	2.0	6
1925	A novel high-efficiency white hyperbranched polymer derived from polyfluorene with green and red iridium(III) complexes as the cores. Dyes and Pigments, 2016, 130, 191-201.	2.0	8
1926	Tetradentate Pt(II) Complexes with 6-Membered Chelate Rings: A New Route for Stable and Efficient Blue Organic Light Emitting Diodes. Chemistry of Materials, 2016, 28, 3276-3282.	3.2	129
1927	Highly Phosphorescent Cyclometalated Iridium(III) Complexes for Optoelectronic Applications: Fine Tuning of the Emission Wavelength through Ancillary Ligands. Journal of Physical Chemistry C, 2016, 120, 7284-7294.	1.5	52
1928	Computational study on thermally activated delayed fluorescence of donor–linker–acceptor network molecules. RSC Advances, 2016, 6, 37203-37211.	1.7	19
1929	Bipolar Host Materials for Organic Light-Emitting Diodes. Chemical Record, 2016, 16, 159-172.	2.9	70
1930	Efficient red, green, blue and white organic light-emitting diodes with same exciplex host. Japanese Journal of Applied Physics, 2016, 55, 03CD02.	0.8	15
1931	Performance of Inverted Quantum Dot Light-Emitting Diodes Enhanced by Using Phosphorescent Molecules as Exciton Harvesters. Journal of Physical Chemistry C, 2016, 120, 4667-4672.	1.5	30
1932	Triplet exciton recycling of a phosphorescent emitter by an up-conversion process using a delayed fluorescence type low triplet energy host material. Journal of Materials Chemistry C, 2016, 4, 1606-1612.	2.7	8

#	Article	IF	CITATIONS
1933	Electronic energy and electron transfer processes in photoexcited donor–acceptor dyad and triad molecular systems based on triphenylene and perylene diimide units. Physical Chemistry Chemical Physics, 2016, 18, 7875-7887.	1.3	33
1934	High triplet energy electron transport type exciton blocking materials for stable blue phosphorescent organic light-emitting diodes. Organic Electronics, 2016, 32, 109-114.	1.4	38
1935	Synthesis and optoelectronic properties of oxadiazole coordinated boron complexes. CrystEngComm, 2016, 18, 4382-4387.	1.3	14
1936	Outcoupling Efficiency Analysis of OLEDs Fabricated on a Wrinkled Substrate. Journal of Display Technology, 2016, 12, 801-807.	1.3	15
1937	Design of high triplet energy electron transporting material for exciplex-type host: Efficient blue and white phosphorescent OLEDs based on solution processing. Organic Electronics, 2016, 33, 9-14.	1.4	27
1938	Non-doped deep blue light-emitting electrochemical cells from charged organic small molecules. RSC Advances, 2016, 6, 28912-28918.	1.7	37
1939	Towards an efficient blue emission cationic lr(<scp>iii</scp>) complex with azole-type ancillary ligands: a joint theoretical and experimental study. New Journal of Chemistry, 2016, 40, 4635-4642.	1.4	5
1940	Optoelectronic properties of higher acenes, their BN analogue and substituted derivatives. Materials Chemistry and Physics, 2016, 170, 210-217.	2.0	8
1941	High efficiency OLEDs based on anthracene derivatives: The impact of electron donating and withdrawing group on the performance of OLED. Organic Electronics, 2016, 30, 149-157.	1.4	65
1942	Supramolecular green phosphorescent polymer iridium complexes for solution-processed nondoped organic light-emitting diodes. Journal of Organometallic Chemistry, 2016, 804, 1-5.	0.8	4
1943	Effect of reverse intersystem crossing rate to suppress efficiency roll-off in organic light-emitting diodes with thermally activated delayed fluorescence emitters. Chemical Physics Letters, 2016, 644, 62-67.	1.2	96
1944	Luminescent properties of a di-hydrazone derived from the antituberculosis agent isoniazid: Potentiality as an emitting layer constituent for OLED fabrication. Optical Materials, 2016, 52, 186-191.	1.7	12
1945	Solution-processable iridium phosphors for efficient red and white organic light-emitting diodes with low roll-off. Journal of Materials Chemistry C, 2016, 4, 1250-1256.	2.7	23
1946	The synthesis of novel AIE emitters with the triphenylethene-carbazole skeleton and para-/meta-substituted arylboron groups and their application in efficient non-doped OLEDs. Journal of Materials Chemistry C, 2016, 4, 1228-1237.	2.7	46
1947	Direct observation of intersystem crossing in a thermally activated delayed fluorescence copper complex in the solid state. Science Advances, 2016, 2, e1500889.	4.7	133
1948	A New Molecular Design Based on Thermally Activated Delayed Fluorescence for Highly Efficient Organic Light Emitting Diodes. Journal of the American Chemical Society, 2016, 138, 628-634.	6.6	365
1949	Phosphorescence quenching of fac-tris(2-phenylpyridyl)iridium(<scp>iii</scp>) complexes in thin films on dielectric surfaces. Physical Chemistry Chemical Physics, 2016, 18, 3575-3580.	1.3	6
1950	Insights into charge balance and its limitations in simplified phosphorescent organic light-emitting devices. Organic Electronics, 2016, 30, 76-82.	1.4	8

#	Article	IF	CITATIONS
1951	Microcavity-Free Broadband Light Outcoupling Enhancement in Flexible Organic Light-Emitting Diodes with Nanostructured Transparent Metal–Dielectric Composite Electrodes. ACS Nano, 2016, 10, 1625-1632.	7.3	101
1952	Recent advances of neutral rhenium(I) tricarbonyl complexes for application in organic light-emitting diodes. Synthetic Metals, 2016, 212, 131-141.	2.1	66
1953	Quantitative prediction of photoluminescence quantum yields of phosphors from first principles. Chemical Science, 2016, 7, 1262-1267.	3.7	78
1954	Enhanced Light Extraction From Green Quantum Dot Light-Emitting Diodes by Attaching Microstructure Arrayed Films. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 42-47.	1.9	11
1955	Recombination zone of blue thermally activated delayed fluorescent devices. Journal of Luminescence, 2016, 169, 266-269.	1.5	6
1956	Suppression of the viewing angle dependence by introduction of nanoporous diffuser film on blue OLEDs with strong microcavity effect. Organic Electronics, 2016, 28, 31-38.	1.4	28
1957	Tuning the oxidation potential of 2-phenylpyridine-based iridium complexes to improve the performance of bluish and white OLEDs. Journal of Materials Chemistry C, 2016, 4, 3738-3746.	2.7	27
1958	Organic light-emitting diodes: theoretical understanding of highly efficient materials and development of computational methodology. National Science Review, 2017, 4, 224-239.	4.6	176
1959	Color stable and highly efficient hybrid white organic light-emitting devices using heavily doped thermally activated delayed fluorescence and ultrathin non-doped phosphorescence layers. Organic Electronics, 2017, 43, 112-120.	1.4	10
1960	Design Strategy for Ag(I)-Based Thermally Activated Delayed Fluorescence Reaching an Efficiency Breakthrough. Chemistry of Materials, 2017, 29, 1708-1715.	3.2	93
1961	Arylfluorenyl-substituted metoxytriphenylamines as deep blue exciplex forming bipolar semiconductors for white and blue organic light emitting diodes. Dyes and Pigments, 2017, 140, 187-202.	2.0	38
1962	High performance red phosphorescent organic electroluminescent devices with characteristic mechanisms by utilizing terbium or gadolinium complexes as sensitizers. Journal of Materials Chemistry C, 2017, 5, 2066-2073.	2.7	31
1963	Theoretical Studies of Photodeactivation Pathways of NHC–Chelate Pt(II) Compounds with Different Numbers of Triarylboron Units: Radiative and Nonradiative Decay Processes. Journal of Physical Chemistry A, 2017, 121, 690-698.	1.1	4
1966	OLEDs based on the emission of interface and bulk exciplexes formed by cyano-substituted carbazole derivative. Dyes and Pigments, 2017, 139, 795-807.	2.0	44
1967	Remote Steric Effect as a Facile Strategy for Improving the Efficiency of Exciplex-Based OLEDs. ACS Applied Materials & Interfaces, 2017, 9, 7355-7361.	4.0	77
1968	Elimination of Plasmon Losses and Enhanced Light Extraction of Top-Emitting Organic Light-Emitting Devices Using a Reflective Subelectrode Grid. ACS Photonics, 2017, 4, 363-368.	3.2	41
1969	Probing photophysical properties of isomeric N-heterocyclic carbene Ir(<scp>iii</scp>) complexes and their applications to deep-blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 1651-1659.	2.7	35
1970	Design of bicarbazole type host materials for long-term stability in blue phosphorescent organic light-emitting diodes. Organic Electronics, 2017, 43, 130-135.	1.4	12
#	Article	IF	CITATIONS
------	--	------	-----------
1971	Quantifying Interdopant Exciton Processes in Organic Light Emitting Diodes. Journal of Physical Chemistry C, 2017, 121, 3304-3309.	1.5	5
1972	Tunable Full-Color Electroluminescence from All-Organic Optical Upconversion Devices by Near-Infrared Sensing. ACS Photonics, 2017, 4, 223-227.	3.2	61
1973	Functional organic click-materials: application in phosphorescent organic light emitting diodes. RSC Advances, 2017, 7, 12150-12160.	1.7	9
1974	Self-host blue-emitting iridium dendrimer for solution-processed non-doped phosphorescent organic light-emitting diodes with flat efficiency roll-off and less phase segregation. Organic Electronics, 2017, 45, 49-56.	1.4	12
1975	Novel oxazole-based emitters for high efficiency fluorescent OLEDs: Synthesis, characterization, and optoelectronic properties. Tetrahedron, 2017, 73, 2036-2042.	1.0	11
1976	Light extraction of flexible OLEDs based on transparent polyimide substrates with 3-D photonic structure. Organic Electronics, 2017, 44, 225-231.	1.4	23
1977	Synthesis, structures and photophysical properties of Cu(I) phosphine complexes with various diimine ligands. Polyhedron, 2017, 127, 203-211.	1.0	16
1978	Approaches to high performance white organic light-emitting diodes for general lighting. Materials Chemistry Frontiers, 2017, 1, 1933-1950.	3.2	94
1980	Photoluminescence and electroluminescence of an iridium(<scp>iii</scp>) complex with 2′,6′-bis(trifluoromethyl)-2,4′-bipyridine and 2-(5-phenyl-1,3,4-thiadiazol-2-yl)phenol ligands. New Journal of Chemistry, 2017, 41, 3029-3035.	1.4	7
1981	Nondoped blue fluorescent OLED based on cyanophenanthrimidazole-styryl-triphenylamine/carbazole materials. Journal of Physical Organic Chemistry, 2017, 30, e3695.	0.9	13
1982	Highly efficient white organic light-emitting devices with optimized electron transporting layers. Chemical Research in Chinese Universities, 2017, 33, 227-230.	1.3	2
1983	Low driving voltage indium–tin oxide/Al–Ni–Cu–La anode electrodes for top-emission organic light-emitting diodes. Japanese Journal of Applied Physics, 2017, 56, 035802.	0.8	6
1984	Molecular Design Strategy of Organic Thermally Activated Delayed Fluorescence Emitters. Chemistry of Materials, 2017, 29, 1946-1963.	3.2	795
1985	Purely Organic Thermally Activated Delayed Fluorescence Materials for Organic Lightâ€Emitting Diodes. Advanced Materials, 2017, 29, 1605444.	11.1	1,490
1986	Synthesis and properties of twin derivatives of triphenylamine and carbazole. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 340, 62-69.	2.0	2
1987	Triphenyl phosphine oxide and carbazole-based polymer host materials for green phosphorescent organic light-emitting diodes. Chinese Journal of Polymer Science (English Edition), 2017, 35, 611-622.	2.0	9
1988	Lowâ€Cost, Organic Lightâ€Emitting Electrochemical Cells with Massâ€Producible Nanoimprinted Substrates Made Using Rollâ€ŧoâ€Roll Methods. Advanced Materials Technologies, 2017, 2, 1600293.	3.0	38
1989	Room-temperature phosphorescence from small organic systems containing a thiocarbonyl moiety. Physical Chemistry Chemical Physics, 2017, 19, 8896-8901.	1.3	17

#	Article	IF	CITATIONS
1990	Highly efficient cold-white light emission in a [Au ₂ CuCl ₂ (Pâ^©N) ₂]PF ₆ type salt. Dalton Transactions, 2017, 46, 3438-3442.	1.6	22
1991	Solution-processed organic light-emitting diodes with emission from a doublet exciton; using (2,4,6-trichlorophenyl)methyl as emitter. Organic Electronics, 2017, 44, 126-131.	1.4	29
1992	Photovoltaic effect on the performance enhancement of organic light-emitting diodes with planar heterojunction architecture. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 218, 7-13.	1.7	9
1993	Investigation on the effect of connected bridge on thermally activated delayed fluorescence property for DCBPy emitter. Dyes and Pigments, 2017, 145, 277-284.	2.0	17
1994	Controlling the exciton lifetime of blue thermally activated delayed fluorescence emitters using a heteroatom-containing pyridoindole donor moiety. Materials Horizons, 2017, 4, 619-624.	6.4	73
1995	Towards highly efficient thermally activated delayed fluorescence devices through a trap-assisted recombination mechanism and reduced interfacial exciton annihilation. Journal of Materials Chemistry C, 2017, 5, 4636-4644.	2.7	11
1996	Solution Processed WPLEDs with Good Color Stability and High Color Rendering Index via a Phosphor-Sensitized System. ChemistrySelect, 2017, 2, 3184-3190.	0.7	3
1997	Organic wrinkles embedded in high-index medium as planar internal scattering structures for organic light-emitting diodes. Organic Electronics, 2017, 46, 139-144.	1.4	25
1998	Enhanced performance of organic solar cells based on thiophene/phenylene co-oligomers. Synthetic Metals, 2017, 227, 156-162.	2.1	11
1999	Photo- and electro-luminescence of three TADF binuclear Cu(<scp>i</scp>) complexes with functional tetraimine ligands. Journal of Materials Chemistry C, 2017, 5, 4495-4504.	2.7	61
2000	Organic Phosphorescence Nanowire Lasers. Journal of the American Chemical Society, 2017, 139, 6376-6381.	6.6	166
2001	High efficiency yellow organic light-emitting diodes with a solution-process feasible iridium based emitter. Journal of Materials Chemistry C, 2017, 5, 5478-5486.	2.7	21
2002	Assessing the role of Hartree-Fock exchange, correlation energy and long range corrections in evaluating ionization potential, and electron affinity in density functional theory. Journal of Computational Chemistry, 2017, 38, 1844-1852.	1.5	13
2003	Blue Phosphorescent Organic Lightâ€emitting Diode Using a Novel Starburstâ€ŧype Donor and Acceptor Material as a Coâ€host. Bulletin of the Korean Chemical Society, 2017, 38, 530-537.	1.0	0
2004	Thermally stable bipolar host materials for high efficiency phosphorescent green and blue organic light-emitting diodes. Dyes and Pigments, 2017, 143, 470-478.	2.0	18
2005	Luminescent Ir(III) complexes bearing benzothiazole or benzoxazole-based pincer ligand. Journal of Organometallic Chemistry, 2017, 845, 189-195.	0.8	14
2006	Accurate prediction of emission energies with TD-DFT methods for platinum and iridium OLED materials. Journal of Molecular Modeling, 2017, 23, 174.	0.8	9
2007	Optimizing the combination of MoO3 interface layer and low pressure plasma treatment on indium tin oxide (ITO) anode. Applied Surface Science, 2017, 422, 207-215.	3.1	1

#	Article	IF	CITATIONS
2008	Carbazole-dendrite-encapsulated electron acceptor core for constructing thermally activated delayed fluorescence emitters used in nondoped solution-processed organic light-emitting diodes. Organic Electronics, 2017, 48, 262-270.	1.4	20
2009	A theoretical study on the mechanistic highlights behind the BrÃ,nsted-acid dependent mer–fac isomerization of homoleptic carbenic iridium complexes for PhOLEDs. Dalton Transactions, 2017, 46, 7194-7209.	1.6	5
2010	Homoleptic Facial Ir(III) Complexes via Facile Synthesis for High-Efficiency and Low-Roll-Off Near-Infrared Organic Light-Emitting Diodes over 750 nm. Chemistry of Materials, 2017, 29, 4775-4782.	3.2	138
2011	Operational lifetimes of organic light-emitting diodes dominated by Förster resonance energy transfer. Scientific Reports, 2017, 7, 1735.	1.6	59
2012	Strongly Luminescent Cyclometalated Gold(III) Complexes Supported by Bidentate Ligands Displaying Intermolecular Interactions and Tunable Emission Energy. Chemistry - an Asian Journal, 2017, 12, 2104-2120.	1.7	31
2013	50â€3: <i>Invited Paper</i> : Improving Charge Confinement in Blue OLED Devices Through Novel Design of the Emissive Layer Stack. Digest of Technical Papers SID International Symposium, 2017, 48, 750-753.	0.1	1
2014	Donorâ~'Ïf–Acceptor Molecules for Green Thermally Activated Delayed Fluorescence by Spatially Approaching Spiro Conformation. Organic Letters, 2017, 19, 3155-3158.	2.4	51
2015	Aminoborane-based bipolar host material for blue and white-emitting electrophosphorescence devices. Organic Electronics, 2017, 48, 112-117.	1.4	14
2016	Luminescent Properties of Novel Bis-cyclometalated Iridium(III) Complex Bearing a Phosphine Oxide-appended Diketonate Ligand for Solution-processed Multilayer OLEDs. Chemistry Letters, 2017, 46, 1086-1089.	0.7	7
2017	Polymer Gating White Flexible Fieldâ€Induced Lighting Device. Advanced Materials Technologies, 2017, 2, 1700017.	3.0	8
2018	Electroluminescence of Zinc Complexes in Various OLED Structures. Russian Physics Journal, 2017, 60, 7-13.	0.2	10
2019	Pâ€174: 16.1â€times Elongation of Operation Lifetime in a Blue TTAâ€OLED by using New ETL and EML Materials. Digest of Technical Papers SID International Symposium, 2017, 48, 1928-1931.	0.1	5
2020	Blue organic light-emitting diodes realizing external quantum efficiency over 25% using thermally activated delayed fluorescence emitters. Scientific Reports, 2017, 7, 284.	1.6	88
2021	Exciton-Induced Degradation of Carbazole-Based Host Materials and Its Role in the Electroluminescence Spectral Changes in Phosphorescent Organic Light Emitting Devices with Electrical Aging. ACS Applied Materials & Interfaces, 2017, 9, 14145-14152.	4.0	45
2022	The role of sulfur oxidation in controlling the electronic properties of sulfur-containing host molecules for phosphorescent organic light-emitting diodes. Physical Chemistry Chemical Physics, 2017, 19, 12002-12012.	1.3	10
2023	Bis-Zn ^{II} salphen complexes bearing pyridyl functionalized ligands for efficient organic light-emitting diodes (OLEDs). Dalton Transactions, 2017, 46, 6098-6110.	1.6	28
2024	Plasmon-enhanced phosphorescence of hybrid thin films of metal-free purely organic phosphor and silver nanoparticles. Chemical Physics Letters, 2017, 676, 134-139.	1.2	5
2025	Triplet transport in thin films: fundamentals and applications. Chemical Communications, 2017, 53, 4429-4440.	2.2	38

#	Article	IF	Citations
2028	Amorphous 2-Bromocarbazole Copolymers with Efficient Room-Temperature Phosphorescent Emission and Applications as Encryption Ink. Industrial & amp; Engineering Chemistry Research, 2017, 56, 3123-3128.	1.8	55
2029	Networking hole and electron hopping paths by Y-shaped host molecules: promoting blue phosphorescent organic light emitting diodes. Journal of Materials Chemistry C, 2017, 5, 3600-3608.	2.7	12
2030	Efficient deep red electroluminescence of iridium(<scp>iii</scp>) complexes with 2,3-diphenylquinoxaline derivatives and tetraphenylimidodiphosphinate. Journal of Materials Chemistry C, 2017, 5, 3714-3724.	2.7	37
2031	Output power enhancement of white organic light-emitting diodes via a nanopatterned substrate generated by a monolayer of nanospheres. Applied Physics Letters, 2017, 110, .	1.5	4
2032	Bis-cyclometalated iridium complexes with electronically modified aryl isocyanide ancillary ligands. Dalton Transactions, 2017, 46, 5008-5016.	1.6	23
2033	High-triplet-energy derivatives of indole and carbazole as hosts for blue phosphorescent organic light-emitting diodes. Dyes and Pigments, 2017, 139, 487-497.	2.0	9
2034	Harnessing Triplet Excited States by Fluorescent Dopant Utilizing Codoped Phosphorescent Dopant in Exciplex Host for Efficient Fluorescent Organic Light Emitting Diodes. Advanced Optical Materials, 2017, 5, 1600749.	3.6	59
2035	Controlling Singlet–Triplet Energy Splitting for Deepâ€Blue Thermally Activated Delayed Fluorescence Emitters. Angewandte Chemie, 2017, 129, 1593-1597.	1.6	287
2036	Controlling Singlet–Triplet Energy Splitting for Deepâ€Blue Thermally Activated Delayed Fluorescence Emitters. Angewandte Chemie - International Edition, 2017, 56, 1571-1575.	7.2	380
2037	Rational design and synthesis of cationic Ir(III) complexes with triazolate cyclometalated and ancillary ligands for multi-color tuning. Dyes and Pigments, 2017, 139, 524-532.	2.0	21
2038	Modulation of ambipolar charge transport characteristics in side-chain polystyrenes as host materials for solution processed OLEDs. Organic Electronics, 2017, 41, 91-99.	1.4	10
2039	Conjugationâ€Induced Thermally Activated Delayed Fluorescence (TADF): From Conventional Nonâ€TADF Units to TADFâ€Active Polymers. Advanced Functional Materials, 2017, 27, 1605051.	7.8	109
2040	Thermally Activated Delayed Fluorescent Polymers. Journal of Polymer Science Part A, 2017, 55, 575-584.	2.5	62
2041	Novel electroluminescent donor–acceptors based on dibenzo[a,c]phenazine as hole-transporting materials for organic electronics. New Journal of Chemistry, 2017, 41, 628-638.	1.4	21
2042	Degradation Mechanisms in Blue Phosphorescent Organic Light-Emitting Devices by Exciton–Polaron Interactions: Loss in Quantum Yield versus Loss in Charge Balance. ACS Applied Materials & Interfaces, 2017, 9, 636-643.	4.0	22
2043	A series of pure-blue-light emitting Cu(i) complexes with thermally activated delayed fluorescence: structural, photophysical, and computational studies. Dalton Transactions, 2017, 46, 1413-1419.	1.6	27
2044	Thermally Activated Delayed Fluorescence Behavior Investigation in the Different Polarity Acceptor and Donor Molecules. Journal of Physical Chemistry C, 2017, 121, 1305-1314.	1.5	16
2045	Spectral-distortion-free light extraction from organic light-emitting diodes using nanoscale photonic crystal. Nanotechnology, 2017, 28, 045301.	1.3	8

#	Article	IF	CITATIONS
2046	TADF Material Design: Photophysical Background and Case Studies Focusing on Cu ^I and Ag ^I Complexes. ChemPhysChem, 2017, 18, 3508-3535.	1.0	190
2047	Scale-up Chemical Synthesis of Thermally-activated Delayed Fluorescence Emitters Based on the Dibenzothiophene-S,S-Dioxide Core. Journal of Visualized Experiments, 2017, , .	0.2	3
2048	Enhanced outcoupling in flexible organic light-emitting diodes on scattering polyimide substrates. Organic Electronics, 2017, 51, 471-476.	1.4	40
2049	Synthesis, photoluminescence properties of novel cationic Ir(III) complexes with phenanthroimidazole derivative as the ancillary ligand. Polyhedron, 2017, 138, 74-81.	1.0	4
2050	Electronic Nature of New Ir(III) Complexes: Linear Spectroscopic and Nonlinear Optical Properties. Journal of Physical Chemistry C, 2017, 121, 23609-23617.	1.5	23
2051	An Exciplex Host for Deep-Blue Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2017, 9, 37883-37887.	4.0	56
2052	Theoretical perspective for internal quantum efficiency of thermally activated delayed fluorescence emitter in solid phase: A QM/MM study. Organic Electronics, 2017, 51, 349-356.	1.4	27
2053	Horizontally Orientated Sticklike Emitters: Enhancement of Intrinsic Out-Coupling Factor and Electroluminescence Performance. Chemistry of Materials, 2017, 29, 8630-8636.	3.2	164
2054	In Search of Deeper Blues: <i>Trans</i> -N-Heterocyclic Carbene Platinum Phenylacetylide as a Dopant for Phosphorescent OLEDs. ACS Applied Materials & Interfaces, 2017, 9, 41111-41114.	4.0	41
2055	Probing the Emission Zone Length in Organic Light Emitting Diodes via Photoluminescence and Electroluminescence Degradation Analysis. ACS Applied Materials & Interfaces, 2017, 9, 41421-41427.	4.0	14
2056	Efficiency enhancement of fluorescence blue organic light-emitting diodes by incorporating Ag nanoparticles layers due to a localized surface plasmon. Journal of the Korean Physical Society, 2017, 71, 299-303.	0.3	5
2057	Molecular Electronics. Springer Handbooks, 2017, , 1-1.	0.3	1
2058	The short device lifetimes of blue PhOLEDs: insights into the photostability of blue Ir(<scp>iii</scp>) complexes. Chemical Science, 2017, 8, 7844-7850.	3.7	76
2059	Enhanced Structural Distortions Allowing for Dicyanophenylâ€substituted Emitters with Outstanding Thermally Activated Delayed Fluorescence Characteristics. Bulletin of the Korean Chemical Society, 2017, 38, 1101-1104.	1.0	0
2060	Efficient, color-stable and high color-rendering-index white organic light-emitting diodes employing full thermally activated delayed fluorescence system. Organic Electronics, 2017, 50, 466-472.	1.4	28
2061	Functional Organometallic Poly(arylene ethynylene)s: From Synthesis to Applications. Topics in Current Chemistry, 2017, 375, 77.	3.0	11
2062	Role of wide bandgap host in the degradation of blue phosphorescent organic light-emitting diodes. Journal of Applied Physics, 2017, 122, .	1.1	15
2063	Water-Soluble Metal–Organic Framework Hybrid Electron Injection Layer for Organic Light-Emitting Devices. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1800-1805.	1.9	11

#	Article	IF	CITATIONS
2064	Deep-red organic light-emitting diodes with stable electroluminescent spectra based on zinc complex host material. RSC Advances, 2017, 7, 40533-40538.	1.7	9
2065	Isobenzofuranone- and Chromone-Based Blue Delayed Fluorescence Emitters with Low Efficiency Roll-Off in Organic Light-Emitting Diodes. Chemistry of Materials, 2017, 29, 8012-8020.	3.2	68
2066	Organic Afterglow Phosphors. SpringerBriefs in Materials, 2017, , 117-151.	0.1	0
2067	Theoretical studying of basic photophysical processes in a thermally activated delayed fluorescence copper(I) complex: Determination of reverse intersystem crossing and radiative rate constants. Organic Electronics, 2017, 51, 207-219.	1.4	15
2068	Light-emitting-diode Lambertian light sources as low-radiant-flux standards applicable to quantitative luminescence-intensity imaging. Review of Scientific Instruments, 2017, 88, 093704.	0.6	7
2069	Progress on material, structure and function for tandem organic light-emitting diodes. Organic Electronics, 2017, 51, 220-242.	1.4	41
2070	Confinement of Longâ€Lived Triplet Excitons in Organic Semiconducting Host–Guest Systems. Advanced Functional Materials, 2017, 27, 1703902.	7.8	107
2071	Tris-heteroleptic Iridium Complexes Based on Cyclometalated Ligands with Different Cores. Inorganic Chemistry, 2017, 56, 11565-11576.	1.9	23
2072	Enhanced light out-coupling efficiency and reduced efficiency roll-off in phosphorescent OLEDs with a spontaneously distributed embossed structure formed by a spin-coating method. RSC Advances, 2017, 7, 43987-43993.	1.7	7
2073	Synthesis, photophysical, electrochemical and electroluminescence studies of red emitting phosphorescent Ir(III) heteroleptic complexes. Journal of Chemical Sciences, 2017, 129, 1391-1398.	0.7	4
2074	Molecular Design for Blue Thermal Activated Delayed Fluorescence Materials: Substitution Position Effect. Chemistry Letters, 2017, 46, 1490-1492.	0.7	13
2075	Shorter Exciton Lifetimes via an External Heavyâ€Atom Effect: Alleviating the Effects of Bimolecular Processes in Organic Lightâ€Emitting Diodes. Advanced Materials, 2017, 29, 1701987.	11.1	90
2076	Improved out-coupling efficiency of organic light emitting diodes fabricated on a TiO2 planarization layer with embedded Si oxide nanostructures. Optical Materials, 2017, 72, 828-832.	1.7	6
2077	Efficient and stable single-doped white OLEDs using a palladium-based phosphorescent excimer. Chemical Science, 2017, 8, 7983-7990.	3.7	46
2078	Solutionâ€processable thermally activated delayed fluorescence emitters for application in organic light emitting diodes. Journal of the Society for Information Display, 2017, 25, 480-485.	0.8	8
2079	Anomalously Long-Lasting Blue PhOLED Featuring Phenyl-Pyrimidine Cyclometalated Iridium Emitter. CheM, 2017, 3, 461-476.	5.8	76
2080	Emitter Orientation as a Key Parameter in Organic Light-Emitting Diodes. Physical Review Applied, 2017, 8, .	1.5	158
2081	Predicting the Operational Stability of Phosphorescent OLED Host Molecules from First Principles: A Case Study. Journal of Physical Chemistry C, 2017, 121, 22422-22433.	1.5	33

#	Article	IF	CITATIONS
2082	Highly efficient organic light-emitting devices employing an ultrathin non-doped phosphorescence emitter within a thermally activated delayed fluorescence interface exciplex. Journal of Luminescence, 2017, 192, 1242-1249.	1.5	5
2083	Novel carbazole/indole/thiazole-based host materials with high thermal stability for efficient phosphorescent organic light-emitting diodes. Dyes and Pigments, 2017, 147, 552-559.	2.0	12
2084	Iptycene-Containing Azaacenes with Tunable Luminescence. Synlett, 2017, 28, 2783-2789.	1.0	6
2085	Theoretical tuning of the singlet–triplet energy gap to achieve efficient long-wavelength thermally activated delayed fluorescence emitters: the impact of substituents. Physical Chemistry Chemical Physics, 2017, 19, 21639-21647.	1.3	14
2086	Sky-Blue-Emitting Dendritic Alkynylgold(III) Complexes for Solution-Processable Organic Light-Emitting Devices. Journal of the American Chemical Society, 2017, 139, 10539-10550.	6.6	47
2087	Introduction of Twisted Backbone: A New Strategy to Achieve Efficient Blue Fluorescence Emitter with Delayed Emission. Advanced Optical Materials, 2017, 5, 1700334.	3.6	23
2088	Organic light-emitting diodes exploiting aggregation-induced exciton and exciplex emissions. Journal of Luminescence, 2017, 192, 534-540.	1.5	13
2089	Donor–Acceptor Iptycenes with Thermally Activated Delayed Fluorescence. European Journal of Organic Chemistry, 2017, 2017, 4846-4851.	1.2	13
2090	Effects of surface plasmon resonance of the Ag nanoparticles on the efficiency and color stability of the blue light phosphorescent organic light emitting diodes. Journal of Luminescence, 2017, 192, 1110-1118.	1.5	14
2091	Efficient Light Extraction of Organic Lightâ€Emitting Diodes on a Fully Solutionâ€Processed Flexible Substrate. Advanced Optical Materials, 2017, 5, 1700307.	3.6	41
2092	Novel phosphine oxide-based electron-transporting materials for efficient phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 8579-8585.	2.7	7
2093	Efficient multilayer and single layer phosphorescent organic light-emitting devices using a host with balanced bipolar transporting properties and appropriate energy level. Organic Electronics, 2017, 50, 106-114.	1.4	11
2094	Photophysics of an Asymmetric Donor–Acceptor–Donor′ TADF Molecule and Reinterpretation of Aggregation-Induced TADF Emission in These Materials. Journal of Physical Chemistry C, 2017, 121, 17764-17772.	1.5	52
2095	Singlet Exciton Fraction in Electroluminescence from Conjugated Polymer. Scientific Reports, 2017, 7, 2889.	1.6	2
2096	Sky-blue phosphorescence from bis- and tris-cyclometalated iridium(<scp>iii</scp>) complexes bearing carbazole-based dendrons: fabrication of non-doped multilayer organic light-emitting diodes by solution processing. New Journal of Chemistry, 2017, 41, 10357-10366.	1.4	13
2097	Carbazole-bridged triphenylamine-bipyridine bipolar hosts for high-efficiency low roll-off multi-color PhOLEDs. Organic Electronics, 2017, 50, 204-212.	1.4	16
2098	Theoretical Study and Design of Phosphorescent Cyclometalated (C ^{â^§} C*)Pt ^{II} (acac) Complexes: The Substituent Effect Controls the Radiative and Nonradiative Decay Processes. Journal of Physical Chemistry A, 2017, 121, 6231-6242.	1.1	2
2099	Theoretical Investigations of the Spiroâ€Annulated Triphenylamine/ Nâ€Phenylcarbazoleâ€Based Ambipolar Host Materials for OLEDs. ChemistrySelect, 2017, 2, 6604-6611.	0.7	2

ARTICLE IF CITATIONS Substituent-effect investigation of facial and meridional tris(phenylbenzimidazolinato) Ir(III) carbene 2100 2.1 0 complexes: A theoretical perspective. Synthetic Metals, 2017, 232, 31-38. Negative Polaronâ€Stabilizing Host for Improved Operational Lifetime in Blue Phosphorescent Organic 3.6 Lightâ€Emitting Diodes. Advanced Optical Materials, 2017, 5, 1700387. Phosphorescent C^{â^§}C* Cyclometalated Thiazol-2-ylidene Iridium(III) Complexes: Synthesis, 2102 1.1 12 Structure, and Photophysics. Organometallics, 2017, 36, 3016-3018. Green phosphorescent organic light-emitting devices based on different electron transport layers combining with fluorescent sub-monolayer. Optoelectronics Letters, 2017, 13, 116-119. Surface-emitting vertical cavity with vapor-grown single crystal of cyano-substituted 2104 0.8 5 thiophene/phenylene co-oligomer. Japanese Journal of Applied Physics, 2017, 56, 04CL02. From blue to full color – theoretical design and characterization of a series of Ir(<scp>iii</scp>) complexes containing azoline ligand with potential application in OLEDs. Dalton Transactions, 2017, 1.6 Thermally Activated Delayed Fluorescence Emitters in Light-Emitting Electrochemical Cells., 2017,, 2106 6 237-266. Effects of Doping Concentration and Emission Layer Thickness on Recombination Zone and Exciton Density Control in Blue Phosphorescent Organic Light-Emitting Diodes. ECS Journal of Solid State Science and Technology, 2017, 6, R170-R174. Design and Synthesis of Heteroleptic Iridium(III) Phosphors for Efficient Organic Light-Emitting 2108 1.9 20 Devices. Inorganic Chemistry, 2017, 56, 15304-15313. Mobility balance in the light-emitting layer governs the polaron accumulation and operational 2109 1.5 stability of organic light-emitting diodes. Applied Physics Letters, 2017, 111, . High efficiency phosphorescent white organic light-emitting diodes with low efficiency roll-off achieved by strategic exciton management based on simple ultrathin emitting layer structures. Journal 2110 2.7 23 of Materials Chemistry C, 2017, 5, 12833-12838. Theoretical study of triazine-based thermally activated delayed fluorescence emitter. Molecular 0.4 Crystals and Liquid Crystals, 2017, 653, 267-273. Luminescent properties of novel bis-cyclometalated iridium(III) complexes bearing methoxy-substituted 2112 0.4 2 dibenzoylmethanate ligands. Molecular Crystals and Liquid Crystals, 2017, 653, 131-136. Donor–Ïf–Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual 7.2 109 Upconversion. Angewandte Chemie - International Edition, 2017, 56, 16536-16540. Donor–Îf–Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual 2114 1.6 25 Upconversion. Angewandte Chemie, 2017, 129, 16763-16767. Low turn-on voltage and low roll-off rare earth europium complex-based organic light-emitting 23 diodes with exciplex as the host. Journal of Materials Chemistry C, 2017, 5, 12182-12188. Design principles of carbazole/dibenzothiophene derivatives as host material in modern efficient 2116 2.7 24 organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 6989-6996. Strongly Reducing, Visibleâ€Light Organic Photoredox Catalysts as Sustainable Alternatives to Precious Metals. Chemistry - A European Journal, 2017, 23, 10962-10968.

#	Article	IF	CITATIONS
2118	Dual emission and multi-stimuli-response in iridium(<scp>iii</scp>) complexes with aggregation-induced enhanced emission: applications for quantitative CO ₂ detection. Journal of Materials Chemistry C, 2017, 5, 7784-7798.	2.7	31
2119	Perspective on carbazole-based organic compounds as emitters and hosts in TADF applications. Journal of Materials Chemistry C, 2017, 5, 8622-8653.	2.7	262
2120	Highly Efficient Thermally Activated Delayed Fluorescence from an Excited-State Intramolecular Proton Transfer System. ACS Central Science, 2017, 3, 769-777.	5.3	148
2121	Orthogonal Solution-Processable Electron Transport Layers Based on Phenylpyridine Side-Chain Polystyrenes. ACS Applied Materials & Interfaces, 2017, 9, 24043-24051.	4.0	11
2122	Thermally activated delayed fluorescence of Bis(9,9-dimethyl-9,10-dihydroacridine) dibenzo[b,d]thiophene 5,5-dioxide derivatives for organic light-emitting diodes. Journal of Luminescence, 2017, 190, 485-491.	1.5	6
2123	Simple-structure organic light emitting diodes: Exploring the use of thermally activated delayed fluorescence host and guest materials. Organic Electronics, 2017, 41, 237-244.	1.4	16
2124	Nearâ€Infrared Electrophosphorescence up to 1.1 µm using a Thermally Activated Delayed Fluorescence Molecule as Triplet Sensitizer. Advanced Materials, 2017, 29, 1604265.	11.1	51
2125	Hole injection enhancement in organic light emitting devices using plasma treated graphene oxide. Applied Surface Science, 2017, 397, 144-151.	3.1	27
2126	Constructing diazacarbazole-bicarbazole bipolar hybrids by optimizing the linker group for high efficiency, low roll off electrophosphorescent devices. Dyes and Pigments, 2017, 136, 54-62.	2.0	11
2127	Alkyl effects on the optoelectronic properties of bicarbazole/cyanobenzene hybrid host materials: Double delayed fluorescent host/dopant systems in solution-processed OLEDs. Dyes and Pigments, 2017, 136, 543-552.	2.0	25
2128	Pyrimidine-based twisted donor–acceptor delayed fluorescence molecules: a new universal platform for highly efficient blue electroluminescence. Chemical Science, 2017, 8, 953-960.	3.7	140
2129	Highly efficient green phosphorescent organic electroluminescent devices with a terbium complex as the sensitizer. Dyes and Pigments, 2017, 136, 361-367.	2.0	23
2130	Novel spirofluorene/indole/carbazole-based hole transport materials with high triplet energy for efficient green phosphorescent organic light-emitting diodes. Dyes and Pigments, 2017, 137, 84-90.	2.0	31
2131	Derivatives of 2-phenylindole and carbazole as host materials for phosphorescent organic light emitting diodes. Dyes and Pigments, 2017, 137, 58-68.	2.0	10
2132	A Theoretical Guideline for Designing Effective Host Materials Based on 4,4â€2-Bis(9-carbazolyl)-1,1â€2-biphenyl Derivatives for Blue Phosphorescent Devices. Bulletin of the Chemical Society of Japan, 2017, 90, 195-204.	2.0	3
2133	Fabrication of an Organic Light-Emitting Diode from New Host π Electron Rich Zinc Complex. Journal of Electronic Materials, 2017, 46, 544-551.	1.0	8
2134	Polarized Light Emission from Organic Light-Emitting Diodes. , 2017, , 555-585.		0
2135	Material Challenges for Flexible OLED Displays. , 2017, , 679-699.		0

#	Article	IF	CITATIONS
2136	Quantitative Detection in Lateral Flow Immunoassay Using Integrated Organic Optoelectronics. IEEE Sensors Journal, 2017, 17, 8343-8349.	2.4	9
2137	High efficient vacuum deposited red organic light-emitting diodes compared with their solution-processed counterpart. Molecular Crystals and Liquid Crystals, 2017, 654, 73-82.	0.4	3
2138	Enhancement of electroluminescent properties of organic optoelectronic integrated device by doping phosphorescent dye. Chinese Physics B, 2017, 26, 117001.	0.7	3
2139	Phosphorescent Cationic Iridium(III) Complexes with 1,3,4-Oxadiazole Cyclometalating Ligands: Solvent-Dependent Excited-State Dynamics. Chinese Journal of Chemical Physics, 2017, 30, 259-267.	0.6	4
2140	Light out-coupling efficiency enhancement in organic light-emitting diodes using a multilayer stacked electrode with sol-gel processed Ta_2O_5. Optics Express, 2017, 25, 27886.	1.7	10
2141	Strategies to Achieve High-Performance White Organic Light-Emitting Diodes. Materials, 2017, 10, 1378.	1.3	43
2142	Functional Organometallic Poly(arylene ethynylene)s: From Synthesis to Applications. Topics in Current Chemistry Collections, 2017, , 157-189.	0.2	0
2143	Theoretical study of thioxanthene derivatives for blue thermally activated delayed fluorescence emitters. Molecular Crystals and Liquid Crystals, 2017, 659, 134-139.	0.4	3
2144	Power Reduction of OLED Displays by Tone Mapping Based on Helmholtz-Kohlrausch Effect. IEICE Transactions on Electronics, 2017, E100.C, 1026-1030.	0.3	2
2145	New Plastic Scintillators for Gamma Spectroscopy, Neutron Detection and Imaging. , 2017, , .		2
2145 2146	New Plastic Scintillators for Gamma Spectroscopy, Neutron Detection and Imaging. , 2017, , . Bis(arylimidazole) Iridium Picolinate Emitters and Preferential Dipole Orientation in Films. ACS Omega, 2018, 3, 2673-2682.	1.6	2
2145 2146 2147	New Plastic Scintillators for Gamma Spectroscopy, Neutron Detection and Imaging. , 2017, , . Bis(arylimidazole) Iridium Picolinate Emitters and Preferential Dipole Orientation in Films. ACS Omega, 2018, 3, 2673-2682. Diarylboronâ€Based Asymmetric Redâ€Emitting Ir(III) Complex for Solutionâ€Processed Phosphorescent Organic Lightâ€Emitting Diode with External Quantum Efficiency above 28%. Advanced Science, 2018, 5, 1701067.	1.6 5.6	2 6 76
2145 2146 2147 2148	New Plastic Scintillators for Gamma Spectroscopy, Neutron Detection and Imaging. , 2017, , . Bis(arylimidazole) Iridium Picolinate Emitters and Preferential Dipole Orientation in Films. ACS Omega, 2018, 3, 2673-2682. Diarylboronâ€Based Asymmetric Redâ€Emitting Ir(III) Complex for Solutionâ€Processed Phosphorescent Organic Lightâ€Emitting Diode with External Quantum Efficiency above 28%. Advanced Science, 2018, 5, 1701067. <i>>De novo</i> > design of Dâ€"Ïfâ€"A molecules as universal hosts for monochrome and white phosphorescent organic light-emitting diodes. Chemical Science, 2018, 9, 4062-4070.	1.6 5.6 3.7	2 6 76 58
2145 2146 2147 2148 2149	New Plastic Scintillators for Gamma Spectroscopy, Neutron Detection and Imaging. , 2017, , . Bis(arylimidazole) Iridium Picolinate Emitters and Preferential Dipole Orientation in Films. ACS Omega, 2018, 3, 2673-2682. Diarylboronâ Based Asymmetric Redâ Emitting Ir(III) Complex for Solutionâ Processed Phosphorescent Organic Lightâ Organic Lightâ Emitting Diode with External Quantum Efficiency above 28%. Advanced Science, 2018, 5, 1701067. <i>> De novo </i> design of Dâ E ^a fâ Chemical Science, 2018, 9, 4062-4070. Light-emitting diodes of colloidal quantum dots and nanorod heterostructures for future emissive displays. Journal of Materials Chemistry C, 2018, 6, 2618-2634.	1.6 5.6 3.7 2.7	2 6 76 58 82
2145 2146 2147 2148 2149 2150	New Plastic Scintillators for Gamma Spectroscopy, Neutron Detection and Imaging. , 2017, , . Bis(arylimidazole) Iridium Picolinate Emitters and Preferential Dipole Orientation in Films. ACS Omega, 2018, 3, 2673-2682. Diarylboronâ€Based Asymmetric Redâ€Emitting Ir(III) Complex for Solutionâ€Processed Phosphorescent Organic Lightã€Emitting Diode with External Quantum Efficiency above 28%. Advanced Science, 2018, 5, 1701067. <i>> De novo</i> > design of D–Îf–A molecules as universal hosts for monochrome and white phosphorescent organic light-emitting diodes. Chemical Science, 2018, 9, 4062-4070. Light-emitting diodes of colloidal quantum dots and nanorod heterostructures for future emissive displays. Journal of Materials Chemistry C, 2018, 6, 2618-2634. General Approach To Compute Phosphorescent OLED Efficiency. Journal of Physical Chemistry C, 2018, 122, 6340-6347.	1.6 5.6 3.7 2.7 1.5	2 6 76 58 82 70
2145 2146 2147 2148 2149 2150 2151	New Plastic Scintillators for Gamma Spectroscopy, Neutron Detection and Imaging. , 2017, , . Bis(arylimidazole) Iridium Picolinate Emitters and Preferential Dipole Orientation in Films. ACS Omega, 2018, 3, 2673-2682. Diarylborona€Based Asymmetric Reda€Emitting Ir(III) Complex for Solutiona€Processed Phosphorescent Organic Lighta€Emitting Diode with External Quantum Efficiency above 28%. Advanced Science, 2018, 5, 1701067. <h> <h<< td=""> <h<< td=""> <h<< td=""> <h<< td=""> <h<< <="" td=""><td>1.6 5.6 3.7 2.7 1.5 1.7</td><td>2 6 76 58 82 70 15</td></h<<></h<<></h<<></h<<></h<<></h></h></h></h></h></h></h></h></h></h></h></h></h></h></h></h></h></h></h></h></h></h></h></h></h></h></h></h></h></h></h></h></h></h></h>	1.6 5.6 3.7 2.7 1.5 1.7	2 6 76 58 82 70 15
2145 2146 2147 2148 2149 2150 2151 2152	New Plastic Scintillators for Gamma Spectroscopy, Neutron Detection and Imaging. , 2017, , . Bis(arylimidazole) Iridium Picolinate Emitters and Preferential Dipole Orientation in Films. ACS Omega, 2018, 3, 2673-2682. DiarylboronåGBased Asymmetric RedåCEmitting Ir(III) Complex for SolutionåCProcessed Phosphorescent Organic LightåCEmitting Diode with External Quantum Efficiency above 28%. Advanced Science, 2018, 5, 1701067. <i>>De novo</i> design of DâC [®] IfâC [®] A molecules as universal hosts for monochrome and white phosphorescent organic light-emitting diodes. Chemical Science, 2018, 9, 4062-4070. Light-emitting diodes of colloidal quantum dots and nanorod heterostructures for future emissive displays. Journal of Materials Chemistry C, 2018, 6, 2618-2634. General Approach To Compute Phosphorescent OLED Efficiency. Journal of Physical Chemistry C, 2018, 122, 6340-6347. Effect of conjugation and aromaticity of 3,6 di-substituted carbazoles on triplet energy and the implication of triplet energy in multiple-cyclic aromatic compounds. RSC Advances, 2018, 8, 9850-9857. A Methodological Study on Tuning the Thermally Activated Delayed Fluorescent Performance by Molecular Constitution in Acridineãe [®] Benzophenone Derivatives. Chemistry - an Asian Journal, 2018, 13, 1187-1191.	1.6 5.6 3.7 2.7 1.5 1.7	2 6 76 58 82 70 15

#	Article	IF	CITATIONS
2154	Highly Emissive Fused Heterocyclic Alkynylgold(III) Complexes for Multiple Color Emission Spanning from Green to Red for Solutionâ€Processable Organic Lightâ€Emitting Devices. Angewandte Chemie - International Edition, 2018, 57, 5463-5466.	7.2	44
2155	Realizing performance improvement of blue thermally activated delayed fluorescence molecule DABNA by introducing substituents on the para-position of boron atom. Chemical Physics Letters, 2018, 701, 98-102.	1.2	17
2156	Efficient white phosphorescent organic light-emitting diodes using ultrathin emissive layers (<1 nm). Scientific Reports, 2018, 8, 6068.	1.6	15
2157	Intrinsic quantum efficiency enhancement in well-known Ir(iii) complexes by virtue of a simple and controllable deuteriation strategy. Materials Chemistry Frontiers, 2018, 2, 1215-1224.	3.2	14
2158	Addressing the efficiency roll-off in a fluorescent OLED by facile electron transport layer doping and carrier confinement. Optical Materials, 2018, 79, 413-419.	1.7	9
2159	Effect of various host characteristics on blue thermally activated delayed fluorescent devices. Organic Electronics, 2018, 59, 39-44.	1.4	24
2160	Thermally activated delayed fluorescence with a narrow emission spectrum and organic room temperature phosphorescence by controlling spin–orbit coupling and phosphorescence lifetime of metal-free organic molecules. Journal of Materials Chemistry C, 2018, 6, 5434-5443.	2.7	56
2161	Quasiâ€2D Inorganic CsPbBr ₃ Perovskite for Efficient and Stable Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1801193.	7.8	108
2162	Design strategies for materials showing thermally activated delayed fluorescence and beyond: Towards the fourthâ€generation OLED mechanism. Journal of the Society for Information Display, 2018, 26, 194-199.	0.8	26
2163	Probing Triplet Excited States and Managing Blue Light Emission of Neutral Tetradentate Platinum(II) Complexes. Journal of Physical Chemistry Letters, 2018, 9, 2285-2292.	2.1	31
2164	Aggregationâ€Enhanced Emission and Thermally Activated Delayed Fluorescence of Derivatives of 9â€Phenylâ€9 <i>H</i> â€Carbazole: Effects of Methoxy and <i>tert</i> â€Butyl Substituents. Chemistry - A European Journal, 2018, 24, 9581-9591.	1.7	52
2165	Efficient, Nonintrusive Outcoupling in Organic Light Emitting Devices Using Embedded Microlens Arrays. ACS Photonics, 2018, 5, 2453-2458.	3.2	80
2166	Exciplex: An Intermolecular Charge-Transfer Approach for TADF. ACS Applied Materials & Interfaces, 2018, 10, 19279-19304.	4.0	288
2167	Luminescent Diiridium Complexes with Bridging Pyrazolates: Characterization and Fabrication of OLEDs Using Vacuum Thermal Deposition. Advanced Optical Materials, 2018, 6, 1800083.	3.6	34
2168	Diarylâ€1,2,3â€Triazolylidene Platinum(II) Complexes. Chemistry - A European Journal, 2018, 24, 5584-5590.	1.7	40
2169	Highly Emissive Fused Heterocyclic Alkynylgold(III) Complexes for Multiple Color Emission Spanning from Green to Red for Solutionâ€Processable Organic Lightâ€Emitting Devices. Angewandte Chemie, 2018, 130, 5561-5564.	1.6	10
2170	Effective photosensitized, electrosensitized, and mechanosensitized luminescence of lanthanide complexes. NPG Asia Materials, 2018, 10, 52-70.	3.8	154
2171	Efficient triplet utilization in conventional solution-processed phosphorescent organic light emitting diodes using a thermal activated delayed fluorescence polymer as an assistant host. Journal of Materials Chemistry C, 2018, 6, 4800-4806.	2.7	16

# 2172	ARTICLE A novel spiro-annulated benzimidazole host for highly efficient blue phosphorescent organic light-emitting devices. Chemical Communications, 2018, 54, 4541-4544.	IF 2.2	Citations 30
2173	All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nature Reviews Materials, 2018, 3, .	23.3	1,097
2174	Scattering quantified: Evaluation of corrugation induced outcoupling concepts in organic light-emitting diodes. Organic Electronics, 2018, 58, 250-256.	1.4	17
2175	Ge-based bipolar small molecular host for highly efficient blue OLEDs: multiscale simulation of charge transport. Journal of Materials Chemistry C, 2018, 6, 6146-6152.	2.7	23
2176	Novel tetraarylsilane-based hosts for blue phosphorescent organic light-emitting diodes. Organic Electronics, 2018, 55, 117-125.	1.4	4
2177	Exploring the experimental photoluminescence, Raman and infrared responses and density functional theory results for TFB polymer. Synthetic Metals, 2018, 236, 24-30.	2.1	10
2178	Experimental analysis of dark frame growth mechanism in organic light-emitting diodes. Japanese Journal of Applied Physics, 2018, 57, 02CA10.	0.8	0
2179	Efficient blue phosphorescent organic light-emitting diodes enabled by Ag-nanoparticles-embedded hole transporting layer. Organic Electronics, 2018, 56, 31-36.	1.4	11
2180	Blue-light emitting electrochemical cells comprising pyrene-imidazole derivatives. Optical Materials, 2018, 78, 44-51.	1.7	7
2181	Influence of the Mixed-Host Heterojunction on the Spectrum Stability in White Phosphorescent Organic Light Emitting Diodes. ECS Journal of Solid State Science and Technology, 2018, 7, R7-R11.	0.9	2
2182	Extremely Low Roll-Off and High Efficiency Achieved by Strategic Exciton Management in Organic Light-Emitting Diodes with Simple Ultrathin Emitting Layer Structure. ACS Applied Materials & Interfaces, 2018, 10, 8148-8154.	4.0	29
2183	Synthesis and green phosphorescent OLED device performance of cyanofluorene-linked phenylcarbazoles as host material. New Journal of Chemistry, 2018, 42, 5059-5065.	1.4	14
2184	Deep Blue Phosphorescent Organic Lightâ€Emitting Diodes with ClE <i>y</i> Value of 0.11 and External Quantum Efficiency up to 22.5%. Advanced Materials, 2018, 30, e1705005.	11.1	147
2185	A Detailed Evaluation for the Nonradiative Processes in Highly Phosphorescent Iridium(III) Complexes. Journal of Physical Chemistry C, 2018, 122, 4029-4036.	1.5	16
2186	Versatile functionalization of trifluoromethyl based deep blue thermally activated delayed fluorescence materials for organic light emitting diodes. New Journal of Chemistry, 2018, 42, 4317-4323.	1.4	32
2187	Basic photophysical analysis of a thermally activated delayed fluorescence copper(i) complex in the solid state: theoretical estimations from a polarizable continuum model (PCM)-tuned range-separated density functional approach. Physical Chemistry Chemical Physics, 2018, 20, 6548-6561.	1.3	11
2188	Rational Molecular Design for Deepâ€Blue Thermally Activated Delayed Fluorescence Emitters. Advanced Functional Materials, 2018, 28, 1706023.	7.8	195
2189	Efficient Quantum-Dot Light-Emitting Diodes Employing Thermally Activated Delayed Fluorescence Emitters as Exciton Harvesters. ACS Applied Materials & Interfaces, 2018, 10, 7435-7441.	4.0	23

#	Article	IF	CITATIONS
2190	Experimental and theoretical studies of structural and photophysical properties of a novel heteroleptic cyclometalated iridium(III) complex with 8-hydroxyquinoline-phenylazo ligand. Journal of Molecular Structure, 2018, 1158, 122-132.	1.8	6
2191	Efficient deep blue fluorescent OLEDs with ultra-low efficiency roll-off based on 4H-1,2,4-triazole cored D-A and D-A-D type emitters. Dyes and Pigments, 2018, 153, 10-17.	2.0	27
2192	Conformational Relaxation and Thermally Activated Delayed Fluorescence in Anthraquinone-Based Intramolecular Charge-Transfer Compound. Journal of Physical Chemistry C, 2018, 122, 3727-3737.	1.5	65
2193	A combined theoretical and experimental investigation on the influence of the bromine substitution pattern on the photophysics of conjugated organic chromophores. Physical Chemistry Chemical Physics, 2018, 20, 3768-3783.	1.3	17
2194	Magnetic Field Effects in Radical Pairs and Exciplexes Resulting From Spin-Dynamics Caused by Hyperfine Interaction, g-factor Variations as Well as Ferromagnetic Fringe Fields. Materials and Energy, 2018, , 91-142.	2.5	0
2195	Synthesis and characterization of phosphorescent isomeric iridium complexes with a rigid cyclometalating ligand. Polyhedron, 2018, 140, 138-145.	1.0	9
2196	Impedance spectroscopy of OLEDs as a tool for estimating mobility and the concentration of charge carriers in transport layers. Journal of Materials Chemistry C, 2018, 6, 1008-1014.	2.7	44
2197	Exciplex-Forming Cohost for High Efficiency and High Stability Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 2151-2157.	4.0	66
2198	Spatial separation of sensitizer and fluorescent emitter for high quantum efficiency in hyperfluorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 1504-1508.	2.7	53
2199	Excited State Properties of a Thermally Activated Delayed Fluorescence Molecule in Solid Phase Studied by Quantum Mechanics/Molecular Mechanics Method. Journal of Physical Chemistry C, 2018, 122, 2358-2366.	1.5	68
2200	Design of donor–acceptor copolymers for organic photovoltaic materials: a computational study. Physical Chemistry Chemical Physics, 2018, 20, 3581-3591.	1.3	42
2201	Novel dendritic large molecules as solution-processable thermally activated delayed fluorescent emitters for simple structured non-doped organic light emitting diodes. Journal of Materials Chemistry C, 2018, 6, 1160-1170.	2.7	34
2202	Influence of spin relaxation induced by molecular vibration on thermally activated delayed fluorescence. Organic Electronics, 2018, 54, 161-166.	1.4	2
2203	Efficient solution-processed yellow/orange phosphorescent OLEDs based on heteroleptic Ir(â¢) complexes with 2-(9,9-diethylfluorene-2-yl)pyridine main ligand and various ancillary ligands. Organic Electronics, 2018, 54, 197-203.	1.4	20
2204	Electroluminescence Stability of Organic Light-Emitting Devices Utilizing a Nondoped Pt-Based Emission Layer. ACS Omega, 2018, 3, 4760-4765.	1.6	5
2205	Reversible control of triplet dynamics in metal-organic framework-entrapped organic emitters via external gases. Communications Chemistry, 2018, 1, .	2.0	20
2207	Improvement of singlet exciton induced by spin flip in conjugated polymers. Organic Electronics, 2018, 59, 56-62.	1.4	1
2208	Efficient blue and green phosphorescent OLEDs with host material containing electronically isolated carbazolyl fragments. Optical Materials, 2018, 79, 446-449.	1.7	5

#	Article	IF	CITATIONS
2209	Molecular Design of Blue Phosphorescent Host Materials for Phenylimidazoleâ€Type Blue Triplet Emitters to Extend Operational Lifetime. Advanced Optical Materials, 2018, 6, 1701263.	3.6	17
2210	Development of solution-processable blue/hybrid-white OLEDs based on thermally activated delayed fluorescence. Journal of Industrial and Engineering Chemistry, 2018, 65, 35-39.	2.9	17
2211	Delocalization of frontier orbitals induced red emission for heptazine based thermally activated delayed fluorescence molecule: First-principles study. Chemical Physics Letters, 2018, 698, 187-194.	1.2	6
2212	Carbene–Metal–Amide Bond Deformation, Rather Than Ligand Rotation, Drives Delayed Fluorescence. Journal of Physical Chemistry Letters, 2018, 9, 1620-1626.	2.1	57
2213	Triphenylamine/oxadiazole hybrids differing by the substitution pattern: Influence on the electroluminescence properties of yellow and green emitting diodes. Synthetic Metals, 2018, 240, 21-29.	2.1	1
2214	Spin-orbit coupling effects on energy transfer channel in organic semiconductors. Journal of Molecular Liquids, 2018, 259, 411-415.	2.3	3
2215	Investigation of electro-optical properties for electrochemical luminescence device with a new electrode structure. Optical Materials, 2018, 78, 226-234.	1.7	4
2216	Non-doped white organic light-emitting diodes with superior efficiency/color stability by employing ultra-thin phosphorescent emitters. Journal of Materials Chemistry C, 2018, 6, 4250-4256.	2.7	15
2217	Sustainable metal complexes for organic light-emitting diodes (OLEDs). Coordination Chemistry Reviews, 2018, 373, 49-82.	9.5	273
2218	Near-infrared emission of dinuclear iridium complexes with hole/electron transporting bridging and their monomer in solution-processed organic light-emitting diodes. Dyes and Pigments, 2018, 149, 315-322.	2.0	37
2219	Intersystem crossing mechanism of thermally activated delayed fluorescence copper(I) thiolate complex: The roles of exchange coupling and magnetic spin interactions. Organic Electronics, 2018, 52, 110-122.	1.4	9
2220	Structural Mimics of Phenyl Pyridine (ppy) – Substituted, Phosphorescent Cyclometalated Homo and Heteroleptic Iridium(III) Complexes for Organic Light Emitting Diodes – An Overview. Chemical Record, 2018, 18, 293-349.	2.9	47
2221	Optical Design and Optimization of Highly Efficient Sunlight-like Three-Stacked Warm White Organic Light Emitting Diodes. ACS Photonics, 2018, 5, 655-662.	3.2	24
2222	Synthesis, physical and electroluminescent properties of [1,2,4]-triazolo[4,3-a]-pyridine based bipolar red host materials and their applications in organic light-emitting diodes. Journal of Luminescence, 2018, 196, 470-476.	1.5	5
2223	Photokinetic study on remarkable excimer phosphorescence from heteroleptic cyclometalated platinum(<scp>ii</scp>) complexes bearing a benzoylated 2-phenylpyridinate ligand. Physical Chemistry Chemical Physics, 2018, 20, 542-552.	1.3	18
2224	Reliable, All-Phosphorescent Stacked White Organic Light Emitting Devices with a High Color Rendering Index. ACS Photonics, 2018, 5, 630-635.	3.2	22
2225	Triplet emitters versus TADF emitters in OLEDs: A comparative study. Polyhedron, 2018, 140, 51-66.	1.0	61
2226	"Tradeâ€Off―Hidden in Condensed State Solvation: Multiradiative Channels Design for Highly Efficient Solutionâ€Processed Purely Organic Electroluminescence at High Brightness. Advanced Functional Materials, 2018, 28, 1704927.	7.8	105

#	ARTICLE	IF	CITATIONS
2227	Trisdibenzofuran-derived electron transport type exciton blocking materials for improved efficiency and lifetime in blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 320-325.	2.7	14
2228	Sky-blue thermally activated delayed fluorescence material employing a diphenylethyne acceptor for organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 36-42.	2.7	23
2229	Efficient non-doped bluish-green organic light emitting devices based on N1 functionalized star-shaped phenanthroimidazole fluorophores. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 353, 53-64.	2.0	27
2230	Carbazole/phenylpyridine hybrid compound as dual role of efficient host and ligand of iridium complex: Well matching of host-dopant for solution-processed green phosphorescent OLEDs. Dyes and Pigments, 2018, 150, 130-138.	2.0	14
2231	Oligomers containing pyridinyl-substituted carbazole rings as host materials for phosphorescent OLEDs. Molecular Crystals and Liquid Crystals, 2018, 670, 160-167.	0.4	0
2232	Efficient deep red phosphorescent OLEDs using 1,2,4-thiadiazole core-based novel bipolar host with low efficiency roll-off. Frontiers of Optoelectronics, 2018, 11, 375-384.	1.9	12
2233	Doping: A Key Enabler for Organic Transistors. Advanced Materials, 2018, 30, e1801830.	11.1	141
2234	Efficient green photoluminescence and electroluminescence of iridium complexes with high electron mobility. Dalton Transactions, 2018, 47, 16543-16550.	1.6	10
2235	Influence of electron donating ability on reverse intersystem crossing rate for one kind of thermally activated delayed fluorescence molecules. Chinese Journal of Chemical Physics, 2018, 31, 291-299.	0.6	3
2236	Cocrystals with tunable luminescence colour self-assembled by a predictable method. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2018, 74, 610-617.	0.5	10
2237	3. Potential thermally activated delayed fluorescence properties of a series of 2,3-dicyanopyrazine based compounds. , 2018, , 33-48.		0
2238	Double layer printed high performance OLED based on PEDOT:PSS/Ir(bt) ₂ acac:CDBP. AIP Advances, 2018, 8, 115112.	0.6	7
2239	Porous cellulose paper as a light out coupling medium for organic light-emitting diodes. Journal of Information Display, 2018, 19, 171-177.	2.1	8
2240	Plasmonic-Enhanced Organic Light-Emitting Diodes Based on a Graphene Oxide/Au Nanoparticles Composite Hole Injection Layer. Frontiers in Materials, 2018, 5, .	1.2	13
2241	Deep blue emitting Cu(<scp>i</scp>) tripod complexes. Design of high quantum yield materials showing TADF-assisted phosphorescence. Dalton Transactions, 2018, 47, 17067-17076.	1.6	37
2242	Conjugated Organic Polymers for Optoelectronic Devices. Polymers and Polymeric Composites, 2018, , 1-40.	0.6	1
2243	3.2: Singletâ€Triplet Splitting Energy Management via Acceptor Substitution: Complanation Molecular Design for Deepâ€Blue Thermally Activated Delayed Fluorescent Organic Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2018, 49, 16-21.	0.1	1
2244	Kinetic Modeling of Transient Photoluminescence from Thermally Activated Delayed Fluorescence. Journal of Physical Chemistry C, 2018, 122, 29173-29179.	1.5	45

#	Article	IF	CITATIONS
2247	Quantum-Chemical Insights into the Phosphorescence Efficiencies of Blue-Emitting Platinum Complexes with Phenylene-Bridged Pincer Ligands. Inorganic Chemistry, 2018, 57, 12174-12186.	1.9	11
2248	Molecular Design and Device Design to Improve Stabilities of Organic Light-Emitting Diodes. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2018, 31, 315-321.	0.1	8
2249	Accurate Control of Deuterated Locations and Amount of Deep Blue Ir(dfpypy)2pic for Phosphorescent Efficiency Enhancement: Evaluations from Theoretical Aspect. Chemical Research in Chinese Universities, 2018, 34, 781-785.	1.3	1
2250	Electron Affinity Control of Amorphous Oxide Semiconductors and Its Applicability to Organic Electronics. Advanced Materials Interfaces, 2018, 5, 1801307.	1.9	9
2251	All Solution-Processed Quintuple-Layer Organic Light-Emitting Diodes Containing Organic-Inorganic Hybrid Active Layers Fabricated by Sol-Gel Method. Key Engineering Materials, 2018, 777, 113-120.	0.4	0
2254	Synthesis, crystal structure and luminescent properties of p-diphenylsulphone compounds with different substituents. Optical Materials, 2018, 86, 449-454.	1.7	4
2255	Tailoring the Emission of Fluorinated Bipyridine-Chelated Iridium Complexes. ACS Omega, 2018, 3, 13808-13816.	1.6	8
2256	Optimization on Molecular Restriction for Highly Efficient Thermally Activated Delayed Fluorescence Emitters. Advanced Optical Materials, 2018, 6, 1800935.	3.6	26
2257	New Generation of High Efficient OLED Using Thermally Activated Delayed Fluorescent Materials. , 2018, , .		1
2261	Study on the light extraction mechanism of organic light-emitting diodes with corrugated Ag cathode made by soft nanoimprint. Japanese Journal of Applied Physics, 2018, 57, 080306.	0.8	2
2262	Zero-Magnetic-Field Splitting in the Excited Triplet States of Octahedral Hexanuclear Molybdenum(II) Clusters: [{Mo ₆ X ₈ }Y ₆] ^{2–} (X, Y = Cl, Br, I). Journal of Physical Chemistry A, 2018, 122, 9014-9024.	1.1	12
2263	Synthesis and Characterization of Highly Efficient Solutionâ€Processable Green Ir(III) Complexes with High Current Efficiency and Very Low Efficiency Rollâ€Off. Advanced Functional Materials, 2018, 28, 1804714.	7.8	44
2264	Phosphorescent Cyclometalated Platinum(II) aNHC Complexes. Chemistry - A European Journal, 2018, 24, 15603-15612.	1.7	17
2265	Substituents engineered deep-red to near-infrared phosphorescence from tris-heteroleptic iridium(<scp>iii</scp>) complexes for solution processable red-NIR organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 10640-10658.	2.7	55
2266	Pyrrolo[1, 2â€a]quinoxalineâ€Based Bipolar Host Materials for Efficient Red Phosphorescent OLEDs. ChemistrySelect, 2018, 3, 10010-10018.	0.7	13
2267	Facial and Meridional Isomers of Tris(bidentate) Ir(III) Complexes: Unravelling Their Different Excited State Reactivity. Inorganic Chemistry, 2018, 57, 12106-12112.	1.9	38
2268	Phosphorescent Modulation of Metallophilic Clusters and Recognition of Solvents through a Flexible Host-Guest Assembly: A Theoretical Investigation. Nanomaterials, 2018, 8, 685.	1.9	2
2269	Deep-Blue Oxadiazole-Containing Thermally Activated Delayed Fluorescence Emitters for Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 33360-33372.	4.0	67

#	Article	IF	Citations
2270	Photophysics of Deep Blue Acridane- and Benzonitrile-Based Emitter Employing Thermally Activated	1.5	16
2271	Light Extraction Enhancement in Flexible Organic Light-Emitting Diodes by a Light-Scattering Layer of Dewetted Ag Nanoparticles at Low Temperatures. ACS Applied Materials & amp; Interfaces, 2018, 10, 32373-32379.	4.0	31
2272	Room-Temperature Orange-Red Phosphorescence by Way of Intermolecular Charge Transfer in Single-Component Phenoxazine–Quinoline Conjugates and Chemical Sensing. Journal of Physical Chemistry C, 2018, 122, 21589-21597.	1.5	37
2273	Controlling excimer formation in indolo[3,2,1- <i>jk</i>]carbazole/9 <i>H</i> -carbazole based host materials for RGB PhOLEDs. Journal of Materials Chemistry C, 2018, 6, 9914-9924.	2.7	18
2274	Carbazole and Benzophenone Based Twisted Donor–Acceptor Systems as Solution Processable Green Thermally Activated Delayed Fluorescence Organic Light Emitters. Chemistry Letters, 2018, 47, 1236-1239.	0.7	1
2275	Potential thermally activated delayed fluorescence properties of a series of 2,3-dicyanopyrazine based compounds. Physical Sciences Reviews, 2018, 3, .	0.8	1
2276	Accurate Treatment of Charge-Transfer Excitations and Thermally Activated Delayed Fluorescence Using the Particle–Particle Random Phase Approximation. Journal of Chemical Theory and Computation, 2018, 14, 3196-3204.	2.3	12
2277	High Performance p―and nâ€Type Lightâ€Emitting Fieldâ€Effect Transistors Employing Thermally Activated Delayed Fluorescence. Advanced Functional Materials, 2018, 28, 1800340.	7.8	31
2278	Comprehensive Investigation into Luminescent Properties of Ir(III) Complexes: An Integrated Computational Study of Radiative and Nonradiative Decay Processes. Inorganic Chemistry, 2018, 57, 6561-6570.	1.9	40
2279	Control of excimer phosphorescence by steric effects in cyclometalated platinum(<scp>ii</scp>) diketonate complexes bearing peripheral carbazole moieties towards application in non-doped white OLEDs. New Journal of Chemistry, 2018, 42, 11583-11592.	1.4	15
2280	Molecular design of sensitizer to suppress efficiency loss mechanism in hyper-fluorescent organic light-emitting diodes. Organic Electronics, 2018, 59, 236-242.	1.4	27
2281	Influence of the hole transport layer on spectral stability in the white phosphorescent organic light emitting diode with non-doped structure. Optical Materials, 2018, 82, 130-134.	1.7	5
2282	Exciplex-Enhanced Singlet Emission Efficiency of Nondoped Organic Light Emitting Diodes Based on Derivatives of Tetrafluorophenylcarbazole and Tri/Tetraphenylethylene Exhibiting Aggregation-Induced Emission Enhancement. Journal of Physical Chemistry C, 2018, 122, 14827-14837.	1.5	27
2283	High Efficiency Fluorescent Electroluminescence with Extremely Low Efficiency Rollâ€Off Generated by a Donor–Bianthracene–Acceptor Structure: Utilizing Perpendicular Twisted Intramolecular Charge Transfer Excited State. Advanced Optical Materials, 2018, 6, 1800060.	3.6	17
2284	Pâ€177: Engineering Host Materials for High Efficiency and Long Operational Lifetime in Blue Phosphorescent Organic Lightâ€emitting Diodes. Digest of Technical Papers SID International Symposium, 2018, 49, 1825-1828.	0.1	0
2285	Optical Properties of Nanomaterials. , 2018, , 291-335.		5
2286	Peripheral Amplification of Multiâ€Resonance Induced Thermally Activated Delayed Fluorescence for Highly Efficient OLEDs. Angewandte Chemie - International Edition, 2018, 57, 11316-11320.	7.2	314
2287	Optical Energy Losses in Organic–Inorganic Hybrid Perovskite Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800667	3.6	91

#	Article	IF	CITATIONS
2288	Improvement of charge balance, recombination zone confinement, and low efficiency roll-off in green phosphorescent OLEDs by altering electron transport layer thickness. Materials Research Express, 2018, 5, 076201.	0.8	42
2289	Dibenzo[<i>a</i> , <i>c</i>]phenazineâ€Based Donorâ€Acceptor (D–A) Tetra Branched Molecules: Fine Tuning of Optical Properties. ChemistrySelect, 2018, 3, 6953-6959.	0.7	5
2290	Virtual Screening of Hole Transport, Electron Transport, and Host Layers for Effective OLED Design. Journal of Chemical Information and Modeling, 2018, 58, 2440-2449.	2.5	22
2291	Theoretical perspective to light outcoupling and management in perovskite light-emitting diodes. Organic Electronics, 2018, 61, 351-358.	1.4	40
2292	Peripheral Amplification of Multiâ€Resonance Induced Thermally Activated Delayed Fluorescence for Highly Efficient OLEDs. Angewandte Chemie, 2018, 130, 11486-11490.	1.6	77
2293	DFT/TDDFT insight into the impact of ring size of the NHC chelating unit of high effective phosphorescent Platinum (II) complexes. Applied Organometallic Chemistry, 2018, 32, e4467.	1.7	10
2294	Ultralong-lived room temperature triplet excitons: molecular persistent room temperature phosphorescence and nonlinear optical characteristics with continuous irradiation. Journal of Materials Chemistry C, 2018, 6, 11785-11794.	2.7	48
2295	Toward Tunable Electroluminescent Devices by Correlating Function and Submolecular Structure in 3D Crystals, 2D-Confined Monolayers, and Dimers. ACS Applied Materials & amp; Interfaces, 2018, 10, 22460-22473.	4.0	24
2296	The Importance of Excitedâ€ S tate Energy Alignment for Efficient Exciplex Systems Based on a Study of Phenylpyridinato Boron Derivatives. Angewandte Chemie, 2018, 130, 12560-12564.	1.6	25
2297	Metal Halide Perovskites: From Crystal Formations to Lightâ€Emittingâ€Diode Applications. Small Methods, 2018, 2, 1800093.	4.6	36
2298	Photosensitizers with Aggregationâ€induced Emission: Materials and Biomedical Applications. Advanced Materials, 2018, 30, e1801350.	11.1	611
2299	Tailoring spin mixtures by ion-enhanced Maxwell magnetic coupling in color-tunable organic electroluminescent devices. Light: Science and Applications, 2018, 7, 46.	7.7	11
2300	Boosting the Heavy Atom Effect by Cavitand Encapsulation: Room Temperature Phosphorescence of Pyrene in the Presence of Oxygen. Journal of Physical Chemistry A, 2018, 122, 6578-6584.	1.1	16
2301	The Importance of Excited‣tate Energy Alignment for Efficient Exciplex Systems Based on a Study of Phenylpyridinato Boron Derivatives. Angewandte Chemie - International Edition, 2018, 57, 12380-12384.	7.2	83
2302	Strategies on Cyclometalating Ligand Substitution of Several Ir(III) Complexes: Theoretical Investigation of Different Molecular Behaviors. Organometallics, 2018, 37, 2491-2499.	1.1	13
2303	Using phosphorescent PtAu ₃ clusters for superior solution-processable organic light emitting diodes with very small efficiency roll-off. Journal of Materials Chemistry C, 2018, 6, 8966-8976.	2.7	24
2304	Janus-Type Dendritic Organoiridium(III) Complex Bearing Hole- and Electron-Transporting Moieties: Synthesis, Luminescence Properties, and OLED Applications. Bulletin of the Chemical Society of Japan, 2018, 91, 1419-1428.	2.0	5
2305	Emergence of White Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence. Applied Sciences (Switzerland), 2018, 8, 299.	1.3	34

# 2306	ARTICLE Strategy Used for Controlling the Photostability of Tridentate Pt(II) Complexes To Enhance the Device Lifetimes of Blue Phosphorescent Organic Light-Emitting Diodes: The Role of the Pt-C*(NHC) Bond and Auxiliany Lizand Journal of Physical Chemistry C 2018, 122, 16872 16878	IF 1.5	Citations
2307	Efficient bluish green electroluminescence of iridium complexes with good electron mobility. New Journal of Chemistry, 2018, 42, 13351-13357.	1.4	3
2308	Thermal and Nonthermal Factors Affecting the Lifetime of Blue Phosphorescent Organic Light-Emitting Diodes. IEEE Transactions on Electron Devices, 2018, 65, 3300-3304.	1.6	15
2309	Quantum Chemical Design Guidelines for Absorption and Emission Color Tuning of fac-Ir(ppy)3 Complexes. Molecules, 2018, 23, 577.	1.7	7
2310	Organic Semiconductors â~†. , 2018, , .		1
2311	Rational design of phosphorescent iridium(III) complexes for emission color tunability and their applications in OLEDs. Coordination Chemistry Reviews, 2018, 374, 55-92.	9.5	240
2312	Influence of restricted rotation of small-sized substituent on phosphorescence efficiency for Pt(II) complexes: A theoretical investigation. Organic Electronics, 2018, 61, 25-34.	1.4	2
2313	Fluorinationâ€controlled Aggregation and Intermolecular Interactions in Pt(II) Complexes with Tetradentate Luminophores. Israel Journal of Chemistry, 2018, 58, 932-943.	1.0	14
2314	Hole mobility and conductance of iridium complex doped NPB emission layers for organic light-emitting diodes. Synthetic Metals, 2018, 244, 61-65.	2.1	6
2315	Highâ€Z Sensitized Plastic Scintillators: A Review. Advanced Materials, 2018, 30, e1706956.	11.1	161
2316	White OLED (WOLED) and Charge Generation Layer (CGL). , 2018, , 1-22.		3
2317	Luminescent Lanthanide Coordination Zippers with Dense-Packed Structures for High Energy Transfer Efficiencies. Springer Theses, 2018, , 15-33.	0.0	0
2318	In-situ embedding of carbon dots in a trisodium citrate crystal matrix for tunable solid-state fluorescence. Carbon, 2018, 136, 359-368.	5.4	78
2319	Dual Emission through Thermally Activated Delayed Fluorescence and Room-Temperature Phosphorescence, and Their Thermal Enhancement via Solid-State Structural Change in a Carbazole-Quinoline Conjugate. Journal of Physical Chemistry Letters, 2018, 9, 2733-2738.	2.1	81
2320	Dinuclear Cu(I) Complex with Combined Bright TADF and Phosphorescence. Zero-Field Splitting and Spin–Lattice Relaxation Effects of the Triplet State. Journal of Physical Chemistry Letters, 2018, 9, 2848-2856.	2.1	60
2321	Lensfree OLEDs with over 50% external quantum efficiency via external scattering and horizontally oriented emitters. Nature Communications, 2018, 9, 3207.	5.8	96
2322	Recent Advances of Exciplex-Based White Organic Light-Emitting Diodes. Applied Sciences (Switzerland), 2018, 8, 1449.	1.3	37
2323	Organic Lightâ€Emitting Diodes Based on Imidazole Semiconductors. Advanced Optical Materials, 2018, 6, 1800258.	3.6	110

#	Article	IF	CITATIONS
2324	Vacuum chamber considerations for improved organic light-emitting diode lifetime. AIP Advances, 2018, 8, 085025.	0.6	9
2325	Enhanced Electroluminescence Efficiency in Metal Halide Nanocluster Based Light Emitting Diodes through Apical Halide Exchange. ACS Applied Energy Materials, 2018, 1, 3587-3592.	2.5	7
2326	Extremely Efficient Transparent Flexible Organic Lightâ€Emitting Diodes with Nanostructured Composite Electrodes. Advanced Optical Materials, 2018, 6, 1800831.	3.6	55
2327	Thermally activated delayed fluorescence processes for Cu(<scp>i</scp>) complexes in solid-state: a computational study using quantitative prediction. RSC Advances, 2018, 8, 28421-28432.	1.7	8
2328	Meltdown! Local Heating by Decaying Excited Host Positive Polarons Triggers Aggregation Quenching in Blue PhOLEDs. ChemPhysChem, 2018, 19, 2961-2966.	1.0	6
2329	Purely Organic Materials with Aggregationâ€Induced Delayed Fluorescence for Efficient Nondoped OLEDs. Advanced Optical Materials, 2018, 6, 1800264.	3.6	156
2330	Pâ€171: Modulation of Dibenzothiophene and Carbazole Moieties in Host Material towards High Performance Blue Phosphorescent OLEDs. Digest of Technical Papers SID International Symposium, 2018, 49, 1804-1807.	0.1	0
2331	Thermally Activated Delayed Fluorescence Host for High Performance Organic Light-Emitting Diodes. Scientific Reports, 2018, 8, 8832.	1.6	28
2332	Novel spironaphthalenone-based host materials for efficient red phosphorescent and thermally activated delayed fluorescent OLEDs. Organic Electronics, 2018, 61, 376-382.	1.4	13
2333	The triplet-triplet annihilation process of triplet to singlet excitons to fluorescence in polymer light-emitting diodes. Organic Electronics, 2018, 62, 505-510.	1.4	16
2334	Synthesis and characterization of electroactive polymers containing carbazole and harmane groups. Molecular Crystals and Liquid Crystals, 2018, 662, 82-90.	0.4	0
2336	OLEDs based on Ln(III) complexes for near-infrared emission. , 2018, , 133-170.		1
2337	Enhanced Roomâ€Temperature Phosphorescence through Intermolecular Halogen/Hydrogen Bonding. Chemistry - A European Journal, 2019, 25, 714-723.	1.7	113
2338	Manipulating phosphorescence efficiencies of orange iridium(III) complexes through ancillary ligand control. Dyes and Pigments, 2019, 160, 119-127.	2.0	9
2339	High-efficiency organic light-emitting diodes with exciplex hosts. Journal of Materials Chemistry C, 2019, 7, 11329-11360.	2.7	114
2340	Difluoroboron-Enabled Thermally Activated Delayed Fluorescence. ACS Applied Materials & Interfaces, 2019, 11, 32209-32217.	4.0	46
2341	The Important Role of Coordination Geometry on Photophysical Properties of Blue-Green Emitting Ruthenium(II) Diisocyano Complexes Bearing 2-Benzoxazol-2-ylphenolate. Inorganic Chemistry, 2019, 58, 11372-11381.	1.9	6
2342	Polypyridyl ligands as a versatile platform for solid-state light-emitting devices. Chemical Society Reviews, 2019, 48, 5033-5139.	18.7	93

#	Article	IF	CITATIONS
2343	Triazine-Acceptor-Based Green Thermally Activated Delayed Fluorescence Materials for Organic Light-Emitting Diodes. Materials, 2019, 12, 2646.	1.3	21
2344	Thermally activated delayed fluorescence molecules and their new applications aside from OLEDs. Chinese Chemical Letters, 2019, 30, 1717-1730.	4.8	57
2345	Simultaneous Longâ€Persistent Blue Luminescence and High Quantum Yield within 2D Organic–Metal Halide Perovskite Micro/Nanosheets. Angewandte Chemie, 2019, 131, 15272-15279.	1.6	46
2346	Simultaneous Longâ€Persistent Blue Luminescence and High Quantum Yield within 2D Organic–Metal Halide Perovskite Micro/Nanosheets. Angewandte Chemie - International Edition, 2019, 58, 15128-15135.	7.2	184
2347	Metal-free and purely organic phosphorescent light-emitting diodes using phosphorescence harvesting hosts and organic phosphorescent emitters. Journal of Materials Chemistry C, 2019, 7, 11500-11506.	2.7	23
2348	Synthesis and Performance in OLEDs of Selenium-Containing Phosphorescent Emitters with Red Emission Color Deeper Than the Corresponding NTSC Standard. Inorganic Chemistry, 2019, 58, 10174-10183.	1.9	22
2349	Cyanophenylcarbazole isomers exhibiting different UV and visible light excitable room temperature phosphorescence. Journal of Materials Chemistry C, 2019, 7, 9671-9677.	2.7	21
2350	Reduced Efficiency Rollâ€Off and Improved Stability of Mixed 2D/3D Perovskite Light Emitting Diodes by Balancing Charge Injection. Advanced Functional Materials, 2019, 29, 1904101.	7.8	93
2351	Molecular engineering of thermally activated delayed fluorescence emitters to concurrently achieve high performance and reduced efficiency roll-off in organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 9966-9974.	2.7	20
2352	Highly efficient deep-red organic light-emitting diodes using exciplex-forming co-hosts and thermally activated delayed fluorescence sensitizers with extended lifetime. Journal of Materials Chemistry C, 2019, 7, 9531-9536.	2.7	11
2353	Device Engineering for All-Inorganic Perovskite Light-Emitting Diodes. Nanomaterials, 2019, 9, 1007.	1.9	31
2354	Dependence of apparent emitting dipole orientation of an Ir(III) complex on doping concentration, film thickness, and excitation condition. Organic Electronics, 2019, 74, 299-303.	1.4	8
2355	Triazatruxene-based thermally activated delayed fluorescence small molecules with aggregation-induced emission properties for solution-processable nondoped OLEDs with low efficiency roll-off. Journal of Materials Chemistry C, 2019, 7, 9719-9725.	2.7	26
2356	Large Increase in External Quantum Efficiency by Dihedral Angle Tuning in a Skyâ€Blue Thermally Activated Delayed Fluorescence Emitter. Advanced Optical Materials, 2019, 7, 1900476.	3.6	25
2357	EL Properties and Exciton Dynamics of Highâ€Performance Dopingâ€Free Hybrid WOLEDs Based on 4Pâ€NPD/Bepp 2 Heterojunction as Blue Emitter. Advanced Optical Materials, 2019, 7, 1900703.	3.6	21
2358	Efficient and stable single-layer organic light-emitting diodes based on thermally activated delayed fluorescence. Nature Photonics, 2019, 13, 765-769.	15.6	127
2359	Bending-Type Electron Donor–Donor–Acceptor Triad: Dual Excited-State Charge-Transfer Coupled Structural Relaxation. Chemistry of Materials, 2019, 31, 5981-5992.	3.2	55
2360	Highly efficient phosphorescence from cyclometallated iridium(III) compounds: Improved syntheses of picolinate complexes and quantum chemical studies of their electronic structures. Inorganica Chimica Acta, 2019, 496, 119040.	1.2	2

#	Article	IF	CITATIONS
2361	Unusually Fast Phosphorescence from Ir(III) Complexes via Dinuclear Molecular Design. Journal of Physical Chemistry Letters, 2019, 10, 7015-7024.	2.1	34
2362	Influence of the Dielectric Constant around an Emitter on Its Delayed Fluorescence. Physical Review Applied, 2019, 12, .	1.5	4
2363	Green-synthesized, low-cost tetracyanodiazafluorene (TCAF) as electron injection material for organic light-emitting diodes. Chinese Chemical Letters, 2019, 30, 1969-1973.	4.8	8
2364	Efficient blue organic light-emitting diodes with low operation voltage by improving the injection and transport of holes. Optical Materials, 2019, 97, 109383.	1.7	4
2365	Phenothiazine-based derivatives for optoelectronic applications: A review. Synthetic Metals, 2019, 257, 116189.	2.1	69
2366	Study of the white organic electroluminescent devices performance based on phosphorescent dyes FCNIrPic. Materials Express, 2019, 9, 604-609.	0.2	0
2367	A generalized multi-particle drift-diffusion simulator for optoelectronic devices. , 2019, , .		0
2368	Improving the Stability of Green Thermally Activated Delayed Fluorescence OLEDs by Reducing the Excited-State Dipole Moment. Journal of Physical Chemistry C, 2019, 123, 29875-29883.	1.5	22
2369	High Performance Green Fluorescent Organic Electroluminescent Devices with Double Light-Emitting Layers. , 2019, , .		0
2370	Simultaneous Achievement of High Efficiency and Long Lifetime in Deep Blue Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2019, 7, 1901374.	3.6	41
2371	Towards deepâ€blue phosphorescence: molecular design and property prediction of iridium complexes with pyridinylphosphinate ancillary ligand. Applied Organometallic Chemistry, 2019, 33, e5167.	1.7	5
2372	Nanostructured colloidal quantum dots for efficient electroluminescence devices. Korean Journal of Chemical Engineering, 2019, 36, 173-185.	1.2	23
2373	Assistant acceptor induced hybrid local and charge transfer blue-emissive electro-fluorescent materials based on locally excited triphenylamine-phenanthroimidazole backbone. Organic Electronics, 2019, 75, 105404.	1.4	15
2374	Investigations of singlet and triplet diffusion in thermally activated delayed-fluorescence emitters: Implications for hyperfluorescence. Physical Review B, 2019, 100, .	1.1	15
2375	Inverted Singlet–Triplet Gaps and Their Relevance to Thermally Activated Delayed Fluorescence. Journal of Physical Chemistry Letters, 2019, 10, 5674-5679.	2.1	91
2376	High performance solution-processed green phosphorescent organic light-emitting diodes with high current efficiency and long-term stability. Journal of Materials Chemistry C, 2019, 7, 11569-11580.	2.7	16
2377	High-color-purity and efficient solution-processable blue phosphorescent light-emitting diodes with Pt(<scp>ii</scp>) complexes featuring ³ I€Ï€* transitions. Materials Chemistry Frontiers, 2019, 3, 2448-2454.	3.2	36
2378	Photophysical properties of organogold(<scp>i</scp>) complexes bearing a benzothiazole-2,7-fluorenyl moiety: selection of ancillary ligand influences white light emission. Dalton Transactions, 2019, 48, 15917-15927.	1.6	28

		CHATION REPOR	КI	
#	Article	IF	Сіта	TIONS
2379	Oxidation State-Dependent Electronic Properties of Sulfur-Containing Thermally Activated De Fluorescence Molecules. Journal of Physical Chemistry A, 2019, 123, 8755-8765.	ayed 1.1	1 7	
2380	Luminescent Cu(I) and Ag(I) coordination polymers: Fast phosphorescence or thermally active delayed fluorescence. Chinese Chemical Letters, 2019, 30, 1931-1934.	ted 4.:	8 13	
2381				

#	Article	IF	CITATIONS
2397	2-D rGO impregnated circular-tetragonal-bipyramidal structure of PPY-TiO2-rGO nanocomposite as ETL for OLED and supercapacitor electrode materials. Materials Science in Semiconductor Processing, 2019, 94, 86-96.	1.9	23
2398	Thermally activated delayed fluorescence and room-temperature phosphorescence in naphthyl appended carbazole–quinoline conjugates, and their mechanical regulation. Chemical Communications, 2019, 55, 1899-1902.	2.2	34
2399	Triplet exciton harvesting by multi-process energy transfer in fluorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 977-985.	2.7	29
2400	Diazaspirocycles: novel platforms for efficient phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 1370-1378.	2.7	13
2401	Stationary polaron properties in organic crystalline semiconductors. Physical Chemistry Chemical Physics, 2019, 21, 2727-2733.	1.3	9
2402	Modulation of Amplified Spontaneous Emissions between Singlet Fluorescence and Triplet Phosphorescence Channels in Organic Dye Lasers. Laser and Photonics Reviews, 2019, 13, 1900036.	4.4	14
2403	Conjugated Organic Polymers for Optoelectronic Devices. Polymers and Polymeric Composites, 2019, , 749-788.	0.6	1
2404	Luminescent inorganic-organic hybrid semiconductor materials for energy-saving lighting applications. EnergyChem, 2019, 1, 100008.	10.1	76
2405	Thermally activated delayed fluorescence emitters with low concentration sensitivity for highly efficient organic light emitting devices. Journal of Materials Chemistry C, 2019, 7, 8923-8928.	2.7	14
2406	Effects of Energy-Level Alignment on Characteristics of Inverted Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2019, 11, 21749-21755.	4.0	1
2407	Plastic scintillators based on thermally activated delayed fluorescence dyes. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 940, 185-198.	0.7	11
2408	Symmetry-Based Design Strategy for Unprecedentedly Fast Decaying Thermally Activated Delayed Fluorescence (TADF). Application to Dinuclear Cu(I) Compounds. Chemistry of Materials, 2019, 31, 4392-4404.	3.2	51
2409	The influence of molecular geometry on the efficiency of thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2019, 7, 6672-6684.	2.7	53
2410	12â€1: Analysis of Key Factors Affecting the Lifetime of Blue Phosphorescent OLED Using CN Modified Blue Host Materials. Digest of Technical Papers SID International Symposium, 2019, 50, 141-144.	0.1	4
2411	Strongly enhanced luminous efficiency of organic light emitting diodes in molecular heterojunctions. Physical Chemistry Chemical Physics, 2019, 21, 12924-12930.	1.3	4
2412	Efficient Blue Phosphorescent OLEDs with Improved Stability and Color Purity through Judicious Triplet Exciton Management. Advanced Functional Materials, 2019, 29, 1903068.	7.8	78
2413	Pâ€184: Boron Derivatives as Deep Blue Fluorescent Materials for High Efficiency and Long Lifetime. Digest of Technical Papers SID International Symposium, 2019, 50, 1924-1927.	0.1	1
2414	Pâ€192: Development of New Linker Moiety for TADF Materials: Elucidation of Material Properties by Substitution Position Effect. Digest of Technical Papers SID International Symposium, 2019, 50, 1950-1953.	0.1	0

#	ARTICLE	IF	Citations
2415	Can Remote N-Heterocyclic Carbenes Be Used for Designing Efficient Blue Triplet Emitters? An Answer from Quantum Chemical Investigation. Journal of Physical Chemistry C, 2019, 123, 14216-14222.	1.5	4
2416	Impact of tunable 2-(1 <i>H</i> -indol-3-yl)acetonitrile based fluorophores towards optical, thermal and electroluminescence properties. RSC Advances, 2019, 9, 14544-14557.	1.7	4
2417	Molecular Design of Triazole Based Thermally Activated Delayed Fluorescence Hosts for Blue Electrophosphorescence. Journal of Nanoscience and Nanotechnology, 2019, 19, 6791-6795.	0.9	3
2418	Fast Triplet Population in Iridium(III) Complexes with Less than Unity Singlet to Triplet Quantum Yield. Journal of Physical Chemistry C, 2019, 123, 13846-13855.	1.5	5
2419	Magnetic field effects on excited states, charge transport, and electrical polarization in organic semiconductors in spin and orbital regimes. Advances in Physics, 2019, 68, 49-121.	35.9	57
2420	Rational Design Strategy for the Realization of Red- to Near-Infrared-Emitting Alkynylgold(III) Complexes and Their Applications in Solution-Processable Organic Light-Emitting Devices. Chemistry of Materials, 2019, 31, 6706-6714.	3.2	20
2421	Improving extraction efficiency of OLEDs by a luminescent polymer embedded in a colloidal crystal matrix. Semiconductor Science and Technology, 2019, 34, 115016.	1.0	3
2422	Highly Efficient Thermally Activated Delayed Fluorescence via Jâ€Aggregates with Strong Intermolecular Charge Transfer. Advanced Materials, 2019, 31, e1808242.	11.1	278
2423	Triplet exciton diffusion in metalorganic phosphorescent host-guest systems from first principles. Physical Review B, 2019, 99, .	1.1	17
2424	Electronic absorption and emission properties of bishydrazone [2 × 2] metallosupramolecular grid-type architectures. Inorganica Chimica Acta, 2019, 494, 223-231.	1.2	18
2425	Influence of the bias-dependent emission zone on exciton quenching and OLED efficiency. Organic Electronics, 2019, 70, 219-226.	1.4	22
2426	Enhanced thermally activated delayed fluorescence through bridge modification in sulfone-based emitters employed in deep blue organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 6664-6671.	2.7	39
2427	Thianthrene and acridan-substituted benzophenone or diphenylsulfone: Effect of triplet harvesting via TADF and phosphorescence on efficiency of all-organic OLEDS. Organic Electronics, 2019, 70, 227-239.	1.4	26
2428	Calculating transition dipole moments of phosphorescent emitters for efficient organic light-emitting diodes. Physical Chemistry Chemical Physics, 2019, 21, 9740-9746.	1.3	7
2429	Thioxanthen-Based Blue Thermally Activated Delayed Fluorescence Emitters for Organic Light-Emitting Diodes. Journal of Nanoscience and Nanotechnology, 2019, 19, 6796-6800.	0.9	1
2430	Theoretical investigations of the realization of sky-blue to blue TADF materials <i>via</i> CH/N and H/CN substitution at the diphenylsulphone acceptor. Journal of Materials Chemistry C, 2019, 7, 6685-6691.	2.7	13
2431	The Influence of the Electronic Structure Method on Intersystem Crossing Dynamics. The Case of Thioformaldehyde. Journal of Chemical Theory and Computation, 2019, 15, 3470-3480.	2.3	30
2432	Meta-substituted bipolar imidazole based emitter for efficient non-doped deep blue organic light emitting devices with a high electroluminescence. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 379, 72-78.	2.0	6

#	Article	IF	CITATIONS
2433	Design of Thermally Activated Delayed Fluorescent Assistant Dopants to Suppress the Nonradiative Component in Red Fluorescent Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2019, 25, 9060-9070.	1.7	23
2434	Molecular Orientation Effects in Organic Lightâ€Emitting Diodes. Helvetica Chimica Acta, 2019, 102, e1900048.	1.0	29
2435	Fundamentals of Solar Cells and Light-Emitting Diodes. , 2019, , 1-35.		4
2436	<i>Mer</i> â€lr(ppy) ₃ to <i>Fac</i> â€lr(ppy) ₃ Photoisomerization. ChemPhotoChem, 2019, 3, 697-701.	1.5	11
2437	N-Benzoimidazole/Oxadiazole Hybrid Universal Electron Acceptors for Highly Efficient Exciplex-Type Thermally Activated Delayed Fluorescence OLEDs. Frontiers in Chemistry, 2019, 7, 187.	1.8	4
2438	Fluorescence lifetime elongation of thermally activated delayed fluorescence 4CzIPN molecules with encapsulation into zeolitic imidazole frameworks ZIF-11. Optical Materials Express, 2019, 9, 1150.	1.6	4
2439	Dithia[3.3]paracyclophane Core: A Versatile Platform for Triplet State Fineâ€Tuning and Through‧pace TADF Emission. Chemistry - an Asian Journal, 2019, 14, 1921-1925.	1.7	34
2440	Modulating the blue shift of phosphorescence with fluorine-free group in iridium (â¢) complexes. Journal of Luminescence, 2019, 210, 479-484.	1.5	3
2441	Harvesting Triplet Excitons in Lead-Halide Perovskites for Room-Temperature Phosphorescence. Chemistry of Materials, 2019, 31, 2597-2602.	3.2	57
2442	Pyrene-based aggregation-induced emission luminogens and their applications. Materials Chemistry Frontiers, 2019, 3, 762-781.	3.2	234
2443	Naphthyridine-based thermally activated delayed fluorescence emitters for multi-color organic light-emitting diodes with low efficiency roll-off. Journal of Materials Chemistry C, 2019, 7, 4673-4680.	2.7	25
2444	Evolution of white organic light-emitting devices: from academic research to lighting and display applications. Materials Chemistry Frontiers, 2019, 3, 970-1031.	3.2	67
2445	Novel phosphorescent iridium(<scp>iii</scp>) emitters for both vacuum-deposition and inkjet-printing of OLEDs with exceptionally high efficiency. Journal of Materials Chemistry C, 2019, 7, 4178-4184.	2.7	17
2446	Organic polymers achieving smart room-temperature phosphorescence. Science China Chemistry, 2019, 62, 291-292.	4.2	13
2447	Influence of bulky substituents on the photophysical properties of homoleptic iridium(<scp>iii</scp>) complexes. Physical Chemistry Chemical Physics, 2019, 21, 6908-6916.	1.3	9
2448	Understanding charge transport in Ir(ppy)3:CBP OLED films. Journal of Chemical Physics, 2019, 150, 094110.	1.2	25
2449	Light-Emitting Devices Based on Type-II InP/ZnO Quantum Dots. ACS Photonics, 2019, 6, 939-946.	3.2	35
2450	Nano-modified indium tin oxide incorporated with ideal microlens array for light extraction of OLED. Journal of Materials Chemistry C, 2019, 7, 3958-3964.	2.7	25

#	Article	IF	CITATIONS
2451	Efficiency of Light Outcoupling Structures in Organic Lightâ€Emitting Diodes: 2D TiO ₂ Array as a Model System. Advanced Functional Materials, 2019, 29, 1901748.	7.8	21
2452	Novel Ir(III) complexes ligated with 2-(2,6-difluoropyridin-3-yl)benzo[d]thiazole for highly efficient OLEDs with mild efficiency roll-off. Dyes and Pigments, 2019, 166, 254-259.	2.0	7
2453	Boron-Doped Molecules for Optoelectronics. Trends in Chemistry, 2019, 1, 77-89.	4.4	152
2454	Ultrathin, lightweight and flexible organic light-emitting devices with a high light outcoupling efficiency. Organic Electronics, 2019, 69, 297-300.	1.4	27
2455	Novel Emission Colorâ€Tuning Strategies in Heteroleptic Phosphorescent Ir(III) and Pt(II) Complexes. Chemical Record, 2019, 19, 1710-1728.	2.9	29
2456	Review of Molecular Engineering for Horizontal Molecular Orientation in Organic Light-Emitting Devices. Bulletin of the Chemical Society of Japan, 2019, 92, 716-728.	2.0	82
2458	Ancillary ligand-assisted robust deep-red emission in iridium(<scp>iii</scp>) complexes for solution-processable phosphorescent OLEDs. Journal of Materials Chemistry C, 2019, 7, 4143-4154.	2.7	26
2459	Novel yellow phosphorescent iridium complexes with cycolmetalated (pyridin-2-yl)dibenzothiophene-S,S-dioxide ligands for singly doped emissive layer hybrid white organic light-emitting diodes. Optical Materials, 2019, 91, 439-446.	1.7	5
2460	Strategy for achieving efficient electroluminescence with reduced efficiency roll-off: enhancement of hot excitons spin mixing and restriction of internal conversion by twisted structure regulation using an anthracene derivative. Journal of Materials Chemistry C, 2019, 7, 5604-5614.	2.7	17
2461	New Aggregation-Induced Delayed Fluorescence Luminogens With Through-Space Charge Transfer for Efficient Non-doped OLEDs. Frontiers in Chemistry, 2019, 7, 199.	1.8	48
2462	High-performance organic light-emitting diodes with low-efficiency roll-off using bulky tetradentate [Pt(O^N^C^N)] emitters. Journal of Materials Chemistry C, 2019, 7, 7230-7236.	2.7	19
2463	Indoloindole as a new building block of a hole transport type host for stable operation in phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 5988-5994.	2.7	12
2464	Ideal microlens array based on polystyrene microspheres for light extraction in organic light-emitting diodes. Organic Electronics, 2019, 69, 348-353.	1.4	15
2465	Unraveling the Fate of Host Excitons in Host–Guest Phosphorescent Organic Light-Emitting Diodes. Journal of Physical Chemistry C, 2019, 123, 10311-10318.	1.5	10
2466	Emergence of Flexible White Organic Light-Emitting Diodes. Polymers, 2019, 11, 384.	2.0	42
2467	Improved hole injection for blue phosphorescent organic light-emitting diodes using solution deposited tin oxide nano-particles decorated ITO anodes. Scientific Reports, 2019, 9, 2411.	1.6	24
2468	Investigation of Conversion and Decay Processes in Thermally Activated Delayed Fluorescence Copper(I) Molecular Crystal: Theoretical Estimations from an ONIOM Approach Combined with the Tuned Range-Separated Density Functional Theory. Journal of Physical Chemistry A, 2019, 123, 2080-2090.	1.1	13
2469	Design of electron blocking layer with electron stabilizing unit for improved efficiency and lifetime in blue fluorescent organic light-emitting diodes. Journal of Industrial and Engineering Chemistry, 2019, 74, 71-78.	2.9	8

#	Article	IF	CITATIONS
2470	Enhancing Molecular Aggregations by Intermolecular Hydrogen Bonds to Develop Phosphorescent Emitters for Highâ€Performance Nearâ€Infrared OLEDs. Advanced Science, 2019, 6, 1801930.	5.6	78
2471	Recent Advances in OLED Optical Design. Advanced Functional Materials, 2019, 29, 1808803.	7.8	350
2472	Effect of Host Moieties on the Phosphorescent Spectrum of Green Platinum Complex. Molecules, 2019, 24, 454.	1.7	7
2473	Nonaromatic Amine Containing Exciplex for Thermally Activated Delayed Fluorescent Electroluminescence. Advanced Optical Materials, 2019, 7, 1801554.	3.6	26
2474	Organic light-emitting diodes. , 2019, , 695-726.		11
2475	Low energy consumption phosphorescent organic light-emitting diodes using phenyl anthracenone derivatives as the host featuring bipolar and thermally activated delayed fluorescence. RSC Advances, 2019, 9, 6881-6889.	1.7	5
2476	Metal complex based delayed fluorescence materials. Organic Electronics, 2019, 69, 135-152.	1.4	65
2477	Phenanthro[9,10- <i>d</i>]triazole and imidazole derivatives: high triplet energy host materials for blue phosphorescent organic light emitting devices. Materials Horizons, 2019, 6, 1179-1186.	6.4	36
2478	A comparative study of structural, electronic and magnetic properties of DyOCl and HoOCl lanthanide oxychlorides: first-principles predictions of DFT, DFT + U and DFT + U + SOC methods. Materials Research Express, 2019, 6, 126129.	0.8	2
2479	Quantum Yield Measurement of Organometallic Complexes using Double Pump Probe Technique. , 2019, , .		0
2480	Efficient thermally activated delayed fluorescence based on carbonitrile-substituted pyridine and carbazole. Journal of Materials Chemistry C, 2019, 7, 13754-13758.	2.7	3
2481	The mutual noncovalent interactions based on metallophilic cluster and anions: A theoretical investigation of the molecular structure and spectroscopic properties of Host–Guest complexes. Journal of Theoretical and Computational Chemistry, 2019, 18, 1950028.	1.8	1
2482	Elucidating the effects of guest-host energy level alignment on charge transport in phosphorescent OLEDs. Applied Physics Letters, 2019, 115, 263301.	1.5	11
2483	Triplet–triplet upconversion enhanced by spin–orbit coupling in organic light-emitting diodes. Nature Communications, 2019, 10, 5283.	5.8	111
2484	Green-emitting dendritic alkynylgold(<scp>iii</scp>) complexes with excellent film morphologies for applications in solution-processable organic light-emitting devices. Chemical Communications, 2019, 55, 13844-13847.	2.2	7
2485	Oxadiazole derivatives as bipolar host materials for high-performance blue and green phosphorescent organic light-emitting diodes. RSC Advances, 2019, 9, 32010-32016.	1.7	4
2486	Effects of intramolecular hydrogen bonding on the conformation and luminescence properties of dibenzoylpyridine-based thermally activated delayed fluorescence materials. Journal of Materials Chemistry C, 2019, 7, 13104-13110.	2.7	16
2487	Synthesis and electrophosphorescence of sky-blue tris-cyclometalated heteroleptic iridium complexes with high color purity. Dyes and Pigments, 2019, 160, 872-878.	2.0	5

#	Article	IF	CITATIONS
2488	Size and Shape Effect of Gold Nanoparticles in "Farâ€Field―Surface Plasmon Resonance. Particle and Particle Systems Characterization, 2019, 36, 1800077.	1.2	34
2489	Excitonâ€Induced Degradation of Hole Transport Layers and Its Effect on the Efficiency and Stability of Phosphorescent Organic Lightâ€Emitting Devices. Advanced Optical Materials, 2019, 7, 1800923.	3.6	13
2490	Monothiatruxeneâ€Based, Solutionâ€Processed Green, Skyâ€Blue, and Deepâ€Blue Organic Lightâ€Emitting Diodes with Efficiencies Beyond 5% Limit. Advanced Functional Materials, 2019, 29, 1807572.	7.8	16
2491	New blue phosphorescence from trifluorosulfonyl-substituted iridium complexes. Dyes and Pigments, 2019, 163, 684-691.	2.0	4
2492	Integration of Optical and Thermal Models for Organic Light-Emitting Diodes. Electronics (Switzerland), 2019, 8, 17.	1.8	5
2493	Activeâ€Matrix GaN µ‣ED Display Using Oxide Thinâ€Film Transistor Backplane and Flip Chip LED Bonding. Advanced Electronic Materials, 2019, 5, 1800617.	2.6	76
2494	Highâ€Performance Deepâ€Red/Nearâ€Infrared OLEDs with Tetradentate [Pt(O [^] N [^] C [^] N)] Emitters. Advanced Optical Materials, 2019, 7, 1801452.	3.6	37
2495	Polymer bearing ortho-substituted benzene with face-to-face stacked hole-electron-transport-pair as host for PhOLED. Dyes and Pigments, 2019, 163, 17-29.	2.0	5
2496	Highly Efficient Thermally Activated Delayed Fluorescence Emitter Developed by Replacing Carbazole With 1,3,6,8-Tetramethyl-Carbazole. Frontiers in Chemistry, 2019, 7, 17.	1.8	8
2497	Reduced Efficiency Roll-Off in White Phosphorescent Organic Light-Emitting Diodes Based on Double Emission Layers. Molecules, 2019, 24, 211.	1.7	0
2498	Recent Developments in Tandem White Organic Light-Emitting Diodes. Molecules, 2019, 24, 151.	1.7	22
2499	Influence of the Length of the Donor–Acceptor Bridge on Thermally Activated Delayed Fluorescence. Journal of Physical Chemistry Letters, 2019, 10, 302-308.	2.1	12
2500	Investigating Free Chargeâ€Carrier Recombination in Organic LEDs Using Open ircuit Conditions. Advanced Optical Materials, 2019, 7, 1801426.	3.6	8
2501	Organic materials for optoelectronic applications: Overview. , 2019, , 3-42.		6
2502	Rapid Multiscale Computational Screening for OLED Host Materials. ACS Applied Materials & Interfaces, 2019, 11, 5276-5288.	4.0	13
2503	Tetraphenylcyclopentadiene-Based Hyperbranched Polymers: Convenient Syntheses from One Pot "A ₄ + B ₂ ―Polymerization and High External Quantum Yields up to 9.74% in OLED Devices. Macromolecules, 2019, 52, 896-903.	2.2	19
2504	A high efficiency pure organic room temperature phosphorescence polymer PPV derivative for OLED. Organic Electronics, 2019, 64, 247-251.	1.4	19
2505	Dopingâ€Free White Organic Lightâ€Emitting Diodes. Chemical Record, 2019, 19, 1596-1610.	2.9	11

#	Article	IF	CITATIONS
2506	Not All Bis[2-(4,6-difluorophenyl)pyridyl- <i>N</i> , <i>C</i> 2′]iridium(III) Picolinate (FIrpic) Isomers Are Unsuitable for Developing Long-Lifetime Blue Phosphorescent Organic Light-Emitting Diodes. Journal of Physical Chemistry C, 2019, 123, 227-232.	1.5	6
2507	Enhanced light extraction from organic light-emitting diodes using a quasi-periodic nano-structure. Nanotechnology, 2019, 30, 085302.	1.3	3
2508	Electroluminescence and contact formation of 1-(pyridin-2-yl)-3-(quinolin-2-yl)imidazo[1,5-a]quinoline thin films. Organic Electronics, 2019, 65, 321-326.	1.4	19
2509	Highly Efficient Organic Blue Electroluminescent Materials and Devices with Mesoscopic Structures. Chemical Record, 2019, 19, 1562-1570.	2.9	7
2510	Photophysical and optoelectronic properties of a platinum(II) complex and its derivatives, designed as a highly efficient OLED emitter: A theoretical study. International Journal of Quantum Chemistry, 2019, 119, e25793.	1.0	8
2511	Interfaces of (Ultra)thin Polymer Films in Organic Electronics. Advanced Materials Interfaces, 2019, 6, 1800897.	1.9	37
2512	Delayed adjuvant hormonal therapy and its impact on mortality in women with breast cancer. Breast Journal, 2020, 26, 952-959.	0.4	1
2513	Orange-emitting supramolecular phosphorescent polymer with different counterions for polymer light-emitting diodes. Dyes and Pigments, 2020, 172, 107790.	2.0	8
2514	Phenoxazines having various electron acceptor or donor fragments as new host materials for green phosphorescent OLEDs. Dyes and Pigments, 2020, 172, 107839.	2.0	8
2515	Highly effective nicotinonitrile-derivatives-based thermally activated delayed fluorescence emitter with asymmetric molecular architecture for high-performance organic light-emitting diodes. Dyes and Pigments, 2020, 172, 107849.	2.0	6
2516	Bright Deep Blue TADF OLEDs: The Role of Triphenylphosphine Oxide in NPB/TPBi:PPh ₃ O Exciplex Emission. Advanced Optical Materials, 2020, 8, 0191282.	3.6	6
2517	Synthesis and properties of ipsilateral double substituted diphenylsulfone thermally activated delayed fluorescent materials. Dyes and Pigments, 2020, 174, 108028.	2.0	2
2518	Recent Progress of Fiber Shaped Lighting Devices for Smart Display Applications—A Fibertronic Perspective. Advanced Materials, 2020, 32, e1903488.	11.1	81
2519	An effective thermally activated delayed fluorescence host material for highly efficient blue phosphorescent organic light-emitting diodes with low doping concentration. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 388, 112178.	2.0	1
2520	Nonlinear optoelectronic processes in organic optoelectronic devices: Triplet-triplet annihilation and singlet fission. Materials Science and Engineering Reports, 2020, 139, 100519.	14.8	50
2521	Dipolar and Quadrupolar Luminophores Based on 1,8â€Dimethylcarbazoleâ^'Triazine Conjugates for Highâ€Efficiency Blue Thermally Activated Delayed Fluorescence OLEDs. ChemPhotoChem, 2020, 4, 82-88.	1.5	8
2522	Donor-spiro-acceptor architecture for green thermally activated delayed fluorescence (TADF) emitter. Organic Electronics, 2020, 77, 105520.	1.4	11
2523	D–A–D-type bipolar host materials with room temperature phosphorescence for high-efficiency green phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 1871-1878.	2.7	18

#	Article	IF	CITATIONS
2524	Thermally Activated Delayed Fluorescent Donor–Acceptor–Donor–Acceptor π-Conjugated Macrocycle for Organic Light-Emitting Diodes. Journal of the American Chemical Society, 2020, 142, 1482-1491.	6.6	114
2525	A bipolar host based high triplet energy electroplex for an over 10 000 h lifetime in pure blue phosphorescent organic light-emitting diodes. Materials Horizons, 2020, 7, 559-565.	6.4	106
2526	Room Temperature Phosphorescent (RTP) Nâ€Acetylphenothiazines. ChemPhotoChem, 2020, 4, 282-286.	1.5	10
2527	Data on in-vitro antibacterial activity and third order NLO property of 2-aminopyridine copper sulphate (2APCS). Chemical Data Collections, 2020, 25, 100319.	1.1	6
2528	Linear-shaped thermally activated delayed fluorescence emitter using 1,5-naphthyridine as an electron acceptor for efficient light extraction. Organic Electronics, 2020, 78, 105600.	1.4	11
2529	Tetradentate Platinum(II) Complexes for Highly Efficient Phosphorescent Emitters and Sky Blue OLEDs. Chemistry of Materials, 2020, 32, 537-548.	3.2	61
2530	lsomeric Tetradentate Ligand-Containing Cyclometalated Gold(III) Complexes. Journal of the American Chemical Society, 2020, 142, 520-529.	6.6	33
2531	Is a High Photoluminescence Quantum Yield Good Enough for OLEDs? Can Luminescence Rigidochromism Be Manifest in the Solid State? an Optoelectronic Device Screening Case Study for Diphosphine/Pyrazolate Copper(I) Complexes. Comments on Inorganic Chemistry, 2020, 40, 1-24.	3.0	6
2532	Deep Red Iridium(III) Complexes Based on Pyrene-Substituted Quinoxaline Ligands for Solution-Processed Phosphorescent Organic Light-Emitting Diodes. Inorganic Chemistry, 2020, 59, 332-342.	1.9	24
2533	Key host parameters for long lifetimes in phosphorescent organic light-emitting diodes: bond dissociation energy in triplet excited state. Journal of Materials Chemistry C, 2020, 8, 1697-1703.	2.7	9
2534	Phosphorescent heteroleptic iridium(III) cyclometallates: Improved syntheses of acetylacetonate complexes and quantum chemical studies of their excited state properties. Polyhedron, 2020, 176, 114256.	1.0	4
2535	Color-stable non-doped white phosphorescent organic light-emitting diodes based on ultrathin emissive layers. Journal Physics D: Applied Physics, 2020, 53, 055106.	1.3	8
2536	Dibenzofuran derivatives with meta- and para-triphenylamine substituents as hole-transporting materials in organic light-emitting devices. Dyes and Pigments, 2020, 175, 108121.	2.0	8
2537	Self-catalytic-grown SnO x nanocones for light outcoupling enhancement in organic light-emitting diodes. Nanotechnology, 2020, 31, 135204.	1.3	3
2538	MoS2 decorated with graphene and polyaniline nanocomposite as an electron transport layer for OLED applications. Journal of Materials Science: Materials in Electronics, 2020, 31, 1302-1316.	1.1	12
2539	Human-eyes-friendly white electroluminescence from solution-processable hybrid OLEDs exploiting new iridium (III) complex containing benzoimidazophenanthridine ligand. Dyes and Pigments, 2020, 174, 108068.	2.0	5
2540	Exciplex Emission in Lightâ€Emitting Electrochemical Cells and Light Outcoupling Methods for More Efficient LEC Devices. Advanced Functional Materials, 2020, 30, 1907309.	7.8	9
2541	Zigâ€Zag Type Molecular Design Strategy of Nâ€Type Hosts for Skyâ€Blue Thermallyâ€Activated Delayed Fluorescence Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2020, 26, 2429-2435. ————————————————————————————————————	1.7	7

#	Article	IF	CITATIONS
2542	Lowâ€Refractive Index Layers in Organic Lightâ€Emitting Diodes via Electrospray Deposition for Enhanced Outcoupling Efficiencies. Advanced Engineering Materials, 2020, 22, 1900897.	1.6	7
2543	Efficient Nondoped Pure Blue Organic Lightâ€Emitting Diodes Based on an Anthracene and 9,9â€Diphenylâ€9,10â€dihydroacridine Derivative. Chemistry - an Asian Journal, 2020, 15, 163-168.	1.7	16
2544	Rational Design of ï€-Conjugated Tricoordinated Organoboron Derivatives With Thermally Activated Delayed Fluorescent Properties for Application in Organic Light-Emitting Diodes. Frontiers in Chemistry, 2020, 8, 577834.	1.8	2
2545	6â€4: Lateâ€News Paper: Realizing Deep Blue Emission in Blue Phosphorescent Organic Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2020, 51, 65-66.	0.1	0
2546	Magnetoâ€Electroluminescence Studies on the Role of Intermolecular Spin–Orbital Coupling Processes for the Transition between Singlet and Triplet Excitons in Exciplexâ€Based Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2020, 8, 2000991.	3.6	4
2547	Recent Progress in Emerging Near-Infrared Emitting Materials for Light-Emitting Diode Applications. Organic Materials, 2020, 02, 253-281.	1.0	25
2548	Synthesis and characterization of new yellow emitting mixed heteroleptic Ir(III) complexes with solution-processed phosphorescent organic light-emitting diodes. Molecular Crystals and Liquid Crystals, 2020, 706, 10-20.	0.4	1
2549	Designing Noble Benzimidazole-Based Bipolar Hosts for Blue Organic Light-Emitting Diodes Using Thermally Activated Delayed Fluorescence Materials. Journal of Nanoscience and Nanotechnology, 2020, 20, 7196-7200.	0.9	0
2550	Revealing Topological Influence of Phenylenediamine Unit on Physicochemical Properties of Donorâ€Acceptorâ€Donorâ€Acceptor Thermally Activated Delayed Fluorescent Macrocycles. Chemistry - an Asian Journal, 2020, 15, 4098-4103.	1.7	3
2551	Pâ€164: Enabling High Performance Organic Light Emitting Diode with Novel Biâ€carbazole Host. Digest of Technical Papers SID International Symposium, 2020, 51, 2005-2008.	0.1	0
2552	Efficiency enhancement in blue phosphorescent organic light emitting diode with silver nanoparticles prepared by plasma-assisted hot-filament evaporation as an external light-extraction layer. Materials Chemistry and Physics, 2020, 256, 123618.	2.0	6
2553	Fast Organic Vapor Phase Deposition of Thin Films in Light-Emitting Diodes. ACS Nano, 2020, 14, 14157-14163.	7.3	7
2554	Photoluminescent properties and molecular structures of dinuclear gold(i) complexes with bridged diphosphine ligands: near-unity phosphorescence from 3XMMCT/3MC. Dalton Transactions, 2020, 49, 15204-15212.	1.6	3
2555	Superradiant emission from self-assembled light emitters: From molecules to quantum dots. MRS Bulletin, 2020, 45, 841-848.	1.7	13
2556	Sublimable cationic iridium(<scp>iii</scp>) complexes for red-emitting diodes with high colour purity. Journal of Materials Chemistry C, 2020, 8, 14766-14772.	2.7	14
2557	Electrochemical and Spectroelectrochemical Comparative Study of Macrocyclic Thermally Activated Delayed Fluorescent Compounds: Molecular Charge Stability vs OLED EQE Rollâ€Off. Asian Journal of Organic Chemistry, 2020, 9, 2153-2161.	1.3	8
2558	Pâ€181: Efficient Thermally Activated Delayed Fluorescence Sensitizer of Hyperfluorescence OLED by Adding Blocking Group. Digest of Technical Papers SID International Symposium, 2020, 51, 2058-2060.	0.1	0
2559	Pâ€198: Carbolineâ€Derived Hosts with Triazine Core for High Efficiency and Long Lifetime in Deepâ€Blue Phosphorescent Organic Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2020, 51, 2083-2086.	0.1	0

C

#	Article	IF	CITATIONS
2560	Thiacrown Ethers Engaged C ₆₀ through Charge Transfer: Experimental and Theoretical Study. ACS Omega, 2020, 5, 25049-25058.	1.6	1
2561	Efficient deep-blue fluorescent emitters from imidazole functionalized anthracenes for simple structure deep-blue electroluminescent devices. Organic Electronics, 2020, 85, 105897.	1.4	16
2562	S 2p and P 2p Core Level Spectroscopy of PPT Ambipolar Material and Its Building Block Moieties. Journal of Physical Chemistry C, 2020, 124, 14510-14520.	1.5	3
2563	Driftâ€Diffusion Study of the IQE Rollâ€Off in Blue Thermally Activated Delayed Fluorescence OLEDs. Advanced Electronic Materials, 2020, 6, 2000245.	2.6	7
2564	High-Performance, Solution-Processable Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes Realized via the Adjustment of the Composition of the Organoboron Acceptor Monomer in Copolymer Host Materials. ACS Applied Materials & Interfaces, 2020, 12, 35300-35310.	4.0	21
2565	Utilization of Multi-Heterodonors in Thermally Activated Delayed Fluorescence Molecules and Their High Performance Bluish-Green Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 9498-9506.	4.0	18
2566	Modification of Luminescence from Dual-Emission Molecules by Plasmonic Surfaces. Journal of Physical Chemistry C, 2020, 124, 17218-17226.	1.5	1
2567	Achieving Submicrosecond Thermally Activated Delayed Fluorescence Lifetime and Highly Efficient Electroluminescence by Fine-Tuning of the Phenoxazine–Pyrimidine Structure. ACS Applied Materials & Interfaces, 2020, 12, 10727-10736.	4.0	32
2568	Transition Metal Complexes as Photofunctional Materials—From Photosensitization and Photochromism to Artificial Photosynthesis and Energy Applications. , 2021, , 2-37.		3
2569	1.42-Fold Enhancement of Blue OLED Device Performance by Simply Changing Alkyl Groups on the Acridine Ring. Cell Reports Physical Science, 2020, 1, 100252.	2.8	24
2570	Phosphorescent Tetradentate Platinum(II) Complexes Containing Fused 6/5/5 or 6/5/6 Metallocycles. Inorganic Chemistry, 2020, 59, 18109-18121.	1.9	12
2571	Fluorescence in "Nonfluorescent―Polymers. ACS Omega, 2020, 5, 30747-30766.	1.6	43
2572	Efficient deep-blue organic light-emitting diodes employing difluoroboron-enabled thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2020, 8, 17464-17473.	2.7	19
2573	Advancing the a Posteriori Quest for Deep-Blue Phosphorescence: Quantifying Excitation-Induced Metal-to-Ligand Charge Transfer as a Guiding Indicator. Organometallics, 2020, 39, 3951-3960.	1.1	3
2574	0.5–4.5 THz band terahertz spectroscopy of thermally activated delayed fluorescence molecules. Optics Communications, 2020, 476, 126339.	1.0	3
2575	Transformation from Nonthermally Activated Delayed Fluorescence Molecules to Thermally Activated Delayed Fluorescence Molecules. Advanced Optical Materials, 2020, 8, 2001025.	3.6	17
2576	Ultrafast Energy Transfer in Fully Conjugated Thiophene-Benzothiadiazole Capped Poly(Phenylene) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5

2577	Photophysics of TADF Guest–Host Systems: Introducing the Idea of Hosting Potential. ACS Applied Electronic Materials, 2020, 2, 2868-2881.	2.0	56
------	--	-----	----

#	Article	IF	CITATIONS
2578	Recent Development in Applications of Synthetic Phenoxazines and Their Related Congeners: A Miniâ€Review. ChemistrySelect, 2020, 5, 8540-8556.	0.7	9
2579	Theoretical Study of Phenoxaphosphine-Based Blue Organic Light-Emitting Diode Exhibiting Thermally Activated Delayed Fluorescence. Journal of Nanoscience and Nanotechnology, 2020, 20, 7187-7190.	0.9	0
2580	Can attachment of tert-butyl substituents to methoxycarbazole moiety induce efficient TADF in diphenylsulfone-based blue OLED emitters?. Organic Electronics, 2020, 86, 105894.	1.4	6
2581	Synthesis and Application of Siloles: From the Past to Present. ChemistrySelect, 2020, 5, 9034-9058.	0.7	14
2582	Mechanism evolution from normal fluorescence to thermally activated delayed fluorescence and color tuning over visible light range: Effect of intramolecular charge transfer strength. Dyes and Pigments, 2020, 183, 108732.	2.0	14
2583	Highly Efficient Inverted Circularly Polarized Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 39471-39478.	4.0	60
2584	Fast spin-flip enables efficient and stable organic electroluminescence from charge-transfer states. Nature Photonics, 2020, 14, 636-642.	15.6	331
2585	Role of annealing on morphological, linear and nonlinear properties of nanoparticle of Tris [2-phenylpyridinato-C2, N] Iridium III films prepared by electron beam evaporator. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126738.	0.9	5
2586	Reduced Efficiency Roll-Off in Phosphorescent Organic Light-Emitting Diodes with a Double Dopant. Journal of Nanoscience and Nanotechnology, 2020, 20, 6679-6682.	0.9	2
2587	Phosphorescent κ ³ â€{N^C^C)â€Gold(III) Complexes: Synthesis, Photophysics, Computational Studies and Application to Solutionâ€Processable OLEDs. Chemistry - A European Journal, 2020, 26, 17604-17612.	1.7	15
2588	Anthracene conjugated carboxylic acids for luminescent materials: Design, synthesis and photophysical studies. Materials Today: Proceedings, 2020, , .	0.9	0
2589	Tuning the Excited State of Tetradentate Pd(II) Complexes for Highly Efficient Deep-Blue Phosphorescent Materials. Inorganic Chemistry, 2020, 59, 13502-13516.	1.9	16
2590	Cu(I) Complexes of Multidentate N,C,N- and P,C,P-Carbodiphosphorane Ligands and Their Photoluminescence. Molecules, 2020, 25, 3990.	1.7	8
2591	Toward Seeâ€Through Optoelectronics: Transparent Lightâ€Emitting Diodes and Solar Cells. Advanced Optical Materials, 2020, 8, 2001122.	3.6	35
2592	Three-Dimensional Profiling of OLED by Laser Desorption Ionization-Mass Spectrometry Imaging. Journal of the American Society for Mass Spectrometry, 2020, 31, 2443-2451.	1.2	4
2593	Interâ€Ligand Energy Transfer Process in an Irâ€Complex with Expanding Ï€â€Conjugated Ligand. ChemPhysChem, 2020, 21, 2320-2326.	1.0	3
2594	White hyperelectrofluorescence from solution-processable OLEDs based on phenothiazine substituted tetraphenylethylene derivatives. Journal of Materials Chemistry C, 2020, 8, 13375-13388.	2.7	37
2595	Three―and Fourâ€Coordinate, Boronâ€Based, Thermally Activated Delayed Fluorescent Emitters. Advanced Optical Materials, 2020, 8, 2000922.	3.6	102

#	Article	IF	CITATIONS
2596	Origin of exciplex degradation in organic light emitting diodes: Thermal stress effects over glass transition temperature of emission layer. Applied Physics Letters, 2020, 117, .	1.5	12
2597	Unsymmetric Heteroleptic Ir(III) Complexes with 2-Phenylquinoline and Coumarin-Based Ligand Isomers for Tuning Character of Triplet Excited States and Achieving High Electroluminescent Efficiencies. Inorganic Chemistry, 2020, 59, 12362-12374.	1.9	13
2598	Operando direct observation of spin-states and charge-trappings of blue light-emitting-diode materials in thin-film devices. Scientific Reports, 2020, 10, 18800.	1.6	5
2599	Noble phenoxaphosphine-based bipolar hosts for blue OLEDs using thermally-activated delayed fluorescence. Molecular Crystals and Liquid Crystals, 2020, 707, 1-7.	0.4	0
2600	Cu(I) and Ag(I) Complexes with a New Type of Rigid Tridentate N,P,P-Ligand for Thermally Activated Delayed Fluorescence and OLEDs with High External Quantum Efficiency. Chemistry of Materials, 2020, 32, 10365-10382.	3.2	45
2601	Longâ€Lived Efficient Inverted Organic Lightâ€Emitting Diodes Developed by Controlling Carrier Injection Barrier into Emitting Layer. Advanced Optical Materials, 2020, 8, 2000506.	3.6	6
2602	Ultralong lifetime room temperature phosphorescence and dual-band waveguide behavior of phosphoramidic acid oligomers. Journal of Materials Chemistry C, 2020, 8, 7330-7335.	2.7	21
2603	A novel donor moiety 9,9,9′9′-tetramethyl-9,9′10,10′-tetrahydro-2,10′-biacridine <i>via</i> one-pot arylation for TADF emitters and their application in highly efficient solution-processable OLEDs. Journal of Materials Chemistry C, 2020, 8, 8971-8979.	: C–H 2.7	14
2604	Synthesis and photophysics of gold(<scp>i</scp>) alkynyls bearing a benzothiazole-2,7-fluorenyl moiety: a comparative study analyzing influence of ancillary ligand, bridging moiety, and number of metal centers on photophysical properties. Physical Chemistry Chemical Physics, 2020, 22, 11915-11927.	1.3	12
2605	Efficiency enhancement in an inverted organic light-emitting device with a TiO ₂ electron injection layer through interfacial engineering. Journal of Materials Chemistry C, 2020, 8, 8206-8212.	2.7	5
2606	Strategically Formulating Aggregationâ€Induced Emissionâ€Active Phosphorescent Emitters by Restricting the Coordination Skeletal Deformation of Pt(II) Complexes Containing Two Independent Monodentate Ligands. Advanced Optical Materials, 2020, 8, 2000079.	3.6	26
2607	Highly efficient inkjet printed flexible organic light-emitting diodes with hybrid hole injection layer. Organic Electronics, 2020, 85, 105822.	1.4	29
2608	Exciton–Exciton Annihilation in Thermally Activated Delayed Fluorescence Emitter. Advanced Functional Materials, 2020, 30, 2000580.	7.8	45
2609	Improving the optical properties of organic light-emitting diodes using random nanoscale rods with a double refractive index. Nanotechnology, 2020, 31, 335205.	1.3	3
2610	Mixed single-layer and self-alignment technology of organic light-emitting diodes and multi-functional integration in organic devices. Japanese Journal of Applied Physics, 2020, 59, SO0802.	0.8	1
2611	Polymer Electronics: To Be or Not to Be?. Advanced Materials Technologies, 2020, 5, 2000144.	3.0	37
2612	Highly Sensitive Triazoleâ€based Fluorimetric/Colorimetric Dualâ€channel Fe ³⁺ Probe. Asian Journal of Organic Chemistry, 2020, 9, 1081-1086.	1.3	9
2613	Configuration mixing upon reorganization of dihedral angle induces rapid intersystem crossing in organic photoredox catalyst. Physical Chemistry Chemical Physics, 2020, 22, 13292-13298.	1.3	5

#	Article	IF	CITATIONS
2614	Weakly Conjugated Phosphine Oxide Hosts for Efficient Blue Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 30591-30599.	4.0	11
2615	Ultra High-efficiency Integrated Mid Infrared to Visible Up-conversion System. Scientific Reports, 2020, 10, 9325.	1.6	16
2616	Understanding the luminescent nature of organic radicals for efficient doublet emitters and pure-red light-emitting diodes. Nature Materials, 2020, 19, 1224-1229.	13.3	159
2617	Lowâ€Refractive Index Layers in Organic Lightâ€Emitting Diodes via Electrospray Deposition for Enhanced Outcoupling Efficiencies. Advanced Engineering Materials, 2020, 22, 2070021.	1.6	0
2618	Robust Properties Of PPY-TiO2-rGO Nanocomposite As Electron Transporting Layer Material For The Application In OLED Devices. Materials Today: Proceedings, 2020, 24, 859-868.	0.9	1
2619	Solid-state effect on luminescent properties of thermally activated delayed fluorescence molecule with aggregation induced emission: A theoretical perspective. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 241, 118634.	2.0	11
2620	Impact of Chlorine on the Internal Transition Rates and Excited States of the Thermally Delayed Activated Fluorescence Molecule 3CzClIPN. Journal of Physical Chemistry C, 2020, 124, 15007-15014.	1.5	6
2621	High Fluorescence Rate of Thermally Activated Delayed Fluorescence Emitters for Efficient and Stable Blue OLEDs. ACS Applied Materials & Interfaces, 2020, 12, 31706-31715.	4.0	27
2622	Organic light-emitting diodes with a PIN structure of only thiophene/phenylene co-oligomer derivatives. Japanese Journal of Applied Physics, 2020, 59, 041004.	0.8	4
2623	Delayed Fluorescence, Room Temperature Phosphorescence, and Mechanofluorochromic Naphthalimides: Differential Imaging of Normoxia and Hypoxia Live Cancer Cells. Journal of Physical Chemistry B, 2020, 124, 5393-5406.	1.2	23
2624	Highly efficient solution-processed red phosphorescent organic light-emitting diodes employing an interface exciplex host. Journal of Materials Chemistry C, 2020, 8, 9909-9915.	2.7	18
2625	Mini-LED, Micro-LED and OLED displays: present status and future perspectives. Light: Science and Applications, 2020, 9, 105.	7.7	630
2626	Dual Mode Radiative Transition from a Phenoselenazine Derivative and Electrical Switching of the Emission Mechanism. Journal of Physical Chemistry Letters, 2020, 11, 5591-5600.	2.1	26
2627	Stimuli-Responsive Aggregation-Induced Delayed Fluorescence Emitters Featuring the Asymmetric D–A Structure with a Novel Diarylketone Acceptor Toward Efficient OLEDs with Negligible Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2020, 12, 29528-29539.	4.0	8
2629	Efficient inkjet-printed blue OLED with boosted charge transport using host doping for application in pixelated display. Optical Materials, 2020, 101, 109755.	1.7	28
2630	Suppression of device degradation mechanism by triphenylsilyl group substitution of the host for blue phosphorescent organic light-emitting diodes. Journal of Industrial and Engineering Chemistry, 2020, 86, 144-149.	2.9	8
2631	Narrowband and Pure Violet Organic Emitter with a Full Width at Half Maximum of 14 nm and <i>y</i> Color Coordinate of Below 0.02. Small, 2020, 16, e1907569.	5.2	92
2632	Bright red phosphorescent organic electroluminescent devices with slow efficiency roll-off by utilizing iridium(III) complex as hole-type sensitizer. Dyes and Pigments, 2020, 178, 108311.	2.0	4
#	Article	IF	Citations
------	--	------	-----------
2633	A negative polaron resistant p-type host for extended lifetime in deep blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 5131-5136.	2.7	6
2634	Effects of Electron Affinity and Steric Hindrance of the Trifluoromethyl Group on the Ï€â€Bridge in Designing Blue Thermally Activated Delayed Fluorescence Emitters. Chemistry - A European Journal, 2020, 26, 6899-6909.	1.7	19
2635	Aromatic Phosphonates: A Novel Group of Emitters Showing Blue Ultralong Room Temperature Phosphorescence. Advanced Materials, 2020, 32, e2000880.	11.1	118
2636	New cyclic and acyclic imidazole-based sensitizers for achieving highly efficient photoanodes for dye-sensitized solar cells by a potential-assisted method. New Journal of Chemistry, 2020, 44, 10207-10219.	1.4	10
2637	Impact of molecular structure on singlet and triplet exciton diffusion in phenanthroline derivatives. Journal of Materials Chemistry C, 2020, 8, 6118-6123.	2.7	7
2638	A comparative computational analysis on the photophysical and charge transport properties of three 5,5-bis(2,2-diphenylvinyl)-biheterocyclic compounds. Chemical Physics Letters, 2020, 748, 137348.	1.2	1
2639	Synthesis, characterisation and theoretical studies of a series of Iridium (III) heteroleptic complexes with Schiff base ligands. Journal of Molecular Structure, 2020, 1211, 128058.	1.8	15
2640	Blue Single‣ayer Organic Lightâ€Emitting Diodes Using Fluorescent Materials: A Molecular Design View Point. Advanced Functional Materials, 2020, 30, 1910040.	7.8	77
2641	Role of host excimer formation in the degradation of organic light-emitting devices. Applied Physics Letters, 2020, 116, .	1.5	4
2642	Organic Lightâ€Emitting Diodes: Pushing Toward the Limits and Beyond. Advanced Materials, 2020, 32, e1907539.	11.1	195
2643	Utilization of novel phenanthrene–imidazole-based ionic small molecules for blue light-emitting electrochemical cells. Journal of Materials Chemistry C, 2020, 8, 4580-4587.	2.7	14
2644	Thermally assisted delayed fluorescence (TADF): fluorescence delayed is fluorescence denied. Materials Horizons, 2020, 7, 1210-1217.	6.4	73
2645	Expanding the hole delocalization range in excited molecules for stable organic light-emitting diodes employing thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2020, 8, 10021-10030.	2.7	14
2646	Enhanced light extraction from green organic light-emitting diodes by attaching a high-haze random-bowls textured optical film. Journal Physics D: Applied Physics, 2020, 53, 435101.	1.3	5
2647	Effect of Refractive Index Contrast on Out-Coupling Efficiency of Corrugated OLEDs using Low-Refractive-Index LiF Interlayer. ACS Applied Electronic Materials, 2020, 2, 2218-2223.	2.0	10
2648	Unveiling the Morphology Effect on the Negative Capacitance and Large Ideality Factor in Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 34265-34273.	4.0	37
2649	Light Out oupling Management in Perovskite LEDs—What Can We Learn from the Past?. Advanced Functional Materials, 2020, 30, 2002570.	7.8	52
2650	Emergence of Impurity-Doped Nanocrystal Light-Emitting Diodes. Nanomaterials, 2020, 10, 1226.	1.9	10

#	Article	IF	CITATIONS
2651	A new mechanistic study of a second generation TADF material based on the path integral approach incorporating Herzberg–Teller and Duschinsky rotation effects. Journal of Materials Chemistry C, 2020, 8, 10369-10381.	2.7	13
2652	Improvement of electroluminescent characteristics in quantum dot light-emitting diodes using ZnInP/ZnSe/ZnS quantum dots by mixing an electron transport material into the light-emitting layer. AIP Advances, 2020, 10, .	0.6	14
2653	Two-Color Pixel Patterning for High-Resolution Organic Light-Emitting Displays Using Photolithography. Micromachines, 2020, 11, 650.	1.4	9
2654	Novel self-host heteroleptic green iridium dendrimers based on carbazole dendrons for solution-processable non-doped phosphorescent organic light-emitting diodes. Optical Materials, 2020, 106, 109976.	1.7	4
2655	Theoretical study of the effect on halogen-substitution and molecular torsion angle on transport properties of π Stack Hexabenzoperylenes and its derivatives. Synthetic Metals, 2020, 265, 116377.	2.1	2
2656	Unveiling the relationship between the phosphorescent quantum yield and structural modification to construct high-performance Pt(II) complex. Inorganica Chimica Acta, 2020, 512, 119861.	1.2	2
2657	New Cu(<scp>i</scp>) halide complexes showing TADF combined with room temperature phosphorescence: the balance tuned by halogens. Dalton Transactions, 2020, 49, 3155-3163.	1.6	47
2658	The design, synthesis and performance of thermally activated delayed fluorescence macromolecules. Polymer Chemistry, 2020, 11, 1555-1571.	1.9	58
2659	Mechanism study of TADF and phosphorescence in dinuclear copper (I) molecular crystal using QM/MM combined with an optimally tuned range-separated hybrid functional. Organic Electronics, 2020, 81, 105667.	1.4	13
2660	Methoxy substituents activated carbazole-based boron dimesityl TADF emitters. Journal of Materials Chemistry C, 2020, 8, 4780-4788.	2.7	28
2661	Solvation-Dependent Excited-State Dynamics of Donor–Acceptor Molecules with Hybridized Local and Charge Transfer Character. Journal of Physical Chemistry C, 2020, 124, 5574-5582.	1.5	33
2662	New porphyrin dendrimers with fluorenyl-based connectors: a simple way to improving the optical properties over dendrimers featuring 1,3,5-phenylene connectors. New Journal of Chemistry, 2020, 44, 4144-4157.	1.4	15
2663	Control of π–π stacking in carbazole-benzimidazoã€^1,2- <i>f</i> 〉phenanthridines: the design of electron-transporting bipolar hosts for phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 3571-3579.	2.7	12
2664	The influence of the Rubrene thickness on the performance of white organic light-emitting devices. Materials Express, 2020, 10, 384-388.	0.2	2
2665	A study on the modification of azole rings to regulate the transition dipole moment, MLCT and T1 structural distortion of 2-pyridyl-azole copper (I) complexes for high phosphorescence performance. Organic Electronics, 2020, 81, 105664.	1.4	5
2666	Improved film morphology and reduced defects in solution-processed red phosphorescent emission layer of the organic light-emitting diodes. Synthetic Metals, 2020, 261, 116322.	2.1	2
2667	Thermally Stimulated Delayed Phosphorescence (TSDP)-Based Gold(III) Complexes of Tridentate Pyrazine-Containing Pincer Ligand with Wide Emission Color Tunability and Their Application in Organic Light-Emitting Devices. Journal of the American Chemical Society, 2020, 142, 2448-2459.	6.6	46
2668	Double-layer printed white organic light-emitting diodes based on multicomponent high-performance illuminants. Flexible and Printed Electronics, 2020, 5, 015008.	1.5	3

#	Article	IF	CITATIONS
2669	Organic Light-Emitting Diode Employing Metal-Free Organic Phosphor. ACS Applied Materials & Interfaces, 2020, 12, 6137-6143.	4.0	35
2670	Dinuclear metal complexes: multifunctional properties and applications. Chemical Society Reviews, 2020, 49, 765-838.	18.7	148
2671	Enhancing Light Outcoupling in Organic Lightâ€Emitting Devices by Integration of Scattering Electrodes. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900593.	0.8	0
2672	Highly Efficient Green Solution Processable Organic Light-Emitting Diodes Based on a Phosphorescent κ3-(N^C^C)Gold(III)-Alkynyl Complex. Chemistry of Materials, 2020, 32, 1605-1611.	3.2	37
2673	Low turn-on voltage of doped organic light emitting diodes based on food dyes. Results in Engineering, 2020, 5, 100099.	2.2	3
2674	Impedance Characterization of Organic Lightâ€Emitting Structures with Thermally Activated Delayed Fluorescence. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900847.	0.8	5
2675	The Role of Reverse Intersystem Crossing Using a TADFâ€Type Acceptor Molecule on the Device Stability of Exciplexâ€Based Organic Lightâ€Emitting Diodes. Advanced Materials, 2020, 32, e1906614.	11.1	109
2676	Molecular Engineering of Isomeric Benzofurocarbazole Donors for Photophysical Management of Thermally Activated Delayed Fluorescence Emitters. Chemistry - A European Journal, 2020, 26, 4816-4821.	1.7	4
2677	Improving the Electroluminescent Performance of Blue Light-Emitting Polymers by Side-Chain Modification. ACS Applied Materials & Interfaces, 2020, 12, 8495-8502.	4.0	10
2678	Towards Blue AIE/AIEE: Synthesis and Applications in OLEDs of Tetra-/Triphenylethenyl Substituted 9,9-Dimethylacridine Derivatives. Molecules, 2020, 25, 445.	1.7	7
2679	Luminescent d8 metal complexes of platinum(II) and gold(III): From photophysics to photofunctional materials and probes. Coordination Chemistry Reviews, 2020, 414, 213298.	9.5	105
2680	Design of hole transport type host for stable operation in blue organic light-emitting diodes. Organic Electronics, 2020, 82, 105724.	1.4	4
2681	Excited State Dynamics of Thermally Activated Delayed Fluorescence from an Excited State Intramolecular Proton Transfer System. Journal of Physical Chemistry Letters, 2020, 11, 3305-3312.	2.1	28
2682	Killer impurities in vacuum chamber that affect the lifetime of organic light-emitting diodes. Applied Physics Letters, 2020, 116, .	1.5	8
2683	Inkjet printing multilayer OLEDs with high efficiency based on the blurred interface. Journal Physics D: Applied Physics, 2020, 53, 355105.	1.3	13
2684	Tetradentate Pt(II) Phosphors: A Computational Analysis of Nonradiative Decay Rates and Luminescence Efficiency. Journal of Physical Chemistry C, 2020, 124, 12039-12048.	1.5	4
2685	Highly efficient exciplex-based OLEDs incorporating a novel electron donor. Materials Chemistry Frontiers, 2020, 4, 1648-1655.	3.2	12
2686	Effects of post-annealing on photoluminescence of Eu-doped ZnO microsphere for single-component white-light materials. Optik, 2020, 209, 164607.	1.4	14

#	Article	IF	CITATIONS
2687	High performances red phosphorescent organic light-emitting diodes with low operation voltage. Organic Electronics, 2020, 84, 105779.	1.4	2
2688	Novel Positive Polaron Stabilizing n-Type Host for High Efficiency and Long Lifetime in Blue Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 19737-19745.	4.0	17
2689	Recent progress in phosphorescent Ir(III) complexes for nondoped organic light-emitting diodes. Coordination Chemistry Reviews, 2020, 413, 213283.	9.5	71
2690	A study on the effect of a pyridine secondary acceptor on the emission properties of thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2020, 8, 7485-7491.	2.7	9
2691	Nanosecond-time-scale delayed fluorescence molecule for deep-blue OLEDs with small efficiency rolloff. Nature Communications, 2020, 11, 1765.	5.8	287
2692	Aromatic-imide-based TADF material as emitter for efficient yellow and white organic light-emitting diodes. Organic Electronics, 2021, 88, 106017.	1.4	12
2693	Synthesis and characterization of homoleptic triply cyclometalated iridium(III) complex containing 6-(pyridin-2-yl)isoquinoline moiety for solution-processable orange-phosphorescent organic light-emitting diodes. Dyes and Pigments, 2021, 185, 108880.	2.0	10
2694	On the study of influence of molecular arrangements and dipole moment on exciton binding energy in solid state. International Journal of Quantum Chemistry, 2021, 121, e26511.	1.0	6
2695	Anthracene-based fluorescent emitters toward superior-efficiency nondoped TTA-OLEDs with deep blue emission and low efficiency roll-off. Chemical Engineering Journal, 2021, 421, 127748.	6.6	43
2696	Accurate Efficiency Measurements of Organic Lightâ€Emitting Diodes via Angleâ€Resolved Spectroscopy. Advanced Optical Materials, 2021, 9, 2000838.	3.6	25
2697	Efficient red electroluminescent devices with very low operation voltage by utilizing hole and electron transport materials as the host. Thin Solid Films, 2021, 717, 138474.	0.8	7
2698	2D Hybrid Halide Perovskites: Synthesis, Properties, and Applications. Solar Rrl, 2021, 5, .	3.1	20
2699	Recent progress in hot exciton materials for organic light-emitting diodes. Chemical Society Reviews, 2021, 50, 1030-1069.	18.7	353
2700	Highly efficient orange phosphorescent organic light-emitting diodes with (4-(3,5-dimethylphenyl)-2-(m-tolyl)pyridine)-based iridium complex. Dyes and Pigments, 2021, 186, 109006.	2.0	4
2701	Greenâ€Blue Phosphorescent Iridium(III) Complexes with Near Unitary Quantum Yield. European Journal of Inorganic Chemistry, 2021, 2021, 601-604.	1.0	4
2702	CN decoration of dibenzofuran modified biphenyl for high triplet energy host for blue phosphorescent organic light-emitting diodes. Organic Electronics, 2021, 89, 106037.	1.4	5
2703	Universal Inverse Scaling of Exciton–Exciton Annihilation Coefficient with Exciton Lifetime. Nano Letters, 2021, 21, 424-429.	4.5	20
2704	C-band tunable Q-switched fiber laser based on Alq3 as a saturable absorber. Results in Optics, 2021, 2, 100036.	0.9	3

#	Article	IF	CITATIONS
2705	A quantum dynamics study of the hyperfluorescence mechanism. Journal of Materials Chemistry C, 2021, 9, 1362-1369.	2.7	21
2706	Thermally activated delayed fluorescence exciplex emitters for high-performance organic light-emitting diodes. Materials Horizons, 2021, 8, 401-425.	6.4	81
2707	Molecular design tactics enhancing the negative polaron stability of a p-type host for long device lifetime by fusion of carbazole with furan. Journal of Materials Chemistry C, 0, , .	2.7	1
2708	Fast Delayed Emission in New Pyridazine-Based Compounds. Frontiers in Chemistry, 2020, 8, 572862.	1.8	7
2709	Highly efficient and low efficiency roll-off organic light-emitting diodes with double-exciplex forming co-hosts. Journal of Materials Chemistry C, 2021, 9, 6062-6067.	2.7	9
2710	TADF and Hyperfluorescence. Series in Display Science and Technology, 2021, , 39-65.	0.6	2
2711	The role of dinuclearity in promoting thermally activated delayed fluorescence (TADF) in cyclometallated, N^C^N-coordinated platinum(<scp>ii</scp>) complexes. Journal of Materials Chemistry C, 2021, 9, 10276-10287.	2.7	26
2712	Aggregation-induced emission luminogen with excellent triplet–triplet upconversion efficiency for highly efficient non-doped blue organic light-emitting diodes. Materials Horizons, 2022, 9, 376-382.	6.4	30
2713	Lowest unoccupied molecular orbital managing function of CN-substituted dibenzofuran in high triplet energy hosts for blue thermally-activated delayed fluorescence organic light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 15095-15101.	2.7	2
2714	A methyl-shield strategy enables efficient blue thermally activated delayed fluorescence hosts for high-performance fluorescent OLEDs. Materials Horizons, 2021, 8, 2025-2031.	6.4	26
2715	Solution-processed light-emitting devices. , 2021, , 623-647.		0
2716	Luminescent Materials for Organic Light-Emitting Diodes. , 2021, , 561-601.		1
2717	Simultaneous fluorescence and phosphorescence in Zn(<scp>ii</scp>)–zwitterionic coordination polymers with tunable colors. Journal of Materials Chemistry C, 2021, 9, 4233-4239.	2.7	5
2718	Photophysical studies of a room temperature phosphorescent Cd(<scp>ii</scp>) based MOF and its application towards ratiometric detection of Hg ²⁺ ions in water. CrystEngComm, 2021, 23, 4160-4168.	1.3	5
2719	Red phosphorescent binuclear Pt(ii) complexes incorporating bis(diphenylphorothioyl)amide ligands: synthesis, photophysical properties and application in solution processable OLEDs. Journal of Materials Chemistry C, 2021, 9, 9505-9514.	2.7	5
2720	Electromagnetic field theory interpretation on light extraction of organic light emitting diodes (OLEDs). IEICE Transactions on Electronics, 2021, , .	0.3	1
2721	Purely organic phosphorescent organic light emitting diodes using alkyl modified phenoselenazine. Journal of Materials Chemistry C, 2021, 9, 8233-8238.	2.7	19
2722	Study of configuration differentia and highly efficient deep-red thermally activated delayed fluorescent organic light-emitting diodes based on phenanthro[4,5- <i>fgh</i>]quinoxaline derivatives. Journal of Materials Chemistry C, 2021, 9, 7392-7399.	2.7	17

#	Article	IF	CITATIONS
2723	Photometric Station for In-Vitro Diagnostic Analysis Through the Use of Organic-Based Opto-electronic Devices and Photonic Crystals. Lecture Notes in Electrical Engineering, 2021, , 183-189.	0.3	0
2724	Toward High Efficiency Organic Lightâ€Emitting Diodes: Role of Nanoparticles. Advanced Optical Materials, 2021, 9, 2001710.	3.6	13
2725	Phosphorescent multinuclear complexes for optoelectronics: tuning of the excited-state dynamics. Chemical Communications, 2021, 57, 5857-5870.	2.2	20
2726	Quinazoline-based thermally activated delayed fluorescence emitters for high-performance organic light-emitting diodes with external quantum efficiencies about 28%. Journal of Materials Chemistry C, 2021, 9, 12633-12641.	2.7	4
2727	Lanthanide complexes as OLED emitters. Fundamental Theories of Physics, 2021, 59, 1-91.	0.1	11
2728	Enhancement of the electroluminescence properties of iridium-complexes by decorating the ligand with hole-transporting carbazole dendrons. New Journal of Chemistry, 2021, 45, 7694-7704.	1.4	4
2729	Phosphorescent [3 + 2 + 1] coordinated lr(<scp>iii</scp>) cyano complexes for achieving efficient phosphors and their application in OLED devices. Chemical Science, 2021, 12, 10165-10178.	3.7	32
2730	Synthesis and luminescence properties of two cross-linkable Ir(<scp>iii</scp>) complexes. New Journal of Chemistry, 2021, 45, 19154-19163.	1.4	4
2731	Research Progress on Aggregation-Induced Delayed Fluorescence in Materials and Devices. Chinese Journal of Organic Chemistry, 2021, 41, 3050.	0.6	4
2732	Improved positive polaron stability of the p-type host for long lifetime in phosphorescent organic light-emitting diodes. Materials Chemistry Frontiers, 2021, 5, 7259-7266.	3.2	3
2733	Recent progress on pure organic room temperature phosphorescent polymers. Aggregate, 2021, 2, e38.	5.2	119
2734	Alkyl-Substituted Carbazole/Pyridine Hybrid Host Materials for Efficient Solution-Processable Blue- and Green-Emitting Phosphorescent OLEDs. Electronic Materials Letters, 2021, 17, 148-156.	1.0	2
2735	New structure host material for phosphorescent OLED devices. Molecular Crystals and Liquid Crystals, 2021, 716, 69-75.	0.4	1
2736	The Critical Role of nï€* States in the Photophysics and Thermally Activated Delayed Fluorescence of Spiro Acridine-Anthracenone. Journal of Physical Chemistry Letters, 2021, 12, 1490-1500.	2.1	26
2737	<i>cis</i> â€Quinacridoneâ€Based Delayed Fluorescence Emitters: Seemingly Old but Renewed Functional Luminogens. Angewandte Chemie - International Edition, 2021, 60, 7643-7648.	7.2	74
2738	Thermal equilibration between singlet and triplet excited states in organic fluorophore for submicrosecond delayed fluorescence. Science Advances, 2021, 7, .	4.7	79
2739	<i>cis</i> â€Quinacridoneâ€Based Delayed Fluorescence Emitters: Seemingly Old but Renewed Functional Luminogens. Angewandte Chemie, 2021, 133, 7721-7726.	1.6	16
2740	Melt and solution processable novel photoluminescent polymer blends for multifaceted advanced applications. Polymer, 2021, 215, 123378.	1.8	9

ARTICLE IF CITATIONS Comprehensive study on operational lifetime of organic light-emitting diodes: effects of molecular 2741 0.8 2 structure and energy transfer. Japanese Journal of Applied Physics, 2021, 60, 040902. Combined experimental and density functional theory studies on novel 9â€(4/3/2â€cyanophenyl)â€9 H $\hat{a} \in carbazole \hat{a} \in 3 \hat{a} \in carbonitrile compounds for organic electronics. Journal of Physical Organic Chemistry,$ 2742 2021, 34, e4207. Decoration of 1,3,5-triazine backbone structure with dibenzofuran and triphenylsilyl blocking groups for high stability n-type host in deep blue phosphorescent organic light-emitting diodes. Journal of 2743 2.9 3 Industrial and Engineering Chemistry, 2021, 95, 260-266. Conformational Dependence of Triplet Energies in Rotationally Hindered N―and Sâ€Heterocyclic Dimers: New Design and Measurement Rules for High Triplet Energy OLED Host Materials. Chemistry - A 2744 European Journal, 2021, 27, 6545-6556. Direct coherent switching with decay of mixing for intersystem crossing dynamics of 2745 1.2 15 thioformaldehyde: The effect of decoherence. Journal of Chemical Physics, 2021, 154, 094310. Design Rule of Assistant Dopant for High External Quantum Efficiency in Hyperfluorescence Organic Lightâ€Emitting Diodes. Advanced Photonics Research, 2021, 2, 2000109. 2746 1.7 Effects of MEH-PPV Molecular Ordering in the Emitting Layer on the Luminescence Efficiency of 2747 1.7 3 Organic Light-Emitting Diodes. Molecules, 2021, 26, 2512. Investigating the Effect of Ag and Au Nanostructures with Spherical and Rod Shapes on the Emission 2748 1.8 Wavelength of OLED. Plasmonics, 2021, 16, 1841-1848. Anomalous photoluminescence properties of emissive polymer originating from modulated chemical 2749 structures affected by antioxidant effect of natural l2-carotene. Japanese Journal of Applied Physics, 0.8 0 2021, 60, 051003. Over 30Â000 h Device Lifetime in Deep Blue Organic Lightâ€Emitting Diodes with <i>y</i> Color Coordinate of 0.086 and Current Efficiency of 37.0Acd A<sup>â^1</br> 3.6 44 2021, 9, 2100203. Study of the Photoluminescence Characteristics of $4,4\hat{a}\in (1<i>E</i>,1\hat{a}\in 2<i>E</i>)-Quinoxaline-2,3-diylbis(ethene-2,1-diyl))bis(<i>N</i>,<i>N-</i>dimethylaniline). 1.2$ 2751 2 Journal of Physical Chemistry B, 2021, 125, 4132-4140. Thermally activated delayed fluorescence materials based on 3, 3â€2-position substituted bis(phenýlsulfonyl)benzéne. Dyes and Pigments, 2021, 188, 109210. Computational insight into newly anomalous delayed fluorescence emitters based on D-A-A 2753 2.0 0 structures. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119392. Unraveling exciton processes in Ir(ppy)3:CBP OLED films upon photoexcitation. Journal of Chemical Physics, 2021, 154, 164101. 2754 1.2 Protecting Benzylic Cï£; H Bonds by Deuteration Doubles the Operational Lifetime of Deepâ€Blue 2755 3.6 44 Irâ€Phenylimidazole Dopants in Phosphorescent OLEDs. Advanced Optical Materials, 2021, 9, 2100630. 19â€3: Lifetime Enhancement Toward Commercialization of Hyperfluorescence. Digest of Technical Papers SID International Symposium, 2021, 52, 232-235. Benzofurodibenzofuran as a universal chemical platform of highly efficient sky-blue thermally 2757 6.6 5 activated delayed fluorescence emitters and hosts. Chemical Engineering Journal, 2021, 411, 128550. Ancillary ligand effect with methyl and t-butyl for deep blue and high EQE blue phosphorescent 2758 6.6 organic light-emitting diodes. Chemical Engineering Journal, 2021, 411, 128437.

#	Article	IF	CITATIONS
2759	Redox Behavior of Chelate Complexes Based on 8-Oxyquinoline Promising in OLED Display Technology. Key Engineering Materials, 0, 887, 165-171.	0.4	0
2760	Effects of Substitution Position of Carbazole-Dibenzofuran Based High Triplet Energy Hosts to Device Stability of Blue Phosphorescent Organic Light-Emitting Diodes. Molecules, 2021, 26, 2804.	1.7	5
2761	Efficient light-emitting diodes from organic radicals with doublet emission. Journal of Applied Physics, 2021, 129, .	1.1	47
2762	Key of Suppressed Triplet Nonradiative Transition-Dependent Chemical Backbone for Spatial Self-Tunable Afterglow. Jacs Au, 2021, 1, 945-954.	3.6	20
2763	Simplified and high-efficiency warm/cold phosphorescent white organic light-emitting diodes based on interfacial exciplex co-host. Organic Electronics, 2021, 92, 106123.	1.4	6
2764	Carbazole/triphenylamine-cyanobenzimidazole hybrid bipolar host materials for green phosphorescent organic light-emitting diodes. Organic Electronics, 2021, 92, 106090.	1.4	14
2765	Thermally-activated Delayed Fluorescence for Light-emitting Devices. Chemistry Letters, 2021, 50, 938-948.	0.7	103
2766	Charge Transfer as the Key Parameter Affecting the Color Purity of Thermally Activated Delayed Fluorescence Emitters. ACS Applied Materials & amp; Interfaces, 2021, 13, 28529-28537.	4.0	43
2767	Novel difluorenyl substituted 1,3,5-triazine and carbazole based bipolar host materials with high thermal stability for efficient green phosphorescent organic light-emitting diodes (PhOLEDs). Tetrahedron, 2021, 90, 132175.	1.0	4
2768	Pâ^©N Bridged Cu(l) Dimers Featuring Both TADF and Phosphorescence. From Overview towards Detailed Case Study of the Excited Singlet and Triplet States. Molecules, 2021, 26, 3415.	1.7	9
2769	Effect of the relationship between the energy levels of host and guest on EL performance of phosphorescence organic light-emitting diodes. Organic Electronics, 2021, 93, 106128.	1.4	3
2770	Open for Bismuth: Main Group Metal-to-Ligand Charge Transfer. Inorganic Chemistry, 2021, 60, 10137-10146.	1.9	20
2771	Molecular Design of Luminescent Gold(III) Emitters as Thermally Evaporable and Solution-Processable Organic Light-Emitting Device (OLED) Materials. Chemical Reviews, 2021, 121, 7249-7279.	23.0	100
2772	A highly sensitive detecting system to precisely evaluate emission spectra and quantum efficiency of organic crystal light-emitting transistors. Optics Letters, 2021, 46, 3296-3299.	1.7	1
2773	Over 800 nm Emission via Harvesting of Triplet Excitons in Exciplex Organic Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2021, 12, 6034-6040.	2.1	11
2774	Efficiency enhancement of green organic light-emitting diode utilizing aromatic diamine/bathocuproine multiple quantum wells. Optical Materials, 2021, 117, 111125.	1.7	2
2776	Phthalonitrile based charge transfer type host for yellow phosphorescent organic light-emitting diodes. Organic Electronics, 2021, 94, 106166.	1.4	6
2777	Nanosecond-time-scale delayed fluorescence towards fast triplet-singlet spin conversion for efficient orange-red OLEDs with negligible efficiency roll-off. Chemical Engineering Journal, 2021, 415, 128949.	6.6	36

#	Article	IF	CITATIONS
2778	Twisted Phenanthro[9,10â€d]imidazole Derivatives as Nonâ€doped Emitters for Efficient Electroluminescent Devices with Ultraâ€Deep Blue Emission and High Exciton Utilization Efficiency. Chemistry - an Asian Journal, 2021, 16, 2328-2337.	1.7	16
2779	A Novel Deep Blue LE-Dominated HLCT Excited State Design Strategy and Material for OLED. Molecules, 2021, 26, 4560.	1.7	22
2780	Developing Efficient Dinuclear Pt(II) Complexes Based on the Triphenylamine Core for High-Efficiency Solution-Processed OLEDs. ACS Applied Materials & amp; Interfaces, 2021, 13, 36020-36032.	4.0	7
2782	Deep Blue Fluorescent Material with an Extremely High Ratio of Horizontal Orientation to Enhance Light Outcoupling Efficiency (44%) and External Quantum Efficiency in Doped and Non-Doped Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 34605-34615.	4.0	13
2783	Stable Blue Fluorescent Organic Light-Emitting Diodes Based on an Inorganically Doped Homojunction. IEEE Transactions on Electron Devices, 2021, 68, 3424-3428.	1.6	0
2784	Review of Capacitive Touchscreen Technologies: Overview, Research Trends, and Machine Learning Approaches. Sensors, 2021, 21, 4776.	2.1	22
2785	Recent advances in organic luminescent materials with narrowband emission. NPG Asia Materials, 2021, 13, .	3.8	209
2786	Electronic structure analysis of nano-lens arrays. Journal of Materials Science, 2021, 56, 17674-17681.	1.7	0
2787	High efficiency blue organic light-emitting diodes with below-bandgap electroluminescence. Nature Communications, 2021, 12, 4868.	5.8	62
2788	Easily synthesized and cheap carbazole- or phenoxazine-based hosts for efficient yellow phosphorescent OLEDs. Optical Materials, 2021, 118, 111251.	1.7	4
2789	Organic Light-Emitting Diodes Based on Luminescent Self-Assembled Materials of Copper(I). Energy & Fuels, 2021, 35, 18982-18999.	2.5	30
2790	Recent Advances in Flexible Perovskite Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2021, 8, 2100441.	1.9	28
2791	A Resonantly Driven, Electroluminescent Metal Oxide Semiconductor Capacitor with High Power Efficiency. ACS Nano, 2021, 15, 15210-15217.	7.3	10
2792	38.1: Invited Paper: Hyperfluorescenceâ,,¢: Excel the performance, Create the Future. Digest of Technical Papers SID International Symposium, 2021, 52, 480-483.	0.1	0
2793	The effect of the electron-donor ability on the OLED efficiency of twisted donor-acceptor type emitters. Organic Electronics, 2021, 95, 106187.	1.4	4
2794	Emerging light-emitting diodes for next-generation data communications. Nature Electronics, 2021, 4, 559-572.	13.1	102
2795	Colloidal quantum dot electronics. Nature Electronics, 2021, 4, 548-558.	13.1	192
2796	Tetradentate Platinum(II) and Palladium(II) Complexes Containing Fused 6/6/6 or 6/6/5 Metallocycles with Azacarbazolylcarbazole-Based Ligands. Inorganic Chemistry, 2021, 60, 12972-12983.	1.9	17

#	Article	IF	CITATIONS
2797	Room-temperature corrugated indium zinc oxide anode to achieve high-efficiency blue phosphorescent organic light-emitting diodes. Organic Electronics, 2021, 96, 106237.	1.4	6
2799	Alkylated indolo[3,2,1-jk]carbazoles as new building blocks for solution processable organic electronics. Organic Electronics, 2021, 96, 106215.	1.4	2
2800	Deepâ€Blue OLEDs Based on Organoboron–Phenazasilineâ€Hybrid Delayed Fluorescence Emitters Concurrently Achieving 30% External Quantum Efficiency and Small Efficiency Rollâ€Off. Advanced Optical Materials, 2021, 9, 2101282.	3.6	32
2801	Carbazole-pyridine pyrroloquinoxaline/benzothiadiazine 1,1-dioxide based bipolar hosts for efficient red PhOLEDs. Organic Electronics, 2021, 96, 106217.	1.4	7
2802	Donor-Ï€-acceptor materials for robust electroluminescence performance based on hybridized local and charge-transfer state. Dyes and Pigments, 2021, 193, 109495.	2.0	10
2803	Overcoming Outcoupling Limit in Perovskite Light-Emitting Diodes with Enhanced Photon Recycling. Nano Letters, 2021, 21, 8426-8432.	4.5	9
2804	Single-step-fabricated disordered metasurfaces for enhanced light extraction from LEDs. Light: Science and Applications, 2021, 10, 180.	7.7	23
2805	Recent Advances in the Development of Blue and Deepâ€Blue Emitting Gold(I) and Gold(III) Molecular Systems. European Journal of Inorganic Chemistry, 2021, 2021, 4890-4902.	1.0	10
2806	Red GaPAs/GaP Nanowire-Based Flexible Light-Emitting Diodes. Nanomaterials, 2021, 11, 2549.	1.9	8
2807	Effects of asymmetric acceptor and donor positioning in deep blue pyridyl-sulfonyl based TADF emitters. Dyes and Pigments, 2021, 194, 109579.	2.0	8
2808	Low efficiency roll-off thermally activated delayed fluorescence emitters for non-doped OLEDs: Substitution effect of thioether and sulfone groups. Dyes and Pigments, 2021, 194, 109649.	2.0	8
2809	Effect of dendrimer surface groups on the properties of phosphorescent emissive films. Organic Electronics, 2021, 99, 106321.	1.4	4
2810	Novel secondary acceptor based molecular design for superb lifetime in thermally activated delayed fluorescent organic light-emitting diodes through high bond energy and fast up-conversion. Chemical Engineering Journal, 2022, 427, 130988.	6.6	11
2811	Recent Progress on Organic Semiconductor Laser Molecules. Vacuum and Surface Science, 2021, 64, 4-9.	0.0	0
2812	A computational scheme for evaluating the phosphorescence quantum efficiency: applied to blue-emitting tetradentate Pt(<scp>ii</scp>) complexes. Materials Horizons, 2022, 9, 334-341.	6.4	15
2813	Phosphorescent OLEDs for Power-Efficient Displays. Series in Display Science and Technology, 2021, , 1-38.	0.6	0
2814	Design and synthesis of yellow- to red-emitting gold(<scp>iii</scp>) complexes containing isomeric thienopyridine and thienoquinoline moieties and their applications in operationally stable organic light-emitting devices. Materials Horizons, 2022, 9, 281-293.	6.4	12
2815	Highly efficient phosphorescent organic light-emitting diodes based on novel bipolar iridium complexes with easily-tuned emission colors by adjusting fluorine substitution on phenylpyridine ligands. Journal of Materials Chemistry C, 2021, 9, 8329-8336.	2.7	11

		CITATION REPORT		
#	Article		IF	Citations
2816	Recent advances of AIE light-up probes for photodynamic therapy. Chemical Science, 2	021, 12, 6488-6506.	3.7	224
2817	Manipulating MLCT transition character with ppy-type four-coordinate organoboron sk highly efficient long-wavelength Ir-based phosphors in organic light-emitting diodes. Jo Materials Chemistry C, 2021, 9, 12650-12660.	eleton for urnal of	2.7	9
2818	Highly efficient and stable blue organic light-emitting diodes through the selective que long-living triplet exciton of a thermally activated delayed fluorescence emitter. Journal Chemistry C, 2021, 9, 7458-7464.	nching of of Materials	2.7	10
2819	Identifying lifetime as one of the key parameters responsible for the low brightness of lanthanide-based OLEDs. Dalton Transactions, 2021, 50, 12806-12813.		1.6	16
2820	Combinatorial donor engineering for highly efficient blue thermally activated delayed f emitters with low efficiency roll-off. Journal of Materials Chemistry C, 2021, 9, 15276-1	uorescence 5283.	2.7	2
2822	Synthesis, Optoelectronic and Theoretical Investigation of Anthraquinone Amineâ [~] 'Bas Donorâ [~] 'Acceptor Derivatives. ChemistrySelect, 2017, 2, 7620-7629.	ed	0.7	15
2823	Organic Semiconductors. Graduate Texts in Physics, 2010, , 451-463.		0.1	5
2824	White-Emitting Polymers and Devices. Green Energy and Technology, 2010, , 37-78.		0.4	2
2825	Fundamentals of Organic Lasers. Springer Series in Optical Sciences, 2013, , 13-73.		0.5	6
2826	Mass Production of Large-Format Micro-/Nanostructure-Based Optical Devices. Nanost Science and Technology, 2014, , 223-267.	ructure	0.1	1
2828	Excitonic Processes in Organic Semiconductors and Their Applications in Organic Phot Light Emitting Devices. Springer Series in Materials Science, 2015, , 229-251.	ovoltaic and	0.4	6
2829	Asymmetrically difunctionalized dibenzo[b,d]furan-based hole blocking materials for high-performance blue phosphorescent organic light-emitting diodes. Dyes and Pigmer 108534.	nts, 2020, 181,	2.0	6
2830	Probing the effect of substituent groups in Ir(III) bis-tridentate complexes during deep- phosphorescent illuminating. Organic Electronics, 2020, 84, 105803.	blue	1.4	3
2831	Computational Discovery of Organic LED Materials. , 2018, , 423-446.			3
2832	Performance enhancement of single layer organic light-emitting diodes using chlorinat oxide as the anode. RSC Advances, 2018, 8, 11255-11261.	ed indium tin	1.7	5
2833	Revealing the mechanism of carrier transport in host-guest systems of organic material modified Poisson and drift-diffusion solver. Physical Review Materials, 2020, 4, .	s with a	0.9	6
2834	Structural and luminescent properties of co-crystals of tetraiodoethylene with two azaphenanthrenes. Acta Crystallographica Section E: Crystallographic Communication: 438-442.	s, 2020, 76,	0.2	1
2835	Recent progress of pyrimidine derivatives for high-performance organic light-emitting of Journal of Photonics for Energy, 2018, 8, 1.	evices.	0.8	70

#		IE	CITATIONS
#	ARTICLE	IF	CITATIONS
2836	electroluminescence stability of phosphorescent organic light emitting devices. , 2019, , .		1
2838	ECL Polymers and Devices. , 2004, , 445-522.		1
2839	Fundamentals of luminescence. , 2006, , .		2
2840	Enhanced light extraction from organic light-emitting diodes by reducing plasmonic loss through graded photonic super-crystals. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 1283.	0.9	9
2841	Corrugated organic light-emitting diodes to effectively extract internal modes. Optics Express, 2019, 27, A372.	1.7	29
2842	Room temperature phosphorescence from Si-doped-CD-based composite materials with long lifetimes and high stability. Optics Express, 2020, 28, 19550.	1.7	9
2843	High-efficiency solution-processed WOLEDs with very high color rendering index based on a macrospirocyclic oligomer matrix host. Optical Materials Express, 2018, 8, 3208.	1.6	4
2844	High-energy Q-switched ytterbium-doped all-fiber laser with tris-(8-hydroxyquinoline) aluminum as saturable absorber. Optical Materials Express, 2019, 9, 3215.	1.6	17
2845	Novel nano- and micro-textures for highly efficient outcoupling in white organic light emitting diodes. , 2012, , .		2
2846	Recent Progress on Organic Emitters for Organic Light Emitting Diode Lightings. Applied Chemistry for Engineering, 2016, 27, 455-466.	0.2	8
2847	Waiting for Act 2: what lies beyond organic light-emitting diode (OLED) displays for organic electronics?. Nanophotonics, 2020, 10, 31-40.	2.9	13
2849	Towards Highly Efficient TADF Yellow-Red OLEDs Fabricated by Solution Deposition Methods: Critical Influence of the Active Layer Morphology. Nanomaterials, 2020, 10, 101.	1.9	19
2850	Structure and DFT Calculation of fac-Tris(3-methyl-2-phenylpyridine)Ir(III) Complex. Bulletin of the Korean Chemical Society, 2003, 24, 1521-1524.	1.0	15
2851	Synthesis and Structural Characterization of Main Group 15 Organometallics R ₃ M and R(Ph) ₂ P(=N-Ar)(M = P, Sb, Bi; R = phenanthrenyl; Ar =) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 Society, 2005, 26, 1946-1952.	222 Td (2 1.0	2,g- ^{i<!--</td-->}
2852	Highly Efficient Red Phosphorescent OLEDs Based on Ir(III) Complexes with Fluorine-substituted Benzoylphenylpyridine Ligand. Bulletin of the Korean Chemical Society, 2010, 31, 3711-3717.	1.0	12
2853	Red-Orange Emissive Cyclometalated Neutral Iridium(III) Complexes and Hydridoiridium(III) Complex Based on 2-Phenylquinoxaline : Structure, Photophysics and Reactivity of Acetylacetone Towards Cyclometalated Iridium Dimer. Bulletin of the Korean Chemical Society, 2011, 32, 4321-4326.	1.0	8
2854	Highly Efficient Red Emissive Heteroleptic Cyclometalated Iridium(III) Complexes Bearing Two Substituted 2-Phenylquinoxaline and One 2-Pyrazinecarboxylic Acid. Bulletin of the Korean Chemical Society, 2013, 34, 167-173.	1.0	9
2855	Phosphorescence Properties of Neat FIrpic Films. Bulletin of the Korean Chemical Society, 2013, 34, 1547-1550.	1.0	6

#	Article	IF	CITATIONS
2856	Recent Developments of ^ ^lsquo;Real Practical^ ^rsquo; Organic Luminescent Materials. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 465-472.	0.0	7
2857	Highly efficient all fluorescent white organic light-emitting devices made by sequential doping. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 197204.	0.2	4
2858	Study of isolation method of green fluorescent pigments contained in cherry tomatoes using column chromatography. Japanese Journal of Applied Physics, 2020, 59, SCCA09.	0.8	2
2859	Highly Efficient Green Phosphorescent Organic Light-Emitting Diodes with High Electron Mobility. Japanese Journal of Applied Physics, 2011, 50, 01BC07.	0.8	5
2860	Surface Potential Measurement of Tris(8-hydroxyquinolinato)aluminum and Bis[N-(1-naphthyl)-N-phenyl]benzidine Thin Films Fabricated on Indium–Tin Oxide by Kelvin Probe Force Microscopy. Japanese Journal of Applied Physics, 2011, 50, 071601.	0.8	4
2861	Improved Device Performances in Phosphorescent Organic Light-Emitting Diodes by Microcavity Effects. Japanese Journal of Applied Physics, 2012, 51, 09MH01.	0.8	8
2862	The role of halogen bonding in metal free phosphors. Physical Chemistry Chemical Physics, 2021, 23, 23351-23359.	1.3	2
2863	Multifunctional assistant acceptor modulated pyrenyl phenanthrimidazole derivatives for highly efficient blue and host-sensitized OLEDs. Journal of Materials Chemistry C, 2021, 9, 15683-15697.	2.7	12
2864	High Performance Organic Semiconductor Devices. Kobunshi, 2002, 51, 87-87.	0.0	0
2865	有機 EL ã•ʿāfēfªāfžāf¼å‰é›†ç©ēf‡āfē,¤,¹. Seikei-Kakou, 2003, 15, 173-181.	0.0	0
2867	Recent Progresses and Problems in Research and Development on Organic Semiconductor Lasers. The Review of Laser Engineering, 2004, 32, 570-575.	0.0	0
2868	Liquid crystalline materials. Series in Optics and Optoelectronics, 2004, , .	0.0	0
2869	Polymeric semiconductors. Series in Optics and Optoelectronics, 2004, , .	0.0	0
2870	ECL Polymers and Devices. , 2004, , 456-533.		0
2871	Fundamentals of Organic Electroluminescent Devices. Journal of the Institute of Electrical Engineers of Japan, 2005, 125, 649-652.	0.0	0
2872	Microstructural Characterization and Performance Measurements. Optical Science and Engineering, 2006, , .	0.1	0
2873	Electroluminescence materials. , 2006, , .		0
2874	Lowering the Driving Voltage of Organic Light Emitting Diodes by Chemical Doping. Hyomen Kagaku, 2007, 28, 236-241.	0.0	Ο

#	Article	IF	CITATIONS
2875	Chapter 20. From the Synthesis of Acetylenic Natural Products to Seeing the Light with Polymers. , 2007, , 334-345.		0
2876	Transition Metal σ-Acetylide Polymers Containing Main Group Elements in the Main Chain: Synthesis, Light Emission and Optoelectronic Applications. , 2008, , 37-69.		1
2877	Fabrication and Characterization of High Efficiency Green PhOLEDs with [TCTA-TAZ] : lr(ppy)3Double Emission Layers. Korean Journal of Materials Research, 2008, 18, 199-203.	0.1	1
2878	High Efficiency Green Phosphorescent Organic Light Emitting Devices using the Emission Layer of (TCTA/TCTA1/3TAZ2/3/TAZ) : Ir(ppy)3. Korean Journal of Materials Research, 2008, 18, 347-351.	0.1	0
2879	Flexible Organic Light-Emitting Diodes for Automobiles. Seikei-Kakou, 2008, 20, 869-873.	0.0	0
2880	High Efficiency and Simple Architecture Phosphorescent OLEDs. , 2009, , .		0
2882	OLED Materials and Device Architectures for Full-Color Displays and Solid-State Lighting. , 2009, , 433-509.		2
2883	Organic Light-Emitting Diodes and Photodetectors for Optical Communication. , 2009, , 511-528.		0
2885	Polymer white light-emitting diodes with a single emission layer of fluorescent polymer blend. Wuli Xuebao/Acta Physica Sinica, 2010, 59, 4240.	0.2	3
2886	Electrical and Optical Properties of Organic Light Emission Devices using Selective Doping in a Single Host. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2010, 23, 124-127.	0.0	0
2887	The Potential of Polymer Photonics for Microflow Cytometry. , 2010, , .		0
2888	Improving the Electrical and Optical Properties of Blue Polymer Light Emitting Diodes by Introducing TPBI Electron Transport Layer. Korean Journal of Materials Research, 2010, 20, 294-300.	0.1	0
2889	Multiperiod gratings in a high refractive index material for enhanced OLED outcoupling. , 2011, , .		0
2891	Organic Light-Emitting Diodes with Field-Effect Electron Transport. , 2011, , 49-63.		0
2892	Devices Based on Diperfluorohexyl-quaterthiophene Derivatives. , 2011, , 65-79.		0
2893	Progress of white organic light-emitting device. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 087808.	0.2	6
2894	High Efficiency White Organic Light-Emitting Devices. , 2011, , .		0
2895	Very low color-temperature Organic Light-Emitting Diodes for lighting at night. , 2011, , .		0

#	Article	IF	CITATIONS
2896	High-Efficiency Electrophosphorescence Red Organic Light-Emitting Diodes Using a Thin 1,3-Bis[2-(2,2'-bipyridin-6-yl)-1,3,4-oxadiazol-5-yl]benzene Cleaving Layer in an Ir-Complex-Doped Emitter Layer. Japanese Journal of Applied Physics, 2011, 50, 04DK19.	0.8	0
2897	Development of Phosphorescent Materials for OLEDs. Journal of the Japan Society of Colour Material, 2012, 85, 489-494.	0.0	0
2898	Quantitative description of the scattering angles in electrically-driven OLEDs fabricated on periodically corrugated substrates. , 2012, , .		0
2899	Vapor Deposition Polymerization of an Oxadiazole Polymer and Its Application to Organic Light Emitting Diode. IEEJ Transactions on Electronics, Information and Systems, 2012, 132, 1402-1407.	0.1	0
2900	Active Matrix Flat Panel Displays. , 2013, , 69-105.		0
2901	Highly Efficient and Multilayered OLEDs Fabricated by Solution-Process. Journal of the Japan Society of Colour Material, 2013, 86, 450-455.	0.0	0
2902	Functional Dyes and Pigments as the Driving Force behind Advanced Information Technology Systems for Home Appliances. Journal of the Japan Society of Colour Material, 2013, 86, 190-197.	0.0	0
2905	Improvement of Outcoupled Light Efficiency of Organic Light-emitting Diodes with a Use of Microlens Array. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2014, 27, 307-311.	0.0	0
2906	Efficient solution-processable electrophosphorescence for trifluoromethylpyridinto iridium with sensitizing agent. , 2015, , .		0
2907	Enhancing Optical Out-coupling of Organic Light-Emitting Devices with Nanostructured Composite Electrodes Consisting of Indium Tin Oxide Nanomesh and Conducting Polymer. , 2015, , .		0
2908	Efficient Green Phosphorescent OLEDs with Hexaazatrinaphthylene Derivatives as a Hole Injection Layer. Applied Chemistry for Engineering, 2015, 26, 725-729.	0.2	1
2909	Performance Analysis of OLED with Hole Block Layer and Impact of Multiple Hole Block Layer. Communications in Computer and Information Science, 2017, , 452-462.	0.4	3
2910	Estimation of Energetic and Charge Transfer Properties of Iridium(III) Bis(2-phenylpyridinato- <italic>N,C</italic> 2')acetylacetonate by Electrochemical Methods. Journal of Electrochemical Science and Technology, 2017, 8, 96-100.	0.9	0
2911	Development of AMOLED hole transport layer based on thiophene with carbazole. , 2018, , .		0
2912	Functionalization of Organometallic Complexes Aimed at Solution-Processed Organic Light-Emitting Diode: Strategic Molecular Designs of Phosphorescent Dendritic Emitters. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 26-39.	0.0	0
2914	The Potential of Polymer Photonics for Microflow Cytometry. , 2019, , 159-179.		0
2916	Heteroleptic Cyclometalated NHC Iridium(III) complex with a bulky acetylacetonate: Photophysics of an unexplored class of compounds. Journal of Organometallic Chemistry, 2020, 919, 121251.	0.8	3
2917	Interlayer Triplet-Sensitized Luminescence in Layered Two-Dimensional Hybrid Metal-Halide Perovskites. ACS Energy Letters, 2021, 6, 4079-4096.	8.8	22

#	Article	IF	Citations
2918	A novel benzo[4,5]furo[3,2-d]pyrimidine-based host as a n-type host for blue phosphorescent organic light-emitting diodes. Science China Materials, 2022, 65, 1028-1033.	3.5	3
2919	Ultrahigh Supramolecular Cascaded Roomâ€Temperature Phosphorescence Capturing System. Angewandte Chemie, 2021, 133, 27377-27383.	1.6	13
2920	Ultrahigh Supramolecular Cascaded Roomâ€Temperature Phosphorescence Capturing System. Angewandte Chemie - International Edition, 2021, 60, 27171-27177.	7.2	79
2921	Enhanced light extraction from organic light emitting diodes using a flexible polymer-nanoparticle scattering layer. Organic Electronics, 2022, 100, 106386.	1.4	9
2922	Effects of Secondary Acceptors on Excited-State Properties of Sky-Blue Thermally Activated Delayed Fluorescence Molecules: Luminescence Mechanism and Molecular Design. Journal of Physical Chemistry A, 2021, 125, 175-186.	1.1	12
2923	Improved OLED Outcoupling Using Alternative Emitters with Preferred Horizontal Orientation. , 2020,		0
2924	Physics and Design Principles of OLED Devices. , 2020, , 1-73.		2
2925	Investigation on electrohydrodynamic printing of conductors in display backplane circuits. Flexible and Printed Electronics, 2020, 5, 035008.	1.5	1
2926	Parameter optimization of light outcoupling structures for high-efficiency organic light-emitting diodes. Journal of Applied Physics, 2020, 128, 185501.	1.1	4
2927	Low-Molecular-Weight Materials: Wet Processing. , 2021, , 1-16.		0
2928	Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging. Nature Materials, 2022, 21, 210-216.	13.3	146
2929	Computational Search to Find Efficient Red/Nearâ€Infrared Emitting Organic Molecules Based on Thermally Activated Delayed Fluorescence for Organic Lightâ€Emitting Diodes. Advanced Theory and Simulations, 2022, 5, 2100416.	1.3	3
2930	Organic Devices: Fabrication, Applications, and Challenges. Journal of Electronic Materials, 2022, 51, 447-485.	1.0	20
2931	Rivers of Light—Ternary Exciplex Blends for High Efficiency Solutionâ€Processed Red Phosphorescent Organic Light Emitting Diodes. Advanced Functional Materials, 2022, 32, 2108128.	7.8	3
2932	<scp>Longâ€Lived Roomâ€Temperature</scp> Phosphorescence Based on Hydrogen Bonding <scp>Selfâ€Assembling</scp> Supramolecular Film. Chinese Journal of Chemistry, 2022, 40, 487-492.	2.6	10
2933	Fabrication of a Solution-Processed White Light Emitting Diode Containing a Single Dimeric Copper(I) Emitter Featuring Combined TADF and Phosphorescence. Micromachines, 2021, 12, 1500.	1.4	10
2934	Quantitative Correlation of Triplet Exciton Management in Host with the Device Lifetime of Blue Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2022, 10, .	3.6	13
2935	Symmetric "Double Spiro―Wide Energy Gap Hosts for Blue Phosphorescent OLED Devices. Advanced Optical Materials, 2022, 10, 2101530.	3.6	14

#	ARTICLE	IF	CITATIONS
2936	Electro-luminescence Efficiency? A Case Study of Architecture Design in Fluorescent Devices with A Potential Roadmap for High-Efficiency Phosphorescent Devices. Comments on Inorganic Chemistry, 2022, 42, 145-173.	3.0	0
2937	Cohosts with efficient host-to-emitter energy transfer for stable blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 17412-17418.	2.7	7
2938	A Bipolar Delayed Fluorescence Luminogen with Fast Reverse Intersystem Crossing and High Horizontal Dipole Orientation for Highâ€Performance Skyâ€Blue and White OLEDs. Advanced Optical Materials, 2022, 10, .	3.6	10
2939	Vibronic Coupling Effect on the Vibrationally Resolved Electronic Spectra and Intersystem Crossing Rates of a TADF Emitter: 7-PhQAD. Journal of Physical Chemistry A, 2022, 126, 239-248.	1.1	25
2940	Ultra-thick inverted green organic light-emitting diodes for high power efficiency over 300 lm/W. Organic Electronics, 2022, 101, 106414.	1.4	2
2941	Triplet harvesting aryl carbonyl-based luminescent materials: progress and prospective. Journal of Materials Chemistry C, 2021, 9, 17233-17264.	2.7	17
2942	Narrowband Deep-Blue Multi-Resonance Induced Thermally Activated Delayed Fluorescence: Insights from the Theoretical Molecular Design. Molecules, 2022, 27, 348.	1.7	3
2943	Probing polaron-induced exciton quenching in TADF based organic light-emitting diodes. Nature Communications, 2022, 13, 254.	5.8	42
2944	Timeâ€Resolved Xâ€Ray Spectroscopy to Study Luminophores with Relevance for OLEDs. ChemPhotoChem, 0, , .	1.5	0
2945	Effects of Charge Dynamics in the Emission Layer on the Operational Lifetimes of Blue Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, .	7.8	16
2946	Highly efficient and stable blue thermally activated delayed fluorescent organic light-emitting diodes. , 2022, , 117-191.		1
2947	Achieving Ultimate Narrowband and Ultrapure Blue Organic Lightâ€Emitting Diodes Based on Polycycloâ€Heteraborin Multiâ€Resonance Delayedâ€Fluorescence Emitters. Advanced Materials, 2022, 34, e2107951.	11.1	133
2948	Harnessing bipolar acceptors for highly efficient exciplex-forming systems. Journal of Materials Chemistry C, 2022, 10, 4748-4756.	2.7	5
2949	The Second Excited Tripletâ€State Facilitates TADF and Triplet–Triplet Annihilation Photon Upconversion via a Thermally Activated Reverse Internal Conversion. Advanced Optical Materials, 2022, 10, .	3.6	7
2950	Optical Simulations on the Surface Plasmon Polaritons Loss & Power Dissipation in Organic Light Emitting Diodes. Journal of Physics: Conference Series, 2022, 2173, 012008.	0.3	1
2951	Excited-state modulation via alteration of the heterocyclic moiety in 9,9-dimethylfluorene-based Ir(iii) phosphorescent dopants for blue PhOLEDs. Journal of Materials Chemistry C, 0, , .	2.7	9
2952	Highly Efficient and Stable Organic Lightâ€Emitting Diodes with Inner Passivating Holeâ€Transfer Interlayers of Poly(amic acid)â€Polyimide Copolymer. Advanced Science, 2022, , 2105851.	5.6	9
2953	Intermolecular TADF: bulk and interface exciplexes. Journal of Materials Chemistry C, 2022, 10, 4521-4532.	2.7	25

#	Article	IF	CITATIONS
2954	Ultrapure deep-blue aggregation-induced emission and thermally activated delayed fluorescence emitters for efficient OLEDs with CIE _{<i>y</i>} < 0.1 and low efficiency roll-offs. Journal of Materials Chemistry C, 2022, 10, 3163-3171.	2.7	22
2955	Molecular physics of persistent room temperature phosphorescence and long-lived triplet excitons. Applied Physics Reviews, 2022, 9, .	5.5	66
2956	Phenylpyridine and carbazole based host materials for highly efficient blue TADF OLEDs. Organic Electronics, 2022, 102, 106450.	1.4	9
2957	Creating efficient delayed fluorescence luminogens with acridine-based spiro donors to improve horizontal dipole orientation for high-performance OLEDs. Chemical Engineering Journal, 2022, 435, 134934.	6.6	19
2958	Photoluminescence and electrochemiluminescence of thermally activated delayed fluorescence (TADF) emitters containing diphenylphosphine chalcogenide-substituted carbazole donors. Journal of Materials Chemistry C, 2022, 10, 4646-4667.	2.7	20
2959	Numerical Device Model for Organic Lightâ€Emitting Diodes Based on Thermally Activated Delayed Fluorescence. Advanced Electronic Materials, 2022, 8, .	2.6	6
2960	Diazine-based thermally activated delayed fluorescence chromophores. Dyes and Pigments, 2022, 200, 110157.	2.0	22
2961	Cocrystallization tailoring radiative decay pathways for thermally activated delayed fluorescence and room-temperature phosphorescence emission. Nanoscale, 2022, 14, 6305-6311.	2.8	7
2962	lsomeric thermally activated delayed fluorescence emitters based on a quinolino[3,2,1- <i>de</i>]acridine-5,9-dione multiple resonance core and carbazole substituent. Materials Chemistry Frontiers, 2022, 6, 966-972.	3.2	6
2963	Rational design of blocking groups for high triplet energy n-type host materials. Journal of Materials Chemistry C, 2022, 10, 5962-5969.	2.7	6
2964	Exciplex host coupled with a micro-cavity enabling high efficiency OLEDs with narrow emission profile. Journal of Materials Chemistry C, 2022, 10, 5666-5671.	2.7	4
2965	Recent Advances of Interface Exciplex in Organic Light-Emitting Diodes. Micromachines, 2022, 13, 298.	1.4	8
2966	Accurate and fast master equationÂmodeling of triplet-triplet annihilation in organic phosphorescent emission layers including correlations. Physical Review B, 2022, 105, .	1.1	1
2967	Cibalackrot Dendrimers for Hyperfluorescent Organic Lightâ€Emitting Diodes. Macromolecular Rapid Communications, 2022, 43, e2200118.	2.0	4
2968	Trifluoromethyl Substituted Derivatives of Pyrazoles as Materials for Photovoltaic and Electroluminescent Applications. Crystals, 2022, 12, 434.	1.0	7
2969	Comparison of simulated and experimental data for optimized OLEDs. Optical and Quantum Electronics, 2022, 54, 1.	1.5	7
2970	Enhanced Light Extraction from Organic Light-Emitting Diodes with Micro-Nano Hybrid Structure. Nanomaterials, 2022, 12, 1266.	1.9	10
2971	Highly efficient orange and white OLEDs based on ultrathin phosphorescent emitters with double reverse intersystem crossing system. Journal of Luminescence, 2022, 246, 118852.	1.5	12

#	Article	IF	CITATIONS
2972	Theoretical Design of Blue-Color Phosphorescent Complexes for Organic Light-Emitting Diodes: Emission Intensities and Nonradiative Transition Rate Constants in Ir(ppy) ₂ (acac) Derivatives. Journal of Physical Chemistry A, 2021, 125, 10604-10614.	1.1	0
2973	Discrimination of Degradation Mechanisms for Organic Light-Emitting Diodes by In Situ, Layer-Specific Spectroscopic Analysis. ACS Photonics, 2022, 9, 82-89.	3.2	4
2974	Highly Efficient Candlelight Organic Light-Emitting Diode with a Very Low Color Temperature. Molecules, 2021, 26, 7558.	1.7	7
2975	Hyperfluorescenceâ"¢: Excel the performance, create the future. Journal of the Society for Information Display, 0, , .	0.8	2
2976	Improving the bending resistance of double-layer printed flexible OLEDs with PEDOT: PSS-PEO composite HIL films. Flexible and Printed Electronics, 2021, 6, 045016.	1.5	2
2977	Novel deep-blue hot exciton material for high-efficiency nondoped organic light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 6596-6602.	2.7	11
2978	Theoretical Approach for the Luminescent Properties of Ir(III) Complexes to Produce Red–Green–Blue LEC Devices. Molecules, 2022, 27, 2623.	1.7	1
2979	Evidence for near-unity radiative quantum efficiency of bright excitons in carbon nanotubes from the Purcell effect. Physical Review Research, 2022, 4, .	1.3	1
2980	Highly Efficient and Longâ€Range Chargeâ€Transfer Complex Emission Between Two Blue Phosphorescent Emitters for White Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, .	7.8	8
2981	Preparation and performance of plastic scintillators with copper iodide complex-loaded for radiation detection. Polymer, 2022, 249, 124832.	1.8	7
2988	Crystallization induced room-temperature phosphorescence and chiral photoluminescence properties of phosphoramides. Chemical Science, 2022, 13, 5893-5901.	3.7	21
2989	Aggregation-induced emission luminogens for organic light-emitting diodes. , 2022, , 315-372.		0
2990	Phosphorescent Host–Guest Complexes on the Basis of Polyhedral Oligomeric Silsesquioxane-Functionalized Metallotweezers. Inorganic Chemistry, 2022, 61, 7111-7119.	1.9	2
2991	Aggregationâ€induced emission luminogens for organic lightâ€emitting diodes with a singleâ€component emitting layer. Aggregate, 2023, 4, .	5.2	28
2992	Theory of Exciton Dynamics in Thermally Activated Delayed Fluorescence. ChemPhotoChem, 2022, 6, .	1.5	1
2993	Promising four-coordinated organoboron emitters for organic light-emitting diodes. Dyes and Pigments, 2022, 204, 110383.	2.0	15
2994	Purely organic pyridium-based materials with thermally activated delayed fluorescence for orange-red light-emitting electrochemical cells. Dyes and Pigments, 2022, 203, 110346.	2.0	15
2995	Blue Phosphorescent Organic Lightâ€Emitting Diodes Using Nâ€Type Semiconductor Extra Emission Layer. Physica Status Solidi C: Current Topics in Solid State Physics, 2017, 14, 1700162.	0.8	0

#	Article	IF	CITATIONS
2996	Dibenzophenazine based TADF emitters as dual electrochromic and electroluminescence materials. Chemistry - A European Journal, 2022, , .	1.7	4
2997	Singlet and triplet to doublet energy transfer: improving organic light-emitting diodes with radicals. Nature Communications, 2022, 13, 2744.	5.8	27
2998	Mechanism of Ir(ppy)3 Guest Exciton Formation with the Exciplex-Forming TCTA:TPBI Cohost within a Phosphorescent Organic Light-Emitting Diode Environment. International Journal of Molecular Sciences, 2022, 23, 5940.	1.8	3
2999	Donor–Acceptor–Donor "Hot Exciton―Triads for High Reverse Intersystem Crossing in OLEDs. Advanced Optical Materials, 2022, 10, .	3.6	7
3000	Excited-state regulated electroluminescence performance from thermally-activated delayed fluorescence (TADF) to hybridized local and charge-transfer (HLCT) emission. Dyes and Pigments, 2022, 205, 110463.	2.0	11
3001	Understanding the performance differences between solution and vacuum deposited OLEDs: A computational approach. Journal of Chemical Physics, 2022, 156, .	1.2	8
3002	Theoretical studies on the photophysical property of 3DPyM-pDTC in solution and in the solid phase. Chemical Physics Letters, 2022, 801, 139727.	1.2	0
3003	Luminescence of doublet molecular systems. Coordination Chemistry Reviews, 2022, 467, 214616.	9.5	21
3004	Heavy main group element containing organometallic phosphorescent materials. Results in Chemistry, 2022, 4, 100399.	0.9	3
3006	Progress of Backlight Devices: Emergence of Halide Perovskite Quantum Dots/Nanomaterials. Frontiers in Nanotechnology, 0, 4, .	2.4	3
3007	Eliminating the Reverse ISC Bottleneck of TADF Through Excited State Engineering and Environmentâ€Tuning Toward State Resonance Leading to Monoâ€Exponential Subâ€Âµs Decay. High OLED External Quantum Efficiency Confirms Efficient Exciton Harvesting. Advanced Functional Materials, 2022, 32, .	7.8	19
3008	Micro-Sphere PDMS for Enhancing Light Extraction in Organic Light-Emitting Devices. Nanomaterials, 2022, 12, 2007.	1.9	2
3009	Exciton harvesting of dual-emitting room temperature organic phosphors using a thermally activated delayed fluorescence sensitizer. Organic Electronics, 2022, 108, 106581.	1.4	2
3010	New insights in luminescent fluorinated transition metal compounds. Advances in Organometallic Chemistry, 2022, , 189-231.	0.5	1
3011	Rare-earth-activated phosphors for forensic applications. , 2022, , 215-246.		0
3012	Spectroscopy techniques for rare-earth-activated phosphors. , 2022, , 173-201.		0
3013	Delayed Fluorescence by Triplet–Triplet Annihilation from Columnar Liquid Crystal Films. ACS Applied Electronic Materials, 2022, 4, 3486-3494.	2.0	2
3014	Nonbonding/Bonding Molecular Orbital Regulation of Nitrogenâ€Boronâ€Oxygenâ€embedded Blue/Green Multiresonant TADF Emitters with High Efficiency and Color Purity. Chemistry - A European Journal, 2022, 28, .	1.7	15

#	Article	IF	CITATIONS
3015	Balanced electron and hole injection and transport in OLEDs by using transparent electrodes. Japanese Journal of Applied Physics, 2022, 61, 088002.	0.8	1
3016	Post-synthesis from Lewis acid–base interaction: an alternative way to generate light and harvest triplet excitons. Beilstein Journal of Organic Chemistry, 0, 18, 825-836.	1.3	1
3017	Novel <i>Ortho</i> â€Linkage Donorâ€Acceptor Type Host Materials for Efficiently Red Phosphorescence Organic Lightâ€Emitting Diodes. ChemistrySelect, 2022, 7, .	0.7	5
3018	N-heterocyclic carbene platinum-butadiyne Click/iClick complexes. Towards blue-violet phosphorescence. Journal of Organometallic Chemistry, 2022, 976, 122440.	0.8	0
3019	Theoretical studies on boron dimesityl-based thermally activated delayed fluorescence organic emitters: excited-state properties and mechanisms. New Journal of Chemistry, 2022, 46, 15678-15685.	1.4	1
3020	High Performance Solution-Processed Red Phosphorescent Organic Light-Emitting Diodes by Co-Doping Europium Complex as Sensitizer. SSRN Electronic Journal, 0, , .	0.4	0
3021	Suppressing triplet exciton quenching by regulating the triplet energy of crosslinkable hole transport materials for efficient solution-processed TADF OLEDs. Science China Materials, 2023, 66, 291-299.	3.5	3
3022	Efficient Solutionâ€Processed Red Fluorescent OLEDs Using Diluted Exciplex Host to Reduce Nonâ€Radiative Loss of Triplet Excitons. Advanced Materials Interfaces, 2022, 9, .	1.9	3
3023	Nearâ€Infrared Lightâ€Emitting Diodes from Organic Radicals with Charge Control. Advanced Optical Materials, 2022, 10, .	3.6	12
3024	Realization of room temperature electro-phosphorescence from an iridium metal based efficient novel triplet emitter. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	3
3025	Engineering the spin-exchange interaction in organic semiconductors. Nature Materials, 2022, 21, 976-978.	13.3	7
3026	Bipolar tetraphenylsilane-based host molecules for blue phosphorescence. Dyes and Pigments, 2022, 206, 110684.	2.0	0
3027	Synthesis and excited state modulation of organic blue light emitters based on 2,4,6-triphenyl-1,3,5-triazine and carbazole derivatives through <i>ortho</i> -positioned linking models. New Journal of Chemistry, 2022, 46, 16121-16129.	1.4	2
3028	Effect of the dangling aromatic ring on neutral luminescent bis(phosphine) Cu(<scp>i</scp>)/Ag(<scp>i</scp>) complexes with the asymmetric pyridyl-tetrazolate ligands. RSC Advances, 2022, 12, 27267-27274.	1.7	2
3029	Recent progress in imidazole based efficient near ultraviolet/blue hybridized local charge transfer (HLCT) characteristic fluorophores for organic light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 16173-16217.	2.7	23
3030	Rational designs of structurally similar TADF and HLCT emitters with benzo- or naphtho-carbazole units as electron donors. Physical Chemistry Chemical Physics, 0, , .	1.3	1
3031	Lifetime modeling for organic light-emitting diodes: a review and analysis. Journal of Information Display, 2023, 24, 57-70.	2.1	4
3032	Simplified Green-Emitting Single-Layer Phosphorescent Organic Light-Emitting Diodes with an External Quantum Efficiency > 22%. Chemistry of Materials, 2022, 34, 8345-8355.	3.2	5

#	Article	IF	Citations
3033	Theoretical perspective for the relationship between molecular structures and circularly polarised thermally activated delayed fluorescence properties. Molecular Physics, 0, , .	0.8	0
3034	Cyclometalated Spirobifluorene Imidazolylidene Platinum(II) Complexes with Predominant ³ LC Emissive Character and High Photoluminescence Quantum Yields. Inorganic Chemistry, 2022, 61, 15499-15509.	1.9	4
3035	Diphenylimidazole Based Fluorophores for Explosive Chemosensors and as Efficient Host Materials for Green Phosphorescent Organic Light Emitting Diodes. , 2023, 1, 94-106.		2
3036	Rational Molecular Design Enables Efficient Blue TADFâ^'OLEDs with Flexible Graphene Substrate. Advanced Functional Materials, 2022, 32, .	7.8	15
3037	Spin-orbit coupling in organic microcavities: Lower polariton splitting, triplet polaritons, and disorder-induced dark-state relaxation. Physical Review A, 2022, 106, .	1.0	3
3038	Multiple resonance type thermally activated delayed fluorescence by dibenzo [1,4] azaborine derivatives. Frontiers in Chemistry, 0, 10, .	1.8	7
3039	Transient Absorption Spectroscopy of a Carbazole-Based Room-Temperature Phosphorescent Molecule: Real-Time Monitoring of Singlet–Triplet Transitions. Journal of Physical Chemistry Letters, 2022, 13, 9381-9389.	2.1	14
3040	Redox photocatalysis. , 2022, , .		0
3041	Advances in Solutionâ€Processed OLEDs and their Prospects for Use in Displays. Advanced Materials, 2023, 35, .	11.1	26
3042	32.2: <i>Invited Paper:</i> Next Generation OLEDs. Digest of Technical Papers SID International Symposium, 2022, 53, 348-348.	0.1	0
3043	Distinguishing the Quantum Yield and Lifetime of Carbazoleâ€Based Roomâ€Temperature Phosphorescence Materials: QM/MM Study. Annalen Der Physik, 2022, 534, .	0.9	1
3044	High-efficiency circularly polarized emission from liquid-crystalline platinum complexes. Chinese Chemical Letters, 2023, 34, 107934.	4.8	15
3045	Dense Local Triplet States and Steric Shielding of a Multiâ€Resonance TADF Emitter Enable Highâ€Performance Deepâ€Blue OLEDs. Advanced Materials, 2022, 34, .	11.1	45
3046	Organic Phosphorescence Lasing Based on a Thermally Activated Delayed Fluorescence Emitter. Journal of Physical Chemistry Letters, 2022, 13, 10424-10431.	2.1	3
3047	Understanding the emission from dendrimers composed of thermally activated delayed fluorescence-based dendrons and a phosphorescent <i>fac</i> -tris[2-(thiophen-2-yl)-4-(phenyl)quinoline]iridium(<scp>iii</scp>) core. Journal of Materials Chemistry C, 2022, 10, 17245-17257.	2.7	1
3048	A theoretical study on the influence of N-containing heterocyclic ligands on the luminescence mechanisms (phosphorescence or TADF) of Au (III) complexes. Organic Electronics, 2023, 113, 106676.	1.4	0
3049	Materials Design of Organic Lasers Aimed at Low Lasing Threshold. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 1065-1074.	0.0	2
3050	High performance solution-processed red phosphorescent organic light-emitting diodes by co-doping europium complex as sensitizer. Organic Electronics, 2023, 113, 106688.	1.4	1

#	Article	IF	CITATIONS
3051	Degradation-induced energy level mismatch in cohost-dopant blue phosphorescent OLEDs after device operation. Applied Surface Science, 2023, 611, 155753.	3.1	0
3052	TCTA:Ir(ppy) ₃ Green Emissive Blends in Organic Light-Emitting Transistors (OLETs). ACS Omega, 2022, 7, 43719-43728.	1.6	3
3053	Design and development of an unprecedented phosphorescent bidentate iridium (III) complex exhibiting green electroluminescence. Materials Today Communications, 2023, 34, 104973.	0.9	1
3054	Probing impact of interface mixing on the charge carrier dynamics of a solution-processed organic light emitting diode <i>via</i> impedance spectroscopy. Nanoscale, 2023, 15, 1529-1536.	2.8	1
3055	Benzimidazole/carbazole-based bipolar host materials for highly efficient green phosphorescent OLEDs with negligible efficiency roll-off. Organic Electronics, 2023, 113, 106715.	1.4	4
3056	Theoretical study on thermally activated delayed fluorescent molecules based on space charge transfer. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 288, 122131.	2.0	1
3057	Discovery of Novel Organic Luminescence Molecules :. Seikei-Kakou, 2022, 34, 423-424.	0.0	0
3058	Anthracene-based fluorescent emitters for efficient blue organic light-emitting diodes. Organic Electronics, 2022, , 106724.	1.4	1
3059	Numerical Analysis and Optimization of a Hybrid Layer Structure for Triplet–Triplet Fusion Mechanism in Organic Lightâ€Emitting Diodes. Advanced Theory and Simulations, 2023, 6, .	1.3	2
3060	In Search of Hosts for Blue OLEDs:ÂComputational Design and Experimental Validation. Chemistry - A European Journal, 0, , .	1.7	1
3061	Effects of Energy‣evel Alignment on Operating Voltages of Blue Organic Lightâ€Emitting Diodes. Advanced Materials Interfaces, 2023, 10, .	1.9	2
3062	Effects of Solvent Dielectric on Thermally Activated Delayed Fluorescence: A Predictive Computational Polarization Consistent Approach. Journal of Physical Chemistry A, 2023, 127, 216-223.	1.1	0
3063	A Configurationally Confined Thermally Activated Delayed Fluorescent Two oordinate Cu ^I Complex for Efficient Blue Electroluminescence. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
3064	A Configurationally Confined Thermally Activated Delayed Fluorescent Two oordinate Cu ^I Complex for Efficient Blue Electroluminescence. Angewandte Chemie, 2023, 135, .	1.6	0
3065	Aligning π-Extended π-Deficient Ligands to Afford Submicrosecond Phosphorescence Radiative Decay Time of Mononuclear Ir(III) Complexes. Inorganic Chemistry, 2023, 62, 810-822.	1.9	2
3066	Phosphorescent cyclometalated platinum(<scp>ii</scp>) complexes with phenyldiazine N^C ligands. Dalton Transactions, 2023, 52, 1927-1938.	1.6	3
3067	Discrimination and control of the exciton-recombination region of thermal-stressed blue organic light-emitting diodes. Physical Chemistry Chemical Physics, 2023, 25, 2742-2746.	1.3	5
3068	Selective Triplet–Singlet Försterâ€Resonance Energy Transfer for Bright Red Afterglow Emission. Advanced Functional Materials, 2023, 33,	7.8	13

#	Article	IF	CITATIONS
3069	Multiresonant TADF materials: triggering the reverse intersystem crossing to alleviate the efficiency roll-off in OLEDs. Chemical Communications, 2023, 59, 3685-3702.	2.2	30
3070	Stable and Efficient Hole Selective Contacts for Silicon Photovoltaics via Solution-Processed Luminescent Small Molecules. Journal of Electronic Materials, 2023, 52, 2708-2717.	1.0	1
3071	OLEDs: Emerging technology trends and designs. , 2023, , 307-328.		0
3072	Gamma radiation induced variation in structure formation and optical characteristics of evaporated tris [2-phenylpyridinato-C ₂ ,N]iridium(III) films prepared by electron beam evaporator in photovoltaic applications. Physica Scripta, 2023, 98, 035817.	1.2	1
3073	Solution-processed OLEDs for printing displays. Materials Chemistry Frontiers, 2023, 7, 1166-1196.	3.2	14
3074	Polymer–Structureâ€Induced Roomâ€Temperature Phosphorescence of Carbon Dot Materials. Small Structures, 2023, 4, .	6.9	30
3075	Molecular Design and Synthesis of Photofunctional Materials. , 2012, , 245-286.		0
3076	White Light-Emitting Polymers and Devices. , 2012, , 424-444.		0
3077	Doublet-emissive materials for organic light-emitting diodes: exciton formation and emission processes. Chemical Society Reviews, 2023, 52, 2875-2885.	18.7	11
3078	Modulating Narrow-Band Phosphorescence of Pt ₂ Au ₄ Cluster Complexes by Differently Positioned Bis(acetylide)-Naphthalene Linkers. ACS Applied Electronic Materials, 2023, 5, 994-1001.	2.0	3
3079	Design and Synthesis of Asymmetric Au(III) Complexes Exhibiting Bright Anisotropic Emission for Highâ€Performance Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 0, , 2202519.	3.6	1
3080	Phosphorescent organic light-emitting devices: Iridium based emitter materials – An overview. Coordination Chemistry Reviews, 2023, 483, 215100.	9.5	13
3081	Highly efficient fluorescent organic electroluminescent diodes based on doping-free phosphorescent sensitization system. Organic Electronics, 2023, 116, 106772.	1.4	1
3082	Enhanced triplet-triplet fusion for high efficiency and long lifetime of multiresonant pure blue organic light emitting diodes. Journal of Industrial and Engineering Chemistry, 2023, 122, 452-458.	2.9	6
3083	Improved device efficiency and lifetime of green thermally activated delayed fluorescence materials with multiple donors and cyano substitution. Dyes and Pigments, 2023, 214, 111200.	2.0	5
3084	Lifetime evaluation of thermally activated delayed fluorescence materials according to the positions of CN substituents. Journal of Luminescence, 2023, 258, 119787.	1.5	2
3085	A theoretical study of a series of iridium complexes with methyl or nitro-substituted 2-(4-fluorophenyl)pyridine ligands with the low-efficiency roll-off performance. Chemical Physics Letters, 2023, 820, 140465.	1.2	2
3086	Thermally activated delayed fluorescent small molecule sensitized fluorescent polymers with reduced concentration-quenching for efficient electroluminescence. Frontiers of Optoelectronics, 2023, 16, .	1.9	1

#	Article	IF	CITATIONS
3088	Aggregationâ€Induced Emission in a Flexible Phosphine Oxide and its Zn(II) Complexes—A Simple Approach to Blue Luminescent Materials. Advanced Functional Materials, 2023, 33, 2212436.	7.8	1
3089	Nanoengineering Triplet–Triplet Annihilation Upconversion: From Materials to Real-World Applications. ACS Nano, 2023, 17, 3259-3288.	7.3	33
3090	Influence of host materials on degradation of phosphorescent organic light-emitting diodes under electrical stress. Journal of Materials Chemistry C, 2023, 11, 3596-3605.	2.7	2
3091	Platinum(II) Bisisocyanide Cyclometallated Complexes: Synthesis, Structure, Photophysical Properties, and Mechanochromic Behavior. Russian Journal of General Chemistry, 2023, 93, 43-55.	0.3	1
3092	Singleâ€Layer Blue Organic Lightâ€Emitting Diodes With Nearâ€Unity Internal Quantum Efficiency. Advanced Materials, 2023, 35, .	11.1	8
3093	Unexpected Quasiâ€Axial Conformer in Thermally Activated Delayed Fluorescence DMACâ€TRZ, Pushing Green OLEDs to Blue. Advanced Functional Materials, 2023, 33, .	7.8	13
3094	Luminescence and Palladium: The Odd Couple. Molecules, 2023, 28, 2663.	1.7	6
3095	Host Material for Multiâ€Color Display with High and Stable Electroâ€Phosphorescent Efficiencies: Metaâ€Linkage for Balanced Hole and Electron Injection. Advanced Functional Materials, 2023, 33, .	7.8	10
3096	Plasmon Mediated Nearâ€Field Energy Transfer From Solidâ€State, Electrically Injected Excitons to Solution Phase Chromophores. Advanced Functional Materials, 0, , .	7.8	0
3097	Anthracene derivatives with hot exciton and TTA process for high-efficiency organic light-emitting diodes. Dyes and Pigments, 2023, 215, 111276.	2.0	3
3098	Promising Candidature of OLEDs, Mini LEDs & Micro LEDs in the realm of AR/VR applications. , 2022, , .		0
3099	A First-Principles Investigation of Structure-Luminescence Activity of Donor–Acceptor–Donor Organic Triad. Journal of Physical Chemistry A, 2023, 127, 3330-3338.	1.1	1
3100	Single-particle properties of topological Wannier excitons in bismuth chalcogenide nanosheets. Scientific Reports, 2023, 13, .	1.6	0
3101	Exploring the Influence of Engineering the Linker between the Donor and Acceptor Fragments on Thermally Activated Delayed Fluorescence Characteristics. ACS Omega, 2023, 8, 15638-15649.	1.6	2
3111	A review of fused-ring carbazole derivatives as emitter and/or host materials in organic light emitting diode (OLED) applications. Materials Chemistry Frontiers, 2023, 7, 4304-4338.	3.2	10
3129	Metal-Loaded Plastic Scintillators Toward Gamma Spectroscopy Applications. , 2023, , 231-243.		0
3135	Toward ultraflexible organic electronic devices. MRS Bulletin, 2023, 48, 999-1012.	1.7	1
3156	Acceptor–donor–acceptor based thermally activated delayed fluorescent materials: structure–property insights and electroluminescence performances. Materials Chemistry Frontiers, 0	3.2	1

#	Article	IF	CITATIONS
3158	Light-emitting Diodes - an encyclopedia article. , 2007, , .		0
3174	Organic Light-Emitting Diodes (OLEDs): Materials, Photophysics, and Device Physics. , 2024, , 73-118.		0
3178	A spiroacridine-based thermally activated delayed fluorescence emitter for high-efficiency and narrow-band deep-blue OLEDs. Chemical Communications, 2024, 60, 3194-3197.	2.2	0