Efficient Computation of Cosmic Microwave Backgroun Friedmannâ€Robertsonâ€Walker Models

Astrophysical Journal 538, 473-476

DOI: 10.1086/309179

Citation Report

#	Article	IF	CITATIONS
1	Constraints on Cosmological Parameters from MAXIMA-1. Astrophysical Journal, 2000, 545, L1-L4.	1.6	384
2	Slow-Roll Inflation and Cosmic Microwave Background Anisotropy Data. Astrophysical Journal, 2000, 543, L99-L102.	1.6	24
3	Cosmological parameters from velocities, cosmic microwave background and supernovae. Monthly Notices of the Royal Astronomical Society, 2001, 321, 333-340.	1.6	41
4	The effect of reionization on the COBE normalization. Monthly Notices of the Royal Astronomical Society, 2001, 324, 769-771.	1.6	5
5	Bayesian methods for cosmological parameter estimation from cosmic microwave background measurements. Classical and Quantum Gravity, 2001, 18, 2677-2688.	1.5	154
6	The Age of the Universe and the Cosmological Constant Determined from Cosmic Microwave Background Anisotropy Measurements. Astrophysical Journal, 2001, 563, L95-L98.	1.6	102
7	Gauge-ready formulation of the cosmological kinetic theory in generalized gravity theories. Physical Review D, $2001, 65, .$	1.6	103
8	Testing standard and degenerate big bang nucleosynthesis with BOOMERANG and MAXIMA-1. Physical Review D, 2001, 63, .	1.6	49
9	Position-Space Description of the Cosmic Microwave Background and Its Temperature Correlation Function. Physical Review Letters, 2001, 87, 081301.	2.9	31
10	1+3covariant dynamics of scalar perturbations in braneworlds. Physical Review D, 2002, 65, .	1.6	32
11	Evolution of cosmological dark matter perturbations. Physical Review D, 2002, 66, .	1.6	70
12	Cosmological parameter estimation and the inflationary cosmology. Physical Review D, 2002, 66, .	1.6	158
13	Peculiar velocity effects in high-resolution microwave background experiments. Physical Review D, 2002, 65, .	1.6	83
14	Braneworld tensor anisotropies in the CMB. Physical Review D, 2002, 66, .	1.6	27
15	Resource Letter: TACMB-1: The theory of anisotropies in the cosmic microwave background. American Journal of Physics, 2002, 70, 106-118.	0.3	15
16	Closed universes from cosmological instantons. Physical Review D, 2002, 65, .	1.6	32
17	Cosmological parameters from CMB and other data: A Monte Carlo approach. Physical Review D, 2002, 66, .	1.6	2,749
18	Rapid Calculation of Theoretical Cosmic Microwave Background Angular Power Spectra. Astrophysical Journal, 2002, 578, 665-674.	1.6	44

#	Article	IF	CITATIONS
19	Combining cosmological data sets: hyperparameters and Bayesian evidence. Monthly Notices of the Royal Astronomical Society, 2002, 335, 377-388.	1.6	103
20	Analytic marginalization over CMB calibration and beam uncertainty. Monthly Notices of the Royal Astronomical Society, 2002, 335, 1193-1200.	1.6	70
21	Physics of Cosmic Microwave Background Anisotropies and Primordial Fluctuations. Space Science Reviews, 2002, 100, 3-14.	3.7	2
22	Double inflation and the low CMB quadrupole. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2003, 570, 145-150.	1.5	110
23	Non-commutative inflation and the CMB. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2003, 574, 141-148.	1.5	124
24	Cosmological implications from the observed properties of CMB. Comptes Rendus Physique, 2003, 4, 909-915.	0.3	0
25	Alternative dark energies with atypical sound speeds. New Astronomy Reviews, 2003, 47, 747-753.	5.2	1
26	Cosmological constraints in î-CDM and quintessence paradigms with Archeops. New Astronomy Reviews, 2003, 47, 755-760.	5.2	3
27	Cosmological parameter estimation: methods. Comptes Rendus Physique, 2003, 4, 881-890.	0.3	1
28	CMB temperature and polarization anisotropy fundamentals. Annals of Physics, 2003, 303, 203-225.	1.0	43
29	Reconstructing the primordial power spectrum. New Astronomy Reviews, 2003, 47, 787-791.	5.2	3
30	WMAP and inflation. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2003, 565, 33-41.	1.5	73
31	Effective number of neutrinos and baryon asymmetry from BBN and WMAP. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2003, 566, 8-18.	1.5	134
32	A preference for a non-zero neutrino mass from cosmological data. Monthly Notices of the Royal Astronomical Society, 2003, 346, 593-600.	1.6	93
33	Microwave background constraints on inflationary parameters. Monthly Notices of the Royal Astronomical Society, 2003, 341, 1151-1156.	1.6	32
34	First results from the Very Small Array – IV. Cosmological parameter estimation. Monthly Notices of the Royal Astronomical Society, 2003, 341, 1084-1092.	1.6	48
35	Cosmological parameter estimation and Bayesian model comparison using Very Small Array data. Monthly Notices of the Royal Astronomical Society, 2003, 341, L29-L34.	1.6	43
36	Reconstructing the primordial power spectrum. Monthly Notices of the Royal Astronomical Society, 2003, 342, L72-L78.	1.6	207

#	ARTICLE	IF	Citations
37	Large-scale cosmic microwave background anisotropies and dark energy. Monthly Notices of the Royal Astronomical Society, 2003, 346, 987-993.	1.6	223
38	Constraining slow-roll inflation with WMAP and 2dF. Physical Review D, 2003, 68, .	1.6	105
39	Observational constraints on the curvaton model of inflation. Physical Review D, 2003, 67, .	1.6	124
40	CMB anisotropies in the presence of extra dimensions. Physical Review D, 2003, 68, .	1.6	33
41	Comparison of cosmological Boltzmann codes: Are we ready for high precision cosmology?. Physical Review D, 2003, 68, .	1.6	75
42	Are Chaplygin gases serious contenders for the dark energy?. Physical Review D, 2003, 68, .	1.6	177
43	Correlated Adiabatic and Isocurvature Cosmic Microwave Background Fluctuations in the Wake of the Results from the Wilkinson Microwave Anisotropy Probe. Physical Review Letters, 2003, 91, 131302.	2.9	58
44	Joint Cosmic Microwave Background and Weak Lensing Analysis: Constraints on Cosmological Parameters. Physical Review Letters, 2003, 90, 221303.	2.9	94
45	Upper limits on neutrino masses from the 2dFGRS and WMAP: the role of priors. Journal of Cosmology and Astroparticle Physics, 2003, 2003, 004-004.	1.9	76
46	Direct Wavelet Expansion of the Primordial Power Spectrum. Astrophysical Journal, 2003, 598, 779-784.	1.6	25
47	An alternative to the cosmological "concordance model― Astronomy and Astrophysics, 2003, 412, 35-44.	2.1	134
48	First‥ear Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications For Inflation. Astrophysical Journal, Supplement Series, 2003, 148, 213-231.	3.0	962
49	Cosmological Parameters from Cosmic Background Imager Observations and Comparisons with BOOMERANG, DASI, and MAXIMA. Astrophysical Journal, 2003, 591, 599-622.	1.6	160
50	Wavelet Band Powers of the Primordial Power Spectrum from Cosmic Microwave Background Data. Astrophysical Journal, 2003, 593, 38-47.	1.6	28
51	Cosmological constraints from Archeops. Astronomy and Astrophysics, 2003, 399, L25-L30.	2.1	188
52	Analyse this! A cosmological constraint package for CMBEASY. Journal of Cosmology and Astroparticle Physics, 2004, 2004, 003-003.	1.9	53
53	Correlated isocurvature perturbations from mixed inflaton–curvaton decay. Journal of Cosmology and Astroparticle Physics, 2004, 2004, 010-010.	1.9	56
54	WMAP, neutrino degeneracy, and non-Gaussianity constraints on isocurvature perturbations in the curvaton model of inflation. Physical Review D, 2004, 69, .	1.6	44

#	Article	IF	Citations
55	Addendum to "Superimposed oscillations in the WMAP data?― Physical Review D, 2004, 69, .	1.6	58
56	Observational constraints on patch inflation in noncommutative spacetime. Physical Review D, 2004, 70, .	1.6	63
57	WMAP constraints on inflationary models with global defects. Physical Review D, 2004, 70, .	1.6	56
58	CMB anisotropies from primordial inhomogeneous magnetic fields. Physical Review D, 2004, 70, .	1.6	148
59	Constraining cutoff physics in the cosmic microwave background. Physical Review D, 2004, 69, .	1.6	21
60	Scaling defect decay and the reionization history of the Universe. Physical Review D, 2004, 70, .	1.6	12
61	Constraints from the Wilkinson Microwave Anisotropy Probe on DecayingCold Dark Matter. Physical Review Letters, 2004, 93, 071302.	2.9	62
62	Observable primordial vector modes. Physical Review D, 2004, 70, .	1.6	50
63	Superimposed oscillations in the WMAP data?. Physical Review D, 2004, 69, .	1.6	130
64	Signatures of relativistic neutrinos in CMB anisotropy and matter clustering. Physical Review D, 2004, 69, .	1.6	246
65	Fast cosmological parameter estimation from microwave background temperature and polarization power spectra. Physical Review D, 2004, 70, .	1.6	31
66	Observational constraints on braneworld inflation: The effect of a Gauss-Bonnet term. Physical Review D, 2004, 70, .	1.6	57
67	Density perturbations in generalized Einstein scenarios and constraints on nonminimal couplings from the cosmic microwave background. Physical Review D, 2004, 69, .	1.6	104
68	Estimating the bispectrum of the Very Small Array data. Monthly Notices of the Royal Astronomical Society, 2004, 352, 887-902.	1.6	16
69	Constraints on dark energy from Chandraobservations of the largest relaxed galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2004, 353, 457-467.	1.6	730
70	Constraining warm inflation with the cosmic microwave background. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2004, 589, 1-6.	1.5	33
71	Astrophysics and cosmology. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2004, 592, 186-234.	1.5	3
72	Neutrino mass limits from SDSS, 2dFGRS and WMAP. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2004, 595, 55-59.	1.5	57

#	Article	IF	CITATIONS
73	Cosmology with the SKA. New Astronomy Reviews, 2004, 48, 1063-1077.	5.2	61
74	Constraints on braneworld inflation from CMB anisotropies. Journal of Cosmology and Astroparticle Physics, 2004, 2004, 001-001.	1.9	59
75	Principal power of the CMB. Physical Review D, 2004, 69, .	1.6	50
76	CMBFIT: Rapid WMAP likelihood calculations with normal parameters. Physical Review D, 2004, 69, .	1.6	22
77	The Angular Power Spectrum of the First-Year Wilkinson Microwave Anisotropy Probe Data Reanalyzed. Astrophysical Journal, 2004, 617, L95-L98.	1.6	14
79	Cosmology and the Halo Occupation Distribution from Smallâ€Scale Galaxy Clustering in the Sloan Digital Sky Survey. Astrophysical Journal, 2005, 625, 613-620.	1.6	86
80	Neutrino masses from cosmological probes. New Journal of Physics, 2005, 7, 61-61.	1.2	69
81	The Influence of Nonuniform Reionization on the CMB. Astrophysical Journal, 2005, 630, 657-666.	1.6	97
82	XSPECT, estimation of the angular power spectrum by computing cross-power spectra with analytical error bars. Monthly Notices of the Royal Astronomical Society, 2005, 358, 833-842.	1.6	110
83	Sunyaev-Zel'dovich cluster survey simulations forPlanck. Monthly Notices of the Royal Astronomical Society, 2005, 360, 41-59.	1.6	14
84	Constraining dark energy with X-ray galaxy clusters, supernovae and the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 2005, 360, 555-564.	1.6	107
85	Error analysis of quadratic power spectrum estimates for cosmic microwave background polarization: sampling covariance. Monthly Notices of the Royal Astronomical Society, 2005, 360, 509-532.	1.6	67
86	Cosmology with photometric redshift surveys. Monthly Notices of the Royal Astronomical Society, 2005, 363, 1329-1348.	1.6	99
87	Weighing neutrinos with large-scale structure. Nuclear Physics, Section B, Proceedings Supplements, 2005, 143, 439-446.	0.5	2
88	Reconstructing the Primordial Power Spectrum. Symposium - International Astronomical Union, 2005, 216, 28-34.	0.1	0
89	Joint cosmological parameters forecast from CFHTLS-cosmic shear and CMBÂdata. Astronomy and Astrophysics, 2005, 429, 383-398.	2.1	27
90	Inflationary Cosmological Perturbations of Quantum-Mechanical Origin., 0,, 199-244.		58
91	Exploring the superimposed oscillations parameter space. Journal of Cosmology and Astroparticle Physics, 2005, 2005, 007-007.	1.9	72

#	Article	IF	Citations
92	Speeding up cosmological Boltzmann codes. Journal of Cosmology and Astroparticle Physics, 2005, 2005, 011-011.	1.9	10
93	Impact of systematic errors in Sunyaev–Zel'dovich surveys of galaxy clusters. Journal of Cosmology and Astroparticle Physics, 2005, 2005, 001-001.	1.9	14
94	Constraints on the solid dark universe model. Journal of Cosmology and Astroparticle Physics, 2005, 2005, 001-001.	1.9	17
95	From heaviness to lightness during inflation. Journal of Cosmology and Astroparticle Physics, 2005, 2005, 002-002.	1.9	10
96	Correlated primordial perturbations in light of CMB and large scale structure data. Physical Review D, 2005, 71, .	1.6	77
97	Inflationary perturbations and precision cosmology. Physical Review D, 2005, 71, .	1.6	37
98	Measuring the Geometry of the Universe in the Presence of Isocurvature Modes. Physical Review Letters, 2005, 95, 261303.	2.9	22
99	Growth of perturbations in dark matter coupled with quintessence. Physical Review D, 2005, 72, .	1.6	128
100	Lensed CMB power spectra from all-sky correlation functions. Physical Review D, 2005, 71, .	1.6	130
101	Detecting dark matter annihilation with CMB polarization: Signatures and experimental prospects. Physical Review D, 2005, 72, .	1.6	243
102	Non-Gaussianity from cosmic magnetic fields. Physical Review D, 2005, 72, .	1.6	65
103	Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman- \hat{l} ±forest. Physical Review D, 2005, 71, .	1.6	671
104	Lensed CMB simulation and parameter estimation. Physical Review D, 2005, 71, .	1.6	124
105	Relic neutrino decoupling including flavour oscillations. Nuclear Physics B, 2005, 729, 221-234.	0.9	597
106	Perturbations of the quintom models of dark energy and the effects on observations. Physical Review D, 2005, 72, .	1.6	197
107	Closed universes, de Sitter space, and inflation. Physical Review D, 2005, 71, .	1.6	68
108	Cosmological Parameters from the 2003 Flight of BOOMERANG. Astrophysical Journal, 2006, 647, 799-812.	1.6	159
109	Cosmological parameters from combining the Lyman-α forest with CMB, galaxy clustering and SN constraints. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 014-014.	1.9	524

#	Article	IF	CITATIONS
110	Probing neutrino masses with CMB lensing extraction. Physical Review D, 2006, 73, .	1.6	112
111	Production and evolution of perturbations of sterile neutrino dark matter. Physical Review D, 2006, 73, .	1.6	121
112	Nonlinear evolution of cosmic magnetic fields and cosmic microwave background anisotropies. Physical Review D, 2006, 73, .	1.6	30
113	Impacts of dark matter particle annihilation on recombination and the anisotropies of the cosmic microwave background. Physical Review D, 2006, 74, .	1.6	89
114	Constraining isocurvature initial conditions with WMAP 3-year data. Physical Review D, 2006, 74, .	1.6	93
115	Boundary inflation and the WMAP data. Physical Review D, 2006, 73, .	1.6	19
116	Cosmology with Massive Neutrinos Coupled to Dark Energy. Physical Review Letters, 2006, 96, 061301.	2.9	152
117	Cosmological signatures of interacting neutrinos. Physical Review D, 2006, 73, .	1.6	93
118	Bpolarization of the cosmic microwave background as a tracer of strings. Physical Review D, 2006, 74,	1.6	55
119	Detecting neutrino mass difference with cosmology. Physical Review D, 2006, 73, .	1.6	29
120	Cosmology of mass-varying neutrinos driven by quintessence: Theory and observations. Physical Review D, 2006, 73, .	1.6	113
121	Induced two-photon decay of the 2s level and the rate of cosmological hydrogen recombination. Astronomy and Astrophysics, 2006, 446, 39-42.	2.1	102
122	Power spectrum of the SDSSÂluminous red galaxies: constraints on cosmological parameters. Astronomy and Astrophysics, 2006, 459, 375-389.	2.1	38
123	Small scale contributions to the cosmic microwave background: a coherent analysis. Astronomy and Astrophysics, 2006, 456, 819-826.	2.1	12
124	A simulation pipeline for the Planck mission. Astronomy and Astrophysics, 2006, 445, 373-373.	2.1	56
125	SPIDER: a new balloon-borne experiment to measure CMB polarization on large angular scales. , 2006, 6267, 239.		23
126	Cosmic microwave background polarization. Journal of Physics: Conference Series, 2006, 39, 1-8.	0.3	3
127	Cosmological parameters from cosmic microwave background measurements and the final 2dF Galaxy Redshift Survey power spectrum. Monthly Notices of the Royal Astronomical Society, 2006, 366, 189-207.	1.6	160

#	Article	IF	CITATIONS
128	A Bayesian analysis of the primordial power spectrum. Monthly Notices of the Royal Astronomical Society, 2006, 369, 1123-1130.	1.6	57
129	Measuring the primordial power spectrum: principal component analysis of the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 2006, 372, 646-654.	1.6	52
130	The cosmic microwave background and the ionization history of the Universe. Monthly Notices of the Royal Astronomical Society, 2006, 373, 561-570.	1.6	60
131	Transients from initial conditions in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2006, 373, 369-381.	1.6	530
132	Weak gravitational lensing of the CMB. Physics Reports, 2006, 429, 1-65.	10.3	776
133	Massive neutrinos and cosmology. Physics Reports, 2006, 429, 307-379.	10.3	796
134	Constraining non-gaussianities in WMAP1 and WMAP2. New Astronomy Reviews, 2006, 50, 896-899.	5.2	0
135	Inflation dynamics and reheating. Reviews of Modern Physics, 2006, 78, 537-589.	16.4	778
136	The cosmological evolution of the average mass per baryon. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 016-016.	1.9	33
137	Probing cosmological parameters with the CMB: forecasts from Monte Carlo simulations. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 013-013.	1.9	186
138	The state equation of Yang–Mills field dark energy models. Classical and Quantum Gravity, 2006, 23, 3405-3417.	1.5	58
139	Constraints on supersymmetric hybrid inflation models. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 007-007.	1.9	100
140	Probing inflation and dark energy with current cosmological observations. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 015-015.	1.9	21
141	Inflation after WMAP3: confronting the slow-roll and exact power spectra with CMB data. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 009-009.	1.9	189
142	Slow roll reconstruction: constraints on inflation from the 3 year WMAP data set. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 017-017.	1.9	71
143	Weighing neutrinos in the presence of a running primordial spectral index. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 011-011.	1.9	10
144	Constraints on the inflationary expansion from three-year WMAP, small scale CMB anisotropies and large scale structure data sets. Journal of Cosmology and Astroparticle Physics, 2006, 2006, 006-006.	1.9	32
145	Is Cosmology Compatible with Sterile Neutrinos?. Physical Review Letters, 2006, 97, 041301.	2.9	38

#	ARTICLE	IF	CITATIONS
146	Analytic approach to the CMB polarization generated by relic gravitational waves. Physical Review D, $2006, 74, .$	1.6	70
147	Features in the dark energy equation of state and modulations in the Hubble diagram. Physical Review D, 2006, 74, .	1.6	53
148	Dark energy anisotropic stress and large scale structure formation. Physical Review D, 2006, 73, .	1.6	242
149	Quintom models with an equation of state crossingâ^'1. Physical Review D, 2006, 73, .	1.6	203
150	THE POLARIZATION OF THE COSMIC MICROWAVE BACKGROUND DUE TO PRIMORDIAL GRAVITATIONAL WAVES. International Journal of Modern Physics A, 2006, 21, 2459-2479.	0.5	24
151	PROBING FOR DYNAMICS OF DARK-ENERGY IN MASS VARYING NEUTRINOS: COSMIC MICROWAVE BACKGROUND RADIATION AND LARGE SCALE STRUCTURE. Modern Physics Letters A, 2007, 22, 2131-2142.	0.5	11
152	Resumming cosmic perturbations. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 026-026.	1.9	155
153	Constraints on non-thermal dark matter from PLANCK lensing extraction. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 017-017.	1.9	8
154	Limits on primordial power spectrum resolution: an inflationary flow analysis. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 006-006.	1.9	27
155	Holography and the scale invariance of density fluctuations. Classical and Quantum Gravity, 2007, 24, 3691-3699.	1.5	30
156	Limits on defects formation and hybrid inflationary models with three-year WMAP observations. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 008-008.	1.9	52
157	Probing polarization states of primordial gravitational waves with cosmic microwave background anisotropies. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 002-002.	1.9	97
158	A combined analysis of 3D weak lensing, Lyman- \hat{l}_{\pm} forest and WMAP year three data. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 008-008.	1.9	52
159	Characteristic Scales of Baryon Acoustic Oscillations from Perturbation Theory: Nonlinearity and Redshift-Space Distortion Effects. Publication of the Astronomical Society of Japan, 2007, 59, 1049-1060.	1.0	8
160	Scale dependence of the primordial spectrum from combining the three-year WMAP, galaxy clustering, supernovae, and Lyman-alpha forests. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 020-020.	1.9	6
161	Conservative estimates of the mass of the neutrino from cosmology. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 004-004.	1.9	16
162	Dynamics of linear perturbations inf(R)gravity. Physical Review D, 2007, 75, .	1.6	268
163	Detectability of CMB tensor <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>B</mml:mi></mml:math> modes via delensing with weak lensing galaxy surveys. Physical Review D, 2007, 76, .	1.6	22

#	Article	IF	CITATIONS
164	CMB polarization power spectra contributions from a network of cosmic strings. Physical Review D, 2007, 76, .	1.6	73
165	Decaying Warm Dark Matter and Neutrino Masses. Physical Review Letters, 2007, 99, 121301.	2.9	94
166	Neutrino Physics and Cosmology. Les Houches Summer School Proceedings, 2007, , 411-436.	0.2	0
167	Threeâ€Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Polarization Analysis. Astrophysical Journal, Supplement Series, 2007, 170, 335-376.	3.0	737
168	Pico: Parameters for the Impatient Cosmologist. Astrophysical Journal, 2007, 654, 2-11.	1.6	76
169	Detecting the Expansion of the Universe through Changes in the CMB Photosphere. Astrophysical Journal, 2007, 671, 1075-1078.	1.6	8
170	Threeâ€Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Temperature Analysis. Astrophysical Journal, Supplement Series, 2007, 170, 288-334.	3.0	778
171	Improved Measurements of the CMB Power Spectrum with ACBAR. Astrophysical Journal, 2007, 664, 687-701.	1.6	68
172	The Galaxy-Galaxy Lensing Contribution to the Cosmic Shear Two-Point Function. Astrophysical Journal, 2007, 655, L1-L4.	1.6	18
173	Mapping the Cosmological Confidence Ball Surface. Astrophysical Journal, 2007, 665, 25-41.	1.6	5
174	Threeâ€Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology. Astrophysical Journal, Supplement Series, 2007, 170, 377-408.	3.0	5,244
175	Using the Zeldovich dynamics to test expansion schemes. Astronomy and Astrophysics, 2007, 476, 31-58.	2.1	31
176	Crossing the phantom divide: theoretical implications and observational status. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 018-018.	1.9	284
177	Observational signatures of Jordan–Brans–Dicke theories of gravity. Journal of Cosmology and Astroparticle Physics, 2007, 2007, 001-001.	1.9	91
178	Cosmology of modified Gauss-Bonnet gravity. Physical Review D, 2007, 76, .	1.6	247
179	Constraints on radiative dark-matter decay from the cosmic microwave background. Physical Review D, 2007, 76, .	1.6	119
180	Gauss-Bonnet quintessence: Background evolution, large scale structure, and cosmological constraints. Physical Review D, 2007, 75, .	1.6	174
181	Sterile neutrinos as subdominant warm dark matter. Physical Review D, 2007, 76, .	1.6	51

#	ARTICLE	IF	CITATIONS
182	Magnification-temperature correlation: The dark side of integrated Sachs-Wolfe measurements. Physical Review D, 2007, 75, .	1.6	43
183	Pre-inflationary vacuum in the cosmic microwave background. Physical Review D, 2007, 76, .	1.6	65
184	Evolution of the cosmic microwave background. Physical Review D, 2007, 76, .	1.6	15
185	Linear effects of perturbed recombination. Physical Review D, 2007, 76, .	1.6	16
186	Uncorrelated universe: Statistical anisotropy and the vanishing angular correlation function in WMAP years $1\hat{a}\in 3$. Physical Review D, 2007, 75, .	1.6	213
187	Cosmological perturbations in elastic dark energy models. Physical Review D, 2007, 76, .	1.6	37
188	Is modified gravity required by observations? An empirical consistency test of dark energy models. Physical Review D, 2007, 76, .	1.6	79
189	Observational constraints on dark energy and cosmic curvature. Physical Review D, 2007, 76, .	1.6	209
190	Constraints on generalized dark energy from recent observations. Physical Review D, 2007, 75, .	1.6	8
191	Cosmological constraints on <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mo) 0.784314="" 1="" 10="" 372="" 50="" etqq1="" overlock="" rgbt="" tf="" tg="" th="" tj="" tq="" tq<=""><th>T<mark>d (</mark>stretcl</th><th>ny¹³⁹false"></th></mml:mo)></mml:math>	T <mark>d (</mark> stretcl	ny ¹³⁹ false">
192	Multiple inflation and the WMAP "glitches― II. Data analysis and cosmological parameter extraction. Physical Review D, 2007, 76, .	1.6	73
193	21Âcm angular-power spectrum from the dark ages. Physical Review D, 2007, 76, .	1.6	117
194	Cosmic calibration: Constraints from the matter power spectrum and the cosmic microwave background. Physical Review D, 2007, 76, .	1.6	92
195	Testing Gaussianity on Archeops data. Astronomy and Astrophysics, 2007, 474, 23-33.	2.1	14
196	Constraints on time variation of fine structure constant from WMAP-3yr data. New Astronomy, 2007, 12, 635-640.	0.8	20
197	Cosmological parameters from recent cosmological datasets including Lyman-α forest data. New Astronomy Reviews, 2007, 51, 327-331.	5.2	5
198	Cosmology and astrophysical constraints of Gauss–Bonnet dark energy. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2007, 644, 104-108.	1.5	210
199	Galaxy redshift surveys selected by neutral hydrogen using the Five-hundred metre Aperture Spherical Telescope. Monthly Notices of the Royal Astronomical Society, 0, 383, 150-160.	1.6	28

#	Article	IF	CITATIONS
200	Cosmological baryonic and matter densities from 600 000 SDSS luminous red galaxies with photometric redshifts. Monthly Notices of the Royal Astronomical Society, 2007, 374, 1527-1548.	1.6	139
201	Direct reconstruction of spherical harmonics from interferometer observations of the cosmic microwave background polarization. Monthly Notices of the Royal Astronomical Society, 2007, 375, 625-632.	1.6	8
202	Optimizing interferometer experiments for cosmic microwave background B-mode measurements. Monthly Notices of the Royal Astronomical Society, 2007, 375, 615-624.	1.6	2
203	Blind component separation for polarized observations of the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 2007, 376, 739-758.	1.6	13
204	Cross-correlation of 2MASS and WMAP 3: implications for the integrated Sachs-Wolfe effect. Monthly Notices of the Royal Astronomical Society, 2007, 377, 1085-1094.	1.6	85
205	Constraining the nature of dark energy using the Square Kilometer Array Telescope. Monthly Notices of the Royal Astronomical Society, 2007, 376, 1831-1837.	1.6	21
206	Missing thermal energy of the intracluster medium. Monthly Notices of the Royal Astronomical Society, 2007, 378, 293-300.	1.6	65
207	Determining neutrino properties using future galaxy redshift surveys. Monthly Notices of the Royal Astronomical Society, 2007, 381, 1313-1328.	1.6	19
208	Power spectra to 1 per cent accuracy between dynamical dark energy cosmologiesa~ Monthly Notices of the Royal Astronomical Society, 0, 380, 1079-1086.	1.6	28
209	Bianchi model CMB polarization and its implications for CMB anomalies. Monthly Notices of the Royal Astronomical Society, 2007, 380, 1387-1398.	1.6	57
210	Measuring the Baryon Acoustic Oscillation scale using the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey. Monthly Notices of the Royal Astronomical Society, 0, 381, 1053-1066.	1.6	661
211	The detectability of baryonic acoustic oscillations in future galaxy surveys. Monthly Notices of the Royal Astronomical Society, 0, 383, 755-776.	1.6	156
212	Improved constraints on dark energy from Chandra X-ray observations of the largest relaxed galaxy clusters. Monthly Notices of the Royal Astronomical Society, 0, 383, 879-896.	1.6	489
213	Fast cosmological parameter estimation using neural networks. Monthly Notices of the Royal Astronomical Society: Letters, 2007, 376, L11-L15.	1.2	56
214	Spatial periodicity of galaxy number counts, CMB anisotropy, andÂSNIa Hubble diagram based on the universe accompanied byÂaÂnon-minimally coupled scalar field. Astrophysics and Space Science, 2008, 315, 53-72.	0.5	9
215	Constraining slow-roll inflation in the presence of dynamical dark energy. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2008, 660, 287-292.	1.5	5
216	Neutrino clustering in growing neutrino quintessence. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2008, 663, 160-164.	1.5	72
217	Astrophysics and Cosmology. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2008, 667, 212-260.	1.5	11

#	WWMAP E5-year constraints on time variation of α and <mml:math <="" altimg="si1.gif" overflow="scroll" th="" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema"><th>IF</th><th>CITATIONS</th></mml:math>	IF	CITATIONS
218	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/ja/dtd" x	1.5	18
219	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://property.com/xml/common/struct-bib/dtd" xmlns:ce="http://property.com/xml/com/	10.3	191
220	Cosmological constraints on the neutrino mass from CMB anisotropy and large-scale structure of the Universe. Astronomy Letters, 2008, 34, 445-450.	0.1	9
221	Halo-model signatures from 380Â000 Sloan Digital Sky Survey luminous red galaxies with photometric redshifts. Monthly Notices of the Royal Astronomical Society, 2008, 385, 1257-1269.	1.6	80
222	The galaxy power spectrum: precision cosmology from large-scale structure?. Monthly Notices of the Royal Astronomical Society, 2008, 385, 830-840.	1.6	45
223	Baryon oscillations in galaxy and matter power-spectrum covariance matrices. Monthly Notices of the Royal Astronomical Society, 2008, 384, 1221-1230.	1.6	11
224	Spherical collapse in modified gravity with the Birkhoff theorem. Monthly Notices of the Royal Astronomical Society, 2008, 385, 411-422.	1.6	36
225	CMB temperature polarization correlation and primordial gravitational waves. Monthly Notices of the Royal Astronomical Society, 2008, 386, 1053-1063.	1.6	21
226	A low cosmic microwave background variance in the Wilkinson Microwave Anisotropy Probe data. Monthly Notices of the Royal Astronomical Society, 2008, 387, 209-219.	1.6	50
227	Determining the motion of the Solar system relative to the cosmic microwave background using Type la supernovae. Monthly Notices of the Royal Astronomical Society, 2008, 387, 371-376.	1.6	13
228	cosmonet: fast cosmological parameter estimation in non-flat models using neural networks. Monthly Notices of the Royal Astronomical Society, 2008, 387, 1575-1582.	1.6	41
229	The assembly bias of dark matter haloes to higher orders. Monthly Notices of the Royal Astronomical Society, 2008, 387, 921-932.	1.6	78
230	New constraints on dark energy from the observed growth of the most X-ray luminous galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2008, 387, 1179-1192.	1.6	150
231	The prospects for constraining dark energy with future X-ray cluster gas mass fraction measurements. Monthly Notices of the Royal Astronomical Society, 2008, 388, 1265-1278.	1.6	26
232	A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes. Monthly Notices of the Royal Astronomical Society, 2008, , ???-???.	1.6	142
233	Mixed three-point correlation functions of the non-linear integrated Sachs-Wolfe effect and their detectability. Monthly Notices of the Royal Astronomical Society, 2008, 388, 1394-1402.	1.6	10
234	Planckand re-ionization history: a model selection view. Monthly Notices of the Royal Astronomical Society, 2008, 389, 231-236.	1.6	11
235	Shrinkage estimation of the power spectrum covariance matrix. Monthly Notices of the Royal Astronomical Society, 2008, 389, 766-774.	1.6	55

#	Article	IF	CITATIONS
236	Peculiar velocities into the next generation: cosmological parameters from large surveys without bias from non-linear structure. Monthly Notices of the Royal Astronomical Society, 2008, 389, 1739-1749.	1.6	17
237	Simulations of baryon acoustic oscillations - I. Growth of large-scale density fluctuations. Monthly Notices of the Royal Astronomical Society, 2008, 389, 1675-1682.	1.6	33
238	What is the best way to measure baryonic acoustic oscillations? Monthly Notices of the Royal Astronomical Society, $2008, \ldots$	1.6	32
239	Optimal integrated Sachs-Wolfe detection and joint likelihood for cosmological parameter estimation. Monthly Notices of the Royal Astronomical Society, 2008, 391, 1315-1326.	1.6	18
240	Observations of the Corona Borealis supercluster with the superextended Very Small Array: further constraints on the nature of the non-Gaussian cosmic microwave background cold spot. Monthly Notices of the Royal Astronomical Society, 2008, 391, 1127-1136.	1.6	11
241	Impact of Massive Neutrinos on the Nonlinear Matter Power Spectrum. Physical Review Letters, 2008, 100, 191301.	2.9	118
242	Constraints on kinetically modified inflation from WMAP5. Physical Review D, 2008, 78, .	1.6	36
243	Imprint of spatial curvature on inflation power spectrum. Physical Review D, 2008, 78, .	1.6	13
244	Comparing infrared Dirac-Born-Infeld brane inflation to observations. Physical Review D, 2008, 77, .	1.6	76
245	Short distance physics and initial state effects on the CMB power spectrum. Physical Review D, 2008, 78, .	1.6	9
246	Parametrized post-Friedmann signatures of acceleration in the CMB. Physical Review D, 2008, 77, .	1.6	103
247	Impact of reionization on CMB polarization tests of slow-roll inflation. Physical Review D, 2008, 77, .	1.6	21
248	Challenges to the DGP model from horizon-scale growth and geometry. Physical Review D, 2008, 78, .	1.6	121
249	Can We Avoid Dark Energy?. Physical Review Letters, 2008, 101, 251303.	2.9	96
250	Planck priors for dark energy surveys. Physical Review D, 2008, 78, .	1.6	37
251	WMAP five-year data constraints on the unified model of dark energy and dark matter. Physical Review D, 2008, 78, .	1.6	56
252	Primordial black holes, eternal inflation, and the inflationary parameter space after WMAP5. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 024.	1.9	56
253	Anomalous Cosmic-Microwave-Background Polarization and Gravitational Chirality. Physical Review Letters, 2008, 101, 141101.	2.9	86

#	Article	IF	CITATIONS
254	Cosmological constraints on dissipative models of inflation. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 027.	1.9	18
255	Cosmic microwave background constraints on a decaying cosmological term related to the thermal evolution. Physical Review D, 2008, 77, .	1.6	3
256	Constraining primordial magnetic fields with CMB polarization experiments. Physical Review D, 2008, 77, .	1.6	24
257	Cosmological parameters from WMAP 5-year temperature maps. Physical Review D, 2008, 78, .	1.6	71
258	Nonlinear redshift-space power spectra. Physical Review D, 2008, 78, .	1.6	35
259	Testing alternative theories of dark matter with the CMB. Physical Review D, 2008, 78, .	1.6	9
260	Nonlinear perturbation theory with halo bias and redshift-space distortions via the Lagrangian picture. Physical Review D, 2008, 78, .	1.6	176
261	Weak lensing effects on the galaxy three-point correlation function. Physical Review D, 2008, 78, .	1.6	14
262	Universal weak lensing distortion of cosmological correlation functions. Physical Review D, 2008, 78,	1.6	11
263	Prospects for constraining neutrino mass using Planck and Lyman-αforest data. Physical Review D, 2008, 77, .	1.6	34
264	Small-angle CMB temperature anisotropies induced by cosmic strings. Physical Review D, 2008, 78, .	1.6	98
265	Impact of stochastic primordial magnetic fields on the scalar contribution to cosmic microwave background anisotropies. Physical Review D, 2008, 78, .	1.6	67
266	CMB polarization systematics due to beam asymmetry: Impact on inflationary science. Physical Review D, 2008, 77, .	1.6	92
267	Analytic spectra of CMB anisotropies and polarization generated by relic gravitational waves with modification due to neutrino free-streaming. Physical Review D, 2008, 78, .	1.6	36
268	Detection of trans-Planckian effects in the cosmic microwave background. Physical Review D, 2008, 77,	1.6	6
269	Dark matter transfer function: Free streaming, particle statistics, and memory of gravitational clustering. Physical Review D, 2008, 78, .	1.6	44
270	Early universe constraints on time variation of fundamental constants. Physical Review D, 2008, 78, .	1.6	26
271	Neutrino mass effects on vector and tensor CMB anisotropies in the presence of a primordial magnetic field. Physical Review D, 2008, 78, .	1.6	18

#	Article	IF	Citations
272	PROBING FOR THE COSMOLOGICAL PARAMETERS WITH PLANCK MEASUREMENT. International Journal of Modern Physics D, 2008, 17, 2025-2048.	0.9	22
273	CONSTRAINTS ON THE SOUND SPEED OF DYNAMICAL DARK ENERGY. International Journal of Modern Physics D, 2008, 17, 1229-1243.	0.9	93
274	BARYONIC ACOUSTIC OSCILLATIONS VIA THE RENORMALIZATION GROUP. Modern Physics Letters A, 2008, 23, 25-32.	0.5	52
275	Brane inflation and the WMAP data: a Bayesian analysis. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 001.	1.9	68
276	On minimally parametric primordial power spectrum reconstruction and the evidence for a red tilt. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 009.	1.9	55
277	Observational constraints on theories with a blue spectrum of tensor modes. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 012.	1.9	35
278	Damping of the baryon acoustic oscillations in the matter power spectrum as a probe of the growth factor. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 031.	1.9	8
279	Higher order corrections to the large scale matter power spectrum in the presence of massive neutrinos. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 035.	1.9	71
280	The large scale cosmic microwave background cut-off and the tensor-to-scalar ratio. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 002.	1.9	29
281	Constraining inflation. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 047.	1.9	31
282	Constraints on brane inflation and cosmic strings. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 020.	1.9	19
283	How to constrain inflationary parameter space with minimal priors. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 016.	1.9	17
284	Using big bang nucleosynthesis in cosmological parameter extraction from the cosmic microwave background: a forecast for PLANCK. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 004.	1.9	78
285	Probing the last scattering surface through recent and future CMB observations. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 007.	1.9	1
286	Constraining the early-Universe baryon density and expansion rate. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 016.	1.9	91
287	Observing trans-Planckian ripples in the primordial power spectrum with future large scale structure probes. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 015.	1.9	17
288	WMAP five-year constraints on lepton asymmetry and radiation energy density: implications for Planck. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 028.	1.9	29
289	Is gravitino still a warm dark matter candidate?. Journal of High Energy Physics, 2008, 2008, 055-055.	1.6	46

#	Article	IF	CITATIONS
290	Flowing with time: a new approach to non-linear cosmological perturbations. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 036.	1.9	190
291	Non-Gaussianity from isocurvature perturbations. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 019.	1.9	90
292	The effects of cosmic microwave background (CMB) temperature uncertainties on cosmological parameter estimation. Journal of Cosmology and Astroparticle Physics, 2008, 2008, 025.	1.9	17
293	Testing cosmology with cosmic sound waves. Physical Review D, 2008, 77, .	1.6	36
294	Constraining massive neutrinos using cosmological 21Âcm observations. Physical Review D, 2008, 78, .	1.6	50
295	Baryon acoustic signature in the clustering of density maxima. Physical Review D, 2008, 78, .	1.6	78
296	Detecting a Lorentz-violating field in cosmology. Physical Review D, 2008, 77, .	1.6	69
297	Relating gravitational wave constraints from primordial nucleosynthesis, pulsar timing, laser interferometers, and the CMB: Implications for the early universe. Physical Review D, 2008, 78, .	1.6	118
298	Gauging the cosmic microwave background. Physical Review D, 2008, 78, .	1.6	37
299	Clustering properties of a sterile neutrino dark matter candidate. Physical Review D, 2008, 78, .	1.6	57
300	Modelâ€Independent Constraints on Reionization from Largeâ€Scale Cosmic Microwave Background Polarization. Astrophysical Journal, 2008, 672, 737-751.	1.6	78
301	First Season QUaD CMB Temperature and Polarization Power Spectra. Astrophysical Journal, 2008, 674, 22-28.	1.6	61
302	Imprint of Inhomogeneous Hydrogen Reionization on the Temperature Distribution of the Intergalactic Medium. Astrophysical Journal, 2008, 689, L81-L84.	1.6	113
303	What can be learned about dark energy evolution?. Astronomy and Astrophysics, 2008, 488, 47-53.	2.1	3
304	BAYESIAN ANALYSIS OF SPARSE ANISOTROPIC UNIVERSE MODELS AND APPLICATION TO THE FIVE-YEAR <i>WMAP</i> DATA. Astrophysical Journal, 2009, 690, 1807-1819.	1.6	121
305	SMALL ANGULAR SCALE MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND TEMPERATURE POWER SPECTRUM FROM QUaD. Astrophysical Journal, 2009, 700, L187-L191.	1.6	31
306	REJUVENATING THE MATTER POWER SPECTRUM: RESTORING INFORMATION WITH A LOGARITHMIC DENSITY MAPPING. Astrophysical Journal, 2009, 698, L90-L93.	1.6	144
307	THE CONTRIBUTION OF THE KINEMATIC SUNYAEV-ZEL'DOVICH EFFECT FROM THE WARM-HOT INTERGALACTIC MEDIUM TO THE FIVE-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> Journal, 2009, 700, 447-453.	1.6	11

#	Article	IF	Citations
308	SIMULATIONS OF WIDE-FIELD WEAK LENSING SURVEYS. I. BASIC STATISTICS AND NON-GAUSSIAN EFFECTS. Astrophysical Journal, 2009, 701, 945-954.	1.6	170
309	IMPROVED MEASUREMENTS OF THE TEMPERATURE AND POLARIZATION OF THE COSMIC MICROWAVE BACKGROUND FROM QUaD. Astrophysical Journal, 2009, 705, 978-999.	1.6	225
310	EXTRACTING ANGULAR DIAMETER DISTANCE AND EXPANSION RATE OF THE UNIVERSE FROM TWO-DIMENSIONAL GALAXY POWER SPECTRUM AT HIGH REDSHIFTS: BARYON ACOUSTIC OSCILLATION FITTING VERSUS FULL MODELING. Astrophysical Journal, 2009, 693, 1404-1416.	1.6	65
311	Dark-energy constraints and correlations with systematics from CFHTLS weak lensing, SNLS supernovae Ia and WMAP5. Astronomy and Astrophysics, 2009, 497, 677-688.	2.1	104
312	COSMOLOGICAL PARAMETERS FROM THE QUAD CMB POLARIZATION EXPERIMENT. Astrophysical Journal, 2009, 701, 857-864.	1.6	17
313	HIGH-RESOLUTION CMB POWER SPECTRUM FROM THE COMPLETE ACBAR DATA SET. Astrophysical Journal, 2009, 694, 1200-1219.	1.6	303
314	Constraints on neutrino masses from weak lensing. Physical Review D, 2009, 79, .	1.6	61
315	Infrared Divergence of Pure Einstein Gravity Contributions to the Cosmological Density Power Spectrum. Physical Review Letters, 2009, 103, 021301.	2.9	3
316	Realistic Sterile Neutrino Dark Matter with keV Mass does not Contradict Cosmological Bounds. Physical Review Letters, 2009, 102, 201304.	2.9	152
317	Primordial "fNL―non-Gaussianity and perturbations beyond the present horizon. Physical Review D, 2009, 79, .	1.6	7
318	Eddington-Born-Infeld gravity and the large scale structure of the Universe. Physical Review D, 2009, 79, .	1.6	67
319	Cosmological Tests of General Relativity with Future Tomographic Surveys. Physical Review Letters, 2009, 103, 241301.	2.9	91
320	Probing the primordial power spectrum with cluster number counts. Physical Review D, 2009, 79, .	1.6	7
321	Multiparameter investigation of gravitational slip. Physical Review D, 2009, 80, .	1.6	37
322	Nonlinear evolution of baryon acoustic oscillations from improved perturbation theory in real and redshift spaces. Physical Review D, 2009, 80, .	1.6	116
323	Brane inflation revisited after WMAP five-year results. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 006-006.	1.9	10
324	Constraints on early dark energy from CMB lensing and weak lensing tomography. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 012-012.	1.9	43
325	Constraints on neutrino masses from WMAP5 and BBN in the lepton asymmetric universe. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 005-005.	1.9	18

#	ARTICLE	IF	CITATIONS
326	The high redshift Integrated Sachs-Wolfe effect. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 003-003.	1.9	45
327	Signature of short distance physics on inflation power spectrum and CMB anisotropy. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 009-009.	1.9	4
328	Cosmological constraints on rapid roll inflation. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 023-023.	1.9	7
329	Dynamical Dark Energy model parameters with or without massive neutrinos. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 036-036.	1.9	10
330	Perturbations in electromagnetic dark energy. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 029-029.	1.9	22
331	Dark coupling. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 034-034.	1.9	134
332	Do observations offer evidence for cosmological-scale extra dimensions?. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 030-030.	1.9	52
333	Dynamical dark energy simulations: high accuracy power spectra at high redshift. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 014-014.	1.9	38
334	Do WMAP data favor neutrino mass and a coupling between Cold Dark Matter and Dark Energy?. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 007-007.	1.9	57
335	Reconstruction of the primordial power spectrum using temperature and polarisation data from multiple experiments. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 011-011.	1.9	66
336	Clustering in growing neutrino cosmologies. , 2009, , .		7
337	Modeling Nonlinear Evolution of Baryon Acoustic Oscillations: Convergence Regime of \$N\$-body Simulations and Analytic Models. Publication of the Astronomical Society of Japan, 2009, 61, 321-332.	1.0	117
338	Editorial note to: G. F. R. Ellis, Relativistic cosmology. General Relativity and Gravitation, 2009, 41, 575-579.	0.7	6
339	Maximum likelihood algorithm for parametric component separation in cosmic microwave background experiments. Monthly Notices of the Royal Astronomical Society, 2009, 392, 216-232.	1.6	63
340	Map making in small field modulated CMB polarization experiments: approximating the maximum likelihood method. Monthly Notices of the Royal Astronomical Society, 2009, 393, 894-910.	1.6	17
341	Is an 11â€feV sterile neutrino consistent with clusters, the cosmic microwave background and modified Newtonian dynamics?. Monthly Notices of the Royal Astronomical Society, 2009, 394, 527-532.	1.6	88
342	The WiggleZ Dark Energy Survey: small-scale clustering of Lyman-break galaxies atz< 1. Monthly Notices of the Royal Astronomical Society, 2009, 395, 240-254.	1.6	24
343	How flat can you get? A model comparison perspective on the curvature of the Universe. Monthly Notices of the Royal Astronomical Society, 2009, 397, 431-444.	1.6	48

#	Article	IF	CITATIONS
344	On the peculiar momentum of baryons after reionization. Monthly Notices of the Royal Astronomical Society, 2009, 398, 790-806.	1.6	15
345	Implications of bias evolution on measurements of the integrated Sachs-Wolfe effect: errors and biases in parameter estimation. Monthly Notices of the Royal Astronomical Society, 2009, 397, 925-932.	1.6	13
346	Statistics of the Sunyaev-Zel'dovich effect power spectrum. Monthly Notices of the Royal Astronomical Society, 2009, 397, 2189-2207.	1.6	6
347	Bayesian modelling of clusters of galaxies from multifrequency-pointed Sunyaev-Zel'dovich observations. Monthly Notices of the Royal Astronomical Society, 2009, 398, 2049-2060.	1.6	43
348	No large-angle correlations on the non-Galactic microwave sky. Monthly Notices of the Royal Astronomical Society, 2009, 399, 295-303.	1.6	123
349	Constraints on modified gravity from the observed X-ray luminosity function of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2009, 400, 699-704.	1.6	36
350	Peculiar velocities into the next generation: cosmological parameters from the SFI++ survey. Monthly Notices of the Royal Astronomical Society, 2009, 400, 1541-1547.	1.6	19
351	Cosmological information in the gravitational lensing of pregalactic H i. Monthly Notices of the Royal Astronomical Society, 2009, 394, 704-714.	1.6	17
352	The impact of non-Gaussian errors on weak lensing surveys. Monthly Notices of the Royal Astronomical Society, 2009, 395, 2065-2086.	1.6	156
353	The scalar, vector and tensor contributions of a stochastic background of magnetic fields to cosmic microwave background anisotropies. Monthly Notices of the Royal Astronomical Society, 2009, 396, 523-534.	1.6	84
354	Impact of modulation on CMB <i>B</i> -mode polarization experiments. Monthly Notices of the Royal Astronomical Society, 2009, 397, 634-656.	1.6	17
355	Cosmological parameter constraints from SDSS luminous red galaxies: a new treatment of large-scale clustering. Monthly Notices of the Royal Astronomical Society, 2009, 400, 1643-1664.	1.6	120
356	Model independent approaches to reionization in the analysis of upcoming CMB data. New Astronomy, 2009, 14, 269-276.	0.8	10
357	High accuracy Power Spectra at high redshift in Dynamical Dark Energy simulations. Nuclear Physics, Section B, Proceedings Supplements, 2009, 194, 185-189.	0.5	0
358	Exotic Recombination. Nuclear Physics, Section B, Proceedings Supplements, 2009, 194, 57-62.	0.5	0
359	Do WMAP data favor neutrino mass and a coupling between Cold Dark Matter and Dark Energy?. Nuclear Physics, Section B, Proceedings Supplements, 2009, 194, 254-259.	0.5	2
360	Constraining modified growth patterns with tomographic surveys. Nuclear Physics, Section B, Proceedings Supplements, 2009, 194, 326-331.	0.5	3
361	Growing neutrino cosmologies and impact on large scale structures. Nuclear Physics, Section B, Proceedings Supplements, 2009, 194, 300-306.	0.5	0

#	Article	IF	CITATIONS
362	Inflationary potential from 21 cm tomography and Planck. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2009, 673, 173-178.	1.5	15
363	Non-equilibrium in cosmology. European Physical Journal: Special Topics, 2009, 168, 149-177.	1.2	1
364	New constraints on variations of the fine structure constant from CMB anisotropies. Physical Review D, 2009, 80 , .	1.6	34
365	No evidence for dark energy dynamics from a global analysis of cosmological data. Physical Review D, 2009, 80, .	1.6	65
366	Self-consistent cosmological simulations of DGP braneworld gravity. Physical Review D, 2009, 80, .	1.6	116
367	Nonlinear power spectrum in the presence of massive neutrinos: Perturbation theory approach, galaxy bias, and parameter forecasts. Physical Review D, 2009, 80, .	1.6	93
368	Structure formation by a fifth force:N-body versus linear simulations. Physical Review D, 2009, 80, .	1.6	69
369	Constraint on the growth factor of the cosmic structure from the damping of the baryon acoustic oscillation signature. Physical Review D, 2009, 80, .	1.6	2
370	Reconstructing patchy reionization from the cosmic microwave background. Physical Review D, 2009, 79, .	1.6	83
371	New parametrization for the scale dependent growth function in general relativity. Physical Review D, 2009, 80, .	1.6	32
372	Rotation of linear polarization plane and circular polarization from cosmological pseudoscalar fields. Physical Review D, 2009, 79, .	1.6	93
373	Locating the baryon acoustic peak. Physical Review D, 2009, 79, .	1.6	9
374	CMB lensing and primordial non-Gaussianity. Physical Review D, 2009, 80, .	1.6	62
375	Searching for modified growth patterns with tomographic surveys. Physical Review D, 2009, 79, .	1.6	204
376	CMB beam systematics: Impact on lensing parameter estimation. Physical Review D, 2009, 79, .	1.6	27
377	Dark matter annihilation and its effect on CMB and hydrogen 21Âcm observations. Physical Review D, 2009, 80, .	1.6	50
378	Approximate analytic spectra of reionized CMB anisotropies and polarization generated by relic gravitational waves. Physical Review D, 2009, 79, .	1.6	23
379	A general analysis of non-gaussianity from isocurvature perturbations. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 042-042.	1.9	54

#	Article	IF	CITATIONS
380	Determining the neutrino mass hierarchy with cosmology. Physical Review D, 2009, 80, .	1.6	49
381	Nonisotropy in the CMB power spectrum in single field inflation. Physical Review D, 2009, 80, .	1.6	53
382	Cosmological constraints on general, single field inflation. Physical Review D, 2009, 79, .	1.6	29
383	FIVE-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> OBSERVATIONS: COSMOLOGICAL INTERPRETATION. Astrophysical Journal, Supplement Series, 2009, 180, 330-376.	3.0	4,114
384	Constraint on coupled dark energy models from observations. Physical Review D, 2009, 80, .	1.6	93
385	CMB lensing constraints on dark energy and modified gravity scenarios. Physical Review D, 2009, 80, .	1.6	27
386	Degeneracy between the dark components resulting from the fact that gravity only measures the total energy-momentum tensor. Physical Review D, 2009, 80, .	1.6	113
387	Perturbed dark energy: Classical scalar field versus tachyon. Physical Review D, 2009, 80, .	1.6	8
388	Fingerprinting dark energy. Physical Review D, 2009, 80, .	1.6	63
389	Anisotropic dark energy and CMB anomalies. Physical Review D, 2009, 80, .	1.6	42
390	The Role of Sterile Neutrinos in Cosmology and Astrophysics. Annual Review of Nuclear and Particle Science, 2009, 59, 191-214.	3.5	484
391	Evidence for horizon-scale power from CMB polarization. Physical Review D, 2009, 80, .	1.6	17
392	Cosmological constraints on DGP braneworld gravity with brane tension. Physical Review D, 2009, 80,	1.6	79
393	CMB polarization features from inflation versus reionization. Physical Review D, 2009, 79, .	1.6	109
394	Information field theory for cosmological perturbation reconstruction and nonlinear signal analysis. Physical Review D, 2009, 80, .	1.6	104
395	FIVE-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> PARAMETERS FROM THE <i>WMAP</i> DATA. Astrophysical Journal, Supplement Series, 2009, 180, 306-329.	3.0	1,337
396	Can MONDian vector theories explain the cosmic speed up?. Physical Review D, 2009, 80, .	1.6	3
397	Estimation of cosmological parameters using adaptive importance sampling. Physical Review D, 2009, 80, .	1.6	58

#	ARTICLE On the road to discovery of relic gravitational waves: The < mml: math	IF	CITATIONS
398	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>T</mml:mi> <mml:mi></mml:mi> and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>B</mml:mi>BBB</mml:math>	1.6	29
399	microwave background radiation. Physical Review D, 2009, 79, . Cosmological constraints on a light nonthermal sterile neutrino. Physical Review D, 2009, 79, .	1.6	36
400	CMB constraints on dark matter models with large annihilation cross section. Physical Review D, 2009, 80, .	1.6	250
401	Constraints on primordial isocurvature perturbations and spatial curvature by Bayesian model selection. Physical Review D, 2009, 80, .	1.6	43
402	CMB constraints on WIMP annihilation: Energy absorption during the recombination epoch. Physical Review D, 2009, 80, .	1.6	344
403	Brute force reconstruction of the primordial fluctuation spectrum from five-year Wilkinson Microwave Anisotropy Probe observations. Physical Review D, 2009, 80, .	1.6	28
404	Lyman- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>\hat{l}+</mml:mi></mml:math> transfer in primordial hydrogen recombination. Physical Review D, 2009, 80, .	1.6	32
405	Cold dark matter isocurvature perturbations: Constraints and model selection. Physical Review D, 2009, 79, .	1.6	33
406	Delayed recombination and standard rulers. Physical Review D, 2009, 79, .	1.6	13
407	Model independent constraints on mass-varying neutrino scenarios. Physical Review D, 2009, 80, .	1.6	18
408	From Cavendish to PLANCK: Constraining Newton's gravitational constant with CMB temperature and polarization anisotropy. Physical Review D, 2009, 80, .	1.6	39
409	Cosmological simulations of normal-branch braneworld gravity. Physical Review D, 2009, 80, .	1.6	86
410	Baryon acoustic oscillations in the Lyman alpha forest. Journal of Physics: Conference Series, 2009, 180, 012021.	0.3	8
411	Optimising Boltzmann codes for the PLANCK era. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 011-011.	1.9	7
412	IMPROVED SIMULATION OF NON-GAUSSIAN TEMPERATURE AND POLARIZATION COSMIC MICROWAVE BACKGROUND MAPS. Astrophysical Journal, Supplement Series, 2009, 184, 264-270.	3.0	56
413	Punctuated inflation and the low CMB multipoles. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 009-009.	1.9	119
414	Lyman- $\hat{l}\pm$ constraints on warm and on warm-plus-cold dark matter models. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 012-012.	1.9	325
415	SIMULATIONS OF BARYON ACOUSTIC OSCILLATIONS. II. COVARIANCE MATRIX OF THE MATTER POWER SPECTRUM. Astrophysical Journal, 2009, 700, 479-490.	1.6	113

#	Article	IF	CITATIONS
416	RICO: A NEW APPROACH FOR FAST AND ACCURATE REPRESENTATION OF THE COSMOLOGICAL RECOMBINATION HISTORY. Astrophysical Journal, Supplement Series, 2009, 181, 627-638.	3.0	42
417	Model-independent cosmological constraints from the CMB. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 023-023.	1.9	59
418	Dark energy with non-adiabatic sound speed: initial conditions and detectability. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 014-014.	1.9	71
419	Constraints on Cosmological Parameters from Future Cosmic Microwave Background Experiments. Journal of Physics: Conference Series, 2010, 259, 012004.	0.3	1
420	Signatures of primordial non-Gaussianities in the matter power-spectrum and bispectrum: the time-RG approach. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 011-011.	1.9	31
421	Single-field inflation constraints from CMB and SDSS data. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 011-011.	1.9	38
422	ANGULAR POWER SPECTRA OF THE MILLIMETER-WAVELENGTH BACKGROUND LIGHT FROM DUSTY STAR-FORMING GALAXIES WITH THE SOUTH POLE TELESCOPE. Astrophysical Journal, 2010, 718, 632-646.	1.6	122
423	TENTATIVE DETECTION OF QUASAR FEEDBACK FROM WMAP AND SDSS CROSS-CORRELATION. Astrophysical Journal, 2010, 720, 299-305.	1.6	21
424	ANNEALING A FOLLOW-UP PROGRAM: IMPROVEMENT OF THE DARK ENERGY FIGURE OF MERIT FOR OPTICAL GALAXY CLUSTER SURVEYS. Astrophysical Journal, 2010, 713, 1207-1218.	1.6	28
425	PARAMETER ESTIMATION FROM IMPROVED MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND FROM QUaD. Astrophysical Journal, 2010, 716, 1040-1046.	1.6	15
426	MEASUREMENTS OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH THE SOUTH POLE TELESCOPE. Astrophysical Journal, 2010, 719, 1045-1066.	1.6	145
427	FORECAST FOR THEPLANCKPRECISION ON THE TENSOR-TO-SCALAR RATIO AND OTHER COSMOLOGICAL PARAMETERS. Astrophysical Journal, 2010, 724, 588-607.	1.6	18
428	Structure formation by the fifth force: Segregation of baryons and dark matter. Physical Review D, 2010, 81, .	1.6	46
429	Robust cosmological bounds on neutrinos and their combination with oscillation results. Journal of High Energy Physics, 2010, 2010, 1.	1.6	81
430	Weak lensing of the CMB. General Relativity and Gravitation, 2010, 42, 2197-2218.	0.7	81
431	Coupling between cold dark matter and dark energy from neutrino mass experiments. New Astronomy, 2010, 15, 609-613.	0.8	19
432	Quintom cosmology: Theoretical implications and observations. Physics Reports, 2010, 493, 1-60.	10.3	678
433	Detecting bispectral acoustic oscillations from inflation using a new flexible estimator. Monthly Notices of the Royal Astronomical Society, 0, 407, 2193-2206.	1.6	47

#	Article	IF	CITATIONS
434	Maximum likelihood, parametric component separation and CMB B-mode detection in suborbital experiments. Monthly Notices of the Royal Astronomical Society, 2010, 408, 2319-2335.	1.6	32
435	Designing a space-based galaxy redshift survey to probe dark energy. Monthly Notices of the Royal Astronomical Society, 2010, 409, 737-749.	1.6	75
436	Imprints of dark energy on cosmic structure formation - II. Non-universality of the halo mass function. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	59
437	Imprints of dark energy on cosmic structure formation – I. Realistic quintessence models and the non-linear matter power spectrum. Monthly Notices of the Royal Astronomical Society, 2010, 401, 775-790.	1.6	67
438	The birth and growth of neutralino haloes. Monthly Notices of the Royal Astronomical Society, 2010, 401, 1796-1803.	1.6	52
439	Frequentist comparison of CMB local extrema statistics in the five-yearWMAPdata with two anisotropic cosmological models. Monthly Notices of the Royal Astronomical Society, 2010, 401, 2379-2387.	1.6	8
440	Estimating the impact of recombination uncertainties on the cosmological parameter constraints from cosmic microwave background experiments. Monthly Notices of the Royal Astronomical Society, 2010, 403, 439-452.	1.6	53
441	Photometric selection of emission-line galaxies, clustering analysis and a search for the integrated Sachs-Wolfe effect. Monthly Notices of the Royal Astronomical Society, 2010, 403, 1261-1273.	1.6	18
442	Precision cosmology with voids: definition, methods, dynamics. Monthly Notices of the Royal Astronomical Society, 2010, 403, 1392-1408.	1.6	112
443	Integrated Sachs-Wolfe measurements with photometric redshift surveys: 2MASS results and future prospects. Monthly Notices of the Royal Astronomical Society, 2010, 406, 2-13.	1.6	50
444	Weak lensing forecasts for dark energy, neutrinos and initial conditions. Monthly Notices of the Royal Astronomical Society, $2010, , .$	1.6	4
445	The Sunyaev-Zel'dovich contribution in CMB analyses. Monthly Notices of the Royal Astronomical Society, 2010, , .	1.6	1
446	The matter bispectrum in N-body simulations with non-Gaussian initial conditions. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	35
447	The WiggleZ Dark Energy Survey: the selection function and z = 0.6 galaxy power spectrum. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	48
448	Efficient cosmological parameter sampling using sparse grids. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	1
449	The observed growth of massive galaxy clusters - IV. Robust constraints on neutrino properties. Monthly Notices of the Royal Astronomical Society, 0, , no-no.	1.6	24
450	Correlations between 21-cm radiation and the cosmic microwave background from active sources. Monthly Notices of the Royal Astronomical Society, 2010, 407, 1116-1122.	1.6	13
451	Reducing sample variance: halo biasing, non-linearity and stochasticity. Monthly Notices of the Royal Astronomical Society, 2010, 407, 772-790.	1.6	30

#	Article	IF	Citations
452	The observed growth of massive galaxy clusters - I. Statistical methods and cosmological constraints. Monthly Notices of the Royal Astronomical Society, 0, , no-no.	1.6	156
453	Primordial density perturbations with running spectral index: impact on non-linear cosmic structures. Monthly Notices of the Royal Astronomical Society, 2010, 407, 1842-1858.	1.6	5
454	Constraints on large-scale inhomogeneities from (i>WMAP (i>5 and SDSS: confrontation with recent observations. Monthly Notices of the Royal Astronomical Society, 2010, 401, 547-558.	1.6	61
455	Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample. Monthly Notices of the Royal Astronomical Society, 2010, 401, 2148-2168.	1.6	1,400
456	Observational constraints on an interacting dark energy model. Monthly Notices of the Royal Astronomical Society, 2010, 402, 2355-2368.	1.6	136
457	Adiabatic initial conditions for perturbations in interacting dark energy models. Monthly Notices of the Royal Astronomical Society, 2010, 402, 2344-2354.	1.6	85
458	Cosmological constraints from the clustering of the Sloan Digital Sky Survey DR7 luminous red galaxies. Monthly Notices of the Royal Astronomical Society, 2010, , .	1.6	221
459	One simulation to fit them all - changing the background parameters of a cosmological <i>N</i> body simulation. Monthly Notices of the Royal Astronomical Society, 2010, , .	1.6	93
460	Forecasting neutrino masses from galaxy clustering in the Dark Energy Survey combined with the Planckmeasurements. Monthly Notices of the Royal Astronomical Society, 2010, , .	1.6	13
462	PARAMETRIC TENSION BETWEEN EVEN AND ODD MULTIPOLE DATA OF THE <i>WMAP</i> POWER SPECTRUM: UNACCOUNTED CONTAMINATION OR MISSING PARAMETERS?. Astrophysical Journal Letters, 2010, 724, L217-L220.	3.0	10
463	COSMOLOGICAL CONSTRAINTS ON THE HIGGS BOSON MASS. Astrophysical Journal, 2010, 723, 803-811.	1.6	12
464	Reconstruction of the cosmic microwave background lensing for <i>Planck </i> . Astronomy and Astrophysics, 2010, 519, A4.	2.1	28
465	Cosmological Tests for Minimally Coupled Perturbed Dark Energy. , 2010, , .		1
466	Markov chain beam randomization: a study of the impact of PLANCK beam measurement errors on cosmological parameter estimation. Astronomy and Astrophysics, 2010, 513, A23.	2.1	6
467	Constraints on variation inî±andmefrom WMAP 7-year data. Astronomy and Astrophysics, 2010, 517, A62.	2.1	21
469	Primordial Non-Gaussianity in the Cosmic Microwave Background. Advances in Astronomy, 2010, 2010, 1-27.	0.5	52
470	Primordial Non-Gaussianity in the Large-Scale Structure of the Universe. Advances in Astronomy, 2010, 2010, 1-23.	0.5	41
471	Cross-correlating probes of primordial gravitational waves. Physical Review D, 2010, 82, .	1.6	24

#	Article	IF	Citations
472	Updated constraints on the cosmic string tension. Physical Review D, 2010, 82, .	1.6	93
473	How to optimally parametrize deviations from general relativity in the evolution of cosmological perturbations. Physical Review D, 2010, 81, .	1.6	119
474	Massive neutrinos and magnetic fields in the early universe. Physical Review D, 2010, 81, .	1.6	115
475	Real space estimator for the weak lensing convergence from the CMB. Physical Review D, 2010, 81, .	1.6	14
476	Impact of secondary non-Gaussianities in the CMB on cosmological parameter estimation. Physical Review D, 2010, 81 , .	1.6	7
477	Upper Bound of 0.28ÂeV on Neutrino Masses from the Largest Photometric Redshift Survey. Physical Review Letters, 2010, 105, 031301.	2.9	144
478	Non-Gaussianity in WMAP data due to the correlation of CMB lensing potential with secondary anisotropies. Physical Review D, 2010, 81, .	1.6	18
479	The effect of neutrinos on the matter distribution as probed by the intergalactic medium. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 015-015.	1.9	179
480	DARK ENERGY IN PRACTICE. International Journal of Modern Physics A, 2010, 25, 5253-5331.	0.5	59
481	FAST AND OPTIMAL COSMIC MICROWAVE BACKGROUND LENSING USING STATISTICAL INTERPOLATION ON THE SPHERE. Astrophysical Journal, Supplement Series, 2010, 191, 32-42.	3.0	11
482	CONSTRAINTS ON THE DARK ENERGY EQUATION OF STATE IN PRESENCE OF A VARYING FINE STRUCTURE CONSTANT. International Journal of Modern Physics D, 2010, 19, 507-512.	0.9	6
483	Observational hints on the Big Bounce. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 004-004.	1.9	28
484	Spherical collapse in quintessence models with zero speed of sound. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 027-027.	1.9	102
485	Theoretical priors on modified growth parametrisations. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 018-018.	1.9	62
486	The integrated Sachs-Wolfe effect: a confirmation for the case of dark energy. , 2010, , .		0
487	High accuracy Spectra at high z in Dynamical Dark Energy simulations. , 2010, , .		0
488	Dark coupling and gauge invariance. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 044-044.	1.9	68
489	Can we measure the neutrino mass hierarchy in the sky?. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 035-035.	1.9	84

#	Article	IF	CITATIONS
490	N-body simulations with generic non-Gaussian initial conditions I: power spectrum and halo mass function. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 022-022.	1.9	65
491	Testing the void against cosmological data: fitting CMB, BAO, SN and <i>H</i> ₀ . Journal of Cosmology and Astroparticle Physics, 2010, 2010, 030-030.	1.9	93
492	Constraints on the SZ power spectrum on degree angular scales in WMAP data. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 027-027.	1.9	6
493	Hunting for primordial non-Gaussianity in the cosmic microwave background. Classical and Quantum Gravity, 2010, 27, 124010.	1.5	189
494	Unified Dark Matter models with fast transition. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 014-014.	1.9	38
495	Reconstruction of the primordial power spectrum by direct inversion. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 016-016.	1.9	44
496	Features in the primordial power spectrum? A frequentist analysis. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 010-010.	1.9	43
497	New constraints on parametrised modified gravity from correlations of the CMB with large scale structure. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 030-030.	1.9	74
498	Non-detection of a statistically anisotropic power spectrum in large-scale structure. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 027-027.	1.9	49
499	Oscillations in the CMB from axion monodromy inflation. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 009-009.	1.9	310
500	Modeling the WMAP large-angle anomalies as an effect of a local density inhomogeneity. Research in Astronomy and Astrophysics, 2010, 10, 116-124.	0.7	6
501	CHARACTERIZATION OF THE BICEP TELESCOPE FOR HIGH-PRECISION COSMIC MICROWAVE BACKGROUND POLARIMETRY. Astrophysical Journal, 2010, 711, 1141-1156.	1.6	62
502	Cosmological imprints of pre-inflationary particles. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 004-004.	1.9	23
503	Searching for signatures of cosmic superstrings in the CMB. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 033-033.	1.9	13
504	Ghost dark matter. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 007-007.	1.9	5
505	GALAXY CLUSTERS SELECTED WITH THE SUNYAEV-ZEL'DOVICH EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS. Astrophysical Journal, 2010, 722, 1180-1196.	1.6	285
506	Constraining primordial non-Gaussianity with high-redshift probes. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 013-013.	1.9	53
507	Scale dependence of halo bispectrum from non-Gaussian initial conditions in cosmological N-body simulations. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 002-002.	1.9	38

#	Article	IF	CITATIONS
508	Cosmological parameters degeneracies and non-Gaussian halo bias. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 020-020.	1.9	45
509	Acoustic signatures in the Cosmic Microwave Background bispectrum from primordial magnetic fields. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 025-025.	1.9	31
510	Large-scale BAO signatures of the smallest galaxies. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 007-007.	1.9	97
511	Observational constraints on the $\hat{\mathfrak b}LTB$ model. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 021-021.	1.9	44
512	Generation of curvature perturbations with extra anisotropic stress. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 018-018.	1.9	18
513	Neutrinos in non-linear structure formation — the effect on halo properties. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 014-014.	1.9	76
514	Constraining the time variation of the coupling constants from cosmic microwave background: effect of î> _{QCD} . Journal of Cosmology and Astroparticle Physics, 2010, 2010, 030-030.	1.9	23
515	Using Big Bang Nucleosynthesis to extend CMB probes of neutrino physics. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 037-037.	1.9	16
516	Coupled dark matter-dark energy in light of near universe observations. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 029-029.	1.9	89
517	Probing dark energy and neutrino mass from upcoming lensing experiments of CMB and galaxies. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 027-027.	1.9	34
518	MEASUREMENT OF COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRA FROM TWO YEARS OF BICEP DATA. Astrophysical Journal, 2010, 711, 1123-1140.	1.6	194
519	Primordial <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>B</mml:mi></mml:math> -mode diagnostics and self-calibrating the CMB polarization. Physical Review D, 2010, 81, .	1.6	29
520	Voids as a precision probe of dark energy. Physical Review D, 2010, 82, .	1.6	66
521	Dark energy view of inflation. Physical Review D, 2010, 81, .	1.6	12
522	Confronting general relativity with further cosmological data. Physical Review D, 2010, 82, .	1.6	54
523	Testing general relativity with current cosmological data. Physical Review D, 2010, 81, .	1.6	149
524	Measuring the speed of dark: Detecting dark energy perturbations. Physical Review D, 2010, 81, .	1.6	89
525	Primordial features due to a step in the inflaton potential. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 008-008.	1.9	96

#	Article	IF	CITATIONS
526	Properties and uncertainties of scalar field models of dark energy with barotropic equation of state. Physical Review D, 2010, 82, .	1.6	17
527	Fingerprinting dark energy. II. Weak lensing and galaxy clustering tests. Physical Review D, 2010, 82, .	1.6	36
528	Figures of merit for present and future dark energy probes. Physical Review D, 2010, 82, .	1.6	25
529	Testable dark energy predictions from current data. Physical Review D, 2010, 81, .	1.6	37
530	The shape of the primordial power spectrum: A last stand before Planck data. Physical Review D, 2010, 81 contraints on primordial non-Gaussianity from the bispectrum (<mml:math) 0.784314="" 1="" etqq1="" over<="" rgbt="" td="" tj=""><td>1.6 rlock 10 T</td><td>54 If 50 567 Td</td></mml:math)>	1.6 rlock 10 T	54 If 50 567 Td
531			

#	Article	IF	Citations
544	Detectability of large-scale power suppression in the galaxy distribution. Physical Review D, 2010, 82, .	1.6	10
545	Probing cosmology with weak lensing peak counts. Physical Review D, 2010, 81, .	1.6	96
546	CMB power spectra from cosmic strings: Predictions for the Planck satellite and beyond. Physical Review D, 2010, 82, .	1.6	83
547	First CMB constraints on the inflationary reheating temperature. Physical Review D, 2010, 82, .	1.6	206
548	Relic gravitational waves in light of the 7-year Wilkinson Microwave Anisotropy Probe data and improved prospects for the Planck mission. Physical Review D, 2010, 82, .	1.6	15
549	Projected constraints on modified gravity cosmologies from 21Âcm intensity mapping. Physical Review D, 2010, 81, .	1.6	30
550	Massive neutrinos in cosmology: Analytic solutions and fluid approximation. Physical Review D, 2010, 81, .	1.6	63
551	Varying couplings in the early universe: Correlated variations of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>(\pmml:mi>(\pmml:math) and <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.6</td><td>26</td></mml:math></mml:mi></mml:math>	1.6	26
552	display="inline"> xmmlami> Gx/mmlami> x/mmlamath>. Physical Review D, 2010, 62, . Instabilities in dark coupled models and constraints from cosmological data. AIP Conference Proceedings, 2010, , .	0.3	7
553	Future CMB cosmological constraints in a dark coupled universe. Physical Review D, 2010, 81, .	1.6	44
554	Current constraints on the cosmic growth history. Physical Review D, 2010, 81, .	1.6	152
555	Distinguishing standard reionization from dark matter models. Physical Review D, 2010, 81, .	1.6	23
556	Constraints on primordial non-Gaussianity from galaxy-CMB lensing cross correlation. Physical Review D, 2010, 82, .	1.6	7
557	Signatures of a graviton mass in the cosmic microwave background. Physical Review D, 2010, 81, .	1.6	41
558	Precision cosmology defeats void models for acceleration. Physical Review D, 2011, 83, .	1.6	80
559	Predicted constraints on cosmic string tension from Planck and future CMB polarization measurements. Physical Review D, $2011, 84, \ldots$	1.6	11
560	Tilted physics: A cosmologically dipole-modulated sky. Physical Review D, 2011, 84, .	1.6	28
561	Dark degeneracy and interacting cosmic components. Physical Review D, 2011, 84, .	1.6	59

#	Article	IF	CITATIONS
562	Self-similar bumps and wiggles: Isolating the evolution of the BAO peak with power-law initial conditions. Physical Review D, $2011,84,.$	1.6	12
563	Future weak lensing constraints in a dark coupled universe. Physical Review D, 2011, 84, .	1.6	34
564	Analytic approach to baryon acoustic oscillations. Physical Review D, 2011, 84, .	1.6	9
565	Mapping gravitational lensing of the CMB using local likelihoods. Physical Review D, 2011, 83, .	1.6	8
566	Impact of instrumental systematics on the CMB bispectrum. Physical Review D, 2011, 83, .	1.6	6
567	Nonlinear biasing and redshift-space distortions in Lagrangian resummation theory and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> -body simulations. Physical Review D, 2011, 84, .	1.6	41
568	Magnification effect on the detection of primordial non-Gaussianity from photometric surveys. Physical Review D, 2011, 83, .	1.6	29
569	B-mode polarization in Einstein-aether theory. Physical Review D, 2011, 84, .	1.6	10
570	Dark Energy. Communications in Theoretical Physics, 2011, 56, 525-604.	1,1	649
571	Holographic dark matter and dark energy with second order invariants. Physical Review D, 2011, 84, .	1.6	28
572	Evidence for Dark Energy from the Cosmic Microwave Background Alone Using the Atacama Cosmology Telescope Lensing Measurements. Physical Review Letters, 2011, 107, 021302.	2.9	118
573	Combining cluster observables and stacked weak lensing to probe dark energy: Self-calibration of systematic uncertainties. Physical Review D, 2011, 83, .	1.6	131
574	Simultaneous falsification of mml="http://www.w3.org/1998/Math/MathML" display="inline">\c/mml:mi>\c/mml:mi>and quintessence">mailto:mml:mmath>and quintessence with massive, distant clusters. Physical Review D, 2011, 83, .	1.6	103
575	Future CMB constraints on early, cold, or stressed dark energy. Physical Review D, 2011, 83, .	1.6	68
576	Limits on dark radiation, early dark energy, and relativistic degrees of freedom. Physical Review D, 2011, 83, .	1.6	77
577	Primordial Non-Gaussianity from the 21 cm Power Spectrum during the Epoch of Reionization. Physical Review Letters, 2011, 107, 131304.	2.9	31
578	WMAP constraints onk-inflation. Physical Review D, 2011, 84, .	1.6	8
579	Large scale structure forecast constraints on particle production during inflation. Physical Review D, 2011, 83, .	1.6	8

#	Article	IF	CITATIONS
580	Hunting down the best model of inflation with Bayesian evidence. Physical Review D, 2011, 83, .	1.6	69
581	Bayesian analysis of inflation: Parameter estimation for single field models. Physical Review D, 2011, 83,	1.6	80
582	Inhomogeneous cosmological models: exact solutions and their applications. Classical and Quantum Gravity, 2011, 28, 164002.	1.5	144
583	Nonlinear clustering in models with primordial non-Gaussianity: The halo model approach. Physical Review D, 2011, 83, .	1.6	37
584	Neutrino Mass in Cosmology: Status and Prospects. Annual Review of Nuclear and Particle Science, 2011, 61, 69-98.	3.5	111
585	Constraining variations in the fine structure constant in the presence of early dark energy. Physical Review D, 2011, 84, .	1.6	34
586	SEVEN-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> (<i>WMAP</i>) OBSERVATIONS: POWER SPECTRA AND <i>WMAP</i> -DERIVED PARAMETERS. Astrophysical Journal, Supplement Series, 2011, 192, 16.	3.0	1,207
587	Observational constraints on the energy scale of inflation. Physical Review D, 2011, 83, .	1.6	10
588	SEVEN-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> (<i>WMAP</i>) OBSERVATIONS: COSMOLOGICAL INTERPRETATION. Astrophysical Journal, Supplement Series, 2011, 192, 18.	3.0	6,656
589	What do we really know about dark energy?. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 5102-5114.	1.6	34
590	INTEGRATED SACHS-WOLFE IMPRINT OF SUPERSTRUCTURES ON LINEAR SCALES. Astrophysical Journal, 2011, 732, 27.	1.6	35
591	Populations III.1 and III.2 gamma-ray bursts: constraints on the event rate for future radio and X-ray surveys. Astronomy and Astrophysics, 2011, 533, A32.	2.1	98
592	REJUVENATING THE MATTER POWER SPECTRUM. III. THE COSMOLOGY SENSITIVITY OF GAUSSIANIZED POWER SPECTRA. Astrophysical Journal, 2011, 742, 91.	1.6	28
593	Probing the first galaxies with the Square Kilometer Array. Astronomy and Astrophysics, 2011, 527, A93.	2.1	22
594	$\langle i \rangle N \langle i \rangle$ -BODY SIMULATIONS FOR EXTENDED QUINTESSENCE MODELS. Astrophysical Journal, 2011, 728, 109.	1.6	55
595	DARK MATTER HALOS IN THE STANDARD COSMOLOGICAL MODEL: RESULTS FROM THE BOLSHOI SIMULATION. Astrophysical Journal, 2011, 740, 102.	1.6	747
596	Combining perturbation theories with halo models. Astronomy and Astrophysics, 2011, 527, A87.	2.1	115
597	GENERAL RELATIVISTIC EFFECTS ON NONLINEAR POWER SPECTRA. Astrophysical Journal, 2011, 727, 22.	1.6	22

#	Article	IF	CITATIONS
598	The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 034-034.	1.9	1,378
599	The Cosmic Linear Anisotropy Solving System (CLASS) IV: efficient implementation of non-cold relics. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 032-032.	1.9	220
600	Revisiting a vector-tensor theory of gravitation. Journal of Physics: Conference Series, 2011, 314, 012118.	0.3	0
601	SIMPLE FOREGROUND CLEANING ALGORITHM FOR DETECTING PRIMORDIAL <i>B</i> THE COSMIC MICROWAVE BACKGROUND. Astrophysical Journal, 2011, 737, 78.	1.6	58
602	NON-GAUSSIAN ERROR CONTRIBUTION TO LIKELIHOOD ANALYSIS OF THE MATTER POWER SPECTRUM. Astrophysical Journal, 2011, 726, 7.	1.6	43
603	INTELLIGENT DESIGN: ON THE EMULATION OF COSMOLOGICAL SIMULATIONS. Astrophysical Journal, 2011, 728, 137.	1.6	20
604	IMPACTS OF DARK STARS ON REIONIZATION AND SIGNATURES IN THE COSMIC MICROWAVE BACKGROUND. Astrophysical Journal, 2011, 742, 129.	1.6	17
605	PROBABILITY DISTRIBUTION FUNCTIONS OF COSMOLOGICAL LENSING: CONVERGENCE, SHEAR, AND MAGNIFICATION. Astrophysical Journal, 2011, 742, 15.	1.6	90
606	A CONSTRAINT ON THE INTEGRATED MASS POWER SPECTRUM OUT TO $\langle i \rangle z \langle i \rangle = 1100$ FROM LENSING OF THE COSMIC MICROWAVE BACKGROUND. Astrophysical Journal Letters, 2011, 728, L1.	3.0	19
607	STACKED WEAK LENSING MASS CALIBRATION: ESTIMATORS, SYSTEMATICS, AND IMPACT ON COSMOLOGICAL PARAMETER CONSTRAINTS. Astrophysical Journal, 2011, 735, 118.	1.6	21
608	PERTURBATION THEORY OF THE COSMOLOGICAL LOG-DENSITY FIELD. Astrophysical Journal, 2011, 735, 32.	1.6	34
609	REDSHIFT-SPACE ENHANCEMENT OF LINE-OF-SIGHT BARYON ACOUSTIC OSCILLATIONS IN THE SLOAN DIGITAL SKY SURVEY MAIN-GALAXY SAMPLE. Astrophysical Journal, 2011, 728, 34.	1.6	25
610	iCosmo: an interactive cosmology package. Astronomy and Astrophysics, 2011, 528, A33.	2.1	46
611	The WiggleZ Dark Energy Survey: direct constraints on blue galaxy intrinsic alignments at intermediate redshifts. Monthly Notices of the Royal Astronomical Society, 2011, 410, 844-859.	1.6	120
612	Should we doubt the cosmological constant?. Monthly Notices of the Royal Astronomical Society, 2011, 410, 2488-2496.	1.6	20
613	Wilkinson Microwave Anisotropy Probe 7-yr constraints on fNL with a fast wavelet estimator. Monthly Notices of the Royal Astronomical Society, 2011, 411, 2019-2025.	1.6	10
614	The angular power spectra of photometric Sloan Digital Sky Survey luminous red galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 412, 1669-1685.	1.6	31
615	Using the topology of large-scale structure to constrain dark energy. Monthly Notices of the Royal Astronomical Society, 2011, , no-no.	1.6	13

#	Article	IF	CITATIONS
616	Constraints on the topology of the Universe derived from the 7-yr WMAP data. Monthly Notices of the Royal Astronomical Society, 2011, 412, 2104-2110.	1.6	28
617	Black hole clustering in cosmological hydrodynamic simulations: evidence for mergers. Monthly Notices of the Royal Astronomical Society, 2011, 413, 1383-1394.	1.6	27
618	HerMES: detection of cosmic magnification of submillimetre galaxies using angular cross-correlationa~ Monthly Notices of the Royal Astronomical Society, 2011, 414, 596-601.	1.6	28
619	Precise cosmological parameter estimation using CosmoRec. Monthly Notices of the Royal Astronomical Society, 2011, 415, 1343-1354.	1.6	31
620	The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2876-2891.	1.6	419
621	Scale-dependent bias of galaxies from baryonic acoustic oscillations. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3113-3118.	1.6	24
622	The WiggleZ Dark Energy Survey: testing the cosmological model with baryon acoustic oscillations at z = 0.6. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2892-2909.	1.6	190
623	Parameter estimation biases due to contributions from the Rees-Sciama effect to the integrated Sachs-Wolfe spectrum. Monthly Notices of the Royal Astronomical Society, 2011, 416, 1302-1310.	1.6	7
624	Complementarity of future dark energy probes. Monthly Notices of the Royal Astronomical Society, 2011, 416, 2212-2232.	1.6	3
625	The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant. Monthly Notices of the Royal Astronomical Society, 2011, 416, 3017-3032.	1.6	1,915
626	Angular correlation function of 1.5 million luminous red galaxies: clustering evolution and a search for baryon acoustic oscillations. Monthly Notices of the Royal Astronomical Society, 2011, 416, 3033-3056.	1.6	42
627	Constraints on general primordial non-Gaussianity using wavelets for the Wilkinson Microwave Anisotropy Probe 7-year data. Monthly Notices of the Royal Astronomical Society, 2011, 417, 488-494.	1.6	15
628	The abundance of galaxy clusters in modified Newtonian dynamics: cosmological simulations with massive neutrinos. Monthly Notices of the Royal Astronomical Society, 2011, 417, 941-949.	1.6	44
629	Ameliorating systematic uncertainties in the angular clustering of galaxies: a study using the SDSS-III. Monthly Notices of the Royal Astronomical Society, 2011, 417, 1350-1373.	1.6	155
630	Quantifying the effect of baryon physics on weak lensing tomography. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2020-2035.	1.6	253
631	Effects of massive neutrinos on the large-scale structure of the Universe. Monthly Notices of the Royal Astronomical Society, 2011, 418, 346-356.	1.6	83
632	The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations. Monthly Notices of the Royal Astronomical Society, 2011, 418, 1707-1724.	1.6	782
633	Minimally parametric power spectrum reconstruction from the Lyman \hat{l}_{\pm} forest. Monthly Notices of the Royal Astronomical Society, 2011, 413, 1717-1728.	1.6	82

#	Article	IF	CITATIONS
634	The VLT LBG Redshift Survey - I. Clustering and dynamics of â‰^1000 galaxies at zâ‰^ 3â~ Monthly Notices of the Royal Astronomical Society, 2011, 414, 2-27.	1.6	35
635	Modelling the clustering of dark matter haloes in resummed perturbation theories. Monthly Notices of the Royal Astronomical Society, 2011, 416, 1703-1716.	1.6	24
636	Likelihood reconstruction method of real-space density and velocity power spectra from a redshift galaxy survey. Monthly Notices of the Royal Astronomical Society, 2011, 416, 2291-2310.	1.6	16
637	The WiggleZ Dark Energy Survey: measuring the cosmic expansion history using the Alcock-Paczynski test and distant supernovae. Monthly Notices of the Royal Astronomical Society, 2011, 418, 1725-1735.	1.6	124
638	Constraining decaying dark matter. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2011, 701, 530-534.	1.5	7
639	Dark energy perturbations revisited. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2011, 702, 5-11.	1.5	10
640	Early dark energy from zero-point quantum fluctuations. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2011, 704, 102-107.	1.5	33
641	Bayesian inference in physics. Reviews of Modern Physics, 2011, 83, 943-999.	16.4	297
642	Light neutrinos in cosmology. Physics of Particles and Nuclei, 2011, 42, 628-640.	0.2	1
643	On the growth of perturbations in interacting dark energy and dark matter fluids. General Relativity and Gravitation, 2011, 43, 1309-1321.	0.7	16
644	The impact of Reionization modelling on CMB Neutrino Mass Bounds. Nuclear Physics, Section B, Proceedings Supplements, 2011, 217, 65-67.	0.5	0
645	Observational signatures of a non-singular bouncing cosmology. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 004-004.	1.9	17
646	Constraints on light WIMP candidates from the isotropic diffuse gamma-ray emission. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 011-011.	1.9	31
647	Perturbed power-law parameters from WMAP7. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 016-016.	1.9	4
648	Level crossing analysis of cosmic microwave background radiation: a method for detecting cosmic strings. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 012-012.	1.9	13
649	Testing gravity with CAMB and CosmoMC. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 005-005.	1.9	187
650	Next-to-leading resummation of cosmological perturbations via the Lagrangian picture: 2-loop correction in real and redshift spaces. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 012-012.	1.9	47
651	Constraining holographic inflation with WMAP. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 030-030.	1.9	20

#	Article	IF	CITATIONS
652	Testing model independent modified gravity with future large scale surveys. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 013-013.	1.9	11
653	Non-linear matter spectrum for a variable equation of state. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 024-024.	1.9	4
654	Testing a phenomenologically extended DGP model with upcoming weak lensing surveys. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 029-029.	1.9	9
655	The cosmic microwave background in an inhomogeneous universe. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 013-013.	1.9	57
656	Constraints on primordial non-Gaussianity from large scale structure probes. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 033-033.	1.9	62
657	Constraining warm dark matter with cosmic shear power spectra. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 022-022.	1.9	30
658	The shape of the CMB lensing bispectrum. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 018-018.	1.9	143
659	Galaxy bias and non-linear structure formation in general relativity. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 031-031.	1.9	165
660	Modified gravity: the CMB, weak lensing and general parameterisations. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 036-036.	1.9	20
661	B polarization of cosmic background radiation from second-order scattering sources. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 008-008.	1.9	15
662	Observational consequences of the standard model Higgs inflation variants. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 025-025.	1.9	10
663	Non-linear dark energy clustering. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 014-014.	1.9	26
664	The effect of inhomogeneities on the distance to the last scattering surface and the accuracy of the CMB analysis. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 025-025.	1.9	27
665	Detection of relic gravitational waves in the CMB: prospects for CMBPol mission. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 007-007.	1.9	9
666	Next-to-leading resummations in cosmological perturbation theory. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 015-015.	1.9	31
667	Uncorrelated estimates of the primordial power spectrum. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 032-032.	1.9	13
668	COSMOLOGICAL CONSTRAINT ON BRANS-DICKE THEORY. International Journal of Modern Physics Conference Series, 2011, 01, 195-202.	0.7	4
669	An improved calculation of the non-Gaussian halo mass function. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 001-001.	1.9	35

#	Article	IF	CITATIONS
670	Nonlinear matter spectra in growing neutrino quintessence. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 049-049.	1.9	14
671	Dark before light: testing the cosmic expansion history through the cosmic microwave background. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 001-001.	1.9	21
672	Integrated Markov Chain Monte Carlo (MCMC) analysis of primordial non-Gaussianity (fNL) in the recent CMB data. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 018-018.	1.9	0
673	Estimating the tensor-to-scalar ratio and the effect of residual foreground contamination. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 001-001.	1.9	11
674	Observational constraints on scalar field models of dark energy with barotropic equation of state. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 004-004.	1.9	16
675	Isocurvature modes and Baryon Acoustic Oscillations II: gains from combining CMB and Large Scale Structure. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 028-028.	1.9	19
676	A parametrization of the growth index of matter perturbations in various Dark Energy models and observational prospects using a Euclid-like survey. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 010-010.	1.9	67
677	Linear kinetic Sunyaev–Zel'dovich effect and void models for acceleration. Classical and Quantum Gravity, 2011, 28, 164005.	1.5	56
678	A MEASUREMENT OF THE DAMPING TAIL OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM WITH THE SOUTH POLE TELESCOPE. Astrophysical Journal, 2011, 743, 28.	1.6	433
679	Neutrino constraints from future nearly all-sky spectroscopic galaxy surveys. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 030-030.	1.9	73
680	Measuring our peculiar velocity on the CMB with high-multipole off-diagonal correlations. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 027-027.	1.9	55
681	The non-Gaussian halo mass function with <i>f</i> _{NL} , <i>g</i> _{NL} and i,, _{NL} . Journal of Cosmology and Astroparticle Physics, 2011, 2011, 003-003.	1.9	53
682	Efficient decomposition of cosmic microwave background polarization maps into pure <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>E</mml:mi></mml:math> , pure <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>B</mml:mi></mml:math> , and ambiguous components. Physical Review D, 2011, 83, .	1.6	20
683	Updated CMB constraints on dark matter annihilation cross sections. Physical Review D, 2011, 84, .	1.6	144
684	The effect of a scanning flat fold mirror on a cosmic microwave background B-mode experiment. Review of Scientific Instruments, 2011, 82, 064502.	0.6	0
685	CMB temperature lensing power reconstruction. Physical Review D, 2011, 83, .	1.6	107
686	Effects of a primordial magnetic field with log-normal distribution on the cosmic microwave background. Physical Review D, $2011,84,.$	1.6	8
687	What galaxy surveys really measure. Physical Review D, 2011, 84, .	1.6	351

#	Article	IF	CITATIONS
688	Dark radiation emerging after big bang nucleosynthesis?. Physical Review D, 2011, 83, .	1.6	60
689	Large-scale structure in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>T</mml:mi><mml:mo) (<="" 0.784314="" 1="" 10="" 50="" 692="" etqq1="" overlock="" rgbt="" td="" telephone="" tf="" tj=""><td>T<mark>d.6</mark>stretc</td><td>hy="false">)</td></mml:mo)></mml:math>	T <mark>d.6</mark> stretc	hy="false">)
690	Cosmological constraints on dark matter models with velocity-dependent annihilation cross section. Physical Review D, $2011, 83, .$	1.6	59
691	Consistency check off>CDMphenomenology. Physical Review D, 2011, 83, .	1.6	24
692	Weighing neutrinos using high redshift galaxy luminosity functions. Physical Review D, 2011, 83, .	1.6	7
693	Constraints on massive sterile neutrino species from current and future cosmological data. Physical Review D, 2011, 83, .	1.6	82
694	Computation approach for CMB bispectrum from primordial magnetic fields. Physical Review D, 2011, 83, .	1.6	14
695	CMB constraints on a stochastic background of primordial magnetic fields. Physical Review D, 2011, 83, .	1.6	65
696	Data-constrained reionization and its effects on cosmological parameters. Physical Review D, 2011, 84,	1.6	19
697	<pre><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math>-body simulations for coupled scalar-field cosmology. Physical Review D, 2011, 83, .</pre>	1.6	116
698	Real space CMB lensing reconstruction with point source masks. Physical Review D, 2011, 84, .	1.6	8
699	Reconciling the local void with the CMB. Physical Review D, 2011, 83, .	1.6	53
700	Baryon acoustic oscillations in 2D. II. Redshift-space halo clustering inN-body simulations. Physical Review D, 2011, 84, .	1.6	54
701	Photons and baryons before atoms: Improving the tight-coupling approximation. Physical Review D, 2011, 83, .	1.6	20
702	Figures of merit and constraints from testing general relativity using the latest cosmological data sets including refined COSMOS 3D weak lensing. Physical Review D, 2011, 84, .	1.6	35
703	CMB anisotropies in the presence of a stochastic magnetic field. Physical Review D, 2011, 83, .	1.6	29
704	Testing general relativity at cosmological scales: Implementation and parameter correlations. Physical Review D, 2011, 84, .	1.6	69
705	SEVEN-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> (<i>WMAP</i>) OBSERVATIONS: GALACTIC FOREGROUND EMISSION. Astrophysical Journal, Supplement Series, 2011, 192, 15.	3.0	320

#	Article	IF	Citations
706	SEVEN-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> (<i>WMAP</i>) OBSERVATIONS: ARE THERE COSMIC MICROWAVE BACKGROUND ANOMALIES?. Astrophysical Journal, Supplement Series, 2011, 192, 17.	3.0	448
707	A brachistochrone approach to reconstruct the inflaton potential. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 026-026.	1.9	6
709	ANALYTICAL SPECTRA OF RGWs AND ITS INDUCED CMB ANISOTROPIES AND POLARIZATION. International Journal of Modern Physics D, 2011, 20, 2099-2103.	0.9	3
710	TESTING THE INFLATIONARY NULL ENERGY CONDITION WITH CURRENT AND FUTURE COSMIC MICROWAVE BACKGROUND DATA. International Journal of Modern Physics D, 2011, 20, 1183-1189.	0.9	5
711	Local stochastic non-Gaussianity and $\langle i\rangle N\langle i\rangle$ -body simulations. Journal of Cosmology and Astroparticle Physics, 2011, 2011, 009-009.	1.9	35
712	THE ATACAMA COSMOLOGY TELESCOPE: COSMOLOGICAL PARAMETERS FROM THE 2008 POWER SPECTRUM. Astrophysical Journal, 2011, 739, 52.	1.6	329
713	Cosmic bubble collisions. Classical and Quantum Gravity, 2011, 28, 204008.	1.5	48
714	Neutrino Mass from Cosmology. Advances in High Energy Physics, 2012, 2012, 1-34.	0.5	145
715	A multifrequency approach of the cosmological parameter estimation in the presence of extragalactic point sources. Monthly Notices of the Royal Astronomical Society, 2012, 426, 496-509.	1.6	2
716	Measuring our peculiar velocity by "pre-deboosting" the CMB. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 026-026.	1.9	27
717	Early structure formation from cosmic string loops. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 026-026.	1.9	25
718	Nonlinear power spectrum from resummed perturbation theory: a leap beyond the BAO scale. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 013-013.	1.9	51
719	Observational constraints on cosmic neutrinos and dark energy revisited. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 018-018.	1.9	28
720	Nonlinear cosmological consistency relations and effective matter stresses. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 038-038.	1.9	23
721	Delensing CMB polarization with external datasets. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 014-014.	1.9	146
722	Prospects for constraining the shape of non-Gaussianity with the scale-dependent bias. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 019-019.	1.9	49
723	Inclusive constraints on unified dark matter models from future large-scale surveys. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 039-039.	1.9	9
724	Model selection applied to reconstruction of the Primordial Power Spectrum. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 006-006.	1.9	51

#	Article	IF	CITATIONS
725	Ambiguous tests of general relativity on cosmological scales. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 032-032.	1.9	44
726	Structure formation constraints on Sommerfeld-enhanced dark matter annihilation. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 009-009.	1.9	5
727	Scale dependence of the halo bias in general local-type non-Gaussian models I: analytical predictions and consistency relations. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 037-037.	1.9	8
728	CMB lensing reconstruction in the presence of diffuse polarized foregrounds. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 017-017.	1.9	12
729	Halo clustering and <i>g</i> _{NL} -type primordial non-gaussianity. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 032-032.	1.9	41
730	Searching for standard clocks in the primordial universe. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 014-014.	1.9	43
731	Reconstruction of the dark energy equation of state. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 020-020.	1.9	43
732	Full-sky lensing reconstruction of gradient and curl modes from CMB maps. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 007-007.	1.9	45
733	CMB power spectrum parameter degeneracies in the era of precision cosmology. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 027-027.	1.9	288
734	Neutrinos in non-linear structure formation â€" a simple SPH approach. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 045-045.	1.9	18
735	Parity violation of primordial magnetic fields in the CMB bispectrum. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 015-015.	1.9	51
736	Increasing <i>N</i> _{eff} with particles in thermal equilibrium with neutrinos. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 027-027.	1.9	64
737	N-body simulations with generic non-Gaussian initial conditions II: halo bias. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 002-002.	1.9	55
738	Measuring the neutrino mass from future wide galaxy cluster catalogues. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 023-023.	1.9	38
739	Optimal limits on primordial magnetic fields from CMB temperature bispectrum of passive modes. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 041-041.	1.9	44
740	The integrated Sachs-Wolfe imprint of cosmic superstructures: a problem for Î>CDM. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 042-042.	1.9	60
741	CMB power spectra induced by primordial cross-bispectra between metric perturbations and vector fields. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 046-046.	1.9	18
742	Analytic spectra of CMB anisotropies and polarization generated by scalar perturbations in synchronous gauge. Classical and Quantum Gravity, 2012, 29, 105009.	1.5	11

#	Article	IF	CITATIONS
743	Perceiving the equation of state of Dark Energy while living in a Cold Spot. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 047-047.	1.9	30
744	Isocurvature perturbations in extra radiation. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 022-022.	1.9	18
745	An improved fitting formula for the dark matter bispectrum. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 047-047.	1.9	81
746	Gauge issues in extended gravity and f(R) cosmology. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 002-002.	1.9	7
747	Constraining inflation with future galaxy redshift surveys. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 005-005.	1.9	46
748	Thinking outside the box: effects of modes larger than the survey on matter power spectrum covariance. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 019-019.	1.9	54
749	A cosmology forecast toolkit â€" CosmoLib. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 012-012.	1.9	15
750	Lagrangian perturbations and the matter bispectrum II: the resummed one-loop correction to the matter bispectrum. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 018-018.	1.9	33
751	The full squeezed CMB bispectrum from inflation. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 023-023.	1.9	44
752	How accurately can we measure the hydrogen 2Sâ†'1Stransition rate from the cosmological data?. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 040-040.	1.9	6
753	Non-Gaussian isocurvature perturbations in dark radiation. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 037-037.	1.9	10
7 54	Observational constraints on K-inflation models. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 011-011.	1.9	28
755	Origin of \hat{l} ' <i>N</i> _{eff} as a result of an interaction between dark radiation and dark matter. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 017-017.	1.9	23
756	Weak lensing cosmology beyond $\hat{\nu}$ CDM. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 011-011.	1.9	13
757	Constraining scale-dependent non-Gaussianity with future large-scale structure and the CMB. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 034-034.	1.9	19
758	Measuring gravitational lensing of the cosmic microwave background using cross correlation with large scale structure. Physical Review D, 2012, 86, .	1.6	18
759	The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Release 9 spectroscopic galaxy sample. Monthly Notices of the Royal Astronomical Society, 2012, 427, 3435-3467.	1.6	738
760	Fast analytic computation of cosmic string power spectra. Physical Review D, 2012, 86, .	1.6	17

#	ARTICLE	IF	CITATIONS
761	Forecasting isocurvature models with CMB lensing information: Axion and curvaton scenarios. Physical Review D, 2012, 86, .	1.6	1
762	New method for the Alcock-PaczyÅ,,ski test. Physical Review D, 2012, 86, .	1.6	35
763	Constraints on non-Gaussianity from Sunyaev-Zeldovich cluster surveys. Physical Review D, 2012, 86, .	1.6	5
764	CMB <mmi:math inline"="" xmins:mmi="http://www.w3.org/1998/Math/Math/Mi
display="><mml:mi>E</mml:mi><mml:mi>B</mml:mi>and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>T</mml:mi><mml:mi>B</mml:mi>cross-spectrum estimation via</mml:math </mmi:math>	1.6	16
765	Supersonic baryon-CDM velocities and CMB <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>B</mml:mi></mml:math> -mode polarization. Physical Review D, 2012, 85, .	1.6	11
766	Ultralight axions: Degeneracies with massive neutrinos and forecasts for future cosmological observations. Physical Review D, 2012, 85, .	1.6	43
767	Bayesian analysis of inflation. II. Model selection and constraints on reheating. Physical Review D, 2012, 85, .	1.6	109
768	Effects of helical magnetic fields on the cosmic microwave background. Physical Review D, 2012, 85, .	1.6	29
769	Future constraints on variations of the fine structure constant from combined CMB and weak lensing measurements. Physical Review D, 2012, 85, .	1.6	2
770	Impact of massive neutrinos on the abundance of massive clusters. Physical Review D, 2012, 85, .	1.6	79
771	Application of cross correlations between CMB and large-scale structure to constraints on the primordial non-Gaussianity. Physical Review D, 2012, 85, .	1.6	13
772	First Constraints on the Running of Non-Gaussianity. Physical Review Letters, 2012, 109, 121302.	2.9	31
773	Gamma rays from warm WIMP dark matter annihilation. Physical Review D, 2012, 86, .	1.6	9
774	The Atacama Cosmology Telescope: Cross-correlation of cosmic microwave background lensing and quasars. Physical Review D, 2012, 86, .	1.6	91
775	Constraining primordial magnetism. Physical Review D, 2012, 86, .	1.6	84
776	Constraints on primordial gravitational waves with variable sound speed from current CMB data. Physical Review D, 2012, 86, .	1.6	5
777	Probing primordial magnetism with off-diagonal correlators of CMB polarization. Physical Review D, 2012, 86, .	1.6	24
778	Probing cosmology with weak lensing Minkowski functionals. Physical Review D, 2012, 85, .	1.6	73

#	Article	IF	CITATIONS
779	Constraints on superconducting cosmic strings from early reionization. Physical Review D, 2012, 85, .	1.6	14
780	Future constraints on neutrino isocurvature perturbations in the curvaton scenario. Physical Review D, 2012, 85, .	1.6	18
781	SMOOTHED QUANTUM FLUCTUATIONS AND CMB OBSERVATIONS. International Journal of Modern Physics D, 2012, 21, 1250080.	0.9	0
782	BAYESIAN ANGULAR POWER SPECTRUM ANALYSIS OF INTERFEROMETRIC DATA. Astrophysical Journal, Supplement Series, 2012, 202, 9.	3.0	12
783	Primordial polymer perturbations. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 041-041.	1.9	18
784	THE IMPACT OF THE SPECTRAL RESPONSE OF AN ACHROMATIC HALF-WAVE PLATE ON THE MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND POLARIZATION. Astrophysical Journal, 2012, 747, 97.	1.6	15
785	Front Matter: Volume 8449. Proceedings of SPIE, 2012, , .	0.8	0
786	PRECISION COSMOGRAPHY WITH STACKED VOIDS. Astrophysical Journal, 2012, 754, 109.	1.6	176
787	Front Matter: Volume 8444., 2012,,.		0
788	f(R) COSMOLOGY AND MASSIVE NEUTRINOS. International Journal of Modern Physics Conference Series, 2012, 10, 35-42.	0.7	3
789	INFLATION IN A GENERAL REIONIZATION SCENARIO. International Journal of Modern Physics Conference Series, 2012, 12, 380-384.	0.7	1
790	Asymmetric Dark Matter and Dark Radiation. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 022-022.	1.9	74
791	Perturbation theory approach for the power spectrum: from dark matter in real space to massive haloes in redshift space. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 029-029.	1.9	37
792	The cosmic microwave background: observing directly the early universe. Proceedings of SPIE, 2012, , .	0.8	1
793	Forecasting the curvaton isocurvature scenario with CMB lensing information. Journal of Physics: Conference Series, 2012, 383, 012012.	0.3	0
794	NEW LIMITS ON THE NEUTRINO MASS FROM COSMOLOGY. International Journal of Modern Physics Conference Series, 2012, 12, 368-379.	0.7	2
795	NEW NEUTRINO MASS BOUNDS FROM SDSS-III DATA RELEASE 8 PHOTOMETRIC LUMINOUS GALAXIES. Astrophysical Journal, 2012, 761, 12.	1.6	70
796	COSMIC MICROWAVE BACKGROUND CONSTRAINTS ON THE DURATION AND TIMING OF REIONIZATION FROM THE SOUTH POLE TELESCOPE. Astrophysical Journal, 2012, 756, 65.	1.6	128

#	Article	IF	CITATIONS
797	A METHOD TO EXTRACT THE REDSHIFT DISTORTION \hat{l}^2 PARAMETER IN CONFIGURATION SPACE FROM MINIMAL COSMOLOGICAL ASSUMPTIONS. Astrophysical Journal, 2012, 757, 131.	1.6	1
798	CONSTRAINTS ON SCALAR AND TENSOR PERTURBATIONS IN PHENOMENOLOGICAL AND TWO-FIELD INFLATION MODELS: BAYESIAN EVIDENCES FOR PRIMORDIAL ISOCURVATURE AND TENSOR MODES. Astrophysical Journal, 2012, 753, 151.	1.6	26
799	BISPECTRUM OF THE SUNYAEV-ZEL'DOVICH EFFECT. Astrophysical Journal, 2012, 760, 5.	1.6	39
800	A MEASUREMENT OF THE CORRELATION OF GALAXY SURVEYS WITH CMB LENSING CONVERGENCE MAPS FROM THE SOUTH POLE TELESCOPE. Astrophysical Journal Letters, 2012, 753, L9.	3.0	76
801	INTERNAL KINEMATICS OF GROUPS OF GALAXIES IN THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 7. Astrophysical Journal, 2012, 758, 50.	1.6	28
802	MODELING EXTRAGALACTIC FOREGROUNDS AND SECONDARIES FOR UNBIASED ESTIMATION OF COSMOLOGICAL PARAMETERS FROM PRIMARY COSMIC MICROWAVE BACKGROUND ANISOTROPY. Astrophysical Journal, 2012, 746, 4.	1.6	24
803	SEMI-BLIND EIGEN ANALYSES OF RECOMBINATION HISTORIES USING COSMIC MICROWAVE BACKGROUND DATA. Astrophysical Journal, 2012, 752, 88.	1.6	21
804	f _{NL} from galactic foregrounds. Journal of Physics: Conference Series, 2012, 375, 032010.	0.3	1
805	CMB photons shedding light on dark matter. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 008-008.	1.9	59
806	Cosmological Surveys with the Australian Square Kilometre Array Pathfinder. Publications of the Astronomical Society of Australia, 2012, 29, 202-211.	1.3	18
807	EVOLUTION OF THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM ACROSS <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> DATA RELEASES: A NONPARAMETRIC ANALYSIS. Astrophysical Journal, 2012, 745, 114.	1.6	7
808	COSMIC MICROWAVE BACKGROUND CONSTRAINTS OF DECAYING DARK MATTER PARTICLE PROPERTIES. Astrophysical Journal, 2012, 755, 108.	1.6	8
809	NEW LIMITS ON EARLY DARK ENERGY FROM THE SOUTH POLE TELESCOPE. Astrophysical Journal Letters, 2012, 749, L9.	3.0	52
810	BULK FLOW OF HALOS IN ÎCDM SIMULATION. Astrophysical Journal, 2012, 761, 151.	1.6	22
811	A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES WITH TWO YEARS OF SOUTH POLE TELESCOPE OBSERVATIONS. Astrophysical Journal, 2012, 755, 70.	1.6	228
812	PROBING PRIMORDIAL NON-GAUSSIANITY WITH WEAK-LENSING MINKOWSKI FUNCTIONALS. Astrophysical Journal, 2012, 760, 45.	1.6	13
813	REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM. Astrophysical Journal, 2012, 761, 152.	1.6	842
814	ACOUSTIC SCALE FROM THE ANGULAR POWER SPECTRA OF SDSS-III DR8 PHOTOMETRIC LUMINOUS GALAXIES. Astrophysical Journal, 2012, 761, 13.	1.6	77

#	Article	IF	CITATIONS
815	Probing the neutrino mass hierarchy with cosmic microwave background weak lensing. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1170-1184.	1.6	46
816	A model of the anisotropic correlation function \hat{I}_{34} (rp, \ddot{I}_{9}) in redshift space including redshift errors. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2099-2115.	1.6	2
817	Measurements of $\langle i \rangle H \langle i \rangle \langle \langle i \rangle z \langle i \rangle \rangle$ and $\langle i \rangle D \langle i \rangle \langle sub \rangle A \langle sub \rangle \langle \langle i \rangle z \langle i \rangle \rangle$ from the two-dimensional two-point correlation function of Sloan Digital Sky Survey luminous red galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 426, 226-236.	1.6	119
818	Gravitational lensing simulations - I. Covariance matrices and halo catalogues. Monthly Notices of the Royal Astronomical Society, 2012, 426, 1262-1279.	1.6	53
819	The phenomenological approach to modeling the dark energy. Comptes Rendus Physique, 2012, 13, 539-565.	0.3	53
820	Dimensionless cosmology. Astrophysics and Space Science, 2012, 341, 617-629.	0.5	8
821	Resummed propagators in multicomponent cosmic fluids with the $\!$ i>eikonal $\!$ /i>approximation. Physical Review D, 2012, 85, .	1.6	56
822	Reconstruction of gravitational lensing using WMAP 7-year data. Physical Review D, 2012, 85, .	1.6	11
823	Improved limits on short-wavelength gravitational waves from the cosmic microwave background. Physical Review D, 2012, 85, .	1.6	40
824	Constraint on the primordial vector mode and its magnetic field generation from seven-year Wilkinson Microwave Anisotropy Probe observations. Physical Review D, 2012, 85, .	1.6	23
825	Constraints on modified gravity from Sunyaev-Zeldovich cluster surveys. Physical Review D, 2012, 85, .	1.6	17
826	Shrinking the quadratic estimator of weak lensing. Physical Review D, 2012, 85, .	1.6	1
827	Cosmological constraints on Lorentz invariance violation in the neutrino sector. Physical Review D, 2012, 86, .	1.6	2
828	Amplitudes of thermal and kinetic Sunyaev-Zel'dovich signals from small-scale CMB anisotropies. Physical Review D, 2012, 85, .	1.6	2
829	Constraints on the global topology and size of the universe from the cosmic microwave background. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 003-003.	1.9	19
830	Reconstructing the primordial power spectrum from the CMB. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 050-050.	1.9	31
831	The magnitude of the non-adiabatic pressure in the cosmic fluid. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1411-1415.	1.6	9
832	A 2 per cent distance to <i>z</i> = 0.35 by reconstructing baryon acoustic oscillations – III. Cosmological measurements and interpretation. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2168-2179.	1.6	49

#	Article	IF	CITATIONS
833	Galaxy And Mass Assembly (GAMA): colour- and luminosity-dependent clustering from calibrated photometric redshifts. Monthly Notices of the Royal Astronomical Society, 2012, 425, 1527-1548.	1.6	23
834	Measuring primordial non-Gaussianity with weak lensing surveys. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2870-2888.	1.6	34
835	The significance of the integrated Sachs-Wolfe effect revisited. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2581-2599.	1.6	83
836	Recovering 3D clustering information with angular correlations. Monthly Notices of the Royal Astronomical Society, 2012, 427, 1891-1902.	1.6	69
837	Thawing versus tracker behaviour: observational evidence. Monthly Notices of the Royal Astronomical Society, 2012, 427, 988-993.	1.6	14
838	Spatial curvature and cosmological tests of general relativity. Physical Review D, 2012, 86, .	1.6	46
839	Dark radiation in extended cosmological scenarios. Physical Review D, 2012, 86, .	1.6	31
840	Cosmological parameter estimation using particle swarm optimization. Physical Review D, 2012, 85, .	1.6	23
841	Cosmological perturbations in extended electromagnetism: General gauge invariant approach. Physical Review D, 2012, 85, .	1.6	8
842	Cosmological constraints on nonstandard inflationary quantum collapse models. Physical Review D, 2012, 85, .	1.6	42
843	Sterile neutrino models and nonminimal cosmologies. Physical Review D, 2012, 85, .	1.6	29
844	Constraints on neutrino and dark radiation interactions using cosmological observations. Physical Review D, 2012, 85, .	1.6	50
845	Cosmological tests of general relativity: A principal component analysis. Physical Review D, 2012, 85, .	1.6	66
846	Fingerprinting dark energy. III. Distinctive marks of viscosity. Physical Review D, 2012, 85, .	1.6	31
847	Dark energy and neutrino masses from future measurements of the expansion history and growth of structure. Physical Review D, 2012, 86, .	1.6	39
848	Testing coupled dark energy with next-generation large-scale observations. Physical Review D, 2012, 85,	1.6	51
849	Testing dark energy paradigms with weak gravitational lensing. Physical Review D, 2012, 85, .	1.6	44
850	Interacting dark energy: Constraints and degeneracies. Physical Review D, 2012, 85, .	1.6	110

#	ARTICLE Constraints on ml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"	IF	CITATIONS
851	display="inline"> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(<mml:mi>R</mml:mi><mml:mo) (stre<="" 0="" 10="" 50="" 737="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>tch,y="fals</td><td>se"1)6/mml:m</td></mml:mo)></mml:mo 	tc h,y ="fals	se" 1)6 /mml:m
852	Review D, 2012, 85, . Non-Gaussian structure of the lensed CMB power spectra covariance matrix. Physical Review D, 2012, 86, .	1.6	53
853	Model independent early expansion history and dark energy. Physical Review D, 2012, 86, .	1.6	11
854	Low power on large scales in just-enough inflation models. Physical Review D, 2012, 85, .	1.6	29
855	Extending the generalized Chaplygin gas model by using geometrothermodynamics. Physical Review D, 2012, 86, .	1.6	30
856	Predictions of just-enough inflation. Physical Review D, 2012, 85, .	1.6	37
857	Structure formation in modified gravity scenarios. Physical Review D, 2012, 86, .	1.6	35
858	Cosmological lepton asymmetry with a nonzero mixing angle <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>θ</mml:mi><mml:mn>13</mml:mn></mml:msub></mml:math> . Physical Review D. 2012. 86	1.6	52
859	Robust adaptive Wiener filtering. , 2012, , .		3
860	Spatial curvature falsifies eternal inflation. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 029-029.	1.9	54
861	CMB lensing reconstruction in real space. Physical Review D, 2012, 85, .	1.6	35
862	A hybrid approach to cosmic microwave background lensing reconstruction from all-sky intensity maps. Astronomy and Astrophysics, 2012, 544, A27.	2.1	12
863	A high throughput workflow environment for cosmological simulations. , 2012, , .		4
864	A MEASUREMENT OF GRAVITATIONAL LENSING OF THE MICROWAVE BACKGROUND USING SOUTH POLE TELESCOPE DATA. Astrophysical Journal, 2012, 756, 142.	1.6	212
865	COSMIC MICROWAVE BACKGROUND INDUCED POLARIZATION FROM SINGLE SCATTERING BY CLUSTERS OF GALAXIES AND FILAMENTS. Astrophysical Journal, 2012, 757, 44.	1.6	11
866	MATTER DISTRIBUTION AROUND GALAXIES. Astrophysical Journal, 2012, 746, 38.	1.6	14
867	True cosmic microwave background power spectrum estimation. Astronomy and Astrophysics, 2012, 541, A74.	2.1	4
868	Zero-point quantum fluctuations in cosmology. Physical Review D, 2012, 85, .	1.6	25

#	Article	IF	CITATIONS
869	Statistical anisotropy of CMB as a probe of conformal rolling scenario. Journal of Cosmology and Astroparticle Physics, 2012, 2012, 033-033.	1.9	14
870	Tensor tilt from primordial B modes. Monthly Notices of the Royal Astronomical Society, 2012, 419, 566-572.	1.6	2
871	Using galaxy-galaxy weak lensing measurements to correct the finger of God. Monthly Notices of the Royal Astronomical Society, 2012, 419, 3457-3481.	1.6	34
872	Early massive clusters and the bouncing coupled dark energy. Monthly Notices of the Royal Astronomical Society, 2012, 420, 430-440.	1.6	48
873	Interpreting large-scale redshift-space distortion measurements. Monthly Notices of the Royal Astronomical Society, 2012, 420, 2102-2119.	1.6	327
874	Massive neutrinos and the non-linear matter power spectrum. Monthly Notices of the Royal Astronomical Society, 2012, 420, 2551-2561.	1.6	263
875	Cross-correlation of <i>WISE</i> galaxies with the cosmic microwave background. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 422, L77-L81.	1.2	27
876	Simultaneous constraints on bias, normalization and growth index through power spectrum measurements. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 423, L97-L101.	1.2	8
877	Distribution of dust around galaxies: an analytic model. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 423, L117-L121.	1.2	9
878	BAMBI: blind accelerated multimodal Bayesian inference. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	1.6	36
879	The power spectrum from the angular distribution of galaxies in the CFHTLS-Wide fields at redshift $\hat{a}^{-1}/40.7$. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	1.6	7
880	WMAP7 constraints on oscillations in the primordial power spectrum. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	1.6	20
881	Constraining the topology of the Universe using the polarized cosmic microwave background maps. Monthly Notices of the Royal Astronomical Society, 2012, 421, 1064-1072.	1.6	14
882	Parametrization effects in the analysis of AMI Sunyaev-Zel'dovich observationsâ~ Monthly Notices of the Royal Astronomical Society, 2012, 421, 1136-1154.	1.6	8
883	Characterization of the non-Gaussianity of radio and IR point sources at CMB frequencies. Monthly Notices of the Royal Astronomical Society, 2012, 421, 1982-1995.	1.6	24
884	Cosmological implications from the full shape of the large-scale power spectrum of the SDSS DR7 luminous red galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2656-2681.	1.6	23
885	Lifting the degeneracy between geometric and dynamic distortions using the sound horizon from the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 2012, 424, 2-10.	1.6	7
886	Constraining primordial non-Gaussianity with future galaxy surveys. Monthly Notices of the Royal Astronomical Society, 2012, 422, 2854-2877.	1.6	128

#	Article	IF	Citations
887	A Bayesian study of the primordial power spectrum from a novel closed universe model. Monthly Notices of the Royal Astronomical Society, 2012, 422, 1948-1956.	1.6	18
888	The codecs project: a publicly available suite of cosmological N-body simulations for interacting dark energy modelsa~ Monthly Notices of the Royal Astronomical Society, 2012, 422, 1028-1044.	1.6	73
889	Investigating clustering dark energy with 3D weak cosmic shear. Monthly Notices of the Royal Astronomical Society, 2012, 422, 3056-3066.	1.6	14
890	Weak lensing predictions for coupled dark energy cosmologies at non-linear scales. Monthly Notices of the Royal Astronomical Society, 2012, 422, 3546-3553.	1.6	21
891	A robust distance measurement and dark energy constraints from the spherically averaged correlation function of Sloan Digital Sky Survey luminous red Galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1474-1484.	1.6	20
892	Disentangling dark energy and cosmic tests of gravity from weak lensing systematics. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1750-1765.	1.6	22
893	Evidence for inhomogeneous reionization in the local Universe from metal-poor globular cluster systems. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2177-2189.	1.6	28
894	Can 21-cm observations discriminate between high-mass and low-mass galaxies as reionization sources?. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2222-2253.	1.6	80
895	Non-Gaussian error bars in galaxy surveys - I. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2288-2307.	1.6	20
896	Radiative transfer effects during primordial helium recombination. Monthly Notices of the Royal Astronomical Society, 2012, 423, 3227-3242.	1.6	15
897	The 6dF Galaxy Survey: zâ‰^0 measurements of the growth rate and Ïf8. Monthly Notices of the Royal Astronomical Society, 2012, 423, 3430-3444.	1.6	390
898	Cosmology when living near the Great Attractor. Monthly Notices of the Royal Astronomical Society, 2012, 424, 495-501.	1.6	8
899	Studying cosmic reionization with observations of the global 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2012, 424, 2551-2561.	1.6	18
900	Non-linear evolution of cosmological structures in warm dark matter models. Monthly Notices of the Royal Astronomical Society, 2012, 424, 684-698.	1.6	217
901	N-body simulations with a cosmic vector for dark energy. Monthly Notices of the Royal Astronomical Society, 2012, 424, 699-715.	1.6	22
902	The halo mass function in interacting dark energy models. Monthly Notices of the Royal Astronomical Society, 2012, 424, 993-1005.	1.6	37
903	Probing deviations from general relativity with the Euclid spectroscopic survey. Monthly Notices of the Royal Astronomical Society, 2012, 424, 1392-1408.	1.6	35
904	PkANN - I. Non-linear matter power spectrum interpolation through artificial neural networks. Monthly Notices of the Royal Astronomical Society, 2012, 424, 1409-1418.	1.6	38

#	Article	IF	CITATIONS
905	The WiggleZ Dark Energy Survey: the transition to large-scale cosmic homogeneity. Monthly Notices of the Royal Astronomical Society, 2012, 425, 116-134.	1.6	159
906	Constraining the dark energy equation of state with double-source plane strong lenses. Monthly Notices of the Royal Astronomical Society, 2012, 424, 2864-2875.	1.6	41
907	The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the large-scale two-point correlation function. Monthly Notices of the Royal Astronomical Society, 2012, 425, 415-437.	1.6	151
908	Cosmological parameters constraints from galaxy cluster mass function measurements in combination with other cosmological data. Astronomy Letters, 2012, 38, 347-363.	0.1	34
909	On the viability of a certain vector-tensor theory of gravitation. Astrophysics and Space Science, 2012, 337, 439-453.	0.5	4
910	Constraints on the tensor-to-scalar ratio for non-power-law models. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 001-001.	1.9	10
911	Is there evidence for additional neutrino species from cosmology?. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 036-036.	1.9	19
912	New Constraints on the Early Expansion History of the Universe. Physical Review Letters, 2013, 111, 041301.	2.9	22
913	New constraints on coupled dark energy from the Planck satellite experiment. Physical Review D, 2013, 88, .	1.6	132
914	Trans-Planckian issues for inflationary cosmology. Classical and Quantum Gravity, 2013, 30, 113001.	1.5	123
915	The Atacama Cosmology Telescope: likelihood for small-scale CMB data. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 025-025.	1.9	137
916	Dark energy or modified gravity? An effective field theory approach. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 010-010.	1.9	235
917	The topology and size of the universe from CMB temperature and polarization data. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 009-009.	1.9	14
918	Joint Minkowski functionals and bispectrum constraints on non-Gaussianity in the cosmic microwave background. Physical Review D, 2013, 88, .	1.6	4
919	New constraints on the dark energy equation of state. Physical Review D, 2013, 88, .	1.6	26
920	Power spectrum distortions in CMB map one-dimensional cross-sections depending on the cosmological model. Astrophysical Bulletin, 2013, 68, 226-235.	0.3	1
921	CosmoHammer: Cosmological parameter estimation with the MCMC Hammer. Astronomy and Computing, 2013, 2, 27-39.	0.8	66
923	Systematic uncertainties in constraining dark matter annihilation from the cosmic microwave background. Physical Review D, 2013, 88, .	1.6	76

#	Article	IF	CITATIONS
924	Cosmology of atomic dark matter. Physical Review D, 2013, 87, .	1.6	196
925	Constraints on millicharged particles from Planck data. Physical Review D, 2013, 88, .	1.6	94
926	Bayesian analysis of anisotropic cosmologies: Bianchi VIIh and WMAP. Monthly Notices of the Royal Astronomical Society, 2013, 436, 3680-3694.	1.6	19
927	Cosmological constraints from baryon acoustic oscillations and clustering of large-scale structure. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1674-1683.	1.6	46
928	Independent constraints on local non-Gaussianity from the peculiar velocity and density fields. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2029-2037.	1.6	9
929	Limits on anisotropic inflation from the Planck data. Physical Review D, 2013, 88, .	1.6	104
930	Revisiting the matter power spectra $\inf(R)$ gravity. Physical Review D, 2013, 88, .	1.6	13
931	Nonlinear power spectra of dark and luminous matter in the halo model of structure formation. Physical Review D, 2013, 88, .	1.6	7
932	Fast and precise way to calculate the posterior for the local non-Gaussianity parameter <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub>f<mml:mi>nl</mml:mi></mml:msub></mml:math> from cosmic microwave background observations. Physical Review D, 2013, 88, .	1.6	4
933	Models of dark matter coupled to dark energy. Physical Review D, 2013, 88, .	1.6	109
934	Effects of dark energy perturbations on cosmological tests of general relativity. Physical Review D, 2013, 88, .	1.6	30
935	Weighing neutrinos in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi><mml:mo mathvariant="bold" stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mo)="" 0.784314="" 1="" etqq1="" mathvariant="bold" ov<="" rgbt="" td="" tj=""><td>vertock 10</td><td>T250 292⊤</td></mml:mo></mml:math>	vertock 10	T 2 50 292⊤
936	HMFcalc: An online tool for calculating dark matter halo mass functions. Astronomy and Computing, 2013, 3-4, 23-34.	0.8	215
937	Constraints on the multi-lognormal magnetic fields from the observations of the cosmic microwave background and the matter power spectrum. Physical Review D, 2013, 88, .	1.6	8
938	Viscous dark matter growth in (neo-)Newtonian cosmology. Physical Review D, 2013, 88, .	1.6	36
939	Freezing out early dark energy. Physical Review D, 2013, 88, .	1.6	5
940	Does Chaplygin gas have salvation?. European Physical Journal C, 2013, 73, 1.	1.4	32
941	New light species and the CMB. Journal of High Energy Physics, 2013, 2013, 1.	1.6	89

#	Article	IF	Citations
942	Light sterile neutrinos in cosmology and short-baseline oscillation experiments. Journal of High Energy Physics, 2013 , 2013 , 1 .	1.6	40
943	Power spectrum distortions in CMB map one-dimensional cross-sections depending on the cosmological model. II. Astrophysical Bulletin, 2013, 68, 465-470.	0.3	0
944	Probing the Early Universe with the CMB Scalar, Vector and Tensor Bispectrum. Springer Theses, 2013, ,	0.0	9
945	NINE-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> (<i>WMAP</i>) OBSERVATIONS: FINAL MAPS AND RESULTS. Astrophysical Journal, Supplement Series, 2013, 208, 20.	3.0	1,810
946	NINE-YEAR <i>WILKINSON MICROWAVE ANISOTROPY PROBE</i> (<i>WMAP</i>) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS. Astrophysical Journal, Supplement Series, 2013, 208, 19.	3.0	3,998
947	Planck constraints on holographic dark energy. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 021-021.	1.9	94
948	Future CMB integrated-Sachs-Wolfe-lensing bispectrum constraints on modified gravity in the parametrized post-Friedmann formalism. Physical Review D, 2013, 88, .	1.6	12
949	Gaussian Random Fields in Cosmostatistics. , 2013, , 87-105.		1
950	CMB constraint on non-Gaussianity in isocurvature perturbations. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 007-007.	1.9	26
951	Determination of neutrino mass hierarchy by 21 cm line and CMB B-mode polarization observations. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2013, 718, 1186-1193.	1.5	23
952	Testing standard and nonstandard neutrino physics with cosmological data. Physical Review D, 2013, 87, .	1.6	28
953	Dark radiation and interacting scenarios. Physical Review D, 2013, 87, .	1.6	37
954	Oscillations in the inflaton potential: Complete numerical treatment and comparison with the recent and forthcoming CMB datasets. Physical Review D, 2013, 87, .	1.6	47
955	Cosmological parameters from pre-planck cosmic microwave background measurements. Physical Review D, 2013, 87, .	1.6	65
956	Observational probes of cosmic acceleration. Physics Reports, 2013, 530, 87-255.	10.3	933
957	SOME ASPECTS OF GENERALIZED MODIFIED GRAVITY MODELS. International Journal of Modern Physics D, 2013, 22, 1330017.	0.9	80
958	Modern cosmology: Interactive computer simulations that use recent observational surveys. American Journal of Physics, 2013, 81, 414-420.	0.3	4
959	Efficient sampling of fast and slow cosmological parameters. Physical Review D, 2013, 87, .	1.6	348

#	Article	IF	CITATIONS
960	Seeking inflation fossils in the cosmic microwave background. Physical Review D, 2013, 87, .	1.6	26
961	A COSMIC MICROWAVE BACKGROUND LENSING MASS MAP AND ITS CORRELATION WITH THE COSMIC INFRARED BACKGROUND. Astrophysical Journal Letters, 2013, 771, L16.	3.0	76
962	Cosmological parameter estimation with free-form primordial power spectrum. Physical Review D, 2013, 87, .	1.6	25
963	Baryon impact on weak lensing peaks and power spectrum: Low-bias statistics and self-calibration in future surveys. Physical Review D, 2013, 87, .	1.6	39
964	THE PHENOMENOLOGY OF RIGHT HANDED NEUTRINOS. International Journal of Modern Physics E, 2013, 22, 1330019.	0.4	204
965	Cosmic microwave background constraints on light dark matter candidates. Monthly Notices of the Royal Astronomical Society, 2013, 433, 1736-1744.	1.6	12
966	Constraining thermal dust emission in distant galaxies with number counts and angular power spectra. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1896-1917.	1.6	25
967	ISW effect as probe of features in the expansion history of the Universe. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 016-016.	1.9	10
968	Constraints on single-field inflation with WMAP, SPT and ACT data — a last-minute stand before Planck. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 018-018.	1.9	11
969	Constraining neutrino properties with a Euclid-like galaxy cluster survey. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 020-020.	1.9	18
970	Primordial power spectrum: a complete analysis with the WMAP nine-year data. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 031-031.	1.9	34
971	New limits on coupled dark energy from Planck. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 022-022.	1.9	33
972	Reconstruction of broad features in the primordial spectrum and inflaton potential from Planck. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 035-035.	1.9	36
973	Galactic winds in cosmological simulations of the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2013, 430, 3213-3234.	1.6	45
974	Constraints on dark matter annihilation from CMB observations before Planck. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 046-046.	1.9	65
975	Cosmology with massive neutrinos III: the halo mass function and an application to galaxy clusters. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 012-012.	1.9	100
976	Fitting methods for baryon acoustic oscillations in the Lyman-α forest fluctuations in BOSS data release 9. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 024-024.	1.9	61
977	The Atacama Cosmology Telescope: Sunyaev-Zel'dovich selected galaxy clusters at 148 GHz from three seasons of data. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	1.9	378

#	Article	IF	CITATIONS
978	Extended analysis of CMB constraints on non-gaussianity in isocurvature perturbations. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 020-020.	1.9	12
979	Removing the ISW-lensing bias from the local-form primordial non-Gaussianity estimation. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 021-021.	1.9	11
980	Real-space approach to cosmic microwave background deboosting. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2208-2215.	1.6	9
981	Optimal constraint ongNLfrom CMB. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 002-002.	1.9	21
982	On the connection between the intergalactic medium and galaxies: the H i–galaxy cross-correlation at z ≲ 1â~ Monthly Notices of the Royal Astronomical Society, 2013, 437, 2017-2075.	1.6	46
983	Axion hot dark matter bounds after Planck. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 020-020.	1.9	69
984	Constraining cosmic expansion and gravity with galaxy redshift surveys. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 007-007.	1.9	16
985	Limits on semiclassical fluctuations in the primordial universe. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 040-040.	1.9	5
986	The stacked ISW signal of rare superstructures in Î-CDM. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 013-013.	1.9	52
987	Keeping it real: revisiting a real-space approach to running ensembles of cosmological N-body simulations. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 032-032.	1.9	7
988	Average and dispersion of the luminosity-redshift relation in the concordance model. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 002-002.	1.9	81
989	Testing phenomenological and theoretical models of dark matter density profiles with galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2616-2624.	1.6	25
990	A simplified approach to general scalar-tensor theories. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 044-044.	1.9	98
991	Signatures of modified gravity on the 21 cm power spectrum at reionisation. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 003-003.	1.9	18
992	Neutrino masses and cosmological parameters from a Euclid-like survey: Markov Chain Monte Carlo forecasts including theoretical errors. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 026-026.	1.9	119
993	Power spectrum precision for redshift space distortions. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 025-025.	1.9	6
994	Changes in the halo formation rates due to features in the primordial spectrum. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 003-003.	1.9	23
995	Structure of dark matter halos in warm dark matter models and in models with long-lived charged massive particles. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 008-008.	1.9	37

#	Article	IF	CITATIONS
996	Non-linear evolution of the cosmic neutrino background. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 019-019.	1.9	66
997	The intrinsic bispectrum of the cosmic microwave background. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 003-003.	1.9	50
998	Limits in late time conversion of cold dark matter into dark radiation. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 006-006.	1.9	1
999	Quintessence versus phantom dark energy: the arbitrating power of current and future observations. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 042-042.	1.9	16
1000	Rayleigh scattering: blue sky thinking for future CMB observations. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 053-053.	1.9	29
1001	Non-gaussian shape recognition. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 026-026.	1.9	11
1002	Optimal analysis of azimuthal features in the CMB. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 001-001.	1.9	9
1003	Small-scale primordial magnetic fields and anisotropies in the cosmic microwave background radiation. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 050-050.	1.9	22
1004	Dark radiation sterile neutrino candidates after Planck data. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 018-018.	1.9	34
1005	The non-linear matter and velocity power spectra in f(R) gravity. Monthly Notices of the Royal Astronomical Society, 2013, 428, 743-755.	1.6	118
1006	Cosmic bulk flows on 50Âhâ^'1ÂMpc scales: a Bayesian hyper-parameter method and multishell likelihood analysis. Monthly Notices of the Royal Astronomical Society, 2013, 428, 2017-2028.	1.6	43
1007	The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: constraints on the time variation of fundamental constants from the large-scale two-point correlation function. Monthly Notices of the Royal Astronomical Society, 2013, 434, 1792-1807.	1.6	6
1008	Precise measurement of the radial baryon acoustic oscillation scales in galaxy redshift surveys. Monthly Notices of the Royal Astronomical Society, 2013, 434, 2008-2019.	1.6	14
1009	An optimal and model-independent measurement of the intracluster pressure profile – I. Methodology and first applications. Monthly Notices of the Royal Astronomical Society, 2013, 435, 1788-1808.	1.6	1
1010	Simulating structure formation of the Local Universe. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2065-2076.	1.6	51
1011	Using multipoles of the correlation function to measure $H(z)$, $DA(z)$ and $\hat{A}(z)$ from Sloan Digital Sky Survey luminous red galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 431, 2634-2644.	1.6	24
1012	Phenomenological models for unified dark matter with fast transition. Monthly Notices of the Royal Astronomical Society, 2013, 431, 2907-2916.	1.6	17
1013	CFHTLenS: testing the laws of gravity with tomographic weak lensing and redshift-space distortions. Monthly Notices of the Royal Astronomical Society, 2013, 429, 2249-2263.	1.6	149

#	Article	IF	CITATIONS
1014	The WiggleZ Dark Energy Survey: measuring the cosmic growth rate with the two-point galaxy correlation function. Monthly Notices of the Royal Astronomical Society, 2013, 430, 924-933.	1.6	40
1015	Effect of our Galaxy's motion on weak-lensing measurements of shear and convergence. Monthly Notices of the Royal Astronomical Society, 2013, 432, 1315-1318.	1.6	2
1016	Galaxy And Mass Assembly (GAMA): improved cosmic growth measurements using multiple tracers of large-scale structure. Monthly Notices of the Royal Astronomical Society, 2013, 436, 3089-3105.	1.6	165
1017	Towards an accurate mass function for precision cosmology. Monthly Notices of the Royal Astronomical Society, 2013, 431, 1866-1882.	1.6	45
1018	calclens: weak lensing simulations for large-area sky surveys and second-order effects in cosmic shear power spectra. Monthly Notices of the Royal Astronomical Society, 2013, 435, 115-132.	1.6	63
1019	Peak-peak correlations in the cosmic background radiation from cosmic strings. Monthly Notices of the Royal Astronomical Society, 2013, 434, 3597-3605.	1.6	7
1020	Understanding the nature of luminous red galaxies (LRGs): connecting LRGs to central and satellite subhaloes. Monthly Notices of the Royal Astronomical Society, 2013, 433, 3506-3522.	1.6	21
1021	Clustering analysis of high-redshift luminous red galaxies in Stripe 82. Monthly Notices of the Royal Astronomical Society, 2013, 429, 2032-2051.	1.6	19
1022	Cosmology and Fundamental Physics with the Euclid Satellite. Living Reviews in Relativity, 2013, 16, 6.	8.2	683
1023	The SDSS DR7 galaxy angular power spectrum: volume limits and galaxy morphology. Monthly Notices of the Royal Astronomical Society, 2013, 428, 3487-3496.	1.6	3
1024	Modelling non-dust fluids in cosmology. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 002-002.	1.9	18
1025	CFHTLenS: combined probe cosmological model comparison using 2D weak gravitational lensing. Monthly Notices of the Royal Astronomical Society, 2013, 430, 2200-2220.	1.6	303
1026	The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: weighing the neutrino mass using the galaxy power spectrum of the CMASS sample. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2038-2053.	1.6	68
1027	Halo mass function and the free streaming scale. Monthly Notices of the Royal Astronomical Society, 2013, 433, 1573-1587.	1.6	152
1028	The clustering of galaxies in the SDSS-III DR9 Baryon Oscillation Spectroscopic Survey: testing deviations from $\hat{\mathbf{b}}$ and general relativity using anisotropic clustering of galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1514-1528.	1.6	185
1029	Cosmological parameters from a re-analysis of the WMAP 7 year low-resolution maps. Monthly Notices of the Royal Astronomical Society, 2013, 431, 2961-2970.	1.6	3
1030	Bias deconstructed: unravelling the scale dependence of halo bias using real-space measurements. Monthly Notices of the Royal Astronomical Society, 2013, 436, 449-459.	1.6	30
1031	Uncertainty on w from large-scale structure. Monthly Notices of the Royal Astronomical Society, 2013, 431, 1891-1902.	1.6	21

#	Article	IF	Citations
1032	Constraints on the Sunyaev–Zel'dovich signal from the warm–hot intergalactic medium from WMAP and SPT data. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2480-2487.	1.6	6
1033	CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2545-2563.	1.6	332
1034	Modelling the anisotropic two-point galaxy correlation function on small scales and single-probe measurements of $H(z)$, $DA(z)$ and $f(z)\hat{A}8(z)$ from the Sloan Digital Sky Survey DR7 luminous red galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 435, 255-262.	1.6	244
1035	THE PLANCK MISSION: RECENT RESULTS, COSMOLOGICAL AND FUNDAMENTAL PHYSICS PERSPECTIVES. International Journal of Modern Physics D, 2013, 22, 1330029.	0.9	1
1036	How well do we know the halo mass function?. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 434, L61-L65.	1.2	44
1037	The interplay of CMB temperature lensing power reconstruction with primordial non-Gaussianity of local type. Monthly Notices of the Royal Astronomical Society, 2013, 429, 444-451.	1.6	3
1038	The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological constraints from the full shape of the clustering wedges. Monthly Notices of the Royal Astronomical Society, 2013, 433, 1202-1222.	1.6	93
1039	On the anisotropic density distribution on large scales. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1133-1138.	1.6	5
1040	BAYESIAN INFERENCE OF POLARIZED COSMIC MICROWAVE BACKGROUND POWER SPECTRA FROM INTERFEROMETRIC DATA. Astrophysical Journal, Supplement Series, 2013, 204, 10.	3.0	6
1041	DARK MATTER HALO PROFILES OF MASSIVE CLUSTERS: THEORY VERSUS OBSERVATIONS. Astrophysical Journal, 2013, 766, 32.	1.6	185
1042	Cosmic history of viable exponential gravity: equation of state oscillations and growth index from inflation to dark energy era. Classical and Quantum Gravity, 2013, 30, 015008.	1.5	70
1043	THE BARYON ACOUSTIC OSCILLATION BROADBAND AND BROAD-BEAM ARRAY: DESIGN OVERVIEW AND SENSITIVITY FORECASTS. Astronomical Journal, 2013, 145, 65.	1.9	115
1044	EFFECT OF MEASUREMENT ERRORS ON PREDICTED COSMOLOGICAL CONSTRAINTS FROM SHEAR PEAK STATISTICS WITH LARGE SYNOPTIC SURVEY TELESCOPE. Astrophysical Journal, 2013, 774, 49.	1.6	20
1045	LOW-MASS SUPPRESSION OF THE SATELLITE LUMINOSITY FUNCTION DUE TO THE SUPERSONIC BARYON-COLD-DARK-MATTER RELATIVE VELOCITY. Astrophysical Journal, 2013, 768, 70.	1.6	28
1046	REMOVING BARYON-ACOUSTIC-OSCILLATION PEAK SHIFTS WITH LOCAL DENSITY TRANSFORMS. Astrophysical Journal Letters, 2013, 763, L14.	3.0	17
1047	LENSING NOISE IN MILLIMETER-WAVE GALAXY CLUSTER SURVEYS. Astrophysical Journal, 2013, 772, 121.	1.6	3
1048	MAXIMUM LIKELIHOOD ANALYSIS OF SYSTEMATIC ERRORS IN INTERFEROMETRIC OBSERVATIONS OF THE COSMIC MICROWAVE BACKGROUND. Astrophysical Journal, Supplement Series, 2013, 206, 24.	3.0	4
1049	Information content of weak lensing power spectrum and bispectrum: including the non-Gaussian error covariance matrix. Monthly Notices of the Royal Astronomical Society, 2013, 429, 344-371.	1.6	103

#	Article	IF	CITATIONS
1050	PROBING PATCHY REIONIZATION THROUGH $\ddot{\text{i}}$,-21 cm CORRELATION STATISTICS. Astrophysical Journal, 2013, 779, 124.	1.6	17
1051	A MAXIMUM LIKELIHOOD APPROACH TO ESTIMATING CORRELATION FUNCTIONS. Astrophysical Journal, 2013, 779, 62.	1.6	3
1052	A DIRECT MEASUREMENT OF THE LINEAR BIAS OF MID-INFRARED-SELECTED QUASARS AT <i>z</i> â‰^ 1 USING COSMIC MICROWAVE BACKGROUND LENSING. Astrophysical Journal Letters, 2013, 776, L41.	3.0	52
1053	REIONIZATION ON LARGE SCALES. III. PREDICTIONS FOR LOW-â,, COSMIC MICROWAVE BACKGROUND POLARIZATION AND HIGH-â,, KINETIC SUNYAEV-ZEL'DOVICH OBSERVABLES. Astrophysical Journal, 2013, 776, 83.	1.6	60
1054	SYSTEMATIC EFFECTS IN INTERFEROMETRIC OBSERVATIONS OF THE COSMIC MICROWAVE BACKGROUND POLARIZATION. Astrophysical Journal, Supplement Series, 2013, 207, 14.	3.0	4
1055	HYBRID COSMOLOGICAL SIMULATIONS WITH STREAM VELOCITIES. Astrophysical Journal, 2013, 771, 81.	1.6	27
1056	Determining accurate measurements of the growth rate from the galaxy correlation function in simulations. Monthly Notices of the Royal Astronomical Society, 2013, 430, 934-945.	1.6	4
1057	Structure formation in multiple dark matter cosmologies with long-range scalar interactions. Monthly Notices of the Royal Astronomical Society, 2013, 428, 2074-2084.	1.6	21
1058	A search for concentric rings with unusual variance in the 7-year WMAP temperature maps using a fast convolution approach. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1376-1385.	1.6	6
1059	A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND DAMPING TAIL FROM THE 2500-SQUARE-DEGREE SPT-SZ SURVEY. Astrophysical Journal, 2013, 779, 86.	1.6	240
1060	Forecasts on the contamination induced by unresolved point sources in primordial non-Gaussianity beyond Planck. Monthly Notices of the Royal Astronomical Society, 2013, 432, 728-742.	1.6	16
1061	A combined measurement of cosmic growth and expansion from clusters of galaxies, the CMB and galaxy clustering. Monthly Notices of the Royal Astronomical Society, 2013, 432, 973-985.	1.6	35
1062	Modelling colour-dependent galaxy clustering in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2286-2300.	1.6	35
1063	The WiggleZ Dark Energy Survey: probing the epoch of radiation domination using large-scale structure. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1902-1912.	1.6	16
1064	The halo mass function through the cosmic ages. Monthly Notices of the Royal Astronomical Society, 2013, 433, 1230-1245.	1.6	197
1065	The inner structure of haloes in cold+warm dark matter models. Monthly Notices of the Royal Astronomical Society, 2013, 428, 882-890.	1.6	75
1066	The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: the low-redshift sample. Monthly Notices of the Royal Astronomical Society, 2013, 429, 98-112.	1.6	93
1067	Cosmic Dark Radiation and Neutrinos. Advances in High Energy Physics, 2013, 2013, 1-14.	0.5	59

#	Article	IF	CITATIONS
1068	Cross-bispectra and trispectra of the non-linear integrated Sachs–Wolfe effect and the tracer galaxy density field. Monthly Notices of the Royal Astronomical Society, 2013, 430, 797-807.	1.6	1
1069	Bias-hardened CMB lensing. Monthly Notices of the Royal Astronomical Society, 2013, 431, 609-620.	1.6	97
1070	Power spectra in the eikonal approximation with adiabatic and nonadiabatic modes. Physical Review D, $2013,87,.$	1.6	38
1071	Cosmic Bose dark matter. Physical Review D, 2013, 87, .	1.6	6
1072	Generation of magnetic fields in Einstein-aether gravity. Physical Review D, 2013, 87, .	1.6	12
1073	Nonlinear stochastic biasing of halos: Analysis of cosmologicalN-body simulations and perturbation theories. Physical Review D, 2013, 87, .	1.6	11
1074	Simulations of Galileon modified gravity: Clustering statistics in real and redshift space. Physical Review D, 2013, 88, .	1.6	25
1075	Fast estimation of gravitational and primordial bispectra in large scale structures. Physical Review D, 2013, 88, .	1.6	35
1076	Observing the multiverse with cosmic wakes. Physical Review D, 2013, 87, .	1.6	20
1077	Neural Networks for Astronomical Data Analysis and Bayesian Inference. , 2013, , .		4
1078	Testing modified gravity with Planck: The case of coupled dark energy. Physical Review D, 2013, 88, .	1.6	87
1079	Cluster probes of dark energy clustering. Physical Review D, 2013, 88, .	1.6	14
1080	The parameterized post-Friedmann framework for theories of modified gravity: Concepts, formalism, and examples. Physical Review D, 2013, 87, .	1.6	140
1081	Constraints on neutrino mass and light degrees of freedom in extended cosmological parameter spaces. Physical Review D, 2013, 87, .	1.6	22
1082	Decomposing CMB lensing power with simulation. Physical Review D, 2013, 88, .	1.6	12
1083	Neutrino physics from future weak lensing surveys. Physical Review D, 2013, 87, .	1.6	3
1084	Can dark energy viscosity be detected with the Euclid survey?. Physical Review D, 2013, 88, .	1.6	22
1085	Constraints on neutrino masses from Planck and Galaxy clustering data. Physical Review D, 2013, 88, .	1.6	47

#	ARTICLE	IF	CITATIONS
1086	Constraints on neutrino density and velocity isocurvature modes from WMAP-9 data. Physical Review D, 2013, 88 , .	1.6	12
1087	Cosmology with matter diffusion. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 025-025.	1.9	37
1088	Clipping the cosmos. II. Cosmological information from nonlinear scales. Physical Review D, 2013, 88, .	1.6	22
1089	Lower Growth Rate from Recent Redshift Space Distortion Measurements than Expected from Planck. Physical Review Letters, 2013, 111, 161301.	2.9	226
1090	Spherical collapse and halo mass function in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mo) (stretchy="false")<="" 0="" 10="" 50="" 572="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>tchy="fals</td><td>e"⁵⁸</td></mml:mo)></mml:math>	tchy="fals	e" ⁵⁸
1091	Perturbed recombination from dark matter annihilation. Physical Review D, 2013, 87, .	1.6	14
1092	Constraining cosmic string parameters with curl mode of CMB lensing. Physical Review D, 2013, 88, .	1.6	10
1093	Parametrized modified gravity constraints after Planck. Physical Review D, 2013, 88, .	1.6	36
1094	Maximum entropy deconvolution of primordial power spectrum. Physical Review D, 2013, 88, .	1.6	13
1095	Constraints on neutrino mass from Sunyaev-Zeldovich cluster surveys. Physical Review D, 2013, 87, .	1.6	6
1096	General CMB bispectrum analysis using wavelets and separable modes. Physical Review D, 2013, 88, .	1.6	12
1097	Practical approach to cosmological perturbations in modified gravity. Physical Review D, 2013, 87, .	1.6	113
1098	CMB Faraday rotation as seen through the MilkyÂWay. Physical Review D, 2013, 88, .	1.6	26
1099	Neutrinos and dark energy constraints from future galaxy surveys and CMB lensing information. Physical Review D, 2013, 88, .	1.6	14
1100	Updating constraints on inflationary features in the primordial power spectrum with the Planck data. Physical Review D, 2013, 88, .	1.6	41
1101	CMB lensing reconstruction from the WMAP 7-year data. Physical Review D, 2013, 88, .	1.6	0
1102	Neutrino and dark radiation properties in light of recent CMB observations. Physical Review D, 2013, 87, .	1.6	30
1103	Efficiency of pseudospectrum methods for estimation of the cosmic microwave background <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>B</mml:mi></mml:math> -mode power spectrum. Physical Review D, 2013, 88, .	1.6	22

#	ARTICLE	IF	CITATIONS
1104	Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>î±</mml:mi></mml:math> forest data. Physical Review D, 2013, 88, . Cosmology Based on <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.6</td><td>572</td></mml:math>	1.6	572
1105	display="inline"> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo) 0.784314="" 1="" 10="" 50="" 697<="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>Tø.€stretcl</td><td>n%2"false"></td></mml:mo)>	T ø. €stretcl	n %2 "false">
1106	Minimal parameterizations for modified gravity. Physical Review D, 2013, 88, .	1.6	1
1107	Updated CMB and x- and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mi>\hat{I}^3 </mml:math> -ray constraints on Majoron dark matter. Physical Review D, 2013, 88, .	1.6	49
1108	Joint analysis of CMB temperature and lensing-reconstruction power spectra. Physical Review D, 2013, 88, .	1.6	49
1109	Obtaining the CMB anomalies with a bounce from the contracting phase to inflation. Physical Review D, 2013, 88, .	1.6	105
1110	Cosmological effects of coupled dark matter. Physical Review D, 2013, 88, .	1.6	8
1111	FORMATION OF COMPACT CLUSTERS FROM HIGH RESOLUTION HYBRID COSMOLOGICAL SIMULATIONS. Astrophysical Journal, 2013, 778, 80.	1.6	4
1112	MASS-DEPENDENT BARYON ACOUSTIC OSCILLATION SIGNAL AND HALO BIAS. Astrophysical Journal Letters, 2013, 768, L27.	3.0	4
1113	Conservative constraints on early cosmology with MONTE PYTHON. Journal of Cosmology and Astroparticle Physics, 2013, 2013, 001-001.	1.9	539
1114	Cosmological parameter constraints from galaxy–galaxy lensing and galaxy clustering with the SDSS DR7. Monthly Notices of the Royal Astronomical Society, 2013, 432, 1544-1575.	1.6	241
1115	CONSTRAINTS ON PERTURBATIONS TO THE RECOMBINATION HISTORY FROM MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND DAMPING TAIL. Astrophysical Journal, 2013, 764, 137.	1.6	19
1116	Mass-varying neutrino in light of cosmic microwave background and weak lensing. Astronomy and Astrophysics, 2013, 560, A53.	2.1	10
1117	GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE FIRST 720 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY. Astrophysical Journal, 2013, 763, 127.	1.6	240
1118	ANALYTICAL SPECTRA OF CMB ANISOTROPIES AND POLARIZATION. International Journal of Modern Physics Conference Series, 2013, 23, 420-424.	0.7	1
1119	NEW LIMITS ON THE FUNDAMENTAL CONSTANTS FROM THE CMB DATA. International Journal of Modern Physics Conference Series, 2013, 23, 391-399.	0.7	1
1120	An approach to detection of point sources in very high-resolution microwave maps. Astronomy and Astrophysics, 2013, 556, A96.	2.1	1
1121	Optimal bispectrum estimator and simulations of the CMB lensing-integrated Sachs Wolfe non-Gaussian signal. Astronomy and Astrophysics, 2013, 555, A82.	2.1	10

#	ARTICLE	IF	Citations
1122	COSMOLOGICAL CONSTRAINTS FROM SUNYAEV–ZEL'DOVICH-SELECTED CLUSTERS WITH X-RAY OBSERVATIONS IN THE FIRST 178Âdeg⟨sup⟩2⟨lsup⟩ OF THE SOUTH POLE TELESCOPE SURVEY. Astrophysical Journal, 2013, 763, 147.	1.6	206
1123	The pre-launch <i>Planck</i> Sky Model: a model of sky emission at submillimetre to centimetre wavelengths. Astronomy and Astrophysics, 2013, 553, A96.	2.1	166
1124	A ROBUST MEASURE OF COSMIC STRUCTURE BEYOND THE POWER SPECTRUM: COSMIC FILAMENTS AND THE TEMPERATURE OF DARK MATTER. Astrophysical Journal, 2013, 762, 115.	1.6	32
1125	The WIRCam Deep Survey. Astronomy and Astrophysics, 2014, 568, A24.	2.1	20
1126	Cosmic microwave background anomalies from imperfect dark energy. Astronomy and Astrophysics, 2014, 564, A113.	2.1	3
1127	Suite of hydrodynamical simulations for the Lyman- $\langle i \rangle \hat{l} \pm \langle i \rangle$ forest with massive neutrinos. Astronomy and Astrophysics, 2014, 567, A79.	2.1	32
1128	Viscous cold dark matter in agreement with observations. International Journal of Geometric Methods in Modern Physics, 2014, 11, 1460013.	0.8	12
1129	Origin and evolution of structure and nucleosynthesis for galaxies in the local group. Modern Physics Letters A, 2014, 29, 1430012.	0.5	10
1130	Proper-time hypersurface of nonrelativistic matter flows: Galaxy bias in general relativity. Physical Review D, 2014, 90, .	1.6	20
1131	Impact of spurious shear on cosmological parameter estimates from weak lensing observables. Physical Review D, 2014, 90, .	1.6	11
1132	Limits on neutrino-neutrino scattering in the early Universe. Physical Review D, 2014, 90, .	1.6	110
1133	Simple proposal for radial 3D needlets. Physical Review D, 2014, 90, .	1.6	14
1134	Super-sample signal. Physical Review D, 2014, 90, .	1.6	69
1135	Matter sourced anisotropic stress for dark energy. Physical Review D, 2014, 90, .	1.6	7
1136	Exploring the full parameter space for an interacting dark energy model with recent observations including redshift-space distortions: Application of the parametrized post-Friedmann approach. Physical Review D, 2014, 90, .	1.6	58
1137	Current constraints on early and stressed dark energy models and future 21Âcm perspectives. Physical Review D, 2014, 90, .	1.6	10
1138	Cosmology with Planck. Journal of the Korean Physical Society, 2014, 65, 821-826.	0.3	0
1139	Constraints on the cosmological parameters from BICEP2, Planck, and WMAP. European Physical Journal C, 2014, 74, 1.	1.4	5

#	Article	IF	CITATIONS
1140	Isolating relativistic effects in large-scale structure. Classical and Quantum Gravity, 2014, 31, 234002.	1.5	49
1141	Fast and accurate CMB computations in non-flat FLRW universes. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 032-032.	1.9	53
1142	Ruling out the power-law form of the scalar primordial spectrum. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 061-061.	1.9	36
1143	Probing large-angle correlations with the microwave background temperature and lensing cross-correlation. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2392-2397.	1.6	10
1144	2MTF – IV. A bulk flow measurement of the local Universe. Monthly Notices of the Royal Astronomical Society, 2014, 445, 402-413.	1.6	41
1145	The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: galaxy clustering measurements in the low-redshift sample of Data Release 11. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2222-2237.	1.6	93
1146	Atomic, Molecular, and Optical Physics in the Early Universe: From Recombination to Reionization. Advances in Atomic, Molecular and Optical Physics, 2014, 63, 135-270.	2.3	12
1147	Impact of baryons on the cluster mass function and cosmological parameter determination. Monthly Notices of the Royal Astronomical Society, 2014, 439, 2485-2493.	1.6	38
1148	Bias-hardened CMB lensing with polarization. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1507-1517.	1.6	20
1149	On the systematic errors of cosmological-scale gravity tests using redshift-space distortion: non-linear effects and the halo bias. Monthly Notices of the Royal Astronomical Society, 2014, 443, 3359-3367.	1.6	18
1150	Fast simulations for intensity mapping experiments. Monthly Notices of the Royal Astronomical Society, 2014, 444, 3183-3197.	1.6	55
1151	Simultaneous constraints on the growth of structure and cosmic expansion from the multipole power spectra of the SDSS DR7 LRG sample. Monthly Notices of the Royal Astronomical Society, 2014, 439, 2515-2530.	1.6	146
1152	Probing the primordial Universe from the low-multipole CMB data. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2014, 738, 140-143.	1.5	2
1153	Standard Clock in primordial density perturbations and cosmic microwave background. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2014, 739, 285-292.	1.5	47
1154	Testing the Copernican principle by constraining spatial homogeneity. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 438, L6-L10.	1.2	59
1155	Measurement of H(z) and DA(z) from the two-dimensional power spectrum of Sloan Digital Sky Survey luminous red galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3737-3744.	1.6	17
1156	Clustering of extremely red objects in Elais-N1 from the UKIDSS DXS with optical photometry from Pan-STARRS 1 and Subaru. Monthly Notices of the Royal Astronomical Society, 2014, 438, 825-840.	1.6	14
1157	Measuring non-local Lagrangian peak bias. Monthly Notices of the Royal Astronomical Society, 2014, 441, 1457-1467.	1.6	24

#	Article	IF	CITATIONS
1158	Comparison of sampling techniques for Bayesian parameter estimation. Monthly Notices of the Royal Astronomical Society, 2014, 437, 3918-3928.	1.6	44
1159	The effect of foreground subtraction on cosmological measurements from intensity mapping. Monthly Notices of the Royal Astronomical Society, 2014, 441, 3271-3283.	1.6	81
1160	Simulating the anisotropic clustering of luminous red galaxies with subhaloes: a direct confrontation with observation and cosmological implications. Monthly Notices of the Royal Astronomical Society, 2014, 444, 1400-1418.	1.6	11
1161	The ALHAMBRA survey: evolution of galaxy clustering since z \hat{a}^4 1. Monthly Notices of the Royal Astronomical Society, 2014, 441, 1783-1801.	1.6	23
1162	Weak lensing with 21 cm intensity mapping at z \hat{A} 2-3. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 439, L36-L40.	1.2	22
1163	The best inflationary models after Planck. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 039-039.	1.9	141
1164	How to zoom: bias, contamination and Lagrange volumes in multimass cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1894-1908.	1.6	105
1165	The Jubilee ISW project – I. Simulated ISW and weak lensing maps and initial power spectra results. Monthly Notices of the Royal Astronomical Society, 2014, 438, 412-425.	1.6	28
1166	Decoding the X-ray properties of pre-reionization era sources. Monthly Notices of the Royal Astronomical Society, 2014, 443, 1211-1223.	1.6	66
1167	Analytic model for the matter power spectrum, its covariance matrix and baryonic effects. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3382-3400.	1.6	82
1168	Constraining halo occupation distribution and cosmic growth rate using multipole power spectrum. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 441, L21-L25.	1.2	12
1169	Using correlations between cosmic microwave background lensing and large-scale structure to measure primordial non-Gaussianity. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 441, L16-L20.	1.2	44
1170	The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring DA and H at $z\hat{A}$ = \hat{A} 0.57 from the baryon acoustic peak in the Data Release 9 spectroscopic Galaxy sample. Monthly Notices of the Royal Astronomical Society, 2014, 439, 83-101.	1.6	169
1171	Some like it triaxial: the universality of dark matter halo shapes and their evolution along the cosmic time. Monthly Notices of the Royal Astronomical Society, 2014, 443, 3208-3217.	1.6	61
1172	DESI and other Dark Energy experiments in the era of neutrino mass measurements. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 023-023.	1.9	243
1173	PLANCK and WMAP constraints on generalised Hubble flow inflationary trajectories. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 050-050.	1.9	4
1174	Probing lepton asymmetry with 21 cm fluctuations. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 014-014.	1.9	5
1175	What is the distance to the CMB?. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 036-036.	1.9	29

#	Article	IF	Citations
1176	Constraining dark matter late-time energy injection: decays and p-wave annihilations. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 017-017.	1.9	66
1177	Probing quintessence potential with future cosmological surveys. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 045-045.	1.9	5
1178	Characterizing unknown systematics in large scale structure surveys. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 007-007.	1.9	16
1179	The Effective Field Theory of Large Scale Structures at two loops. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 057-057.	1.9	139
1180	Cosmology with massive neutrinos II: on the universality of the halo mass function and bias. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 049-049.	1.9	149
1181	Probing correlations of early magnetic fields using \hat{l} -/4-distortion. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 018-018.	1.9	20
1182	Combined cosmological tests of a bivalent tachyonic dark energy scalar field model. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 026-026.	1,9	8
1183	The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: testing gravity with redshift space distortions using the power spectrum multipoles. Monthly Notices of the Royal Astronomical Society, 2014, 443, 1065-1089.	1.6	248
1184	How cold is cold dark matter?. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 049-049.	1,9	28
1185	Cosmology with massive neutrinos I: towards a realistic modeling of the relation between matter, haloes and galaxies. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 011-011.	1.9	133
1186	Light sterile neutrinos after BICEP-2. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 031-031.	1.9	46
1187	The traces of anisotropic dark energy in light of Planck. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 032-032.	1.9	19
1188	Maximal freedom at minimum cost: linear large-scale structure in general modifications of gravity. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 050-050.	1.9	286
1189	Constraining warm dark matter with 21 cm line fluctuations due to minihalos. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 007-007.	1.9	26
1190	Relic vector field and CMB large scale anomalies. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 027-027.	1.9	2
1191	Suppressing the impact of a high tensor-to-scalar ratio on the temperature anisotropies. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 014-014.	1.9	49
1192	A joint analysis of Planck and BICEP2 B modes including dust polarization uncertainty. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 035-035.	1.9	136
1193	How well can future CMB missions constrain cosmic inflation?. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 038-038.	1.9	51

#	Article	IF	CITATIONS
1194	BICEP's acceleration. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 072-072.	1.9	5
1195	New natural shapes of non-Gaussianity from high-derivative interactions and their optimal limits from WMAP 9-year data. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 035-035.	1.9	8
1196	Cosmological signatures of tilted isocurvature perturbations: reionization and 21cm fluctuations. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 001-001.	1.9	20
1197	How does pressure gravitate? Cosmological constant problem confronts observational cosmology. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 049-049.	1.9	7
1198	Cosmological perturbation theory at three-loop order. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 010-010.	1.9	88
1199	Lensing reconstruction from a patchwork of polarization maps. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 009-009.	1.9	20
1200	Cosmology with Doppler lensing. Monthly Notices of the Royal Astronomical Society, 2014, 443, 1900-1915.	1.6	51
1201	The Knotted Sky I: Planck constraints on the primordial power spectrum. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 052-052.	1.9	26
1202	New approach for precise computation of Lyman- \hat{l}_{\pm} forest power spectrum with hydrodynamical simulations. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 005-005.	1.9	42
1203	Testing coupled dark energy with large scale structure observation. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 034-034.	1.9	65
1204	Reconstruction of the primordial power spectrum of curvature perturbations using multiple data sets. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 025-025.	1.9	46
1205	Primordial fluctuations from deformed quantum algebras. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 005-005.	1.9	1
1206	Spectral distortions in the cosmic microwave background polarization. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 033-033.	1.9	15
1207	Quasar-Lyman \hat{l}_{\pm} forest cross-correlation from BOSS DR11: Baryon Acoustic Oscillations. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 027-027.	1.9	392
1208	Updated constraints on non-standard neutrino interactions from Planck. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 046-046.	1.9	105
1209	Confronting the concordance model of cosmology with Planck data. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 043-043.	1.9	19
1210	Probing neutrinos from Planck and forthcoming galaxy redshift surveys. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 046-046.	1.9	9
1211	Cosmological evidence for leptonic asymmetry after Planck. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 012-012.	1.9	19

#	Article	IF	CITATIONS
1212	Constraining the initial conditions of the Universe using large scale structure. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 038-038.	1.9	30
1213	Confronting DGP braneworld gravity with cosmico observations after <i>Planck </i> data. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 048-048.	1.9	21
1214	Constraining models of $f< i>(R< i>)$ gravity with Planck and WiggleZ power spectrum data. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 046-046.	1.9	63
1215	Peculiar velocities in redshift space: formalism, N-body simulations and perturbation theory. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 003-003.	1.9	46
1216	Dark energy properties from large future galaxy surveys. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 021-021.	1.9	45
1217	Renormalized halo bias. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 056-056.	1.9	136
1218	Modeling the neutral hydrogen distribution in the post-reionization Universe: intensity mapping. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 050-050.	1.9	64
1219	Primordial power spectrum from Planck. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 011-011.	1.9	62
1220	Inflationary generalized Chaplygin gas and dark energy in light of the Planck and BICEP2 experiments. Physical Review D, 2014, 90, .	1.6	17
1221	Improved primordial non-Gaussianity constraints from measurements of galaxy clustering and the integrated Sachs-Wolfe effect. Physical Review D, 2014, 89, .	1.6	101
1222	Blue gravity waves from BICEP2?. Physical Review D, 2014, 90, .	1.6	23
1223	Inflation with moderately sharp features in the speed of sound: Generalized slow roll and in-in formalism for power spectrum and bispectrum. Physical Review D, 2014, 90, .	1.6	58
1224	Cosmology in a certain vector-tensor theory of gravitation. Physical Review D, 2014, 89, .	1.6	7
1225	Impact of magnification and size bias on the weak lensing power spectrum and peak statistics. Physical Review D, 2014, 89, .	1.6	36
1226	New light on 21Âcm intensity fluctuations from the dark ages. Physical Review D, 2014, 89, .	1.6	48
1227	Efficient optimal non-Gaussian CMB estimators with polarization. Physical Review D, 2014, 90, .	1.6	17
1228	Domain walls coupled to matter: The symmetron example. Physical Review D, 2014, 90, .	1.6	21
1229	Probing small-scale cosmological fluctuations with the 21Âcm forest: Effects of neutrino mass, running spectral index, and warm dark matter. Physical Review D, 2014, 90, .	1.6	32

#	Article	IF	CITATIONS
1230	Cosmological constraints on interacting dark energy with redshift-space distortion after Planck data. Physical Review D, 2014, 89, .	1.6	100
1231	Planck constraints on neutrino isocurvature density perturbations. Physical Review D, 2014, 90, .	1.6	5
1232	Integrated perturbation theory and one-loop power spectra of biased tracers. Physical Review D, 2014, 90, .	1.6	30
1233	Compatibility of Planck and BICEP2 results in light of inflation. Physical Review D, 2014, 90, .	1.6	41
1234	Galactic Faraday rotation effect on polarization of 21Âcm lines from the epoch of reionization. Physical Review D, 2014, 89, .	1.6	12
1235	Reconstruction of the primordial power spectra with Planck and BICEP2 data. Physical Review D, 2014, 90, .	1.6	29
1236	CMB with the background primordial magnetic field. Physical Review D, 2014, 89, .	1.6	13
1237	Effective field theory of cosmic acceleration: Constraining dark energy with CMB data. Physical Review D, 2014, 90, .	1.6	123
1238	Scale-dependent bias in the baryonic-acoustic-oscillation-scale intergalactic neutral hydrogen. Physical Review D, 2014, 89, .	1.6	53
1239	Large scale structure formation in Eddington-inspired Born-Infeld gravity. Physical Review D, 2014, 90,	1.6	33
1240	Structure formation in a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">Î></mml:mi></mml:mrow></mml:math> viscous CDM universe. Physical Review D, 2014, 90, .	1.6	30
1241	CMB lensing reconstruction using cut sky polarization maps and pureBmodes. Physical Review D, 2014, 90, .	1.6	10
1242	Inflation with Whip-Shaped Suppressed Scalar Power Spectra. Physical Review Letters, 2014, 113, 071301.	2.9	56
1243	Modified theory of gravity and the history of cosmic evolution. Astrophysics and Space Science, 2014, 353, 707-720.	0.5	15
1244	C osmo++: An object-oriented C++ library for cosmology. Computer Physics Communications, 2014, 185, 3215-3227.	3.0	8
1245	Coupled dark energy with perturbed Hubble expansion rate. Physical Review D, 2014, 90, .	1.6	47
1246	Constraints on large-scale dark acoustic oscillations from cosmology. Physical Review D, 2014, 89, .	1.6	129
1247	Asymmetric galaxy correlation functions. Physical Review D, 2014, 89, .	1.6	81

#	Article	IF	CITATIONS
1248	Super-sample covariance in simulations. Physical Review D, 2014, 89, .	1.6	145
1249	Dynamics of linear perturbations in the hybrid metric-Palatini gravity. Physical Review D, 2014, 89, .	1.6	52
1250	Observational effects of the early episodically dominating dark energy. Physical Review D, 2014, 90, .	1.6	2
1251	Large-scale structure formation with massive neutrinos and dynamical dark energy. Physical Review D, 2014, 89, .	1.6	36
1252	Cosmic microwave background bispectrum from nonlinear effects during recombination. Physical Review D, 2014, 90, .	1.6	5
1253	Information gains from cosmic microwave background experiments. Physical Review D, 2014, 90, .	1.6	38
1254	Model-independent constraints on the cosmological anisotropic stress. Physical Review D, 2014, 89, .	1.6	52
1255	Preinflationary genesis with CMB B-mode polarization. Physical Review D, 2014, 90, .	1.6	16
1256	Material models of dark energy. Annalen Der Physik, 2014, 526, 318-339.	0.9	13
1257	Confronting dark energy anisotropic stress. Physical Review D, 2014, 90, .	1.6	12
1258	Effective field theory of cosmic acceleration: An implementation in CAMB. Physical Review D, 2014, 89, .	1.6	158
1259	CMB distortion anisotropies due to the decay of primordial magnetic fields. Physical Review D, 2014, 89, .	1.6	21
1260	Testing the interaction between dark energy and dark matter with Planck data. Physical Review D, 2014, 89, .	1.6	114
1261	Quantum collapse as a source of the seeds of cosmic structure during the radiation era. Physical Review D, 2014, 90, .	1.6	6
1262	Cosmic propagators at two-loop order. Physical Review D, 2014, 89, .	1.6	31
1263	Observational issues in loop quantum cosmology. Classical and Quantum Gravity, 2014, 31, 053001.	1.5	77
1264	First observational constraints on tensor non-Gaussianity sourced by primordial magnetic fields from cosmic microwave background. Physical Review D, 2014, 90, .	1.6	19
1265	Halo bias in mixed dark matter cosmologies. Physical Review D, 2014, 90, .	1.6	73

#	Article	IF	Citations
1266	Inflationary freedom and cosmological neutrino constraints. Physical Review D, 2014, 89, .	1.6	24
1267	Steps to reconcile inflationary tensor and scalar spectra. Physical Review D, 2014, 89, .	1.6	30
1268	Axion cold dark matter: Status after Planck and BICEP2. Physical Review D, 2014, 90, .	1.6	22
1269	Inflationary steps in the Planck data. Physical Review D, 2014, 89, .	1.6	41
1270	Model-independent fit to Planck and BICEP2 data. Physical Review D, 2014, 90, .	1.6	18
1271	Dark side of the Universe after Planck data. Physical Review D, 2014, 89, .	1.6	29
1272	Model-independent forecasts of CMB angular power spectra for the Planck mission. Physical Review D, 2014, 89, .	1.6	3
1273	Dark matter and halo bispectrum in redshift space: theory and applications. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 029-029.	1.9	43
1274	CMB lensing forecasts for constraining the primordial perturbations: adding to the CMB temperature and polarization information. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 041-041.	1.9	2
1275	The halo model in a massive neutrino cosmology. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 053-053.	1.9	53
1276	Probing the dark side of the Universe with weak gravitational lensing effects. Research in Astronomy and Astrophysics, 2014, 14, 1061-1120.	0.7	13
1277	DEGREE-SCALE COSMIC MICROWAVE BACKGROUND POLARIZATION MEASUREMENTS FROM THREE YEARS OF BICEP1 DATA. Astrophysical Journal, 2014, 783, 67.	1.6	51
1278	AN ANALYTIC FORMULA FOR THE SUPERCLUSTER MASS FUNCTION. Astrophysical Journal, 2014, 783, 39.	1.6	5
1279	An estimation of local bulk flow with the maximum-likelihood method. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1996-2004.	1.6	36
1280	Cosmology from weak lensing of CMB. Progress of Theoretical and Experimental Physics, 2014, 2014, 6B108-0.	1.8	6
1281	Statistical tests of sterile neutrinos using cosmology and short-baseline data. Journal of High Energy Physics, 2014, 2014, 1.	1.6	24
1282	Redshift-space distortions from the cross-correlation of photometric populations. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2825-2835.	1.6	15
1283	Non-parametric 3D map of the intergalactic medium using the Lyman-alpha forest. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2599-2609.	1.6	31

#	Article	IF	Citations
1284	Intrinsic alignments in the cross-correlation of cosmic shear and cosmic microwave background weak lensing. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 443, L119-L123.	1.2	38
1285	Are peculiar velocity surveys competitive as a cosmological probe?. Monthly Notices of the Royal Astronomical Society, 2014, 445, 4267-4286.	1.6	71
1286	The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the full shape of the clustering wedges in the data release 10 and 11 galaxy samples. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2692-2713.	1.6	137
1287	Testing primordial non-Gaussianities on galactic scales at high redshift. Monthly Notices of the Royal Astronomical Society: Letters, 2014, 445, L129-L133.	1.2	6
1288	An improved model of HÂii bubbles during the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1470-1482.	1.6	28
1289	BICEP2. II. EXPERIMENT AND THREE-YEAR DATA SET. Astrophysical Journal, 2014, 792, 62.	1.6	158
1290	Weighing Neutrinos in f ($\rm R$) Gravity in Light of BICEP2. Communications in Theoretical Physics, 2014, 62, 102-108.	1.1	10
1291	CONSTRAINTS ON IONIZING PHOTON PRODUCTION FROM THE LARGE-SCALE Lyα FOREST. Astrophysical Journal Letters, 2014, 792, L34.	3.0	16
1292	USING CROSS CORRELATIONS TO CALIBRATE LENSING SOURCE REDSHIFT DISTRIBUTIONS: IMPROVING COSMOLOGICAL CONSTRAINTS FROM UPCOMING WEAK LENSING SURVEYS. Astrophysical Journal, 2014, 780, 185.	1.6	19
1293	DETERMINING FREQUENTIST CONFIDENCE LIMITS USING A DIRECTED PARAMETER SPACE SEARCH. Astrophysical Journal, 2014, 794, 38.	1.6	0
1294	Results from the Wilkinson Microwave Anisotropy Probe. Progress of Theoretical and Experimental Physics, 2014, 2014, 6B102-0.	1.8	35
1295	Cosmological Constraints on Mirror Matter Parameters. Advances in High Energy Physics, 2014, 2014, 1-7.	0.5	1
1296	Statistics of extreme objects in the Juropa Hubble Volume simulationa [~] Monthly Notices of the Royal Astronomical Society, 2014, 437, 3776-3786.	1.6	48
1297	Weighing obscured and unobscured quasar hosts with the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 2014, 446, 3492-3501.	1.6	36
1298	Linking the BICEP2 result and the hemispherical power asymmetry through spatial variation of r. Monthly Notices of the Royal Astronomical Society, 2014, 442, 670-673.	1.6	9
1299	A neutrino model fit to the CMB power spectrum. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2836-2841.	1.6	0
1300	MASK EFFECTS ON COSMOLOGICAL STUDIES WITH WEAK-LENSING PEAK STATISTICS. Astrophysical Journal, 2014, 784, 31.	1.6	24
1301	CMB LENSING POWER SPECTRUM BIASES FROM GALAXIES AND CLUSTERS USING HIGH-ANGULAR RESOLUTION TEMPERATURE MAPS. Astrophysical Journal, 2014, 786, 13.	1.6	98

#	Article	IF	CITATIONS
1302	STATISTICAL AND SYSTEMATIC ERRORS IN THE MEASUREMENT OF WEAK-LENSING MINKOWSKI FUNCTIONALS: APPLICATION TO THE CANADA-FRANCE-HAWAII LENSING SURVEY. Astrophysical Journal, 2014, 786, 43.	1.6	51
1303	Constraints on Dark Energy state equation with varying pivoting redshift. New Astronomy, 2014, 26, 106-111.	0.8	2
1304	Cold dark matter halos in Multi-coupled Dark Energy cosmologies: Structural and statistical properties. Physics of the Dark Universe, 2014, 3, 4-17.	1.8	8
1305	Cosmology and astrophysics from relaxed galaxy clusters – II. Cosmological constraints. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2077-2098.	1.6	181
1306	Cosmic degeneracies – I. Joint N-body simulations of modified gravity and massive neutrinos. Monthly Notices of the Royal Astronomical Society, 2014, 440, 75-88.	1.6	94
1307	Precision cosmology in muddy waters: cosmological constraints and N-body codes. Monthly Notices of the Royal Astronomical Society, 2014, 440, 249-268.	1.6	21
1308	pkann $\hat{a}\in$ II. A non-linear matter power spectrum interpolator developed using artificial neural networks. Monthly Notices of the Royal Astronomical Society, 2014, 439, 2102-2121.	1.6	40
1309	Simulating cosmic reionization: how large a volume is large enough?. Monthly Notices of the Royal Astronomical Society, 2014, 439, 725-743.	1.6	154
1310	Non-Gaussianity of the cosmic infrared background anisotropies $\hat{a} \in \mathbb{C}$ I. Diagrammatic formalism and application to the angular bispectrum. Monthly Notices of the Royal Astronomical Society, 2014, 439, 123-142.	1.6	20
1311	Evidence for Massive Neutrinos from Cosmic Microwave Background and Lensing Observations. Physical Review Letters, 2014, 112, 051303.	2.9	208
1312	Fast Bayesian inference for slow-roll inflation. Monthly Notices of the Royal Astronomical Society, 2014, 439, 3253-3261.	1.6	16
1313	Resonantly Produced 7ÂkeV Sterile Neutrino Dark Matter Models and the Properties of Milky Way Satellites. Physical Review Letters, 2014, 112, 161303.	2.9	127
1314	Inflationary Tensor Perturbations after BICEP2. Physical Review Letters, 2014, 112, 191302.	2.9	20
1315	Is dark matter made of mirror matter? Evidence from cosmological data. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2014, 729, 62-66.	1.5	9
1316	Constraining anisotropic models of the early universe with WMAP9 data. Physical Review D, 2014, 89, .	1.6	48
1317	Bayesian model selection for dark energy using weak lensing forecasts. Monthly Notices of the Royal Astronomical Society, 2014, 437, 887-897.	1.6	7
1318	CONSTRAINTS ON COSMOLOGY FROM THE COSMIC MICROWAVE BACKGROUND POWER SPECTRUM OF THE 2500 deg ² SPT-SZ SURVEY. Astrophysical Journal, 2014, 782, 74.	1.6	189
1319	Using the topology of large-scale structure in the WiggleZ Dark Energy Survey as a cosmological standard ruler. Monthly Notices of the Royal Astronomical Society, 2014, 437, 2488-2506.	1.6	26

#	Article	IF	Citations
1320	Lyman-Î \pm Forest and Cosmic Weak Lensing in a Warm Dark Matter Universe. Publications of the Astronomical Society of Australia, 2014, 31, .	1.3	27
1321	Test of consistency between Planck and WMAP. Physical Review D, 2014, 89, .	1.6	10
1322	<i>N</i> -body methods for relativistic cosmology. Classical and Quantum Gravity, 2014, 31, 234006.	1.5	63
1323	Current status of modified gravity. Physical Review D, 2014, 90, .	1.6	21
1324	Indications of a Late-Time Interaction in the Dark Sector. Physical Review Letters, 2014, 113, 181301.	2.9	225
1325	THE 1% CONCORDANCE HUBBLE CONSTANT. Astrophysical Journal, 2014, 794, 135.	1.6	326
1326	Sterile neutrino dark matter bounds from galaxies of the Local Group. Physical Review D, 2014, 89, .	1.6	169
1327	Large-scale clustering of cosmic voids. Physical Review D, 2014, 90, .	1.6	56
1328	Wiggly whipped inflation. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 048-048.	1.9	69
1329	A coarse grained perturbation theory for the Large Scale Structure, with cosmology and time independence in the UV. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 047-047.	1.9	30
1330	The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples. Monthly Notices of the Royal Astronomical Society, 2014, 441, 24-62.	1.6	1,168
1331	Spherical collapse in ml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi>\frac{1}{2}</mml:mi><mml:mi mathvariant="normal">\hat{1}</mml:mi><mml:mi>CDM</mml:mi></mml:mrow> . Physical Review D. 2014, 90	1.6	45
1332	Effects of cosmic strings with delayed scaling on CMB anisotropy. Physical Review D, 2014, 90, .	1.6	9
1333	Cosmological parameter estimation from CMB and X-ray cluster after Planck. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 020-020.	1.9	18
1334	Relic neutrinos, thermal axions, and cosmology in early 2014. Physical Review D, 2014, 90, .	1.6	74
1335	Tests of the CMB temperature-redshift relation, CMB spectral distortions and why adiabatic photon production is hard. Monthly Notices of the Royal Astronomical Society, 2014, 443, 1881-1888.	1.6	36
1336	Clustering tomography: measuring cosmological distances through angular clustering in thin redshift shells. Monthly Notices of the Royal Astronomical Society, 2014, 443, 3612-3623.	1.6	9
1337	Interacting photon–baryon fluid, warm dark matter, and the first acoustic peak. European Physical Journal C, 2014, 74, 1.	1.4	5

#	Article	IF	Citations
1338	CMB anomalies from an inflationary model in string theory. European Physical Journal C, 2014, 74, 1.	1.4	36
1339	The 6dF Galaxy Survey: cosmological constraints from the velocity power spectrum. Monthly Notices of the Royal Astronomical Society, 2014, 444, 3926-3947.	1.6	84
1340	Weighing the light gravitino mass with weak lensing surveys. Journal of High Energy Physics, 2014, 2014, 1.	1.6	7
1341	Helmholtz decomposition of the Lagrangian displacement. Physical Review D, 2014, 89, .	1.6	18
1342	The WiggleZ Dark Energy Survey: improved distance measurements to $z\hat{A}=\hat{A}1$ with reconstruction of the baryonic acoustic feature. Monthly Notices of the Royal Astronomical Society, 2014, 441, 3524-3542.	1.6	263
1343	Cosmic-variance limited Baryon Acoustic Oscillations from the DEUS-FUR Î>CDM simulation. Monthly Notices of the Royal Astronomical Society, 2014, 440, 1420-1434.	1.6	38
1344	Curvature versus distances: Testing the FLRW cosmology. Physical Review D, 2014, 90, .	1.6	90
1345	Measurement of the Cosmic Microwave Background Polarization Lensing Power Spectrum with the POLARBEAR Experiment. Physical Review Letters, 2014, 113, 021301.	2.9	138
1346	Evolution of perturbations and cosmological constraints in decaying dark matter models with arbitrary decay mass products. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 021-021.	1.9	24
1347	Precision of future experiments measuring primordial tensor fluctuation. Science China: Physics, Mechanics and Astronomy, 2014, 57, 1466-1470.	2.0	5
1348	Imprints of dark energy on cosmic structure formation â€" III. Sparsity of dark matter halo profiles. Monthly Notices of the Royal Astronomical Society, 2014, 437, 2328-2339.	1.6	27
1349	Constraints on majoron dark matter from cosmic microwave background and astrophysical observations. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 742, 154-157.	0.7	3
1350	Probing modified gravity theories with ISW and CMB lensing. Monthly Notices of the Royal Astronomical Society, 2014, 442, 821-837.	1.6	22
1351	Cosmologically probing ultra-light particle dark matter using 21 cm signals. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 011-011.	1.9	13
1352	Biases on cosmological parameter estimators from galaxy cluster number counts. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 039-039.	1.9	10
1353	Constraining the dynamical dark energy parameters: Planck-2013 vs WMAP9. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 030-030.	1.9	19
1354	The high-z universe confronts warm dark matter: Galaxy counts, reionization and the nature of dark matter. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1597-1609.	1.6	70
1355	Dark energy model selection with current and future data. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1619-1627.	1.6	0

#	Article	IF	CITATIONS
1356	Cosmic microwave background constraints on the tensor-to-scalar ratio. Research in Astronomy and Astrophysics, 2014, 14, 635-647.	0.7	2
1357	Neutrino cosmology and Planck. New Journal of Physics, 2014, 16, 065002.	1.2	110
1358	Single-field consistency relations of large scale structure part III: test of the equivalence principle. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 009-009.	1.9	56
1359	Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples. Astronomy and Astrophysics, 2014, 568, A22.	2.1	1,422
1360	Probing spatial homogeneity with LTB models: a detailed discussion. Astronomy and Astrophysics, 2014, 570, A63.	2.1	36
1361	<i>Planck</i> >2013 results. XX. Cosmology from Sunyaev–Zeldovich cluster counts. Astronomy and Astrophysics, 2014, 571, A20.	2.1	465
1362	<i>Planck</i> 2013 results. XVIII. The gravitational lensing-infrared background correlation. Astronomy and Astrophysics, 2014, 571, A18.	2.1	116
1363	The VIMOS Public Extragalactic Redshift Survey (VIPERS). Astronomy and Astrophysics, 2014, 565, A67.	2.1	18
1364	Superimposed oscillations in brane inflation. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 032-032.	1.9	2
1365	Computing model independent perturbations in dark energy and modified gravity. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 051-051.	1.9	25
1366	Simple implementation of general dark energy models. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 017-017.	1.9	9
1367	Measuring the transition to homogeneity with photometric redshift surveys. Monthly Notices of the Royal Astronomical Society, 2014, 440, 10-23.	1.6	15
1368	Dwarf spheroidal satellite formation in a reionized Local Group. Monthly Notices of the Royal Astronomical Society, 2014, 440, 50-67.	1.6	22
1369	Machine-learning in astronomy. Proceedings of the International Astronomical Union, 2014, 10, 279-287.	0.0	5
1370	On the information content of the matter power spectrum: Figure 1 Monthly Notices of the Royal Astronomical Society, 2015, 453, 450-455.	1.6	22
1371	Computing the three-point correlation function of galaxies in $\{O\}(N^2)$ time. Monthly Notices of the Royal Astronomical Society, 2015, 454, 4142-4158.	1.6	70
1372	Galaxy UV-luminosity function and reionization constraints on axion dark matter. Monthly Notices of the Royal Astronomical Society, 2015, 450, 209-222.	1.6	121
1373	Phenomenological approaches of inflation and their equivalence. Physical Review D, 2015, 91, .	1.6	15

#	Article	IF	CITATIONS
1374	Sound speed of scalar field dark energy: Weak effects and large uncertainties. Physical Review D, 2015, 91, .	1.6	19
1375	Exploring degeneracies in modified gravity with weak lensing. Physical Review D, 2015, 91, .	1.6	26
1376	Do current data prefer a nonminimally coupled inflaton?. Physical Review D, 2015, 91, .	1.6	34
1377	Multiwavelength constraints on the inflationary consistency relation. Physical Review D, 2015, 91, .	1.6	28
1378	Perturbative interaction approach to cosmological structure formation. Physical Review D, 2015, 91, .	1.6	4
1379	Tension between the power spectrum of density perturbations measured on large and small scales. Physical Review D, 2015, 91, .	1.6	116
1380	Emulating the CFHTLenS weak lensing data: Cosmological constraints from moments and Minkowski functionals. Physical Review D, 2015, 91, .	1.6	74
1381	Stability of small-scale baryon perturbations during cosmological recombination. Physical Review D, 2015, 91, .	1.6	2
1382	Chiral imprint of a cosmic gauge field on primordial gravitational waves. Physical Review D, 2015, 91, .	1.6	17
1383	Robustness of cosmological axion mass limits. Physical Review D, 2015, 91, .	1.6	20
1384	Polyspectra searches for sharp oscillatory features in cosmic microwave sky data. Physical Review D, 2015, 91, .	1.6	39
1385	Structural properties of artificial halos in nonstandard dark matter simulations. Physical Review D, 2015, 91, .	1.6	10
1386	Can modified gravity models reconcile the tension between the CMB anisotropy and lensing maps in Planck-like observations?. Physical Review D, 2015, 91, .	1.6	24
1387	Improved cosmological model fitting of Planck data with a dark energy spike. Physical Review D, 2015, 91, .	1.6	3
1388	Nonlinear hydrodynamics of axion dark matter: Relative velocity effects and quantum forces. Physical Review D, 2015, 91, .	1.6	42
1389	Cosmological consequences of classical flavor-space locked gauge field radiation. Physical Review D, 2015, 91, .	1.6	14
1390	Precision reconstruction of the cold dark matter-neutrino relative velocity from <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> -body simulations. Physical Review D, 2015, 92, .	1.6	43
1391	New constraints on <mml:math display="inline" xmins:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mo) 0.784314="" 1="" 10="" 50="" 57<="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>' Td1(.sstretc</td><td>:hy±"felse">)<</td></mml:mo)></mml:math>	' Td1(.sstretc	:hy ±"fe lse">)<

#	Article	IF	CITATIONS
1392	Constraints on massive neutrinos from the pairwise kinematic Sunyaev-Zel'dovich effect. Physical Review D, 2015, 92, .	1.6	45
1393	Small scale clustering of late forming dark matter. Physical Review D, 2015, 92, .	1.6	13
1394	Quintessence with Yukawa interaction. Physical Review D, 2015, 92, .	1.6	27
1395	Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model. Physical Review D, 2015, 92, .	1.6	39
1396	Searching for features of a string-inspired inflationary model with cosmological observations. Physical Review D, 2015, 92, .	1.6	21
1397	POLARBEAR constraints on cosmic birefringence and primordial magnetic fields. Physical Review D, 2015, 92, .	1.6	78
1398	Cosmological implications of baryon acoustic oscillation measurements. Physical Review D, 2015, 92, .	1.6	487
1399	Possible evidence for Planck-scale resonant particle production during inflation from the CMB power spectrum. Physical Review D, 2015, 92, .	1.6	8
1400	Principal component analysis of the reionization history from Planck 2015 data. Physical Review D, 2015, 92, .	1.6	6
1401	Bounds on very low reheating scenarios after Planck. Physical Review D, 2015, 92, .	1.6	181
1402	Towards a cosmological neutrino mass detection. Physical Review D, 2015, 92, .	1.6	157
1403	A general reconstruction of the recent expansion history of the universe. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 045-045.	1.9	16
1404	Consistent cosmic microwave background spectra from quantum depletion. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 002-002.	1.9	11
1405	Post-Planck dark energy constraints. Physical Review D, 2015, 91, .	1.6	20
1406	Anthropic origin of the neutrino mass from cooling failure. Physical Review D, 2015, 92, .	1.6	0
1407	Using dark energy to suppress power at small scales. Physical Review D, 2015, 92, .	1.6	33
1408	Constraints on dark radiation from cosmological probes. Physical Review D, 2015, 92, .	1.6	31
1409	Weak lensing induced by second-order vector mode. Physical Review D, 2015, 92, .	1.6	22

#	Article	IF	CITATIONS
1410	General relativistic corrections to <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi></mml:math> -body simulations and the Zel'dovich approximation. Physical Review D, 2015, 92, .	1.6	59
1411	Early dark energy and its interaction with dark matter. Physical Review D, 2015, 92, .	1.6	13
1412	LARGE OPACITY VARIATIONS IN THE HIGH-REDSHIFT LY $\langle i \rangle \hat{l} \pm \langle i \rangle$ FOREST: THE SIGNATURE OF RELIC TEMPERATURE FLUCTUATIONS FROM PATCHY REIONIZATION. Astrophysical Journal Letters, 2015, 813, L38.	3.0	77
1413	Addendum: Constraining hybrid natural inflation with recent CMB data. Journal of Cosmology and Astroparticle Physics, 2015, 2015, A01-A01.	1.9	1
1414	Baryon acoustic oscillations in the Ly <i>\hat{l}±</i> forest of BOSS DR11 quasars. Astronomy and Astrophysics, 2015, 574, A59.	2.1	669
1415	Einstein's Triumph. , 0, , 1-9.		0
1416	100 Years of General Relativity., 2015,, 10-48.		0
1418	Steep-spectrum sources of the RCR catalog in the millimeter and submillimeter ranges based on Planck data. Astronomy Letters, 2015, 41, 457-472.	0.1	11
1419	Constraining cosmology with pairwise velocity estimator. Astronomy and Astrophysics, 2015, 583, A52.	2.1	8
1420	L-PICOLA: A parallel code for fast dark matter simulation. Astronomy and Computing, 2015, 12, 109-126.	0.8	106
1421	Combining spectroscopic and photometric surveys using angular cross-correlations – I. Algorithm and modelling. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2149-2167.	1.6	10
1422	Polarized radio filaments outside the Galactic plane. Monthly Notices of the Royal Astronomical Society, 2015, 452, 656-675.	1.6	62
1423	Probing cosmology with weak lensing selected clusters – I. Halo approach and all-sky simulations. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3044-3068.	1.6	40
1424	polychord: next-generation nested sampling. Monthly Notices of the Royal Astronomical Society, 2015, 453, 4385-4399.	1.6	285
1425	Evolution of galaxy stellar masses and star formation rates in the eagle simulations. Monthly Notices of the Royal Astronomical Society, 2015, 450, 4486-4504.	1.6	332
1426	The Spitzer South Pole Telescope Deep-Field Survey: linking galaxies and haloes at $z=1.5$. Monthly Notices of the Royal Astronomical Society, 2015, 446, 169-194.	1.6	18
1427	Seeding high-redshift QSOs by collisional runaway in primordial star clusters. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2352-2369.	1.6	114
1428	Warmth elevating the depths: shallower voids with warm dark matter. Monthly Notices of the Royal Astronomical Society, 2015, 451, 3606-3614.	1.6	40

#	Article	IF	Citations
1429	The contributions of matter inside and outside of haloes to the matter power spectrum. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2247-2257.	1.6	39
1430	The clustering of the SDSS DR7 main Galaxy sample – I. A 4Âper cent distance measure at zÂ=Â0.15. Monthly Notices of the Royal Astronomical Society, 2015, 449, 835-847.	1.6	1,232
1431	The very wide-field ⟨i⟩gzK ⟨ i⟩galaxy survey – I. Details of the clustering properties of star-forming galaxies at ⟨i⟩z ⟨ i⟩â^1/4 2. Monthly Notices of the Royal Astronomical Society, 2015, 454, 213-225.	1.6	15
1432	An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1958-1975.	1.6	279
1433	Homogeneity and isotropy in the Two Micron All Sky Survey Photometric Redshift catalogue. Monthly Notices of the Royal Astronomical Society, 2015, 449, 670-684.	1.6	59
1434	Cosmological constraints from weak lensing peak statistics with Canada-France-Hawaii Telescope Stripe 82 Survey. Monthly Notices of the Royal Astronomical Society, 2015, 450, 2888-2902.	1.6	83
1435	Decaying dark matter and the tension in if sub>8. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 067-067.	1.9	81
1436	Weak lensing of large scale structure in the presence of screening. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 036-036.	1.9	17
1437	Dark Matter annihilations in halos and high-redshift sources of reionization of the universe. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 041-041.	1.9	31
1438	Dipole modulation in tensor modes: signatures in CMB polarization. European Physical Journal C, 2015, 75, 1.	1.4	9
1439	Probing the diffuse baryon distribution with the lensing-tSZ cross-correlation. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 046-046.	1.9	45
1440	The bispectrum of cosmic string temperature fluctuations including recombination effects. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 030-030.	1.9	6
1441	Initial conditions for cosmological N-body simulations of the scalar sector of theories of Newtonian, Relativistic and Modified Gravity. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 054-054.	1.9	13
1442	Subdominant Dark Matter sterile neutrino resonant production in the light of PLANCK. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 066-066.	1.9	1
1443	Forecasting sensitivity on tilt of power spectrum of primordial gravitational waves after Planck satellite. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 035-035.	1.9	29
1444	Constraining dark sector perturbations I: cosmic shear and CMB lensing. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 048-048.	1.9	14
1445	On the statistics of biased tracers in the Effective Field Theory of Large Scale Structures. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 029-029.	1.9	56
1446	CMB anisotropies generated by a stochastic background of primordial magnetic fields with non-zero helicity. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 031-031.	1.9	21

#	Article	IF	CITATIONS
1447	The one-loop matter bispectrum in the Effective Field Theory of Large Scale Structures. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 039-039.	1.9	91
1448	Constraints on hidden photons from current and future observations of CMB spectral distortions. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 028-028.	1.9	21
1449	Constraints on the birth of the universe and origin of cosmic dark flow. International Journal of Modern Physics A, 2015, 30, 1545022.	0.5	1
1450	Features and new physical scales in primordial observables: Theory and observation. International Journal of Modern Physics D, 2015, 24, 1530023.	0.9	152
1451	Non-Gaussian structure of B-mode polarization after delensing. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 004-004.	1.9	17
1452	Log-transforming the matter power spectrum. Astronomy and Astrophysics, 2015, 574, A86.	2.1	10
1453	A new parameterization of the reionisation history. Astronomy and Astrophysics, 2015, 580, L4.	2.1	25
1454	Constraining \mathcal{E} '(R) Gravity by the Large-Scale Structure. Universe, 2015, 1, 123-157.	0.9	61
1455	WEIGHING NEUTRINOS WITH COSMIC NEUTRAL HYDROGEN. Astrophysical Journal, 2015, 814, 146.	1.6	60
1456	Cosmic microwave background anisotropies in the timescape cosmology. Physical Review D, 2015, 91, .	1.6	16
1457	Principal components of CMB non-Gaussianity. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2232-2244.	1.6	3
1458	Constraints on warm dark matter from weak lensing in anomalous quadruple lenses. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2704-2716.	1.6	29
1459	MEASUREMENTS OF E-MODE POLARIZATION AND TEMPERATURE-E-MODE CORRELATION IN THE COSMIC MICROWAVE BACKGROUND FROM 100 SQUARE DEGREES OF SPTPOL DATA. Astrophysical Journal, 2015, 805, 36.	1.6	47
1460	How late can the dark matter form in our universe?. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 004-004.	1.9	27
1461	A SIMPLE GRAVITATIONAL LENS MODEL FOR COSMIC VOIDS. Astrophysical Journal, 2015, 804, 130.	1.6	4
1462	Baryons, neutrinos, feedback and weak gravitational lensing. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1212-1223.	1.6	94
1463	Simulations of weak gravitational lensing $\hat{a}\in$ II. Including finite support effects in cosmic shear covariance matrices. Monthly Notices of the Royal Astronomical Society, 2015, 450, 2857-2873.	1.6	56
1464	The cosmic microwave background: the history of its experimental investigation and its significance for cosmology. Classical and Quantum Gravity, 2015, 32, 124007.	1.5	32

#	Article	IF	CITATIONS
1465	Joint Planck and WMAP assessment of low CMB multipoles. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 014-014.	1.9	14
1466	Constraints on primordial magnetic fields from the optical depth of the cosmic microwave background. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 027-027.	1.9	32
1467	Revisiting a pre-inflationary radiation era and its effect on the CMB power spectrum. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 001-001.	1.9	20
1468	THREE-POINT PHASE CORRELATIONS: A NEW MEASURE OF NONLINEAR LARGE-SCALE STRUCTURE. Astrophysical Journal, 2015, 804, 132.	1.6	21
1469	Improving the modelling of redshift-space distortions – I. A bivariate Gaussian description for the galaxy pairwise velocity distributions. Monthly Notices of the Royal Astronomical Society, 2015, 446, 75-84.	1.6	39
1470	Separate universe simulations. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 448, L11-L15.	1.2	89
1471	Cosmological constraints from the CFHTLenS shear measurements using a new, accurate, and flexible way of predicting non-linear mass clustering. Monthly Notices of the Royal Astronomical Society, 2015, 448, 364-375.	1.6	51
1472	Sloan Digital Sky Survey III photometric quasar clustering: probing the initial conditions of the Universe. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 040-040.	1.9	41
1473	Effect of primordial magnetic fields on the ionization history. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2244-2250.	1.6	63
1474	The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1937-1961.	1.6	1,038
1475	Reionization constraints on primordial magnetic fields. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1692-1700.	1.6	22
1476	Extreme value statistics of cosmic microwave background lensing deflection angles. Monthly Notices of the Royal Astronomical Society, 2015, 453, 401-407.	1.6	0
1477	The CIB-lensing bispectrum: impact on primordial non-Gaussianity and detectability for the Planck mission. Monthly Notices of the Royal Astronomical Society, 2015, 450, 3778-3801.	1.6	5
1478	Cosmic discordance: are Planck CMB and CFHTLenS weak lensing measurements out of tune?. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2877-2888.	1.6	139
1479	The Gigaparsec WiggleZ simulations: characterizing scale-dependant bias and associated systematics in growth of structure measurements. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1454-1469.	1.6	23
1480	Effective theory of large-scale structure with primordial non-Gaussianity. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 024-024.	1.9	57
1481	Detecting primordialB-modes after Planck. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 031-031.	1.9	43
1482	Anisotropic inflation in the Finsler spacetime. European Physical Journal C, 2015, 75, 1.	1.4	18

#	ARTICLE	IF	CITATIONS
1483	Probing neutrino physics with a self-consistent treatment of the weak decoupling, nucleosynthesis, and photon decoupling epochs. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 017-017.	1.9	22
1484	The imprint of inflation on the cosmic microwave background. Comptes Rendus Physique, 2015, 16, 948-959.	0.3	O
1485	Physics of the cosmic microwave background anisotropy. International Journal of Modern Physics D, 2015, 24, 1530004.	0.9	18
1486	NONLINEAR BEHAVIOR OF BARYON ACOUSTIC OSCILLATIONS IN REDSHIFT SPACE FROM THE ZEL'DOVICH APPROXIMATION. Astrophysical Journal, 2015, 798, 137.	1.6	8
1487	21Âcm signal from cosmic dawn: imprints of spin temperature fluctuations and peculiar velocities. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1806-1825.	1.6	89
1488	The EAGLE project: simulating the evolution and assembly of galaxies and their environments. Monthly Notices of the Royal Astronomical Society, 2015, 446, 521-554.	1.6	2,549
1489	A MEASUREMENT OF SECONDARY COSMIC MICROWAVE BACKGROUND ANISOTROPIES FROM THE 2500 SQUARE-DEGREE SPT-SZ SURVEY. Astrophysical Journal, 2015, 799, 177.	1.6	183
1490	MEASUREMENT OF GALAXY CLUSTER INTEGRATED COMPTONIZATION AND MASS SCALING RELATIONS WITH THE SOUTH POLE TELESCOPE. Astrophysical Journal, 2015, 799, 137.	1.6	7
1491	MASS CALIBRATION AND COSMOLOGICAL ANALYSIS OF THE SPT-SZ GALAXY CLUSTER SAMPLE USING VELOCITY DISPERSION f < sub > <i>> v < i> < sub > AND X-RAY < i> Y < i > < sub > X < sub > MEASUREMENTS. Astrophysical Journal, 2015, 799, 214.</i>	1.6	120
1492	Revisiting constraints on the (pseudo)conformal universe with Planck data. Physical Review D, 2015, 91, .	1.6	14
1493	WEAK GRAVITATIONAL LENSING AS A PROBE OF PHYSICAL PROPERTIES OF SUBSTRUCTURES IN DARK MATTER HALOS. Astrophysical Journal, 2015, 799, 188.	1.6	5
1494	Accuracy of cosmological parameters using the baryon acoustic scale. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 034-034.	1.9	12
1495	Planck data reconsidered. Physical Review D, 2015, 91, .	1.6	87
1496	B-modes and the nature of inflation. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 016-016.	1.9	46
1497	On the signature of the baryon–dark matter relative velocity in the two- and three-point galaxy correlation functions. Monthly Notices of the Royal Astronomical Society, 2015, 448, 9-26.	1.6	42
1498	A UNIVERSAL MODEL FOR HALO CONCENTRATIONS. Astrophysical Journal, 2015, 799, 108.	1.6	295
1499	Observing Inflationary Reheating. Physical Review Letters, 2015, 114, 081303.	2.9	118
1500	Constraint on neutrino masses from SDSS-III/BOSS Lyα forest and other cosmological probes. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 045-045.	1.9	100

#	Article	IF	CITATIONS
1501	The superhorizon test of future B-mode experiments. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 036-036.	1.9	6
1502	Constraining dark sector perturbations II: ISW and CMB lensing tomography. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 037-037.	1.9	11
1503	IGM CONSTRAINTS FROM THE SDSS-III/BOSS DR9 Ly $\hat{\bf l}_{\pm}$ FOREST TRANSMISSION PROBABILITY DISTRIBUTION FUNCTION. Astrophysical Journal, 2015, 799, 196.	1.6	64
1504	Gravitational lensing of cosmological 21 cm emission. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2368-2383.	1.6	18
1505	COMPARING (i>PLANCK (i>AND (i>WMAP (i>: MAPS, SPECTRA, AND PARAMETERS. Astrophysical Journal, 2015, 801, 9.	1.6	26
1506	The impact of supersurvey modes on cosmological constraints from cosmic shear fields. Monthly Notices of the Royal Astronomical Society, 2015, 447, 671-679.	1.6	4
1507	Disentangling dark sector models using weak lensing statistics. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2757-2772.	1.6	23
1508	The Atacama Cosmology Telescope: measuring radio galaxy bias through cross-correlation with lensing. Monthly Notices of the Royal Astronomical Society, 2015, 451, 849-858.	1.6	41
1509	Cosmological ensemble and directional averages of observables. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 040-040.	1.9	34
1510	BAYESIAN INFERENCE OF CMB GRAVITATIONAL LENSING. Astrophysical Journal, 2015, 808, 152.	1.6	28
1511	7 1 6, 7,	0.8	240
1512	Matter power spectra in viable <mml:math altimg="si1.gif" overflow="scroll" xmins:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mo) 0.784314="" 1="" 10="" 297<="" 50="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>T₫.∜streto</td><td>chջ_é"false"></td></mml:mo)></mml:math>	T₫.∜streto	ch ջ_é"false" >
1513	Section B. Muclear, Elementary Particle and High Energy Physics, 2015, 740, 285-290. Parity violation in pre-inflationary bounce. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2015, 741, 55-60. Probing a mulmath aminomial "http://www.wa.org/1998/Math/MathMI" altimg="sil.gif"	1.5	17
1514	overflow="scroll"> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>R</mml:mi> <mml:mo) 0.784314="" 1="" 10="" 222="" 50="" b:="" elementary="" etqq1="" growth="" letters,="" nuclear,="" of="" overlock="" particle<="" physics="" rate="" rgbt="" scale-dependent="" section="" structure.="" td="" tf="" tj=""><td>Td (streto</td><td>chy="false"></td></mml:mo)>	Td (streto	chy="false">
1515	and High-Energy Physics, 2015, 744, 213-217. Detecting the cosmological recombination signal from space. Monthly Notices of the Royal Astronomical Society, 2015, 451, 4460-4470.	1.6	17
1516	Combining power spectrum and bispectrum measurements to detect oscillatory features. Physical Review D, 2015, 91, .	1.6	48
1517	Searching for primordial localized features with CMB and LSS spectra. Physical Review D, 2015, 91, .	1.6	23
1518	The effect of massive neutrinos on the BAO peak. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 001-001.	1.9	24

#	Article	IF	Citations
1519	Bayesian evidence of nonstandard inflation: Isocurvature perturbations and running spectral index. Physical Review D, 2015, 91, .	1.6	10
1520	MEASUREMENTS OF SUB-DEGREE <i>B</i> -MODE POLARIZATION IN THE COSMIC MICROWAVE BACKGROUND FROM 100 SQUARE DEGREES OF SPTPOL DATA. Astrophysical Journal, 2015, 807, 151.	1.6	117
1521	Constraints on secret neutrino interactions after Planck. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 014-014.	1.9	46
1522	Distinguishing interacting dark energy from (i>wCDM with CMB, lensing, and baryon acoustic oscillation data. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 015-015.	1.9	46
1523	Near optimal bispectrum estimators for large-scale structure. Physical Review D, 2015, 91, .	1.6	47
1524	Cosmology constraints from the weak lensing peak counts and the power spectrum in CFHTLenS data. Physical Review D, 2015, 91, .	1.6	110
1525	Exploring massive neutrinos in dark cosmologies with eftcamb/EFTCosmoMC. Physical Review D, 2015, 91, .	1.6	40
1526	Galactic outflow and diffuse gas properties at z \hat{a} % \pm 1 using different baryonic feedback models. Monthly Notices of the Royal Astronomical Society, 2015, 447, 266-286.	1.6	26
1527	On the accuracy of N-body simulations at very large scales. Monthly Notices of the Royal Astronomical Society, 2015, 446, 677-682.	1.6	11
1528	Mild bounds on bigravity from primordial gravitational waves. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 027-027.	1.9	29
1529	How CMB and large-scale structure constrain chameleon interacting dark energy. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 033-033.	1.9	9
1530	IMPACT OF BARYONIC PROCESSES ON WEAK-LENSING COSMOLOGY: POWER SPECTRUM, NONLOCAL STATISTICS, AND PARAMETER BIAS. Astrophysical Journal, 2015, 806, 186.	1.6	59
1531	Investigation of the RCR catalog sources in the millimeter and submillimeter ranges based on the Planck mission data. Astrophysical Bulletin, 2015, 70, 156-182.	0.3	15
1532	Future detectability of gravitational-wave induced lensing from high-sensitivity CMB experiments. Physical Review D, 2015, 91, .	1.6	9
1533	Impact of anisotropic stress of free-streaming particles on gravitational waves induced by cosmological density perturbations. Physical Review D, 2015, 91, .	1.6	17
1534	Kolmogorov complexity in the Milky Way and its reduction with warm dark matter: Figure 1 Monthly Notices of the Royal Astronomical Society: Letters, 2015, 452, L26-L30.	1.2	0
1535	Theoretical estimates of integrated Sachs–Wolfe effect detection through the Australian Square Kilometre Array Pathfinder's Evolutionary Map of the Universe (ASKAP-EMU) survey, with confusion, position uncertainty, shot noise, and signal-to-noise ratio analysis. Canadian Journal of Physics, 2015, 93, 384-394.	0.4	3
1536	Neutrino masses from CMB B-mode polarization and cosmic growth rate. International Journal of Modern Physics A, 2015, 30, 1550001.	0.5	1

#	Article	IF	CITATIONS
1537	Neutrinos in the holographic dark energy model: constraints from latest measurements of expansion history and growth of structure. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 038-038.	1.9	40
1538	LATE-TIME COSMOLOGY WITH 21 cm INTENSITY MAPPING EXPERIMENTS. Astrophysical Journal, 2015, 803, 21.	1.6	264
1539	Probing gravity at large scales through CMB lensing. Monthly Notices of the Royal Astronomical Society, 2015, 449, 4326-4335.	1.6	29
1540	Effects of Rayleigh scattering on the CMB and cosmic structure. Physical Review D, 2015, 91, .	1.6	17
1541	Light sterile neutrinos and inflationary freedom. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 023-023.	1.9	13
1542	<scp>polychord</scp> : nested sampling for cosmology. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 450, L61-L65.	1.2	265
1543	Kinematic effects of velocity fluctuations for the dark-halo population in a $\hat{\rho}$ CDM model. Astronomy Reports, 2015, 59, 257-270.	0.2	0
1544	LINKING TESTS OF GRAVITY ON ALL SCALES: FROM THE STRONG-FIELD REGIME TO COSMOLOGY. Astrophysical Journal, 2015, 802, 63.	1.6	114
1545	The impact of foregrounds on redshift space distortion measurements with the highly redshifted 21-cm line. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1705-1712.	1.6	34
1546	Cosmological leverage from the matter power spectrum in the presence of baryon and nonlinear effects. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 023-023.	1.9	7
1547	Temperature fluctuations in an inhomogeneous diffusive fluid. Modern Physics Letters A, 2015, 30, 1550036.	0.5	0
1548	Cosmology based on $\langle i \rangle f \langle i \rangle R \langle i \rangle$ gravity with $?(1)$ eV sterile neutrino. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 004-004.	1.9	13
1549	Cosmological performance of SKA H i galaxy surveys. Monthly Notices of the Royal Astronomical Society, 2015, 450, 2251-2260.	1.6	62
1550	Constraining the primordial initial mass function with stellar archaeology. Monthly Notices of the Royal Astronomical Society, 2015, 447, 3892-3908.	1.6	81
1551	Anisotropic CMB distortions from non-Gaussian isocurvature perturbations. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 013-013.	1.9	14
1552	CMB probes on the correlated axion isocurvature perturbation. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 026-026.	1.9	12
1553	Revisiting cosmological bounds on sterile neutrinos. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 006-006.	1.9	50
1554	Simulations of cm-wavelength Sunyaev-Zel'dovich galaxy cluster and point source blind sky surveys and predictions for the RT32/OCRA-f and the Hevelius 100-m radio telescope. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 004-004.	1.9	3

#	Article	IF	CITATIONS
1555	Warm dark matter signatures on the 21cm power spectrum: intensity mapping forecasts for SKA. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 047-047.	1.9	47
1556	Born-corrections to weak lensing of the cosmic microwave background temperature and polarization anisotropies. Monthly Notices of the Royal Astronomical Society, 2015, 454, 831-838.	1.6	15
1557	On the total cosmological information in galaxy clustering: an analytical approach. Monthly Notices of the Royal Astronomical Society, 2015, 454, 560-568.	1.6	12
1558	THE Q CONTINUUM SIMULATION: HARNESSING THE POWER OF GPU ACCELERATED SUPERCOMPUTERS. Astrophysical Journal, Supplement Series, 2015, 219, 34.	3.0	41
1559	Constraints on the combined models with R 2 \hat{a} q \$R^{2-q}\$ inflation and viable f (R) \$f(R)\$ dark energy. Astrophysics and Space Science, 2015, 360, 1.	0.5	5
1560	The impact of non-Gaussianity upon cosmological forecasts. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3533-3541.	1.6	15
1561	Multiplicative errors in the galaxy power spectrum: self-calibration of unknown photometric systematics for precision cosmology. Monthly Notices of the Royal Astronomical Society, 2015, 447, 2961-2969.	1.6	21
1562	Testing modified gravity with cosmic shear. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2722-2735.	1.6	27
1563	Constraining hybrid natural inflation with recent CMB data. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 039-039.	1.9	9
1564	Boltzmann hierarchy for interacting neutrinos I: formalism. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 016-016.	1.9	57
1565	Mock Quasar-Lyman- \hat{l}_{\pm} forest data-sets for the SDSS-III Baryon Oscillation Spectroscopic Survey. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 060-060.	1.9	24
1566	DEMNUni: the clustering of large-scale structures in the presence of massive neutrinos. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 043-043.	1.9	134
1567	CROSS-CORRELATION BETWEEN THE CMB LENSING POTENTIAL MEASURED BY <i>PLANCK</i> AND HIGH- <i>Z</i> SUBMILLIMETER GALAXIES DETECTED BY THE <i>HERSCHEL</i> ATLAS SURVEY. Astrophysical Journal, 2015, 802, 64.	1.6	61
1568	Learn-as-you-go acceleration of cosmological parameter estimates. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 005-005.	1.9	5
1569	Testing general relativity with growth rate measurement from Sloan Digital Sky Survey – III. Baryon Oscillations Spectroscopic Survey galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1754-1767.	1.6	38
1570	Constraining the WMAP9 bispectrum and trispectrum with needlets. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 013-013.	1.9	14
1571	Analytic prediction of baryonic effects from the EFT of large scale structures. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 019-019.	1.9	80
1572	21Âcm signal from cosmic dawn – II. Imprints of the light-cone effects. Monthly Notices of the Royal Astronomical Society, 2015, 453, 3144-3157.	1.6	43

#	Article	IF	CITATIONS
1573	LINKING GALAXIES TO DARK MATTER HALOS AT <i>>z</i> $\hat{a}^{-1/4}$ 1: DEPENDENCE OF GALAXY CLUSTERING ON STELL/MASS AND SPECIFIC STAR FORMATION RATE. Astrophysical Journal, 2015, 806, 189.	^{AR} 1.6	10
1574	A MEASUREMENT OF GRAVITATIONAL LENSING OF THE COSMIC MICROWAVE BACKGROUND BY GALAXY CLUSTERS USING DATA FROM THE SOUTH POLE TELESCOPE. Astrophysical Journal, 2015, 806, 247.	1.6	66
1575	TOMOGRAPHY OF THE <i>FERMI</i> -LAT <i>\hat{j}3</i> -RAY DIFFUSE EXTRAGALACTIC SIGNAL VIA CROSS CORRELATIONS WITH GALAXY CATALOGS. Astrophysical Journal, Supplement Series, 2015, 217, 15.	3.0	54
1576	MULTIMODECODE: an efficient numerical solver for multifield inflation. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 005-005.	1.9	34
1577	Broadband distortion modeling in Lyman- \hat{l}_{\pm} forest BAO fitting. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 034-034.	1.9	17
1578	Weighing the giants – IV. Cosmology and neutrino mass. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2205-2225.	1.6	213
1579	CONSTRAINTS ON SPATIAL VARIATIONS IN THE FINE-STRUCTURE CONSTANT FROM <i>PLANCK</i> Astrophysical Journal, 2015, 798, 18.	1.6	12
1580	Ray-tracing simulations of coupled dark energy models. Monthly Notices of the Royal Astronomical Society, 2015, 447, 858-874.	1.6	17
1581	ON THE CONTRIBUTION OF FLUORESCENCE TO LYα HALOS AROUND STAR-FORMING GALAXIES. Astrophysical Journal, 2016, 822, 84.	1.6	40
1582	TOWARD A TOMOGRAPHIC ANALYSIS OF THE CROSS-CORRELATION BETWEEN PLANCK CMB LENSING AND H-ATLAS GALAXIES. Astrophysical Journal, 2016, 825, 24.	1.6	35
1583	SIMULATIONS OF THE PAIRWISE KINEMATIC SUNYAEV–ZEL'DOVICH SIGNAL. Astrophysical Journal, 2016, 823, 98.	1.6	32
1584	THE ALHAMBRA SURVEY: EVOLUTION OF GALAXY SPECTRAL SEGREGATION. Astrophysical Journal, 2016, 818, 174.	1.6	8
1585	A STRINGENT LIMIT ON THE WARM DARK MATTER PARTICLE MASSES FROM THE ABUNDANCE OF $z=6$ GALAXIES IN THE HUBBLE FRONTIER FIELDS. Astrophysical Journal Letters, 2016, 825, L1.	3.0	51
1586	Constraints on mixed dark matter from anomalous strong lens systems. Physical Review D, 2016, 94, .	1.6	25
1587	Bayesian analysis of inflationary features in Planck and SDSS data. Physical Review D, 2016, 94, .	1.6	19
1588	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A12.	2.1	117
1589	High angular resolution Sunyaev-Zel'dovich observations of MACS J1423.8+2404 with NIKA: Multiwavelength analysis. Astronomy and Astrophysics, 2016, 586, A122.	2.1	91
1590	MEASUREMENT OF A REDSHIFT-SPACE POWER SPECTRUM FOR BOSS GALAXIES AND THE GROWTH RATE AT REDSHIFT 0.57. Astrophysical Journal, 2016, 833, 287.	1.6	17

#	Article	IF	Citations
1591	Semi-blind Bayesian inference of CMB map and power spectrum. Astronomy and Astrophysics, 2016, 588, A113.	2.1	10
1592	The EFT of Large Scale Structures at all redshifts: analytical predictions for lensing. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 033-033.	1.9	44
1593	Structure formation in a mixed dark matter model with decaying sterile neutrino: the 3.5 keV X-ray line and the Galactic substructure. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 031-031.	1.9	13
1594	Extending the Coyote emulator to dark energy models with standard <i>>w</i> <csub><i>>u</i><csub><i>i><<i>v</i>parametrization of the equation of state. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 008-008.</i></csub></csub>	1.9	25
1595	Reionization in sterile neutrino cosmologies. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3848-3859.	1.6	31
1596	Precision comparison of the power spectrum in the EFTofLSS with simulations. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 027-027.	1.9	67
1597	The Gaussian streaming model and convolution Lagrangian effective field theory. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 007-007.	1.9	79
1598	Constraints on the coupling between dark energy and dark matter from CMB data. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 014-014.	1.9	101
1599	Testing distance duality with CMB anisotropies. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 050-050.	1.9	14
1600	Dark Energy and the Formation of the Large Scale Structure of the Universe. Springer Theses, 2016, , .	0.0	1
1601	Lensing-induced morphology changes in CMB temperature maps in modified gravity theories. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 056-056.	1.9	12
1602	COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERS IN THE 2500 SQUARE-DEGREE SPT-SZ SURVEY. Astrophysical Journal, 2016, 832, 95.	1.6	179
1603	Cosmology from cosmic shear with Dark Energy Survey Science Verification data. Physical Review D, 2016, 94, .	1.6	125
1604	Quintessential scale dependence from separate universe simulations. Physical Review D, 2016, 94, .	1.6	17
1605	A 14 <i>h</i> ^{â^3} Gpc ³ study of cosmic homogeneity using BOSS DR12 quasar sample. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 060-060.	1.9	46
1606	Testing the imprint of nonstandard cosmologies on void profiles using MonteÂCarlo random walks. Physical Review D, 2016, 94, .	1.6	20
1607	CMB-lensing beyond the Born approximation. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 028-028.	1.9	39
1608	Testing gravity theories using tensor perturbations. Physical Review D, 2016, 94, .	1.6	17

#	Article	lF	CITATIONS
1609	Probing the neutrino mass through the cross correlation between the Rees-Sciama effect and weak lensing. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 059-059.	1.9	5
1610	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A15.	2.1	360
1611	Evolution and statistics of non-sphericity of dark matter halos from cosmological $\langle i \rangle N \langle i \rangle$ -body simulation. Publication of the Astronomical Society of Japan, 2016, 68, .	1.0	23
1612	New model of axion monodromy inflation and its cosmological implications. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 027-027.	1.9	10
1613	Cluster abundance in chameleon <i>f</i> (<i>R</i>) gravity I: toward an accurate halo mass function prediction. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 024-024.	1.9	44
1614	Analytic study of the effect of dark energy-dark matter interaction on the growth of structures. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 009-009.	1.9	33
1615	Constraining quantum collapse inflationary models with CMB data. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 035-035.	1.9	15
1616	<i>Planck</i> 2015 results. Astronomy and Astrophysics, 2016, 594, A13.	2.1	8,344
1617	Matter power spectrum in hidden neutrino interacting dark matter models: a closer look at the collision term. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 043-043.	1.9	55
1618	Cosmological results from the Planck space mission and their comparison with data from the WMAP and BICEP2 experiments. Physics-Uspekhi, 2016, 59, 3-41.	0.8	16
1619	The extended Baryon Oscillation Spectroscopic Survey: a cosmological forecast. Monthly Notices of the Royal Astronomical Society, 2016, 457, 2377-2390.	1.6	83
1620	The kinetic Sunyaev–Zel'dovich tomography – II. Probing the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3773-3785.	1.6	8
1621	Non-linear structure formation in the  Running FLRW' cosmological model. Monthly Notices of the Royal Astronomical Society, 2016, 460, 729-741.	1.6	1
1622	Hořava Gravity in the Effective Field Theory formalism: From cosmology to observational constraints. Physics of the Dark Universe, 2016, 13, 7-24.	1.8	43
1623	Cosmological axion and neutrino mass constraints from Planck 2015 temperature and polarization data. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 752, 182-185.	1.5	79
1624	Galaxy clustering, CMB and supernova data constraints on i- CDM model with massive neutrinos. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 752, 66-75.	1.5	24
1625	Information gains from cosmological probes. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 034-034.	1.9	30
1626	Primordial power spectrum of tensor perturbations in Finsler spacetime. European Physical Journal C, 2016, 76, 1.	1.4	11

#	Article	IF	CITATIONS
1627	THE MIRA–TITAN UNIVERSE: PRECISION PREDICTIONS FOR DARK ENERGY SURVEYS. Astrophysical Journal, 2016, 820, 108.	1.6	100
1628	Large-scale clustering of Lymanâ€‰î± emission intensity from SDSS/BOSS. Monthly Notices of the Royal Astronomical Society, 2016, 457, 3541-3572.	1.6	50
1629	On the recovery of ISW fluctuations using large-scale structure tracers and CMB temperature and polarization anisotropies. Monthly Notices of the Royal Astronomical Society, 2016, 459, 657-672.	1.6	5
1630	Cosmological consequences of an adiabatic matter creation process. Monthly Notices of the Royal Astronomical Society, 2016, 459, 673-682.	1.6	76
1631	Cosmological non-linear density and velocity power spectra including non-linear vector and tensor modes. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1124-1136.	1.6	7
1632	Cosmic microwave background acoustic peak locations. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2513-2524.	1.6	18
1633	Dark-ages Reionization and Galaxy formation simulation $\hat{a} \in \mathbb{C}$ I. The dynamical lives of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3025-3039.	1.6	45
1634	The Subaru FMOS galaxy redshift survey (FastSound). IV. New constraint on gravity theory from redshift space distortions at $\langle i \rangle z \langle i \rangle$ and $\langle i \rangle z \langle i \rangle$ are 1.4. Publication of the Astronomical Society of Japan, 2016, 68, .	1.0	171
1635	Cosmology with velocity dispersion counts: an alternative to measuring cluster halo masses. Monthly Notices of the Royal Astronomical Society, 2016, 462, 4117-4129.	1.6	16
1636	Forecasts on neutrino mass constraints from the redshift-space two-point correlation function. Monthly Notices of the Royal Astronomical Society, 2016, 462, 4208-4219.	1.6	8
1637	The 2-degree Field Lensing Survey: design and clustering measurements. Monthly Notices of the Royal Astronomical Society, 2016, 462, 4240-4265.	1.6	53
1638	Primordial features and Planck polarization. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 009-009.	1.9	35
1639	Testing gravity at large scales with H i intensity mapping. Monthly Notices of the Royal Astronomical Society, 2016, 461, 1457-1464.	1.6	19
1640	Detecting black-hole binary clustering via the second-generation gravitational-wave detectors. Physical Review D, 2016, 94, .	1.6	21
1641	Response function of the large-scale structure of the universe to the small scale inhomogeneities. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 762, 247-252.	1.5	34
1642	The Effective Field Theory of Dark Energy. Springer Theses, 2016, , 21-51.	0.0	0
1644	SKA weak lensing – I. Cosmological forecasts and the power of radio-optical cross-correlations. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3674-3685.	1.6	43
1645	Cosmology with peculiar velocities: observational effects. Monthly Notices of the Royal Astronomical Society, 2016, 463, 4083-4092.	1.6	10

#	Article	IF	CITATIONS
1646	Averaged universe confronted with cosmological observations: A fully covariant approach. Physical Review D, 2016, 94, .	1.6	2
1647	Constraints on decaying early modified gravity from cosmological observations. Physical Review D, 2016, 94, .	1.6	14
1648	Constraints on neutrino masses from the study of the nearby large-scale structure and galaxy cluster counts. Modern Physics Letters A, 2016, 31, 1640008.	0.5	13
1649	The ISW effect and the lack of large-angle CMB temperature correlations. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3305-3310.	1.6	8
1650	Optimal weights for measuring redshift space distortions in multitracer galaxy catalogues. Monthly Notices of the Royal Astronomical Society, 2016, 463, 2708-2715.	1.6	10
1651	Cosmic shear as a probe of galaxy formation physics. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3326-3338.	1.6	19
1652	Demonstration of Cosmic Microwave Background Delensing Using the Cosmic Infrared Background. Physical Review Letters, 2016, 117, 151102.	2.9	52
1653	Halo and subhalo demographics with Planck cosmological parameters: Bolshoi–Planck and MultiDark–Planck simulations. Monthly Notices of the Royal Astronomical Society, 2016, 462, 893-916.	1.6	168
1654	Lyman-alpha forests cool warm dark matter. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 012-012.	1.9	153
1655	Dark matter and dark energy interactions: theoretical challenges, cosmological implications and observational signatures. Reports on Progress in Physics, 2016, 79, 096901.	8.1	391
1656	Intrinsic alignment contamination to CMB lensing–galaxy weak lensing correlations from tidal torquing. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4343-4352.	1.6	23
1657	A DETECTION OF BARYON ACOUSTIC OSCILLATIONS FROM THE DISTRIBUTION OF GALAXY CLUSTERS. Astrophysical Journal, 2016, 826, 154.	1.6	17
1658	gevolution: a cosmological N-body code based on General Relativity. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 053-053.	1.9	107
1659	Cosmic parity violation due to a flavor-space locked gauge field. International Journal of Modern Physics D, 2016, 25, 1640011.	0.9	1
1660	The Quest for B Modes from Inflationary Gravitational Waves. Annual Review of Astronomy and Astrophysics, 2016, 54, 227-269.	8.1	246
1661	Mocking the weak lensing universe: The LensTools Python computing package. Astronomy and Computing, 2016, 17, 73-79.	0.8	41
1662	Pseudoscalarâ€"sterile neutrino interactions: reconciling the cosmos with neutrino oscillations. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 067-067.	1.9	84
1663	Sterile neutrino dark matter: Weak interactions in the strong coupling epoch. Physical Review D, 2016, 94, .	1.6	70

#	Article	IF	CITATIONS
1664	Breaking Be: a sterile neutrino solution to the cosmological lithium problem. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 022-022.	1.9	14
1665	Secret neutrino interactions: a pseudoscalar model. Journal of Physics: Conference Series, 2016, 718, 032002.	0.3	O
1666	A framework for testing isotropy with the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 2016, 462, 1802-1811.	1.6	13
1667	Impact of post-Born lensing on the CMB. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 047-047.	1.9	82
1668	Reionization and dark matter decay. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 054-054.	1.9	26
1669	Dark matter perturbations and viscosity: A causal approach. Physical Review D, 2016, 94, .	1.6	8
1670	MEASUREMENT OF THE INTEGRATED SACHS–WOLFE EFFECT USING THE ALLWISE DATA RELEASE. Astrophysical Journal, 2016, 827, 116.	1.6	20
1671	The comptonization parameter from simulations of single-frequency, single-dish, dual-beam, cm-wave observations of galaxy clusters and mitigating CMB confusion using the Planck sky survey. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 049-049.	1.9	1
1672	Needlet estimation of cross-correlation between CMB lensing maps and LSS. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 050-050.	1.9	2
1673	CONSTRAINTS ON NEUTRINO MASSES FROM THE LENSING DISPERSION OF TYPE Ia SUPERNOVAE. Astrophysical Journal, 2016, 828, 112.	1.6	9
1674	How Isotropic is the Universe?. Physical Review Letters, 2016, 117, 131302.	2.9	105
1675	Quantifying tensions between CMB and distance data sets in models with free curvature or lensing amplitude. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1416-1430.	1.6	32
1676	FAST-PT: a novel algorithm to calculate convolution integrals in cosmological perturbation theory. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 015-015.	1.9	101
1677	Contributions to cosmic reionization from dark matter annihilation and decay. Physical Review D, 2016, 94, .	1.6	96
1678	Effect of relative velocity and density perturbations between baryons and dark matter on the clustering of galaxies. Physical Review D, 2016, 94, .	1.6	54
1679	A BAYESIAN ESTIMATE OF THE CMB–LARGE-SCALE STRUCTURE CROSS-CORRELATION. Astrophysical Journal, 2016, 826, 121.	1.6	5
1680	WHERE ARE THE LOW-MASS POPULATION III STARS?. Astrophysical Journal, 2016, 826, 9.	1.6	66
1681	Testing models of vacuum energy interacting with cold dark matter. Physical Review D, 2016, 93, .	1.6	61

#	Article	IF	CITATIONS
1682	What initial condition of inflation would suppress the large-scale CMB spectrum?. Physical Review D, 2016, 93, .	1.6	7
1683	Cosmological hints of modified gravity?. Physical Review D, 2016, 93, .	1.6	49
1684	Effect of supersonic relative motion between baryons and dark matter on collapsed objects. Physical Review D, 2016, 93, .	1.6	12
1685	Galaxy and mass assembly: Redshift space distortions from the clipped galaxy field. Physical Review D, 2016, 93, .	1.6	37
1686	Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>s</mml:mi></mml:math> -wave dark matter annihilation from Planck results. Physical Review D, 2016, 93, .	1.6	308
1687	Baryon acoustic oscillations from the SDSS DR10 galaxies angular correlation function. Physical Review D, 2016, 93, .	1.6	47
1688	Evolution of the cosmic matter density field with a primordial magnetic field. Physical Review D, 2016, 93, .	1.6	7
1689	Search for compensated isocurvature perturbations with Planck power spectra. Physical Review D, 2016, 93, .	1.6	40
1690	Are cosmological data sets consistent with each other within the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Î></mml:mi></mml:math> cold dark matter model?. Physical Review D, 2016, 93, .	1.6	57
1691	Cosmological parameter constraints from CMB lensing with cosmic voids. Physical Review D, 2016, 93,	1.6	13
1692	Efficient implementation of the time renormalization group. Physical Review D, 2016, 93, .	1.6	3
1693	Sterile neutrinos with pseudoscalar self-interactions and cosmology. Physical Review D, 2016, 93, .	1.6	37
1694	External priors for the next generation of CMB experiments. Physical Review D, 2016, 93, .	1.6	5
1695	Separate universe consistency relation and calibration of halo bias. Physical Review D, 2016, 93, .	1.6	45
1696	Kinetic Sunyaev-Zel'dovich effect in modified gravity. Physical Review D, 2016, 93, .	1.6	17
1697	Matter bispectrum of large-scale structure: Three-dimensional comparison between theoretical models and numerical simulations. Physical Review D, 2016, 93, .	1.6	42
1698	Dark radiation and inflationary freedom after Planck 2015. Physical Review D, 2016, 93, .	1.6	26
1699	Extreme data compression for the CMB. Physical Review D, 2016, 93, .	1.6	17

#	Article	IF	CITATIONS
1700	Inflation model constraints from data released in 2015. Physical Review D, 2016, 93, .	1.6	36
1701	Inverted initial conditions: Exploring the growth of cosmic structure and voids. Physical Review D, 2016, 93, .	1.6	45
1702	Neutrino mass without cosmic variance. Physical Review D, 2016, 93, .	1.6	33
1703	Fast large scale structure perturbation theory using one-dimensional fast Fourier transforms. Physical Review D, 2016, 93, .	1.6	64
1704	Information gain on reheating: The one bit milestone. Physical Review D, 2016, 93, .	1.6	32
1705	Constraining higher-order parameters for primordial non-Gaussianities from power spectra and bispectra of imaging surveys. Physical Review D, 2016, 93, .	1.6	9
1706	CMB lensing bispectrum from nonlinear growth of the large scale structure. Physical Review D, 2016, 93, .	1.6	28
1707	CMB constraints on cosmic strings and superstrings. Physical Review D, 2016, 93, .	1.6	82
1708	Non-Gaussian covariance of the matter power spectrum in the effective field theory of large scale structure. Physical Review D, 2016, 93, .	1.6	57
1709	CMBB-mode non-Gaussianity. Physical Review D, 2016, 93, .	1.6	35
1710	Anisotropies of Gravitational-Wave Standard Sirens as a New Cosmological Probe without Redshift Information. Physical Review Letters, 2016, 116, 121302.	2.9	42
1711	Streaming Velocities and the Baryon Acoustic Oscillation Scale. Physical Review Letters, 2016, 116, 121303.	2.9	41
1712	Running cosmological constant with observational tests. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 760, 422-427.	1.5	10
1713	Probing the statistical properties of CMB <i>B</i> i>mode polarization through Minkowski functionals. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 029-029.	1.9	15
1714	Observational constraints on varying neutrino-mass cosmology. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 049-049.	1.9	24
1715	An extended action for the effective field theory of dark energy: a stability analysis and a complete guide to the mapping at the basis of EFTCAMB. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 018-018.	1.9	38
1716	Detection of the kinematic Sunyaev–Zel'dovich effect with DES Year 1 and SPT. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3172-3193.	1.6	88
1717	CMB lensing and scale dependent new physics. Physical Review D, 2016, 93, .	1.6	5

#	Article	IF	CITATIONS
1718	Redshift-space distortions in massive neutrino and evolving dark energy cosmologies. Physical Review D, 2016, 93, .	1.6	25
1719	Dark matter dispersion tensor in perturbation theory. Physical Review D, 2016, 93, .	1.6	14
1720	Constructing perturbation theory kernels for large-scale structure in generalized cosmologies. Physical Review D, 2016, 94, .	1.6	28
1721	Gravitational-Wave Cosmology across 29 Decades in Frequency. Physical Review X, 2016, 6, .	2.8	113
1722	HOW THE DENSITY ENVIRONMENT CHANGES THE INFLUENCE OF THE DARK MATTER–BARYON STREAMING VELOCITY ON COSMOLOGICAL STRUCTURE FORMATION. Astrophysical Journal, 2016, 830, 68.	1.6	22
1723	MultiDarkLens Simulations: weak lensing light-cones and data base presentation. Monthly Notices of the Royal Astronomical Society, 2016, 461, 209-223.	1.6	23
1724	Dynamics of neutrino lumps in growing neutrino quintessence. Physical Review D, 2016, 94, .	1.6	22
1725	The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from CMASS anisotropic galaxy clustering. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3781-3793.	1.6	88
1726	Effects of local features of the inflaton potential on the spectrum and bispectrum of primordial perturbations. European Physical Journal C, 2016, 76, 1.	1.4	14
1727	Probing primordial features with future galaxy surveys. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 041-041.	1.9	58
1728	New CMB constraints for Abelian Higgs cosmic strings. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 042-042.	1,9	64
1729	Improvement of cosmological neutrino mass bounds. Physical Review D, 2016, 94, .	1.6	136
1730	Linear and non-linear perturbations in dark energy models. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 010-010.	1.9	12
1731	QUANTIFYING DISCORDANCE IN THE 2015 PLANCK CMB SPECTRUM. Astrophysical Journal, 2016, 818, 132.	1.6	192
1732	Limits on entanglement effects in the string landscape from Planck and BICEP/Keck data. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 013-013.	1.9	8
1733	The future of primordial features with large-scale structure surveys. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 014-014.	1.9	59
1734	Inflation in the closed FLRW model and the CMB. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 031-031.	1.9	29
1735	SZ effects in the Magneticum Pathfinder simulation: comparison with the <i>Planck </i> , SPT, and ACT results. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1797-1811.	1.6	135

#	Article	IF	CITATIONS
1736	Cubic derivative interactions and asymptotic dynamics of the galileon vacuum. Classical and Quantum Gravity, 2016, 33, 125036.	1.5	13
1737	Joint measurement of lensing–galaxy correlations using SPT and DES SV data. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4099-4114.	1.6	50
1738	Using measurements of the cosmic bulk flow to constrain (i>f(i) ((i>R(i)) Gravity. Monthly Notices of the Royal Astronomical Society, 2016, 462, 75-80.	1.6	6
1739	Spurious haloes and discreteness-driven relaxation in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2016, 462, 474-489.	1.6	23
1740	Supermassive black holes in the EAGLE Universe. Revealing the observables of their growth. Monthly Notices of the Royal Astronomical Society, 2016, 462, 190-205.	1.6	84
1741	Constraining the mass–richness relationship of redMaPPer clusters with angular clustering. Monthly Notices of the Royal Astronomical Society, 2016, 463, 205-221.	1.6	28
1742	Unbiased contaminant removal for 3D galaxy power spectrum measurements. Monthly Notices of the Royal Astronomical Society, 2016, 463, 467-476.	1.6	10
1743	The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4188-4209.	1.6	130
1744	The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: BAO measurement from the LOS-dependent power spectrum of DR12 BOSS galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4210-4219.	1.6	140
1745	Satellite galaxies in semi-analytic models of galaxy formation with sterile neutrino dark matter. Monthly Notices of the Royal Astronomical Society, 2016, 461, 60-72.	1.6	70
1746	Redshift weights for baryon acoustic oscillations: application to mock galaxy catalogues. Monthly Notices of the Royal Astronomical Society, 2016, 461, 2867-2878.	1.6	13
1747	Spatial curvature endgame: Reaching the limit of curvature determination. Physical Review D, 2016, 94,	1.6	27
1748	Constraining equilateral-type primordial non-Gaussianities from imaging surveys. Physical Review D, 2016, 94, .	1.6	5
1749	Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 052-052.	1.9	126
1750	The trispectrum in the Effective Field Theory of Large Scale Structure. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 052-052.	1.9	54
1751	Constraining neutrinos and dark energy with galaxy clustering in the dark energy survey. Physical Review D, 2016, 94, .	1.6	2
1752	Constraints on dark-matter properties from large-scale structure. Physical Review D, 2016, 94, .	1.6	41
1753	Lensing bias to CMB measurements of compensated isocurvature perturbations. Physical Review D, 2016, 94, .	1.6	13

#	Article	IF	Citations
1754	Constraining primordial and gravitational mode coupling with the position-dependent bispectrum of the large-scale structure. Physical Review D, 2016, 94, .	1.6	6
1755	Planck 2015 constraints on neutrino physics. Journal of Physics: Conference Series, 2016, 718, 032008.	0.3	6
1756	Cosmology based on $f(R)$ gravity with $O(1)eV$ sterile neutrino. Physics of Atomic Nuclei, 2016, 79, 1477-1480.	0.1	0
1757	Sources of the RCR catalog with normal and flat spectra according to data from the Planck microwave survey. Astronomy Reports, 2016, 60, 630-654.	0.2	14
1758	Quasi-matter bounce and inflation in the light of the CSL model. European Physical Journal C, 2016, 76, 1.	1.4	11
1759	On the running of the spectral index to all orders: a new model-dependent approach to constrain inflationary models. Classical and Quantum Gravity, 2016, 33, 115008.	1.5	15
1760	Hybrid Natural Inflation. Journal of High Energy Physics, 2016, 2016, 1.	1.6	14
1761	Efficient calculation of cosmological neutrino clustering in the non-linear regime. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 018-018.	1.9	20
1762	Galaxy clustering, photometric redshifts and diagnosis of systematics in the DES Science Verification data. Monthly Notices of the Royal Astronomical Society, 2016, 455, 4301-4324.	1.6	77
1763	A simple analytic treatment of linear growth of structure with baryon acoustic oscillations. Monthly Notices of the Royal Astronomical Society, 2016, 457, 24-37.	1.6	12
1764	No galaxy left behind: accurate measurements with the faintest objects in the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2016, 457, 786-808.	1.6	71
1765	Predictions for the 21 cm-galaxy cross-power spectrum observable with LOFAR and Subaru. Monthly Notices of the Royal Astronomical Society, 2016, 457, 666-675.	1.6	27
1766	Foreground-induced biases in CMB polarimeter self-calibration. Monthly Notices of the Royal Astronomical Society, 2016, 457, 1796-1803.	1.6	26
1767	Imprint of inhomogeneous and anisotropic primordial power spectrum on CMB polarization. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1577-1587.	1.6	11
1768	The velocity field in MOND cosmology. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2571-2585.	1.6	19
1769	Zooming in on accretion $\hat{a} \in \mathbb{C}$ I. The structure of halo gas. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2881-2904.	1.6	80
1770	Novel Adaptive softening for collisionless <i>N</i> body simulations: eliminating spurious haloes. Monthly Notices of the Royal Astronomical Society, 2016, 458, 468-479.	1.6	19
1771	Hunting down systematics in baryon acoustic oscillations after cosmic high noon. Monthly Notices of the Royal Astronomical Society, 2016, 458, 613-623.	1.6	17

#	Article	IF	CITATIONS
1772	Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1468-1488.	1.6	153
1773	CFHTLenS and RCSLenS cross-correlation with Planck lensing detected in fourier and configuration space. Monthly Notices of the Royal Astronomical Society, 2016, 460, 434-457.	1.6	33
1774	The information content of cosmic microwave background anisotropies. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 046-046.	1.9	14
1775	CMB constraint on dark matter annihilation after Planck 2015. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 756, 212-215.	1.5	31
1776	Dynamics of minimally coupled dark energy in spherical halos of dark matter. General Relativity and Gravitation, 2016, 48, 1.	0.7	12
1777	Turning noise into signal: Learning from the scatter in the Hubble diagram. Physics of the Dark Universe, 2016, 13, 66-76.	1.8	20
1778	Reconstruction of the mass distribution of galaxy clusters from the inversion of the thermal Sunyaev–Zel'dovich effect. Monthly Notices of the Royal Astronomical Society, 2016, 460, 844-854.	1.6	4
1779	Encircling the dark: constraining dark energy via cosmic density in spheres. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1549-1554.	1.6	24
1780	The BOSS–WiggleZ overlap region – I. Baryon acoustic oscillations. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3230-3248.	1.6	58
1781	Constraints on small-scale cosmological fluctuations from SNe lensing dispersion. Monthly Notices of the Royal Astronomical Society, 2016, 455, 552-562.	1.6	10
1782	Fourier analysis of multitracer cosmological surveys. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3871-3889.	1.6	30
1783	Searching for Faraday rotation in cosmic microwave background polarization. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3089-3099.	1.6	1
1784	What is the optimal way to measure the galaxy power spectrum?. Monthly Notices of the Royal Astronomical Society, 2016, 457, 4285-4290.	1.6	2
1785	Cross-correlation analysis of CMB with foregrounds for residuals. Monthly Notices of the Royal Astronomical Society, 2016, 458, 4269-4276.	1.6	7
1786	The 2QDES Pilot: the luminosity and redshift dependence of quasar clustering. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1179-1200.	1.6	24
1787	Galaxy clustering with photometric surveys using PDF redshift information. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1293-1309.	1.6	14
1788	Recovering the tidal field in the projected galaxy distribution. Monthly Notices of the Royal Astronomical Society, 2016, 460, 256-272.	1.6	7
1789	Fingers-of-God effect of infalling satellite galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 455, L77-L81.	1.2	9

#	Article	IF	Citations
1790	Galaxy bias from the Dark Energy Survey Science Verification data: combining galaxy density maps and weak lensing maps. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3203-3216.	1.6	23
1791	Axion cosmology. Physics Reports, 2016, 643, 1-79.	10.3	1,212
1792	THE EXTENDED STELLAR COMPONENT OF GALAXIES THE NATURE OF DARK MATTER. Astrophysical Journal, 2016, 825, 31.	1.6	6
1793	Fitting and forecasting coupled dark energy in the non-linear regime. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 045-045.	1.9	21
1794	Dipole modulation of cosmic microwave background temperature and polarization. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 046-046.	1.9	14
1795	Properties of resonantly produced sterile neutrino dark matter subhaloes. Monthly Notices of the Royal Astronomical Society, 2016, 456, 4346-4353.	1.6	45
1796	Combined constraints on deviations of dark energy from an ideal fluid from <i>Euclid </i> And <i>Planck </i> . Monthly Notices of the Royal Astronomical Society, 2016, 456, 109-118.	1.6	13
1797	Understanding the Epoch of Cosmic Reionization. Astrophysics and Space Science Library, 2016, , .	1.0	30
1798	COSMOLOGICAL PARAMETERS FROM CMB MAPS WITHOUT LIKELIHOOD APPROXIMATION. Astrophysical Journal, 2016, 820, 31.	1.6	8
1799	cosmospec: fast and detailed computation of the cosmological recombination radiation from hydrogen and helium. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3494-3508.	1.6	38
1800	The large-scale observational signatures of low-mass galaxies during reionization. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3011-3029.	1.6	46
1801	Searching for modified gravity: scale and redshift dependent constraints from galaxy peculiar velocities. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2725-2744.	1.6	36
1802	Group–galaxy correlations in redshift space as a probe of the growth of structure. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1948-1963.	1.6	15
1803	The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the correlation function of LOWZ and CMASS galaxies in Data Release 12. Monthly Notices of the Royal Astronomical Society, 2016, 457, 1770-1785.	1.6	138
1804	The Low Redshift survey at Calar Alto (LoRCA). Monthly Notices of the Royal Astronomical Society, 2016, 458, 2940-2952.	1.6	3
1805	Sensitivity and foreground modelling for large-scale cosmic microwave background B-mode polarization satellite missions. Monthly Notices of the Royal Astronomical Society, 2016, 458, 2032-2050.	1.6	66
1806	CosmoBolognaLib: C++ libraries for cosmological calculations. Astronomy and Computing, 2016, 14, 35-42.	0.8	52
1807	The present and future of the most favoured inflationary models after Planck 2015. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 020-020.	1.9	27

#	ARTICLE	IF	CITATIONS
1808	Large scale CMB anomalies from thawing cosmic strings. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 033-033.	1.9	18
1809	Dark matter velocity dispersion effects on CMB and matter power spectra. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 024-024.	1.9	15
1810	CONTRASTING GALAXY FORMATION FROM QUANTUM WAVE DARK MATTER, Ï DM, WITH Ĵ CDM, USING PLANCK AND HUBBLE DATA. Astrophysical Journal, 2016, 818, 89.	1.6	151
1811	Constraints on the neutrino parameters by future cosmological 21 cm line and precise CMB polarization observations. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 008-008.	1.9	35
1812	Confrontation of top-hat spherical collapse against dark halos from cosmological $\langle i \rangle N \langle i \rangle$ -body simulations. Publication of the Astronomical Society of Japan, 2016, 68, .	1.0	12
1813	Large-scale 3D mapping of the intergalactic medium using the Lyman \hat{l}_{\pm} forest. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3610-3623.	1.6	19
1814	Gaussian covariance matrices for anisotropic galaxy clustering measurements. Monthly Notices of the Royal Astronomical Society, 2016, 457, 1577-1592.	1.6	96
1815	Interloper bias in future large-scale structure surveys. Publication of the Astronomical Society of Japan, 2016, 68, .	1.0	24
1816	MAXIMUM LIKELIHOOD FOREGROUND CLEANING FOR COSMIC MICROWAVE BACKGROUND POLARIMETERS IN THE PRESENCE OF SYSTEMATIC EFFECTS. Astrophysical Journal, 2016, 819, 12.	1.6	6
1817	Recovering dark-matter clustering from galaxies with Gaussianization. Monthly Notices of the Royal Astronomical Society, 2016, 457, 3652-3665.	1.6	9
1818	THE IMPACT OF NONLINEAR STRUCTURE FORMATION ON THE POWER SPECTRUM OF TRANSVERSE MOMENTUM FLUCTUATIONS AND THE KINETIC SUNYAEV–ZEL'DOVICH EFFECT. Astrophysical Journal, 2016 818, 37.	5,1.6	18
1819	Joint constraints on galaxy bias and Ïf8through the N-pdf of the galaxy number density. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 005-005.	1.9	7
1820	General relativity and cosmic structure formation. Nature Physics, 2016, 12, 346-349.	6.5	120
1821	Interacting parametrized post-Friedmann method. General Relativity and Gravitation, 2016, 48, 1.	0.7	7
1822	RCSLenS: testing gravitational physics through the cross-correlation of weak lensing and large-scale structure. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2806-2828.	1.6	58
1823	Updated measurements of the dark matter halo masses of obscured quasars with improved <i>WISE</i> and <i>Planck</i> data. Monthly Notices of the Royal Astronomical Society, 2016, 456, 924-942.	1.6	29
1824	Phases of new physics in the CMB. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 007-007.	1.9	112
1825	2MTF \hat{a} e" V. Cosmography, \hat{l}^2 , and the residual bulk flow. Monthly Notices of the Royal Astronomical Society, 2016, 456, 1886-1900.	1.6	31

#	Article	IF	CITATIONS
1826	Black hole formation and growth with non-Gaussian primordial density perturbations. Monthly Notices of the Royal Astronomical Society, 2016, 456, 1901-1912.	1.6	17
1827	CMB lensing tomography with the DES Science Verification galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 456, 3213-3244.	1.6	95
1829	Bayesian model selection without evidences: application to the dark energy equation-of-state. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2461-2473.	1.6	43
1830	Beating non-linearities: improving the baryon acoustic oscillations with the linear point. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2474-2483.	1.6	23
1831	Cosmological parameter inference from galaxy clustering: the effect of the posterior distribution of the power spectrum. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2573-2581.	1.6	17
1832	The 6dF Galaxy Survey: bulk flows on 50-70 <i>h</i> ⁻¹ Mpc scales. Monthly Notices of the Royal Astronomical Society, 2016, 455, 386-401.	1.6	68
1833	The Intrinsic Bispectrum of the Cosmic Microwave Background. Springer Theses, 2016, , .	0.0	3
1834	Statistical imprints of CMB <i>B</i> -type polarization leakage in an incomplete sky survey analysis. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 043-043.	1.9	4
1835	A combined view of sterile-neutrino constraints from CMB and neutrino oscillation measurements. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 764, 322-327.	1.5	17
1836	Constraining the dark energy equation of state using Bayes theorem and the Kullback–Leibler divergence. Monthly Notices of the Royal Astronomical Society, 2017, 466, 369-377.	1.6	32
1837	Constraints on a scale-dependent bias from galaxy clustering. Physical Review D, 2017, 95, .	1.6	14
1838	Planck satellite constraints on pseudo-Nambu-Goldstone boson quintessence. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 023-023.	1.9	15
1839	Constraints on interacting dark energy models from Planck 2015 and redshift-space distortion data. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 028-028.	1.9	82
1840	CMB and matter power spectra with non-linear dark-sector interactions. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 050-050.	1.9	20
1841	Thermal gravitational-wave background in the general pre-inflationary scenario. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 053-053.	1.9	4
1842	Galilean invariant resummation schemes of cosmological perturbations. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 056-056.	1.9	15
1843	Hiding neutrino mass in modified gravity cosmologies. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 043-043.	1.9	34
1844	FAST-PT II: an algorithm to calculate convolution integrals of general tensor quantities in cosmological perturbation theory. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 030-030.	1.9	62

#	Article	IF	CITATIONS
1845	Self-consistent Modeling of Reionization in Cosmological Hydrodynamical Simulations. Astrophysical Journal, 2017, 837, 106.	1.6	85
1846	From Planck Data to Planck Era: Observational Tests of Holographic Cosmology. Physical Review Letters, 2017, 118, 041301.	2.9	44
1847	Testing predictions of the quantum landscape multiverse 1: the Starobinsky inflationary potential. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 002-002.	1.9	17
1848	Constraints on primordial magnetic fields from Planck data combined with the South Pole Telescope CMB <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>B</mml:mi></mml:math> -mode polarization measurements. Physical Review D, 2017. 95	1.6	44
1849	Power spectra based Planck constraints on compensated isocurvature, and forecasts for LiteBIRD and CORE space missions. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 014-014.	1.9	25
1850	Measuring neutrino mass imprinted on the anisotropic galaxy clustering. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 020-020.	1.9	2
1851	Early cosmology constrained. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 023-023.	1.9	32
1852	The Extended Northern ROSAT Galaxy Cluster Survey (NORAS II). I. Survey Construction and First Results. Astronomical Journal, 2017, 153, 220.	1.9	37
1853	Tensor perturbations during inflation in a spatially closed Universe. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 021-021.	1.9	15
1854	Testing î-CDM at the lowest redshifts with SN Ia and galaxy velocities. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 015-015.	1.9	116
1855	Evolution of density and velocity profiles of dark matter and dark energy in spherical voids. Monthly Notices of the Royal Astronomical Society, 2017, 465, 482-491.	1.6	7
1856	The large-scale three-point correlation function of the SDSS BOSS DR12 CMASS galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1070-1083.	1.6	72
1857	Wiener filter reloaded: fast signal reconstruction without preconditioning. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1782-1793.	1.6	17
1858	Small-scale Intensity Mapping: Extended Lyα, Hα, and Continuum Emission as a Probe of Halo Star Formation in High-redshift Galaxies. Astrophysical Journal, 2017, 841, 19.	1.6	31
1859	An effective description of dark matter and dark energy in the mildly non-linear regime. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 038-038.	1.9	30
1860	The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the Fourier space wedges of the final sample. Monthly Notices of the Royal Astronomical Society, 0, , stw3384.	1.6	58
1861	The ALHAMBRA survey: <i>B</i> -band luminosity function of quiescent and star-forming galaxies at 0.2 â‰â€‰ <i>z</i>)a€‱8lt; 1 by PDF analysis. Astronomy and Astrophysics, 2017, 599, A62.	2.1	17
1862	Helium Reionization Simulations. II. Signatures of Quasar Activity on the IGM. Astrophysical Journal, 2017, 841, 87.	1.6	31

#	Article	IF	CITATIONS
1863	Towards a measurement of the spectral runnings. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 032-032.	1.9	48
1864	Tensor Minkowski Functionals: first application to the CMB. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 023-023.	1.9	22
1865	Biasing and the search for primordial non-Gaussianity beyond the local type. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 002-002.	1.9	24
1866	Consistency of the Planck CMB data and $\hat{\mathfrak{b}}$ CDM cosmology. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 012-012.	1.9	15
1867	Low-â,," power suppression in punctuated inflation. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 013-013.	1.9	4
1868	Constraining the $\hat{\nu}\text{CDM}$ and Galileon models with recent cosmological data. Astronomy and Astrophysics, 2017, 600, A40.	2.1	28
1869	On the stability conditions for theories of modified gravity in the presence of matter fields. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 027-027.	1.9	28
1870	The Effect of Corner Modes in the Initial Conditions of Cosmological Simulations. Astrophysical Journal, 2017, 837, 181.	1.6	2
1871	General quadrupolar statistical anisotropy: Planck limits. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 039-039.	1.9	16
1872	Quantum gravity in the sky: interplay between fundamental theory and observations. Classical and Quantum Gravity, 2017, 34, 014002.	1.5	52
1873	CFHTLenS revisited: assessing concordance with Planck including astrophysical systematics. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2033-2052.	1.6	185
1874	KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing. Monthly Notices of the Royal Astronomical Society, 2017, 465, 1454-1498.	1.6	756
1875	More about a successful vector-tensor theory of gravitation. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 004-004.	1.9	5
1876	Simulating cosmologies beyond \hat{k} CDM with PINOCCHIO. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 008-008.	1.9	18
1877	Probing the primordial universe with gravitational waves detectors. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 010-010.	1.9	11
1878	A look into the inside of haloes: a characterization of the halo shape as a function of overdensity in the <i>Planck </i> Cosmology. Monthly Notices of the Royal Astronomical Society, 2017, 466, 181-193.	1.6	39
1879	Cosmology from large-scale galaxy clustering and galaxy–galaxy lensing with Dark Energy Survey Science Verification data. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4045-4062.	1.6	48
1880	On the estimation and detection of the Rees–Sciama effect. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3784-3795.	1.6	3

#	Article	IF	CITATIONS
1881	Erasing the Milky Way: new cleaning technique applied to GBT intensity mapping data. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4938-4949.	1.6	52
1882	Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4807-4822.	1.6	23
1883	Neutrino footprint in large scale structure. Physics of the Dark Universe, 2017, 15, 31-34.	1.8	11
1884	Structure formation simulations with momentum exchange: alleviating tensions between high-redshift and low-redshift cosmological probes. Monthly Notices of the Royal Astronomical Society, 2017, 465, 653-666.	1.6	20
1885	Generating log-normal mock catalog of galaxies in redshift space. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 003-003.	1.9	48
1886	Linear and non-linear Modified Gravity forecasts with future surveys. Physics of the Dark Universe, 2017, 18, 73-104.	1.8	34
1887	Partially acoustic dark matter cosmology and cosmological constraints. Physical Review D, 2017, 96, .	1.6	45
1888	Emulating Simulations of Cosmic Dawn for 21 cm Power Spectrum Constraints on Cosmology, Reionization, and X-Ray Heating. Astrophysical Journal, 2017, 848, 23.	1.6	89
1889	Complete reionization constraints from Planck 2015 polarization. Physical Review D, 2017, 95, .	1.6	36
1890	Effects of electrically charged dark matter on cosmic microwave background anisotropies. Physical Review D, 2017, 95, .	1.6	18
1891	Consistency relations for large-scale structures with primordial non-Gaussianities. Physical Review D, 2017, 95, .	1.6	8
1892	Constraining <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> gravity with Sunyaey-Zel'dovich clusters detected by the Planck satellite. Physical Review D. 2017. 95	1.6	18
1893	Modeling void abundance in modified gravity. Physical Review D, 2017, 95, .	1.6	36
1894	Sterile neutrinos with non-standard secret interactions imprints on Cosmic Microwave Background anisotropies. Journal of Physics: Conference Series, 2017, 841, 012002.	0.3	0
1895	hi_class: Horndeski in the Cosmic Linear Anisotropy Solving System. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 019-019.	1.9	121
1896	Measuring galaxy cluster masses with CMB lensing using a Maximum Likelihood estimator: statistical and systematic error budgets for future experiments. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 030-030.	1.9	23
1897	Constraints on running vacuum model with $\langle i \rangle H \langle i \rangle (\langle i \rangle z \langle i \rangle)$ and $\langle i \rangle f \langle i \rangle f \langle sub \rangle 8 \langle sub \rangle$. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 032-032.	1.9	14
1898	Robust covariance estimation of galaxy–galaxy weak lensing: validation and limitation of jackknife covariance. Monthly Notices of the Royal Astronomical Society, 2017, 470, 3476-3496.	1.6	38

#	Article	IF	CITATIONS
1899	An analytical approach to the CMB anisotropies in a spatially closed background. Astroparticle Physics, 2017, 94, 44-55.	1.9	3
1900	Emission-angle and polarization-rotation effects in the lensed CMB. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 023-023.	1.9	23
1901	Testing non-minimally coupled inflation with CMB data: a Bayesian analysis. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 010-010.	1.9	17
1902	Baryon Acoustic Oscillations reconstruction with pixels. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 012-012.	1.9	19
1903	Warm inflation dissipative effects: Predictions and constraints from the Planck data. Physical Review D, 2017, 95, .	1.6	77
1904	Parametrizing modified gravity for cosmological surveys. Physical Review D, 2017, 96, .	1.6	30
1905	Current and Future Constraints on Primordial Magnetic Fields. Astrophysical Journal, 2017, 846, 164.	1.6	26
1906	Dynamical dark energy in light of the latest observations. Nature Astronomy, 2017, 1, 627-632.	4.2	332
1907	Scalar field descriptions of two dark energy models. Physical Review D, 2017, 96, .	1.6	6
1908	A tale of two modes: neutrino free-streaming in the early universe. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 033-033.	1.9	96
1909	Cosmic microwave background constraints for global strings and global monopoles. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 026-026.	1.9	34
1910	Cosmic microwave background constraints on secret interactions among sterile neutrinos. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 038-038.	1.9	43
1911	Research Progress on Dark Matter Model Based on Weakly Interacting Massive Particles. Chinese Astronomy and Astrophysics, 2017, 41, 149-181.	0.1	1
1912	On Minkowski Functionals of CMB polarization. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 771, 67-73.	1.5	14
1913	Global constraints on absolute neutrino masses and their ordering. Physical Review D, 2017, 95, .	1.6	245
1914	A galaxy–halo model for multiple cosmological tracers. Monthly Notices of the Royal Astronomical Society, 2017, 471, 12-27.	1.6	3
1915	Assessing the impact of bulk and shear viscosities on large scale structure formation. Physical Review D, 2017, 96, .	1.6	19
1916	Weighing neutrinos in Finslerian cosmological models. Physical Review D, 2017, 96, .	1.6	4

#	Article	IF	Citations
1917	Limits on brane-world and particle dark radiation from big bang nucleosynthesis and the CMB. International Journal of Modern Physics E, 2017, 26, 1741007.	0.4	11
1918	H i and cosmological constraints from intensity mapping, optical and CMB surveys. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4251-4260.	1.6	47
1919	Halo assembly bias from Separate Universe simulations. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2984-2999.	1.6	25
1920	Cosmological searches for a noncold dark matter component. Physical Review D, 2017, 96, .	1.6	22
1921	Measurement of baryon acoustic oscillation correlations at <i>z</i> = 2.3 with SDSS DR12 Ly <i>α</i> Forests. Astronomy and Astrophysics, 2017, 603, A12.	2.1	291
1922	A minimal empirical model for the cosmic far-infrared background anisotropies. Monthly Notices of the Royal Astronomical Society, 0, , stx024.	1.6	9
1923	Discerning dark energy models with high redshift standard candles. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1413-1420.	1.6	3
1924	Distinguishing between neutrinos and time-varying dark energy through cosmic time. Physical Review D, 2017, 96, .	1.6	33
1925	Primordial power spectrum features in phenomenological descriptions of inflation. Physics of the Dark Universe, 2017, 17, 38-45.	1.8	6
1926	Impact of Next-to-Leading Order Contributions to Cosmic Microwave Background Lensing. Physical Review Letters, 2017, 118, 211301.	2.9	24
1927	Impact of Massive Neutrinos and Dark Radiation on the High-redshift Cosmic Web. I. Lyα Forest Observables. Astrophysical Journal, Supplement Series, 2017, 233, 12.	3.0	8
1928	CMB internal delensing with general optimal estimator for higher-order correlations. Physical Review D, 2017, 95, .	1.6	22
1929	Efficient simulations of large-scale structure in modified gravity cosmologies with comoving Lagrangian acceleration. Physical Review D, 2017, 95, .	1.6	44
1930	Constraining viscous dark energy models with the latest cosmological data. European Physical Journal C, 2017, 77, 1.	1.4	21
1931	Moving around the cosmological parameter space: A nonlinear power spectrum reconstruction based on high-resolution cosmic responses. Physical Review D, 2017, 96, .	1.6	25
1932	Constraining Reionization with the z â^¼ 5–6 Lyα Forest Power Spectrum: The Outlook after Planck. Astrophysical Journal, 2017, 847, 63.	1.6	34
1933	Evaluating backreaction with the ellipsoidal collapse model. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 008-008.	1.9	8
1934	Warm dark matter and the ionization history of the Universe. Physical Review D, 2017, 96, .	1.6	29

#	Article	IF	CITATIONS
1935	Efficient exploration of cosmology dependence in the EFT of LSS. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 026-026.	1.9	33
1936	Is there another coincidence problem at the reionization epoch?. Physical Review D, 2017, 96, .	1.6	7
1937	Probing gravitational non-minimal coupling with dark energy surveys. European Physical Journal C, 2017, 77, 1.	1.4	9
1938	Scientific Synergy between LSST and <i>Euclid</i> . Astrophysical Journal, Supplement Series, 2017, 233, 21.	3.0	44
1939	CMB delensing beyond the <i>B</i> modes. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 005-005.	1.9	45
1940	Constraints from Ly-α forests on non-thermal dark matter including resonantly-produced sterile neutrinos. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 013-013.	1.9	98
1941	Testing physical models for dipolar asymmetry: From temperature to <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow></mml:mrow>space to lensing. Physical Review D, 2017, 95, .</mml:math>	1.6	14
1942	Inflation in a closed universe. Physical Review D, 2017, 96, .	1.6	41
1943	Probing dark energy using convergence power spectrum and bi-spectrum. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 035-035.	1.9	3
1944	New probe of magnetic fields in the pre-reionization epoch. II. Detectability. Physical Review D, 2017, 95,	1.6	9
1945	New observational limits on dark radiation in braneworld cosmology. Physical Review D, 2017, 95, .	1.6	13
1946	EFTofPNG: a package for high precision computation with the effective field theory of post-Newtonian gravity. Classical and Quantum Gravity, 2017, 34, 244001.	1.5	26
1947	Impact of theoretical priors in cosmological analyses: The case of single field quintessence. Physical Review D, 2017, 96, .	1.6	26
1948	Changing the Bayesian prior: Absolute neutrino mass constraints in nonlocal gravity. Physical Review D, 2017, 96, .	1.6	34
1949	Simulated forecasts for primordial <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>B</mml:mi></mml:math> -mode searches in ground-based experiments. Physical Review D, 2017, 95, .	1.6	27
1950	COLA with massive neutrinos. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 054-054.	1.9	39
1951	Generalized Doppler and aberration kernel for frequency-dependent cosmological observables. Physical Review D, 2017, 96, .	1.6	7
1952	A Measurement of the Hubble Constant Using Galaxy Redshift Surveys. Astrophysical Journal, 2017, 849, 84.	1.6	45

#	Article	IF	CITATIONS
1953	Screening in perturbative approaches to LSS. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 773, 236-241.	1.5	16
1954	Novel vacuum conditions in inflationary collapse models. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 774, 338-350.	1.5	4
1955	Constraints on neutrino masses from Lyman-alpha forest power spectrum with BOSS and XQ-100. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 047-047.	1.9	139
1956	Relativistic initial conditions for N-body simulations. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 043-043.	1.9	29
1957	Editorial note to: E. Lifshitz, On the gravitational stability of the expanding universe. General Relativity and Gravitation, 2017, 49, 1.	0.7	4
1958	Constraining the break of spatial diffeomorphism invariance with Planck data. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 013-013.	1.9	9
1959	Detecting Patchy Reionization in the Cosmic Microwave Background. Physical Review Letters, 2017, 119, 021301.	2.9	45
1960	Constraining holographic cosmology using Planck data. Physical Review D, 2017, 95, .	1.6	14
1961	The Splashback Radius of Halos from Particle Dynamics. II. Dependence on Mass, Accretion Rate, Redshift, and Cosmology. Astrophysical Journal, 2017, 843, 140.	1.6	94
1962	The Splashback Radius of Halos from Particle Dynamics. I. The SPARTA Algorithm. Astrophysical Journal, Supplement Series, 2017, 231, 5.	3.0	70
1963	On the impact of large angle CMB polarization data on cosmological parameters. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 041-041.	1.9	15
1964	New Fitting Formula for Cosmic Nonlinear Density Distribution. Astrophysical Journal, 2017, 843, 73.	1.6	20
1965	The effect of early radiation in N-body simulations of cosmic structure formation. Monthly Notices of the Royal Astronomical Society, 2017, 470, 303-313.	1.6	26
1966	The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: towards a computationally efficient analysis without informative priors. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4116-4133.	1.6	16
1967	The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from DR12 galaxy clustering – towards an accurate model. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2370-2390.	1.6	39
1968	O(1) eV sterile neutrino in f(R) gravity. Physics of Particles and Nuclei, 2017, 48, 55-58.	0.2	0
1969	CMB anomalies and the effects of local features of the inflaton potential. European Physical Journal C, 2017, 77, 1.	1.4	9
1970	A new pressure-parametrization unified dark fluid model. European Physical Journal C, 2017, 77, 1.	1.4	13

#	Article	IF	CITATIONS
1971	Lorentz invariance violation in the neutrino sector: a joint analysis from big bang nucleosynthesis and the cosmic microwave background. European Physical Journal C, 2017, 77, 1.	1.4	12
1972	A search for sterile neutrinos with the latest cosmological observations. European Physical Journal C, 2017, 77, 1.	1.4	46
1973	Linear density perturbations in multifield coupled quintessence. Physical Review D, 2017, 95, .	1.6	8
1974	The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: tomographic BAO analysis of DR12 combined sample in configuration space. Monthly Notices of the Royal Astronomical Society, 2017, 469, 3762-3774.	1.6	122
1975	The Sherwood simulation suite: overview and data comparisons with the LymanÂÎ \pm forest at redshifts 2 â‰ <i>z</i> å 5. Monthly Notices of the Royal Astronomical Society, 2017, 464, 897-914.	1.6	119
1976	A survey of dark matter and related topics in cosmology. Frontiers of Physics, 2017, 12, 1.	2.4	49
1977	Spherical collapse, formation hysteresis and the deeply non-linear cosmological power spectrum. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1282-1293.	1.6	29
1978	The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the configuration-space clustering wedges. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1640-1658.	1.6	143
1979	Cosmological forecasts for combined and next-generation peculiar velocity surveys. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2517-2544.	1.6	44
1980	Simultaneous constraints on cosmology and photometric redshift bias from weak lensing and galaxy clustering. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 465, L20-L24.	1.2	14
1981	Cosmological implications of the dark matter equation of state. International Journal of Modern Physics D, 2017, 26, 1750013.	0.9	6
1982	Redshift remapping and cosmic acceleration in dark-matter-dominated cosmological models. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4493-4511.	1.6	13
1983	Late-time acceleration with steep exponential potentials. European Physical Journal C, 2017, 77, 1.	1.4	5
1984	The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: tomographic BAO analysis of DR12 combined sample in Fourier space. Monthly Notices of the Royal Astronomical Society, 2017, 466, 762-779.	1.6	54
1985	Cosmology with phase statistics: parameter forecasts and detectability of BAO. Monthly Notices of the Royal Astronomical Society, 2017, 466, 2496-2516.	1.6	18
1986	Precise clustering and density evolution of redMaPPer galaxy clusters versus MXXL simulation. Monthly Notices of the Royal Astronomical Society, 2017, 466, 2658-2674.	1.6	13
1987	Initial conditions for accurate <i>N</i> -body simulations of massive neutrino cosmologies. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3244-3258.	1.6	67
1988	Improving Fisher matrix forecasts for galaxy surveys: window function, bin cross-correlation and bin redshift uncertainty. Monthly Notices of the Royal Astronomical Society, 2017, 470, 688-705.	1.6	13

#	Article	IF	CITATIONS
1989	The characteristic halo masses of half-a-million WISE-selected quasars. Monthly Notices of the Royal Astronomical Society, 2017, 469, 4630-4643.	1.6	29
1990	Testing the conditional mass function of dark matter haloes against numerical N-body simulations. Monthly Notices of the Royal Astronomical Society, 2017, 467, 3424-3442.	1.6	9
1991	Accurate initial conditions in mixed dark matter–baryon simulations. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4401-4409.	1.6	21
1992	Optimizing future experiments of cosmic far-infrared background: a principal component approach. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4150-4160.	1.6	9
1993	Deep spectroscopy in nearby galaxy clusters $\hat{a} \in \mathbb{N}$ III. Orbital structure of galaxies in Abell 85. Monthly Notices of the Royal Astronomical Society, 2017, 468, 364-377.	1.6	17
1994	Simulating the impact of X-ray heating during the cosmic dawn. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3785-3797.	1.6	40
1995	Assessment of the information content of the power spectrum and bispectrum. Physical Review D, $2017, 96, .$	1.6	66
1996	The Einstein–Boltzmann equations revisited. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2391-2430.	1.6	4
1997	The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: on the measurement of growth rate using galaxy correlation functions. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1369-1382.	1.6	79
1998	Optimized clustering estimators for BAO measurements accounting for significant redshift uncertainty. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4456-4468.	1.6	20
1999	The Python Sky Model: software for simulating the Galactic microwave sky. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2821-2833.	1.6	127
2000	Witnessing the reionization history using Cosmic Microwave Background observation from Planck. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 028-028.	1.9	21
2001	Cosmic microwave background constraints on primordial black hole dark matter. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 017-017.	1.9	66
2002	Clustering of quasars in SDSS-IV eBOSS: study of potential systematics and bias determination. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 017-017.	1.9	66
2003	Cross-correlating 2D and 3D galaxy surveys. Physical Review D, 2017, 95, .	1.6	12
2004	Note on the initial conditions within the effective field theory approach of cosmic acceleration. Physical Review D, 2017, 96, .	1.6	2
2005	Large-scale clustering as a probe of the origin and the host environment of fast radio bursts. Physical Review D, 2017, 95, .	1.6	16
2006	Complementing the ground-based CMB-S4 experiment on large scales with the PIXIE satellite. Physical Review D, 2017, 95, .	1.6	21

#	Article	IF	Citations
2007	Robust predictions for an oscillatory bispectrum in Planck 2015 data from transient reductions in the speed of sound of the inflaton. Physical Review D, 2017, 96 , .	1.6	10
2008	Inflationary features and shifts in cosmological parameters from Planck 2015 data. Physical Review D, 2017, 96, .	1.6	18
2009	Imprints of reionization in galaxy clustering. Physical Review D, 2017, 96, .	1.6	12
2010	Lagrangian perturbation theory for modified gravity. Physical Review D, 2017, 96, .	1.6	34
2011	Small-scale effects of thermal inflation on halo abundance at high- z , galaxy substructure abundance, and 21-cm power spectrum. Physical Review D, 2017, 96, .	1.6	3
2012	No evidence for dynamical dark energy in two models. Physical Review D, 2017, 96, .	1.6	12
2013	Lens covariance effects on likelihood analyses of CMB power spectra. Physical Review D, 2017, 96, .	1.6	7
2014	Constraining interacting dark energy with CMB and BAO future surveys. Physical Review D, 2017, 96, .	1.6	27
2015	Unveiling <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>$\hat{l}^{1}/2$</mml:mi></mml:math> secrets with cosmological data: Neutrino masses and mass hierarchy. Physical Review D, 2017, 96, .	1.6	277
2016	Multitracer CMB delensing maps from Planck and WISE data. Physical Review D, 2017, 96, .	1.6	35
2017	3D simulations with boosted primordial power spectra and ultracompact minihalos. Physical Review D, 2017, 96, .	1.6	38
2018	Equivalence of cosmological observables in conformally related scalar tensor theories. Physical Review D, 2017, 96, .	1.6	13
2019	Cosmological <i>N</i> -body simulations with generic hot dark matter. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 015-015.	1.9	8
2020	CMB anisotropies from patchy reionisation and diffuse Sunyaev-Zel'dovich effects. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 026-026.	1.9	2
2021	2MTF $\hat{a} \in \text{``VI.}$ Measuring the velocity power spectrum. Monthly Notices of the Royal Astronomical Society, 2017, 471, 3135-3151.	1.6	57
2022	The separate and combined effects of baryon physics and neutrino free streaming on large-scale structure. Monthly Notices of the Royal Astronomical Society, 2017, 471, 227-242.	1.6	58
2023	Improving constraints on the growth rate of structure by modelling the density–velocity cross-correlation in the 6dF Galaxy Survey. Monthly Notices of the Royal Astronomical Society, 2017, 471, 839-856.	1.6	36
2024	Evidence for interacting dark energy from BOSS. Physical Review D, 2017, 95, .	1.6	65

#	Article	IF	CITATIONS
2025	Testing parity-violating physics from cosmic rotation power reconstruction. Physical Review D, 2017, 95, .	1.6	12
2026	Unbiased constraints on ultralight axion mass from dwarf spheroidal galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1346-1360.	1.6	77
2027	Smoothing the redshift distributions of random samples for the baryon acoustic oscillations: applications to the SDSS-III BOSS DR12 and QPM mock samples. Monthly Notices of the Royal Astronomical Society, 2017, 472, 2869-2876.	1.6	6
2028	Running of featureful primordial power spectra. Physical Review D, 2017, 95, .	1.6	1
2029	Forward Modeling of Large-scale Structure: An Open-source Approach with Halotools. Astronomical Journal, 2017, 154, 190.	1.9	100
2030	The Mira-Titan Universe. II. Matter Power Spectrum Emulation. Astrophysical Journal, 2017, 847, 50.	1.6	98
2031	A 2500 deg ² CMB Lensing Map from Combined South Pole Telescope and Planck Data. Astrophysical Journal, 2017, 849, 124.	1.6	49
2032	Full-sky Gravitational Lensing Simulation for Large-area Galaxy Surveys and Cosmic Microwave Background Experiments. Astrophysical Journal, 2017, 850, 24.	1.6	114
2033	Next Generation Virgo Cluster Survey. XXI. The Weak Lensing Masses of the CFHTLS and NGVS RedGOLD Galaxy Clusters and Calibration of the Optical Richness. Astrophysical Journal, 2017, 848, 114.	1.6	7
2034	Planck constraint on relic primordial black holes. Physical Review D, 2017, 95, .	1.6	72
2035	Constraints on dark matter scenarios from measurements of the galaxy luminosity function at high redshifts. Physical Review D, 2017, 95, .	1.6	83
2036	A unifying evolutionary framework for infrared-selected obscured and unobscured quasar host haloes. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3526-3535.	1.6	12
2037	Effect of primordial non-Gaussianities on galaxy clusters scaling relations. Monthly Notices of the Royal Astronomical Society, 2017, 469, 551-560.	1.6	1
2038	Jeans analysis for dwarf spheroidal galaxies in wave dark matter. Monthly Notices of the Royal Astronomical Society, 2017, 468, 1338-1348.	1.6	88
2039	Wavelet-Bayesian inference of cosmic strings embedded in the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4081-4098.	1.6	16
2040	Fast weak-lensing simulations with halo model. Monthly Notices of the Royal Astronomical Society, 2017, 470, 3574-3590.	1.6	18
2041	KiDS-450: testing extensions to the standard cosmological model. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1259-1279.	1.6	144
2042	Response approach to the matter power spectrum covariance. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 051-051.	1.9	33

#	Article	IF	Citations
2043	Constraints on long-lived electrically charged massive particles from anomalous strong lens systems. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 008-008.	1.9	7
2044	Cosmological <i>N</i> -body simulations including radiation perturbations. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 466, L68-L72.	1.2	28
2045	Tomographic Imaging of the Fermi-LAT γ-Ray Sky through Cross-correlations: A Wider and Deeper Look. Astrophysical Journal, Supplement Series, 2017, 232, 10.	3.0	18
2046	Constraining dynamical neutrino mass generation with cosmological data. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 014-014.	1.9	11
2047	Detection of baryon acoustic oscillation features in the large-scale three-point correlation function of SDSS BOSS DR12 CMASS galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1738-1751.	1.6	96
2048	Modelling the large-scale redshift-space 3-point correlation function of galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 469, 2059-2076.	1.6	32
2049	Efficient evaluation of angular power spectra and bispectra. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 054-054.	1.9	45
2050	Cosmic microwave background science at commercial airline altitudes. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 469, L6-L10.	1.2	1
2051	Non-minimal derivative coupling scalar field and bulk viscous dark energy. European Physical Journal C, 2017, 77, 1.	1.4	20
2052	Constraining the mass of light bosonic dark matter using SDSS Lyman-α forest. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4606-4614.	1.6	183
2053	Linear scale bounds on dark matter-dark radiation interactions and connection with the small scale crisis of cold dark matter. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 010-010.	1.9	24
2054	Galaxy two-point covariance matrix estimation for next generation surveys. Monthly Notices of the Royal Astronomical Society, 2017, 472, 4935-4952.	1.6	23
2055	Responses in large-scale structure. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 053-053.	1.9	41
2056	Convergence properties of halo merger trees; halo and substructure merger rates across cosmic history. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3659-3682.	1.6	31
2057	Weighing neutrinos in the scenario of vacuum energy interacting with cold dark matter: application of the parameterized post-Friedmann approach. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 040-040.	1.9	48
2058	The SDSS-IV eBOSS: emission line galaxy catalogues at $\langle i \rangle z \langle i \rangle \hat{a} \% \hat{o}$ 0.8 and study of systematic errors in the angular clustering. Monthly Notices of the Royal Astronomical Society, 2017, 465, 1831-1846.	1.6	23
2059	Interpreting ALMA observations of the ISM during the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4831-4861.	1.6	90
2060	Lensing smoothing of BAO wiggles. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 016-016.	1.9	9

#	Article	IF	CITATIONS
2061	The effect of stellar and AGN feedback on the low-redshift Lyman \hat{l}_{\pm} forest in the Sherwood simulation suite. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1056-1069.	1.6	17
2062	The global 21-cm signal in the context of the high- <i>z</i> galaxy luminosity function. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1365-1379.	1.6	95
2063	The bahamas project: calibrated hydrodynamical simulations for large-scale structure cosmology. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2936-2965.	1.6	304
2064	Testing the Interacting Dark Energy Model with Cosmic Microwave Background Anisotropy and Observational Hubble Data. Entropy, 2017, 19, 327.	1.1	8
2065	Reionization and Cosmic Dawn: theory and simulations. Proceedings of the International Astronomical Union, 2017, 12, 3-11.	0.0	3
2066	An Evaluation of Cosmological Models from the Expansion and Growth of Structure Measurements. Astrophysical Journal, 2017, 850, 183.	1.6	55
2067	Addressing the too big to fail problem with baryon physics and sterile neutrino dark matter. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2836-2849.	1.6	41
2068	Increasing Fisher information by Potential Isobaric Reconstruction. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1968-1973.	1.6	15
2069	Statical Properties of CMB B-Mode Polarisation in a Partial Sky Analysis. International Journal of Modern Physics Conference Series, 2017, 45, 1760010.	0.7	0
2070	Reconstruction of halo power spectrum from redshift-space galaxy distribution: cylinder-grouping method and halo exclusion effect. Monthly Notices of the Royal Astronomical Society, 2017, 469, 459-475.	1.6	12
2071	Evolution of the real-space correlation function from next generation cluster surveys. Astronomy and Astrophysics, 2017, 600, A32.	2.1	5
2072	Testing anthropic reasoning for the cosmological constant with a realistic galaxy formation model. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1563-1568.	1.6	9
2073	21 cm intensity mapping with the Five hundred metre Aperture Spherical Telescope. Astronomy and Astrophysics, 2017, 597, A136.	2.1	22
2074	Relieving tensions related to the lensing of the cosmic microwave background temperature power spectra. Astronomy and Astrophysics, 2017, 597, A126.	2.1	21
2075	The extended ROSAT-ESO Flux-Limited X-ray Galaxy Cluster Survey (REFLEX II). Astronomy and Astrophysics, 2017, 608, A65.	2.1	18
2076	<i>Planck </i> iintermediate results. Astronomy and Astrophysics, 2017, 607, A95.	2.1	131
2077	Cosmological constraints on the neutrino mass including systematic uncertainties. Astronomy and Astrophysics, 2017, 606, A104.	2.1	34
2078	Baryon acoustic oscillations from the complete SDSS-III Ly <i>\hat{l}±</i> -quasar cross-correlation function at z = 2.4. Astronomy and Astrophysics, 2017, 608, A130.	2.1	189

#	Article	IF	CITATIONS
2079	Dynamical friction in the primordial neutrino sea. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2164-2175.	1.6	7
2080	Bispectrum supersample covariance. Physical Review D, 2018, 97, .	1.6	27
2081	Large fluctuations in the high-redshift metagalactic ionizing background. Monthly Notices of the Royal Astronomical Society, 2018, 473, 560-575.	1.6	99
2082	Large-scale stability and astronomical constraints for coupled dark-energy models. Physical Review D, 2018, 97, .	1.6	85
2083	A Bayesian analysis of inflationary primordial spectrum models using Planck data. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 004-004.	1.9	17
2084	Theoretical and observational constraints on Tachyon Inflation. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 015-015.	1.9	12
2085	A general theory of linear cosmological perturbations: stability conditions, the quasistatic limit and dynamics. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 021-021.	1.9	35
2086	Projection Effects of Large-scale Structures on Weak-lensing Peak Abundances. Astrophysical Journal, 2018, 857, 112.	1.6	8
2087	A Multiscale pipeline for the search of string-induced CMB anisotropies. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1010-1022.	1.6	16
2088	Observational constraints on Gauss–Bonnet cosmology. International Journal of Modern Physics D, 2018, 27, 1850084.	0.9	46
2089	Dark energy and modified gravity in the Effective Field Theory of Large-Scale Structure. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 005-005.	1.9	38
2090	Exploring cosmic origins with CORE: Inflation. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 016-016.	1.9	7 5
2091	Exploring cosmic origins with CORE: Cosmological parameters. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 017-017.	1.9	73
2092	Exploring cosmic origins with CORE: <i>B</i> -mode component separation. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 023-023.	1.9	44
2093	The BAHAMAS project: the CMB–large-scale structure tension and the roles of massive neutrinos and galaxy formation. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2999-3030.	1.6	113
2094	The impact of dark energy on galaxy formation. What does the future of our Universe hold?. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3744-3759.	1.6	10
2095	Probing supervoids with weak lensing. Monthly Notices of the Royal Astronomical Society, 2018, 476, 359-365.	1.6	5
2096	Parametrizing growth in dark energy and modified gravity models. Physical Review D, 2018, 97, .	1.6	6

#	ARTICLE	IF	CITATIONS
2097	Large-scale structure phenomenology of viable Horndeski theories. Physical Review D, 2018, 97, .	1.6	53
2098	Cosmological Parameter Estimation Using the Genus Amplitude—Application to Mock Galaxy Catalogs. Astrophysical Journal, 2018, 853, 17.	1.6	13
2099	Cosmological parameter forecasts for H i intensity mapping experiments using the angular power spectrum. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4242-4256.	1.6	33
2100	Testing statistical isotropy in cosmic microwave background polarization maps. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4357-4366.	1.6	8
2101	Light axinos from freeze-in: production processes, phase space distributions, and Ly-α forest constraints. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 054-054.	1.9	37
2102	Halo abundance and assembly history with extreme-axion wave dark matter at <i>z</i> ≥ 4. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 473, L36-L40.	1.2	16
2103	Simulating galaxy formation with the IllustrisTNG model. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4077-4106.	1.6	1,144
2104	Probing features in inflaton potential and reionization history with future CMB space observations. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 017-017.	1.9	24
2105	Resurrecting the Power-law, Intermediate, and Logamediate Inflations in the DBI Scenario with Constant Sound Speed. Astrophysical Journal, 2018, 853, 188.	1.6	15
2106	The KBC Void: Consistency with Supernovae Type Ia and the Kinematic SZ Effect in a bLTB Model. Astrophysical Journal, 2018, 854, 46.	1.6	26
2107	Lensing bias to CMB polarization measurements of compensated isocurvature perturbations. Physical Review D, 2018, 97, .	1.6	3
2108	Real space lensing reconstruction using cosmic microwave background polarization. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 034-034.	1.9	12
2109	Comparison of Einstein-Boltzmann solvers for testing general relativity. Physical Review D, 2018, 97, .	1.6	44
2110	Making maps of cosmological parameters. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 042-042.	1.9	8
2111	Dark matter annihilation into four-body final states and implications for the AMS antiproton excess. Physical Review D, 2018, 97, .	1.6	11
2112	An analytical approach to the CMB polarization in a spatially closed background. Physics of the Dark Universe, 2018, 19, 36-45.	1.8	0
2113	Fast and accurate computation of projected two-point functions. Physical Review D, 2018, 97, .	1.6	29
2114	Measurements of the Temperature and E-mode Polarization of the CMB from 500 Square Degrees of SPTpol Data. Astrophysical Journal, 2018, 852, 97.	1.6	145

#	Article	IF	CITATIONS
2115	KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4894-4924.	1.6	212
2116	Cosmology and fundamental physics with the Euclid satellite. Living Reviews in Relativity, 2018, 21, 2.	8.2	602
2117	High-redshift post-reionization cosmology with 21cm intensity mapping. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 004-004.	1.9	51
2118	Detecting the neutrinos mass hierarchy from cosmological data. Science China: Physics, Mechanics and Astronomy, 2018, 61, 1.	2.0	32
2119	The two and three-loop matter bispectrum in perturbation theories. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 055-055.	1.9	20
2120	New limits on coupled dark energy model after Planck 2015. Physics of the Dark Universe, 2018, 20, 78-87.	1.8	6
2121	A measurement of CMB cluster lensing with SPT and DES year 1 data. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2674-2688.	1.6	41
2122	The dipole anisotropy of AllWISE galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1772-1781.	1.6	15
2123	Constraints on the Mass–Richness Relation from the Abundance and Weak Lensing of SDSS Clusters. Astrophysical Journal, 2018, 854, 120.	1.6	68
2124	Cold dark energy constraints from the abundance of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2018, 473, 3882-3894.	1.6	14
2125	Where next for the expanding universe?. Astronomy and Geophysics, 2018, 59, 2.39-2.42.	0.1	2
2126	Optimal and fast $E_{mathcal} \{E\}$ separation with a dual messenger field. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2825-2834.	1.6	8
2127	Probing features in the primordial perturbation spectrum with large-scale structure data. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2503-2512.	1.6	21
2128	CMB constraints on \hat{l}^2 -exponential inflationary models. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 023-023.	1.9	19
2129	The Foundation Supernova Survey: motivation, design, implementation, and first data release. Monthly Notices of the Royal Astronomical Society, 2018, 475, 193-219.	1.6	88
2130	Do current cosmological observations rule out all covariant Galileons?. Physical Review D, 2018, 97, .	1.6	50
2131	Impact of theoretical assumptions in the determination of the neutrino effective number from future CMB measurements. Physical Review D, 2018, 97, .	1.6	8
2132	The Atacama Cosmology Telescope: The Two-season ACTPol Sunyaev–Zel'dovich Effect Selected Cluster Catalog. Astrophysical Journal, Supplement Series, 2018, 235, 20.	3.0	121

#	Article	IF	CITATIONS
2133	Constraining warm inflation with CMB data. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 054-054.	1.9	39
2134	The full-sky relativistic correlation function and power spectrum of galaxy number counts. Part I: theoretical aspects. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 019-019.	1.9	50
2135	Constraining the baryon–dark matter relative velocity with the large-scale three-point correlation function of the SDSS BOSS DR12 CMASS galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 474, 2109-2115.	1.6	26
2136	Finding structure in the dark: Coupled dark energy, weak lensing, and the mildly nonlinear regime. Physical Review D, 2018, 97, .	1.6	10
2137	The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: first measurement of baryon acoustic oscillations between redshift 0.8 and 2.2. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4773-4794.	1.6	301
2138	A fresh look into the interacting dark matter scenario. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 007-007.	1.9	45
2139	Effect of Template Uncertainties on the WMAP and Planck Measures of the Optical Depth Due to Reionization. Astrophysical Journal, 2018, 863, 161.	1.6	16
2140	A Projected Estimate of the Reionization Optical Depth Using the CLASS Experiment's Sample Variance Limited E-mode Measurement. Astrophysical Journal, 2018, 863, 121.	1.6	26
2141	COLOSSUS: A Python Toolkit for Cosmology, Large-scale Structure, and Dark Matter Halos. Astrophysical Journal, Supplement Series, 2018, 239, 35.	3.0	271
2142	Non-Gaussianity of secondary anisotropies from ACTPol and Planck. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 022-022.	1.9	19
2143	Power spectrum multipoles on the curved sky: an application to the 6-degree Field Galaxy Survey. Monthly Notices of the Royal Astronomical Society, 2018, 479, 5168-5183.	1.6	33
2144	Inflationary versus reionization features from <i>Planck</i> 2015 data. Physical Review D, 2018, 98, .	1.6	14
2145	Calibrating magnification bias for the EG statistic to test general relativity. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1441-1454.	1.6	5
2146	The integrated Sachs–Wolfe effect in the AvERA cosmology. Monthly Notices of the Royal Astronomical Society, 2018, 479, 3582-3591.	1.6	26
2147	Statistical anisotropies in temperature and polarization fluctuations from a scale-dependent trispectrum. Physical Review D, 2018, 98, .	1.6	6
2148	Effect of non-Gaussian lensing deflections on CMB lensing measurements. Physical Review D, 2018, 98, .	1.6	28
2149	Cumulative Neutrino and Gamma-Ray Backgrounds from Halo and Galaxy Mergers. Astrophysical Journal, 2018, 857, 50.	1.6	11
2150	The Quest for the Inflationary Spectral Runnings in the Presence of Systematic Errors. Astrophysical Journal, 2018, 862, 137.	1.6	6

#	Article	IF	CITATIONS
2151	Testing the ABS Method with the Simulated Planck Temperature Maps. Astrophysical Journal, Supplement Series, 2018, 239, 36.	3.0	4
2152	Multidimensional roles of flavonoids in background of (i) Gossypium hirsutum (/i). Cogent Food and Agriculture, 2018, 4, 1510754.	0.6	3
2153	Lensing reconstruction from line intensity maps: the impact of gravitational nonlinearity. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 046-046.	1.9	30
2154	Probing the Neutrino Mass Hierarchy beyond Î>CDM Model. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 042-042.	1.9	11
2155	Measurements of the Matter Density Perturbation Amplitude from Cosmological Data. Astronomy Letters, 2018, 44, 653-663.	0.1	6
2156	Scale-dependent galaxy bias, CMB lensing-galaxy cross-correlation, and neutrino masses. Physical Review D, 2018, 98, .	1.6	73
2157	The VIMOS Public Extragalactic Redshift Survey (VIPERS). Astronomy and Astrophysics, 2018, 619, A17.	2.1	24
2158	Cosmological constraints on Horndeski gravity in light of GW170817. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 030-030.	1.9	66
2159	Cosmic degeneracies III: N-body simulations of interacting dark energy with non-Gaussian initial conditions. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2933-2945.	1.6	5
2160	Weak lensing light-cones in modified gravity simulations with and without massive neutrinos. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2813-2828.	1.6	39
2161	Joint analysis of the thermal Sunyaev–Zeldovich effect and 2MASS galaxies: probing gas physics in the local Universe and beyond. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3928-3941.	1.6	39
2162	Halo mass and weak galaxy-galaxy lensing profiles in rescaled cosmological N-body simulations. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	9
2163	Galaxy bispectrum from massive spinning particles. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 013-013.	1.9	53
2164	Forecasts on dark energy from the X-ray cluster survey with eROSITA: constraints from counts and clustering. Monthly Notices of the Royal Astronomical Society, 2018, 481, 613-626.	1.6	39
2165	Isocurvature initial conditions for second order Boltzmann solvers. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 020-020.	1.9	6
2166	The kinematic Sunyaev–Zel'dovich effect of the large-scale structure (II): the effect of modified gravity. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2497-2506.	1.6	9
2167	Detection significance of baryon acoustic oscillations peaks in galaxy and quasar clustering. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4091-4107.	1.6	3
2168	Bispectrum as baryon acoustic oscillation interferometer. Physical Review D, 2018, 98, .	1.6	10

#	Article	IF	CITATIONS
2169	Inflationary study of non-Gaussianity using two-dimensional geometrical measures of CMB temperature maps. Physical Review D, 2018, 98, .	1.6	0
2170	Beyond the traditional line-of-sight approach of cosmological angular statistics. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 047-047.	1.9	29
2171	Dark matter kinetic decoupling with a light particle. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 047-047.	1.9	9
2172	The triply-ionized carbon forest from eBOSS: cosmological correlations with quasars in SDSS-IV DR14. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 029-029.	1.9	13
2173	Adiabatic regularization of power spectrum and stress tensor of relic gravitational wave without low-frequency distortion. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 006-006.	1.9	9
2174	BAO from angular clustering: optimization and mitigation of theoretical systematics. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3031-3051.	1.6	14
2175	Nonlinear evolution of initially biased tracers in modified gravity. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 013-013.	1.9	22
2176	Neutrino masses and their ordering: global data, priors and models. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 011-011.	1.9	74
2177	Observational Constraints on the Tilted Spatially Flat and the Untilted Nonflat ϕCDM Dynamical Dark Energy Inflation Models. Astrophysical Journal, 2018, 868, 83.	1.6	69
2178	3D cosmic shear: Numerical challenges, 3D lensing random fields generation, and Minkowski functionals for cosmological inference. Physical Review D, 2018, 98, .	1.6	10
2179	Asymptotic-de sitter inflation in the light of the planck data. Chinese Physics C, 2018, 42, 115102.	1.5	3
2180	Imprints of Oscillatory Bispectra on Galaxy Clustering. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 003-003.	1.9	25
2181	A Detection of the Baryon Acoustic Oscillation features in the SDSS BOSS DR12 Galaxy Bispectrum. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4500-4512.	1.6	56
2182	Low redshift baryon acoustic oscillation measurement from the reconstructed 6-degree field galaxy survey. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2371-2383.	1.6	59
2183	KiDS-450: enhancing cosmic shear with clipping transformations. Monthly Notices of the Royal Astronomical Society, 2018, 480, 5529-5549.	1.6	21
2184	Cluster counts: Calibration issue or new physics?. Astronomy and Astrophysics, 2018, 620, A78.	2.1	22
2185	Halos in Dark Ages: Formation and Chemistry. Astrophysical Journal, 2018, 865, 38.	1.6	5
2186	Dark Energy in Light of Multi-Messenger Gravitational-Wave Astronomy. Frontiers in Astronomy and Space Sciences, 2018, 5, .	1.1	146

#	ARTICLE	IF	CITATIONS
2187	Interacting dark energy with time varying equation of state and the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>H</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math> tension. Physical Review D, 2018, 98, .	1.6	101
2188	Planck 2015 Constraints on the Non-flat XCDM Inflation Model. Astrophysical Journal, 2018, 869, 34.	1.6	47
2189	Evolution of Dark Energy Reconstructed from the Latest Observations. Astrophysical Journal Letters, 2018, 869, L8.	3.0	74
2190	Constraining the Dark Matter Vacuum Energy Interaction Using the EDGES 21 cm Absorption Signal. Astrophysical Journal, 2018, 869, 26.	1.6	22
2191	Constraining sterile neutrino cosmologies with strong gravitational lensing observations at redshift z $\hat{a}^{-1}/4$ 0.2. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3661-3669.	1.6	66
2192	Model-independent predictions for smooth cosmic acceleration scenarios. Physical Review D, 2018, 98,	1.6	11
2193	Fractional Dynamics, Anomalous Transport and Plasma Science., 2018,,.		4
2194	nbodykit: An Open-source, Massively Parallel Toolkit for Large-scale Structure. Astronomical Journal, 2018, 156, 160.	1.9	182
2195	Complete super-sample lensing covariance in the response approach. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 015-015.	1.9	53
2196	Perspectives for Cosmological Reionization From Future CMB and Radio Projects. Frontiers in Astronomy and Space Sciences, 2018, 5, .	1.1	0
2197	Search for C ii emission on cosmological scales at redshift ZÂâ^¼Â2.6. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1911-1924.	1.6	46
2198	SILVERRUSH. VI. A simulation of LyÎ \pm emitters in the reionization epoch and a comparison with Subaru Hyper Suprime-Cam survey early data. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	40
2199	21-cm Fluctuations from Charged Dark Matter. Physical Review Letters, 2018, 121, 121301.	2.9	67
2200	High redshift galaxies in the ALHAMBRA survey. Astronomy and Astrophysics, 2018, 614, A129.	2.1	9
2201	Survey geometry and the internal consistency of recent cosmic shear measurements. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4998-5004.	1.6	68
2202	Internal dark matter structure of the most massive galaxy clusters. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 473, L69-L73.	1.2	11
2203	Strong orientation dependence of surface mass density profiles of dark haloes at large scales. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2141-2153.	1.6	30
2204	Dark energy constraints in light of Pantheon SNe Ia, BAO, cosmic chronometers and CMB polarization and lensing data. Physical Review D, 2018, 97, .	1.6	10

#	Article	IF	CITATIONS
2205	The $\langle i \rangle H \langle i \rangle \langle sub \rangle 0 \langle sub \rangle$ and $ i f \langle sub \rangle 8 \langle sub \rangle$ tensions and the scale invariant spectrum. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 066-066.	1.9	42
2206	An interacting new holographic dark energy in the framework of fractal cosmology. Astrophysics and Space Science, 2018, 363, 1.	0.5	17
2207	Parameter constraints from cross-correlation of CMB lensing with galaxy clustering. Physical Review D, 2018, 97, .	1.6	80
2208	Maximal compression of the redshift-space galaxy power spectrum and bispectrum. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4045-4070.	1.6	39
2209	Modeling the environmental dependence of the growth rate of cosmic structure. Physical Review D, 2018, 98, .	1.6	3
2210	Detection and removal of B-mode dust foregrounds with signatures of statistical anisotropy. Monthly Notices of the Royal Astronomical Society, 2018, 479, 5577-5595.	1.6	8
2211	Foreground biases on primordial non-Gaussianity measurements from the CMB temperature bispectrum: Implications for <i>Planck</i> land beyond. Physical Review D, 2018, 98, .	1.6	27
2212	Measuring the scale of cosmic homogeneity with SDSS-IV DR14 quasars. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5270-5274.	1.6	20
2213	Confronting phantom inflation with Planck data. Astrophysics and Space Science, 2018, 363, 1.	0.5	0
2214	Exploring the distance-redshift relation with gravitational wave standard sirens and tomographic weak lensing. Physical Review D, 2018, 98, .	1.6	5
2215	Cosmological impact of future constraints on <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mr< td=""><td>.mn>0<td>ml:mn></td></td></mml:mr<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	.mn>0 <td>ml:mn></td>	ml:mn>
2216	Polarized Sunyaev Zel'dovich tomography. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 034-034.	1.9	27
2217	COFFE: a code for the full-sky relativistic galaxy correlation function. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 032-032.	1.9	23
2218	Redshift-space distortion from dynamical dark energy with time-dependent Lagrangian perturbation theory. Physical Review D, 2018, 98, .	1.6	0
2219	Unique signatures of Population III stars in the global 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5591-5606.	1.6	46
2220	Cosmological constraints on an exponential interaction in the dark sector. Monthly Notices of the Royal Astronomical Society, 0 , , .	1.6	30
2221	Planck 2015 Constraints on the Nonflat ϕCDM Inflation Model. Astrophysical Journal, 2018, 866, 68.	1.6	51
2222	Does <i>Planck</i> 2015 polarization data favor high redshift reionization?. Physical Review D, 2018, 98, .	1.6	16

#	Article	IF	CITATIONS
2223	Theoretical and Observational Constraints of Bound Dark Energy with Precision Cosmological Data. Physical Review Letters, 2018, 121, 161303.	2.9	7
2224	Iterative map-making with two-level preconditioning for polarized cosmic microwave background data sets. Astronomy and Astrophysics, 2018, 618, A62.	2.1	6
2225	Constraining primordial non-Gaussianity with bispectrum and power spectrum from upcoming optical and radio surveys. Monthly Notices of the Royal Astronomical Society, 2018, 478, 1341-1376.	1.6	100
2226	Cosmological constraints from a joint analysis of cosmic microwave background and spectroscopic tracers of the large-scale structure. Monthly Notices of the Royal Astronomical Society, 2018, 480, 5386-5411.	1.6	33
2227	CMB lensing beyond the leading order: Temperature and polarization anisotropies. Physical Review D, 2018, 98, .	1.6	23
2228	Dependence on the environment of the abundance function of light-cone simulation dark matter haloes. Astronomy and Astrophysics, 2018, 616, A137.	2.1	3
2229	Intrinsic galaxy alignment from angular dependent primordial non-Gaussianity. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 014-014.	1.9	22
2230	The dependence of galaxy clustering on tidal environment in the Sloan Digital Sky Survey. Monthly Notices of the Royal Astronomical Society, 2018, 476, 5442-5452.	1.6	26
2231	Spectral distortion anisotropies from single-field inflation. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 050-050.	1.9	18
2232	Cosmological tests of Everpresent $\hat{\mathfrak{b}}$. Classical and Quantum Gravity, 2018, 35, 194002.	1.5	16
2233	Halo assembly bias and the tidal anisotropy of the local halo environment. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3631-3647.	1.6	73
2234	Cosmological constraints on $\hat{\nu}(\hat{l}_\pm)$ CDM models with time-varying fine structure constant. Annals of Physics, 2018, 397, 400-409.	1.0	4
2235	Constraints on inflation with LSS surveys: features in the primordial power spectrum. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 004-004.	1.9	26
2236	Explaining low \$\$ell \$\$ â,," anomalies in the CMB power spectrum with resonant superstring excitations during inflation. European Physical Journal C, 2018, 78, 1.	1.4	6
2237	Updated bounds on sum of neutrino masses in various cosmological scenarios. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 017-017.	1.9	82
2238	Reionization in the dark and the light from Cosmic Microwave Background. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 016-016.	1.9	11
2239	emerge – an empirical model for the formation of galaxies since zÂâ^1⁄4Â10. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1822-1852.	1.6	270
2240	Cosmology with the pairwise kinematic SZ effect: calibration and validation using hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5320-5335.	1.6	16

#	ARTICLE Cornering the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>P</mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><m< th=""><th>IF c<th>CITATIONS</th></th></m<></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:math>	IF c <th>CITATIONS</th>	CITATIONS
2241	<pre><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>A</mml:mi><mml:mrow><mml:mi>lens</mml:mi></mml:mrow></mml:msub><mml:mrow><td>1.6</td><td>20</td></mml:mrow></mml:math></pre>	1.6	20
2242	The Abacus Cosmos: A Suite of Cosmological N-body Simulations. Astrophysical Journal, Supplement Series, 2018, 236, 43.	3.0	81
2243	Planck 2015 Constraints on the Non-flat î>CDM Inflation Model. Astrophysical Journal, 2018, 864, 80.	1.6	76
2244	Using the full power of the cosmic microwave background to probe axion dark matter. Monthly Notices of the Royal Astronomical Society, 2018, 476, 3063-3085.	1.6	106
2245	Bulk flow in the combined 2MTF and 6dFGSv surveys. Monthly Notices of the Royal Astronomical Society, 2018, 477, 5150-5166.	1.6	16
2246	Precise peculiar velocities from gravitational waves accompanied by electromagnetic signals and cosmological applications. Physical Review D, 2018, 98, .	1.6	6
2247	Time evolution of intrinsic alignments of galaxies. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 030-030.	1.9	29
2248	AX-GADGET: a new code for cosmological simulations of Fuzzy Dark Matter and Axion models. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3935-3951.	1.6	58
2249	Confronting KÃhler moduli inflation with CMB data. Physical Review D, 2018, 97, .	1.6	14
2250	Testing the cosmic shear spatially-flat universe approximation with generalized lensing and shear spectra. Physical Review D, 2018, 98, .	1.6	24
2251	Search for strongly blue axion isocurvature. Physical Review D, 2018, 98, .	1.6	8
2252	On dark matter-dark radiation interaction and cosmic reionization. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 045-045.	1.9	19
2253	Perturbative Gaussianizing transforms for cosmological fields. Monthly Notices of the Royal Astronomical Society, 2018, 473, 3190-3203.	1.6	5
2254	Reconstructing matter profiles of spherically compensated cosmic regions in DCDM cosmology. Monthly Notices of the Royal Astronomical Society, 2018, 473, 5177-5194.	1.6	3
2255	New constraints on time-dependent variations of fundamental constants using Planck data. Monthly Notices of the Royal Astronomical Society, 2018, 474, 1850-1861.	1.6	55
2256	Joint Bayesian estimation of tensor and lensing B modes in the power spectrum of CMB polarization data. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3889-3897.	1.6	6
2257	Analysing baryon acoustic oscillations in sparse spectroscopic samples via cross-correlation with dense photometry. Monthly Notices of the Royal Astronomical Society, 2018, 477, 5090-5103.	1.6	9
2258	Detectability of Galactic Faraday Rotation in multiwavelength CMB observations. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4795-4804.	1.6	0

#	Article	IF	CITATIONS
2259	Probing the shape and internal structure of dark matter haloes with the halo-shear–shear three-point correlation function. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1665-1679.	1.6	1
2260	Growth index and statefinder diagnostic of oscillating dark energy. Physical Review D, 2018, 97, .	1.6	21
2261	Tomographic intensity mapping versus galaxy surveys: observing the Universe in H α emission with new generation instruments. Monthly Notices of the Royal Astronomical Society, 2018, 475, 1587-1608.	1.6	23
2262	Effect of dark energy perturbation on cosmic voids formation. Monthly Notices of the Royal Astronomical Society, 2018, 478, 5230-5239.	1.6	4
2263	Second feature of the matter two-point function. Physical Review D, 2018, 97, .	1.6	4
2264	The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: theoretical systematics and Baryon Acoustic Oscillations in the galaxy correlation function. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1153-1188.	1.6	60
2265	Large-scale structure in mimetic Horndeski gravity. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 050-050.	1.9	14
2266	Non-Gaussian information from weak lensing data via deep learning. Physical Review D, 2018, 97, .	1.6	73
2267	Uneven flows: On cosmic bulk flows, local observers, and gravity. Physical Review D, 2018, 97, .	1.6	6
2268	Searching for primordial magnetic fields with CMB B -modes. Classical and Quantum Gravity, 2018, 35, 124004.	1.5	19
2269	On the insufficiency of arbitrarily precise covariance matrices: non-Gaussian weak-lensing likelihoods. Monthly Notices of the Royal Astronomical Society, 2018, 473, 2355-2363.	1.6	39
2270	Cosmic magnetism in centimeter- and meter-wavelength radio astronomy. Publication of the Astronomical Society of Japan, 2018, 70, .	1.0	25
2271	Integrated Sachs-Wolfe map reconstruction in the presence of systematic errors. Physical Review D, 2018, 97, .	1.6	9
2272	Impact of a primordial magnetic field on cosmic microwave background <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>B</mml:mi></mml:math> modes with weak lensing. Physical Review D, 2018, 97, .	1.6	3
2273	Forecasting the Contribution of Polarized Extragalactic Radio Sources in CMBÂObservations. Astrophysical Journal, 2018, 858, 85.	1.6	23
2274	The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: constraining modified gravity. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2122-2131.	1.6	44
2275	Modelling the line-of-sight contribution in substructure lensing. Monthly Notices of the Royal Astronomical Society, 2018, 475, 5424-5442.	1.6	77
2276	The Imprint of Neutrinos on Clustering in Redshift Space. Astrophysical Journal, 2018, 861, 53.	1.6	66

#	ARTICLE	IF	CITATIONS
2277	Reconstruction of primordial tensor power spectra from <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>B</mml:mi></mml:math> -mode polarization of the cosmic microwave background. Physical Review D, 2018, 97, .	1.6	13
2278	Probing decoupling in dark sectors with the cosmic microwave background. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 044-044.	1.9	23
2279	Anisotropic power spectrum and the observed low- <i>l</i> power in PLANCK CMB data. Research in Astronomy and Astrophysics, 2018, 18, 029.	0.7	6
2280	A Limit on the Warm Dark Matter Particle Mass from the Redshifted 21 cm Absorption Line. Astrophysical Journal Letters, 2018, 859, L18.	3.0	44
2281	Approximation methods in modified gravity models. International Journal of Modern Physics D, 2018, 27, 1848004.	0.9	2
2282	Non-linear coupling in the dark sector as a running vacuum model. General Relativity and Gravitation, $2018, 50, 1.$	0.7	1
2283	Status of Neutrino Properties and Future Prospectsâ€"Cosmological and Astrophysical Constraints. Frontiers in Physics, 2018, 5, .	1.0	102
2284	Was there an early reionization component in our universe?. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 024-024.	1.9	11
2285	Constraining Gravity at Large Scales with the 2MASS Photometric Redshift Catalog and Planck Lensing. Astrophysical Journal, 2018, 862, 81.	1.6	15
2286	Converting nonrelativistic dark matter to radiation. Physical Review D, 2018, 98, .	1.6	78
2287	Galaxy Correlation Functions Provide a More Robust Cosmological Standard Ruler. Physical Review Letters, 2018, 121, 021302.	2.9	19
2288	Statistical Test of Distance–Duality Relation with Type Ia Supernovae and Baryon Acoustic Oscillations. Astrophysical Journal, 2018, 861, 124.	1.6	19
2289	Expectation of primordial gravity waves generated during inflation. Physical Review D, 2018, 98, .	1.6	14
2290	The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: structure growth rate measurement from the anisotropic quasar power spectrum in the redshift range 0.8Å<ÂzÂ<Â2.2. Monthly Notices of the Royal Astronomical Society, 2018, 477, 1604-1638.	1.6	118
2291	Precision big bang nucleosynthesis with improved Helium-4 predictions. Physics Reports, 2018, 754, 1-66.	10.3	245
2292	Galaxy formation efficiency and the multiverse explanation of the cosmological constant with EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3727-3743.	1.6	14
2293	Beyond CMB cosmic variance limits on reionization with the polarized Sunyaev-Zel'dovich effect. Physical Review D, 2018, 97, .	1.6	19
2294	On general features of warm dark matter with reduced relativistic gas. European Physical Journal C, 2018, 78, 1.	1.4	9

#	Article	IF	CITATIONS
2295	Large-scale (in) stability analysis of an exactly solved coupled dark-energy model. Physical Review D, 2018, 98, .	1.6	42
2296	The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: measuring the anisotropic baryon acoustic oscillations with redshift weights. Monthly Notices of the Royal Astronomical Society, 2018, 480, 1096-1105.	1.6	27
2297	Abundance of peaks and dips in 3D mass and halo density fields: a test for cosmology. Monthly Notices of the Royal Astronomical Society, 2018, 480, 1599-1606.	1.6	3
2298	Probing Cosmology with Dark Matter Halo Sparsity Using X-Ray Cluster Mass Measurements. Astrophysical Journal, 2018, 862, 40.	1.6	22
2299	Observational constraints on conformal time symmetry, missing matter and double dark energy. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 062-062.	1.9	12
2300	The impact of primordial magnetic fields on future CMB bounds on inflationary gravitational waves. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 038-038.	1.9	11
2301	Efficient computation of galaxy bias with neutrinos and other relics. Physical Review D, 2018, 98, .	1.6	32
2302	Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing. Physical Review D, 2018, 98, .	1.6	751
2303	Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear. Physical Review D, 2018, 98, .	1.6	412
2304	CMB lensing bispectrum as a probe of modified gravity theories. Physical Review D, 2018, 98, .	1.6	16
2305	Lensing reconstruction in post-Born cosmic microwave background weak lensing. Physical Review D, 2018, 98, .	1.6	34
2306	The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations at Redshift of 0.72 with the DR14 Luminous Red Galaxy Sample. Astrophysical Journal, 2018, 863, 110.	1.6	125
2307	The evens and odds of CMB anomalies. Physics of the Dark Universe, 2018, 20, 49-64.	1.8	27
2308	Model independent inference of the expansion history and implications for the growth of structure. Physical Review D, 2018, 97, .	1.6	45
2309	Interpreting the cosmic far-infrared background anisotropies using a gas regulator model. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3974-3995.	1.6	5
2310	The Standard Cosmological Model: Achievements and Issues. Foundations of Physics, 2018, 48, 1226-1245.	0.6	6
2311	Detecting electron density fluctuations from cosmic microwave background polarization using a bispectrum approach. Physical Review D, 2018, 97, .	1.6	4
2312	Weak lensing probe of cubic Galileon model. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 017-017.	1.9	15

#	Article	IF	CITATIONS
2313	First comprehensive constraints on the Finslerian models using cosmological observations. Physics of the Dark Universe, 2018, 21, 55-60.	1.8	6
2314	Halo Profiles and the Concentration–Mass Relation for a ΛCDM Universe. Astrophysical Journal, 2018, 859, 55.	1.6	83
2315	Constraints on Cosmological Parameters from the Angular Power Spectrum of a Combined 2500 deg ² SPT-SZ and Planck Gravitational Lensing Map. Astrophysical Journal, 2018, 860, 137.	1.6	25
2316	The one-dimensional power spectrum from the SDSS DR14 Lyl $^\pm$ forests. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 017-017.	1.9	80
2317	Transverse Velocities with the Moving Lens Effect. Physical Review Letters, 2019, 123, 061301.	2.9	29
2318	Reconstruction of the Dark Energy equation of state from latest data: the impact of theoretical priors. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 042-042.	1.9	31
2319	Accurate analytic model for the thermal Sunyaev-Zel'dovich one-point probability distribution function. Physical Review D, 2019, 99, .	1.6	13
2320	Measuring the Hubble constant and spatial curvature from supernova apparent magnitude, baryon acoustic oscillation, and Hubble parameter data. Astrophysics and Space Science, 2019, 364, 1.	0.5	53
2321	Axion dark matter detection with CMB polarization. Physical Review D, 2019, 100, .	1.6	90
2322	Biased tracers of two fluids in the Lagrangian picture. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 006-006.	1.9	23
2323	Cosmological constraints on sterile neutrino oscillations from Planck. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 039-039.	1.9	9
2324	Dark energy perturbations in $\langle i \rangle N \langle i \rangle$ -body simulations. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 013-013.	1.9	14
2325	Consistency of CMB experiments beyond cosmic variance. Physical Review D, 2019, 100, .	1.6	3
2326	Constraining sterile neutrino cosmology with terrestrial oscillation experiments. Physical Review D, 2019, 100, .	1.6	17
2327	Modeling biased tracers at the field level. Physical Review D, 2019, 100, .	1.6	67
2328	Dark Energy Survey Year 1 Results: Cross-correlation between Dark Energy Survey Y1 galaxy weak lensing and South Pole Telescope <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><m< td=""><td>nml:mi>a</td><td>:/mml:mi><n< td=""></n<></td></m<></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mrow></mml:math>	nml:mi>a	:/mml:mi> <n< td=""></n<>
2329	Cosmic distance inference from purely geometric BAO methods: Linear point standard ruler and correlation function model fitting. Physical Review D, 2019, 99, .	1.6	18
2330	Visualizing invisible dark matter annihilation with the CMB and matter power spectrum. Physical Review D, 2019, 100, .	1.6	4

#	Article	IF	CITATIONS
2331	Is the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>H</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math> tension suggesting a fourth neutrino generation?. Physical Review D, 2019, 100, .	1.6	38
2332	Dark Energy Survey year 1 results: Joint analysis of galaxy clustering, galaxy lensing, and CMB lensing two-point functions. Physical Review D, 2019, 100, .	1.6	38
2333	Dark Energy Survey Year 1 Results: Tomographic cross-correlations between Dark Energy Survey galaxies and CMB lensing from South Pole <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi><mml:mi></mml:mi></mml:mi> Planck Physical Review D, 2019, 100, .</mml:math>	1.6 mml:mrov	35 v>
2334	Constraining the reionization history with CMB and spectroscopic observations. Physical Review D, 2019, 99, .	1.6	9
2335	Characterizing bias on large scale CMB <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>B</mml:mi></mml:math> -modes after Galactic foregrounds cleaning. Physical Review D, 2019, 99, .	1.6	23
2336	Cluster-void degeneracy breaking: Neutrino properties and dark energy. Physical Review D, 2019, 99, .	1.6	24
2337	Convolution Lagrangian perturbation theory for biased tracers beyond general relativity. Physical Review D, 2019, 99, .	1.6	14
2338	Can the homogeneity scale be used as a standard ruler?. Physical Review D, 2019, 99, .	1.6	2
2339	The squeezed matter bispectrum covariance with responses. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 008-008.	1.9	23
2340	Taller in the saddle: constraining CMB physics using saddle points. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 031-031.	1.9	2
2341	Accelerated expansion of the universe and chasing photons from the CMB to study the late time integrated Sachs-Wolfe effect over different redshift ranges. European Physical Journal Plus, 2019, 134, 1.	1.2	1
2342	J-PAS: forecasts on interacting dark energy from baryon acoustic oscillations and redshift-space distortions. Monthly Notices of the Royal Astronomical Society, 2019, 488, 78-88.	1.6	20
2343	Constraining light sterile neutrino mass with the BICEP2/Keck array 2014 B-mode polarization data. European Physical Journal C, 2019, 79, 1.	1.4	15
2344	Constraining the kinetically dominated universe. Physical Review D, 2019, 100, .	1.6	24
2345	Stress testing the dark energy equation of state imprint on supernova data. Physical Review D, 2019, 99,	1.6	5
2346	Stringent Limit on Primordial Magnetic Fields from the Cosmic Microwave Background Radiation. Physical Review Letters, 2019, 123, 021301.	2.9	77
2347	Number Counts, Confusion, Mapping Issues, and Sky Coverage Analysis for Radio Continuum Surveys through Emu Early Science, EMU-ASKAP, and WODAN Especially for Cosmology Science Goals. Astronomy Reports, 2019, 63, 515-526.	0.2	O
2348	Full-sky lensing reconstruction of 21 cm intensity maps. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1828-1845.	1.6	4

#	Article	IF	CITATIONS
2349	On the road toÂpercent accuracy: non-linear reaction of the matter power spectrum to dark energy and modified gravity. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2121-2142.	1.6	67
2350	The assembly of the Virgo cluster, traced by its galaxy haloes. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1111-1126.	1.6	2
2351	The angular scale of homogeneity in the local Universe with the SDSS blue galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1481-1487.	1.6	18
2352	Separate Universe simulations with IllustrisTNG: baryonic effects on power spectrum responses and higher-order statistics. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2079-2092.	1.6	39
2353	Clustering and redshift-space distortions in modified gravity models with massive neutrinos. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1987-2000.	1.6	13
2354	Dark Energy Survey Year 1 results: measurement of the baryon acoustic oscillation scale in the distribution of galaxies to redshift 1. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4866-4883.	1.6	109
2355	Cosmological Tests of Gravity. Annual Review of Astronomy and Astrophysics, 2019, 57, 335-374.	8.1	111
2356	On observables in a dark matter-clustering quintessence system. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 033-033.	1.9	4
2357	Does history repeat itself? Periodic Time Cosmology. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 058-058.	1.9	1
2358	Forecasting super-sample covariance in future weak lensing surveys with SuperSCRAM. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 004-004.	1.9	5
2359	Lensing anomalies from the epoch of reionisation. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 042-042.	1.9	2
2360	Observational constraints of a new unified dark fluid and the H0 tension. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2071-2085.	1.6	33
2361	Testing a quintessence model with Yukawa interaction from cosmological observations and N-body simulations. Monthly Notices of the Royal Astronomical Society, 2019, 489, 297-309.	1.6	13
2362	Simultaneous determination of the cosmic birefringence and miscalibrated polarization angles from CMB experiments. Progress of Theoretical and Experimental Physics, 2019, 2019, .	1.8	52
2363	Relation between X-ray and Sunyaevâ€"Zeldovich Galaxy Cluster Mass Measurements. Astronomy Letters, 2019, 45, 403-410.	0.1	2
2364	Joint Bayesian analysis of large angular scale CMB temperature anomalies. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 007-007.	1.9	12
2365	Principal component analysis of the primordial tensor power spectrum. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 055-055.	1.9	14
2366	Probing the Time Variation of the Effective Newton's Constant with Optimal Redshift Weights. Astrophysical Journal, 2019, 877, 32.	1.6	3

#	Article	IF	CITATIONS
2367	The Lyman- $\hat{l}\pm$ forest as a diagnostic of the nature of the dark matter. Monthly Notices of the Royal Astronomical Society, 2019, 489, 3456-3471.	1.6	45
2368	Constraining cluster masses from the stacked phase space distribution at large radii. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1344-1356.	1.6	9
2369	Constraining primordial non-Gaussianity using two galaxy surveys and CMB lensing. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1950-1956.	1.6	36
2370	The redshift evolution of X-ray and Sunyaev–Zel'dovich scaling relations in the fable simulations. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2439-2470.	1.6	26
2371	How to add massive neutrinos to your Ĵ·CDM simulation – extending cosmology rescaling algorithms. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5938-5951.	1.6	33
2372	On the road toÂper cent accuracy – II. Calibration of the non-linear matter power spectrum for arbitrary cosmologies. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4826-4840.	1.6	37
2373	Wiener filtering and pure \$mathcal {E}/mathcal {B}\$ decomposition of CMB maps with anisotropic correlated noise. Monthly Notices of the Royal Astronomical Society, 2019, 490, 947-961.	1.6	10
2374	The mass–richness relation of optically selected clusters from weak gravitational lensing and abundance with Subaru HSC first-year data. Publication of the Astronomical Society of Japan, 2019, 71, . Late time transitions in the quintessence field and the <mml:math< td=""><td>1.0</td><td>54</td></mml:math<>	1.0	54
2375	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e6133" altimg="si2.svg"> <mml:msub><mml:mrow><mml:mi mathvariant="bold-italic">H</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="bold">0</mml:mi></mml:mrow></mml:msub> 00	1.8	53
2376	Universe, 2019, 26, 100385. A New Measurement of the Hubble Constant and Matter Content of the Universe Using Extragalactic Background Light Î ³ -Ray Attenuation. Astrophysical Journal, 2019, 885, 137.	1.6	60
2377	Primordial gravitational wave phenomenology with polarized Sunyaev Zel'dovich tomography. Physical Review D, 2019, 100, .	1.6	11
2378	Observational constraints on sign-changeable interaction models and alleviation of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:m< td=""><td>nn>0<td>nl<mark>68</mark>m></td></td></mml:m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	nn>0 <td>nl<mark>68</mark>m></td>	nl <mark>68</mark> m>
2379	Detection of CMB-Cluster Lensing using Polarization Data from SPTpol. Physical Review Letters, 2019, 123, 181301.	2.9	12
2380	The Outer Rim Simulation: A Path to Many-core Supercomputers. Astrophysical Journal, Supplement Series, 2019, 245, 16.	3.0	67
2381	Cosmological evolutions in Tsujikawa model of <mml:math altimg="si4.svg" display="inline" id="d1e1948" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>R</mml:mi><m 100375.<="" 2019,="" 26,="" dark="" gravity.="" of="" physics="" td="" the="" universe,=""><td>ո1.8 ուու:mo>)‹</td><td><∕mml:mo><</td></m></mml:mrow></mml:mrow></mml:math>	ո 1.8 ո ւու: mo>)‹	<∕mml:mo><
2382	Producing a BOSS CMASS sample with DES imaging. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2887-2906.	1.6	19
2383	Evidence for C <scp>ii</scp> diffuse line emission at redshift <i>z</i> â ¹ / ₄ 2.6. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 489, L53-L57.	1.2	27
2384	Observational constraints on interacting Tsallis holographic dark energy model. European Physical Journal C, 2019, 79, 1.	1.4	55

#	Article	IF	Citations
2385	Forecasting cosmological bias due to local gravitational redshift. International Journal of Modern Physics D, 2019, 28, 1950150.	0.9	0
2386	Developing a unified pipeline for large-scale structure data analysis with angular power spectra – I. The importance of redshift-space distortions for galaxy number counts. Monthly Notices of the Royal Astronomical Society, 2019, 489, 3385-3402.	1.6	17
2387	Observing AGN feedback with CO intensity mapping. Monthly Notices of the Royal Astronomical Society, 2019, 490, 260-273.	1.6	17
2388	Dark sectors with dynamical coupling. Physical Review D, 2019, 100, .	1.6	54
2389	The Borg Cube Simulation: Cosmological Hydrodynamics with CRK-SPH. Astrophysical Journal, 2019, 877, 85.	1.6	14
2390	Mimetic DBI Inflation in Confrontation with Planck2018 Data. Astrophysical Journal, 2019, 882, 78.	1.6	12
2391	Evidence for the Cross-correlation between Cosmic Microwave Background Polarization Lensing from Polarbear and Cosmic Shear from Subaru Hyper Suprime-Cam. Astrophysical Journal, 2019, 882, 62.	1.6	20
2392	Using the Tilted flat-\$\hat{\hat}CDM and the Untilted Non-flat \$\hat{\hat}CDM Inflation Models to Measure Cosmological Parameters from a Compilation of Observational Data. Astrophysical Journal, 2019, 882, 158.	1.6	69
2393	The Pseudo-evolution of Galaxy-cluster Masses and Its Connection to Mass Density Profile. Astrophysical Journal, 2019, 883, 36.	1.6	0
2394	Selected Topics in Numerical Methods for Cosmology. Universe, 2019, 5, 192.	0.9	0
2395	Accurate Modeling of the Projected Galaxy Clustering in Photometric Surveys. I. Tests with Mock Catalogs. Astrophysical Journal, 2019, 879, 71.	1.6	6
2396	Dark sector evolution in Horndeski models. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 018-018.	1.9	12
2397	Intensity mapping with neutral hydrogen and the Hidden Valley simulations. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 024-024.	1.9	20
2398	CosmicNet. Part I. Physics-driven implementation of neural networks within Einstein-Boltzmann Solvers. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 028-028.	1.9	16
2399	The BAO+BBN take on the Hubble tension. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 029-029.	1.9	135
2400	New constraints on red-spiral galaxies from their kinematics in clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4117-4125.	1.6	6
2401	Galaxies and clusters of galaxies as peak patches of the density field. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1693-1696.	1.6	1
2402	CMB-S4 forecast on the primordial non-Gaussianity parameter of feature models. Physical Review D, 2019, 100, .	1.6	4

#	Article	IF	CITATIONS
2403	DeepCMB: Lensing reconstruction of the cosmic microwave background with deep neural networks. Astronomy and Computing, 2019, 28, 100307.	0.8	49
2404	Forecasts of cosmological constraints from Type Ia supernovae including the weak-lensing convergence. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 033-033.	1.9	7
2405	Investigating the degeneracy between modified gravity and massive neutrinos with redshift-space distortions. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 040-040.	1.9	19
2406	Testing dark energy models in the light of \$\$sigma $_{8}$ \$ $\ddot{l}f$ 8 tension. European Physical Journal C, 2019, 79, 1.	1.4	40
2407	Strong bounds on sum of neutrino masses in a 12 parameter extended scenario with non-phantom dynamical dark energy ($\$w(z)$ ge -1 $\$w(z)$ a $\$w(z)$ a $\$w(z)$ b. European Physical Journal C, 2019, 79, 1.	1.4	12
2408	Early dark energy constraints on growing neutrino quintessence cosmologies. Physical Review D, 2019, 100, .	1.6	5
2409	The impact of the locally measured Hubble parameter on the mass of sterile neutrino. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5763-5770.	1.6	0
2410	Power spectrum modelling of galaxy and radio intensity maps including observational effects. Monthly Notices of the Royal Astronomical Society, 2019, 489, 153-167.	1.6	21
2411	Matter power spectrum: from LyÂα forest to CMB scales. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2247-2253.	1.6	51
2412	Cross-correlation of the kinematic Sunyaev-Zel'dovich effect and 21Âcm intensity mapping with tidal reconstruction. Physical Review D, 2019, 100, .	1.6	11
2413	Constraints on the interacting vacuum–geodesic CDM scenario. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3423-3438.	1.6	82
2414	Breaking cosmic degeneracies: Disentangling neutrinos and modified gravity with kinematic information. Astronomy and Astrophysics, 2019, 629, A46.	2.1	11
2415	Cosmic web anisotropy is the primary indicator of halo assembly bias. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2977-2996.	1.6	46
2416	The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: a tomographic measurement of structure growth and expansion rate from anisotropic galaxy clustering in Fourier space. Monthly Notices of the Royal Astronomical Society, 2019, 484, 442-450.	1.6	13
2417	Dark Matter Interactions, Helium, and the Cosmic Microwave Background. Physical Review Letters, 2019, 122, 041301.	2.9	18
2418	Cosmology-marginalized approaches in Bayesian model comparison: The neutrino mass as a case study. Physical Review D, 2019, 99, .	1.6	21
2419	Does quartessence ease cosmic tensions?. Physics of the Dark Universe, 2019, 23, 100247.	1.8	20
2420	Neutrino mass and dark energy constraints from redshift-space distortions. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 041-041.	1.9	24

#	Article	IF	CITATIONS
2421	Joint halo-mass function for modified gravity and massive neutrinos $\hat{a} \in I$. Simulations and cosmological forecasts. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3927-3941.	1.6	24
2422	The dipole of the galaxy bispectrum. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 486, L101-L104.	1.2	32
2423	Dipole distortions in the intergalactic medium. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4181-4189.	1.6	1
2424	Cosmic distance determination from photometric redshift samples using BAO peaks only. Monthly Notices of the Royal Astronomical Society, 2019, 488, 295-305.	1.6	1
2425	Visualizing probabilistic models and data with Intensive Principal Component Analysis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13762-13767.	3.3	9
2426	Probing higher-spin fields from inflation with higher-order statistics of the CMB. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 050-050.	1.9	12
2427	Suitable initial conditions for Newtonian simulations with massive neutrinos. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 018-018.	1.9	6
2428	2MTF – VII. 2MASS Tully–Fisher survey final data release: distances for 2062 nearby spiral galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2061-2069.	1.6	17
2429	Observational constraints on constant roll inflation. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 030-030.	1.9	26
2430	Computing three-point correlation function randoms counts without the randoms catalogue. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 486, L105-L109.	1.2	7
2431	Flatness without CMB: The Entanglement of Spatial Curvature and Dark Energy Equation of State. Astrophysical Journal, 2019, 877, 107.	1.6	7
2432	Dark Energy Survey year 1 results: Constraints on extended cosmological models from galaxy clustering and weak lensing. Physical Review D, 2019, 99, .	1.6	130
2433	Observational constraints on the tilted flat-XCDM and the untilted nonflat XCDM dynamical dark energy inflation parameterizations. Astrophysics and Space Science, 2019, 364, 1.	0.5	52
2434	Cosmological information in the redshift-space bispectrum. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2078-2099.	1.6	84
2435	Dark Energy Survey Year 1: An independent E/B-mode cosmic shear analysis. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 484, L59-L63.	1.2	7
2436	Testing Predictions of the Quantum Landscape Multiverse 3: The Hilltop Inflationary Potential. Symmetry, 2019, 11, 520.	1.1	4
2437	Introducing constrained matched filters for improved separation of point sources from galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1988-1999.	1.6	7
2438	Matter power spectra in viable $f(R)$ gravity models with dynamical background. European Physical Journal C, 2019, 79, 1.	1.4	13

#	ARTICLE	IF	CITATIONS
2439	Testing scale-dependent perturbations in $\hat{\nu}$ CDM with future galaxy surveys. Physics of the Dark Universe, 2019, 25, 100319.	1.8	0
2440	Comparison of results on <i>N</i> _{eff} from various <i>Planck</i> likelihoods. Astronomy and Astrophysics, 2019, 623, A9.	2.1	3
2441	The power spectrum of the Lyman- \hat{l}_{\pm} Forest at z & amp;lt; 0.5. Monthly Notices of the Royal Astronomical Society, 2019, 486, 769-782.	1.6	30
2442	Observational constraints on running vacuum model. Chinese Physics C, 2019, 43, 025102.	1.5	7
2443	The H i content of dark matter haloes at zÂâ‰^ÂO from ALFALFA. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5124-5138.	1.6	24
2444	Quantifying the CMB Degeneracy between the Matter Density and Hubble Constant in Current Experiments. Astrophysical Journal, 2019, 871, 77.	1.6	10
2445	Mass Calibration of Optically Selected DES Clusters Using a Measurement of CMB-cluster Lensing with SPTpol Data. Astrophysical Journal, 2019, 872, 170.	1.6	28
2446	Testing the Detection Significance on the Large-scale Structure by a JWST Deep Field Survey. Astrophysical Journal, 2019, 875, 132.	1.6	3
2447	Inhomogeneous reionization models in cosmological hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4075-4097.	1.6	34
2448	Ballistic Dark Matter oscillates above î•CDM. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 018-018.	1.9	14
2449	Is patchy reionization an obstacle in detecting the primordial gravitational wave signal?. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2042-2049.	1.6	9
2450	Swampland conjectures and late-time cosmology. Physical Review D, 2019, 99, .	1.6	46
2451	Precision modelling of the matter power spectrum in a Planck-like Universe. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1448-1479.	1.6	28
2452	Stability and the gauge problem in non-perturbative cosmology. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 015-015.	1.9	16
2453	Parameter discordance in Planck CMB and low-redshift measurements: projection in the primordial power spectrum. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 036-036.	1.9	27
2454	Imprints of relativistic effects on the asymmetry of the halo cross-correlation function: from linear to non-linear scales. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2671-2696.	1.6	38
2455	Bound dark energy: Towards understanding the nature of dark energy. Physical Review D, 2019, 99, .	1.6	6
2456	MGCAMB with massive neutrinos and dynamical dark energy. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 001-001.	1.9	39

#	Article	IF	CITATIONS
2457	Nonlinear power spectrum in clustering and smooth dark energy models beyond the BAO scale. Journal of Astrophysics and Astronomy, 2019, 40, 1.	0.4	2
2458	Probing gravitational lensing of the CMB with SDSS-IV quasars. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1720-1726.	1.6	10
2459	Aspects of dark matter annihilation in cosmology. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 025-025.	1.9	9
2460	The environmental dependence of the baryon acoustic peak in the Baryon Oscillation Spectroscopic Survey CMASS sample. Monthly Notices of the Royal Astronomical Society, 2019, 482, 578-587.	1.6	5
2461	Cosmic variance mitigation in measurements of the integrated Sachs-Wolfe effect. Physical Review D, 2019, 99, .	1.6	3
2462	Constraining neutrino mass with tomographic weak lensing peak counts. Physical Review D, 2019, 99, .	1.6	40
2463	Cosmological measurements from angular power spectra analysis of BOSS DR12 tomography. Monthly Notices of the Royal Astronomical Society, 2019, 485, 326-355.	1.6	44
2464	Large-scale distribution of mass versus light from baryon acoustic oscillations: measurement in the final SDSS-III BOSS Data Release 12. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1248-1261.	1.6	8
2465	MontePython 3: Boosted MCMC sampler and other features. Physics of the Dark Universe, 2019, 24, 100260.	1.8	315
2466	Enhancing BOSS bispectrum cosmological constraints with maximal compression. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3713-3730.	1.6	29
2467	Cosmology with extragalactic proper motions: harmonic formalism, estimators, and forecasts. Monthly Notices of the Royal Astronomical Society, 2019, 486, 145-165.	1.6	6
2468	A Bayesian method for combining theoretical and simulated covariance matrices for large-scale structure surveys. Monthly Notices of the Royal Astronomical Society, 2019, 483, 189-207.	1.6	16
2469	Revealing Reionization with the Thermal History of the Intergalactic Medium: New Constraints from the Ly \hat{l}_{\pm} Flux Power Spectrum. Astrophysical Journal, 2019, 872, 101.	1.6	91
2470	Enhanced n-body annihilation of dark matter and its indirect signatures. Journal of High Energy Physics, 2019, 2019, 1.	1.6	11
2471	Cosmic Microwave Background constraints on non-minimal couplings in inflationary models with power law potentials. Physics of the Dark Universe, 2019, 24, 100297.	1.8	16
2472	<scp>nestcheck</scp> : diagnostic tests for nested sampling calculations. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2044-2056.	1.6	29
2473	Search for anomalous alignments of structures in Planck data using Minkowski Tensors. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 009-009.	1.9	17
2474	Bulk flow and shear in the local Universe: 2MTF and <scp>cosmicflows-3</scp> . Monthly Notices of the Royal Astronomical Society, 2019, 482, 1920-1930.	1.6	15

#	Article	IF	CITATIONS
2475	Optimistic estimation on probing primordial gravitational waves with CMB B-mode polarization. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2177-2184.	1.6	4
2476	Probing spatial variation of the fine-structure constant using the CMB. Physical Review D, 2019, 99, .	1.6	6
2477	Nonparametric cosmology with cosmic shear. Physical Review D, 2019, 99, .	1.6	3
2478	Cosmological Tests of Gravity with the Latest Observations. Astrophysical Journal, 2019, 871, 196.	1.6	7
2479	An Accurate Physical Model for Halo Concentrations. Astrophysical Journal, 2019, 871, 168.	1.6	142
2480	Constraining Dark Energy with Stacked Concave Lenses. Astrophysical Journal, 2019, 874, 7.	1.6	10
2481	Pairwise Transverse Velocity Measurement with the Rees–Sciama Effect. Astrophysical Journal Letters, 2019, 873, L23.	3.0	19
2482	Tree-level bispectrum in the effective field theory of large-scale structure extended to massive neutrinos. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 038-038.	1.9	28
2483	$1\frac{1}{2}$ CO <i>N</i> CEPT: cosmological neutrino simulations from the non-linear Boltzmann hierarchy. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 052-052.	1.9	38
2484	Can the <i>H</i> ₀ tension be resolved in extensions to î·CDM cosmology?. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 054-054.	1.9	108
2485	A new measure of tension between experiments. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 036-036.	1.9	21
2486	Constraining power of cosmological observables: Blind redshift spots and optimal ranges. Physical Review D, 2019, 99, .	1.6	20
2487	Observational constraints on inflationary potentials within the quantum collapse framework. Physics of the Dark Universe, 2019, 24, 100285.	1.8	3
2488	Concordance and discordance in cosmology. Physical Review D, 2019, 99, .	1.6	133
2489	First constraint on the neutrino-induced phase shift in the spectrum of baryon acoustic oscillations. Nature Physics, 2019, 15, 465-469.	6.5	37
2490	<i>Euclid</i> preparation: II. The <scp>EuclidEmulator</scp> â€" a tool to compute the cosmology dependence of the nonlinear matter power spectrum. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5509-5529.	1.6	117
2491	Measuring the small-scale matter power spectrum with high-resolution CMB lensing. Physical Review D, 2019, 99, .	1.6	19
2492	Lensing covariance on cut sky and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>SPT</mml:mi><mml:mtext>â^'</mml:mtext><mml:mi>P</mml:mi><mml: .<="" 2019,="" 99,="" d,="" lensing="" physical="" review="" td="" tensions.=""><td>mixl<td>!:ជւմ> < mm<mark>kn</mark></td></td></mml:></mml:mrow></mml:math>	m ix l <td>!:ជւմ> < mm<mark>kn</mark></td>	!:ជւմ > < mm <mark>kn</mark>

#	Abercumenology of large scale structure in scalar-tensor theories: Joint prior covariance of rmml:math.xmlns:mml="http://www.w3.org/1998/Math/MathML"	IF	CITATIONS
2493	display="inline"> <mml:msub><mml:mi>w</mml:mi> C /mml:msub>, <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub></mml:msub></mml:math>, <mml:mi>mathvariant="normal">î£</mml:mi>, and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>i½</mml:mi></mml:math></mml:msub>	1.6	33
2494	Can conformal and disformal couplings between dark sectors explain the EDGES 21-cm anomaly?. Physical Review D, 2019, 99, .	1.6	18
2495	Impact of nonlinear growth of the large-scale structure on CMB B -mode delensing. Physical Review D, 2019, 99, .	1.6	6
2496	Phenomenology of modified gravity at recombination. Physical Review D, 2019, 99, .	1.6	56
2497	Unraveling the effective fluid approach for <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi><mml:mi><mml:mi> (<mml:mi>R</mml:mi><mml:mo)="" etqq0<="" mathvariant="bold" td="" tj=""><td>0 0.6gBT/</td><td>Oværlock 10 T</td></mml:mo></mml:mi></mml:mi></mml:math>	0 0. 6gBT/	Oværlock 10 T
2498	2019, 99, . Optimal constraints on primordial gravitational waves from the lensed CMB. Physical Review D, 2019, 99, .	1.6	15
2499	The Extended Baryon Oscillation Spectroscopic Survey: Measuring the Cross-correlation between the Mg ii Flux Transmission Field and Quasars and Galaxies at zÂ=Â0.59. Astrophysical Journal, 2019, 878, 47.	1.6	19
2500	Cross-correlation of CMB Polarization Lensing with High-z Submillimeter Herschel-ATLAS Galaxies. Astrophysical Journal, 2019, 886, 38.	1.6	6
2501	The Impact of Line Misidentification on Cosmological Constraints from Euclid and Other Spectroscopic Galaxy Surveys. Astrophysical Journal, 2019, 879, 15.	1.6	15
2502			
2002	Primordial Magnetic Fields and the CMB. , 2019, , .		O
2503	Primordial Magnetic Fields and the CMB., 2019, , . Dark Quest. I. Fast and Accurate Emulation of Halo Clustering Statistics and Its Application to Galaxy Clustering. Astrophysical Journal, 2019, 884, 29.	1.6	126
	Dark Quest. I. Fast and Accurate Emulation of Halo Clustering Statistics and Its Application to Galaxy	1.6	
2503	Dark Quest. I. Fast and Accurate Emulation of Halo Clustering Statistics and Its Application to Galaxy Clustering. Astrophysical Journal, 2019, 884, 29. Baryon acoustic oscillations from the cross-correlation of Ly <i>i>î±</i> i>absorption and quasars in eBOSS		126
2503 2504	Dark Quest. I. Fast and Accurate Emulation of Halo Clustering Statistics and Its Application to Galaxy Clustering. Astrophysical Journal, 2019, 884, 29. Baryon acoustic oscillations from the cross-correlation of Ly <i>α</i> absorption and quasars in eBOSS DR14. Astronomy and Astrophysics, 2019, 629, A86. Consistent cosmic shear in the face of systematics: a <i>B</i> i>-mode analysis of KiDS-450, DES-SV and	2.1	126 176
2503 2504 2505	Dark Quest. I. Fast and Accurate Emulation of Halo Clustering Statistics and Its Application to Galaxy Clustering. Astrophysical Journal, 2019, 884, 29. Baryon acoustic oscillations from the cross-correlation of Ly <i>α</i> DR14. Astronomy and Astrophysics, 2019, 629, A86. Consistent cosmic shear in the face of systematics: a <i>B</i> Consistent cosmic shear in the face of systematics: a <i>B</i> Consistent cosmic shear in the face of systematics: a <i>B</i> Consistent cosmic shear in the face of systematics: a <i>B</i> Consistent cosmic shear in the face of systematics: a <i>Consistent cosmic shear in the face of systematics: a <i>Consistent cosmic shear in the face of systematics: a <i <i="" a="" consistent="" cosmic="" face="" face<="" in="" of="" shear="" systematics:="" td="" the=""><td>2.1</td><td>126 176 30</td></i></i></i>	2.1	126 176 30
2503 2504 2505 2506	Dark Quest. I. Fast and Accurate Emulation of Halo Clustering Statistics and Its Application to Galaxy Clustering. Astrophysical Journal, 2019, 884, 29. Baryon acoustic oscillations from the cross-correlation of Ly <i>12 ± </i> Baryon acoustic oscillations from the cross-correlation of Ly <i 12="" <="" i="" ±=""> Baryon acoustic oscillations from the cross-correlation of Ly<i 12="" <="" i="" ±=""> Consistent cosmic shear in the face of systematics: a <i 12="" <="" i="" ±=""> Consistent cosmic shear in the face of systematics: a <i 12="" <="" i="" ±=""> CMB lensing reconstruction biases in cross-correlation with large-scale structure probes. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 057-057. Baryon acoustic oscillations at <i 2="" <="" i=""> Baryon acoustic oscillations at <i 2="" <="" i=""></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>	2.1 2.1	126 176 30 42
2503 2504 2505 2506 2507	Dark Quest. I. Fast and Accurate Emulation of Halo Clustering Statistics and Its Application to Galaxy Clustering. Astrophysical Journal, 2019, 884, 29. Baryon acoustic oscillations from the cross-correlation of Ly <i>α </i> absorption and quasars in eBOSS DR14. Astronomy and Astrophysics, 2019, 629, A86. Consistent cosmic shear in the face of systematics: a <i> B</i> -mode analysis of KiDS-450, DES-SV and CFHTLenS. Astronomy and Astrophysics, 2019, 624, A134. CMB lensing reconstruction biases in cross-correlation with large-scale structure probes. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 057-057. Baryon acoustic oscillations at <i> z</i> = 2.34 from the correlations of Ly <i>α</i> absorption in eBOSS DR14. Astronomy and Astrophysics, 2019, 629, A85. Analytic expressions for the background evolution of massive neutrinos and dark matter particles.	2.1 2.1 1.9 2.1	126 176 30 42 176

#	ARTICLE Hidden treasures: Sterile neutrinos as dark matter with miraculous abundance, structure formation	IF	CITATIONS
2511	for different production mechanisms, and a solution to the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>if</mml:mi><mml:mn>8</mml:mn></mml:msub></mml:math>	1.6	19
2512	altimg="C:UsersmathangAppDataLocalTempMMLIMG597229255.png" altimg-valign="-3.5" display="inline"> <mml:mrow></mml:mrow> correlation coefficient of <mml:math <="" altimg="C:UsersmathangAppDataLocalTempMMLIMG597229256.png" altimg-valign="-3.5" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.6</td><td>5</td></mml:math>	1.6	5
2513	Smallest halos in thermal wino dark matter. Physical Review D, 2019, 100, .	1.6	4
2514	User's guide to extracting cosmological information from line-intensity maps. Physical Review D, 2019, 100, .	1.6	52
2515	Modeling the large-scale power deficit with smooth and discontinuous primordial spectra. Physical Review D, 2019, 100, .	1.6	11
2516	Rotation of the CMB polarization by foreground lensing. Physical Review D, 2019, 100, .	1.6	10
2517	BAO modulation as a probe of compensated isocurvature perturbations. Physical Review D, 2019, 100, .	1.6	12
2518	Observable predictions for massive-neutrino cosmologies with model-independent dark energy. Physical Review D, 2019, 100, .	1.6	13
2519	Acoustic dark energy: Potential conversion of the Hubble tension. Physical Review D, 2019, 100, .	1.6	174
2520	Screened fifth forces in parity-breaking correlation functions. Physical Review D, 2019, 100, .	1.6	3
2521	Intrinsic alignment statistics of density and velocity fields at large scales: Formulation, modeling, and baryon acoustic oscillation features. Physical Review D, 2019, 100, .	1.6	20
2522	Testing deviations from GR at cosmological scales including dynamical dark energy, massive neutrinos, functional or binned parametrizations, and spatial curvature. Physical Review D, 2019, 100, .	1.6	5
2523	CMB lensing bispectrum: Assessing analytical predictions against full-sky lensing simulations. Physical Review D, 2019, 99, .	1.6	11
2524	Exploring suppressed long-distance correlations as the cause of suppressed large-angle correlations. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5174-5181.	1.6	6
2525	Baryon Acoustic Oscillations and the Hubble constant: past, present and future. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 044-044.	1.9	125
2526	Constraints on primordial magnetic fields from magnetically-induced perturbations: current status and future perspectives with LiteBIRD and future ground based experiments. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 028-028.	1.9	24
2527	Multi-wavelength Properties of Radio- and Machine-learning-identified Counterparts to Submillimeter Sources in S2COSMOS. Astrophysical Journal, 2019, 886, 48.	1.6	21
2528	Improving constraints on fundamental physics parameters with the clustering of Sunyaev-Zeldovich selected galaxy clusters. Physical Review D, 2019, 100, .	1.6	4

#	Article	IF	CITATIONS
2529	Reconstructing the dark matter and dark energy interaction scenarios from observations. Physics of the Dark Universe, 2019, 26, 100383.	1.8	40
2530	An inpainting approach to tackle the kinematic and thermal SZ induced biases in CMB-cluster lensing estimators. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 037-037.	1.9	11
2531	Interacting scenarios with dynamical dark energy: Observational constraints and alleviation of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub></mml:msub></mml:math> tension. Physical Review D, 2019, 100, .	1.6	110
2532	Cosmological constraints on neutrino self-interactions with a light mediator. Physical Review D, 2019, 100, .	1.6	51
2533	Probing the independence within the dark sector in the fluid approximation. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 030-030.	1.9	2
2534	Optimal filtering for CMB lensing reconstruction. Physical Review D, 2019, 100, .	1.6	12
2535	Cosmological constraints and phenomenology of a beyond-Horndeski model. Physical Review D, 2019, 100, .	1.6	16
2536	CMB constraints on the stochastic gravitational-wave background at Mpc scales. Physical Review D, 2019, 100, .	1.6	14
2537	Cosmic shear covariance matrix in <i>w</i> CDM: Cosmology matters. Astronomy and Astrophysics, 2019, 631, A160.	2.1	41
2538	Bayesian inflationary reconstructions from <i>Planck</i> 2018 data. Physical Review D, 2019, 100, .	1.6	20
2539	Connecting early and late epochs by $\langle i \rangle f \langle i \rangle z \langle i \rangle$ CDM cosmography. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 008-008.	1.9	39
2540	Cosmological Simulations of Satellites around Isolated Dwarf Galaxies. Astrophysical Journal, 2019, 881, 115.	1.6	2
2541	Interpreting deviations between AR-VTG and GR. International Journal of Modern Physics D, 2019, 28, 1930002.	0.9	0
2542	Model independent <i>H</i> (<i>z</i>) reconstruction using the cosmic inverse distance ladder. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4803-4810.	1.6	84
2543	Testing general relativity in cosmology. Living Reviews in Relativity, 2019, 22, 1.	8.2	265
2544	Selected topics in scalar–tensor theories and beyond. International Journal of Modern Physics D, 2019, 28, 1930012.	0.9	71
2545	The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: a tomographic measurement of cosmic structure growth and expansion rate based on optimal redshift weights. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3497-3513.	1.6	142
2546	Transit cosmological models in FRW universe under the two-fluid scenario. International Journal of Geometric Methods in Modern Physics, 2019, 16, 1950007.	0.8	11

#	Article	IF	CITATIONS
2547	Search for sterile neutrinos in a universe of vacuum energy interacting with cold dark matter. Physics of the Dark Universe, 2019, 23, 100261.	1.8	34
2548	Time-varying neutrino mass from a supercooled phase transition: Current cosmological constraints and impact on the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mi mathvariant="normal">î©</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mi>mc_lormal">î©</mml:mi></mml:mrow></mml:mrow><mml:mrow><mml:mi>mc_lormal">imathvariant="normal">i @ </mml:mi></mml:mrow></mml:mrow></mml:mrow><td>1.6 > < mml:mt</td><td>20 :ext>â^'</td></mml:math>	1.6 > < mml:mt	20 :ext>â^'
2549	Dark Energy Survey Year 1 results: Methodology and projections for joint analysis of galaxy clustering, galaxy lensing, and CMB lensing two-point functions. Physical Review D, 2019, 99, .	1.6	35
2550	Constraining quantum collapse inflationary models with current data: The semiclassical approach. International Journal of Modern Physics D, 2019, 28, 1950041.	0.9	12
2551	Probing primordial gravitational waves: Ali CMB Polarization Telescope. National Science Review, 2019, 6, 145-154.	4.6	59
2552	Imprint of a Steep Equation of State in the growth of structure. Astroparticle Physics, 2020, 115, 102388.	1.9	5
2553	Constraints on running of non-Gaussianity from large-scale structure probes. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 491, L61-L65.	1.2	7
2554	GRAMSES: a new route to general relativistic N-body simulations in cosmology. Part I. Methodology and code description. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 007-007.	1.9	26
2555	What is the amplitude of the gravitational waves background expected in the Starobinsky model?. Physics of the Dark Universe, 2020, 27, 100450.	1.8	15
2556	On the road toÂper cent accuracy – III. Non-linear reaction of the matter power spectrum to massive neutrinos. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3101-3107.	1.6	18
2557	Optimizing galaxy samples for clustering measurements in photometric surveys. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3535-3552.	1.6	6
2558	Observational evidence for a local underdensity in the Universe and its effect on the measurement of the Hubble constant. Astronomy and Astrophysics, 2020, 633, A19.	2.1	37
2559	Exploring extensions to the standard cosmological model and the impact of baryons on small scales. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3809-3829.	1.6	13
2560	Simultaneous determination of the cosmic birefringence and miscalibrated polarization angles II: Including cross-frequency spectra. Progress of Theoretical and Experimental Physics, 2020, 2020, .	1.8	25
2561	Scrutinizing various phenomenological interactions in the context of holographic Ricci dark energy models. European Physical Journal C, 2020, 80, 1.	1.4	17
2562	The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the luminous red galaxy sample from the anisotropic correlation function between redshifts 0.6 and 1. Monthly Notices of the Royal Astronomical Society, 2020, 500, 736-762.	1.6	154
2563	Growth of non-linear structures and spherical collapse in the Galileon Ghost Condensate model. Physics of the Dark Universe, 2020, 30, 100686.	1.8	9
2564	Determination of miscalibrated polarization angles from observed cosmic microwave background and foreground EB power spectra: Application to partial-sky observation. Progress of Theoretical and Experimental Physics, 2020, 2020, .	1.8	19

#	Article	IF	CITATIONS
2565	The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: $\langle i \rangle N \langle i \rangle$ -body mock challenge for the quasar sample. Monthly Notices of the Royal Astronomical Society, 2020, 499, 269-291.	1.6	41
2566	The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the luminous red galaxy sample from the anisotropic power spectrum between redshifts 0.6 and 1.0. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2492-2531.	1.6	137
2567	Super-CMB fluctuations and the Hubble tension. Physics of the Dark Universe, 2020, 28, 100539.	1.8	20
2568	Imprints of the early Universe on axion dark matter substructure. Physical Review D, 2020, 101, .	1.6	31
2569	Probing the weak gravity conjecture in the cosmic microwave background. Physical Review D, 2020, 101, .	1.6	6
2570	Voronoi volume function: a new probe of cosmology and galaxy evolution. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3233-3251.	1.6	24
2571	Characterizing fast radio bursts through statistical cross-correlations. Physical Review D, 2020, 102, .	1.6	14
2572	On (non-)dynamical dark energy. Physics of the Dark Universe, 2020, 30, 100681.	1.8	4
2573	Covariance of the redshift-space matter power spectrum after reconstruction. Physical Review D, 2020, 102, .	1.6	3
2574	What is the Price of Abandoning Dark Matter? Cosmological Constraints on Alternative Gravity Theories. Physical Review Letters, 2020, 125, 211101.	2.9	21
2575	Reconciling <i>H</i> ₀ tension in a six parameter space?. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 062-062.	1.9	46
2576	New interpretable statistics for large-scale structure analysis and generation. Physical Review D, 2020, 102, . Using SPT polarization, <i>Planck</i>	1.6	46
2577	untilted nonflat <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Î></mml:mi><mml:mi>CDM</mml:mi></mml:math> , XCDM, and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>i-</mml:mi>i-<mml:mi>CDM</mml:mi></mml:math> dark energy inflation	1.6	40
2578	cosmologies. Physical Review D, 2020, 101, . Understanding parameter differences between analyses employing nested data subsets. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3410-3416.	1.6	8
2579	Constraining the nature of ultra light dark matter particles with the $21 {\rm \^A} {\rm cm}$ forest. Physical Review D, 2020, 101, .	1.6	15
2580	Phase decoherence of gravitational wave backgrounds. Physical Review D, 2020, 102, .	1.6	11
2581	The imprint of dark subhaloes on the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3255-3266.	1.6	1
2582	New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data. Physical Review Letters, 2020, 125, 221301.	2.9	119

#	Article	IF	CITATIONS
2583	A fake interacting dark energy detection?. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 500, L22-L26.	1.2	23
2584	Validating a minimal galaxy bias method for cosmological parameter inference using HSC-SDSS mock catalogs. Physical Review D, 2020, 102, .	1.6	21
2585	Cosmological information content in redshift-space power spectrum of SDSS-like galaxies in the quasinonlinear regime up to <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>k</mml:mi><mml:mo>=</mml:mo><mml:mn>0.3</mml:mn><mml:mtex .<="" 101,="" 2020,="" d,="" physical="" review="" td=""><td>t>1€%<td>nml:mtext>‹</td></td></mml:mtex></mml:mrow></mml:math>	t> 1€ % <td>nml:mtext>‹</td>	nml:mtext>‹
2586	Hierarchical Bayesian CMB component separation with the No-U-Turn Sampler. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4383-4401.	1.6	5
2587	Alleviating the Tension in the Cosmic Microwave Background using Planck-Scale Physics. Physical Review Letters, 2020, 125, 051302.	2.9	35
2588	Beyond Ĵ·CDM with H i intensity mapping: robustness of cosmological constraints in the presence of astrophysics. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4115-4126.	1.6	16
2589	Separating the intrinsic alignment signal and the lensing signal using self-calibration in photo- <i>z</i> surveys with KiDS450 and KV450 Data. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3900-3919.	1.6	7
2590	Assessing non-linear models for galaxy clustering – II. Model validation and forecasts for Stage IV surveys. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5301-5322.	1.6	7
2591	Blinding multiprobe cosmological experiments. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4454-4470.	1.6	22
2592	Dynamical dark sectors and neutrino masses and abundances. Physical Review D, 2020, 102, .	1.6	28
2593	Characterizing the structure of halo merger trees using a single parameter: the tree entropy. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4551-4569.	1.6	13
2594	Atacama Cosmology Telescope: Component-separated maps of CMB temperature and the thermal Sunyaev-Zel'dovich effect. Physical Review D, 2020, 102, .	1.6	56
2595	Soundness of dark energy properties. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 045-045.	1.9	32
2596	Joining Bits and Pieces of Reionization History. Physical Review Letters, 2020, 125, 071301.	2.9	12
2597	On cosmological signatures of baryons-dark energy elastic couplings. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 020-020.	1.9	22
2598	Nonlinear structure formation in Bound Dark Energy. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 016-016.	1.9	4
2599	Generation of inflationary perturbations in the continuous spontaneous localization model: The second order power spectrum. Physical Review D, 2020, 102, .	1.6	8
2600	Remote dipole field reconstruction with dusty galaxies. Physical Review D, 2020, 102, .	1.6	5

#	Article	IF	CITATIONS
2601	Fisher for complements: extracting cosmology and neutrino mass from the counts-in-cells PDF. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4006-4027.	1.6	69
2602	Multipole expansion for H i intensity mapping experiments: simulations and modelling. Monthly Notices of the Royal Astronomical Society, 2020, 496, 415-433.	1.6	17
2603	The <scp>artemis</scp> simulations: stellar haloes of Milky Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1765-1785.	1.6	60
2604	Cosmic flows in the nearby Universe: new peculiar velocities from SNe and cosmological constraints. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2703-2718.	1.6	57
2605	Propagating sample variance uncertainties in redshift calibration: simulations, theory, and application to the COSMOS2015 data. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2984-2999.	1.6	15
2606	Effects of redshift uncertainty on cross-correlations of CMB lensing and galaxy surveys. Physical Review D, 2020, 101, .	1.6	4
2607	Structure formation with two periods of inflation: beyond PLaIn Î>CDM. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 053-053.	1.9	5
2608	Relieving the Hubble Tension with Primordial Magnetic Fields. Physical Review Letters, 2020, 125, 181302.	2.9	110
2609	Propagating speed of primordial gravitational waves. Physical Review D, 2020, 102, .	1.6	28
2610	Universal structure of dark matter haloes over a mass range of 20 orders of magnitude. Nature, 2020, 585, 39-42. Metastable dark energy models in light of <mml:math< td=""><td>13.7</td><td>140</td></mml:math<>	13.7	140
2611	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>P</mml:mi> <mml:mi> </mml:mi> <mml:mi>a</mml:mi> <mml:mi><mml:mi><mml:mi> 2018 data: Alleviating the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>H</mml:mi><mml:mn>0</mml:mn></mml:msub></mml:math></mml:mi></mml:mi></mml:mi>	i>q <td>niżśmml:mi</td>	niżśmml:mi
2612	tension. Physical Review D, 2020, 102, . Cross-correlation of the astrophysical gravitational-wave background with galaxy clustering. Physical Review D, 2020, 102, .	1.6	30
2613	KiDS+VIKING-450 and DES-Y1 combined: Cosmology with cosmic shear. Astronomy and Astrophysics, 2020, 638, L1.	2.1	127
2614	Boltzmann hierarchies for self-interacting warm dark matter scenarios. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 041-041.	1.9	8
2615	An accurate perturbative approach to redshift space clustering of biased tracers in modified gravity. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 055-055.	1.9	20
2616	Cosmology with relativistically varying physical constants. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4481-4491.	1.6	18
2617	All-inclusive interacting dark sector cosmologies. Physical Review D, 2020, 101, .	1.6	43
2618	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A6.	2.1	6,722

#	ARTICLE	IF	Citations
2619	The impact of AGN feedback on the 1D power spectra from the Ly α forest using the Horizon-AGN suite of simulations. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1825-1840.	1.6	28
2620	A Brief Interlude: Statistical Methods in Cosmology. Springer Theses, 2020, , 123-136.	0.0	O
2621	Improved model-independent constraints on the recombination era and development of a direct projection method. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4210-4226.	1.6	10
2622	The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: BAO and RSD measurements from anisotropic clustering analysis of the quasar sample in configuration space between redshift 0.8 and 2.2. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1201-1221.	1.6	141
2623	Modeling dark photon oscillations in our inhomogeneous Universe. Physical Review D, 2020, 102, .	1.6	22
2624	Informational approach to cosmological parameter estimation. Physical Review D, 2020, 102, .	1.6	5
2625	Probing dark matter with future CMB measurements. Physical Review D, 2020, 102, .	1.6	19
2626	Arguments against using <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mi>h</mml:mi></mml:mrow><mml:mrow><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:row><mml:ro< td=""><td>mɑˈxâ^'<td>າກຢ່າໝາວ><mr< td=""></mr<></td></td></mml:ro<></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:row></mml:mrow></mml:mrow></mml:mrow></mml:math>	m ɑˈxâ^' <td>າກຢ່າໝາວ><mr< td=""></mr<></td>	າກ ຢ່າ ໝາວ> <mr< td=""></mr<>
2627	Dark Photon Oscillations in Our Inhomogeneous Universe. Physical Review Letters, 2020, 125, 221303.	2.9	48
2628	Linear point and sound horizon as purely geometric standard rulers. Physical Review D, 2020, 101, .	1.6	11
2629	Quantifying concordance of correlated cosmological data sets. Physical Review D, 2020, 101, .	1.6	28
2630	Accessing the high- <mml:math display="inline" xmins:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>â,,"</mml:mi> </mml:mrow> </mml:math> frontier under the reduced shear approximation with <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mrow> </mml:mrow> </mml:mrow></mml:math> -cut cosmic shear.	1.6	2
2631	Nonlinear contributions to angular power spectra. Physical Review D, 2020, 101, .	1.6	24
2632	Testing consistency of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">Î@</mml:mi><mml:mi>b</mml:mi></mml:msub><mml:msup><mml:mi>h</mml:mi><mm .<="" 101,="" 2020,="" d,="" data.="" in="" physical="" planck="" review="" td="" the=""><td>ıl:mn>2<td>nml:mn></td></td></mm></mml:msup></mml:math>	ıl:mn>2 <td>nml:mn></td>	nml:mn>
2633	Optimal Boltzmann hierarchies with nonvanishing spatial curvature. Physical Review D, 2020, 102, .	1.6	4
2634	Constraints on primordial power spectrum from galaxy luminosity functions. Physical Review D, 2020, 102, .	1.6	12
2635	Perturbation theory for the redshift-space matter power spectra after reconstruction. Physical Review D, 2020, 101, .	1.6	5
2636	Prospects for cosmic magnification measurements using H i intensity mapping. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1959-1966.	1.6	2

#	Article	IF	Citations
2637	The BAHAMAS project: effects of dynamical dark energy on large-scale structure. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1576-1592.	1.6	10
2638	Observing the tail of reionization: neutral islands in the $\langle i \rangle z \langle i \rangle \hat{A} = 5.5$ Lyman-α forest. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3080-3094.	1.6	64
2639	Baryonic effects on CMB lensing and neutrino mass constraints. Physical Review D, 2020, 101, .	1.6	13
2640	hyrec-2: A highly accurate sub-millisecond recombination code. Physical Review D, 2020, 102, .	1.6	21
2641	Precision cosmology in the era of large surveys. Journal of Instrumentation, 2020, 15, C10019-C10019.	0.5	0
2642	CMB <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>B</mml:mi></mml:math> -mode non-Gaussianity: Optimal bispectrum estimator and Fisher forecasts. Physical Review D, 2020, 102, .	1.6	13
2643	Strong lensing time delay constraints on dark energy: a forecast. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 057-057.	1.9	7
2644	Evolution of the Deterministic Collapse Barrier of the Field Clusters as a Probe of Cosmology. Astrophysical Journal, 2020, 889, 62.	1.6	4
2645	Implications of MilkyÂWay substructures for the nature of dark matter. Physical Review D, 2020, 101, .	1.6	24
2646	Amending the halo model to satisfy cosmological conservation laws. Physical Review D, 2020, 101, .	1.6	14
2647	Reconstructing gravity on cosmological scales. Physical Review D, 2020, 101, .	1.6	63
2648	Forecasting the interaction in dark matter-dark energy models with standard sirens from the Einstein telescope. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 021-021.	1.9	27
2649	Viable gauge choices in cosmologies with nonlinear structures. Physical Review D, 2020, 101, .	1.6	15
2650	Field theoretic interpretations of interacting dark energy scenarios and recent observations. Physical Review D, 2020, 101, .	1.6	46
2651	Likelihood Methods for CMB Experiments. Frontiers in Physics, 2020, 8, .	1.0	12
2652	Forecasting interacting vacuum-energy models using gravitational waves. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 050-050.	1.9	23
2653	Reionization optical depth determination from <i>Planck</i> HFI data with ten percent accuracy. Astronomy and Astrophysics, 2020, 635, A99.	2.1	41
2654	Can late dark energy transitions raise the Hubble constant?. Physical Review D, 2020, 101, .	1.6	119

#	Article	IF	CITATIONS
2655	Latest evidence for a late time vacuum–geodesic CDM interaction. Physics of the Dark Universe, 2020, 29, 100583.	1.8	22
2656	Testing tidal alignment models for anisotropic correlations of halo ellipticities with N-body simulations. Monthly Notices of the Royal Astronomical Society, 2020, 494, 694-702.	1.6	14
2657	On the amount of peculiar velocity field information in supernovae from LSST and beyond. Physics of the Dark Universe, 2020, 29, 100519.	1.8	11
2658	The stellar-to-halo mass relation over the past 12 Gyr. Astronomy and Astrophysics, 2020, 634, A135.	2.1	73
2659	Measurements of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>B</mml:mi></mml:math> -mode polarization of the cosmic microwave background from 500 square degrees of SPTpol data. Physical Review D, 2020, 101, .	1.6	54
2660	Perturbations and linearization stability of closed Friedmann universes. Physical Review D, 2020, 101, .	1.6	5
2661	Simple supergravity model of inflation constrained with Planck 2018 data. Physical Review D, 2020, 101,	1.6	4
2662	Primordial black holes and gravitational waves from parametric amplification of curvature perturbations. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 013-013.	1.9	86
2663	Asymptotic expansions for Large Scale Structure. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 033-033.	1.9	8
2664	The integrated angular bispectrum. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 035-035.	1.9	5
2665	Connecting the structure of dark matter haloes to the primordial power spectrum. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4994-5013.	1.6	21
2666	The impact of projection effects on cluster observables: stacked lensing and projected clustering. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4468-4487.	1.6	31
2667	Super-resolution emulator of cosmological simulations using deep physical models. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4227-4236.	1.6	39
2668	Neutrino puzzle: Anomalies, interactions, and cosmological tensions. Physical Review D, 2020, 101, .	1.6	202
2669	Ionization from cosmic strings at cosmic dawn. Physical Review D, 2020, 101, .	1.6	5
2670	Footprints of Doppler and aberration effects in cosmic microwave background experiments: statistical and cosmological implications. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1708-1724.	1.6	5
2671	Validating the methodology for constraining the linear growth rate from clustering anisotropies. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1658-1674.	1.6	5
2672	Lensing corrections on galaxy-lensing cross correlations and galaxy-galaxy auto correlations. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 045-045.	1.9	7

#	Article	IF	CITATIONS
2673	Galaxy Clusters Selected via the Sunyaev–Zel'dovich Effect in the SPTpol 100-square-degree Survey. Astronomical Journal, 2020, 159, 110.	1.9	41
2674	Dark calling dark: interaction in the dark sector in presence of neutrino properties after Planck CMB final release. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 008-008.	1.9	60
2675	Bubble mapping with the Square Kilometre Array – I. Detecting galaxies with Euclid, JWST, WFIRST, and ELT within ionized bubbles in the intergalactic medium at z & Monthly Notices of the Royal Astronomical Society, 2020, 493, 855-870.	1.6	8
2676	Analytic Calculation of Covariance between Cosmological Parameters from Correlated Data Sets, with an Application to SPTpol. Astrophysical Journal, 2020, 888, 26.	1.6	2
2677	Anisotropic separate universe simulations. Monthly Notices of the Royal Astronomical Society, 2020, 496, 483-496.	1.6	18
2678	The multi-feature universe: Large parameter space cosmology and the swampland. Physics of the Dark Universe, 2020, 28, 100545.	1.8	9
2679	Constraints on features in the inflationary potential from future Euclid data. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3448-3468.	1.6	14
2680	Interacting dark energy in the early 2020s: A promising solution to the <mml:math altimg="si57.svg" display="inline" id="d1e1519" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>0<td>nl:1:8><td>184 :ml:mrow> <</td></td></mml:mn></mml:mrow></mml:msub></mml:math>	nl: 1:8 > <td>184 :ml:mrow> <</td>	184 :ml:mrow> <
2681	A gigaparsec-scale local void and the Hubble tension. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	33
2682	Subhalo mass function and ultralight bosonic dark matter. Physical Review D, 2020, 101, .	1.6	71
2683	Probing primordial symmetry breaking with the cosmic microwave background anisotropy. Physical Review D, 2020, 101, .	1.6	1
2684	Phase transition in the dark sector as a proposal to lessen cosmological tensions. Physical Review D, 2020, 101, .	1.6	44
2685	Alleviating the $\langle i\rangle H\langle i\rangle \langle sub\rangle 0\langle sub\rangle$ and $ i f\langle sub\rangle 8\langle sub\rangle$ anomalies with a decaying dark matter model. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 026-026.	1.9	85
2686	Fractal Dimension of the Cosmic Microwave Background as a Test of "Planck" Spacecraft Data. Astrophysics, 2020, 63, 288-295.	0.1	1
2687	Probing the seesaw mechanism with cosmological data. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 007-007.	1.9	12
2688	Joint growth-rate measurements from redshift-space distortions and peculiar velocities in the 6dF Galaxy Survey. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3275-3293.	1.6	23
2689	The case for a closed universe. Astronomy and Geophysics, 2020, 61, 1.38-1.40.	0.1	5
2690	Matter power spectrum of light freeze-in dark matter: With or without self-interaction. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020, 802, 135251.	1.5	14

#	Article	IF	CITATIONS
2691	Beyond Optical Depth: Future Determination of Ionization History from the Cosmic Microwave Background. Astrophysical Journal, 2020, 889, 130.	1.6	8
2692	Fractional Dark Matter decay: cosmological imprints and observational constraints. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 045-045.	1.9	27
2693	Morphology of CMB fields—effect of weak gravitational lensing. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 020-020.	1.9	7
2694	Modelling the matter bispectrum at small scales in modified gravity. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 025-025.	1.9	16
2695	Non-linear matter power spectrum without screening dynamics modelling in f(R) gravity. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4235-4245.	1.6	4
2696	Cross-correlation of the thermal Sunyaev–Zel'dovich effect and weak gravitational lensing: Planck and Subaru Hyper Suprime-Cam first-year data. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4780-4804.	1.6	26
2697	Predictions for the 21cm-galaxy cross-power spectrum observable with SKA and future galaxy surveys. Monthly Notices of the Royal Astronomical Society, 0 , , .	1.6	11
2698	Testing the impact of satellite anisotropy on large- and small-scale intrinsic alignments using hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5330-5350.	1.6	6
2699	Beyond the Runge-Kutta-Wentzel-Kramers-Brillouin method. Physical Review D, 2020, 101, .	1.6	3
2700	Effective field theory of dark energy: A review. Physics Reports, 2020, 857, 1-63.	10.3	113
2700 2701	Effective field theory of dark energy: A review. Physics Reports, 2020, 857, 1-63. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 LRG sample: structure growth rate measurement from the anisotropic LRG correlation function in the redshift range 0.6 & amp;lt; <i>z</i> & amp;lt; 1.0. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4189-4215.	10.3	33
	The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 LRG sample: structure growth rate measurement from the anisotropic LRG correlation function in the redshift range 0.6 & DR14 LRG sample: structure growth rate measurement from the anisotropic LRG correlation function in the redshift range 0.6 & DR14 LRG sample: structure growth rate measurement from the anisotropic LRG correlation function in the redshift range 0.6 & DR14 LRG sample: structure growth rate measurement from the anisotropic LRG correlation function in the redshift range 0.6 & DR14 LRG sample: structure growth rate measurement from the anisotropic LRG correlation function in the redshift range 0.6 & DR14 LRG sample: structure growth rate measurement from the anisotropic LRG correlation function in the redshift range 0.6 & DR14 LRG sample: structure growth rate measurement from the anisotropic LRG correlation function in the redshift range 0.6 & DR14 LRG sample: structure growth rate measurement from the anisotropic LRG correlation function in the redshift range 0.6 & DR14 LRG samp; structure growth rate measurement from the anisotropic LRG correlation function		
2701	The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 LRG sample: structure growth rate measurement from the anisotropic LRG correlation function in the redshift range 0.6 & Description of the Royal Astronomical Society, 2020, 492, 4189-4215.	1.6	33
2701 2702	The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 LRG sample: structure growth rate measurement from the anisotropic LRG correlation function in the redshift range 0.6 & DR14 LRG sample: structure growth rate measurement from the anisotropic LRG correlation function in the redshift range 0.6 & DR14 LRG sample: structure growth rate measurement from the anisotropic LRG correlation function in the redshift range 0.6 & DR14 LRG sample: structure growth rate measurement from the Royal Astronomical Society, 2020, 492, 4189-4215. Impact of our local environment on cosmological statistics. Physical Review D, 2020, 101, . Cosmological constraints in extended parameter space from the Planck 2018 Legacy release. Journal of	1.6	33
2701 2702 2703	The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 LRG sample: structure growth rate measurement from the anisotropic LRG correlation function in the redshift range 0.6 & Damp; lt; <i> 2</i> & Damp; lt; 1.0. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4189-4215. Impact of our local environment on cosmological statistics. Physical Review D, 2020, 101, . Cosmological constraints in extended parameter space from the Planck 2018 Legacy release. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 013-013. Baryon-CDM isocurvature galaxy bias with IllustrisTNG. Journal of Cosmology and Astroparticle	1.6 1.6 1.9	33 2 83
2701 2702 2703 2704	The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 LRG sample: structure growth rate measurement from the anisotropic LRG correlation function in the redshift range 0.6 & amp;lt; <i>>z</i> > & amp;lt; 1.0. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4189-4215. Impact of our local environment on cosmological statistics. Physical Review D, 2020, 101, . Cosmological constraints in extended parameter space from the Planck 2018 Legacy release. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 013-013. Baryon-CDM isocurvature galaxy bias with IllustrisTNG. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 005-005. The accuracy of weak lensing simulations. Monthly Notices of the Royal Astronomical Society, 2020,	1.6 1.6 1.9	33 2 83 22
2701 2702 2703 2704 2705	The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 LRG sample: structure growth rate measurement from the anisotropic LRG correlation function in the redshift range 0.6 & Damp;lt; <i>> & Damp;lt; <1.0. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4189-4215. Impact of our local environment on cosmological statistics. Physical Review D, 2020, 101, . Cosmological constraints in extended parameter space from the Planck 2018 Legacy release. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 013-013. Baryon-CDM isocurvature galaxy bias with IllustrisTNG. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 005-005. The accuracy of weak lensing simulations. Monthly Notices of the Royal Astronomical Society, 2020, 493, 305-319. A null test to probe the scale dependence of the growth of structure as a test of general relativity.</i>	1.6 1.9 1.9	33 2 83 22 22

#	Article	IF	CITATIONS
2709	J-PAS: forecasts on dark energy and modified gravity theories. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3616-3631.	1.6	14
2710	Hawaii Two-0: high-redshift galaxy clustering and bias. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2318-2328.	1.6	3
2711	Wide-angle redshift-space distortions at quasi-linear scales: cross-correlation functions from Zel'dovich approximation. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4162-4179.	1.6	20
2712	KiDS+VIKING-450: Cosmic shear tomography with optical and infrared data. Astronomy and Astrophysics, 2020, 633, A69.	2.1	246
2713	Gravitational Waves, CMB Polarization, and the Hubble Tension. Physical Review Letters, 2020, 124, 041301.	2.9	6
2714	Two-year Cosmology Large Angular Scale Surveyor (CLASS) Observations: A Measurement of Circular Polarization at 40 GHz. Astrophysical Journal, 2020, 889, 105.	1.6	15
2715	Probing gaseous galactic halos through the rotational kinematic Sunyaev-Zeldovich effect. Physical Review D, 2020, 101, .	1.6	5
2716	LyaCoLoRe : synthetic datasets for current and future Lyman-α forest BAO surveys. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 068-068.	1.9	24
2717	Towards determining the neutrino mass hierarchy: weak lensing and galaxy clustering forecasts with baryons and intrinsic alignments. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1640-1661.	1.6	10
2718	Nonminimal dark sector physics and cosmological tensions. Physical Review D, 2020, 101, .	1.6	211
2719	Constraints on a special running vacuum model. European Physical Journal C, 2020, 80, 1.	1.4	9
2720	Non-linear damping of superimposed primordial oscillations on the matter power spectrum in galaxy surveys. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 030-030.	1.9	26
2721	Hints, neutrino bounds, and WDM constraints from SDSS DR14 Lyman-α and Planck full-survey data. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 038-038.	1.9	144
2722	The bahamas project: effects of a running scalar spectral index on large-scale structure. Monthly Notices of the Royal Astronomical Society, 2020, 493, 676-697.	1.6	11
2723	Can Gibbons–Hawking radiation and inflation arise due to spacetime quanta?. Physics of the Dark Universe, 2020, 29, 100553.	1.8	0
2724	KiDS+VIKING-450 and DES-Y1 combined: Mitigating baryon feedback uncertainty with COSEBIs. Astronomy and Astrophysics, 2020, 634, A127.	2.1	89
2725	Phase-space structure of cold dark matter haloes inside splashback: multistream flows and self-similar solution. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2765-2781.	1.6	15
2726	Exact joint likelihood of pseudo-Câ,, estimates from correlated Gaussian cosmological fields. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3165-3181.	1.6	10

#	Article	IF	CITATIONS
2727	Improving baryon acoustic oscillation measurement with the combination of cosmic voids and galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4554-4572.	1.6	11
2728	Generalized Brans-Dicke theories in light of evolving dark energy. Physical Review D, 2020, 101, .	1.6	7
2729	Do we have any hope of detecting scattering between dark energy and baryons through cosmology?. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1139-1152.	1.6	58
2730	Imprints of an extended Chevallier–Polarski–Linder parametrization on the large scale of our universe. European Physical Journal C, 2020, 80, 1.	1.4	5
2731	On decoupling the integrals of cosmological perturbation theory. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1337-1360.	1.6	4
2732	Cross-correlating radio continuum surveys and CMB lensing: constraining redshift distributions, galaxy bias, and cosmology. Monthly Notices of the Royal Astronomical Society, 2021, 502, 876-887.	1.6	16
2733	Curvature bounce in general relativity: background and primordial spectrum. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 018-018.	1.9	7
2734	<scp>hmcode-2020</scp> : improved modelling of non-linear cosmological power spectra with baryonic feedback. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1401-1422.	1.6	115
2735	Brane inflation and the robustness of the Starobinsky inflationary model. European Physical Journal Plus, 2021, 136, 1.	1.2	5
2736	Cosmology with Rayleigh scattering of the cosmic microwave background. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 060-060.	1.9	7
2737	Measuring the spectrum of primordial gravitational waves with CMB, PTA and laser interferometers. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 012-012.	1.9	60
2738	A Semianalytic Model of the Pairwise Velocity Distribution between Dark Matter Halos. Astrophysical Journal, 2021, 907, 38.	1.6	6
2739	Direct detection of the kinetic Sunyaev-Zel'dovich effect in galaxy clusters. Astronomy and Astrophysics, 2021, 645, A112.	2.1	19
2740	Varying fundamental constants principal component analysis: additional hints about the Hubble tension. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2206-2227.	1.6	14
2742	Clustering of CODEX clusters. Astronomy and Astrophysics, 2021, 646, A8.	2.1	8
2743	Constraining KÄhler Moduli Inflation from CMB Observations. Springer Proceedings in Physics, 2021, , 315-322.	0.1	0
2744	Analyzing clustering of astrophysical gravitational-wave sources: luminosity-distance space distortions. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 036-036.	1.9	10
2745	Isocurvature modes: joint analysis of the CMB power spectrum and bispectrum. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 004-004.	1.9	1

#	Article	IF	CITATIONS
2746	Growth of structure: linear theory. , 2021, , 195-229.		0
2747	Constraining primordial non-Gaussianity with postreconstructed galaxy bispectrum in redshift space. Physical Review D, 2021, 103, .	1.6	11
2748	The Last Journey. I. An Extreme-scale Simulation on the Mira Supercomputer. Astrophysical Journal, Supplement Series, 2021, 252, 19.	3.0	12
2749	The Atacama Cosmology Telescope: delensed power spectra and parameters. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 031-031.	1.9	23
2750	KiDS-1000 cosmology: Cosmic shear constraints and comparison between two point statistics. Astronomy and Astrophysics, 2021, 645, A104.	2.1	339
2752	Primordial information content of Rayleigh anisotropies. Physical Review D, 2021, 103, .	1.6	5
2753	CARPool: fast, accurate computation of large-scale structure statistics by pairing costly and cheap cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1897-1914.	1.6	23
2754	KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints. Astronomy and Astrophysics, 2021, 646, A140.	2.1	393
2755	Towards ending the partial sky E-B ambiguity in CMB observations. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 036-036.	1.9	7
2756	The Horizon Run 5 Cosmological Hydrodynamical Simulation: Probing Galaxy Formation from Kilo- to Gigaparsec Scales. Astrophysical Journal, 2021, 908, 11.	1.6	40
2757	Baryon acoustic oscillations in the projected cross-correlation function between the eBOSS DR16 quasars and photometric galaxies from the DESI Legacy Imaging Surveys. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2562-2582.	1.6	9
2758	Cosmological constraints from DES Y1 cluster abundances and SPT multiwavelength data. Physical Review D, 2021, 103, .	1.6	34
2759	Measuring the tidal response of structure formation: anisotropic separate universe simulations using <scp>treepm</scp> . Monthly Notices of the Royal Astronomical Society, 2021, 503, 1473-1489.	1.6	16
2760	Higher-curvature corrections and tensor modes. Physical Review D, 2021, 103, .	1.6	11
2761	Baryonic Feedback Measurement From KV450 Cosmic Shear Analysis. Astrophysical Journal, 2021, 908, 13.	1.6	10
2762	CosmoBit: a GAMBIT module for computing cosmological observables and likelihoods. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 022-022.	1.9	15
2763	A Test of the Cosmological Principle with Quasars. Astrophysical Journal Letters, 2021, 908, L51.	3.0	136
2764	KiDS-1000 methodology: Modelling and inference for joint weak gravitational lensing and spectroscopic galaxy clustering analysis. Astronomy and Astrophysics, 2021, 646, A129.	2.1	82

#	Article	IF	CITATIONS
2765	Eppur $\tilde{A}^{"}$ piatto? The Cosmic Chronometers Take on Spatial Curvature and Cosmic Concordance. Astrophysical Journal, 2021, 908, 84.	1.6	112
2766	Dark Energy Survey Year 3 results: Optimizing the lens sample in a combined galaxy clustering and galaxy-galaxy lensing analysis. Physical Review D, 2021, 103, .	1.6	42
2767	Sufficiency of a Gaussian power spectrum likelihood for accurate cosmology from upcoming weak lensing surveys. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1999-2013.	1.6	11
2768	Extended fast action minimization method: application to SDSS-DR12 combined sample. Monthly Notices of the Royal Astronomical Society, 2021, 503, 540-556.	1.6	2
2769	The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: 1000 multi-tracer mock catalogues with redshift evolution and systematics for galaxies and quasars of the final data release. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1149-1173.	1.6	58
2770	Mock halo catalogues: assigning unresolved halo properties using correlations with local halo environment. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2053-2064.	1.6	6
2771	Investigating Cosmic Discordance. Astrophysical Journal Letters, 2021, 908, L9.	3.0	96
2772	Extracting H <scp>i</scp> astrophysics from interferometric intensity mapping. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5259-5276.	1.6	9
2773	Small-scale CMB anisotropies induced by the primordial magnetic fields. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 093.	1.9	6
2774	The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: a multitracer analysis in Fourier space for measuring the cosmic structure growth and expansion rate. Monthly Notices of the Royal Astronomical Society, 2021, 504, 33-52.	1.6	20
2775	Observational Constraints in Delta-gravity: CMB and Supernovae. Astrophysical Journal, 2021, 910, 43.	1.6	6
2776	Updated constraints on massive neutrino self-interactions from cosmology in light of the H ₀ tension. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 084.	1.9	58
2777	Consistency of cosmic shear analyses in harmonic and real space. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3796-3817.	1.6	14
2778	Coupling parsec and gigaparsec scales: Primordial non-Gaussianity with multitracer intensity mapping. Physical Review D, 2021, 103, .	1.6	18
2779	Linear systematics mitigation in galaxy clustering in the Dark Energy Survey Year 1 Data. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4349-4362.	1.6	5
2780	Dependence of the dynamical properties of light-cone simulation dark matter halos on their environment. Astronomy and Astrophysics, 2021, 647, A74.	2.1	0
2781	Subaru Hyper Suprime-Cam excavates colossal over- and underdense structures over 360 deg2 out to ⟨i⟩z⟨ i⟩ = 1. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3896-3912.	1.6	8
2782	An HI intensity mapping survey with a Phased Array Feed. Research in Astronomy and Astrophysics, 2021, 21, 030.	0.7	9

#	Article	IF	CITATIONS
2783	Projected two- and three-point statistics: forecasts and mitigation of non-linear RSDs. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2137-2156.	1.6	2
2784	Quantifying the impact of baryon-CDM perturbations on halo clustering and baryon fraction. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 023.	1.9	8
2785	Monopole fluctuation of the CMB and its gauge invariance. Physical Review D, 2021, 103, .	1.6	8
2786	Measuring the Hubble function with standard candle clustering. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3884-3889.	1.6	12
2787	The cosmic neutrino background as a collection of fluids in large-scale structure simulations. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 065.	1.9	17
2788	Impact of internal-delensing biases on searches for primordial ?-modes of CMB polarisation. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 016.	1.9	8
2789	Multiwavelength mock galaxy catalogues of the low-redshift Universe. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4147-4162.	1.6	10
2790	The impact of inhomogeneous subgrid clumping on cosmic reionization – II. Modelling stochasticity. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2443-2460.	1.6	12
2791	Flybys, Orbits, Splashback: Subhalos and the Importance of the Halo Boundary. Astrophysical Journal, 2021, 909, 112.	1.6	26
2792	Impacts of the physical data model on the forward inference of initial conditions from biased tracers. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 058.	1.9	11
2793	Inpainting CMB maps using partial convolutional neural networks. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 055.	1.9	6
2794	<scp>emerge</scp> : constraining merging probabilities and time-scales of close galaxy pairs. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5646-5657.	1.6	3
2795	Including beyond-linear halo bias in halo models. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3095-3111.	1.6	18
2796	Measuring the cosmic homogeneity scale with SDSS-IV DR16 quasars. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 029.	1.9	16
2797	Asymmetry of the CMB map: local and global anomalies. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 103.	1.9	6
2798	Magnetic field generation from PBH distributions. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4387-4399.	1.6	8
2799	The effective field theory and perturbative analysis for log-density fields. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 070.	1.9	4
2800	Early dark energy resolution to the Hubble tension in light of weak lensing surveys and lensing anomalies. Physical Review D, 2021, 103, .	1.6	72

#	Article	IF	CITATIONS
2801	Galaxy imaging surveys as spin-sensitive detector for cosmological colliders. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 060.	1.9	23
2802	Cosmic voids in modified gravity models with massive neutrinos. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5021-5038.	1.6	32
2803	Fundamental limits on constraining primordial non-Gaussianity. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 050.	1.9	12
2804	One line to run them all: SuperEasy massive neutrino linear response in ?-body simulations. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 078.	1.9	14
2805	Probing oscillons of ultra-light axion-like particle by 21 cm forest. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 019.	1.9	2
2806	Simulating intergalactic gas for DESI-like small scale Lymanα forest observations. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 059.	1.9	18
2807	A numerical study of observational systematic errors in lensing analysis of CMB polarization. Progress of Theoretical and Experimental Physics, 2021, 2021, .	1.8	6
2808	Axion miniclusters made easy. Physical Review D, 2021, 103, .	1.6	19
2809	Redshift space power spectrum beyond Einstein-de Sitter kernels. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 039.	1.9	10
2810	Noise reduction for weak lensing mass mapping: an application of generative adversarial networks to Subaru Hyper Suprime-Cam first-year data. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1825-1839.	1.6	15
2811	One-dimensional fuzzy dark matter models: Structure growth and asymptotic dynamics. Physical Review D, 2021, 103, .	1.6	3
2812	Perturbations in a scalar field model with virtues of Î>CDM. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 060.	1.9	19
2813	Explaining cosmological anisotropy: evidence for causal horizons from CMB data. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5840-5862.	1.6	27
2814	Early recombination as a solution to the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><m< td=""><td>1.60<td>าไ:์mn></td></td></m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	1.60 <td>าไ:์mn></td>	าไ:์mn>
2815	Observational constraints on α-attractor inflationary models with a Higgs-like potential. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 815, 136156.	1.5	8
2816	Quintessential \hat{l} ±-attractor inflation: forecasts for Stage IV galaxy surveys. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 006.	1.9	16
2817	Dark acoustic oscillations: imprints on the matter power spectrum and the halo mass function. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3773-3786.	1.6	10
2818	Systematic uncertainties in models of the cosmic dawn. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1555-1564.	1.6	11

#	Article	IF	Citations
2819	Question of measuring spatial curvature in an inhomogeneous universe. Physical Review D, 2021, 103, .	1.6	5
2820	Relic neutrino degeneracies and their impact on cosmological parameters. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 024.	1.9	4
2821	High H ₀ Values from CMB E-mode Data: A Clue for Resolving the Hubble Tension?. Astrophysical Journal Letters, 2021, 912, L1.	3.0	15
2822	Magnification bias in galaxy surveys with complex sample selection functions. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1452-1465.	1.6	18
2823	Theoretical and observational bounds on some interacting vacuum energy scenarios. Physical Review D, 2021, 103, .	1.6	17
2824	Validating the Fisher approach for stage IV spectroscopic surveys. Astronomy and Astrophysics, 2021, 649, A52.	2.1	9
2825	Observational constraints on the cosmology with holographic dark fluid. Physics of the Dark Universe, 2021, 32, 100842.	1.8	2
2826	Probing primordial non-Gaussianity with the power spectrum and bispectrum of future 21Âcm intensity maps. Physics of the Dark Universe, 2021, 32, 100821.	1.8	13
2827	Responses of Halo Occupation Distributions: a new ingredient in the halo model & mp; the impact on galaxy bias. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 069.	1.9	18
2828	Cosmological test of an extended quintessence model. Physical Review D, 2021, 103, .	1.6	2
2829	Data compression and covariance matrix inspection: Cosmic shear. Physical Review D, 2021, 103, .	1.6	2
2830	Reconstructing quintessence. Physical Review D, 2021, 103, .	1.6	10
2831	<i>Euclid</i> : Impact of non-linear and baryonic feedback prescriptions on cosmological parameter estimation from weak lensing cosmic shear. Astronomy and Astrophysics, 2021, 649, A100.	2.1	29
2832	Prospects of future CMB anisotropy probes for primordial black holes. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 051.	1.9	16
2833	Cobaya: code for Bayesian analysis of hierarchical physical models. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 057.	1.9	173
2834	KiDS-1000 Cosmology: Constraints beyond flat Î>CDM. Astronomy and Astrophysics, 2021, 649, A88.	2.1	80
2835	CMB lensing power spectrum estimation without instrument noise bias. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 028.	1.9	7
2836	No <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi> H </mml:mi> <mml:mn>0 </mml:mn></mml:msub> </mml:math> assistance from assisted quintessence. Physical Review D, 2021, 103, .	1.6	20

#	Article	IF	CITATIONS
2837	Probing gravity with redshift-space distortions: Effects of tracer bias and sample selection. Physical Review D, 2021, 103, .	1.6	5
2838	Exploring new physics beyond the standard cosmology with Dark Energy Survey Year 1 Data. Physics of the Dark Universe, 2021, 32, 100810.	1.8	1
2839	New cosmological bounds on hot relics: axions and neutrinos. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2703-2711.	1.6	30
2840	Detectable Data-driven Features in the Primordial Scalar Power Spectrum. Astrophysical Journal, 2021, 912, 104.	1.6	3
2841	Can f(R) gravity relieve \$\$H_0\$\$ and \$\$sigma _8\$\$ tensions?. European Physical Journal C, 2021, 81, 1.	1.4	8
2842	Avoiding baryonic feedback effects on neutrino mass measurements from CMB lensing. Physical Review D, 2021, 103, .	1.6	9
2843	A dark energy model from generalized Proca theory. Physics of the Dark Universe, 2021, 32, 100819.	1.8	11
2844	Nuw CDM cosmology from the weak-lensing convergence PDF. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2886-2902.	1.6	26
2845	Cosmology from weak lensing alone and implications for the Hubble tension. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4935-4955.	1.6	9
2846	The growth rate of cosmic structures in the local Universe with the ALFALFA survey. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3404-3413.	1.6	15
2847	Precise and accurate cosmology with CMB×LSS power spectra and bispectra. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 030.	1.9	17
2848	Globular cluster numbers in dark matter haloes in a dual formation scenario: an empirical model within <scp>emerge</scp> . Monthly Notices of the Royal Astronomical Society, 2021, 505, 5815-5832.	1.6	9
2849	A convolutional-neural-network estimator of CMB constraints on dark matter energy injection. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 025.	1.9	1
2850	Edges and Endpoints in 21-cm Observations from Resonant Photon Production. Physical Review Letters, 2021, 127, 011102.	2.9	5
2851	Singling out modified gravity parameters and data sets reveals a dichotomy between Planck and lensing. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1704-1714.	1.6	2
2852	The Uchuu simulations: Data Release 1 and dark matter halo concentrations. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4210-4231.	1.6	108
2853	The effect of finite halo size on the clustering of neutral hydrogen. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 027.	1.9	4
2854	Observational constraint in $f(R,T)$ gravity from the cosmic chronometers and some standard distance measurement parameters. Nuclear Physics B, 2021, 967, 115428.	0.9	7

#	Article	IF	CITATIONS
2855	Comparison of different approaches to the quasi-static approximation in Horndeski models. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 017.	1.9	14
2856	Gamma-ray and synchrotron radiation from dark matter annihilations in ultra-faint dwarf galaxies. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 041.	1.9	4
2857	Inflation and scale-invariant R2 gravity. Physical Review D, 2021, 103, .	1.6	2
2858	Comparing multi-field primordial feature models with the Planck data. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 005.	1.9	16
2859	Cosmic Reionization May Still Have Started Early and Ended Late: Confronting Early Onset with Cosmic Microwave Background Anisotropy and 21 cm Global Signals. Astrophysical Journal, 2021, 914, 44.	1.6	13
2860	Dark energy as a critical phenomenon: a hint from Hubble tension. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 003.	1.9	18
2861	Matter power spectrum emulator for <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> modified gravity cosmologies. Physical Review D, 2021, 103, .	1.6	19
2862	Testing the analytical blind separation method in simulated CMB polarization maps. Astronomy and Astrophysics, 2021, 650, A65.	2.1	1
2863	Cosmological Parameter Inference with Bayesian Statistics. Universe, 2021, 7, 213.	0.9	18
2864	Instrumental systematics biases in CMB lensing reconstruction: A simulation-based assessment. Physical Review D, 2021, 103, .	1.6	8
2865	Cosmological parameter biases from Doppler-shifted weak lensing in stage IV experiments. Physical Review D, 2021, 103, .	1.6	0
2866	A Bayesian ILC Method for CMB B-mode Posterior Estimation and Reconstruction of Primordial Gravity Wave Signal. Astrophysical Journal, 2021, 914, 119.	1.6	3
2867	CMB mode coupling with isotropic polarization rotation. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1250-1257.	1.6	7
2868	Linear anisotropies in dispersion-measure-based cosmological observables. Physical Review D, 2021, 103,	1.6	3
2869	Differentiating dark interactions with perturbation. Physical Review D, 2021, 103, .	1.6	9
2870	GalaxyNet: connecting galaxies and dark matter haloes with deep neural networks and reinforcement learning in large volumes. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2115-2136.	1.6	29
2871	Cosmology beyond BAO from the 3D distribution of the Lyman- \hat{l}_{\pm} forest. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5439-5450.	1.6	16
2872	TheHaloMod: An online calculator for the halo model. Astronomy and Computing, 2021, 36, 100487.	0.8	16

#	Article	IF	CITATIONS
2873	Correcting correlation functions for redshift-dependent interloper contamination. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3187-3206.	1.6	15
2874	Cosmology with the Planck Tâ^'E correlation coefficient. Physical Review D, 2021, 104, .	1.6	2
2875	A joint 2- and 3-point clustering analysis of the VIPERS PDR2 catalogue at $\langle i \rangle z \langle i \rangle$ â ¹ /4 1: breaking the degeneracy of cosmological parameters. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1184-1201.	1.6	5
2876	Constraints on electromagnetic form factors of sub-GeV dark matter from the cosmic microwave background anisotropy. Physical Review D, 2021, 104, .	1.6	5
2877	J-PAS: forecasts for dark matter-dark energy elastic couplings. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 022.	1.9	12
2878	Gravitational waves from the remnants of the first stars in nuclear star clusters. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5451-5467.	1.6	9
2879	Blind map level systematics cleaning: a quadratic estimator approach. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 016.	1.9	1
2880	Introducing SPHINX-MHD: the impact of primordial magnetic fields on the first galaxies, reionization, and the global 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1254-1282.	1.6	30
2881	The impact of baryons on cosmological inference from weak lensing statistics. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3406-3417.	1.6	10
2883	Constraints on multicomponent dark energy from cosmological observations. Physical Review D, 2021, 104, .	1.6	1
2884	Full-sky integrated Sachs–Wolfe maps for the MICE grand challenge lightcone simulation. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4344-4353.	1.6	2
2885	Early Mass-varying Neutrino Dark Energy: Nugget Formation and Hubble Anomaly. Astrophysical Journal, 2021, 915, 132.	1.6	44
2886	Measurements of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>E</mml:mi></mml:math> -mode polarization and temperature- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>E</mml:mi></mml:math> -mode correlation of the CMB from SPT-3G 2018 data. Physical Review D, 2021, 104, .	1.6	119
2887	Predicting cosmological observables with PyCosmo. Astronomy and Computing, 2021, 36, 100484.	0.8	5
2888	The clustering of galaxies in the DESI imaging legacy surveys DR8: I. The luminosity and color dependent intrinsic clustering. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	6
2889	A Forecast of the Sensitivity on the Measurement of the Optical Depth to Reionization with the GroundBIRD Experiment. Astrophysical Journal, 2021, 915, 88.	1.6	3
2890	Cosmic Microwave Background Polarization as a Tool to Constrain the Optical Properties of the Universe. Physical Review Letters, 2021, 127, 011301.	2.9	5
2891	Probing reionization and early cosmic enrichment with the Mg <scp>ii</scp> forest. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2963-2984.	1.6	6

#	Article	IF	CITATIONS
2892	The H <scp>i</scp> intensity mapping bispectrum including observational effects. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1623-1639.	1.6	13
2893	The Atacama Cosmology Telescope: Summary of DR4 and DR5 Data Products and Data Access. Astrophysical Journal, Supplement Series, 2021, 255, 11.	3.0	19
2894	Tachyonic vs quintessence dark energy: linear perturbations and CMB data. Classical and Quantum Gravity, 2021, 38, 195001.	1.5	3
2895	Reconstructing patchy reionization with deep learning. Physical Review D, 2021, 104, .	1.6	11
2896	Theoretical and numerical perspectives on cosmic distance averages. Astronomy and Astrophysics, 2021, 655, A54.	2.1	8
2897	Role of TO in CMB anisotropy measurements. Physical Review D, 2021, 104, .	1.6	4
2898	Axi-Higgs cosmology. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 057.	1.9	20
2899	KiDS-1000: Constraints on the intrinsic alignment of luminous red galaxies. Astronomy and Astrophysics, 2021, 654, A76.	2.1	14
2900	Dark Matter Sterile Neutrino from Scalar Decays. Universe, 2021, 7, 309.	0.9	0
2901	Evolution of skewness and kurtosis of cosmic density fields. Astronomy and Astrophysics, 2021, 652, A94.	2.1	11
2902	DeepSZ: identification of Sunyaev–Zel'dovich galaxy clusters using deep learning. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4149-4164.	1.6	8
2903	Local patch analysis for testing statistical isotropy of the Planck convergence map. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 006.	1.9	6
2904	The Diffusion Coefficient of the Splashback Mass Function as a Probe of Cosmology. Astrophysical Journal, 2021, 917, 98.	1.6	2
2905	Constraining ultra-light axions with galaxy cluster number counts. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 004.	1.9	3
2906	Viable intermediate inflation in the mimetic DBI model. European Physical Journal C, 2021, 81, 1.	1.4	2
2907	The eROSITA Final Equatorial-Depth Survey (eFEDS). Astronomy and Astrophysics, 2022, 661, A11.	2.1	31
2908	Extracting cosmological parameters from N-body simulations using machine learning techniques. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 039.	1.9	8
2909	The galaxy power spectrum take on spatial curvature and cosmic concordance. Physics of the Dark Universe, 2021, 33, 100851.	1.8	76

#	Article	IF	CITATIONS
2910	Reionization effective likelihood from <i>Planck </i>	1.6	9
2911	Cosmological perturbations without the Boltzmann hierarchy. Physical Review D, 2021, 104, .	1.6	3
2912	The causal effect of environment on halo mass and concentration. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1189-1194.	1.6	4
2913	Ultra-light dark matter. Astronomy and Astrophysics Review, 2021, 29, 1.	9.1	150
2914	Mass accretion rates and multiscale halo environment in cold and warm dark matter cosmologies. Monthly Notices of the Royal Astronomical Society, 2021, 508, 852-867.	1.6	2
2915	Prospects for Constraining Interacting Dark Energy Models with 21 cm Intensity Mapping Experiments. Astrophysical Journal, 2021, 918, 56.	1.6	35
2916	Self-Calibrating the Look-Elsewhere Effect: Fast Evaluation of the Statistical Significance Using Peak Heights. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	1
2917	Revealing the formation histories of the first stars with the cosmic near-infrared background. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1954-1972.	1.6	21
2918	Hint of a truncated primordial spectrum from the CMB large-scale anomalies. Astronomy and Astrophysics, 2021, 655, A70.	2.1	8
2919	Searching for the Radiative Decay of the Cosmic Neutrino Background with Line-Intensity Mapping. Physical Review Letters, 2021, 127, 131102.	2.9	17
2920	Cosmology of Sub-MeV Dark Matter Freeze-In. Physical Review Letters, 2021, 127, 111301.	2.9	34
2921	AMICO galaxy clusters in KiDS-DR3. Astronomy and Astrophysics, 2021, 653, A19.	2.1	12
2922	Gaussian Process Regression for foreground removal in H <scp>i</scp> Intensity Mapping experiments. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5872-5890.	1.6	19
2923	Can small-scale baryon inhomogeneities resolve the Hubble tension? An investigation with ACT DR4. Physical Review D, 2021, 104, .	1.6	15
2924	Generalized emergent dark energy model and the Hubble constant tension. Physical Review D, 2021, 104,	1.6	23
2925	Consistency tests of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">\hat{i} \cdot /mml:mi > <mml:mi> <mml:mi> </mml:mi> </mml:mi></mml:mi></mml:math> from the early integrated Sachs-Wolfe effect: Implications for early-time new physics and the Hubble tension. Physical Review D, 2021, 104.	1.6	102
2926	Most constraining cosmological neutrino mass bounds. Physical Review D, 2021, 104, .	1.6	63
2927	Dissecting the HO and S8 tensions with Planck + BAO + supernova type Ia in multi-parameter cosmologies. Journal of High Energy Astrophysics, 2021, 32, 28-64.	2.4	31

#	Article	IF	CITATIONS
2928	The BAHAMAS project: evaluating the accuracy of the halo model in predicting the non-linear matter power spectrum. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3519-3534.	1.6	6
2929	A direct and robust method to observationally constrain the halo mass function via the submillimeter magnification bias: Proof of concept. Astronomy and Astrophysics, 2021, 645, A126.	2.1	9
2930	Limitations of CMB <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>B</mml:mi></mml:math> -mode template delensing. Physical Review D, 2021, 103, .	1.6	8
2931	Power spectrum multipole expansion for H <scp>i</scp> intensity mapping experiments: unbiased parameter estimation. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2549-2564.	1.6	15
2932	Interacting dark energy in a closed universe. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 502, L23-L28.	1.2	37
2933	Vector modes in \hat{I} CDM: the gravitomagnetic potential in dark matter haloes from relativistic $\langle i \rangle N \langle l \rangle$ -body simulations. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	9
2934	DES Y1 results: Splitting growth and geometry to test <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Î></mml:mi><mml:mi>CDM</mml:mi></mml:math> . Physical Review D, 2021, 103, .	1.6	16
2935	A fast particle-mesh simulation of non-linear cosmological structure formation with massive neutrinos. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 016-016.	1.9	22
2936	Emergent Dark Energy, neutrinos and cosmological tensions. Physics of the Dark Universe, 2021, 31, 100762.	1.8	30
2937	Plasma Perturbations and Cosmic Microwave Background Anisotropy in the Linearly Expanding Milne-Like Universe., 2018, , 181-201.		3
2938	On the Cosmological Constant Problems and the Astronomical Evidence for a Homogeneous Energy Density with Negative Pressure., 2003,, 7-51.		15
2939	Observing the Epoch of Reionization with the Cosmic Microwave Background. Astrophysics and Space Science Library, 2016, , 227-245.	1.0	3
2941	Cosmic Microwave Background Anisotropies: The Power Spectrum and Beyond. Lecture Notes in Physics, 2008, , 79-120.	0.3	3
2942	Cosmic Microwave Background Polarization Analysis. Lecture Notes in Physics, 2008, , 121-158.	0.3	4
2943	The Numerical Treatment of Inflationary Models. , 2008, , 243-273.		42
2944	Relaxing cosmological neutrino mass bounds with unstable neutrinos. Journal of High Energy Physics, 2020, 2020, 1.	1.6	43
2947	Constraints on CDM cosmology from galaxy power spectrum, CMB and SNIa evolution. Astronomy and Astrophysics, 2009, 499, 21-29.	2.1	20
2948	Expected constraints on the Galactic magnetic field using <i>Planck </i> data. Astronomy and Astrophysics, 2012, 540, A122.	2.1	12

#	Article	IF	Citations
2949	<i>Planck</i> 2013 results. XVI. Cosmological parameters. Astronomy and Astrophysics, 2014, 571, A16.	2.1	4,703
2950	The Komatsu Spergel Wandelt estimator for oscillations in the cosmic microwave background bispectrum. Astronomy and Astrophysics, 2014, 570, A94.	2.1	15
2951	The 0.1 < <i>>z</i> < 1.65 evolution of the bright end of the [O ii] luminosity function. Astronomy and Astrophysics, 2015, 575, A40.	2.1	74
2952	The ALHAMBRA survey: Estimation of the clustering signal encoded in the cosmic variance. Astronomy and Astrophysics, 2015, 582, A16.	2.1	10
2953	The VIMOS Public Extragalactic Redshift Survey (VIPERS). Astronomy and Astrophysics, 2018, 610, A59.	2.1	32
2954	Cosmic microwave background constraints in light of priors over reionization histories. Astronomy and Astrophysics, 2018, 617, A96.	2.1	30
2955	Breaking degeneracies in modified gravity with higher (than 2nd) order weak-lensing statistics. Astronomy and Astrophysics, 2018, 619, A38.	2.1	48
2956	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A8.	2.1	400
2957	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A10.	2.1	1,261
2958	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A9.	2.1	319
2959	<i>Planck</i> 2018 results. Astronomy and Astrophysics, 2020, 641, A5.	2.1	558
2960	<i>Euclid</i> : The reduced shear approximation and magnification bias for Stage IV cosmic shear experiments. Astronomy and Astrophysics, 2020, 636, A95.	2.1	20
2961	CLASH-VLT: a full dynamical reconstruction of the mass profile of Abell S1063 from 1 kpc out to the virial radius. Astronomy and Astrophysics, 2020, 637, A34.	2.1	27
2962	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2020, 642, A191.	2.1	194
2963	Testing gravity using galaxy-galaxy lensing and clustering amplitudes in KiDS-1000, BOSS, and 2dFLenS. Astronomy and Astrophysics, 2020, 642, A158.	2.1	27
2964	Bias in matter power spectra?. Astronomy and Astrophysics, 2001, 380, 1-5.	2.1	4
2965	Cosmological parameter estimation in the quintessence paradigm. Astronomy and Astrophysics, 2003, 405, 409-414.	2.1	24
2966	Two viable quintessence models of the Universe: Confrontation of theoretical predictions with observational data. Astronomy and Astrophysics, 2005, 431, 27-43.	2.1	38

#	Article	IF	Citations
2967	Time variation of the fine structure constant in the early universe and the Bekenstein model. Astronomy and Astrophysics, 2008, 478, 675-684.	2.1	17
2968	Current Cosmological Constraints from a 10 Parameter Cosmic Microwave Background Analysis. Astrophysical Journal, 2000, 544, 30-42.	1.6	90
2969	Time Variation of the Electron Mass in the Early Universe and the Barrowâ€Magueijo Model. Astrophysical Journal, 2008, 681, 737-746.	1.6	13
2970	FROM <i>WMAP</i> TO <i>PLANCK</i> : EXACT RECONSTRUCTION OF FOUR- AND FIVE-DIMENSIONAL INFLATIONARY POTENTIAL FROM HIGH-PRECISION COSMIC MICROWAVE BACKGROUND MEASUREMENTS. Astrophysical Journal, 2009, 706, 1008-1019.	1.6	1
2971	THE THERMAL SUNYAEV-ZEL'DOVICH TOMOGRAPHY. Astrophysical Journal, 2011, 730, 127.	1.6	10
2972	MAPPING GROWTH AND GRAVITY WITH ROBUST REDSHIFT SPACE DISTORTIONS. Astrophysical Journal, 2012, 748, 78.	1.6	67
2973	Testing gravity with $\langle i \rangle E \langle i \rangle \langle sub \rangle \langle i \rangle G \langle i \rangle \langle sub \rangle$: mapping theory onto observations. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 051-051.	1.9	27
2976	Fitting functions on the cheap: the relative nonlinear matter power spectrum. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 028-028.	1.9	4
2977	Relativistic effects in the large-scale structure with effective dark energy fluids. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 037-037.	1.9	6
2978	Toward a robust inference method for the galaxy bispectrum: likelihood function and model selection. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 056-056.	1.9	39
2979	Constraints on decaying dark matter from weak lensing and cluster counts. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 015-015.	1.9	15
2980	Massive neutrinos and degeneracies in Lyman-alpha forest simulations. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 025-025.	1.9	12
2981	Parametrising non-linear dark energy perturbations. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 039-039.	1.9	11
2982	GRAMSES: a new route to general relativistic <i>N</i> body simulations in cosmology. Part II. Initial conditions. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 056-056.	1.9	11
2983	Multipoles of the relativistic galaxy bispectrum. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 018-018.	1.9	16
2984	Lightening the dark matter from its viscosity and explanation of EDGES anomaly. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 034-034.	1.9	3
2985	Mitigating the impact of fiber assignment on clustering measurements from deep galaxy redshift surveys. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 057-057.	1.9	6
2986	Updated results on neutrino mass and mass hierarchy from cosmology with Planck 2018 likelihoods. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 037-037.	1.9	69

#	Article	IF	CITATIONS
2987	Constraints on the spacetime dynamics of an early dark energy component. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 039-039.	1.9	9
2988	The n-point streaming model: how velocities shape correlation functions in redshift space. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 043-043.	1.9	8
2989	Compensated isocurvature perturbations in the galaxy power spectrum. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 049-049.	1.9	11
2990	Hybrid Pâ,,"(k): general, unified, non-linear matter power spectrum in redshift space. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 001-001.	1.9	5
2991	Fast simulations of cosmic large-scale structure with massive neutrinos. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 018-018.	1.9	15
2992	What will it take to measure individual neutrino mass states using cosmology?. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 021-021.	1.9	33
2993	Interacting radiation after Planck and its implications for the Hubble tension. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 029-029.	1.9	59
2994	Blind Observers of the Sky. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 052-052.	1.9	6
2995	Constraints on primordial gravitational waves from the cosmic microwave background. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 002-002.	1.9	50
2996	The look-elsewhere effect from a unified Bayesian and frequentist perspective. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 009-009.	1.9	20
2997	A Lagrangian perturbation theory in the presence of massive neutrinos. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 034-034.	1.9	29
2998	Informing dark matter direct detection limits with the ARTEMIS simulations. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 016-016.	1.9	10
2999	Forecasts on primordial non-Gaussianity from 21 cm intensity mapping experiments. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 052-052.	1.9	29
3000	Spoon or slide? The non-linear matter power spectrum in the presence of massive neutrinos. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 062-062.	1.9	14
3001	Galaxy bias and primordial non-Gaussianity: insights from galaxy formation simulations with IllustrisTNG. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 013-013.	1.9	32
3002	Current constraints on deviations from General Relativity using binning in redshift and scale. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 018-018.	1.9	16
3003	Constraints on the distance duality relation with standard sirens. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 019-019.	1.9	29
3004	On the impact of galaxy bias uncertainties on primordial non-Gaussianity constraints. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 031-031.	1.9	39

#	Article	IF	CITATIONS
3005	Signatures of spatial curvature on growth of structures. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 042-042.	1.9	3
3006	The Atacama Cosmology Telescope: a measurement of the Cosmic Microwave Background power spectra at 98 and 150 GHz. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 045-045.	1.9	148
3007	The Atacama Cosmology Telescope: DR4 maps and cosmological parameters. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 047-047.	1.9	343
3008	The effects on CMB power spectra and bispectra from the polarization rotation and its correlations with temperature and E-polarization. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 051-051.	1.9	10
3009	Impacts of dark energy on constraining neutrino mass after Planck 2018. Communications in Theoretical Physics, 2020, 72, 125402.	1,1	12
3010	Running vacuum model in a non-flat universe *. Chinese Physics C, 2020, 44, 105104.	1.5	8
3011	Probing dynamics of dark energy with latest observations. Research in Astronomy and Astrophysics, 2017, 17, 050.	0.7	19
3012	The degeneracy between primordial non-Gaussianity and foregrounds in 21 cm intensity mapping experiments. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4054-4067.	1.6	21
3013	emerge – empirical constraints on the formation of passive galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4748-4767.	1.6	30
3014	The completed SDSS-IV extended baryon oscillation spectroscopic survey: growth rate of structure measurement from anisotropic clustering analysis in configuration space between redshift 0.6 and 1.1 for the emission-line galaxy sample. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5527-5546.	1.6	80
3015	High-redshift radio galaxies: a potential new source of 21-cm fluctuations. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5993-6008.	1.6	45
3016	Accurate initial conditions for cosmological <i>N</i> -body simulations: minimizing truncation and discreteness errors. Monthly Notices of the Royal Astronomical Society, 2020, 500, 663-683.	1.6	48
3017	Inevitable imprints of patchy reionization on the cosmic microwave background anisotropy. Monthly Notices of the Royal Astronomical Society, 2020, 500, 232-246.	1.6	15
3018	GASP XXIX – unwinding the arms of spiral galaxies via ram-pressure stripping. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1285-1312.	1.6	29
3019	Impacts of pre-initial conditions on anisotropic separate universe simulations: a boosted tidal response in the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1018-1028.	1.6	2
3020	The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: large-scale structure catalogues and measurement of the isotropic BAO between redshift 0.6 and 1.1 for the Emission Line Galaxy Sample. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3254-3274.	1.6	62
3021	The Atacama Cosmology Telescope: a CMB lensing mass map over 2100 square degrees of sky and its cross-correlation with BOSS-CMASS galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2250-2263.	1.6	68
3022	Accelerating computation of the density-field filtering scale $\ddot{l}f(R)$ and non-linear mass by an order of magnitude. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4439-4447.	1.6	2

#	ARTICLE	IF	Citations
3023	Developing a unified pipeline for large-scale structure data analysis with angular power spectra $\hat{a} \in \mathbb{N}$ III. Implementing the multitracer technique to constrain neutrino masses. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2952-2960.	1.6	3
3024	Power spectrum of halo intrinsic alignments in simulations. Monthly Notices of the Royal Astronomical Society, 2020, 501, 833-852.	1.6	22
3025	Small-scale primordial fluctuations in the 21 cm Dark Ages signal. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2627-2634.	1.6	11
3026	EDGE: a new approach to suppressing numerical diffusion in adaptive mesh simulations of galaxy formation. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1755-1765.	1.6	13
3027	Testing general relativity on cosmological scales at redshift $\langle i \rangle z \langle i \rangle$ $\hat{a}^1 / 4 1.5$ with quasar and CMB lensing. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1013-1027.	1.6	16
3028	Determining the Hubble constant without the sound horizon scale: measurements from CMB lensing. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1823-1835.	1.6	27
3029	Galaxy clustering in the DESI Legacy Survey and its imprint on the CMB. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1481-1498.	1.6	44
3030	<code><scp>Emerge</scp>:</code> Empirical predictions of galaxy merger rates since <code><i>z</i></code> $\hat{a}^1/4$ 6. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	25
3031	Higher order initial conditions for mixed baryon–CDM simulations. Monthly Notices of the Royal Astronomical Society, 2021, 503, 426-445.	1.6	18
3032	Measuring the evolution of intergalactic gas from <i>z</i> Â= 0 to 5 using the kinematic Sunyaev–Zel'dovich effect. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1798-1814.	1.6	16
3033	The PAU survey: LyÂα intensity mapping forecast. Monthly Notices of the Royal Astronomical Society, 2021, 501, 3883-3899.	1.6	10
3034	Constraining reionization in progress at $\langle i \rangle z \langle j \rangle \hat{A} = 5.7$ with Lyman-α emitters: voids, peaks, and cosmic variance. Monthly Notices of the Royal Astronomical Society, 2021, 501, 5294-5308.	1.6	12
3035	Clustering in the simulated H α galaxy redshift survey from <i>Nancy Grace Roman Space Telescope</i> Monthly Notices of the Royal Astronomical Society, 2021, 501, 3490-3501.	1.6	7
3036	The Completed SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: <i>N</i> -body Mock Challenge for Galaxy Clustering Measurements. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	19
3037	Atacama Cosmology Telescope: Constraints on cosmic birefringence. Physical Review D, 2020, 101, .	1.6	50
3038	Analytical approximation of the scalar spectrum in the ultraslow-roll inflationary models. Physical Review D, 2020, 101, .	1.6	49
3039	Reconciling Hubble constant discrepancy from holographic dark energy. Physical Review D, 2020, 102, .	1.6	18
3040	Testing <mml:math display="inline" xmins:mml="http://www.w3.org/1998/Math/MathML"><mml:msub></mml:msub></mml:math> in acoustic dark energy models with <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>P</mml:mi><mml:mi> </mml:mi>aa<mml:mi>n</mml:mi>naaaaannnaaann<td>1.6 >c<td>43 ni><mml:mi< td=""></mml:mi<></td></td></mml:math>	1.6 >c <td>43 ni><mml:mi< td=""></mml:mi<></td>	43 ni> <mml:mi< td=""></mml:mi<>

#	Article	IF	Citations
3041	Blinded challenge for precision cosmology with large-scale structure: Results from effective field theory for the redshift-space galaxy power spectrum. Physical Review D, 2020, 102, .	1.6	86
3042	Accurate analytic model for the weak lensing convergence one-point probability distribution function and its autocovariance. Physical Review D, 2020, 102, .	1.6	17
3043	Primordial features from linear to nonlinear scales. Physical Review Research, 2019, 1, .	1.3	38
3044	Primordial gravitational waves spectrum in the Coupled-Scalar-Tachyon Bounce Universe. European Physical Journal C, 2020, 80, 1.	1.4	4
3045	Update constraints on neutrino mass and mass hierarchy in light of dark energy models. International Journal of Modern Physics D, 2020, 29, 2050088.	0.9	9
3046	Enabling dark energy survey science analysis with simulations on XSEDE resources. , 2013, , .		3
3047	Cosmic Microwave Background Data Analysis. Chapman & Hall/CRC Data Mining and Knowledge Discovery Series, 2012, , .	0.2	1
3048	Evolution of density and velocity profiles of matter in large voids. Advances in Astronomy and Space Physics, 2016, 6, 28-33.	0.2	2
3049	Assessing non-linear models for galaxy clustering I: unbiased growth forecasts from multipole expansion. The Open Journal of Astrophysics, 0, , .	0.8	9
3050	Modelling baryonic feedback for survey cosmology. , 2019, 2, .		103
3051	Dark matter with n-body numerical simulations. Revista Mexicana De Fisica E, 2020, 17, 241-254.	0.2	5
3053	Neutrino Mass Ordering from Oscillations and Beyond: 2018 Status and Future Prospects. Frontiers in Astronomy and Space Sciences, 2018, 5, .	1.1	128
3054	Baryon Physics and Tight Coupling Approximation in Boltzmann Codes. Universe, 2020, 6, 6.	0.9	13
3055	MASKED AREAS IN SHEAR PEAK STATISTICS: A FORWARD MODELING APPROACH. Astrophysical Journal, 2016, 819, 158.	1.6	4
3055 3056		1.6	7
	2016, 819, 158. Optimizing Simulation Parameters for Weak Lensing Analyses Involving Non-Gaussian Observables.		
3056	2016, 819, 158. Optimizing Simulation Parameters for Weak Lensing Analyses Involving Non-Gaussian Observables. Astronomical Journal, 2020, 159, 284. Living with Neighbors. II. Statistical Analysis of Flybys and Mergers of Dark Matter Halos in	1.9	7

#	Article	IF	CITATIONS
3060	Fitting the Nonlinear Matter Bispectrum by the Halofit Approach. Astrophysical Journal, 2020, 895, 113.	1.6	33
3061	Band-limited Features in the Primordial Power Spectrum Do Not Resolve the Hubble Tension. Astrophysical Journal, 2020, 897, 166.	1.6	10
3062	Hydrodynamic Response of the Intergalactic Medium to Reionization. Astrophysical Journal, 2020, 898, 149.	1.6	33
3063	Cosmological Constraints on \hat{l} (sub>m and \hat{l} f ₈ from Cluster Abundances Using the GalWCat19 Optical-spectroscopic SDSS Catalog. Astrophysical Journal, 2020, 901, 90.	1.6	25
3064	Mass Estimation of Galaxy Clusters with Deep Learning. I. Sunyaev–Zel'dovich Effect. Astrophysical Journal, 2020, 900, 110.	1.6	16
3065	The Completed SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations with Lyl±ÂForests. Astrophysical Journal, 2020, 901, 153.	1.6	174
3066	An Intensity Mapping Detection of Aggregate CO Line Emission at 3 mm. Astrophysical Journal, 2020, 901, 141.	1.6	39
3067	Cosmological Vlasov–Poisson Simulations of Structure Formation with Relic Neutrinos: Nonlinear Clustering and the Neutrino Mass. Astrophysical Journal, 2020, 904, 159.	1.6	17
3068	Breaking the Dark Degeneracy with the Drifting Coefficient of the Field Cluster Mass Function. Astrophysical Journal, 2020, 904, 93.	1.6	3
3069	Universal at Last? The Splashback Mass Function of Dark Matter Halos. Astrophysical Journal, 2020, 903, 87.	1.6	32
3070	Cross-correlation between Subaru Hyper Suprime-Cam Galaxy Weak Lensing and Planck Cosmic Microwave Background Lensing. Astrophysical Journal, 2020, 904, 182.	1.6	18
3071	Clustering of LRGs in the DECaLS DR8 Footprint: Distance Constraints from Baryon Acoustic Oscillations Using Photometric Redshifts. Astrophysical Journal, 2020, 904, 69.	1.6	17
3072	Unveiling the Intrinsic Alignment of Galaxies with Self-calibration and DECaLS DR3 Data. Astrophysical Journal, 2020, 904, 135.	1.6	29
3073	Constraining the Halo Mass of Damped Lyl̂± Absorption Systems (DLAs) at zÂ=Â2–3.5 Using the Quasar-CMB Lensing Cross-correlation. Astrophysical Journal, 2020, 905, 176.	1.6	7
3074	The Sejong Suite: Cosmological Hydrodynamical Simulations with Massive Neutrinos, Dark Radiation, and Warm Dark Matter. Astrophysical Journal, Supplement Series, 2020, 249, 19.	3.0	10
3075	The Quijote Simulations. Astrophysical Journal, Supplement Series, 2020, 250, 2.	3.0	149
3076	Simulating the Cosmic Neutrino Background Using Collisionless Hydrodynamics. Astrophysical Journal, Supplement Series, 2020, 250, 21.	3.0	11
3077	The Splashback Radius of Halos from Particle Dynamics. III. Halo Catalogs, Merger Trees, and Host–Subhalo Relations. Astrophysical Journal, Supplement Series, 2020, 251, 17.	3.0	16

#	ARTICLE	IF	Citations
3078	CMB Shadows: The Effect of Interstellar Extinction on Cosmic Microwave Background Polarization and Temperature Anisotropy. Astrophysical Journal Letters, 2020, 895, L21.	3.0	4
3079	Imprints on CMB Angular Power Spectrum Modes from Cosmological Reionization. Journal of Modern Physics, 2012, 03, 1918-1944.	0.3	4
3080	HORIZON RUN 4 SIMULATION: COUPLED EVOLUTION OF GALAXIES AND LARGE-SCALE STRUCTURES OF THE UNIVERSE. Journal of the Korean Astronomical Society, 2015, 48, 213-228.	1.5	52
3081	Constraining f(R) gravity with a k -cut cosmic shear analysis of the Hyper Suprime-Cam first-year data. Physical Review D, 2021, 104, . Constraints on <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.6</td><td>2</td></mml:math>	1.6	2
3082	display="inline"> <mml:mi mathvariant="normal"> î></mml:mi> <mml:mi>CDM</mml:mi> extensions from the SPT-3G 2018 <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>E</mml:mi><mml:mi></mml:mi></mml:mrow></mml:math> and <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.6</td><td>40</td></mml:math>	1.6	40
3083	display="inline"> <mml:mi>T</mml:mi> <mml:mi>E</mml:mi> power spectra. Physical Review C ³ : Cluster Clustering Cosmology. ii. First Detection of the Baryon Acoustic Oscillations Peak in the Three-point Correlation Function of Galaxy Clusters. Astrophysical Journal, 2021, 919, 144.	1.6	9
3084	2021-H ₀ odyssey: closed, phantom and interacting dark energy cosmologies. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 008.	1.9	35
3085	Gauge-invariant tensor perturbations induced from baryon-CDM relative velocity and the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>B</mml:mi></mml:math> -mode polarization of the CMB. Physical Review D, 2021, 104, .	1.6	4
3086	Unified approach to secondary effects on the CMB B-mode polarization. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 029.	1.9	1
3087	Interacting dark energy from redshift-space galaxy clustering. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 004.	1.9	13
3088	Cosmology with the moving lens effect. Physical Review D, 2021, 104, .	1.6	17
3089	Constraints on Non-Flat Starobinsky f(R) Dark Energy Model. Entropy, 2021, 23, 1320.	1.1	0
3090	Physics of Cosmic Microwave Background Anisotropies and Primordial Fluctuations. Space Sciences Series of ISSI, 2002, , 3-14.	0.0	0
3092	Neutrinos and Cosmological Structures. Advanced Topics in Science and Technology in China, 2011, , 349-374.	0.0	0
3093	Testing the Variation of Fundamental Constants with the CMB. Thirty Years of Astronomical Discovery With UKIRT, 2011, , 59-67.	0.3	2
3094	The Matter Spectral Density from Lensed Cosmic Microwave Background Observations. Lecture Notes in Statistics, 2012, , 65-77.	0.1	0
3095	Robust, Data-Driven Inference in Non-linear Cosmostatistics. Lecture Notes in Statistics, 2012, , 27-40.	0.1	0
3096	Estimation of Moments on the Sphere by Means of Fast Convolution. Lecture Notes in Statistics, 2012, , 487-489.	0.1	0

#	Article	IF	CITATIONS
3097	BBN as Probe of Fundamental Physics. , 0, , .		0
3098	CMB Bispectrum Induced by the Two Scalars and a Graviton Correlator. Springer Theses, 2013, , 65-74.	0.0	0
3100	Statistical Techniques. Springer Theses, 2013, , 57-74.	0.0	0
3101	CMB Bispectrum Generated from Primordial Magnetic Fields. Springer Theses, 2013, , 111-149.	0.0	0
3102	Parity Violation of Gravitons in the CMB Bispectrum. Springer Theses, 2013, , 89-109.	0.0	0
3103	Cosmology Background. Springer Theses, 2013, , 7-35.	0.0	0
3104	Fluctuations in Cosmic Microwave Background Radiation. Springer Theses, 2013, , 13-50.	0.0	0
3106	Bayesian Doubt: Should We Doubt the Cosmological Constant?. Springer Theses, 2013, , 75-93.	0.0	0
3107	LOCAL ANOMALIES AROUND THE THIRD PEAK IN THE CMB ANGULAR POWER SPECTRUM OF WMAP 7-YEAR DATA. Journal of the Korean Astronomical Society, 2013, 46, 75-91.	1.5	0
3108	Observational Signatures of Generalized Cosmological Perturbations. Springer Theses, 2014, , 175-192.	0.0	0
3109	Towards Degeneracy Problem Breaking by Large Scale Structures Methods. Springer Proceedings in Mathematics and Statistics, 2014, , 243-247.	0.1	0
3110	Primordial Spectrum and Cosmological Parameters. , 2014, , .		0
3111	Evolution of the Second-Order Perturbations. Springer Theses, 2016, , 147-196.	0.0	0
3113	The Intrinsic Bispectrum of the CMB. Springer Theses, 2016, , 197-233.	0.0	0
3114	Structure Formation in the Universe. Springer Theses, 2016, , 15-30.	0.0	0
3115	Weak Gravitational Lensing. Springer Theses, 2016, , 31-51.	0.0	0
3116	WMAPÂPolarised Filaments. Springer Theses, 2016, , 63-116.	0.0	0
3117	Problems of CMB Data Registration and Analysis. Thirty Years of Astronomical Discovery With UKIRT, 2016, , 167-228.	0.3	0

#	Article	IF	CITATIONS
3118	Cosmic Microwave Background. UNITEXT for Physics, 2016, , 191-206.	0.1	0
3119	The Small Scale Structure of the Universe. , 2016, , 119-134.		0
3120	Peculiar Velocity Effects on the CMB. Thirty Years of Astronomical Discovery With UKIRT, 2016, , 267-282.	0.3	0
3121	Reionisation in Sterile Neutrino Cosmologies. Springer Theses, 2018, , 77-100.	0.0	0
3122	Constraints on Dynamical Dark Energy with Precision Cosmological Data. Journal of Modern Physics, 2018, 09, 302-313.	0.3	0
3123	Investigating undergraduate students' ideas about the curvature of the Universe. Physical Review Physics Education Research, 2018, 14, .	1.4	4
3124	Measurement of Neutrinos in the BAO Spectrum. Springer Theses, 2019, , 161-178.	0.0	0
3125	Review of Modern Cosmology. Springer Theses, 2019, , 9-47.	0.0	0
3126	Suppressing the Thermal SZ-induced Variance in CMB-cluster Lensing Estimators. Astrophysical Journal, 2020, 888, 9.	1.6	5
3127	Improved constraints on reionisation from CMB observations: A parameterisation of the kSZ effect. Astronomy and Astrophysics, 2020, 640, A90.	2.1	12
3128	Interpreting internal consistency of DES measurements. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5218-5230.	1.6	3
3129	Primordial Power Spectrum reconstruction from CMB Weak Lensing Power Spectrum. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 081.	1.9	1
3130	The density distributions of cosmic structures: impact of the local environment on weak-lensing convergence. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	3
3131	Towards simulating a realistic data analysis with an optimised angular power spectrum of spectroscopic galaxy surveys. Experimental Results, 2020, 1 , .	0.2	O
3132	Physical Models for the Clustering of Obscured and Unobscured Quasars. Astrophysical Journal, 2020, 888, 71.	1.6	2
3133	Imprints of the post-recombination dissipation of helical magnetic field on the Cosmic Microwave Background Radiation. International Journal of Modern Physics D, 2021, 30, 2050122.	0.9	2
3134	Front Matter: Volume 11450. , 2020, , .		1
3135	Fiber inflation and precision CMB data. Physical Review D, 2020, 102, .	1.6	9

#	Article	IF	CITATIONS
3136	Probing gravity with the DES-CMASS sample and BOSS spectroscopy. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4982-4996.	1.6	9
3137	Analytical treatment of small scales matter power spectrum in coupled scalar field (CSF) cosmology. EPJ Web of Conferences, 2020, 240, 02003.	0.1	0
3138	Cosmic Microwave Background Anisotropy. Lecture Notes in Physics, 2020, , 91-138.	0.3	0
3139	Overview of Physical Cosmology. Springer Theses, 2020, , 37-63.	0.0	0
3140	Early 2017 Limits on Neutrino Masses and Mass Ordering. Springer Theses, 2020, , 137-150.	0.0	5
3141	Massive Neutrinos and How to Search for Them with Cosmological Observations. Springer Theses, 2020, , 65-121.	0.0	0
3142	Thermal loop effects on large-scale curvature perturbation in the Higgs inflation. Journal of High Energy Physics, 2020, 2020, 1.	1.6	1
3143	Detailed study of HWP non-idealities and their impact on future measurements of CMB polarization anisotropies from space. Astronomy and Astrophysics, 2022, 658, A15.	2.1	3
3145	Dark Energy and the Microwave Background. Lecture Notes in Physics, 2007, , 187-217.	0.3	2
3146	Reconstructing the gravitational lensing potential from the Lyman-α forest. Astronomy and Astrophysics, 2020, 642, A122.	2.1	3
3147	Detection likelihood of cluster-induced CMB polarization. Astronomy and Astrophysics, 2020, 644, A36.	2.1	0
3148	Cosmological consequences of intrinsic alignments supersample covariance. Monthly Notices of the Royal Astronomical Society, 2020, 499, 6094-6104.	1.6	1
3149	Cosmological model parameter dependence of the matter power spectrum covariance from the DEUS-PUR <i>Cosmo</i> simulations. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2532-2542.	1.6	6
3150	Cosmic microwave background constraints on a physical model of reionization. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 501, L7-L11.	1.2	16
3151	Possible discrepancies between cosmological and electroweak observables in Higgs Inflation. Journal of High Energy Physics, 2021, 2021, 1.	1.6	7
3152	An analytic hybrid halo + perturbation theory model for small-scale correlators: baryons, halos, and galaxies. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 026.	1.9	2
3153	Joint analyses of 2D CMB lensing and 3D galaxy clustering in the spherical Fourier-Bessel basis. Physical Review D, 2021, 104, .	1.6	3
3154	Cosmological constraints on slow roll inflation: An update. Physical Review D, 2021, 104, .	1.6	20

#	Article	IF	CITATIONS
3155	Current and future constraints on single-field \hat{l}_{\pm} -attractor models. Physical Review D, 2021, 104, .	1.6	4
3156	Halo Mass-concentration Relation at the High-mass End. Astrophysical Journal, 2021, 922, 162.	1.6	7
3157	Weak lensing magnification reconstruction with the modified internal linear combination method. Research in Astronomy and Astrophysics, 2021, 21, 247.	0.7	1
3158	Modified emergent dark energy and its astronomical constraints. International Journal of Modern Physics D, 2022, 31, .	0.9	6
3159	<i>Euclid</i> : Forecasts from redshift-space distortions and the Alcock–Paczynski test with cosmic voids. Astronomy and Astrophysics, 2022, 658, A20.	2.1	25
3160	Fast Scalar Quadratic Maximum Likelihood Estimators for the CMB B-mode Power Spectrum. Astrophysical Journal, Supplement Series, 2021, 257, 27.	3.0	3
3161	Towards a universal model for the density profiles of dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5685-5701.	1.6	5
3162	Cosmic Flow Measurement and Mock Sampling Algorithm of Cosmicflows-4 Tullyâ^Fisher Catalog. Astrophysical Journal, 2021, 922, 59.	1.6	7
3163	Cosmological parameters from the likelihood analysis of the galaxy power spectrum and bispectrum in real space. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 038.	1.9	28
3164	Probing elastic interactions in the dark sector and the role of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub>S<mml:mn>8</mml:mn></mml:msub></mml:math> . Physical Review D. 2021. 104	1.6	20
3165	Cosmological boost factor for dark matter annihilation at redshifts of $z=10\hat{a}^{*}100$ using the power spectrum approach. Physical Review D, 2021, 104, .	1.6	2
3166	Clustering in massive neutrino cosmologies via Eulerian Perturbation Theory. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 028.	1.9	14
3167	Virial Halo Mass Function in the Planck Cosmology. Astrophysical Journal, 2021, 922, 89.	1.6	10
3168	display="inline"> <mml:mrow><mml:mi>f</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>R</mml:mi><mml:mo) 0.784314="" 1="" 10="" 222="" 50="" abundances="" and="" cluster="" clustering.="" d.<="" etqq1="" galaxy="" gravity="" model="" modified="" overlock="" parameters="" physical="" review="" rgbt="" td="" tf="" tj="" with=""><td>Td (stretc</td><td>.hy="false"></td></mml:mo)></mml:mrow>	Td (stretc	.hy="false">
3169	2021, 104,. How can gravitational-wave standard sirens and 21-cm intensity mapping jointly provide a precise late-universe cosmological probe?. Physical Review D, 2021, 104, .	1.6	24
3170	Cosmological constraints from gas mass fractions of massive, relaxed galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2021, 510, 131-145.	1.6	25
3171	Dark Energy Survey Year 3 results: galaxy–halo connection from galaxy–galaxy lensing. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3119-3147.	1.6	18
3172	Analytical warm dark matter power spectrum on small scales. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 062.	1.9	1

#	Article	IF	CITATIONS
3173	Single frequency CMB B-mode inference with realistic foregrounds from a single training image. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 510, L1-L6.	1.2	9
3174	Gaussianization of peculiar velocities and bulk flow measurement. Research in Astronomy and Astrophysics, 2021, 21, 242.	0.7	4
3175	CMB anisotropies and linear matter power spectrum in models with non-thermal neutrinos and primordial magnetic fields. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 044.	1.9	4
3176	Spatial curvature sensitivity to local H0 from the Cepheid distance ladder. Journal of High Energy Astrophysics, 2022, 33, 10-13.	2.4	3
3177	Emergent universe revisited through the CSL theory. European Physical Journal C, 2021, 81, 1.	1.4	4
3178	A buyer's guide to the Hubble constant. Astronomy and Astrophysics Review, 2021, 29, 1.	9.1	83
3179	$\$$ {sigma }_{8}\$\$ Tension. Is Gravity Getting Weaker at Low z? Observational Evidence and Theoretical Implications. , 2021, , 507-537.		6
3181	Simons Observatory: Constraining inflationary gravitational waves with multitracer <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>B</mml:mi></mml:math> -mode delensing. Physical Review D, 2022, 105, .	1.6	13
3182	<scp>CosmoPower</scp> : emulating cosmological power spectra for accelerated Bayesian inference from next-generation surveys. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1771-1788.	1.6	47
3183	Constraining beyond DCDM models with 21cm intensity mapping forecasted observations combined with latest CMB data. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 018.	1.9	5
3184	Cosmological constraints from weak lensing peaks: Can halo models accurately predict peak counts?. Physical Review D, 2022, 105, .	1.6	3
3185	Polarization of CMB and possible time dependence of dark energy. Physics of the Dark Universe, 2022, 35, 100937.	1.8	0
3187	Dark Energy Survey Year 3 results: galaxy clustering and systematics treatment for lens galaxy samples. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2665-2687.	1.6	31
3188	Joint constraints on cosmology and the impact of baryon feedback: Combining KiDS-1000 lensing with the thermal Sunyaev–Zeldovich effect from ⟨i⟩Planck⟨/i⟩ and ACT. Astronomy and Astrophysics, 2022, 660, A27.	2.1	32
3189	Dark Energy Survey Year 3 Results: Measuring the Survey Transfer Function with Balrog. Astrophysical Journal, Supplement Series, 2022, 258, 15.	3.0	21
3190	Dark Energy Survey Year 3 results: Cosmology from cosmic shear and robustness to data calibration. Physical Review D, 2022, 105, .	1.6	151
3191	Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing. Physical Review D, 2022, 105, .	1.6	398
3192	Reducing the \$\$H_0\$\$ tension with exponential acoustic dark energy. European Physical Journal C, 2022, 82, 1.	1.4	6

#	Article	IF	CITATIONS
3193	Towards a solution to the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>H</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:math> tension. Physical Review D, 2022, 105, .	1.6	3
3194	Reconstructing cosmic polarization rotation with ResUNet-CMB. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 030.	1.9	6
3195	Compressed Python likelihood for large scale temperature and polarization from Planck. Physical Review D, 2022, 105, .	1.6	3
3196	Baryonic feedback biases on fundamental physics from lensed CMB power spectra. Physical Review D, 2022, 105, .	1.6	11
3197	Internal dark matter structure of the most massive galaxy clusters since redshift 1. EPJ Web of Conferences, 2022, 257, 00026.	0.1	0
3198	Forecasts for Broadband Intensity Mapping of the Ultraviolet-Optical Background with CASTOR and SPHEREx. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	1
3199	Predictions for local PNG bias in the galaxy power spectrum and bispectrum and the consequences for f _{NL} constraints. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 033.	1.9	28
3200	<scp>matryoshka /scp>: halo model emulator for the galaxy power spectrum. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3768-3784.</scp>	1.6	13
3201	Prospects for measuring dark energy with 21 cm intensity mapping experiments. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 060.	1.9	12
3202	Dark Energy Survey Year 3 results: Cosmology from cosmic shear and robustness to modeling uncertainty. Physical Review D, 2022, 105, .	1.6	145
3203	Cosmological constraints from the tomographic cross-correlation of DESI Luminous Red Galaxies and Planck CMB lensing. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 007.	1.9	52
3204	<scp>Cosmic-kite</scp> : auto-encoding the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5525-5535.	1.6	0
3205	Constraints from high-precision measurements of the cosmic microwave background: the case of disintegrating dark matter with $\hat{\mathbf{b}}$ or dynamical dark energy. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 012.	1.9	8
3206	Moment expansion of polarized dust SED: A new path towards capturing the CMB <i>B</i> -modes with LiteBIRD. Astronomy and Astrophysics, 2022, 660, A111.	2.1	12
3207	The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: cosmological implications from multitracer BAO analysis with galaxies and voids. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5492-5524.	1.6	22
3208	Primordial gravitational waves from NANOGrav: A broken power-law approach. Physical Review D, 2022, 105, .	1.6	62
3209	Cosmic Voids and BAO with relative baryon-CDM perturbations. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4333-4349.	1.6	6
3210	Galaxy luminosity function pipeline for cosmology and astrophysics. Physical Review D, 2022, 105, .	1.6	17

#	Article	IF	CITATIONS
3211	Large-scale dark matter simulations. Living Reviews in Solar Physics, 2022, 8, 1.	5.0	57
3212	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2022, 662, A93.	2.1	18
3213	Shan–Chen interacting vacuum cosmology. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4430-4443.	1.6	3
3214	Dark Energy Survey Year 3 results: A 2.7% measurement of baryon acoustic oscillation distance scale at redshift 0.835. Physical Review D, 2022, 105, .	1.6	36
3215	Systematic study of projection biases in weak lensing analysis. Physical Review D, 2022, 105, .	1.6	1
3216	The RayGalGroupSims cosmological simulation suite for the study of relativistic effects: An application to lensing-matter clustering statistics. Astronomy and Astrophysics, 2022, 661, A90.	2.1	7
3217	The galaxy–halo size relation of low-mass galaxies in FIRE. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3967-3985.	1.6	13
3218	Revisiting CMB constraints on dark matter annihilation. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 015.	1.9	13
3219	Smallest remnants of early matter domination. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 026.	1.9	9
3220	Cosmological constraints from unWISE and Planck CMB lensing tomography. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 028.	1.9	51
3221	Forecasts on interacting dark energy from the 21-cm angular power spectrum with BINGO and SKA observations. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1495-1514.	1.6	6
3222	Accelerating Large-Scale-Structure data analyses by emulating Boltzmann solvers and Lagrangian Perturbation Theory. Open Research Europe, 0, 1, 152 .	2.0	2
3223	Phantom Braneworld and the Hubble Tension. Astrophysical Journal, 2021, 923, 212.	1.6	9
3224	Inflation story: slow-roll and beyond. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 038.	1.9	10
3225	Probing cosmology and gastrophysics with fast radio bursts:Âcross-correlations of dark matter haloes and cosmic dispersion measures. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1730-1750.	1.6	8
3226	A Wide and Deep Exploration of Radio Galaxies with Subaru HSC (WERGS). VI. Distant Filamentary Structures Pointed Out by High-z Radio Galaxies at z â ¹ / ₄ 4. Astrophysical Journal, 2022, 926, 76.	1.6	5
3227	å^©ç""宇宙å¦å'Œç²'å物ç†å®žéªŒæ•°æ®é™å^¶ä¸å¾®åè^釕 Scientia Sinica: Physica, Mechanica Et Astro	oncombca, 2	020,,.
3228	<tt>KaRMMa</tt> – kappa reconstruction for mass mapping. Monthly Notices of the Royal Astronomical Society, 2022, 512, 73-85.	1.6	6

#	Article	IF	CITATIONS
3229	Testing gravity on cosmic scales: A case study of Jordan-Brans-Dicke theory. Physical Review D, 2022, 105, .	1.6	11
3230	Constraining Cluster Virialization Mechanism and Cosmology Using Thermal-SZ-selected Clusters from Future CMB Surveys. Astrophysical Journal, 2022, 926, 172.	1.6	16
3231	KiDS-1000 cosmology: machine learning $\hat{a}\in$ accelerated constraints on interacting dark energy with <scp>CosmoPower</scp> . Monthly Notices of the Royal Astronomical Society: Letters, 2022, 512, L44-L48.	1.2	7
3232	Farpoint: A High-resolution Cosmology Simulation at the Gigaparsec Scale. Astrophysical Journal, Supplement Series, 2022, 259, 15.	3.0	9
3233	Shot noise and scatter in the star formation efficiency as a source of 21-cm fluctuations. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5265-5273.	1.6	10
3234	Cosmological Constraints on Nonflat Exponential f(R) Gravity. Astrophysical Journal, 2022, 926, 74.	1.6	15
3235	Sensitivity tests of cosmic velocity fields to massive neutrinos. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3319-3330.	1.6	6
3236	BEYONDPLANCK. Astronomy and Astrophysics, 2023, 675, A3.	2.1	18
3237	The parameter-level performance of covariance matrix conditioning in cosmic microwave background data analyses. Monthly Notices of the Royal Astronomical Society, 2022, 512, 4394-4403.	1.6	2
3238	A revised density split statistic model for general filters. Astronomy and Astrophysics, 2022, 661, A137.	2.1	7
3239	The 6Â×Â2pt method: supernova velocities meet multiple tracers. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2841-2853.	1.6	6
3240	Cosmological direct detection of dark energy: Non-linear structure formation signatures of dark energy scattering with visible matter. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1885-1905.	1.6	21
3241	Galactic angular momentum in the IllustrisTNG simulation – I. Connection to morphology, halo spin, and black hole mass. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5978-5994.	1.6	21
3242	21-cm constraints on spinning primordial black holes. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 012.	1.9	19
3243	Cosmological implications of the full shape of anisotropic clustering measurements in BOSS and eBOSS. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5657-5670.	1.6	26
3244	Measuring the cosmological density field twice: A novel test of dark energy using the CMB quadrupole. Physical Review D, 2022, 105, .	1.6	1
3245	What does a cosmological experiment really measure? Covariant posterior decomposition with normalizing flows. Physical Review D, 2022, 105, .	1.6	4
3246	Forecasting the potential of weak lensing magnification to enhance LSST large-scale structure analyses. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	5

#	Article	IF	Citations
3247	Host Dark Matter Halos of SDSS Red and Blue Quasars: No Significant Difference in Large-scale Environment. Astrophysical Journal, 2022, 927, 16.	1.6	5
3248	A dynamics-based density profile for dark haloes – I. Algorithm and basic results. Monthly Notices of the Royal Astronomical Society, 2022, 513, 573-594.	1.6	20
3249	Do current observations support transient acceleration of our universe?. International Journal of Modern Physics D, 2022, 31 , .	0.9	1
3250	The reach of next-to-leading-order perturbation theory for the matter bispectrum. Monthly Notices of the Royal Astronomical Society, 2022, 512, 4961-4981.	1.6	17
3251	Neural Networks as Optimal Estimators to Marginalize Over Baryonic Effects. Astrophysical Journal, 2022, 928, 44.	1.6	8
3252	Effects of neutrino masses and asymmetries on dark matter halo assembly. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 066.	1.9	4
3253	A Simulation-based Method for Correcting Mode Coupling in CMB Angular Power Spectra. Astrophysical Journal, 2022, 928, 109.	1.6	2
3254	Redshift space distortions: Unmixing radial scales in projection. Physical Review D, 2022, 105, .	1.6	2
3255	The matter density PDF for modified gravity and dark energy with Large Deviations Theory. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	5
3256	Prospects for kSZ ² –Galaxy Cross-correlations during Reionization. Astrophysical Journal, 2022, 928, 162.	1.6	3
3257	Constraints on cubic and f(P) gravity from the cosmic chronometers, BAO & Datasets: Use of machine learning algorithms. Nuclear Physics B, 2022, 978, 115746.	0.9	7
3258	The Hubble tension in the non-flat <mml:math altimg="si122.svg" display="inline" id="d1e1189" xmins:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">Superâ^3</mml:mi><mml:mi>\/mml:mi></mml:mi><mml:mi> mathvariant="normal">CDM</mml:mi></mml:mrow>CDM</mml:math> model. Physics of the Dark Universe,	1.8	4
3259	The XFaster Power Spectrum and Likelihood Estimator for the Analysis of Cosmic Microwave Background Maps. Astrophysical Journal, 2021, 922, 132.	1.6	2
3260	Massive neutrino self-interactions and the Hubble tension. Journal of Physics: Conference Series, 2021, 2156, 012016.	0.3	1
3261	Beating the Lyth Bound by Parametric Resonance during Inflation. Physical Review Letters, 2021, 127, 251301.	2.9	14
3262	Constraining the neutrino mass using a multitracer combination of two galaxy surveys and cosmic microwave background lensing. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4295-4301.	1.6	3
3263	Mass Estimation of Galaxy Clusters with Deep Learning II. Cosmic Microwave Background Cluster Lensing. Astrophysical Journal, 2021, 923, 96.	1.6	9
3264	Dark energy at early times and ACT data: A larger Hubble constant without late-time priors. Physical Review D, 2021, 104, .	1.6	64

#	Article	IF	CITATIONS
3265	Looking for a twist: probing the cosmological gravitomagnetic effect via weak lensing-kSZ cross-correlations. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3589-3604.	1.6	7
3266	Dark twilight joined with the light of dawn to unveil the reionization history. Physical Review D, 2021, 104, .	1.6	3
3267	Does the reionization model influence the constraints on dark matter decay or annihilation?. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 034.	1.9	1
3268	Geometrical meaning of statistical isotropy of smooth random fields in two dimensions. Physical Review D, 2021, 104, .	1.6	4
3269	Cosmological Tests of Gravity: A Future Perspective. Universe, 2021, 7, 506.	0.9	4
3270	A Short Review on Clustering Dark Energy. Universe, 2022, 8, 22.	0.9	8
3271	PhotoNs-GPU: A GPU accelerated cosmological simulation code. Research in Astronomy and Astrophysics, 2021, 21, 281.	0.7	2
3272	Ultralarge-scale approximations and galaxy clustering: Debiasing constraints on cosmological parameters. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1964-1977.	1.6	7
3273	Exploration of interacting dynamical dark energy model with interaction term including the equation-of-state parameter: alleviation of the H _O tension. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 036.	1.9	12
3274	H <scp>i</scp> constraints from the cross-correlation of eBOSS galaxies and Green Bank Telescope intensity maps. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3495-3511.	1.6	47
3275	Reconstruction of the neutrino mass as a function of redshift. Physical Review D, 2021, 104, .	1.6	19
3276	Assessing the Importance of Noise from Thermal Sunyaev–Zel′dovich Signals for CMB Cluster Surveys and Cluster Cosmology. Astrophysical Journal, 2022, 928, 16.	1.6	6
3277	The Integrated Sachs Wolfe effect: unWISE and Planck constraints on dynamical dark energy. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 033.	1.9	10
3278	Constraints on prerecombination early dark energy from SPT-3G public data. Physical Review D, 2022, 105, .	1.6	23
3279	Search for Dark Higgs Inflation with Curvature Corrections at LHC Experiments. Universe, 2022, 8, 235.	0.9	1
3280	The benefits of CMB delensing. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 020.	1.9	20
3281	Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. Journal of High Energy Astrophysics, 2022, 34, 49-211.	2.4	350
3282	Effects of boosting on extragalactic components: Methods and statistical studies. Monthly Notices of the Royal Astronomical Society, 0 , , .	1.6	1

#	Article	IF	CITATIONS
3283	Mitigating foreground bias to the CMB lensing power spectrum for a CMB-HD survey. Physical Review D, 2022, 105 , .	1.6	7
3284	The physical origin of dark energy constraints from rubin observatory and CMB-S4 lensing tomography. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	5
3286	Dark Energy Survey Year 3 results: calibration of lens sample redshift distributions using clustering redshifts with BOSS/eBOSS. Monthly Notices of the Royal Astronomical Society, 2022, 513, 5517-5539.	1.6	16
3287	Improved limits on the tensor-to-scalar ratio using BICEP and <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>P</mml:mi><mml:mi> </mml:mi> <mml:mi>a</mml:mi><mml:mi>n</mml:mi><mml:mi 105<="" 2022.="" d.="" data.="" physical="" review="" td=""><td>>c<td>ni⁷¹∢mml:mi</td></td></mml:mi></mml:math>	>c <td>ni⁷¹∢mml:mi</td>	ni ⁷¹ ∢mml:mi
3288	Imprints of fermionic and bosonic mixed dark matter on the 21-cm signal at cosmic dawn. Physical Review D, 2022, 105, .	1.6	11
3289	<i>Euclid</i> : Covariance of weak lensing pseudo- <i>C</i> _{<i>â,,"</i>} estimates. Astronomy and Astrophysics, 2022, 660, A114.	2.1	2
3290	The Simons Observatory: Galactic Science Goals and Forecasts. Astrophysical Journal, 2022, 929, 166.	1.6	10
3291	Frequency-dependent constraints on cosmic birefringence from the LFI and HFI <i>Planck</i> Data Release 4. Astronomy and Astrophysics, 2022, 662, A10.	2.1	30
3292	Minimal dark energy: Key to sterile neutrino and Hubble constant tensions?. Physical Review D, 2022, 105, .	1.6	11
3293	Nonthermal neutrino-like hot dark matter in light of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>S</mml:mi><mml:mn>8</mml:mn></mml:msub></mml:math> tension. Physical Review D. 2022, 105	1.6	7
3294	Recovering the CMB Signal with Machine Learning. Astrophysical Journal, Supplement Series, 2022, 260, 13.	3.0	10
3295	Retrieving cosmological information from small-scale CMB foregrounds. Astronomy and Astrophysics, 2022, 662, A122.	2.1	12
3296	Reionization process dependence of the ratio of CMB polarization power spectra at low-â,,". Journal of Cosmology and Astroparticle Physics, 2022, 2022, 016.	1.9	0
3297	Observational constraints on inflection point quintessence with a cubic potential. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 829, 137126.	1.5	2
3298	Neural network acceleration of large-scale structure theory calculations. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 056.	1.9	8
3299	Galaxy blending effects in deep imaging cosmic shear probes of cosmology. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5905-5926.	1.6	2
3300	Pure-mode correlation functions for cosmic shear and application to KiDS-1000. Astronomy and Astrophysics, 0 , , .	2.1	0
3301	Effect of the field self-interaction of General Relativity on the cosmic microwave background anisotropies. Classical and Quantum Gravity, 2022, 39, 135003.	1.5	2

#	ARTICLE	IF	CITATIONS
3302	Cosmological constraints on sub-horizon scales modified gravity theories with MGCLASS II. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 030.	1.9	9
3303	Neutrino Mass Bounds in the Era of Tension Cosmology. Astrophysical Journal Letters, 2022, 931, L18.	3.0	31
3304	Dark Energy Explained by a Bias in the Measurements. Foundations of Physics, 2022, 52, .	0.6	3
3305	COWS: a filament finder for Hessian cosmic web identifiers. Monthly Notices of the Royal Astronomical Society, 2022, 514, 470-479.	1.6	4
3306	A galaxy-free phenomenological model for the 21-cm power spectrum during reionization. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2010-2030.	1.6	5
3307	Cosmological Constraints on the Global Star Formation Law of Galaxies: Insights from Baryon Acoustic Oscillation Intensity Mapping. Astrophysical Journal Letters, 2022, 931, L29.	3.0	6
3308	Transitioning from Stage-III to Stage-IV: cosmology from galaxy×CMB lensing and shear×CMB lensing. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2181-2197.	1.6	4
3309	Symmetry of Cosmological Observables, a Mirror World Dark Sector, and the Hubble Constant. Physical Review Letters, 2022, 128, .	2.9	28
3310	Ghostly stellar haloes and their relationship to ultrafaint dwarfs. Monthly Notices of the Royal Astronomical Society, 2022, 515, 302-319.	1.6	5
3311	Improved Upper Limit on Degree-scale CMB B-mode Polarization Power from the 670 Square-degree POLARBEAR Survey. Astrophysical Journal, 2022, 931, 101.	1.6	7
3312	Predicted future fate of COSMOS galaxy protoclusters over 11 Gyr with constrained simulations. Nature Astronomy, 2022, 6, 857-865.	4.2	8
3313	Improving Cosmological Constraints from Galaxy Cluster Number Counts with CMB-cluster-lensing Data: Results from the SPT-SZ Survey and Forecasts for the Future. Astrophysical Journal, 2022, 931, 139.	1.6	5
3314	Evolution mapping: a new approach to describe matter clustering in the non-linear regime. Monthly Notices of the Royal Astronomical Society, 0 , , .	1.6	2
3315	Accelerating Large-Scale-Structure data analyses by emulating Boltzmann solvers and Lagrangian Perturbation Theory. Open Research Europe, 0, 1, 152.	2.0	12
3316	Fluctuations in the Ginzburg–Landau Theory of Dark Energy: Internal (In)consistencies in the Planck Data Set. Astrophysical Journal, 2022, 931, 148.	1.6	1
3317	Lensing power spectrum of the cosmic microwave background with deep polarization experiments. Physical Review D, 2022, 105, .	1.6	12
3318	Beware of fake <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>ν</mml:mi></mml:mrow></mml:math> 's: The effect of massive neutrinos on the nonlinear evolution of cosmic structure. Physical Review D, 2022, 105, .	1.6	16
3319	An estimator for the lensing potential from galaxy number counts. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 024.	1.9	3

#	Article	IF	Citations
3320	Effect of the cosmological transition to metal-enriched star formation on the hydrogen 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4433-4449.	1.6	18
3321	Delensing the CMB with the cosmic infrared background: the impact of foregrounds. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5786-5812.	1.6	5
3322	Non-Gaussian likelihood of weak lensing power spectra. Physical Review D, 2022, 105, .	1.6	2
3323	Scalar Quadratic Maximum-likelihood Estimators for the CMB Cross-power Spectrum. Astrophysical Journal, Supplement Series, 2022, 260, 44.	3.0	5
3324	Dark Energy Survey Year 3 results: Cosmology from combined galaxy clustering and lensing validation on cosmological simulations. Physical Review D, 2022, 105, .	1.6	19
3325	Accurate effective fluid approximation for ultralight axions. Physical Review D, 2022, 105, .	1.6	6
3326	Symbolic implementation of extensions of the PyCosmoÂBoltzmann solver. Astronomy and Computing, 2022, 40, 100603.	0.8	3
3327	PT challenge: validation of ShapeFit on large-volume, high-resolution mocks. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 005.	1.9	9
3328	KiDS-1000: Cosmic shear with enhanced redshift calibration. Astronomy and Astrophysics, 2022, 664, A170.	2.1	16
3329	Atacama Cosmology Telescope: Constraints on prerecombination early dark energy. Physical Review D, 2022, 105, .	1.6	59
3330	Structure formation in dark matter particle production cosmology. Physics of the Dark Universe, 2022, 37, 101092.	1.8	0
3331	Brane inflation driven by an arctan potential: CMB constraints and reheating. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 024.	1.9	4
3332	Dark energy survey year 3 results: cosmological constraints from the analysis of cosmic shear in harmonic space. Monthly Notices of the Royal Astronomical Society, 2022, 515, 1942-1972.	1.6	27
3333	Weighing cosmic structures with clusters of galaxies and the intergalactic medium. Monthly Notices of the Royal Astronomical Society, 2022, 515, 857-870.	1.6	10
3334	An Overview of CHIME, the Canadian Hydrogen Intensity Mapping Experiment. Astrophysical Journal, Supplement Series, 2022, 261, 29.	3.0	38
3335	Updated neutrino mass constraints from galaxy clustering and CMB lensing-galaxy cross-correlation measurements. Journal of High Energy Astrophysics, 2022, 36, 1-26.	2.4	21
3336	Distinguishing between \hat{i} CDM and $\langle i \rangle f \langle i \rangle (\langle i \rangle R \langle i \rangle)$ gravity models using halo ellipticity correlations in simulations. Monthly Notices of the Royal Astronomical Society, 2022, 515, 4464-4470.	1.6	5
3337	Challenges of the Standard Cosmological Model. Universe, 2022, 8, 399.	0.9	32

#	Article	IF	CITATIONS
3338	A measurement of the integrated Sachs–Wolfe effect with the Rapid ASKAP Continuum Survey. Monthly Notices of the Royal Astronomical Society, 2022, 517, 3785-3803.	1.6	4
3339	Cross-correlation between <i>Planck</i> CMB lensing potential and galaxy catalogues from HELP. Monthly Notices of the Royal Astronomical Society, 2022, 515, 1993-2007.	1.6	1
3340	Implications of an Extended Dark Energy Model with Massive Neutrinos. Astrophysical Journal, 2022, 934, 113.	1.6	5
3341	A New Method to Constrain the Appearance and Disappearance of Observed Jellyfish Galaxy Tails. Astrophysical Journal, 2022, 934, 86.	1.6	6
3342	The effect of quasar redshift errors on Lyman-α forest correlation functions. Monthly Notices of the Royal Astronomical Society, 2022, 516, 421-433.	1.6	8
3343	Skewing the CMB×LSS: a fast method for bispectrum analysis. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 038.	1.9	2
3344	Cosmological analysis of three-dimensional BOSS galaxy clustering and Planck CMB lensing cross correlations via Lagrangian perturbation theory. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 041.	1.9	29
3345	Inference of the cosmic rest-frame from supernovae Ia. Astronomy and Astrophysics, 2022, 668, A34.	2.1	16
3346	Forecast of neutrino cosmology from the <i>CSST</i> photometric galaxy clustering and cosmic shear surveys. Monthly Notices of the Royal Astronomical Society, 2022, 515, 5743-5757.	1.6	4
3347	The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the growth rate of structure from the small-scale clustering of the luminous red galaxy sample. Monthly Notices of the Royal Astronomical Society, 2022, 516, 617-635.	1.6	14
3348	Constraining decaying dark matter with BOSS data and the effective field theory of large-scale structures. Physical Review D, 2022, 106, .	1.6	35
3349	Fuzzy dark matter and the Dark Energy Survey Year 1 data. Monthly Notices of the Royal Astronomical Society, 2022, 515, 5646-5664.	1.6	21
3350	Galaxy cluster aperture masses are more robust to baryonic effects than 3D halo masses. Monthly Notices of the Royal Astronomical Society, 2022, 515, 6023-6031.	1.6	2
3351	Molecular Chemistry for Dark Matter. II. Recombination, Molecule Formation, and Halo Mass Function in Atomic Dark Matter. Astrophysical Journal, 2022, 934, 121.	1.6	4
3352	The galaxy power spectrum on the lightcone: deep, wide-angle redshift surveys and the turnover scale. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 019.	1.9	1
3353	Dancing in the dark: detecting a population of distant primordial black holes. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 006.	1.9	13
3354	An Exploration of an Early Gravity Transition in Light of Cosmological Tensions. Astrophysical Journal, 2022, 935, 156.	1.6	14
3355	The art of building a smooth cosmic distance ladder in a perturbed universe. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 023.	1.9	1

#	Article	IF	CITATIONS
3356	Dark Energy Survey year 3 results: Constraints on cosmological parameters and galaxy-bias models from galaxy clustering and galaxy-galaxy lensing using the redMaGiC sample. Physical Review D, 2022, 106, .	1.6	33
3357	An effective fluid description of scalar-vector-tensor theories under the sub-horizon and quasi-static approximations. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 059.	1.9	6
3358	Constraining IGM enrichment and metallicity with the C <scp>iv</scp> forest correlation function. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3656-3673.	1.6	6
3359	Cross Correlation between the Thermal Sunyaev–Zel'dovich Effect and Projected Galaxy Density Field. Astrophysical Journal, 2022, 935, 18.	1.6	7
3360	Dissociation of dark matter and gas in cosmic large-scale structure. Monthly Notices of the Royal Astronomical Society, 2022, 516, 5289-5308.	1.6	1
3362	Forecasting the cross-correlation of the <i>CSST</i> galaxy survey with the FAST H <scp>i</scp> Intensity Map. Monthly Notices of the Royal Astronomical Society, 2022, 515, 5894-5904.	1.6	4
3363	Suppression of scalar power on large scales and associated bispectra. Physical Review D, 2022, 106, .	1.6	7
3364	Statistical Properties of Radio Halos in Galaxy Clusters and the Origin of Seed Electrons for Reacceleration. Astrophysical Journal, 2022, 934, 182.	1.6	9
3365	<i>Euclid</i> : Cosmological forecasts from the void size function. Astronomy and Astrophysics, 2022, 667, A162.	2.1	10
3366	Constraints on cosmic birefringence using E-mode polarisation. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 033.	1.9	2
3367	Effect of damped oscillations in the inflationary potential. European Physical Journal C, 2022, 82, .	1.4	5
3368	One spectrum to cure them all: signature from early Universe solves major anomalies and tensions in cosmology. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 063.	1.9	17
3369	Unexpected Dancing Partners: Tracing the Coherence between the Spin and Motion of Dark Matter Halos. Astrophysical Journal, 2022, 935, 71.	1.6	5
3370	Tightening geometric and dynamical constraints on dark energy and gravity: Galaxy clustering, intrinsic alignment, and kinetic Sunyaev-Zel'dovich effect. Physical Review D, 2022, 106, .	1.6	12
3371	Living on the Fermi edge: On baryon transport and Fermi condensation. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 833, 137365.	1.5	0
3372	C ³ Cluster Clustering Cosmology I. New Constraints on the Cosmic Growth Rate at z \hat{a}^4 0.3 from Redshift-space Clustering Anisotropies. Astrophysical Journal, 2021, 920, 13.	1.6	12
3373	Forecasts on CMB lensing observations with AliCPT-1. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	2.0	8
3374	<pre><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Pantheon</mml:mi><mml:mo>+</mml:mo></mml:mrow></mml:math> constraints on dark energy and modified gravity: An evidence of dynamical dark energy. Physical Review D. 2022, 106</pre>	1.6	6

#	Article	IF	Citations
3375	The Integrated Sachs-Wolfe Effect in Interacting Dark Matter-Dark Energy Models. SSRN Electronic Journal, $0, , .$	0.4	0
3376	Astrophysical Searches and Constraints. , 2023, , 73-122.		1
3377	Numerical implementation of the Cubic Galileon model in <scp>pinocchio</scp> . Monthly Notices of the Royal Astronomical Society, 2022, 516, 5762-5774.	1.6	2
3378	Model marginalized constraints on neutrino properties from cosmology. Physical Review D, 2022, 106,	1.6	8
3379	Detailed analysis of the curvature bounce: background dynamics and imprints in the CMB. European Physical Journal C, 2022, 82, .	1.4	0
3380	Closing the window on fuzzy dark matter with the 21-cm signal. Physical Review D, 2022, 106, .	1.6	16
3381	Cosmic shear in harmonic space from the Dark Energy Survey Year 1 Data: compatibility with configuration space results. Monthly Notices of the Royal Astronomical Society, 2022, 516, 5799-5815.	1.6	4
3382	Distinguishing primordial magnetic fields from inflationary tensor perturbations in the cosmic microwave background. Physical Review D, 2022, 106, .	1.6	O
3383	Map-based cosmology inference with lognormal cosmic shear maps. Monthly Notices of the Royal Astronomical Society, 2022, 516, 4111-4122.	1.6	6
3384	CMB spectral distortions revisited: A new take on <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>$\hat{1}/4$</mml:mi></mml:math> distortions and primordial non-Gaussianities from FIRAS data. Physical Review D, 2022, 106, .	1.6	20
3385	The covariance of squeezed bispectrum configurations. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 009.	1.9	14
3386	Likelihood-free Inference with the Mixture Density Network. Astrophysical Journal, Supplement Series, 2022, 262, 24.	3.0	3
3388	Cosmological bound on the QCD axion mass, redux. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 022.	1.9	24
3389	Formation and Morphology of the First Galaxies in the Cosmic Morning. Astrophysical Journal, 2022, 937, 15.	1.6	11
3390	The halo 3-point correlation function: a methodological analysis. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 033.	1.9	2
3391	A Simulation Experiment of a Pipeline Based on Machine Learning for Neutral Hydrogen Intensity Mapping Surveys. Research in Astronomy and Astrophysics, 2022, 22, 115005.	0.7	1
3392	Baryon acoustic oscillations from a joint analysis of the large-scale clustering in Fourier and configuration space. Astronomy and Astrophysics, 0, , .	2.1	0
3393	Covariance of photometric and spectroscopic two-point statistics: Implications for cosmological parameter inference. Physical Review D, 2022, 106, .	1.6	3

#	Article	IF	CITATIONS
3394	Microphysics of early dark energy. Physical Review D, 2022, 106, .	1.6	15
3395	Baryon acoustic oscillations from H <scp>i</scp> intensity mapping: The importance of cross-correlations in the monopole and quadrupole. Monthly Notices of the Royal Astronomical Society, 2022, 516, 5454-5470.	1.6	3
3396	CMB power spectra and cosmological parameters from <i>Planck</i> PR4 with CamSpec. Monthly Notices of the Royal Astronomical Society, 2022, 517, 4620-4636.	1.6	18
3397	Estimating the impact of foregrounds on the future detection of Rayleigh scattering. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 048.	1.9	0
3398	Improved constraints on cosmic birefringence from the WMAP and <i>Planck</i> cosmic microwave background polarization data. Physical Review D, 2022, 106, .	1.6	38
3399	BeyondPlanck XII. Cosmological parameter constraints with end-to-end error propagation. Astronomy and Astrophysics, 0, , .	2.1	11
3400	Separate universe approach to evaluate nonlinear matter power spectrum for nonflat <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">Î></mml:mi><mml:mi><dm< mml:mi=""></dm<></mml:mi></mml:math> model. Physical Review D, 2022, 106, .	1.6	3
3401	H i HOD. I. The Halo Occupation Distribution of H i Galaxies. Astrophysical Journal, 2022, 937, 113.	1.6	3
3402	Tests of standard cosmology in Hořava gravity, Bayesian evidence for a closed universe, and the Hubble tension. European Physical Journal C, 2022, 82, .	1.4	6
3403	Massive neutrino self-interactions and inflation. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 018.	1.9	12
3404	Probing cosmic birefringence with polarized Sunyaev-Zel'dovich tomography. Physical Review D, 2022, 106, .	1.6	11
3405	Consistency test of the fine-structure constant from the whole ionization history. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 070.	1.9	0
3406	A Lower Bound of Star Formation Activity in Ultra-high-redshift Galaxies Detected with JWST: Implications for Stellar Populations and Radiation Sources. Astrophysical Journal Letters, 2022, 938, L10.	3.0	28
3407	On the primordial origin of the smoothing excess in the Planck temperature power spectrum in light of LSS data. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 083.	1.9	1
3408	Cosmological studies from HSC-SSP tomographic weak-lensing peak abundances. Monthly Notices of the Royal Astronomical Society, 2022, 519, 594-612.	1.6	5
3409	E and B modes of the CMB y-type distortions: polarised kinetic Sunyaev-Zeldovich effect from the reionisation and post-reionisation eras. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 056.	1.9	1
3410	Robust sampling for weak lensing and clustering analyses with the Dark Energy Survey. Monthly Notices of the Royal Astronomical Society, 2023, 521, 1184-1199.	1.6	14
3411	Correcting for small-displacement interlopers in BAO analyses. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 072.	1.9	2

#	ARTICLE	IF	CITATIONS
3412	Planck and BICEP/Keck Array 2018 constraints on primordial gravitational waves and perspectives for future <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>B</mml:mi></mml:math> -mode polarization measurements. Physical Review D, 2022, 106, .	1.6	10
3413	Bispectrum-window convolution via Hankel transform. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 066.	1.9	11
3414	The lure of sirens: joint distance and velocity measurements with third-generation detectors. Monthly Notices of the Royal Astronomical Society, 2022, 517, 5449-5462.	1.6	8
3415	H <scp>i</scp> intensity mapping with MeerKAT: power spectrum detection in cross-correlation with WiggleZ galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 518, 6262-6272.	1.6	32
3416	Cosmology from the kinetic polarized Sunyaev Zel'dovich effect. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 026.	1.9	8
3417	The ultramarine simulation: properties of dark matter haloes before redshift 5.5. Monthly Notices of the Royal Astronomical Society, 2022, 517, 6004-6012.	1.6	4
3418	Performance forecasts for the primordial gravitational wave detection pipelines for AliCPT-1. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 063.	1.9	9
3419	Teleparallel gravity: from theory to cosmology. Reports on Progress in Physics, 2023, 86, 026901.	8.1	109
3420	Searching for axion-like particles through CMB birefringence from string-wall networks. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 090.	1.9	12
3421	Photometric Redshift Uncertainties in Weak Gravitational Lensing Shear Analysis: Models and Marginalization. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	7
3422	A local measurement of the growth rate from peculiar velocities and galaxy clustering correlations in the 6dF Galaxy Survey. Monthly Notices of the Royal Astronomical Society, 2022, 518, 2436-2452.	1.6	10
3423	Towards optimal foreground mitigation strategies for interferometric H <scp>i</scp> intensity mapping in the low-redshift Universe. Monthly Notices of the Royal Astronomical Society, 2022, 518, 2971-2990.	1.6	2
3424	Can we actually constrain f _{NL} using the scale-dependent bias effect? An illustration of the impact of galaxy bias uncertainties using the BOSS DR12 galaxy power spectrum. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 013.	1.9	23
3425	Planck integrated Sachs-Wolfe-lensing likelihood and the CMB temperature. Physical Review D, 2022, 106, .	1.6	3
3426	Signal of cosmic strings in cross-correlation of 21-cm redshift and CMB polarization maps. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 012.	1.9	0
3427	Constraining the primordial curvature perturbation using dark matter substructure. Physical Review D, 2022, 106, .	1.6	4
3428	Cosmological constraints from the power spectrum and bispectrum of 21cm intensity maps. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 003.	1.9	10
3429	Direct cosmological inference from three-dimensional correlations of the Lyman \hat{l}_{\pm} forest. Monthly Notices of the Royal Astronomical Society, 2022, 518, 2567-2573.	1.6	5

#	Article	IF	CITATIONS
3430	Health checkup test of the standard cosmological model in view of recent cosmic microwave background anisotropies experiments. Physical Review D, 2022, 106, .	1.6	24
3431	Comparison of Low-Redshift Lyman- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>\hat{l}±</mml:mi></mml:math> Forest Observations to Hydrodynamical Simulations with Dark Photon Dark Matter. Physical Review Letters, 2022, 129, .	2.9	13
3432	Primordial non-gaussianities of inflationary step-like models. Journal of Physics: Conference Series, 2022, 2372, 012002.	0.3	0
3433	Examining statistical isotropy of CMB low multipoles from Planck PR4 data. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2023, 836, 137593.	1.5	0
3434	The integrated Sachs–Wolfe effect in interacting dark matter–dark energy models. Physics of the Dark Universe, 2023, 39, 101144.	1.8	5
3435	Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MagLim lens sample. Physical Review D, 2022, 106, .	1.6	24
3436	Can primordial parity violation explain the observed cosmic birefringence?. Physical Review D, 2022, 106, .	1.6	7
3437	Cosmological perturbations: Noncold relics without the Boltzmann hierarchy. Physical Review D, 2022, 106, .	1.6	3
3438	Accelerating cosmological inference with Gaussian processes and neural networks – an application to LSST Y1 weak lensing and galaxy clustering. Monthly Notices of the Royal Astronomical Society, 2022, 518, 4818-4831.	1.6	6
3439	Quijote-PNG: Quasi-maximum Likelihood Estimation of Primordial Non-Gaussianity in the Nonlinear Dark Matter Density Field. Astrophysical Journal, 2022, 940, 71.	1.6	8
3440	Searching for ring-like structures in the cosmic microwave background. Monthly Notices of the Royal Astronomical Society, 2022, 519, 922-930.	1.6	1
3441	Testing modified gravity scenarios with direct peculiar velocities. Monthly Notices of the Royal Astronomical Society, 2022, 518, 5929-5941.	1.6	2
3442	King Ghidorah Supercluster: Mapping the light and dark matter in a new supercluster at $z = \hat{A}0.55$ using the subaru hyper suprime-cam. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 519, L45-L50.	1.2	2
3443	New Constraint on the Tensor-to-scalar Ratio from the Planck and BICEP/Keck Array Data Using the Profile Likelihood. Astrophysical Journal, 2022, 941, 110.	1.6	8
3444	Cosmological constraints on the multiscalar field dark matter model. Physical Review D, 2022, 106, .	1.6	8
3445	The Mira–Titan Universe – IV. High-precision power spectrum emulation. Monthly Notices of the Royal Astronomical Society, 2023, 520, 3443-3458.	1.6	14
3446	Measuring cosmic filament spin with the kinetic Sunyaev–Zel'dovich effect. Monthly Notices of the Royal Astronomical Society, 2022, 519, 1171-1188.	1.6	3
3447	Emergent universe: tensor perturbations within the CSL framework. European Physical Journal C, 2022, 82, .	1.4	2

#	Article	IF	CITATIONS
3448	A dynamics-based density profile for dark haloes $\hat{a} \in II$. Fitting function. Monthly Notices of the Royal Astronomical Society, 2023, 519, 3292-3311.	1.6	8
3449	Cosmological constraint precision of photometric and spectroscopic multi-probe surveys of <i>China Space Station Telescope</i> (<i>CSST</i>). Monthly Notices of the Royal Astronomical Society, 2022, 519, 1132-1148.	1.6	10
3450	<i>Euclid</i> : Forecasts from the void-lensing cross-correlation. Astronomy and Astrophysics, 2023, 670, A47.	2.1	6
3451	Weak Lensing the non-Linear Lyl $\hat{\textbf{l}}_{\pm}$ Forest. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	0
3452	Constraining primordial tensor features with the anisotropies of the cosmic microwave background. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 015.	1.9	2
3453	A Candid Assessment of Standard Cosmology. Publications of the Astronomical Society of the Pacific, 2022, 134, 121001.	1.0	14
3454	Searching for dilaton fields in the Lyman- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>\hat{l}±</mml:mi></mml:mrow> </mml:math> forest. Physical Review D, 2022, 106, .	1.6	3
3455	Window function convolution with deep neural network models. Astronomy and Astrophysics, 2023, 669, L2.	2.1	3
3456	Properties of Globular Clusters in Galaxy Clusters: Sensitivity from the Formation and Evolution of Globular Clusters. Astrophysical Journal, 2022, 941, 91.	1.6	0
3457	Assessing the consistency between CMB temperature and polarization measurements with application to $\langle i \rangle$ Planck $\langle i \rangle$, ACT, and SPT data. Physical Review D, 2023, 107, .	1.6	3
3458	Signature of Massive Neutrinos from the Clustering of Critical Points. I. Density-threshold-based Analysis in Configuration Space. Astrophysical Journal, Supplement Series, 2023, 264, 26.	3.0	0
3459	Interferometric H <scp>i</scp> intensity mapping: perturbation theory predictions and foreground removal effects. Monthly Notices of the Royal Astronomical Society, 2023, 519, 6246-6256.	1.6	4
3460	A new test of dynamical dark energy models and cosmic tensions in Hořava gravity. Monthly Notices of the Royal Astronomical Society, 2023, 519, 5043-5058.	1.6	6
3461	Scaling transformations and the origins of light relics constraints from cosmic microwave background observations. Physical Review D, 2023, 107, .	1.6	2
3462	Fast and accurate predictions of the non-linear matter power spectrum for general models of Dark Energy and Modified Gravity. Monthly Notices of the Royal Astronomical Society, 2023, 519, 4780-4800.	1.6	4
3463	Small-scale clumping of dark matter and the mean free path of ionizing photons at $z=6$. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 002.	1.9	5
3464	Quantifying the global  CMB tension' between the Atacama Cosmology Telescope and the <i>Planck</i> satellite in extended models of cosmology. Monthly Notices of the Royal Astronomical Society, 2023, 520, 210-215.	1.6	16
3465	Combining cosmic shear data with correlated photo-z uncertainties: constraints from DESY1 and HSC-DR1. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 025.	1.9	3

#	Article	IF	CITATIONS
3466	Predictions on the stellar-to-halo mass relation in the dwarf regime using the empirical model for galaxy formation <scp>Emerge</scp> . Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	0
3467	Axion-Higgs cosmology: Cosmic microwave background and cosmological tensions. Physical Review D, 2023, 107, .	1.6	2
3468	Enhancing gravitational wave anisotropies with peaked scalar sources. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 018.	1.9	12
3469	The Effective Fluid Approach for Modified Gravity and Its Applications. Universe, 2023, 9, 13.	0.9	2
3470	Simulating Hydrodynamics in Cosmology with CRK-HACC. Astrophysical Journal, Supplement Series, 2023, 264, 34.	3.0	6
3471	Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and <i>Planck </i> Construction of CMB lensing maps and modeling choices. Physical Review D, 2023, 107, .	1.6	9
3472	Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and <i>Planck</i> . III. Combined cosmological constraints. Physical Review D, 2023, 107, .	1.6	20
3473	A foreground model-independent Bayesian CMB temperature and polarization signal reconstruction and cosmological parameter estimation over large angular scales. Monthly Notices of the Royal Astronomical Society, 2023, 520, 976-987.	1.6	0
3474	The halo bispectrum multipoles in redshift space. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 031.	1.9	9
3475	Artificial neural networks for galaxy clustering: Learning from the two-point correlation function of BOSS galaxies. Astronomy and Computing, 2023, 42, 100692.	0.8	0
3476	Quijote-PNC: Simulations of Primordial Non-Gaussianity and the Information Content of the Matter Field Power Spectrum and Bispectrum. Astrophysical Journal, 2023, 943, 64.	1.6	11
3477	A unified catalogue-level reanalysis of stage-III cosmic shear surveys. Monthly Notices of the Royal Astronomical Society, 2023, 520, 5016-5041.	1.6	7
3478	Extended delta-map: A map-based foreground removal method for CMB polarization observations. Progress of Theoretical and Experimental Physics, 2023, 2023, .	1.8	2
3479	Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi><mml:mi></mml:mi></mml:mi> aaa <td>1.6 mi><mml< td=""><td>.17 :mi>c</td></mml<></td>	1.6 mi> <mml< td=""><td>.17 :mi>c</td></mml<>	. 17 :mi>c
3480	Maximum likelihood kinetic Sunyaev-Zel'dovich velocity reconstruction. Physical Review D, 2023, 107, .	1.6	1
3481	Cosmology with the EFTofLSS and BOSS: dark energy constraints and a note on priors. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 028.	1.9	16
3482	Perturbation theory with dispersion and higher cumulants: Nonlinear regime. Physical Review D, 2023, 107, .	1.6	9
3483	JWST high-redshift galaxy constraints on warm and cold dark matter models. Astronomy and Astrophysics, 2023, 672, A71.	2.1	9

#	Article	IF	CITATIONS
3484	Circumventing the challenges in the choice of the nonconformal coupling function in inflationary magnetogenesis. Physical Review D, 2023, 107 , .	1.6	2
3485	BeyondPlanck. I. Global Bayesian analysis of the Planck Low Frequency Instrument data. Astronomy and Astrophysics, 0, , .	2.1	13
3486	Testing gravity with gravitational waves $\tilde{A}-$ electromagnetic probes cross-correlations. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 010.	1.9	5
3487	Electron mass variation from dark sector interactions and compatibility with cosmological observations. Physical Review D, 2023, 107, .	1.6	3
3488	The CIDER simulations: non-linear structure formation in the constrained interacting dark energy scenario. Monthly Notices of the Royal Astronomical Society, 2023, 521, 613-629.	1.6	0
3489	Free streaming length of axion-like particle after oscillon/I-ball decays. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 024.	1.9	1
3490	Robust simulation-based inference in cosmology with Bayesian neural networks. Machine Learning: Science and Technology, 2023, 4, 01LT01.	2.4	5
3491	Prospects for 21 cm Galaxy Cross-correlations with HERA and the Roman High-latitude Survey. Astrophysical Journal, 2023, 944, 59.	1.6	2
3492	Cosmic birefringence tomography and calibration independence with reionization signals in the CMB. Monthly Notices of the Royal Astronomical Society, 2023, 520, 3298-3304.	1.6	7
3493	The halo bias for number counts on the light cone from relativistic N-body simulations. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 036.	1.9	3
3494	Complementary cosmological simulations. Astronomy and Astrophysics, 2023, 672, A59.	2.1	0
3495	Constraints on ultraslow-roll inflation from the third LIGO-Virgo observing run. Physical Review D, 2023, 107, .	1.6	5
3496	The halo bispectrum as a sensitive probe of massive neutrinos and baryon physics. Monthly Notices of the Royal Astronomical Society, 2023, 521, 1448-1461.	1.6	2
3497	New constraints on primordial features from the galaxy two-point correlation function. Physical Review D, 2023, 107, .	1.6	7
3498	<tt>PINION</tt> : physics-informed neural network for accelerating radiative transfer simulations for cosmic reionization. Monthly Notices of the Royal Astronomical Society, 2023, 521, 902-915.	1.6	4
3499	Velocity reconstruction with the cosmic microwave background and galaxy surveys. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 051.	1.9	8
3500	Compressing the Cosmological Information in One-dimensional Correlations of the Lyman-α Forest. Astrophysical Journal, 2023, 944, 223.	1.6	7
3501	Hybrid multi-fluid-particle simulations of the cosmic neutrino background. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 012.	1.9	2

#	Article	IF	Citations
3502	Back to the features: assessing the discriminating power of future CMB missions on inflationary models. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 014.	1.9	6
3503	Cosmological structure formation and soliton phase transition in fuzzy dark matter with axion self-interactions. Monthly Notices of the Royal Astronomical Society, 2023, 521, 2608-2615.	1.6	14
3504	Multipole expansion for 21 cm intensity mapping power spectrum: Forecasted cosmological parameters estimation for the SKA observatory. Monthly Notices of the Royal Astronomical Society, 2023, 521, 3221-3236.	1.6	3
3505	Probing Lorentz-violating electrodynamics with CMB polarization. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 018.	1.9	4
3506	Is the Harrison-Zel'dovich spectrum coming back? ACT preference for <i>ns</i> ⹼ 1 and its discordance with Planck. Monthly Notices of the Royal Astronomical Society, 2023, 521, 2911-2918.	1.6	17
3507	Discordances in Cosmology and the Violation of Slow-Roll Inflationary Dynamics. Physical Review Letters, 2023, 130, .	2.9	7
3508	Cosmic void exclusion models and their impact on the distance scale measurements from large-scale structure. Monthly Notices of the Royal Astronomical Society, 2023, 521, 4731-4749.	1.6	4
3509	Revealing the effects of curvature on the cosmological models. Physical Review D, 2023, 107, .	1.6	14
3510	Galaxy three-point correlation function in modified gravity. Physical Review D, 2023, 107, .	1.6	1
3511	The Influence of the Effective Number of Active and Sterile Neutrinos on the Determination of the Values of Cosmological Parameters. Astronomy Letters, 2022, 48, 689-701.	0.1	0
3512	Effect of the metallicity of the intergalactic medium in the Lyman― <i>α</i> forest correlation function. Astronomische Nachrichten, 2023, 344, .	0.6	0
3513	Observational constraints of an anisotropic boost due to the projection effects using redMaPPer clusters. Monthly Notices of the Royal Astronomical Society, 2023, 521, 5064-5076.	1.6	3
3514	What sets the splashback radius of dark matter haloes: accretion history or other properties?. Monthly Notices of the Royal Astronomical Society, 2023, 521, 5570-5582.	1.6	4
3515	Beyond – ĥCDM constraints from the full shape clustering measurements from BOSS and eBOSS. Monthly Notices of the Royal Astronomical Society, 2023, 521, 5013-5025.	1.6	11
3516	Host Dark Matter Halos of Wide-field Infrared Survey Explorer-selected Obscured and Unobscured Quasars: Evidence for Evolution. Astrophysical Journal, 2023, 946, 27.	1.6	4
3517	Current data are consistent with flat spatial hypersurfaces in the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">ĥ</mml:mi><mml:mi><dm< mml:mi=""></dm<></mml:mi></mml:math> cosmological model but favor more lensing than the model predicts. Physical Review D. 2023. 107.	1.6	11
3518	KiDS-1000: Cross-correlation with <i>Planck</i> cosmic microwave background lensing and intrinsic alignment removal with self-calibration. Astronomy and Astrophysics, 2023, 673, A111.	2.1	4
3519	On the impact of $\langle i \rangle f \langle i \rangle Q \langle i \rangle$ gravity on the large scale structure. Monthly Notices of the Royal Astronomical Society, 2023, 522, 252-267.	1.6	13

#	Article	IF	CITATIONS
3520	Subtracting the kinetic Sunyaev-Zeldovich effect from the cosmic microwave background with surveys of large-scale structure. Physical Review D, 2023, 107 , .	1.6	5
3521	Measuring dark matter spikes around primordial black holes with Einstein Telescope and Cosmic Explorer. Physical Review D, 2023, 107, .	1.6	5
3522	Dark Energy Survey Year 3 results: Constraints on extensions to <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">ĥ</mml:mi><mml:mi><dm< mml:mi=""></dm<></mml:mi></mml:math> with weak lensing and galaxy clustering. Physical Review D, 2023, 107, .	1.6	23
3523	The CAMELS Project: Public Data Release. Astrophysical Journal, Supplement Series, 2023, 265, 54.	3.0	14
3524	Probing the interaction between dark energy and dark matter with future fast radio burst observations. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 022.	1.9	7
3525	Detection of Cosmological 21 cm Emission with the Canadian Hydrogen Intensity Mapping Experiment. Astrophysical Journal, 2023, 947, 16.	1.6	19
3526	The reconstructed CMB lensing bispectrum. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 041.	1.9	2
3527	Cross-correlation Forecast of CSST Spectroscopic Galaxy and MeerKAT Neutral Hydrogen Intensity Mapping Surveys. Research in Astronomy and Astrophysics, 2023, 23, 075003.	0.7	0
3528	Study on the filters of atmospheric contamination in ground based CMB observation. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 047.	1.9	0
3529	X-Ray Cluster Cosmology. , 2023, , 1-52.		2
3530	A framework to mitigate patchy reionization contamination on the primordial gravitational wave signal. Monthly Notices of the Royal Astronomical Society, 0 , , .	1.6	2
3531	Using machine learning to compress the matter transfer function <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>T</mml:mi><mml:mo stretchy="false">(</mml:mo>k<mml:mo stretchy="false">)</mml:mo></mml:math> . Physical Review D. 2023. 107	1.6	2
3532	<i>Euclid</i> preparation. Astronomy and Astrophysics, 2023, 675, A120.	2.1	5
3533	Mapping gas around massive galaxies: cross-correlation of DES Y3 galaxies and Compton- <i>y</i> maps from SPT and <i>Planck</i> Monthly Notices of the Royal Astronomical Society, 2023, 522, 3163-3182.	1.6	4
3534	Improved analytical modeling of the nonlinear power spectrum in modified gravity cosmologies. Physical Review D, 2023, 107, .	1.6	1
3643	Symbolic Regression Applied to Cosmology: An Approximate Expression for the Density Perturbation Variance. , 2023, , .		0
3721	50 Years of Horndeski Gravity: Past, Present and Future. International Journal of Theoretical Physics, 2024, 63, .	0.5	0
3736	X-ray Cluster Cosmology. , 2024, , 4681-4732.		0

Article IF Citations