Improved adsorption energetics within density-function Perdew-Burke-Ernzerhof functionals

Physical Review B 59, 7413-7421

DOI: 10.1103/physrevb.59.7413

Citation Report

#	Article	IF	CITATIONS
1	Bond Activation at Monatomic Steps: NO Dissociation at Corrugated Ru(0001). Physical Review Letters, 1999, 83, 3681-3684.	7.8	183
2	Structural and electronic properties of chemisorbed oxygen on Rh(111). Physical Review B, 1999, 59, 15533-15543.	3.2	127
3	Mechanisms of self-diffusion on Pt(110). Physical Review B, 1999, 60, R5149-R5152.	3.2	45
4	Molecular N2 chemisorptionâ€"specific adsorption on step defect sites on Pt surfaces. Journal of Chemical Physics, 1999, 111, 8651-8658.	3.0	56
5	NO monomer and (NO)x polymeric chain chemisorption on $Pt\{110\}$: Structure and energetics. Journal of Chemical Physics, 1999, 110, 12082-12088.	3.0	25
6	Chemisorption of Methane on Ni(100) and Ni(111) Surfaces with Preadsorbed Potassium. Journal of Catalysis, 1999, 187, 238-244.	6.2	94
7	Density functional study of small molecules and transition-metal carbonyls using revised PBE functionals. International Journal of Quantum Chemistry, 1999, 75, 863-873.	2.0	164
8	Molecular and solid-state tests of density functional approximations: LSD, GGAs, and meta-GGAs. International Journal of Quantum Chemistry, 1999, 75, 889-909.	2.0	598
9	Predicting lateral surface interactions through density functional theory: application to oxygen on Rh(100). Surface Science, 1999, 441, 410-424.	1.9	58
10	Thermochemistry of Oxygen Transfer between Rhenium and Phosphine Complexes. A Density Functional Studyâ€. Organometallics, 1999, 18, 5044-5056.	2.3	31
11	Theoretical Density Functional Analysis of Maleic Anhydride Chemisorption on $Pd(111)$, $Re(0001)$, and Bimetallic $PdML/Re(0001)$ and $PdML/Mo(110)$ Pseudomorphic Overlayers. Journal of Physical Chemistry B, 1999, 103, 8973-8983.	2.6	28
12	Role of Steps inN2Activation on Ru(0001). Physical Review Letters, 1999, 83, 1814-1817.	7.8	706
13	Role of Lateral Interactions in Adsorption Kinetics:  CO/Rh{100}. Journal of Physical Chemistry B, 1999, 103, 8722-8725.	2.6	41
14	Surface chemistry in three dimensions: CO dissociation between two surfaces. Chemical Physics Letters, 2000, 322, 307-311.	2.6	2
15	Comment on "Assessment of exchange correlation functionals―[A.J. Cohen, N.C. Handy, Chem. Phys. Lett. 316 (2000) 160–166]. Chemical Physics Letters, 2000, 325, 317-321.	2.6	77
16	Ethane hydrogenolysis over platinum. Journal of Molecular Catalysis A, 2000, 163, 91-103.	4.8	47
17	Molecular aspects of the H2 activation on MoS2 based catalysts â€" the role of dynamic surface arrangements. Journal of Molecular Catalysis A, 2000, 163, 117-122.	4.8	59
18	Making gold less noble. Catalysis Letters, 2000, 64, 101-106.	2.6	641

#	Article	IF	Citations
19	Title is missing!. Catalysis Letters, 2000, 68, 129-138.	2.6	21
20	Edge termination of MoS2 and CoMoS catalyst particles. Catalysis Letters, 2000, 64, 95-99.	2.6	130
21	Theoretical Studies of Stability and Reactivity of CHx Species on Ni(111). Journal of Catalysis, 2000, 189, 16-30.	6.2	187
22	Electronic Factors Governing Ethylene Hydrogenation and Dehydrogenation Activity of Pseudomorphic PdML/Re(0001), PdML/Ru(0001), Pd(111), and PdML/Au(111) Surfaces. Journal of Catalysis, 2000, 191, 301-317.	6.2	364
23	Hydrogen assisted oxygen desorption from the V2O5(010) surface. Topics in Catalysis, 2000, 11/12, 67-75.	2.8	36
24	Oxygen Molecule Dissociation on the Al(111) Surface. Physical Review Letters, 2000, 84, 705-708.	7.8	105
25	NO Chemisorption and Reactions on Metal Surfaces:Â A New Perspective. Journal of Physical Chemistry B, 2000, 104, 2578-2595.	2.6	349
26	First-principles calculation of the interaction energy of ((3)1/2 $ ilde{A}$ —(3)1/2) R 30 $ ilde{A}$ ° Xe/Pt(111). Journal of Physics Condensed Matter, 2000, 12, 7077-7088.	1.8	27
27	First-principles investigation of the quantum-well system Na on Cu(111). Physical Review B, 2000, 61, 13973-13982.	3.2	87
28	Exchange energy in the local Airy gas approximation. Physical Review B, 2000, 62, 10046-10050.	3.2	98
29	Observation of metastable atomic nitrogen adsorbed on Ru(0001). Journal of Chemical Physics, 2000, 112, 2507-2515.	3.0	27
30	Dynamics of High-Barrier Surface Reactions: Laser-Assisted Associative Desorption of N2 from Ru (0001). Physical Review Letters, 2000, 84, 4906-4909.	7.8	37
31	Structure sensitivity in the CO oxidation on rhodium: Effect of adsorbate coverages on oxidation kinetics on $Rh(100)$ and $Rh(111)$. Journal of Chemical Physics, 2000, 113, 5457.	3.0	93
32	Dynamics of hydrogen dissociation at the sulfur-covered Pd(100) surface. Physical Review B, 2000, 61, 8425-8432.	3.2	32
33	Coverage dependence of activation barriers: Nitrogen on Ru(0001). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 1509-1513.	2.1	18
34	Adsorption energetics and bonding from femtomole calorimetry and from first principles theory. Advances in Catalysis, 2000, 45, 207-259.	0.2	43
35	First-principles study of the adsorption of atomic H on Ni (111), (100) and (110). Surface Science, 2000, 459, 287-302.	1.9	294
36	Adsorption, diffusion, and dissociation of NO, N and O on flat and stepped Ru(0001). Surface Science, 2000, 459, 323-348.	1.9	140

#	Article	IF	Citations
37	Diffusion of N Adatoms on the Fe(100) Surface. Physical Review Letters, 2000, 84, 4898-4901.	7.8	65
38	Tractable nonlocal correlation density functionals for flat surfaces and slabs. Physical Review B, 2000, 62, 6997-7006.	3.2	130
39	Field-dependent chemisorption of carbon monoxide and nitric oxide on platinum-group (111) surfaces: Quantum chemical calculations compared with infrared spectroscopy at electrochemical and vacuum-based interfaces. Journal of Chemical Physics, 2000, 113 , $4392-4407$.	3.0	167
40	Ammonia synthesis at low temperatures. Journal of Chemical Physics, 2000, 112, 5343-5347.	3.0	217
41	First-Principles Periodic Density Functional Study of the Hydrogenation of Maleic Anhydride to Succinic Anhydride over Palladium(111). Journal of Physical Chemistry B, 2000, 104, 9449-9459.	2.6	23
42	Theoretical Studies of Stability and Reactivity of C2Hydrocarbon Species on Pt Clusters, Pt(111), and Pt(211). Journal of Physical Chemistry B, 2000, 104, 2299-2310.	2.6	121
43	Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals. Physical Review B, 2000, 62, 2899-2907.	3.2	386
44	Modeling the Nitrogenase FeMo Cofactor. Journal of the American Chemical Society, 2000, 122, 12751-12763.	13.7	99
45	Theoretical surface science and catalysis—calculations and concepts. Advances in Catalysis, 2000, 45, 71-129.	0.2	1,776
46	THEORETICALSTUDIES OFATOMIC-SCALEPROCESSESRELEVANT TOCRYSTALGROWTH. Annual Review of Physical Chemistry, 2000, 51, 623-653.	10.8	121
47	Oxygen Vacancies as Active Sites for Water Dissociation on RutileTiO2(110). Physical Review Letters, 2001, 87, 266104.	7.8	884
48	Adsorption state of dimethyl disulfide on Au(111): Evidence for adsorption as thiolate at the bridge site. Journal of Chemical Physics, 2001, 114, 7615-7621.	3.0	280
49	Catalyst Design by Interpolation in the Periodic Table:Â Bimetallic Ammonia Synthesis Catalysts. Journal of the American Chemical Society, 2001, 123, 8404-8405.	13.7	631
50	CO Oxidation on Pd(100) and Pd(111): \hat{A} A Comparative Study of Reaction Pathways and Reactivity at Low and Medium Coverages. Journal of the American Chemical Society, 2001, 123, 1166-1172.	13.7	226
51	Oxygen Dissociation at Pt Steps. Physical Review Letters, 2001, 87, 056103.	7.8	189
52	Density-functional study of the adsorption of benzene on the (111), (100) and (110) surfaces of nickel. Surface Science, 2001, 472, 133-153.	1.9	124
53	Synergetic effects in CO adsorption on Cu–Pd(111) alloys. Surface Science, 2001, 477, 59-75.	1.9	110
54	Properties of oxygen sites at the MoO3(010) surface: density functional theory cluster studies and photoemission experiments. Surface Science, 2001, 489, 107-125.	1.9	166

#	Article	IF	Citations
55	The effect of strain for N2 dissociation on Fe surfaces. Surface Science, 2001, 489, 135-143.	1.9	48
56	Density-functional bridge between surfaces and interfaces. Surface Science, 2001, 493, 253-270.	1.9	31
57	N2 dissociation on Fe(110) and Fe/Ru(0001): what is the role of steps?. Surface Science, 2001, 491, 183-194.	1.9	67
58	First-principles calculations for VxOy grown on Pd(111). Surface Science, 2001, 492, 329-344.	1.9	66
59	Adsorption and dissociation of O2 on Cu(): thermochemistry, reaction barrier and the effect of strain. Surface Science, 2001, 494, 131-144.	1.9	175
60	Field-Dependent Chemisorption of Carbon Monoxide on Platinum-Group (111) Surfaces:Â Relationships between Binding Energetics, Geometries, and Vibrational Properties as Assessed by Density Functional Theory. Journal of Physical Chemistry B, 2001, 105, 3518-3530.	2.6	85
61	Unhydrated Cr(V) Peroxychromates M3CrO8(M = Na, K, Rb):Â Low-Dimensional Antiferromagnets Exhibiting Large Specific Heats at mK to 5 K Temperatures. Chemistry of Materials, 2001, 13, 880-890.	6.7	22
62	A Periodic Density Functional Theory Analysis of the Effect of Water Molecules on Deprotonation of Acetic Acid over Pd(111). Journal of Physical Chemistry B, 2001, 105, 9171-9182.	2.6	66
63	First-Principles Pseudo-Potential Study of the Pd(110)-c($2\tilde{A}$ –2)-Ethylene Adsorption System. Journal of Physical Chemistry B, 2001, 105, 8149-8154.	2.6	9
64	Calculation of the EPR g-Tensors of High-Spin Radicals with Density Functional Theory. Journal of Physical Chemistry A, 2001, 105, 5490-5497.	2.5	70
65	The CO/Pt(111) Puzzle. Journal of Physical Chemistry B, 2001, 105, 4018-4025.	2.6	642
66	Ab initiostudy of hydrogen adsorption to single-walled carbon nanotubes. Physical Review B, 2001, 63,	3.2	161
67	Adiabatic potential-energy surface of O2/Al(111): rare entrance-channel barriers but molecularly chemisorbed state apt for abstraction. Solid State Communications, 2001, 117, 531-535.	1.9	47
68	Electronic factors in catalysis: the volcano curve and the effect of promotion in catalytic ammonia synthesis. Applied Catalysis A: General, 2001, 222, 19-29.	4.3	225
69	Mechanism of NOx decomposition. Applied Catalysis A: General, 2001, 222, 183-219.	4.3	214
70	Reaction kinetics measurements and analysis of reaction pathways for conversions of acetic acid, ethanol, and ethyl acetate over silica-supported Pt. Applied Catalysis A: General, 2001, 222, 369-392.	4.3	113
71	NO reduction over $Pt(1\ 0\ 0)$: reaction rates from first principles. Chemical Physics Letters, 2001, 343, 383-389.	2.6	32
72	Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations. Physical Review B, 2001, 63, .	3.2	454

#	ARTICLE	IF	Citations
73	Mechanical Properties and Formation Mechanisms of a Wire of Single Gold Atoms. Physical Review Letters, 2001, 87, .	7.8	379
74	The Brønsted–Evans–Polanyi Relation and the Volcano Plot for Ammonia Synthesis over Transition Metal Catalysts. Journal of Catalysis, 2001, 197, 229-231.	6.2	582
75	Anode Materials for Low-Temperature Fuel Cells: A Density Functional Theory Study. Journal of Catalysis, 2001, 199, 123-131.	6.2	330
76	The NO+CO Reaction Catalyzed by Flat, Stepped, and Edged Pd Surfaces. Journal of Catalysis, 2001, 199, 171-176.	6.2	146
77	NO Reduction by CO on the Pt(100) Surface. Journal of Catalysis, 2001, 204, 118-128.	6.2	71
78	Title is missing!. Catalysis Letters, 2001, 74, 17-25.	2.6	31
79	New computational strategies for the quantum mechanical study of biological systems in condensed phases. Theoretical and Computational Chemistry, 2001, , 467-538.	0.4	18
80	Theory of physical and chemical behavior of transition metal oxides: vanadium and molybdenum oxides. Chemical Physics of Solid Surfaces, 2001, 9, 136-198.	0.3	39
81	Adsorption-Induced Step Formation. Physical Review Letters, 2001, 87, 126102.	7.8	65
82	Distinct Reaction Mechanisms in the Catalytic Oxidation of Carbon Monoxide on Rh(110): Scanning Tunneling Microscopy and Density Functional Theory Studies. Physical Review Letters, 2001, 87, 196104.	7.8	18
83	One-Dimensional Metallic Edge States inMoS2. Physical Review Letters, 2001, 87, 196803.	7.8	563
84	First-principles study of surface and subsurface O structures at Al(111). Physical Review B, 2001, 63, .	3.2	93
85	Prediction of Electronic Excited States of Adsorbates on Metal Surfaces from First Principles. Physical Review Letters, 2001, 86, 5954-5957.	7.8	111
86	First-principles study of the adsorption of CO on TiO2 (110). Physical Review B, 2001, 63 , .	3.2	28
87	Coverage dependence of N2 dissociation at an N, O, or H precovered Ru (0001) surface investigated with density functional theory. Physical Review B, 2001, 63, .	3.2	67
88	Density functional theory studies of the adsorption of ethylene and oxygen on Pt(111) and Pt[sub 3]Sn(111). Journal of Chemical Physics, 2001, 114, 4663.	3.0	80
89	Adhesion of ultrathin ZrO2(111) films on Ni(111) from first principles. Journal of Chemical Physics, 2001, 114, 5816-5831.	3.0	112
90	Density functional studies on the adsorption and decomposition of SO2 on Cu(100). Journal of Chemical Physics, 2001, 115, 454-465.	3.0	51

#	ARTICLE	IF	CITATIONS
91	Ab initio study of O2 precursor states on the $Pd(111)$ surface. Journal of Chemical Physics, 2001, 115, 2297-2302.	3.0	73
92	Quantitative criteria for transferable pseudopotentials in density functional theory. Physical Review B, 2001, 63, .	3.2	34
93	Adsorption Sites and Ligand Effect for CO on an Alloy Surface: A Direct View. Physical Review Letters, 2001, 87, 036103.	7.8	129
94	Cohesive properties of group-III nitrides: A comparative study of all-electron and pseudopotential calculations using the generalized gradient approximation. Physical Review B, 2002, 65, .	3.2	126
95	H2dissociation at defected Cu: Preference for reaction at vacancy and kink sites. Physical Review B, 2002, 65, .	3.2	37
96	Adsorption and dissociation of O2 on Ir(111). Journal of Chemical Physics, 2002, 116, 10846-10853.	3.0	67
97	First-principles study of the adsorption of sulfur on $Pt(111)$: S core-level shifts and the nature of the Pt-S bond. Physical Review B, 2002, 65, .	3.2	48
98	Adiabatic potential-energy surfaces for oxygen on Al (111) . Physical Review B, 2002, 65, .	3.2	93
99	Initial adsorption of Co on Cu(001):â€,â€,A first-principles investigation. Physical Review B, 2002, 65, .	3.2	34
100	Adsorbate-Oxide Interactions during the NO+COR eaction on MgO(100) Supported Pd Monolayer Films. Physical Review Letters, 2002, 89, 016102.	7.8	43
101	First-principles calculations of the adsorption, diffusion, and dissociation of a CO molecule on the Fe(100) surface. Physical Review B, 2002, 66, .	3.2	121
102	CO on Pt(111) puzzle: A possible solution. Journal of Chemical Physics, 2002, 117, 2264-2270.	3.0	102
103	Self-diffusion on fcc (100) metal surfaces: Comparison of different approximations. Physical Review B, 2002, 65, .	3.2	17
104	Metal nanoparticles as models of single crystal surfaces and supported catalysts: Density functional study of size effects for $CO/Pd(111)$. Journal of Chemical Physics, 2002, 117, 9887-9896.	3.0	144
105	Atomic and molecular adsorption on Rh(111). Journal of Chemical Physics, 2002, 117, 6737-6744.	3.0	204
106	A Density Functional Theory Analysis of the Reaction Pathways and Intermediates for Ethylene Dehydrogenation over Pd(111). Journal of Physical Chemistry B, 2002, 106, 1656-1669.	2.6	75
107	Physically motivated density functionals with improved performances: The modified Perdew–Burke–Ernzerhof model. Journal of Chemical Physics, 2002, 116, 5933-5940.	3.0	138
108	Correlations between the Heat of Adsorption and the Position of the Center of the D-Band:  Differences between Computation and Experiment. Journal of Physical Chemistry A, 2002, 106, 3084-3091.	2.5	45

#	Article	IF	CITATIONS
109	Density-functional theory studies of acetone and propanal hydrogenation on Pt(111). Journal of Chemical Physics, 2002, 116, 8973-8980.	3.0	54
110	A First-Principles Study of Methanol Decomposition on Pt(111). Journal of the American Chemical Society, 2002, 124, 7193-7201.	13.7	316
111	A density functional theory study of the adsorption of sulfur, mercapto, and methylthiolate on Au(111). Journal of Chemical Physics, 2002, 116, 784-790.	3.0	253
112	Structure and energetics of alkanethiol adsorption on the Au(111) surface. Journal of Chemical Physics, 2002, 117, 825-833.	3.0	227
113	Periodic density functional embedding theory for complete active space self-consistent field and configuration interaction calculations: Ground and excited states. Journal of Chemical Physics, 2002, 116, 42.	3.0	142
114	Controlling the spin of metal atoms adsorbed on oxide surfaces: Ni on regular and defective sites of the MgO(001) surface. Journal of Chemical Physics, 2002, 117, 9445-9451.	3.0	29
115	The virtual chemistry lab for reactions at surfaces: Is it possible? Will it be useful?. Surface Science, 2002, 500, 347-367.	1.9	78
116	An STM and DFT study of the ordered structures of NO on Pd(). Surface Science, 2002, 496, 1-9.	1.9	39
117	First-principles study of Pd–V surface alloys. Surface Science, 2002, 498, 37-52.	1.9	17
118	The local adsorption geometry of CH3 and NH3 on Cu(): a density functional theory study. Surface Science, 2002, 498, 203-211.	1.9	39
119	CO oxidation on transition metal surfaces: reaction rates from first principles. Surface Science, 2002, 498, 314-320.	1.9	157
120	Monte Carlo simulations of adsorption-induced segregation. Surface Science, 2002, 505, 200-214.	1.9	72
121	Adsorption of O2 and NO on Pd nanocrystals supported on Al2O3/NiAl(): overlayer and edge structures. Surface Science, 2002, 505, 25-38.	1.9	44
122	DFT calculations of HRgX (Rg = rare gas; X = halogen) molecules. Physical Chemistry Chemical 2002, 4, 2504-2510.	Physics, 2.8	36
123	Hydrogen and synthesis gas by steam- and CO2 reforming. Advances in Catalysis, 2002, 47, 65-139.	0.2	593
124	Comparative study of relativistic density functional methods applied to actinide species AcO22+and AcF6for Ac = U, Np. Journal of Computational Chemistry, 2002, 23, 834-846.	3.3	67
125	Hydrogen-bonding effects on electronicg-tensors of semiquinone anion radicals: Relativistic density functional investigation. International Journal of Quantum Chemistry, 2002, 90, 1404-1413.	2.0	17
126	The hydration of the uranyl dication: Incorporation of solvent effects in parallel density functional calculations with the program PARAGAUSS. International Journal of Quantum Chemistry, 2002, 86, 487-501.	2.0	47

#	Article	IF	CITATIONS
127	Theoretical study of the Au/TiO2() interface. Surface Science, 2002, 515, 175-186.	1.9	126
128	Oxygen dissociation at close-packed Pt terraces, Pt steps, and Ag-covered Pt steps studied with density functional theory. Surface Science, 2002, 515, 235-244.	1.9	114
129	Theoretical study of the structure of propene adsorbed on Pt(). Surface Science, 2002, 519, 250-258.	1.9	31
130	Theoretical study of thiol-induced reconstructions on the ${\rm Au}(111)$ surface. Chemical Physics Letters, 2002, 360, 264-271.	2.6	161
131	Steam Reforming and Graphite Formation on Ni Catalysts. Journal of Catalysis, 2002, 209, 365-384.	6.2	980
132	Methanol Decomposition on Cu(111): A DFT Study. Journal of Catalysis, 2002, 208, 291-300.	6.2	190
133	Universality in Heterogeneous Catalysis. Journal of Catalysis, 2002, 209, 275-278.	6.2	1,167
134	Isopropylation of Xylenes Catalyzed by Ultrastable Zeolite Y (USY) and Some Other Solid Acid Catalysts. Journal of Catalysis, 2002, 212, 216-224.	6.2	3
135	Density Functional Theory Study of Enantiospecific Adsorption at Chiral Surfaces. Journal of the American Chemical Society, 2002, 124, 14789-14794.	13.7	64
136	Catalytic CO Oxidation by a Gold Nanoparticle:  A Density Functional Study. Journal of the American Chemical Society, 2002, 124, 11262-11263.	13.7	718
137	Structure Sensitivity of CO Dissociation on Rh Surfaces. Catalysis Letters, 2002, 81, 153-156.	2.6	153
138	ELECTRONICSTRUCTURE ANDCATALYSIS ONMETALSURFACES. Annual Review of Physical Chemistry, 2002, 53, 319-348.	10.8	906
139	Catalytic Properties of Molybdenum Carbide, Nitride and Phosphide: A Theoretical Study. Catalysis Letters, 2003, 91, 247-252.	2.6	129
140	Structures and vibrational frequencies of CO adlayers on Rh(111) surface. Science in China Series B: Chemistry, 2003, 46, 425.	0.8	2
141	CO Adsorption on Pd Nanoparticles:Â Density Functional and Vibrational Spectroscopy Studies. Journal of Physical Chemistry B, 2003, 107, 255-264.	2.6	262
142	CO on Pt(111): A puzzle revisited. Journal of Chemical Physics, 2003, 119, 4522-4528.	3.0	101
143	Formation Mechanism of H2Ti3O7Nanotubes. Physical Review Letters, 2003, 91, 256103.	7.8	331
144	On the Compensation Effect in Heterogeneous Catalysis. Journal of Physical Chemistry B, 2003, 107, 9325-9331.	2.6	150

#	ARTICLE	IF	CITATIONS
145	Van der Waals Density Functional for Layered Structures. Physical Review Letters, 2003, 91, 126402.	7.8	623
146	Density functional study of Ni bulk, surfaces and the adsorbate systems Ni(111)R30°–Cl, and Ni(111)(2×2)–K. Surface Science, 2003, 544, 103-120.	1.9	20
147	A microkinetic model of the methanol oxidation over silver. Surface Science, 2003, 544, 5-23.	1.9	55
148	Elucidation of the active surface and origin of the weak metal–hydrogen bond on Ni/Pt(111) bimetallic surfaces: a surface science and density functional theory study. Surface Science, 2003, 544, 295-308.	1.9	154
149	Steering in non-dissociative chemisorption: ethylene on Ag(410). Chemical Physics Letters, 2003, 382, 605-610.	2.6	5
150	Oxidation catalysis—electronic theory revisited. Journal of Catalysis, 2003, 216, 416-424.	6.2	79
151	CO vibrational frequencies on methanol synthesis catalysts: a DFT study. Journal of Catalysis, 2003, 213, 63-72.	6.2	77
152	Perspectives on the first principles elucidation and the design of active sites. Journal of Catalysis, 2003, 216, 73-88.	6.2	157
153	Construction of a reaction coordinate and a microkinetic model forÂethylene epoxidation on silver from DFT calculations and surface science experiments. Journal of Catalysis, 2003, 214, 200-212.	6.2	174
154	Microcalorimetric, infrared spectroscopic and DFT studies of CO adsorption on Rh and Rh–Te catalysts. Journal of Catalysis, 2003, 217, 209-209.	6.2	16
155	DFT studies for cleavage of C\$z.sbnd;C and C\$z.sbnd;O bonds in surface species derived from ethanol on Pt(111). Journal of Catalysis, 2003, 218, 178-190.	6.2	289
156	Ammonia synthesis over a Ru(0001) surface studied by density functional calculations. Journal of Catalysis, 2003, 220, 273-279.	6.2	259
157	Ein mikroskopischer Beleg für eine erhöhte katalytische Reaktivitägedehnter Oberflähen. Angewandte Chemie, 2003, 115, 2956-2959.	2.0	8
158	DFT Study of the NMR Properties of Xenon in Covalent Compounds and van der Waals Complexes—Implications for the Use of 129Xe as a Molecular Probe. Chemistry - A European Journal, 2003, 9, 1486-1495.	3.3	51
159	Atomic-Scale Evidence for an Enhanced Catalytic Reactivity of Stretched Surfaces. Angewandte Chemie - International Edition, 2003, 42, 2850-2853.	13.8	60
160	DFT calculation of core-electron binding energies. Journal of Electron Spectroscopy and Related Phenomena, 2003, 133, 69-76.	1.7	103
161	Time-dependent DFT study on the electronic states of BBr. Chemical Physics Letters, 2003, 369, 214-219.	2.6	9
162	Adsorption of CO on Ni(755) surface: ab initio periodic density functional study. Chemical Physics Letters, 2003, 369, 305-310.	2.6	11

#	ARTICLE	IF	CITATIONS
163	Adsorption dynamics of CO on Pd(110): energy dependence, structure insensitivity and the role of the surface electronic structure. Chemical Physics Letters, 2003, 370, 247-253.	2.6	3
164	Assessment of the reliability of the Perdew–Burke–Ernzerhof functionals in the determination of torsional potentials in π-conjugated molecules. Chemical Physics Letters, 2003, 377, 63-68.	2.6	74
165	Modeling the electro-oxidation of CO and H2/CO on Pt, Ru, PtRu and Pt3Sn. Electrochimica Acta, 2003, 48, 3731-3742.	5.2	285
166	Metastable states in Au22+: a density functional study. Computational and Theoretical Chemistry, 2003, 639, 203-211.	1.5	3
167	Ab initio density functional theory studies on oxygen stabilization at the V2O3(0 0 0 1) surface. Surface Science, 2003, 545, 85-98.	1.9	30
168	Adsorption and diffusion energetics of hydrogen atoms on Fe(110) from first principles. Surface Science, 2003, 547, 85-98.	1.9	161
169	Compressibility of CO adsorbed on Ni from $10\hat{a}^6$ mbar to 1.2 bar ambient CO pressures investigated with X-ray diffraction. Surface Science, 2003, 522, 161-166.	1.9	27
170	Effect of the surface model on the theoretical description of the chemisorption of atomic hydrogen on Cu(). Surface Science, 2003, 522, 185-197.	1.9	26
171	STM images of molecularly and atomically chemisorbed oxygen on silver. Surface Science, 2003, 522, L27-L35.	1.9	38
172	Relaxation and electronic structure of the V2O3(0001) surface: ab initio cluster model studies. Surface Science, 2003, 525, 33-45.	1.9	26
173	CO bonding on tin modified Pt()-(1×2). Surface Science, 2003, 526, 184-192.	1.9	14
174	CO adsorption on Ni––a density functional theory study. Surface Science, 2003, 526, 332-340.	1.9	74
175	The deposition of Mo nanoparticles on Au(111) from a Mo(CO)6 precursor: effects of CO on Mo–Au intermixing. Surface Science, 2003, 530, L313-L321.	1.9	22
176	The potential energy surface for dissociation of N2 on W(). Surface Science, 2003, 532-535, 206-212.	1.9	8
177	Site preference of CO chemisorbed on $Pt(111)$ from density functional calculations. Surface Science, 2003, 530, 71-87.	1.9	155
178	Ab initio density functional study of O on the Ag(001) surface. Surface Science, 2003, 531, 272-286.	1.9	56
179	A comparative study of CO chemisorption on flat and stepped Ni surfaces using density functional theory. Surface Science, 2003, 537, 217-227.	1.9	51
180	The structure of the Ni(100)c(2×2)–N2 surface: a chemical-state-specific scanned-energy mode photoelectron diffraction determination. Surface Science, 2003, 538, 59-75.	1.9	8

#	Article	IF	Citations
181	First-principles theory and microcalorimetry of CO adsorption on the $\{211\}$ surfaces of Pt and Ni. Surface Science, 2003, 538, 171-183.	1.9	52
182	The adsorption and dissociation of O 2 molecular precursors on Cu: the effect of steps. Surface Science, 2003, 538, 219-232.	1.9	47
183	A first-principles study of surface and subsurface H on and in Ni(111): diffusional properties and coverage-dependent behavior. Surface Science, 2003, 540, 215-229.	1.9	183
184	Unified picture of the molecular adsorption process: O2/Pt(111). Surface Science, 2003, 539, L542-L548.	1.9	70
185	Local adsorption sites and bondlength changes in Ni/H/CO and Ni/CO. Surface Science, 2003, 540, 441-456.	1.9	21
186	Adsorption and decomposition of SO2 on TiC(001): An experimental and theoretical study. Surface Science, 2003, 543, L675-L682.	1.9	54
187	DFT calculations of (111) surfaces of Au, Cu, and Pt: stability and reconstruction. Vacuum, 2003, 71, 101-106.	3.5	22
188	Multilayer water adsorption on rutile TiO2(110): A first-principles study. Journal of Chemical Physics, 2003, $118,4620-4630$.	3.0	129
189	Coverage Effects and the Nature of the Metalâ^'Sulfur Bond in S/Au(111):Â High-Resolution Photoemission and Density-Functional Studies. Journal of the American Chemical Society, 2003, 125, 276-285.	13.7	179
190	Density Functional Study of the Insertion and Ring-Opening Mechanism of MCP over Cp2LaH and Cp2LuH Catalysts. Journal of the American Chemical Society, 2003, 125, 16210-16212.	13.7	13
191	Finite Temperature Structure and Dynamics of Zinc Dialkyldithiophosphate Wear Inhibitors:Â A Density Functional Theory and ab Initio Molecular Dynamics Study. Journal of Physical Chemistry A, 2003, 107, 5058-5070.	2.5	37
192	Atomic and electronic structure of MoS2 nanoparticles. Physical Review B, 2003, 67, .	3.2	352
193	A DFT Study of the Structures of N2O Adsorbed on the Pd(110) Surface. Journal of Physical Chemistry B, 2003, 107, 2741-2747.	2.6	58
194	Computational Study of the Geometry and Properties of the Metcars Ti8C12and Mo8C12. Journal of Physical Chemistry A, 2003, 107, 9344-9356.	2.5	29
195	Adsorption and Dissociation of O2on Gold Surfaces:Â Effect of Steps and Strain. Journal of Physical Chemistry B, 2003, 107, 9298-9307.	2.6	322
196	Active Role of Oxide Support during CO Oxidation atAu/MgO. Physical Review Letters, 2003, 90, 206102.	7.8	431
197	Adsorption energy and spin state of first-row transition metals adsorbed on MgO(100). Physical Review B, 2003, 67, .	3.2	67
198	Description of the Ground State Wave Functions of Ni Dithiolenes Using Sulfur K-edge X-ray Absorption Spectroscopy. Journal of the American Chemical Society, 2003, 125, 9158-9169.	13.7	180

#	Article	IF	CITATIONS
199	11 DFT and experimental studies of C-C and C-O bond cleavage in ethanol and ethylene glycol on Pt catalysts. Studies in Surface Science and Catalysis, 2003, 145, 79-84.	1.5	14
200	Relaxation and reconstruction on (111) surfaces of Au, Pt, and Cu. Physical Review B, 2003, 68, .	3.2	77
201	Modeling a Central Ligand in the Nitrogenase FeMo Cofactor. Journal of the American Chemical Society, 2003, 125, 1466-1467.	13.7	136
202	Control of Ethylene Epoxidation Selectivity by Surface Oxametallacycles. Journal of the American Chemical Society, 2003, 125, 4034-4035.	13.7	208
203	Relativistic Density-Functional Computations of the Chemical Shift of 129Xe in Xe@C60. Journal of Physical Chemistry A, 2003, 107, 4967-4972.	2.5	70
204	CO adsorption on the CO-precovered $Pt(111)$ surface characterized by density-functional theory. Physical Review B, 2003, 68, .	3.2	34
205	Chemical reactivity of metcar Ti8C12, nanocrystal Ti14C13 and a bulk TiC(001) surface: A density functional study. Journal of Chemical Physics, 2003, 118, 7737-7740.	3.0	53
206	Interaction of sulfur dioxide with titanium–carbide nanoparticles and surfaces: A density functional study. Journal of Chemical Physics, 2003, 119, 10895-10903.	3.0	30
207	Conductance calculations with a wavelet basis set. Physical Review B, 2003, 67, .	3.2	74
208	Tetragonal silver films on V(100):â€,Experimental andab initiostudies. Physical Review B, 2003, 68, .	3.2	12
209	NO adsorption on Rh(100). I. Structural characterization of the adlayers. Journal of Chemical Physics, 2003, 119, 12525-12533.	3.0	16
210	Interaction of CO, O, and S with metal nanoparticles on Au(111): A theoretical study. Physical Review B, 2003, 67 , .	3.2	37
211	Identification of oxygen sites at the V[sub 2]O[sub 5](010) surface by core-level electron spectroscopy: Ab initio cluster studies. Journal of Chemical Physics, 2003, 118, 7599.	3.0	25
212	Quantification of lateral repulsion between coadsorbed CO and N on Rh(100) using temperature-programmed desorption, low-energy electron diffraction, and Monte Carlo simulations. Journal of Chemical Physics, 2003, 119, 524-532.	3.0	43
213	Significance of single-electron energies for the description of CO on Pt(111). Physical Review B, 2003, 68, .	3.2	225
214	Bond Lengths and Bond Strengths in Weak and Strong Chemisorption:N2, CO, andCO/Hon Nickel Surfaces. Physical Review Letters, 2003, 90, 116104.	7.8	25
215	Time-dependent density functional theory study of the electronic states of BI. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 2283-2290.	1.5	3
216	H2 dissociation dynamics on metals: where do we stand?. Chemical Physics of Solid Surfaces, 2003, 11, 27-49.	0.3	4

#	Article	IF	CITATIONS
217	Density Functional Theory Studies of Adsorption and Vibrational Spectra of Hydrogen on the Rh(111) Surface. Journal of the Chinese Chemical Society, 2003, 50, 621-626.	1.4	3
218	Theory and Modeling of Catalytic and Electrocatalytic Reactions. , 2003, , .		0
219	Dynamics of molecule-surface interactions from first principles. Chemical Physics of Solid Surfaces, 2003, 11, 1-26.	0.3	6
220	Scalar Relativistic Study of the Structure of Rhodium Acetate. International Journal of Molecular Sciences, 2004, 5, 67-74.	4.1	8
221	First-principles studies of the structural and electronic properties of poly-para-phenylene vinylene. Journal of Physics Condensed Matter, 2004, 16, 8609-8620.	1.8	33
222	The effect of hydrogen adsorption on the magnetic properties of Fe adatoms on Si(001). Journal of Physics Condensed Matter, 2004, 16, S5763-S5767.	1.8	3
223	Ab initiotheory of magnetic interactions at surfaces. Journal of Physics Condensed Matter, 2004, 16, S2557-S2574.	1.8	11
224	Ab initio study of magnetic and electronic properties of Fe-filled single-walled carbon nanotubes. Journal of Physics Condensed Matter, 2004, 16, S5755-S5758.	1.8	8
225	First-principles-based study of transport properties of Fe thin films on Cu surfaces. Journal of Physics Condensed Matter, 2004, 16, S5791-S5795.	1.8	1
226	The chemical activity of metal compound nanoparticles: Importance of electronic and steric effects in M8C12 (M=Ti, V, Mo) metcars. Journal of Chemical Physics, 2004, 121, 10321-10324.	3.0	22
227	Realistic kinetic Monte Carlo study of the surface phase reconstruction. Physical Review E, 2004, 69, 021606.	2.1	5
228	Stability of reducedV2O5(001)surfaces. Physical Review B, 2004, 70, .	3.2	119
229	Adsorption of sulfur on TiC (001): $\hat{a} \in f$ Photoemission and first-principles studies. Physical Review B, 2004, 69, .	3.2	30
230	Two-Step Reaction on a Strained, Nanoscale Segmented Surface. Physical Review Letters, 2004, 93, 126104.	7.8	28
231	Exchange-correlation potentials for high-electron-density ions in the Be isoelectronic series. Journal of Chemical Physics, 2004, 121, 12151.	3.0	3
232	Saturated adsorption of CO and coadsorption of CO and O2 on AuNâ^ (N=2–7) clusters. Journal of Chemical Physics, 2004, 120, 6574-6584.	3.0	72
233	When Langmuir Is Too Simple: $H2D$ is sociation on $Pd(111)$ at High Coverage. Physical Review Letters, 2004, 93, 146103.	7.8	81
234	Lattice-gas modeling of CO adlayers on Pd(100). Journal of Chemical Physics, 2004, 121, 4352-4357.	3.0	12

#	Article	IF	CITATIONS
235	The interaction of oxygen with TiC(001): Photoemission and first-principles studies. Journal of Chemical Physics, 2004, 121, 465.	3.0	58
236	Ab initiotransmission electron microscopy image simulations of coherentAgâ^'MgOinterfaces. Physical Review B, 2004, 70, .	3.2	15
237	Computational study of electron states in Au chains on NiAl(110). Physical Review B, 2004, 70, .	3.2	22
238	Compton profiles for water and mixed water-neon clusters: A measure of coordination. Physical Review B, 2004, 70, .	3.2	30
239	Periodic density functional study on structural and vibrational properties of vanadium oxide aggregates. Physical Review B, 2004, 69, .	3.2	76
240	Network equilibration and first-principles liquid water. Journal of Chemical Physics, 2004, 121, 11136.	3.0	155
241	A density functional theory study of the coadsorption of water and oxygen on TiO2(110). Journal of Chemical Physics, 2004, 121, 3811-3815.	3.0	37
242	Theoretical study of the formation, evolution, and breaking of gold nanowires. Physical Review B, 2004, 69, .	3.2	110
243	Bayesian Ensemble Approach to Error Estimation of Interatomic Potentials. Physical Review Letters, 2004, 93, 165501.	7.8	95
244	Stability of corundum- versus rutile-type structures of ruthenium and rhodium oxides. Physical Review B, 2004, 70, .	3.2	21
245	Experimental and theoretical characterization of the structure of defects at the pyriteFeS2(100)surface. Physical Review B, 2004, 70, .	3.2	62
246	Functional dependence of core-excitation energies. Journal of Chemical Physics, 2004, 121, 10339-10345.	3.0	144
247	First-principles extrapolation method for accurate CO adsorption energies on metal surfaces. Physical Review B, 2004, 69, .	3.2	204
248	MgOâ^•Ag(001)interface structure and STM images from first principles. Physical Review B, 2004, 70, .	3.2	29
249	Structure and dynamics of oxygen adsorbed on Ag(100) vicinal surfaces. Physical Review B, 2004, 69, .	3.2	32
250	Reactive scattering of H[sub 2] from Cu(100): Six-dimensional quantum dynamics results for reaction and scattering obtained with a new, accurately fitted potential-energy surface. Journal of Chemical Physics, 2004, 121, 11379.	3.0	26
251	Adsorption, diffusion, and dissociation of molecular oxygen at defected TiO2(110): A density functional theory study. Journal of Chemical Physics, 2004, 120, 988-997.	3.0	251
252	Vicinal fluorine-fluorine coupling constants: Fourier analysis. Journal of Chemical Physics, 2004, 121, 6268-6276.	3.0	14

#	Article	IF	CITATIONS
253	Quantum chemistry with the Douglas-Kroll-Hess approach to relativistic density functional theory: Efficient methods for molecules and materials. Theoretical and Computational Chemistry, 2004, 14, 656-722.	0.4	32
254	Molecular modulation of calcium oxalate crystallization by osteopontin and citrate. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1811-1815.	7.1	258
255	Spin-polarised surfaces: Current state of Density Functional Theory investigations. Theoretical and Computational Chemistry, 2004, 15, 261-295.	0.4	3
256	CO adsorption on close-packed transition and noble metal surfaces: trends fromab initiocalculations. Journal of Physics Condensed Matter, 2004, 16, 1141-1164.	1.8	366
257	Alloy catalysts designed from first principles. Nature Materials, 2004, 3, 810-815.	27.5	1,030
258	Atomic-scale imaging of carbon nanofibre growth. Nature, 2004, 427, 426-429.	27.8	1,318
259	Promoting and poisoning effects of Na and Cl coadsorption on CO oxidation over MgO-supported Au nanoparticles. Journal of Catalysis, 2004, 227, 217-226.	6.2	61
260	Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. Journal of Chemical Physics, 2004, 120, 10240-10246.	3.0	1,181
261	Why Au and Cu Are More Selective Than Pt for Preferential Oxidation of CO at Low Temperature. Catalysis Letters, 2004, 93, 93-100.	2.6	238
262	Metal-Oxide Interfaces in Magnetic Tunnel Junctions. Journal of Materials Science, 2004, 12, 105-116.	1.2	13
263	Application of the DFT Theory to Study Cobalamin Complexes. Structural Chemistry, 2004, 15, 431-435.	2.0	17
264	Hallmark of Perfect Graphene. Physical Review Letters, 2004, 92, 225502.	7.8	487
265	Surface oxygen in catalysts based on transition metal oxides. Catalysis Today, 2004, 91-92, 171-176.	4.4	29
266	Ab initio DFT cluster studies of angle-resolved NEXAFS spectra for differently coordinated oxygen at the V2O5(010) surface. Surface Science, 2004, 552, 98-110.	1.9	43
267	Microkinetic analysis of the oxygen–silver system. Surface Science, 2004, 552, 260-272.	1.9	13
268	Molecular trapping in the dissociation dynamics of N2 on W(110). Surface Science, 2004, 557, L156-L162.	1.9	8
269	Adsorption of d-metal atoms on the regular MgO(001) surface: Density functional study of cluster models embedded in an elastic polarizable environment. Applied Physics A: Materials Science and Processing, 2004, 78, 823-828.	2.3	84
270	Stability and band gaps of As-rich and N-rich GaAsN alloys: Density-functional supercell calculations. Physica Status Solidi (B): Basic Research, 2004, 241, 1883-1895.	1.5	7

#	Article	IF	CITATIONS
271	Strain-Induced Formation of Subsurface Species in Transition Metals. Angewandte Chemie - International Edition, 2004, 43, 4296-4300.	13.8	64
273	CO Desorption Rate Dependence on CO Partial Pressure over Platinum Fuel Cell Catalysts. Fuel Cells, 2004, 4, 309-319.	2.4	49
274	Numerical examination of performance of some exchange-correlation functionals for molecules containing heavy elements. Journal of Computational Chemistry, 2004, 25, 669-677.	3.3	9
275	The performance of nonhybrid density functionals for calculating the structures and spin states of Fe(II) and Fe(III) complexes. Journal of Computational Chemistry, 2004, 25, 1840-1848.	3.3	86
276	Effect of additives on properties of vanadia-based catalysts for oxidative dehydrogenation of propane. Journal of Molecular Catalysis A, 2004, 210, 87-92.	4.8	35
277	Density functional theory studies of acetylene hydrogenation on clean, vinylidene- and ethylidyne-covered Pt(111) surfaces. Journal of Molecular Catalysis A, 2004, 218, 217-227.	4.8	39
278	Spectroscopic constants of gallium monohalides: a DFT study. Computational and Theoretical Chemistry, 2004, 668, 209-215.	1.5	1
279	Trans and cis influence in square planar Pt(II) complexes: a density functional study of [PtClX(dms)2] and related complexes. Computational and Theoretical Chemistry, 2004, 679, 149-156.	1.5	19
280	Theoretical study of UX6 and UO2X2 (X=F, Cl, Br, I). Computational and Theoretical Chemistry, 2004, 684, 35-42.	1.5	34
281	Assessment of heterochiral and homochiral glycine adlayers on Cu(110) using density functional theory. Surface Science, 2004, 548, 301-308.	1.9	99
282	Density functional study of the adsorption of Na and K on Rh(111). Surface Science, 2004, 553, 13-22.	1.9	16
283	Sum frequency generation and density functional studies of CO–H interaction and hydrogen bulk dissolution on Pd(111). Surface Science, 2004, 554, 43-59.	1.9	72
284	The structure and bonding of carbonate on Ag(110): a density-functional theory study. Surface Science, 2004, 556 , $193-202$.	1.9	16
285	A theoretical study of H surface and subsurface species on Pt(1 1 1). Surface Science, 2004, 559, 169-178.	1.9	53
286	Electronic structure of Fe, Co, Ni nanowires on Cu(111). Surface Science, 2004, 566-568, 1052-1056.	1.9	13
287	Lattice-gas modeling of the formation and ordering of oxygen adlayers on Pd(100). Surface Science, 2004, 563, 13-26.	1.9	21
288	Adsorption and dissociation of CO on Fe(110) from first principles. Surface Science, 2004, 570, 167-177.	1.9	118
289	Dissociative chemisorption of H2 on $Pt(111)$: isotope effect and effects of the rotational distribution and energy dispersion. Surface Science, 2004, 573, 433-445.	1.9	42

#	Article	IF	CITATIONS
290	Spin-dependent transport through Fe nanowires on Cu surfaces. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1650-1651.	2.3	4
291	Sintering of nickel steam-reforming catalysts: effects of temperature and steam and hydrogen pressures. Journal of Catalysis, 2004, 223, 432-443.	6.2	264
292	The adhesion and shape of nanosized Au particles in a Au/TiO2 catalyst. Journal of Catalysis, 2004, 225, 86-94.	6.2	240
293	Molecular-level descriptions of surface chemistry in kinetic models using density functional theory. Chemical Engineering Science, 2004, 59, 4679-4691.	3.8	227
294	The calculation of field shift effects in the rotational spectra of heavy metal-containing diatomic molecules using density functional theory: comparison with experiment for the Tl-halides and Pb-chalcogenides. Chemical Physics, 2004, 298, 205-212.	1.9	16
295	First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals. Acta Materialia, 2004, 52, 4801-4807.	7.9	191
296	Simulations of intergranular fracture in nanocrystalline molybdenum. Acta Materialia, 2004, 52, 5019-5029.	7.9	69
297	All electron scalar relativistic calculations on adsorption of CO on Pt(111) with full-geometry optimization: a correct estimation for CO site-preference. Chemical Physics Letters, 2004, 384, 271-276.	2.6	105
298	The C 1s NEXAFS spectrum of benzene below threshold: Rydberg or valence character of the unoccupied Ïf-type orbitals. Chemical Physics Letters, 2004, 393, 361-366.	2.6	53
299	Strong and weak adsorption of CO on CeO2 surfaces from first principles calculations. Chemical Physics Letters, 2004, 396, 384-392.	2.6	108
300	Efficient calculation of the structural and electronic properties of mixed valence materials: application to Prussian Blue analogues. Chemical Physics Letters, 2004, 397, 154-159.	2.6	23
301	Identification of polymorphs of sp3 bonded carbon and boron nitride using core-level absorption spectroscopy. Chemical Physics Letters, 2004, 400, 413-418.	2.6	21
302	Atomic and electronic structure dependence of surface chemical reactivity. Catalysis Today, 2004, 89, 363-368.	4.4	2
303	Epoxidation of cyclohexene catalyzed by manganese porphyrins: Ab initio DFT studies. Catalysis Today, 2004, 91-92, 137-141.	4.4	7
304	Elastic polarizable environment cluster embedding approach for water adsorption on the $\hat{1}\pm$ -Al2O3(0001) surface. A density functional study. Physical Chemistry Chemical Physics, 2004, 6, 4505-4513.	2.8	16
305	Structure of the FeFe-cofactor of the iron-only nitrogenase and possible mechanism for dinitrogen reduction. Physical Chemistry Chemical Physics, 2004, 6, 843-853.	2.8	23
306	Density functional study of methoxide decomposition on PdZn(100). Physical Chemistry Chemical Physics, 2004, 6, 4499-4504.	2.8	29
307	The Ti8C12Metcar:Â A New Model Catalyst for Hydrodesulfurization. Journal of Physical Chemistry B, 2004, 108, 18796-18798.	2.6	28

#	Article	IF	CITATIONS
308	Atomic and Molecular Adsorption on Ir(111). Journal of Physical Chemistry B, 2004, 108, 987-994.	2.6	145
309	Sulfuric Acid and Sulfuric Acid Hydrates in the Gas Phase: A DFT Investigationâ€. Journal of Physical Chemistry A, 2004, 108, 8914-8929.	2.5	78
310	Performance of Density Functionals for Calculating Barrier Heights of Chemical Reactions Relevant to Astrophysics. Journal of Physical Chemistry A, 2004, 108, 7621-7636.	2.5	80
311	CH3O Decomposition on PdZn(111), Pd(111), and Cu(111). A Theoretical Study. Langmuir, 2004, 20, 8068-8077.	3.5	133
312	Role of Solvation in the Reduction of the Uranyl Dication by Water:Â A Density Functional Study. Inorganic Chemistry, 2004, 43, 4080-4090.	4.0	65
313	Effects of carbon on the stability and chemical performance of transition metal carbides:â€,A density functional study. Journal of Chemical Physics, 2004, 120, 5414-5423.	3.0	102
314	Chemical Activity of the Nitrogenase FeMo Cofactor with a Central Nitrogen Ligand:Â Density Functional Study. Journal of the American Chemical Society, 2004, 126, 3920-3927.	13.7	116
315	Desulfurization of SO2and Thiophene on Surfaces and Nanoparticles of Molybdenum Carbide:Â Unexpected Ligand and Steric Effects. Journal of Physical Chemistry B, 2004, 108, 15662-15670.	2.6	72
316	Theoretical Investigation of the Surface Reaction N(ads)+ H(ads)â†' NH(ads)on Ru(0001) Using Density Functional Calculations, Variational Transition-State Theory, and Semiclassical Tunneling Method. Journal of Physical Chemistry B, 2004, 108, 336-345.	2.6	14
317	Effect of Sn on the Reactivity of Cu Surfaces. Journal of Physical Chemistry B, 2004, 108, 14062-14073.	2.6	13
318	Why Is Reâ^'Re Bond Formation/Cleavage in [Re(bpy)(CO)3]2Different from That in [Re(CO)5]2? Experimental and Theoretical Studies on the Dimers and Fragments. Inorganic Chemistry, 2004, 43, 7636-7647.	4.0	78
319	DFT Study of Formaldehyde and Methanol Synthesis from CO and H2on Ni(111)â€. Journal of Physical Chemistry B, 2004, 108, 14535-14540.	2.6	102
320	Binding of propene on small gold clusters and on Au(111): Simple rules for binding sites and relative binding energies. Journal of Chemical Physics, 2004, 121, 3756-3766.	3.0	94
321	Meta-generalized gradient approximation: Explanation of a realistic nonempirical density functional. Journal of Chemical Physics, 2004, 120, 6898-6911.	3.0	431
322	DFT and Metalâ^'Metal Bonding:Â A Dys-Functional Treatment for Multiply Charged Complexes?. Inorganic Chemistry, 2004, 43, 2597-2610.	4.0	50
323	Hybrid Meta Density Functional Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions:  The MPW1B95 and MPWB1K Models and Comparative Assessments for Hydrogen Bonding and van der Waals Interactions. Journal of Physical Chemistry A, 2004, 108, 6908-6918.	2.5	1,497
324	Locating the rate-limiting step for the interaction of hydrogen withMg(0001)using density-functional theory calculations and rate theory. Physical Review B, 2004, 70, .	3.2	154
325	Structure and Energetics of LiBH4and Its Surfaces: A First-Principles Studyâ€. Journal of Physical Chemistry A, 2004, 108, 8682-8690.	2.5	66

#	Article	IF	CITATIONS
326	Adsorption of O2 and oxidation of CO at Au nanoparticles supported by TiO2(110). Journal of Chemical Physics, 2004, 120, 7673-7680.	3.0	294
327	Performance of the OPBE exchange-correlation functional. Molecular Physics, 2004, 102, 2467-2474.	1.7	378
328	Computational Study of Model Pdâ^Zn Nanoclusters and Their Adsorption Complexes with CO Molecules. Journal of Physical Chemistry B, 2004, 108, 5424-5430.	2.6	59
329	Density functional study of the adsorption of propene on silver clusters, Agmq (m=1–5; q=0, +1). Journal of Chemical Physics, 2004, 121, 9925-9930.	3.0	41
330	A study of the reactions of molecular hydrogen with small gold clusters. Journal of Chemical Physics, 2004, 120, 5169-5175.	3.0	95
331	Comparison of density functionals for energy and structural differences between the high- [5T2g: (t2g)4(eg)2] and low- [1A1g: (t2g)6(eg)0] spin states of the hexaquoferrous cation [Fe(H2O)6]2+. Journal of Chemical Physics, 2004, 120, 9473-9486.	3.0	174
332	Competitive Paths for Methanol Decomposition on Pt(111). Journal of the American Chemical Society, 2004, 126, 3910-3919.	13.7	389
333	Adsorption, Diffusion, and Dissociation of H2S on Fe(100) from First Principles. Journal of Physical Chemistry B, 2004, 108, 19140-19145.	2.6	101
334	Adsorption and Dissociation of O2on Ptâ^'Co and Ptâ^'Fe Alloys. Journal of the American Chemical Society, 2004, 126, 4717-4725.	13.7	615
335	Density functional study of the adsorption of propene on mixed gold-silver clusters, AunAgm: Propensity rules for binding. Journal of Chemical Physics, 2004, 121, 9931-9937.	3.0	58
336	Density Functional Calculations of the 13C NMR Chemical Shifts in (9,0) Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2004, 126, 13079-13088.	13.7	152
337	The extended Perdew-Burke-Ernzerhof functional with improved accuracy for thermodynamic and electronic properties of molecular systems. Journal of Chemical Physics, 2004, 121, 4068-4082.	3.0	150
338	Supported metal species and adsorption complexes on metal oxides and in zeolites: Density functional cluster model studies. Theoretical and Computational Chemistry, 2004, , 367-450.	0.4	5
339	DFT Computation of Relative Spin-State Energetics of Transition Metal Compounds. Structure and Bonding, 2004, , 151-184.	1.0	224
340	Theoretical study of CO oxidation on Au nanoparticles supported by MgO(100). Physical Review B, 2004, 69, .	3.2	246
341	Ab Initio Quantum-Chemical Calculations in Electrochemistry. , 2004, , 51-130.		3
342	Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. Journal of Physical Chemistry B, 2004, 108, 17886-17892.	2.6	8,672
343	Development and Assessment of a New Hybrid Density Functional Model for Thermochemical Kinetics. Journal of Physical Chemistry A, 2004, 108, 2715-2719.	2.5	639

#	Article	IF	CITATIONS
344	Theoretical Calculations on Electronic Structure and Catalytic Reaction of Organo-f-element Complexes. Chemistry Letters, 2004, 33, 780-785.	1.3	16
345	Ground State Magnetic Properties of Fe Nanoislands on Cu(111). Journal of the Physical Society of Japan, 2005, 74, 3057-3059.	1.6	O
346	Ab initio vibrational spectroscopy of molecular adsorbates in mordenite. Studies in Surface Science and Catalysis, 2005, 158, 601-608.	1.5	3
347	First-principles calculation of defect formation energy in chalcopyrite-type CuInSe2, CuGaSe2 and CuAlSe2. Journal of Physics and Chemistry of Solids, 2005, 66, 1924-1927.	4.0	47
348	Sulfur adsorption and sulfidation of transition metal carbides as hydrotreating catalysts. Journal of Molecular Catalysis A, 2005, 239, 116-124.	4.8	45
349	Surfactant effect of Sb on GaN growth. Journal of Crystal Growth, 2005, 285, 146-155.	1.5	23
350	Thermodynamic properties of MgO under high pressure from first-principles calculations. Physica B: Condensed Matter, 2005, 370, 236-242.	2.7	52
351	van der Waals interactions of the benzene dimer: Towards treatment of polycyclic aromatic hydrocarbon dimers. Materials Science and Engineering C, 2005, 25, 787-792.	7.3	16
352	Modeling rhenium metallization of a silicon-rich (001) 6H-SiC surface. Materials Science in Semiconductor Processing, 2005, 8, 497-501.	4.0	0
353	On the α∫β-[AlW12O40]5â^' stability: Revisited. Computational and Theoretical Chemistry, 2005, 755, 113-117.	1.5	9
354	Transport properties via surface localized states of Ru, Rh and Pd thin films on Ag(111). Solid State Communications, 2005, 135, 698-702.	1.9	2
355	Transition phase and thermodynamic properties of GaN via first-principles calculations. Solid State Communications, 2005, 136, 152-156.	1.9	22
356	Adsorption of CO on PtBi2 and PtBi surfaces. Surface Science, 2005, 574, 1-16.	1.9	59
357	Growth and annealing of GalnAsN: density-functional calculations on the reactions of surface and bulk structures. Surface Science, 2005, 574, 144-152.	1.9	10
358	Interaction of oxygen with the $Pt(111)$ surface in wide conditions range. A DFT-based thermodynamical simulation. Surface Science, 2005, 580, 137-144.	1.9	40
359	Density functional theory analysis of the Ni(110)c($2\tilde{A}$ –2)-CN surface phase. Surface Science, 2005, 580, 145-152.	1.9	3
360	First principles study of H2S adsorption and dissociation on Fe(110). Surface Science, 2005, 583, 60-68.	1.9	75
361	CO adsorption on Cu(111) and Cu(001) surfaces: Improving site preference in DFT calculations. Surface Science, 2005, 590, 117-126.	1.9	116

#	ARTICLE	IF	CITATIONS
362	Effect of S contamination on properties of Fe(100) surfaces. Surface Science, 2005, 590, 63-75.	1.9	20
363	A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys. Surface Science, 2005, 592, 104-111.	1.9	168
364	The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surface Science, 2005, 595, 223-232.	1.9	690
365	Reduction and re-oxidation of molybdena and vanadia: DFT cluster model studies. Catalysis Today, 2005, 99, 241-253.	4.4	36
366	Theoretical aspects of heterogeneous catalysis: Applications of density functional methods. Catalysis Today, 2005, 105, 2-16.	4.4	65
367	First principles calculations of the adsorption and diffusion of hydrogen on Fe(100) surface and in the bulk. Catalysis Today, 2005, 105, 44-65.	4.4	90
368	DFT benchmark study for the oxidative addition of CH4 to Pd. Performance of various density functionals. Chemical Physics, 2005, 313, 261-270.	1.9	94
369	Electrolysis of water on (oxidized) metal surfaces. Chemical Physics, 2005, 319, 178-184.	1.9	1,383
370	Theoretical calculation of the energy of formation of LiBH4. Chemical Physics Letters, 2005, 405, 73-78.	2.6	85
371	Reactivity of a gas/metal/metal-oxide three-phase boundary: CO oxidation at the Pt(111)–c(4A—2)-2CO/α-PtO2 phase boundary. Chemical Physics Letters, 2005, 409, 1-7.	2.6	52
372	The binding of the noble metal cations Au+ and Ag+ to propene. Chemical Physics Letters, 2005, 412, 416-419.	2.6	8
373	CO oxidation on gold nanoparticles: Theoretical studies. Applied Catalysis A: General, 2005, 291, 13-20.	4.3	178
374	Adsorption of hydrogen on normal and pentaheptite single wall carbon nanotubes. European Physical Journal D, 2005, 34, 279-282.	1.3	25
375	CO dynamics induced by tunneling electrons: differences on $Cu(110)$ and $Ag(110)$. European Physical Journal D, 2005, 35, 341-348.	1.3	25
376	Benchmark Databases for Nonbonded Interactions and Their Use To Test Density Functional Theory. Journal of Chemical Theory and Computation, 2005, 1, 415-432.	5.3	832
377	Trends in the Exchange Current for Hydrogen Evolution. Journal of the Electrochemical Society, 2005, 152, J23.	2.9	4,054
378	Metal ammine complexes for hydrogen storage. Journal of Materials Chemistry, 2005, 15, 4106.	6.7	166
379	Density Functional Calculation of the Electronic Circular Dichroism Spectra of the Transition Metal Complexes [M(phen)3]2+(M = Fe, Ru, Os). Journal of Physical Chemistry A, 2005, 109, 4836-4846.	2.5	56

#	Article	IF	Citations
380	Adsorption and Vibrational Spectroscopy of CO on Mordenite:Â Ab initio Density-Functional Study. Journal of Physical Chemistry B, 2005, 109, 7345-7357.	2.6	32
381	Effect of Subsurface Oxygen on the Reactivity of the Ag(111) Surface. Journal of the American Chemical Society, 2005, 127, 12823-12827.	13.7	151
382	One-DimensionalPtO2at Pt Steps: Formation and Reaction with CO. Physical Review Letters, 2005, 95, 256102.	7.8	131
383	Controlling the catalytic bond-breaking selectivity of Ni surfaces by step blocking. Nature Materials, 2005, 4, 160-162.	27.5	263
384	Oxidative addition of the ethane Ci£¿C bond to Pd. Anab initiobenchmark and DFT validation study. Journal of Computational Chemistry, 2005, 26, 1006-1020.	3.3	69
385	The Ligand Effect: CO Desorption from Pt/Ru Catalysts. Fuel Cells, 2005, 5, 429-435.	2.4	66
386	Assessment of Density Functionals for the High-Spin/Low-Spin Energy Difference in the Low-Spin Iron(II) Tris(2,2′-bipyridine) Complex. ChemPhysChem, 2005, 6, 1393-1410.	2.1	162
387	CO Oxidation on Rutile-Supported Au Nanoparticles. Angewandte Chemie - International Edition, 2005, 44, 1824-1826.	13.8	381
388	Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates. Angewandte Chemie - International Edition, 2005, 44, 2132-2135.	13.8	1,015
389	CO Oxidation on Rutile-Supported Au Nanoparticles. Angewandte Chemie, 2005, 117, 1858-1860.	2.0	82
391	Nitrogen Fixation under Mild Ambient Conditions: Part lâ€"The Initial Dissociation/Association Step at Molybdenum Triamidoamine Complexes. Chemistry - A European Journal, 2005, 11, 7448-7460.	3.3	71
392	Electronic and optical properties of Fe, Zn and Pb sulfides. Physics and Chemistry of Minerals, 2005, 32, 255-268.	0.8	44
393	Theoretical insight on tailoring energetics of Mg hydrogen absorption/desorption through nano-engineering. Applied Physics A: Materials Science and Processing, 2005, 80, 173-178.	2.3	42
394	Ab initio DFT studies of oxygen K edge NEXAFS spectra for the V2O3(0001) surface. Theoretical Chemistry Accounts, 2005, 114, 60-67.	1.4	14
395	Some recent theoretical advances in the understanding of the catalytic activity of Au. Applied Catalysis A: General, 2005, 291, 21-31.	4.3	240
396	Growth and hydrogenation of ultra-thin Mg films on Mo(111). Surface Science, 2005, 584, 17-26.	1.9	19
397	Density-functional study of oxidation at the Mn–Co interface. Surface Science, 2005, 584, 146-152.	1.9	8
398	Atomic and molecular adsorption on Pt(111). Surface Science, 2005, 587, 159-174.	1.9	247

#	Article	lF	Citations
399	CO adsorption and thermal stability of Pd deposited on a thin FeO(111) film. Surface Science, 2005, 586, $174-182$.	1.9	25
400	Methane activation on Ni(111): Effects of poisons and step defects. Surface Science, 2005, 590, 127-137.	1.9	228
401	The chemisorption of SO2 on the $\text{Cu/Au}(111)$ surface: Interplay between ensemble and electronic effects. Surface Science, 2005, 592, 25-36.	1.9	29
402	A DFT investigation of methane molecular adsorption on Pt(100). Surface Science, 2005, 594, 231-239.	1.9	29
403	Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: A combined high-resolution STM and DFT study. Surface Science, 2005, 598, 226-245.	1.9	560
404	Surface structure and energetics of oxygen and CO adsorption on α-Mo2C(0001). Surface Science, 2005, 596, 212-221.	1.9	60
405	From cluster calculations to molecular materials: a mixed pseudopotential approach to modeling mixed-valence systems. Journal of Molecular Modeling, 2005, 11, 288-292.	1.8	6
406	The electronic structure effect in heterogeneous catalysis. Catalysis Letters, 2005, 100, 111-114.	2.6	349
407	Understanding the Effect of Steps, Strain, Poisons, and Alloying: Methane Activation on Ni Surfaces. Catalysis Letters, 2005, 105, 9-13.	2.6	74
408	Van der Waals density functional theory with applications. International Journal of Quantum Chemistry, 2005, 101, 599-610.	2.0	304
409	Density functional calculations of 19 F and 235 U NMR chemical shifts in uranium (VI) chloride fluorides UF6a^n Cl n: Influence of the relativistic approximation and role of the exchange-correlation functional. International Journal of Quantum Chemistry, 2005, 101, 372-380.	2.0	31
410	Model density approach to the Kohn-Sham problem: Efficient extension of the density fitting technique. International Journal of Quantum Chemistry, 2005, 102, 743-761.	2.0	26
411	Theoretical modeling of the peroxide stretch in H2O2, F2O2, and Fe2O4. International Journal of Quantum Chemistry, 2005, 105, 740-749.	2.0	5
412	Nitrogen substitutions in GaAs(001) surfaces: Density-functional supercell calculations of the surface stability. Physica Status Solidi (B): Basic Research, 2005, 242, 2820-2832.	1.5	15
413	Electric and Magnetic Properties of Co-filled Carbon Nanotube. Journal of the Physical Society of Japan, 2005, 74, 742-745.	1.6	15
414	Evaluations of Phases and Vacancy Formation Energies in KNbO3by First-Principles Calculation. Japanese Journal of Applied Physics, 2005, 44, 8048-8054.	1.5	51
415	The nature of the chemical bond in the light of an energy decomposition analysis., 2005,, 291-372.		62
416	On the properties of surface reconstructed silicon nanowires. Nanotechnology, 2005, 16, S250-S253.	2.6	32

#	Article	IF	CITATIONS
417	Anab initiostudy of electron transport through nitrobenzene: the influence of leads and contacts. Nanotechnology, 2005, 16, S155-S160.	2.6	23
418	Ab initiomultireference configuration-interaction theoretical study on the low-lying spin states in binuclear transition-metal complex: Magnetic exchange of [(NH3)5Cr(μ-OH)Cr(NH3)5]5+ and [Cl3FeOFeCl3]2â^'. Journal of Chemical Physics, 2005, 122, 204310.	3.0	15
419	When seeing is not believing: Oxygen on Ag(111), a simple adsorption system? Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, $1487-1497$.	2.1	108
420	The reaction rate for dissociative adsorption of N2 on stepped Ru(0001): Six-dimensional quantum calculations. Journal of Chemical Physics, 2005, 122, 234702.	3.0	48
421	NO oxidation properties of $Pt(111)$ revealed by ab initiokinetic simulations. Physical Review B, 2005, 71, .	3.2	65
422	Trends in sticking and adsorption of diatomic molecules on the Al(111) surface. Physical Review B, 2005, 71, .	3.2	35
423	Supported metal electronic structure: Implications for molecular adsorption. Physical Review B, 2005, 72, .	3.2	26
424	Adsorbate-Induced Alloy Phase Separation: A Direct View by High-Pressure Scanning Tunneling Microscopy. Physical Review Letters, 2005, 95, 126101.	7.8	72
425	Structure determination of small vanadium clusters by density-functional theory in comparison with experimental far-infrared spectra. Journal of Chemical Physics, 2005, 122, 124302.	3.0	74
426	CO adsorption on a Cu(211) surface: First-principle calculation and STM study. Physical Review B, 2005, 71, .	3.2	27
427	Comparison of density functionals for energy and structural differences between the high-[5T2g:(t2g)4(eg)2] and low-[1A1g:(t2g)6(eg)0] spin states of iron(II) coordination compounds. II. More functionals and the hexaminoferrous cation, [Fe(NH3)6]2+. Journal of Chemical Physics, 2005, 122, 044110.	3.0	157
428	Comment on "Molecular Chemisorption as the Theoretically Preferred Pathway for Water Adsorption on Ideal RutileTiO2(110)― Physical Review Letters, 2005, 95, 029601.	7.8	23
429	Adsorption of carbon on Pd clusters of nanometer size: A first-principles theoretical study. Journal of Chemical Physics, 2005, 122, 174705.	3.0	33
430	Vacancy-mediated hydrogen desorption inNaAlH4. Physical Review B, 2005, 72, .	3.2	81
431	Interaction of oxygen with ZrC(001) and VC(001): Photoemission and first-principles studies. Physical Review B, 2005, 72, .	3.2	50
432	Nonadiabaticity in the initial oxidation of Mg(0001): First-principles density-functional calculations. Physical Review B, 2005, 72, .	3.2	22
433	Oxygen adsorption at anionic free and supported Au clusters. Journal of Chemical Physics, 2005, 123, 161104.	3.0	76
434	Partly occupied Wannier functions: Construction and applications. Physical Review B, 2005, 72, .	3.2	38

#	Article	IF	Citations
435	Partly Occupied Wannier Functions. Physical Review Letters, 2005, 94, 026405.	7.8	64
436	Six-dimensional quantum dynamics of dissociative chemisorption of H2 on Ru(0001). Journal of Chemical Physics, 2005, 122, 044701.	3.0	60
437	Stretching dependence of the vibration modes of a single-moleculePtâ^'H2â^'Ptbridge. Physical Review B, 2005, 71, .	3.2	142
438	Conduction Mechanism in a Molecular Hydrogen Contact. Physical Review Letters, 2005, 94, 036807.	7.8	63
439	SIX-DIMENSIONAL DYNAMICS OF DISSOCIATIVE CHEMISORPTION OF H2 ON METAL SURFACES. Journal of Theoretical and Computational Chemistry, 2005, 04, 493-581.	1.8	82
440	Theoretical electron energy-loss spectroscopy and its application in materials research. Microscopy (Oxford, England), 2005, 54, 293-298.	1.5	5
441	A Density Functional Theory Study of the Catalytic role of Ti atoms in Reversible Hydrogen Storage in the Complex Metal Hydride, NaAlH4. Materials Research Society Symposia Proceedings, 2005, 884, 1.	0.1	0
442	Diameter Dependent Magnetic and Electronic Properties of Single-Walled Carbon Nanotubes with Fe Nanowires. Japanese Journal of Applied Physics, 2005, 44, 882-888.	1.5	17
443	Progress in the development of exchange-correlation functionals. , 2005, , 669-724.		108
444	Adsorption and diffusion of Pt and Au on the stoichiometric and reducedTiO2rutile (110) surfaces. Physical Review B, 2005, 72, .	3.2	92
445	Quantum Theory of Reactive Scattering and Adsorption at Surfaces., 2005, , 1713-1733.		3
446	The Role of Ti as a Catalyst for the Dissociation of Hydrogen on a Mg(0001) Surface. Journal of Physical Chemistry B, 2005, 109, 18037-18041.	2.6	113
447	Adsorption and scattering of H2 and D2 by NiAl(110). Journal of Chemical Physics, 2005, 123, 074705.	3.0	32
448	Density-functional calculation of CeO2 surfaces and prediction of effects of oxygen partial pressure and temperature on stabilities. Journal of Chemical Physics, 2005, 123, 064701.	3.0	198
449	Assessment of theoretical prediction of the NMR shielding tensor of 195PtClxBr6â^x2â^complexes by DFT calculations: experimental and computational results. Physical Chemistry Chemical Physics, 2005, 7, 1732-1738.	2.8	34
450	Two exchange-correlation functionals compared for first-principles liquid water. Molecular Simulation, 2005, 31, 361-366.	2.0	32
451	Template-Aluminosilicate Structures at the Early Stages of Zeolite ZSM-5 Formation. A Combined Preparative, Solid-state NMR, and Computational Study. Journal of Physical Chemistry B, 2005, 109, 22767-22774.	2.6	53
452	Bayesian Error Estimation in Density-Functional Theory. Physical Review Letters, 2005, 95, 216401.	7.8	163

#	Article	IF	CITATIONS
453	Theoretical Investigation of Electric and Magnetic Properties of Benzene–Vanadium Sandwich Complex Chain. Japanese Journal of Applied Physics, 2005, 44, 7954-7956.	1.5	29
454	Simulations of Tetra-Tethered Organic/Inorganic Nanocubeâ^'Polymer Assemblies. Macromolecules, 2005, 38, 6168-6180.	4.8	69
455	Multi-coefficient extrapolated density functional theory for thermochemistry and thermochemical kinetics. Physical Chemistry Chemical Physics, 2005, 7, 43.	2.8	393
456	Theoretical Study of CO and NO Chemisorption on RhCu(111) Surfaces. Journal of Physical Chemistry B, 2005, 109, 4654-4661.	2.6	21
457	Theory of Nanoscale Atomic Lithography. An ab Initio Study of the Interaction of "cold―Cs Atoms with Organthiols Self-assembled Monolayers on Au(111). Journal of Physical Chemistry B, 2005, 109, 1815-1821.	2.6	5
458	Density Functional Study of Hâ^'D Coupling Constants in Heavy Metal Dihydrogen and Dihydride Complexes:  The Role of Geometry, Spinâ^'Orbit Coupling, and Gradient Corrections in the Exchange-Correlation Kernel. Journal of Chemical Theory and Computation, 2005, 1, 601-611.	5.3	21
459	pH Dependence of the Electronic Structure of Glycine. Journal of Physical Chemistry B, 2005, 109, 5375-5382.	2.6	92
460	Ammonia Synthesis from First-Principles Calculations. Science, 2005, 307, 555-558.	12.6	1,109
461	Single d-Metal Atoms on Fsand Fs+Defects of MgO(001):Â A Theoretical Study across the Periodic Table. Journal of the American Chemical Society, 2005, 127, 11652-11660.	13.7	80
462	Effects of Peripheral Substituents and Axial Ligands on the Electronic Structure and Properties of Cobalt Porphyrins. Journal of Physical Chemistry A, 2005, 109, 11996-12005.	2.5	29
463	Catalysts for Hydrogen Evolution from the [NiFe] Hydrogenase to the Ni2P(001) Surface:Â The Importance of Ensemble Effect. Journal of the American Chemical Society, 2005, 127, 14871-14878.	13.7	1,029
464	First-Principles Study of Ti-Catalyzed Hydrogen Chemisorption on an Al Surface:Â A Critical First Step for Reversible Hydrogen Storage in NaAlH4. Journal of Physical Chemistry B, 2005, 109, 6952-6957.	2.6	126
465	Diamond Surface Conductivity under Atmospheric Conditions:Â Theoretical Approach. Journal of Physical Chemistry B, 2005, 109, 10304-10311.	2.6	31
466	Spectral and Electrochemical Characterization of Dibenzotetraaza[14]annulenes. Supramolecular Chemistry, 2005, 17, 643-647.	1.2	3
467	Critical Influence of Adsorption Geometry in the Heterogeneous Epoxidation of "Allylic―Alkenes: Structure and Reactivity of Three Phenylpropene Isomers on Cu(111). Journal of the American Chemical Society, 2005, 127, 17007-17011.	13.7	25
468	Kinetic Mechanism of Methanol Decomposition on Ni(111) Surface:  A Theoretical Study. Journal of Physical Chemistry B, 2005, 109, 12431-12442.	2.6	96
469	Orbital-Free Density Functional Theory Applied to NaAlH4. Journal of Physical Chemistry B, 2005, 109, 16554-16562.	2.6	12
470	The Adsorption Structure of NO on Pd(111) at High Pressures Studied by STM and DFT. Journal of Physical Chemistry B, 2005, 109, 14262-14265.	2.6	35

#	Article	IF	Citations
471	First-Principles Study of CO Adsorption and Vibration on Au Surfaces. Journal of Physical Chemistry B, 2005, 109, 9596-9603.	2.6	28
472	A systematic density functional theory study of the electronic structure of bulk and (001) surface of transition-metals carbides. Journal of Chemical Physics, 2005, 122, 174709.	3.0	180
473	Theoretical Methods of Potential Use for Studies of Inorganic Reaction Mechanisms. Chemical Reviews, 2005, 105, 2695-2722.	47.7	387
474	Density Functional Theory Study of the Jahnâ^'Teller Effect and Spinâ^'Orbit Coupling for Copper and Gold Trimers. Journal of Physical Chemistry A, 2005, 109, 512-519.	2.5	22
475	Oxidative Addition of the Fluoromethane Câ^'F Bond to Pd. An ab Initio Benchmark and DFT Validation Study. Journal of Physical Chemistry A, 2005, 109, 9685-9699.	2.5	61
476	Benchmark Database of Barrier Heights for Heavy Atom Transfer, Nucleophilic Substitution, Association, and Unimolecular Reactions and Its Use to Test Theoretical Methods. Journal of Physical Chemistry A, 2005, 109, 2012-2018.	2.5	736
477	Structure and formation of H2Ti3O7 nanotubes in an alkali environment. Physical Review B, 2005, 71, .	3.2	145
478	Real-space grid implementation of the projector augmented wave method. Physical Review B, 2005, 71, .	3.2	1,606
479	How Can Azobenzene Block Copolymer Vesicles Be Dissociated and Reformed by Light?. Journal of Physical Chemistry B, 2005, 109, 20281-20287.	2.6	230
480	IntroducingONETEP: Linear-scaling density functional simulations on parallel computers. Journal of Chemical Physics, 2005, 122, 084119.	3.0	550
481	Trends in hydride formation energies for magnesium-3d transition metal alloys. Journal of Alloys and Compounds, 2005, 386, 1-7.	5.5	85
482	Single-molecule manipulation and chemistry with the STM. Journal of Physics Condensed Matter, 2005, 17, \$1049-\$1074.	1.8	62
483	Experimental and DFT Studies of the Conversion of Ethanol and Acetic Acid on PtSn-Based Catalystsâ€. Journal of Physical Chemistry B, 2005, 109, 2074-2085.	2.6	161
484	Metallic and Semimetallic SiliconâŸ˙100⟩Nanowires. Physical Review Letters, 2005, 94, 026805.	7.8	164
485	Surface and Subsurface Hydrogen:Â Adsorption Properties on Transition Metals and Near-Surface Alloys. Journal of Physical Chemistry B, 2005, 109, 3460-3471.	2.6	343
486	A Density Functional Study of the Chemical Differences between Type I and Type II MoS2-Based Structures in Hydrotreating Catalystsâ€. Journal of Physical Chemistry B, 2005, 109, 2245-2253.	2.6	170
487	The Perdew–Burke–Ernzerhof exchange-correlation functional applied to the G2-1 test set using a plane-wave basis set. Journal of Chemical Physics, 2005, 122, 234102.	3.0	754
488	Forces and conductances in a single-molecule bipyridine junction. Physical Review B, 2005, 72, .	3.2	65

#	Article	IF	CITATIONS
489	Theoretical Study of the Adsorption and Dissociation of Oxygen on Pt(111) in the Presence of Homogeneous Electric Fields. Journal of Physical Chemistry B, 2005, 109, 6304-6310.	2.6	127
490	Properties of the CdSe(0001), (0001ì,,), and (112ì,,0) Single Crystal Surfaces:Â Relaxation, Reconstruction, and Adatom and Admolecule Adsorption. Journal of Physical Chemistry B, 2005, 109, 19320-19328.	2.6	71
491	Modulation of Calcium Oxalate Monohydrate Crystallization by Citrate through Selective Binding to Atomic Steps. Journal of the American Chemical Society, 2005, 127, 9036-9044.	13.7	117
492	Mixed-Metal Pt Monolayer Electrocatalysts for Enhanced Oxygen Reduction Kinetics. Journal of the American Chemical Society, 2005, 127, 12480-12481.	13.7	556
493	Adsorption of Atomic Oxygen and Nitrogen at \hat{l}^2 -Cristobalite (100): \hat{A} A Density Functional Theory Study. Journal of Physical Chemistry B, 2005, 109, 14954-14964.	2.6	49
494	Mechanisms of Methanol Decomposition on Platinum:  A Combined Experimental and ab Initio Approach. Journal of Physical Chemistry B, 2005, 109, 11622-11633.	2.6	248
495	Systematic Study of the Structureâ^'Property Relationship of a Series of Ferrocenyl Nonlinear Optical Chromophores. Journal of the American Chemical Society, 2005, 127, 2758-2766.	13.7	168
496	Dissociation of O2at Al(111): The Role of Spin Selection Rules. Physical Review Letters, 2005, 94, 036104.	7.8	259
497	Enhancement of hydrogen physisorption on graphene and carbon nanotubes by Li doping. Journal of Chemical Physics, 2005, 123, 204721.	3.0	247
498	Exothermic water dissociation on the rutileTiO2(110)surface. Physical Review B, 2005, 72, .	3.2	122
499	The Oxygen Vacancy in Crystal Phases of WO3. Journal of Physical Chemistry B, 2005, 109, 3146-3156.	2.6	200
500	Energy Ranking of Molecular Crystals Using Density Functional Theory Calculations and an Empirical van der Waals Correction. Journal of Physical Chemistry B, 2005, 109, 15531-15541.	2.6	266
501	3.4.2 Adsorption of C, N, and O on metal surfaces. , 0, , 2-72.		0
502	A Computational and Experimental Study of the Structures and Raman and TSe NMR Spectra of SeX3+and SeX2(X = Cl, Br, I):Â FT-Raman Spectrum of (Sel3)[AsF6]. Inorganic Chemistry, 2005, 44, 1904-1913.	4.0	23
503	DFT Investigation of CO Adsorption on Pt(211) and Pt(311) Surfaces from Low to High Coverage. Journal of Physical Chemistry B, 2005, 109, 22469-22475.	2.6	52
504	Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits. Journal of Chemical Physics, 2005, 123, 062201.	3.0	769
505	Desulfurization Reactions on Ni2P(001) and α-Mo2C(001) Surfaces: Complex Role of P and C Sites. Journal of Physical Chemistry B, 2005, 109, 4575-4583.	2.6	290
506	Surface Structure and Energetics of Hydrogen Adsorption on the Fe(111) Surface. Journal of Physical Chemistry B, 2005, 109, 14160-14167.	2.6	34

#	Article	IF	CITATIONS
507	A density functional theory study of the dissociation of H2 on gold clusters: Importance of fluxionality and ensemble effects. Journal of Chemical Physics, 2006, 125, 164715.	3.0	114
508	Solid-State Modeling of the Terahertz Spectrum of the High Explosive HMX. Journal of Physical Chemistry A, 2006, 110, 1951-1959.	2.5	166
509	Biliverdine-Based Metalloradicals:Â Sterically Enhanced Noninnocence. Inorganic Chemistry, 2006, 45, 4914-4921.	4.0	21
510	Density functional calculations of hydrogen adsorption on boron nanotubes and boron sheets. Nanotechnology, 2006, 17, 778-785.	2.6	83
511	First-principles study of the adsorption of methanol at the \hat{l} ±-Al2O3(0001) surface. Journal of Physics Condensed Matter, 2006, 18, 1-12.	1.8	65
512	Mechanisms for catalytic carbon nanofiber growth studied byab initiodensity functional theory calculations. Physical Review B, 2006, 73, .	3.2	248
513	Reactive and Nonreactive Scattering of H2 from a Metal Surface Is Electronically Adiabatic. Science, 2006, 312, 86-89.	12.6	180
514	Computational design of Siâ • SiO2 interfaces: Stress and strain on the atomic scale. Physical Review B, 2006, 73, .	3.2	36
515	Correlation between Electronic Properties and Hydrodesulfurization Activity of 4d-Transition-Metal Sulfides. Journal of Physical Chemistry B, 2006, 110, 7951-7966.	2.6	25
516	Equilibrium structure and Ti-catalyzed H2 desorption in NaAlH4 nanoparticles from density functional theory. Physical Chemistry Chemical Physics, 2006, 8, 4853.	2.8	83
517	Water desorption from an oxygen covered Pt(111) surface: Multichannel desorption. Journal of Chemical Physics, 2006, 124, 204712.	3.0	21
518	Formation of copper clusters on a thiophene mediated Si(111)-($7\tilde{A}$ –7) surface via molecular anchors. Applied Physics Letters, 2006, 88, 123106.	3.3	4
519	Predicting thermochemical parameters of oxygen-containing heterocycles using simple QSPR models. Molecular Simulation, 2006, 32, 125-134.	2.0	7
520	Six-dimensional potential energy surface for H2at Ru(0001). Physical Chemistry Chemical Physics, 2006, 8, 688-696.	2.8	40
521	CeO2catalysed conversion of CO, NO2and NO from first principles energetics. Physical Chemistry Chemical Physics, 2006, 8, 216-218.	2.8	107
522	Ion hydration studied by x-ray Compton scattering. Physical Review B, 2006, 73, .	3.2	32
523	Ab initio rigid water: Effect on water structure, ion hydration, and thermodynamics. Physical Chemistry Chemical Physics, 2006, 8, 2153.	2.8	33
524	Comparative study of cluster- and supercell-approaches for investigating heterogeneous catalysis by electronic structure methods: Tunneling in the reaction $N + H \hat{a}^{\dagger}$ NH on Ru(0001). Physical Chemistry Chemical Physics, 2006, 8, 1437.	2.8	21

#	Article	IF	CITATIONS
525	The heat of formation of gaseous PuO22+from relativistic density functional calculations. Physical Chemistry Chemical Physics, 2006, 8, 3767-3773.	2.8	13
526	Density Functional Theory Study of Ligand Binding on CdSe (0001), (0001ì,,), and (112ì,,0) Single Crystal Relaxed and Reconstructed Surfaces: A Implications for Nanocrystalline Growth. Journal of Physical Chemistry B, 2006, 110, 18007-18016.	2.6	152
527	Predicting Catalysis:Â Understanding Ammonia Synthesis from First-Principles Calculations. Journal of Physical Chemistry B, 2006, 110, 17719-17735.	2.6	192
528	First-principles study on structural stability of 3d transition metal alloying magnesium hydride. Transactions of Nonferrous Metals Society of China, 2006, 16, 23-32.	4.2	12
529	Lattice strain effects on CO oxidation on Pt(111). Physical Chemistry Chemical Physics, 2006, 8, 3369.	2.8	96
530	A Systematic Study of the Structure and Bonding of Halogens on Low-Index Transition Metal Surfaces. Journal of Physical Chemistry B, 2006, 110, 11894-11906.	2.6	93
531	Water-Gas-Shift Reaction on Molybdenum Carbide Surfaces:  Essential Role of the Oxycarbide. Journal of Physical Chemistry B, 2006, 110, 19418-19425.	2.6	202
532	More accurate generalized gradient approximation for solids. Physical Review B, 2006, 73, .	3.2	1,785
533	Metastable Structures and Recombination Pathways for Atomic Hydrogen on the Graphite (0001) Surface. Physical Review Letters, 2006, 96, 156104.	7.8	296
534	Clustering of Chemisorbed H(D) Atoms on the Graphite (0001) Surface due to Preferential Sticking. Physical Review Letters, 2006, 97, 186102.	7.8	260
535	Calculated Phase Diagrams for the Electrochemical Oxidation and Reduction of Water over Pt(111). Journal of Physical Chemistry B, 2006, 110, 21833-21839.	2.6	388
536	Reactive and nonreactive scattering of N2 from Ru(0001): A six-dimensional adiabatic study. Journal of Chemical Physics, 2006, 125, 114706.	3.0	43
537	Olefin Adsorption on Silica-Supported Silver Salts â^' A DFT Study. Langmuir, 2006, 22, 5716-5722.	3.5	21
538	Structure and activity of oxidized Pt(110) and î±-PtO2. Physical Chemistry Chemical Physics, 2006, 8, 1566.	2.8	71
539	Density Functional Study of the 13C NMR Chemical Shifts in Small-to-Medium-Diameter Infinite Single-Walled Carbon Nanotubes. Journal of Physical Chemistry A, 2006, 110, 11995-12004.	2.5	62
540	Palladium Monolayer and Palladium Alloy Electrocatalysts for Oxygen Reduction. Langmuir, 2006, 22, 10409-10415.	3.5	406
541	Theoretical Study of Adsorption of O(3P) and H2O on the Rutile TiO2(110) Surface. Journal of Physical Chemistry B, 2006, 110, 23306-23314.	2.6	34
542	Reaction of Hydrogen with Ag(111):  Binding States, Minimum Energy Paths, and Kinetics. Journal of Physical Chemistry B, 2006, 110, 17145-17154.	2.6	51

#	Article	IF	CITATIONS
543	Peptideâ^'TiO2Surface Interaction in Solution by Ab Initio and Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2006, 110, 6160-6169.	2.6	109
544	Band Gap Variation in Prussian Blue via Cation-Induced Structural Distortion. Journal of Physical Chemistry B, 2006, 110, 24294-24298.	2.6	37
545	Toward an Accurate Determination of 195Pt Chemical Shifts by Density Functional Computations:  The Importance of Unspecific Solvent Effects and the Dependence of Pt Magnetic Shielding Constants on Structural Parameters. Inorganic Chemistry, 2006, 45, 3316-3324.	4.0	69
546	Role ofAu+in Supporting and ActivatingAu7onTiO2(110). Physical Review Letters, 2006, 97, 136107.	7.8	149
547	Understanding the Role of Ti in Reversible Hydrogen Storage as Sodium Alanate:Â A Combined Experimental and Density Functional Theoretical Approach. Journal of the American Chemical Society, 2006, 128, 11404-11415.	13.7	127
548	Unravelling the Origin of the High-Catalytic Activity of Supported Au:Â A Density-Functional Theory-Based Interpretation. Journal of the American Chemical Society, 2006, 128, 15600-15601.	13.7	65
549	Structure and Bonding between an Aryl Group and Metal Surfaces. Journal of the American Chemical Society, 2006, 128, 6030-6031.	13.7	131
550	Gas-phase Interaction of Thiophene with the Ti8C12+and Ti8C12Met-Car Clusters. Journal of Physical Chemistry B, 2006, 110, 7449-7455.	2.6	23
551	Oxidative Addition of the Chloromethane Câ^'Cl Bond to Pd, an ab Initio Benchmark and DFT Validation Study. Journal of Chemical Theory and Computation, 2006, 2, 322-335.	5.3	81
552	Native point defects in yttria and relevance to its use as a high-dielectric-constant gate oxide material: First-principles study. Physical Review B, 2006, 73, .	3.2	84
553	Time-Dependent Density Functional Calculations of Optical Rotatory Dispersion Including Resonance Wavelengths as a Potentially Useful Tool for Determining Absolute Configurations of Chiral Molecules. Journal of Physical Chemistry A, 2006, 110, 2461-2473.	2.5	72
554	Systematic DFT Study of Gas Phase and Solvated Uranyl and Neptunyl Complexes [AnO2X4]n(An = U, Np;) Tj ETC	Qq1.J 0.78	84314 rgBT
555	Influence of Isomerization on Nonlinear Optical Properties of Molecules. Journal of Physical Chemistry B, 2006, 110, 13512-13522.	2.6	60
556	Role of the Fermi Surface in Adsorbateâ^'Metal Interactions:Â An Energy Decomposition Analysis. Journal of Physical Chemistry B, 2006, 110, 12470-12479.	2.6	14
557	First Principles Study of Adsorption and Dissociation of CO on $W(111)$. Journal of Physical Chemistry B, 2006, 110, 1344-1349.	2.6	21
558	How Do Aryl Groups Attach to a Graphene Sheet?. Journal of Physical Chemistry B, 2006, 110, 23628-23632.	2.6	191
559	A density-functional theory study of the adsorption of CO molecules on Au/Ni(111). Journal of Physics Condensed Matter, 2006, 18, 10825-10835.	1.8	8
560	Intra- and intermolecular effects in the Compton profile of water. Physical Review B, 2006, 73, .	3.2	44

#	ARTICLE	IF	CITATIONS
561	Identification of Destabilized Metal Hydrides for Hydrogen Storage Using First Principles Calculations. Journal of Physical Chemistry B, 2006, 110, 8769-8776.	2.6	273
562	A Neutron Scattering and Nuclear Magnetic Resonance Study of the Structure of GeO2â^'P2O5Glasses. Journal of Physical Chemistry B, 2006, 110, 20123-20128.	2.6	30
563	The Crystal Structure and Surface Energy of NaAlH4:Â A Comparison of DFT Methodologies. Journal of Physical Chemistry B, 2006, 110, 622-630.	2.6	43
564	Ab initiostudies of Al, O, andO2adsorption on뱉^Al2O3(0001)surfaces. Physical Review B, 2006, 74, .	3.2	42
565	Thiophene Adsorption and Activation on MoP(001), $\hat{1}^3$ -Mo2N(100), and Ni2P(001): \hat{A} Density Functional Theory Studies. Journal of Physical Chemistry B, 2006, 110, 22563-22569.	2.6	38
566	Structure Sensitivity in the Oxidation of CO on Ir Surfaces. Langmuir, 2006, 22, 3166-3173.	3.5	32
567	Ground-State Enthalpies:  Evaluation of Electronic Structure Approaches with Emphasis on the Density Functional Method. Journal of Physical Chemistry A, 2006, 110, 13632-13639.	2.5	262
568	Gas-Phase Reactivity of the Ti8C12+Met-car with Triatomic Sulfur-Containing Molecules:Â CS2, SCO, and SO2. Journal of Physical Chemistry A, 2006, 110, 3505-3513.	2.5	15
569	Prediction of a Highly Activated State of CO Adsorbed on an Al/Fe(100) Bimetallic Surfaceâ€. Journal of Physical Chemistry B, 2006, 110, 22213-22219.	2.6	15
570	The effects of dye dopants on the conductivity and optical absorption properties of polypyrrole. Synthetic Metals, 2006, 156, 1194-1202.	3.9	92
571	Buckling in boron sheets and nanotubes. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1105-1110.	1.8	22
572	Chiral switching by spontaneous conformational change in adsorbed organic molecules. Nature Materials, 2006, 5, 112-117.	27. 5	213
573	Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Materials, 2006, 5, 909-913.	27.5	3,305
574	Current status of ab initio quantum chemistry study for oxygen electroreduction on fuel cell catalysts. Electrochimica Acta, 2006, 51, 1905-1916.	5.2	136
575	Near-surface alloys for hydrogen fuel cell applications. Catalysis Today, 2006, 111, 52-58.	4.4	148
576	Direct observation of molecularly-aligned molecules in the second physisorbed layer-CO/Ag(110). Chemical Physics Letters, 2006, 418, 90-95.	2.6	4
577	A density functional theory study of a series of functionalized metal-organic frameworks. Chemical Physics Letters, 2006, 420, 256-260.	2.6	46
578	DFT functionals and molecular geometries. Chemical Physics Letters, 2006, 421, 540-543.	2.6	15

#	Article	IF	Citations
579	Oxygen atoms on the (111) surface of coinage metals: On the chemical state of the adsorbate. Chemical Physics Letters, 2006, 429, 86-90.	2.6	30
580	Structure of water adsorbed on the open Cu(110) surface: H-up, H-down, or both?. Chemical Physics Letters, 2006, 429, 415-419.	2.6	82
581	Destabilization of adsorbed CO on the Pd(111) surface by subsurface carbon: Density functional studies. Chemical Physics Letters, 2006, 432, 184-189.	2.6	18
582	Density functional theory calculation of 2p core-electron binding energies of Si, P, S, Cl, and Ar in gas-phase molecules. Journal of Electron Spectroscopy and Related Phenomena, 2006, 151, 9-13.	1.7	28
583	Mechanical alloying and electronic simulations of 2Mg–Fe mixture powders for hydrogen storage. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2006, 427, 306-315.	5.6	38
584	Hyperpolarizability: Calibration of theoretical methods for chloroform, water, acetonitrile, and p-nitroaniline. Optical Materials, 2006, 29, 360-364.	3.6	35
585	Density functional study of the properties of isomeric aminophenylhydroxamic acids and their copper (II) complexes. Polyhedron, 2006, 25, 759-766.	2.2	32
586	A DFT overview of high-valent iron, cobalt and nickel tetraamidomacrocyclic ligand (TAML) complexes: The end of innocence?. Journal of Inorganic Biochemistry, 2006, 100, 620-626.	3 . 5	12
587	DFT studies of methanol decomposition on Ni(100) surface: Compared with Ni(111) surface. Journal of Molecular Catalysis A, 2006, 258, 203-215.	4.8	66
588	Density functional theory investigation of CN on Cu(111), Ni(111) and Ni(100). Surface Science, 2006, 600, 340-347.	1.9	13
589	CO adsorption on the Cu(111) surface: A density functional study. Surface Science, 2006, 600, 1085-1092.	1.9	42
590	Density functional theory investigation of the structure of SO2 and SO3 on $Cu(111)$ and $Ni(111)$. Surface Science, 2006, 600, 1827-1836.	1.9	35
591	NO adsorption and diffusion on unreconstructed $Pt\{100\}$ surface. A density functional theory investigation. Surface Science, 2006, 600, 2663-2669.	1.9	12
592	DFT modeling of the hydrolysis of isocyanic acid over the TiO2 anatase (101) surface: Adsorption of HNCO species. Surface Science, 2006, 600, 5158-5167.	1.9	20
593	Oxidation energies of transition metal oxides within the GGA+Uframework. Physical Review B, 2006, 73,	3.2	1,991
594	The UBI-QEP method: Basic formalism and applications to chemisorption phenomena on transition metal surfaces. Chemisorption energetics. Russian Journal of Physical Chemistry A, 2006, 80, 4-30.	0.6	30
595	Prediction of Experimental Methanol Decomposition Rates on Platinum from First Principles. Topics in Catalysis, 2006, 37, 17-28.	2.8	140
596	Special Sites at Noble and Late Transition Metal Catalysts. Topics in Catalysis, 2006, 37, 3-16.	2.8	274

#	Article	IF	CITATIONS
597	Reactivity of Bimetallic Systems Studied from First Principles. Topics in Catalysis, 2006, 37, 29-39.	2.8	189
598	The Role of the Chiral Modifier on the Enantioselective Hydrogenation of Methyl Pyruvate on Pt(111). Catalysis Letters, 2006, 106, 111-114.	2.6	14
599	Ethylene dissociation on flat and stepped Ni(111): A combined STM and DFT study. Surface Science, 2006, 600, 66-77.	1.9	98
600	Theoretical insight of adsorption thermodynamics of multifunctional molecules on metal surfaces. Surface Science, 2006, 600, 2103-2112.	1.9	76
601	Density functional theory study into the adsorption of CO2, H and CHx (x=0–3) as well as C2H4 on α-Mo2C(0001). Surface Science, 2006, 600, 2329-2337.	1.9	54
602	Theoretical simulation of butane isomers adsorption on a Pt(100) surface. Surface Science, 2006, 600, 2938-2942.	1.9	5
603	First principles study of structural, electronic and optical properties of KCl crystal. Chemical Physics, 2006, 330, 1-8.	1.9	10
604	Trigonal bipyramidal iron(III) and manganese(III) oxo, sulfido, and selenido complexes. An electronic-structural overview. Journal of Inorganic Biochemistry, 2006, 100, 707-715.	3.5	11
605	Following natureâ€"Theoretical studies on factors modulating catalytic activity of porphyrins. Journal of Molecular Catalysis A, 2006, 258, 376-380.	4.8	22
606	First-principles calculation of dehydrogenating properties of MgH2-V systems. Science in China Series D: Earth Sciences, 2006, 49, 129-136.	0.9	42
607	Toward computational screening in heterogeneous catalysis: Pareto-optimal methanation catalysts. Journal of Catalysis, 2006, 239, 501-506.	6.2	314
608	Theoretical study of dehydrogenation and isomerisation reactions of propylene on Pt(111). Journal of Catalysis, 2006, 241, 115-122.	6.2	43
609	Theoretical study of H2O dissociation and CO oxidation on Pt2Mo(111). Journal of Catalysis, 2006, 243, 192-198.	6.2	45
610	Reaction rates of all hydrogenation steps in ammonia synthesis over a Ru(0001) surface. Journal of Catalysis, 2006, 244, 199-207.	6.2	14
611	The Heat of Formation of the Uranyl Dication: Theoretical Evaluation Based on Relativistic Density Functional Calculations. Chemistry - A European Journal, 2006, 12, 629-634.	3.3	17
612	Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure. Angewandte Chemie - International Edition, 2006, 45, 2897-2901.	13.8	1,685
613	A Simple Rule of Thumb for Diffusion on Transition-Metal Surfaces. Angewandte Chemie - International Edition, 2006, 45, 7046-7049.	13.8	109
614	Assessment of the performance of density-functional methods for calculations on iron porphyrins and related compounds. Journal of Computational Chemistry, 2006, 27, 1577-1592.	3.3	78

#	ARTICLE	IF	CITATIONS
615	Hydrogen Evolution Over Bimetallic Systems: Understanding the Trends. ChemPhysChem, 2006, 7, 1032-1035.	2.1	351
616	Theoretical Analysis of the Terahertz Spectrum of the High Explosive PETN. ChemPhysChem, 2006, 7, 2398-2408.	2.1	98
619	Defect Formation Energies in Chalcopyrite-Type AgInSe2 and the Rerated Chalcopyrite Compounds by First Principles Calculations. , 2006, , .		4
620	Elastic Constants of NaCl under Pressure via First-Principles Calculations. Chinese Physics Letters, 2006, 23, 2845-2847.	3.3	5
621	Carbon Nanoarch Encapsulating Fe Nanowire on Ni(111). Japanese Journal of Applied Physics, 2006, 45, $2869-2871$.	1.5	12
622	Scanning Tunneling Spectroscopy Study of the ZnO(0001)–Zn Surface. Japanese Journal of Applied Physics, 2006, 45, L39-L41.	1.5	4
623	Modeling the amide I bands of small peptides. Journal of Chemical Physics, 2006, 125, 044312.	3.0	202
624	A transferable electrostatic map for solvation effects on amide I vibrations and its application to linear and two-dimensional spectroscopy. Journal of Chemical Physics, 2006, 124, 044502.	3.0	206
625	Analysis of methane-to-methanol conversion on clean and defective Rh surfaces. Journal of Chemical Physics, 2006, 125, 044701.	3.0	31
626	Preferential growth of Pt on rutileTiO2. Physical Review B, 2006, 73, .	3.2	32
627	Formation and Splitting of Paired Hydroxyl Groups on ReducedTiO2(110). Physical Review Letters, 2006, 96, 066107.	7.8	389
628	Chiral Recognition of Organic Molecules by Atomic Kinks on Surfaces. Physical Review Letters, 2006, 96, 056103.	7.8	120
629	Pressure-induced structural and electronic changes in뱉^'AlH3. Physical Review B, 2006, 74, .	3.2	76
630	Multidimensional Effects on Dissociation of N2 on Ru (0001). Physical Review Letters, 2006, 96, 096102.	7.8	89
631	Electronic stucture of methane hydrate studied by Compton scattering. Physical Review B, 2006, 73, .	3.2	13
632	Density functional theory study of water dissociation in a double water bilayer with or without coadsorption of CO on Pt(111). Journal of Chemical Physics, 2006, 124, 184704.	3.0	21
633	Atomic structure and spin magnetism of self-assembled Co nanowires onPt(332). Physical Review B, 2006, 74, .	3.2	3
634	Time-dependent density functional theory with ultrasoft pseudopotentials: Real-time electron propagation across a molecular junction. Physical Review B, 2006, 73, .	3.2	74

#	Article	IF	CITATIONS
635	Fermi level alignment in molecular nanojunctions and its relation to charge transfer. Physical Review B, 2006, 74, .	3.2	84
636	Size effects in surface-reconstructed⟰100⟩and⟰110⟩silicon nanowires. Physical Review B, 2006, 74, .	3.2	37
637	Electron transport in aPtâ^'COâ^'Ptnanocontact: Density functional theory calculations. Physical Review B, 2006, 73, .	3.2	28
638	Adsorption geometry and core excitation spectra of three phenylpropene isomers on $Cu(111)$. Journal of Chemical Physics, 2006, 125, 034701.	3.0	14
639	Ab initiodensity-functional study of NO on close-packed transition and noble metal surfaces: I. Molecular adsorption. Journal of Physics Condensed Matter, 2006, 18, 13-40.	1.8	85
640	Compton scattering study of water versus icelh: Intra- and intermolecular structure. Physical Review E, 2006, 74, 031503.	2.1	27
641	Structural, magnetic, and chemical properties of thin Fe films grown on $Rh(100)$ surfaces investigated with density functional theory. Physical Review B, 2006, 73, .	3.2	16
642	Adsorption of platinum on the stoichiometric RuO2(110) surface. Journal of Chemical Physics, 2006, 124, 141101.	3.0	10
643	Spectroscopic analysis of small organic molecules: A comprehensive near-edge x-ray-absorption fine-structure study of C6-ring-containing molecules. Journal of Chemical Physics, 2006, 124, 034302.	3.0	46
644	Unusual adsorption site of hydrogen on the unreconstructed Ir(100) surface. Physical Review B, 2006, 73, .	3.2	67
645	NO structures adsorbed on Rh(111): Theoretical approach to high-coverage STM images. Physical Review B, 2006, 73, .	3.2	20
646	Correlation of hydrogen bond lengths and angles in liquid water based on Compton scattering. Journal of Chemical Physics, 2006, 125, 084504.	3.0	55
647	Ab initiodensity-functional study of NO adsorption on close-packed transition and noble metal surfaces: II. Dissociative adsorption. Journal of Physics Condensed Matter, 2006, 18, 41-54.	1.8	47
648	STRUCTURE AND MAGNETIC PROPERTIES OF Co12X(X = Ni, Ag, Pt, Au) CLUSTERS. International Journal of Modern Physics B, 2007, 21, 5091-5098.	2.0	4
649	Ab initio molecular dynamics of hydrogen dissociation on metal surfaces using neural networks and novelty sampling. Journal of Chemical Physics, 2007, 127, 154716.	3.0	75
650	Interaction of liquid water with the rutile TiO2(110) surface. Molecular Simulation, 2007, 33, 379-389.	2.0	36
651	Theoretical Trends in Particle Size Effects for the Oxygen Reduction Reaction. Zeitschrift Fur Physikalische Chemie, 2007, 221, 1209-1220.	2.8	169
652	Isotope quantum effects in the electron momentum density of water. Journal of Chemical Physics, 2007, 126, 154508.	3.0	25

#	Article	IF	CITATIONS
653	Kinetic Monte Carlo simulations of the interaction of oxygen with Pt(111). Journal of Chemical Physics, 2007, 127, 014704.	3.0	36
654	Density functional theory study of CHx (x=1â€"3) adsorption on clean and CO precovered Rh(111) surfaces. Journal of Chemical Physics, 2007, 127, 024705.	3.0	18
655	Infrared spectroscopy of physisorbed and chemisorbed N2 in the $Pt(111)(3\tilde{A}-3)N2$ structure. Journal of Chemical Physics, 2007, 127, 194708.	3.0	7
656	Supersonic molecular beam studies of dissociative adsorption of H2 on Ru(0001). Journal of Chemical Physics, 2007, 127, 244701.	3.0	47
657	Identifying Hydrogen Atoms on Graphite. Journal of the Physical Society of Japan, 2007, 76, 114703.	1.6	11
658	Static and dynamic second hyperpolarizability calculated by time-dependent density functional cubic response theory with local contribution and natural bond orbital analysis. Journal of Chemical Physics, 2007, 127, 074104.	3.0	27
659	Fermi level alignment in single molecule junctions and its dependence on interface structure. Journal of Physics: Conference Series, 2007, 61, 1097-1101.	0.4	23
660	Anab initiostudy of the field-induced position change of a C60molecule adsorbed on a gold tip. Nanotechnology, 2007, 18, 165501.	2.6	6
661	Quantum states of hydrogen atom motion on the $Pd(111)$ surface and in the subsurface. Journal of Physics Condensed Matter, 2007, 19, 365214.	1.8	18
662	A self-consistent density based embedding scheme applied to the adsorption of CO on Pd(111). Journal of Physics Condensed Matter, 2007, 19, 226001.	1.8	19
663	Electronic properties of an epitaxial silicon oxynitride layer on a 6H-SiC(0001) surface: A first-principles investigation. Applied Physics Letters, 2007, 91, 061930.	3.3	17
664	First-Principles Statistical Mechanics Study of the Stability of a Subnanometer Thin Surface Oxide in Reactive Environments: CO Oxidation at $Pd(100)$. Physical Review Letters, 2007, 98, 046101.	7.8	127
665	Cyclic Voltammograms for H on Pt(111) and Pt(100) from First Principles. Physical Review Letters, 2007, 99, 126101.	7.8	189
666	Probing Enantioselectivity with X-Ray Photoelectron Spectroscopy and Density Functional Theory. Physical Review Letters, 2007, 98, 136102.	7.8	58
667	Electronic Structure of MgO-Supported Au Clusters: Quantum Dots Probed by Scanning Tunneling Microscopy. Physical Review Letters, 2007, 99, 096102.	7.8	49
668	Adsorption and diffusion dynamics of atomic and molecular oxygen on reconstructed Cu(100). Physical Review B, 2007, 75, .	3.2	31
669	Interaction of adsorbates with electric-field fluctuations near surfaces: Nonradiative lifetimes and energy-level shifts. Physical Review B, 2007, 75, .	3.2	16
670	Polarization Effects on the Surface Chemistry of PbTiO3-Supported Pt Films. Physical Review Letters, 2007, 98, 166101.	7.8	86

#	ARTICLE	IF	CITATIONS
671	Effect of Carbon Adsorption on the Isomer Stability of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>Ir</mml:mi> <mml:mn>4</mml:mn> </mml:msub> </mml:math> Clusters. Physical Review Letters, 2007, 99, 165501. Density-functional and Monte Carlo study of <mml:math< td=""><td>7.8</td><td>16</td></mml:math<>	7.8	16
672	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi mathvariant="normal">O</mml:mi><mml:mo>â^•</mml:mo><mml:mi mathvariant="normal">Mo</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mn>110</mml:mn><mml:mo>)<</mml:mo></mml:mrow></mml:mrow>	3.2 :/mml:mo>	28 >
673	Density-functional study of the chemisorption of N on and below Fe(110) and Fe(001) surfaces. Physical Review B, 2007, 75, .	3.2	30
674	CO adsorption on metal surfaces: A hybrid functional study with plane-wave basis set. Physical Review B, 2007, 76, .	3.2	133
675	Effects of alloying element Ti on α-Nb5Si3and Nb3Al from first principles. Journal of Physics Condensed Matter, 2007, 19, 016215.	1.8	23
676	Vibrational Recognition of Adsorption Sites for CO on Platinum and Platinumâ^Ruthenium Surfaces. Journal of the American Chemical Society, 2007, 129, 11045-11052.	13.7	40
677	Study of the Decomposition Processes of (0001)AlN in a Hydrogen Atmosphere. Japanese Journal of Applied Physics, 2007, 46, L1114-L1116.	1.5	8
678	Theoretical Analysis for Surface Reconstruction of AlN and InN in the Presence of Hydrogen. Japanese Journal of Applied Physics, 2007, 46, 5112.	1.5	27
679	Functional form of the generalized gradient approximation for exchange: ThePBEαfunctional. Physical Review B, 2007, 75, .	3.2	82
680	DEVELOPMENT OF COMPUTATIONAL METHODOLOGIES FOR THE PREDICTION AND ANALYSIS OF SOLID-STATE TERAHERTZ SPECTRA. International Journal of High Speed Electronics and Systems, 2007, 17, 193-212.	0.7	3
681	Electronic Properties of the Active Sites Present at the (011) Surface of MoO ₂ . Adsorption Science and Technology, 2007, 25, 583-596.	3.2	5
682	Methanol and Methoxide Decomposition on Silver. Journal of Physical Chemistry C, 2007, 111, 9867-9876.	3.1	29
683	DFT Studies on the Four Polymorphs of Crystalline CL-20 and the Influences of Hydrostatic Pressure on ε-CL-20 Crystal. Journal of Physical Chemistry B, 2007, 111, 2090-2097.	2.6	147
684	Arsenic incorporation into FeS2 pyrite and its influence on dissolution: A DFT study. Geochimica Et Cosmochimica Acta, 2007, 71, 624-630.	3.9	149
685	Electronic structure and stability of Mg–Ce intermetallic compounds from first-principles calculations. Journal of Alloys and Compounds, 2007, 428, 316-321.	5.5	45
686	Point defect dynamics in sodium aluminum hydrides—A combined quasielastic neutron scattering and density functional theory study. Journal of Alloys and Compounds, 2007, 446-447, 469-473.	5.5	33
687	Bimetallic and Ternary Alloys for Improved Oxygen Reduction Catalysis. Topics in Catalysis, 2007, 46, 276-284.	2.8	202
688	A density functional theory study of atomic oxygen and nitrogen adsorption over α-alumina (0001). Physical Chemistry Chemical Physics, 2007, 9, 5112.	2.8	21

#	Article	IF	Citations
689	Evidence for a Single Hydrogen Molecule Connected by an Atomic Chain. Physical Review Letters, 2007, 98, 146802.	7.8	78
690	Structural stability of intermetallic compounds of Mg-Al-Ca alloy. Transactions of Nonferrous Metals Society of China, 2007, 17, 250-256.	4.2	25
691	A Cu/Pt Near-Surface Alloy for Waterâ^'Gas Shift Catalysis. Journal of the American Chemical Society, 2007, 129, 6485-6490.	13.7	233
692	First Row Transition Metal Atom Adsorption on Defect-Free MgO(100) Surface. Journal of Physical Chemistry C, 2007, 111, 6781-6788.	3.1	20
693	Hybrid functionals applied to rare-earth oxides: The example of ceria. Physical Review B, 2007, 75, .	3.2	502
694	Assessment of the exchange-correlation functionals for the physical description of spin transition phenomena by density functional theory methods: All the same?. Journal of Chemical Physics, 2007, 126, 014105.	3.0	102
695	A Density Functional Study of the 13C NMR Chemical Shifts in Functionalized Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2007, 129, 4430-4439.	13.7	47
696	Catalytic Activityâ^'d-Band Center Correlation for the O2Reduction Reaction on Platinum in Alkaline Solutions. Journal of Physical Chemistry C, 2007, 111, 404-410.	3.1	590
697	Simulating ice nucleation, one molecule at a time, with the †DFT microscope'. Faraday Discussions, 2007, 136, 287.	3.2	42
698	Potassium intercalation in graphite: A van der Waals density-functional study. Physical Review B, 2007, 76, .	3.2	155
699	Spin-State Energetics and Spin-Crossover Behavior of Pseudotetrahedral Cobalt(III)â^Imido Complexes. The Role of the Tripodal Supporting Ligand. Inorganic Chemistry, 2007, 46, 7890-7898.	4.0	51
700	Density functional theory study of flat and stepped NaCl(001). Physical Review B, 2007, 76, .	3.2	40
701	Ab initiosimulations of the electrochemical activation of water. Molecular Simulation, 2007, 33, 429-436.	2.0	21
702	Dimetalloendofullerene U2@C60Has a Uâ^'U Multiple Bond Consisting of Sixfold One-Electron-Two-Center Bonds. Journal of the American Chemical Society, 2007, 129, 2171-2177.	13.7	95
703	Role of MAO in Chromium-Catalyzed Ethylene Tri- and Tetramerization:Â A DFT Study. Organometallics, 2007, 26, 1000-1013.	2.3	85
704	Adsorption of small Au clusters on MgO and MgO/Mo: the role of oxygen vacancies and the Mo-support. New Journal of Physics, 2007, 9, 339-339.	2.9	74
705	Potential energy of hydrogen atom motion on $Pd(111)$ surface and in subsurface: A first principles calculation. Journal of Applied Physics, 2007, 101, 123530.	2.5	48
706	Microscopic models of PdZn alloy catalysts: structure and reactivity in methanol decomposition. Physical Chemistry Chemical Physics, 2007, 9, 3470-3482.	2.8	96

#	Article	IF	CITATIONS
707	Density Functional Theory Study of CO Adsorption and Dissociation on Molybdenum (100). Journal of Physical Chemistry C, 2007, 111, 13473-13480.	3.1	16
708	Energetics driving the short-range order in CuxPd1–x/Ru(0001) monolayer surface alloys. Physical Chemistry Chemical Physics, 2007, 9, 5127.	2.8	22
709	A computational study of H2dissociation on silver surfaces: The effect of oxygen in the added row structure of Ag(110). Physical Chemistry Chemical Physics, 2007, 9, $1247-1254$.	2.8	43
710	Atomic configurations of Pd atoms in PdAu(111) bimetallic surfaces investigated using the first-principles pseudopotential plane wave approach. Physical Review B, 2007, 75, .	3.2	72
711	Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Physical Chemistry Chemical Physics, 2007, 9, 3241-3250.	2.8	678
712	COoxidation at Pd(100): A first-principles constrained thermodynamics study. Physical Review B, 2007, 75, .	3.2	116
713	Comparison of Static First Hyperpolarizabilities Calculated with Various Quantum Mechanical Methods. Journal of Physical Chemistry A, 2007, 111, 1319-1327.	2.5	125
714	Density functional study of x-ray Raman scattering from aromatic hydrocarbons and polyfluorene. Physical Review B, 2007, 76, .	3.2	21
715	The Effect of Coadsorbed Oxygen on the Adsorption and Diffusion of Potassium on Rh(110):  A First-Principles Study. Journal of Physical Chemistry C, 2007, 111, 7446-7455.	3.1	12
716	Catalytic activity of Ti-doped NaH nanoclusters towards hydrogenation of terminal alkenes. Molecular Simulation, 2007, 33, 919-924.	2.0	0
717	Density Functional Theory Study of CO and Hydrogen Co-adsorption on the Fe(111) Surface. Journal of Physical Chemistry C, 2007, 111, 4305-4314.	3.1	26
718	CO Oxidation on Rh(100):  Multisite Atomistic Lattice-Gas Modeling. Journal of Physical Chemistry C, 2007, 111, 14698-14706.	3.1	57
719	Density Functional Study of the Adsorption of Atomic Oxygen on the (001) Surface of Early Transition-Metal Carbides. Journal of Physical Chemistry C, 2007, 111, 1307-1314.	3.1	66
720	Adsorption of CO on Surfaces of 4d and 5d Elements in Group VIII. Journal of Physical Chemistry C, 2007, 111, 1005-1009.	3.1	55
721	Electrodeposition of Pt onto RuO ₂ (110) Single-Crystal Surface. Journal of Physical Chemistry C, 2007, 111, 15306-15311.	3.1	13
722	A Systematic Density Functional Study of Molecular Oxygen Adsorption and Dissociation on the (001) Surface of Group IVâ°'VI Transition Metal Carbides. Journal of Physical Chemistry C, 2007, 111, 16982-16989.	3.1	60
723	First-Principles Prediction of Equilibrium Potentials for Water Activation by a Series of Metals. Journal of the Electrochemical Society, 2007, 154, F217.	2.9	30
724	Reactions of Hydroxyl on the Topmost Layer of Ag(111):  A Density Functional Theory Study. Journal of Physical Chemistry C, 2007, 111, 1333-1341.	3.1	7

#	Article	IF	Citations
725	H ₂ O Nucleation around Au ⁺ . Journal of the American Chemical Society, 2007, 129, 15565-15571.	13.7	30
726	Theoretical Study of C ₂ H ₂ Adsorbed on Low-Index Cu Surfaces. Journal of Physical Chemistry C, 2007, 111, 18189-18194.	3.1	39
727	Adsorption and Dissociation of H ₂ O on a W(111) Surface:  A Computational Study. Journal of Physical Chemistry C, 2007, 111, 17333-17339.	3.1	29
728	Kinetics of NH Formation and Dissociation on $Pt(111)$. Journal of Physical Chemistry C, 2007, 111, 7127-7136.	3.1	17
729	Ab Initio Analysis of the Structural Properties of Alkyl-Substituted Polyhedral Oligomeric Silsesquioxanes. Journal of Physical Chemistry A, 2007, 111, 3577-3584.	2.5	32
730	Elastic Properties of Rutile TiO ₂ at High Temperature. Chinese Physics Letters, 2007, 24, 2642-2645.	3.3	14
731	On the Role of Subsurface Oxygen and Ethylenedioxy in Ethylene Epoxidation on Silver. Journal of Physical Chemistry C, 2007, 111, 7992-7999.	3.1	40
732	Hydrogen Dynamics in Na3AlH6:  A Combined Density Functional Theory and Quasielastic Neutron Scattering Study. Journal of Physical Chemistry B, 2007, 111, 3886-3892.	2.6	38
733	First Principle Study of Ethanol Adsorption and Formation of Hydrogen Bond on Rh(111) Surface. Journal of Physical Chemistry C, 2007, 111, 7403-7410.	3.1	50
734	Electronic Structure of Some Substituted Iron(II) Porphyrins. Are They Intermediate or High Spin?. Journal of Physical Chemistry A, 2007, 111, 5927-5935.	2.5	45
735	Adsorption of Fe and Co Nanowires to (3,3) Single-Walled Carbon Nanotubes. Japanese Journal of Applied Physics, 2007, 46, 1788-1791.	1.5	7
736	Performance on molecules, surfaces, and solids of the Wu-Cohen GGA exchange-correlation energy functional. Physical Review B, 2007, 75, .	3.2	306
737	Quantum Chemical Description of Oxygen Activation Process on Co, Mn, and Mo Porphyrins. Journal of Chemical Theory and Computation, 2007, 3, 914-920.	5.3	22
738	Correlations between transition temperature, tolerance factor and cohesive energy in 2+:4+ perovskites. Journal of Physics Condensed Matter, 2007, 19, 176201.	1.8	60
739	First-principles calculations of the diamond (110) surface: A Mott insulator. Physical Review B, 2007, 75, .	3.2	5
740	CO adsorption on Cu–Pd alloy surfaces: ligand versus ensemble effects. Physical Chemistry Chemical Physics, 2007, 9, 2216-2225.	2.8	79
741	Formation of Single-Walled Carbon Nanotube via the Interaction of Graphene Nanoribbons:  Ab Initio Density Functional Calculations. Nano Letters, 2007, 7, 3349-3354.	9.1	24
742	Oxide-Supported Metal Thin-Film Catalysts: The How and Why. , 2007, , 13-21.		6

#	Article	IF	CITATIONS
743	Description of Carbo-oxocarbons and Assessment of Exchange-Correlation Functionals for the DFT Description of Carbo-mers. Journal of Physical Chemistry A, 2007, 111, 136-149.	2.5	32
744	Importance of Van Der Waals Interaction for Organic Molecule-Metal Junctions: Adsorption of Thiophene on Cu(110) as a Prototype. Physical Review Letters, 2007, 99, 176401.	7.8	159
745	Au Adsorption on Regular and Defected Thin MgO(100) Films Supported by Mo. Journal of Physical Chemistry C, 2007, 111, 4319-4327.	3.1	74
746	Why does the B3LYP hybrid functional fail for metals?. Journal of Chemical Physics, 2007, 127, 024103.	3.0	481
747	AbInitioMolecular Dynamics Study of Carbon Dioxide and Bicarbonate Hydration and the Nucleophilic Attack of Hydroxide on CO2. Journal of Physical Chemistry B, 2007, 111, 4453-4459.	2.6	87
748	Estimations of electric field effects on the oxygen reduction reaction based on the density functional theory. Physical Chemistry Chemical Physics, 2007, 9, 5158.	2.8	260
749	Origin of Enhanced Activity in Palladium Alloy Electrocatalysts for Oxygen Reduction Reactionâ€. Journal of Physical Chemistry B, 2007, 111, 6772-6775.	2.6	282
750	Surface Sensitivity in Lithium-Doping of MgO:  A Density Functional Theory Study with Correction for on-Site Coulomb Interactions. Journal of Physical Chemistry C, 2007, 111, 7971-7979.	3.1	96
751	Representing molecule-surface interactions with symmetry-adapted neural networks. Journal of Chemical Physics, 2007, 127, 014705.	3.0	128
752	Manipulation and Patterning of the Surface Hydrogen Concentration on Pd(111) by Electric Fields. Angewandte Chemie - International Edition, 2007, 46, 5757-5761.	13.8	16
754	Theoretical density functional theory studies on interactions of small biologically active molecules with isolated heme group. Journal of Computational Chemistry, 2007, 28, 825-831.	3.3	11
755	Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges. Surface Science Reports, 2007, 62, 219-270.	7.2	1,102
756	Carbide induced reconstruction of monatomic steps on Ni(111) – A density functional study. Surface Science, 2007, 601, 649-655.	1.9	12
757	Adsorption of NO, NO2, pyridine and pyrrole on α-Mo2C(0001): A DFT study. Surface Science, 2007, 601, 1599-1607.	1.9	36
758	Large-scale, density functional theory-based screening of alloys for hydrogen evolution. Surface Science, 2007, 601, 1590-1598.	1.9	160
759	CO adsorption energies on metals with correction for high coordination adsorption sites – A density functional study. Surface Science, 2007, 601, 1747-1753.	1.9	259
760	A theoretical study of CH4 dissociation on Pt(100) surface. Surface Science, 2007, 601, 3697-3701.	1.9	20
761	Magnetic and electronic properties of Fe-filled single-walled carbon nanotubes on metal surfaces. Surface Science, 2007, 601, 4366-4369.	1.9	13

#	Article	IF	CITATIONS
762	When adding an unreactive metal enhances catalytic activity: NOx decomposition over silverâ€"rhodium bimetallic surfaces. Surface Science, 2007, 601, L103-L108.	1.9	55
763	Segregation at the surface of an Au/Pd alloy exposed to CO. Surface Science, 2007, 601, 5332-5339.	1.9	84
764	Geometrical characterization of adenine and guanine on $Cu(110)$ by NEXAFS, XPS, and DFT calculation. Surface Science, 2007, 601, 5433-5440.	1.9	67
765	Ice formation on kaolinite: Lattice match or amphoterism?. Surface Science, 2007, 601, 5378-5381.	1.9	101
766	Associative desorption of N2 from Ru(0001): A computational study. Chemical Physics Letters, 2007, 434, 231-236.	2.6	23
767	A combined molecular dynamics/density-functional theoretical study on the structure and electronic properties of hydrating water molecules in the minor groove of decameric DNA duplex. Chemical Physics Letters, 2007, 441, 136-142.	2.6	19
768	Effect of base mismatch on the electronic properties of DNA–DNA and LNA–DNA double strands: Density-functional theoretical calculations. Chemical Physics Letters, 2007, 446, 151-158.	2.6	13
769	Hydrogen pairing on graphene. Carbon, 2007, 45, 218-220.	10.3	60
770	The optimum average nanopore size for hydrogen storage in carbon nanoporous materials. Carbon, 2007, 45, 2649-2658.	10.3	168
771	X-ray spectroscopic fingerprints of reactive oxygen sites at the MoO3(010) surface. Catalysis Today, 2007, 124, 21-27.	4.4	32
772	A first principles analysis of the electro-oxidation of CO over Pt(111). Electrochimica Acta, 2007, 52, 5517-5528.	5.2	61
773	Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations. Electrochimica Acta, 2007, 52, 5829-5836.	5.2	326
774	Density functional theory study of CO adsorption on the (100), (001) and (010) surfaces of Fe3C. Journal of Molecular Catalysis A, 2007, 269, 169-178.	4.8	60
775	First-principles calculations for elastic properties of the rocksalt structure MgO. Physica B: Condensed Matter, 2007, 387, 245-249.	2.7	27
776	First-principles calculations of thermodynamic properties of TiB2 at high pressure. Physica B: Condensed Matter, 2007, 400, 83-87.	2.7	66
777	First principles investigation on Fe-filled single-walled carbon nanotubes on Ni (111) and Cu (111). Journal of Magnetism and Magnetic Materials, 2007, 310, e748-e750.	2.3	7
778	Structureâ€"reactivity relationship for bimetallic electrodes: Pt overlayers and PtAu surface alloys on Au(111). Journal of Electroanalytical Chemistry, 2007, 607, 47-53.	3.8	41
779	Electrolysis of water on oxide surfaces. Journal of Electroanalytical Chemistry, 2007, 607, 83-89.	3.8	2,277

#	ARTICLE	IF	CITATIONS
780	A theoretical comparative study of the surfactant effect of Sb and Bi on GaN growth. Journal of Crystal Growth, 2007, 303, 493-499.	1.5	14
781	Revision of pyrrhotite structures within a common superspace model. Acta Crystallographica Section B: Structural Science, 2007, 63, 693-702.	1.8	21
782	Thermodynamic stability of polyacrylamide and poly(N,N-dimethyl acrylamide). Polymers for Advanced Technologies, 2007, 18, 978-985.	3.2	9
783	Stability and band gaps of InGaAs, BGaAs, and BInGaAs alloys: Density-functional supercell calculations. Physica Status Solidi (B): Basic Research, 2007, 244, 1957-1963.	1.5	7
784	First-principles calculation and X-ray absorption fine structure analysis of Fe doping mechanism for semi-insulating GaN growth on GaAs substrates. Physica Status Solidi (B): Basic Research, 2007, 244, 1862-1866.	1.5	1
785	A density functional theory study of HCN hydrogenation to methylamine on Ni(111). Journal of Catalysis, 2007, 245, 436-445.	6.2	27
786	Density functional theory studies of methane dissociation on anode catalysts in solid-oxide fuel cells: Suggestions for coke reduction. Journal of Catalysis, 2007, 247, 20-33.	6.2	101
787	The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: A density functional study. Journal of Catalysis, 2007, 248, 188-203.	6.2	253
788	Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts. Journal of Catalysis, 2007, 249, 220-233.	6.2	428
789	CO dissociation on clean and hydrogen precovered Fe(111) surfaces. Journal of Catalysis, 2007, 249, 174-184.	6.2	102
790	Chemisorption energetics and surface reactivity: UBI-QEP versus DFT projections. Russian Journal of Physical Chemistry B, 2007, 1, 307-329.	1.3	20
791	A study of oxygen dissociative adsorption on close-packed metal surfaces using a hybrid analytical approach. Russian Journal of Physical Chemistry B, 2007, 1, 357-376.	1.3	3
792	First-principles study of native point defects in hafnia and zirconia. Physical Review B, 2007, 75, .	3.2	203
793	Adsorption of gold clusters on metal-supported MgO: Correlation to electron affinity of gold. Physical Review B, 2007, 76, .	3.2	53
794	Scaling Properties of Adsorption Energies for Hydrogen-Containing Molecules on Transition-Metal Surfaces. Physical Review Letters, 2007, 99, 016105.	7.8	1,270
795	DFT study of BaTiO3 (001) surface with O and O2 adsorption. European Physical Journal B, 2007, 57, 291-297.	1.5	16
796	Mechanism of associative oxygen desorption from Pt(111) surface. European Physical Journal B, 2007, 58, 257-262.	1.5	12
797	Discovery of technical methanation catalysts based on computational screening. Topics in Catalysis, 2007, 45, 9-13.	2.8	114

#	Article	IF	CITATIONS
798	Platinum Monolayer Fuel Cell Electrocatalysts. Topics in Catalysis, 2007, 46, 249-262.	2.8	820
799	Tuning catalytic properties of bimetallic surfaces: Oxygen adsorption on pseudomorphic Pt/Ru overlayers. Electrochimica Acta, 2007, 52, 2219-2228.	5.2	93
800	Understanding the mechanism of hydrogen adsorption into metal organic frameworks. Catalysis Today, 2007, 120, 330-335.	4.4	59
801	Vibrationally enhanced associative photodesorption of molecular hydrogen from Ru(0001). Chemical Physics, 2007, 338, 299-311.	1.9	19
802	Boron and indium substitution in GaAs(001) surfaces: Density-functional supercell calculations of the surface stability. Surface Science, 2007, 601, 900-907.	1.9	8
803	The unhappy marriage of transition and noble metal atoms: A new way to enhance catalytic activity? (A) Tj ETQq1	1 0.78431 1.9	14 rgBT /Ov 6
804	2007, 601, 3529-3531. The surface stress of the (110) and (100) surfaces of rutile and the effect of water adsorbents. Surface Science, 2007, 601, 4824-4836.	1.9	36
805	Density-functional study of the CO adsorption on ferromagnetic Co(0001) and Co(111) surfaces. Surface Science, 2007, 601, 5571-5575.	1.9	39
806	Identification of the vanadyl terminated V2O3(0001) surface by NEXAFS spectroscopy: A combined theoretical and experimental study. Surface Science, 2007, 601, 5394-5402.	1.9	30
807	From activation of dioxygen to formation of high-valent oxo species: Ab initio DFT studies. Journal of Molecular Catalysis A, 2007, 275, 113-120.	4.8	12
808	Interaction of oxygen with the surface of vanadia catalysts. Journal of Molecular Catalysis A, 2007, 277, 27-34.	4.8	14
809	Trends in catalytic activity for SOFC anode materials. Solid State Ionics, 2008, 178, 1694-1700.	2.7	108
810	Monolayer bimetallic surfaces: Experimental and theoretical studies of trends in electronic and chemical properties. Surface Science Reports, 2008, 63, 201-254.	7.2	472
811	Structural and dynamical properties of Ru(0001) surface. Surface Science, 2008, 602, 3654-3659.	1.9	7
812	Ligand binding properties of cobalamins. Theoretical Chemistry Accounts, 2008, 120, 411-419.	1.4	5
813	Theoretical studies on new potential high energy density compounds (HEDCs) adamantyl nitrates from gas to solid. Science in China Series B: Chemistry, 2008, 51, 427-439.	0.8	16
814	A mechanistic study of CO removal on a small H-saturated platinum cluster. Science in China Series B: Chemistry, 2008, 51, 1187-1196.	0.8	2
815	Study on H atoms diffusion and adsorption properties of MgH2-V systems. Science in China Series D: Earth Sciences, 2008, 51, 979-988.	0.9	3

#	Article	IF	CITATIONS
816	Practical Surface Treatments and Surface Chemistry of n-Type and p-Type GaN. Journal of Electronic Materials, 2008, 37, 439-447.	2.2	25
817	Coordination and binding geometry of methyl-coenzyme M in the red1m state of methyl-coenzyme M reductase. Journal of Biological Inorganic Chemistry, 2008, 13, 1275-1289.	2.6	11
818	Adsorption and diffusion property of a hydrogen atom on a Pd ₃ Ag(111) surface. Surface and Interface Analysis, 2008, 40, 1108-1112.	1.8	17
819	Understanding the bondâ€making and bondâ€breaking of Feâ€filled SWNT on Ni(111). Surface and Interface Analysis, 2008, 40, 1098-1102.	1.8	3
820	Experimental and <i>abâ€initio</i> studies of temperature dependent InN decomposition in various ambient. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1518-1521.	0.8	14
821	First principles study of the decomposition processes of AlN in a hydrogen atmosphere. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3042-3044.	0.8	2
822	Magnetic Endohedral Transitionâ€Metalâ€Doped Semicondunctingâ€Nanoclusters. Chemistry - A European Journal, 2008, 14, 8547-8554.	3.3	10
823	Predicting CH/π Interactions with Nonlocal Density Functional Theory. ChemPhysChem, 2008, 9, 891-895.	2.1	39
824	Unique Reactivity of Confined Metal Atoms on a Silicon Substrate. ChemPhysChem, 2008, 9, 975-979.	2.1	24
825	Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: Evidence of small basis set superposition error compared to Gaussian basis sets. Journal of Computational Chemistry, 2008, 29, 225-232.	3.3	467
826	<i>Abâ€initio</i> simulations of materials using VASP: Densityâ€functional theory and beyond. Journal of Computational Chemistry, 2008, 29, 2044-2078.	3.3	2,717
827	Scaling Relationships for Adsorption Energies on Transition Metal Oxide, Sulfide, and Nitride Surfaces. Angewandte Chemie - International Edition, 2008, 47, 4683-4686.	13.8	301
828	On the Role of Surface Modifications of Palladium Catalysts in the Selective Hydrogenation of Acetylene. Angewandte Chemie - International Edition, 2008, 47, 9299-9302.	13.8	222
831	Ab initio calculation for the decomposition process of GaN (0001) and (0001 \hat{A}) surfaces. Journal of Crystal Growth, 2008, 310, 1632-1636.	1.5	12
832	First principles study of the band structure and dielectric function of (6,6) single-walled zinc oxide nanotube. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 499-502.	2.7	20
833	DFT calculations, DRIFT spectroscopy and kinetic studies on the hydrolysis of isocyanic acid on the TiO2-anatase (101) surface. Journal of Molecular Catalysis A, 2008, 280, 68-80.	4.8	28
834	First-principles investigation of Mg2THy (T=Ni, Co, Fe) complex hydrides. Physica B: Condensed Matter, 2008, 403, 4217-4223.	2.7	15
835	Chemical deactivation of V2O5/WO3–TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils and urea solution. Applied Catalysis B: Environmental, 2008, 77, 228-236.	20.2	243

#	Article	IF	CITATIONS
836	Increasing physical constraints and improving performances in a parameter-free GGA functional. Chemical Physics Letters, 2008, 460, 536-539.	2.6	33
837	Enhancement of CO detection in Al doped graphene. Chemical Physics Letters, 2008, 461, 276-279.	2.6	415
838	Modeling the electrified solid–liquid interface. Chemical Physics Letters, 2008, 466, 68-71.	2.6	349
839	Ab initio study of the hydrogen chemisorption of single-walled aluminum nitride nanotubes. Chemical Physics Letters, 2008, 466, 197-204.	2.6	39
840	Phase stability, electronic structure and mechanical properties of ternary-layered carbide Nb4AlC3: An ab initio study. Acta Materialia, 2008, 56, 1511-1518.	7.9	107
841	Experimental and DFT studies of N2O decomposition over bare and Co-doped magnesium oxide—insights into the role of active sites topology in dry and wet conditions. Catalysis Today, 2008, 137, 423-428.	4.4	33
842	A DFT study of pseudomorphic monolayer Pt and Pd catalysts for NOx storage reduction applications. Catalysis Today, 2008, 136, 76-83.	4.4	24
843	Decomposition of N2O over the surface of cobalt spinel: A DFT account of reactivity experiments. Catalysis Today, 2008, 137, 418-422.	4.4	92
844	CO adsorption on magnetic Co(0001) surface: A study of density functional theory. Solid State Communications, 2008, 147, 152-156.	1.9	9
845	Interaction of carbon dioxide with Cu overlayers on Pt(111). Surface Science, 2008, 602, 702-711.	1.9	44
846	Water on the hydroxylated (001) surface of kaolinite: From monomer adsorption to a flat 2D wetting layer. Surface Science, 2008, 602, 960-974.	1.9	155
847	Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces. Surface Science, 2008, 602, L89-L94.	1.9	204
848	Reactivity descriptors for direct methanol fuel cell anode catalysts. Surface Science, 2008, 602, 3424-3431.	1.9	168
849	Origin of chemoselective behavior of S-covered Cu(111) towards catalytic hydrogenation of unsaturated aldehydes. Surface Science, 2008, 602, 3284-3290.	1.9	20
850	First-principles study of O2 adsorption and dissociation on the CuCr2O4 (100) surface. Computational and Theoretical Chemistry, 2008, 860, 18-23.	1.5	14
851	A Relativistic DFT study of the structure and vibrational frequencies of the gaseous UF4. Computational and Theoretical Chemistry, 2008, 864, 85-88.	1.5	5
852	Vibrational Stark tuning rates from periodic DFT calculations: CO/Pt(111). Electrochimica Acta, 2008, 53, 2897-2906.	5.2	13
853	The electronic structure of Ti(BH4)3: Photoelectron spectra and calculation of vertical ionization energies. Inorganica Chimica Acta, 2008, 361, 462-466.	2.4	7

#	Article	IF	CITATIONS
854	Density functional theory study of H2 adsorption on the (100), (001) and (010) surfaces of Fe3C. Journal of Molecular Catalysis A, 2008, 292, 14-20.	4.8	20
855	Hydrogen associative desorption from Ru(1010). European Physical Journal B, 2008, 63, 17-24.	1.5	14
856	Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis. Physical Chemistry Chemical Physics, 2008, 10, 3670.	2.8	192
857	Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 2008, 100, 136406.	7.8	8,139
858	Magnetism and phase transitions of iron under pressure. Journal of Physics Condensed Matter, 2008, 20, 425217.	1.8	12
859	Structure sensitivity of the methanation reaction: H2-induced CO dissociation on nickel surfaces. Journal of Catalysis, 2008, 255, 6-19.	6.2	411
860	Mechanism of HCl oxidation (Deacon process) over RuO2. Journal of Catalysis, 2008, 255, 29-39.	6.2	169
861	First principles calculations and experimental insight into methane steam reforming over transition metal catalysts. Journal of Catalysis, 2008, 259, 147-160.	6.2	559
862	Oxidation of CO and H2 by O2 and N2O on Au/TiO2 catalysts in microreactors. Journal of Catalysis, 2008, 260, 86-92.	6.2	29
863	Catalyst size matters: Tuning the molecular mechanism of the water–gas shift reaction on titanium carbide based compounds. Journal of Catalysis, 2008, 260, 103-112.	6.2	81
864	Towards an understanding of promoter action in heterogeneously catalyzed ethene epoxidation: Why chlorine is the best halogen. Journal of Catalysis, 2008, 260, 380-383.	6.2	44
865	Ab initio study of polymorphism in layered ternary carbide M4AlC3 (M=V, Nb and Ta). Scripta Materialia, 2008, 58, 1043-1046.	5.2	48
866	A first-principles study on the structural stability of Al2Ca Al4Ca and Mg2Ca phases. Materials Letters, 2008, 62, 206-210.	2.6	50
867	Chapter 8 Understanding Heterogeneous Catalysis from the Fundamentals. Handbook of Surface Science, 2008, 3, 269-340.	0.3	3
868	E2 and S _N 2 Reactions of X ^{\hat{a}°} + CH ₃ CH ₂ X (X = F, Cl); an <i>ab Initio</i> and DFT Benchmark Study. Journal of Chemical Theory and Computation, 2008, 4, 929-940.	5.3	86
869	Size-Dependence of Adsorption Properties of Metal Nanoparticles: A Density Functional Study on Palladium Nanoclusters. Journal of Physical Chemistry C, 2008, 112, 20269-20275.	3.1	86
870	Template Effects in Vinyl Acetate Synthesis on PdAu Surface Alloys: A Density Functional Theory Study. Journal of the American Chemical Society, 2008, 130, 14406-14407.	13.7	44
871	Chemisorption and Reactivity of CH $\langle sub \rangle \langle i \rangle x \langle i \rangle \langle sub \rangle$ ($\langle i \rangle x \langle i \rangle = 0$ â°4) on Feâˆ'Co Alloy Surfaces. Journal of Physical Chemistry C, 2008, 112, 13642-13649.	3.1	13

#	Article	IF	CITATIONS
872	Computational Studies of the Adsorption and Diffusion of Hydrogen on Feâ°Co Alloy Surfaces. Journal of Physical Chemistry C, 2008, 112, 3667-3678.	3.1	8
873	Adsorption and Dissociation of CO on a Feâ^Co Alloy (110) Surface:  A Theoretical Study. Journal of Physical Chemistry C, 2008, 112, 3679-3691.	3.1	13
874	Bulk and surface analysis of HÃgg Fe carbide (Fe ₅ C ₂): a density functional theory study. Journal of Physics Condensed Matter, 2008, 20, 064238.	1.8	38
875	The AM05 density functional applied to solids. Journal of Chemical Physics, 2008, 128, 084714.	3.0	220
876	An ab initio Study of Reduction of V ₂ O ₅ through the Formation of Oxygen Vacancies and Li Intercalation. Journal of Physical Chemistry C, 2008, 112, 9903-9911.	3.1	213
877	Synergetic Effects of the Cu/Pt{110} Surface Alloy:  Enhanced Reactivity of Water and Carbon Monoxide. Journal of Physical Chemistry C, 2008, 112, 6422-6429.	3.1	20
878	Theory and simulation in heterogeneous gold catalysis. Chemical Society Reviews, 2008, 37, 2046.	38.1	136
879	Point defects and clustering in uranium dioxide by <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>LSDA</mml:mi><mml:mo>+</mml:mo><mml:mi mathvariant="normal">U</mml:mi></mml:mrow></mml:math> calculations. Physical Review B, 2008, 77,	3.2	100
880	Oxidation and Photo-Oxidation of Water on TiO ₂ Surface. Journal of Physical Chemistry C, 2008, 112, 9872-9879.	3.1	587
881	<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi<math>"</mml:mi<math></mml:math> self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces. Physical Review B, 2008, 78, .	3.2	182
882	First-principles calculations for elastic properties of rutile TiO ₂ under pressure. Chinese Physics B, 2008, 17, 2216-2221.	1.4	47
883	OH Formation from O and H Atoms Physisorbed on a Graphitic Surface through the Langmuirâ^'Hinshelwood Mechanism: A Quasi-Classical Approach. Journal of Physical Chemistry A, 2008, 112, 11921-11930.	2.5	38
884	First-Principles Calculations for Elastic Properties of ZnS under Pressure. Chinese Physics Letters, 2008, 25, 1064-1067.	3.3	22
885	The Effect of Water on the CO Oxidation on Ag(111) and Au(111) Surfaces: A First-Principle Study. Journal of Physical Chemistry C, 2008, 112, 17303-17310.	3.1	160
886	Mechanism of the Water Gas Shift Reaction on Pt:  First Principles, Experiments, and Microkinetic Modeling. Journal of Physical Chemistry C, 2008, 112, 4608-4617.	3.1	452
887	First-principles calculations for electronic, optical and thermodynamic properties of ZnS. Chinese Physics B, 2008, 17, 3867-3874.	1.4	44
888	Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT. Physical Chemistry Chemical Physics, 2008, 10, 3722.	2.8	480
889	Adsorption geometry variation of 1,4-benzenedimethanethiol self-assembled monolayers on Au(111) grown from the vapor phase. Journal of Chemical Physics, 2008, 128, 134711.	3.0	42

#	Article	IF	CITATIONS
890	Formation of Pd/Au Nanostructures from Pd Nanowires via Galvanic Replacement Reaction. Journal of the American Chemical Society, 2008, 130, 1093-1101.	13.7	146
891	Unique Activity of Platinum Adislands in the CO Electrooxidation Reaction. Journal of the American Chemical Society, 2008, 130, 15332-15339.	13.7	142
892	Theory of core-hole effects in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:mi></mml:mi></mml:mrow></mml:math> core-level spectroscopy of the first-row elements. Physical Review B, 2008, 77, .	3.2	102
893	Conserving <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow>G<mml:mi>W</mml:mi></mml:mrow></mml:math> scheme for nonequilibrium quantum transport in molecular contacts. Physical Review B, 2008, 77, .	3.2	204
894	Atomic and molecular adsorption on RhMn alloy surface: A first principles study. Journal of Chemical Physics, 2008, 129, 244711.	3.0	13
895	Activation of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>Al</mml:mi> <mml:mn>2 </mml:mn> </mml:msub> <mml:msub> <mml:mi mathvariant="normal">O </mml:mi>3 </mml:msub> </mml:math> by a Long-Ranged Chemical Bond Mechanism. Physical Review Letters. 2008, 100, 116801.	7.8	31
896	The effects of electronic field on the atomic structure of the graphene/α-SiO2 interface. Nanotechnology, 2008, 19, 275710.	2.6	23
897	Influence of van der Waals forces on the adsorption structure of benzene on silicon studied using density functional theory. Physical Review B, 2008, 77, .	3.2	69
898	Links Between Single-Site Heterogeneous and Homogeneous Catalysis. DFT Analysis of Pathways for Organozirconium Catalyst Chemisorptive Activation and Olefin Polymerization on \hat{I}^3 -Alumina. Journal of the American Chemical Society, 2008, 130, 16533-16546.	13.7	58
899	Exploring the Limit of Accuracy of the Global Hybrid Meta Density Functional for Main-Group Thermochemistry, Kinetics, and Noncovalent Interactions. Journal of Chemical Theory and Computation, 2008, 4, 1849-1868.	5.3	956
900	H ₂ Chemisorption on W(100) and W(110) Surfaces. Journal of Physical Chemistry C, 2008, 112, 5579-5588.	3.1	41
901	On the prediction of the crystal and electronic structure of mixed-valence materials by periodic density functional calculations: The case of Prussian Blue. Journal of Chemical Physics, 2008, 128, 044713.	3.0	35
902	Aqueous and Surface Redox Potentials from Self-Consistently Determined Gibbs Energies. Journal of Physical Chemistry C, 2008, 112, 8747-8750.	3.1	132
903	Advances in Correlated Electronic Structure Methods for Solids, Surfaces, and Nanostructures. Annual Review of Physical Chemistry, 2008, 59, 261-290.	10.8	210
904	Adsorption and Dissociation of the HCl and Cl ₂ Molecules on W(111) Surface: A Computational Study. Journal of Physical Chemistry C, 2008, 112, 12342-12348.	3.1	10
905	Adsorption and Dissociation of CO <i></i> <td>3.1</td> <td>21</td>	3.1	21
906	Molecular dynamics of hydrogen dissociation on an oxygen covered Pt(111) surface. Journal of Chemical Physics, 2008, 128, 154708.	3.0	11
907	The role of ligands in controlling the electronic structure and magnetic properties of Mn4 single-molecule magnets. Computational Materials Science, 2008, 44, 111-116.	3.0	2

#	ARTICLE	IF	CITATIONS
908	Recent density functional studies of hydrodesulfurization catalysts: insight into structure and mechanism. Journal of Physics Condensed Matter, 2008, 20, 064236.	1.8	25
909	Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: Case studies for ZnO and GaAs. Physical Review B, 2008, 78, .	3.2	1,035
910	The local structure of OH species on the V2O3(0001) surface: A scanned-energy mode photoelectron diffraction study. Surface Science, 2008, 602, 1267-1279.	1.9	13
911	Theory: Periodic Electronic Structure Calculations. , 0, , 323-389.		1
912	On the Mechanism of Low-Temperature Water Gas Shift Reaction on Copper. Journal of the American Chemical Society, 2008, 130, 1402-1414.	13.7	839
913	Construction of a generalized gradient approximation by restoring the density-gradient expansion and enforcing a tight Lieb–Oxford bound. Journal of Chemical Physics, 2008, 128, 184109.	3.0	260
914	Movement of hydrogen molecules in pristine, hydrogenated and nitrogen-doped single-walled carbon nanotubes. Molecular Simulation, 2008, 34, 1245-1252.	2.0	4
915	First-principles calculation of the effect of stress on the chemical activity of graphene. Applied Physics Letters, 2008, 93, .	3.3	50
916	In-silico investigations in heterogeneous catalysisâ€"combustion and synthesis of small alkanes. Chemical Society Reviews, 2008, 37, 2274.	38.1	52
917	Dissociative dynamics of spin-triplet and spin-singlet O2 on Ag(100). Journal of Chemical Physics, 2008, 129, 224702.	3.0	39
918	Anomalous Conductance Oscillations and Half-Metallicity in Atomic Ag-O Chains. Physical Review Letters, 2008, 101, 096804.	7.8	14
919	Rational Enhancement of Second-Order Nonlinearity: Bis-(4-methoxyphenyl) <i>hetero</i> -aryl-amino Donor-Based Chromophores: Design, Synthesis, and Electrooptic Activity. Journal of the American Chemical Society, 2008, 130, 10565-10575.	13.7	186
920	BEP relations for N2 dissociation over stepped transition metal and alloy surfaces. Physical Chemistry Chemical Physics, 2008, 10, 5202.	2.8	76
921	Lattice match in density functional calculations: ice lh vs. Î ² -Agl. Physical Chemistry Chemical Physics, 2008, 10, 4688.	2.8	55
922	Alloy surface segregation in reactive environments: First-principles atomistic thermodynamics study of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ag</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mi .<="" 2008,="" 77,="" atmospheres.="" b,="" oxygen="" physical="" review="" td=""><td>>Pd<td>:<u>129</u> :mi><mml:m< td=""></mml:m<></td></td></mml:mi></mml:mrow></mml:math>	>Pd <td>:<u>129</u> :mi><mml:m< td=""></mml:m<></td>	: <u>129</u> :mi> <mml:m< td=""></mml:m<>
923	On "the complete basis set limit―and plane-wave methods in first-principles simulations of water. Physical Chemistry Chemical Physics, 2008, 10, 4685.	2.8	34
924	NH ₃ Oxidation on Oxygen-Precovered Au(111):  A Density Functional Theory Study on Selectivity. Journal of Physical Chemistry C, 2008, 112, 247-252.	3.1	32
925	A Combined Density-Functional and IRAS Study on the Interaction of NO with Pd Nanoparticles: Identifying New Adsorption Sites with Novel Properties. Journal of Physical Chemistry C, 2008, 112, 16539-16549.	3.1	41

#	Article	IF	CITATIONS
926	Experiment and Theory of Fuel Cell Catalysis: Methanol and Formic Acid Decomposition on Nanoparticle Pt/Ru. Journal of Physical Chemistry C, 2008, 112, 15595-15601.	3.1	104
927	Insight into the Reduction of Pyruvic Acid to Lactic Acid over Cu{110}: The Crucial Role of Intramolecular Tunneling in Direct Hydrogenation. Journal of the American Chemical Society, 2008, 130, 14483-14492.	13.7	12
928	Intrinsic Metal Size Effect on Adsorption of Organic Molecules on Platinum. Journal of Physical Chemistry C, 2008, 112, 6822-6831.	3.1	17
929	A Systematic Density Functional Study of the Zero-Field Splitting in Mn(II) Coordination Compounds. Inorganic Chemistry, 2008, 47, 134-142.	4.0	121
930	Understanding Trichloroethylene Chemisorption to Iron Surfaces Using Density Functional Theory. Environmental Science & Enviro	10.0	21
931	CO Adsorption on Fe ₄ C (100), (110), and (111) Surfaces in Fischerâ^Tropsch Synthesis. Journal of Physical Chemistry C, 2008, 112, 19018-19029.	3.1	25
932	Influence of CO Poisoning on Hydrogen Chemisorption onto a Pt ₆ Cluster. Journal of Physical Chemistry C, 2008, 112, 13937-13942.	3.1	32
933	Utilization of the Three-Dimensional Volcano Surface To Understand the Chemistry of Multiphase Systems in Heterogeneous Catalysis. Journal of the American Chemical Society, 2008, 130, 10868-10869.	13.7	118
934	Activation in Prochiral Reaction Assemblies on Pt(111). Journal of the American Chemical Society, 2008, 130, 5386-5387.	13.7	48
935	Adsorption, Desorption, and Dissociation of CO on Tungsten(100), a DFT Study. Journal of Physical Chemistry C, 2008, 112, 7436-7444.	3.1	10
936	Dependence of Charge-Transport Parameters on Static Correlation and Self-Interaction Energy: The Case of a 1,4-Bis(Phenylethynyl)Benzene Derivative Conjugated Molecule. Journal of Physical Chemistry A, 2008, 112, 10325-10332.	2.5	22
937	Characterization and Reactivity of the Mo ₄ S ₆ ⁺ Cluster Deposited on Au(111). Journal of Physical Chemistry C, 2008, 112, 11495-11506.	3.1	28
938	Formation and Bonding of Alane Clusters on Al(111) Surfaces Studied by Infrared Absorption Spectroscopy and Theoretical Modeling. Journal of the American Chemical Society, 2008, 130, 10576-10587.	13.7	19
939	Toward an Accurate and Efficient Theory of Physisorption. I. Development of an Augmented Density-Functional Theory Model. Journal of Physical Chemistry A, 2008, 112, 9993-10005.	2.5	24
940	Formation of CHx Species from CO Dissociation on Double-Stepped Co(0001): Exploring Fischerâ^'Tropsch Mechanism. Journal of Physical Chemistry C, 2008, 112, 14108-14116.	3.1	71
941	Interaction of Dioxygen with Al Clusters and Al(111):  A Comparative Theoretical Study. Journal of Physical Chemistry C, 2008, 112, 6924-6932.	3.1	41
942	Coadsorption of CO and H on Fe(100). Journal of Physical Chemistry C, 2008, 112, 16505-16513.	3.1	24
943	Electronic structure calculations of liquid-solid interfaces: Combination of density functional theory and modified Poisson-Boltzmann theory. Physical Review B, 2008, 77, .	3.2	269

#	Article	IF	CITATIONS
944	Comparative Theoretical Study of CO Adsorption and Desorption Kinetics on (111) Surfaces of Transition Metals. Journal of Physical Chemistry C, 2008, 112, 14377-14384.	3.1	28
945	Experimental and Theoretical Investigations of the Thermodynamic Stability of Baâ°'C ₆₀ and Kâ°'C ₆₀ Compound Clusters. ACS Nano, 2008, 2, 1000-1014.	14.6	11
946	Oxidation of Ir(111): From Oâ^'Irâ^'O Trilayer to Bulk Oxide Formation. Journal of Physical Chemistry C, 2008, 112, 11946-11953.	3.1	77
947	Indirect, Reversible High-Density Hydrogen Storage in Compact Metal Ammine Salts. Journal of the American Chemical Society, 2008, 130, 8660-8668.	13.7	174
948	Oxidation of platinum surfaces and reaction with carbon monoxide. Journal of Physics Condensed Matter, 2008, 20, 184022.	1.8	13
949	First-Principles Study on the Effects of Zr Dopant on the CO Adsorption on Ceria. Journal of Physical Chemistry C, 2008, 112, 15341-15347.	3.1	27
950	Hydrogen storage capacities of nanoporous carbon calculated by density functional and MÃ,ller-Plesset methods. Physical Review B, 2008, 78, .	3.2	49
951	Assessing the Perdew-Burke-Ernzerhof exchange-correlation density functional revised for metallic bulk and surface systems. Physical Review B, 2008, 77, .	3.2	163
952	A Nickel Hydride Complex in the Active Site of Methyl-Coenzyme M Reductase: Implications for the Catalytic Cycle. Journal of the American Chemical Society, 2008, 130, 10907-10920.	13.7	68
953	Size and Structural Dependence of Cohesive Energy in Cu. Journal of Physical Chemistry C, 2008, 112, 18840-18845.	3.1	38
954	Density-Functional Study of Adsorption of Isocyanides on a Gold (111) Surface. Journal of Physical Chemistry C, 2008, 112, 3314-3320.	3.1	27
955	Size-Dependent Deformation and Adsorption Behavior of Carbon Monoxide, Hydrogen, and Carbon on Pyramidal Copper Clusters. Journal of Physical Chemistry C, 2008, 112, 7672-7677.	3.1	12
956	<pre><mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">C</mml:mi><mml:mi mathvariant="normal">O</mml:mi><mml:mo>â^•</mml:mo><mml:mi mathvariant="normal">Pt</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mn>111</mml:mn><mml:mo>)</mml:mo>)<td>3.2 mml:mo></td><td>36 </td></mml:mrow></mml:mrow></mml:math></pre>	3.2 mml:mo>	36
957	GGA density functional study of site preference for adsorption. Physical Review B, 2008, 77, . Indirect hydrogen storage in metal ammines., 2008, , 533-564.		23
958	The phase transition, and elastic and thermodynamic properties of CaS derived from first-principles calculations. Journal of Physics Condensed Matter, 2008, 20, 115203.	1.8	33
959	First-principles theoretical study of Alq3â^•Al interfaces: Origin of the interfacial dipole. Journal of Chemical Physics, 2008, 128, 244704.	3.0	51
960	Decomposition pathways of methanol on the PtAu(111) bimetallic surface: A first-principles study. Journal of Chemical Physics, 2008, 128, 064706.	3.0	39
961	NO2 dissociation on Ag(111) revisited by theory. Journal of Chemical Physics, 2008, 128, 104704.	3.0	16

#	Article	IF	Citations
962	Characterization of selective binding of alkali cations with carboxylate by x-ray absorption spectroscopy of liquid microjets. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6809-6812.	7.1	121
963	Benchmark density functional theory calculations for nanoscale conductance. Journal of Chemical Physics, 2008, 128, 114714.	3.0	109
964	Structure and reactivity of a model catalyst alloy under realistic conditions. Journal of Physics Condensed Matter, 2008, 20, 184018.	1.8	47
965	The role of exchange-correlation functionals in the potential energy surface and dynamics of N2 dissociation on W surfaces. Journal of Chemical Physics, 2008, 128, 154704.	3.0	48
966	The adsorption of O2 on Pb films and the effect of quantum modulation: A first-principles prediction. Journal of Chemical Physics, 2008, 128, 164705.	3.0	19
967	\hat{l}^* -point lattice free energy estimates from O(1) force calculations. Journal of Chemical Physics, 2008, 128, 184708.	3.0	1
968	Interaction of narrow carbon nanotubes with nitronium tetrafluoroborate salts. Journal of Chemical Physics, 2008, 128, 214703.	3.0	6
969	Simulation of vibrational energy transfer in two-dimensional infrared spectroscopy of amide I and amide II modes in solution. Journal of Chemical Physics, 2008, 129, 055101.	3.0	59
970	Dehydrogenation of benzene on Pt(111) surface. Journal of Chemical Physics, 2008, 129, 164705.	3.0	30
971	Dissociative Adsorption of O2 on Clean and CO-Precovered Pt Surfaces. Materials Research Society Symposia Proceedings, 2008, 1084, 50101.	0.1	1
972	CO Coverage Effects on Pt(111) from First-Principles Calculations. Materials Research Society Symposia Proceedings, 2008, 1084, 30201.	0.1	0
973	Surface Electrochemistry. , 2008, , 397-455.		5
974	Adsorption Behavior of CH2 and CH3 on Metal Clusters Cun ($\langle i \rangle n \langle j \rangle = 16$). Chinese Journal of Chemical Physics, 2008, 21, 445-450.	1.3	3
975	Pressure and Temperature Induced Phase Transition of ZnS from First-Principles Calculations. Chinese Physics Letters, 2008, 25, 675-678.	3.3	19
976	Structures and Equation of State of â^Š-Fe under High Pressure. Chinese Physics Letters, 2008, 25, 1757-1760.	3.3	4
977	Comparison of c(2 \tilde{A} — 2)N/Fe(001) and Fe ₄ N(002) surfaces: a density-functional theory study. Journal of Physics Condensed Matter, 2008, 20, 075212.	1.8	5
978	Density functional study of double ionization energies. Journal of Chemical Physics, 2008, 128, 084112.	3.0	11
979	Hartree–Fock orbitals significantly improve the reaction barrier heights predicted by semilocal density functionals. Journal of Chemical Physics, 2008, 128, 244112.	3.0	89

#	Article	IF	Citations
980	The shortcomings of semi-local and hybrid functionals: what we can learn from surface science studies. New Journal of Physics, 2008, 10, 063020.	2.9	222
981	Using scaling relations to understand trends in the catalytic activity of transition metals. Journal of Physics Condensed Matter, 2008, 20, 064239.	1.8	92
982	Bridge structure for the graphene/Ni(111) system: A first principles study. Physical Review B, 2008, 77, .	3.2	158
983	A relativistic density functional study of gaseous uranium tetrahalides. Molecular Physics, 2008, 106, 1907-1912.	1.7	6
984	Nonadiabatic effects in the dissociation of oxygen molecules at the Al(111) surface. Physical Review B, $2008, 77, .$	3.2	112
985	Wavevector-dependent quantum-size effect in electron decay length at Pb thin film surfaces. Applied Physics Letters, 2008, 93, 093105.	3.3	18
986	Some consequences of scaling in density-functional theory and the virial as a density functional. Physical Review A, 2008, 77, .	2.5	2
987	Electronic properties of bilayered manganite <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mro< td=""><td>> ³ 2 ml:mı</td><td>1>¹2.5</td></mpl:mro<></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	> ³ 2 ml:mı	1> ¹ 2.5
988	Extended One-Dimensional Supramolecular Assembly on a Stepped Surface. Physical Review Letters, 2008, 100, 046103.	7.8	38
989	Bond-switching mechanism for the zircon-scheelite phase transition. Physical Review B, 2008, 78, .	3.2	36
990	Hydrogen dissociation on Mg(0001) studied via quantum Monte Carlo calculations. Physical Review B, 2008, 78, .	3.2	40
991	Charging of atoms, clusters, and molecules on metal-supported oxides: A general and long-ranged phenomenon. Physical Review B, 2008, 78, .	3.2	74
993	Quasiatomic orbitals for <i>ab initio</i> tight-binding analysis. Physical Review B, 2008, 78, .	3.2	90
994	Structure and reactivity of ruthenium nanoparticles. Physical Review B, 2008, 77, .	3.2	49
995	Fingerprints for Spin-Selection Rules in the Interaction Dynamics of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> at Al(111). Physical Review Letters, 2008, 101, 096104.	7.8	76
996	Modulating the reactivity of Ni-containing $Pt(111)$ -skin catalysts by density functional theory calculations. Journal of Chemical Physics, 2008, 128, 194707.	3.0	46
997	Catalyzed Routes to Molecular Hydrogen Formation and Hydrogen Addition Reactions on Neutral Polycyclic Aromatic Hydrocarbons under Interstellar Conditions. Astrophysical Journal, 2008, 679, 531-536.	4.5	122
998	A Theoretical Investigation on the Dynamic Behavior of Molybdenum Dithiocarbamate Molecule in the Engine Oil Phase. Tribology Online, 2008, 3, 80-85.	0.9	16

#	Article	IF	CITATIONS
999	linearized-li	nr 3l2 mrow:	> ⊈i mml:math
1000	Density functional estimations of Heisenberg exchange constants in oligonuclear magnetic compounds: Assessment of density functional theory versus ab initio. Journal of Chemical Physics, 2009, 131, 224316.	3.0	15
1001	Nitrogen fixation at passivated Fe nanoclusters supported by an oxide surface: Identification of viable reaction routes using density functional calculations. Physical Review B, 2009, 80, .	3.2	2
1002	Correlations in coverage-dependent atomic adsorption energies on Pd(111). Physical Review B, 2009, 79, .	3.2	87
1003	Formation energies of rutile metal dioxides using density functional theory. Physical Review B, 2009, 79, .	3.2	87
1004	Insight into the performance of GGA functionals for solid-state calculations. Physical Review B, 2009, 80, .	3.2	72
1005	Inelastic scattering in a local polaron model with quadratic coupling to bosons. Physical Review B, 2009, 79, .	3.2	8
1006	Model for the electrocatalysis of hydrogen evolution. Physical Review B, 2009, 79, .	3.2	142
1007	Density functional theory study of the energetics, electronic structure, and core-level shifts of NO adsorption on the $Pt(111)$ surface. Physical Review B, 2009, 79, .	3.2	45
1008	Nonempirical hyper-generalized-gradient functionals constructed from the Lieb-Oxford bound. Physical Review A, 2009, 79, .	2.5	33
1009	Tetrahydrofuran Clathrate Hydrate Formation. Physical Review Letters, 2009, 103, 218301.	7.8	50
1010	Hot-electron-mediated desorption rates calculated from excited-state potential energy surfaces. Physical Review B, 2009, 79, .	3.2	59
1011	Localized atomic basis set in the projector augmented wave method. Physical Review B, 2009, 80, .	3.2	297
1012	Optimizing core-shell nanoparticle catalysts with a genetic algorithm. Journal of Chemical Physics, 2009, 131, 234103.	3.0	66
1013	Interaction between silver nanowires and CO on a stepped platinum surface. Journal of Chemical Physics, 2009, 131, 064702.	3.0	10
1014	Origin of Power Laws for Reactions at Metal Surfaces Mediated by Hot Electrons. Physical Review Letters, 2009, 103, 238301.	7.8	41
1015	Benchmarking DFT surface energies with quantum Monte Carlo. Molecular Simulation, 2009, 35, 609-612.	2.0	11
1016	The effects of alloying elements Al and In on Ni–Mn–Ga shape memory alloys, from first principles. Journal of Physics Condensed Matter, 2009, 21, 045506.	1.8	11

#	Article	IF	CITATIONS
1017	Trends for Methane Oxidation at Solid Oxide Fuel Cell Conditions. Journal of the Electrochemical Society, 2009, 156, B1447.	2.9	16
1018	BINDING ENERGIES FOR OXYGEN ON TRANSITION METAL SURFACES. Surface Review and Letters, 2009, 16, 291-296.	1.1	8
1019	First-Principles Calculations of Elastic and Thermal Properties of Molybdenum Disilicide. Chinese Physics Letters, 2009, 26, 086203.	3.3	1
1021	Theoretical Study of Elastic Properties of Tungsten Disilicide. Chinese Physics Letters, 2009, 26, 046302.	3.3	9
1022	Pseudo-potential investigations of structural, elastic and thermal properties of tungsten disilicide. Chinese Physics B, 2009, 18, 3495-3499.	1.4	4
1023	First-Principles Study of Structural, Elastic and Electronic Properties of OsSi. Communications in Theoretical Physics, 2009, 52, 701-706.	2.5	8
1024	Weak molecular chemisorption of N2/Pt(111). Journal of Physics Condensed Matter, 2009, 21, 264009.	1.8	5
1025	Adsorption of benzene, phenol, propane and carbonic acid molecules on oxidized Al(111) and î±-Al ₂ O ₃ (0001) surfaces: a first-principles study. Journal of Physics Condensed Matter, 2009, 21, 225001.	1.8	13
1026	Charge localization in alcohol isomers studied by Compton scattering. Journal of Chemical Physics, 2009, 130, 034506.	3.0	17
1027	A note on the vibrational efficacy in molecule-surface reactions. Journal of Chemical Physics, 2009, 130, 094706.	3.0	25
1028	Variable Lieb–Oxford bound satisfaction in a generalized gradient exchange-correlation functional. Journal of Chemical Physics, 2009, 130, 244103.	3.0	36
1029	Electronic, thermodynamic and elastic properties of pyrite RuO 2. Chinese Physics B, 2009, 18, 4981-4987.	1.4	4
1030	Including dispersion interactions in the ONETEP program for linear-scaling density functional theory calculations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465, 669-683.	2.1	34
1031	Atomistic Modeling in Study of Polymer Electrolyte Fuel Cells – A Review. Modern Aspects of Electrochemistry, 2009, , 307-380.	0.2	0
1032	First-Principles Calculations of Elastic and Thermal Properties of Lanthanum Hexaboride. Chinese Physics Letters, 2009, 26, 056201.	3.3	13
1033	Synthesis of \hat{l}_{\pm} silicon nitride single-crystalline nanowires by nitriding cryomilled nanocrystalline silicon powder. Scripta Materialia, 2009, 60, 737-740.	5. 2	28
1034	Analysis of silica-supported vanadia by X-ray absorption spectroscopy: Combined theoretical and experimental studies. Journal of Catalysis, 2009, 262, 215-223.	6.2	67
1035	Water–gas-shift reaction on a Ni2P(001) catalyst: Formation of oxy-phosphides and highly active reaction sites. Journal of Catalysis, 2009, 262, 294-303.	6.2	107

#	Article	IF	Citations
1036	Microkinetic analysis of the epoxidation of styrene catalyzed by (porphyrin)Mn encapsulated in molecular squares. Journal of Catalysis, 2009, 266, 145-155.	6.2	12
1037	The effect of Co-promotion on MoS2 catalysts for hydrodesulfurization of thiophene: A density functional study. Journal of Catalysis, 2009, 268, 201-208.	6.2	136
1039	Thermally Stable Solids Based on Endohedrally Doped ZnS Clusters. Chemistry - A European Journal, 2009, 15, 5138-5144.	3.3	19
1040	Reversible Structural Modulation of Fe–Pt Bimetallic Surfaces and Its Effect on Reactivity. ChemPhysChem, 2009, 10, 1013-1016.	2.1	68
1041	Oxidation of CO Catalyzed by a Cu Cluster: Influence of an Electric Field. ChemPhysChem, 2009, 10, 3295-3302.	2.1	26
1042	Density Functional Theory Calculations of ⁹⁵ Mo NMR Parameters in Solidâ€State Compounds. ChemPhysChem, 2009, 10, 3320-3329.	2.1	21
1043	Firstâ€principles calculations on the energetics, electronic structures and magnetism of SrFeO ₂ . Journal of Computational Chemistry, 2009, 30, 2684-2693.	3.3	5
1044	A Molecular Perspective on Lithium–Ammonia Solutions. Angewandte Chemie - International Edition, 2009, 48, 8198-8232.	13.8	155
1045	Hydrogen evolution and oxidationâ€"a prototype for an electrocatalytic reaction. Journal of Solid State Electrochemistry, 2009, 13, 1101-1109.	2.5	25
1046	CO interaction with Au atoms adsorbed on terrace, edge and corner sites of the MgO(100) surface. Electronic structure and vibrational analysis from DFT. Surface Science, 2009, 603, 1262-1269.	1.9	15
1047	Tailoring periodic nanostructures of vicinal copper surfaces: Formation and evolution of oxygen-induced faceting on Cu(332). Surface Science, 2009, 603, 3081-3087.	1.9	6
1048	Mars-van Krevelen-like Mechanism of CO Hydrogenation on an Iron Carbide Surface. Catalysis Letters, 2009, 133, 257-261.	2.6	116
1049	Electronic Structure of Unsaturated V2O5(001) and (100) Surfaces: Ab Initio Density Functional Theory Studies. Topics in Catalysis, 2009, 52, 1105-1115.	2.8	18
1050	Decomposition of Urea in the SCR Process: Combination of DFT Calculations and Experimental Results on the Catalytic Hydrolysis of Isocyanic Acid on TiO2 and Al2O3. Topics in Catalysis, 2009, 52, 1740-1745.	2.8	19
1051	Experimental and Theoretical Study of CO Oxidation on PdAu Catalysts with NO Pulse Effects. Topics in Catalysis, 2009, 52, 1946-1950.	2.8	15
1052	Some properties of electrochemical nanostructures. Journal of Chemical Sciences, 2009, 121, 575-577.	1.5	3
1053	Electronic structure, chemical bond and thermal stability of hydrogen absorber Li2MgN2H2. Science Bulletin, 2009, 54, 497-503.	9.0	2
1054	Some questions on the exchange contribution to the effective potential of the Kohn–Sham theory. Theoretical Chemistry Accounts, 2009, 123, 197-205.	1.4	1

#	Article	IF	CITATIONS
1055	Interaction of biomolecular systems with titanium-based materials: computational investigations. Theoretical Chemistry Accounts, 2009, 123, 299-309.	1.4	13
1056	Influence of the exchange–correlation potential on the description of the molecular mechanism of oxygen dissociation by Au nanoparticles. Theoretical Chemistry Accounts, 2009, 123, 119-126.	1.4	47
1058	Towards the computational design of solid catalysts. Nature Chemistry, 2009, 1, 37-46.	13.6	3,184
1059	The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nature Chemistry, 2009, 1, 466-472.	13.6	535
1060	Structural, elastic, and electronic properties of cubic perovskite obtained from first principles. Physica B: Condensed Matter, 2009, 404, 2192-2196.	2.7	38
1061	An evaluation of exchange-correlation functionals for the calculations of the ionization energies for atoms and molecules. Journal of Electron Spectroscopy and Related Phenomena, 2009, 171, 18-23.	1.7	21
1062	First-principles study of the pentacene/Cu(111) interface: Adsorption states and vacuum level shifts. Journal of Electron Spectroscopy and Related Phenomena, 2009, 174, 78-84.	1.7	45
1063	Structural and electronic properties of (n=1 \hat{a} e*12) clusters: A density functional theory investigation. Computational and Theoretical Chemistry, 2009, 895, 148-155.	1.5	32
1064	Rhombohedral graphite: Comparative study of the electronic properties. Computational and Theoretical Chemistry, 2009, 897, 118-128.	1.5	11
1065	Density functional study of hydrogen adsorption and dissociation on small Pdn (n=1–7) clusters. Computational and Theoretical Chemistry, 2009, 910, 14-19.	1.5	52
1066	DFT RX3LYP and RPBEPBE studies on the structural, electronic, and vibrational properties of some amino-alcohol ligands. Computational and Theoretical Chemistry, 2009, 915, 20-32.	1.5	12
1067	Surface segregation energies in low-index open surfaces of bimetallic transition metal alloys. Surface Science, 2009, 603, 91-96.	1.9	98
1068	Initial adsorption of O2 on Si(100): Non-adiabaticity originating both from a discrete and a continuous set of electronic excitations. Surface Science, 2009, 603, 173-177.	1.9	6
1069	Atomistic and multiscale modeling of CO-oxidation on Pd(100) and Rh(100): From nanoscale fluctuations to mesoscale reaction fronts. Surface Science, 2009, 603, 1706-1716.	1.9	28
1070	Ammonia synthesis and decomposition on a Ru-based catalyst modeled by first-principles. Surface Science, 2009, 603, 1731-1739.	1.9	83
1071	Effectiveness of in situ NH3 annealing treatments for the removal of oxygen from GaN surfaces. Surface Science, 2009, 603, 387-399.	1.9	29
1072	First-principles investigations of the Ni3Sn alloy at steam reforming conditions. Surface Science, 2009, 603, 762-770.	1.9	39
1073	Structure and stability of \hat{l}^2 -Mo2C bulk and surfaces: A density functional theory study. Surface Science, 2009, 603, 852-859.	1.9	61

#	Article	IF	CITATIONS
1074	Adsorption of CO, CO2 and NO molecules on a BaTiO3 (001) surface. Surface Science, 2009, 603, 1221-1228.	1.9	21
1075	Nickel deposition on \hat{I}^3 -Al2O3 model catalysts: An experimental and theoretical investigation. Surface Science, 2009, 603, 2210-2217.	1.9	29
1076	First-principles study of benzene on noble metal surfaces: Adsorption states and vacuum level shifts. Surface Science, 2009, 603, 2912-2922.	1.9	82
1077	On the effectiveness of partial oxidation of propylene by gold: A density functional theory study. Journal of Molecular Catalysis A, 2009, 306, 6-10.	4.8	31
1078	A DFT study of the electronic structure of cobalt and nickel mono-substituted MoS2 triangular nanosized clusters. Journal of Molecular Catalysis A, 2009, 313, 49-54.	4.8	14
1079	Experimental and theoretical characterization of NOx species on Ag/ \hat{l} ±-Al2O3. Journal of Molecular Catalysis A, 2009, 314, 102-109.	4.8	22
1080	Theoretical investigation on the decomposition process of GaN(0001) surface under a hydrogen atmosphere. Journal of Crystal Growth, 2009, 311, 3103-3105.	1.5	6
1081	Enhanced gas-sensing behaviour of Ru-doped SnO2 surface: A periodic density functional approach. Journal of Physics and Chemistry of Solids, 2009, 70, 1248-1255.	4.0	44
1082	The interaction between adsorbed OH and O2 on TiO2 surfaces. Progress in Surface Science, 2009, 84, 155-176.	8.3	126
1083	Oxidation of methane on nanoparticulate Au/TiO2 at low temperature: A combined microreactor and DFT study. Catalysis Today, 2009, 142, 24-29.	4.4	12
1084	Ab initio molecular simulations with numeric atom-centered orbitals. Computer Physics Communications, 2009, 180, 2175-2196.	7.5	2,170
1085	Helical and linear [K(As11)]2â^' chains: Role of solvent on the conformation of chains formed by Zintl anions. Chemical Physics Letters, 2009, 473, 305-311.	2.6	11
1086	A combined DFT/Green's function study on electrical conductivity through DNA duplex between Au electrodes. Chemical Physics Letters, 2009, 474, 362-365.	2.6	14
1087	Linear-scaling first-principles study of a quasicrystalline molecular material. Chemical Physics Letters, 2009, 476, 73-77.	2.6	1
1088	Electrochemical reactivity and fractional conductance of nanowires. Electrochemistry Communications, 2009, 11, 1764-1767.	4.7	23
1089	Kinetics of H2 recovery from dodecahydro-N-ethylcarbazole over a supported Pd catalyst. Applied Catalysis A: General, 2009, 362, 155-162.	4.3	139
1090	Activated dissociation of O2 on Pb(111) surfaces by Pb adatoms. Physical Review B, 2009, 80, .	3.2	7
1091	Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discussions, 2008, 140, 219-231.	3.2	732

#	Article	IF	CITATIONS
1092	On the catalysis of the hydrogen oxidation. Faraday Discussions, 2009, 140, 209-218.	3.2	23
1093	Influence of water on elementary reaction steps in electrocatalysis. Faraday Discussions, 2008, 140, 233-244.	3.2	78
1094	First-principles study of <a 1998="" display="inline" href="mailto://www.w3.org/1998/Math/Math/Math/Math/Math/Math/</td><td>nst.nznrow> <</td><td>:#8ml:mn>2</td></tr><tr><td>1095</td><td>xmins:mml=" math="" ml"="" nttp:="" www.w3.org=""><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msqrt><mml:msub><mml:msqrt><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub< td=""><td>l:mn>31<!--<br-->7.8</td><td>mml:mn><!--</td--></td></mml:msub<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msqrt></mml:msub></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt></mml:msqrt>	l:mn>31 <br 7.8	mml:mn> </td
1096	Temperature-Induced Ordering of Metal/Adsorbate Structures at Electrochemical Interfaces. Journal of the American Chemical Society, 2009, 131, 7654-7661.	13.7	24
1097	Density Functional Studies of the Adsorption and Dissociation of NO $<$ sub $><$ i $>×i>sub> (<i>×i>= 1,) Tj ETQq1$	1.0.7843	14 rgBT / 🕠
1098	Electronic and optical properties of pure and Ce3+-doped MgS single crystals: A first-principles prediction. Journal of Applied Physics, 2009, 105, 063532.	2.5	6
1099	Effect of Preadsorbed S on the Adsorption of CO on Co(0001). Journal of Physical Chemistry C, 2009, 113, 16210-16215.	3.1	7
1100	Intercalation of Sulfonate into Layered Double Hydroxide: Comparison of Simulation with Experiment. Journal of Physical Chemistry C, 2009, 113, 559-566.	3.1	40
1101	Adsorption-Driven Surface Segregation of the Less Reactive Alloy Component. Journal of the American Chemical Society, 2009, 131, 2404-2407.	13.7	160
1102	Self-Consistent Polarization Density Functional Theory: Application to Argon. Journal of Physical Chemistry A, 2009, 113, 2075-2085.	2.5	19
1103	Trends in CO Oxidation Rates for Metal Nanoparticles and Close-Packed, Stepped, and Kinked Surfaces. Journal of Physical Chemistry C, 2009, 113, 10548-10553.	3.1	244
1104	Temperature, Surface, and Coverage-Induced Conformational Changes of Azobenzene Derivatives on Cu(001). Journal of Physical Chemistry C, 2009, 113, 20307-20315.	3.1	31
1105	Phase transition and thermodynamic properties of TiO ₂ from first-principles calculations. Chinese Physics B, 2009, 18, 269-274.	1.4	27
1106	Toward a Combined DFT/QTAIM Description of Agostic Bonds: The Critical Case of a Nb(III) Complex. Journal of Physical Chemistry A, 2009, 113, 12322-12327.	2.5	31
1107	Three-Coordinate, Phosphine-Ligated Azadipyrromethene Complexes of Univalent Group 11 Metals. Inorganic Chemistry, 2009, 48, 8134-8144.	4.0	30
1108	The discovery of unexpected isomers in sodium heptamers by Born–Oppenheimer molecular dynamics. Journal of Chemical Physics, 2009, 131, 124126.	3.0	41
1109	Design of Robust and Reactive Nanoparticles with Atomic Precision: 13Ag-lh and 12Agâ^'1X (X = Pd, Pt, Au,) Tj ETC	2g <u>1</u> 1 0.78	34314 rgBT

#	Article	IF	CITATIONS
1110	Bonding and Electron Delocalization in Ruthenium(III) Ïf-Arylacetylide Radicals [trans-Cl(Î-2-dppe)2RuC≡C(4-C6H4X)]+ (X = NO2, C(O)H, C(O)Me, F, H, OMe, NMe2): Misleading Aspects of the ESR Anisotropy. Organometallics, 2009, 28, 2253-2266.	2.3	69
1111	Theory of NH $<$ sub $><$ i $>×i></sub> Â\pm H Reactions on Fe\{211\}. Journal of Physical Chemistry C, 2009, 113, 15274-15287.$	3.1	24
1112	First Principles Studies of Fe-Containing Aluminosilicate and Aluminogermanate Nanotubes. Journal of Chemical Theory and Computation, 2009, 5, 3224-3231.	5. 3	19
1113	Molecular and Atomic Hydrogen Interactions with Auâ^'Ir Near-Surface Alloys. Journal of Physical Chemistry C, 2009, 113, 1411-1417.	3.1	27
1114	How Potentials of Zero Charge and Potentials for Water Oxidation to OH(ads) on Pt(111) Electrodes Vary With Coverage. Journal of Physical Chemistry C, 2009, 113, 17484-17492.	3.1	55
1115	Adsorption and Dissociation of CO on Body-Centered Cubic Transition Metals and Alloys: Effect of Coverage and Scaling Relations. Journal of Physical Chemistry C, 2009, 113, 11041-11049.	3.1	33
1116	A Combined Experimental and Theoretical Investigation of Atomic-Scale Defects Produced on Graphite Surfaces by Dielectric Barrier Discharge Plasma Treatment. Journal of Physical Chemistry C, 2009, 113, 18719-18729.	3.1	12
1117	rormation and Diffusion of Water Dimers on Rutile <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>TiO</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo stretchy="false">(</mml:mo><mml:mn>110</mml:mn><mml:mo) 0.784314="" 1="" 10="" 4<="" 50="" etqq1="" overlock="" rgbt="" td="" tf="" tj=""><td>7.8 447 Td (st</td><td>89 :retchy="fal</td></mml:mo)></mml:math>	7.8 447 Td (st	89 :retchy="fal
1118	Structures and Energetics of SrFeO2.875 Calculated within the GGA + U Framework. Journal of Chemical Theory and Computation, 2009, 5, 2787-2797.	5. 3	6
1119	Cohesive Energy: The Intrinsic Dominant of Thermal Stability and Structural Evolution in Sn from Size Scales of Bulk to Dimer. Journal of Physical Chemistry C, 2009, 113, 14207-14212.	3.1	30
1120	Cryogenic Terahertz Spectrum of (+)-Methamphetamine Hydrochloride and Assignment Using Solid-State Density Functional Theory. Journal of Physical Chemistry A, 2009, 113, 5119-5127.	2.5	59
1121	Diffusion of the Linear CH ₃ Sâ^'Auâ^'SCH ₃ Complex on Au(111) from First Principles. Journal of Physical Chemistry C, 2009, 113, 3763-3766.	3.1	22
1122	DFT Study on the Complex Reaction Networks in the Conversion of Ethylene to Ethylidyne on Flat and Stepped Pd. Journal of Physical Chemistry C, 2009, 113, 8278-8286.	3.1	58
1123	X-ray Absorption and Emission Spectroscopy of Crlll (Hydr)Oxides: Analysis of the K-Pre-Edge Region. Journal of Physical Chemistry A, 2009, 113, 12171-12178.	2.5	18
1124	Examination of Phencyclidine Hydrochloride via Cryogenic Terahertz Spectroscopy, Solid-State Density Functional Theory, and X-ray Diffraction. Journal of Physical Chemistry A, 2009, 113, 13013-13022.	2.5	27
1125	A Theoretical Study of H ₂ Reacting on Ti/Al(100) Surfaces. Journal of Physical Chemistry C, 2009, 113, 11027-11034.	3.1	17
1126	First-Principles Studies of NO _{<i>x</i>} Chemistry on Ag _{<i>x</i>} fi±-Al ₂ O ₃ . Journal of Physical Chemistry C, 2009, 113, 3674-3682.	3.1	35
1127	Carbon on Platinum Substrates: From Carbidic to Graphitic Phases on the (111) Surface and on Nanoparticles. Journal of Physical Chemistry A, 2009, 113, 11963-11973.	2.5	44

#	Article	IF	CITATIONS
1128	Adsorption and Dissociation of CO on Bare and Ni-Decorated Stepped Rh(553) Surfaces. Journal of Physical Chemistry C, 2009, 113, 942-949.	3.1	39
1129	AM05 Density Functional Applied to the Water Molecule, Dimer, and Bulk Liquid. Journal of Chemical Theory and Computation, 2009, 5, 887-894.	5.3	30
1130	Structure of Aqueous Solutions of Monosodium Glutamate. Journal of Physical Chemistry B, 2009, 113, 7687-7700.	2.6	21
1131	Chemically Accurate Simulation of a Prototypical Surface Reaction: H ₂ Dissociation on Cu(111). Science, 2009, 326, 832-834.	12.6	315
1132	Ab initio calculations of the relationship between the alpha alumina toughness and its electronic structure under pressure. Computational Materials Science, 2009, 45, 310-314.	3.0	5
1133	Electronic and optical properties of orthorhombic LilnS2 and LilnSe2: A density functional theory investigation. Computational Materials Science, 2009, 47, 99-105.	3.0	28
1134	First-principles studies on surface electronic structure and stability of LiFePO4. Journal of Alloys and Compounds, 2009, 476, 462-465.	5.5	48
1135	Experimental and computational studies on structural transitions in the LiBH4–Lil pseudobinary system. Applied Physics Letters, 2009, 94, .	3.3	84
1136	Oxygen Reduction on Well-Defined Coreâ^'Shell Nanocatalysts: Particle Size, Facet, and Pt Shell Thickness Effects. Journal of the American Chemical Society, 2009, 131, 17298-17302.	13.7	688
1137	Vinyl Acetate Synthesis on Homogeneous and Heterogeneous Pd-Based Catalysts: A Theoretical Analysis on the Reaction Mechanisms. Journal of Physical Chemistry A, 2009, 113, 11758-11762.	2.5	13
1138	Size-dependent formation enthalpy of nanoclusters. Journal of Applied Physics, 2009, 106, 023519.	2.5	3
1139	Density functional theory for transition metals and transition metal chemistry. Physical Chemistry Chemical Physics, 2009, 11, 10757.	2.8	1,431
1140	Modeling Ethanol Decomposition on Transition Metals: A Combined Application of Scaling and Brønstedâ^²Evansâ^²Polanyi Relations. Journal of the American Chemical Society, 2009, 131, 5809-5815.	13.7	275
1141	Translational energy and state resolved observations of D and D2 thermally desorbing from D clusters chemisorbed on graphite. Journal of Chemical Physics, 2009, 131, 244707.	3.0	6
1142	DFT Analysis of the Reaction Paths of Formaldehyde Decomposition on Silver. Journal of Physical Chemistry A, 2009, 113, 8125-8131.	2.5	28
1143	Accuracy and Methods beyond"Standard―Calculations. , 0, , 209-233.		1
1144	A systematic study of influence of ligand substitutions on the electronic structure and magnetic properties of Mn ₄ single-molecule magnets. Physical Chemistry Chemical Physics, 2009, 11, 717-729.	2.8	7
1145	Dynamics of Hydrogen Spillover on Pt/ \hat{l}^3 -Al2O3 Catalyst Surface: A Quantum Chemical Molecular Dynamics Study. Journal of Physical Chemistry C, 2009, 113, 15676-15683.	3.1	64

#	Article	IF	CITATIONS
1146	Improving Electrocatalysts for O $<$ sub $>$ 2 $<$ /sub $>$ Reduction by Fine-Tuning the Ptâ $^{\circ}$ Support Interaction: Pt Monolayer on the Surfaces of a Pd $<$ sub $>$ 3 $<$ /sub $>$ Fe (111) Single-Crystal Alloy. Journal of the American Chemical Society, 2009, 131, 12755-12762.	13.7	224
1147	CO-Coverage-Dependent Oxygen Dissociation on Pt(111) Surface. Journal of Physical Chemistry C, 2009, 113, 710-715.	3.1	44
1148	What Is the Structure of Kaolinite? Reconciling Theory and Experiment. Journal of Physical Chemistry B, 2009, 113, 6756-6765.	2.6	63
1149	Hydrogen peroxide adsorption on Fe-filled single-walled carbon nanotubes: a theoretical study. Journal of Physics Condensed Matter, 2009, 21, 064219.	1.8	9
1150	Calculation of the lattice constant of solids with semilocal functionals. Physical Review B, 2009, 79, .	3.2	709
1151	Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project. Journal of Chemical Physics, 2009, 131, 014101.	3.0	77
1152	Effects of chlorine and oxygen coverage on the structure of the Au(111) surface. Journal of Chemical Physics, 2009, 130, 084701.	3.0	26
1153	Structure Sensitivity of Methanol Electrooxidation on Transition Metals. Journal of the American Chemical Society, 2009, 131, 14381-14389.	13.7	203
1154	Atomic Oxygen Adsorption on Au(111) Surfaces with Defects. Journal of Physical Chemistry C, 2009, 113, 3232-3238.	3.1	80
1155	Charge redistribution in core-shell nanoparticles to promote oxygen reduction. Journal of Chemical Physics, 2009, 130, 194504.	3.0	141
1156	Hydrogen transfer and hydration properties of HnPO43â°'nâ€^(n=â€"3) in water studied by first principles molecular dynamics simulations. Journal of Chemical Physics, 2009, 130, 234502.	3.0	37
1157	Density functional for van der Waals forces accounts for hydrogen bond in benchmark set of water hexamers. Journal of Chemical Physics, 2009, 131, 046102.	3.0	55
1158	Hydrogen Dissociation and Spillover on Individual Isolated Palladium Atoms. Physical Review Letters, 2009, 103, 246102.	7.8	216
1159	Magnetic edge states in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>MoS</mml:mtext></mml:mrow><mml:mn:using .<="" 2009,="" 80,="" b,="" density-functional="" physical="" review="" td="" theory.=""><td>> 23. mml:r</td><td>nr97</td></mml:mn:using></mml:msub></mml:mrow></mml:math>	> 23 . mml:r	nr 9 7
1160	Adsorption of Chlorine on Cu(111): A Density-Functional Theory Study. Journal of Physical Chemistry C, 2009, 113, 14363-14376.	3.1	91
1161	Composition, structure, and stability of the rutile/mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mn>: Oxygen depletion, hydroxylation, hydrogen migration, and water adsorption. Physical Review B, 2009,</mml:mn></mml:mrow></mml:mrow></mml:mrow></mml:mrow>	2 ∉n₂ ml:m	'n 22/6 nml:ms
1162	A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discussions, 2008, 140, 363-378.	3.2	400
1163	Ethylene Conversion to Ethylidyne over Pd(111): Revisiting the Mechanism with First-Principles Calculations. Journal of Physical Chemistry C, 2009, 113, 2512-2520.	3.1	56

#	Article	IF	CITATIONS
1164	Nonlinear elastic behavior of graphene: <i>Ab initio</i> calculations to continuum description. Physical Review B, 2009, 80, .	3.2	364
1165	Density Functional Theory Comparison of Water Dissociation Steps on Cu, Au, Ni, Pd, and Pt. Journal of Physical Chemistry C, 2009, 113, 7269-7276.	3.1	257
1166	Gradient-dependent density functionals of the Perdew-Burke-Ernzerhof type for atoms, molecules, and solids. Physical Review B, 2009, 79, .	3.2	47
1167	Static and Dynamical Properties of Liquid Water from First Principles by a Novel Carâ^'Parrinello-like Approach. Journal of Chemical Theory and Computation, 2009, 5, 235-241.	5. 3	189
1168	Computational Investigation of Thermochemistry and Kinetics of Steam Methane Reforming on Ni(111) under Realistic Conditions. Journal of Physical Chemistry C, 2009, 113, 4898-4908.	3.1	220
1169	Subsurface Incorporation of Oxygen into Palladium(111): A Theoretical Study of Energetics and Kinetics. Journal of Physical Chemistry C, 2009, 113, 15326-15336.	3.1	12
1170	First principles study of the photo-oxidation of water on tungsten trioxide (WO3). Journal of Chemical Physics, 2009, 130, 114701.	3.0	105
1171	Stability and Electronic Properties of TiO ₂ Nanostructures With and Without B and N Doping. Journal of Physical Chemistry C, 2009, 113, 12301-12308.	3.1	102
1172	Density functional study of the adsorption and van der Waals binding of aromatic and conjugated compounds on the basal plane of MoS2. Journal of Chemical Physics, 2009, 130, 104709.	3.0	108
1173	On the difficulties of present theoretical models to predict the oxidation state of atomic Au adsorbed on regular sites of CeO[sub 2](111). Journal of Chemical Physics, 2009, 131, 094702.	3.0	64
1174	Extended atomic hydrogen dimer configurations on the graphite (0001) surface. Journal of Chemical Physics, 2009, 131, 084706.	3.0	80
1175	Growth dynamics of L-cysteine SAMs on single-crystal gold surfaces: a metastable deexcitation spectroscopy study. Journal of Physics Condensed Matter, 2009, 21, 264005.	1.8	20
1176	Hydrogen-induced mitigation of O on Ru($101\hat{l}$,0): a density-functional study. Physical Chemistry Chemical Physics, 2009, 11, 5695.	2.8	2
1177	Observation of All the Intermediate Steps of a Chemical Reaction on an Oxide Surface by Scanning Tunneling Microscopy. ACS Nano, 2009, 3, 517-526.	14.6	101
1178	First-Principles Study of Carbon Monoxide Oxidation on Ag(111) in Presence of Subsurface Oxygen and Stepped Ag(221). Journal of Physical Chemistry C, 2009, 113 , $8266-8272$.	3.1	27
1179	Effect of subsurface Ti-interstitials on the bonding of small gold clusters on rutile TiO2(110). Journal of Chemical Physics, 2009, 130, 044704.	3.0	42
1180	Ethylidyne Formation from Ethylene over $Pd(111)$: Alternative Routes from a Density Functional Study. Journal of Physical Chemistry C, 2009, 113, 15373-15379.	3.1	29
1181	Step Effects on the Dissociation of NO on Close-Packed Rhodium Surfaces. Journal of Physical Chemistry C, 2009, 113, 20623-20631.	3.1	36

#	Article	IF	CITATIONS
1182	The interplay of van der Waals and weak chemical forces in the adsorption of salicylic acid on NaCl(001). Physical Chemistry Chemical Physics, 2009, 11, 9337.	2.8	10
1183	Thermal stability of interaction between the CO molecules and the Al doped graphene. Physical Chemistry Chemical Physics, 2009, 11, 1683.	2.8	56
1184	Atomistic simulations of the elastic properties of helium bubble embedded aluminum. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 849-855.	1.4	10
1185	Modelling Catalyst Surfaces Using DFT Cluster Calculations. International Journal of Molecular Sciences, 2009, 10, 4310-4329.	4.1	30
1186	Interactions between co-adsorbed CO and H on a $Rh(100)$ single crystal surface. Physical Chemistry Chemical Physics, 2009, 11, 10009.	2.8	21
1187	Theoretical study of the elastic properties of titanium nitride. Acta Metallurgica Sinica (English) Tj ETQq $1\ 1\ 0.784$	314 rgBT _{2.9}	Overlock 10
1188	Combinatorial Density Functional Theory-Based Screening of Surface Alloys for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2009, 113, 4932-4939.	3.1	229
1189	Assessing the performance of recent density functionals for bulk solids. Physical Review B, 2009, 79, .	3.2	740
1190	Physical and Chemical Properties of Oxygen at Vanadium and Molybdenum Oxide Surfaces: Theoretical Case Studies., 0,, 375-415.		0
1191	Absence of CO dissociation on Mo(112). Journal of Chemical Physics, 2009, 130, 174714.	3.0	10
1192	A Periodic Density Functional Theory Analysis of CO Chemisorption on Pt(111) in the Presence of Uniform Electric Fields. Journal of Physical Chemistry A, 2009, 113, 4125-4133.	2.5	51
1193	A van der Waals density functional study of ice Ih. Journal of Chemical Physics, 2010, 133, 214503.	3.0	39
1195	Density functional study of K and Na adsorbed on Co(0001). European Physical Journal B, 2010, 75, 469-474.	1.5	5
1196	On the Role of Metal Step-Edges in Graphene Growth. Journal of Physical Chemistry C, 2010, 114, 11221-11227.	3.1	110
1197	Volcano Relation for the Deacon Process over Transitionâ€Metal Oxides. ChemCatChem, 2010, 2, 98-102.	3.7	49
1198	Hydrogenation Reactions on Au/TiC(001): Effects of AuC Interactions on the Dissociation of H ₂ . ChemCatChem, 2010, 2, 1219-1222.	3.7	39
1199	Oxide Surface Science. Annual Review of Physical Chemistry, 2010, 61, 129-148.	10.8	168
1200	Titania-water interactions: a review of theoretical studies. Journal of Materials Chemistry, 2010, 20, 10319.	6.7	255

#	Article	IF	Citations
1201	Structural and optical properties of a neutral Nickel bisdithiolene complex: density functional versus ab initio methods. Theoretical Chemistry Accounts, 2010, 126, 243-255.	1.4	15
1202	First principles mechanistic study of borohydride oxidation over the Pt(111) surface. Electrochimica Acta, 2010, 55, 1175-1183.	5.2	66
1203	Structural effects on trends in the deposition and dissolution of metal-supported metal adstructures. Electrochimica Acta, 2010, 55, 5545-5550.	5.2	64
1204	Atomic structure and lattice dynamics of Ni and Mg hydroxides. Solid State Ionics, 2010, 181, 1764-1770.	2.7	81
1205	Density-functional study of the CO adsorption on the ferromagnetic fcc Co(001) film surface. Surface Science, 2010, 604, 265-268.	1.9	4
1206	Phase stability comparison by first principle calculation and experimental observation of microstructure evolution in a Mg–6Gd–2Zn(wt%) alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2643-2648.	5.6	8
1207	Platinum Monolayer Electrocatalysts for O2 Reduction: Pt Monolayer on Carbon-Supported PdIr Nanoparticles. Electrocatalysis, 2010, 1, 213-223.	3.0	40
1208	Electronic and optical properties of monoclinic and rutile vanadium dioxide. Journal of Materials Science, 2010, 45, 3270-3275.	3.7	33
1209	First-principles study of electronic structure, absorption spectra, and thermodynamic properties of crystalline 1H-tetrazole and its substituted derivatives. Structural Chemistry, 2010, 21, 847-854.	2.0	16
1210	RPBE-vdW Description of Benzene Adsorption on Au(111). Topics in Catalysis, 2010, 53, 378-383.	2.8	57
1211	Hydrogen on and in Selected Overlayer Near-Surface Alloys and the Effect of Subsurface Hydrogen on the Reactivity of Alloy Surfaces. Topics in Catalysis, 2010, 53, 384-392.	2.8	27
1212	Self Blocking of CO Dissociation on a Stepped Ruthenium Surface. Topics in Catalysis, 2010, 53, 357-364.	2.8	44
1213	Establishing Relationships Between the Geometric Structure and Chemical Reactivity of Alloy Catalysts Based on Their Measured Electronic Structure. Topics in Catalysis, 2010, 53, 348-356.	2.8	60
1214	DFT Versus the "Real World―(or, Waiting for Godft). Topics in Catalysis, 2010, 53, 417-422.	2.8	23
1215	Desulfurization Reactions on Surfaces of Metal Carbides: Photoemission and Density–Functional Studies. Topics in Catalysis, 2010, 53, 393-402.	2.8	27
1216	Water Adsorption on TiO2. Topics in Catalysis, 2010, 53, 423-430.	2.8	100
1217	Understanding Trends in Catalytic Activity: The Effect of Adsorbate–Adsorbate Interactions for CO Oxidation Over Transition Metals. Topics in Catalysis, 2010, 53, 298-310.	2.8	204
1218	Structural, electronic and magnetic properties of cementite-type Fe3X (X=B, C, N) by first-principles calculations. Solid State Sciences, 2010, 12, 404-408.	3.2	23

#	Article	IF	CITATIONS
1219	Partial hydrogenation of propyne over copper-based catalysts and comparison with nickel-based analogues. Journal of Catalysis, 2010, 269, 80-92.	6.2	155
1220	Atomic-scale insight into the origin of pyridine inhibition of MoS2-based hydrotreating catalysts. Journal of Catalysis, 2010, 271, 280-289.	6.2	67
1221	CO activation pathways and the mechanism of Fischer–Tropsch synthesis. Journal of Catalysis, 2010, 272, 287-297.	6.2	487
1222	Hydrogen Evolution on Singleâ€Crystal Copper and Silver: A Theoretical Study. ChemPhysChem, 2010, 11, 1491-1495.	2.1	25
1223	Stability of Gold and Platinum Nanowires on Graphite Edges. ChemPhysChem, 2010, 11, 2361-2366.	2.1	7
1225	Methane Activation by Platinum: Critical Role of Edge and Corner Sites of Metal Nanoparticles. Chemistry - A European Journal, 2010, 16, 6530-6539.	3.3	126
1230	Hydrogen Diffusion into Palladium Nanoparticles: Pivotal Promotion by Carbon. Angewandte Chemie - International Edition, 2010, 49, 4743-4746.	13.8	91
1231	B ₁₉ ^{â^'} : An Aromatic Wankel Motor. Angewandte Chemie - International Edition, 2010, 49, 5668-5671.	13.8	162
1232	Trends in Stability of Perovskite Oxides. Angewandte Chemie - International Edition, 2010, 49, 7699-7701.	13.8	98
1233	Coreâ€Protected Platinum Monolayer Shell Highâ€Stability Electrocatalysts for Fuelâ€Cell Cathodes. Angewandte Chemie - International Edition, 2010, 49, 8602-8607.	13.8	554
1234	Hydrogen evolution on a pseudomorphic Cu-layer on Ni(111) $\hat{a} \in A$ theoretical study. Journal of Electroanalytical Chemistry, 2010, 649, 149-152.	3.8	8
1235	A study of electronic structure and lattice dynamics of CoSb3 skutterudite. Journal of Magnetism and Magnetic Materials, 2010, 322, 3080-3083.	2.3	24
1236	Elastic and thermodynamic properties of fcc-6Li2O under high temperatures and pressures. Journal of Nuclear Materials, 2010, 404, 116-120.	2.7	11
1237	A comparison study on the electronic structure of the thermoelectric materials CoSb3 and LaFe3CoSb12. Physica B: Condensed Matter, 2010, 405, 1740-1744.	2.7	18
1238	First-principles study of dissociation barriers and electronic structures of monolayer graphite on Ni(111) surface. Physica B: Condensed Matter, 2010, 405, 2852-2856.	2.7	0
1239	Thermal stability and elastic properties of Mg3Sb2 and Mg3Bi2 phases from first-principles calculations. Physica B: Condensed Matter, 2010, 405, 2863-2868.	2.7	60
1240	Molecular and dissociative adsorption of water at low-index V2O5 surfaces: DFT studies using cluster surface models. Journal of Molecular Catalysis A, 2010, 325, 98-104.	4.8	19
1241	On the electrocatalysis of nanostructures: Monolayers of a foreign atom (Pd) on different substrates M(111). Electrochimica Acta, 2010, 55, 4346-4352.	5.2	45

#	Article	IF	CITATIONS
1242	The oxygen reduction reaction mechanism on $Pt(111)$ from density functional theory calculations. Electrochimica Acta, 2010, 55, 7975-7981.	5.2	491
1243	Theoretical approximations to X-ray absorption spectroscopy of liquid water and ice. Journal of Electron Spectroscopy and Related Phenomena, 2010, 177, 135-157.	1.7	132
1244	Correlation of the applied electrical field and CO adsorption/desorption behavior on Al-doped graphene. Solid State Communications, 2010, 150, 680-683.	1.9	79
1245	First-principles studies of HF molecule adsorption on intrinsic graphene and Al-doped graphene. Solid State Communications, 2010, 150, 1906-1910.	1.9	92
1246	First-principles investigation of the concentration-dependent phase transition of alloys. Solid State Communications, 2010, 150, 2362-2365.	1.9	1
1247	A model for the dissociative adsorption of N2O on Cu(100) using a continuous potential energy surface. Surface Science, 2010, 604, 555-561.	1.9	43
1248	DFT study on complete ethylene decomposition on flat and stepped Pd. Surface Science, 2010, 604, 762-769.	1.9	26
1249	Hydrogen adsorption on palladium and palladium hydride at 1 bar. Surface Science, 2010, 604, 718-729.	1.9	158
1250	Coverage effects on the adsorption of sulfur on Co(0001): A DFT study. Surface Science, 2010, 604, 817-823.	1.9	22
1251	Activation of methyl acetate on Pd(111). Surface Science, 2010, 604, 887-892.	1.9	23
1252	Theoretical analysis of oxygen reduction reaction and H2O2 formation and the impact of CF3SO3H coverage on Pt (111). Surface Science, 2010, 604, 965-973.	1.9	14
1253	Isomerization of n-butane on Pt (100): Monomolecular mechanism investigation. Surface Science, 2010, 604, 1040-1043.	1.9	3
1254	A Density Functional Theory study on gold cyanide interactions: The fundamentals of ore cleaning. Surface Science, 2010, 604, 1552-1557.	1.9	18
1255	Partial and complete reduction of O2 by hydrogen on transition metal surfaces. Surface Science, 2010, 604, 1565-1575.	1.9	189
1256	Substitution effect on the adlayer formation of tetrachloroperylene bisimides on HOPG surface. Surface Science, 2010, 604, 2078-2083.	1.9	4
1257	Thermodynamics and kinetics of CO and benzene adsorption on $Pt(111)$ studied with pulsed molecular beams and microcalorimetry. Surface Science, 2010, 604, 2098-2105.	1.9	25
1258	Adsorption and dissociation of molecular hydrogen on Pt/CeO2 catalyst in the hydrogen spillover process: A quantum chemical molecular dynamics study. Applied Surface Science, 2010, 256, 7643-7652.	6.1	18
1259	Adsorption/desorption studies of CO on a rhodium(100) surface under UHV conditions: A comparative study using XPS, RAIRS, and SSIMS. Catalysis Today, 2010, 154, 53-60.	4.4	12

#	Article	IF	CITATIONS
1260	Mechanism study of floating catalyst CVD synthesis of SWCNTs. Physica Status Solidi (B): Basic Research, 2010, 247, 2708-2712.	1.5	8
1261	Broken symmetry density functional study of a mixedâ€valence unsymmetrical dinuclear iron complex. International Journal of Quantum Chemistry, 2010, 110, 1048-1055.	2.0	4
1262	Chemical surface passivation of 3Câ€SiC nanocrystals: A firstâ€principle study. International Journal of Quantum Chemistry, 2010, 110, 2455-2461.	2.0	15
1263	Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature Chemistry, 2010, 2, 454-460.	13.6	2,489
1264	Accurate surface and adsorption energies from many-body perturbation theory. Nature Materials, 2010, 9, 741-744.	27.5	476
1265	Efficient electronic coupling and improved stability with dithiocarbamate-based molecular junctions. Nature Nanotechnology, 2010, 5, 618-624.	31.5	105
1266	Electronic and optical properties of pure and Ce 3+ -doped CaS single crystals: a first-principles prediction. Chinese Physics B, 2010, 19, 117103.	1.4	3
1267	Relativistic density functional investigation of $U(i)X(i) < sub > 6 < sub $	1.4	9
1268	A Density Functional Study of Atomic Carbon Adsorption on Î-Pu(111) Surface. Chinese Physics Letters, 2010, 27, 097102.	3.3	4
1269	A first-principles study of the catalytic mechanism of the dehydriding reaction of LiNH ₂ through adding Ti catalysts. Chinese Physics B, 2010, 19, 048601.	1.4	5
1270	Impact of the Formation of Dimer Structures at the Surface on the Internal Atoms of Si Thin Film. Journal of the Electrochemical Society, 2010, 157, H323.	2.9	6
1271	Effective elastic properties of a van der Waals molecular monolayer at a metal surface. Physical Review B, 2010, 82, .	3.2	18
1272	Strain and coordination effects in the adsorption properties of early transition metals: A density-functional theory study. Physical Review B, 2010, 81, .	3.2	119
1273	Tests of the RPBE, revPBE, i,,-HCTHhyb, i%B97X-D, and MOHLYP density functional approximations and 29 others against representative databases for diverse bond energies and barrier heights in catalysis. Journal of Chemical Physics, 2010, 132, 164117.	3.0	206
1274	Boron nitride formation on magnesium studied by <i>ab initio</i> calculations. Physical Review B, 2010, 81, .	3.2	5
1275	Effect of adsorbed H atoms on magnetism in monoatomic Fe wires at Ir(100). Physical Review B, 2010, 81,	3.2	5
1276	The Cr X-ray absorption K-edge structure of poorly crystalline Fe(III)-Cr(III)-oxyhydroxides. American Mineralogist, 2010, 95, 1202-1213.	1.9	17
1277	Temperature and pressure effects in CO titration of ensembles in PdAu(111) alloys using first principles. Physical Review B, 2010, 82, .	3.2	29

#	Article	IF	Citations
1278	First-principles calculations of the initial incorporation of carbon into flat and stepped Pd surfaces. Physical Review B, 2010, 81 , .	3.2	29
1279	Adsorption structures of phenol on the Si(001) \hat{a} (2 \tilde{A} -1) surface calculated using density functional theory. Physical Review B, 2010, 81, .	3.2	15
1280	Interaction of water with a metal surface: Importance of van der Waals forces. Physical Review B, 2010, 81, .	3.2	61
1281	Generalized gradient approximation bridging the rapidly and slowly varying density regimes: A PBE-like functional for hybrid interfaces. Physical Review B, 2010, 82, .	3.2	50
1282	The properties of small Ag clusters bound to DNA bases. Journal of Chemical Physics, 2010, 132, 195102.	3.0	108
1283	A theoretical study of H2 dissociation on $(3\tilde{A}-3)R30\hat{A}^{\circ}CO/Ru(0001)$. Journal of Chemical Physics, 2010, 132, 144704.	3.0	4
1284	CO oxidation on fully oxygen covered Ru(0001): Role of step edges. Physical Review B, 2010, 81, .	3.2	23
1285	Systematic investigation of a family of gradient-dependent functionals for solids. Physical Review B, 2010, 81, .	3.2	36
1286	Density functional study of CO and NO adsorption on Ni-doped MgO(100). Journal of Chemical Physics, 2010, 132, 104701.	3.0	52
1287	Memory effects in nonadiabatic molecular dynamics at metal surfaces. Journal of Chemical Physics, 2010, 133, 134109.	3.0	5
1288	Apparent failure of the Born–Oppenheimer static surface model for vibrational excitation of molecular hydrogen on copper. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20881-20886.	7.1	46
1289	Role of Iridium in Pt-based Alloy Catalysts for the ORR: Surface Adsorption and Stabilization Studies. Journal of the Electrochemical Society, 2010, 157, B959.	2.9	35
1290	Electronic structure of the thermoelectric materials PbTe and AgPb18SbTe20 from first-principles calculations. Journal of Materials Research, 2010, 25, 1030-1036.	2.6	6
1291	Synthesis of Single-Crystalline Silicon Nitride (α-Si ₃ N ₄) Nanowires with Controlled Diameters by Nitriding Cryomilled Nanocrystalline Silicon Powder. Materials Research Society Symposia Proceedings, 2010, 1279, 1.	0.1	1
1292	First-principles studies for CO and O2 on gold nanocluster. Journal of Chemical Physics, 2010, 132, 244302.	3.0	27
1293	Quantum corrected Langevin dynamics for adsorbates on metal surfaces interacting with hot electrons. Journal of Chemical Physics, 2010, 133, 034115.	3.0	3
1294	Interaction of fluids with physically patterned solid surfaces. Journal of Chemical Physics, 2010, 133, 054704.	3.0	11
1295	On the calculation of charge transfer transitions with standard density functionals using constrained variational density functional theory. Journal of Chemical Physics, 2010, 133, 074104.	3.0	52

#	Article	IF	CITATIONS
1296	The axial methionine ligand may control the redox reorganizations in the active site of blue copper proteins. Journal of Chemical Physics, 2010, 133, 175101.	3.0	12
1297	Surface Electronic/Atomic Structure and Activation Energy on Pt(111), Pt ₃ Cu(111), and PtCu(111) for PEFC Cathode. Nanoscale and Microscale Thermophysical Engineering, 2010, 14, 110-122.	2.6	13
1298	Ordering of monodisperse Ni nanoclusters by templating on high-temperature reconstructed α-Al2O3(0001). Nanotechnology, 2010, 21, 265602.	2.6	10
1299	Adsorption of methanol and atomic oxygen on the Pt(100) surface: a first-principles periodic density functional theory study. Physica Scripta, 2010, 81, 045603.	2.5	11
1300	Calculation of the physical properties of an isotopic compound of ternary lithium hydride. Physica Scripta, 2010, 82, 045607.	2.5	0
1301	Low-dimensional surface oxides in the oxidation of Rh particles. Journal of Physics Condensed Matter, 2010, 22, 393001.	1.8	13
1302	Density Functional Theory Study of Catechol Adhesion on Silica Surfaces. Journal of Physical Chemistry C, 2010, 114, 20793-20800.	3.1	123
1303	First-principles calculations of graphene nanoribbons in gaseous environments: Structural and electronic properties. Physical Review B, 2010, 82, .	3.2	33
1304	Hydrogen on graphene under stress: Molecular dissociation and gap opening. Physical Review B, 2010, 81, .	3.2	77
1305	Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery. Journal of Chemical Physics, 2010, 132, 071101.	3.0	367
1306	Quantum dynamics of dissociative chemisorption of CH4 on Ni(111): Influence of the bending vibration. Journal of Chemical Physics, 2010, 133, 144308.	3.0	65
1307	Density functional study of oxygen on $Cu(100)$ and $Cu(110)$ surfaces. Physical Review B, 2010, 81, .	3.2	130
1308	CO oxidation on PdO surfaces. Journal of Chemical Physics, 2010, 133, 084704.	3.0	70
1309	First Principles Calculations on Site-Dependent Dissolution Potentials of Supported and Unsupported Pt Particles. Journal of Physical Chemistry C, 2010, 114, 17557-17568.	3.1	105
1310	Characterization and Identification of the most Refractory Nitrogen Compounds in Hydroprocessed Vacuum Gas Oil. Industrial & Engineering Chemistry Research, 2010, 49, 3184-3193.	3.7	33
1311	Kinetically Relevant Steps and H ₂ /D ₂ Isotope Effects in Fischerâ^'Tropsch Synthesis on Fe and Co Catalysts. Journal of Physical Chemistry C, 2010, 114, 19761-19770.	3.1	110
1312	Computational Studies of the Thermochemistry for Conversion of Glucose to Levulinic Acid. Journal of Physical Chemistry B, 2010, 114, 9002-9009.	2.6	107
1313	Structure and Stability of the Endohedrally Doped (X@CdiSi)i=4,9,12,15,16q=0, $\hat{A}\pm1$, X = Na, K, Cl, Br, Nanoclusters. Journal of Physical Chemistry C, 2010, 114, 2476-2483.	3.1	13

#	Article	IF	CITATIONS
1314	Molecular understanding of alkyne hydrogenation for the design of selective catalysts. Dalton Transactions, 2010, 39, 8412.	3.3	133
1315	Destruction of SO ₂ on Au and Cu Nanoparticles Dispersed on MgO(100) and CeO ₂ (111). Journal of Physical Chemistry A, 2010, 114, 3802-3810.	2.5	30
1316	Vacancy-mediated diffusion of carbon in cobalt and its influence on CO activation. Physical Chemistry Chemical Physics, 2010, 12, 7848.	2.8	37
1317	Modeling the Electrochemical Hydrogen Oxidation and Evolution Reactions on the Basis of Density Functional Theory Calculations. Journal of Physical Chemistry C, 2010, 114, 18182-18197.	3.1	990
1318	A General Database for Main Group Thermochemistry, Kinetics, and Noncovalent Interactions â [^] Assessment of Common and Reparameterized (<i>meta</i> -)GGA Density Functionals. Journal of Chemical Theory and Computation, 2010, 6, 107-126.	5.3	389
1319	Chemical accuracy for the van der Waals density functional. Journal of Physics Condensed Matter, 2010, 22, 022201.	1.8	2,222
1320	Computational and Experimental Study of the Structure, Binding Preferences, and Spectroscopy of Nickel(II) and Vanadyl Porphyrins in Petroleum. Journal of Physical Chemistry B, 2010, 114, 2180-2188.	2.6	55
1321	Large-Scale Density Functional Theory Investigation of Failure Modes in ZnO Nanowires. Nano Letters, 2010, 10, 3432-3438.	9.1	33
1322	Dynamics on Six-Dimensional Potential Energy Surfaces for H ₂ /Cu(111): Corrugation Reducing Procedure versus Modified Shepard Interpolation Method and PW91 versus RPBE. Journal of Physical Chemistry C, 2010, 114, 11192-11201.	3.1	53
1323	A DFT Study of Hydrogen Dissociation on CO- and C-Precovered Fe(100) Surfaces. Journal of Physical Chemistry C, 2010, 114, 5932-5940.	3.1	33
1324	Cluster Study of the Photo-Oxidation of Water on Rutile Titanium Dioxide (TiO2). Journal of Physical Chemistry C, 2010, 114, 1701-1708.	3.1	74
1325	Anomalous Energetics in Tetrahydrofuran Clathrate Hydrate Revealed by X-ray Compton Scattering. Journal of Physical Chemistry Letters, 2010, 1, 2832-2836.	4.6	16
1326	Theoretical Study on Adsorption and Dissociation of NO ₂ Molecule on Fe(111) Surface. Langmuir, 2010, 26, 7157-7164.	3.5	27
1327	Solvation and Zero-Point-Energy Effects on OH(ads) Reduction on Pt(111) Electrodes. Journal of Physical Chemistry C, 2010, 114, 14946-14952.	3.1	29
1328	Probing the Solvent Shell with 195Pt Chemical Shifts: Density Functional Theory Molecular Dynamics Study of Ptll and PtlV Anionic Complexes in Aqueous Solution. Journal of the American Chemical Society, 2010, 132, 3472-3483.	13.7	65
1329	Density Functional Studies of the Adsorption and Dissociation of CO ₂ Molecule on Fe(111) Surface. Langmuir, 2010, 26, 775-781.	3.5	23
1330	Universal Signature of Hydrogen Bonding in the Oxygen <i>K</i> -Edge Spectrum of Alcohols. Journal of Physical Chemistry B, 2010, 114, 13076-13083.	2.6	24
1331	Electrochemical chlorine evolution at rutile oxide (110) surfaces. Physical Chemistry Chemical Physics, 2010, 12, 283-290.	2.8	317

#	Article	IF	CITATIONS
1332	CO and NO Adsorption and Dissociation at the \hat{l} -Mo2C(0001) Surface: A Density Functional Theory Study. Journal of Physical Chemistry C, 2010, 114, 13630-13641.	3.1	43
1333	"Chain-Like―Trimetallic Ruthenium Complexes with C ₇ Carbon-Rich Bridges: Experimental and Theoretical Investigations of Electronic Communication Tuning in Five Distinct Oxidation States. Journal of the American Chemical Society, 2010, 132, 5638-5651.	13.7	78
1334	Density functional theory with nonlocal correlation: A key to the solution of the CO adsorption puzzle. Physical Review B, 2010, 81 , .	3.2	83
1335	Coverage Dependence of the Structure of Acrolein Adsorbed on Ag(111). Journal of Physical Chemistry Letters, 2010, 1, 2546-2549.	4.6	17
1336	Pressure and Materials Effects on the Selectivity of RuO ₂ in NH ₃ Oxidation. Journal of Physical Chemistry C, 2010, 114, 16660-16668.	3.1	19
1337	Theoretical Cluster Studies on the Catalytic Sulfidation of MoO ₃ . Journal of Physical Chemistry C, 2010, 114, 6791-6801.	3.1	21
1338	Ammonia dynamics in magnesium ammine from DFT and neutron scattering. Energy and Environmental Science, 2010, 3, 448.	30.8	47
1339	Bifunctional Mechanism of CO ₂ Methanation on Pd-MgO/SiO ₂ Catalyst: Independent Roles of MgO and Pd on CO ₂ Methanation. Journal of Physical Chemistry C, 2010, 114, 7128-7131.	3.1	156
1340	Enhanced Bonding of Silver Nanoparticles on Oxidized TiO ₂ (110). Journal of Physical Chemistry C, 2010, 114, 16964-16972.	3.1	23
1341	Ethylidyne Formation from Ethylene over Pt(111): A Mechanistic Study from First-Principle Calculations. Journal of Physical Chemistry C, 2010, 114, 12190-12201.	3.1	77
1342	Thermochemistry of Organic Reactions in Microporous Oxides by Atomistic Simulations: Benchmarking against Periodic B3LYP. Journal of Physical Chemistry A, 2010, 114, 7391-7397.	2.5	21
1343	Chemistry-Controlled Structural Relaxation and Enhanced Redox Abilities in Vanadium-Doped Two-Dimensional Semiconductive TeMo5O16 Catalyst. Journal of Physical Chemistry C, 2010, 114, 13277-13286.	3.1	1
1344	Atomic and molecular adsorption on transition-metal carbide (111) surfaces from density-functional theory: a trend study of surface electronic factors. Journal of Physics Condensed Matter, 2010, 22, 375504.	1.8	23
1345	Balance in Adsorption Energy of Reactants Steers CO Oxidation Mechanism of Ag13 and Ag12Pd1 Nanoparticles: Association Mechanism versus Carbonate-Mediated Mechanism. Journal of Physical Chemistry C, 2010, 114, 3156-3160.	3.1	32
1346	Surface Reaction of Sulfur-Containing Amino Acids on Cu(110). Langmuir, 2010, 26, 5632-5636.	3 . 5	13
1347	Role of Step Sites and Surface Vacancies in the Adsorption and Activation of CO on \[\tilde{\psi}\)+Fe ₅ C ₂ Surfaces. Journal of Physical Chemistry C, 2010, 114, 7863-7879.	3.1	43
1348	Insight from First-Principles Calculations into the Interactions between Hydroxybenzoic Acids and Alkali Chloride Surfaces. Journal of Physical Chemistry C, 2010, 114, 460-467.	3.1	14
1349	Enhanced Oxygen Activation over Supported Bimetallic Auâ^'Ni Catalysts. Journal of Physical Chemistry C, 2010, 114, 11498-11508.	3.1	61

#	Article	IF	CITATIONS
1350	Catalytic activity of small MgO-supported Au clusters towards CO oxidation: A density functional study. Physical Review B, $2010,81,\ldots$	3.2	40
1351	How Surface Reactivity Depends on the Configuration of Coadsorbed Reactants: CO Oxidation on Rh(100). Journal of Physical Chemistry C, 2010, 114, 17127-17135.	3.1	15
1352	Ab Initio Adsorption Thermodynamics of H ₂ S and H ₂ on Ni(111): The Importance of Thermal Corrections and Multiple Reaction Equilibria. Journal of Physical Chemistry C, 2010, 114, 22597-22602.	3.1	24
1353	Suboxide interface in disproportionating mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>a</mml:mi> -SiO studied by x-ray Raman scattering. Physical Review B, 2010, 81	3.2	13
1354	IR Spectroscopic Measurement of Diffusion Kinetics of Chemisorhed Pyridine through	3.1	20
1355	A Direct Relation between Adsorbate Interactions, Configurations, and Reactivity: CO Oxidation on Rh(100) and Rh(111). Journal of Physical Chemistry C, 2010, 114, 21672-21680.	3.1	15
1356	Computation of Nonretarded London Dispersion Coefficients and Hamaker Constants of Copper Phthalocyanine. Journal of Chemical Theory and Computation, 2010, 6, 491-498.	5.3	8
1357	Thermodynamic modeling of the Pd–S system supported by first-principles calculations. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2010, 34, 324-331.	1.6	8
1358	First-principles analysis of the adsorption of aluminum and chromium atoms on the HfC (001) surface. Computational Materials Science, 2010, 47, 625-629.	3.0	11
1359	The high-pressure phase transitions and vibrational properties of zinc-blende XTe (X=Zn, Cd, Hg): Performance of local-density-approximation density functional theory. Computational Materials Science, 2010, 48, 796-801.	3.0	37
1360	Predicting the hydrogen bond ordered structures of ice Ih, II, III, VI and ice VII: DFT methods with localized based set. Computational Materials Science, 2010, 49, S170-S175.	3.0	28
1361	First-principles study of NiAl microalloyed with Sc, Y, La and Nd. Computational Materials Science, 2010, 50, 545-549.	3.0	26
1362	Spin Distribution in Electron-Rich Piano-Stool Iron(III) Pyridylalkynyl Radical Cations Containing [(Î- ^{-dppe)(Î-⁵-C₅Me₅)FeC≡C]⁺ End Groups. Organometallics, 2010, 29, 2491-2502.}	2.3	23
1363	CO Adsorption on Monometallic and Bimetallic Auâ^'Pd Nanoparticles Supported on Oxide Thin Films. Journal of Physical Chemistry C, 2010, 114, 17099-17104.	3.1	71
1364	JuNoLo – Jülich nonlocal code for parallel post-processing evaluation of vdW-DF correlation energy. Computer Physics Communications, 2010, 181, 371-379.	7.5	40
1365	Enhanced stability of hydrogen atoms at the graphene/graphane interface of nanoribbons. Applied Physics Letters, 2010, 97, .	3.3	46
1366	Signatures of nonadiabatic <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mtext>O</mml:mtext><mml:mn>2</mml:mn></mml:msub><td>ıral2mrow></td><td>ব/smml:math</td></mml:mrow></mml:math>	ır al2 mrow>	ব/smml:math
1367	First-principles study of hydrogen absorption on Mg(0001) and formation of magnesium hydride. Physical Review B, 2010, 81, .	3.2	33

#	Article	IF	CITATIONS
1368	Electronic structure and optical properties of rutile RuO ₂ from first principles. Chinese Physics B, 2010, 19, 077102.	1.4	20
1369	DFT Studies of Oxygen Vacancies on Undoped and Doped La ₂ O ₃ Surfaces. Journal of Physical Chemistry C, 2010, 114, 12234-12244.	3.1	101
1370	The Vibrational Spectrum of Parabanic Acid by Inelastic Neutron Scattering Spectroscopy and Simulation by Solid-State DFT. Journal of Physical Chemistry A, 2010, 114, 3630-3641.	2.5	6
1371	Density functional theoretical study of pentacene/noble metal interfaces with van der Waals corrections: Vacuum level shifts and electronic structures. Journal of Chemical Physics, 2010, 132, 134703.	3.0	118
1372	Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds. Physical Review B, 2010, 82, .	3.2	298
1373	Hydrogen Rotational and Translational Diffusion in Calcium Borohydride from Quasielastic Neutron Scattering and DFT Calculations. Journal of Physical Chemistry C, 2010, 114, 20249-20257.	3.1	23
1374	Is Au55 or Au38 Cluster a Threshold Catalyst for Styrene Epoxidation?. Journal of Physical Chemistry C, 2010, 114, 1148-1153.	3.1	43
1375	Water-gas shift reaction on oxide/Cu(111): Rational catalyst screening from density functional theory. Journal of Chemical Physics, 2010, 133, 204705.	3.0	34
1376	Dehydrogenation of methanol on Pd(100): comparison with the results of Pd(111). Physical Chemistry Chemical Physics, 2010, 12, 7794.	2.8	30
1377	Cobaltâ^'Porphyrin Catalyzed Electrochemical Reduction of Carbon Dioxide in Water. 2. Mechanism from First Principles. Journal of Physical Chemistry A, 2010, 114, 10174-10184.	2.5	130
1378	Aqueous Basic Solutions: Hydroxide Solvation, Structural Diffusion, and Comparison to the Hydrated Proton. Chemical Reviews, 2010, 110, 2174-2216.	47.7	414
1379	O2 adsorption and dissociation on neutral, positively and negatively charged Aun (n = 5–79) clusters. Physical Chemistry Chemical Physics, 2010, 12, 10723.	2.8	50
1380	Diffusion of hydrogen in bcc tungsten studied with first principle calculations. Journal of Applied Physics, 2010, 107, .	2.5	174
1381	Studies of Ethylene Oxide Adsorption on Ptâ [^] Sn Alloys with TPD, HREELS, UPS, and DFT Calculations. Journal of Physical Chemistry C, 2010, 114, 17238-17247.	3.1	14
1382	Role of Adsorbed H, C, O, and CO on the Atomic Structure of Free and MgO(100)-Supported Ir ₄ Clusters: An ab Initio Study. Journal of Physical Chemistry C, 2010, 114, 15653-15660.	3.1	7
1383	Screening of electrocatalytic materials for hydrogen evolution. Physical Chemistry Chemical Physics, 2010, 12, 10536.	2.8	80
1384	Preferential CO Oxidation in Hydrogen: Reactivity of Coreâ~'Shell Nanoparticles. Journal of the American Chemical Society, 2010, 132, 7418-7428.	13.7	258
1385	Towards an understanding of the vibrational mode specificity for dissociative chemisorption of CH4 on Ni(111): a 15 dimensional study. Physical Chemistry Chemical Physics, 2010, 12, 7654.	2.8	36

#	Article	IF	CITATIONS
1386	Adsorption and activation of O2 at Au chains on MgO/Mo thin films. Physical Chemistry Chemical Physics, 2010, 12, 1483.	2.8	29
1387	Six-dimensional dynamics study of reactive and non reactive scattering of H2 from Cu(111) using a chemically accurate potential energy surface. Physical Chemistry Chemical Physics, 2010, 12, 6499.	2.8	88
1388	Rules for selectivity in oxidation processes on RuO2(110). Physical Chemistry Chemical Physics, 2010, 12, 12217.	2.8	20
1389	Dynamics of dissociative adsorption of hydrogen on a CO-precovered Ru(0001) surface: a comparison of theoretical and experimental results. Physical Chemistry Chemical Physics, 2010, 12, 1331-1340.	2.8	17
1390	Monitoring the interaction of adsorbates on metal surfaces by surface site engineering: the case of ethoxy on Cu, Pd, Ag and Au regular and stepped surfaces. Physical Chemistry Chemical Physics, 2010, 12, 6492.	2.8	11
1391	On the nature of dense CO adlayers on fcc(100) surfaces: a kinetic Monte Carlo study. Physical Chemistry Chemical Physics, 2010, 12, 461-473.	2.8	11
1392	Bidimensional versus tridimensional oxygen vacancy diffusion in SnO2â^'x under different gas environments. Physical Chemistry Chemical Physics, 2010, 12, 2401.	2.8	29
1393	Adsorption of CO on <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mtext>Ni</mml:mtext></mml:mrow><mml:mrow><mml:mn>3Ni</mml:mn></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow< td=""><td>/g.gl:mn></td><td>ব/mml:msul</td></mml:mrow<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	/g.gl:mn>	ব/mml:msul
1394	Structure and dynamics of liquid water on rutile <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mn>2 Physical Review B, 2010, 82, .</mml:mn></mml:mrow></mml:mrow></mml:mrow></mml:math>	<i>3</i> 122ml:mn	ı
1395	Density Functional Dependence in the Theoretical Analysis of the Terahertz Spectrum of the Illicit Drug MDMA (Ecstasy). IEEE Sensors Journal, 2010, 10, 478-484.	4.7	18
1396	Non-reactive scattering of N2 from the W(110) surface studied with different exchange–correlation functionals. Physical Chemistry Chemical Physics, 2011, 13, 4357.	2.8	20
1397	Hydrogen dissociation on Cu(111): the influence of lattice motion. Part I. Physical Chemistry Chemical Physics, 2011, 13, 4552.	2.8	53
1398	Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions. Physical Chemistry Chemical Physics, 2011, 13, 15639.	2.8	454
1399	First principles based mean field model for oxygen reduction reaction. Physical Chemistry Chemical Physics, 2011, 13, 21070.	2.8	86
1400	$\label{eq:continuous} Effect of crystallite size on Vickers microhardness in nanostructured Heusler Ni<inf>39+x</inf>Mn<inf>50</inf>Sn<inf>11−x</inf>(x≤2)alloys., 2011,,.$		0
1401	Thermodynamic and kinetic properties of hydrogen defect pairs in SrTiO3 from density functional theory. Physical Chemistry Chemical Physics, 2011, 13, 15256.	2.8	18
1402	Oxygen adsorption on small PtNi nanoalloys. Physical Chemistry Chemical Physics, 2011, 13, 7701.	2.8	38
1403	Structural phase transition and electronic properties of AlSb nanocrystal., 2011,,.		1

#	Article	IF	CITATIONS
1404	Can an eight π-electron bare ring be planar?. Physical Chemistry Chemical Physics, 2011, 13, 20615.	2.8	14
1405	Inelastic X-ray scattering and vibrational effects at the K-edges of gaseous N2, N2O, and CO2. Physical Chemistry Chemical Physics, 2011, 13, 11678.	2.8	25
1406	The role of long-lived oxygen precursors on AuM alloys (M = Ni, Pd, Pt) in CO oxidation. Physical Chemistry Chemical Physics, 2011, 13, 5790.	2.8	23
1407	Dynamics of scattering and dissociative adsorption on a surface alloy: $H2/W(100)$ -c(2 \tilde{A} — 2)Cu. Physical Chemistry Chemical Physics, 2011, 13, 4614.	2.8	7
1408	Bandgap narrowing of titanium oxide nanosheets: homogeneous doping of molecular iodine for improved photoreactivity. Journal of Materials Chemistry, 2011, 21, 14672.	6.7	28
1409	Theoretical Study on Crystal Structure and Hydrogen Storage Properties of Sodium Hydride. Advanced Materials Research, 2011, 287-290, 1348-1351.	0.3	0
1410	Tunable Magnetism and Half-Metallic Stability of Half-Heusler Compound NiMn _{1-x} Nb _x Sb. Advanced Materials Research, 0, 415-417, 1407-1410.	0.3	0
1411	Thermal Stability of Endohedral First-Row Transition-Metal TM@ZniSi Structures, i = 12, 16. Journal of Physical Chemistry C, 2011, 115, 7829-7835.	3.1	7
1412	Tuning Arylâ^'CH···O Intermolecular Interactions on Pt(111). Journal of Physical Chemistry C, 2011, 115, 1355-1360.	3.1	17
1413	On the behavior of BrÃ,nsted-Evans-Polanyi relations for transition metal oxides. Journal of Chemical Physics, 2011, 134, 244509.	3.0	128
1414	Investigations of phase transition, elastic and thermodynamic properties of GaP by using the density functional theory. Chinese Physics B, 2011, 20, 106201.	1.4	9
1415	Role of Interfacial Interaction in Orientation of Poly(N-isopropylacrylamide) Chains on Silicon Substrate Macromolecules, 2011, 44, 5750-5757.	4.8	11
1416	Structural Analysis of Silica-Supported Molybdena Based on X-ray Spectroscopy: Quantum Theory and Experiment. Journal of Physical Chemistry C, 2011, 115, 15449-15458.	3.1	28
1417	Geometric and Electronic Confinement Effects on Catalysis. Journal of Physical Chemistry C, 2011, 115, 21324-21333.	3.1	42
1418	Effective Reversible Potential, Energy Loss, and Overpotential on Platinum Fuel Cell Cathodes. Journal of Physical Chemistry C, 2011, 115, 4076-4088.	3.1	60
1419	Mechanistic Switch between Oxidative (Andrussow) and Nonoxidative (Degussa) Formation of HCN on Pt(111) by Density Functional Theory. Journal of Physical Chemistry C, 2011, 115, 5667-5674.	3.1	24
1420	Tuning the CO Dissociation Barriers by Low-Dimensional Surface Alloys. Journal of Physical Chemistry C, 2011, 115, 21320-21323.	3.1	9
1421	The Antimalarial Ferroquine: Role of the Metal and Intramolecular Hydrogen Bond in Activity and Resistance. ACS Chemical Biology, 2011, 6, 275-287.	3.4	167

#	Article	IF	CITATIONS
1422	Dissociation of Methane on La ₂ O ₃ Surfaces Doped with Cu, Mg, or Zn. Journal of Physical Chemistry C, 2011, 115, 18239-18246.	3.1	31
1423	Calibration of the DFT/GGA+U Method for Determination of Reduction Energies for Transition and Rare Earth Metal Oxides of Ti, V, Mo, and Ce. Journal of Chemical Theory and Computation, 2011, 7, 2218-2223.	5.3	215
1424	A Density Functional Theory and Quantum Theory of Atoms-in-Molecules Analysis of the Stability of Ni(II) Complexes of Some Amino Alcohol Ligands. Journal of Physical Chemistry A, 2011, 115, 6629-6640.	2.5	8
1425	Self-consistent meta-generalized gradient approximation within the projector-augmented-wave method. Physical Review B, 2011, 84, .	3.2	180
1426	Spline Implementation of Generalized Gradient Approximations to the Exchange-Correlation Functional and Study of the Sensitivity of Density Functional Accuracy to Localized Domains of the Reduced Density Gradient. Journal of Chemical Theory and Computation, 2011, 7, 3983-3994.	5.3	6
1427	Alkali Metals in Ethylenediamine: A Computational Study of the Optical Absorption Spectra and NMR Parameters of [M(en) ₃ ^{Î+} ·M ^{Îâ^3}] Ion Pairs. Journal of the American Chemical Society, 2011, 133, 4829-4839.	13.7	23
1428	CO Oxidation on Positively and Negatively Charged Ag _{13} Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 24771-24777.	3.1	22
1429	Indirect Magnetic Coupling of Manganese Porphyrin to a Ferromagnetic Cobalt Substrate. Journal of Physical Chemistry C, 2011, 115, 1295-1301.	3.1	44
1430	Theoretical Studies on Proton Transfer among a High Density of Acid Groups: Surface of Zirconium Phosphate with Adsorbed Water Molecules. Journal of Physical Chemistry C, 2011, 115, 5599-5606.	3.1	26
1431	Theoretical Studies on Thermochemistry for Conversion of 5-Chloromethylfurfural into Valuable Chemicals. Journal of Physical Chemistry A, 2011, 115, 13628-13641.	2.5	25
1432	Theoretical Study of the Interaction of CO on TiC(001) and Au Nanoparticles Supported on TiC(001): Probing the Nature of the Au/TiC Interface. Journal of Physical Chemistry C, 2011, 115, 22495-22504.	3.1	17
1433	Catalytic activity of Pd ensembles over Au(111) surface for CO oxidation: A first-principles study. Journal of Chemical Physics, 2011, 134, 054704.	3.0	25
1434	Ab Initio Calculations of the Electronic Properties of Polypyridine Transition Metal Complexes and Their Adsorption on Metal Surfaces in the Presence of Solvent and Counterions. Journal of Physical Chemistry B, 2011, 115, 9410-9416.	2.6	14
1435	Modeling the Vibrational Dynamics and Nonlinear Infrared Spectra of Coupled Amide I and II Modes in Peptides. Journal of Physical Chemistry B, 2011, 115, 5392-5401.	2.6	27
1436	Density Functional Theory Study on Propane and Propene Adsorption on Pt(111) and PtSn Alloy Surfaces. Journal of Physical Chemistry C, 2011, 115, 9578-9586.	3.1	130
1437	Chemisorption of CO and Mechanism of CO Oxidation on Supported Platinum Nanoclusters. Journal of the American Chemical Society, 2011, 133, 4498-4517.	13.7	448
1438	Bond breaking electron transfer across a conducting nanowire(nanotube)/electrolyte solution interface: The role of electrical double layer effects. Journal of Electroanalytical Chemistry, 2011, 660, 309-313.	3.8	8
1439	Unravelling phenomenon of internal rotation in B13+ through chemical bonding analysis. Chemical Communications, 2011, 47, 6242.	4.1	120

#	Article	IF	CITATIONS
1440	Superhydrogenated PAHs: Catalytic formation of H ₂ . EAS Publications Series, 2011, 46, 453-460.	0.3	7
1441	Small gold clusters on graphene, their mobility and clustering: a DFT study. Journal of Physics Condensed Matter, 2011, 23, 205301.	1.8	42
1442	Mechanism of Methanol Synthesis on Cu through CO ₂ and CO Hydrogenation. ACS Catalysis, 2011, 1, 365-384.	11.2	990
1443	Solvent Effects and Dynamic Averaging of ¹⁹⁵ Pt NMR Shielding in Cisplatin Derivatives. Inorganic Chemistry, 2011, 50, 1723-1732.	4.0	60
1444	Adsorption of Cu, Ag, and Au atoms on graphene including van der Waals interactions. Journal of Physics Condensed Matter, 2011, 23, 395001.	1.8	117
1445	Electronic hole transfer in rutile and anatase TiO2: Effect of a delocalization error in the density functional theory on the charge transfer barrier height. Physical Review B, 2011, 84, .	3.2	14
1446	Computational and Experimental Investigations into N ₂ O Decomposition over MgO Nanocrystals from Thorough Molecular Mechanism to ab initio Microkinetics. Journal of Physical Chemistry C, 2011, 115, 22451-22460.	3.1	41
1448	Highly Active Iridium/Iridium–Tin/Tin Oxide Heterogeneous Nanoparticles as Alternative Electrocatalysts for the Ethanol Oxidation Reaction. Journal of the American Chemical Society, 2011, 133, 15172-15183.	13.7	167
1449	Effect of Titanium Doping of Al (111) Surfaces on Alane Formation, Mobility, and Desorption. Journal of Physical Chemistry C, 2011, 115, 16701-16710.	3.1	12
1450	Computational Investigation on Adsorption and Dissociation of the NH ₃ Molecule on the Fe(111) Surface. Journal of Physical Chemistry C, 2011, 115, 521-528.	3.1	32
1451	Zr-Catalyzed Hydrogen Chemisorptions on an Al Surface. Advanced Materials Research, 2011, 197-198, 1096-1099.	0.3	0
1452	Density Functional Theory Study of the Adsorption of Nitrogen and Sulfur Atoms on Gold (111), (100), and (211) Surfaces. Journal of Physical Chemistry C, 2011, 115, 22987-22997.	3.1	14
1453	First-principles study of the structural, mechanical and electronic properties of ZnX ₂ O ₄ (X=Al, Cr and Ga). Chinese Physics B, 2011, 20, 047102.	1.4	23
1454	Diffractive and reactive scattering of H2 from Ru(0001): experimental and theoretical study. Physical Chemistry Chemical Physics, 2011, 13, 8583.	2.8	32
1455	Theoretical Study of Electrochemical Processes on Pt–Ni Alloys. Journal of Physical Chemistry C, 2011, 115, 10640-10650.	3.1	79
1456	Turning aluminium into a noble-metal-like catalystÂforÂlow-temperature activation of molecularÂhydrogen. Nature Materials, 2011, 10, 884-889.	27.5	41
1458	UPS, XPS, and NEXAFS Study of Self-Assembly of Standing 1,4-Benzenedimethanethiol SAMs on Gold. Langmuir, 2011, 27, 4713-4720.	3.5	61
1459	A model for the Heyrovsky reaction as the second step in hydrogen evolution. Physical Chemistry Chemical Physics, 2011, 13, 6992.	2.8	34

#	Article	IF	CITATIONS
1460	Hydrogen evolution on Au(111) covered with submonolayers of Pd. Physical Review B, 2011, 84, .	3.2	45
1461	Construction of an optimal GGA functional for molecules and solids. Physical Review B, 2011, 83, .	3.2	84
1462	Reaction Kinetics of Ethylene Glycol Reforming over Platinum in the Vapor versus Aqueous Phases. Journal of Physical Chemistry C, 2011, 115, 961-971.	3.1	68
1463	Electronic shell structure and chemisorption on gold nanoparticles. Physical Review B, 2011, 84, .	3.2	44
1464	[Pt@Pb12]2â€"Ââ€" A challenging system for relativistic density functional theory calculations of 195Pt and 207Pb NMR parameters. Canadian Journal of Chemistry, 2011, 89, 814-821.	1.1	14
1465	Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold. Physical Chemistry Chemical Physics, 2011, 13, 4529.	2.8	121
1466	Two-Dimensional Scan of the Performance of Generalized Gradient Approximations with Perdew–Burke–Ernzerhof-Like Enhancement Factor. Journal of Chemical Theory and Computation, 2011, 7, 3548-3559.	5.3	49
1467	The d-Band Structure of Pt Nanoclusters Correlated with the Catalytic Activity for an Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2011, 115, 21236-21240.	3.1	129
1468	Mechanism of the initial stages of nitrogen-doped single-walled carbon nanotube growth. Physical Chemistry Chemical Physics, 2011, 13, 11303.	2.8	15
1469	Transformation from AA to AB-Stacked Bilayer Graphene on α-SiO ₂ under an Electric Field. Chinese Physics Letters, 2011, 28, 087303.	3.3	6
1470	Enantioselective Hydrogenation of \hat{l} ±-Ketoesters: An in Situ Surface-Enhanced Raman Spectroscopy (SERS) Study. Journal of Physical Chemistry C, 2011, 115, 21363-21372.	3.1	9
1471	Density Functional Theory (DFT) Study on the Dehydration of Cellulose. Energy & Density Fuels, 2011, 25, 2664-2670.	5.1	67
1472	A high-throughput infrastructure for density functional theory calculations. Computational Materials Science, 2011, 50, 2295-2310.	3.0	787
1473	Atomic oxygen adsorption on the silicon-doped hafnium carbide (001) surface from first principles. Computational Materials Science, 2011, 50, 2530-2534.	3.0	8
1474	Ab initio study of AlCu2M (M=Sc, Ti and Cr) ternary compounds under pressures. Computational Materials Science, 2011, 50, 2930-2937.	3.0	21
1475	Structural, electronic, elastic and thermodynamic properties of AlSi2RE (RE=La, Ce, Pr and Nd) from first-principle calculations. Computational Materials Science, 2011, 50, 3303-3310.	3.0	11
1476	Adsorption of hydrogen, chlorine, and sulfur atoms on \hat{i}_{\pm} -Cr2O3(0 0 0 1) surfaces: A density functional theory investigation. Corrosion Science, 2011, 53, 3612-3622.	6.6	17
1477	Hydrogen electrocatalysis on overlayers of rhodium over gold and palladium substrates—more active than platinum?. Physical Chemistry Chemical Physics, 2011, 13, 16437.	2.8	29

#	Article	IF	CITATIONS
1478	Ab initio calculations of elastic and thermodynamic properties of fcc- ⁶ LiF under high temperatures and pressures. EPJ Applied Physics, 2011, 53, 11101.	0.7	5
1479	Universal transition state scaling relations for (de)hydrogenation over transition metals. Physical Chemistry Chemical Physics, 2011, 13, 20760.	2.8	363
1480	Destabilization of Ag nanoislands on Ag(100) by adsorbed sulfur. Journal of Chemical Physics, 2011, 135, 154701 .	3.0	16
1481	A multifaceted approach to hydrogen storage. Physical Chemistry Chemical Physics, 2011, 13, 16955.	2.8	64
1482	Evaporation of Urea at Atmospheric Pressure. Journal of Physical Chemistry A, 2011, 115, 2581-2589.	2.5	48
1483	A first-principles study on electronic structure and elastic properties of Al4Sr, Mg2Sr and Mg23Sr6 phases. Transactions of Nonferrous Metals Society of China, 2011, 21, 2677-2683.	4.2	10
1484	First-principles Study of NiAl Alloyed with Rare Earth Element Ce. Journal of Materials Science and Technology, 2011, 27, 719-724.	10.7	23
1485	Kirkendall Effect and Lattice Contraction in Nanocatalysts: A New Strategy to Enhance Sustainable Activity. Journal of the American Chemical Society, 2011, 133, 13551-13557.	13.7	255
1486	Chemistry of Doped Oxides: The Activation of Surface Oxygen and the Chemical Compensation Effect. Journal of Physical Chemistry C, 2011, 115, 3065-3074.	3.1	102
1487	Generalized Gradient Approximation That Recovers the Second-Order Density-Gradient Expansion with Optimized Across-the-Board Performance. Journal of Physical Chemistry Letters, 2011, 2, 1991-1997.	4.6	171
1488	Simulation of surface processes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 944-949.	7.1	93
1489	On the Importance of Gradient-Corrected Correlation for van der Waals Density Functionals. Topics in Catalysis, 2011, 54, 1143-1150.	2.8	23
1490	Experimental and theoretical research on catalytic synthesis of thiophene from furan and H2S. Brazilian Journal of Chemical Engineering, 2011, 28, 95-99.	1.3	4
1491	Hydrogenation of Graphene and Hydrogen Diffusion Behavior on Graphene/Graphane Interface., 0,,.		9
1492	Tailoring magnetic properties in Mn4 molecules: A way to develop single-molecule magnets. Journal of Applied Physics, 2011, 109, 07B105.	2.5	3
1493	The evolution of hydrogen from proton irradiated glassy carbon. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 2578-2583.	1.4	3
1494	Theoretical study of metal–insulator transition in rhombohedral vanadium sesquioxide. Journal of Physics and Chemistry of Solids, 2011, 72, 1085-1089.	4.0	2
1495	Vibrational and dielectric properties of magnesium aluminate spinel: A first-principles study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3521-3524.	2.1	21

#	Article	IF	CITATIONS
1496	Diffraction of molecular hydrogen from metal surfaces. Progress in Surface Science, 2011, 86, 222-254.	8.3	40
1497	Pressure induced phase transformation and electronic properties of AlAs. Materials Chemistry and Physics, 2011, 125, 66-71.	4.0	20
1498	Structural and electronic properties of lead nanowires: Ab-initio study. Materials Chemistry and Physics, 2011, 127, 489-494.	4.0	23
1499	Compton scattering studies and electronic properties of cerium. Journal of Rare Earths, 2011, 29, 804-809.	4.8	1
1500	Ligand-Driven Exchange Coupling in ${m Mn}_{4}$ Single-Molecule Magnets. IEEE Transactions on Magnetics, 2011, 47, 2429-2432.	2.1	1
1501	Structure sensitivity of dodecahydro-N-ethylcarbazole dehydrogenation over Pd catalysts. Journal of Catalysis, 2011, 279, 36-47.	6.2	129
1502	Spectroscopy, microscopy and theoretical study of NO adsorption on MoS2 and Co–Mo–S hydrotreating catalysts. Journal of Catalysis, 2011, 279, 337-351.	6.2	64
1503	An atomic-scale investigation of carbon in MoS2 hydrotreating catalysts sulfided by organosulfur compounds. Journal of Catalysis, 2011, 281, 345-351.	6.2	30
1504	Blank voltammetry of hexagonal surfaces of Pt-group metal electrodes: Comparison to density functional theory calculations and ultra-high vacuum experiments on water dissociation. Electrochimica Acta, 2011, 56, 10645-10651.	5.2	56
1505	Trends in oxygen reduction and methanol activation on transition metal chalcogenides. Electrochimica Acta, 2011, 56, 9783-9788.	5.2	53
1506	Mechanistic analysis of direct N2O decomposition and reduction with H2 or NH3 over RuO2. Applied Catalysis B: Environmental, 2011, 110, 33-39.	20.2	8
1507	Ab initio calculations on energetics and electronic structures of cubic Mg3MNi2 (MÂ=ÂAl, Ti, Mn) hydrogen storage alloys. International Journal of Hydrogen Energy, 2011, 36, 14477-14483.	7.1	19
1508	Sulphur poisoning of Ni catalysts used in the SNG production from biomass: Computational studies. Catalysis Today, 2011, 176, 429-432.	4.4	23
1509	Scaling relationships for adsorption energies of C2 hydrocarbons on transition metal surfaces. Chemical Engineering Science, 2011, 66, 6318-6323.	3 . 8	108
1510	The Pt(111)/Electrolyte Interface under Oxygen Reduction Reaction Conditions: An Electrochemical Impedance Spectroscopy Study. Langmuir, 2011, 27, 2058-2066.	3 . 5	170
1511	Trends in Metal Oxide Stability for Nanorods, Nanotubes, and Surfaces. Journal of Physical Chemistry C, 2011, 115, 2244-2252.	3.1	52
1512	Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces. ChemCatChem, 2011, 3, 1159-1165.	3.7	3,208
1513	Tailoring the Activity for Oxygen Evolution Electrocatalysis on Rutile TiO ₂ (110) by Transitionâ€Metal Substitution. ChemCatChem, 2011, 3, 1607-1611.	3.7	169

#	Article	IF	CITATIONS
1514	Electronic properties of the partially hydrogenated armchair carbon nanotubes. Physical Review B, 2011, 84, .	3.2	16
1515	DFT study of gas-phase adsorption of benzotriazole on Cu(111), Cu(100), Cu(110), and low coordinated defects thereon. Physical Chemistry Chemical Physics, 2011, 13, 20408.	2.8	69
1516	Sulphur overlayers on Ir(100) and its effect on the adsorption of CO: a DFT study. European Physical Journal B, 2011, 83, 437-443.	1.5	6
1517	Structure and stability of small H clusters on graphene. Physical Review B, 2011, 83, .	3.2	41
1518	Improving the Accuracy of Hybrid Meta-GGA Density Functionals by Range Separation. Journal of Physical Chemistry Letters, 2011, 2, 2810-2817.	4.6	864
1519	Direct CO Oxidation by Lattice Oxygen on Zr-Doped Ceria Surfaces. Catalysis Letters, 2011, 141, 78-82.	2.6	39
1520	Universal BrÃ,nsted-Evans-Polanyi Relations for C–C, C–O, C–N, N–O, N–N, and O–O Dissociation Reactions. Catalysis Letters, 2011, 141, 370-373.	2.6	265
1521	Finite Size Effects in Chemical Bonding: From Small Clusters to Solids. Catalysis Letters, 2011, 141, 1067-1071.	2.6	234
1522	Atomic-Scale Modeling of Particle Size Effects for the Oxygen Reduction Reaction on Pt. Catalysis Letters, 2011, 141, 909-913.	2.6	219
1523	Computational Investigation of the Thermochemistry and Kinetics of Steam Methane Reforming Over a Multi-Faceted Nickel Catalyst. Topics in Catalysis, 2011, 54, 828-844.	2.8	89
1524	DFT and kinetics study of O/O2 mixtures reacting over a graphite (0001) basal surface. Theoretical Chemistry Accounts, 2011 , 128 , 683 - 694 .	1.4	34
1525	Adsorption of catechol on a wet silica surface: density functional theory study. Theoretical Chemistry Accounts, 2011, 130, 333-339.	1.4	49
1526	Microstructure investigation and first-principle analysis of die-cast AZ91 alloy with calcium addition. Materials Science & Damp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 5283-5288.	5.6	18
1527	Applications and validations of the Minnesota density functionals. Chemical Physics Letters, 2011, 502, 1-13.	2.6	662
1528	Density-Functional Study of the Electronic Structure and Optical Properties of Transparent Conducting Oxides In4Sn3O12 and In4Ge3O12. Journal of Electronic Materials, 2011, 40, 1501-1505.	2.2	4
1529	Research on the Lattice Stability of Elemental Be, Mg, Ca, Sr, Ba and Ra by the Ultra-Soft Pseudo-Potential Method in First Principles. Journal of Phase Equilibria and Diffusion, 2011, 32, 428-434.	1.4	O
1530	First-Principles Study on the Stabilities of the Intermetallic Compounds in Mg-Nd Alloys. Rare Metal Materials and Engineering, 2011, 40, 590-594.	0.8	8
1531	Triazole, Benzotriazole, and Naphthotriazole as Copper Corrosion Inhibitors: I. Molecular Electronic and Adsorption Properties. ChemPhysChem, 2011, 12, 3547-3555.	2.1	53

#	Article	IF	Citations
1532	Computational study on the reactions of H $<$ sub $>2<$ sub $>0<$ sub $>2<$ sub $>$ 0 on TiO $<$ sub $>2<$ sub $>$ anatase (101) and rutile (110) surfaces. Journal of Computational Chemistry, 2011, 32, 1065-1081.	3.3	64
1535	²⁹ Si DFT/NMR Observation of Spin–Orbit Effect in Metallasilatrane Sheds Some Light on the Strength of the Metal→Silicon Interaction. Angewandte Chemie - International Edition, 2011, 50, 255-259.	13.8	71
1536	Activation Energies for Diffusion of Defects in Silicon: The Role of the Exchangeâ€Correlation Functional. Angewandte Chemie - International Edition, 2011, 50, 10221-10225.	13.8	31
1537	Novel Au–TiC catalysts for CO oxidation and desulfurization processes. Catalysis Today, 2011, 166, 2-9.	4.4	37
1538	Carbon monoxide adsorption and dissociation on Mn-decorated Rh(111) and Rh(553) surfaces: A first-principles study. Catalysis Today, 2011, 160, 228-233.	4.4	26
1539	Allylic oxidation of cyclohexene catalyzed by manganese porphyrins: DFT studies. Catalysis Today, 2011, 169, 10-15.	4.4	14
1540	Structure evolution of Pt–3d transition metal alloys under reductive and oxidizing conditions and effect on the CO oxidation: a first-principles study. Catalysis Today, 2011, 165, 89-95.	4.4	33
1541	Understanding of ethanol decomposition on $Rh(111)$ from density functional theory and kinetic Monte Carlo simulations. Catalysis Today, 2011, 165, 64-70.	4.4	82
1542	Effect of Pd surface structure on the activation of methyl acetate. Catalysis Today, 2011, 165, 96-105.	4.4	17
1543	The role of transition metal interfaces on the electronic transport in lithium–air batteries. Catalysis Today, 2011, 165, 2-9.	4.4	87
1544	A theoretical study for the influence of coverage on Li, Na and K adsorption on Co(0001). Computational and Theoretical Chemistry, 2011, 963, 125-129.	2.5	7
1545	Effects of the self-interaction error in Kohn–Sham calculations: A DFT+U case study on penta-aqua uranyl(VI). Computational and Theoretical Chemistry, 2011, 963, 337-343.	2.5	12
1546	Density-functional study of the sign preference of the binding of 1-propanol to tungsten oxide seed particles. Computational and Theoretical Chemistry, 2011, 966, 322-327.	2.5	2
1547	Influence of surface chemistry on the electronic properties of graphene nanoflakes. Chemical Physics Letters, 2011, 503, 91-96.	2.6	24
1548	Bonding and vibrations of CHxO and CHx species ($x=1\hat{a}\in$ "3) on a palladium nanoparticle representing model catalysts. Chemical Physics Letters, 2011, 506, 92-97.	2.6	15
1549	Electronic hole localization in rutile and anatase TiO2 – Self-interaction correction in Δ-SCF DFT. Chemical Physics Letters, 2011, 506, 42-45.	2.6	29
1550	Origin of reactivity diversity of lattice oxygen in titanates. Chemical Physics Letters, 2011, 511, 82-86.	2.6	13
1551	First-principles study on the dehydrogenation properties and mechanism of Al-doped Mg2NiH4. International Journal of Hydrogen Energy, 2011, 36, 5375-5382.	7.1	24

#	Article	IF	CITATIONS
1552	Electronic structure of MoO2. DFT periodic and cluster model studies. Applied Catalysis A: General, 2011, 391, 137-143.	4.3	30
1553	Self-assembly of HPW on Pt/C nanoparticles with enhanced electrocatalysis activity for fuel cell applications. Applied Catalysis B: Environmental, 2011, 103, 311-317.	20.2	41
1554	Local electronic and electrical properties of functionalized graphene nano flakes. Physica B: Condensed Matter, 2011, 406, 1665-1672.	2.7	5
1555	Structural, elastic and electronic properties of transition metal carbides TMC (TM=Ti, Zr, Hf and Ta) from first-principles calculations. Solid State Communications, 2011, 151, 602-606.	1.9	92
1556	First-principles study on the crystal, electronic structure and mechanical properties of hexagonal Al3RE (RE = La, Ce, Pr, Nd, Sm, Gd) intermetallic compounds. Solid State Communications, 2011, 151, 1135-1140.	1.9	17
1557	First-principles investigations of Ni3Al(111) and NiAl(110) surfaces at metal dusting conditions. Surface Science, 2011, 605, 582-592.	1.9	11
1558	Density functional theory study of the adsorption of oxygen atoms on gold (111), (100) and (211) surfaces. Surface Science, 2011, 605, 1313-1319.	1.9	10
1559	Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surface Science, 2011, 605, 1354-1359.	1.9	445
1560	Structural and electronic properties of \hat{l}^2 -In2X3 (X=O, S, Se, Te) using ab initio calculations. Thin Solid Films, 2011, 519, 5679-5683.	1.8	9
1561	Six-dimensional quasiclassical and quantum dynamics of H2 dissociation on the c(2 \tilde{A} — 2)-Ti/Al(100) surface. Journal of Chemical Physics, 2011, 134, 114708.	3.0	13
1562	Multiple isomers in the photoelectron spectra of small mono-niobium carbide clusters. Journal of Chemical Physics, 2011, 134, 184310.	3.0	4
1563	On the adsorption and formation of Pt dimers on the CeO2(111) surface. Journal of Chemical Physics, 2011, 135, 244708.	3.0	14
1564	Structure of rhenium surfaces in an oxygen environment. Physical Review B, 2011, 83, .	3.2	10
1565	Standard hydrogen electrode and potential of zero charge in density functional calculations. Physical Review B, 2011, 84, .	3.2	118
1566	Evolution of the phonon density of states of LaCoO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:mrow><td>3.2</td><td>8</td></mml:math>	3.2	8
1567	Improved lattice constants, surface energies, and CO desorption energies from a semilocal density functional. Physical Review B, 2011, 83, .	3.2	67
1568	Surface stress changes in the Ir(001)/H system: Density functional theory study. Physical Review B, 2011, 84, .	3.2	4
1569	Adsorption of Alq <mml:math display="inline" xmins:mml="http://www.w3.org/1998/Math/Math/Math/Mil"><mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math> on Mg(001) surface: Role of chemical bonding, molecular distortion, and van der Waals interaction. Physical	3.2	7

#	Article	IF	CITATIONS
1570	Tailoring Electronic and Optical Properties of TiO ₂ : Nanostructuring, Doping and Molecular-Oxide Interactions., 2011,, 301-329.		2
1571	Calculations show improved photoelectrochemical performance for N, Ce, and Ce + N doped anatase TiO2. Journal of Applied Physics, 2011, 110, 033519.	2.5	22
1572	Elastic anisotropy of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi> \acute{E}></mml:mi> </mml:mrow> </mml:math> -Fe under conditions at the Earth's inner core. Physical Review B, 2011, 83, .	3.2	26
1573	Improving atomization energies of molecules and solids with a spin-dependent gradient correction from one-electron density analysis. Physical Review B, 2011, 84, .	3.2	26
1574	Configurational correlations in the coverage dependent adsorption energies of oxygen atoms on late transition metal fcc(111) surfaces. Journal of Chemical Physics, 2011, 134, 104709.	3.0	58
1575	First-principles calculations of electronic, optical, and thermodynamic properties of SrSi2. Journal of Applied Physics, 2011, 109, .	2.5	20
1576	Density functional study of multiplicity-changing valence and Rydberg excitations of p-block elements: Delta self-consistent field, collinear spin-flip time-dependent density functional theory (DFT), and conventional time-dependent DFT. Journal of Chemical Physics, 2011, 135, 044118.	3.0	57
1577	xmins:mml="http://www.w3.org/1998/Math/Math/ML" display="inline"> <mml:mi>α</mml:mi> -Al <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn></mml:mn></mml:msub></mml:math> O <mml:math>O<mml:math>O<mml:math>O<mml:msub></mml:msub></mml:math></mml:math></mml:math>	3.2	8
1578	The tunable bandgap of AB-stacking bilayer graphene under the applied electric fields for power devices., 2011,,.		0
1579	FeP(Im)â^'AB bonding energies evaluated with a large number of density functionals (P = porphine,) Tj E	TQg1 1 0	.784314 rg <mark>8</mark> 13
1580	Ab initio investigation of structural, electronic, mechanical, and thermodynamic properties of AlSc2 intermetallic compound under pressure. Journal of Applied Physics, 2011, 110, 033533.	2.5	16
1581	The decomposition of H ₂ O ₂ over the components of Au/TiO ₂ Âcatalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 1885-1899.	2.1	35
1582	First-Principles Study of the Properties of Clean and Ni-Doped TiC/Fe Interfaces. Advanced Materials Research, 0, 415-417, 166-169.	0.3	1
1583	First Principles Analysis of Ultra-Thin Silicon Films with Dimer Structures. Materials Research Society Symposia Proceedings, 2011, 1370, 89.	0.1	0
1584	Towards designing ^{Mn} ₄ molecules with strong intramolecular exchange coupling. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2011, 2, 015011.	1.5	0
1585	TiO _x Film Formation on NiTi Alloy (100) Surface: Density Functional Theory Investigation. Materials Science Forum, 0, 675-677, 353-356.	0.3	2
1586	Solvent and conformation dependence of amide I vibrations in peptides and proteins containing proline. Journal of Chemical Physics, 2011, 135, 234507.	3.0	58
1587	First-principles study of the electronic structure and optical properties of Ce-doped ZnO. Journal of Applied Physics, 2011, 109, .	2.5	55

#	Article	IF	CITATIONS
1588	FIRST-PRINCIPLES CALCULATIONS OF STRUCTURE, STABILITY AND THERMODYNAMIC PROPERTIES OF fcc-6Lit under high temperatures and pressures. Modern Physics Letters B, 2011, 25, 333-344.	1.9	2
1589	Improved hybrid functional for solids: The HSEsol functional. Journal of Chemical Physics, 2011, 134, 024116.	3.0	292
1590	Strong correlations in actinide redox reactions. Journal of Chemical Physics, 2011, 134, 064510.	3.0	14
1591	A density-functional theory study of water on clean and hydrogen preadsorbed Rh(111) surfaces. Journal of Chemical Physics, 2011, 134, 154701.	3.0	12
1592	Intrinsic stability and hydrogen affinity of pure and bimetallic nanowires. Journal of Chemical Physics, 2011, 134, 174106.	3.0	3
1593	First-principles study towards the reactivity of the $Pd(111)$ surface with low Zn deposition. Journal of Chemical Physics, 2011, 134, 184702.	3.0	6
1594	C-N coupling on transition metal surfaces: A density functional theory study. Journal of Chemical Physics, 2011, 135, 124707.	3.0	4
1595	Non-empirical improvement of PBE and its hybrid PBEO for general description of molecular properties. Journal of Chemical Physics, 2012, 136, 104108.	3.0	78
1596	Process Based Large Scale Molecular Dynamic Simulation of a Fuel Cell Catalyst Layer. Journal of the Electrochemical Society, 2012, 159, B251-B258.	2.9	19
1597	Investigation of the hydrogen bonding in ice Ih by first-principles density function methods. Journal of Chemical Physics, 2012, 137, 044504.	3.0	33
1598	Yellow-emitting \hat{I}^3 -Ca_2SiO_4:Ce^3+, Li^+ phosphor for solid-state lighting: luminescent properties, electronic structure, and white light-emitting diode application. Optics Express, 2012, 20, 2761.	3.4	76
1599	STRUCTURAL PHASE TRANSITION, ELASTIC AND ELECTRONIC PROPERTIES OF CuXSe2(X = In, Ga) CHALCOPYRITE. Surface Review and Letters, 2012, 19, 1250021.	1.1	4
1600	Local density of states analysis using Bader decomposition for N2 and CO2 adsorbed on Pt(110)-(1 × 2 electrodes. Journal of Chemical Physics, 2012, 137, 164705.	²⁾ 3.0	39
1601	An orbital-overlap model for minimal work functions of cesiated metal surfaces. Journal of Physics Condensed Matter, 2012, 24, 445007.	1.8	29
1602	Electronic structure of the Il-cysteine dimers adsorbed on Au(111): a density functional theory study. Physica Scripta, 2012, 86, 035707.	2.5	13
1603	<i>Ab initio</i> calculation of lattice dynamics and thermodynamic properties of beryllium. Journal of Applied Physics, 2012, 111, .	2.5	38
1604	Calculation of longitudinal polarizability and second hyperpolarizability of polyacetylene with the coupled perturbed Hartree-Fock/Kohn-Sham scheme: Where it is shown how finite oligomer chains tend to the infinite periodic polymer. Journal of Chemical Physics, 2012, 136, 114101.	3.0	21
1605	Improved constraint satisfaction in a simple generalized gradient approximation exchange functional. Journal of Chemical Physics, 2012, 136, 144115.	3.0	31

#	Article	IF	Citations
1606	Effect of dispersion correction on the Au(1 1 1)-H2O interface: A first-principles study. Journal of Chemical Physics, 2012, 137, 114709.	3.0	49
1607	Nonempirical Rung 3.5 density functionals from the Lieb-Oxford bound. Journal of Chemical Physics, 2012, 137, 224110.	3.0	17
1608	Structural, electronic and optical properties of titania nanotubes. Advances in Applied Ceramics, 2012, 111, 72-93.	1.1	8
1609	Optical and electronic properties of RuO ₂ from first principles. Canadian Journal of Physics, 2012, 90, 441-448.	1.1	3
1610	First principles analysis on interaction between vacancy near surface and dimer structure of silicon crystal. Journal of Applied Physics, 2012, 111, 013521.	2.5	7
1611	<i>Ab initio</i> study of vacancy and self-interstitial properties near single crystal silicon surfaces. Journal of Applied Physics, 2012, 111, . Reentrant Mechanism for Associative Desorption: <mml:math< td=""><td>2.5</td><td>33</td></mml:math<>	2.5	33
1612	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mi mathvariant="bold">H</mml:mi><mml:mn>2</mml:mn></mml:msub> <mml:mo>/</mml:mo> <mml:mi>Pt(<mml:mo><mml:mtext mathvariant="normal">â^²</mml:mtext><mml:mo< td=""><td>mi><mml:< td=""><td>mo</td></mml:<></td></mml:mo<></mml:mo></mml:mi>	mi> <mml:< td=""><td>mo</td></mml:<>	mo

#	Article	IF	CITATIONS
1624	Heterogeneous Catalysis by Gold. Advances in Catalysis, 2012, 55, 1-126.	0.2	139
1625	Computational screening of perovskite metal oxides for optimal solar light capture. Energy and Environmental Science, 2012, 5, 5814-5819.	30.8	354
1626	Structural Determinants of Cisplatin and Transplatin Binding to the Met-Rich Motif of Ctr1: A Computational Spectroscopy Approach. Journal of Chemical Theory and Computation, 2012, 8, 2912-2920.	5.3	27
1627	Oxidative trends of TiO2â€"hole trapping at anatase and rutile surfaces. Energy and Environmental Science, 2012, 5, 9866.	30.8	41
1628	M11-L: A Local Density Functional That Provides Improved Accuracy for Electronic Structure Calculations in Chemistry and Physics. Journal of Physical Chemistry Letters, 2012, 3, 117-124.	4.6	531
1629	Catalytic Activity of Platinum Monolayer on Iridium and Rhenium Alloy Nanoparticles for the Oxygen Reduction Reaction. ACS Catalysis, 2012, 2, 817-824.	11.2	94
1630	Adsorption studies of C6H6 on Cu (111), Ag (111), and Au (111) within dispersion corrected density functional theory. Journal of Chemical Physics, 2012, 137, 134703.	3.0	40
1631	CO oxidation on Pt nanoclusters, size and coverage effects: a density functional theory study. Physical Chemistry Chemical Physics, 2012, 14, 12122.	2.8	48
1632	Unraveling the Complexity of Catalytic Reactions via Kinetic Monte Carlo Simulation: Current Status and Frontiers. ACS Catalysis, 2012, 2, 2648-2663.	11.2	195
1633	The electric field as a novel switch for uptake/release of hydrogen for storage in nitrogen doped graphene. Physical Chemistry Chemical Physics, 2012, 14, 1463-1467.	2.8	71
1634	Firstâ€Principles Study toward CO Adsorption on Au/Ni Surface Alloys. ChemPhysChem, 2012, 13, 3909-3915.	2.1	10
1635	First-principles investigation of structural and electronic properties of MgCu2 Laves phase under pressure. Intermetallics, 2012, 31, 257-263.	3.9	97
1636	Adsorbate interactions on surface lead to a flattened Sabatier volcano plot in reduction of oxygen. Journal of Catalysis, 2012, 295, 59-69.	6.2	24
1637	Atomic-scale insight into adsorption of sterically hindered dibenzothiophenes on MoS2 and Co–Mo–S hydrotreating catalysts. Journal of Catalysis, 2012, 295, 146-154.	6.2	116
1638	Highly efficient and stable nonplatinum anode catalyst with Au@Pd core–shell nanostructures for methanol electrooxidation. Journal of Catalysis, 2012, 295, 217-222.	6.2	68
1639	First-principles study on the structure, elastic and electronic properties of hexagonal HfPtAl under pressure. Solid State Communications, 2012, 152, 462-465.	1.9	0
1640	Struggle between inner atoms of ultra-thin silicon film and both its dimer surfaces. Results in Physics, 2012, 2, 185-189.	4.1	2
1641	First-principles theoretical study of organic/metal interfaces: Vacuum level shifts and interface dipoles. Current Applied Physics, 2012, 12, S2-S9.	2.4	18

#	Article	IF	CITATIONS
1642	Interpretation of experimental N K NEXAFS of azide, 1,2,3-triazole and terpyridyl groups by DFT spectrum simulations. Journal of Electron Spectroscopy and Related Phenomena, 2012, 185, 621-624.	1.7	18
1643	On the determination of the glass forming ability of AlxZr1â^'x alloys using molecular dynamics, Monte Carlo simulations, and classical thermodynamics. Journal of Applied Physics, 2012, 112, 073508.	2.5	9
1644	An Investigation of Half-Metallic Ferromagnets Behavior in Hg ₂ CuTi-Type Heusler Alloy Ti ₂ FeAl by Using GGA. Advanced Materials Research, 2012, 535-537, 1291-1294.	0.3	4
1645	Tunable Magnetism and Half-Metallic Stability in Si-Doped Hg ₂ CuTi-Type Ti ₂ CoGa Alloy. Applied Mechanics and Materials, 0, 229-231, 130-133.	0.2	4
1646	Dynamics of H2 dissociation on the 1/2 ML c(2 \tilde{A} — 2)-Ti/Al(100) surface. Physical Chemistry Chemical Physics, 2012, 14, 3234.	2.8	14
1647	A concerted migration mechanism of mixed oxide ion and electron conduction in reduced ceria studied by first-principles density functional theory. Physical Chemistry Chemical Physics, 2012, 14, 6079.	2.8	55
1648	Alloys in catalysis: phase separation and surface segregation phenomena in response to the reactive environment. Catalysis Science and Technology, 2012, 2, 1787.	4.1	203
1649	First principles study of sulfuric acid anion adsorption on a Pt(111) electrode. Physical Chemistry Chemical Physics, 2012, 14, 3208.	2.8	53
1650	Dissociative and non-dissociative adsorption dynamics of N2 on Fe(110). Physical Chemistry Chemical Physics, 2012, 14, 7471.	2.8	37
1651	Electrochemical Stability of Imidazolium Based Ionic Liquids Containing Cyano Groups in the Anion: A Cyclic Voltammetry, XPS and DFT Study. Journal of the Electrochemical Society, 2012, 159, H611-H615.	2.9	67
1652	Oxygen Adsorption and Diffusion on NiTi Alloy (100) Surface: A Theoretical Study. Journal of Physical Chemistry C, 2012, 116, 21771-21779.	3.1	15
1653	Pressure-induced phase transition in Ga _{1â^'<i>x</i>} In _{<i>x</i>} As: <i>ab initio</i> study. High Pressure Research, 0, , 1-10.	1.2	0
1654	DFT-study of the energetics of perovskite-type oxides LaMO3 (M = Sc–Cu). RSC Advances, 2012, 2, 10667.	3.6	10
1655	Importance of Correlation in Determining Electrocatalytic Oxygen Evolution Activity on Cobalt Oxides. Journal of Physical Chemistry C, 2012, 116, 21077-21082.	3.1	305
1656	Nucleation, Growth, and Adsorbate-Induced Changes in Composition for Co–Au Bimetallic Clusters on TiO ₂ . Journal of Physical Chemistry C, 2012, 116, 24616-24629.	3.1	31
1657	Deep Oxidations in the Oxidative Dehydrogenation Reaction of Propane over V ₂ O ₅ (001): Periodic Density Functional Theory Study. Journal of Physical Chemistry C, 2012, 116, 807-817.	3.1	47
1658	Hindered Rotational Energy Barriers of BH ₄ ^{â€"} Tetrahedra in β-Mg(BH ₄) ₂ from Quasielastic Neutron Scattering and DFT Calculations. Journal of Physical Chemistry C, 2012, 116, 2013-2023.	3.1	43
1659	Thermodynamic and Electrochemical Properties of the Li–Co–O and Li–Ni–O Systems. Chemistry of Materials, 2012, 24, 97-105.	6.7	42

#	Article	IF	CITATIONS
1660	Application of Screened Hybrid Density Functional Theory to Ammonia Decomposition on Silicon. Journal of Physical Chemistry C, 2012, 116, 26396-26404.	3.1	17
1661	Improved CO Adsorption Energies, Site Preferences, and Surface Formation Energies from a Meta-Generalized Gradient Approximation Exchange–Correlation Functional, M06-L. Journal of Physical Chemistry Letters, 2012, 3, 2975-2979.	4.6	63
1662	Silica-Supported Titania Species: Structural Analysis from Quantum Theory and X-ray Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 22449-22457.	3.1	8
1663	Self-metalation of 2H-tetraphenylporphyrin on Cu(111): An x-ray spectroscopy study. Journal of Chemical Physics, 2012, 136, 014705.	3.0	154
1664	First-Principles Structural and Electronic Characterization of Ordered SiO ₂ Nanowires. Journal of Physical Chemistry C, 2012, 116, 18973-18982.	3.1	22
1665	Catalytic Reduction of SO ₂ by CO over Pt _{<i>>I></i>} A First-Principles Investigation. Journal of Physical Chemistry C, 2012, 116, 24930-24934.	3.1	18
1666	On the Need for Spin Polarization in Heterogeneously Catalyzed Reactions on Nonmagnetic Metallic Surfaces. Journal of Chemical Theory and Computation, 2012, 8, 1737-1743.	5 . 3	21
1667	Quasiclassical Trajectory Dynamics Study of Atomic Oxygen Collisions on an O-Preadsorbed Graphite (0001) Surface with a New Analytical Potential Energy Surface. Journal of Physical Chemistry C, 2012, 116, 13092-13103.	3.1	18
1668	NaBr Poisoning of Au/TiO ₂ Catalysts: Effects on Kinetics, Poisoning Mechanism, and Estimation of the Number of Catalytic Active Sites. ACS Catalysis, 2012, 2, 684-694.	11.2	29
1669	CO Oxidation Mechanism on Tungsten Nanoparticle. Journal of Physical Chemistry C, 2012, 116, 18803-18815.	3.1	10
1670	First-Principle Study on High-Pressure Behavior of Crystalline Polyazido-1,3,5-triazine. Journal of Physical Chemistry C, 2012, 116, 6745-6753.	3.1	23
1671	Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation. Physical Review B, 2012, 85, .	3.2	1,087
1672	Photoemission and X-ray Absorption Study of the Interface between 3,4-Ethylenedioxythiophene-Related Derivatives and Gold. Journal of Physical Chemistry C, 2012, 116, 15010-15018.	3.1	12
1673	A Theoretical Study of Methanol Oxidation Catalyzed by Isolated Vanadia Clusters Supported on the (101) Surface of Anatase. Journal of Physical Chemistry C, 2012, 116, 18728-18735.	3.1	22
1674	Three carbon pairs in Si. Physica B: Condensed Matter, 2012, 407, 2981-2984.	2.7	10
1675	First principles study of half-metallic ferromagnetism in Zn1â^'xEuxS. Superlattices and Microstructures, 2012, 52, 376-386.	3.1	2
1676	Pressure-dependent structure, mechanical and thermodynamic properties of tetragonal AsTiZr arsenide: A density functional theory study. Solid State Communications, 2012, 152, 1694-1699.	1.9	1
1677	Oxygen vacancy effects on electronic structure of Pt/NiO/Pt capacitor-like system. Surface Science, 2012, 606, 239-246.	1.9	20

#	Article	IF	CITATIONS
1678	Atomic scale control of catalytic process in oxidation of Pb thin films. Surface Science, 2012, 606, 450-455.	1.9	0
1679	Density-functional study of the compressed ($2\hat{a}\tilde{s}\tilde{a}$ — $2\hat{a}\tilde{s}\tilde{s}$)R30 \hat{A}^{o} -CO overlayer on the ferromagnetic Co(0001) surface. Surface Science, 2012, 606, 692-696.	1.9	3
1680	Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study. Surface Science, 2012, 606, 679-689.	1.9	380
1681	Theoretical studies on chemisorption of oxygen on \hat{l}^2 -Mo2C catalyst and its surface oxidation. Surface Science, 2012, 606, 1187-1194.	1.9	15
1682	A systematic DFT study of hydrogen diffusion on transition metal surfaces. Surface Science, 2012, 606, 1400-1404.	1.9	104
1683	Atomic and molecular adsorption on Pd(111). Surface Science, 2012, 606, 1670-1679.	1.9	119
1684	In situ surface coverage analysis of RuO2-catalysed HCl oxidation reveals the entropic origin of compensation in heterogeneous catalysis. Nature Chemistry, 2012, 4, 739-745.	13.6	85
1685	State-of-the-art and challenges in theoretical simulations of heterogeneous catalysis at the microscopic level. Catalysis Science and Technology, 2012, 2, 2405.	4.1	38
1686	Anatase TiO ₂ Surface Functionalization by Alkylphosphonic Acid: A DFT+D Study. Journal of Physical Chemistry C, 2012, 116, 2819-2828.	3.1	39
1687	How Evenly Can Approximate Density Functionals Treat the Different Multiplicities and Ionization States of 4d Transition Metal Atoms?. Journal of Chemical Theory and Computation, 2012, 8, 4112-4126.	5.3	37
1688	Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. Physical Chemistry Chemical Physics, 2012, 14, 14010.	2.8	332
1689	Mn monolayer modified Rh for syngas-to-ethanol conversion: a first-principles study. Nanoscale, 2012, 4, 1123-1129.	5 . 6	32
1690	Towards chemically accurate simulation of molecule–surface reactions. Physical Chemistry Chemical Physics, 2012, 14, 14966.	2.8	80
1691	Simulating Linear Sweep Voltammetry from First-Principles: Application to Electrochemical Oxidation of Water on Pt(111) and Pt ₃ Ni(111). Journal of Physical Chemistry C, 2012, 116, 4698-4704.	3.1	71
1692	Assessment of ten DFT methods in predicting structures of sheet silicates: Importance of dispersion corrections. Journal of Chemical Physics, 2012, 137, 114105.	3.0	117
1693	Ab-initio modeling of oxygen on the surface passivation of 3CSiC nanostructures. Applied Surface Science, 2012, 258, 8360-8365.	6.1	14
1694	Mechanistic investigations on the adsorption of thiophene over Zn3NiO4 bimetallic oxide cluster. Applied Surface Science, 2012, 258, 10148-10153.	6.1	20
1695	Theoretical approaches to graphene and graphene-based materials. Nano Today, 2012, 7, 180-200.	11.9	122

#	Article	IF	CITATIONS
1696	Synergistic effect of Ti and F co-doping on dehydrogenation properties of MgH2 from first-principles calculations. Journal of Alloys and Compounds, 2012, 538, 205-211.	5.5	35
1697	CO hydrogenation to methanol on Cu–Ni catalysts: Theory and experiment. Journal of Catalysis, 2012, 293, 51-60.	6.2	195
1698	The energies of formation and mobilities of Cu surface species on Cu and ZnO in methanol and water gas shift atmospheres studied by DFT. Journal of Catalysis, 2012, 293, 205-214.	6.2	45
1699	First-principles investigations on the crystal, electronic structure and mechanical properties of AlCr2 compound at varying pressures. Computational Materials Science, 2012, 61, 140-144.	3.0	4
1700	DFT study of the adsorption of Ni on Anatase (001) surface. Computational and Theoretical Chemistry, 2012, 981, 59-67.	2.5	21
1701	Classical dynamics study of atomic oxygen over graphite (0001) with new interpolated and analytical potential energy surfaces. Computational and Theoretical Chemistry, 2012, 990, 132-143.	2.5	17
1702	The cage strain energies of high-energy compounds. Computational and Theoretical Chemistry, 2012, 993, 66-72.	2.5	34
1703	DFT simulation of vibrational properties of adenine adsorbed on gold surface: The effect of periodic boundary conditions. Computational and Theoretical Chemistry, 2012, 993, 106-112.	2.5	10
1704	Libxc: A library of exchange and correlation functionals for density functional theory. Computer Physics Communications, 2012, 183, 2272-2281.	7.5	419
1705	Magnetism in graphene induced by hydrogen adsorbates. Chemical Physics Letters, 2012, 541, 70-74.	2.6	27
1706	Thermal stability and elastic properties of Mg2X (X = Si, Ge, Sn, Pb) phases from first-principle calculations. Computational Materials Science, 2012, 51, 409-414.	3.0	86
1707	Static electric and optical properties of two coupled noble metal nanoparticles. Computational Materials Science, 2012, 51, 430-436.	3.0	4
1708	First-principles calculations on the crystal, electronic structures and elastic properties of Ag-rich γ′ phase approximates in Al–Ag alloys. Computational Materials Science, 2012, 51, 415-421.	3.0	4
1709	A combined nonequilibrium Green's function/density-functional theory study of electrical conducting properties of artificial DNA duplexes. Computational Materials Science, 2012, 53, 416-424.	3.0	3
1710	Effect of hydration on electrical conductivity of DNA duplex: Green's function study combined with DFT. Computational Materials Science, 2012, 53, 314-320.	3.0	9
1711	Compton profiles of MoP and WP: Validation of second order generalized gradient approximation. Computational Materials Science, 2012, 53, 89-93.	3.0	10
1712	The structure, elastic, electronic properties and Debye temperature of M2AlC (MV, Nb and Ta) under pressure from first-principles. Computational Materials Science, 2012, 54, 16-22.	3.0	39
1713	Elastic constants and bulk modulus of semiconductors: Performance of plane-wave pseudopotential and local-density-approximation density functional theory. Computational Materials Science, 2012, 58, 243-247.	3.0	34

#	Article	IF	CITATIONS
1714	Structural, electronic, elastic and thermodynamic properties of CaAl2Zn2 compound under different pressures. Computational Materials Science, 2012, 59, 33-40.	3.0	3
1715	Bifunctional anode catalysts for direct methanol fuel cells. Energy and Environmental Science, 2012, 5, 8335.	30.8	157
1716	Geometric Arrangement of Components in Bimetallic $PdZn/Pd(111)$ Surfaces Modified by CO Adsorption: A Combined Study by Density Functional Calculations, Polarization-Modulated Infrared Reflection Absorption Spectroscopy, and Temperature-Programmed Desorption. Journal of Physical Chemistry C, 2012, 116, 18768-18778.	3.1	40
1717	Computational simulation of the effects of oxygen on the electronic states of hydrogenated 3C-porous SiC. Nanoscale Research Letters, 2012, 7, 471.	5.7	17
1718	Pressure induced zincblende to rocksalt phase transition in AlN nanocrystal. Journal of Physics: Conference Series, 2012, 377, 012066.	0.4	2
1719	Polymer Photonics. , 2012, , 211-260.		6
1720	Initial geometries, interaction mechanism and high stability of silicene on $Ag(111)$ surface. Scientific Reports, 2012 , 2 , 861 .	3.3	183
1721	Self-assembling endohedrally doped CdS nanoclusters: new porous solid phases of CdS. Physical Chemistry Chemical Physics, 2012, 14, 9676.	2.8	12
1722	<i>Ab initio</i> and semi-empirical van der Waals study of graphene–boron nitride interaction from a molecular point of view. Journal of Physics Condensed Matter, 2012, 24, 424214.	1.8	26
1723	Balance of Nanostructure and Bimetallic Interactions in Pt Model Fuel Cell Catalysts: In Situ XAS and DFT Study. Journal of the American Chemical Society, 2012, 134, 9664-9671.	13.7	117
1724	A theoretical evaluation of possible transition metal electro-catalysts for N ₂ reduction. Physical Chemistry Chemical Physics, 2012, 14, 1235-1245.	2.8	1,184
1725	Substituted Benzene Derivatives on the Cu(111) Surface. Journal of Physical Chemistry C, 2012, 116, 12636-12643.	3.1	28
1726	Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nature Communications, 2012, 3, 1115.	12.8	377
1727	Facile Synthesis of Carbon-Supported Pd–Co Core–Shell Nanoparticles as Oxygen Reduction Electrocatalysts and Their Enhanced Activity and Stability with Monolayer Pt Decoration. Chemistry of Materials, 2012, 24, 2274-2281.	6.7	163
1728	Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nature Materials, 2012, 11, 1044-1050.	27.5	720
1730	Prediction of solid-aqueous equilibria: Scheme to combine first-principles calculations of solids with experimental aqueous states. Physical Review B, 2012, 85, .	3.2	342
1731	Tetrahedral Palladium Nanocrystals: AÂNew Support for Platinum Monolayer Electrocatalysts with High Activity and Stability in the Oxygen Reduction Reaction. Zeitschrift Fur Physikalische Chemie, 2012, 226, 1025-1038.	2.8	15
1732	Are we van der Waals ready?. Journal of Physics Condensed Matter, 2012, 24, 424218.	1.8	129

#	Article	IF	CITATIONS
1733	A first principles study of the hydrogen reaction in alkaline media: OH effect. International Journal of Hydrogen Energy, 2012, 37, 14796-14800.	7.1	6
1734	The first-principles investigation on the electronic structure and mechanism of LiHÂ+ÂNH3Â→ÂLiNH2Â+ÂH2 reaction. International Journal of Hydrogen Energy, 2012, 37, 18937-18943.	7.1	5
1735	Adsorption of atomic oxygen on HfC and TaC (110) surface from first principles. Applied Surface Science, 2012, 261, 214-218.	6.1	12
1736	Cyanide-modified Pt(111): Structure, stability and hydrogen adsorption. Electrochimica Acta, 2012, 82, 524-533.	5.2	20
1737	Structural, elastic and electronic properties of Î, (Al2Cu) and S (Al2CuMg) strengthening precipitates in Al–Cu–Mg series alloys: First-principles calculations. Solid State Communications, 2012, 152, 2100-2104.	1.9	105
1738	Structural and electronic properties of AlX (XÂ=ÂP, As, Sb) nanowires: Ab initio study. Materials Chemistry and Physics, 2012, 137, 103-112.	4.0	22
1739	Enhanced oxygen storage capacity of Ce0.88Mn0.12Oy compared to CeO2: An experimental and theoretical investigation. Materials Research Bulletin, 2012, 47, 4006-4012.	5.2	16
1740	External Electric Field Catalyzed N ₂ O Decomposition on Mn-Embedded Graphene. Journal of Physical Chemistry C, 2012, 116, 20342-20348.	3.1	44
1741	A Comprehensive Search for Stable Pt–Pd Nanoalloy Configurations and Their Use as Tunable Catalysts. Nano Letters, 2012, 12, 4875-4880.	9.1	98
1742	X-ray absorption from large molecules at metal surfaces: Theoretical and experimental results for Co-OEP on Ni(100). Journal of Chemical Physics, 2012, 137, 194703.	3.0	8
1743	Hydrogen Spillover to Nonreducible Supports. Journal of Physical Chemistry C, 2012, 116, 14274-14283.	3.1	62
1744	Exchange–Correlation Functional with Good Accuracy for Both Structural and Energetic Properties while Depending Only on the Density and Its Gradient. Journal of Chemical Theory and Computation, 2012, 8, 2310-2319.	5.3	276
1745	Combined Density Functional Theory and Monte Carlo Analysis of Monomolecular Cracking of Light Alkanes Over H-ZSM-5. Journal of Physical Chemistry C, 2012, 116, 23408-23417.	3.1	59
1746	DFT Study of the Water–Gas Shift Reaction and Coke Formation on Ni(111) and Ni(211) Surfaces. Journal of Physical Chemistry C, 2012, 116, 20281-20291.	3.1	157
1747	The Active Site of Methanol Synthesis over Cu/ZnO/Al ₂ O ₃ Industrial Catalysts. Science, 2012, 336, 893-897.	12.6	2,018
1748	Role of Electronic Perturbation in Stability and Activity of Pt-Based Alloy Nanocatalysts for Oxygen Reduction. Journal of the American Chemical Society, 2012, 134, 19508-19511.	13.7	219
1749	First-principles investigation on the elastic stability and thermodynamic properties of Ti ₂ SC. Chinese Physics B, 2012, 21, 056301.	1.4	12
1750	Ultraviolet dielectric hyperlens with layered graphene and boron nitride. Journal of Materials Chemistry, 2012, 22, 15863.	6.7	29

#	Article	IF	CITATIONS
1751	Finite-Size Effects in O and CO Adsorption for the Late Transition Metals. Topics in Catalysis, 2012, 55, 1276-1282.	2.8	68
1752	Electronic Structure of Ytterbium Bis-indenyl and -cyclopentadienyl α-Diimine Complexes: A DFT and MS-CASPT2 Investigation. Organometallics, 2012, 31, 4693-4700.	2.3	11
1753	Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction. Energy and Environmental Science, 2012, 5, 5297-5304.	30.8	156
1754	Dependence on CO adsorption of the shapes of multifaceted gold nanoparticles: A density functional theory. Physical Review B, 2012, 86, .	3.2	68
1755	Rationale for switching to nonlocal functionals in density functional theory. Journal of Physics Condensed Matter, 2012, 24, 424215.	1.8	18
1756	New cubic perovskites for one- and two-photon water splitting using the computational materials repository. Energy and Environmental Science, 2012, 5, 9034.	30.8	211
1757	Transferable basis sets of numerical atomic orbitals. Physical Review B, 2012, 85, .	3.2	15
1758	Size Dependence of the Adsorption Energy of CO on Metal Nanoparticles: A DFT Search for the Minimum Value. Nano Letters, 2012, 12, 2134-2139.	9.1	155
1759	Adsorption and Cyclotrimerization Kinetics of C $<$ sub $>$ 2 $<$ /sub $>$ H $<$ sub $>$ 2 $<$ /sub $>$ at a Cu(110) Surface. Journal of Physical Chemistry C, 2012, 116, 9550-9560.	3.1	20
1760	First-principles kinetic modeling in heterogeneous catalysis: an industrial perspective on best-practice, gaps and needs. Catalysis Science and Technology, 2012, 2, 2010.	4.1	144
1761	Methanol Oxidation on Model Elemental and Bimetallic Transition Metal Surfaces. Journal of Physical Chemistry C, 2012, 116, 11980-11986.	3.1	92
1762	Static surface temperature effects on the dissociation of H2 and D2 on Cu(111). Journal of Chemical Physics, 2012, 137, 054703.	3.0	27
1763	Oxygen Reduction Reaction on Platinum-Terminated "Onion-structured―Alloy Catalysts. Electrocatalysis, 2012, 3, 192-202.	3.0	25
1764	Size Effects in Monolayer Catalysisâ€"Model Study: Pt Submonolayers on Au(111). Electrocatalysis, 2012, 3, 203-210. Chemical bonding, conductive network, and thermoelectric performance of the ternary	3.0	38
1765	semiconductors Cu <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> xmlns:mml="http://www.w3.org/1998/Math/MathML"		

#	Article	IF	CITATIONS
1769	Laplacianâ€based models for the exchange energy. International Journal of Quantum Chemistry, 2012, 112, 3796-3806.	2.0	20
1770	Activity Descriptors for CO ₂ Electroreduction to Methane on Transition-Metal Catalysts. Journal of Physical Chemistry Letters, 2012, 3, 251-258.	4.6	1,250
1771	First-principles calculation of the lattice compressibility, elastic anisotropy and thermodynamic stability of V $\langle sub \rangle 2 \langle sub \rangle$ GeC. Chinese Physics B, 2012, 21, 036301.	1.4	13
1772	Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy and Environmental Science, 2012, 5, 6744.	30.8	991
1773	Theoretical Insights into the Ferromagnetic Coupling in Oxalato-Bridged Chromium(III)-Cobalt(II) and Chromium(III)-Manganese(II) Dinuclear Complexes with Aromatic Diimine Ligands. Inorganic Chemistry, 2012, 51, 3289-3301.	4.0	17
1774	Hyper-generalized-gradient functionals constructed from the Lieb-Oxford bound: Implementation via local hybrids and thermochemical assessment. Journal of Chemical Physics, 2012, 136, 184102.	3.0	33
1775	Computational Study and Molecular Orbital Analysis of NMR Shielding, Spin–Spin Coupling, and Electric Field Gradients of Azido Platinum Complexes. Journal of the American Chemical Society, 2012, 134, 13374-13385.	13.7	44
1776	ERKALEâ€"A flexible program package for Xâ€ray properties of atoms and molecules. Journal of Computational Chemistry, 2012, 33, 1572-1585.	3.3	70
1777	Pressure-induced metallic phase transition and elastic properties of indium phosphide III-V semiconductor. Journal of Materials Research, 2012, 27, 1105-1111.	2.6	5
1779	Unique Electrochemical Adsorption Properties of Ptâ€6kin Surfaces. Angewandte Chemie - International Edition, 2012, 51, 3139-3142.	13.8	264
1780	Metal Oxideâ€Supported Platinum Overlayers as Protonâ€Exchange Membrane Fuel Cell Cathodes. ChemCatChem, 2012, 4, 228-235.	3.7	44
1781	Evidence of Scrambling over Rutheniumâ€based Catalysts in Supercriticalâ€water Gasification. ChemCatChem, 2012, 4, 1185-1189.	3.7	21
1782	Volcano Relations for Oxidation of Hydrogen Halides over Rutile Oxide Surfaces. ChemCatChem, 2012, 4, 1856-1861.	3.7	11
1783	The Surface Chemistry of Water on Fe(100): A Density Functional Theory Study. ChemPhysChem, 2012, 13, 1583-1590.	2.1	35
1784	Design of a Highly Nanodispersed Pd–MgO/SiO ₂ Composite Catalyst with Multifunctional Activity for CH ₄ Reforming. ChemSusChem, 2012, 5, 1474-1481.	6.8	35
1785	Scanning Tunneling Microscopy Evidence for the Dissociation of Carbon Monoxide on Ruthenium Steps. Journal of Physical Chemistry C, 2012, 116, 14350-14359.	3.1	30
1786	Recent advances in computational actinoid chemistry. Chemical Society Reviews, 2012, 41, 5836.	38.1	113
1787	Brønsted–Evans–Polanyi Relations for H2O2 Synthesis on Gold Surfaces. Catalysis Letters, 2012, 142, 601-607.	2.6	6

#	Article	IF	CITATIONS
1788	Steam Reforming on Transition-Metal Carbides from Density-Functional Theory. Catalysis Letters, 2012, 142, 728-735.	2.6	24
1789	Influence of Sulfur Poisoning on CO Adsorption on Pd(100). Topics in Catalysis, 2012, 55, 267-279.	2.8	10
1790	Search Directions for Direct H2O2 Synthesis Catalysts Starting from Au12 Nanoclusters. Topics in Catalysis, 2012, 55, 336-344.	2.8	44
1791	Construction of New Electronic Density Functionals with Error Estimation Through Fitting. Topics in Catalysis, 2012, 55, 402-417.	2.8	19
1792	The structural, electronic, elastic and optical properties of AlCu(Se1â^'Te) 2 compounds from first-principle calculations. Current Applied Physics, 2012, 12, 373-379.	2.4	9
1793	Range-separated density functional theory: A 4-component relativistic study of the rare gas dimers He2, Ne2, Ar2, Kr2, Xe2, Rn2 and Uuo2. Chemical Physics, 2012, 395, 54-62.	1.9	37
1794	Theoretical investigation on pyrolysis mechanism of glycerol. Fuel, 2012, 93, 92-98.	6.4	37
1795	DFT study of the interaction between ethanethiol and Fe-containing ionic liquids for desulfuration of natural gasoline. Fuel Processing Technology, 2012, 97, 24-29.	7.2	49
1796	Dehydrogenation kinetics and catalysis of organic heteroaromatics for hydrogen storage. International Journal of Hydrogen Energy, 2012, 37, 2715-2722.	7.1	99
1797	Study of the "Fast SCR―like mechanism of H2-assisted SCR of NOx with ammonia over Ag/Al2O3. Applied Catalysis B: Environmental, 2012, 113-114, 228-236.	20.2	47
1798	Sulfur poisoning and regeneration of the Ag \hat{I}^3 -Al2O3 catalyst for H2-assisted SCR of NOx by ammonia. Applied Catalysis B: Environmental, 2012, 117-118, 49-58.	20.2	32
1799	A Compton scattering study of refractory niobium diborides. Applied Radiation and Isotopes, 2012, 70, 942-945.	1.5	2
1800	A combined Green's function/density-functional theory study of electrical conducting properties of solvated single molecules tethered to Au electrodes. Chemical Physics Letters, 2012, 521, 39-44.	2.6	1
1801	Water wetting on representative metal surfaces: Improved description from van der Waals density functionals. Chemical Physics Letters, 2012, 521, 161-166.	2.6	18
1802	CO oxidation by co-adsorbed atomic O on the Au(321) surface with Ag impurities: A mechanistic study from first-principles calculations. Chemical Physics Letters, 2012, 525-526, 87-91.	2.6	26
1803	Benchmarks for the 13C NMR chemical shielding tensors in peptides in the solid state. Chemical Physics Letters, 2012, 527, 31-35.	2.6	15
1804	Ab-initio calculations of the direct and hydrogen-assisted dissociation of CO on Fe(3 1 0). Chemical Physics Letters, 2012, 534, 54-57.	2.6	16
1805	Ethylene conversion to ethylidyne on $Pd(111)$ and $Pt(111)$: A first-principles-based kinetic Monte Carlo study. Journal of Catalysis, 2012, 285, 187-195.	6.2	66

#	ARTICLE	IF	Citations
1806	An integrated approach to Deacon chemistry on RuO2-based catalysts. Journal of Catalysis, 2012, 285, 273-284.	6.2	111
1807	Elementary steps of syngas reactions on Mo2C(001): Adsorption thermochemistry and bond dissociation. Journal of Catalysis, 2012, 290, 108-117.	6.2	96
1808	Binuclear copper(II), cobalt(II) and Nickel(II) complexes of N1-ethyl-N2-(pyridin-2-yl) hydrazine-1,2-bis(carbothioamide): Structural, spectral, pH-metric and biological studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 96, 444-455.	3.9	22
1809	First-principles predictions on transition from tetrahedron to octahedron, electronic structures and elastic properties of InAs. Journal of Physics and Chemistry of Solids, 2012, 73, 8-12.	4.0	3
1810	Electronic states of metal (Cu, Ag, Au) atom on CeO2(111) surface: The role of local structural distortion. Journal of Power Sources, 2012, 197, 28-37.	7.8	46
1811	Solid L- \hat{l} ±-alanine: Spectroscopic properties and theoretical calculations. Journal of Quantitative Spectroscopy and Radiative Transfer, 2012, 113, 1266-1275.	2.3	14
1812	Synthesis, characterization, molecular modeling and antioxidant activity of (1E,5E)-1,5-bis(1-(pyridin-2-yl)ethylidene)carbonohydrazide (H2APC) and its zinc(II), cadmium(II) and mercury(II) complexes. Journal of Molecular Structure, 2012, 1020, 6-15.	3.6	80
1813	Theoretical characterization of the TTF/Au (111) interface: STM imaging, band alignment and charging energy. Organic Electronics, 2012, 13, 399-408.	2.6	16
1814	Ab-initio study of the coadsorption of Li and H on Pt(001), Pt(110) and Pt(111) surfaces. Physica B: Condensed Matter, 2012, 407, 698-704.	2.7	13
1815	Hydrogenation of ethene catalyzed by Ir atom deposited on γ-Al2O3(001) surface: From ab initio calculations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 1919-1923.	2.1	5
1816	Dispersive interactions in water bilayers at metallic surfaces: A comparison of the PBE and RPBE functional including semiempirical dispersion corrections. Journal of Computational Chemistry, 2012, 33, 695-701.	3.3	136
1817	Direct versus Hydrogenâ€Assisted CO Dissociation on the Fe (100) Surface: a DFT Study. ChemPhysChem, 2012, 13, 89-91.	2.1	55
1819	CatApp: A Web Application for Surface Chemistry and Heterogeneous Catalysis. Angewandte Chemie - International Edition, 2012, 51, 272-274.	13.8	126
1820	Testing the broad applicability of the PBEint GGA functional and its oneâ€parameter hybrid form. International Journal of Quantum Chemistry, 2013, 113, 673-682.	2.0	33
1821	CO oxidation on Cu-doped Ag clusters. Theoretical Chemistry Accounts, 2013, 132, 1.	1.4	9
1822	First-principle study on the electronic and optical properties of the anatase TiO ₂ (101) surface. Journal of Semiconductors, 2013, 34, 073004.	3.7	9
1823	First-principles study of structural and electronic properties of gallium based nanowires. Solid State Sciences, 2013, 23, 35-41.	3.2	22
1824	Heating of Zeolites under Microwave Irradiation: A Density Functional Theory Approach to the Ion Movements Responsible of the Dielectric Loss in Na, K, and Ca A-Zeolites. Journal of Physical Chemistry C, 2013, 117, 15659-15666.	3.1	16

#	Article	IF	CITATIONS
1825	Ab initio study of CO adsorption on PdGa(110). Computational Materials Science, 2013, 71, 192-196.	3.0	9
1826	A density functional study of Rh ₁₃ . Canadian Journal of Chemistry, 2013, 91, 591-597.	1.1	12
1827	Microscopic properties of liquid water from combined ab initio molecular dynamics and energy decomposition studies. Physical Chemistry Chemical Physics, 2013, 15, 15746.	2.8	55
1828	Adsorption of cysteine clusters on Au(110)â^'(1 × 1) surface: a DFT study. RSC Advances, 2013, 3, 5036.	3.6	17
1829	Performance of genetic algorithms in search for water splitting perovskites. Journal of Materials Science, 2013, 48, 6519-6534.	3.7	42
1830	First-principles calculations of elastic moduli of Ti–Mo–Nb alloys using a cluster-plus-glue-atom model for stable solid solutions. Journal of Materials Science, 2013, 48, 3138-3146.	3.7	11
1831	GolP-CHARMM: First-Principles Based Force Fields for the Interaction of Proteins with Au(111) and Au(100). Journal of Chemical Theory and Computation, 2013, 9, 1616-1630.	5 . 3	210
1832	Computational Design of Catalysts, Electrolytes, and Materials for Energy Storage. , 2013, , 499-521.		0
1833	Using Gibbs Energies to Calculate the Pt(111) H _{upd} Cyclic Voltammogram. Journal of Physical Chemistry C, 2013, 117, 17509-17513.	3.1	21
1834	Theoretical investigation of the Al–Cr–B orthorhombic ternary compounds. Computational and Theoretical Chemistry, 2013, 1020, 51-56.	2.5	18
1835	Scanning tunneling spectroscopy and density functional calculation of silicon dangling bonds on the Si(100)-2×1:H surface. Surface Science, 2013, 609, 147-151.	1.9	18
1836	Adsorbate-induced surface stress, surface strain and surface reconstruction: S on Cu(100) and Ni(100). Surface Science, 2013, 613, 21-27.	1.9	12
1837	Analysis of sulfur-induced selectivity changes for anhydrous methanol dehydrogenation on Ni(100) surfaces. Surface Science, 2013, 613, 58-62.	1.9	7
1838	Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water. Journal of the American Chemical Society, 2013, 135, 13521-13530.	13.7	1,093
1839	Density functional theory calculations of adsorption of hydrogen fluoride on titanium embedded graphene. Thin Solid Films, 2013, 546, 124-127.	1.8	12
1840	On the ground state structure of neutral Cun (n=12,14,16,18,20) clusters. Computational and Theoretical Chemistry, 2013, 1021, 41-48.	2.5	17
1841	Hidden Role of a Hydroxyl Group in Mediating the Oxygen Line Defect on a Graphene Surface. Journal of Physical Chemistry C, 2013, 117, 17832-17838.	3.1	4
1842	Stability of Pt-Modified Cu(111) in the Presence of Oxygen and Its Implication on the Overall Electronic Structure. Journal of Physical Chemistry C, 2013, 117, 16371-16380.	3.1	5

#	Article	IF	Citations
1843	Gold and Methane: A Noble Combination for Delicate Oxidation. Journal of Physical Chemistry Letters, 2013, 4, 3006-3012.	4.6	28
1844	A Molecular Mechanism for the Water–Hydroxyl Balance during Wetting of TiO ₂ . Journal of Physical Chemistry C, 2013, 117, 17078-17083.	3.1	22
1845	How Theoretical Simulations Can Address the Structure and Activity of Nanoparticles. Topics in Catalysis, 2013, 56, 1262-1272.	2.8	16
1846	Lattice instability of V2AlC at high pressure. Science China: Physics, Mechanics and Astronomy, 2013, 56, 916-924.	5.1	13
1847	On the effect of coverage-dependent adsorbate–adsorbate interactions for CO methanation on transition metal surfaces. Journal of Catalysis, 2013, 307, 275-282.	6.2	217
1848	Oxygen subsurface adsorption on the $Cu(110)$ - $c(6\tilde{A}-2)$ surface. Surface Science, 2013, 615, 57-64.	1.9	15
1849	Assessing modern GGA functionals for solids. Journal of Molecular Modeling, 2013, 19, 2791-2796.	1.8	14
1850	Ab-initio study of anisotropic and chemical surface modifications of \hat{l}^2 -SiC nanowires. Journal of Molecular Modeling, 2013, 19, 2043-2048.	1.8	16
1851	Stability and Hydrogen Affinity of Graphite-Supported Wires of Cu, Ag, Au, Ni, Pd, and Pt. Journal of Physical Chemistry C, 2013, 117, 19239-19244.	3.1	10
1852	Structural, electronic and thermodynamic properties of R3ZnH5 (R=K, Rb, Cs): A first-principle calculation. Journal of Solid State Chemistry, 2013, 198, 433-439.	2.9	6
1853	Atomic and electronic structure of molybdenum carbide phases: bulk and low Miller-index surfaces. Physical Chemistry Chemical Physics, 2013, 15, 12617.	2.8	189
1854	Characterization of thermochemical properties of Al nanoparticle and NiO nanowire composites. Nanoscale Research Letters, 2013, 8, 184.	5.7	32
1855	The binding nature of light hydrocarbons on Fe/MOF-74 for gas separation. Physical Chemistry Chemical Physics, 2013, 15, 19644.	2.8	46
1856	Platinum redispersion on metal oxides in low temperature fuel cells. Physical Chemistry Chemical Physics, 2013, 15, 3279.	2.8	10
1857	Interaction Mechanisms of Ammonia and Tin Oxide: A Combined Analysis Using Single Nanowire Devices and DFT Calculations. Journal of Physical Chemistry C, 2013, 117, 3520-3526.	3.1	52
1858	Investigation of electrically induced migration of copper on graphene surfaces: Theory and experiments. Applied Physics Letters, 2013, 103, 073104.	3.3	3
1859	Ab initio study of electronic and optical behavior of two-dimensional silicon carbide. Journal of Materials Chemistry C, 2013, 1, 2131.	5.5	148
1860	DFT Modeling of Reaction Mechanism and Ab Initio Microkinetics of Catalytic N ₂ 0 Decomposition over Alkaline Earth Oxides: From Molecular Orbital Picture Account to Simulation of Transient and Stationary Rate Profiles. Journal of Physical Chemistry C, 2013, 117, 18488-18501.	3.1	33

#	Article	IF	CITATIONS
1861	Hydrogen Deposition on Pt(111) during Electrochemical Hydrogen Evolution from a First-Principles Multiadsorption-Site Study. Journal of Physical Chemistry C, 2013, 117, 22696-22704.	3.1	45
1862	On Predicting Mössbauer Parameters of Iron-Containing Molecules with Density-Functional Theory. Journal of Chemical Theory and Computation, 2013, 9, 5004-5020.	5.3	75
1863	Interaction of a carbon atom on small platinum clusters and its effects on hydrogen binding. Chemical Physics Letters, 2013, 560, 42-48.	2.6	5
1864	Real-Space Identification of Intermolecular Bonding with Atomic Force Microscopy. Science, 2013, 342, 611-614.	12.6	365
1865	Accurate Surface Chemistry beyond the Generalized Gradient Approximation: Illustrations for Graphene Adatoms. Journal of Chemical Theory and Computation, 2013, 9, 4853-4859.	5.3	20
1866	Enabling direct H2O2 production through rational electrocatalyst design. Nature Materials, 2013, 12, 1137-1143.	27.5	1,031
1867	Realistic multisite lattice-gas modeling and KMC simulation of catalytic surface reactions: Kinetics and multiscale spatial behavior for CO-oxidation on metal (100) surfaces. Progress in Surface Science, 2013, 88, 393-521.	8.3	61
1868	Testing density functionals for structural phase transitions of solids under pressure: Si, SiO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> , and Zr. Physical Review B. 2013. 88.	3.2	87
1869	Adsorbate-Induced Oxygen Vacancy Mobility in Ultrathin Oxide Films. Journal of Physical Chemistry C, 2013, 117, 23806-23811.	3.1	7
1870	Experimental investigation and first-principle calculations coupled with thermodynamic modeling of the Mn–Nd phase diagram. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2013, 42, 27-37.	1.6	5
1871	First-Principles-Based Force Field for the Interaction of Proteins with Au(100)(5 × 1): An Extension of GolP-CHARMM. Journal of Physical Chemistry C, 2013, 117, 24292-24306.	3.1	61
1872	Tailoring the Adsorption of Benzene on PdFe Surfaces: A Density Functional Theory Study. Journal of Physical Chemistry C, 2013, 117, 24317-24328.	3.1	45
1873	Methanol Reaction on Pt–Au Clusters on TiO ₂ (110): Methoxy-Induced Diffusion of Pt. Journal of Physical Chemistry C, 2013, 117, 26998-27006.	3.1	21
1874	The Influence of Functionals on Density Functional Theory Calculations of the Properties of Reducible Transition Metal Oxide Catalysts. Journal of Physical Chemistry C, 2013, 117, 25562-25578.	3.1	47
1875	7D Quantum Dynamics of H ₂ Scattering from Cu(111): The Accuracy of the Phonon Sudden Approximation. Zeitschrift Fur Physikalische Chemie, 0, , 130617035227002.	2.8	17
1876	Catalyzed Surface-Aligned Reaction, H(ad)Â+ÂH2(ad)Â=ÂH2(g)Â+ÂH(ad) on Coinage Metals. Zeitschrift Fur Physikalische Chemie, 2013, , 130722000303001.	2.8	2
1877	HCl Oxidation on IrO ₂ -Based Catalysts: From Fundamentals to Scale-Up. ACS Catalysis, 2013, 3, 2813-2822.	11.2	52
1878	Theoretical predictions of the two-dimensional solid-state NMR spectra: A case study of the 13C–1H correlations in metergoline. Chemical Physics Letters, 2013, 586, 56-60.	2.6	18

#	ARTICLE	IF	CITATIONS
1879	First-principle investigations on the structural dynamics of Ti2GaN. Journal of Alloys and Compounds, 2013, 574, 573-579.	5.5	25
1880	Effect of van der Waals interactions on H2 dissociation on clean and defected Ru(0001) surface. European Physical Journal B, 2013, 86, 1.	1.5	6
1881	Ammonium adsorption on BrÃ,nsted acidic centers on low-index vanadium pentoxide surfaces. Journal of Molecular Modeling, 2013, 19, 4487-4501.	1.8	12
1882	Electroreduction of Methanediol on Copper. Catalysis Letters, 2013, 143, 631-635.	2.6	21
1883	Methane Oxidation by Lanthanum Oxide Doped with Cu, Zn, Mg, Fe, Nb, Ti, Zr, or Ta: The Connection Between the Activation Energy and the Energy of Oxygen-Vacancy Formation. Catalysis Letters, 2013, 143, 406-410.	2.6	37
1884	Assessing the performances of some recently proposed density functionals for the description of organometallic structures. Theoretical Chemistry Accounts, 2013, 132, 1.	1.4	12
1885	Theoretical and Experimental Investigations on the Growth of SnS van der Waals Epitaxies on Graphene Buffer Layer. Crystal Growth and Design, 2013, 13, 4755-4759.	3.0	18
1886	Adsorption of Molecules onto (101ì4) Dolomite Surface: An Application of Computational Studies for Microcalorimetry. Journal of Physical Chemistry C, 2013, 117, 17583-17590.	3.1	26
1887	Design Principles of Heteroepitaxial Bimetallic Catalysts. ACS Catalysis, 2013, 3, 2248-2255.	11.2	31
1888	Morphology and atomic-scale structure of single-layer WS2 nanoclusters. Physical Chemistry Chemical Physics, 2013, 15, 15971.	2.8	65
1889	Origin of Selective Guest-Induced Magnetism Transition in Fe/MOF-74. Journal of Physical Chemistry Letters, 2013, 4, 2530-2534.	4.6	45
1890	Understanding Photoelectrochemical Properties of B–N Codoped Anatase TiO ₂ for Solar Energy Conversion. Journal of Physical Chemistry C, 2013, 117, 15911-15917.	3.1	33
1891	Characterization of Electronic States inside Metallic Nanopores. Journal of Physical Chemistry C, 2013, 117, 18406-18413.	3.1	3
1892	Silver Nanoparticles for Olefin Production: New Insights into the Mechanistic Description of Propyne Hydrogenation. ChemCatChem, 2013, 5, 3750-3759.	3.7	88
1893	Changes in valence, coordination and reactivity that occur upon oxidation of fresh metal surfaces. Philosophical Magazine, 2013, 93, 4286-4310.	1.6	14
1894	Distinctions between Supported Au and Pt Catalysts for CO Oxidation: Insights from DFT Study. Journal of Physical Chemistry C, 2013, 117, 21331-21336.	3.1	28
1895	A variational method for density functional theory calculations on metallic systems with thousands of atoms. Journal of Chemical Physics, 2013, 139, 054107.	3.0	51
1896	Double-hybrid density functionals: merging wavefunction and density approaches to get the best of both worlds. Physical Chemistry Chemical Physics, 2013, 15, 14581.	2.8	100

#	Article	IF	CITATIONS
1897	Comparative study on the performance of exchange and correlation in wide-gap semiconductors: the case of BeS, BeSe, and BeTe. Journal of Materials Science, 2013, 48, 5499-5508.	3.7	6
1898	Role of preferential weak hybridization between the surface-state of a metal and the oxygen atom in the chemical adsorption mechanism. Physical Chemistry Chemical Physics, 2013, 15, 19019.	2.8	8
1899	Water and ammonia on $Cu\{110\}$: comparative structure and bonding. Physical Chemistry Chemical Physics, 2013, 15, 4785.	2.8	14
1900	CH4 combustion cycles at Pd/Al2O3 – important role of support and oxygen access. Physical Chemistry Chemical Physics, 2013, 15, 11368.	2.8	19
1901	Predicting adsorption on metals: simple yet effective descriptors for surface catalysis. Physical Chemistry Chemical Physics, 2013, 15, 4436.	2.8	33
1902	Dispersion Corrected Hartree–Fock and Density Functional Theory for Organic Crystal Structure Prediction. Topics in Current Chemistry, 2013, 345, 1-23.	4.0	72
1903	First-principles thermodynamic screening approach to photo-catalytic water splitting with co-catalysts. Journal of Chemical Physics, 2013, 139, 044710.	3.0	18
1904	First-principles study of the structural, electronic, and optical properties of Y-doped SrSi2. Journal of Applied Physics, 2013, 113, .	2.5	3
1905	Hydrogen adsorption and desorption at the Pt(110)-($1\tilde{A}$ —2) surface: experimental and theoretical study. Physical Chemistry Chemical Physics, 2013, 15, 6323.	2.8	67
1906	The CO oxidation mechanism and reactivity on PdZn alloys. Physical Chemistry Chemical Physics, 2013, 15, 7768.	2.8	55
1907	Local surface structure effect on reactivity of molecules confined between metallic surfaces. Physical Chemistry Chemical Physics, 2013, 15, 1647-1654.	2.8	9
1908	Impact of surface steps and oxygen pre-coverage on the adsorption of methylamine on gold. Physical Chemistry Chemical Physics, 2013, 15, 4707.	2.8	1
1909	Structure and local reactivity of PdAg/Pd(111) surface alloys. Physical Chemistry Chemical Physics, 2013, 15, 1497-1508.	2.8	45
1910	Pressure-Induced Local Lattice Distortions in \hat{l} ±-Co[N(CN) $<$ sub $>$ 2 $<$ /sub $>$] $<$ sub $>$ 2 $<$ /sub $>$. Inorganic Chemistry, 2013, 52, 14148-14154.	4.0	8
1911	Generalized trends in the formation energies of perovskite oxides. Physical Chemistry Chemical Physics, 2013, 15, 7526.	2.8	85
1912	Catalytic role of pre-adsorbed CO in platinum-based catalysts: the reduction of SO2 by CO on PtlAum(CO)n. Physical Chemistry Chemical Physics, 2013, 15, 12846.	2.8	23
1913	Microscopic structure of water at elevated pressures and temperatures. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6301-6306.	7.1	127
1914	Modeling of the symmetry factor of electrochemical proton discharge via the Volmer reaction. Catalysis Today, 2013, 202, 168-174.	4.4	16

#	Article	IF	CITATIONS
1915	Hydrogen oxidation on ordered intermetallic phases of platinum and tin $\hat{a} \in \text{``A combined experimental}$ and theoretical study. Catalysis Today, 2013, 202, 191-196.	4.4	13
1916	Structural and thermodynamic stability of Li4Ti5O12 anode material for lithium-ion battery. Journal of Power Sources, 2013, 222, 448-454.	7.8	199
1917	Electronic Origin of the Surface Reactivity of Transition-Metal-Doped TiO ₂ (110). Journal of Physical Chemistry C, 2013, 117, 460-465.	3.1	87
1918	Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides. Chemical Science, 2013, 4, 1245.	7.4	273
1919	NMR crystallography of α-poly(l-lactide). Physical Chemistry Chemical Physics, 2013, 15, 3137.	2.8	39
1920	Ab initio optical study of graphene on hexagonal boron nitride and fluorographene substrates. Journal of Materials Chemistry C, 2013, 1, 1618.	5.5	39
1921	Understanding Trends in the Electrocatalytic Activity of Metals and Enzymes for CO ₂ Reduction to CO. Journal of Physical Chemistry Letters, 2013, 4, 388-392.	4.6	604
1922	A density functional theory study of CO oxidation on Pd-Ni alloy with sandwich structure. Applied Catalysis A: General, 2013, 451, 79-85.	4.3	35
1923	Structural, spectral, DFT, pH-metric and biological studies on Cr(III), Mn(II) and Fe(III) complexes of dithione heterocyclic thiosemicarbazide ligand. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 104, 383-393.	3.9	17
1924	Oxygen reduction and evolution at single-metal active sites: Comparison between functionalized graphitic materials and protoporphyrins. Surface Science, 2013, 607, 47-53.	1.9	121
1925	Characterization and biological studies on Co(II), Ni(II) and Cu(II) complexes of carbohydrazones ending by pyridyl ring. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 104, 26-34.	3.9	70
1926	Periodic density functional theory study of the high-pressure behavior of energetic crystalline 1,4-dinitrofurazano[3, 4-b]piperazine. Journal of Molecular Modeling, 2013, 19, 305-314.	1.8	7
1927	CO and CO2 Hydrogenation to Methanol Calculated Using the BEEF-vdW Functional. Catalysis Letters, 2013, 143, 71-73.	2.6	148
1928	Catalytic cleavage of lignin β-O-4 link mimics using copper on alumina and magnesia–alumina. Green Chemistry, 2013, 15, 768.	9.0	91
1929	Rational Design of Hybrid Nanostructures for Advanced Photocatalysis. Advanced Energy Materials, 2013, 3, 12-27.	19.5	141
1930	Tuning the Surface Chemistry of Pd by Atomic C and H: A Microscopic Picture. Chemistry - A European Journal, 2013, 19, 1335-1345.	3.3	28
1931	Effect of doping Fe and Si on electronic structure and optical Properties of CdS. Physica B: Condensed Matter, 2013, 417, 17-23.	2.7	11
1932	Electronic structure of ceramic CrSi2 and WSi2: Compton spectroscopy and ab-initio calculations. Journal of Physics and Chemistry of Solids, 2013, 74, 765-771.	4.0	13

#	Article	IF	CITATIONS
1933	Theoretical studies of HNCO adsorption at stabilized iron complexes in the ZSM-5 framework. Microporous and Mesoporous Materials, 2013, 169, 97-102.	4.4	10
1934	The feasibility of tunable p-type Mg doping in a GaN monolayer nanosheet. Acta Materialia, 2013, 61, 7720-7725.	7.9	81
1935	Avoiding pitfalls in the modeling of electrochemical interfaces. Chemical Physics Letters, 2013, 555, 145-148.	2.6	50
1936	The comparison of approaches to the solid-state NMR-based structural refinement of vitamin B1 hydrochloride and of its monohydrate. Chemical Physics Letters, 2013, 555, 135-140.	2.6	20
1937	Alkali metal induced effects on coadsorbed carbon monoxide on Co(0001): A density functional theory study. Computational and Theoretical Chemistry, 2013, 1009, 55-59.	2.5	6
1938	Elastic metastability, lattice compressibility and thermodynamic properties of (Cr0.5V0.5)2GeC from first-principles. Journal of Alloys and Compounds, 2013, 551, 435-439.	5. 5	16
1939	Crystal structure, stability and spectroscopic properties of methane and CO2 hydrates. Journal of Molecular Graphics and Modelling, 2013, 44, 253-265.	2.4	44
1940	Characterizing and Understanding the Remarkably Slow Basis Set Convergence of Several Minnesota Density Functionals for Intermolecular Interaction Energies. Journal of Chemical Theory and Computation, 2013, 9, 4453-4461.	5. 3	83
1941	Adsorption and catalytic thermolysis of gaseous urea on anatase TiO2 studied by HPLC analysis, DRIFT spectroscopy and DFT calculations. Applied Catalysis B: Environmental, 2013, 134-135, 316-323.	20.2	30
1942	An examination of nickel doping effect on the mechanical strength of a tungsten grain boundary. Computational Materials Science, 2013, 77, 131-138.	3.0	14
1943	Electronic structure of CaCO3: A Compton scattering study. Applied Radiation and Isotopes, 2013, 72, 64-67.	1.5	5
1944	Enhanced photoelectrochemical performance of anatase TiO2 by metal-assisted S–O coupling for water splitting. International Journal of Hydrogen Energy, 2013, 38, 1251-1257.	7.1	27
1945	Comparative computational study of the diffusion of Li, Na, and Mg in silicon including the effect of vibrations. Solid State Ionics, 2013, 253, 157-163.	2.7	51
1946	Theoretical studies on the stabilities and reactivities of Ta3N5 (1 0 0) surfaces. Chemical Physics Letters, 2013, 561-562, 57-62.	2.6	20
1947	Comparative study of (Z)-4-oxo-4-ureido-but-2-enoic acid and p-toluenesulfonic acid 3-nitrophenyl ester by crystal engineering and DFT calculation. Journal of Crystal Growth, 2013, 374, 79-87.	1.5	5
1948	Enhanced chemical reactions of oxygen at grain boundaries in polycrystalline graphene. Polyhedron, 2013, 64, 158-162.	2.2	27
1949	Theoretical prediction of structural, elastic and electronic properties of Si-doped TiCuGe intermetallics. Current Applied Physics, 2013, 13, 549-555.	2.4	6
1950	Opening a large band gap for graphene by covalent addition. Chemical Physics Letters, 2013, 555, 1-6.	2.6	18

#	Article	IF	CITATIONS
1951	Pd/Au(100) alloy for vinyl acetate synthesis: Effects of surface properties on reagents adsorption. Computational and Theoretical Chemistry, 2013, 1019, 33-38.	2.5	12
1952	Benchmark calculations of density functionals for organothiol adsorption on gold surfaces. Computational and Theoretical Chemistry, 2013, 1009, 60-69.	2.5	3
1953	CO Self-Promoting Oxidation on Nanosized Gold Clusters: Triangular Au ₃ Active Site and CO Induced O–O Scission. Journal of the American Chemical Society, 2013, 135, 2583-2595.	13.7	178
1954	Insights into CC Coupling in CO ₂ Electroreduction on Copper Electrodes. ChemCatChem, 2013, 5, 737-742.	3.7	339
1955	Electrochemical water splitting by gold: evidence for an oxide decomposition mechanism. Chemical Science, 2013, 4, 2334.	7.4	229
1956	<i>Ab initio</i> phonon dispersions of transition and noble metals: effects of the exchange and correlation functional. Journal of Physics Condensed Matter, 2013, 25, 145401.	1.8	54
1957	Catalysis in supercritical water: Pathway of the methanation reaction and sulfur poisoning over a Ru/C catalyst during the reforming of biomolecules. Journal of Catalysis, 2013, 301, 38-45.	6.2	55
1958	DFT+U Investigation of Propene Oxidation over Bismuth Molybdate: Active Sites, Reaction Intermediates, and the Role of Bismuth. Journal of Physical Chemistry C, 2013, 117, 7123-7137.	3.1	70
1959	Enthalpies and Entropies of Adsorption on Well-Defined Oxide Surfaces: Experimental Measurements. Chemical Reviews, 2013, 113, 4106-4135.	47.7	211
1960	Brønsted–Evans–Polanyi Relationship for Transition Metal Carbide and Transition Metal Oxide Surfaces. Journal of Physical Chemistry C, 2013, 117, 4168-4171.	3.1	67
1961	Towards accurate estimates of the spin-state energetics of spin-crossover complexes within density functional theory: a comparative case study of cobalt(ii) complexes. Physical Chemistry Chemical Physics, 2013, 15, 3752.	2.8	29
1962	Real-Time Observation of Surface Bond Breaking with an X-ray Laser. Science, 2013, 339, 1302-1305.	12.6	179
1963	Magnetic interactions in oxide-bridged dichromium(III) complexes. Computational determination of the importance of non-bridging ligands. Inorganica Chimica Acta, 2013, 396, 72-77.	2.4	10
1964	Adsorption and Diffusion of Oxygen Atoms on a Pt(211) Stepped Surface. Journal of Physical Chemistry C, 2013, 117, 9772-9778.	3.1	24
1965	Catalytic Activity of Pt/TaB ₂ (0001) for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 4137-4140.	13.8	31
1966	Assessment of density functionals for van der Waals complexes of sodium and benzene. Molecular Physics, 2013, 111, 1211-1218.	1.7	5
1967	Electrochemical CO ₂ and CO Reduction on Metal-Functionalized Porphyrin-like Graphene. Journal of Physical Chemistry C, 2013, 117, 9187-9195.	3.1	260
1968	CO adsorption on the Ni2Pb/Ni(111) surface alloy: A DFT study. Applied Surface Science, 2013, 267, 4-7.	6.1	7

#	Article	IF	Citations
1969	A Density-Functional Theory-Based Neural Network Potential for Water Clusters Including van der Waals Corrections. Journal of Physical Chemistry A, 2013, 117, 7356-7366.	2.5	157
1970	Lead monoxide \hat{l} ±-PbO: electronic properties and point defect formation. Journal of Physics Condensed Matter, 2013, 25, 075803.	1.8	13
1971	Comprehensive examination of dopants and defects in BaTiO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> from first principles. Physical Review B, 2013, 87, .	3.2	43
1972	Effect of local metal microstructure on adsorption on bimetallic surfaces: Atomic nitrogen on Ni/Pt(111). Journal of Chemical Physics, 2013, 138, 174702.	3.0	21
1973	Absorption Spectra of Trapped Holes in Anatase TiO ₂ . Journal of Physical Chemistry C, 2013, 117, 8647-8651.	3.1	34
1974	Methanol to Dimethyl Ether over ZSM-22: A Periodic Density Functional Theory Study. ACS Catalysis, 2013, 3, 735-745.	11.2	76
1975	Modeling CO2 reduction on Pt(111). Physical Chemistry Chemical Physics, 2013, 15, 7114.	2.8	80
1976	Investigation of Catalytic Finite-Size-Effects of Platinum Metal Clusters. Journal of Physical Chemistry Letters, 2013, 4, 222-226.	4.6	249
1977	Modeling Catalyst Preparation: The Structure of Impregnated–Dried Copper Chloride on γ-Alumina at Low Loadings. ACS Catalysis, 2013, 3, 1545-1554.	11.2	20
1978	A calculating proof on hydrogen bonding in ordinary ice by the first-principles density functional theory. RSC Advances, 2013, 3, 6646.	3.6	9
1979	Interactions of platinum clusters with a graphite substrate. Physical Chemistry Chemical Physics, 2013, 15, 11950.	2.8	66
1980	Orbital Overlap Effects in Electron Transfer Reactions across a Metal Nanowire/Electrolyte Solution Interface. Journal of Physical Chemistry C, 2013, 117, 13021-13027.	3.1	11
1981	Dynamics simulation of the interaction between serine and water. Journal of Chemical Physics, 2013, 138, 205101.	3.0	1
1982	Thermodynamic understanding of phase transitions of In2O3 nanocrystals. Chemical Physics Letters, 2013, 563, 76-79.	2.6	13
1983	Tandem cathode for proton exchange membrane fuel cells. Physical Chemistry Chemical Physics, 2013, 15, 9326.	2.8	53
1984	Phonon probe of local strains in SnSxSe2â^'xmixed crystals. Physical Review B, 2013, 87, .	3.2	37
1985	On the properties of binary rutile MO2 compounds, $M = Ir$, Ru , Sn , and Ti : A DFT study. Journal of Chemical Physics, 2013, 138, 194706.	3.0	50
1986	ReaxFF Reactive Force Field Study of the Dissociation of Water on Titania Surfaces. Journal of Physical Chemistry C, 2013, 117, 10558-10572.	3.1	109

#	Article	IF	CITATIONS
1987	Effect of van der Waals Interaction on the Geometric and Electronic Properties of DNA Nucleosides Adsorbed on Cu(111) Surface: A DFT Study. Journal of Physical Chemistry A, 2013, 117, 4669-4678.	2.5	12
1988	CO Chemisorption and Dissociation at High Coverages during CO Hydrogenation on Ru Catalysts. Journal of the American Chemical Society, 2013, 135, 6107-6121.	13.7	204
1989	Nonlocal van der Waals functionals: The case of rare-gas dimers and solids. Journal of Chemical Physics, 2013, 138, 204103.	3.0	42
1990	First principles investigation of zinc-anode dissolution in zinc–air batteries. Physical Chemistry Chemical Physics, 2013, 15, 6416.	2.8	44
1991	Mechanistic Studies of Oxygen Reduction by Hydrogen on PdAg(110). ACS Catalysis, 2013, 3, 1622-1632.	11.2	32
1992	Diaminoethane adsorption and water substitution on hydrated TiO2: a thermochemical study based on first-principles calculations. Physical Chemistry Chemical Physics, 2013, 15, 10824.	2.8	12
1993	Surface Temperature Effects on Dissociative Chemisorption of H ₂ on Cu(100). Journal of Physical Chemistry C, 2013, 117, 8851-8863.	3.1	33
1994	Thermionic current densities from first principles. Journal of Chemical Physics, 2013, 138, 204701.	3.0	10
1995	Ab initio calculations for electronic and optical properties of explosive silver azide. Computational Materials Science, 2013, 72, 101-106.	3.0	7
1996	Adsorption of diferrocenylacetylene on Au(111) studied by scanning tunneling microscopy. Physical Chemistry Chemical Physics, 2013, 15, 6973.	2.8	30
1997	Ferroelectric surface chemistry: First-principles study of the PbTiO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> surface. Physical Review B, 2013, 88, .	3.2	87
1998	Excitation Spectra Argue for Threadlike Shape of DNA-Stabilized Silver Fluorescent Clusters. Journal of Physical Chemistry C, 2013, 117, 18681-18687.	3.1	54
1999	Abâ€Initio calculations of the CO adsorption and dissociation on substitutional Feâ€"Cu surface alloys relevant to Fischerâ€"Tropsch Synthesis: $\langle i \rangle$ bcc $\langle i \rangle$ â€(Cu)Fe(100) and $\langle i \rangle$ fcc $\langle i \rangle$ â€(Fe)Cu(100). Surface and Interface Analysis, 2013, 45, 1081-1087.	1.8	18
2000	Guest–host interactions of arenes in H-ZSM-5 and their impact on methanol-to-hydrocarbons deactivation processes. Journal of Catalysis, 2013, 300, 235-241.	6.2	61
2001	Ab initio investigation of the elastic and piezoelectric properties of lithium based Chalcogenides LiMX2 (M=Ga,In; X=S,Se). Computational Materials Science, 2013, 68, 379-383.	3.0	22
2002	The Effects of Lattice Motion on Gas-Surface Reactions. Springer Series in Surface Sciences, 2013, , 213-237.	0.3	9
2003	Oxygen Defects and Surface Chemistry of Ceria: Quantum Chemical Studies Compared to Experiment. Chemical Reviews, 2013, 113, 3949-3985.	47.7	849
2004	Catalytic Characteristics of AgCu Bimetallic Nanoparticles in the Oxygen Reduction Reaction. ChemSusChem, 2013, 6, 1044-1049.	6.8	50

#	Article	IF	CITATIONS
2005	Effects of alloying elements on structural, electronic and mechanical properties of AlSc2 by first-principles calculations. Computational Materials Science, 2013, 69, 160-167.	3.0	9
2006	Diffraction of H2 from Metal Surfaces. Springer Series in Surface Sciences, 2013, , 397-420.	0.3	0
2007	Electronic structure of SnO and SnO2 layers on Rh(111). Surface Science, 2013, 613, 48-53.	1.9	2
2008	Role of photoexcited electrons in hydrogen evolution from platinum co-catalysts loaded on anatase TiO2: a first-principles study. Journal of Materials Chemistry A, 2013, 1, 6664.	10.3	21
2009	Ab-initio study of phase stability, thermodynamic and elastic properties of beryllium sulfide under extreme condition. Journal of Alloys and Compounds, 2013, 554, 363-370.	5.5	7
2010	pH in atomic scale simulations of electrochemical interfaces. Physical Chemistry Chemical Physics, 2013, 15, 10321.	2.8	127
2011	Nickel: A very fast diffuser in silicon. Journal of Applied Physics, 2013, 113, .	2.5	81
2012	DFT based study of transition metal nano-clusters for electrochemical NH3 production. Physical Chemistry Chemical Physics, 2013, 15, 7785.	2.8	159
2013	Electronic, elastic, acoustic and optical properties of cubic TiO2: A DFT approach. Physica B: Condensed Matter, 2013, 420, 74-80.	2.7	14
2014	Theoretical evidence for low kinetic overpotentials in Li-O2 electrochemistry. Journal of Chemical Physics, 2013, 138, 034703.	3.0	211
2015	Origin of site preference of CO and NO adsorption on $Pd(111)$ at different coverages: A density functional theory study. Computational and Theoretical Chemistry, 2013, 1004, 22-30.	2.5	12
2016	Atomic and molecular adsorption on Ru(0001). Surface Science, 2013, 614, 64-74.	1.9	71
2017	Multiscale quantum/atomistic coupling using constrained density functional theory. Physical Review B, 2013, 87, .	3.2	32
2018	Electrochemical ammonia production on molybdenum nitride nanoclusters. Physical Chemistry Chemical Physics, 2013, 15, 20957.	2.8	68
2019	On the Role of Electronic Friction for Dissociative Adsorption and Scattering of Hydrogen Molecules at a Ru(0001) Surface. Journal of Physical Chemistry A, 2013, 117, 8761-8769.	2.5	33
2020	Computational Catalyst Screening. RSC Catalysis Series, 2013, , 1-58.	0.1	11
2021	Equation of state and electronic properties of Cr2GeC via first-principles. European Physical Journal B, 2013, 86, 1.	1.5	12
2022	Lying-Down to Standing-Up Transitions in Self Assembly of Butanedithiol Monolayers on Gold and Substitutional Assembly by Octanethiols. Journal of Physical Chemistry C, 2013, 117, 4625-4631.	3.1	29

#	Article	IF	CITATIONS
2023	Elementary Reaction Processes Involving Atomic and Molecular Oxygen on ZrB2(0001) Surface. Journal of Physical Chemistry C, 2013, 117, 5831-5839.	3.1	5
2024	Selectivity in Propene Dehydrogenation on Pt and Pt ₃ Sn Surfaces from First Principles. ACS Catalysis, 2013, 3, 3026-3030.	11.2	133
2025	Solvated protons in density functional theoryâ€"A few examples. Electrochimica Acta, 2013, 105, 248-253.	5.2	27
2026	Effect of MgO(100) support on structure and properties of Pd and Pt nanoparticles with 49-155 atoms. Journal of Chemical Physics, 2013, 139, 084701.	3.0	41
2027	Synergistic Effect of Tungsten Carbide and Palladium on Graphene for Promoted Ethanol Electrooxidation. ACS Applied Materials & Samp; Interfaces, 2013, 5, 6571-6579.	8.0	108
2028	Effective Reversible Potentials and Onset Potentials for O ₂ Electroreduction on Transition Metal Electrodes: Theoretical Analysis. Journal of Physical Chemistry C, 2013, 117, 41-48.	3.1	27
2029	Establishing the Accuracy of Broadly Used Density Functionals in Describing Bulk Properties of Transition Metals. Journal of Chemical Theory and Computation, 2013, 9, 1631-1640.	5.3	184
2030	Stability and bandgaps of layered perovskites for one- and two-photon water splitting. New Journal of Physics, 2013, 15, 105026.	2.9	51
2031	Fe L-Edge X-ray Absorption Spectra of Fe(II) Polypyridyl Spin Crossover Complexes from Time-Dependent Density Functional Theory. Journal of Physical Chemistry A, 2013, 117, 14075-14085.	2.5	14
2032	Ru/Active Carbon Catalyst: Improved Spectroscopic Data Analysis by Density Functional Theory. Journal of Physical Chemistry C, 2013, 117, 26588-26597.	3.1	16
2033	Thermal Lattice Expansion Effect on Reactive Scattering of H $<$ sub $>$ 2 $<$ /sub $>$ from Cu(111) at $<$ i $>$ T $<$ /i $>$ $<$ sub $>$ s $<$ /sub $>$ = 925 K. Journal of Physical Chemistry A, 2013, 117, 8770-8781.	2.5	50
2034	Density Functional Theory and Reaction Kinetics Studies of the Water–Gas Shift Reaction on Pt–Re Catalysts. ChemCatChem, 2013, 5, 3690-3699.	3.7	28
2035	Analysis of H ₂ Release from Organic Polycyclics over Pd Catalysts Using DFT. Journal of Physical Chemistry C, 2013, 117, 194-204.	3.1	47
2036	Effect of Conformational Symmetry upon the Formation of Cysteine Clusters on the Au(110)-(1 \tilde{A} — 1) Surface: A First-Principles Study. Journal of Physical Chemistry C, 2013, 117, 20351-20360.	3.1	16
2037	Theoretical Investigation of the Electronic Structure of Fe(II) Complexes at Spin-State Transitions. Journal of Chemical Theory and Computation, 2013, 9, 509-519.	5.3	85
2038	Elementary steps of the catalytic NOx reduction with NH3: Cluster studies on reactant adsorption at vanadium oxide substrate. Journal of Chemical Physics, 2013, 138, 094704.	3.0	7
2039	Origin of <i>>c-</i> >axis ultraincompressibility of Zr2InC above 70 GPa via first-principles. Journal of Applied Physics, 2013, 114, .	2.5	24
2040	Elementary steps of the catalytic NOx reduction with NH3: Cluster studies on adsorbate diffusion and dehydrogenation at vanadium oxide substrate. Journal of Chemical Physics, 2013, 138, 194701.	3.0	6

#	Article	IF	CITATIONS
2041	Bandgap Engineering of Double Perovskites for One- and Two-photon Water Splitting. Materials Research Society Symposia Proceedings, 2013, 1523, 601.	0.1	13
2042	<i>In silico</i> search for novel methane steam reforming catalysts. New Journal of Physics, 2013, 15, 125021.	2.9	65
2043	A first-principles study of B2 NiAl alloyed with rare earth elements Pr, Pm, Sm, and Eu. Chinese Physics B, 2013, 22, 027102.	1.4	4
2044	Electronic Structure, Lattice Dynamics and Thermoelectric Properties of PbTe from First-Principles Calculation. Chinese Physics Letters, 2013, 30, 017101.	3.3	8
2045	Exploring Pretreatment–Morphology Relationships: Ab Initio Wulff Construction for RuO ₂ Nanoparticles under Oxidising Conditions. ChemCatChem, 2013, 5, 3398-3403.	3.7	29
2046	Towards a specific reaction parameter density functional for reactive scattering of H2 from Pd(111). Journal of Chemical Physics, 2013, 139, 244707.	3.0	14
2047	Density functional theory (DFT) investigation of the adsorption of the CH ₃ OH/Au(100) system. Surface and Interface Analysis, 2013, 45, 1410-1418.	1.8	4
2048	Surface-induced charge at a Ge (100) dimer surface and its interaction with vacancies and self-interstitials. Journal of Applied Physics, 2013, 113, .	2.5	8
2049	Elementary steps of the catalytic NOx reduction with NH3: Cluster studies on reaction paths and energetics at vanadium oxide substrate. Journal of Chemical Physics, 2013, 139, 244701.	3.0	13
2050	Reactive scattering of H2 from Cu(100): Comparison of dynamics calculations based on the specific reaction parameter approach to density functional theory with experiment. Journal of Chemical Physics, 2013, 138, 044708.	3.0	73
2051	First-principles insights into the structure of the incipient magnesium oxide and its instability to decomposition: Oxygen chemisorption to $Mg(0001)$ and thermodynamic stability. Physical Review B, 2013, 87, .	3.2	39
2052	Selective Ultrafast Probing of Transient Hot Chemisorbed and Precursor States of CO on Ru(0001). Physical Review Letters, 2013, 110, 186101.	7.8	51
2053	Solid-State NMR Analysis of a Boron-Containing Pharmaceutical Hydrochloride Salt. Journal of Pharmaceutical Sciences, 2013, 102, 3705-3716.	3.3	31
2054	A comparison study on the electronic structures, lattice dynamics and thermoelectric properties of bulk silicon and silicon nanotubes. Chinese Physics B, 2013, 22, 117101.	1.4	3
2055	ELECTRONIC STRUCTURES AND MAGNETISM IN Cu-DOPED ZnO MONOLAYER. Modern Physics Letters B, 2013, 27, 1350204.	1.9	4
2056	The Structure and Elastic and Thermodynamic Properties of Cubic-NbH ₂ under High Pressures from First-Principles Calculations. Chinese Physics Letters, 2013, 30, 066201.	3.3	3
2057	Mechanical behavior of water filled C60. Applied Physics Letters, 2013, 103, .	3.3	8
2058	Investigating the molecule-substrate interaction of prototypic tetrapyrrole compounds: Adsorption and self-metalation of porphine on Cu(111). Journal of Chemical Physics, 2013, 138, 154710.	3.0	64

#	Article	IF	CITATIONS
2059	Formation Energy of Intrinsic Point Defects in Si and Ge and Implications for Ge Crystal Growth. ECS Journal of Solid State Science and Technology, 2013, 2, P104-P109.	1.8	19
2060	A Comparative Density-Functional Theory Investigation of Oxygen Adsorption on Stepped Ni Surfaces $3(\langle i\rangle h\langle i\rangle \langle i\rangle k\langle i\rangle \langle i\rangle A-(111)$ [$\langle i\rangle h\langle i\rangle \langle i\rangle k\langle i\rangle \langle i\rangle \langle i\rangle = (111),(100),(110)$]: Role of Terrace Orientation. Journal of the Physical Society of Japan, 2013, 82, 074709.	1.6	4
2062	Effects of Hindered Rotation on H $<$ sub $>2sub>Nuclear Spin Conversion on Ag(111). Journal of the Physical Society of Japan, 2013, 82, 023601.$	1.6	9
2064	Ab initio calculations of structure and thermodynamic properties of tetragonal-TiH ₂ under high temperatures and pressures. EPJ Applied Physics, 2013, 64, 10201.	0.7	6
2065	Phase transition and elastic properties of beryllium sulfide semiconductor under high pressure. EPJ Applied Physics, 2013, 62, 20103.	0.7	4
2066	Kinetics of Nitric Oxide and Oxygen Gases on Porous Y-Stabilized ZrO2-Based Sensors. Molecules, 2013, 18, 9901-9918.	3.8	10
2067	The role of oxygen and water on molybdenum nanoclusters for electro catalytic ammonia production. Beilstein Journal of Nanotechnology, 2014, 5, 111-120.	2.8	25
2068	Theoretical study of the adsorption of benzene on coinage metals. Beilstein Journal of Organic Chemistry, 2014, 10, 1775-1784.	2.2	53
2069	Theoretical Simulations of Reactive and Nonreactive Scattering of Light Diatomic Molecules from Metal Surfaces: Past, Present, and Future. Advances in Chemistry, 2014, 2014, 1-21.	1.1	0
2070	DFT Study of the Electronic Structure of Cubic-SiC Nanopores with a C-Terminated Surface. Journal of Nanomaterials, 2014, 2014, 1-7.	2.7	7
2071	Change of the work function of platinum electrodes induced by halide adsorption. Beilstein Journal of Nanotechnology, 2014, 5, 152-161.	2.8	107
2072	New observations on hydrogen bonding in ice by density functional theory simulations. Chinese Physics B, 2014, 23, 026103.	1.4	8
2073	AA bilayer graphene on Si-terminated SiO 2 under electric field. Chinese Physics B, 2014, 23, 026802.	1.4	3
2074	Electronic properties of WC nano-compound: Compton spectroscopy and band structure calculations. Journal of Experimental Nanoscience, 2014, 9, 799-806.	2.4	7
2075	First-principle study on thermodynamic property of superhard BC ₂ N under extreme conditions. Journal of Materials Research, 2014, 29, 1326-1333.	2.6	0
2076	Oxygen reduction reaction on Cu-doped Ag cluster for fuel-cell cathode. Journal of Molecular Modeling, 2014, 20, 2454.	1.8	16
2077	Data mining for materials design: A computational study of single molecule magnet. Journal of Chemical Physics, 2014, 140, 044101.	3.0	13
2078	First-Principles Study on the Corrosion Mechanism of Degradable Medical Mg Alloys in the Medium Containing Cl Applied Mechanics and Materials, 0, 528, 132-137.	0.2	O

#	Article	IF	CITATIONS
2079	A comparative DFT study of the structural and electronic properties of nonpolar GaN surfaces. Applied Surface Science, 2014, 314, 794-799.	6.1	12
2080	Catalyst Poisoning Property of Sulfonimide Acid Ionomer on Pt (111) Surface. Journal of the Electrochemical Society, 2014, 161, F649-F652.	2.9	106
2081	Communication: The influence of CO2 poisoning on overvoltages and discharge capacity in non-aqueous Li-Air batteries. Journal of Chemical Physics, 2014, 140, 121101.	3.0	48
2082	Validity of the site-averaging approximation for modeling the dissociative chemisorption of H2 on $Cu(111)$ surface: A quantum dynamics study on two potential energy surfaces. Journal of Chemical Physics, 2014, 141, 194302.	3.0	45
2083	Assessment of amide I spectroscopic maps for a gas-phase peptide using IR-UV double-resonance spectroscopy and density functional theory calculations. Journal of Chemical Physics, 2014, 140, 224111.	3.0	26
2084	Site-specific bonding of copper adatoms to pyridine end groups mediating the formation of two-dimensional coordination networks on metal surfaces. Physical Review B, 2014, 89, .	3.2	21
2085	Hydrogen Peroxide Synthesis via Enhanced Two-Electron Oxygen Reduction Pathway on Carbon-Coated Pt Surface. Journal of Physical Chemistry C, 2014, 118, 30063-30070.	3.1	248
2086	Theoretical Study on the Encapsulation of Li Atoms inside Boron Nitride Nanotubes: Physical Properties and Catalytic Reactivity for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2014, 118, 30325-30332.	3.1	11
2087	Ab initiostudies on phase transition, thermoelastic, superconducting and thermodynamic properties of the compressed cubic phase of AlH3. Journal of Applied Physics, 2014, 115, 124904.	2.5	8
2088	Embedded-cluster calculations in a numeric atomic orbital density-functional theory framework. Journal of Chemical Physics, 2014, 141, 024105.	3.0	38
2089	"Building Block Picture―of the Electronic Structure of Aqueous Cysteine Derived from Resonant Inelastic Soft X-ray Scattering. Journal of Physical Chemistry B, 2014, 118, 13142-13150.	2.6	24
2090	mBEEF: An accurate semi-local Bayesian error estimation density functional. Journal of Chemical Physics, 2014, 140, 144107.	3.0	117
2091	The Role of Ru and RuO ₂ in the Catalytic Transfer Hydrogenation of 5â€Hydroxymethylfurfural for the Production of 2,5â€Dimethylfuran. ChemCatChem, 2014, 6, 848-856.	3.7	136
2092	Ferroelastic switching of doped zirconia: Modeling and understanding from first principles. Physical Review B, 2014, 90, .	3.2	28
2093	The Dynamic Equilibrium Between (AlOMe) _{<i>n</i>} Cages and (AlOMe) _{<i>n</i>} Nanotubes in Methylaluminoxane (MAO): A First-Principles Investigation. Macromolecules, 2014, 47, 8556-8569.	4.8	43
2094	Operando Characterization of an Amorphous Molybdenum Sulfide Nanoparticle Catalyst during the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2014, 118, 29252-29259.	3.1	87
2095	Adsorption of multivalent alkylthiols on Au(111) surface: Insights from DFT. Journal of Computational Chemistry, 2014, 35, 204-213.	3.3	12
2096	Nitrogen-doped carbon supports with terminated hydrogen and their effects on active gold species: a density functional study. Physical Chemistry Chemical Physics, 2014, 16, 25498-25507.	2.8	23

#	Article	IF	CITATIONS
2097	On the Electrochemical Deposition and Dissolution of Divalent Metal Ions. ChemPhysChem, 2014, 15, 132-138.	2.1	28
2098	Analysis of the near-edge X-ray-absorption fine-structure of anthracene: A combined theoretical and experimental study. Journal of Chemical Physics, 2014, 140, 014302.	3.0	34
2099	Exceptionally Stiff Two-Dimensional Molecular Crystal by Substrate-Confinement. ACS Nano, 2014, 8, 11425-11431.	14.6	6
2100	Dispersion corrected RPBE studies of liquid water. Journal of Chemical Physics, 2014, 141, 064501.	3.0	102
2101	First-principles study on the effect of defects on the electronic and magnetic properties of the Ti2NiAl inverse Heusler alloy. European Physical Journal B, 2014, 87, 1.	1.5	7
2102	Assessments of Semilocal Density Functionals and Corrections for Carbon Dioxide Adsorption on Metal–Organic Frameworks. ChemPhysChem, 2014, 15, 3157-3165.	2.1	11
2103	Density Functional Theory Beyond the Generalized Gradient Approximation for Surface Chemistry. Topics in Current Chemistry, 2014, , 25-51.	4.0	9
2104	The proton conduction mechanism in a material consisting of packed acids. Chemical Science, 2014, 5, 4878-4887.	7.4	72
2105	Dissociative adsorption of CH3X ($X = Br$ and Cl) on a silicon(100) surface revisited by density functional theory. Journal of Chemical Physics, 2014, 141, 174701.	3.0	11
2106	First principles calculations on structural, elastic, acoustic and optical properties of fluorite phase TiO2 under pressure. International Journal of Modern Physics C, 2014, 25, 1450020.	1.7	0
2107	Constricted Variational Density Functional Theory Approach to the Description of Excited States. Topics in Current Chemistry, 2014, 368, 61-95.	4.0	6
2108	Terahertz absorption spectra of oxidized polyethylene and their analysis by quantum chemical calculations. Japanese Journal of Applied Physics, 2014, 53, 092402.	1.5	35
2109	First-principles study on the synergistic effects of codoped anatase TiO ₂ photocatalysts codoped with N/V or C/Cr. Journal of Semiconductors, 2014, 35, 102002.	3.7	7
2110	INS, IR, RAMAN, 1H NMR and DFT investigations on dynamical properties of l-asparagine. Vibrational Spectroscopy, 2014, 72, 1-7.	2.2	13
2111	Chiral surface networks of 3-HPLN — A molecular analog of rounded triangle assembly. Surface Science, 2014, 629, 65-74.	1.9	7
2112	Synthesis, spectroscopic characterization, molecular modeling and potentiometric studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with 1,1-diaminobutane-Schiff base. Journal of Molecular Structure, 2014, 1072, 103-113.	3.6	52
2113	First-principles study of mechanical and electronic properties of TiB compound under pressure. Intermetallics, 2014, 52, 64-71.	3.9	21
2114	A systematic, first-principles study of the structural preference and magnetic properties of mononitrides of the d-block metals. Journal of Alloys and Compounds, 2014, 603, 172-179.	5.5	22

#	Article	IF	CITATIONS
2115	First-principles study of the properties of Li, Al and Cd doped Mg alloys. Journal of Alloys and Compounds, 2014, 596, 63-68.	5 . 5	22
2116	Synthesis, spectral characterization, molecular modeling and antimicrobial activity studies on 2-aminopyridine-cyclodiphosph(V)azane derivative and its homo-binuclear zinc(II) complexes. Journal of Molecular Structure, 2014, 1068, 27-42.	3.6	10
2117	First-principles study of ceramic material (Ti1â^'xNbx)2AlC compounds and its compressive behavior under pressure up to 55GPa. Journal of Alloys and Compounds, 2014, 591, 110-116.	5.5	8
2118	Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20120476.	3.4	599
2119	First-principles investigation of the binary intermetallics in Mg–Al–Sr alloy: Stability, elastic properties and electronic structure. Computational Materials Science, 2014, 86, 24-29.	3.0	36
2120	First-principle study of phase stability, electronic structure and thermodynamic properties of cadmium sulfide under high pressure. Journal of Physics and Chemistry of Solids, 2014, 75, 662-669.	4.0	12
2121	Molecular structure and biological studies on Cr(III), Mn(II) and Fe(III) complexes of heterocyclic carbohydrazone ligand. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 121, 259-267.	3.9	49
2122	Electronic and elastic properties of Al4Ce binary compound under pressure via first-principles. Superlattices and Microstructures, 2014, 69, 76-86.	3.1	8
2123	On the electrochemical properties of platinum stepped surfaces vicinal to the (100) pole. A computational study. Electrochimica Acta, 2014, 125, 666-673.	5.2	9
2124	Tuning the MoS ₂ Edge-Site Activity for Hydrogen Evolution via Support Interactions. Nano Letters, 2014, 14, 1381-1387.	9.1	660
2125	Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nature Chemistry, 2014, 6, 320-324.	13.6	865
2126	Accuracy of generalized gradient approximation functionals for density-functional perturbation theory calculations. Physical Review B, 2014, 89, .	3.2	138
2127	Mechanical, electronic and thermodynamic properties of Mg2Ca Laves phase under high pressure: A first-principles calculation. Computational Materials Science, 2014, 88, 61-70.	3.0	38
2128	Effect of Pd and Pt metal on sulfur adsorption on Co(0001) by surface alloying. European Physical Journal B, 2014, 87, 1.	1.5	1
2129	First-principles study of high-pressure stability, structure, and elasticity of FeS2 polymorphs. Physics and Chemistry of Minerals, 2014, 41, 189-196.	0.8	12
2130	The Influence of Particle Shape and Size on the Activity of Platinum Nanoparticles for Oxygen Reduction Reaction: A Density Functional Theory Study. Catalysis Letters, 2014, 144, 380-388.	2.6	66
2131	DFT analysis of Li intercalation mechanisms in the Fe-phthalocyanine cathode of Li-ion batteries. Physical Chemistry Chemical Physics, 2014, 16, 743-752.	2.8	26
2132	Generalized BrÃ,nsted–Evans–Polanyi relationships and descriptors for O–H bond cleavage of organic molecules on transition metal surfaces. Journal of Catalysis, 2014, 313, 24-33.	6.2	42

#	Article	IF	CITATIONS
2133	Evaluation of the anti-inflammatory and analgesic effects of Cu(II) and Zn(II) complexes derived from 2-(naphthalen-1-yloxy)-N′-(1-(pyridin-2-1)ethylidene) acetohydrazide. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 120, 332-339.	3.9	17
2134	Synthesis, characterization, molecular modeling and antioxidant activity of Girard′s T thiosemicarbazide and its complexes with some transition metal ions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 127, 530-542.	3.9	22
2135	Formic acid decomposition on Au catalysts: DFT, microkinetic modeling, and reaction kinetics experiments. AICHE Journal, 2014, 60, 1303-1319.	3.6	87
2136	Thermodynamic and elastic properties of hexagonal ZnO under high temperature. Journal of Alloys and Compounds, 2014, 597, 50-57.	5.5	12
2137	Synthesis, characterization, DFT and biological studies of isatinpicolinohydrazone and its Zn(II), Cd(II) and Hg(II) complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 127, 144-156.	3.9	79
2138	Theoretical and kinetic assessment of the mechanism of ethane hydrogenolysis on metal surfaces saturated with chemisorbed hydrogen. Journal of Catalysis, 2014, 311, 350-356.	6.2	55
2139	Synthesis, characterization and modeling structures of isatin-3-Girard T (IGT) and P (IGP) hydrazone complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 124, 579-587.	3.9	11
2140	<i>Ab initio</i> studies of 1,3,5,7-tetranitro-1,3,5,7-tetrazocine/1,3-dimethyl-2-imidazolidinone cocrystal under high pressure using dispersion corrected density functional theory. Journal of Applied Physics, 2014, 115, .	2.5	24
2141	Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science, 2014, 343, 1339-1343.	12.6	2,376
2142	Systematic analysis of the structural, elastic, and electronic properties of Ti–Cu–Me (Me=Al, Ga and) Tj ETQq1	1.8.7843	14 rgBT /0
2143	Onâ€site correlation of <i>p</i> àâ€electron in <i>d</i> ¹⁰ semiconductor zinc oxide. International Journal of Quantum Chemistry, 2014, 114, 468-472.	2.0	23
2144	The adsorption and dissociation of CO on Fe(111). Surface Science, 2014, 625, 69-83.	1.9	10
2145	Electric field manipulated reversible hydrogen storage in graphene studied by <scp>DFT</scp> calculations. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 351-356.	1.8	8
2146	Vibrationally Promoted Dissociation of Water on Ni(111). Science, 2014, 344, 504-507.	12.6	175
2147	Representing potential energy surfaces by high-dimensional neural network potentials. Journal of Physics Condensed Matter, 2014, 26, 183001.	1.8	252
2148	From the Lindlar Catalyst to Supported Ligandâ€Modified Palladium Nanoparticles: Selectivity Patterns and Accessibility Constraints in the Continuousâ€Flow Threeâ€Phase Hydrogenation of Acetylenic Compounds. Chemistry - A European Journal, 2014, 20, 5926-5937.	3.3	141
2149	Assessment of density functionals and paucity of non-covalent interactions in aminoylyne complexes of molybdenum and tungsten [(η5·C5H5)(CO)2Mî€,EN(SiMe3)(R)] (E = Si, Ge, Sn, Pb): a dispersion-corrected DFT study. Dalton Transactions, 2014, 43, 9955-9967.	3.3	11
2150	Catalytic Activity of Pt Nano-Particles for H2 Formation. Topics in Catalysis, 2014, 57, 273-281.	2.8	26

#	Article	IF	CITATIONS
2151	The Effect of Surface Geometry of Copper on Adsorption of Benzotriazole and Cl. Part I. Journal of Physical Chemistry C, 2014, 118, 933-943.	3.1	42
2152	Atomic and Molecular Adsorption on Re(0001). Topics in Catalysis, 2014, 57, 54-68.	2.8	28
2153	Realistic-contact-induced enhancement of rectifying in carbon-nanotube/graphene-nanoribbon junctions. Applied Physics Letters, 2014, 104, 103107.	3.3	12
2154	Beyond Graphene: Stable Elemental Monolayers of Silicene and Germanene. ACS Applied Materials & lnterfaces, 2014, 6, 7743-7750.	8.0	251
2155	The Effect of Surface Geometry of Copper on Dehydrogenation of Benzotriazole. Part II. Journal of Physical Chemistry C, 2014, 118, 944-954.	3.1	36
2156	Some properties of intermetallic compounds of Sn with noble metals relevant for hydrogen electrocatalysis. Electrochimica Acta, 2014, 116, 39-43.	5.2	9
2157	Reduction behavior of oxidized Pd(100) and Pd75Ag25(100) surfaces using CO. Surface Science, 2014, 621, 31-39.	1.9	19
2158	Density Functional Theory of Open-Shell Systems. The 3d-Series Transition-Metal Atoms and Their Cations. Journal of Chemical Theory and Computation, 2014, 10, 102-121.	5.3	65
2159	Insight into the Effect of Sn on CO and Formic Acid Oxidation at PtSn Catalysts. Journal of Physical Chemistry C, 2014, 118, 278-289.	3.1	48
2160	Activity and Selectivity Trends in Synthesis Gas Conversion to Higher Alcohols. Topics in Catalysis, 2014, 57, 135-142.	2.8	173
2161	Theoretical Study of Li Migration in Lithium–Graphite Intercalation Compounds with Dispersion-Corrected DFT Methods. Journal of Physical Chemistry C, 2014, 118, 2273-2280.	3.1	141
2162	Can Metal–Organic Framework Separate 1-Butene from Butene Isomers?. Journal of Physical Chemistry Letters, 2014, 5, 440-446.	4.6	29
2163	Structural, spectral, pH-metric and biological studies on mercury (II), cadmium (II) and binuclear zinc (II) complexes of NS donor thiosemicarbazide ligand. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 123, 59-70.	3.9	23
2164	Computational screening of several silicon-based high-energy hexanitrohexaazaisowurtzitane-like derivatives. Journal of Fluorine Chemistry, 2014, 158, 29-37.	1.7	5
2165	Thermochemistry and micro-kinetic analysis of methanol synthesis on ZnO (0 0 0 1). Journal of Catalysis, 2014, 309, 397-407.	6.2	54
2166	Synthesis, characterization, DFT and biological studies of (Z)-N′-(2-oxoindolin-3-ylidene)picolinohydrazide and its Co(II), Ni(II) and Cu(II) complexes. Journal of Molecular Structure, 2014, 1062, 96-109.	3.6	41
2167	Concentration-dependent crystal structure, elastic constants and electronic structure of Zr x Ti1â^'x alloys under high pressure. Frontiers of Physics, 2014, 9, 219-225.	5.0	11
2168	On factors controlling activity of submonolayer bimetallic catalysts: Nitrogen desorption. Journal of Chemical Physics, 2014, 140, 014703.	3.0	6

#	Article	IF	CITATIONS
2169	Designing rules and probabilistic weighting for fast materials discovery in the Perovskite structure. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 055007.	2.0	24
2170	Trends in Formic Acid Decomposition on Model Transition Metal Surfaces: A Density Functional Theory study. ACS Catalysis, 2014, 4, 4434-4445.	11.2	190
2171	INS, DFT and temperature dependent IR investigations of dynamical properties of low temperature phase of choline chloride. Chemical Physics, 2014, 445, 31-37.	1.9	11
2172	Oxidation of Rubrene Thin Films: An Electronic Structure Study. Langmuir, 2014, 30, 15433-15441.	3 . 5	25
2173	Status in Calculating Electronic Excited States in Transition Metal Oxides from First Principles. Topics in Current Chemistry, 2014, 347, 47-98.	4.0	15
2174	Temperature-dependent templated growth of porphine thin films on the (111) facets of copper and silver. Journal of Chemical Physics, 2014, 141, 144703.	3.0	29
2175	<i>Ab initio $$ /i> study of molecular and atomic oxygen on GeTe(111) surfaces. Journal of Applied Physics, 2014, 116, .</i>	2.5	10
2176	Ag–Cu Bimetallic Nanoparticles with Enhanced Resistance to Oxidation: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry C, 2014, 118, 26324-26331.	3.1	114
2177	Design of the Alkali-Metal-Doped WO ₃ as a Near-Infrared Shielding Material for Smart Window. Industrial & Engineering Chemistry Research, 2014, 53, 17981-17988.	3.7	68
2178	The first principles studies on the reaction pathway of the oxidative dehydrogenation of ethane on the undoped and doped carbon catalyst. Journal of Materials Chemistry A, 2014, 2, 5287.	10.3	45
2179	Choosing a proper exchange–correlation functional for the computational catalysis on surface. Physical Chemistry Chemical Physics, 2014, 16, 18563-18569.	2.8	21
2180	Hydrogen adsorption on bimetallic PdAu(111) surface alloys: minimum adsorption ensemble, ligand and ensemble effects, and ensemble confinement. Physical Chemistry Chemical Physics, 2014, 16, 23930-23943.	2.8	41
2181	Structures and electronic properties of metal organic frameworks: DFT and ab initio FMO calculations for model systems. Chemical Physics Letters, 2014, 612, 295-301.	2.6	5
2182	First-Principles Mechanistic Analysis of Dimethyl Ether Electro-Oxidation on Monometallic Single-Crystal Surfaces. Journal of Physical Chemistry C, 2014, 118, 24199-24211.	3.1	23
2183	DFT Studies and Experiments on Biocatalytic Centers: Structure, Vibrations, and Core Excitations of the K[VO(O ₂)Hheida] Complex. Journal of Physical Chemistry C, 2014, 118, 24611-24622.	3.1	11
2184	Importance of Ligand Effect in Selective Hydrogen Formation via Formic Acid Decomposition on the Bimetallic Pd/Ag Catalyst from First-Principles. Journal of Physical Chemistry C, 2014, 118, 22553-22560.	3.1	54
2185	Graphene Edges Dictate the Morphology of Nanoparticles during Catalytic Channeling. Journal of Physical Chemistry C, 2014, 118, 4296-4302.	3.1	29
2186	Theoretical and experimental study of the incorporation of tobramycin and strontium-ions into hydroxyapatite by means of co-precipitation. Applied Surface Science, 2014, 314, 376-383.	6.1	9

#	Article	IF	CITATIONS
2187	Inherent Enhancement of Electronic Emission from Hexaboride Heterostructure. Physical Review Applied, $2014, 2, \ldots$	3.8	20
2188	First-principles insight into the surface magnetism of Cu-doped SnO ₂ (110) thin film. RSC Advances, 2014, 4, 39860.	3.6	8
2189	"Recycling―Classical Drugs for Malaria. Chemical Reviews, 2014, 114, 11164-11220.	47.7	104
2190	Characterization of NTCDI supra-molecular networks on Au(111); combining STM, IR and DFT calculations. RSC Advances, 2014, 4, 25698-25708.	3.6	20
2191	A facile and versatile method for preparation of colored TiO ₂ with enhanced solar-driven photocatalytic activity. Nanoscale, 2014, 6, 10216-10223.	5.6	382
2192	H ₂ production through electro-oxidation of SO ₂ : identifying the fundamental limitations. Physical Chemistry Chemical Physics, 2014, 16, 9572-9579.	2.8	36
2193	B ₁₈ ^{2â^'} : a quasi-planar bowl member of the Wankel motor family. Chemical Communications, 2014, 50, 8140-8143.	4.1	107
2194	Phase-segregated Pt–Ni chain-like nanohybrids with high electrocatalytic activity towards methanol oxidation reaction. Nanoscale, 2014, 6, 4635-4641.	5.6	60
2195	Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces. Physical Chemistry Chemical Physics, 2014, 16, 4720.	2.8	375
2196	On the infrared activation of the breathing mode of methane in ice. Physical Chemistry Chemical Physics, 2014, 16, 16694-16700.	2.8	11
2197	Understanding the stability, bonding nature and chemical reactivity of 3d-substituted heterofullerenes C ₅₈ TM (TM = Sc–Zn) from DFT studies. RSC Advances, 2014, 4, 44786-44794.	3.6	5
2198	Selective poisoning of Li–air batteries for increased discharge capacity. RSC Advances, 2014, 4, 15671.	3.6	8
2199	Low energy structural dynamics and constrained libration of Li(NH ₃) ₄ , the lowest melting point metal. Chemical Communications, 2014, 50, 10778-10781.	4.1	15
2200	Elastic Properties and Debye Temperature of Zn Doped PbTiO ₃ from First Principles Calculation. Integrated Ferroelectrics, 2014, 155, 59-65.	0.7	4
2201	The elastic and thermodynamic properties of ZrMo 2 from first principles calculations. Journal of Alloys and Compounds, 2014, 615, 975-982.	5 . 5	16
2202	Theoretical Analysis of Transition-Metal Catalysts for Formic Acid Decomposition. ACS Catalysis, 2014, 4, 1226-1233.	11.2	209
2203	Ketonization of Carboxylic Acids in Biomass Conversion over TiO ₂ and ZrO ₂ Surfaces: A DFT Perspective. ACS Catalysis, 2014, 4, 2874-2888.	11.2	132
2204	Complementary optical and neutron vibrational spectroscopy study of bromanilic acid: 2,3,5,6-tetramethylpyrazine (1:1) cocrystal. Vibrational Spectroscopy, 2014, 75, 26-38.	2.2	12

#	Article	IF	CITATIONS
2205	DFT study on effect of CO on the system of acetoxylation of ethylene to vinyl acetate. RSC Advances, 2014, 4, 17709.	3.6	7
2206	Tuning the Work Function of Graphene-on-Quartz with a High Weight Molecular Acceptor. Journal of Physical Chemistry C, 2014, 118, 4784-4790.	3.1	50
2207	CO Oxidation on the Pd(111) Surface. ACS Catalysis, 2014, 4, 3435-3443.	11.2	62
2208	Departures from the Adsorption Energy Scaling Relations for Metal Carbide Catalysts. Journal of Physical Chemistry C, 2014, 118, 13026-13034.	3.1	108
2209	ï‰B97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy. Physical Chemistry Chemical Physics, 2014, 16, 9904.	2.8	616
2210	Fluorite TiO ₂ (111) Surface Phase for Enhanced Visible-Light Solar Energy Conversion. Journal of Physical Chemistry C, 2014, 118, 20107-20111.	3.1	15
2211	Electronic band structure of LilnSe2: A first-principles study using the Tran-Blaha density functional and GW approximation. Solid State Communications, 2014, 199, 17-21.	1.9	17
2212	Synthesis, characterization, molecular modelling and biological activity of 2â€(pyridinâ€1â€iumâ€1â€yl) acetate and its Cu ²⁺ , Pt ⁴⁺ , Pd ²⁺ , Au ³⁺ and Nd ³⁺ complexes. Applied Organometallic Chemistry, 2014, 28, 712-719.	3.5	7
2213	Investigation of the Active Sites of Rhodium Sulfide for Hydrogen Evolution/Oxidation Using Carbon Monoxide as a Probe. Langmuir, 2014, 30, 5662-5668.	3.5	7
2214	Nickel–silver alloy electrocatalysts for hydrogen evolution and oxidation in an alkaline electrolyte. Physical Chemistry Chemical Physics, 2014, 16, 19250.	2.8	101
2215	Stability of Pt near surface alloys under electrochemical conditions: a model study. Physical Chemistry Chemical Physics, 2014, 16, 16615-16622.	2.8	20
2216	Ti atoms in Ru0.3Ti0.7O2 mixed oxides form active and selective sites for electrochemical chlorine evolution. Electrochimica Acta, 2014, 146, 733-740.	5. 2	44
2217	Competition between CO ₂ Reduction and H ₂ Evolution on Transition-Metal Electrocatalysts. ACS Catalysis, 2014, 4, 3742-3748.	11.2	378
2218	Structural, spectral, DFT and biological studies of (E)-3-(2-(2-hydroxybenzylidene)hydrazinyl)-3-oxo-N-(p-tolyl)propanamide complexes. Journal of Molecular Structure, 2014, 1075, 71-84.	3.6	24
2219	Effect of surface hydroxyl coverage on platinum nanoparticles in the oxygen reduction reaction: All-electron density functional theory analysis. Chemical Physics Letters, 2014, 610-611, 86-90.	2.6	5
2220	Applicability of density functional theory in reproducing accurate vibrational spectra of surface bound species. Journal of Computational Chemistry, 2014, 35, 1921-1929.	3.3	2
2221	Understanding Strain and Ligand Effects in Hydrogen Evolution over Pd(111) Surfaces. Journal of Physical Chemistry C, 2014, 118, 4275-4281.	3.1	99
2222	Probing the Anisotropic Distortion of Photoexcited Spin Crossover Complexes with Picosecond X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 4536-4545.	3.1	44

#	Article	IF	CITATIONS
2223	Structural, DFT and biological studies on Co(II) complexes of semi and thiosemicarbazide ligands derived from diketo hydrazide. Journal of Molecular Structure, 2014, 1076, 227-237.	3.6	15
2224	Electronic and optical properties of Co-doped 3C-SiC from density functional calculations. Solid State Communications, 2014, 196, 28-31.	1.9	9
2225	Density Functional Theory Study of Methanol Steam Reforming on Co(0001) and Co(111) Surfaces. Journal of Physical Chemistry C, 2014, 118, 15274-15285.	3.1	65
2226	Structure and stability of graphene edges in O2 and H2 environments from ab initio thermodynamics. Carbon, 2014, 78, 181-189 Surface Strain Improves Molecular Adsorption but Hampers Dissociation for <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>10.3</td><td>15</td></mml:math>	10.3	15
2227	display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">N</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><td>>7./8nml:m</td><td>ıraw></td></mml:mrow>	> 7./8 nml:m	ır aw >
2228	display="inline"> <mml:mrow><mml:mi>Fe</mml:mi><mml:mo stretchy="false">/</mml:mo><mml:mi 14750.<="" 16,="" 2014,="" a="" adsorption="" and="" chemical="" chemistry="" density="" functional="" mat="" mono-="" of="" on="" physical="" physics,="" poly-alcohols="" rutile="" small="" study.="" td="" theory="" tio2:=""><td>2.8</td><td>13</td></mml:mi></mml:mrow>	2.8	13
2229	Reversible potentials for steps in methanol and formic acid oxidation to CO2; adsorption energies of intermediates on the ideal electrocatalyst for methanol oxidation and CO2 reduction. Physical Chemistry Chemical Physics, 2014, 16, 10587-10599.	2.8	19
2230	Adsorption of phenol on Fe (110) and Pd (111) from first principles. Surface Science, 2014, 630, 244-253.	1.9	52
2231	Discovery of a silicon-based ferrimagnetic wheel structure in $V \le 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1$	5.6	99
2232	An Investigation of Chlorine Ligands in Transition-Metal Complexes via ³⁵ Cl Solid-State NMR and Density Functional Theory Calculations. Inorganic Chemistry, 2014, 53, 9581-9597.	4.0	28
2233	Effects of metal elements in catalytic growth of carbon nanotubes/graphene: A first principles DFT study. Applied Surface Science, 2014, 317, 923-928.	6.1	18
2234	How Adsorbate Alignment Leads to Selective Reaction. ACS Nano, 2014, 8, 8669-8675.	14.6	10
2235	ReaxFF molecular dynamics simulations of CO collisions on an O-preadsorbed silica surface. Journal of Molecular Modeling, 2014, 20, 2160.	1.8	5
2236	CdS nanoclusters doped with divalent atoms. Journal of Molecular Modeling, 2014, 20, 2227.	1.8	2
2237	Trends in Hydrodesulfurization Catalysis Based on Realistic Surface Models. Catalysis Letters, 2014, 1425-1432.	2.6	32
2238	Investigation of the Adsorption and Diffusion of Hydrogen in Iron Clusters by the Method of Density Functional. Materials Science, 2014, 49, 485-492.	0.9	1
2239	Vibrational properties of water retained in graphene oxide. Chemical Physics Letters, 2014, 600, 106-111.	2.6	7
2240	Atomic and molecular adsorption on Au(111). Surface Science, 2014, 627, 57-69.	1.9	78

#	Article	IF	CITATIONS
2241	Reaction mechanisms of CO2 electrochemical reduction on $Cu(111)$ determined with density functional theory. Journal of Catalysis, 2014, 312, 108-122.	6.2	382
2242	Synthesis, spectral characterization, thermal analysis, molecular modeling and antimicrobial activity of new potentially N2O2 azo-dye Schiff base complexes. Journal of Molecular Structure, 2014, 1074, 359-375.	3.6	81
2243	Characterization of CO2 and mixed methane/CO2 hydrates intercalated in smectites by means of atomistic calculations. Journal of Molecular Graphics and Modelling, 2014, 49, 80-90.	2.4	23
2244	Understanding the influence of grain boundary thickness variation on the mechanical strength of a nickel-doped tungsten grain boundary. International Journal of Plasticity, 2014, 53, 135-147.	8.8	14
2245	Effect of the Hydrophobic Alcohol Chain Length on the Hydrogen-Bond Network of Water. Journal of Physical Chemistry B, 2014, 118, 8750-8755.	2.6	38
2246	Water Structures at Metal Electrodes Studied by Ab Initio Molecular Dynamics Simulations. Journal of the Electrochemical Society, 2014, 161, E3015-E3020.	2.9	81
2247	Understanding the Mechanism of Photocatalysis Enhancements in the Graphene-like Semiconductor Sheet/TiO2 Composites. Journal of Physical Chemistry C, 2014, 118, 5954-5960.	3.1	65
2248	Cationic Half-Sandwich Iron(II) and Iron(III) Complexes with N-Heterocyclic Carbene Ligands. Organometallics, 2014, 33, 5670-5677.	2.3	31
2249	Active edge sites in MoSe ₂ and WSe ₂ catalysts for the hydrogen evolution reaction: a density functional study. Physical Chemistry Chemical Physics, 2014, 16, 13156-13164.	2.8	426
2250	Elementary reactions of CO and H2 on C-terminated χ-Fe5C2(0 0 1) surfaces. Journal of Catalysis, 2014, 317, 158-166.	6.2	67
2251	On the Structure Sensitivity of Direct NO Decomposition over Low-Index Transition Metal Facets. Topics in Catalysis, 2014, 57, 80-88.	2.8	64
2252	Simulating Temperature Programmed Desorption of Oxygen on Pt(111) Using DFT Derived Coverage Dependent Desorption Barriers. Topics in Catalysis, 2014, 57, 106-117.	2.8	17
2253	Pt Skin Versus Pt Skeleton Structures of Pt3Sc as Electrocatalysts for Oxygen Reduction. Topics in Catalysis, 2014, 57, 245-254.	2.8	47
2254	Calculated Pourbaix Diagrams of Cubic Perovskites for Water Splitting: Stability Against Corrosion. Topics in Catalysis, 2014, 57, 265-272.	2.8	47
2255	Surface passivation of nanocrystalline silicon powder derived from cryomilling. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 65-69.	1.0	5
2256	Adsorbed and Subsurface Absorbed Hydrogen Atoms on Bare and MgO(100)-Supported Pd and Pt Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 15242-15250.	3.1	33
2257	DFT Study of Atomically-Modified Alkali-Earth Metal Oxide Films on Tungsten. Journal of Physical Chemistry C, 2014, 118, 11303-11309.	3.1	13
2258	Kinetic Monte Carlo Simulation of CO Adsorption on Sulfur-Covered Pd(100). Journal of Physical Chemistry A, 2014, 118, 7306-7313.	2.5	5

#	ARTICLE	IF	CITATIONS
2259	Catalytic NO activation and NO–H 2 reaction pathways. Journal of Catalysis, 2014, 319, 95-109.	6.2	31
2260	The covariance of the differences between experimental and theoretical chemical shifts as an aid for assigning two-dimensional heteronuclear correlation solid-state NMR spectra. Chemical Physics Letters, 2014, 608, 334-339.	2.6	20
2261	Bulk Properties of Transition Metals: A Challenge for the Design of Universal Density Functionals. Journal of Chemical Theory and Computation, 2014, 10, 3832-3839.	5.3	245
2262	Beyond the volcano limitations in electrocatalysis – oxygen evolution reaction. Physical Chemistry Chemical Physics, 2014, 16, 13682-13688.	2.8	292
2263	Effect of Magnetic States on the Reactivity of an FCC(111) Iron Surface. Journal of Physical Chemistry C, 2014, 118, 15863-15873.	3.1	14
2264	Simulating Gold's Structure-Dependent Reactivity: Nonlocal Density Functional Theory Studies of Hydrogen Activation by Gold Clusters, Nanowires, and Surfaces. Journal of Physical Chemistry C, 2014, 118, 15693-15704.	3.1	9
2265	Ab Initio Thermodynamic Modeling of Electrified Metal–Oxide Interfaces: Consistent Treatment of Electronic and Ionic Chemical Potentials. Journal of Physical Chemistry C, 2014, 118, 22663-22671.	3.1	11
2266	Tuning electron transport through a single molecular junction by bridge modification. Journal of Applied Physics, 2014, 116, .	2.5	5
2267	SurfKin: An <i>ab initio</i> kinetic code for modeling surface reactions. Journal of Computational Chemistry, 2014, 35, 1890-1899.	3.3	20
2268	Structural, DFT and biological studies on Cu(II) complexes of semi and thiosemicarbazide ligands derived from diketo hydrazide. Polyhedron, 2014, 81, 749-763.	2.2	42
2269	Ensemble Effect Evidenced by CO Adsorption on the 3-Fold PdGa Surfaces. Journal of Physical Chemistry C, 2014, 118, 12260-12265.	3.1	34
2270	Experimental and Solid-State Computational Study of Structural and Dynamic Properties in the Equilibrium Form of Temazepam. Journal of Physical Chemistry B, 2014, 118, 6670-6679.	2.6	5
2271	A Fundamental Understanding of Catechol and Water Adsorption on a Hydrophilic Silica Surface: Exploring the Underwater Adhesion Mechanism of Mussels on an Atomic Scale. Langmuir, 2014, 30, 6906-6914.	3.5	89
2272	DFT-GGA errors in NO chemisorption energies on (111) transition metal surfaces. Surface Science, 2014, 621, 23-30.	1.9	20
2273	Initial adsorption of water molecule on HfC and TaC (001) surfaces from density-functional study. Applied Surface Science, 2014, 290, 35-39.	6.1	4
2274	The influence of pre-adsorbed Pt on hydrogen adsorption on B2 FeTi(111). International Journal of Hydrogen Energy, 2014, 39, 8621-8630.	7.1	6
2275	On the composition of bimetallic near-surface alloys in the presence of oxygen and carbon monoxide. Catalysis Communications, 2014, 52, 65-71.	3.3	26
2276	First-principles thermodynamic description of hydrogen electroadsorption on the Pt(111) surface. Surface Science, 2014, 625, 104-111.	1.9	41

#	60 red sorption on PdGa(1 0 0), (1 1 1) and <mml:math altimg="si3.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo stretchy="false">(</mml:mo><mml:mover) 0<="" etqq0="" th="" tj=""><th>IF 0 rgBT /O\</th><th>CITATIONS verlock 10 T</th></mml:mover)></mml:mrow></mml:math>	IF 0 rgBT /O\	CITATIONS verlock 10 T
2277		6.1	12
2278	467 DFT calculations on H, OH and O adsorbate formations on Pt(111) and Pt(332) electrodes. Journal of Electroanalytical Chemistry, 2014, 716, 31-44.	3.8	85
2279	A DF-vdW study of the CH4 adsorption on different Ni surfaces. Surface Science, 2014, 625, 64-68.	1.9	27
2280	Optical, Raman and vibrational properties of closed shell Ag–Cu clusters from density functional theory: The influence of the atomic structure, exchange-correlation approximations and pseudopotentials. Physica B: Condensed Matter, 2014, 443, 6-23.	2.7	19
2281	Oxygen chemisorption-induced surface phase transitions on Cu(110). Surface Science, 2014, 627, 75-84.	1.9	40
2282	O H versus C H bond scission sequence in ethanol decomposition on Pd(111). Surface Science, 2014, 619, 114-118.	1.9	22
2283	Sintering of nickel steam reforming catalysts: Effective mass diffusion constant for Ni-OH at nickel surfaces. Catalysis Today, 2014, 228, 22-31.	4.4	33
2284	A first-principles study on the structural, mechanical, electronic and optical properties of the Cr2(AlxGe1â^'x)C alloys. Journal of Alloys and Compounds, 2014, 583, 607-613.	5.5	12
2285	Surface-assisted Dehydrogenative Homocoupling of Porphine Molecules. Journal of the American Chemical Society, 2014, 136, 9346-9354.	13.7	140
2286	Pt Skin on AuCu Intermetallic Substrate: A Strategy to Maximize Pt Utilization for Fuel Cells. Journal of the American Chemical Society, 2014, 136, 9643-9649.	13.7	220
2287	Photocatalytic Hydrogen Generation from Pure Water using Silicon Carbide Nanoparticles. Energy Technology, 2014, 2, 183-187.	3.8	33
2288	Trends in the Hydrogen Evolution Activity of Metal Carbide Catalysts. ACS Catalysis, 2014, 4, 1274-1278.	11.2	351
2289	Gold Nanoparticles Stabilized with Aromatic Thiols: Interaction at the Molecule–Metal Interface and Ligand Arrangement in the Molecular Shell Investigated by SR-XPS and NEXAFS. Journal of Physical Chemistry C, 2014, 118, 8159-8168.	3.1	62
2290	Intermetallic Alloys as CO Electroreduction Catalysts—Role of Isolated Active Sites. ACS Catalysis, 2014, 4, 2268-2273.	11.2	101
2291	Quantifying the Impact of Relativity and of Dispersion Interactions on the Activation of Molecular Oxygen Promoted by Noble Metal Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 13707-13714.	3.1	13
2292	Effect of carbon on the Ni catalyzed methane cracking reaction: A DFT study. Applied Surface Science, 2014, 311, 435-442.	6.1	52
2293	Interplay of hydrogen bonding and molecule–substrate interaction in self-assembled adlayer structures of a hydroxyphenyl-substituted porphyrin. Surface Science, 2014, 628, 132-140.	1.9	20
2294	A More Accurate Kinetic Monte Carlo Approach to a Monodimensional Surface Reaction: The Interaction of Oxygen with the RuO ₂ (110) Surface. ACS Catalysis, 2014, 4, 2328-2332.	11.2	24

#	Article	IF	Citations
2295	Genetic Algorithm Procreation Operators for Alloy Nanoparticle Catalysts. Topics in Catalysis, 2014, 57, 33-39.	2.8	27
2296	Carbon clusters on the Ni(111) surface: a density functional theory study. Physical Chemistry Chemical Physics, 2014, 16, 2954.	2.8	31
2297	First-principles insights into the electronic and magnetic structure of hybrid organic-metal interfaces. Journal of Physics Condensed Matter, 2014, 26, 263001.	1.8	10
2298	Investigation of the elastic, hardness, and thermodynamic properties of actinide oxides. Physica B: Condensed Matter, 2014, 449, 133-137.	2.7	24
2299	CO- and NO-Induced Disintegration and Redispersion of Three-Way Catalysts Rhodium, Palladium, and Platinum: An ab Initio Thermodynamics Study. Journal of Physical Chemistry C, 2014, 118, 9588-9597.	3.1	56
2300	First-principles investigation of mechanical, electronic and optical properties of Al3Sc intermetallic compound under pressure. Computational Materials Science, 2014, 91, 165-172.	3.0	28
2301	The effect of the exchange-correlation functional on H2 dissociation on Ru(0001). Journal of Chemical Physics, 2014, 140, 084702.	3.0	57
2302	Mechanically modulated electronic properties of water-filled fullerenes. MRS Communications, 2015, 5, 305-310.	1.8	8
2303	Elucidating the high-k insulator \hat{l}_{\pm} -Al2O3 direct/indirect energy band gap type through density functional theory computations. Chemical Physics Letters, 2015, 637, 172-176.	2.6	40
2304	Theoretical investigation of the methane cracking reaction pathways on Ni $(1\ 1\ 1)$ surface. Chemical Physics Letters, 2015, 639, 205-210.	2.6	24
2305	Retention of Bond Direction in Surface Reaction: A Comparative Study of Variously Aligned p-Dihalobenzenes on Cu(110). Journal of Physical Chemistry C, 2015, 119, 26038-26045.	3.1	10
2306	Rational design of metal nitride redox materials for solar-driven ammonia synthesis. Interface Focus, 2015, 5, 20140084.	3.0	88
2307	Theoretical Modeling of Polymer Electrolyte Membranes. Electrochemical Energy Storage and Conversion, 2015, , 539-621.	0.0	1
2308	Surface energetics of alkaline-earth metal oxides: Trends in stability and adsorption of small molecules. Physical Review B, 2015, 91, .	3.2	41
2309	Heats of formation of solids with error estimation: The mBEEF functional with and without fitted reference energies. Physical Review B, 2015, 91, .	3.2	33
2310	Surface and bulk properties of chromium oxide: Implications for reduction by methane. AIP Conference Proceedings, 2015, , .	0.4	1
2311	Bandgap engineering of Magnéli phase TinO2nâ^'1: Electron-hole self-compensation. Journal of Chemical Physics, 2015, 143, 054701.	3.0	10
2312	Indication of non-thermal contribution to visible femtosecond laser-induced CO oxidation on Ru(0001). Journal of Chemical Physics, 2015, 143, 074701.	3.0	14

#	Article	IF	CITATIONS
2313	Heavy Mn-doping effect on spontaneous polarization in ferroelectric BiFeO ₃ thin films. Japanese Journal of Applied Physics, 2015, 54, 10NA03.	1.5	22
2314	Theoretical investigations on the structural, elastic and electronic properties of binary Beryllides under pressure. Journal of Nuclear Materials, 2015, 464, 230-235.	2.7	11
2315	Fingerprints of energy dissipation for exothermic surface chemical reactions: O2 on Pd(100). Journal of Chemical Physics, 2015, 143, 034705.	3.0	19
2316	Influence of the exchange-correlation functional on the quasi-harmonic lattice dynamics of II-VI semiconductors. Journal of Chemical Physics, 2015, 143, 064710.	3.0	80
2317	Quantum and classical dynamics of water dissociation on Ni(111): A test of the site-averaging model in dissociative chemisorption of polyatomic molecules. Journal of Chemical Physics, 2015, 143, 164705.	3.0	35
2318	N2 dissociation on W(110): An <i>ab initio</i> molecular dynamics study on the effect of phonons. Journal of Chemical Physics, 2015, 142, 104702.	3.0	22
2319	Density functional theory and chromium: Insights from the dimers. Journal of Chemical Physics, 2015, 142, 124316.	3.0	18
2320	Global optimization and oxygen dissociation on polyicosahedral Ag32Cu6 core-shell cluster for alkaline fuel cells. Scientific Reports, 2015, 5, 11984.	3.3	36
2321	On the accuracy of commonly used density functional approximations in determining the elastic constants of insulators and semiconductors. Journal of Chemical Physics, 2015, 143, 144104.	3.0	52
2322	Toward an Active and Stable Catalyst for Oxygen Evolution in Acidic Media: Tiâ€ S tabilized MnO ₂ . Advanced Energy Materials, 2015, 5, 1500991.	19.5	177
2323	Engineering Transitionâ€Metalâ€Coated Tungsten Carbides for Efficient and Selective Electrochemical Reduction of CO ₂ to Methane. ChemSusChem, 2015, 8, 2745-2751.	6.8	43
2324	Synthesis of 8â€hydroxyquinolium chloroacetate and synthesis of complexes derived from 8â€hydroxyquinoline, and characterization, density functional theory and biological studies. Applied Organometallic Chemistry, 2015, 29, 200-208.	3.5	9
2325	Selective Stereochemical Catalysis Controlled by Specific Atomic Arrangement of Ordered Alloys. ChemCatChem, 2015, 7, 3472-3479.	3.7	28
2326	Building chessboard-like supramolecular structures on Au(111) surfaces. Nanotechnology, 2015, 26, 385601.	2.6	7
2327	Reaction Energy for an Electrode Surface Atom Inserting into an R-H Bond and Its Dependence on Electrode Potential: Application to Pt(111). Journal of the Electrochemical Society, 2015, 162, H583-H589.	2.9	0
2328	A Comprehensive Study of Formic Acid Oxidation on Palladium Nanocrystals with Different Types of Facets and Twin Defects. ChemCatChem, 2015, 7, 2077-2084.	3.7	111
2329	Measurement of atomic oxygen in the middle atmosphere using solid electrolyte sensors and catalytic probes. Atmospheric Measurement Techniques, 2015, 8, 3701-3714.	3.1	26
2330	Visual and Computational Comparison of Functionals Used in Density Functional Theory. Mathematical and Computational Applications, 2015, 20, 111-120.	1.3	0

#	Article	IF	Citations
2331	Benchmarking DFT and semiempirical methods on structures and lattice energies for ten ice polymorphs. Journal of Chemical Physics, 2015, 142, 124104.	3.0	84
2332	DFT and two-dimensional correlation analysis for evaluating the oxygen defect mechanism of low-density 4f (or 5f) elements interacting with Ca-Mt. RSC Advances, 2015, 5, 28601-28610.	3.6	15
2333	Experimental (X-ray, ¹³ C CP/MAS NMR, IR, RS, INS, THz) and Solid-State DFT Study on (1:1) Co-Crystal of Bromanilic Acid and 2,6-Dimethylpyrazine. Journal of Physical Chemistry B, 2015, 119, 6852-6872.	2.6	18
2334	Density Functional Theory (DFT) study on the pyrolysis of cellulose: The pyran ring breaking mechanism. Computational and Theoretical Chemistry, 2015, 1067, 13-23.	2.5	52
2335	Modulating the magnetic behavior of Fe(<scp>ii</scp>)â€"MOF-74 by the high electron affinity of the guest molecule. Physical Chemistry Chemical Physics, 2015, 17, 16977-16982.	2.8	23
2336	Molecular understandings on the activation of light hydrocarbons over heterogeneous catalysts. Chemical Science, 2015, 6, 4403-4425.	7.4	166
2337	Mechanistic Insights into the Electrochemical Reduction of CO ₂ to CO on Nanostructured Ag Surfaces. ACS Catalysis, 2015, 5, 4293-4299.	11.2	476
2338	An industrial perspective on the impact of Haldor Tops \tilde{A}_{j} e on computational chemistry. Journal of Catalysis, 2015, 328, 19-25.	6.2	4
2339	Computational chemistry for NH3 synthesis, hydrotreating, and NO reduction: Three topics of special interest to Haldor TopsÃ,e. Journal of Catalysis, 2015, 328, 26-35.	6.2	15
2340	From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 2015, 328, 36-42.	6.2	1,271
2341	On the interaction between gold and silver metal atoms and DNA/RNA nucleobases – a comprehensive computational study of ground state properties. Nanotechnology Reviews, 2015, 4, 173-191.	5.8	23
2342	Optical laser-induced CO desorption from Ru(0001) monitored with a free-electron X-ray laser: DFT prediction and X-ray confirmation of a precursor state. Surface Science, 2015, 640, 80-88.	1.9	13
2343	Solution vs. gas phase relative stability of the choline/acetylcholine cavitand complexes. Physical Chemistry Chemical Physics, 2015, 17, 4448-4457.	2.8	9
2344	Density-functional study of the pure and palladium doped small copper and silver clusters. Chemical Physics Letters, 2015, 630, 101-105.	2.6	15
2345	Methane, formaldehyde and methanol formation pathways from carbon monoxide and hydrogen on the (0 0 1) surface of the iron carbide i‡-Fe5C2. Journal of Catalysis, 2015, 325, 9-18.	6.2	44
2346	Transition Metal Nitride Catalysts for Electrochemical Reduction of Nitrogen to Ammonia at Ambient Conditions. Procedia Computer Science, 2015, 51, 1897-1906.	2.0	58
2347	Structural, spectral, thermal and biological studies on (Z)-N-benzoyl-N′-(2-oxo-2-(phenylamino)acetyl)carbamohydrazonothioic acid (H2PABT) and its Cd(II), Hg(II), Zn(II) and U(VI)O22+ complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 146, 228-239.	3.9	11
2348	Enhancement Mechanism of the Conversion Effficiency of Dye-Sensitized Solar Cells Based on Nitrogen-, Fluorine-, and Iodine-Doped TiO ₂ Photoanodes. Journal of Physical Chemistry C, 2015, 119, 13425-13432.	3.1	21

#	Article	IF	CITATIONS
2349	Mechanistic Pathway in the Electrochemical Reduction of CO2 on RuO2. ACS Catalysis, 2015, 5, 4075-4081.	11.2	123
2350	Multiple doping structures of the rare-earth atoms in \hat{l}^2 -SiAlON:Ce phosphors and their effects on luminescence properties. Nanoscale, 2015, 7, 11393-11400.	5.6	15
2351	Density Functional Theory-Assisted Microkinetic Analysis of Methane Dry Reforming on Ni Catalyst. Industrial & Engineering Chemistry Research, 2015, 54, 5901-5913.	3.7	158
2352	Effect of edge chemistry doping on the transport and optical properties for asymmetric armchair-edge graphene nanoribbons under a uniaxial strain. Applied Physics A: Materials Science and Processing, 2015, 120, 657-662.	2.3	1
2353	Bivalent transition metal complexes of (E)-3-(2-benzylidenehydrazinyl)-3-oxo-N-(p-tolyl)propanamide: Spectroscopic, computational, biological activity studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 150, 40-53.	3.9	16
2354	Structural, electronic and optical properties of Ilmenite ATiO3(A=Fe, Co, Ni). Materials Science in Semiconductor Processing, 2015, 39, 6-16.	4.0	26
2355	High-performance transition metal–doped Pt ₃ Ni octahedra for oxygen reduction reaction. Science, 2015, 348, 1230-1234.	12.6	1,623
2356	Fischer-Tropsch Synthesis on Multicomponent Catalysts: What Can We Learn from Computer Simulations?. Catalysts, 2015, 5, 3-17.	3.5	20
2358	Promoting χ-Fe ₅ C ₂ (100) _{0.25} with copper – a DFT study. Journal of Lithic Studies, 2015, 1, 11-18.	0.5	6
2359	Effect of Sb Segregation on Conductance and Catalytic Activity at Pt/Sb-Doped SnO ₂ Interface: A Synergetic Computational and Experimental Study. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27782-27795.	8.0	19
2360	Catalytic reduction of N 2 O by CO over Pt I Au â° m clusters: A first-principles study. Chinese Physics B, 2015, 24, 098201.	1.4	2
2361	On the relaxation dynamics in active pharmaceutical ingredients: solid-state 1H NMR, quasi-elastic neutron scattering and periodic DFT study of acebutolol hydrochloride. RSC Advances, 2015, 5, 57502-57514.	3.6	4
2362	An Adsorption Study of CH ₄ on ZSM-5, MOR, and ZSM-12 Zeolites. Journal of Physical Chemistry C, 2015, 119, 28970-28978.	3.1	32
2363	Computational Studies of the Interaction of Carbon Dioxide with Graphene-Supported Titanium Dioxide. Journal of Physical Chemistry C, 2015, 119, 29044-29051.	3.1	15
2364	On the Structure Sensitivity of Dimethyl Ether Electro-oxidation on Eight FCC Metals: A First-Principles Study. Topics in Catalysis, 2015, 58, 1159-1173.	2.8	13
2365	Mechanisms of Oxidase and Superoxide Dismutation-like Activities of Gold, Silver, Platinum, and Palladium, and Their Alloys: A General Way to the Activation of Molecular Oxygen. Journal of the American Chemical Society, 2015, 137, 15882-15891.	13.7	407
2366	A DFT Study of CO Oxidation at the Pd–CeO ₂ (110) Interface. Journal of Physical Chemistry C, 2015, 119, 27505-27511.	3.1	57
2367	Origin of catalytic activity in sponge Ni catalysts for hydrogenation of carbonyl compounds. Journal of Lithic Studies, 2015, 1, 78-87.	0.5	1

#	Article	IF	CITATIONS
2368	DFT STUDY OF OXYGEN ADSORPTION ON THE Be-COVERED Mo (112) SURFACE. Surface Review and Letters, 2015, 22, 1550059.	1.1	2
2369	Hindered rotational physisorption states of H2 on Ag(111) surfaces. Physical Chemistry Chemical Physics, 2015, 17, 19625-19630.	2.8	3
2370	Crystal structures and properties of nitrogen oxides under high pressure. RSC Advances, 2015, 5, 103373-103379.	3.6	3
2371	Determining surface structure and stability of $\hat{l}\mu$ -Fe2C, \hat{l} -Fe5C2, \hat{l} -Fe3C and Fe4C phases under carburization environment from combined DFT and atomistic thermodynamic studies. Journal of Lithic Studies, 2015, 1, 44-60.	0.5	50
2372	DFT-D Investigation of Active and Dormant Methylaluminoxane (MAO) Species Grafted onto a Magnesium Dichloride Cluster: A Model Study of Supported MAO. ACS Catalysis, 2015, 5, 6989-6998.	11.2	20
2373	Insights into SO2 and H2O co-adsorption on Cu (100) surface with calculations of density functional theory. Transactions of Nonferrous Metals Society of China, 2015, 25, 4102-4109.	4.2	7
2374	Insight into carbon formation from ethylene decomposition over Pd(100) via density functional theory calculations. Applied Surface Science, 2015, 328, 583-590.	6.1	13
2375	Phonon and electronic properties of Ti 2 SiC from first-principles calculations. Solid State Communications, 2015, 204, 37-40.	1.9	18
2376	Nanotubes for charge storage – towards an atomistic model. Electrochimica Acta, 2015, 162, 11-16.	5.2	31
2377	Design Principles for Metal Oxide Redox Materials for Solarâ€Driven Isothermal Fuel Production. Advanced Energy Materials, 2015, 5, 1401082.	19.5	52
2378	CatMAP: A Software Package for Descriptor-Based Microkinetic Mapping of Catalytic Trends. Catalysis Letters, 2015, 145, 794-807.	2.6	328
2379	Energetic Stability of Absorbed H in Pd and Pt Nanoparticles in a More Realistic Environment. Journal of Physical Chemistry C, 2015, 119, 5180-5186.	3.1	25
2380	Probing the transition state region in catalytic CO oxidation on Ru. Science, 2015, 347, 978-982.	12.6	193
2381	Polymorphism of Resorcinol Explored by Complementary Vibrational Spectroscopy (FT-RS, THz-TDS,) Tj ETQq1 1 2015, 119, 1681-1695.	0.784314 2.6	rgBT /Over o
2382	Tetrahydrothiophene and Tetrahydrofuran, Computational and X-ray Studies in the Crystalline Phase. Crystal Growth and Design, 2015, 15, 1073-1081.	3.0	15
2383	Mapping the Ultrafast Changes of Continuous Shape Measures in Photoexcited Spin Crossover Complexes without Long-Range Order. Journal of Physical Chemistry C, 2015, 119, 3322-3330.	3.1	23
2384	Subpicosecond surface dynamics in genomic DNA from in vitro-grown plant species: a SERS assessment. Physical Chemistry Chemical Physics, 2015, 17, 21323-21330.	2.8	8
2385	The role of potassium promoter in surface carbon hydrogenation on HÃgg carbide surfaces. Applied Catalysis A: General, 2015, 493, 68-76.	4.3	22

#	ARTICLE	IF	CITATIONS
2386	Role of different Pd/Pt ensembles in determining CO chemisorption on Au-based bimetallic alloys: A first-principles study. Applied Surface Science, 2015, 332, 409-418.	6.1	4
2387	Dynamic Jahn–Teller Effect in the Metastable High-Spin State of Solvated [Fe(terpy) ₂] ²⁺ . Journal of Physical Chemistry C, 2015, 119, 3312-3321.	3.1	29
2388	Quasiparticle Interfacial Level Alignment of Highly Hybridized Frontier Levels: H ₂ O on TiO ₂ (110). Journal of Chemical Theory and Computation, 2015, 11, 239-251.	5. 3	28
2389	Structural and Electronic Properties of Pt ₁₃ Nanoclusters on Amorphous Silica Supports. Journal of Physical Chemistry C, 2015, 119, 2503-2512.	3.1	34
2390	Light Metals on Oxygen-Terminated Diamond (100): Structure and Electronic Properties. Chemistry of Materials, 2015, 27, 1306-1315.	6.7	26
2391	Kinetics of Aminocarbyne Formation on Pt(111). Journal of Physical Chemistry C, 2015, 119, 14506-14512.	3.1	3
2392	Detection of adsorbate overlayer structural transitions using sum-frequency generation spectroscopy. Surface Science, 2015, 633, 77-81.	1.9	3
2393	Oxygen-induced changes to selectivity-determining steps in electrocatalytic CO ₂ reduction. Physical Chemistry Chemical Physics, 2015, 17, 4505-4515.	2.8	43
2394	Mechanisms for Hydrolysis of Silicon Nanomembranes as Used in Bioresorbable Electronics. Advanced Materials, 2015, 27, 1857-1864.	21.0	98
2395	Prediction of the electronic structures, thermodynamic and mechanical properties in manganese doped magnesium-based alloys and their saturated hydrides based on density functional theory. Journal of Power Sources, 2015, 280, 147-154.	7.8	7
2396	Theoretical modeling of the PEMFC catalyst layer: A review of atomistic methods. Electrochimica Acta, 2015, 177, 4-20.	5.2	11
2397	The effective adsorption and decomposition of N ₂ O on Al-decorated graphene oxide under electric field. RSC Advances, 2015, 5, 18761-18766.	3.6	12
2398	Improving Oxygen Electrochemistry through Nanoscopic Confinement. ChemCatChem, 2015, 7, 738-742.	3.7	106
2399	Half-filled energy bands induced negative differential resistance in nitrogen-doped graphene. Nanoscale, 2015, 7, 4156-4162.	5 . 6	32
2400	Bonding characteristics and site occupancies of alloying elements in Zr3Al2 compound from first principles. Journal of Alloys and Compounds, 2015, 622, 960-965.	5 . 5	5
2401	A DFT-D study of hydrogen adsorption on functionalized graphene. RSC Advances, 2015, 5, 14400-14406.	3.6	22
2402	Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. Journal of the American Chemical Society, 2015, 137, 1305-1313.	13.7	2,018
2403	Nanoalloy electrocatalysis: simulating cyclic voltammetry from configurational thermodynamics with adsorbates. Physical Chemistry Chemical Physics, 2015, 17, 28103-28111.	2.8	6

#	Article	IF	CITATIONS
2404	Application of ab-initio molecular electronic structure calculations of radiolytic and hydrolytic stabilities of prospective extractants. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304, 227-235.	1.5	14
2405	A DFT perspective of potassium promotion of χ-Fe5C2(100). Applied Catalysis A: General, 2015, 496, 64-72.	4.3	30
2406	Exploiting the extended π-system of perylene bisimide for label-free single-molecule sensing. Journal of Materials Chemistry C, 2015, 3, 2101-2106.	5.5	16
2407	Experimental and first-principles DFT studies of electronic, optical and magnetic properties of cerium–manganese codoped zinc oxide nanostructures. Materials Science in Semiconductor Processing, 2015, 34, 27-38.	4.0	36
2408	Influence of the van der Waals interaction in the dissociation dynamics of N2 on W(110) from first principles. Journal of Chemical Physics, 2015, 142, 074704.	3.0	23
2409	Computational Identification of Descriptors for Selectivity in Syngas Reactions on a Mo ₂ C Catalyst. ACS Catalysis, 2015, 5, 5174-5185.	11.2	24
2410	Using microkinetic analysis to search for novel anhydrous formaldehyde production catalysts. Surface Science, 2015, 641, 105-111.	1.9	25
2411	Model form uncertainty versus intrinsic atomic variability in amorphous silicon oxides and nitrides. Computational Materials Science, 2015, 109, 124-128.	3.0	1
2412	CO Dissociation at Vacancy Sites on Häg Iron Carbide: Direct Versus Hydrogen-Assisted Routes Investigated with DFT. Topics in Catalysis, 2015, 58, 665-674.	2.8	25
2413	Novel 2D RuPt core-edge nanocluster catalyst for CO electro-oxidation. Surface Science, 2015, 640, 50-58.	1.9	15
2414	Computationally Supported Neutron Scattering Study of Parent and Chemically Reduced Graphene Oxide. Journal of Physical Chemistry C, 2015, 119, 18650-18662.	3.1	17
2415	Adsorption mechanisms of l-Glutathione on Au and controlled nano-patterning through Dip Pen Nanolithography. Materials Science and Engineering C, 2015, 57, 171-180.	7.3	23
2416	Modeling Electrochemical Reactions at the Solid-liquid Interface Using Density Functional Calculations. Procedia Computer Science, 2015, 51, 1887-1896.	2.0	15
2417	A computational study on the effect of local curvature on the adsorption of oxygen on single-walled carbon nanotubes. Carbon, 2015, 94, 936-941.	10.3	8
2418	Role of Li2O2@Li2CO3 Interfaces on Charge Transport in Nonaqueous Li–Air Batteries. Journal of Physical Chemistry C, 2015, 119, 18066-18073.	3.1	32
2419	Electronic structure, optical properties and Compton profiles of RuO2: Performance of PBEsol exchange–correlation approximation. Journal of Alloys and Compounds, 2015, 645, 414-420.	5.5	5
2420	Structural, elastic, electronic and optical properties of KAl Q 2 (Q \hat{A} = \hat{A} Se, Te): A DFT study. Solid State Sciences, 2015, 48, 72-81.	3.2	24
2421	Theoretical Limits to the Anode Potential in Aqueous Mg–Air Batteries. Journal of Physical Chemistry C, 2015, 119, 19660-19667.	3.1	47

#	Article	IF	CITATIONS
2422	Role of Elastic Strain on Electrocatalysis of Oxygen Reduction Reaction on Pt. Journal of Physical Chemistry C, 2015, 119, 19042-19052.	3.1	40
2423	Structure and electronic properties of MoVO type mixed-metal oxides – a combined view by experiment and theory. Dalton Transactions, 2015, 44, 13778-13795.	3.3	21
2424	In Situ-Generated Co ^O -Co ₃ O ₄ /N-Doped Carbon Nanotubes Hybrids as Efficient and Chemoselective Catalysts for Hydrogenation of Nitroarenes. ACS Catalysis, 2015, 5, 4783-4789.	11.2	363
2425	High coverage adsorption and co-adsorption of CO and H ₂ on Ru(0001) from DFT and thermodynamics. Physical Chemistry Chemical Physics, 2015, 17, 19446-19456.	2.8	50
2426	Hydrogen oxidation reaction on $Pd(111)$ electrode in alkaline media: Ab-initio DFT study of OH effects. Computational and Theoretical Chemistry, 2015, 1063, 63-69.	2.5	3
2427	Chemical looping of metal nitride catalysts: low-pressure ammonia synthesis for energy storage. Chemical Science, 2015, 6, 3965-3974.	7.4	179
2428	Evidence for the Active Phase of Heterogeneous Catalysts through In Situ Reaction Product Imaging and Multiscale Modeling. ACS Catalysis, 2015, 5, 4514-4518.	11.2	41
2429	Role of the dispersion force in modeling the interfacial properties of molecule-metal interfaces: adsorption of thiophene on copper surfaces. Scientific Reports, 2014, 4, 5036.	3.3	62
2430	The dynamics of adsorption and dissociation of N2 in a monolayer of iron on W(110). Physical Chemistry Chemical Physics, 2015, 17, 19432-19445.	2.8	7
2431	Electronic band structure modulated by local surface strain in the (111) facet of the ã€^112〉 silicon nanowires. Solid State Communications, 2015, 207, 26-29.	1.9	3
2432	First-principles investigation of the structural and elastic properties of Be ₁₂ Ti under high pressure. RSC Advances, 2015, 5, 59648-59654.	3.6	10
2433	Reducing Systematic Errors in Oxide Species with Density Functional Theory Calculations. Journal of Physical Chemistry C, 2015, 119, 17596-17601.	3.1	29
2434	Active Sites of Au and Ag Nanoparticle Catalysts for CO ₂ Electroreduction to CO. ACS Catalysis, 2015, 5, 5089-5096.	11.2	434
2435	Phase stability, elastic properties and electronic structures of Mg–Y intermetallics from first-principles calculations. Journal of Magnesium and Alloys, 2015, 3, 127-133.	11.9	27
2436	Ab initio GGA+U study of oxygen evolution and oxygen reduction electrocatalysis on the (001) surfaces of lanthanum transition metal perovskites LaBO ₃ (B = Cr, Mn, Fe, Co and Ni). Physical Chemistry Chemical Physics, 2015, 17, 21643-21663.	2.8	98
2437	Adsorption and Reactivity of Cellulosic Aldoses on Transition Metals. Journal of Physical Chemistry C, 2015, 119, 17137-17145.	3.1	46
2438	The Electronic Structure and Bonding of Acetylene on PdGa(110). Journal of Physical Chemistry C, 2015, 119, 18229-18238.	3.1	15
2439	Comparative ligational, optical band gap and biological studies on Cr(III) and Fe(III) complexes of hydrazones derived from 2-hydrazinyl-2-oxo-N-phenylacetamide with both vanillin and O-vanillin. Chemical Physics Letters, 2015, 636, 180-192.	2.6	12

#	Article	IF	CITATIONS
2440	Solvation Effects on OH Adsorbates on Stepped Pt Surfaces. Journal of Physical Chemistry C, 2015, 119, 16743-16753.	3.1	24
2441	Electronic structures of multilayer two-dimensional silicon carbide with oriented misalignment. Journal of Materials Chemistry C, 2015, 3, 9057-9062.	5.5	27
2442	Recent Advances on the Design of Group VIII Base-Metal Catalysts with Encapsulated Structures. ACS Catalysis, 2015, 5, 4959-4977.	11.2	150
2443	Impact of structural differences in carcinopreventive agents indole-3-carbinol and 3,3′-diindolylmethane on biological activity. An X-ray, 1H–14N NQDR, 13C CP/MAS NMR, and periodic hybrid DFT study. European Journal of Pharmaceutical Sciences, 2015, 77, 141-153.	4.0	4
2444	Examining the Linearity of Transition State Scaling Relations. Journal of Physical Chemistry C, 2015, 119, 10448-10453.	3.1	21
2445	Comparing Quasiparticle H ₂ O Level Alignment on Anatase and Rutile TiO ₂ . ACS Catalysis, 2015, 5, 4242-4254.	11.2	50
2446	Validation of Methods for Computational Catalyst Design: Geometries, Structures, and Energies of Neutral and Charged Silver Clusters. Journal of Physical Chemistry C, 2015, 119, 9617-9626.	3.1	31
2447	Electrocatalytic Oxidation of Ammonia on Transition-Metal Surfaces: A First-Principles Study. Journal of Physical Chemistry C, 2015, 119, 14692-14701.	3.1	137
2448	Theoretical investigations into the electronic structures and electron transport properties of fluorine and carbonyl end-functionalized quarterthiophenes. Journal of Molecular Graphics and Modelling, 2015, 59, 50-58.	2.4	2
2449	Challenges of modelling real nanoparticles: Ni@Pt electrocatalysts for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2015, 17, 28286-28297.	2.8	30
2450	Formation and binding energies of vacancies in the Al(111) surface: Density functional theory calculations confirm simple bond model. Surface Science, 2015, 637-638, 85-89.	1.9	5
2451	First principles study of (Cd, Hg, In, Tl, Sn, Pb, As, Sb, Bi, Se) modified Pt(111), Pt(100) and Pt(211) electrodes as CO oxidation catalysts. Electrochimica Acta, 2015, 168, 370-378.	5. 2	7
2452	Resonance induced spin-selective transport behavior in carbon nanoribbon/nanotube/nanoribbon heterojunctions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 1722-1725.	2.1	4
2453	Influence of charge state on catalytic properties of PtAu(CO) in reduction of SO2 by CO. Chemical Physics Letters, 2015, 625, 128-131.	2.6	10
2454	Relationship between unbranched alkane dimer interaction energies using different theoretical methods and correlations with thermodynamic properties. Chemical Physics Letters, 2015, 625, 20-25.	2.6	5
2455	Enhancement of the oxygen reduction on nitride stabilized pt-M (M=Fe, Co, and Ni) core–shell nanoparticle electrocatalysts. Nano Energy, 2015, 13, 442-449.	16.0	104
2456	A DFT-based genetic algorithm search for AuCu nanoalloy electrocatalysts for CO ₂ reduction. Physical Chemistry Chemical Physics, 2015, 17, 28270-28276.	2.8	65
2457	Facile production of stable silicon nanoparticles: laser chemistry coupled to in situ stabilization via room temperature hydrosilylation. Nanoscale, 2015, 7, 8566-8573.	5.6	10

#	Article	IF	CITATIONS
2458	Modelling and analysis of magnetic memory testing method based on the density functional theory. Nondestructive Testing and Evaluation, 2015, 30, 13-25.	2.1	24
2459	New semi-empirical computational analysis of catalytic reactions for automobile. Research on Chemical Intermediates, 2015, 41, 9475-9484.	2.7	0
2460	RuPd Alloy Nanoparticles Supported on N-Doped Carbon as an Efficient and Stable Catalyst for Benzoic Acid Hydrogenation. ACS Catalysis, 2015, 5, 3100-3107.	11.2	136
2461	Ab Initio Approach for Prediction of Oxide Surface Structure, Stoichiometry, and Electrocatalytic Activity in Aqueous Solution. Journal of Physical Chemistry Letters, 2015, 6, 1785-1789.	4.6	64
2462	Catalytic activities of noble metal atoms on WO3 (001): nitric oxide adsorption. Nanoscale Research Letters, 2015, 10, 60.	5.7	8
2463	Oxygen Defects at Reducible Oxide Surfaces: The Example of Ceria and Vanadia. Springer Series in Surface Sciences, 2015, , 149-190.	0.3	10
2464	Computationally Assisted (Solid-State Density Functional Theory) Structural (X-ray) and Vibrational Spectroscopy (FT-IR, FT-RS, TDs-THz) Characterization of the Cardiovascular Drug Lacidipine. Crystal Growth and Design, 2015, 15, 2817-2830.	3.0	21
2465	Theoretical studies on the mechanism of oxygen reduction reaction on clean and O-substituted Ta ₃ N ₅ (100) surfaces. Catalysis Science and Technology, 2015, 5, 2769-2776.	4.1	34
2466	Effect of BN/CC Isosterism on the Thermodynamics of Surface and Bulk Binding: 1,2-Dihydro-1,2-azaborine vs Benzene. Journal of Physical Chemistry C, 2015, 119, 14624-14631.	3.1	11
2467	Structure and Reactivity of Supported Hybrid Platinum Nanoparticles for the Flow Hydrogenation of Functionalized Nitroaromatics. ACS Catalysis, 2015, 5, 3767-3778.	11.2	81
2468	Mapping the genome of meta-generalized gradient approximation density functionals: The search for B97M-V. Journal of Chemical Physics, 2015, 142, 074111.	3.0	305
2469	The use of ultrasonic cavitation for near-surface structuring of robust and low-cost AlNi catalysts for hydrogen production. Green Chemistry, 2015, 17, 2745-2749.	9.0	37
2470	Fluorinion transfer in silver-assisted chemical etching for silicon nanowires arrays. Applied Surface Science, 2015, 347, 421-427.	6.1	10
2471	Oxygen Adsorption on PdPt/Au(111) – DFT Calculations. Journal of Physical Chemistry C, 2015, 119, 8213-8216.	3.1	17
2472	Density Functional Theory Modeling and Time-of-Flight Secondary Ion Mass Spectrometric and X-ray Photoelectron Spectroscopic Investigations into Mechanistic Key Events of Coronene Oxidation: Toward Molecular Understanding of Soot Combustion. Journal of Physical Chemistry C, 2015, 119, 6568-6580.	3.1	11
2473	Hydration entropy of BaZrO ₃ from first principles phonon calculations. Journal of Materials Chemistry A, 2015, 3, 7639-7648.	10.3	68
2474	Improving the sintering resistance of Ni/Al 2 O 3 steam-reforming catalysts by promotion with noble metals. Applied Catalysis A: General, 2015, 498, 117-125.	4.3	62
2475	Calculated optical absorption of different perovskite phases. Journal of Materials Chemistry A, 2015, 3, 12343-12349.	10.3	35

#	Article	IF	CITATIONS
2476	Design Principles of Perovskites for Thermochemical Oxygen Separation. ChemSusChem, 2015, 8, 1966-1971.	6.8	89
2477	Molecular Mechanisms for the Lithiation of Ruthenium Oxide Nanoplates as Lithium-Ion Battery Anode Materials: An Experimentally Motivated Computational Study. Journal of Physical Chemistry C, 2015, 119, 9705-9713.	3.1	24
2478	Multiphysics modelling, quantum chemistry and risk analysis for corrosion inhibitor design and lifetime prediction. Faraday Discussions, 2015, 180, 459-477.	3.2	22
2479	Nature of the N–Pd Interaction in Nitrogen-Doped Carbon Nanotube Catalysts. ACS Catalysis, 2015, 5, 2740-2753.	11.2	355
2480	First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction. Physical Chemistry Chemical Physics, 2015, 17, 11647-11657.	2.8	41
2481	A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals. Surface Science, 2015, 640, 36-44.	1.9	396
2482	Widely available active sites on Ni ₂ P for electrochemical hydrogen evolution – insights from first principles calculations. Physical Chemistry Chemical Physics, 2015, 17, 10823-10829.	2.8	118
2483	Proton reduction at surface of transition metal nanocatalysts. Molecular Simulation, 2015, 41, 134-145.	2.0	13
2484	Platinum Nanoparticle During Electrochemical Hydrogen Evolution: Adsorbate Distribution, Active Reaction Species, and Size Effect. ACS Catalysis, 2015, 5, 2376-2383.	11,2	102
2485	First-principles calculation of structural stability, lattice dynamic and thermodynamic properties of BeX (X = S, Se and Te) compounds under high pressure. Philosophical Magazine, 2015, 95, 275-288.	1.6	4
2486	Nonseparable exchange–correlation functional for molecules, including homogeneous catalysis involving transition metals. Physical Chemistry Chemical Physics, 2015, 17, 12146-12160.	2.8	111
2487	Selected properties of Pt(111) modified surfaces: A DFT study. Electrochemistry Communications, 2015, 60, 135-138.	4.7	6
2488	The electrocatalytic properties of doped TiO2. Electrochimica Acta, 2015, 180, 514-527.	5.2	34
2489	Structural study by solid-state ⁷¹ Ga NMR of thin film transistor precursors. Dalton Transactions, 2015, 44, 17652-17659.	3.3	7
2490	Experimental and Theoretical Insights into the Hydrogen-Efficient Direct Hydrodeoxygenation Mechanism of Phenol over Ru/TiO ₂ . ACS Catalysis, 2015, 5, 6509-6523.	11.2	219
2491	Unravelling the interplay of dopant concentration and band structure engineering of monoclinic niobium pentoxide: AÂmodelÂphotoanode for water splitting. International Journal of Hydrogen Energy, 2015, 40, 13867-13875.	7.1	22
2492	DFT calculations on H, OH and O adsorbate formations on Pt(322) electrode. Journal of Electroanalytical Chemistry, 2015, 757, 116-127.	3.8	15
2493	Role of Site Stability in Methane Activation on Pd _{(i>x} Surfaces. ACS Catalysis, 2015, 5, 6187-6199.	11.2	69

#	Article	IF	CITATIONS
2494	Identifying systematic DFT errors in catalytic reactions. Catalysis Science and Technology, 2015, 5, 4946-4949.	4.1	144
2495	First-Principles Calculation of Al-Cu-Mg Alloy Strengthening Phase. Advanced Materials Research, 2015, 1096, 109-113.	0.3	1
2496	Toward a Database of Chemically Accurate Barrier Heights for Reactions of Molecules with Metal Surfaces. Journal of Physical Chemistry Letters, 2015, 6, 4106-4114.	4.6	67
2497	The interaction between oxygen vacancies and doping atoms in ZnO. Materials and Design, 2015, 87, 969-973.	7.0	47
2498	Nuclear dynamics in the metastable phase of the solid acid caesium hydrogen sulfate. Physical Chemistry Chemical Physics, 2015, 17, 31287-31296.	2.8	33
2499	A DFT study of Pt layer deposition on catalyst supports of titanium oxide, nitride and carbide. Journal of Materials Chemistry A, 2015, 3, 24504-24511.	10.3	14
2500	Guidelines for the Rational Design of Ni-Based Double Hydroxide Electrocatalysts for the Oxygen Evolution Reaction. ACS Catalysis, 2015, 5, 5380-5387.	11.2	472
2501	Six-dimensional quantum dynamics of dissociative chemisorption of H2 on Co(0001) on an accurate global potential energy surface. Physical Chemistry Chemical Physics, 2015, 17, 23346-23355.	2.8	23
2502	X-ray emission spectroscopy of bulk liquid water in "no-man's land― Journal of Chemical Physics, 2015, 142, 044505.	3.0	32
2503	Atomic and molecular oxygen adsorbed on (111) transition metal surfaces: Cu and Ni. Journal of Chemical Physics, 2015, 142, 154702.	3.0	52
2504	Kinetically induced irreversibility in electro-oxidation and reduction of Pt surface. Journal of Chemical Physics, 2015, 142, 184709.	3.0	21
2505	Stabilization of Pt monolayer catalysts under harsh conditions of fuel cells. Journal of Chemical Physics, 2015, 142, 194710.	3.0	11
2506	Calculation of the graphene C <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:mi>s</mml:mi>level binding energy. Physical Review B, 2015, 91, .</mml:mrow></mml:math>	, ⊲¦maml:mr	°0\$ % >
2507	Effect of Support Preparation and Nanoparticle Size on Catalyst–Support Interactions between Pt and Amorphous Silica. Journal of Physical Chemistry C, 2015, 119, 19934-19940.	3.1	52
2508	Water structure and solvation of osmolytes at high hydrostatic pressure: pure water and TMAO solutions at 10 kbar versus 1 bar. Physical Chemistry Chemical Physics, 2015, 17, 24224-24237.	2.8	67
2509	Patched bimetallic surfaces are active catalysts for ammonia decomposition. Nature Communications, 2015, 6, 8619.	12.8	70
2510	Structural, Thermodynamic, Elastic, and Electronic Properties of α-SnS at High Pressure from First-Principles Investigations. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2015, 70, 949-960.	1.5	2
2511	Direct versus hydrogen-assisted CO dissociation over stepped Ni and Ni ₃ Fe surfaces: a computational investigation. Physical Chemistry Chemical Physics, 2015, 17, 29616-29627.	2.8	17

#	Article	IF	CITATIONS
2512	Carbon Dioxide Reforming of Methane using an Isothermal Redox Membrane Reactor. Energy Technology, 2015, 3, 784-789.	3.8	48
2513	Design of a polypyrrole MIP-SAW sensor for selective detection of flumequine in aqueous media. Correlation between experimental results and DFT calculations. RSC Advances, 2015, 5, 88666-88674.	3.6	38
2514	Electrochemical and DFT studies of quinoline derivatives on corrosion inhibition of AA5052 aluminium alloy in NaCl solution. Applied Surface Science, 2015, 357, 2176-2183.	6.1	98
2515	Modeling the Surface Chemistry of Sugars: Glycolaldehyde on Rhodium (100). Journal of Physical Chemistry C, 2015, 119, 22915-22923.	3.1	5
2516	Hydrogenated Oxygen-Deficient Blue Anatase as Anode for High-Performance Lithium Batteries. ACS Applied Materials & Diterfaces, 2015, 7, 23431-23438.	8.0	58
2517	Size-dependent properties of transition metal clusters: from molecules to crystals and surfaces – computational studies with the program ParaGauss. Physical Chemistry Chemical Physics, 2015, 17, 28463-28483.	2.8	16
2518	Performance of a Non-Local van der Waals Density Functional on the Dissociation of H ₂ on Metal Surfaces. Journal of Physical Chemistry A, 2015, 119, 12146-12158.	2.5	44
2519	Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chemical Society Reviews, 2015, 44, 7540-7590.	38.1	906
2520	Thermodynamic properties of neutral and charged oxygen vacancies in BaZrO ₃ based on first principles phonon calculations. Physical Chemistry Chemical Physics, 2015, 17, 20765-20774.	2.8	47
2521	First-principles investigation of structural, mechanical, electronic, and bonding properties of NaZnSb. Frontiers of Physics, 2015, 10, 1-13.	5.0	9
2522	Computational simulation and biological studies on 3-(2-(2-hydroxybenzoyl)hydrazono)-N-(pyridine-2-yl)butanamide complexes. Journal of Molecular Structure, 2015, 1101, 124-138.	3.6	4
2523	Overpotential for CO ₂ electroreduction lowered on strained penta-twinned Cu nanowires. Chemical Science, 2015, 6, 6829-6835.	7.4	60
2524	Adsorption of the water molecule on monolayer graphene surface has effect on its optical properties. IOP Conference Series: Materials Science and Engineering, 2015, 87, 012101.	0.6	4
2525	Kinetic and Mechanistic Assessment of Alkanol/Alkanal Decarbonylation and Deoxygenation Pathways on Metal Catalysts. Journal of the American Chemical Society, 2015, 137, 11984-11995.	13.7	55
2526	Comparison between the Oxygen Reduction Reaction Activity of Pd ₅ Ce and Pt ₅ Ce: The Importance of Crystal Structure. ACS Catalysis, 2015, 5, 6032-6040.	11.2	21
2527	Predicting Promoter-Induced Bond Activation on Solid Catalysts Using Elementary Bond Orders. Journal of Physical Chemistry Letters, 2015, 6, 3670-3674.	4.6	13
2528	Synthesis, antimicrobial evaluation and molecular modeling of some novel phenothiazine derivatives. RSC Advances, 2015, 5, 80844-80852.	3.6	13
2529	Thermodynamic properties, detonation characterisation and free radical of N-acetyl-3,3-dinitroazetidine. Journal of Chemical Thermodynamics, 2015, 91, 240-244.	2.0	13

#	Article	IF	CITATIONS
2530	Surface Tension Effects on the Reactivity of Metal Nanoparticles. Journal of Physical Chemistry Letters, 2015, 6, 3797-3801.	4.6	59
2531	Supramolecular pairing among heteroaromatic compounds and the cationic surfactant C12TAC. Fuel, 2015, 149, 174-183.	6.4	8
2532	The Strength of BrÃ,nsted Acid Sites in Microporous Aluminosilicates. ACS Catalysis, 2015, 5, 5741-5755.	11.2	209
2533	Adsorption of aromatics on the (111) surface of PtM and PtM ₃ (M = Fe, Ni) alloys. RSC Advances, 2015, 5, 85705-85719.	3.6	14
2534	Structural, Elastic and Optical Properties of Ag-Doped Rutile TiO ₂ . Advanced Materials Research, 0, 1101, 66-69.	0.3	0
2535	<i>Ab initio</i> molecular dynamics with simultaneous electron and phonon excitations: Application to the relaxation of hot atoms and molecules on metal surfaces. Physical Review B, 2015, 92, .	3.2	76
2536	Thermodynamic description of the AgCl–CoCl2–InCl3–KCl system. Materials Chemistry and Physics, 2015, 163, 73-87.	4.0	14
2537	Surface effects on mean inner potentials studied using density functional theory. Ultramicroscopy, 2015, 159, 34-45.	1.9	18
2538	Structural and electronic properties of Cu-doped Zn5(OH)6(CO3)2 from first principles. Journal of Materials Science, 2015, 50, 6794-6807.	3.7	7
2539	Influence of Adsorbed Water on the Oxygen Evolution Reaction on Oxides. Journal of Physical Chemistry C, 2015, 119, 1032-1037.	3.1	66
2540	Computational Design of Alloy-Core@Shell Metal Nanoparticle Catalysts. ACS Catalysis, 2015, 5, 655-660.	11.2	39
2541	Selective Heterogeneous CO ₂ Electroreduction to Methanol. ACS Catalysis, 2015, 5, 965-971.	11.2	167
2542	Platinum–carbide interactions: core–shells for catalytic use. Physical Chemistry Chemical Physics, 2015, 17, 4250-4258.	2.8	23
2543	Understanding the Effect of the Adatoms in the Formic Acid Oxidation Mechanism on Pt(111) Electrodes. ACS Catalysis, 2015, 5, 645-654.	11.2	81
2544	Ligand-Sensitive But Not Ligand-Diagnostic: Evaluating Cr Valence-to-Core X-ray Emission Spectroscopy as a Probe of Inner-Sphere Coordination. Inorganic Chemistry, 2015, 54, 205-214.	4.0	32
2545	Experimental and DFT studies of structure, optical and magnetic properties of (Zn1â^'2xCexCox)O nanopowders. Journal of Molecular Structure, 2015, 1084, 155-164.	3.6	4
2546	Fundamentals of Methanol Synthesis on Metal Carbide Based Catalysts: Activation of CO2 and H2. Topics in Catalysis, 2015, 58, 159-173.	2.8	64
2547	Adsorbate-induced surface stress, surface strain and surface reconstruction: CH3S on Cu(100) and Cu(111). Surface Science, 2015, 635, 27-36.	1.9	5

#	ARTICLE	IF	CITATIONS
2548	Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design. Physical Chemistry Chemical Physics, 2015, 17, 4909-4918.	2.8	246
2549	Elastic strain effects on catalysis of a PdCuSi metallic glass thin film. Physical Chemistry Chemical Physics, 2015, 17, 1746-1754.	2.8	26
2550	Oxygen reduction on nanocrystalline ruthenia $\hat{a}\in$ local structure effects. RSC Advances, 2015, 5, 1235-1243.	3.6	24
2551	Theoretical evaluation of the surface electrochemistry of perovskites with promising photon absorption properties for solar water splitting. Physical Chemistry Chemical Physics, 2015, 17, 2634-2640.	2.8	58
2552	Catalytic properties of Au electrodes modified by an underlayer of Pd. Surface Science, 2015, 631, 235-247.	1.9	23
2553	Nanosized Pt–La alloy electrocatalysts with high activity and stability for the oxygen reduction reaction. Surface Science, 2015, 631, 272-277.	1.9	10
2554	Small-Molecule Activation Driven by Confinement Effects. ACS Catalysis, 2015, 5, 215-224.	11.2	8
2555	On the solid-state NMR spectra of naproxen. Chemical Physics Letters, 2015, 619, 230-235.	2.6	15
2556	Influence of oxygen nonstoichiometry and doping with 2p-, 3p-, 6p- and 3d-elements on electronic structure, optical properties and photocatalytic activity of rutile and anatase: Ab initio approaches. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 22, 58-83.	11.6	28
2557	Synthesis, spectral characterization, molecular modeling, biological activity and potentiometric studies of 4-amino-5-mercapto-3-methyl-S-triazole Schiff's base complexes. Journal of Molecular Structure, 2015, 1083, 430-440.	3.6	18
2558	Synthesis and characterization, antimicrobial activity, DNA binding and DNA cleavage studies of new 5-chloro-2-[4-phenylthiazol-2-yl-iminomethyl]phenol metal complexes. Journal of Molecular Structure, 2015, 1082, 62-79.	3.6	8
2559	Enhancing Activity for the Oxygen Evolution Reaction: The Beneficial Interaction of Gold with Manganese and Cobalt Oxides. ChemCatChem, 2015, 7, 149-154.	3.7	114
2560	Influence of quantum well states on the formation of Au–Pb alloy in ultra-thin Pb films. Surface Science, 2015, 632, 174-179.	1.9	5
2561	Effect of Ce and Cu co-doping on the structural, morphological, and optical properties of ZnO nanocrystals and first principle investigation of their stability and magnetic properties. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 66, 209-220.	2.7	28
2562	First Principles Calculations on Oxide-Based Heterogeneous Catalysts and Photocatalysts: Problems and Advances. Catalysis Letters, 2015, 145, 80-94.	2.6	49
2563	Electronic properties and Compton scattering studies of monoclinic tungsten dioxide. Radiation Physics and Chemistry, 2015, 106, 33-39.	2.8	6
2564	SiH/TiO2 and GeH/TiO2 Heterojunctions: Promising TiO2-based Photocatalysts under Visible Light. Scientific Reports, 2014, 4, 4810.	3.3	43
2565	Synthesis, biological and comparative DFT studies on Ni(II) complexes of NO and NOS donor ligands. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 135, 690-703.	3.9	25

#	Article	IF	CITATIONS
2566	New Lightâ∈Harvesting Materials Using Accurate and Efficient Bandgap Calculations. Advanced Energy Materials, 2015, 5, 1400915.	19.5	124
2567	The SiO2 supported bimetallic Ni–Ru particles: A good sulfur-tolerant catalyst for methanation reaction. Chemical Engineering Journal, 2015, 260, 1-10.	12.7	74
2568	Structural, elastic, thermodynamic, electronic properties and phase transition in half-Heusler alloy NiVSb at high pressures. Computational Materials Science, 2015, 96, 72-80.	3.0	28
2569	Synthesis, characterization and biological activity of 2-acetylpyridine- \hat{l} ±-naphthoxyacetylhydrazone its metal complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 135, 597-607.	3.9	15
2570	Structural, spectral and DFT studies of N -ethyl-2-(4-(phenylamino)-4-thioxobutan-2-ylidene)hydrazinecarbothioamide complexes synthesized by ball milling. Journal of Molecular Structure, 2015, 1079, 203-213.	3.6	16
2571	Investigation of structural, surface morphological, optical properties and first-principles study on electronic and magnetic properties of (Ce, Fe)-co doped ZnO. Physica B: Condensed Matter, 2015, 456, 344-354.	2.7	28
2572	Synthesis, characterization and in vitro antimicrobial studies of Co(II), Ni(II) and Cu(II) complexes derived from macrocyclic compartmental ligand. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 137, 207-219.	3.9	24
2573	First-principles study of the structure of water layers on flat and stepped Pb electrodes. Beilstein Journal of Nanotechnology, 2016, 7, 533-543.	2.8	21
2574	Kinetic and Exchange Energy Densities near the Nucleus. Computation, 2016, 4, 19.	2.0	20
2575	Interaction of Hydrogen with Au Modified by Pd and Rh in View of Electrochemical Applications. Computation, 2016, 4, 26.	2.0	6
2576	Effects of coordination number of Au catalyst on oxygen species and their catalytic roles. Applied Surface Science, 2016, 387, 875-881.	6.1	12
2577	Corrosion control in the tubing steel of oil wells during matrix acidizing operations. RSC Advances, 2016, 6, 71384-71396.	3.6	38
2578	Toward a Janus Cluster: Regiospecific Decarboxylation of Ag ₄₄ (4-MBA) ₃₀ @Ag Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 15471-15479.	3.1	18
2579	How van der Waals interactions determine the unique properties of water. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8368-8373.	7.1	312
2580	A mathematical optimization framework for the design of nanopatterned surfaces. AICHE Journal, 2016, 62, 3250-3263.	3.6	16
2581	The Influence of Elastic Strain on Catalytic Activity in the Hydrogen Evolution Reaction. Angewandte Chemie, 2016, 128, 6283-6289.	2.0	22
2582	Understanding and Designing the Gold–Bio Interface: Insights from Simulations. Small, 2016, 12, 2395-2418.	10.0	58
2583	Mechanism and Charge Effect of Cycloisomerization of ï‰â€Alkynylfuran Catalyzed by Subnanometer Gold Clusters: A Theoretical Study. ChemCatChem, 2016, 8, 461-470.	3.7	4

#	Article	IF	CITATIONS
2584	The Influence of Elastic Strain on Catalytic Activity in the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2016, 55, 6175-6181.	13.8	133
2585	Electronic structures of p-type impurity in ZrS ₂ monolayer. RSC Advances, 2016, 6, 58325-58328.	3.6	6
2586	Electro-optical properties of the perfect reflector material: Poly(3-thiophene boronic acid) semiconducting polymer. Polymer Engineering and Science, 2016, 56, 707-714.	3.1	2
2587	Analysis of the bondâ€valence method for calculating 29 Si and 31 P magnetic shielding in covalent network solids. Journal of Computational Chemistry, 2016, 37, 1704-1710.	3.3	14
2589	Adsorption of PTCDA and C ₆₀ on KBr(001): electrostatic interaction versus electronic hybridization. Physical Chemistry Chemical Physics, 2016, 18, 11008-11016.	2.8	5
2590	Polarization-driven catalysis via ferroelectric oxide surfaces. Physical Chemistry Chemical Physics, 2016, 18, 19676-19695.	2.8	65
2591	Surface carbon species formation from ethylene decomposition on Pd(100): a first-principles-based kinetic Monte Carlo study. RSC Advances, 2016, 6, 65349-65354.	3.6	4
2592	Modeling surface motion effects in N2 dissociation on $W(110)$: Ab initio molecular dynamics calculations and generalized Langevin oscillator model. Journal of Chemical Physics, 2016, 144, 244708.	3.0	19
2593	Water adsorption on bimetallic PtRu/Pt(111) surface alloys. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160618.	2.1	12
2594	Search of high-capacity cathode materials based on lithium–iron silicate compounds. Glass Physics and Chemistry, 2016, 42, 576-581.	0.7	1
2595	Vanadium interactions in crystalline silicon. Physical Review B, 2016, 94, .	3.2	10
2596	Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state. AIP Advances, 2016, 6, .	1.3	31
2597	Insights on finite size effects in <i>ab initio</i> study of CO adsorption and dissociation on Fe 110 surface. Journal of Applied Physics, 2016, 120, .	2.5	18
2598	Influence of surface vacancy defects on the carburisation of Fe 110 surface by carbon monoxide. Journal of Chemical Physics, 2016, 145, 044710.	3.0	12
2599	Methane dissociation on $Pt(111)$: Searching for a specific reaction parameter density functional. Journal of Chemical Physics, 2016, 144, 044702.	3.0	52
2600	Application of van der Waals functionals to the calculation of dissociative adsorption of N2 on W(110) for static and dynamic systems. Journal of Chemical Physics, 2016, 144, 084702.	3.0	12
2601	First Principles Study of the Structure and Elastic Properties of Thorium Metal. MRS Advances, 2016, 1, 2447-2452.	0.9	0
2602	Atomic and electronic structure of CdTe/metal (Cu, Al, Pt) interfaces and their influence to the Schottky barrier. Journal of Applied Physics, 2016, 120, .	2.5	15

#	Article	IF	CITATIONS
2603	On the tautomerisation of porphycene on copper (111): Finding the subtle balance between van der Waals interactions and hybridisation. Journal of Chemical Physics, 2016, 145, 244701.	3.0	5
2604	Calibrating Reaction Enthalpies: Use of Density Functional Theory and the Correlation Consistent Composite Approach in the Design of Photochromic Materials. Journal of Physical Chemistry A, 2016, 120, 9982-9997.	2.5	6
2605	Rungs 1 to 4 of DFT Jacob's ladder: Extensive test on the lattice constant, bulk modulus, and cohesive energy of solids. Journal of Chemical Physics, 2016, 144, 204120.	3.0	191
2606	Dynamics of H2 dissociation on the close-packed (111) surface of the noblest metal: H2 + Au(111). Journal of Chemical Physics, 2016, 145, 144701.	3.0	22
2607	Blind test of density-functional-based methods on intermolecular interaction energies. Journal of Chemical Physics, 2016, 145, 124105.	3.0	97
2608	Optimization of an exchange-correlation density functional for water. Journal of Chemical Physics, 2016, 144, 224101.	3.0	27
2609	Analyzing relationships between surface perturbations and local chemical reactivity of metal sites: Alkali promotion of O2 dissociation on Ag(111). Journal of Chemical Physics, 2016, 144, 234704.	3.0	13
2610	Error estimates for density-functional theory predictions of surface energy and work function. Physical Review B, 2016, 94, .	3.2	96
2611	Perspective: Kohn-Sham density functional theory descending a staircase. Journal of Chemical Physics, 2016, 145, 130901.	3.0	243
2612	pH in Grand Canonical Statistics of an Electrochemical Interface. Journal of Physical Chemistry C, 2016, 120, 29135-29143.	3.1	68
2613	Perspective: How good is DFT for water?. Journal of Chemical Physics, 2016, 144, 130901.	3.0	571
2614	Unexpected cold curve sensitivity to GGA exchange form. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	0
2615	Design principles for high–pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures. Journal of Chemical Physics, 2016, 144, 144104.	3.0	79
2616	Availability of surface boron species in improved oxygen reduction activity of Pt catalysts: A first-principles study. Journal of Chemical Physics, 2016, 144, 144706.	3.0	7
2617	A first-principles study of the SnO2 monolayer with hexagonal structure. Journal of Chemical Physics, 2016, 145, 174702.	3.0	34
2618	A power series revisit of the PBE exchange density-functional approximation: The PBEpow model. Journal of Chemical Physics, 2016, 145, 244102.	3.0	3
2619	Quantum dynamics of water dissociative chemisorption on rigid Ni(111): An approximate nine-dimensional treatment. Journal of Chemical Physics, 2016, 144, 164706.	3.0	36
2620	BEOL compatible graphene/Cu with improved electromigration lifetime for future interconnects. , 2016, , .		22

#	ARTICLE	IF	CITATIONS
2621	The structure of water at a Pt(111) electrode and the potential of zero charge studied from first principles. Journal of Chemical Physics, 2016, 144, 194701.	3.0	127
2622	Studying the electronic and phononic structure of penta-graphane. Science and Technology of Advanced Materials, 2016, 17, 610-617.	6.1	44
2623	The normal modes of lattice vibrations of ice XI. Scientific Reports, 2016, 6, 29273.	3.3	22
2624	From single molecules to water networks: Dynamics of water adsorption on Pt(111). Journal of Chemical Physics, 2016, 145, 094703.	3.0	18
2625	Predicting catalyst-support interactions between metal nanoparticles and amorphous silica supports. Surface Science, 2016, 652, 278-285.	1.9	17
2626	Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science, 2016, 352, 73-76.	12.6	783
2627	Dissociative adsorption of methane on the Cu and Zn doped (111) surface of CeO2. Applied Catalysis B: Environmental, 2016, 197, 324-336.	20.2	49
2628	Thermodynamic properties of diniconazole and hexaconazole. Journal of Chemical Thermodynamics, 2016, 99, 82-85.	2.0	7
2629	First-principles investigation of methanethiol adsorption and dissociation mechanisms on the high-Miller-index vicinal surface Cu(4 1 0). Journal of Physics Condensed Matter, 2016, 28, 175001.	1.8	1
2630	Modeling the effects of Si-X ($X\hat{A}=\hat{A}F$, Cl) bonds on the chemical and electronic properties of Si-surface terminated porous 3C-SiC. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	8
2631	Solvent-free synthesis and computational studies of transition metal complexes of the aceto- and thioaceto-acetanilide derivatives. Journal of Organometallic Chemistry, 2016, 818, 15-27.	1.8	21
2632	Ligational, potentiometric and floatation studies on Cu(II) complexes of hydrazones derived from p and o-vanillin condensed with diketo hydrazide. Journal of Molecular Liquids, 2016, 220, 939-953.	4.9	9
2633	Insight into both coverage and surface structure dependent CO adsorption and activation on different Ni surfaces from DFT and atomistic thermodynamics. Physical Chemistry Chemical Physics, 2016, 18, 17606-17618.	2.8	16
2634	On the predictions of the 11B solid state NMR parameters. Chemical Physics Letters, 2016, 655-656, 66-70.	2.6	12
2635	Chemisorption of oxygen and subsequent reactions on low index surfaces of β–Mo2C: Insights from first-principles thermodynamics and kinetics. Journal of Molecular Catalysis A, 2016, 417, 53-63.	4.8	12
2636	Characterization of oxygenated species at water/Pt(111) interfaces from DFT energetics and XPS simulations. Nano Energy, 2016, 29, 369-377.	16.0	47
2637	Water at Interfaces. Chemical Reviews, 2016, 116, 7698-7726.	47.7	536
2638	An ab initio molecular dynamics study of D2 dissociation on CO-precovered Ru(0001). Physical Chemistry Chemical Physics, 2016, 18, 21190-21201.	2.8	3

#	Article	IF	CITATIONS
2639	Crystal structure and thermodynamic properties of myclobutanil. Journal of Chemical Thermodynamics, 2016, 101, 44-48.	2.0	7
2640	Tuning electrocatalytic activity of Pt monolayer shell by bimetallic Ir-M (M=Fe, Co, Ni or Cu) cores for the oxygen reduction reaction. Nano Energy, 2016, 29, 261-267.	16.0	61
2641	Promotional effects of chemisorbed oxygen and hydroxide in the activation of C–H and O–H bonds over transition metal surfaces. Surface Science, 2016, 650, 210-220.	1.9	57
2642	CO Molecules on a NaCl(100) Surface: Structures, Energetics, and Vibrational Davydov Splittings at Various Coverages. Journal of Physical Chemistry C, 2016, 120, 12637-12653.	3.1	12
2643	Adsorbate-Induced Changes in Magnetic Interactions in Fe ₂ (dobdc) with Adsorbed Hydrocarbon Molecules. Journal of Physical Chemistry C, 2016, 120, 9933-9948.	3.1	15
2644	Glycerol oxidehydration to pyruvaldehyde over silver-based catalysts for improved lactic acid production. Green Chemistry, 2016, 18, 4682-4692.	9.0	32
2645	On the Energetics of lons in Carbon and Gold Nanotubes. ChemPhysChem, 2016, 17, 78-85.	2.1	19
2646	Mechanism of CO2 reduction by H2 on Ru(0 0 0 1) and general selectivity descriptors for late-transition metal catalysts. Journal of Catalysis, 2016, 343, 86-96.	6.2	104
2647	Structural Changes in RuO ₂ during Electrochemical Hydrogen Evolution. Journal of Physical Chemistry C, 2016, 120, 7094-7102.	3.1	19
2648	Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxideâ€Derived Copper. Angewandte Chemie, 2016, 128, 1472-1476.	2.0	39
2649	Atomic-Scale Analysis of the RuO ₂ /Water Interface under Electrochemical Conditions. Journal of Physical Chemistry C, 2016, 120, 8096-8103.	3.1	41
2650	Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxideâ€Derived Copper. Angewandte Chemie - International Edition, 2016, 55, 1450-1454.	13.8	166
2651	A PW91-like exchange with a simple analytical form. Chemical Physics Letters, 2016, 651, 268-273.	2.6	16
2652	Dispersion-Corrected Mean-Field Electronic Structure Methods. Chemical Reviews, 2016, 116, 5105-5154.	47.7	1,032
2653	Tuning band gap and optical properties of SnX ₂ nanosheets: Hybrid functional studies. Modern Physics Letters B, 2016, 30, 1650120.	1.9	3
2654	Global hybrid exchange energy functional with correct asymptotic behavior of the corresponding potential. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	7
2655	Size and Promoter Effects in Supported Iron Fischer–Tropsch Catalysts: Insights from Experiment and Theory. ACS Catalysis, 2016, 6, 3147-3157.	11.2	138
2656	Molecular engineering of cyanine dyes to design a panchromatic response in co-sensitized dye-sensitized solar cells. Molecular Systems Design and Engineering, 2016, 1, 86-98.	3.4	24

#	Article	IF	CITATIONS
2657	Well-structured bimetallic surface capable of molecular recognition for chemoselective nitroarene hydrogenation. Chemical Science, 2016, 7, 4476-4484.	7.4	75
2658	Modeling the Interface of Platinum and \hat{l} ±-Quartz(001): Implications for Sintering. Journal of Physical Chemistry C, 2016, 120, 10340-10350.	3.1	18
2659	Molecular docking and DFT studies on some nano-meter binuclear complexes derived from hydrazine-carbothioamide ligand, synthesis, thermal, kinetic and spectral characterization. Journal of Molecular Liquids, 2016, 220, 311-323.	4.9	37
2660	Semi- and thiosemicarbazide Mn(II) complexes: Characterization, DFT and biological studies. Journal of Molecular Structure, 2016, 1119, 351-364.	3.6	14
2661	Characterization of Vanadium Species in Mixed Chloride–Sulfate Solutions: An Ab Initio Metadynamics Study. Journal of Physical Chemistry C, 2016, 120, 10791-10798.	3.1	24
2662	Beyond the top of the volcano? – A unified approach to electrocatalytic oxygen reduction and oxygen evolution. Nano Energy, 2016, 29, 126-135.	16.0	248
2663	Fabrication of the protonated graphitic carbon nitride nanosheets as enhanced electrochemical sensing platforms for hydrogen peroxide and paracetamol detection. Electrochimica Acta, 2016, 206, 259-269.	5.2	63
2664	Interaction of boron with graphite: A van der Waals density functional study. Applied Surface Science, 2016, 379, 402-410.	6.1	15
2665	Opportunities and challenges in the electrocatalysis of CO2 and CO reduction using bifunctional surfaces: A theoretical and experimental study of Au–Cd alloys. Journal of Catalysis, 2016, 343, 215-231.	6.2	115
2666	The Effect of the Electric Field on the $\hat{l}\pm$ -GPC Interaction with Au(111) Surface: A First-Principles Study. Journal of Physical Chemistry C, 2016, 120, 9740-9749.	3.1	2
2667	Ab initio investigation of the oxygen reduction reaction activity on noble metal (Pt, Au, Pd), Pt3M (MÂ=ÂFe, Co, Ni, Cu) and Pd3M (MÂ=ÂFe, Co, Ni, Cu) alloy surfaces, for Li O2 cells. Journal of Power Sources, 2016, 319, 202-209.	7.8	41
2668	Phase stability of the nanolaminates V2Ga2C and $(Mo1\hat{a}^*xVx)2Ga2C$ from first-principles calculations. Physical Chemistry Chemical Physics, 2016, 18, 12682-12688.	2.8	10
2669	MN15: A Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chemical Science, 2016, 7, 5032-5051.	7.4	858
2670	Cleavage of the C–C Bond in the Ethanol Oxidation Reaction on Platinum. Insight from Experiments and Calculations. Journal of Physical Chemistry C, 2016, 120, 11590-11597.	3.1	47
2671	CO adsorption on the GaPd(1 i,, 1 i,, 1 i,) surface: a comparative DFT study using different functionals. Physical Chemistry Chemical Physics, 2016, 18, 14390-14400.	2.8	8
2672	Uncertainty Quantification Framework Applied to the Water–Gas Shift Reaction over Pt-Based Catalysts. Journal of Physical Chemistry C, 2016, 120, 10328-10339.	3.1	56
2673	Density Functional Theory Methods for Computing and Predicting Mechanical Properties. Springer Series in Materials Science, 2016, , 131-158.	0.6	0
2674	Vibrational and dielectric properties of AlN: A first-principles study. Ceramics International, 2016, 42, 18828-18832.	4.8	8

#	Article	IF	CITATIONS
2675	The effect of C–OH functionality on the surface chemistry of biomass-derived molecules: ethanol chemistry on Rh(100). Physical Chemistry Chemical Physics, 2016, 18, 30117-30127.	2.8	12
2676	On the crystalline structure of orthorhombic SrRuO3: A benchmark study of DFT functionals. Computational Materials Science, 2016, 124, 78-86.	3.0	4
2677	NO adsorption and dissociation on palladium clusters: The importance of charged state and metal doping. Chemical Physics Letters, 2016, 658, 7-11.	2.6	14
2678	Neural network molecular dynamics simulations of solid–liquid interfaces: water at low-index copper surfaces. Physical Chemistry Chemical Physics, 2016, 18, 28704-28725.	2.8	141
2679	Surface Adsorption Energetics Studied with "Gold Standard―Wave-Function-Based Ab Initio Methods: Small-Molecule Binding to TiO ₂ (110). Journal of Physical Chemistry Letters, 2016, 7, 4207-4212.	4.6	86
2680	Structural, phase stability, electronic, elastic properties and hardness of IrN 2 and zinc blende IrN: First-principles calculations. Physica B: Condensed Matter, 2016, 503, 141-146.	2.7	2
2681	Experimental and theoretical rationalization of the growth mechanism of silicon quantum dots in non-stoichiometric SiNx: role of chlorine in plasma enhanced chemical vapour deposition. Nanotechnology, 2016, 27, 455703.	2.6	14
2682	Mechanism of Isobutanal–Isobutene Prins Condensation Reactions on Solid Brønsted Acids. ACS Catalysis, 2016, 6, 7664-7684.	11.2	25
2683	Raman and IR Spectra of Ice Ih and Ice XI with an Assessment of DFT Methods. Journal of Physical Chemistry B, 2016, 120, 11043-11051.	2.6	18
2684	Reduced overpotentials for electrocatalytic water splitting over Fe- and Ni-modified BaTiO ₃ . Physical Chemistry Chemical Physics, 2016, 18, 29561-29570.	2.8	29
2685	DFT Study on the Methane Synthesis from Syngas on a Cerium-Doped Ni(111) Surface. Journal of Physical Chemistry C, 2016, 120, 23030-23043.	3.1	19
2686	Thermodynamics of Metal Nanoparticles: Energies and Enthalpies of Formation of Magnesium Clusters and Nanoparticles as Large as 1.3 nm. Journal of Physical Chemistry C, 2016, 120, 26110-26118.	3.1	18
2687	Quantum Mechanical Screening of Single-Atom Bimetallic Alloys for the Selective Reduction of CO ₂ to C ₁ Hydrocarbons. ACS Catalysis, 2016, 6, 7769-7777.	11.2	190
2688	Molecular engineering of fluorescein dyes as complementary absorbers in dye co-sensitized solar cells. Molecular Systems Design and Engineering, 2016, 1, 402-415.	3.4	17
2689	Screening of Copper Open Metal Site MOFs for Olefin/Paraffin Separations Using DFT-Derived Force Fields. Journal of Physical Chemistry C, 2016, 120, 23044-23054.	3.1	61
2690	Sintering of Pt Nanoparticles via Volatile PtO ₂ : Simulation and Comparison with Experiments. ACS Catalysis, 2016, 6, 7098-7108.	11.2	72
2691	Correlated-Participating-Orbitals Pair-Density Functional Method and Application to Multiplet Energy Splittings of Main-Group Divalent Radicals. Journal of Chemical Theory and Computation, 2016, 12, 4274-4283.	5.3	55
2692	Toward Extreme Biophysics: Deciphering the Infrared Response of Biomolecular Solutions at High Pressures. Angewandte Chemie, 2016, 128, 9686-9690.	2.0	4

#	ARTICLE	IF	CITATIONS
2693	Mechanisms of H ₂ O and CO ₂ Formation from Surface Oxygen Reduction on Co(0001). Journal of Physical Chemistry C, 2016, 120, 19265-19270.	3.1	25
2694	Selective Activation of Alcohols in the Presence of Reactive Amines over Intermetallic PdZn: Efficient Catalysis for Alcohol-Based <i>N</i> -Alkylation of Various Amines. ACS Catalysis, 2016, 6, 5946-5953.	11.2	62
2695	A comparative first-principles study on electronic structures and mechanical properties of ternary intermetallic compounds Al8Cr4Y and Al8Cu4Y: Pressure and tension effects. Journal of Physics and Chemistry of Solids, 2016, 98, 298-308.	4.0	15
2696	Decoupling strain and ligand effects in ternary nanoparticles for improved ORR electrocatalysis. Physical Chemistry Chemical Physics, 2016, 18, 24737-24745.	2.8	26
2697	Study of Mn absorption by complex oxide inclusions in Al Ti Mg killed steels. Acta Materialia, 2016, 118, 8-16.	7.9	54
2698	Efficient CO Oxidation Using Dendrimer-Encapsulated Pt Nanoparticles Activated with <2% Cu Surface Atoms. ACS Nano, 2016, 10, 8760-8769.	14.6	39
2699	A highly active and stable IrO $\langle i \rangle \langle sub \rangle x \langle sub \rangle \langle i \rangle SrlrO \langle sub \rangle 3 \langle sub \rangle catalyst for the oxygen evolution reaction. Science, 2016, 353, 1011-1014.$	12.6	1,606
2700	Kineticâ€energyâ€density dependent semilocal exchangeâ€correlation functionals. International Journal of Quantum Chemistry, 2016, 116, 1641-1694.	2.0	78
2701	Comparison of mechanistic understanding and experiments for CO methanation over nickel. Journal of Catalysis, 2016, 342, 105-116.	6.2	41
2702	Ultrafast dynamics of MnSi1.7 film studied by pump–probe technique. Modern Physics Letters B, 2016, 30, 1650282.	1.9	4
2703	Theoretical exploration of novel catalyst support materials for fuel cell applications. Journal of Materials Chemistry A, 2016, 4, 15181-15188.	10.3	11
2704	Palladium and palladium–copper alloy nano particles as superior catalyst for electrochemical oxidation of methanol for fuel cell applications. International Journal of Hydrogen Energy, 2016, 41, 17072-17083.	7.1	58
2705	Pressure effect on the structural, electronic, and elastic properties and Debye temperature of Rh3Nb: first-principles calculations. RSC Advances, 2016, 6, 78028-78035.	3.6	6
2706	Quantification of uncertainty in first-principles predicted mechanical properties of solids: Application to solid ion conductors. Physical Review B, 2016, 94, .	3.2	25
2707	On the Structure Sensitivity of Formic Acid Decomposition on Cu Catalysts. Topics in Catalysis, 2016, 59, 1580-1588.	2.8	37
2708	Bifunctional Interface of Au and Cu for Improved CO ₂ Electroreduction. ACS Applied Materials & Interfaces, 2016, 8, 23022-23027.	8.0	93
2709	Thermodynamic properties of 3,3-dinitroazetidinium nitrate. Journal of Chemical Thermodynamics, 2016, 103, 206-211.	2.0	10
2710	How Accurate Are the Minnesota Density Functionals for Noncovalent Interactions, Isomerization Energies, Thermochemistry, and Barrier Heights Involving Molecules Composed of Main-Group Elements?. Journal of Chemical Theory and Computation, 2016, 12, 4303-4325.	5.3	355

#	Article	IF	CITATIONS
2711	Impact of lattice dynamics on the phase stability of metamagnetic FeRh: Bulk and thin films. Physical Review B, 2016, 94, .	3.2	44
2712	Investigating the adsorption mechanism of glycine in comparison with catechol on cristobalite surface using density functional theory for bio-adhesive materials. RSC Advances, 2016, 6, 114313-114319.	3.6	5
2713	Generalized Surface Coordination Number as an Activity Descriptor for CO ₂ Reduction on Cu Surfaces. Journal of Physical Chemistry C, 2016, 120, 28125-28130.	3.1	77
2714	First-principles calculation the electronic structure and the optical properties of Mn-decorated g-C3N4 for photocatalytic applications. Journal of the Korean Physical Society, 2016, 69, 1445-1449.	0.7	15
2715	Unraveling the role of vacancies in the potentially promising thermoelectric clathrates <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ba</mml:mi><mml:replysical .<="" 2016,="" 94,="" b,="" review="" td=""><td>nn %&x/mn</td><td>nl:r20></td></mml:replysical></mml:msub></mml:mrow></mml:math>	nn %& x/mn	nl:r 20 >
2716	Distance- and spin-resolved spectroscopy of iridium atoms on an iron bilayer. Physical Review B, 2016, 94, .	3.2	2
2717	Energies of Formation Reactions Measured for Adsorbates on Late Transition Metal Surfaces. Journal of Physical Chemistry C, 2016, 120, 25161-25172.	3.1	63
2718	Water inhibits CO oxidation on gold cations in the gas phase. Structures and binding energies of the sequential addition of CO, H ₂ 0, O ₂ , and N ₂ onto Au ⁺ . Physical Chemistry Chemical Physics, 2016, 18, 28606-28616.	2.8	7
2719	Assessing Hubbard-corrected AM05+U and PBEsol+U density functionals for strongly correlated oxides CeO ₂ and Ce ₂ O ₃ . Physical Chemistry Chemical Physics, 2016, 18, 26816-26826.	2.8	25
2720	A Theoretical Study on the Adsorption Behavior of Element 113 and Its Homologue Tl on a Quartz Surface: Relativistic Periodic DFT Calculations. Journal of Physical Chemistry C, 2016, 120, 20232-20238.	3.1	12
2721	Toward Extreme Biophysics: Deciphering the Infrared Response of Biomolecular Solutions at High Pressures. Angewandte Chemie - International Edition, 2016, 55, 9534-9538.	13.8	47
2722	The effect of water molecules on the thiol collector interaction on the galena (PbS) and sphalerite (ZnS) surfaces: A DFT study. Applied Surface Science, 2016, 389, 103-111.	6.1	77
2723	Unexpected highly reversible topotactic CO ₂ sorption/desorption capacity for potassium dititanate. Journal of Materials Chemistry A, 2016, 4, 12889-12896.	10.3	27
2724	A comprehensive comparative DFT study on adsorption and reactions involved in vinyl acetate synthesis from acetoxylation of ethylene on pure $Pd(100)$ and $Pd-Au(100)$: Elucidating the role of Au. Applied Surface Science, 2016, 387, 1021-1028.	6.1	22
2725	The Importance of the Electrochemical Environment in the Electro-Oxidation of Methanol on Pt(111). ACS Catalysis, 2016, 6, 5575-5586.	11.2	117
2726	On the molecular dynamics in long-acting calcium channel blocker lacidipine: solid-state NMR, neutron scattering and periodic DFT study. RSC Advances, 2016, 6, 66617-66629.	3.6	3
2727	Structural, DFT and biological studies on Cr(III) complexes of semi and thiosemicarbazide ligands derived from diketo hydrazide. Journal of Molecular Structure, 2016, 1125, 788-799.	3.6	31
2728	Barriers of Electrochemical CO ₂ Reduction on Transition Metals. Organic Process Research and Development, 2016, 20, 1424-1430.	2.7	135

#	Article	IF	CITATIONS
2729	Electronic structure, first and second order physical properties of MPS4: a theoretical study. Materials Science-Poland, 2016, 34, 275-285.	1.0	3
2730	Stabilizing Active Edge Sites in Semicrystalline Molybdenum Sulfide by Anchorage on Nitrogenâ€Doped Carbon Nanotubes for Hydrogen Evolution Reaction. Advanced Functional Materials, 2016, 26, 6766-6776.	14.9	110
2731	Formation and Migration of Oxygen Vacancies in SrCoO ₃ and Their Effect on Oxygen Evolution Reactions. ACS Catalysis, 2016, 6, 5565-5570.	11.2	96
2732	A microscopic level insight into Pt doped TiZn (001) surface for hydrogen energy storage usage. RSC Advances, 2016, 6, 73566-73575.	3.6	1
2733	Surface electron density models for accurate < i> ab initio < /i> molecular dynamics with electronic friction. Physical Review B, 2016, 93, .	3.2	54
2734	Comparative studies of the electronic structure and thermoelectric properties in orthorhombic and tetragonal BaCu ₂ Se ₂ by first-principles calculations. RSC Advances, 2016, 6, 60717-60722.	3.6	6
2735	Towards an accurate specific reaction parameter density functional for water dissociation on Ni(111): RPBE versus PW91. Physical Chemistry Chemical Physics, 2016, 18, 21817-21824.	2.8	25
2737	Influence of solvating water molecules on the attacking mechanisms of OH-radical to DNA base pairs: DFT calculations in explicit waters. Structural Chemistry, 2016, 27, 1793-1806.	2.0	4
2738	mBEEF-vdW: Robust fitting of error estimation density functionals. Physical Review B, 2016, 93, .	3.2	35
2739	First-principles calculations of the electronic and structural properties of GaSb. Semiconductors, 2016, 50, 1280-1286.	0.5	8
2740	Edge preference and band gap characters of MoS2 and WS2 nanoribbons. Surface Science, 2016, 653, 107-112.	1.9	51
2741	The plane-wave DFT investigations into the structure and the 11B solid-state NMR parameters of lithium fluorooxoborates. Chemical Physics Letters, 2016, 666, 22-27.	2.6	4
2742	Catalysis on solid acids: Mechanism and catalyst descriptors in oligomerization reactions of light alkenes. Journal of Catalysis, 2016, 344, 553-569.	6.2	80
2743	Adsorption of carbon oxide on tetrahedral bimetallic gold–copper clusters. Russian Journal of Physical Chemistry A, 2016, 90, 2402-2407.	0.6	2
2744	Effect of graphene support on large Pt nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 32713-32722.	2.8	34
2745	A DFT Structural Investigation of New Bimetallic PtSn _{<i>x</i>} Surface Alloys Formed on the Pt(110) Surface and Their Interaction with Carbon Monoxide. Journal of Physical Chemistry C, 2016, 120, 25306-25316.	3.1	4
2746	Mechanisms of H- and OH-assisted CO activation as well as C–C coupling on the flat Co(0001) surface – revisited. Catalysis Science and Technology, 2016, 6, 8336-8343.	4.1	18
2747	The Influence of Surface Oxygen and Hydroxyl Groups on the Dehydrogenation of Ethylene, Acetic Acid and Hydrogenated Vinyl Acetate on Pd/Au(100): A DFT Study. Catalysis Letters, 2016, 146, 2516-2533.	2.6	6

#	Article	IF	CITATIONS
2748	Enigmatic HCl + Au(111) Reaction: A Puzzle for Theory and Experiment. Journal of Physical Chemistry C, 2016, 120, 25760-25779.	3.1	48
2749	Effects of Lattice Motion on Dissociative Chemisorption: Toward a Rigorous Comparison of Theory with Molecular Beam Experiments. Journal of Physical Chemistry Letters, 2016, 7, 4576-4584.	4.6	74
2750	Temperature dependence of phonon-defect interactions: phonon scattering vs. phonon trapping. Scientific Reports, 2016, 6, 32150.	3.3	24
2751	Femtosecond-laser induced dynamics of CO on Ru(0001): Deep insights from a hot-electron friction model including surface motion. Physical Review B, 2016, 94, .	3.2	28
2752	Functional Independent Scaling Relation for ORR/OER Catalysts. Journal of Physical Chemistry C, 2016, 120, 24910-24916.	3.1	119
2753	Operando Raman Spectroscopy of Amorphous Molybdenum Sulfide (MoS _{<i>x</i>}) during the Electrochemical Hydrogen Evolution Reaction: Identification of Sulfur Atoms as Catalytically Active Sites for H ⁺ Reduction. ACS Catalysis, 2016, 6, 7790-7798.	11.2	210
2754	Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution. Nature Communications, 2016, 7, 13216.	12.8	334
2755	Investigating the coverage dependent behaviour of CO on Gd/Pt(111). Physical Chemistry Chemical Physics, 2016, 18, 29732-29739.	2.8	5
2756	Isotope analysis in the transmission electron microscope. Nature Communications, 2016, 7, 13040.	12.8	64
2757	Unraveling the formation mechanism of graphitic nitrogen-doping in thermally treated graphene with ammonia. Scientific Reports, 2016, 6, 23495.	3.3	111
2758	Rationalizing the suitability of rhodamines as chromophores in dye-sensitized solar cells: a systematic molecular design study. Molecular Systems Design and Engineering, 2016, 1, 416-435.	3.4	15
2759	Nanocluster-Assembled Materials. Series in Materials Science and Engineering, 2016, , 113-148.	0.1	3
2760	Spectroscopic Identification of the Au–C Bond Formation upon Electroreduction of an Aryl Diazonium Salt on Gold. Langmuir, 2016, 32, 11514-11519.	3.5	14
2761	Mechanism of Electroless Copper Deposition from [Cu ^{II} EDTA] ^{2–} Complexes Using Aldehyde-Based Reductants. Journal of Physical Chemistry C, 2016, 120, 24789-24793.	3.1	5
2762	The CO oxidation mechanism on the $W(111)$ surface and the W helical nanowire investigated by the density functional theory calculation. Physical Chemistry Chemical Physics, 2016, 18, 3322-3330.	2.8	2
2763	Toward Accurate Adsorption Energetics on Clay Surfaces. Journal of Physical Chemistry C, 2016, 120, 26402-26413.	3.1	30
2764	Water electrolysis on La1â^'xSrxCoO3â^'δ perovskite electrocatalysts. Nature Communications, 2016, 7, 11053.	12.8	800
2765	Communication: Energy transfer and reaction dynamics for DCl scattering on Au(111): An <i>ab initio</i> molecular dynamics study. Journal of Chemical Physics, 2016, 145, 011102.	3.0	32

#	Article	IF	CITATIONS
2766	Detection of Methomyl, a Carbamate Insecticide, in Food Matrices Using Terahertz Time-Domain Spectroscopy. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37, 486-497.	2.2	34
2767	Adsorption structures and energetics of molecules on metal surfaces: Bridging experiment and theory. Progress in Surface Science, 2016, 91, 72-100.	8.3	121
2768	Theoretical Simulation of isocyanate (NCO) adsorption on the Ag(001) surface. Journal of the Korean Physical Society, 2016, 68, 1192-1199.	0.7	4
2769	Faraday efficiency and mechanism of electrochemical surface reactions: CO ₂ reduction and H ₂ formation on Pt(111). Faraday Discussions, 2016, 195, 619-636.	3.2	45
2770	Structural stability of calcium-manganate based CaO(CaMnO3)m (mÂ=Â1, 2, 3, â^ž) compounds for thermoelectric applications. Journal of Alloys and Compounds, 2016, 687, 562-569.	5.5	19
2771	Ti-decorated graphitic-C3N4 monolayer: A promising material for hydrogen storage. Applied Surface Science, 2016, 386, 247-254.	6.1	7 5
2772	Understanding the F 1s NEXAFS Dichroism in Fluorinated Organic Semiconductors. Journal of Physical Chemistry C, 2016, 120, 12693-12705.	3.1	15
2773	Geometries, Binding Energies, Ionization Potentials, and Electron Affinities of Metal Clusters: Mg _{<i>n</i>} ^{0,±Â1} , <i>n</i> > = 1–7. Journal of Physical Chemistry C, 2016, 120, 13275-13286.	3.1	32
2774	Molecular and crystal structure of praziquantel. Spectroscopic properties and crystal polymorphism. European Journal of Pharmaceutical Sciences, 2016, 92, 266-275.	4.0	35
2775	Band engineering and rational design of high-performance thermoelectric materials by first-principles. Journal of Materiomics, 2016, 2, 114-130.	5.7	34
2776	Laser lap welding quality of steel/aluminum dissimilar metal joint and its electronic simulations. International Journal of Advanced Manufacturing Technology, 2016, 86, 2231-2242.	3.0	11
2777	Amp: A modular approach to machine learning in atomistic simulations. Computer Physics Communications, 2016, 207, 310-324.	7.5	281
2778	Concentration Gradient Pd-Ir-Ni/C Electrocatalyst with Enhanced Activity and Methanol Tolerance for Oxygen Reduction Reaction in Acidic Medium. Electrochimica Acta, 2016, 192, 177-187.	5.2	21
2779	Vibrational properties, phonon spectrum and related thermal parameters of \hat{l}^2 -octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: a theoretical study. Journal of Molecular Modeling, 2016, 22, 9.	1.8	6
2780	Theoretical investigation on correlation between steric effects and selectivity in gas–solid chlorination of polyvinyl chloride. Chemical Engineering Science, 2016, 151, 64-78.	3.8	6
2781	Synthesis, structure, and electronic structure calculation of a new centrosymmetric borate Pb2O[BO2(OH)] based on anion-centered OPb4 tetrahedra. Journal of Solid State Chemistry, 2016, 240, 61-66.	2.9	6
2782	Effects of Chain Length on the Mechanism and Rates of Metal-Catalyzed Hydrogenolysis of <i>n</i> -Alkanes. Journal of Physical Chemistry C, 2016, 120, 8125-8138.	3.1	49
2783	A relativistic periodic DFT study on interaction of superheavy elements 112 (Cn) and 114 (Fl) and their homologs Hg and Pb, respectively, with a quartz surface. Physical Chemistry Chemical Physics, 2016, 18, 17750-17756.	2.8	17

#	Article	IF	CITATIONS
2784	Computational study on oxynitride perovskites for CO2 photoreduction. Energy Conversion and Management, 2016, 122, 207-214.	9.2	33
2785	NMR study and computational assays of meclofenamic Na salt and \hat{l}^2 -cyclodextrin inclusion complex. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2016, 85, 111-120.	1.6	7
2786	First-Principles Study of the Geometric and Electronic Structures of Zinc Ferrite with Vacancy Defect. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 3753-3760.	2.2	22
2787	How theory and simulation can drive fuel cell electrocatalysis. Nano Energy, 2016, 29, 334-361.	16.0	71
2788	Interacting quantum fragmentsâ€rooted preorganizedâ€interacting fragments attributed relative molecular stability of the Be ^{II} complexes of nitrilotriacetic acid and nitrilotriâ€3â€propionic acid. Journal of Computational Chemistry, 2016, 37, 1373-1387.	3.3	11
2789	Chemically Accurate Simulation of a Polyatomic Molecule-Metal Surface Reaction. Journal of Physical Chemistry Letters, 2016, 7, 2402-2406.	4.6	103
2790	Density functional theory with modified dispersion correction for metals applied to molecular adsorption on Pt(111). Physical Chemistry Chemical Physics, 2016, 18, 19118-19122.	2.8	20
2791	Polymorphism of Water in Two Dimensions. Journal of Physical Chemistry C, 2016, 120, 13649-13655.	3.1	29
2792	Identification of a positive-Seebeck-coefficient exohedral fullerene. Nanoscale, 2016, 8, 13597-13602.	5.6	9
2793	Enhanced near-infrared shielding ability of (Li,K)-codoped WO ₃ for smart windows: DFT prediction validated by experiment. Nanotechnology, 2016, 27, 075203.	2.6	28
2794	Theoretical study of para-nitro-aniline adsorption on the Au(111) surface. Surface Science, 2016, 649, 124-132.	1.9	5
2795	Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nature Communications, 2016, 7, 10545.	12.8	392
2796	Targeted design of α-MnO2 based catalysts for oxygen reduction. Electrochimica Acta, 2016, 191, 452-461.	5.2	29
2797	Gradient-regulated connection-based correction for the PBE exchange: the PBEtrans model. Molecular Physics, 2016, 114, 1059-1065.	1.7	3
2798	Adsorption of Helium Atoms on Two-Dimensional Substrates. Journal of Low Temperature Physics, 2016, 185, 392-398.	1.4	2
2799	Structural, electrical and microwave properties of (Sr _{0.6} Ca _{0.4}) (Co _y Mn _{1â^'y}) O ₃ (0.2 â‰ゅ â‰ゅ.0) thick film ceramics. Microelectronics International, 2016, 33, 9-14.	0.6	3
2800	First-principles investigation of hydrogen storage on lead(II)-based metal-organic framework. International Journal of Hydrogen Energy, 2016, 41, 2711-2719.	7.1	13
2801	Interaction of CO with PtxAg1-x/Pt(111) surface alloys: More than dilution by Ag atoms. Surface Science, 2016, 650, 237-254.	1.9	11

#	Article	IF	CITATIONS
2802	A Ti-decorated boron monolayer: a promising material for hydrogen storage. RSC Advances, 2016, 6, 12925-12931.	3.6	15
2803	Ab Initio Thermodynamics and First-Principles Microkinetics for Surface Catalysis. Catalysis Letters, 2016, 146, 541-563.	2.6	148
2804	Formation, Migration, and Reactivity of Au–CO Complexes on Gold Surfaces. Journal of the American Chemical Society, 2016, 138, 1518-1526.	13.7	74
2805	2D Cocrystallization from H-Bonded Organic Ferroelectrics. Journal of Physical Chemistry Letters, 2016, 7, 435-440.	4.6	19
2806	A Fundamental Relationship between Reaction Mechanism and Stability in Metal Oxide Catalysts for Oxygen Evolution. ACS Catalysis, 2016, 6, 1153-1158.	11.2	377
2807	Density functional study on redox energetics of LaMO3 (M=Scâ€"Cu) perovskite-type oxides. Journal of Solid State Chemistry, 2016, 233, 62-66.	2.9	2
2808	Electroreduction of N $<$ sub $>$ 2 $<$ /sub $>$ to Ammonia at Ambient Conditions on Mononitrides of Zr, Nb, Cr, and V: A DFT Guide for Experiments. ACS Catalysis, 2016, 6, 635-646.	11.2	317
2809	Water Splitting on TiO ₂ -Based Electrochemical Cells: A Small Cluster Study. Journal of Physical Chemistry C, 2016, 120, 437-449.	3.1	21
2810	High pressure structural, electronic and vibrational properties of InN and InP. Phase Transitions, 2016, 89, 283-309.	1.3	4
2811	Adsorption of guaiacol on Fe (110) and Pd (111) from first principles. Surface Science, 2016, 648, 227-235.	1.9	36
2812	Characterization, quantum, antibacterial, antifungal and antioxidant studies on Hg(II) and Cd(II)		
	complexes of allyl and ethyl thiosemicarbazides derived from 2-aminothiazole-4-yl acetohydrazide. Egyptian Journal of Basic and Applied Sciences, 2016, 3, 44-60.	0.6	15
2813		3.6	14
2813 2814	Egyptian Journal of Basic and Applied Sciences, 2016, 3, 44-60. How does an amalgamated Ni cathode affect carbon nanotube growth? A density functional theory		
	Egyptian Journal of Basic and Applied Sciences, 2016, 3, 44-60. How does an amalgamated Ni cathode affect carbon nanotube growth? A density functional theory study. RSC Advances, 2016, 6, 27191-27196. Catalytic Upgrading of Methane to Higher Hydrocarbon in a Nonoxidative Chemical Conversion.	3.6	14
2814	Egyptian Journal of Basic and Applied Sciences, 2016, 3, 44-60. How does an amalgamated Ni cathode affect carbon nanotube growth? A density functional theory study. RSC Advances, 2016, 6, 27191-27196. Catalytic Upgrading of Methane to Higher Hydrocarbon in a Nonoxidative Chemical Conversion. Energy & Dissociation dynamics of ethylene molecules on a Ni cluster using <i>ab initio </i> i>molecular dynamics	3.6 5.1	26
2814 2815	Egyptian Journal of Basic and Applied Sciences, 2016, 3, 44-60. How does an amalgamated Ni cathode affect carbon nanotube growth? A density functional theory study. RSC Advances, 2016, 6, 27191-27196. Catalytic Upgrading of Methane to Higher Hydrocarbon in a Nonoxidative Chemical Conversion. Energy & Dissociation dynamics of ethylene molecules on a Ni cluster using initio ini	3.6 5.1 1.8	14 26 7
2814 2815 2816	Egyptian Journal of Basic and Applied Sciences, 2016, 3, 44-60. How does an amalgamated Ni cathode affect carbon nanotube growth? A density functional theory study. RSC Advances, 2016, 6, 27191-27196. Catalytic Upgrading of Methane to Higher Hydrocarbon in a Nonoxidative Chemical Conversion. Energy & Dissociation dynamics of ethylene molecules on a Ni cluster using <i>ab initio </i> Dissociation dynamics of ethylene molecules on a Ni cluster using <i>ab initio </i> Simulations. Journal of Physics Condensed Matter, 2016, 28, 145001. On the mechanism of high product selectivity for HCOOH using Pb in CO ₂ electroreduction. Physical Chemistry Chemical Physics, 2016, 18, 9652-9657. Active sites and mechanisms for H ₂ O ₂ decomposition over Pd catalysts.	3.6 5.1 1.8 2.8	14 26 7 60

#	ARTICLE	IF	CITATIONS
2821	Reactivity and mechanism investigation of selective hydrogenation of 2,3,5-trimethylbenzoquinone on in situ generated metallic cobalt. Catalysis Science and Technology, 2016, 6, 4503-4510.	4.1	18
2822	Electronic Anisotropy at Vicinal Ag(1 $1\mathrm{n}$) Surfaces: Energetics of Hydrogen Adsorption. Journal of Physical Chemistry C, 2016, 120, 2109-2118.	3.1	4
2823	Adsorption of ethyl xanthate on ZnS(110) surface in the presence of water molecules: A DFT study. Applied Surface Science, 2016, 370, 11-18.	6.1	76
2824	Synthesis, spectroscopic characterization and electrochemical studies of Girard's T chromone complexes. Journal of Molecular Structure, 2016, 1111, 201-213.	3.6	8
2825	Reconstruction of low-index graphite surfaces. Surface Science, 2016, 649, 60-65.	1.9	15
2826	Preferential activation of CO near hydrocarbon chains during Fischer–Tropsch synthesis on Ru. Journal of Catalysis, 2016, 337, 91-101.	6.2	54
2827	Insights from methane decomposition on nanostructured palladium. Journal of Catalysis, 2016, 337, 111-121.	6.2	38
2828	Multi-scale computation methods: Their applications in lithium-ion battery research and development. Chinese Physics B, 2016, 25, 018212.	1.4	449
2829	The influence of surface oxygen and hydroxyl groups on the dehydrogenation of ethylene, acetic acid and hydrogenated vinyl acetate on pure $Pd(1\ 0\ 0)$: A DFT study. Applied Surface Science, 2016, 388, 455-460.	6.1	16
2830	In search of the mutual relationship between the structure, solid-state spectroscopy and molecular dynamics in selected calcium channel blockers. European Journal of Pharmaceutical Sciences, 2016, 85, 68-83.	4.0	16
2831	Breakthrough of thep-type doping bottleneck in ZnO by inserting an ultrathin ZnX (X  =  S, Se a layer doped with NXor AgZn. Journal Physics D: Applied Physics, 2016, 49, 095104.	nd Te) 2.8	5
2832	Density functional theory studies of HCOOH decomposition on Pd(111). Surface Science, 2016, 650, 111-120.	1.9	70
2833	HCOOH decomposition on Pt(111): A DFT study. Surface Science, 2016, 648, 201-211.	1.9	54
2834	DFT Study on the Mechanism of the Electrochemical Reduction of CO ₂ Catalyzed by Cobalt Porphyrins. Journal of Physical Chemistry C, 2016, 120, 15714-15721.	3.1	167
2835	Potential-Dependent Generation of O ₂ ^{â€"} and LiO ₂ and Their Critical Roles in O ₂ Reduction to Li ₂ O ₂ in Aprotic Liâ€"O ₂ Batteries. Journal of Physical Chemistry C, 2016, 120, 3690-3698.	3.1	149
2836	Intrinsic Selectivity and Structure Sensitivity of Rhodium Catalysts for C ₂₊ Oxygenate Production. Journal of the American Chemical Society, 2016, 138, 3705-3714.	13.7	179
2837	In Search of Initial Predictors of Fischer–Tropsch Catalytic Activity. IEEE Nanotechnology Magazine, 2016, 15, 738-745.	2.0	0
2839	Energy loss in gas-surface dynamics: Electron–hole pair and phonon excitation upon adsorbate relaxation. Nuclear Instruments & Methods in Physics Research B, 2016, 382, 26-31.	1.4	19

#	Article	IF	CITATIONS
2840	Bifunctional alloys for the electroreduction of CO ₂ and CO. Physical Chemistry Chemical Physics, 2016, 18, 9194-9201.	2.8	127
2841	On the mechanism of electrochemical ammonia synthesis on the Ru catalyst. Physical Chemistry Chemical Physics, 2016, 18, 9161-9166.	2.8	155
2842	Effect of doping \hat{I}^2 -NiOOH with Co on the catalytic oxidation of water: DFT+U calculations. Physical Chemistry Chemical Physics, 2016, 18, 7490-7501.	2.8	32
2843	First-principles design of a borocarbonitride-based anode for superior performance in sodium-ion batteries and capacitors. Journal of Materials Chemistry A, 2016, 4, 5517-5527.	10.3	24
2844	Investigation of Li-lon Solvation in Carbonate Based Electrolytes Using Near Ambient Pressure Photoemission. Topics in Catalysis, 2016, 59, 628-634.	2.8	10
2845	First principles study of halogens adsorption on intermetallic surfaces. Applied Surface Science, 2016, 364, 29-36.	6.1	8
2846	Ab initio molecular dynamics simulations of the O2/Pt(1 $1\ 1$) interaction. Catalysis Today, 2016, 260, 60-65.	4.4	23
2847	Bimetallic Au–Sn/AC catalysts for acetylene hydrochlorination. Journal of Industrial and Engineering Chemistry, 2016, 35, 177-184.	5.8	55
2848	Role of Branching on the Rate and Mechanism of C–C Cleavage in Alkanes on Metal Surfaces. ACS Catalysis, 2016, 6, 469-482.	11.2	40
2849	Catalytic Activities of Sulfur Atoms in Amorphous Molybdenum Sulfide for the Electrochemical Hydrogen Evolution Reaction. ACS Catalysis, 2016, 6, 861-867.	11.2	280
2850	Dibenzyl disulfide adsorption on Cu(111) surface: a DFT study. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	4
2851	First-principles calculated spin-gapless semiconducting behavior in quaternary VCoHfGa and CrFeHfGa Heusler compounds. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 209, 45-50.	3.5	20
2852	Molecular modeling of the proton density distribution in a water-filled slab-like nanopore bounded by Pt oxide and ionomer. Catalysis Today, 2016, 262, 133-140.	4.4	25
2853	Interaction of a Self-Assembled Ionic Liquid Layer with Graphite (0001): A Combined Experimental and Theoretical Study. Journal of Physical Chemistry Letters, 2016, 7, 226-233.	4.6	68
2854	Tuning the thermoelectric properties of metallo-porphyrins. Nanoscale, 2016, 8, 2428-2433.	5. 6	33
2855	Pt3Re alloy nanoparticles as electrocatalysts for the oxygen reduction reaction. Nano Energy, 2016, 20, 202-211.	16.0	38
2856	Ligand ordering determines the catalytic response of hybrid palladium nanoparticles in hydrogenation. Catalysis Science and Technology, 2016, 6, 1621-1631.	4.1	45
2857	Oxygen Reduction Reaction on Pt Overlayers Deposited onto a Gold Film: Ligand, Strain, and Ensemble Effect. ACS Catalysis, 2016, 6, 671-676.	11.2	79

#	Article	IF	CITATIONS
2858	DFT theoretical and FT-IR spectroscopic investigations of the plasticity of clay minerals dispersions. Journal of Molecular Structure, 2016, 1109, 97-105.	3.6	21
2859	The selectivity and activity of catalyst for CO hydrogenation to methanol and hydrocarbon: A comparative study on Cu, Co and Ni surfaces. Surface Science, 2016, 645, 30-40.	1.9	15
2860	Ferroelectrics: A pathway to switchable surface chemistry and catalysis. Surface Science, 2016, 650, 302-316.	1.9	114
2861	DFT study of the water gas shift reaction on Ni(111), Ni(100) and Ni(110) surfaces. Surface Science, 2016, 644, 53-63.	1.9	84
2862	DFT calculations on electro-oxidations and dissolutions of Pt and Pt–Au nanoparticles. Catalysis Today, 2016, 262, 100-109.	4.4	25
2863	Atomistic understanding of the origin of high oxygen reduction electrocatalytic activity of cuboctahedral Pt ₃ Co–Pt core–shell nanoparticles. Catalysis Science and Technology, 2016, 6, 1393-1401.	4.1	17
2864	Theoretical insight on reactivity trends in CO ₂ electroreduction across transition metals. Catalysis Science and Technology, 2016, 6, 1042-1053.	4.1	57
2865	Comparison of the coupling of ethylene with acetate species and ethylene dehydrogenation on Pd–Au(100): a density functional study. Catalysis Science and Technology, 2016, 6, 555-568.	4.1	9
2866	Morphology control of K2O promoter on HÃǥg carbide (χ-Fe5C2) under Fischer–Tropsch synthesis condition. Catalysis Today, 2016, 261, 93-100.	4.4	35
2867	Elaborated studies on nano-sized homo-binuclear Mn(II), Fe(III), Co(II), Ni(II), and Cu(II) complexes derived from N2O2 Schiff base, thermal, molecular modeling, drug-likeness, and spectral. Journal of Thermal Analysis and Calorimetry, 2016, 123, 731-743.	3.6	56
2868	Quantum and classical dynamics of reactive scattering of H ₂ from metal surfaces. Chemical Society Reviews, 2016, 45, 3658-3700.	38.1	137
2869	Electrochemical synthesis of ammonia via Mars-van Krevelen mechanism on the (111) facets of group Ill–VII transition metal mononitrides. Catalysis Today, 2017, 286, 78-84.	4.4	117
2870	Role of the Edge Properties in the Hydrogen Evolution Reaction on MoS ₂ . Chemistry - A European Journal, 2017, 23, 4863-4869.	3.3	31
2871	Carbon dissolution and segregation in platinum. Catalysis Science and Technology, 2017, 7, 807-816.	4.1	13
2872	High-Dimensional Atomistic Neural Network Potentials for Molecule–Surface Interactions: HCl Scattering from Au(111). Journal of Physical Chemistry Letters, 2017, 8, 666-672.	4.6	94
2873	A promising lead-free fluoride carbonate SHG material designed from a theoretical perspective. Dalton Transactions, 2017, 46, 2635-2642.	3.3	15
2874	Density functional theory is straying from the path toward the exact functional. Science, 2017, 355, 49-52.	12.6	711
2875	Chemically accurate simulation of dissociative chemisorption of D2 on Pt(1 11). Chemical Physics Letters, 2017, 683, 329-335.	2.6	37

#	Article	IF	CITATIONS
2876	Oxygen effects on the structure and hydrogenation activity of the MoS 2 active site: A mechanism study by DFT calculation. Fuel, 2017, 194, 63-74.	6.4	19
2877	Predicting bond dissociation energy and bond length for bimetallic diatomic molecules: a challenge for electronic structure theory. Physical Chemistry Chemical Physics, 2017, 19, 5839-5854.	2.8	21
2878	Adding Pieces to the CO/Pt(111) Puzzle: The Role of Dispersion. Journal of Physical Chemistry C, 2017, 121, 3970-3977.	3.1	46
2879	A New Type of Scaling Relations to Assess the Accuracy of Computational Predictions of Catalytic Activities Applied to the Oxygen Evolution Reaction. ChemCatChem, 2017, 9, 1261-1268.	3.7	7 5
2880	High Redox Capacity of Alâ€Doped La _{1â^'<i>x</i>} Sr _{<i>x</i>} MnO _{3â^'<i>δ</i>} Perovskites for Splitting CO ₂ and H ₂ O at Mnâ€Enriched Surfaces. ChemSusChem, 2017, 10, 1517-1525.	6.8	34
2881	The Adsorption Geometry and Electronic Structure of Organic Dye Molecule on TiO2(101) Surface from First Principles Calculations. MATEC Web of Conferences, 2017, 88, 03002.	0.2	0
2882	First-principle studies on the Li–Te system. Materials Research Express, 2017, 4, 015701.	1.6	0
2883	Photocatalytic improvement of Mn-adsorbed g-C3N4. Applied Catalysis B: Environmental, 2017, 206, 271-281.	20.2	118
2884	Influence of La/W ratio on electrical conductivity of lanthanum tungstate with high La/W ratio. Journal of Solid State Chemistry, 2017, 248, 1-8.	2.9	11
2885	DFT-Based Method for More Accurate Adsorption Energies: An Adaptive Sum of Energies from RPBE and vdW Density Functionals. Journal of Physical Chemistry C, 2017, 121, 4937-4945.	3.1	80
2886	Theoretical insight into an empirical rule about organic corrosion inhibitors containing nitrogen, oxygen, and sulfur atoms. Applied Surface Science, 2017, 406, 301-306.	6.1	323
2887	Calculations of solidâ€state ⁴³ Ca NMR parameters: A comparison of periodic and cluster approaches and an evaluation of DFT functionals. Journal of Computational Chemistry, 2017, 38, 949-956.	3.3	19
2888	<i>Ab initio</i> study of the structural, electronic, elastic and thermal conductivity properties of SrCIF with pressure effects. Philosophical Magazine, 2017, 97, 743-758.	1.6	8
2889	A DFT and MD study of aqueous-phase dehydrogenation of glycerol on $Pt(1\ 1\ 1)$: comparing chemical accuracy versus computational expense in different methods for calculating aqueous-phase system energies. Molecular Simulation, 2017, 43, 370-378.	2.0	19
2890	Controlling In-Plane Isotropic and Anisotropic Orientation of Organic Semiconductor Molecules on Ionic Fluoride Dielectrics. Journal of Physical Chemistry C, 2017, 121, 4426-4433.	3.1	3
2891	Experimental and Firstâ∈Principles Evidence for Interfacial Activity of Ru/TiO ₂ for the Direct Conversion of <i>m</i> ia∈€resol to Toluene. ChemCatChem, 2017, 9, 2642-2651.	3.7	42
2892	Molecular modeling and infrared and Raman spectroscopy of the crystal structure of the chiral antiparasitic drug Praziquantel. Journal of Molecular Modeling, 2017, 23, 106.	1.8	25
2893	The activity origin of core–shell and alloy AgCu bimetallic nanoparticles for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5, 7043-7054.	10.3	60

#	ARTICLE	IF	CITATIONS
2894	Computational Predictions of Catalytic Activity of Zincblende (110) Surfaces of Metal Nitrides for Electrochemical Ammonia Synthesis. Journal of Physical Chemistry C, 2017, 121, 6141-6151.	3.1	99
2895	Computational screening of perovskite redox materials for solar thermochemical ammonia synthesis from N 2 and H 2 O. Catalysis Today, 2017, 286, 124-130.	4.4	29
2896	Steam methane reforming on a Ni-based bimetallic catalyst: density functional theory and experimental studies of the catalytic consequence of surface alloying of Ni with Ag. Catalysis Science and Technology, 2017, 7, 1713-1725.	4.1	55
2897	Equilibrium Shape of Metal Nanoparticles under Reactive Gas Conditions. Journal of Physical Chemistry C, 2017, 121, 5629-5634.	3.1	48
2898	Role of Heteronuclear Interactions in Selective H ₂ Formation from HCOOH Decomposition on Bimetallic Pd/M (M = Late Transition FCC Metal) Catalysts. ACS Catalysis, 2017, 7, 2553-2562.	11.2	46
2899	Synergetic Surface Sensitivity of Photoelectrochemical Water Oxidation on TiO ₂ (Anatase) Electrodes. Journal of Physical Chemistry C, 2017, 121, 6024-6032.	3.1	18
2900	Iron incorporation affecting the structure and boosting catalytic activity of \hat{l}^2 -Co(OH) ₂ : exploring the reaction mechanism of ultrathin two-dimensional carbon-free Fe ₃ O ₄ -decorated \hat{l}^2 -Co(OH) ₂ nanosheets as efficient oxygen evolution electrocatalysts. Journal of Materials Chemistry A, 2017, 5, 6849-6859.	10.3	67
2901	Influence of Surface Adsorption on the Oxygen Evolution Reaction on IrO ₂ (110). Journal of the American Chemical Society, 2017, 139, 3473-3479.	13.7	269
2902	First-principles study of the structural, electronic, elastic, and thermodynamic properties of Rh3Sc compound under high pressure. Journal of Alloys and Compounds, 2017, 704, 484-490.	5.5	16
2903	Unraveling the Interaction Mechanism between Amidoxime Groups and Vanadium Ions at Various pH Conditions. Journal of Physical Chemistry C, 2017, 121, 6436-6445.	3.1	14
2904	Dependence of electrical transport properties of CaO(CaMnO3)m (m = 1, 2, 3, â^ž) thermoelectric oxides on lattice periodicity. Journal of Applied Physics, 2017, 121, .	2.5	15
2905	Single site porphyrine-like structures advantages over metals for selective electrochemical CO2 reduction. Catalysis Today, 2017, 288, 74-78.	4.4	116
2906	Quantitative and Atomic-Scale View of CO-Induced Pt Nanoparticle Surface Reconstruction at Saturation Coverage via DFT Calculations Coupled with <i>in Situ</i> TEM and IR. Journal of the American Chemical Society, 2017, 139, 4551-4558.	13.7	186
2907	First-principles calculation of atomic configurations of carbon and tin near the surface of a silicon thin film used for solar cells. Materials Science in Semiconductor Processing, 2017, 63, 45-51.	4.0	2
2908	Self-Diffusion of Surface Defects at Copper–Water Interfaces. Journal of Physical Chemistry C, 2017, 121, 4368-4383.	3.1	31
2909	Tunable thermodynamic activity of La _x Sr _{1â^x} Mn _y Al _{1â^y} O _{3â^î} (0 â‰\$ â‰\$,0 â%perovskites for solar thermochemical fuel synthesis. Journal of Materials Chemistry A, 2017, 5, 4172-4182.	‰¤,≤) 10.3	64
2910	Computational Study of Nb-Doped-SnO ₂ /Pt Interfaces: Dopant Segregation, Electronic Transport, and Catalytic Properties. Chemistry of Materials, 2017, 29, 1641-1649.	6.7	12
2911	Highly Efficient Ru@IL/AC To Substitute Mercuric Catalyst for Acetylene Hydrochlorination. ACS Catalysis, 2017, 7, 3510-3520.	11.2	93

#	Article	IF	CITATIONS
2912	Origin of the Enhanced Catalytic Activity of PtM/Pd (111) with Doped Atoms Changing from Chemically Inert Au to Active Os. Journal of Physical Chemistry C, 2017, 121, 8781-8786.	3.1	12
2913	PdZn intermetallic on a CN@ZnO hybrid as an efficient catalyst for the semihydrogenation of alkynols. Journal of Catalysis, 2017, 350, 13-20.	6.2	51
2914	Optimizing the ORR activity of Pd based nanocatalysts by tuning their strain and particle size. Journal of Materials Chemistry A, 2017, 5, 9867-9872.	10.3	98
2915	Low-temperature activation of methane on the IrO ₂ (110) surface. Science, 2017, 356, 299-303.	12.6	244
2916	New Platinum Alloy Catalysts for Oxygen Electroreduction Based on Alkaline Earth Metals. Electrocatalysis, 2017, 8, 594-604.	3.0	23
2917	First-principles study of intermetallic compounds In CrMnFeCoNiZr system high-entropy alloy. International Journal of Modern Physics B, 2017, 31, 1744007.	2.0	0
2918	Mechanistic origin of low polarization in aprotic Na–O ₂ batteries. Physical Chemistry Chemical Physics, 2017, 19, 12375-12383.	2.8	24
2919	Activity and electrochemical stability of a chromium modified nickel catalyst for oxygen reduction reaction. Electrochimica Acta, 2017, 236, 260-272.	5.2	10
2920	Addressing uncertainty in atomistic machine learning. Physical Chemistry Chemical Physics, 2017, 19, 10978-10985.	2.8	128
2921	Importance of Ligand Effects Breaking the Scaling Relation for Core–Shell Oxygen Reduction Catalysts. ChemCatChem, 2017, 9, 3173-3179.	3.7	28
2922	Unsaturated surface in <scp>CO</scp> saturation. Surface and Interface Analysis, 2017, 49, 892-897.	1.8	2
2923	Mechanistic Study on Electrocatalytic Hydrogen Evolution by High Efficiency Graphene/MoS ₂ Heterostructure. ChemistrySelect, 2017, 2, 3657-3667.	1.5	22
2924	Electrical conductive and damage-tolerant nanolaminated MAB phases Cr ₂ AlB ₂ , Cr ₃ AlB ₄ and Cr ₄ AlB ₆ . Materials Research Letters, 2017, 5, 440-448.	8.7	78
2925	In-operando elucidation of bimetallic CoNi nanoparticles during high-temperature CH4/CO2 reaction. Applied Catalysis B: Environmental, 2017, 213, 177-189.	20.2	88
2926	Enhanced atomic oxygen adsorption on defective nickel surfaces: An ab initio study. Surface Science, 2017, 663, 62-70.	1.9	5
2927	Structure of the high-entropy alloy Al CrFeCoNi: fcc versus bcc. Journal of Alloys and Compounds, 2017, 715, 454-459.	5.5	87
2928	Assessment of electronic structure methods for the determination of the ground spin states of Fe(<scp>ii</scp>), Fe(<scp>iii</scp>) and Fe(<scp>iv</scp>) complexes. Physical Chemistry Chemical Physics, 2017, 19, 13049-13069.	2.8	100
2929	Stability of bound species during alkene reactions on solid acids. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3900-E3908.	7.1	52

#	Article	IF	CITATIONS
2930	Adsorption and dissociation of H 2 O and CO 2 on the clean and O-pre-covered Ru(0001) surface. Applied Catalysis A: General, 2017, 540, 31-36.	4.3	8
2931	Physicochemical Studies of Adsorptive Denitrogenation by Oxidized Activated Carbons. Industrial & Lamp; Engineering Chemistry Research, 2017, 56, 5033-5041.	3.7	27
2932	Solid state ball milling as a green approach to prepare Cu(<scp>ii</scp>) complexes: structural, spectral, DFT, and DNA studies. New Journal of Chemistry, 2017, 41, 4555-4563.	2.8	12
2933	Accurate Neural Network Description of Surface Phonons in Reactive Gas–Surface Dynamics: N ₂ + Ru(0001). Journal of Physical Chemistry Letters, 2017, 8, 2131-2136.	4.6	126
2934	Orientation Selection during Heterogeneous Nucleation: Implications for Heterogeneous Catalysis. Journal of Physical Chemistry C, 2017, 121, 10027-10037.	3.1	13
2935	HCl dissociating on a rigid Au(111) surface: A six-dimensional quantum mechanical study on a new notential energy surface based on the RPRE functional. Journal of Chemical Physics, 2017, 146, 164706. Catalytic characteristics of active corner sites in Coommitment	3.0	20
2936	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mrow><mml:mtext></mml:mtext></mml:mrow> Mo <mml:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:math> S nanostructure	6.2	58
2937	hydrodesulfurization – A mechanism study based on DFT calculations. Journal of Catalysis, 2017, 345, 2 Modelling the electronic structure of orthorhombic LaMnO3. Solid State Ionics, 2017, 299, 13-17.	2.7	23
2938	First-principles study on codoping effect to enhance photocatalytic activity of anatase TiO ₂ . International Journal of Modern Physics B, 2017, 31, 1750036.	2.0	3
2939	Theoretical insights into the effect of terrace width and step edge coverage on CO adsorption and dissociation over stepped Ni surfaces. Physical Chemistry Chemical Physics, 2017, 19, 17918-17927.	2.8	6
2940	Vibrational Excitation of H ₂ Scattering from Cu(111): Effects of Surface Temperature and of Allowing Energy Exchange with the Surface. Journal of Physical Chemistry C, 2017, 121, 13617-13633.	3.1	26
2941	How relevant is the adsorption bonding of imidazoles and triazoles for their corrosion inhibition of copper?. Corrosion Science, 2017, 124, 25-34.	6.6	64
2942	Solvation Effects for Oxygen Evolution Reaction Catalysis on IrO ₂ (110). Journal of Physical Chemistry C, 2017, 121, 11455-11463.	3.1	174
2943	DFT study of adsorption and diffusion of atomic hydrogen on metal surfaces. Applied Surface Science, 2017, 420, 1-8.	6.1	59
2944	Cleavage of rutile SiO 2 hemi-crystals: Insights from first-principles investigations. Solid State Sciences, 2017, 67, 119-124.	3.2	5
2945	Multiscale study of the structure and hydrogen storage capacity of an aluminum metal-organic framework. International Journal of Hydrogen Energy, 2017, 42, 15271-15282.	7.1	25
2946	Phase stability, elastic and electronic properties of Hf–Rh intermetallic compounds from first-principles calculations. RSC Advances, 2017, 7, 20241-20251.	3.6	4
2947	Quantum Chemical Spin Densities for Radical Cations of Photosynthetic Pigment Models. Photochemistry and Photobiology, 2017, 93, 815-833.	2.5	9

#	Article	IF	CITATIONS
2948	Uncertainties in Theoretical Description of Well-Defined Heterogeneous Catalysts. Studies in Surface Science and Catalysis, 2017, 177, 541-565.	1.5	1
2949	Describing the anisotropic 133Cs solid state NMR interactions in cesium chromate. Chemical Physics Letters, 2017, 684, 8-13.	2.6	4
2950	Systematic Investigation of π–π Interactions in Near-Edge X-ray Fine Structure (NEXAFS) Spectroscopy of Paracyclophanes. Journal of Physical Chemistry A, 2017, 121, 4907-4913.	2.5	10
2951	Substrate induced molecular conformations in rubrene thin films: A thickness dependent study. Synthetic Metals, 2017, 230, 51-57.	3.9	5
2952	Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes. ACS Catalysis, 2017, 7, 4822-4827.	11.2	637
2953	Scaling Relations and Kinetic Monte Carlo Simulations To Bridge the Materials Gap in Heterogeneous Catalysis. ACS Catalysis, 2017, 7, 5054-5061.	11.2	74
2954	Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Molecular Physics, 2017, 115, 2315-2372.	1.7	1,401
2955	Recent Progress in the Development of Semiconductorâ€Based Photocatalyst Materials for Applications in Photocatalytic Water Splitting and Degradation of Pollutants. Advanced Sustainable Systems, 2017, 1, 1700006.	5. 3	144
2956	Charge Storage Mechanism of RuO ₂ /Water Interfaces. Journal of Physical Chemistry C, 2017, 121, 18975-18981.	3.1	15
2957	Adsorption differences between low coverage enantiomers of alanine on the chiral Cu{421} ^R surface. Physical Chemistry Chemical Physics, 2017, 19, 13562-13570.	2.8	6
2958	Electrode potential dependent desolvation and resolvation of germanium (100) in contact with aqueous perchlorate electrolytes. Physical Chemistry Chemical Physics, 2017, 19, 13585-13595.	2.8	14
2959	Spin polarized first principles study of Mn doped gallium nitride monolayer nanosheet. AIP Conference Proceedings, 2017, , .	0.4	1
2960	Benchmarking of computational approaches for fast screening of lithium ion battery electrolyte solvents. Chemical Physics Letters, 2017, 681, 64-68.	2.6	11
2961	Electrochemical Activation of CO ₂ through Atomic Ordering Transformations of AuCu Nanoparticles. Journal of the American Chemical Society, 2017, 139, 8329-8336.	13.7	529
2962	On the dynamics of H $<$ sub $>$ 2 $<$ /sub $>$ adsorption on the Pt(111) surface. International Journal of Quantum Chemistry, 2017, 117, e25407.	2.0	11
2963	A theoretical study on the role of water and its derivatives in acetic acid steam reforming on Ni(111). Applied Surface Science, 2017, 419, 114-125.	6.1	17
2964	Structural properties and mechanical stability of monoclinic lithium disilicate. Physica Status Solidi (B): Basic Research, 2017, 254, 1700108.	1.5	6
2965	Two-Dimensional MXenes as Catalysts for Electrochemical Hydrogen Evolution: A Computational Screening Study. Journal of Physical Chemistry C, 2017, 121, 13593-13598.	3.1	183

#	Article	IF	CITATIONS
2966	Electronic Properties of a New All-Inorganic Perovskite TlPbI3 Simulated by the First Principles. Nanoscale Research Letters, 2017, 12, 232.	5.7	11
2967	Molecular Dynamics Simulation of a RNA Aptasensor. Journal of Physical Chemistry B, 2017, 121, 4071-4080.	2.6	34
2968	High-performance thermoelectricity in edge-over-edge zinc-porphyrin molecular wires. Nanoscale, 2017, 9, 5299-5304.	5.6	37
2969	Jellium-with-gap model applied to semilocal kinetic functionals. Physical Review B, 2017, 95, .	3.2	26
2970	Effect of exchange-correlation functionals on the density functional theory simulation of phase transformation of fast-ion conductors: A case study in the Li garnet oxide Li7La3Zr2O12. Computational Materials Science, 2017, 134, 132-136.	3.0	1
2971	First-principles identification of site dependent activity of graphene based electrocatalyst. Molecular Catalysis, 2017, 432, 242-249.	2.0	6
2972	Physical properties and Debye temperature of Al7Cu2Fe alloy under various pressures analyzed by first-principles. Solid State Communications, 2017, 257, 6-10.	1.9	16
2973	Structural, electronic and optical properties of brookite phase titanium dioxide. Materials Research Express, 2017, 4, 044003.	1.6	9
2974	Synthesis, spectroscopic, molecular structure, antioxidant, antimicrobial and antitumor behavior of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of O 2 N type tridentate chromone-2-carboxaldehyde Schiff's base ligand. Journal of Molecular Structure, 2017, 1141, 368-381.	3.6	36
2975	Adsorbate Entropies with Complete Potential Energy Sampling in Microkinetic Modeling. Journal of Physical Chemistry C, 2017, 121, 7199-7207.	3.1	70
2976	Interface engineering for a rational design of poison-free bimetallic CO oxidation catalysts. Nanoscale, 2017, 9, 5244-5253.	5.6	28
2977	Practical principles of density functional theory for catalytic reaction simulations on metal surfaces – from theory to applications. Molecular Simulation, 2017, 43, 861-885.	2.0	22
2978	A review on methane transformation to hydrogen and nanocarbon: Relevance of catalyst characteristics and experimental parameters on yield. Renewable and Sustainable Energy Reviews, 2017, 76, 743-767.	16.4	79
2979	Dissociative and non-dissociative adsorption of O ₂ on Cu(111) and Cu _{ML} /Ru(0001) surfaces: adiabaticity takes over. Physical Chemistry Chemical Physics, 2017, 19, 10217-10221.	2.8	20
2980	Electric field effect of GaAs monolayer from first principles. AIP Advances, 2017, 7, .	1.3	25
2981	Methanol Oxidation on Pt(111) from First-Principles in Heterogeneous and Electrocatalysis. Electrocatalysis, 2017, 8, 577-586.	3.0	26
2982	Structural, elastic and electronic properties of B2-type modified by ternary additions FeAl-based intermetallics: First-principles study. Journal of Alloys and Compounds, 2017, 710, 581-588.	5.5	43
2983	A high-throughput framework for determining adsorption energies on solid surfaces. Npj Computational Materials, 2017, 3, .	8.7	70

#	Article	IF	CITATIONS
2984	Electronic structure, lattice dynamics, and thermoelectric properties of bismuth nanowire from first-principles calculation. Journal of Materials Research, 2017, 32, 2405-2413.	2.6	3
2985	Gold–Ligand-Catalyzed Selective Hydrogenation of Alkynes into ⟨i⟩cis⟨ i⟩-Alkenes via H⟨sub⟩2⟨ sub⟩ Heterolytic Activation by Frustrated Lewis Pairs. ACS Catalysis, 2017, 7, 2973-2980.	11.2	108
2986	Probing CO/Fe(100) surfaces from firstâ€principles: structures, energetics, and vibrations. Surface and Interface Analysis, 2017, 49, 182-189.	1.8	6
2987	Thermodynamics of GaN(s)-NH 3 (v)+N 2 (v)+H 2 (v) system – Electronic aspects of the processes at GaN(0001) surface. Surface Science, 2017, 662, 12-33.	1.9	12
2988	Highly effective Ir-based catalysts for benzoic acid hydrogenation: experiment- and theory-guided catalyst rational design. Green Chemistry, 2017, 19, 1766-1774.	9.0	27
2989	High Elastic Strain Directly Tunes the Hydrogen Evolution Reaction on Tungsten Carbide. Journal of Physical Chemistry C, 2017, 121, 6177-6183.	3.1	50
2990	Cobalt-related defects in silicon. Journal of Applied Physics, 2017, 121, .	2.5	7
2991	Use of chemical descriptors approach and DFT to analyze the C C bond cleavage on Pt 3 Re 1 alloy in the ethanol oxidation reaction for fuel cells. Journal of Electroanalytical Chemistry, 2017, 791, 185-195.	3.8	3
2992	Embedded and DFT Calculations on the Crystal Structures of Small Alkanes, Notably Propane. Crystal Growth and Design, 2017, 17, 1636-1646.	3.0	18
2993	Hydrogen Evolution Reaction on Nanostructures Electrodes—a Scenario on Stepped Silver Surfaces. Electrocatalysis, 2017, 8, 587-593.	3.0	4
2994	First-principles investigation of the structural and electronic properties of self-assemblies of functional molecules on graphene. Superlattices and Microstructures, 2017, 105, 139-151.	3.1	9
2995	Molecule-decorated rutile-type ZnF 2 (110): A periodic DFT study. Surface Science, 2017, 662, 34-41.	1.9	5
2996	Proton-Transfer Mechanisms at the Water–ZnO Interface: The Role of Presolvation. Journal of Physical Chemistry Letters, 2017, 8, 1476-1483.	4.6	106
2997	Catalytic enhancement of gold nanocages induced by undercoordination-charge-polarization. APL Materials, 2017, 5, 053501.	5.1	6
2998	Microstructure, mechanical properties, and electronic simulations of steel/aluminum alloy joint during deep penetration laser welding. International Journal of Advanced Manufacturing Technology, 2017, 89, 377-387.	3.0	9
2999	Effect of transition metal-doped Ni(211) for CO dissociation: Insights from DFT calculations. Applied Surface Science, 2017, 399, 255-264.	6.1	12
3000	Improved Catalysis of Green-Synthesized Pd-Ag Alloy-Nanoparticles for Anodic Oxidation of Methanol in Alkali. Electrochimica Acta, 2017, 225, 310-321.	5.2	63
3001	First-principles study of Al 2 Sm intermetallic compound on structural, mechanical properties and electronic structure. Solid State Communications, 2017, 251, 98-103.	1.9	8

#	ARTICLE	IF	CITATIONS
3002	Theoretical Investigation of Electronic Properties of Undoped and Ag-Doped (CdTe)16×N Multi-cage Nanochains. Journal of Cluster Science, 2017, 28, 1393-1405.	3.3	2
3003	Structural study of TiO2 nanotube based to the (101) anatase surface. Superlattices and Microstructures, 2017, 102, 307-313.	3.1	5
3004	Ab Initio Thermodynamics and First-Principles Microkinetics for Surface Catalysis. Springer Series in Chemical Physics, 2017, , 151-188.	0.2	4
3005	Density functional theory study of acetic acid steam reforming on Ni(111). Applied Surface Science, 2017, 400, 97-109.	6.1	27
3006	Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts. Catalysis Today, 2017, 286, 69-77.	4.4	164
3007	Quantitative Differences in Sulfur Poisoning Phenomena over Ruthenium and Palladium: An Attempt To Deconvolute Geometric and Electronic Poisoning Effects Using Model Catalysts. ACS Catalysis, 2017, 7, 592-605.	11.2	34
3008	Nature of the electrochemical HClO 4 /Pt(111) interface. Applied Surface Science, 2017, 400, 426-433.	6.1	1
3009	How covalence breaks adsorption-energy scaling relations and solvation restores them. Chemical Science, 2017, 8, 124-130.	7.4	145
3010	The synergetic effect of V and Fe-co-doping in TiO 2 studied from the DFT + U first-principle calculation. Applied Surface Science, 2017, 399, 654-662.	6.1	43
3011	Strain-Enhanced Oxygen Dynamics and Redox Reversibility in Topotactic SrCoO _{3-Î′} (0 < δ≤Tj E	TQ ₉ 1 1 0.	784314 rg
3012	Mechanism of coverage dependent CO adsorption and dissociation on the Mo(100) surface. Physical Chemistry Chemical Physics, 2017, 19, 2186-2192.	2.8	11
3013	Balance between physical and chemical interactions of second-row diatomic molecules with graphene sheet. Superlattices and Microstructures, 2017, 102, 45-55.	3.1	12
3014	Validation of Density Functionals for Adsorption Energies on Transition Metal Surfaces. Journal of Chemical Theory and Computation, 2017, 13, 835-842.	5.3	40
3015	A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Physical Chemistry Chemical Physics, 2017, 19, 32184-32215.	2.8	1,230
3016	First-principles investigation of Pd3Bi as a catalyst for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2017, 42, 30359-30363.	7.1	4
3017	Electron tomography and fractal aspects of MoS2 and MoS2/Co spheres. Scientific Reports, 2017, 7, 12322.	3.3	12
3018	Weak binding mode of CH 4 on rutile crystallites from density functional theory calculations. Computational and Theoretical Chemistry, 2017, 1121, 11-28.	2.5	3
3019	3â€(2â€(2â€ <scp>O</scp> xoâ€2 <scp><i>H</i></scp> â€chromeneâ€3â€carbonyl)hydrazono)â€ <i>N</i> <fep>DFT, Biological, and Ionâ€flotation studies. Journal of Heterocyclic Chemistry, 2017, 54, 3632-3645.</fep>	dinâ€2â€y 2.6	yl)butanami 3

#	ARTICLE	IF	CITATIONS
3020	Cationic Vacancy Defects in Iron Phosphide: A Promising Route toward Efficient and Stable Hydrogen Evolution by Electrochemical Water Splitting. ChemSusChem, 2017, 10, 4544-4551.	6.8	63
3021	Hydrogen Evolution Reaction Catalyzed by Transition-Metal Nitrides. Journal of Physical Chemistry C, 2017, 121, 24036-24045.	3.1	108
3022	Probing the Activity of Different Oxygen Species in the CO Oxidation over RuO⟨sub⟩2⟨/sub⟩(110) by Combining Transient Reflection–Absorption Infrared Spectroscopy with Kinetic Monte Carlo Simulations. ACS Catalysis, 2017, 7, 8420-8428.	11.2	16
3023	Atomic-Step-Induced Local Nonequilibrium Effects on Surface Oxidation. Journal of Physical Chemistry C, 2017, 121, 22846-22853.	3.1	10
3024	Strong Anisotropic Interaction Controls Unusual Sticking and Scattering of CO at Ru(0001). Physical Review Letters, 2017, 119, 146101.	7.8	17
3025	Configurational Energies of Nanoparticles Based on Metal–Metal Coordination. Journal of Physical Chemistry C, 2017, 121, 23002-23010.	3.1	40
3026	Stability and Effects of Subsurface Oxygen in Oxide-Derived Cu Catalyst for CO ₂ Reduction. Journal of Physical Chemistry C, 2017, 121, 25010-25017.	3.1	92
3027	Probing surface oxide formations on SiO ₂ -supported platinum nanocatalysts under CO oxidation. RSC Advances, 2017, 7, 45003-45009.	3.6	26
3028	Computational Screening of Rutile Oxides for Electrochemical Ammonia Formation. ACS Sustainable Chemistry and Engineering, 2017, 5, 10327-10333.	6.7	115
3029	Cost-effective liquid-phase exfoliation of molybdenum disulfide by prefreezing and thermal-shock. Advanced Powder Technology, 2017, 28, 2996-3003.	4.1	3
3030	Foreign In ³⁺ treatment improving the photoelectrochemical performance of a hematite nanosheet array for water splitting. Nanoscale, 2017, 9, 17513-17523.	5 . 6	22
3031	Selective Hybridization of a Terpyridine-Based Molecule with a Noble Metal. Journal of Physical Chemistry C, 2017, 121, 23574-23581.	3.1	4
3032	Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nature Communications, 2017, 8, 944.	12.8	890
3033	1,2,3-Benzotriazole derivatives adsorption on Cu(1 1 1) surface: A DFT study. Chemical Physics Letters, 2017, 689, 128-134.	2.6	10
3034	Efficient and High-Color-Purity Light-Emitting Diodes Based on <i>In Situ</i> Grown Films of CsPbX ₃ (X = Br, I) Nanoplates with Controlled Thicknesses. ACS Nano, 2017, 11, 11100-11107.	14.6	190
3035	Adsorption and dissociation of O $<$ sub $>$ 2 $<$ /sub $>$ on MoO $<$ sub $>$ 2 $<$ /sub $>$ (1 \hat{l} ,11) surfaces: a DFT study. Physical Chemistry Chemical Physics, 2017, 19, 29244-29254.	2.8	7
3036	Thermodynamic assessment of the oxygen reduction activity in aqueous solutions. Physical Chemistry Chemical Physics, 2017, 19, 29381-29388.	2.8	43
3037	Supported Cobalt Polyphthalocyanine for High-Performance Electrocatalytic CO2 Reduction. CheM, 2017, 3, 652-664.	11.7	406

#	Article	IF	CITATIONS
3038	A metastable phase of shocked bulk single crystal copper: an atomistic simulation study. Scientific Reports, 2017, 7, 7337.	3.3	46
3039	Intrinsic point defects in inorganic perovskite CsPbI3 from first-principles prediction. Applied Physics Letters, 2017, 111, .	3.3	109
3040	From 3D to 2D Co and Ni Oxyhydroxide Catalysts: Elucidation of the Active Site and Influence of Doping on the Oxygen Evolution Activity. ACS Catalysis, 2017, 7, 8558-8571.	11.2	50
3041	Tailoring Energy Transfer from Hot Electrons to Adsorbate Vibrations for Plasmon-Enhanced Catalysis. ACS Catalysis, 2017, 7, 8343-8350.	11.2	22
3042	Dense CO Adlayers as Enablers of CO Hydrogenation Turnovers on Ru Surfaces. Journal of the American Chemical Society, 2017, 139, 11789-11802.	13.7	54
3043	Catalytic Activity and Product Selectivity Trends for Carbon Dioxide Electroreduction on Transition Metal-Coated Tungsten Carbides. Journal of Physical Chemistry C, 2017, 121, 20306-20314.	3.1	35
3044	Surface Reaction Barriometry: Methane Dissociation on Flat and Stepped Transition-Metal Surfaces. Journal of Physical Chemistry Letters, 2017, 8, 4177-4182.	4.6	75
3045	Modelling oxygen defects in orthorhombic LaMnO ₃ and its low index surfaces. Physical Chemistry Chemical Physics, 2017, 19, 24636-24646.	2.8	25
3046	A new two-dimensional TeSe2 semiconductor: indirect to direct band-gap transitions. Science China Materials, 2017, 60, 747-754.	6.3	20
3047	Theoretical investigations on the phase transition of pure and Li-doped AlH ₃ . RSC Advances, 2017, 7, 42024-42029.	3.6	3
3048	Scaling reducibility of metal oxides. Theoretical Chemistry Accounts, 2017, 136, 1.	1.4	67
3049	The role of metal oxide interactions: revisiting Pt growth on the TiO ₂ surface in the process of impregnation method. Nanoscale, 2017, 9, 14272-14279.	5.6	22
3050	On the elusive nature of oxygen binding at coordinatively unsaturated 3d transition metal centers in metal–organic frameworks. Physical Chemistry Chemical Physics, 2017, 19, 26346-26357.	2.8	17
3051	Formic acid oxidation on platinum electrodes: a detailed mechanism supported by experiments and calculations on well-defined surfaces. Journal of Materials Chemistry A, 2017, 5, 21773-21784.	10.3	77
3052	Computational Discovery of Nickel-Based Catalysts for CO ₂ Reduction to Formic Acid. Journal of Physical Chemistry C, 2017, 121, 20865-20870.	3.1	39
3053	Overview of the Oxygen Behavior in the Degradation of Li ₂ MnO ₃ Cathode Material. Journal of Physical Chemistry C, 2017, 121, 21118-21127.	3.1	30
3054	Trends in the phase stability and thermochemical oxygen exchange of ceria doped with potentially tetravalent metals. Journal of Materials Chemistry A, 2017, 5, 19901-19913.	10.3	32
3055	Efficient Implicit Solvation Method for Full Potential DFT. Journal of Chemical Theory and Computation, 2017, 13, 5582-5603.	5.3	30

#	Article	IF	CITATIONS
3056	Theoretical Prediction of Surface Stability and Morphology of LiNiO ₂ Cathode for Li Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33257-33266.	8.0	65
3057	Finite Size Effects in Submonolayer Catalysts Investigated by CO Electrosorption on Pt _{sML} /Pd(100). Journal of the American Chemical Society, 2017, 139, 13676-13679.	13.7	23
3058	Evolution of lithium clusters to superatomic Li3O+. Applied Physics Letters, 2017, 111, .	3.3	3
3059	Interfacial charge distributions in carbon-supported palladium catalysts. Nature Communications, 2017, 8, 340.	12.8	145
3060	First-principles calculations of the structural, elastic and thermodynamic properties of mackinawite (FeS) and pyrite (FeS 2). Physica B: Condensed Matter, 2017, 525, 119-126.	2.7	28
3061	Designing transition metal and nitrogen-codoped SrTiO ₃ (001) perovskite surfaces as efficient photocatalysts for water splitting. Sustainable Energy and Fuels, 2017, 1, 1968-1980.	4.9	15
3062	The tunable effect of nitrogen and boron dopants on a single walled carbon nanotube support on the catalytic properties of a single gold atom catalyst: a first principles study of CO oxidation. Journal of Materials Chemistry A, 2017, 5, 16653-16662.	10.3	58
3063	Investigation of the adhesion mechanism of Marine Mussel's foot protein: Adsorption of L-dopa on silica α- & β-cristobalite using density functional theory (DFT). Materials Today: Proceedings, 2017, 4, 4912-4918.	1.8	3
3064	Insight into the Role of Metal–Oxygen Bond and O 2p Hole in High-Voltage Cathode LiNi _{<i>x</i>} Mn _{2–<i>x</i>} O ₄ . Journal of Physical Chemistry C, 2017, 121, 16079-16087.	3.1	50
3065	Kinetic Monte Carlo study of vinyl acetate synthesis from ethylene acetoxylation on Pd(100) and Pd/Au(100). Applied Surface Science, 2017, 423, 793-799.	6.1	13
3066	Probing the (110)-Oriented plane of rutile ZnF2: A DFT investigation. Journal of Physics and Chemistry of Solids, 2017, 111, 63-69.	4.0	3
3067	New insights into a first principle calculation and experimental study of Sn-Pb-Ge ternary-metal perovskites for potential photovoltaic application. Materials Science in Semiconductor Processing, 2017, 68, 159-164.	4.0	5
3068	Rotational and steric effects in water dissociative chemisorption on Ni(111). Chemical Science, 2017, 8, 6662-6669.	7.4	25
3069	Bandgap engineering of SrTiO ₃ /NaTaO ₃ heterojunction for visible light photocatalysis. International Journal of Quantum Chemistry, 2017, 117, e25424.	2.0	17
3070	DFT-D study of adsorption of diaminoethane and propylamine molecules on anatase (101) TiO 2 surface. Applied Surface Science, 2017, 426, 107-115.	6.1	25
3071	Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting. Nano Letters, 2017, 17, 5133-5139.	9.1	395
3072	The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation. Physical Chemistry Chemical Physics, 2017, 19, 22344-22354.	2.8	38
3073	Formation of Vacancies in Si- and Ge-based Clathrates: Role of Electron Localization and Symmetry Breaking. Physical Review Letters, 2017, 118, 236401.	7.8	20

#	Article	IF	CITATIONS
3074	Regulation of transport properties by polytypism: a computational study on bilayer MoS2. Physical Chemistry Chemical Physics, 2017, 19, 21282-21286.	2.8	3
3075	First-principles calculation of hydrogen adsorption and diffusion on Mn-doped Mg 2 Ni (010) surfaces. Applied Surface Science, 2017, 425, 148-155.	6.1	21
3076	Theoretical study of new potential semiconductor surfaces performance for dye sensitized solar cell usage: TiO2-B (001), (100) and H2Ti3O7 (100). Applied Surface Science, 2017, 426, 1182-1189.	6.1	23
3077	DFT study of NO and H2O co-adsorption on Cu Co (m+n= $2\hat{a}^{1/4}$ 7) clusters. Journal of Molecular Structure, 2017, 1148, 486-495.	3.6	3
3078	Role of the Band Gap for the Interaction Energy of Coadsorbed Fragments. Journal of Physical Chemistry C, 2017, 121, 18608-18614.	3.1	15
3079	Kinetic Monte Carlo Simulations of Methanol Synthesis from Carbon Dioxide and Hydrogen on Cu(111) Catalysts: Statistical Uncertainty Study. Journal of Physical Chemistry C, 2017, 121, 17941-17949.	3.1	34
3080	Computational assignments of lattice vibrations of ice Ic. RSC Advances, 2017, 7, 36801-36806.	3.6	21
3081	Assessment of trends in the electrochemical CO2 reduction and H2 evolution reactions on metal nanoparticles. MRS Communications, 2017, 7, 601-606.	1.8	2
3082	Electro-optical properties, decomposition pathways and the hydrostatic pressure-dependent behaviours of a double-cation hydrogen storage material of $Al_{3}\$	B T.# Overlo	c k 10 Tf 50
3083	Two-dimensional iron-porphyrin sheet as a promising catalyst for oxygen reduction reaction: a computational study. Science Bulletin, 2017, 62, 1337-1343.	9.0	56
3084	A density functional study of chalcopyrite MgGeSb2. Indian Journal of Physics, 2017, 91, 1487-1492.	1.8	0
3085	Computing analysis of lattice vibrations of ice VIII. RSC Advances, 2017, 7, 31789-31794.	3.6	10
3086	Understanding trends in hydrodeoxygenation reactivity of metal and bimetallic alloy catalysts from ethanol reaction on stepped surface. Journal of Catalysis, 2017, 353, 265-273.	6.2	46
3087	ENHANCED AND SYNERGISTIC CATALYSIS OF ONE-POT SYNTHESIZED PALLADIUM-NICKEL ALLOY NANOPARTICLES FOR ANODIC OXIDATION OF METHANOL IN ALKALI. Electrochimica Acta, 2017, 250, 124-134.	5.2	27
3088	The electronic and mechanical properties of tetragonal YB2C as explored by first-principles methods. Journal of Alloys and Compounds, 2017, 726, 173-178.	5.5	8
3089	SBH10: A Benchmark Database of Barrier Heights on Transition Metal Surfaces. Journal of Physical Chemistry C, 2017, 121, 19807-19815.	3.1	89
3090	Stabilization of ammonia-rich hydrate inside icy planets. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9003-9008.	7.1	35
3091	Computational Study of MoN ₂ Monolayer as Electrochemical Catalysts for Nitrogen		

#	ARTICLE	IF	CITATIONS
3092	Predicting the Double Layer Width on Pt(111) in Acid and Base with Theory and Extracting It from Experimental Voltammograms. Journal of Physical Chemistry C, 2017, 121, 28051-28064.	3.1	3
3093	Quantifying confidence in density functional theory predictions of magnetic ground states. Physical Review B, 2017, 96, .	3.2	24
3094	Formic Acid Dissociative Adsorption on NiO(111): Energetics and Structure of Adsorbed Formate. Journal of Physical Chemistry C, 2017, 121, 28001-28006.	3.1	9
3095	Regio- and Chemoselective Hydrogenation of Dienes to Monoenes Governed by a Well-Structured Bimetallic Surface. Journal of the American Chemical Society, 2017, 139, 18231-18239.	13.7	48
3096	Scaling relationships and theory for vibrational frequencies of adsorbates on transition metal surfaces. Nature Communications, 2017, 8, 1842.	12.8	23
3097	Partially Oxidized SnS ₂ Atomic Layers Achieving Efficient Visible-Light-Driven CO ₂ Reduction. Journal of the American Chemical Society, 2017, 139, 18044-18051.	13.7	368
3098	Facile synthesis and heteroepitaxial growth mechanism of Au@Cu core–shell bimetallic nanocubes probed by first-principles studies. CrystEngComm, 2017, 19, 7287-7297.	2.6	10
3099	Seeking an accurate generalized-gradient approximation functional for high pressure molecular fluids. Journal of Applied Physics, 2017, 122, .	2.5	8
3100	Structural and Mechanical Properties of TiN-TiC-TiO System: First Principle Study. Communications in Theoretical Physics, 2017, 68, 678.	2.5	6
3101	Ambient pressure phase transitions over $Ir(1\hat{a}\in\%1\hat{a}\in\%1)$: at the onset of CO oxidation. Journal of Physics Condensed Matter, 2017, 29, 444002.	1.8	10
3102	Electronic structure and optical properties of CsI under high pressure: a first-principles study. RSC Advances, 2017, 7, 52449-52455.	3.6	11
3103	Theory of Hydrogen Deposition and Evolution on Cu(111) Electrodes. Journal of the Electrochemical Society, 2017, 164, H691-H695.	2.9	6
3104	Identifying "Optimal―Electrocatalysts: Impact of Operating Potential and Charge Transfer Model. ACS Catalysis, 2017, 7, 8641-8652.	11.2	21
3105	Comparative Kinetic Monte Carlo Study of Acetic Acid Decomposition to Surface Carbon Species and Undesirable Byproducts on $Pd(100)$ and $Pd/Au(100)$ from Density Functional Theory-Based Calculations. Journal of Physical Chemistry C, 2017, 121, 26733-26741.	3.1	11
3106	First example of crystal structure of the nitrosoruthenium(II) trinitrato complex. Journal of Structural Chemistry, 2017, 58, 975-982.	1.0	4
3107	I, N-Codoping Modification of TiO ₂ for Enhanced Photoelectrochemical H ₂ O Splitting in Visible-Light Region. Journal of Physical Chemistry C, 2017, 121, 26202-26208.	3.1	11
3108	Dissociative chemisorption of methane on Ni(111) using a chemically accurate fifteen dimensional potential energy surface. Physical Chemistry Chemical Physics, 2017, 19, 30540-30550.	2.8	40
3109	Defect induced visible-light-activated near-infrared emissions in Gd3â^² <i>x</i> pa^² <i>y</i> pa^² <i>y</i> paper defect induced visible-light-activated near-infrared emissions in Gd3â^² <i>x</i> paper defect induced visible-light-activated near-infrared emissions in Gd3â^² <i>x</i> paper defect induced visible-light-activated near-infrared emissions in Gd3â^² <i>x</i> paper defect induced visible-light-activated near-infrared emissions in Gd3â^² <i>x</i> paper defect induced visible-light-activated near-infrared emissions in Gd3â^² <i>x</i> paper defect induced visible-light-activated near-infrared emissions in Gd3â^² <i>x</i> paper defect induced visible-light-activated near-infrared emissions in Gd3â^² <i>x</i> paper defect induced near-infrared emissions in Gd3â^²paper defect induced near-infrared near-infrared emissions in Gd3â^²paper defect induced near-infrared near-infrar	2.5	4

#	Article	IF	CITATIONS
3110	Potential- and Rate-Determining Step for Oxygen Reduction on Pt(111). Journal of Physical Chemistry C, 2017, 121, 26785-26793.	3.1	56
3111	Extrapolating Energetics on Clusters and Single-Crystal Surfaces to Nanoparticles by Machine-Learning Scheme. Journal of Physical Chemistry C, 2017, 121, 26397-26405.	3.1	41
3112	Predicting the Oxygen-Binding Properties of Platinum Nanoparticle Ensembles by Combining High-Precision Electron Microscopy and Density Functional Theory. Nano Letters, 2017, 17, 4003-4012.	9.1	47
3113	Density Functional Analysis of Fluorite-Structured (Ce, Zr)O ₂ /CeO ₂ Interfaces. Journal of Physical Chemistry C, 2017, 121, 14678-14687.	3.1	12
3114	Stabilities of Bimetallic Nanoparticles for Chirality-Selective Carbon Nanotube Growth and the Effect of Carbon Interstitials. Journal of Physical Chemistry C, 2017, 121, 15430-15436.	3.1	3
3115	Design principles of perovskites for solar-driven thermochemical splitting of CO ₂ . Journal of Materials Chemistry A, 2017, 5, 15105-15115.	10.3	38
3116	Structure, electronic and mechanical properties of Ga $1\hat{a}^{-1}x$ B x P alloys. Physica B: Condensed Matter, 2017, 521, 295-304.	2.7	2
3117	Comparison of the conversion of ethylene to ethylidyne on Pd-Au(100): A density functional study. Applied Surface Science, 2017, 423, 762-770.	6.1	8
3118	Impurity characteristics of group V and VII element-doped two-dimensional ZrSe2 monolayer. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 93, 279-283.	2.7	16
3119	Constrained-Orbital Density Functional Theory. Computational Method and Applications to Surface Chemical Processes. Journal of Chemical Theory and Computation, 2017, 13, 3561-3574.	5.3	19
3120	Density Functional Theory Analysis of Elementary Reactions in NO _{<i>x</i>} Reduction on Rh Surfaces and Rh Clusters. Journal of Physical Chemistry C, 2017, 121, 15272-15281.	3.1	21
3121	Quantum Monte Carlo study of the energetics of the rutile, anatase, brookite, and columbite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>TiO</mml:mi><mml:mn>2<td>n^{3:2}/mml:</td><td>msub></td></mml:mn></mml:msub></mml:math>	n ^{3:2} /mml:	msub>
3122	Methane formation from successive hydrogenation of C over stepped Ni and Ni3Fe surfaces: Effect of surface composition. International Journal of Hydrogen Energy, 2017, 42, 914-927.	7.1	9
3123	Firstâ€principles Study of Perovskite Ultrathin Films: Stability and Confinement Effects. Israel Journal of Chemistry, 2017, 57, 509-521.	2.3	7
3124	On the origin of the relative stability of Zn ^{II} NTA and Zn ^{II} NTPA metal complexes. An insight from the IQA, IQF, and I€â€FARMS methods. International Journal of Quantum Chemistry, 2017, 117, e25321.	2.0	5
3125	A DFT Investigation of the Mechanism of Propene Ammoxidation over α-Bismuth Molybdate. ACS Catalysis, 2017, 7, 161-176.	11.2	26
3126	Structure of aqueous NaOH solutions: insights from neural-network-based molecular dynamics simulations. Physical Chemistry Chemical Physics, 2017, 19, 82-96.	2.8	64
3127	Tuning Catalytic Performance through a Single or Sequential Post-Synthesis Reaction(s) in a Gas Phase. ACS Catalysis, 2017, 7, 191-204.	11.2	32

#	Article	IF	CITATIONS
3128	Structural and Thermoelectronic Properties of Chalcopyrite MgSiX2 (XÂ=ÂP, As, Sb). Journal of Electronic Materials, 2017, 46, 247-264.	2.2	24
3129	A DFT-D Study on Structural, Electronic, Thermodynamic, and Mechanical Properties of HMX/MPNO Cocrystal under High Pressure. Journal of Energetic Materials, 2017, 35, 157-171.	2.0	10
3130	Thermoelectric properties of crystalline and amorphous polypyrrole: A computational study. Applied Thermal Engineering, 2017, 111, 1441-1447.	6.0	34
3131	First Principles Study of Molecular O2 Adsorption on the PdO(101) Surface. Topics in Catalysis, 2017, 60, 401-412.	2.8	9
3132	Study of the electronic, bonding, elastic and acoustic properties of covellite via first principles. Journal of Alloys and Compounds, 2017, 692, 440-447.	5.5	20
3133	N2O formation and dissociation during ammonia combustion: A combined DFT and experimental study. Proceedings of the Combustion Institute, 2017, 36, 637-644.	3.9	5
3134	Half-metallicity and magnetism of Ti2Ni1â^'x CoAl1â^'y Si inverse Heusler alloys. Journal of Magnetism and Magnetic Materials, 2017, 423, 306-313.	2.3	8
3135	Theoretical aspects of methyl acetate and methanol activation on MgO(100) and (501) catalyst surfaces with application in FAME production. Applied Surface Science, 2017, 392, 920-928.	6.1	9
3136	Adsorption and activation of CO and H $_2$, the corresponding equilibrium phase diagrams under different temperature and partial pressures over Cu(100) surface: Insights into the effects of coverage and solvent effect. Fuel Processing Technology, 2017, 156, 253-264.	7.2	11
3137	Electrochemical Effects at Surfactant–Platinum Nanoparticle Interfaces Boost Catalytic Performance. ChemCatChem, 2017, 9, 604-609.	3.7	14
3138	Single-atom catalysts for CO ₂ electroreduction with significant activity and selectivity improvements. Chemical Science, 2017, 8, 1090-1096.	7.4	430
3139	Theoretical Investigation of the Hydrodeoxygenation of Levulinic Acid to \hat{I}^3 -Valerolactone over Ru(0001). ACS Catalysis, 2017, 7, 215-228.	11.2	65
3140	Comparison of performance of van der Waals-corrected exchange-correlation functionals for interlayer interaction in graphene and hexagonal boron nitride. Computational Materials Science, 2017, 128, 45-58.	3.0	72
3141	Synthesis, crystal structure and thermodynamic properties of 3-(3,5-dimethylpyrazol-1-yl)-6-(benzylmethylene) hydrazone-s-tetrazine. Journal of Chemical Thermodynamics, 2017, 104, 67-72.	2.0	8
3142	Elasticity under pressure and thermal property of Mg2La from first-principles calculations. Journal of Central South University, 2017, 24, 1713-1719.	3.0	1
3143	Reflection of Molecular Twist in Unoccupied Molecular Orbitals in PTCDI Derivatives: A Density Functional Study. ACS Omega, 2017, 2, 9181-9190.	3.5	4
3144	Possible effect of static surface disorder on diffractive scattering of H2 from Ru(0001): Comparison between theory and experiment. Journal of Chemical Physics, 2017, 147, 244705.	3.0	10
3145	Mechanical, Thermodynamic and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals. Materials, 2017, 10, 1419.	2.9	52

#	ARTICLE	IF	CITATIONS
3146	Highly Selective Polypyrrole MIP-Based Gravimetric and Electrochemical Sensors for Picomolar Detection of Glyphosate. Sensors, 2017, 17, 2586.	3.8	52
3147	Corrosion Study of Mild Steel in Aqueous Sulfuric Acid Solution Using 4-Methyl-4H-1,2,4-Triazole-3-Thiol and 2-Mercaptonicotinic Acid—An Experimental and Theoretical Study. Frontiers in Chemistry, 2017, 5, 61.	3.6	61
3148	Ruthenium–Platinum Catalysts and Direct Methanol Fuel Cells (DMFC): A Review of Theoretical and Experimental Breakthroughs. Catalysts, 2017, 7, 47.	3.5	50
3149	xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"> <mml:mrow> <mml:mi mathvariant="bold-italic"> α</mml:mi </mml:mrow> - andâ€% <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"> <mml:mrow> <mml:mi mathvariant="bold-italic"> β</mml:mi </mml:mrow> -Cristobalite Silica Using Density</mml:math 	1.9	15
3150	Functional Theory, Journal of Chemistry, 2017, 2017, 1-6. First-Principles Calculation of Adsorption of Shale Gas on CaCO3 (100) Surfaces. Journal of Applied Biomaterials and Functional Materials, 2017, 15, 45-51.	1.6	2
3151	Bulk and surface properties of metal carbides: implications for catalysis. Physical Chemistry Chemical Physics, 2018, 20, 6905-6916.	2.8	82
3152	Magnetic Transition in Nonmetal N- and F-Doping g-ZnO Monolayer with Different Concentrations. Journal of Superconductivity and Novel Magnetism, 2018, 31, 3133-3139.	1.8	4
3153	Understanding the Effects of Au Morphology on CO ₂ Electrocatalysis. Journal of Physical Chemistry C, 2018, 122, 4274-4280.	3.1	36
3154	Aqueous TMAO solutions as seen by theoretical THz spectroscopy: hydrophilic <i>versus</i> hydrophobic water. Physical Chemistry Chemical Physics, 2018, 20, 6146-6158.	2.8	22
3155	Designing a porous-crystalline structure of \hat{l}^2 -Ga ₂ O ₃ : a potential approach to tune its opto-electronic properties. Physical Chemistry Chemical Physics, 2018, 20, 9471-9479.	2.8	7
3156	The role of oxygen vacancies in biomass deoxygenation by reducible zinc/zinc oxide catalysts. Catalysis Science and Technology, 2018, 8, 1819-1827.	4.1	33
3157	An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nature Catalysis, 2018, 1, 192-198.	34.4	292
3158	Curing reaction mechanism and heat resistance properties of hexaâ€(4â€carboxylâ€phenoxy)â€cyclotriphosphazene/bisphenol A aniline benzoxazine blends. Journal of Applied Polymer Science, 2018, 135, 46389.	2.6	12
3159	Dissociation mechanisms of HFO-1336mzz(Z) on Cu($1\hat{a}\in 1\hat{a}\in 1$), Cu($1\hat{a}\in 1\hat{a}\in 0$) and Cu($1\hat{a}\in 0\hat{a}\in 0$) surfaces: A defunctional theory study. Applied Surface Science, 2018, 443, 389-400.	ensity 6.1	31
3160	On the origin of vibrational properties of calcium manganate based thermoelectric compounds. Nano Energy, 2018, 47, 451-462.	16.0	19
3161	Asymmetrical edges induced strong current-polarization in embedded graphene nanoribbons. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 1167-1170.	2.1	5
3162	Single-Crystal Electrospun Plasmonic Perovskite Nanofibers. Journal of Physical Chemistry C, 2018, 122, 6846-6851.	3.1	11
3163	Electronic Origin and Kinetic Feasibility of the Lattice Oxygen Participation During the Oxygen Evolution Reaction on Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 1473-1479.	4.6	62

#	Article	IF	CITATIONS
3164	A theoretical study on the mechanism of hydrogen evolution on non-precious partially oxidized nickel-based heterostructures for fuel cells. Physical Chemistry Chemical Physics, 2018, 20, 7968-7973.	2.8	15
3165	Trends in the Catalytic Activity of Hydrogen Evolution during CO ₂ Electroreduction on Transition Metals. ACS Catalysis, 2018, 8, 3035-3040.	11.2	107
3166	Lewis–Brønsted Acid Pairs in Ga/H-ZSM-5 To Catalyze Dehydrogenation of Light Alkanes. Journal of the American Chemical Society, 2018, 140, 4849-4859.	13.7	198
3167	The melting limit in sodium clusters. Theoretical Chemistry Accounts, 2018, 137, 1.	1.4	3
3168	A Linear Scaling Relation for CO Oxidation on CeO ₂ -Supported Pd. Journal of the American Chemical Society, 2018, 140, 4580-4587.	13.7	126
3169	Learning from the past: Are catalyst design principles transferrable between hydrodesulfurization and deoxygenation?. AICHE Journal, 2018, 64, 3121-3133.	3.6	9
3170	Large-scale controlled synthesis of porous two-dimensional nanosheets for the hydrogen evolution reaction through a chemical pathway. Nanoscale, 2018, 10, 6168-6176.	5.6	23
3171	Supraâ€monolayer coverages on small metal clusters and their effects on H ₂ chemisorption particle size estimates. AICHE Journal, 2018, 64, 3109-3120.	3.6	24
3172	Pourbaix Diagrams for H ₂ O Oxidation to Adsorbed OH on Pt(111) and Why They Differ from Those for Bulk Solids. Journal of Physical Chemistry C, 2018, 122, 9958-9964.	3.1	1
3173	Combined DFT and Differential Electrochemical Mass Spectrometry Investigation of the Effect of Dopants in Secondary Zinc–Air Batteries. ChemSusChem, 2018, 11, 1933-1941.	6.8	23
3174	Single Metal Atoms Anchored in Twoâ€Dimensional Materials: Bifunctional Catalysts for Fuel Cell Applications. ChemCatChem, 2018, 10, 3034-3039.	3.7	50
3175	Calculations of Product Selectivity in Electrochemical CO ₂ Reduction. ACS Catalysis, 2018, 8, 5240-5249.	11.2	203
3176	Predicting Surface Energies and Particle Morphologies of Boehmite (γ-AlOOH) from Density Functional Theory. Journal of Physical Chemistry C, 2018, 122, 10400-10412.	3.1	26
3177	Influence of a Metal Substrate on Smallâ∈Molecule Activation Mediated by a Surfaceâ∈Adsorbed Complex. Chemistry - A European Journal, 2018, 24, 10732-10744.	3.3	11
3178	Synthesis, characterization, biological activity, and corrosion inhibition in acid medium of unsymmetrical tetradentate N ₂ O ₂ Schiff base complexes. Journal of the Chinese Chemical Society, 2018, 65, 1060-1074.	1.4	9
3179	Rational Electrode–Electrolyte Design for Efficient Ammonia Electrosynthesis under Ambient Conditions. ACS Energy Letters, 2018, 3, 1219-1224.	17.4	204
3180	Hydrogen adsorption trends on Al-doped Ni ₂ P surfaces for optimal catalyst design. Physical Chemistry Chemical Physics, 2018, 20, 13785-13791.	2.8	9
3181	Modeling the adsorbate coverage distribution over a multi-faceted catalytic grain in the presence of an electric field: O/Fe from first principles. Catalysis Today, 2018, 312, 92-104.	4.4	4

#	Article	IF	CITATIONS
3182	Role of Lattice Oxygen Participation in Understanding Trends in the Oxygen Evolution Reaction on Perovskites. ACS Catalysis, 2018, 8, 4628-4636.	11.2	339
3183	Active learning with non- <i>ab initio</i> input features toward efficient CO ₂ reduction catalysts. Chemical Science, 2018, 9, 5152-5159.	7.4	82
3184	MoS 2 -CdS heterojunction with enhanced photocatalytic activity: A first principles study. Journal of Physics and Chemistry of Solids, 2018, 120, 52-56.	4.0	27
3185	Revealing the Janus Character of the Coke Precursor in the Propane Direct Dehydrogenation on Pt Catalysts from a kMC Simulation. ACS Catalysis, 2018, 8, 4694-4704.	11.2	85
3186	Lithium Hexastannate: A Potential Material for Energy Storage. Physica Status Solidi (B): Basic Research, 2018, 255, 1700669.	1.5	16
3187	A new alkaline-earth metal borate SrB 3 O 4 (OH) 3 ·H 2 O with UV cutoff edge below 190 nm. Inorganic Chemistry Communication, 2018, 92, 35-39.	3.9	5
3188	Augmented Pairwise Additive Interaction Model for Lateral Adsorbate Interactions: The NO–CO Reaction System on Rh(100) and Rh(111). Langmuir, 2018, 34, 5174-5183.	3.5	7
3189	Quantum diffusion of H/D on Ni(111)â€"A partially adiabatic centroid MD study. Journal of Chemical Physics, 2018, 148, 102339.	3.0	4
3190	A catalytic role of surface silanol groups in CO ₂ capture on the amine-anchored silica support. Physical Chemistry Chemical Physics, 2018, 20, 12149-12156.	2.8	18
3191	Iron(II) and Iron(III) Spin Crossover: Toward an Optimal Density Functional. Journal of Physical Chemistry A, 2018, 122, 4208-4217.	2.5	79
3192	Electrocatalytic transformation of HF impurity to H2 and LiF in lithium-ion batteries. Nature Catalysis, 2018, 1, 255-262.	34.4	128
3193	First-principles calculations of crystal structure, electronic structure and optical properties of Ba2RETaO6 (RE = Y, La, Pr, Sm, Gd). Journal of Materials Science, 2018, 53, 9401-9410.	3.7	10
3194	Boosting the hydrogen evolution performance of ruthenium clusters through synergistic coupling with cobalt phosphide. Energy and Environmental Science, 2018, 11, 1819-1827.	30.8	350
3195	Electron-Mediated Phonon-Phonon Coupling Drives the Vibrational Relaxation of CO on Cu(100). Physical Review Letters, 2018, 120, 156804.	7.8	26
3196	Insight into the structural, electronic and elastic properties of AlnQ2 (A: K, Rb and Q: S, Se, Te) layered structures from first-principles calculations. Chinese Journal of Physics, 2018, 56, 1074-1088.	3.9	5
3197	Binding maps for the study and prediction of bimetallic catalyst surface reactions: The case of methanol oxidation. International Journal of Quantum Chemistry, 2018, 118, e25606.	2.0	3
3198	DFT study of stabilization effects on N-doped graphene for ORR catalysis. Catalysis Today, 2018, 312, 118-125.	4.4	81
3199	Computational prediction of a high <i>ZT</i> of n-type Mg ₃ Sb ₂ -based compounds with isotropic thermoelectric conduction performance. Physical Chemistry Chemical Physics, 2018, 20, 7686-7693.	2.8	55

#	Article	IF	CITATIONS
3200	Yttria stabilized and surface activated platinum (PtxYOy) nanoparticles through rapid microwave assisted synthesis for oxygen reduction reaction. Nano Energy, 2018, 46, 141-149.	16.0	21
3201	Electronic and optical properties of functionalized zigzag ZnO nanotubes. Journal of Molecular Modeling, 2018, 24, 48.	1.8	12
3202	The interface between platinum nanoparticle catalysts and an Ar+-irradiated carbon support. Surface and Coatings Technology, 2018, 355, 259-263.	4.8	9
3203	Nanostructuring one-dimensional and amorphous lithium peroxide for high round-trip efficiency in lithium-oxygen batteries. Nature Communications, 2018, 9, 680.	12.8	85
3204	Structure formation and surface chemistry of ionic liquids on model electrode surfaces—Model studies for the electrode electrolyte interface in Li-ion batteries. Journal of Chemical Physics, 2018, 148, 193821.	3.0	17
3205	Electronic structures and magnetic properties of Fe3Si films epitaxial on Si(001). Modern Physics Letters B, 2018, 32, 1750362.	1.9	1
3206	Benchmark Database of Transition Metal Surface and Adsorption Energies from Many-Body Perturbation Theory. Journal of Physical Chemistry C, 2018, 122, 4381-4390.	3.1	53
3207	New Insights into the Kinetics of Structural Transformation and Hydrogenation Activity of Nano-crystalline Molybdenum Carbide. Catalysis Letters, 2018, 148, 904-923.	2.6	13
3208	Long-range exchange limit and dispersion in pure silica zeolites. Theoretical Chemistry Accounts, 2018, 137, 1.	1.4	3
3209	The Role of Active Oxide Species for Electrochemical Water Oxidation on the Surface of 3dâ€Metal Phosphides. Advanced Energy Materials, 2018, 8, 1703290.	19.5	104
3210	Ultrathin Cobalt Oxide Overlayer Promotes Catalytic Activity of Cobalt Nitride for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2018, 122, 4783-4791.	3.1	46
3211	DFT studies of hydrocarbon combustion on metal surfaces. Journal of Molecular Modeling, 2018, 24, 47.	1.8	11
3212	Trends in adsorption of electrocatalytic water splitting intermediates on cubic ABO ₃ oxides. Physical Chemistry Chemical Physics, 2018, 20, 3813-3818.	2.8	94
3213	An experimental and theoretical study of adenine adsorption on Au(111). Physical Chemistry Chemical Physics, 2018, 20, 4688-4698.	2.8	13
3214	Solid, liquid, and interfacial properties of TiAl alloys: parameterization of a new modified embedded atom method model. Journal of Physics Condensed Matter, 2018, 30, 075002.	1.8	5
3215	Complex supramolecular interfacial tessellation through convergent multi-step reaction of a dissymmetric simple organic precursor. Nature Chemistry, 2018, 10, 296-304.	13.6	68
3216	The investigation of Ce doped ZnO crystal: The electronic, optical and magnetic properties. Physica B: Condensed Matter, 2018, 534, 44-50.	2.7	37
3217	Solving the puzzle of Li ₄ Ti ₅ O ₁₂ surface reactivity in aprotic electrolytes in Li-ion batteries by nanoscale XPEEM spectromicroscopy. Journal of Materials Chemistry A, 2018, 6, 3534-3542.	10.3	17

#	Article	IF	CITATIONS
3218	Neural-network-based depth-resolved multiscale structural optimization using density functional theory and electron diffraction data. Physical Review B, 2018, 97, .	3.2	11
3219	Anomalous Dependence of the Reactivity on the Presence of Steps: Dissociation of D $<$ sub $>$ 2 $<$ /sub $>$ 0 on Cu(211). Journal of Physical Chemistry Letters, 2018, 9, 170-175.	4.6	27
3220	Theoretical and experimental studies of Ba ₂ SmTaO ₆ on crystal structure, electronic structure and optical properties. Journal of Materials Chemistry C, 2018, 6, 1806-1814.	5.5	10
3221	Development of Embedded and Performance of Density Functional Methods for Molecular Crystals. Journal of Physical Chemistry A, 2018, 122, 708-713.	2.5	22
3222	The Role of Adsorbed CN and Cl on an Au Electrode for Electrochemical CO ₂ Reduction. ACS Catalysis, 2018, 8, 1178-1185.	11.2	98
3223	Evaluations of the accuracies of DMol3 density functionals for calculations of experimental binding enthalpies of N ₂ , CO, H ₂ , C ₂ H ₂ at catalytic metal sites. Molecular Simulation, 2018, 44, 568-581.	2.0	38
3224	Solvent-free mechanochemical synthesis of Zn(II), Cd(II), and Cu(II) complexes with 1-(4-methoxyphenyl)-4-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)-1H-pyrrole-3-carbonitrile. Green Processing and Synthesis, 2018, 7, 515-523.	3.4	5
3225	Preferential oxidation of CO in H2 on Cu and Cu/CeOx catalysts studied by in situ UV–Vis and mass spectrometry and DFT. Journal of Catalysis, 2018, 357, 176-187.	6.2	25
3226	Structure‧ensitive Scaling Relations: Adsorption Energies from Surface Site Stability. ChemCatChem, 2018, 10, 1643-1650.	3.7	57
3227	The study of structures and properties of Pd H (n=1–10, m=1,2) clusters by density functional theory. Journal of Physics and Chemistry of Solids, 2018, 115, 84-91.	4.0	5
3228	The synergic effects at the molecular level in CoS ₂ for selective hydrogenation of nitroarenes. Green Chemistry, 2018, 20, 671-679.	9.0	54
3229	Mechanism of CO ₂ Reduction at Copper Surfaces: Pathways to C ₂ Products. ACS Catalysis, 2018, 8, 1490-1499.	11.2	608
3230	Influence of doping concentration on mechanical properties of Mo2FeB2 alloyed with Cr and Ni from first-principle calculations. Computational Materials Science, 2018, 146, 18-25.	3.0	49
3231	Experimental and first principle calculation study on titanium, zirconium and aluminum oxides in promoting ferrite nucleation. Journal of Alloys and Compounds, 2018, 742, 112-122.	5.5	18
3232	Enhanced photochemical performance of hexagonal WO3 by metal-assisted S–O coupling for solar-driven water splitting. Science China Materials, 2018, 61, 91-100.	6.3	4
3233	<i>Ab initio</i> molecular dynamics study of the Eley-Rideal reaction of H + Cl–Au(111) → HCl + Au(111): Impact of energy dissipation to surface phonons and electron-hole pairs. Journal of Chemical Physics, 2018, 148, 014702.	3.0	25
3234	Carbon Monoxide Poisoning Resistance and Structural Stability of Single Atom Alloys. Topics in Catalysis, 2018, 61, 428-438.	2.8	117
3235	First-principles atomistic Wulff constructions for an equilibrium rutile TiO2 shape modeling. Applied Surface Science, 2018, 436, 989-994.	6.1	43

#	Article	IF	CITATIONS
3236	The importance of grand-canonical quantum mechanical methods to describe the effect of electrode potential on the stability of intermediates involved in both electrochemical CO ₂ reduction and hydrogen evolution. Physical Chemistry Chemical Physics, 2018, 20, 2549-2557.	2.8	53
3237	Comparative studies on P-vanillin and O-vanillin of 2-hydrazinyl-2-oxo-N-phenylacetamide and their Mn(II) and Co(II) complexes. Journal of Molecular Structure, 2018, 1159, 246-258.	3.6	6
3238	Refining Crystal Structures with Quadrupolar NMR and Dispersion-Corrected Density Functional Theory. Journal of Physical Chemistry C, 2018, 122, 1809-1820.	3.1	35
3239	DFT calculation of oxygen adsorption on platinum nanoparticles: coverage and size effects. Faraday Discussions, 2018, 208, 497-522.	3.2	23
3240	Synthesis and structural characterization of betaine- and imidazoline-based organoclays. Chemical Physics Letters, 2018, 692, 264-270.	2.6	22
3241	First-Principles Computational Screening of Highly Active Pyrites Catalysts for Hydrogen Evolution Reaction through a Universal Relation with a Thermodynamic Variable. Journal of Physical Chemistry C, 2018, 122, 2107-2112.	3.1	18
3242	Constructing High-Dimensional Neural Network Potential Energy Surfaces for Gas–Surface Scattering and Reactions. Journal of Physical Chemistry C, 2018, 122, 1761-1769.	3.1	78
3243	Methane dissociation on the steps and terraces of Pt(211) resolved by quantum state and impact site. Journal of Chemical Physics, 2018, 148, 014701.	3.0	50
3244	Mechanochemical syntheses and ^{35 < /sup>Cl solid-state NMR characterization of fluoxetine HCl cocrystals. CrystEngComm, 2018, 20, 2780-2792.}	2.6	21
3245	Novel pyrochlore-type La2Zr2O7: Eu3+ red phosphors: Synthesis, structural, luminescence properties and theoretical calculation. Dyes and Pigments, 2018, 157, 47-54.	3.7	77
3246	Nanocomposites of transition-metal carbides on reduced graphite oxide as catalysts for the hydrogen evolution reaction. Applied Catalysis B: Environmental, 2018, 235, 36-44.	20.2	88
3247	Understanding the Role of Atomic Ordering in the Crystal Structures of Ni _{<i>x</i>} <fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<f>x<td>6.7</td><td>46</td></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></f></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi>	6.7	46
3248	Oxidation of Ethylene Carbonate on Li Metal Oxide Surfaces. Journal of Physical Chemistry C, 2018, 122, 10442-10449.	3.1	60
3249	Oxygen and sulfur adsorption on vicinal surfaces of copper and silver: Preferred adsorption sites. Journal of Chemical Physics, 2018, 148, 124706.	3.0	8
3250	First-principles calculation of activity and selectivity of the partial oxidation of ethylene glycol on Fe(0†0†1), Co(0†0†0†1), and Ni(1†1†1). Journal of Catalysis, 2018, 361, 361-369.	6.2	6
3251	Identifying Active Sites of the Water–Gas Shift Reaction over Titania Supported Platinum Catalysts under Uncertainty. ACS Catalysis, 2018, 8, 3990-3998.	11.2	49
3252	Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nature Catalysis, 2018, 1, 269-275.	34.4	348
3253	Can we predict the structure and stability of molecular crystals under increased pressure? Firstâ&principles study of glycine phase transitions. Journal of Computational Chemistry, 2018, 39, 1300-1306.	3.3	19

#	Article	IF	CITATIONS
3254	DFT Prediction of Enhanced Reducibility of Monoclinic Zirconia upon Rhodium Deposition. Journal of Physical Chemistry C, 2018, 122, 6774-6778.	3.1	18
3255	Simple Modifications of the SCAN Meta-Generalized Gradient Approximation Functional. Journal of Chemical Theory and Computation, 2018, 14, 2469-2479.	5.3	26
3256	First-principles study of the effect of Cr and Al on the oxidation resistance of WSi2. Chemical Physics Letters, 2018, 698, 211-217.	2.6	49
3257	A real-time tripodal colorimetric/fluorescence sensor for multiple target metal ions. Dyes and Pigments, 2018, 155, 249-257.	3.7	40
3258	Comparative investigation of the molybdenum sulphide doped with cobalt and selenium towards hydrogen evolution reaction. Electrochimica Acta, 2018, 271, 211-219.	5.2	30
3259	Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy, 2018, 48, 217-226.	16.0	406
3260	Non-parametric correlative uncertainty quantification and sensitivity analysis: Application to a Langmuir bimolecular adsorption model. AIP Advances, 2018, 8, .	1.3	8
3261	Computational Screening of Near-Surface Alloys for CO ₂ Electroreduction. ACS Catalysis, 2018, 8, 3885-3894.	11.2	79
3262	Maximally resolved anharmonic OH vibrational spectrum of the water/ZnO($101\hat{A}^-0$) interface from a high-dimensional neural network potential. Journal of Chemical Physics, 2018, 148, 241720.	3.0	28
3263	Electronic structure calculations on electrolyte–electrode interfaces: Successes and limitations. Current Opinion in Electrochemistry, 2018, 8, 103-109.	4.8	17
3264	Adsorption and diffusion of H and O on an Ni(1 $1\ 1$) surface containing different amounts of Cr. Applied Surface Science, 2018, 445, 217-228.	6.1	18
3265	Effect of surface termination on the reactivity of nano-sized diamond particle surfaces for bio applications. Carbon, 2018, 134, 244-254.	10.3	16
3266	High oxygen reduction activity of TM13@Pt134 and TM12N@Pt134 (TM=Ti, V, Mn, Fe, Co, Ni, and Cu) core-shell electrocatalysts studied by first-principles theory. Materials Chemistry and Physics, 2018, 212, 378-384.	4.0	8
3267	Catalyst design by scanning probe block copolymer lithography. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3764-3769.	7.1	40
3268	Spectroscopic, DFT, optical band gap, powder X-ray diffraction and bleomycin-dependant DNA studies of Co(II), Ni(II) and Cu(II) complexes derived from macrocyclic Schiff base. Journal of Molecular Structure, 2018, 1165, 177-195.	3.6	53
3269	Comprehensive Thermochemical Benchmark Set of Realistic Closed-Shell Metal Organic Reactions. Journal of Chemical Theory and Computation, 2018, 14, 2596-2608.	5.3	202
3270	On the thickness of the double layer in ionic liquids. Physical Chemistry Chemical Physics, 2018, 20, 10275-10285.	2.8	40
3271	Carbon Capture by Metal Oxides: Unleashing the Potential of the (111) Facet. Journal of the American Chemical Society, 2018, 140, 4736-4742.	13.7	83

#	ARTICLE	IF	CITATIONS
3272	Structural, electronic, elastic, and thermodynamic properties of CaSi, Ca 2 Si, and CaSi 2 phases from first-principles calculations. Physica B: Condensed Matter, 2018, 538, 54-61.	2.7	15
3273	Detailed mechanism of the NOâ \in +â \in CO reaction on Rh(1 0 0) and Rh(1 1 1): A first-principles study. Applied Surface Science, 2018, 444, 276-286.	6.1	20
3274	Rational Design of Dithienopicenocarbazole-Based Dyes and a Prediction of Their Energy-Conversion Efficiency Characteristics for Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2018, 1, 1435-1444.	5.1	36
3275	Structure Sensitivity of Acrolein Hydrogenation by Platinum Nanoparticles on Ba \times Sr 1â $^{\circ}$ x TiO 3 Nanocuboids. ChemCatChem, 2018, 10, 632-641.	3.7	8
3276	Structural and electronic properties of Y doped ZnO with different Y concentration. Optik, 2018, 156, 297-302.	2.9	20
3277	High-dimensional neural network potentials for solvation: The case of protonated water clusters in helium. Journal of Chemical Physics, 2018, 148, 102310.	3.0	30
3278	Substituent effects of 4,6-DMDBT on direct hydrodesulfurization routes catalyzed by Ni-Mo-S active nanoclusterâ€"A theoretical study. Catalysis Today, 2018, 305, 28-39.	4.4	31
3279	Hydrogen evolution at mixed î±-Fe1â°'xCrxOOH. Journal of Electroanalytical Chemistry, 2018, 819, 114-122.	3.8	11
3280	Crystal structure, Hirshfeld surfaces computational study and physicochemical characterization of the hybrid material (C7H10N)2[SnCl6]·H2O. Journal of Molecular Structure, 2018, 1152, 276-286.	3.6	28
3281	High Temperature Stability of BaZrO ₃ : An Ab Initio Thermodynamic Study. Physica Status Solidi (B): Basic Research, 2018, 255, 1700398.	1.5	4
3282	Honeycomb BeO monolayer on the Mo(112) surface: LEED and DFT study. Applied Surface Science, 2018, 428, 815-818.	6.1	17
3283	DFT study on structural, electronic, and optical properties of cubic and monoclinic CuO. Journal of Computational Electronics, 2018, 17, 21-28.	2.5	29
3284	Elastic properties and thermal expansion of lead-free halide double perovskite Cs2AgBiBr6. Computational Materials Science, 2018, 141, 49-58.	3.0	87
3285	Atomic and molecular adsorption on Fe(110). Surface Science, 2018, 667, 54-65.	1.9	49
3286	Comparison of standard DFT and Hubbard-DFT methods in structural and electronic properties of TiO2 polymorphs and H-titanate ultrathin sheets for DSSC application. Applied Surface Science, 2018, 428, 118-123.	6.1	50
3287	Improving the efficiency and environmental stability of inverted planar perovskite solar cells via silver-doped nickel oxide hole-transporting layer. Applied Surface Science, 2018, 427, 782-790.	6.1	93
3288	Synthesis, luminescent properties and theoretical calculations of novel orange-red-emitting Ca2Y8(SiO4)6O2:Sm3+ phosphors for white light-emitting diodes. Dyes and Pigments, 2018, 150, 121-129.	3.7	42
3289	First-principles study of ternary Li-Al-Te compounds under high pressure. Solid State Communications, 2018, 270, 58-64.	1.9	6

#	Article	IF	CITATIONS
3290	Jacob's Ladder as Sketched by Escher: Assessing the Performance of Broadly Used Density Functionals on Transition Metal Surface Properties. Journal of Chemical Theory and Computation, 2018, 14, 395-403.	5.3	60
3291	Catalytic performance of Ru, Os, and Rh nanoparticles for ammonia synthesis: A density functional theory analysis. Journal of Catalysis, 2018, 357, 213-222.	6.2	53
3292	Electrochemical Pourbaix diagrams of Ni Ti alloys from first-principles calculations and experimental aqueous states. Computational Materials Science, 2018, 143, 431-438.	3.0	25
3293	Fe X (X = B, N) binary compounds: First-principles calculations of electronic structures, theoretic hardness and magnetic properties. Journal of Magnetism and Magnetic Materials, 2018, 451, 761-769.	2.3	12
3294	First principles band gap engineering of [1†1†0] oriented 3C-SiC nanowires. Computational Materials Science, 2018, 142, 268-276.	3.0	12
3295	Computational Research of Electronic and Magnetic Properties of Nonmetal Doping of Graphene-Like ZnO Monolayer. Journal of Superconductivity and Novel Magnetism, 2018, 31, 1833-1840.	1.8	6
3296	O ₂ Activation by Metal Surfaces: Implications for Bonding and Reactivity on Heterogeneous Catalysts. Chemical Reviews, 2018, 118, 2816-2862.	47.7	363
3297	Overcoming the Ambientâ€Temperature Operation Limitation in Lithiumâ€Ion Batteries by using a Singleâ€Ion Polymer Electrolyte Fabricated by Controllable Molecular Design. Energy Technology, 2018, 6, 289-295.	3.8	10
3298	Modeling Kinetics of Water Adsorption on the Rutile TiO ₂ (110) Surface: Influence of Exchangeâ€Correlation Functional. Physica Status Solidi (B): Basic Research, 2018, 255, 1700344.	1.5	5
3299	Adsorption of acetylene on ordered NixAg1-x/Ni (111) and effect of Ag-dopant: A DFT study. Applied Surface Science, 2018, 435, 521-528.	6.1	15
3300	Nonlinear Optical Crystal Rb ₄ Sn ₃ Cl ₂ Br ₈ : Synthesis, Structure, and Characterization. Crystal Growth and Design, 2018, 18, 380-385.	3.0	22
3301	Insights into Nitrate Reduction over Indium-Decorated Palladium Nanoparticle Catalysts. ACS Catalysis, 2018, 8, 503-515.	11.2	188
3302	Liquid–Vapor Phase Diagram of RPBE-D3 Water: Electronic Properties along the Coexistence Curve and in the Supercritical Phase. Journal of Physical Chemistry B, 2018, 122, 3318-3329.	2.6	33
3303	Tuning the Thermoelectric Properties of Ferrocene Molecular Junctions. IOP Conference Series: Materials Science and Engineering, 2018, 454, 012143.	0.6	3
3304	HOD on Ni(111): <i>Ab Initio</i> molecular dynamics prediction of molecular beam experiments. Journal of Chemical Physics, 2018, 149, 244706.	3.0	12
3305	Quantum dynamics studies of the dissociative chemisorption of CH4 on the steps and terraces of Ni(211). Journal of Chemical Physics, 2018, 149, 244704.	3.0	13
3306	Theoretical Treatment of Surfaces in Equilibrium with Gases. , 2018, , 684-698.		1
3307	From Bulk CeO2 to Transition-Metal Clusters Supported on the CeO2(111) Surface: A Critical Discussion. , 2018, , 452-459.		0

#	Article	IF	CITATIONS
3308	NMR Crystallography of the Polymorphs of Metergoline. Crystals, 2018, 8, 378.	2.2	15
3309	Polymeric Nitrogen A7 Layers Stabilized in the Confinement of a Multilayer BN Matrix at Ambient Conditions. Scientific Reports, 2018, 8, 13758.	3.3	8
3310	The excess electron in polymer nanocomposites. Physical Chemistry Chemical Physics, 2018, 20, 27528-27538.	2.8	19
3311	Ethanol, O, and CO adsorption on Pt nanoparticles: effects of nanoparticle size and graphene support. Physical Chemistry Chemical Physics, 2018, 20, 25918-25930.	2.8	31
3312	Insights into the structure–property–activity relationship in molybdenum-doped octahedral molecular sieve manganese oxides for catalytic oxidation. Catalysis Science and Technology, 2018, 8, 6493-6502.	4.1	8
3313	Group-IVA element-doped SrIn2O4 as potential materials for hydrogen production from water splitting with solar energy. RSC Advances, 2018, 8, 32317-32324.	3.6	0
3314	Structure, Elastic Properties, Thermodynamic and Electronic Properties of Al-Y Alloy Under Pressure from First-principles Calculations. Rare Metal Materials and Engineering, 2018, 47, 1325-1332.	0.8	7
3315	First-principles Study on Effect of Pressure and Temperature on Mechanical, Thermodynamic Properties, and Electronic Structure of Ni3Al Alloy. Rare Metal Materials and Engineering, 2018, 47, 3651-3658.	0.8	1
3316	Adsorption and diffusion of sulfur on the (111), (100), (110), and (211) surfaces of FCC metals: Density functional theory calculations. Journal of Chemical Physics, 2018, 149, 204701.	3.0	25
3317	Measurements of Oxygen Electroadsorption Energies and Oxygen Evolution Reaction on RuO $<$ sub $>$ 2 $<$ /sub $>$ (110): A Discussion of the Sabatier Principle and Its Role in Electrocatalysis. Journal of the American Chemical Society, 2018, 140, 17597-17605.	13.7	177
3318	Exotic Spectra and Lattice Vibrations of Ice X Using the DFT Method. Molecules, 2018, 23, 2780.	3.8	9
3319	Theoretical Study on PdCu/CeO2-Catalyzed Water–Gas Shift Reaction: Crucial Role of the Metal/Ceria Interface and O2 Enhancement Effects. Journal of Physical Chemistry C, 2018, 122, 28868-28883.	3.1	12
3320	GGA-1/2 self-energy correction for accurate band structure calculations: the case of resistive switching oxides. Journal of Physics Communications, 2018, 2, 105005.	1.2	70
3321	Synthesis, Modeling Study and Antioxidants Activity of New Heterocycles Derived from 4-Antipyrinyl-2-Chloroacetamidothiazoles. Applied Sciences (Switzerland), 2018, 8, 2128.	2.5	5
3322	Hydrogen storage on lithium modified silica based CHAbazite type zeolite, A computational study. International Journal of Hydrogen Energy, 2018, 43, 22365-22376.	7.1	15
3323	Six-dimensional quantum dynamics for the dissociative chemisorption of HCl on rigid $Ag(111)$ on three potential energy surfaces with different density functionals. Journal of Chemical Physics, 2018, 149, 174702.	3.0	7
3325	Novel phases in ammonia-water mixtures under pressure. Journal of Chemical Physics, 2018, 149, 234501.	3.0	22
3326	Theoretical Approaches to Describing the Oxygen Reduction Reaction Activity of Single-Atom Catalysts. Journal of Physical Chemistry C, 2018, 122, 29307-29318.	3.1	68

#	Article	lF	CITATIONS
3327	Influence of Pressure on the Mechanical and Electronic Properties of Wurtzite and Zinc-Blende GaN Crystals. Crystals, 2018, 8, 428.	2.2	2
3328	Structural studies and biological evaluation of Co (II), Ni (II) and Cu (II) complexes of carbohydrazone derived from ethyl acetoacetate in addition to crystallographic description of La (III) or Sm (III) catalytic activity abnormal product. Applied Organometallic Chemistry, 2019, 33, e4727.	3.5	2
3329	Dissociation of CHD3 on $Cu(111)$, $Cu(211)$, and single atom alloys of $Cu(111)$. Journal of Chemical Physics, 2018, 149, 224701.	3.0	17
3330	Dominant Role of Entropy in Stabilizing Sugar Isomerization Transition States within Hydrophobic Zeolite Pores. Journal of the American Chemical Society, 2018, 140, 14244-14266.	13.7	83
3331	Towards hybrid density functional calculations of molecular crystals via fragment-based methods. Journal of Chemical Physics, 2018, 149, 124104.	3.0	13
3332	Insight into the Role of Additives in Catalytic Synthesis of Cyclohexylamine from Nitrobenzene. Chinese Journal of Chemistry, 2018, 36, 1191-1196.	4.9	24
3333	Analysis of Energy Dissipation Channels in a Benchmark System of Activated Dissociation: N ₂ on Ru(0001). Journal of Physical Chemistry C, 2018, 122, 23470-23480.	3.1	15
3334	DFT Study of the Oxygen Reduction Reaction on Carbon-Coated Iron and Iron Carbide. ACS Catalysis, 2018, 8, 10521-10529.	11.2	46
3335	Metal-Free Single Atom Catalyst for N ₂ Fixation Driven by Visible Light. Journal of the American Chemical Society, 2018, 140, 14161-14168.	13.7	742
3336	MonteCoffee: A programmable kinetic Monte Carlo framework. Journal of Chemical Physics, 2018, 149, 114101.	3.0	26
3337	DFT modeling of metallic nanoparticles. Frontiers of Nanoscience, 2018, 12, 239-293.	0.6	8
3338	Test of the Transferability of the Specific Reaction Parameter Functional for H2 + Cu(111) to D2 + Ag(111). Journal of Physical Chemistry C, 2018, 122, 22939-22952.	3.1	12
3339	Efficient Synthesis, Antimicrobial, Antioxidant Assessments and Geometric Optimization Calculations of Azoles―Incorporating Quinoline Moiety. Journal of Heterocyclic Chemistry, 2018, 55, 2623-2634.	2.6	12
3340	Tailoring the Electronic Structure and Chemical Activity of Iron via Confining into Two-Dimensional Materials. Journal of Physical Chemistry C, 2018, 122, 24037-24045.	3.1	5
3341	Unveiling CO adsorption on Cu surfaces: new insights from molecular orbital principles. Physical Chemistry Chemical Physics, 2018, 20, 25892-25900.	2.8	56
3342	ORR on Simple Manganese Oxides: Molecular-Level Factors Determining Reaction Mechanisms and Electrocatalytic Activity. Journal of the Electrochemical Society, 2018, 165, J3199-J3208.	2.9	18
3343	Bonding mechanisms and electronic properties of HgIn2Te4 with Au doping: First-principles study. Journal of Applied Physics, 2018, 124, .	2.5	1
3344	A density functional theory study of reactions of relevance to catalytic hydrocarbon synthesis and combustion. Theoretical Chemistry Accounts, 2018, 137, 1.	1.4	3

#	Article	IF	CITATIONS
3345	Performance of density functional theory for describing heteroâ€metallic activeâ€site motifs for methaneâ€toâ€methanol conversion in metalâ€exchanged zeolites. Journal of Computational Chemistry, 2018, 39, 2667-2678.	3.3	8
3346	Comparison of the outermost layer of MB2 (1 0 $1\hat{A}^-$ 0) and (0001) surfaces (M=Hf, Ta): A first-principles investigation. Materials Today Communications, 2018, 17, 474-479.	1.9	1
3347	Two-Dimensional Lamellar Mo ₂ C for Electrochemical Hydrogen Production: Insights into the Origin of Hydrogen Evolution Reaction Activity in Acidic and Alkaline Electrolytes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 40500-40508.	8.0	38
3348	Theoretical Evaluation of Possible 2D Boron Monolayer in N ₂ Electrochemical Conversion into Ammonia. Journal of Physical Chemistry C, 2018, 122, 25268-25273.	3.1	91
3349	Nuclear Quantum Effects in Sodium Hydroxide Solutions from Neural Network Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2018, 122, 10158-10171.	2.6	29
3350	Studies on Catalytic Activity of Hydrogen Peroxide Generation according to Au Shell Thickness of Pd/Au Nanocubes. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38109-38116.	8.0	32
3351	DFT Simulations of the Vibrational Spectrum and Hydrogen Bonds of Ice XIV. Molecules, 2018, 23, 1781.	3.8	15
3352	Accuracy of theoretical catalysis from a model of iron-catalyzed ammonia synthesis. Communications Chemistry, 2018, 1, .	4.5	11
3353	CHD3 dissociation on $Pt(111)$: A comparison of the reaction dynamics based on the PBE functional and on a specific reaction parameter functional. Journal of Chemical Physics, 2018, 149, 044701.	3.0	16
3354	Adsorption of Biomass-Derived Products on MoO ₃ : Hydrogen Bonding Interactions under the Spotlight. ACS Omega, 2018, 3, 14165-14172.	3. 5	10
3355	Solving the Puzzle of the Coexistence of Different Adsorption Geometries of Graphene on Ni(111). Journal of Physical Chemistry C, 2018, 122, 26105-26110.	3.1	9
3356	Efficient hydrogenation of stearic acid over carbon coated Ni Fe catalyst. Journal of Catalysis, 2018, 367, 139-149.	6.2	63
3357	First-principles calculations of electronic structures and ferromagnetism of Fe3Si(001)//MgO(001) films. International Journal of Modern Physics B, 2018, 32, 1850272.	2.0	0
3358	van der Waals forces control ferroelectric–antiferroelectric ordering in CulnP ₂ Se ₆ laminar materials. Chemical Science, 2018, 9, 7620-7627.	7.4	33
3359	van der Waals Forces Control the Internal Chemical Structure of Monolayers within the Lamellar Materials CuInP ₂ S ₆ and CuBiP ₂ Se ₆ . Journal of Physical Chemistry C, 2018, 122, 22675-22687.	3.1	21
3360	Relating Interfacial Order to Sum Frequency Generation with Ab Initio Simulations of the Aqueous Al _{0₃(0001) and (112i0) Interfaces. Journal of Physical Chemistry C, 2018, 122, 21284-21294.}	3.1	30
3361	Methane on a stepped surface: Dynamical insights on the dissociation of CHD3 on Pt(111) and Pt(211). Journal of Chemical Physics, 2018, 149, 094701.	3.0	15
3362	Effects of Charge, Size, and Shape of Transition States, Bound Intermediates, and Confining Voids in Reactions of Alkenes on Solid Acids. ChemCatChem, 2018, 10, 4028-4037.	3.7	27

#	Article	IF	CITATIONS
3363	Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nature Catalysis, 2018, 1, 696-703.	34.4	497
3364	Self-Supported Hydrous Iridium–Nickel Oxide Two-Dimensional Nanoframes for High Activity Oxygen Evolution Electrocatalysts. ACS Catalysis, 2018, 8, 10498-10520.	11.2	103
3365	The effect of surface coverage on N ₂ , NO and N ₂ O formation over Pt(111). Physical Chemistry Chemical Physics, 2018, 20, 25314-25323.	2.8	13
3367	First-principles calculations on phase transformation and elastic properties of CuO under pressure. Journal of Computational Electronics, 2018, 17, 1450-1456.	2.5	9
3368	Heterogeneous Nanostructure Design Based on the Epitaxial Growth of Spongy MoS _{<i>x</i>} on 2D Co(OH) ₂ Nanoflakes for Triple-Enzyme Mimetic Activity: Experimental and Density Functional Theory Studies on the Dramatic Activation Mechanism. ACS Applied Materials & Samp; Interfaces, 2018, 10, 32567-32578.	8.0	32
3369	First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices. Frontiers of Physics, 2018, 13, 1.	5.0	9
3370	Performance of various density-functional approximations for cohesive properties of 64 bulk solids. New Journal of Physics, 2018, 20, 063020.	2.9	185
3371	Atomic rearrangement from disordered to ordered Pd-Fe nanocatalysts with trace amount of Pt decoration for efficient electrocatalysis. Nano Energy, 2018, 50, 70-78.	16.0	66
3372	Density anomaly of water at negative pressures from first principles. Journal of Physics Condensed Matter, 2018, 30, 254005.	1.8	10
3373	Structural, elastic, electronic, phonon, dielectric and optical properties of Bi3TeBO9 from first-principles calculations. Journal of Physics and Chemistry of Solids, 2018, 121, 139-144.	4.0	17
3374	Initial oxidation of Cu(100) studied by X-ray photo-electron spectroscopy and density functional theory calculations. Surface Science, 2018, 675, 64-69.	1.9	17
3375	Density Functional Theory Calculations Revealing Metalâ€ike Band Structures for Ultrathin Germanium (111) and (211) Surface Layers. Chemistry - an Asian Journal, 2018, 13, 1972-1976.	3.3	41
3376	Atomic and Molecular Adsorption on Cu(111). Topics in Catalysis, 2018, 61, 736-750.	2.8	45
3377	Role of solvent in metal-on-metal surface diffusion: A case for rational solvent selection for materials synthesis. Surface Science, 2018, 675, 54-63.	1.9	9
3378	Pt-Decorated Composition-Tunable Pd–Fe@Pd/C Core–Shell Nanoparticles with Enhanced Electrocatalytic Activity toward the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2018, 140, 7248-7255.	13.7	116
3379	Chemical Bond Energies of 3d Transition Metals Studied by Density Functional Theory. Journal of Chemical Theory and Computation, 2018, 14, 3479-3492.	5.3	64
3380	Effects of Catalyst Model and High Adsorbate Coverages in ab Initio Studies of Alkane Hydrogenolysis. ACS Catalysis, 2018, 8, 6375-6387.	11.2	21
3381	Dissociative Chemisorption of O ₂ on Al(111): Dynamics on a Correlated Wave-Function-Based Potential Energy Surface. Journal of Physical Chemistry Letters, 2018, 9, 3271-3277.	4.6	40

#	Article	IF	Citations
3382	Surface Polarons Reducing Overpotentials in the Oxygen Evolution Reaction. ACS Catalysis, 2018, 8, 5847-5851.	11.2	37
3383	On the diversity in the thermal transport properties of graphene: A first-principles-benchmark study testing different exchange-correlation functionals. Computational Materials Science, 2018, 151, 153-159.	3.0	34
3384	Mechanistic Insights into the Activity of Mo-Carbide Clusters for Methane Dehydrogenation and Carbon–Carbon Coupling Reactions To Form Ethylene in Methane Dehydroaromatization. Journal of Physical Chemistry C, 2018, 122, 11754-11764.	3.1	29
3385	The role of metal/oxide interfaces for long-range metal particle activation during CO oxidation. Nature Materials, 2018, 17, 519-522.	27.5	136
3386	A general synthetic approach for hexagonal phase tungsten nitride composites and their application in the hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 10967-10975.	10.3	62
3387	Synthesis, spectral characterization, quantum chemical calculations, in-vitro antimicrobial and DNA activity studies of 2-(2′-mercaptophenyl) benzothiazole complexes. Journal of Molecular Structure, 2018, 1168, 250-263.	3.6	6
3388	First-principle study on the oxidative leaching mechanism of sphalerite in Ammoniacal solution. Hydrometallurgy, 2018, 179, 198-206.	4.3	7
3389	Antioxidant and antitumor activities of Cr(III), Mn(II), Fe(III), Cd(II), Zn(II) and Hg(II) complexes containing a carbohydrazone ligand ending by 4-pyridyl ring. Journal of Molecular Structure, 2018, 1173, 100-110.	3.6	30
3390	Activeâ€Phase Formation and Stability of Gd/Pt(111) Electrocatalysts for Oxygen Reduction: An In Situ Grazing Incidence Xâ€Ray Diffraction Study. Chemistry - A European Journal, 2018, 24, 12280-12290.	3.3	17
3391	Ab Initio Molecular Dynamics Reveal Spectroscopic Siblings and Ion Pairing as New Challenges for Elucidating Prenucleation Aluminum Speciation. Journal of Physical Chemistry B, 2018, 122, 7394-7402.	2.6	34
3392	First-principles study on Ge<inf>1 \hat{a} 'x</inf>Sn<inf>x</inf>-Si core-shell nanowire transistors. , 2018, , .		0
3393	Mechanisms and Active Sites for C–O Bond Rupture within 2-Methyltetrahydrofuran over Ni, Ni ₁₂ P ₅ , and Ni ₂ P Catalysts. ACS Catalysis, 2018, 8, 7141-7157.	11.2	29
3394	Dynamics of N2 sticking on $W(100)$: the decisive role of van der Waals interactions. Physical Chemistry Chemical Physics, 2018, 20, 19326-19331.	2.8	10
3395	Suppression of Hydrogen Evolution Reaction in Electrochemical N ₂ Reduction Using Single-Atom Catalysts: A Computational Guideline. ACS Catalysis, 2018, 8, 7517-7525.	11.2	545
3396	Hydrogen adsorption in the presence of coadsorbed CO on Pd(111). Electrochemistry Communications, 2018, 93, 100-103.	4.7	13
3397	Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity. Nature Energy, 2018, 3, 773-782.	39.5	542
3398	Computational exploration of borophane-supported single transition metal atoms as potential oxygen reduction and evolution electrocatalysts. Physical Chemistry Chemical Physics, 2018, 20, 21095-21104.	2.8	54
3399	Structure of Electrode-Electrolyte Interfaces, Modeling of Double Layer and Electrode Potential. , 2018, , 1-34.		0

#	Article	IF	CITATIONS
3400	Copper-Induced Formation of Structurally Ordered Ptâ€"Feâ€"Cu Ternary Intermetallic Electrocatalysts with Tunable Phase Structure and Improved Stability. Chemistry of Materials, 2018, 30, 5987-5995.	6.7	96
3401	Coordination of Atomic Co–Pt Coupling Species at Carbon Defects as Active Sites for Oxygen Reduction Reaction. Journal of the American Chemical Society, 2018, 140, 10757-10763.	13.7	464
3402	Experimental and Computational Study on the Interaction of an Ionic Liquid Monolayer with Lithium on Pristine and Lithiated Graphite. Journal of Physical Chemistry C, 2018, 122, 18968-18981.	3.1	14
3403	Core–Shell-Structured Low-Platinum Electrocatalysts for Fuel Cell Applications. Electrochemical Energy Reviews, 2018, 1, 324-387.	25.5	72
3404	Chloride Flux Growth of Idiomorphic $\langle i \rangle A \langle i \rangle WO \langle sub \rangle 4 \langle sub \rangle$ ($\langle i \rangle A \langle i \rangle = Sr$, Ba) Single Microcrystals. Crystal Growth and Design, 2018, 18, 5301-5310.	3.0	8
3405	Effects of the cooperative interaction on the diffusion of hydrogen on MgO(100). Journal of Chemical Physics, 2018, 149, 034704.	3.0	10
3406	First-Principles Microkinetic Analysis of NO + CO Reactions on Rh(111) Surface toward Understanding NO <i></i> Reduction Pathways. Journal of Physical Chemistry C, 2018, 122, 17378-17388.	3.1	29
3407	First-principles study of the products of CO2 dissociation on nickel-based alloys: Trends in energetics with alloying element. Surface Science, 2018, 677, 219-231.	1.9	10
3408	Iodide···π Interactions of Perhalogenated Quinoid Rings in Co-crystals with Organic Bases. Crystal Growth and Design, 2018, 18, 5182-5193.	3.0	19
3409	Why Citrate Shapes Tetrahedral and Octahedral Colloidal Platinum Nanoparticles in Water. Journal of Physical Chemistry C, 2018, 122, 19004-19014.	3.1	19
3410	Seawater desalination using pillared graphene as a novel nano-membrane in reverse osmosis process: nonequilibrium MD simulation study. Physical Chemistry Chemical Physics, 2018, 20, 22241-22248.	2.8	20
3411	Accuracy of Density Functional Theory for Predicting Kinetics of Methanol Synthesis from CO and CO ₂ Hydrogenation on Copper. Journal of Physical Chemistry C, 2018, 122, 17942-17953.	3.1	31
3412	Bimetallic NiMoN Nanowires with a Preferential Reactive Facet: An Ultraefficient Bifunctional Electrocatalyst for Overall Water Splitting. ChemSusChem, 2018, 11, 3198-3207.	6.8	91
3413	Influence of atomic site-specific strain on catalytic activity of supported nanoparticles. Nature Communications, 2018, 9, 2722.	12.8	102
3414	The Effect of Organic Additives on the Activity and Selectivity of CO ₂ Electroreduction: The Role of Functional Groups. ChemSusChem, 2018, 11, 2904-2911.	6.8	10
3415	Adsorption of residual gas molecules on (10–10) surfaces of pristine and Zn-doped GaAs nanowires. Journal of Materials Science, 2018, 53, 14435-14446.	3.7	8
3416	Revealing the Role of Oxygen Debris and Functional Groups on the Water Flux and Molecular Separation of Graphene Oxide Membrane: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry C, 2018, 122, 17507-17517.	3.1	32
3417	Role of Disorder in NaO ₂ and Its Implications for Na–O ₂ Batteries. Journal of Physical Chemistry C, 2018, 122, 18829-18835.	3.1	0

#	Article	IF	CITATIONS
3418	Defects in orthorhombic LaMnO ₃ – ionic <i>versus</i> electronic compensation. Physical Chemistry Chemical Physics, 2018, 20, 19257-19267.	2.8	3
3419	Assignment of NEXAFS Resonances in Alkanethiols and Their Implication on the Determination of Molecular Orientation of Aliphatic SAMs. Journal of Physical Chemistry C, 2018, 122, 16810-16820.	3.1	6
3420	Efficient Strategy for Determining the Atomic-Resolution Structure of Micro- and Nanocrystalline Solids within Polymeric Microbeads: Domain-Edited NMR Crystallography. Macromolecules, 2018, 51, 5364-5374.	4.8	18
3421	Tuning BrÃnsted Acid Strength by Altering Site Proximity in CHA Framework Zeolites. ACS Catalysis, 2018, 8, 7842-7860.	11.2	41
3422	Enhanced photocatalytic properties of Bi ₄ O ₅ Br ₂ by Mn doping: a first principles study. Materials Research Express, 2018, 5, 075512.	1.6	13
3423	Adsorbate-driven reactive interfacial Pt-NiO $\langle sub \rangle 1\hat{a}^{2}\langle i \rangle \times \langle sub \rangle$ nanostructure formation on the Pt $\langle sub \rangle 3\langle sub \rangle Ni(111)$ alloy surface. Science Advances, 2018, 4, eaat3151.	10.3	76
3424	Periodic and non-periodic DFT modeling of CO reduction on the surface of Ni-doped graphene nanosheet. Molecular Catalysis, 2018, 455, 239-249.	2.0	8
3425	Hydrogenated and halogenated MB (M=As, Sb and Bi) monolayers: Structural, electronic, optical and topological properties by first principles calculations. Journal of Alloys and Compounds, 2018, 767, 552-558.	5.5	8
3426	Robustness of surface activity electronic structure-based descriptors of transition metals. Physical Chemistry Chemical Physics, 2018, 20, 20548-20554.	2.8	12
3427	Co-adsorption of O 2 and H 2 O on \hat{l}_{\pm} -uranium (110) surface: A density functional theory study. Chinese Physics B, 2018, 27, 076501.	1.4	4
3428	Stability, Electronic Structure, and Dehydrogenation Properties of Pristine and Doped 2D MgH2 by the First Principles Study. Metals, 2018, 8, 482.	2.3	6
3429	Ultralow Overpotential of Hydrogen Evolution Reaction using Feâ€Doped Defective Graphene: A Density Functional Study. ChemCatChem, 2018, 10, 4450-4455.	3.7	22
3430	First-principles calculations on interface structure and fracture characteristic of TiC/TiZrC nano-multilayer film based on virtual crystal approximation. Journal of Alloys and Compounds, 2018, 755, 211-223.	5.5	32
3431	Spin Uncoupling in Chemisorbed OCCO and CO ₂ : Two High-Energy Intermediates in Catalytic CO ₂ Reduction. Journal of Physical Chemistry C, 2018, 122, 12251-12258.	3.1	22
3432	Electronic structure and surface properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MgB</mml:mi><mml:mn>2<td>ท8.2<td>l:msub></td></td></mml:mn></mml:msub></mml:math>	ท8. 2 <td>l:msub></td>	l:m s ub>
3433	An Integrated Design with new Metalâ€Functionalized Covalent Organic Frameworks for the Effective Electroreduction of CO ₂ . Chemistry - A European Journal, 2018, 24, 11051-11058.	3.3	45
3434	Copper Silver Thin Films with Metastable Miscibility for Oxygen Reduction Electrocatalysis in Alkaline Electrolytes. ACS Applied Energy Materials, 2018, 1, 1990-1999.	5.1	40
3436	Nonempirical Meta-Generalized Gradient Approximations for Modeling Chemisorption at Metal Surfaces. Journal of Chemical Theory and Computation, 2018, 14, 3083-3090.	5. 3	20

#	Article	IF	Citations
3437	Synthesis, PtS-type structure, and anomalous mechanics of the Cd(CN) $<$ sub>2 $<$ /sub> precursor Cd(NH $<$ sub>3 $<$ /sub>) $<$ sub>2 $<$ /sub> [Cd(CN) $<$ sub>4 $<$ /sub>]. Dalton Transactions, 2018, 47, 7263-7271.	3.3	9
3438	Electronic transport properties of heterojunction devices constructed by single-wall Fe ₂ Si and carbon nanotubes. Journal of Materials Chemistry C, 2018, 6, 5794-5802.	5.5	11
3439	Incident Angle Dependence of CHD ₃ Dissociation on the Stepped Pt(211) Surface. Journal of Physical Chemistry C, 2018, 122, 19652-19660.	3.1	18
3440	Improving coloration time and moisture stability of photochromic viologen–carboxylate zwitterions. New Journal of Chemistry, 2018, 42, 15466-15471.	2.8	18
3441	Design, Synthesis and DFT/DNP Modeling Study of New 2-Amino-5-arylazothiazole Derivatives as Potential Antibacterial Agents. Molecules, 2018, 23, 434.	3.8	21
3442	Heterojunction bond relaxation and electronic reconfiguration of WS2- and MoS2-based 2D materials using BOLS and DFT. Applied Surface Science, 2018, 462, 508-516.	6.1	24
3443	Activating Transition Metal Dichalcogenides by Substitutional Nitrogenâ€Doping for Potential ORR Electrocatalysts. ChemElectroChem, 2018, 5, 4029-4035.	3.4	27
3444	First-Principle Microkinetic Modeling of Ethanol Dehydrogenation on Metal Catalyst Surfaces in Non-oxidative Environment: Design of Bimetallic Alloys. Topics in Catalysis, 2018, 61, 1820-1831.	2.8	27
3445	Six-dimensional potential energy surfaces of the dissociative chemisorption of HCl on Ag(111) with three density functionals. Journal of Chemical Physics, 2018, 149, 054702.	3.0	15
3446	Activity Trends for Catalytic CO and NO Co-Oxidation at Low Temperature Diesel Emission Conditions. Industrial & Diesel Emission Conditions.	3.7	13
3447	Impact of H-termination on the nitrogen reduction reaction of molybdenum carbide as an electrochemical catalyst. Physical Chemistry Chemical Physics, 2018, 20, 23338-23343.	2.8	27
3448	The electric double layer at metal-water interfaces revisited based on a charge polarization scheme. Journal of Chemical Physics, 2018, 149, 084705.	3.0	128
3449	Mode-specific and bond-selective dissociative chemisorption of CHD3 and CH2D2 on Ni(111) revisited using a new potential energy surface. Science China Chemistry, 2018, 61, 1134-1142.	8.2	5
3450	CO2 electroreduction on copper-cobalt nanoparticles: Size and composition effect. Nano Energy, 2018, 53, 27-36.	16.0	92
3451	The Mechanical Properties and Elastic Anisotropies of Cubic Ni3Al from First Principles Calculations. Crystals, 2018, 8, 307.	2.2	88
3452	Theoretical Aspects of Hydrogen Dynamics at Metal Surfaces. , 2018, , 281-291.		0
3453	Optical absorption enhancement of Hg-doped ZnX (X= S, Se) for hydrogen production from water splitting driven by solar energy. Vacuum, 2018, 157, 36-44.	3.5	5
3454	Predicting the Electric Field Effect on the Lateral Interactions Between Adsorbates: O/Fe(100) from First Principles. Topics in Catalysis, 2018, 61, 763-775.	2.8	11

#	Article	IF	CITATIONS
3455	Electronic structure of twisted and planar rubrene molecules: a density functional study. Physical Chemistry Chemical Physics, 2018, 20, 18623-18629.	2.8	5
3456	Theoretical study on the reaction mechanism of carbon dioxide reforming of methane on La and La2O3 modified Ni(1â€1â€1) surface. Journal of Catalysis, 2018, 364, 248-261.	6.2	30
3457	Boosting hot electron flux and catalytic activity at metal–oxide interfaces of PtCo bimetallic nanoparticles. Nature Communications, 2018, 9, 2235.	12.8	80
3458	Transition Metal Induced the Contraction of Tungsten Carbide Lattice as Superior Hydrogen Evolution Reaction Catalyst. ACS Applied Materials & Samp; Interfaces, 2018, 10, 22094-22101.	8.0	64
3459	Thickness-Dependent Reactivity of O $<$ sub $>$ 2 $<$ /sub $>$ on Cu Layers Grown on Ru(0001) Surfaces. Journal of Physical Chemistry C, 2018, 122, 15529-15538.	3.1	8
3460	Designing Optoelectronic Properties by On-Surface Synthesis: Formation and Electronic Structure of an Iron–Terpyridine Macromolecular Complex. ACS Nano, 2018, 12, 6545-6553.	14.6	13
3461	Hot-Atom-Mediated Dynamical Displacement of CO Adsorbed on Cu(111) by Incident H Atoms: An Ab Initio Molecular Dynamics Study. Journal of Physical Chemistry C, 2018, 122, 15485-15493.	3.1	6
3462	Linear defects and electrical properties of ZnO nanorods. Applied Physics Letters, 2018, 112, .	3.3	1
3463	A new six-dimensional potential energy surface for NO/Au(111). Molecular Physics, 2019, 117, 42-57.	1.7	6
3464	Atomic and molecular adsorption on Ni(111). Surface Science, 2019, 679, 240-253.	1.9	41
3465	The electronic properties of hydrogenated Janus MoSSe monolayer: a first principles investigation. Materials Research Express, 2019, 6, 105055.	1.6	10
3466	Stable Surfaces That Bind Too Tightly: Can Range-Separated Hybrids or DFT+U Improve Paradoxical Descriptions of Surface Chemistry?. Journal of Physical Chemistry Letters, 2019, 10, 5090-5098.	4.6	27
3467	High-efficiency organic light-emitting diodes with exciplex hosts. Journal of Materials Chemistry C, 2019, 7, 11329-11360.	5 . 5	114
3468	Supported Intermetallic PdZn Nanoparticles as Bifunctional Catalysts for the Direct Synthesis of Dimethyl Ether from COâ€Rich Synthesis Gas. Angewandte Chemie - International Edition, 2019, 58, 15655-15659.	13.8	23
3469	The Electrochemical Mechanisms of Solid–Electrolyte Interphase Formation in Lithium-Based Batteries. Journal of Physical Chemistry C, 2019, 123, 20084-20092.	3.1	19
3470	Unlocking the Potential of Nanoparticles Composed of Immiscible Elements for Direct H2O2 Synthesis. ACS Catalysis, 2019, 9, 8702-8711.	11.2	32
3471	Understanding the Role of Surface Oxygen in Hg Removal on Unâ€Doped and Mn/Feâ€Doped CeO 2 (111). Journal of Computational Chemistry, 2019, 40, 2611-2621.	3.3	0
3472	Dissociative Chemisorption of Methane on Stepped Ir(332) Surface: Density Functional Theory and Ab Initio Molecular Dynamics Studies. Journal of Physical Chemistry C, 2019, 123, 20893-20902.	3.1	12

#	Article	IF	Citations
3473	Statistically representative databases for density functional theory <i>via</i> data science. Physical Chemistry Chemical Physics, 2019, 21, 19092-19103.	2.8	20
3474	An Insight into Nitromethane as an Organic Nitrile Alternative Source towards the Synthesis of Aryl Nitriles. European Journal of Organic Chemistry, 2019, 2019, 6211-6216.	2.4	12
3475	An oxalate cathode for lithium ion batteries with combined cationic and polyanionic redox. Nature Communications, 2019, 10, 3483.	12.8	65
3476	Single PdO loaded on boron nanosheet for methane oxidation: A DFT study. Progress in Natural Science: Materials International, 2019, 29, 367-369.	4.4	11
3477	Identifying the rate-determining step of the electrocatalytic hydrodechlorination reaction on palladium nanoparticles. Nanoscale, 2019, 11, 15892-15899.	5.6	34
3478	First-principle investigation of the structural, electronic, elastic, and elastic anisotropy properties and thermal stabilities of CeMg2Si2 and Mg2Si. Materials Research Express, 2019, 6, 1165f8.	1.6	12
3479	Adsorption on transition metal surfaces: Transferability and accuracy of DFT using the ADS41 dataset. Physical Review B, 2019, 100, .	3.2	51
3480	Efficient band gap prediction of semiconductors and insulators from a semilocal exchange-correlation functional. Physical Review B, 2019, 100, .	3.2	35
3481	Diffusion Mechanisms for Ions over Hydroxylated Surfaces: Cu on γ-Al ₂ O ₃ . Journal of Physical Chemistry C, 2019, 123, 18502-18507.	3.1	1
3482	Ab Initio Cyclic Voltammetry on $Cu(111)$, $Cu(100)$ and $Cu(110)$ in Acidic, Neutral and Alkaline Solutions. ChemPhysChem, 2019, 20, 3096-3105.	2.1	48
3483	Quantum Dynamics of Dissociative Chemisorption of H ₂ on the Stepped Cu(211) Surface. Journal of Physical Chemistry C, 2019, 123, 23049-23063.	3.1	20
3484	Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nature Communications, 2019, 10, 3808.	12.8	225
3485	Interaction between Li, Ultrathin Adsorbed Ionic Liquid Films, and CoO(111) Thin Films: A Model Study of the Solid Electrolyte Interphase Formation. Chemistry of Materials, 2019, 31, 5537-5549.	6.7	9
3486	Practical Considerations for Continuum Models Applied to Surface Electrochemistry. ChemPhysChem, 2019, 20, 3074-3080.	2.1	40
3487	Synthesis and structure of a new mixed metal iodate Ba ₃ Ga ₂ (IO ₃) ₁₂ . CrystEngComm, 2019, 21, 4981-4986.	2.6	14
3488	Pathways for O ₂ Electroreduction over Substitutional FeN ₄ , HOFeN ₄ , and OFeN ₄ in Graphene Bulk Sites: Critical Evaluation of Overpotential Predictions Using LGER and CHE Models. Journal of Physical Chemistry C, 2019, 123, 18398-18409.	3.1	20
3489	Nonoxidative Direct Conversion of Methane on Silica-Based Iron Catalysts: Effect of Catalytic Surface. ACS Catalysis, 2019, 9, 7984-7997.	11.2	61
3490	Similarities and differences for atomic and diatomic molecule adsorption on the B-5 type sites of the HCP(101ì6) surfaces of Co, Os, and Ru from DFT calculations. Heliyon, 2019, 5, e01924.	3.2	O

#	Article	IF	CITATIONS
3491	Classical Molecular Dynamics Simulation of Metal Electrodes-Electrolyte Interface. Journal of Computer Chemistry Japan, 2019, 18, 9-17.	0.1	0
3492	Insights into the Electrochemical Oxygen Evolution Reaction with ab Initio Calculations and Microkinetic Modeling: Beyond the Limiting Potential Volcano. Journal of Physical Chemistry C, 2019, 123, 18960-18977.	3.1	138
3493	Adsorption and diffusion of Pt, Cu, Ag and Au on missing row reconstructed Pt(110) surfaces: An ab initio investigation. Surface Science, 2019, 690, 121463.	1.9	3
3494	Evaluating the Catalytic Efficiency of Paired, Single-Atom Catalysts for the Oxygen Reduction Reaction. ACS Catalysis, 2019, 9, 7660-7667.	11.2	128
3495	Precious Metal-Free Nickel Nitride Catalyst for the Oxygen Reduction Reaction. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 26863-26871.	8.0	81
3496	Predicting CO ₂ adsorption and reactivity on transition metal surfaces using popular density functional theory methods. Molecular Simulation, 2019, 45, 1163-1172.	2.0	26
3497	Biomimetic Nitrogen Fixation Catalyzed by Transition Metal Sulfide Surfaces in an Electrolytic Cell. ChemSusChem, 2019, 12, 4265-4273.	6.8	35
3498	Computational and experimental studies on the efficient removal of diclofenac from water using ZnFe-layered double hydroxide as an environmentally benign absorbent. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102, 297-311.	5. 3	56
3499	Gibbsite (100) and Kaolinite (100) Sorption of Cadmium(II): A Density Functional Theory and XANES Study of Structures and Energies. Journal of Physical Chemistry A, 2019, 123, 6319-6333.	2.5	9
3500	Spontaneous Delithiation under <i>Operando</i> Condition Triggers Formation of an Amorphous Active Layer in Spinel Cobalt Oxides Electrocatalyst toward Oxygen Evolution. ACS Catalysis, 2019, 9, 7389-7397.	11.2	52
3501	Catalyzed growth of encapsulated carbyne. Carbon, 2019, 153, 1-5.	10.3	11
3502	Electron Attachment Leads to Unidirectional In-Plane Molecular Rotation of Para-Chlorostyrene on Si(100). Journal of Physical Chemistry C, 2019, 123, 18425-18431.	3.1	2
3503	Convolutional Neural Network of Atomic Surface Structures To Predict Binding Energies for High-Throughput Screening of Catalysts. Journal of Physical Chemistry Letters, 2019, 10, 4401-4408.	4.6	151
3504	Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin Culn5S8 layers. Nature Energy, 2019, 4, 690-699.	39.5	948
3505	Electro-Oxidation of Methane on Platinum under Ambient Conditions. ACS Catalysis, 2019, 9, 7578-7587.	11.2	53
3506	Influence of Van der Waals Interactions on the Solvation Energies of Adsorbates at Ptâ€Based Electrocatalysts. ChemPhysChem, 2019, 20, 2968-2972.	2.1	16
3507	Proton diffusion facilitated by indirect interactions between proton donors through several hydrogen bonds. Chemical Physics Letters, 2019, 731, 136627.	2.6	10
3508	Physicochemical investigations, biological studies of the Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and UO2(VI) complexes of picolinic acid hydrazide derivative: A combined experimental and computational approach. Journal of Molecular Structure, 2019, 1197, 564-575.	3.6	15

#	Article	IF	CITATIONS
3509	Hollow Porous Ag Spherical Catalysts for Highly Efficient and Selective Electrocatalytic Reduction of CO ₂ to CO. ACS Sustainable Chemistry and Engineering, 2019, 7, 14443-14450.	6.7	40
3510	Novel Insights into the Hydroxylation Behaviors of α-Quartz (101) Surface and its Effects on the Adsorption of Sodium Oleate. Minerals (Basel, Switzerland), 2019, 9, 450.	2.0	50
3511	Toward a Specific Reaction Parameter Density Functional for H2 + Ni(111): Comparison of Theory with Molecular Beam Sticking Experiments. Journal of Physical Chemistry C, 2019, 123, 20420-20433.	3.1	12
3512	The manipulation of substitutional defects for realizing high thermoelectric performance in Mg ₃ Sb ₂ -based Zintl compounds. Journal of Materials Chemistry A, 2019, 7, 19316-19323.	10.3	45
3513	Impact of Transition Metal Carbide and Nitride Supports on the Electronic Structure of Thin Platinum Overlayers. ACS Catalysis, 2019, 9, 7090-7098.	11.2	30
3514	Tunable pH-dependent oxygen evolution activity of strontium cobaltite thin films for electrochemical water splitting. Physical Chemistry Chemical Physics, 2019, 21, 16230-16239.	2.8	13
3515	Effects of composition and morphology on the hydrogen storage properties of transition metal hydrides: Insights from PtPd nanoclusters. Nano Energy, 2019, 63, 103858.	16.0	15
3516	Tuning redox and chemical characteristics of Mo-based catalysts for bioenergy applications $\hat{a}\in$ The case of catalysts supported on TiO2 or ZrO2. Materials Today Communications, 2019, 20, 100543.	1.9	1
3517	Higher alcohol synthesis from syngas over xerogel-derived Co-Cu-Al2O3 catalyst with an enhanced metal proximity. Molecular Catalysis, 2019, 475, 110481.	2.0	5
3518	Interfacing Epitaxial Dinickel Phosphide to 2D Nickel Thiophosphate Nanosheets for Boosting Electrocatalytic Water Splitting. ACS Nano, 2019, 13, 7975-7984.	14.6	171
3519	Edge-modulated dual spin-filter effect in zigzag-shaped buckling Ag ₂ S nanoribbons. Physical Chemistry Chemical Physics, 2019, 21, 15623-15629.	2.8	6
3520	Self-Selective Catalyst Synthesis for CO2 Reduction. Joule, 2019, 3, 1927-1936.	24.0	63
3521	Electronâ∈Beam Manipulation of Silicon Impurities in Singleâ∈Walled Carbon Nanotubes. Advanced Functional Materials, 2019, 29, 1901327.	14.9	14
3522	Elucidating the Mechanism of Electrochemical N ₂ Reduction at the Ru(0001) Electrode. ACS Catalysis, 2019, 9, 11137-11145.	11.2	78
3523	Computationally generated maps of surface structures and catalytic activities for alloy phase diagrams. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22044-22051.	7.1	14
3524	First principles calculation on the newly superhard materials of W-B-C ternary system. Solid State Communications, 2019, 301, 113705.	1.9	6
3525	Comparative investigation on the stability, electronic structures and mechanical properties of Mo2FeB2 and Mo2NiB2 ternary borides by first-principles calculations. Results in Physics, 2019, 15, 102698.	4.1	15
3526	Patterns and environmental drivers of diversity and community composition of macrofauna in the Kveithola Trough (NW Barents Sea). Journal of Sea Research, 2019, 153, 101780.	1.6	7

#	Article	IF	CITATIONS
3527	Quadruple bonding between iron and boron in the BFe(CO)3 \hat{a} ° complex. Nature Communications, 2019, 10, 4713.	12.8	34
3528	Differential Surface Elemental Distribution Leads to Significantly Enhanced Stability of PtNi-Based ORR Catalysts. Matter, 2019, 1, 1567-1580.	10.0	82
3529	Mechanistic study of site blocking catalytic deactivation through accelerated kinetic Monte Carlo. Journal of Catalysis, 2019, 378, 176-183.	6.2	6
3530	Water-soluble polymer anchored peroxotitanates as environmentally clean and recyclable catalysts for mild and selective oxidation of sulfides with H2O2 in water. Tetrahedron, 2019, 75, 130605.	1.9	12
3531	Influence of Oxygen–Sulfur Exchange on the Structural, Electronic, and Stability Properties of Alkali Hexastannates. Journal of Physical Chemistry C, 2019, 123, 24375-24382.	3.1	6
3532	In Situ Characterization of Waters of Hydration in a Variable-Hydrate Active Pharmaceutical Ingredient Using ³⁵ Cl Solid-State NMR and X-ray Diffraction. Crystal Growth and Design, 2019, 19, 7349-7362.	3.0	16
3533	Synthesis, spectroscopic characterization and biological evaluation of a novel chemosensor with different metal ions. Applied Organometallic Chemistry, 2019, 33, e5133.	3 . 5	21
3534	Suppressing Interfacial Dipoles to Minimize Openâ€Circuit Voltage Loss in Quantum Dot Photovoltaics. Advanced Energy Materials, 2019, 9, 1901938.	19.5	14
3535	Amorphous Rutheniumâ€Sulfide with Isolated Catalytic Sites for Pt‣ike Electrocatalytic Hydrogen Production Over Whole pH Range. Small, 2019, 15, e1904043.	10.0	71
3536	Unified Approach to Implicit and Explicit Solvent Simulations of Electrochemical Reaction Energetics. Journal of Chemical Theory and Computation, 2019, 15, 6895-6906.	5. 3	86
3537	On the calculation of the bandgap of periodic solids with MGGA functionals using the total energy. Journal of Chemical Physics, 2019, 151, 161102.	3.0	10
3538	Surface Composition Evolution of Bimetallic Alloys under Reaction Conditions. Journal of Physical Chemistry C, 2019, 123, 28241-28247.	3.1	16
3539	Facile Electron Transfer to CO ₂ during Adsorption at the Metal Solution Interface. Journal of Physical Chemistry C, 2019, 123, 29278-29283.	3.1	36
3540	Sodium titanate nanotubes for efficient transesterification of oils into biodiesel. Environmental Science and Pollution Research, 2019, 26, 36388-36400.	5. 3	19
3541	Single Au Anion Can Catalyze Acetylene Hydrochlorination: Tunable Catalytic Performance from Rational Doping. Journal of Physical Chemistry C, 2019, 123, 29203-29208.	3.1	26
3542	Mechanisms for hydrogen evolution on transition metal phosphide catalysts and a comparison to Pt(111). Physical Chemistry Chemical Physics, 2019, 21, 24489-24498.	2.8	31
3543	Zeolitic imidazolate frameworks: Experimental and molecular simulation studies for efficient capture of pesticides from wastewater. Journal of Environmental Chemical Engineering, 2019, 7, 103499.	6.7	61
3544	Synthesis of a Novel Catalyst MnO/CNTs for Microwave-Induced Degradation of Tetracycline. Catalysts, 2019, 9, 911.	3.5	10

#	Article	IF	Citations
3545	Tuning CO ₂ Electroreduction of Cu Atoms on Triphenylene-Cored Graphdiyne. Journal of Physical Chemistry C, 2019, 123, 29776-29782.	3.1	12
3546	MoS ₂ Thin Films for Photo-Voltaic Applications. , 0, , .		0
3547	Cobalt Phosphide Ultrathin and Freestanding Sheets Prepared through Microwave Chemical Vapor Deposition: A Highly Efficient Oxygen Evolution Reaction Catalyst. ChemElectroChem, 2019, 6, 5469-5478.	3.4	16
3548	Performance of Density Functional Theory for Transition Metal Oxygen Bonds. ChemPhysChem, 2019, 20, 3210-3220.	2.1	9
3549	First-principles prediction of the quaternary half-metallic ferromagnets TiZrIrZ (Z = Al, Ga or In) for spintronics applications. Thin Solid Films, 2019, 690, 137564.	1.8	11
3550	Understanding why Alite is responsible of the main mechanical characteristics in Portland cement. Cement and Concrete Research, 2019, 126, 105916.	11.0	21
3551	NO Adsorption on 4d and 5d Transition-Metal (Rh, Pd, Ag, Ir, and Pt) Nanoparticles: Density Functional Theory Study and Supervised Learning. Journal of Physical Chemistry C, 2019, 123, 28114-28122.	3.1	22
3552	First-Principles Calculations of TiB MBene Monolayers for Hydrogen Evolution. ACS Applied Nano Materials, 2019, 2, 7220-7229.	5.0	45
3553	Activity Origin and Multifunctionality of Pt-Based Intermetallic Nanostructures for Efficient Electrocatalysis. ACS Catalysis, 2019, 9, 11242-11254.	11.2	96
3554	New Mechanism for N ₂ Reduction: The Essential Role of Surface Hydrogenation. Journal of the American Chemical Society, 2019, 141, 18264-18270.	13.7	166
3555	Simple exchange hole models for long-range-corrected density functionals. Journal of Chemical Physics, 2019, 151, 094106.	3.0	5
3556	Single-doped charged gold cluster with highly selective catalytic activity for the reduction of SO 2 by CO: First-principles study. Chinese Physics B, 2019, 28, 113101.	1.4	3
3557	Curious Mechanism of the Dissociative Chemisorption of Ammonia on Ru(0001). Journal of Physical Chemistry C, 2019, 123, 28291-28300.	3.1	10
3558	Interaction between water and carbon nanostructures: How good are current density functional approximations?. Journal of Chemical Physics, 2019, 151, 164702.	3.0	47
3559	An Investigation on the Relationship between the Stability of Lithium Anode and Lithium Nitrate in Electrolyte. Journal of the Electrochemical Society, 2019, 166, A3570-A3574.	2.9	5
3560	Supported Intermetallic PdZn Nanoparticles as Bifunctional Catalysts for the Direct Synthesis of Dimethyl Ether from COâ€Rich Synthesis Gas. Angewandte Chemie, 2019, 131, 15802-15806.	2.0	7
3561	Atomic and electronic modulation of self-supported nickel-vanadium layered double hydroxide to accelerate water splitting kinetics. Nature Communications, 2019, 10, 3899.	12.8	355
3562	Subnanomolar FRET-Based DNA Assay Using Thermally Stable Phosphorothioated DNA-Functionalized Quantum Dots. ACS Applied Materials & Samp; Interfaces, 2019, 11, 33525-33534.	8.0	18

#	Article	IF	CITATIONS
3563	Electronic structure properties of transition metal dichalcogenide nanotubes: a DFT benchmark. Journal of Molecular Modeling, 2019, 25, 290.	1.8	8
3564	Governing factors of supports of ammonia synthesis in an electric field found using density functional theory. Journal of Chemical Physics, 2019, 151, 064708.	3.0	13
3565	Predicting Adsorption Energies Using Multifidelity Data. Journal of Chemical Theory and Computation, 2019, 15, 5588-5600.	5.3	17
3566	Ab Initio Molecular Dynamics Investigation of the Electronic and Structural Stability of Anionic O ₂ ^{â€"} (H ₂ O) _{<i>n</i>} , <i>n</i> , <i>n</i> = 1â€"16 Clusters. Journal of Physical Chemistry A, 2019, 123, 7528-7535.	2.5	3
3567	Strain Affects CO Oxidation on Metallic Nanoparticles Non-linearly. Topics in Catalysis, 2019, 62, 660-668.	2.8	9
3568	DFT Investigations of the Vibrational Spectra and Translational Modes of Ice II. Molecules, 2019, 24, 3135.	3.8	8
3569	Computational Analysis of Exotic Molecular and Atomic Vibrations in Ice XV. Molecules, 2019, 24, 3115.	3.8	11
3570	Dynamical Study of the Dissociative Chemisorption of CHD ₃ on Pd(111). Journal of Physical Chemistry C, 2019, 123, 24013-24023.	3.1	11
3571	Structure and Electronic Properties of TiO2 Nanowires of Different Geometrical Shapes: An Abinitio Study. , 2019, , .		0
3572	Tuning the Structure and Chiroptical Properties of Gold Nanoparticle Single Helices via Peptide Sequence Variation. Journal of the American Chemical Society, 2019, 141, 15710-15716.	13.7	29
3573	Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis. Nature Communications, 2019, 10, 4060.	12.8	131
3574	Out-of-plane ion transport makes nitrogenated holey graphite a promising high-rate anode for both Li and Na ion batteries. Nanoscale, 2019, 11, 18758-18768.	5.6	22
3575	Revelation of the Nature of the Ligand–PbS Bond and Its Implication on Chemical Functionalization of PbS. Journal of Physical Chemistry C, 2019, 123, 22981-22988.	3.1	2
3576	Metalâ€"organic-framework-derived porous 3D heterogeneous NiFe _x /NiFe ₂ O ₄ @NC nanoflowers as highly stable and efficient electrocatalysts for the oxygen-evolution reaction. Journal of Materials Chemistry A, 2019, 7, 21338-21348.	10.3	71
3577	A black phosphorus/Ti ₃ C ₂ MXene nanocomposite for sodium-ion batteries: a combined experimental and theoretical study. Nanoscale, 2019, 11, 19862-19869.	5.6	57
3578	Callistemon-like Zn and S codoped CoP nanorod clusters as highly efficient electrocatalysts for neutral-pH overall water splitting. Journal of Materials Chemistry A, 2019, 7, 22453-22462.	10.3	76
3579	An emerging Janus MoSeTe material for potential applications in optoelectronic devices. Journal of Materials Chemistry C, 2019, 7, 12312-12320.	5.5	85
3580	Frequencies and Thermal Stability of Isolated Surface Hydroxyls on Pyrogenic TiO ₂ Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 24533-24548.	3.1	30

#	Article	IF	CITATIONS
3581	Assessment of van der Waals inclusive density functional theory methods for adsorption and selective dehydrogenation of formic acid on $Pt(111)$ surface. Physical Chemistry Chemical Physics, 2019, 21, 21049-21056.	2.8	23
3582	Structure and thermodynamics of aqueous urea solutions from ambient to kilobar pressures: From thermodynamic modeling, experiments, and first principles simulations to an accurate force field description. Biophysical Chemistry, 2019, 254, 106260.	2.8	10
3583	Unfolding adsorption on metal nanoparticles: Connecting stability with catalysis. Science Advances, 2019, 5, eaax5101.	10.3	66
3584	Catalytic activity of palladium-doped silver dilute nanoalloys for formate oxidation from a theoretical perspective. Physical Chemistry Chemical Physics, 2019, 21, 22598-22610.	2.8	44
3585	Alloying in inverse CeO ₂ /Pd nanoparticles to enhance the electrocatalytic activity for the formate oxidation reaction. Journal of Materials Chemistry A, 2019, 7, 22996-23007.	10.3	59
3586	Boosting Performance of Na–S Batteries Using Sulfur-Doped Ti ₃ C ₂ T _{<i>x</i>>} MXene Nanosheets with a Strong Affinity to Sodium Polysulfides. ACS Nano, 2019, 13, 11500-11509.	14.6	220
3587	Modulation of Phosphorene for Optimal Hydrogen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2019, 11, 37787-37795.	8.0	38
3588	A Multi-Scale Modeling of CH4 and H2O Adsorption on Coal Molecules and the Water Blocking Effect in Coalbed Methane Extraction. Applied Sciences (Switzerland), 2019, 9, 3421.	2.5	6
3589	In Situ Methods for Identifying Reactive Surface Intermediates during Hydrogenolysis Reactions: C–O Bond Cleavage on Nanoparticles of Nickel and Nickel Phosphides. Journal of the American Chemical Society, 2019, 141, 16671-16684.	13.7	30
3590	Study of the role of alkaline sodium additive in selective hydrogenation of phenol. Chinese Journal of Catalysis, 2019, 40, 1516-1524.	14.0	28
3591	Residual gas adsorption effect on the stability of Cs-activated GaN nanowire photocathode. Applied Surface Science, 2019, 497, 143791.	6.1	17
3592	Molecular or dissociative adsorption of water on clean and oxygen pre-covered Ni(111) surfaces. Catalysis Science and Technology, 2019, 9, 199-212.	4.1	9
3593	Hydrogen adsorption trends on various metal-doped Ni ₂ P surfaces for optimal catalyst design. Physical Chemistry Chemical Physics, 2019, 21, 184-191.	2.8	17
3594	Controllable nitrogen-doping of nanoporous carbons enabled by coordination frameworks. Journal of Materials Chemistry A, 2019, 7, 647-656.	10.3	43
3595	One-dimensional vs. two-dimensional proton transport processes at solid–liquid zinc-oxide–water interfaces. Chemical Science, 2019, 10, 1232-1243.	7.4	39
3596	A modified generalized Langevin oscillator model for activated gas-surface reactions. Journal of Chemical Physics, 2019, 150, 024704.	3.0	9
3597	Investigations of the Hydrogen Bonds and Vibrational Spectra of Clathrate Ice XVI. Materials, 2019, 12, 246.	2.9	16
3598	Multiple Reaction Paths for CO Oxidation on a 2D SnO <i></i> > _{>Nanoâ€Oxide on the Pt(110) Surface: Intrinsic Reactivity and Spillover. Advanced Materials Interfaces, 2019, 6, 1801874.}	3.7	7

#	Article	IF	CITATIONS
3599	Structure and phase regulation in MoxC (\hat{l} ±-MoC1-x/ \hat{l} 2-Mo2C) to enhance hydrogen evolution. Applied Catalysis B: Environmental, 2019, 247, 78-85.	20.2	123
3600	Assessment of Constant-Potential Implicit Solvation Calculations of Electrochemical Energy Barriers for H ₂ Evolution on Pt. Journal of Physical Chemistry C, 2019, 123, 4116-4124.	3.1	71
3601	An essential descriptor for the oxygen evolution reaction on reducible metal oxide surfaces. Chemical Science, 2019, 10, 3340-3345.	7.4	63
3602	Toward Computational Design of Catalysts for CO ₂ Selective Reduction via Reaction Phase Diagram Analysis. Advanced Theory and Simulations, 2019, 2, 1800200.	2.8	10
3603	ASbF3Cl (A = Rb, Cs): Structural Evolution from Centrosymmetry to Noncentrosymmetry. Crystal Growth and Design, 2019, 19, 1874-1879.	3.0	8
3604	Effect of single metal dopant (Rh, Ru and Sn) on Pt+ (n = 3 and 4) clusters for controlled CO tolerance. Chemical Physics Letters, 2019, 717, 82-86.	2.6	3
3605	Control of Hierarchical Structure and Framework-Al Distribution of ZSM-5 via Adjusting Crystallization Temperature and Their Effects on Methanol Conversion. ACS Catalysis, 2019, 9, 2880-2892.	11.2	90
3606	Library-Based <i>LAMMPS</i> Implementation of High-Dimensional Neural Network Potentials. Journal of Chemical Theory and Computation, 2019, 15, 1827-1840.	5. 3	175
3607	Defect-rich activated carbons as active and stable metal-free catalyst for acetylene hydrochlorination. Carbon, 2019, 146, 406-412.	10.3	78
3608	Ruderman–Kittel–Kasuya–Yosida Mechanism for Magnetic Ordering of Sparse Fe Adatoms on Graphene. Journal of Physical Chemistry C, 2019, 123, 4441-4445.	3.1	14
3609	Cu-Based Single-Atom Catalysts Boost Electroreduction of CO ₂ to CH ₃ OH: First-Principles Predictions. Journal of Physical Chemistry C, 2019, 123, 4380-4387.	3.1	68
3610	Hydrogen Chemisorption Isotherms on Platinum Particles at Catalytic Temperatures: Langmuir and Two-Dimensional Gas Models Revisited. Journal of Physical Chemistry C, 2019, 123, 8447-8462.	3.1	28
3611	Comparing Rate and Mechanism of Ethane Hydrogenolysis on Transition-Metal Catalysts. Journal of Physical Chemistry C, 2019, 123, 5421-5432.	3.1	31
3612	Screening of active center and reactivity descriptor in acetylene hydrochlorination on metal-free doped carbon catalysts from first principle calculations. Applied Surface Science, 2019, 478, 574-580.	6.1	21
3613	Energy Dissipation Effects on the Adsorption Dynamics of N2 on W(100). Journal of Physical Chemistry C, 2019, 123, 2900-2910.	3.1	5
3614	Methanol synthesis revisited: reaction mechanisms in CO/CO ₂ hydrogenation over Cu/ZnO and DFT analysis. Petroleum Science and Technology, 2019, 37, 603-610.	1.5	13
3615	Strain-tunable magnetic and electronic properties of monolayer Crl ₃ . Physical Chemistry Chemical Physics, 2019, 21, 7750-7755.	2.8	143
3616	Molecular evidence for feedstock-dependent nucleation mechanisms of CNTs. Nanoscale Horizons, 2019, 4, 674-682.	8.0	11

#	Article	IF	Citations
3617	Thermal atomic layer deposition of metallic Ru using H2O as a reactant. Applied Surface Science, 2019, 488, 896-902.	6.1	17
3618	A mechanistic study of photo-oxidation of phenol and AB92 by AgBr/TiO2. Research on Chemical Intermediates, 2019, 45, 4885-4896.	2.7	7
3619	Synthesis, characterization, computational, conductometric titration and DNA binding studies of N′1,N′2‑bis(3‑hydroxy‑5,5‑dimethylcyclohex‑2‑en‑1‑ylidene)oxalohydrazide complexes. Jo Liquids, 2019, 288, 111030.	ur an.⊗ lofMo	olecular
3620	Probing into the effects of cluster size and Pd ensemble as active center on the activity of H2 dissociation over the noble metal Pd-doped Cu bimetallic clusters. Molecular Catalysis, 2019, 475, 110457.	2.0	10
3621	Identification of an Active NiCu Catalyst for Nitrile Synthesis from Alcohol. ACS Catalysis, 2019, 9, 6681-6691.	11.2	63
3622	Role of Cation Vacancies in Cu ₂ SnSe ₃ Thermoelectrics. ACS Applied Materials & Amp; Interfaces, 2019, 11, 24212-24220.	8.0	30
3623	Origins of boron catalysis in peroxymonosulfate activation and advanced oxidation. Journal of Materials Chemistry A, 2019, 7, 23904-23913.	10.3	67
3624	In-situ coalesced vacancies on MoSe2 mimicking noble metal: Unprecedented Tafel reaction in hydrogen evolution. Nano Energy, 2019, 63, 103846.	16.0	41
3625	DFT study on the oxygen titanium porphyrin as sustainable cyclic catalyst for water splitting. International Journal of Hydrogen Energy, 2019, 44, 19920-19928.	7.1	15
3626	Quantum Monte Carlo Studies of CO Adsorption on Transition Metal Surfaces. Journal of Physical Chemistry C, 2019, 123, 15659-15664.	3.1	11
3627	Electrochemical Properties of Na _{0.66} V ₄ O ₁₀ Nanostructures as Cathode Material in Rechargeable Batteries for Energy Storage Applications. ACS Omega, 2019, 4, 9878-9888.	3.5	15
3628	New Insights into Electrochemical Ammonia Oxidation on Pt(100) from First Principles. Industrial & Lamp; Engineering Chemistry Research, 2019, 58, 10819-10828.	3.7	71
3629	Specific Reaction Parameter Density Functional Based on the Meta-Generalized Gradient Approximation: Application to H ₂ + Cu(111) and H ₂ + Ag(111). Journal of Physical Chemistry A, 2019, 123, 5395-5406.	2.5	28
3630	First-principles study of the complex magnetism in Fe16N2. Scientific Reports, 2019, 9, 8381.	3.3	7
3631	Highâ∈Performance Hydrogen Evolution by Ru Single Atoms and Nitridedâ∈Ru Nanoparticles Implanted on Nâ∈Doped Graphitic Sheet. Advanced Energy Materials, 2019, 9, 1900931.	19.5	224
3632	Comparative Analysis of Hydrogen Bond Vibrations in Ice VIII and VII. Journal of Physical Chemistry C, 2019, 123, 14880-14883.	3.1	14
3633	Intrinsic Properties of Macroscopically Tuned Gallium Nitride Singleâ€Crystalline Facets for Electrocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2019, 25, 10420-10426.	3.3	8
3634	Adsorption of phosgene on Si-embedded MoS2 sheet and electric field-assisted desorption: insights from DFT calculations. Journal of Materials Science, 2019, 54, 11497-11508.	3.7	14

#	Article	IF	Citations
3635	Electrosynthesis of Y2O3 nanoparticles and its nanocomposite with POAP as high efficient electrode materials in energy storage device: Surface, density of state and electrochemical investigation. Solid State Ionics, 2019, 338, 87-95.	2.7	35
3636	CHD ₃ Dissociation on the Kinked Pt(210) Surface: A Comparison of Experiment and Theory. Journal of Physical Chemistry C, 2019, 123, 14530-14539.	3.1	14
3637	Computationally Supported Neutron Scattering Study of Natural and Synthetic Amorphous Carbons. Journal of Physical Chemistry C, 2019, 123, 15841-15850.	3.1	13
3638	Combination of experimental and theoretical investigation on Ti-doped g-C3N4 with improved photo-catalytic activity. Applied Surface Science, 2019, 489, 427-434.	6.1	67
3639	Dynamics of dissociative chemisorption of O2 on Cu(100) surface: A theoretical study. Surface Science, 2019, 688, 45-50.	1.9	7
3640	Catalysis-Hub.org, an open electronic structure database for surface reactions. Scientific Data, 2019, 6, 75.	5.3	163
3641	Strain-induced changes to the methanation reaction on thin-film nickel catalysts. Catalysis Science and Technology, 2019, 9, 3279-3286.	4.1	4
3642	Atomic modeling for the initial stage of chromium passivation. International Journal of Minerals, Metallurgy and Materials, 2019, 26, 732-739.	4.9	8
3643	The effect of GGA functionals on the oxygen reduction reaction catalyzed by Pt(111) and FeN4 doped graphene. Journal of Molecular Modeling, 2019, 25, 180.	1.8	6
3644	Micro-Kinetic Modelling of CO-TPD from Fe(100)—Incorporating Lateral Interactions. Catalysts, 2019, 9, 310.	3.5	10
3645	Experimental and Density Functional Theory Corroborated Optimization of Durable Metal Embedded Carbon Nanofiber for Oxygen Electrocatalysis. Journal of Physical Chemistry Letters, 2019, 10, 3109-3114.	4.6	16
3646	Methane dissociation on stepped Ni surfaces resolved by impact site, collision energy, vibrational state, and lattice distortion. Journal of Chemical Physics, 2019, 150, 204703.	3.0	14
3647	Robust nanocomposites of \hat{l} ±-Fe2O3 and N-doped graphene oxide: Interfacial bonding and chemisorption of H2O. Carbon, 2019, 152, 497-502.	10.3	12
3648	Mechanism and Kinetics of Methylating C ₆ –C ₁₂ Methylbenzenes with Methanol and Dimethyl Ether in H-MFl Zeolites. ACS Catalysis, 2019, 9, 6444-6460.	11.2	45
3649	Defect Engineering in Two Common Types of Dielectric Materials for Electromagnetic Absorption Applications. Advanced Functional Materials, 2019, 29, 1901236.	14.9	469
3650	Energetics and structure of Langmuir monolayers of palmitic acid: a DFT study. Physical Chemistry Chemical Physics, 2019, 21, 11203-11213.	2.8	5
3651	Thermal conductivity and diffusion mechanisms of noble gases in uranium dioxide: A DFT+U study. Journal of Nuclear Materials, 2019, 521, 137-145.	2.7	21
3652	First-principles descriptors of CO chemisorption on Ni and Cu surfaces. Physical Chemistry Chemical Physics, 2019, 21, 11476-11487.	2.8	13

#	Article	IF	CITATIONS
3653	Structural and electrical properties of Ga–Te systems under high pressure. Chinese Physics B, 2019, 28, 056104.	1.4	6
3654	Crystal structure, cytotoxicity and biological activity of hydrogen bonded networks based on dimethyltin (IV) and bipodal ligands. Journal of Organometallic Chemistry, 2019, 894, 43-60.	1.8	4
3655	Doping of epitaxial graphene by direct incorporation of nickel adatoms. Nanoscale, 2019, 11, 10358-10364.	5.6	21
3656	Computational analysis of vibrational spectrum and hydrogen bonds of ice XVII. New Journal of Physics, 2019, 21, 043054.	2.9	15
3657	Orbital-Dependent Electronic Friction Significantly Affects the Description of Reactive Scattering of N ₂ from Ru(0001). Journal of Physical Chemistry Letters, 2019, 10, 2957-2962.	4.6	45
3658	Beyond 1Tâ€phase? Synergistic Electronic Structure and Defects Engineering in 2Hâ€MoS _{2x} Se _{2(1â€x)} Nanosheets for Enhanced Hydrogen Evolution Reaction and Sodium Storage. ChemCatChem, 2019, 11, 3200-3211.	3.7	21
3659	Electrolyte Effects on the Stability of Niâ^'Mo Cathodes for the Hydrogen Evolution Reaction. ChemSusChem, 2019, 12, 3491-3500.	6.8	37
3660	First-principles investigation on thermodynamic phase stability of jadeite under high temperature and high pressure. Physica B: Condensed Matter, 2019, 567, 55-60.	2.7	6
3661	First-principles investigation of structural and electronic properties of oxygen adsorbing phosphorene. Progress in Natural Science: Materials International, 2019, 29, 316-321.	4.4	12
3662	Hierarchical and ultrathin copper nanosheets synthesized via galvanic replacement for selective electrocatalytic carbon dioxide conversion to carbon monoxide. Applied Catalysis B: Environmental, 2019, 255, 117736.	20.2	56
3663	Dynamics in reactions on metal surfaces: A theoretical perspective. Journal of Chemical Physics, 2019, 150, 180901.	3.0	56
3664	First-principles study of the surface properties of \hat{I}^3 -LiAlO2: Stability and tritium adsorption. Journal of Nuclear Materials, 2019, 522, 1-10.	2.7	17
3665	Pyrite-type ruthenium disulfide with tunable disorder and defects enables ultra-efficient overall water splitting. Journal of Materials Chemistry A, 2019, 7, 14222-14232.	10.3	50
3666	Alloy structure of rare earth Ce with Pt base metal, and the adsorption of CO. Materials Research Express, 2019, 6, 046538.	1.6	0
3667	Van der Waals Density Functional Theory vdW-DFq for Semihard Materials. Crystals, 2019, 9, 243.	2.2	22
3668	Exploring Accuracy Limits of Predictions of the 1H NMR Chemical Shielding Anisotropy in the Solid State. Molecules, 2019, 24, 1731.	3.8	11
3669	Characterization, cyclic voltammetry and biological studies of divalent Co, Ni and Cu complexes of water-soluble, bioactive and photoactive thiosemicarbazone salt. Journal of Molecular Liquids, 2019, 287, 110958.	4.9	21
3670	Coordination corrected ab initio formation enthalpies. Npj Computational Materials, 2019, 5, .	8.7	38

#	Article	IF	CITATIONS
3671	Densely Populated Isolated Single CoN Site for Efficient Oxygen Electrocatalysis. Advanced Energy Materials, 2019, 9, 1900149.	19.5	262
3672	Implications of Oxygen–Sulfur Exchange on Structural, Electronic Properties, and Stability of Alkaliâ€Metal Hexatitanates. Physica Status Solidi (B): Basic Research, 2019, 256, 1800568.	1.5	7
3673	Structural, electronic and optical properties of La, C-codoped TiO2 investigated by first principle calculations. Journal of Physics and Chemistry of Solids, 2019, 132, 121-129.	4.0	11
3674	Parallel Multistream Training of High-Dimensional Neural Network Potentials. Journal of Chemical Theory and Computation, 2019, 15, 3075-3092.	5.3	124
3675	CO ₂ Activation on Ni(111) and Ni(100) Surfaces in the Presence of H ₂ O: An Ambient-Pressure X-ray Photoelectron Spectroscopy Study. Journal of Physical Chemistry C, 2019, 123, 12176-12182.	3.1	36
3676	Ab Initio Thermodynamics Insight into the Structural Evolution of Working IrO ₂ Catalysts in Proton-Exchange Membrane Electrolyzers. ACS Catalysis, 2019, 9, 4944-4950.	11.2	43
3677	Transferability of the SRP32-vdW specific reaction parameter functional to CHD3 dissociation on Pt(110)-(2 $ ilde{A}$ — 1). Journal of Chemical Physics, 2019, 150, 124702.	3.0	17
3678	A generally applicable atomic-charge dependent London dispersion correction. Journal of Chemical Physics, 2019, 150, 154122.	3.0	697
3679	Reshuffling of Electronic Environment by Introducing CH ₃ NH ₂ F ⁺ as an Organic Cation for Enhanced Power Conversion Efficiency and Stability of the Designed Hybrid Organic–Inorganic Perovskite. Journal of Physical Chemistry C, 2019, 123, 13385-13393.	3.1	5
3680	Structureâ€"Property-Performance Relationship of Ultrathin Pdâ€"Au Alloy Catalyst Layers for Low-Temperature Ethanol Oxidation in Alkaline Media. ACS Applied Materials & Samp; Interfaces, 2019, 11, 24919-24932.	8.0	27
3681	Insight into the elastic anisotropy of BiM2VO6 (M= Mg, Ca and Cu) ceramics the first-principles calculations. Vacuum, 2019, 166, 26-31.	3.5	19
3682	CO ₂ electrochemical reduction at thiolate-modified bulk Au electrodes. Catalysis Science and Technology, 2019, 9, 2689-2701.	4.1	22
3683	Na-doped ruthenium perovskite electrocatalysts with improved oxygen evolution activity and durability in acidic media. Nature Communications, 2019, 10, 2041.	12.8	227
3684	Pt-rare earth metal alloy/metal oxide catalysts for oxygen reduction and alcohol oxidation reactions: an overview. Sustainable Energy and Fuels, 2019, 3, 1866-1891.	4.9	82
3685	Structural, DFT, optical dispersion characteristics of novel [DPPA-Zn-MR(Cl)(H2O)] nanostructured thin films. Materials Chemistry and Physics, 2019, 232, 180-192.	4.0	50
3686	Synergistic Effect of Zn in a Bimetallic PdZn Catalyst: Elucidating the Role of Undercoordinated Sites in the Hydrodeoxygenation Reactions of Biorenewable Platforms. Industrial & Engineering Chemistry Research, 2019, 58, 16153-16163.	3.7	22
3687	Enhancing the photocatalytic activity of ZnSn(OH) < sub > 6 < /sub > achieved by gradual sulfur doping tactics. Nanoscale, 2019, 11, 9444-9456.	5.6	19
3688	Adsorption, diffusion, and limited dissociation of a single water molecule on the ⟨i⟩α⟨ i⟩-Pu⟨sub⟩2⟨ sub⟩0⟨sub⟩3⟨ sub⟩ (1 1 1) surface. Journal of Physics Condensed Matter, 2019, 2265001.	311,8	4

#	ARTICLE	IF	CITATIONS
3689	Silicon Substitution in Nanotubes and Graphene via Intermittent Vacancies. Journal of Physical Chemistry C, 2019, 123, 13136-13140.	3.1	27
3690	Synthesis of Cu/CeO _{2-x} Nanocrystalline Heterodimers with Interfacial Active Sites To Promote CO ₂ Electroreduction. ACS Catalysis, 2019, 9, 5035-5046.	11.2	124
3691	<i>In situ</i> growth of a POMOF-derived nitride based composite on Cu foam to produce hydrogen with enhanced water dissociation kinetics. Journal of Materials Chemistry A, 2019, 7, 13559-13566.	10.3	39
3692	Effect of Al solute concentration on mechanical properties of AlxFeCuCrNi high-entropy alloys: A first-principles study. Physica B: Condensed Matter, 2019, 566, 30-37.	2.7	30
3693	Energies of Adsorbed Catalytic Intermediates on Transition Metal Surfaces: Calorimetric Measurements and Benchmarks for Theory. Accounts of Chemical Research, 2019, 52, 984-993.	15.6	38
3694	The Metal Hydride Problem of Computational Chemistry: Origins and Consequences. Journal of Physical Chemistry A, 2019, 123, 2888-2900.	2.5	26
3695	Unique Double-Interstitialcy Mechanism and Interfacial Storage Mechanism in the Graphene/Metal Oxide as the Anode for Sodium-Ion Batteries. Nano Letters, 2019, 19, 3122-3130.	9.1	31
3696	The Electronic Determinants of Spin Crossover Described by Density Functional Theory. Challenges and Advances in Computational Chemistry and Physics, 2019, , 1-33.	0.6	2
3697	Dissociation mechanism of HFC-245fa on Cu(1 11) surfaces with and without oxygen-covered: A density functional theory study. Applied Surface Science, 2019, 480, 487-496.	6.1	18
3698	Spectroscopic investigation, DFT, fluorescence, molecular docking and biological studies of divalent and trivalent binuclear complexes prepared from benzoyl thiosemicarbazide derivative of 2â€benzylmalonohydrazide. Applied Organometallic Chemistry, 2019, 33, e4871.	3.5	6
3699	Insight into the elastic and anisotropic properties of BiMg2MO6 (M= P, As and V) ceramics from the first-principles calculations. Ceramics International, 2019, 45, 11136-11140.	4.8	34
3700	Synthesis, crystal structure, vibrational spectroscopy, DFT, optical study and thermal analysis of a new stannate(IV) complex based on 2-ethyl-6-methylanilinium (C9H14N)2[SnCl6]. Journal of Molecular Structure, 2019, 1186, 31-38.	3.6	24
3701	Hydrogen storage on graphitic carbon nitride and its palladium nanocomposites: A multiscale computational approach. International Journal of Hydrogen Energy, 2019, 44, 8325-8340.	7.1	32
3702	Revealing the Synergy between Oxide and Alloy Phases on the Performance of Bimetallic In–Pd Catalysts for CO ₂ Hydrogenation to Methanol. ACS Catalysis, 2019, 9, 3399-3412.	11.2	173
3703	Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nature Catalysis, 2019, 2, 448-456.	34.4	642
3705	Emergent phenomena of magnetic skyrmion and large DM interaction in perovskite manganite <a 1998="" altimg="si1.gif" href="mailto:kmml:msk:mml=" http:="" math="" mathml"="" overflow="scroll" www.w3.org=""><mml:mrow><mml:mrow><mml:mtext>La</mml:mtext></mml:mrow><mml:mrow> lournal of Magnetism and Magnetic Materials, 2019, 483, 42-47">Magnetism and Magnetic Materials, 2019, 483, 42-47.	v><3mml:m	າກ ²⁷ 0.8
3706	Doping Effects on the Performance of Paired Metal Catalysts for the Hydrogen Evolution Reaction. Journal of Chemical Information and Modeling, 2019, 59, 2242-2247.	5.4	15
3707	Carbon Monoxide Mediated Hydrogen Release from PtCu Single-Atom Alloys: The Punctured Molecular Cork Effect. Journal of Physical Chemistry C, 2019, 123, 10419-10428.	3.1	19

#	Article	IF	CITATIONS
3708	Hierarchical Edge-Rich Nickel Phosphide Nanosheet Arrays as Efficient Electrocatalysts toward Hydrogen Evolution in Both Alkaline and Acidic Conditions. ACS Sustainable Chemistry and Engineering, 2019, 7, 7804-7811.	6.7	48
3709	Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nature Energy, 2019, 4, 329-338.	39.5	977
3710	Mg on adhesion of Al(111)/3C-SiC(111) interfaces from first principles study. Journal of Alloys and Compounds, 2019, 791, 530-539.	5 . 5	25
3711	Heterogeneous Additive-Free Hydroboration of Alkenes Using Cu–Ni/Al ₂ O ₃ : Concerted Catalysis Assisted by Acid–Base Properties and Alloying Effects. ACS Catalysis, 2019, 9, 5096-5103.	11.2	22
3712	<i>Ab initio</i> investigations of orthogonal ScC ₂ and ScN ₂ monolayers as promising anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 8897-8904.	10.3	49
3713	Mechanistic Understanding of Sizeâ€Dependent Oxygen Reduction Activity and Selectivity over Pt/CNT Nanocatalysts. European Journal of Inorganic Chemistry, 2019, 2019, 3210-3217.	2.0	18
3714	Integrating Biolayer Interferometry, Atomic Force Microscopy, and Density Functional Theory Calculation Studies on the Affinity between Humic Acid Fractions and Graphene Oxide. Environmental Science & Environmental Science	10.0	73
3715	Pressure response of the THz spectrum of bulk liquid water revealed by intermolecular instantaneous normal mode analysis. Journal of Chemical Physics, 2019, 150, 084502.	3.0	13
3716	First-principles study of the structural and electronic properties of Sr1â^'xMxSi2 (M=Ca and Ba). International Journal of Modern Physics B, 2019, 33, 1950039.	2.0	0
3717	Prediction of the near-IR spectra of ices by ab initio molecular dynamics. Physical Chemistry Chemical Physics, 2019, 21, 9433-9440.	2.8	2
3718	Selective Oxidation of Acetaldehyde to Acetic Acid on Pd–Au Bimetallic Model Catalysts. ACS Catalysis, 2019, 9, 4360-4368.	11.2	26
3719	Adsorption Energy Shifts for Oxygen and Hydroxyl on 4-atom Metal-Decorated Graphene Catalysts Via Solvation, pH, and Substrate Dopants: Effects on ORR Activity. Metals, 2019, 9, 227.	2.3	4
3720	Genetic algorithms for computational materials discovery accelerated by machine learning. Npj Computational Materials, 2019, 5, .	8.7	136
3721	Reaction energy benchmarks of hydrocarbon combustion by Gaussian basis and plane wave basis approaches. Journal of Computational Chemistry, 2019, 40, 1866-1873.	3.3	3
3722	Mechanisms of Transforming CHx to CO on Ni(111) Surface by Density Functional Theory. Transactions of Tianjin University, 2019, 25, 330-339.	6.4	2
3723	Improved DFT Adsorption Energies with Semiempirical Dispersion Corrections. Journal of Chemical Theory and Computation, 2019, 15, 3250-3259.	5.3	43
3724	Pattern Learning Electronic Density of States. Scientific Reports, 2019, 9, 5879.	3.3	38
3725	van der Waals exchange-correlation functionals over bulk and surface properties of transition metals. Journal of Physics Condensed Matter, 2019, 31, 315501.	1.8	10

#	Article	IF	Citations
3726	ZnO As an Active and Selective Catalyst for Electrochemical Water Oxidation to Hydrogen Peroxide. ACS Catalysis, 2019, 9, 4593-4599.	11.2	176
3727	Recent Developments in Using Computational Materials Design for High-Performance Li4Ti5O12 Anode Material for Lithium-lon Batteries. Multiscale Science and Engineering, 2019, 1, 87-107.	1.7	13
3728	Multitribe evolutionary search for stable Cu–Pd–Ag nanoparticles using neural network models. Physical Chemistry Chemical Physics, 2019, 21, 8729-8742.	2.8	25
3729	P doped MoS2 nanoplates embedded in nitrogen doped carbon nanofibers as an efficient catalyst for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2019, 547, 291-298.	9.4	33
3730	Predicting Adsorption Properties of Catalytic Descriptors on Bimetallic Nanoalloys with Site-Specific Precision. Journal of Physical Chemistry Letters, 2019, 10, 1852-1859.	4.6	41
3731	Influence of Crystal Facet and Phase of Titanium Dioxide on Ostwald Ripening of Supported Pt Nanoparticles from First-Principles Kinetics. Journal of Physical Chemistry C, 2019, 123, 11020-11031.	3.1	26
3732	Effect by Diamond Surface Modification on Biomolecular Adhesion. Materials, 2019, 12, 865.	2.9	3
3733	Chemical Functionalization of ZnS: A Perspective from the Ligand–ZnS Bond Character. Journal of Physical Chemistry C, 2019, 123, 6054-6061.	3.1	4
3734	A density functional theory study on ethylene decomposition to carbon monomer on Cu(410) surface. Computational Materials Science, 2019, 161, 321-329.	3.0	1
3735	Half-metal to magnetic semiconductor transition in Mn-doped monolayer Bi2O2Se tuned by strain. Journal of Magnetism and Magnetic Materials, 2019, 480, 73-78.	2.3	11
3736	Ball milling: a green mechanochemical approach for synthesis of Ni (II), Co (II) and Cu (II) complexes. Applied Organometallic Chemistry, 2019, 33, e4786.	3.5	11
3737	Uncertainty Quantification in First-Principles Predictions of Harmonic Vibrational Frequencies of Molecules and Molecular Complexes. Journal of Physical Chemistry C, 2019, 123, 4072-4084.	3.1	16
3738	Density functional theory for investigation of optical and spectroscopic properties of zinc-quinonoid complexes as semiconductor materials. Structural Chemistry, 2019, 30, 1365-1380.	2.0	41
3739	Computational design of CO-tolerant Pt ₃ M anode electrocatalysts for proton-exchange membrane fuel cells. Physical Chemistry Chemical Physics, 2019, 21, 4046-4052.	2.8	14
3740	Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nature Communications, 2019, 10, 677.	12.8	258
3741	Restructuring of MFI Framework Zeolite Models and Their Associated Artifacts in Density Functional Theory Calculations. Journal of Physical Chemistry C, 2019, 123, 6572-6585.	3.1	21
3742	Phase and structure modulating of bimetallic CuSn nanowires boosts electrocatalytic conversion of CO2. Nano Energy, 2019, 59, 138-145.	16.0	81
3743	Confined electrochemical catalysis under cover: Enhanced CO2 reduction at the interface between graphdiyne and Cu surface. Applied Surface Science, 2019, 479, 685-692.	6.1	16

#	Article	IF	CITATIONS
3744	Morphology and Reactivity Evolution of HCP and FCC Ru Nanoparticles under CO Atmosphere. ACS Catalysis, 2019, 9, 2768-2776.	11.2	36
3745	Tuning the electrocatalytic properties of a Cu electrode with organic additives containing amine group for CO ₂ reduction. Journal of Materials Chemistry A, 2019, 7, 5453-5462.	10.3	28
3746	CO Self-Promoting Hydrogenation on CO-Saturated Ru(0001): A New Theoretical Insight into How H ₂ Participates in CO Activation. Journal of Physical Chemistry C, 2019, 123, 6508-6515.	3.1	9
3747	Unravelling origins of Pd ensembles' activity in CO oxidation via state-to-state microkinetic analysis. Journal of Catalysis, 2019, 371, 276-286.	6.2	12
3748	First-Principles Calculation for the Influence of C and O on the Mechanical Properties of \hat{I}^3 -TiAl Alloy at High Temperature. Metals, 2019, 9, 262.	2.3	5
3749	Temperature-Controlled CO Adsorption Configurations on (2 × 1)Ni–O/Ni(110) Surfaces. Journal of Physical Chemistry C, 2019, 123, 6037-6043.	3.1	2
3750	CO-Induced Aggregation and Segregation of Highly Dilute Alloys: A Density Functional Theory Study. Journal of Physical Chemistry C, 2019, 123, 9128-9138.	3.1	47
3751	Reaction pathways for HCN on transition metal surfaces. Physical Chemistry Chemical Physics, 2019, 21, 5274-5284.	2.8	4
3752	Photoresponsive sulfone-based molecules: photoinduced electron transfer and heat/air-stable radicals in the solid state. New Journal of Chemistry, 2019, 43, 4506-4510.	2.8	3
3753	Hydrogen Bonding Promoted Tautomerism between Azo and Hydrazone Forms in Calcon with Multistimuli Responsiveness and Biocompatibility. Journal of Chemical Information and Modeling, 2019, 59, 2110-2122.	5.4	8
3754	CO Stretch Vibration Lives Long on Au(111). Journal of Physical Chemistry Letters, 2019, 10, 1043-1047.	4.6	21
3755	A coordination-based model for transition metal alloy nanoparticles. Nanoscale, 2019, 11, 4438-4452.	5. 6	34
3756	Density fluctuations as door-opener for diffusion on crowded surfaces. Science, 2019, 363, 715-718.	12.6	32
3757	Identification of an AgS2 Complex on Ag(110). Scientific Reports, 2019, 9, 19842.	3.3	2
3758	Beyond the RPA and GW methods with adiabatic xc-kernels for accurate ground state and quasiparticle energies. Npj Computational Materials, 2019, 5, .	8.7	33
3759	Some observations on the performance of the most recent exchange-correlation functionals for the large and chemically diverse GMTKN55 benchmark. AIP Conference Proceedings, 2019, , .	0.4	15
3760	Revised values for the X23 benchmark set of molecular crystals. Physical Chemistry Chemical Physics, 2019, 21, 24333-24344.	2.8	31
3761	A mechanism of alkali metal carbonates catalysing the synthesis of \hat{l}^2 -hydroxyethyl sulfide with mercaptan and ethylene carbonate. Organic and Biomolecular Chemistry, 2019, 17, 9367-9374.	2.8	11

#	Article	IF	CITATIONS
3762	Computing Investigations of Molecular and Atomic Vibrations of Ice IX. ACS Omega, 2019, 4, 18936-18941.	3.5	4
3763	DFT calculation of AsH3 adsorption and dissociation on Ni- and Cu-doped graphene. Journal of Molecular Modeling, 2019, 25, 358.	1.8	5
3764	Towards a transferable design of solid-state embedding models on the example of a rutile TiO2 (110) surface. Journal of Chemical Physics, 2019, 151, 184114.	3.0	12
3765	Quantum nature of the hydrogen bond from ambient conditions down to ultra-low temperatures. Physical Chemistry Chemical Physics, 2019, 21, 24967-24975.	2.8	15
3766	Catalytic trends of nitrogen doped carbon nanotubes for oxygen reduction reaction. Nanoscale, 2019, 11, 18683-18690.	5.6	27
3767	A self-healing high-performance phosphorus composite anode enabled by <i>in situ</i> preformed intermediate lithium sulfides. Journal of Materials Chemistry A, 2019, 7, 27048-27056.	10.3	11
3768	Uncertainty quantification of DFT-predicted finite temperature thermodynamic properties within the Debye model. Journal of Chemical Physics, 2019, 151, 244702.	3.0	13
3769	Solar-to-Steam Generation via Porous Black Membranes with Tailored Pore Structures. ACS Applied Materials & Samp; Interfaces, 2019, 11, 48300-48308.	8.0	21
3770	Modeling chemical reactions on surfaces: The roles of chemical bonding and van der Waals interactions. Progress in Surface Science, 2019, 94, 100561.	8.3	39
3771	Six-dimensional potential energy surfaces for the dissociative chemisorption of HCl on rigid Ag(100) and Ag(110) surfaces. Journal of Chemical Physics, 2019, 151, 144707.	3.0	10
3772	Electronic Structural Origin of the Catalytic Activity Trend of Transition Metals for Electrochemical Nitrogen Reduction. Journal of Physical Chemistry C, 2019, 123, 31026-31031.	3.1	16
3773	Density Functional Theory Studies on Zeolitic Imidazolate Framework-8 and Ionic Liquid-Based Composite Materials. ACS Omega, 2019, 4, 22655-22666.	3.5	21
3774	Vibrational response and motion of carbon monoxide on $Cu(100)$ driven by femtosecond laser pulses: Molecular dynamics with electronic friction. Physical Review B, 2019, 100, .	3.2	16
3775	Ab Initio Molecular Dynamics Simulation of Divalent Metal Cation Incorporation in Calcite: Implications for Interpreting X-ray Absorption Spectroscopy Data. ACS Earth and Space Chemistry, 2019, 3, 2582-2592.	2.7	11
3776	High-Dimensional Neural Network Potentials for Atomistic Simulations. ACS Symposium Series, 2019, , 49-59.	0.5	2
3777	Synthesis, Characterization and DFT Molecular Modeling of New Antibacterial Docked Dicarbohydrazones. ChemistrySelect, 2019, 4, 13533-13542.	1.5	0
3778	Two basic vibrational modes of hydrogen bonds in ice XIII. AIP Advances, 2019, 9, 115118.	1.3	4
3779	A di-boron pair doped MoS ₂ (B2@MoS ₂) single-layer shows superior catalytic performance for electrochemical nitrogen activation and reduction. Nanoscale, 2019, 11, 18769-18778.	5.6	87

#	Article	IF	CITATIONS
3780	Armchair shaped polymeric nitrogen N8 chains confined in h-BN matrix at ambient conditions: stability and vibration analysis. RSC Advances, 2019, 9, 29987-29992.	3.6	3
3781	Gamma radiation as a green method to enhance the dielectric behaviour, magnetization, antibacterial activity and dye removal capacity of Co–Fe LDH nanosheets. RSC Advances, 2019, 9, 32544-32561.	3.6	19
3782	First principles calculations of the thermodynamic stability of Ba, Zr, and O vacancies in BaZrO3. RSC Advances, 2019, 9, 34158-34165.	3.6	6
3783	Single nickel atom supported on hybridized graphene–boron nitride nanosheet as a highly active bi-functional electrocatalyst for hydrogen and oxygen evolution reactions. Journal of Materials Chemistry A, 2019, 7, 26261-26265.	10.3	44
3784	Density Functional Theory Study on Stability of Fe, Cu, and Ni Atoms Near (001) Surface of Si Wafer. ECS Journal of Solid State Science and Technology, 2019, 8, P573-P579.	1.8	3
3785	Non-oxidative dehydroaromatization of methane over Mo/H-ZSM-5 catalysts: A detailed analysis of the reaction-regeneration cycle. Applied Catalysis B: Environmental, 2019, 241, 305-318.	20.2	76
3786	Solvation effects on DFT predictions of ORR activity on metal surfaces. Catalysis Today, 2019, 323, 35-43.	4.4	109
3787	First-principles analysis of acetonitrile reaction pathways to primary, secondary, and tertiary amines on Pd(111). Surface Science, 2019, 682, 84-98.	1.9	14
3788	The stability and reactivity of transition metal atoms supported mono and di vacancies defected carbon based materials revealed from first principles study. Applied Surface Science, 2019, 473, 777-784.	6.1	30
3789	First-Principles Kinetic Study for Ostwald Ripening of Late Transition Metals on TiO ₂ (110). Journal of Physical Chemistry C, 2019, 123, 1160-1169.	3.1	19
3790	Structure and Dynamics of the Liquid–Water/Zinc-Oxide Interface from Machine Learning Potential Simulations. Journal of Physical Chemistry C, 2019, 123, 1293-1304.	3.1	58
3791	How does the NMR thermometer work? Application of combined quantum molecular dynamics and GIPAW calculations into the study of lead nitrate. Journal of Computational Chemistry, 2019, 40, 811-819.	3.3	1
3792	First principles studies of self-diffusion processes on metallic lithium surfaces. Journal of Chemical Physics, 2019, 150, 041723.	3.0	34
3793	Comparative computational study of CO2 dissociation and hydrogenation over Fe-M (M = Pd, Ni, Co) bimetallic catalysts: The effect of surface metal content. Journal of CO2 Utilization, 2019, 29, 179-195.	6.8	17
3794	Nanoconfined Water within Graphene Slit Pores Adopts Distinct Confinement-Dependent Regimes. Journal of Physical Chemistry Letters, 2019, 10, 329-334.	4.6	47
3795	OpenMP in VASP: Threading and SIMD. International Journal of Quantum Chemistry, 2019, 119, e25851.	2.0	15
3796	Ab initio investigation into the physisorption of noble gases on graphene. Surface Science, 2019, 682, 38-42.	1.9	12
3797	Theoretical Insights into Heterogeneous (Photo)electrochemical CO ₂ Reduction. Chemical Reviews, 2019, 119, 6631-6669.	47.7	431

#	Article	IF	CITATIONS
3798	Exploring density functional subspaces with genetic algorithms. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2019, 150, 173-182.	1.8	8
3799	Abundant Vanadium Diboride with Graphene-like Boron layers for Hydrogen Evolution. ACS Applied Energy Materials, 2019, 2, 176-181.	5.1	35
3800	Firstâ€Principles Predictions on the Effects of Pb Doping on the Structural, Electronic, Magnetic, and Mechanical Properties of the TiZrCoTl _{1â^'<i>x</i>} Pb <i>_x</i> <td>Tj.ETQq0 (</td> <td>0₁₀ rgBT /O</td>	Tj.ETQq0 (0 ₁₀ rgBT /O
3801	Edge-State-Enhanced CO ₂ Electroreduction on Topological Nodal-Line Semimetal Cu ₂ Si Nanoribbons. Journal of Physical Chemistry C, 2019, 123, 2837-2842.	3.1	26
3802	Fifty Shades of Water: Benchmarking DFT Functionals against Experimental Data for Ionic Crystalline Hydrates. Journal of Chemical Theory and Computation, 2019, 15, 584-594.	5.3	12
3803	Excavated Rh nanobranches boost ethanol electro-oxidation. Materials Today Energy, 2019, 11, 120-127.	4.7	22
3804	Challenges in Modeling Electrochemical Reaction Energetics with Polarizable Continuum Models. ACS Catalysis, 2019, 9, 920-931.	11.2	153
3805	Niobium modification effects on hydrodesulfurization of 4,6-DMDBT catalyzed on Ni-Mo-S active sites: A combination of experiments and theoretical study. Fuel, 2019, 237, 429-441.	6.4	34
3806	Pd-Ga model SCALMS: Characterization and stability of Pd single atom sites. Journal of Catalysis, 2019, 369, 33-46.	6.2	33
3807	Preparation of gold catalyst by electrodeposition in [BMIm][TfO] ionic liquid electrolyte: an insightful study of theoretical calculations and experiments. Ionics, 2019, 25, 1407-1412.	2.4	2
3808	Phase stability and weak metallic bonding within ternary″ayered borides CrAlB, Cr ₂ AlB ₂ , Cr ₃ AlB ₄ , and Cr ₄ AlB _{AlB₆. Journal of the American Ceramic Society, 2019, 102, 3715-3727.}	3.8	55
3809	Toward Fundamentals of Confined Electrocatalysis in Nanoscale Reactors. Journal of Physical Chemistry Letters, 2019, 10, 533-539.	4.6	18
3810	Reactive and Nonreactive Scattering of HCl from Au(111): An Ab Initio Molecular Dynamics Study. Journal of Physical Chemistry C, 2019, 123, 2287-2299.	3.1	30
3811	On the Influence of Rare Earth Dopants on Thermal Transport in Thermoelectric Bi ₂ Te ₃ Compounds: An Ab Initio Perspective. Advanced Theory and Simulations, 2019, 2, 1800162.	2.8	8
3812	Adsorption and decomposition of H2S on the Ni($1\hat{a}\in 1\hat{a}\in 1$) and Ni($2\hat{a}\in 1\hat{a}\in 1$) surfaces: A first-principles density functional study. Applied Surface Science, 2019, 473, 657-667.	6.1	22
3813	Computational Design of Single-Molybdenum Catalysts for the Nitrogen Reduction Reaction. Journal of Physical Chemistry C, 2019, 123, 2347-2352.	3.1	63
3814	Electrochemical CO Reduction: A Property of the Electrochemical Interface. Journal of the American Chemical Society, 2019, 141, 1506-1514.	13.7	121
3815	High-Entropy Alloys as a Discovery Platform for Electrocatalysis. Joule, 2019, 3, 834-845.	24.0	464

#	Article	IF	CITATIONS
3816	Interpretation of linear dichroism at S L2,3 x-ray absorption edges of small organic molecules at surfaces. Journal of Electron Spectroscopy and Related Phenomena, 2019, 232, 16-20.	1.7	1
3817	Promoted cobalt metal catalysts suitable for the production of lower olefins from natural gas. Nature Communications, 2019, 10, 167.	12.8	79
3818	An AIMD study of dissociative chemisorption of methanol on Cu(111) with implications for formaldehyde formation. Journal of Chemical Physics, 2019, 150, 024706.	3.0	9
3819	Performance of van der Waals DFT approaches for helium diffraction on metal surfaces. Journal of Physics Condensed Matter, 2019, 31, 135901.	1.8	4
3820	Ferromagnetism and Carrier Transport in n-type Diluted Magnetic Semiconductors Ge0.96a° xBixFe0.04Te Thin Film. Journal of Superconductivity and Novel Magnetism, 2019, 32, 2647-2653.	1.8	1
3821	Synthesis, structural characterization, thermogravimetric, molecular modelling and biological studies of Co(II) and Ni(II) Schiff bases complexes. Journal of Molecular Structure, 2019, 1178, 524-537.	3.6	26
3822	Hydrogen induced changes of optical and magnetic properties of nanocrystalline Zn0.95Gd0.03M0.02O (M=Al,Mg): Experimental and DFT studies. Journal of Alloys and Compounds, 2019, 776, 575-585.	5.5	3
3823	Investigating Raman spectra and density functional theory calculations on SrAl ₂ O ₄ polymorphs. Journal of Raman Spectroscopy, 2019, 50, 91-101.	2.5	9
3824	Mn- and N- doped carbon as promising catalysts for oxygen reduction reaction: Theoretical prediction and experimental validation. Applied Catalysis B: Environmental, 2019, 243, 195-203.	20.2	170
3825	Aqueous electrochemistry of the magnesium surface: Thermodynamic and kinetic profiles. Corrosion Science, 2019, 147, 53-68.	6.6	49
3826	Shedding Light on the Basis Set Dependence of the Minnesota Functionals: Differences Between Plane Waves, Slater Functions, and Gaussians. Journal of Chemical Theory and Computation, 2019, 15, 557-571.	5.3	6
3827	Climbing the 3D Volcano for the Oxygen Reduction Reaction Using Porphyrin Motifs. ACS Sustainable Chemistry and Engineering, 2019, 7, 611-617.	6.7	31
3828	Ultrasmall Abundant Metal-Based Clusters as Oxygen-Evolving Catalysts. Journal of the American Chemical Society, 2019, 141, 232-239.	13.7	56
3829	Ultrathin Conductor Enabling Efficient IR Light CO ₂ Reduction. Journal of the American Chemical Society, 2019, 141, 423-430.	13.7	146
3830	Adsorption of Amino Acids on Gold: Assessing the Accuracy of the GolP-CHARMM Force Field and Parametrization of Au–S Bonds. Journal of Chemical Theory and Computation, 2019, 15, 613-624.	5.3	23
3831	Computational Screening of Electrocatalytic Materials for Hydrogen Evolution: Platinum Monolayer on Transitional Metals. Journal of Physical Chemistry C, 2019, 123, 495-503.	3.1	15
3832	Metal-Free Boron Nitride Nanoribbon Catalysts for Electrochemical CO ₂ Reduction: Combining High Activity and Selectivity. ACS Applied Materials & Interfaces, 2019, 11, 906-915.	8.0	66
3833	Face-centered tetragonal (FCT) Fe and Co alloys of Pt as catalysts for the oxygen reduction reaction (ORR): A DFT study. Journal of Chemical Physics, 2019, 150, 041704.	3.0	29

#	Article	IF	CITATIONS
3834	Density functional theory., 2019,, 119-159.		7
3835	Sulfur vacancy formation at different MoS2 edges during hydrodesulfurization process: A DFT study. Chemical Engineering Science, 2019, 195, 208-217.	3.8	25
3836	First principle calculations of electronic, band structural, and optical properties of BixSr1-xTiO3 perovskite. Journal of Physics and Chemistry of Solids, 2019, 127, 107-114.	4.0	27
3837	An electronic structure descriptor for oxygen reactivity at metal and metal-oxide surfaces. Surface Science, 2019, 681, 122-129.	1.9	145
3838	Effect of C and O dopant atoms on the electronic properties of black phosphorus nanotubes. Computational Materials Science, 2019, 156, 292-300.	3.0	13
3839	DFT prediction of band gap in organic-inorganic metal halide perovskites: An exchange-correlation functional benchmark study. Chemical Physics, 2019, 516, 225-231.	1.9	62
3840	Can fluorine and chlorine functionalization stabilize the graphene like borophene?. Computational Materials Science, 2019, 156, 56-66.	3.0	34
3841	Capability of defective graphene-supported Co4 nanoparticle toward ammonia dehydrogenation. Applied Surface Science, 2019, 465, 1-9.	6.1	11
3842	Theoretical and experimental studies of the influence of microstructure on anti-tarnish ability of cyanide-free silver deposit. Ionics, 2019, 25, 849-857.	2.4	7
3843	Facile enhancement of photocatalytic efficiency of g-C3N4 by Li-intercalation. Catalysis Today, 2019, 321-322, 67-73.	4.4	26
3844	DFT STUDY OF METHYL (CH ₃) AND HYDROXYL (OH) ADSORPTION ON A GOLD (001) SURFACE. Surface Review and Letters, 2019, 26, 1850198.	1.1	4
3845	Atomic and Molecular Adsorption on Ag(111). Journal of Physical Chemistry C, 2019, 123, 7551-7566.	3.1	39
3846	Mechanistic pathways for oxygen removal on Pt-doped Co(111) in the Fischer-Tropsch reaction. Catalysis Today, 2020, 342, 142-151.	4.4	16
3847	Reshaping of Rh nanoparticles in operando conditions. Catalysis Today, 2020, 350, 184-191.	4.4	3
3848	First-principle study on the structural and electronic properties of H ₂ S and SO ₂ adsorption on Pd-doped MoS ₂ monolayer. Molecular Physics, 2020, 118, e1606462.	1.7	3
3849	<i>In silico</i> high throughput screening of bimetallic and single atom alloys using machine learning and <i>ab initio</i> high throughput screening of bimetallic and single atom alloys using machine learning and <i>ab initio</i> high throughput screening of bimetallic and single atom alloys using machine learning and <i>ab initio</i> high throughput screening of bimetallic and single atom alloys using machine learning and <i>ab initio</i> high throughput screening of bimetallic and single atom alloys using machine learning andhigh throughput screening of bimetallic and single atom alloys using machine learning andhigh throughput screening of bimetallic and single atom alloys using machine learning and	10.3	48
3850	Ripening-resistance of Pd on TiO2(110) from first-principles kinetics. Frontiers of Optoelectronics, 2020, 13, 409-417.	3.7	0
3851	Phosphorus doped Co9S8@CS as an excellent air-electrode catalyst for zinc-air batteries. Chemical Engineering Journal, 2020, 381, 122683.	12.7	58

#	ARTICLE	IF	CITATIONS
3852	A DFT study on corrosion mechanism of steel bar under water-oxygen interaction. Computational Materials Science, 2020, 171, 109265.	3.0	22
3853	Photostimulated near-infrared persistent luminescence Cr3+-doped Zn-Ga-Ge-O phosphor with high QE for optical information storage. Journal of Alloys and Compounds, 2020, 812, 152119.	5.5	37
3854	Pressure-dependent electronic structure calculations using integral equation-based solvation models. Biophysical Chemistry, 2020, 257, 106258.	2.8	14
3855	Probing the 91Zr NMR parameters in the solid state by a combination of DFT calculations and experiments. Chemical Physics Letters, 2020, 738, 136855.	2.6	O
3856	Optical transmission and carrier transport of epitaxial (001)- and (111)-oriented Ba0.96La0.04SnO3 thin films. Ceramics International, 2020, 46, 3523-3527.	4.8	3
3857	Chelation behavior of N′-(4-(dimethylamino)benzylidene)-2-oxo-2H-chromene-3-carbohydrazide towards Cd(ĐŸ), Zn(ĐŸ), Ni(ĐŸ), Hg(ĐŸ), Cu(ĐŸ) and Co(ĐŸ) metal ions in presence of SiO2. Silicon, 2020, 12, 1259-1277	.3.3	6
3858	Defective synergy of 2D graphitic carbon nanosheets promotes lithium-ion capacitors performance. Energy Storage Materials, 2020, 24, 304-311.	18.0	44
3859	Pd-TiO2 Schottky heterojunction catalyst boost the electrocatalytic hydrodechlorination reaction. Chemical Engineering Journal, 2020, 381, 122673.	12.7	7 5
3860	Structural, mechanical, and thermodynamic properties of newly-designed superhard carbon materials in different crystal structures: A first-principles calculation. Computational Materials Science, 2020, 171, 109229.	3.0	10
3861	QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. Journal of Physics Condensed Matter, 2020, 32, 015901.	1.8	771
3862	Green dual-template synthesis of AgPd core–shell nanoparticles with enhanced electrocatalytic activity. Nanotechnology, 2020, 31, 035603.	2.6	0
3863	Understanding oxygen vacancies in disorder-engineered surface and subsurface of CaTiO3 nanosheets on photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 267, 118378.	20.2	86
3864	Ab Initio Investigation of CO2 Adsorption on 13-Atom 4d Clusters. Journal of Chemical Information and Modeling, 2020, 60, 537-545.	5.4	20
3865	High-Entropy Alloys as Catalysts for the CO ₂ and CO Reduction Reactions. ACS Catalysis, 2020, 10, 2169-2176.	11.2	259
3866	Vibrational Response of Felodipine in the THz Domain: Optical and Neutron Spectroscopy Versus Plane-Wave DFT Modeling. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41, 1301-1336.	2.2	7
3867	Insights on the mechanism of enhanced selective catalytic reduction of NO with NH3 over Zr-doped MnCr2O4: A combination of in situ DRIFTS and DFT. Chemical Engineering Journal, 2020, 386, 123956.	12.7	35
3868	Layer-dependent bandgap and electrical engineering of molybdenum disulfide. Journal of Physics and Chemistry of Solids, 2020, 139, 109331.	4.0	8
3869	The spin-dependent transport properties of endohedral transition-metal-fullerene X@C66H4 (X=Fe, Co,) Tj ETQq1	1.0.78431 2.1	 4 rgBT /Ov

#	Article	IF	CITATIONS
3870	Pt-Assisted Carbon Remediation of Mo ₂ C Materials for CO Disproportionation. ACS Catalysis, 2020, 10, 1894-1911.	11.2	5
3871	High redox performance of Y _{0.5} Ba _{0.5} CoO _{3â^î^(_{for thermochemical oxygen production and separation. Reaction Chemistry and Engineering, 2020, 5, 685-695.}}	3.7	13
3872	Toward a quantitative theoretical method for infrared and Raman spectroscopic studies on single-crystal electrode/liquid interfaces. Chemical Science, 2020, 11, 1425-1430.	7.4	9
3873	Charge transport through a water-assisted hydrogen bond in single-molecule glutathione disulfide junctions. Journal of Materials Chemistry C, 2020, 8, 481-486.	5.5	9
3874	Theoretical Investigations of (Oxidative) Dehydrogenation of Propane to Propylene over Palladium Surfaces. Journal of Physical Chemistry C, 2020, 124, 3171-3176.	3.1	8
3875	Role of Intermediate Dynamics in Controlling Hydrogenation Selectivity by Heterogeneous Catalysis. ACS Omega, 2020, 5, 1270-1276.	3.5	2
3876	Ternary noble-metal-free heterostructured NiS–CuS–C3N4 with near-infrared response for enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 4084-4094.	7.1	30
3877	Assessing the properties of supercritical water in terms of structural dynamics and electronic polarization effects. Physical Chemistry Chemical Physics, 2020, 22, 10462-10479.	2.8	28
3878	Engineering heterometallic bonding in bimetallic electrocatalysts: towards optimized hydrogen oxidation and evolution reactions. Catalysis Science and Technology, 2020, 10, 893-903.	4.1	15
3879	A platinum nanowire electrocatalyst on single-walled carbon nanotubes to drive hydrogen evolution. Applied Catalysis B: Environmental, 2020, 265, 118582.	20.2	31
3880	Synthesis of Bi3O4Cl nanosheets with oxygen vacancies: The effect of defect states on photocatalytic performance. Applied Surface Science, 2020, 507, 144806.	6.1	44
3881	DFT study of interaction between HCHO molecule and tri-s-triazine g-C3N4 surface. Molecular Catalysis, 2020, 483, 110718.	2.0	5
3882	First-principles calculations of co-doping impurities in diamond. Materials Today Communications, 2020, 23, 100847.	1.9	10
3883	Core@shell structured Au@SnO2 nanoparticles with improved N2 adsorption/activation and electrical conductivity for efficient N2 fixation. Science Bulletin, 2020, 65, 350-358.	9.0	38
3884	Artificial Intelligence to Accelerate the Discovery of N ₂ Electroreduction Catalysts. Chemistry of Materials, 2020, 32, 709-720.	6.7	59
3885	Effect of Manganese on the Selective Catalytic Hydrogenation of COx in the Presence of Light Hydrocarbons Over Ni/Al2O3: An Experimental and Computational Study. ACS Catalysis, 2020, 10, 1535-1547.	11.2	24
3886	Gel ₂ monolayer: a model thermoelectric material from 300 to 600â€K. Philosophical Magazine, 2020, 100, 782-796.	1.6	18
3887	Spectroscopic and theoretical studies on Cr (III), Mn (II) and Cu (II) complexes of hydrazone derived from picolinic hydrazide and Oâ€vanillin and evaluation of biological potency. Applied Organometallic Chemistry, 2020, 34, e5408.	3.5	34

#	Article	IF	CITATIONS
3888	Substitution of Sulfur Atoms on Ni-Mo-S by Ammonia – A DFT Study. Catalysis Today, 2020, 353, 17-25.	4.4	11
3889	A promising catalyst for hydrodesulfurization: Ni2P – A DFT study. Catalysis Today, 2020, 353, 39-46.	4.4	16
3890	Substrate-directed synthesis of MoS2 nanocrystals with tunable dimensionality and optical properties. Nature Nanotechnology, 2020, 15, 29-34.	31.5	94
3891	A multiphase nickel iron sulfide hybrid electrode for highly active oxygen evolution. Science China Materials, 2020, 63, 356-363.	6.3	23
3892	Photodriven CO dimerization on Cu ₂ O from an electronic-structure perspective. Sustainable Energy and Fuels, 2020, 4, 670-677.	4.9	0
3893	Enhanced Na ⁺ pseudocapacitance in a P, S co-doped carbon anode arising from the surface modification by sulfur and phosphorus with C–S–P coupling. Journal of Materials Chemistry A, 2020, 8, 422-432.	10.3	33
3894	Crystal structure, thermodynamic properties and detonation characterization of bis(5-amino-1,2,4-triazol-3-yl)methane. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 64-68.	0.5	8
3895	Computational Investigations of the Chemical Mechanism of the Enzyme Nitrogenase. ChemBioChem, 2020, 21, 1671-1709.	2.6	36
3896	Empirical Doubleâ€Hybrid Density Functional Theory: A â€~Third Way' in Between WFT and DFT. Israel Journal of Chemistry, 2020, 60, 787-804.	2.3	129
3897	Origin of Two Distinct Peaks of Ice in the THz Region and Its Application for Natural Gas Hydrate Dissociation. Journal of Physical Chemistry C, 2020, 124, 1165-1170.	3.1	12
3898	Robust Ruthenium-Saving Catalyst for High-Temperature Carbon Dioxide Reforming of Methane. ACS Catalysis, 2020, 10, 783-791.	11.2	45
3899	Unsaturated Single Atoms on Monolayer Transition Metal Dichalcogenides for Ultrafast Hydrogen Evolution. ACS Nano, 2020, 14, 767-776.	14.6	106
3900	Green synthesis approach for Fe (III), Cu (II), Zn (II) and Ni (II)â€Schiff base complexes, spectral, conformational, MOEâ€docking and biological studies. Applied Organometallic Chemistry, 2020, 34, e5403.	3.5	47
3901	Elastic anisotropy and thermodynamics properties of BiCu2PO6, BiZn2PO6 and BiPb2PO6 ceramics materials from first-principles calculations. Ceramics International, 2020, 46, 8575-8581.	4.8	26
3902	Recent Developments in the Modelling of Heterogeneous Catalysts for CO ₂ Conversion to Chemicals. ChemCatChem, 2020, 12, 1802-1825.	3.7	55
3903	Automated Fitting of Neural Network Potentials at Coupled Cluster Accuracy: Protonated Water Clusters as Testing Ground. Journal of Chemical Theory and Computation, 2020, 16, 88-99.	5. 3	80
3904	Electronic structure, optical and ferromagnetic properties of ZnO co-doped with Ag and Co according to first-principles calculations. Vacuum, 2020, 173, 109127.	3.5	19
3905	First-principles study on the electronic structures and optical properties of ZnV2O6. Optik, 2020, 207, 163789.	2.9	11

#	ARTICLE	IF	CITATIONS
3906	Unique Layerâ€Dopingâ€Induced Regulation of Charge Behavior in Metalâ€Free Carbon Nitride Photoanodes for Enhanced Performance. ChemSusChem, 2020, 13, 328-333.	6.8	16
3907	Density functional studies of the adsorption of OCN and coadsorption of O and CN on Ag(001) surface. Computational Condensed Matter, 2020, 22, e00446.	2.1	7
3908	In-situ topochemical nitridation derivative MoO2–Mo2N binary nanobelts as multifunctional interlayer for fast-kinetic Li-Sulfur batteries. Nano Energy, 2020, 68, 104356.	16.0	116
3909	Diffusion coefficient and electrochemical performance of NaVO3 anode in Li/Na batteries. Electrochimica Acta, 2020, 331, 135293.	5.2	48
3910	Hydrogen dependence of the reaction mechanism and kinetics of water gas shift reaction on Ni catalyst: Experimental and DFT study. Applied Catalysis B: Environmental, 2020, 264, 118430.	20.2	32
3911	Novel Mn2+, Fe3+, Co2+, Ni2+ and Cu2+complexes of potential OS donor thiosemicarbazide: Design, structural elucidation, anticorrosion potential study and antibacterial activity. Journal of Molecular Structure, 2020, 1204, 127495.	3.6	11
3912	Reduced graphene oxides with engineered defects enable efficient electrochemical reduction of dinitrogen to ammonia in wide pH range. Nano Energy, 2020, 68, 104323.	16.0	64
3913	Adsorption properties of pristine and Co-doped TiO2(1Â0Â1) toward dissolved gas analysis in transformer oil. Applied Surface Science, 2020, 507, 145163.	6.1	79
3914	Self-Consistent Implementation of Hybrid Functionals with Local Range Separation. Journal of Chemical Theory and Computation, 2020, 16, 953-963.	5.3	19
3915	Tuning Sn3O4 for CO2 reduction to formate with ultra-high current density. Nano Energy, 2020, 77, 105296.	16.0	65
3916	Designed Single Atom Bifunctional Electrocatalysts for Overall Water Splitting: 3 <i>d</i> Transition Metal Atoms Doped Borophene Nanosheets. ChemPhysChem, 2020, 21, 2651-2659.	2.1	17
3917	First-principles study of FeNi1-xCrx (0â‰賴ô‰⊉) disordered alloys from special quasirandom structures. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2020, 71, 102007.	1.6	7
3918	Practical and computational studies on novel Schiff base complexes derived from green synthesis approach: Conductometry as well as in-vitro screening supported by in-silico study. Journal of Molecular Liquids, 2020, 319, 114116.	4.9	30
3919	Physisorbed State Regulates the Dissociation Mechanism of H2O on Ni(100). Journal of Physical Chemistry A, 2020, 124, 8724-8732.	2.5	5
3920	Effective Descriptor for Designing High-Performance Catalysts for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2020, 124, 23134-23142.	3.1	20
3921	Structural parameters and electronic properties of 2D carbon allotrope: Graphene with a kagome lattice structure. Chemical Physics Letters, 2020, 760, 138006.	2.6	13
3922	Methane dry reforming on supported cobalt nanoparticles promoted by boron. Journal of Catalysis, 2020, 392, 126-134.	6.2	32
3923	Refractive properties of the α-BaGeO3 crystal and their origins: a density functional theory study. CrystEngComm, 2020, 22, 6620-6625.	2.6	2

#	Article	IF	CITATIONS
3924	Effects of Doped Elements (Si, Cr, W and Nb) on the Stability, Mechanical Properties and Electronic Structures of MoAlB Phase by the First-Principles Calculation. Materials, 2020, 13, 4221.	2.9	7
3925	Molecular dynamics study on magnesium hydride nanoclusters with machine-learning interatomic potential. Physical Review B, 2020, 102, .	3.2	5
3926	Role of Oxidized Mo Species on the Active Surface of Ni–Mo Electrocatalysts for Hydrogen Evolution under Alkaline Conditions. ACS Catalysis, 2020, 10, 12858-12866.	11.2	75
3927	Point defect engineering and machinability in n-type Mg3Sb2-based materials. Materials Today Physics, 2020, 15, 100269.	6.0	46
3928	Electric-Field-Assisted Modulation of Surface Thermochemistry. ACS Catalysis, 2020, 10, 12867-12880.	11.2	23
3929	Ethanol Conversion over La _{0.7} Sr _{0.3} MnO _{3–<i>x</i>} (100): Autocatalysis, Adjacent O-Vacancies, Disproportionation, and Dehydrogenation. ACS Catalysis, 2020, 10, 12920-12931.	11.2	6
3930	Critical Assessment of the Thermodynamics of Vacancy Formation in Fe ₂ O ₃ Using Hybrid Density Functional Theory. Journal of Physical Chemistry C, 2020, 124, 23988-24000.	3.1	10
3931	Reproducibility of potential energy surfaces of organic/metal interfaces on the example of PTCDA on Ag(111). Journal of Chemical Physics, 2020, 153, 104701.	3.0	12
3932	Differentiable Optimization for the Prediction of Ground State Structures (DOGSS). Physical Review Letters, 2020, 125, 173001.	7.8	8
3933	Crystal structure, thermal properties and detonation characterization of bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane dichloride. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 821-827.	0.5	2
3934	Black Phosphorus Nanosheets Modified with Au Nanoparticles as High Conductivity and High Activity Electrocatalyst for Oxygen Evolution Reaction. Advanced Energy Materials, 2020, 10, 2002424.	19.5	79
3935	Solid-State 1H, 13C, and 17O NMR Characterization of the Two Uncommon Polymorphs of Curcumin. Crystal Growth and Design, 2020, 20, 7484-7491.	3.0	7
3936	Explainable and trustworthy artificial intelligence for correctable modeling in chemical sciences. Science Advances, 2020, 6, .	10.3	26
3937	Understanding atomic bonding and electronic distributions of a DNA molecule using DFT calculation and BOLS-BC model. Biochemistry and Biophysics Reports, 2020, 24, 100804.	1.3	4
3938	Mechanistic insight into the electrocatalytic hydrodechlorination reaction on palladium by a facet effect study. Journal of Catalysis, 2020, 391, 414-423.	6.2	42
3939	Enhancing quantum yield of CsPb(BrxCl1-x)3 nanocrystals through lanthanum doping for efficient blue light-emitting diodes. Nano Energy, 2020, 77, 105302.	16.0	55
3940	Antifungal activity of the lemongrass and clove oil encapsulated in mesoporous silica nanoparticles against wheat's take-all disease. Pesticide Biochemistry and Physiology, 2020, 170, 104696.	3.6	53
3941	Band gap tuning of p-type al-doped tio2 thin films for gas sensing applications. Thin Solid Films, 2020, 714, 138382.	1.8	17

#	Article	IF	CITATIONS
3942	How PM2.5 Affects Pt-Catalyzed Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2020, 8, 9385-9392.	6.7	5
3943	Tunable electronic properties and Schottky barrier in a graphene/WSe ₂ heterostructure under out-of-plane strain and an electric field. Physical Chemistry Chemical Physics, 2020, 22, 23699-23706.	2.8	27
3944	Highly durable fuel cell catalysts using crosslinkable block copolymer-based carbon supports with ultralow Pt loadings. Energy and Environmental Science, 2020, 13, 4921-4929.	30.8	61
3945	Oxygen reduction reaction on Pt-skin Pt ₃ V(111) fuel cell cathode: a density functional theory study. RSC Advances, 2020, 10, 27346-27356.	3.6	21
3946	Screening effective single-atom ORR and OER electrocatalysts from Pt decorated MXenes by first-principles calculations. Journal of Materials Chemistry A, 2020, 8, 17065-17077.	10.3	70
3947	Theoretical Simulation of the Binding Energies and Stretching Frequencies of CO Molecules on PtSn Bimetallic Nanoparticles. Journal of Surface Investigation, 2020, 14, 440-446.	0.5	0
3948	Detection of N2O gas using 2D MoSe2 Monolayer: A DFT Theory. , 2020, , .		2
3949	Adsorption behavior of thiophene on MoS2 under a microwave electric field via DFT and MD studies. Chemical Engineering Science, 2020, 228, 115950.	3.8	15
3950	Stabilizing Hydrogen Adsorption through Theory-Guided Chalcogen Substitution in Chevrel-Phase Mo ₆ X ₈ (X=S, Se, Te) Electrocatalysts. ACS Applied Materials & Diterfaces, 2020, 12, 35995-36003.	8.0	26
3951	Deep Understanding of Strong Metal Interface Confinement: A Journey of Pd/FeO _{<i>x</i>} Catalysts. ACS Catalysis, 2020, 10, 8950-8959.	11.2	113
3952	Effects of van der Waals Dispersion Interactions in Density Functional Studies of Adsorption, Catalysis, and Tribology on Metals. Journal of Physical Chemistry C, 2020, 124, 16926-16942.	3.1	19
3953	Electronic coupling strategy to boost water oxidation efficiency based on the modelling of trimetallic hydroxides Ni1-x-yFexCry(OH)2: From theory to experiment. Chemical Engineering Journal, 2020, 402, 126144.	12.7	11
3954	Density functional theory calculation of Ti3C2 MXene monolayer as catalytic support for platinum towards the dehydrogenation of methylcyclohexane. Applied Surface Science, 2020, 529, 147186.	6.1	34
3955	Enhanced thermoelectric properties in anthracene molecular device with graphene electrodes: the role of phononic thermal conductance. Scientific Reports, 2020, 10, 10922.	3.3	10
3956	Computational studyÂof the water-driven graphene wrinkle life-cycleÂtowardsÂapplications in flexibleÂelectronics. Scientific Reports, 2020, 10, 11315.	3.3	9
3957	Nanoâ€sized Cu(II) and Zn(II) complexes and their use as a precursor for synthesis of CuO and ZnO nanoparticles: A study on their sonochemical synthesis, characterization, and DNAâ€binding/cleavage, anticancer, and antimicrobial activities. Applied Organometallic Chemistry, 2020, 34, e5827.	3.5	16
3958	Hydrogen Evolution on Restructured B-Rich WB: Metastable Surface States and Isolated Active Sites. ACS Catalysis, 2020, 10, 13867-13877.	11.2	20
3959	Spectroscopic Probe Molecule Selection Using Quantum Theory, First-Principles Calculations, and Machine Learning. ACS Nano, 2020, 14, 17295-17307.	14.6	12

#	Article	IF	CITATIONS
3960	Oxophilicity Drives Oxygen Transfer at a Palladium–Silver Interface for Increased CO Oxidation Activity. ACS Catalysis, 2020, 10, 13878-13889.	11.2	7
3961	Electron localization governed plasticity in nanotwinned metals beyond the Hall-Petch type limit. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2020, 797, 140251.	5.6	5
3962	Towards the selectivity distinction of phenol hydrogenation on noble metal catalysts. Nano Materials Science, 2023, 5, 91-100.	8.8	7
3963	Competing Effects of pH, Cation Identity, H ₂ O Saturation, and N ₂ Concentration on the Activity and Selectivity of Electrochemical Reduction of N ₂ to NH ₃ on Electrodeposited Cu at Ambient Conditions. ACS Catalysis, 2020, 10, 14592-14603.	11.2	43
3964	Potentiometric Study, DFT Calculations and Thermodynamic Parameters of Complex Formation between Cd(II) and Thiosemicarbazone Ligand. International Journal of Electrochemical Science, 2020, , 10885-10907.	1.3	1
3965	57Fe Mössbauer parameters from domain based local pair-natural orbital coupled-cluster theory. Journal of Chemical Physics, 2020, 153, 204101.	3.0	5
3966	Mechanisms of Al ³⁺ Dimerization in Alkaline Solutions. Inorganic Chemistry, 2020, 59, 18181-18189.	4.0	8
3967	Efficient Water Splitting Actualized through an Electrochemistryâ€Induced Heteroâ€Structured Antiperovskite/(Oxy)Hydroxide Hybrid. Small, 2020, 16, e2006800.	10.0	36
3968	Trends in the Activation of Light Alkanes on Transition-Metal Surfaces. Journal of Physical Chemistry C, 2020, 124, 27503-27510.	3.1	10
3969	Heteroatom-Doped Transition Metal Nitrides for CO Electrochemical Reduction: A Density Functional Theory Screening Study. Journal of Physical Chemistry C, 2020, 124, 26344-26351.	3.1	8
3970	Predicting Bond Dissociation Energies and Bond Lengths of Coordinatively Unsaturated Vanadium–Ligand Bonds. Journal of Physical Chemistry A, 2020, 124, 9757-9770.	2.5	5
3971	Circumventing Scaling Relations in Oxygen Electrochemistry Using Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2020, 11, 10029-10036.	4.6	32
3972	Synthesis and Biological Evaluation of Novel Zn(II) and Cd(II) Schiff Base Complexes as Antimicrobial, Antifungal, and Antioxidant Agents. Bioinorganic Chemistry and Applications, 2020, 2020, 1-17.	4.1	12
3973	Dispersion-Corrected DFT Methods for Applications in Nuclear Magnetic Resonance Crystallography. Journal of Physical Chemistry A, 2020, 124, 10312-10323.	2.5	14
3974	Achieving Different Color Changes for Photochromic Compounds by Controlling Coordination Modes. Journal of Physical Chemistry C, 2020, 124, 27680-27686.	3.1	18
3975	Vanadium oxynitrides as stable catalysts for electrochemical reduction of nitrogen to ammonia: the role of oxygen. Journal of Materials Chemistry A, 2020, 8, 24098-24107.	10.3	29
3976	Analysis of Acid-Stable and Active Oxides for the Oxygen Evolution Reaction. ACS Energy Letters, 2020, 5, 3778-3787.	17.4	89
3977	<mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mi>IrO</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mro< td=""><td>nl:mn>2<td>mml:mn></td></td></mml:mro<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	nl:mn>2 <td>mml:mn></td>	mml:mn>

#	Article	IF	CITATIONS
3978	Resolving the Mechanism Complexity of Oxidative Dehydrogenation of Hydrocarbons on Nanocarbon by Microkinetic Modeling. ACS Catalysis, 2020, 10, 14006-14014.	11.2	9
3979	Strain induced variation of PFOS adsorption on pristine and defected phosphorene: A DFT study. Applied Surface Science, 2020, 532, 147452.	6.1	7
3980	Nanometer-thick films of antimony oxide nanoparticles grafted on defective graphenes as heterogeneous base catalysts for coupling reactions. Journal of Catalysis, 2020, 390, 135-149.	6.2	5
3981	The influence of SiC(111) surface with different layers on CH4 adsorption. Surface Science, 2020, 702, 121699.	1.9	3
3982	Why Do We Use the Materials and Operating Conditions We Use for Heterogeneous (Photo)Electrochemical Water Splitting?. ACS Catalysis, 2020, 10, 11177-11234.	11.2	89
3983	Correlation between Activation Energy and the Electronic State of Pd-Based Bimetallic Catalysts for H2–D2 Equilibration Obtained by XPS and DFT Calculations. Bulletin of the Chemical Society of Japan, 2020, 93, 1020-1025.	3.2	1
3984	Crystallization of Transition-Metal Oxides in Aqueous Solution beyond Ostwald Ripening. Langmuir, 2020, 36, 10565-10576.	3.5	7
3985	Shortcomings of meta-GGA functionals when describing magnetism. Physical Review B, 2020, 102, .	3.2	27
3986	Exchange-correlation functionals for band gaps of solids: benchmark, reparametrization and machine learning. Npj Computational Materials, 2020, 6, .	8.7	156
3987	Two-dimensional forms of robust CO2 reduction photocatalysts. Npj 2D Materials and Applications, 2020, 4, .	7.9	20
3988	Direct and trapping-mediated pathways to dissociative chemisorption: CH4 dissociation on Ir(111) with step defects. Journal of Chemical Physics, 2020, 153, 034704.	3.0	23
3989	Sulfate, Bisulfate, and Hydrogen Co-adsorption on $Pt(111)$ and $Au(111)$ in an Electrochemical Environment. Frontiers in Chemistry, 2020, 8, 634.	3.6	43
3990	First-principles study of hydrogen trapping behavior in face centered cubic metals (M=Ni, Cu and Al) with monovacancy. International Journal of Hydrogen Energy, 2020, 45, 25555-25566.	7.1	8
3991	Two-dimensional CuAg/Ti ₃ C ₂ catalyst for electrochemical synthesis of ammonia under ambient conditions: a combined experimental and theoretical study. Sustainable Energy and Fuels, 2020, 4, 5061-5071.	4.9	26
3992	First principles rates for surface chemistry employing exact transition state theory: application to recombinative desorption of hydrogen from Cu(111). Physical Chemistry Chemical Physics, 2020, 22, 17532-17539.	2.8	10
3993	Understanding the structural evolution of Au/WO2.7 compounds in hydrogen atmosphere by atomic scale in situ environmental TEM. Nano Research, 2020, 13, 3019-3024.	10.4	13
3994	DFT insights into the stacking effects on HDS of 4,6-DMDBT on Ni-Mo-S corner sites. Fuel, 2020, 280, 118669.	6.4	35
3995	Self-assembled synthesis of benzene-ring-grafted g-C3N4 nanotubes for enhanced photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2020, 279, 119401.	20.2	104

#	ARTICLE	IF	CITATIONS
3996	Combining structurally ordered intermetallics with N-doped carbon confinement for efficient and anti-poisoning electrocatalysis. Applied Catalysis B: Environmental, 2020, 279, 119370.	20.2	55
3997	Electron-deficient titanium single-atom electrocatalyst for stable and efficient hydrogen production. Nano Energy, 2020, 78, 105151.	16.0	16
3998	A machine learning scheme for the catalytic activity of alloys with intrinsic descriptors. Journal of Materials Chemistry A, 2020, 8, 17507-17515.	10.3	60
3999	Superb Hydrogen Evolution by a Pt Nanoparticle-Decorated Ni ₃ S ₂ Microrod Array. ACS Applied Materials & amp; Interfaces, 2020, 12, 39163-39169.	8.0	41
4000	In silico discovery of active, stable, CO-tolerant and cost-effective electrocatalysts for hydrogen evolution and oxidation. Physical Chemistry Chemical Physics, 2020, 22, 19454-19458.	2.8	12
4001	Ce0.5La0.5Ni9Ge4 compound: Why is cerium valence not 3+?. Chinese Journal of Physics, 2020, 67, 473-481.	3.9	0
4002	Atomic-scale intercalation of amorphous MoS2 nanoparticles into N-doped carbon as a highly efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 27193-27201.	7.1	11
4003	Thermal Stability of Single-Crystalline IrO ₂ (110) Layers: Spectroscopic and Adsorption Studies. Journal of Physical Chemistry C, 2020, 124, 15324-15336.	3.1	22
4004	High Rate Transfer Mechanism of Lithium Ions in Lithium–Tin and Lithium–Indium Alloys for Lithium Batteries. Journal of Physical Chemistry C, 2020, 124, 24644-24652.	3.1	23
4005	<i>Ab initio</i> structure and thermodynamics of the RPBE-D3 water/vapor interface by neural-network molecular dynamics. Journal of Chemical Physics, 2020, 153, 144710.	3.0	24
4006	A thorough study on the F-decoration of χ3 borophene and enhancement of anodic performance of Lithium-ion batteries. Journal of Molecular Liquids, 2020, 319, 114343.	4.9	11
4007	Robust Active Site Design of Single-Atom Catalysts for Electrochemical Ammonia Synthesis. Journal of Physical Chemistry C, 2020, 124, 23164-23176.	3.1	8
4008	Efficient epoxidation over dinuclear sites in titanium silicalite-1. Nature, 2020, 586, 708-713.	27.8	158
4009	Photoinduction of Cu Single Atoms Decorated on UiO-66-NH ₂ for Enhanced Photocatalytic Reduction of CO ₂ to Liquid Fuels. Journal of the American Chemical Society, 2020, 142, 19339-19345.	13.7	373
4010	Anisotropic Strain Tuning of L1 ₀ Ternary Nanoparticles for Oxygen Reduction. Journal of the American Chemical Society, 2020, 142, 19209-19216.	13.7	76
4011	Huge Piezoelectric Response of LaN-based Superlattices. ACS Applied Materials & Amp; Interfaces, 2020, 12, 49805-49811.	8.0	12
4012	Revealing Interplay of Defects in SnO ₂ Quantum Dots for Blue Luminescence and Selective Trace Ammonia Detection at Room Temperature. ACS Applied Materials & Interfaces, 2020, 12, 49227-49236.	8.0	24
4013	A thermodynamic and kinetic study of the catalytic performance of Fe, Mo, Rh and Ru for the electrochemical nitrogen reduction reaction. Physical Chemistry Chemical Physics, 2020, 22, 25973-25981.	2.8	8

#	Article	IF	CITATIONS
4014	The catalytic performance of metalâ€free defected carbon catalyst towards acetylene hydrochlorination revealed from firstâ€principles calculation. International Journal of Quantum Chemistry, 2020, 120, e26418.	2.0	7
4015	Combining Computational Modeling with Reaction Kinetics Experiments for Elucidating the <i>In Situ</i> Nature of the Active Site in Catalysis. Accounts of Chemical Research, 2020, 53, 1893-1904.	15.6	53
4016	Enhanced electrocatalytic nitrogen reduction activity by incorporation of a carbon layer on SnS microflowers. Journal of Materials Chemistry A, 2020, 8, 20677-20686.	10.3	18
4017	Quantitative and qualitative performance of density functional theory rationalized by reduced density gradient distributions. Physical Review B, 2020, 102, .	3.2	8
4018	Theoretical Calculation of Different Reaction Mechanisms for CO Oxidation on MnN ₃ -Doped Graphene. ACS Omega, 2020, 5, 21203-21210.	3.5	10
4019	Large Impact of Approximate Exchange-Correlation Functionals on Modeling the Water Gas Shift Reaction on Copper. Journal of Physical Chemistry C, 2020, 124, 22506-22520.	3.1	5
4020	Quantifying Electrocatalytic Reduction of CO2 on Twin Boundaries. CheM, 2020, 6, 3007-3021.	11.7	41
4021	Facile synthesis and deliberate characterization for new hydrazide complexes; cyclic voltammetry, crystal packing, eukaryotic DNA degradation and in-silico studies. Journal of Molecular Liquids, 2020, 320, 114380.	4.9	21
4022	Electrosorption at metal surfaces from first principles. Npj Computational Materials, 2020, 6, .	8.7	49
4023	P-doped nickel sulfide nanosheet arrays for alkaline overall water splitting. Catalysis Science and Technology, 2020, 10, 7581-7590.	4.1	18
4024	Mechanistic Insights for Dry Reforming of Methane on Cu/Ni Bimetallic Catalysts: DFT-Assisted Microkinetic Analysis for Coke Resistance. Catalysts, 2020, 10, 1043.	3.5	30
4025	Hydrogen Bonding-Mediated Enhancement of Bioinspired Electrochemical Nitrogen Reduction on Cu _{2–<i>x</i>} S Catalysts. ACS Catalysis, 2020, 10, 10577-10584.	11.2	43
4026	Hydrogen Evolution Reaction Activity of Heterogeneous Materials: A Theoretical Model. Journal of Physical Chemistry C, 2020, 124, 20911-20921.	3.1	48
4027	Computational Design of Copper doped Indium for electrocatalytic Reduction of CO ₂ to Formic Acid. ChemCatChem, 2020, 12, 5632-5636.	3.7	13
4028	Enhanced reduction reaction by Cu–Ag core-shell nanowire catalyst. Journal of Chemical Sciences, 2020, 132, 1.	1.5	3
4029	Revisiting Competing Paths in Electrochemical CO ₂ Reduction on Copper via Embedded Correlated Wavefunction Theory. Journal of Chemical Theory and Computation, 2020, 16, 6528-6538.	5.3	21
4030	A Machine Learning Model on Simple Features for CO ₂ Reduction Electrocatalysts. Journal of Physical Chemistry C, 2020, 124, 22471-22478.	3.1	125
4031	Electrocatalytic dinitrogen reduction reaction on silicon carbide: a density functional theory study. Physical Chemistry Chemical Physics, 2020, 22, 21761-21767.	2.8	17

#	Article	IF	CITATIONS
4032	Design of Ti3C2ZnOAlN ternary nanocomposite for photocatalytic antifouling: a first-principle study. Journal of Materials Science, 2020, 55, 16588-16602.	3.7	5
4033	Density functional study on the CO oxidation reaction mechanism on MnN ₂ -doped graphene. RSC Advances, 2020, 10, 27856-27863.	3.6	13
4034	Investigating methane dry reforming on Ni and B promoted Ni surfaces: DFT assisted microkinetic analysis and addressing the coking problem. Catalysis Science and Technology, 2020, 10, 6628-6643.	4.1	23
4035	Catalytic Performance of Two-Dimensional Bismuth Tuned by Defect Engineering for Nitrogen Reduction Reaction. Journal of Physical Chemistry C, 2020, 124, 19563-19570.	3.1	8
4036	How Can Protons Migrate in Extremely Compressed Liquid Water?. Physical Review Letters, 2020, 125, 086001.	7.8	3
4037	Realistic Cyclic Voltammograms from <i>Ab Initio</i> Simulations in Alkaline and Acidic Electrolytes. Journal of Physical Chemistry C, 2020, 124, 20055-20065.	3.1	18
4038	Defectâ€Enhanced CO ₂ Reduction Catalytic Performance in Oâ€Terminated MXenes. ChemSusChem, 2020, 13, 5690-5698.	6.8	59
4039	Enhanced hydrogen evolution reactivity on \$\${mathrm{Mo}}_2{mathrm{N}}\$\$ composites. Bulletin of Materials Science, 2020, 43, 1.	1.7	4
4040	Intrinsic Activity of Metal Centers in Metal–Nitrogen–Carbon Single-Atom Catalysts for Hydrogen Peroxide Synthesis. Journal of the American Chemical Society, 2020, 142, 21861-21871.	13.7	163
4041	Influence of Local Inhomogeneities and the Electrochemical Environment on the Oxygen Reduction Reaction on Pt-Based Electrodes: A DFT Study. Journal of Physical Chemistry C, 2020, 124, 27604-27613.	3.1	10
4042	Density Functional Theory for Molecule–Metal Surface Reactions: When Does the Generalized Gradient Approximation Get It Right, and What to Do If It Does Not. Journal of Physical Chemistry Letters, 2020, 11, 10552-10560.	4.6	37
4043	Study on the transport properties of borophene/phosphorene heterojunctions. Emerging Materials Research, 2020, 9, 985-990.	0.7	1
4044	Identifying and Tuning the In Situ Oxygen-Rich Surface of Molybdenum Nitride Electrocatalysts for Oxygen Reduction. ACS Applied Energy Materials, 2020, 3, 12433-12446.	5.1	17
4045	First-principles prediction of a room-temperature ferromagnetic and ferroelastic 2D multiferroic MnNX (X = F, Cl, Br, and I). Nanoscale, 2020, 12, 24237-24243.	5.6	19
4046	Solid-state synthesis of few-layer cobalt-doped MoS ₂ with CoMoS phase on nitrogen-doped graphene driven by microwave irradiation for hydrogen electrocatalysis. RSC Advances, 2020, 10, 34323-34332.	3.6	14
4047	C2H2 semi-hydrogenation on the PdxMy cluster/graphdiyne catalysts: Effects of cluster composition and size on the activity and selectivity. Green Energy and Environment, 2022, 7, 500-511.	8.7	10
4048	How Rh surface breaks CO2 molecules under ambient pressure. Nature Communications, 2020, 11, 5649.	12.8	24
4049	Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nature Communications, 2020, 11, 5657.	12.8	134

#	Article	IF	CITATIONS
4050	Photocatalytic degradation of diphenhydramine in aqueous solution by natural dolomite. RSC Advances, 2020, 10, 38663-38671.	3.6	3
4051	Influence of alloying elements on mechanical and electronic properties of NbMoTaWX (XÂ=ÂCr, Zr, V, Hf) Tj ETQq	1 ₃ 1 ₉ 0.784	814 rgBT /C
4052	First-principles study of Pd-alloyed Cu(111) surface in hydrogen atmosphere at realistic temperatures. Journal of Applied Physics, 2020, 128, 145302.	2.5	2
4053	Ag and Ag–Cu interactions in Si. Journal of Applied Physics, 2020, 128, .	2.5	1
4054	First-principles calculations of structural, elastic and electronic properties of second phases and solid solutions in Ti–Al–V alloys. Physica B: Condensed Matter, 2020, 591, 412241.	2.7	9
4055	Cluster-Size-Dependent Interaction between Ethylene and CuCl $<$ sub $>$ 2 $<$ /sub $>$ Clusters Supported via \hat{I}^3 -Alumina. Journal of Physical Chemistry C, 2020, 124, 10430-10440.	3.1	16
4056	The one-electron self-interaction error in 74 density functional approximations: a case study on hydrogenic mono- and dinuclear systems. Physical Chemistry Chemical Physics, 2020, 22, 15805-15830.	2.8	27
4057	A catalyst design for selective electrochemical reactions: direct production of hydrogen peroxide in advanced electrochemical oxidation. Journal of Materials Chemistry A, 2020, 8, 9859-9870.	10.3	26
4058	Study on the Effect of Doping on Lattice Constant and Electronic Structure of Bulk AuCu by the Density Functional Theory. Journal of Multiscale Modeling, 2020, 11, 2030001.	1.1	21
4059	Energetic, structural and electronic features of Sn-, Ga-, O-based defect complexes in cubic In ₂ O ₃ . Journal of Physics Condensed Matter, 2020, 32, 225703.	1.8	3
4060	Performance of density functional theory and orbital-optimised second-order perturbation theory methods for geometries and singlet–triplet state splittings of aryl-carbenes. Molecular Physics, 2020, 118, e1764644.	1.7	19
4061	Nonlinear Optical Response in Natural van der Waals Heterostructures. Advanced Optical Materials, 2020, 8, 2000382.	7.3	22
4062	Sensitivity of Monte Carlo Simulations to Linear Scaling Relations. Journal of Physical Chemistry C, 2020, 124, 11952-11959.	3.1	5
4063	Highâ€Performance Overall CO ₂ Splitting on Hierarchical Structured Cobalt Disulfide with Partially Removed Sulfur Edges. Advanced Functional Materials, 2020, 30, 2000154.	14.9	26
4064	Highly Selective Cross-Etherification of 5-Hydroxymethylfurfural with Ethanol. ACS Catalysis, 2020, 10, 6771-6785.	11.2	40
4065	Exploring non-adiabaticity to CO reduction reaction through ab initio molecular dynamics simulation. APL Materials, 2020, 8, 041115.	5.1	4
4066	Electronic properties of sulfide minerals and floatability. , 2020, , 13-81.		5
4067	Catalytic activity atlas of ternary Co–Fe–V metal oxides for the oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 15951-15961.	10.3	43

#	ARTICLE	IF	CITATIONS
4068	Substrate strain engineering: an efficient strategy to enhance the catalytic activity of SACs on waved graphene for e-NRR. Sustainable Energy and Fuels, 2020, 4, 3773-3779.	4.9	13
4069	Strong phonon-magnon coupling of an O/Fe(001) surface. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	5.1	6
4070	Bimetallenes for selective electrocatalytic conversion of CO ₂ : a first-principles study. Journal of Materials Chemistry A, 2020, 8, 12457-12462.	10.3	14
4071	First-principles determination of pressure-induced structure, anisotropic elasticity and ideal strengths of CulnS2 and CulnSe2. Solid State Communications, 2020, 316-317, 113952.	1.9	2
4072	Validation of Pseudopotential Calculations for the Electronic Band Gap of Solids. Journal of Chemical Theory and Computation, 2020, 16, 3620-3627.	5.3	25
4073	2D g-C3N4 monolayer for amino acids sequencing. Applied Surface Science, 2020, 528, 146609.	6.1	11
4074	A dual-emitting inorganic-organic hybrid material with emission intensity enchanced via electron-transfer photochromism. Dyes and Pigments, 2020, 181, 108441.	3.7	16
4075	Effects of the Ni-Mo ratio on olefin selective hydrogenation catalyzed on Ni-Mo-S active sites: A theoretical study by DFT calculation. Fuel, 2020, 277, 118136.	6.4	8
4076	Palladium modified MoS2 monolayer for adsorption and scavenging of SF6 decomposition products: A DFT study. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 123, 114178.	2.7	42
4077	Mechanism and Effects of Coverage and Particle Morphology on Rh-Catalyzed NO–H ₂ Reactions. Journal of Physical Chemistry C, 2020, 124, 13291-13303.	3.1	10
4078	Dispersibility and Photochemical Stability of Delaminated MXene Flakes in Water. Small, 2020, 16, e2002433.	10.0	55
4079	Introduction of density functional theory. , 2020, , 1-12.		6
4080	Monolayer Be2P3N as a high capacity and high energy density anode material for ultrafast charging Na- and K-ion batteries. Applied Surface Science, 2020, 527, 146783.	6.1	16
4081	sp3-Defect and pore engineered carbon framework for high energy density supercapacitors. Journal of Power Sources, 2020, 464, 228203.	7.8	27
4082	A Semiempirical Method to Detect and Correct DFT-Based Gas-Phase Errors and Its Application in Electrocatalysis. ACS Catalysis, 2020, 10, 6900-6907.	11.2	71
4083	Comparing the performance of density functionals in describing the adsorption of atoms and small molecules on Ni(111). Surface Science, 2020, 700, 121675.	1.9	8
4084	The deactivation mechanism of toluene on MnOx-CeO2 SCR catalyst. Applied Catalysis B: Environmental, 2020, 277, 119257.	20.2	86
4085	Relationship between hydrogen binding energy and activity for hydrogen evolution reaction by palladium supported on sulfur-doped ordered mesoporous carbon. Journal of Industrial and Engineering Chemistry, 2020, 89, 361-367.	5.8	11

#	ARTICLE	IF	CITATIONS
4086	BCN-Encapsulated Nano-nickel Synergistically Promotes Ambient Electrochemical Dinitrogen Reduction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31419-31430.	8.0	33
4087	Molecular and dissociative adsorption of tetrachlorodibenzodioxin on M-doped graphenes (M = B, Al,) Tj	ETQq1 1 (0. ₃ 84314 rg
4088	HER activity of MNi1- (MÂ=ÂCr, Mo and W; xÂâ‰^Â0.2) alloy in acid and alkaline media. International Journal of Hydrogen Energy, 2020, 45, 17533-17539.	7.1	22
4089	Neutral excitation density-functional theory: an efficient and variational first-principles method for simulating neutral excitations in molecules. Scientific Reports, 2020, 10, 8947.	3.3	13
4090	Dipole-Field Interactions Determine the CO ₂ Reduction Activity of 2D Fe–N–C Single-Atom Catalysts. ACS Catalysis, 2020, 10, 7826-7835.	11.2	94
4091	Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nature Communications, 2020, 11, 2838.	12.8	169
4092	Revealing the structure of a catalytic combustion active-site ensemble combining uniform nanocrystal catalysts and theory insights. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14721-14729.	7.1	16
4093	Novel VO (IV) complexes derived from a macrochelates: Synthesis, characterization, molecular modeling and ⟨i⟩in vivo⟨ i⟩ insulinâ€mimic activity studies. Applied Organometallic Chemistry, 2020, 34, e5699.	3.5	3
4094	Why the activity of the hydrogen oxidation reaction on platinum decreases as pH increases. Electrochimica Acta, 2020, 354, 136620.	5.2	28
4095	Diffusion on a Crowded Surface: kMC Simulations. Journal of Physical Chemistry C, 2020, 124, 15216-15224.	3.1	9
4096	AgPd nanoparticles for electrocatalytic CO ₂ reduction: bimetallic composition-dependent ligand and ensemble effects. Nanoscale, 2020, 12, 14068-14075.	5.6	36
4097	Structure and characterization of organotin bimetallic supramolecular coordination polymers based on copper cyanide building blocks and pyrazine or pyrazineâ€2â€carboxylic acid as new promising anticancer agents. Applied Organometallic Chemistry, 2020, 34, e5831.	3.5	11
4098	Identification of Main Active Sites and the Role of NO2 on NOx Reduction with CH4 over In/BEA Catalyst: A Computational Study. Catalysts, 2020, 10, 572.	3.5	10
4099	Machineâ€Learning Clustering Technique Applied to Powder Xâ€Ray Diffraction Patterns to Distinguish Compositions of ThMn ₁₂ â€Type Alloys. Advanced Theory and Simulations, 2020, 3, 2000039.	2.8	13
4100	Synthesis, characterization, DNA binding/cleavage, and anticancer and antimicrobial activities: Nanoâ€sized Co(II) and Cd(II) complexes and their use as a precursor for CoO and CdO nanoparticles. Applied Organometallic Chemistry, 2020, 34, e5829.	3.5	6
4101	Tuning adsorption strength of CO2 and its intermediates on tin oxide-based electrocatalyst for efficient CO2 reduction towards carbonaceous products. Applied Catalysis B: Environmental, 2020, 277, 119252.	20.2	50
4102	Oxygen evolution reaction: Bifunctional mechanism breaking the linear scaling relationship. Journal of Chemical Physics, 2020, 152, 104712.	3.0	14
4103	Atomic and molecular adsorption on single platinum atom at the graphene edge: A density functional theory study. Journal of Chemical Physics, 2020, 152, 104707.	3.0	10

#	Article	IF	CITATIONS
4104	Synthesis of Dinuclear Moâ^'Fe Hydride Complexes and Catalytic Silylation of N 2. Chemistry - A European Journal, 2020, 26, 9537-9546.	3.3	13
4105	Insight into Crystal Phase Dependent CO Dissociation on Rh Catalyst from DFT and Microkinetic Modeling. Journal of Physical Chemistry C, 2020, 124, 6756-6769.	3.1	7
4106	Progress in Computational and Machineâ€Learning Methods for Heterogeneous Smallâ€Molecule Activation. Advanced Materials, 2020, 32, e1907865.	21.0	46
4107	Structure and Conformation of a Crystalline P3HT Film Adsorbed on an Alkanethiol Selfâ€Assembled Monolayer Deposited on Gold. Macromolecular Theory and Simulations, 2020, 29, 2000010.	1.4	4
4108	DFT Study of Structural and Electronic Properties of MgZnO Alloy. Journal of Electronic Materials, 2020, 49, 4569-4576.	2.2	0
4109	Influence of phosphorus on the electrocatalytic activity of palladium nickel nanoalloy supported on N-doped reduced graphene oxide for ethanol oxidation reaction. Electrochimica Acta, 2020, 342, 136028.	5.2	41
4110	Cobalt Metal–Cobalt Carbide Composite Microspheres for Water Reduction Electrocatalysis. ACS Applied Energy Materials, 2020, 3, 3909-3918.	5.1	32
4111	Contrasting Arene, Alkene, Diene, and Formaldehyde Hydrogenation in H-ZSM-5, H-SSZ-13, and H-SAPO-34 Frameworks during MTO. ACS Catalysis, 2020, 10, 4593-4607.	11.2	38
4112	Parallelized Screening of Characterized and DFT-Modeled Bimetallic Colloidal Cocatalysts for Photocatalytic Hydrogen Evolution. ACS Catalysis, 2020, 10, 4244-4252.	11.2	41
4113	Phase stability and temperature effect in ScX (X=S, Se and Te) compounds. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126373.	2.1	1
4114	Modelling the bulk properties of ambient pressure polymorphs of zirconia. Physical Chemistry Chemical Physics, 2020, 22, 6660-6676.	2.8	16
4115	Ruthenium Nanoparticles on Cobaltâ€Doped 1T′ Phase MoS ₂ Nanosheets for Overall Water Splitting. Small, 2020, 16, e2000081.	10.0	82
4116	Pd3Ag(111) as a Model System for Hydrogen Separation Membranes: Combined Effects of CO Adsorption and Surface Termination on the Activation of Molecular Hydrogen. Topics in Catalysis, 2020, 63, 750-761.	2.8	13
4117	Predicting metal–metal interactions. II. Accelerating generalized schemes through physical insights. Journal of Chemical Physics, 2020, 152, 094702.	3.0	8
4118	Interaction Mediator Assisted Synthesis of Mesoporous Molybdenum Carbide: Mo-Valence State Adjustment for Optimizing Hydrogen Evolution. ACS Nano, 2020, 14, 4988-4999.	14.6	80
4119	Extension and evaluation of the D4 London-dispersion model for periodic systems. Physical Chemistry Chemical Physics, 2020, 22, 8499-8512.	2.8	138
4120	Seeing Dirac electrons and heavy fermions in new boron nitride monolayers*. Chinese Physics B, 2020, 29, 057303.	1.4	4
4121	InP/TiO2 heterojunction for photoelectrochemical water splitting under visible-light. International Journal of Hydrogen Energy, 2020, 45, 11615-11624.	7.1	18

#	Article	IF	Citations
4122	Infrared spectroscopy data- and physics-driven machine learning for characterizing surface microstructure of complex materials. Nature Communications, 2020, 11, 1513.	12.8	77
4123	RuP nanoparticles on ordered macroporous hollow nitrogen-doped carbon spheres for efficient hydrogen evolution reaction. Nanotechnology, 2020, 31, 295401.	2.6	13
4124	Nitride or Oxynitride? Elucidating the Composition–Activity Relationships in Molybdenum Nitride Electrocatalysts for the Oxygen Reduction Reaction. Chemistry of Materials, 2020, 32, 2946-2960.	6.7	57
4125	Engineering the hydrogen evolution reaction of transition metals: effect of Li ions. Journal of Materials Chemistry A, 2020, 8, 15795-15808.	10.3	14
4126	Superior performance of anion exchange membrane water electrolyzer: Ensemble of producing oxygen vacancies and controlling mass transfer resistance. Applied Catalysis B: Environmental, 2020, 278, 119276.	20.2	80
4127	Closing the Gap Between Experiment and Theory: Reactive Scattering of HCl from Au(111). Journal of Physical Chemistry C, 2020, 124, 15944-15960.	3.1	18
4128	Selective electrocatalysis imparted by metal–insulator transition for durability enhancement of automotive fuel cells. Nature Catalysis, 2020, 3, 639-648.	34.4	79
4129	Predicting the Effect of Dopants on CO ₂ Adsorption in Transition Metal Carbides: Case Study on TiC (001). Journal of Physical Chemistry C, 2020, 124, 15969-15976.	3.1	10
4130	Adsorbed Molecules as Interchangeable Dopants and Scatterers with a Van der Waals Bonding Memory in Graphene Sensors. ACS Sensors, 2020, 5, 2003-2009.	7.8	9
4131	Hydrogen desorption from the surface and subsurface of cobalt. Physical Chemistry Chemical Physics, 2020, 22, 15281-15287.	2.8	7
4132	Thermoelectric Properties of Metallocene Derivative Single-Molecule Junctions. Journal of Electronic Materials, 2020, 49, 5455-5459.	2.2	10
4133	Platinum Based Catalysts in the Water Gas Shift Reaction: Recent Advances. Metals, 2020, 10, 866.	2.3	33
4134	The effects of strain and charge doping on the electronic properties of graphitic <scp>C₃N₅</scp> . International Journal of Quantum Chemistry, 2020, 120, e26378.	2.0	8
4135	Effect of chain length on the near edge X-ray absorption fine structure spectra of liquid n-Alkanes. Chemical Physics Letters, 2020, 752, 137564.	2.6	4
4136	Density Functionals for Hydrogen Storage: Defining the H2Bind275 Test Set with Ab Initio Benchmarks and Assessment of 55 Functionals. Journal of Chemical Theory and Computation, 2020, 16, 4963-4982.	5. 3	14
4137	Heterophase fcc-2H-fcc gold nanorods. Nature Communications, 2020, 11, 3293.	12.8	92
4138	An experimental and first principles DFT investigation on the effect of Cu addition to Ni/Al2O3 catalyst for the dry reforming of methane. Applied Catalysis A: General, 2020, 602, 117699.	4.3	60
4139	Mechanistic insights on aqueous formic acid dehydrogenation over Pd/C catalyst for efficient hydrogen production. Journal of Catalysis, 2020, 389, 506-516.	6.2	48

#	Article	IF	CITATIONS
4140	Cobalt Ferrite Nanoparticles to Form a Catalytic Coâ€"Fe Alloy Carbide Phase for Selective CO ₂ Hydrogenation to Light Olefins. ACS Catalysis, 2020, 10, 8660-8671.	11.2	95
4141	Synthesis, characterization, density functional theory, thermal, antimicrobial efficacy, and ⟨scp>DNA⟨ scp> binding cleavage studies of Cu(⟨scp> l⟨ scp>), Cr(⟨scp> ll⟨ scp>), Fe(⟨scp> ll⟨ scp>), Ni(⟨scp> l⟨ scp>), Co(⟨scp> l⟨ scp>), Zn(⟨scp> l⟨ scp>), and Pt(⟨scp> lV⟨ scp>) complexes with a derivative of 2â€hydroxyphenoxymethylfuranâ€5â€carbaldehyde. Journal of the Chinese Chemical Society,	1.4	4
4142	Theoretical study of CO2 hydrogenation on Cu surfaces. Journal of Molecular Modeling, 2020, 26, 202.	1.8	2
4143	Using electronegativity and hardness to test density functionals. Journal of Chemical Physics, 2020, 152, 244113.	3.0	5
4144	Cu Atomic Chain Supported on Graphene Nanoribbon for Effective Conversion of CO 2 to Ethanol. ChemPhysChem, 2020, 21, 1768-1774.	2.1	9
4145	2D CoOOH Sheet-Encapsulated Ni2P into Tubular Arrays Realizing 1000ÂmAÂcmâ ² -Level-Current-Density Hydrogen Evolution Over 100Âh in Neutral Water. Nano-Micro Letters, 2020, 12, 140.	27.0	83
4146	Study on the adsorption of OHâ^' and CaOH+ on Fe (100) surface and their effect on passivation of steel bar: Experiments and DFT modelling. Corrosion Science, 2020, 174, 108804.	6.6	20
4147	Synthesis, Structural characterization, thermal, molecular modeling and biological studies of chalcone and Cr(III), Mn(II), Cu(II) Zn(II) and Cd(II) chelates. Journal of Molecular Structure, 2020, 1221, 128742.	3.6	13
4148	Potentiometric, Thermodynamics and DFT Calculations of Some Metal(II)-Schiff Base Complexes Formed in Solution International Journal of Electrochemical Science, 2020, 15, 3891-3913.	1.3	2
4149	Low Pt-Content Ternary PtNiCu Nanoparticles with Hollow Interiors and Accessible Surfaces as Enhanced Multifunctional Electrocatalysts. ACS Applied Materials & Interfaces, 2020, 12, 9600-9608.	8.0	54
4150	Probe into the effects of surface composition and ensemble effect of active sites on the catalytic performance of C2H2 semi-hydrogenation over the Pd-Ag bimetallic catalysts. Chemical Engineering Science, 2020, 218, 115549.	3.8	30
4151	First-Principles Calculations of the Electronic Structure and Optical Properties of Yttrium-Doped ZnO Monolayer with Vacancy. Materials, 2020, 13, 724.	2.9	13
4152	Understanding the interplay of bifunctional and electronic effects: Microkinetic modeling of the CO electro-oxidation reaction. Journal of Catalysis, 2020, 384, 1-13.	6.2	27
4153	Simultaneously Tuning Charge Separation and Oxygen Reduction Pathway on Graphitic Carbon Nitride by Polyethylenimine for Boosted Photocatalytic Hydrogen Peroxide Production. ACS Catalysis, 2020, 10, 3697-3706.	11.2	275
4154	Synergistically Tuning Electronic Structure of Porous βâ€Mo ₂ C Spheres by Co Doping and Moâ€Vacancies Defect Engineering for Optimizing Hydrogen Evolution Reaction Activity. Advanced Functional Materials, 2020, 30, 2000561.	14.9	141
4155	Strengthening the Interface between Flowerâ€Like VS ₄ and Porous Carbon for Improving Its Lithium Storage Performance. Advanced Functional Materials, 2020, 30, 2000427.	14.9	47
4156	Phase Modulation and Chemical Activation of MoSe ₂ by Phosphorus for Electrocatalytic Hydrogen Evolution Reaction. Energy Technology, 2020, 8, 1901503.	3.8	16
4157	The Cu photoluminescence defect and the early stages of Cu precipitation in Si. Journal of Applied Physics, 2020, 127, .	2.5	5

#	Article	IF	CITATIONS
4158	Exploring fuel cell cathode materials using <i>ab initio</i> high throughput calculations and validation using carbon supported Pt alloy catalysts. Physical Chemistry Chemical Physics, 2020, 22, 5902-5914.	2.8	14
4159	Electronic response of hydrogen storage intermetallics LaNi ₅ and LaNi _{4.5} Co _{0.5} : inelastic scattering experiment and <i>ab initio</i> calculations. Physica Scripta, 2020, 95, 045813.	2.5	5
4160	Toward a comparative description between transition metal and zeolite catalysts for methanol conversion. Physical Chemistry Chemical Physics, 2020, 22, 5293-5300.	2.8	6
4161	Tailoring 2D Heteroatomâ€Doped Carbon Nanosheets with Dominated Pseudocapacitive Behaviors Enabling Fast and Highâ€Performance Sodium Storage. Advanced Functional Materials, 2020, 30, 1909907.	14.9	93
4162	Knoevenagel condensation versus Michael addition reaction in ionic-liquid-catalyzed synthesis of hexahydroquinoline: a SMD–DFT study. Theoretical Chemistry Accounts, 2020, 139, 1.	1.4	2
4163	Structural, electronic, and vibrational properties of choline halides. Materials Chemistry and Physics, 2020, 246, 122787.	4.0	4
4164	Activating Titanium Dioxide as a New Efficient Electrocatalyst: From Theory to Experiment. ACS Applied Materials & Samp; Interfaces, 2020, 12, 11607-11615.	8.0	17
4165	Controlled design of metal oxide-based (Mn2+/Nb5+) anodes for superior sodium-ion hybrid supercapacitors: Synergistic mechanisms of hybrid ion storage. Nano Energy, 2020, 71, 104594.	16.0	67
4166	V ₂ O ₅ Nanobelts Mimick Tandem Enzymes To Achieve Nonenzymatic Online Monitoring of Glucose in Living Rat Brain. Analytical Chemistry, 2020, 92, 4583-4591.	6.5	55
4167	Making free-energy calculations routine: Combining first principles with machine learning. Physical Review B, 2020, 101, .	3.2	35
4168	Bright Luminescent Platinum(II)â€Biaryl Emitters Synthesized Without Airâ€Sensitive Reagents. Chemistry - A European Journal, 2020, 26, 5449-5458.	3.3	8
4169	Kinetic Monte Carlo Modeling for the NO–CO Reaction Mechanism on Rh(100) and Rh(111). Langmuir, 2020, 36, 3127-3140.	3.5	7
4170	DFT simulations of pyrite galvanic interactions with bulk, solid-solution and nanoparticle Au occurrences – Insights into gold cyanidation. Minerals Engineering, 2020, 149, 106239.	4.3	22
4171	Temperature-dependent inhibition of PEG in acid copper plating: Theoretical analysis and experiment evidence. Materials Today Communications, 2020, 24, 100973.	1.9	13
4172	Alloying effect in silver-based dilute nanoalloy catalysts for oxygen reduction reactions. Journal of Catalysis, 2020, 384, 37-48.	6.2	13
4173	Citrate adsorption on gold: Understanding the shaping mechanism of nanoparticles. Journal of Electroanalytical Chemistry, 2020, 875, 114015.	3.8	6
4174	Temperature dependent electrochemical equilibrium diagram of zirconium-water system studied with density functional theory and experimental thermodynamic data. Journal of Nuclear Materials, 2020, 532, 152036.	2.7	11
4175	A subtle balance between interchain interactions and surface reconstruction at the origin of the alkylthiol/Au(111) self-assembled monolayer geometry. Surface Science, 2020, 696, 121597.	1.9	4

#	Article	IF	CITATIONS
4176	Robust Topological States in Bi ₂ Se ₃ against Surface Oxidation. Journal of Physical Chemistry C, 2020, 124, 6253-6259.	3.1	7
4177	Oxygen evolution reaction: a perspective on a decade of atomic scale simulations. Chemical Science, 2020, 11, 2943-2950.	7.4	60
4178	Quasi-degenerate states and their dynamics in oxygen deficient reducible metal oxides. Journal of Chemical Physics, 2020, 152, 050901.	3.0	26
4179	Regulating the effect of element doping on the CO2 capture performance of kaolinite: A density functional theory study. Applied Surface Science, 2020, 512, 145642.	6.1	15
4180	Facile synthesis of novel Mn-doped Bi4O5Br2 for enhanced photocatalytic NO removal activity. Journal of Alloys and Compounds, 2020, 826, 154204.	5.5	38
4181	Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production. Nature Materials, 2020, 19, 436-442.	27.5	725
4182	Intermetallic Pd ₃ Pb nanocubes with high selectivity for the 4-electron oxygen reduction reaction pathway. Nanoscale, 2020, 12, 2532-2541.	5.6	33
4183	Atom vacancies induced electron-rich surface of ultrathin Bi nanosheet for efficient electrochemical CO2 reduction. Applied Catalysis B: Environmental, 2020, 266, 118625.	20.2	112
4184	Molecular simulations of host-guest interactions between zeolite framework STW and its organic structure-directing agents. Chinese Chemical Letters, 2020, 31, 1951-1955.	9.0	10
4185	Durability screening of Pt ternary alloy (111) surfaces for oxygen reduction reaction using Density Functional Theory. Surfaces and Interfaces, 2020, 18, 100440.	3.0	2
4186	The mechanism of methanol dehydrogenation on the PdAu(1ÂOÂO) surface: A DFT study. Applied Surface Science, 2020, 510, 145434.	6.1	9
4187	Evaluation of Polaron Transport in Solids from Firstâ€principles. Israel Journal of Chemistry, 2020, 60, 768-786.	2.3	41
4188	Tellurium–oxygen group enhanced birefringence in tellurium phosphates: a first-principles investigation. RSC Advances, 2020, 10, 4087-4094.	3.6	2
4189	Theoretical Analysis of Surface Active Sites in Defective 2H and 1T′ MoS ₂ Polymorphs for Hydrogen Evolution Reaction: Quantifying the Total Activity of Point Defects. Advanced Theory and Simulations, 2020, 3, 1900213.	2.8	17
4190	Nano-sized some transition metal complexes of Schiff base ligand based on 1-aminoquinolin-2(1H)-one. Journal of Molecular Structure, 2020, 1206, 127704.	3.6	7
4191	Water structures on a Pt(111) electrode from <i>ab initio</i> molecular dynamic simulations for a variety of electrochemical conditions. Physical Chemistry Chemical Physics, 2020, 22, 10431-10437.	2.8	65
4192	A Periodic DFT Study of the Synergistic Mechanisms between Extraframework Aluminum Species and Brol·nsted Acid Sites in HY Zeolites. Industrial & Engineering Chemistry Research, 2020, 59, 2736-2744.	3.7	7
4193	Synergy effects on Sn-Cu alloy catalyst for efficient CO2 electroreduction to formate with high mass activity. Science Bulletin, 2020, 65, 711-719.	9.0	142

#	Article	IF	CITATIONS
4194	In Situ-Formed PdFe Nanoalloy and Carbon Defects in Cathode for Synergic Reduction–Oxidation of Chlorinated Pollutants in Electro-Fenton Process. Environmental Science & Education Rechnology, 2020, 54, 4564-4572.	10.0	143
4195	Identification of the donor and acceptor states of the bond-centered hydrogen–carbon pair in Si and diluted SiGe alloys. Journal of Applied Physics, 2020, 127, .	2.5	4
4196	The effect of group-substitution on the sensitization properties of alkynylrhenium(I) tricarbonyl diimine complexes adsorbed to TiO2(101) film surface: a theoretical study. Journal of Molecular Modeling, 2020, 26, 34.	1.8	4
4197	Superior performance and stability of anion exchange membrane water electrolysis: pH-controlled copper cobalt oxide nanoparticles for the oxygen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 4290-4299.	10.3	73
4198	Black phosphorus-Au nanocomposite-based fluorescence immunochromatographic sensor for high-sensitive detection of zearalenone in cereals. Nanophotonics, 2020, 9, 2397-2406.	6.0	14
4200	Fluorine edge decoration on zigzag silicene nanoribbons. Superlattices and Microstructures, 2020, 139, 106394.	3.1	9
4201	The Degreeâ€ofâ€Order Dependent Electronic Structures and Magnetic Properties of Fe ₃ Si Alloys. Physica Status Solidi (B): Basic Research, 2020, 257, 1900667.	1.5	7
4202	PiNN: A Python Library for Building Atomic Neural Networks of Molecules and Materials. Journal of Chemical Information and Modeling, 2020, 60, 1184-1193.	5 . 4	48
4203	The identification of optimal active boron sites for N ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 3910-3917.	10.3	44
4204	Sodiumâ€Mediated Epitaxial Growth of 2D Ultrathin Sb ₂ Se ₃ Flakes for Broadband Photodetection. Advanced Functional Materials, 2020, 30, 1909849.	14.9	88
4205	Carbon influence on hydrogen absorption and adsorption on Fe-C alloy surfaces. Surface Science, 2020, 697, 121606.	1.9	5
4206	Simple and Scalable Mechanochemical Synthesis of Noble Metal Catalysts with Single Atoms toward Highly Efficient Hydrogen Evolution. Advanced Functional Materials, 2020, 30, 2000531.	14.9	153
4207	Physi-Sorption of H2 on Pure and Boron–Doped Graphene Monolayers: A Dispersion–Corrected DFT Study. Journal of Carbon Research, 2020, 6, 15.	2.7	13
4208	Mechanism investigations on CO oxidation catalyzed by Fe-doped graphene: A theoretical study. Applied Surface Science, 2020, 523, 146496.	6.1	18
4209	Adsorption and Gas Sensing Properties of the Pt ₃ -MoSe ₂ Monolayer to SOF ₂ and SO ₂ F ₂ . ACS Omega, 2020, 5, 7722-7728.	3.5	24
4210	Hydration in aqueous osmolyte solutions: the case of TMAO and urea. Physical Chemistry Chemical Physics, 2020, 22, 11614-11624.	2.8	11
4211	Fluoride ion batteries: Designing flexible M2CH2 (M=Ti or V) MXenes as high-capacity cathode materials. Nano Energy, 2020, 74, 104911.	16.0	27
4212	Revealing the origin of the reactivity of metal-free boron nitride catalysts in oxidative dehydrogenation of propane. Applied Surface Science, 2020, 519, 146241.	6.1	18

#	ARTICLE	IF	CITATIONS
4213	Reactivity of Cobaltâ€Fullerene Complexes towards Deuterium. ChemPhysChem, 2020, 21, 1012-1018.	2.1	8
4214	Catalytic nature of iron-nitrogen-graphene heterogeneous catalysts for oxygen evolution reaction and oxygen reduction reaction. Applied Surface Science, 2020, 514, 146073.	6.1	15
4215	Thermal and mechanical properties of U3Si2: A combined ab-initio and molecular dynamics study. Journal of Nuclear Materials, 2020, 533, 152090.	2.7	15
4216	Theoretical investigation of the structural, elastic, electronic, and optical properties of the ternary tetragonal tellurides KBTe2 (B = Al, In). Materials Science in Semiconductor Processing, 2020, 114, 105085.	4.0	29
4217	Highly Efficient Cyan-Green Emission in Self-Activated Rb ₃ RV ₂ O ₈ (R = Y, Lu) Vanadate Phosphors for Full-Spectrum White Light-Emitting Diodes (LEDs). Inorganic Chemistry, 2020, 59, 6026-6038.	4.0	50
4218	Chemical Shift Tensors of Cimetidine Form A Modeled with Density Functional Theory Calculations: Implications for NMR Crystallography. Journal of Physical Chemistry A, 2020, 124, 3109-3119.	2.5	26
4219	Modulating the Electronic Structure and In-Plane Activity of Two-Dimensional Transition Metal Dichalcogenide (MoS ₂ , TaS ₂ , NbS ₂) Monolayers by Interfacial Engineering. Journal of Physical Chemistry C, 2020, 124, 8822-8833.	3.1	20
4220	Preferential Oxidation of CO in Hydrogen at Nonmetal Active Sites with High Activity and Selectivity. ACS Catalysis, 2020, 10, 5362-5370.	11.2	8
4221	Catalytic properties of α-MnO ₂ for Li–air battery cathodes: a density functional investigation. Physical Chemistry Chemical Physics, 2020, 22, 9233-9239.	2.8	2
4222	Discovery of new polymorphs of the tuberculosis drug isoniazid. CrystEngComm, 2020, 22, 2705-2708.	2.6	26
4223	An <i>in situ</i> assembled WO ₃ –TiO ₂ vertical heterojunction for enhanced Z-scheme photocatalytic activity. Nanoscale, 2020, 12, 8775-8784.	5.6	47
4224	Solvation at metal/water interfaces: An <i>ab initio</i> molecular dynamics benchmark of common computational approaches. Journal of Chemical Physics, 2020, 152, 144703.	3.0	103
4225	Catalytic Dehydrogenation of Ethane over Doped Perovskite via the Mars–van Krevelen Mechanism. Journal of Physical Chemistry C, 2020, 124, 10462-10469.	3.1	12
4226	Dynamics Studies of O ₂ Collision on Pt(111) Using a Global Potential Energy Surface. Journal of Physical Chemistry C, 2020, 124, 10573-10583.	3.1	7
4227	Catalytic Polysulfide Conversion and Physiochemical Confinement for Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 1904010.	19.5	165
4228	Plastic and superionic phases in ammonia–water mixtures at high pressures and temperatures. Journal of Physics Condensed Matter, 2020, 32, 184004.	1.8	18
4229	Deviation from guest dominated glass like lattice dynamics in prototypical ternary Ba ₈ Ni _{<i>x</i>} Ge\$_{46-x-y}square_y\$ clathrates. Journal of Physics Condensed Matter, 2020, 32, 175502.	1.8	5
4230	Insights in the Oxygen Reduction Reaction: From Metallic Electrocatalysts to Diporphyrins. ACS Catalysis, 2020, 10, 5979-5989.	11.2	52

#	Article	IF	CITATIONS
4231	Revisiting the Atomistic Structures at the Interface of Au(111) Electrode–Sulfuric Acid Solution. Journal of the American Chemical Society, 2020, 142, 9439-9446.	13.7	35
4232	Development of a multi-active center catalyst in mediating the catalytic destruction of chloroaromatic pollutants: A combined experimental and theoretical study. Applied Catalysis B: Environmental, 2020, 272, 119015.	20.2	71
4233	Methods for comparing uncertainty quantifications for material property predictions. Machine Learning: Science and Technology, 2020, 1, 025006.	5.0	78
4234	Ultrastable molybdenum disulfide-based electrocatalyst for hydrogen evolution in acidic media. Journal of Power Sources, 2020, 456, 227998.	7.8	23
4235	A cyclic electrochemical strategy to produce acetylene from CO ₂ , CH ₄ , or alternative carbon sources. Sustainable Energy and Fuels, 2020, 4, 2752-2759.	4.9	9
4236	Can We Predict the Pressure Induced Phase Transition of Urea? Application of Quantum Molecular Dynamics. Molecules, 2020, 25, 1584.	3.8	13
4237	Immiscible bi-metal single-atoms driven synthesis of electrocatalysts having superb mass-activity and durability. Applied Catalysis B: Environmental, 2020, 270, 118896.	20.2	102
4238	Experimental, computational and thermodynamic studies in perovskites metal oxides for thermochemical fuel production: A review. International Journal of Hydrogen Energy, 2020, 45, 12653-12679.	7.1	51
4239	Involvement of the Unoccupied Site Changes the Kinetic Trend Significantly: A Case Study on Formic Acid Decomposition. ACS Catalysis, 2020, 10, 5153-5162.	11.2	14
4240	Impact of Metal and Heteroatom Identities in the Hydrogenolysis of C–X Bonds (X = C, N, O, S, and Cl). ACS Catalysis, 2020, 10, 5086-5100.	11.2	21
4241	Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production. Nature Communications, 2020, 11, 1853.	12.8	229
4242	CO oxidation activity of non-reducible oxide-supported mass-selected few-atom Pt single-clusters. Nature Communications, 2020, 11, 1888.	12.8	76
4243	Inference of principal species in caustic aluminate solutions through solid-state spectroscopic characterization. Dalton Transactions, 2020, 49, 5869-5880.	3.3	10
4244	Appraising spin-state energetics in transition metal complexes using double-hybrid models: accountability of SOSO-PBESCANO-2(a) as a promising paradigm. Physical Chemistry Chemical Physics, 2020, 22, 9388-9404.	2.8	10
4245	Predicting metal–metal interactions. I. The influence of strain on nanoparticle and metal adlayer stabilities. Journal of Chemical Physics, 2020, 152, 094701.	3.0	12
4246	The coupling of experiments with density functional theory in the studies of the electrochemical hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 8783-8812.	10.3	33
4247	Revisiting the Volmer–Heyrovský mechanism of hydrogen evolution on a nitrogen doped carbon nanotube: constrained molecular dynamics <i>versus</i> the nudged elastic band method. Physical Chemistry Chemical Physics, 2020, 22, 10536-10549.	2.8	47
4248	Sensing the polar molecules MH3 (M = N, P, or As) with a Janus NbTeSe monolayer. New Journal of Chemistry, 2020, 44, 7932-7940.	2.8	20

#	ARTICLE	IF	Citations
4249	Chlorine-anion doping induced multi-factor optimization in perovskties for boosting intrinsic oxygen evolution. Journal of Energy Chemistry, 2021, 52, 115-120.	12.9	69
4250	Insights into the adsorption/desorption of CO2 and CO on single-atom Fe-nitrogen-graphene catalyst under electrochemical environment. Journal of Energy Chemistry, 2021, 53, 20-25.	12.9	38
4251	Recyclable aqueous metal adsorbent: Synthesis and Cu(II) sorption characteristics of ternary nanocomposites of Fe3O4 nanoparticles@graphene–poly-N-phenylglycine nanofibers. Journal of Hazardous Materials, 2021, 401, 123283.	12.4	28
4252	A first-principles study of the temperature-dependent diffusion coefficients of silver in the thermoelectric compound PbTe. Acta Materialia, 2021, 202, 243-254.	7.9	12
4253	Insights into electrochemical nitrogen reduction reaction mechanisms: Combined effect of single transition-metal and boron atom. Journal of Energy Chemistry, 2021, 58, 577-585.	12.9	66
4254	Divalent manganese, cobalt, copper and cadmium complexes of (Z)―N â€benzoyl―N ′â€(1 H) Tj ETQq1 1 studies. Applied Organometallic Chemistry, 2021, 35, .	0.784314 3 . 5	rgBT /Overlo
4255	Interactive network of the dehydrogenation of alkanes, alkenes and alkynes $\hat{a} \in \text{``surface carbon'}$ hydrogenative coupling on Ru(111). Catalysis Science and Technology, 2021, 11, 191-210.	4.1	4
4256	Density functional theory study of perfluorooctane sulfonate adsorption on fluorinated graphene. Surface Innovations, 2021, 9, 149-155.	2.3	3
4257	A multiphase sodium vanadium phosphate cathode material for high-rate sodium-ion batteries. Journal of Materials Science and Technology, 2021, 66, 121-127.	10.7	19
4258	Facilitating active species by decorating CeO2 on Ni3S2 nanosheets for efficient water oxidation electrocatalysis. Chinese Journal of Catalysis, 2021, 42, 482-489.	14.0	61
4259	Synthesis, spectral characterization, quantum chemical calculations, thermal studies and biological screening of nitrogen and oxygen donor atoms containing Azo-dye Cu(II), Ni(II) and Co(II) complexes. Journal of Molecular Structure, 2021, 1223, 128984.	3.6	12
4260	Fitting elephants in the density functionals zoo: Statistical criteria for the evaluation of density functional theory methods as a suitable replacement for counting parameters. International Journal of Quantum Chemistry, 2021, 121, e26379.	2.0	7
4261	Sorption of aqueous amino acid species on sulphidic mineral surfacesâ€"DFT study and insights on biosourcedâ€reagent mineral flotation. Canadian Journal of Chemical Engineering, 2021, 99, 1758-1779.	1.7	7
4262	Structure evolution of PtCu nanoframes from disordered to ordered for the oxygen reduction reaction. Applied Catalysis B: Environmental, 2021, 282, 119617.	20.2	80
4263	Adsorption of CO2, CO, NH3, NO2 and NO on g-C3N5 surface by first-principles calculations. Applied Surface Science, 2021, 537, 147884.	6.1	22
4264	The effects of doping metal type and ratio on the catalytic performance of C2H2 semi-hydrogenation over the intermetallic compound-containing Pd catalysts. Chemical Engineering Science, 2021, 229, 116131.	3.8	14
4265	Light-activated polydopamine coatings for efficient metal recovery from electronic waste. Separation and Purification Technology, 2021, 254, 117674.	7.9	10
4266	Single–atom manganese and nitrogen co-doped graphene as low-cost catalysts for the efficient CO oxidation at room temperature. Applied Surface Science, 2021, 536, 147809.	6.1	31

#	Article	IF	CITATIONS
4267	Surface engineering of PdFe ordered intermetallics for efficient oxygen reduction electrocatalysis. Chemical Engineering Journal, 2021, 408, 127297.	12.7	27
4268	In situ growth of TiO2 nanoparticles on nitrogen-doped Ti3C2 with isopropyl amine toward enhanced photocatalytic activity. Journal of Hazardous Materials, 2021, 402, 124066.	12.4	62
4269	CO ₂ reduction and ethane dehydrogenation on transition metal catalysts: mechanistic insights, reactivity trends and rational design of bimetallic alloys. Catalysis Science and Technology, 2021, 11, 97-115.	4.1	18
4270	Effect of different acceptors on N-hexyl carbazole moiety for dye-sensitized solar cells: design, characterization, molecular structure, and DSSC fabrications. Journal of the Iranian Chemical Society, 2021, 18, 949-960.	2.2	12
4271	Catalytic activity of Ni3Mo surfaces for hydrogen evolution reaction: A density functional theory approach. Applied Surface Science, 2021, 537, 147894.	6.1	25
4272	Hydrogen evolution/spillover effect of single cobalt atom on anatase TiO2 from first-principles calculations. Applied Surface Science, 2021, 536, 147831.	6.1	13
4273	Accelerating first-principles estimation of thermal conductivity by machine-learning interatomic potentials: A MTP/ShengBTE solution. Computer Physics Communications, 2021, 258, 107583.	7. 5	108
4274	Monoclinic Scheelite Bismuth Vanadate Derived Bismuthene Nanosheets with Rapid Kinetics for Electrochemically Reducing Carbon Dioxide to Formate. Advanced Functional Materials, 2021, 31, 2006704.	14.9	52
4275	The role of Al and Co co-doping on the band gap tuning of TiO2 thin films for applications in photovoltaic and optoelectronic devices. Materials Science in Semiconductor Processing, 2021, 121, 105419.	4.0	27
4276	The structural stability, lattice dynamics, electronic, thermophysical, and mechanical properties of the inverse perovskites A ₃ OX: A comparative firstâ€principles study. International Journal of Energy Research, 2021, 45, 4793-4810.	4.5	21
4277	Interplay between invasive single atom Pt and native oxygen vacancy in anatase TiO2(1Â0Â1) surface: A theoretical study. Applied Surface Science, 2021, 540, 148357.	6.1	17
4278	Accelerating atomistic simulations with piecewise machine-learned <i>ab Initio</i> potentials at a classical force field-like cost. Physical Chemistry Chemical Physics, 2021, 23, 1815-1821.	2.8	24
4279	Carbon nanotube boosting electrocatalytic oxygen evolution of NiFe-polyphenol coordination catalyst through donor-acceptor modulation. Journal of Colloid and Interface Science, 2021, 582, 396-404.	9.4	13
4280	Evaluation of electrocatalytic dinitrogen reduction performance on diamond carbon via density functional theory. Diamond and Related Materials, 2021, 111, 108210.	3.9	10
4281	Towards the Circular Economy: Converting Aromatic Plastic Waste Back to Arenes over a Ru/Nb ₂ O ₅ Catalyst. Angewandte Chemie - International Edition, 2021, 60, 5527-5535.	13.8	169
4282	Towards the Circular Economy: Converting Aromatic Plastic Waste Back to Arenes over a Ru/Nb 2 O 5 Catalyst. Angewandte Chemie, 2021, 133, 5587-5595.	2.0	42
4283	Template-free fabrication of MoP nanoparticles encapsulated in N-doped hollow carbon spheres for efficient alkaline hydrogen evolution. Chemical Engineering Journal, 2021, 416, 127677.	12.7	56
4284	Glutamate adsorption on the Au(111) surface at different pH values. Journal of Electroanalytical Chemistry, 2021, 880, 114870.	3.8	2

#	ARTICLE	IF	CITATIONS
4285	Zero-thermal-quenching and improved chemical stability of a UCr4C4-type phosphor via crystal site engineering. Chemical Engineering Journal, 2021, 420, 127664.	12.7	21
4286	Boron doping and high curvature in Bi nanorolls for promoting photoelectrochemical nitrogen fixation. Applied Catalysis B: Environmental, 2021, 284, 119689.	20.2	45
4287	Ternary Al–Mg–Ag alloy promoted palladium nanoparticles as potential catalyst for enhanced electro-oxidation of ethanol. International Journal of Hydrogen Energy, 2021, 46, 4036-4044.	7.1	8
4288	Microkinetic Modeling: A Tool for Rational Catalyst Design. Chemical Reviews, 2021, 121, 1049-1076.	47.7	191
4289	Surface electrocatalysis on high-entropy alloys. Current Opinion in Electrochemistry, 2021, 26, 100651.	4.8	52
4290	Boosting Pd-catalysis for electrochemical CO2 reduction to CO on Bi-Pd single atom alloy nanodendrites. Applied Catalysis B: Environmental, 2021, 289, 119783.	20.2	80
4291	Hydrogenation and C S bond activation pathways in thiophene and tetrahydrothiophene reactions on sulfur-passivated surfaces of Ru, Pt, and Re nanoparticles. Applied Catalysis B: Environmental, 2021, 291, 119797.	20.2	9
4292	Electronic fitness function, effective mass and thermoelectric properties of Rh-based (-ScTe; -TiSb;) Tj ETQq1 1 (e00523.	0.784314 rg 2.1	gBT /Overloc 6
4293	First principles prediction of exceptional mechanical and electronic behaviour of Titanite (CaTiSiO5). Materialia, 2021, 15, 100964.	2.7	3
4294	Designing new SRP density functionals including non-local vdW-DF2 correlation for H2 + Cu(111) and their transferability to H2 + Ag(111), Au(111) and Pt(111). Physical Chemistry Chemical Physics, 2021, 23, 7875-7901.	2.8	9
4295	Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides. Energy and Environmental Science, 2021, 14, 2302-2313.	30.8	186
4296	Construction of cobalt oxyhydroxide nanosheets with rich oxygen vacancies as high-performance lithium-ion battery anodes. Journal of Materials Chemistry A, 2021, 9, 453-462.	10.3	47
4297	Computational strategies to address the catalytic activity of nanoclusters. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1508.	14.6	5
4298	Tuning microstructures of hard carbon for high capacity and rate sodium storage. Chemical Engineering Journal, 2021, 417, 128104.	12.7	30
4299	Tuning the electronic and magnetic properties of monolayer germanium triphosphide adsorbed by halogen atoms: Insights from first principles study. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 127, 114537.	2.7	8
4300	Synergistic catalytic activity of palladium–silver alloy nanoparticle for anodic oxidation of ethanol in alkali. International Journal of Hydrogen Energy, 2021, 46, 14212-14224.	7.1	9
4301	Cu ₂ O/CuS Nanocomposites Show Excellent Selectivity and Stability for Formate Generation via Electrochemical Reduction of Carbon Dioxide., 2021, 3, 100-109.		65
4302	Ruthenium Catalysts Promoted by Lanthanide Oxyhydrides with High Hydrideâ€lon Mobility for Lowâ€Temperature Ammonia Synthesis. Advanced Energy Materials, 2021, 11, 2003723.	19.5	45

#	Article	IF	CITATIONS
4303	Catalytic Principles from Natural Enzymes and Translational Design Strategies for Synthetic Catalysts. ACS Central Science, 2021, 7, 72-80.	11.3	39
4304	Cr,Yb-codoped Ca ₂ LaHf ₂ Al ₃ O ₁₂ garnet phosphor: electronic structure, broadband NIR emission and energy transfer properties. Dalton Transactions, 2021, 50, 908-916.	3.3	38
4305	Computational Methods in Heterogeneous Catalysis. Chemical Reviews, 2021, 121, 1007-1048.	47.7	198
4306	Synchronous nesting of hollow FeP nanospheres into a three-dimensional porous carbon scaffold <i>via</i> a salt-template method for performance-enhanced potassium-ion storage. Sustainable Energy and Fuels, 2021, 5, 844-854.	4.9	12
4307	Electrocatalytic Nitrogen Reduction Performance of Siâ€doped 2D Nanosheets of Boron Nitride Evaluated via Density Functional Theory. ChemCatChem, 2021, 13, 1239-1245.	3.7	18
4308	Titanium alloying enhancement of mechanical properties of NbTaMoW refractory high-Entropy alloy: First-principles and experiments perspective. Journal of Alloys and Compounds, 2021, 857, 157542.	5. 5	24
4309	n-Layer BET adsorption isotherm modeling for multimeric Protein A ligand and its lifetime determination. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1162, 122434.	2.3	7
4310	Insights on the optoelectronic properties in two-dimensional Janus lateral In2SeTe/Ga2STe heterostructure. Thin Solid Films, 2021, 718, 138479.	1.8	8
4311	Study of cage-like diamondoid polymeric nitrogen N10 confined inside single-wall carbon-nanotube. Materials Today Communications, 2021, 26, 101670.	1.9	3
4312	Graphite Carbon Nanosheet-Coated Cobalt-Doped Molybdenum Carbide Nanoparticles for Efficient Alkaline Hydrogen Evolution Reaction. ACS Applied Nano Materials, 2021, 4, 372-380.	5.0	16
4313	First-Principles Insights into Plasmon-Induced Catalysis. Annual Review of Physical Chemistry, 2021, 72, 99-119.	10.8	41
4314	Vacancy assisted diffusion on singleâ€atom surface alloys. ChemPhysChem, 2021, 22, 29-39.	2.1	10
4315	Solid-solution alloying of immiscible Pt and Au boosts catalytic performance for H2O2 direct synthesis. Acta Materialia, 2021, 205, 116563.	7.9	10
4316	Competitive adsorption between sulfur- and nitrogen-containing compounds over NiMoS nanocluster: The correlations of electronegativity, morphology and molecular orbital with adsorption strength. Chemical Engineering Science, 2021, 231, 116313.	3.8	17
4317	Correlation between electronic and optical responses of intrinsic and Cd-doped c-SrHfO3: A computational insight. Physica B: Condensed Matter, 2021, 605, 412493.	2.7	2
4318	Determining the hydration energetics on carbon-supported Ru catalysts: An adsorption calorimetry and density functional theory study. Catalysis Today, 2021, 365, 172-180.	4.4	3
4319	Catalytic Property and Stability of Subnanometer Pt Cluster on Carbon Nanotube in Direct Propane Dehydrogenation. Chinese Journal of Chemistry, 2021, 39, 661-665.	4.9	11
4320	Enhanced optical reflectivity and electrical properties in perovskite functional ceramics by inhibiting oxygen vacancy formation. Ceramics International, 2021, 47, 5549-5558.	4.8	15

#	Article	IF	CITATIONS
4321	DFT insights in to the hydrodenitrogenation behavior differences between indole and quinoline. Fuel, 2021, 285, 119039.	6.4	22
4322	Deposition of the Spin Crossover Fe II –Pyrazolylborate Complex on Au(111) Surface at the Molecular Level. Chemistry - A European Journal, 2021, 27, 712-723.	3.3	12
4323	Nonâ€Planar Structures of Sterically Overcrowded Trialkylamines. Chemistry - A European Journal, 2021, 27, 3700-3707.	3.3	3
4324	Self-aldol condensation of aldehydes over Lewis acidic rare-earth cations stabilized by zeolites. Chinese Journal of Catalysis, 2021, 42, 595-605.	14.0	24
4325	Atomistic modeling of electrocatalysis: Are we there yet?. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1499.	14.6	79
4326	Catalytic thermodynamic model for nanocluster adsorbates. Catalysis Today, 2021, 360, 157-164.	4.4	5
4327	High-performance aqueous Zn–MnO ₂ batteries enabled by the coupling engineering of K ⁺ pre-intercalation and oxygen defects. Journal of Materials Chemistry A, 2021, 9, 15637-15647.	10.3	46
4328	A peanut shell-derived economical and eco-friendly biochar catalyst for electrochemical ammonia synthesis under ambient conditions: combined experimental and theoretical study. Catalysis Science and Technology, 2021, 11, 1526-1536.	4.1	8
4329	Review: Simulation Models for Materials and Biomolecules. Engineering Materials, 2021, , 27-82.	0.6	3
4330	Tri-atomic Pt clusters induce effective pathways in a Co _{core} –Pd _{shell} nanocatalyst surface for a high-performance oxygen reduction reaction. Physical Chemistry Chemical Physics, 2021, 23, 18012-18025.	2.8	5
4331	Hydrogen adsorption trends on two metal-doped Ni ₂ P surfaces for optimal catalyst design. Physical Chemistry Chemical Physics, 2021, 23, 11538-11547.	2.8	3
4332	DFT benchmark studies on representative species and poisons of methane steam reforming on Ni(111). Physical Chemistry Chemical Physics, 2021, 23, 15601-15612.	2.8	4
4333	Structural, optical and electronic properties of ZnAg ₂ GeTe ₄ and ZnAg ₂ Ge _{0.93} Fe _{0.07} Te ₄ photocatalyst: a first principle approach. Molecular Simulation, 2021, 47, 594-601.	2.0	3
4334	Combined first-principles calculations and experimental study on the photocatalytic mechanism of natural dolomite. RSC Advances, 2021, 11, 24416-24423.	3 . 6	1
4335	Single Mo ₁ (W ₁ , Re ₁) atoms anchored in pyrrolic-N ₃ doped graphene as efficient electrocatalysts for the nitrogen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 6547-6554.	10.3	38
4336	Lifting the discrepancy between experimental results and the theoretical predictions for the catalytic activity of RuO ₂ (110) towards oxygen evolution reaction. Physical Chemistry Chemical Physics, 2021, 23, 19141-19145.	2.8	9
4337	Interfacial acidity on the strontium titanate surface: a scaling paradigm and the role of the hydrogen bond. Physical Chemistry Chemical Physics, 2021, 23, 23478-23485.	2.8	2
4338	One-Dimensional van der Waals Heterostructures as Efficient Metal-Free Oxygen Electrocatalysts. ACS Nano, 2021, 15, 3309-3319.	14.6	79

#	Article	IF	CITATIONS
4339	Cobalt single atoms anchored on nitrogen-doped porous carbon as an efficient catalyst for oxidation of silanes. Green Chemistry, 2021, 23, 1026-1035.	9.0	21
4340	Dielectric relaxation of water: assessing the impact of localized modes, translational diffusion, and collective dynamics. Physical Chemistry Chemical Physics, 2021, 23, 20875-20882.	2.8	11
4341	From Order to Disorder of Alkanethiol Self-Assembled Monolayers on Complex Au (211), (221), and (311) Surfaces: Impact of the Substrate. Journal of Physical Chemistry C, 2021, 125, 3495-3508.	3.1	3
4342	How oxidation state and lattice distortion influence the oxygen evolution activity in acid of iridium double perovskites. Journal of Materials Chemistry A, 2021, 9, 2980-2990.	10.3	36
4343	Computational design of a switchable heterostructure electrocatalyst based on a two-dimensional ferroelectric In ₂ Se ₃ material for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 11553-11562.	10.3	15
4344	Amino-acid interactions with the Au(111) surface: adsorption, band alignment, and interfacial electronic coupling. Physical Chemistry Chemical Physics, 2021, 23, 10257-10266.	2.8	8
4345	Electronic and geometric determinants of adsorption: fundamentals and applications. JPhys Energy, 2021, 3, 022001.	5.3	18
4346	Catalytic decomposition of methane into hydrogen and high-value carbons: combined experimental and DFT computational study. Catalysis Science and Technology, 2021, 11, 4911-4921.	4.1	24
4347	High-temperature vanadium-free catalyst for selective catalytic reduction of NO with NH ₃ and theoretical study of La ₂ O ₃ over CeO ₂ /TiO ₂ . Catalysis Science and Technology, 2021, 11, 6112-6125.	4.1	8
4348	Combining artificial intelligence and physics-based modeling to directly assess atomic site stabilities: from sub-nanometer clusters to extended surfaces. Physical Chemistry Chemical Physics, 2021, 23, 22022-22034.	2.8	13
4349	Computing gold cluster energies with density functional theory: the importance of correlation. Physical Chemistry Chemical Physics, 2021, 23, 14830-14835.	2.8	8
4350	Electrochemical oxidation of molecular nitrogen to nitric acid – towards a molecular level understanding of the challenges. Chemical Science, 2021, 12, 6442-6448.	7.4	43
4351	Surface Ligand Environment Boosts the Electrocatalytic Hydrodechlorination Reaction on Palladium Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2021, 13, 4072-4083.	8.0	38
4352	Monitoring the active sites for the hydrogen evolution reaction at model carbon surfaces. Physical Chemistry Chemical Physics, 2021, 23, 10051-10058.	2.8	21
4353	Modulation of CO ₂ adsorption in novel pillar-layered MOFs based on carboxylate–pyrazole flexible linker. Dalton Transactions, 2021, 50, 2880-2890.	3.3	7
4354	Efficient construction of a redox responsive thin polymer layer on glassy carbon and gold surfaces for voltage-gated delivery applications. Materials Advances, 2021, 2, 2358-2365.	5.4	6
4355	Unlocking the potential of ruthenium catalysts for nitrogen fixation with subsurface oxygen. Journal of Materials Chemistry A, 2021, 9, 6575-6582.	10.3	14
4356	Suitable acid groups and density in electrolytes to facilitate proton conduction. Physical Chemistry Chemical Physics, 2021, 23, 23778-23786.	2.8	4

#	Article	IF	CITATIONS
4357	Identifying Heteroatomic and Defective Sites in Carbon with Dual-Ion Adsorption Capability for High Energy and Power Zinc Ion Capacitor. Nano-Micro Letters, 2021, 13, 59.	27.0	78
4358	Challenges for density functional theory: calculation of CO adsorption on electrocatalytically relevant metals. Physical Chemistry Chemical Physics, 2021, 23, 9394-9406.	2.8	15
4359	Understanding trends in the activity and selectivity of bi-atom catalysts for the electrochemical reduction of carbon dioxide. Journal of Materials Chemistry A, 2021, 9, 8761-8771.	10.3	35
4360	Theoretical inspection of the spin-crossover [Fe(tzpy)2(NCS)2] complex on Au(100) surface. Journal of Chemical Physics, 2021, 154, 034701.	3.0	6
4361	Band structure regulation in Fe-doped MgZnO by initial magnetic moments. RSC Advances, 2021, 11, 3209-3215.	3.6	2
4362	Computational approaches to dissociative chemisorption on metals: towards chemical accuracy. Physical Chemistry Chemical Physics, 2021, 23, 8962-9048.	2.8	47
4363	Coordination and Precipitation of Calcium Oxalate: Computation to Kinetics . Crystal Growth and Design, 2021, 21, 1249-1258.	3.0	4
4364	Surface reconstruction of AgPdF and AgPd nanoalloys under the formate oxidation reaction. Journal of Materials Chemistry A, 2021, 9, 23072-23084.	10.3	18
4365	Structural Origins of Elastic and 2D Plastic Flexibility of Molecular Crystals Investigated with Two Polymorphs of Conformationally Rigid Coumarin. Chemistry of Materials, 2021, 33, 1053-1060.	6.7	50
4366	A robust, freeze-resistant and highly ion conductive ionogel electrolyte towards lithium metal batteries workable at Ⱂ30 °C. Physical Chemistry Chemical Physics, 2021, 23, 6775-6782.	2.8	12
4367	First-principles calculations of hybrid inorganic–organic interfaces: from state-of-the-art to best practice. Physical Chemistry Chemical Physics, 2021, 23, 8132-8180.	2.8	36
4368	Accelerated exciton dissociation and electron extraction across the metallic sulfide–carbon nitride ohmic interface for efficient photocatalytic hydrogen production. Journal of Materials Chemistry A, 2021, 9, 16522-16531.	10.3	24
4369	Investigation of hydrogen bond vibrations of ice. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 146301.	0.5	6
4371	Effect of urea and glycine betaine on the hydration sphere of model molecules for the surface features of proteins. Journal of Molecular Liquids, 2021, 324, 115090.	4.9	7
4372	Thermodynamic stability and electronic structure of pristine wurtzite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>ZnO</mml:mi><mml:mo>{<td>ma≭mml</td><td>:m2n>0001<!--</td--></td></mml:mo></mml:mrow></mml:math>	m a ≭mml	:m2n>0001 </td
4373	Stability of Pt Skin Intermetallic Core Catalysts and Adsorption Properties for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2021, 125, 3527-3534.	3.1	7
4374	Structural Engineering of Ultrathin ReS ₂ on Hierarchically Architectured Graphene for Enhanced Oxygen Reduction. ACS Nano, 2021, 15, 5560-5566.	14.6	24
4375	Microkinetic Modeling of the CO ₂ Desorption from Supported Multifaceted Ni Catalysts. Journal of Physical Chemistry C, 2021, 125, 2984-3000.	3.1	20

#	Article	IF	CITATIONS
4376	Efficient Discovery of Active, Selective, and Stable Catalysts for Electrochemical H ₂ O ₂ Synthesis through Active Motif Screening. ACS Catalysis, 2021, 11, 2483-2491.	11.2	44
4377	Hydrogen Oxidation Pathway Over Ni–Ceria Electrode: Combined Study of DFT and Experiment. Frontiers in Chemistry, 2020, 8, 591322.	3.6	6
4378	Atomic-level-designed copper atoms on hierarchically porous gold architectures for high-efficiency electrochemical CO2 reduction. Science China Materials, 2021, 64, 1900-1909.	6.3	26
4379	Interface engineering of Mo8/Cu heterostructures toward highly selective electrochemical reduction of carbon dioxide into acetate. Applied Catalysis B: Environmental, 2021, 281, 119426.	20.2	82
4380	Efficient hierarchical models for reactivity of organic layers on semiconductor surfaces. Journal of Computational Chemistry, 2021, 42, 827-839.	3.3	2
4381	Scaling of Transition State Vibrational Frequencies and Application of d-Band Theory to the Brønsted–Evans–Polanyi Relationship on Surfaces. Journal of Physical Chemistry C, 2021, 125, 7119-7129.	3.1	3
4382	Benchmark for <i>AbÂlnitio</i> Prediction of Magnetic Structures Based on Cluster-Multipole Theory. Physical Review X, 2021, 11, .	8.9	11
4383	Theoretical Studies of DENOx SCR over Cu-, Fe- and Mn-FAU Catalysts. Chemistry and Chemical Technology, 2021, 15, 16-25.	1.1	2
4384	Comparison study of exchange-correlation functionals on prediction of ground states and structural properties. Current Applied Physics, 2021, 22, 61-64.	2.4	7
4385	What Atomic Positions Determines Reactivity of a Surface? Longâ€Range, Directional Ligand Effects in Metallic Alloys. Advanced Science, 2021, 8, 2003357.	11.2	17
4386	Theoretical Study of NO Dissociative Adsorption onto 3d Metal Particles M ₅₅ (M = Fe, Co,) Tj ETQq0 ACS Omega, 2021, 6, 4888-4898.	0 0 0 rgBT / 3.5	
4387	Development of a Multiphase Beryllium Equation of State and Physics-based Variations. Journal of Physical Chemistry A, 2021, 125, 1610-1636.	2.5	16
4388	CdS Induced Passivation toward High Efficiency and Stable Planar Perovskite Solar Cells. ACS Applied Materials & Solar Cel	8.0	17
4389	Beyond the static corrugation model: Dynamic surfaces with the embedded atom method. Journal of Chemical Physics, 2021, 154, 074710.	3.0	7
4390	The electronic and optical properties of Au decorated(1 0 <mml:math) 0="" 10="" 197="" 50="" etqq0="" overlock="" rgbt="" t<="" td="" tf="" tj=""><td>Fd (xmlns:r 4.1</td><td>mml="http:// 2</td></mml:math)>	Fd (xmlns:r 4.1	mml="http:// 2
4391	surface: A first principles calculations. Results in Physics, 2021, 21, 103827. Model Studies on the Formation of the Solid Electrolyte Interphase: Reaction of Li with Ultrathin Adsorbed Ionic‣iquid Films and Co 3 O 4 (111) Thin Films. ChemPhysChem, 2021, 22, 441-454.	2.1	9
4392	Longâ€Range Surfaceâ€Assisted Moleculeâ€Molecule Hybridization. Small, 2021, 17, e2005974.	10.0	3
4393	A molecular-level strategy to boost the mass transport of perovskite electrocatalyst for enhanced oxygen evolution. Applied Physics Reviews, 2021, 8, .	11.3	20

#	Article	IF	CITATIONS
4394	Insight into one-step synthesis of active amorphous La-Co thin films for catalytic oxidation of CO. Applications in Energy and Combustion Science, 2021, 5, 100021.	1.5	4
4395	Atomic-Step Enriched Ruthenium–Iridium Nanocrystals Anchored Homogeneously on MOF-Derived Support for Efficient and Stable Oxygen Evolution in Acidic and Neutral Media. ACS Catalysis, 2021, 11, 3402-3413.	11.2	87
4396	Structural Evolution and Underlying Mechanism of Single-Atom Centers on Mo2C(100) Support during Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2021, 13, 17075-17084.	8.0	4
4397	Reaction pathways in the solid state and the Hubbard U correction. Journal of Chemical Physics, 2021, 154, 124121.	3.0	6
4398	Selective electrochemical reduction of nitric oxide to hydroxylamine by atomically dispersed iron catalyst. Nature Communications, 2021, 12, 1856.	12.8	106
4399	X-ray diffraction and theoretical study of the transition 2H-3R polytypes in Nb _{1+x} Se ₂ (0 < x < 0.1)., 0, 3, e2.		2
4400	Ferroic properties and piezoelectric response of Mg2XN3 (X $<$ b $>=<$ /b $>$ V, Cr). Applied Physics Letters, 2021, 118, .	3.3	4
4401	Single-Atom High-Valent Fe(IV) for Promoted Photocatalytic Nitrogen Hydrogenation on Porous TiO ₂ -SiO ₂ . ACS Catalysis, 2021, 11, 4362-4371.	11.2	70
4402	Construction of Spatial Effect from Atomically Dispersed Co Anchoring on Subnanometer Ru Cluster for Enhanced N ₂ -to-NH ₃ Conversion. ACS Catalysis, 2021, 11, 4430-4440.	11.2	28
4403	Ozone Decomposition by a Manganese-Organic Framework over the Entire Humidity Range. Journal of the American Chemical Society, 2021, 143, 5150-5157.	13.7	53
4404	Solidâ€state nuclear magnetic resonance study of polymorphism in tris(8â€hydroxyquinolinate)aluminium. Magnetic Resonance in Chemistry, 2021, 59, 1024-1037.	1.9	2
4405	Fast Correction of Errors in the DFT alculated Energies of Gaseous Nitrogen ontaining Species. ChemCatChem, 2021, 13, 2508-2516.	3.7	21
4406	Directing reaction pathways via in situ control of active site geometries in PdAu single-atom alloy catalysts. Nature Communications, 2021, 12, 1549.	12.8	82
4407	Sustainable scale-up synthesis of MIL-68(Al) using IPA as solvent for acetic acid capture. Microporous and Mesoporous Materials, 2021, 316, 110943.	4.4	6
4408	Nanoscale supramolecular architectures assembly of copper cyanide, organotin, and $1,10$ â \in phenanthroline coordination polymers: Design and biological applications. Applied Organometallic Chemistry, 2021, 35, e6247.	3.5	5
4409	Oxygen Evolution on Iron Oxide Nanoparticles: The Impact of Crystallinity and Size on the Overpotential. Journal of the Electrochemical Society, 2021, 168, 034518.	2.9	15
4410	Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence. Nature Communications, 2021, 12, 1833.	12.8	73
4411	A Convenient Method for Synthesis of Fe ₃ O ₄ /FeS ₂ as High-Performance Electrocatalysts for Oxygen Evolution Reaction and Zinc-Air Batteries. Journal of the Electrochemical Society, 2021, 168, 030517.	2.9	4

#	ARTICLE	IF	CITATIONS
4412	Iron(III), copper(II), cadmium(II), and mercury(II) complexes of isatin carbohydrazone Schiff base ligand (H ₃ L): Synthesis, characterization, Xâ€ray diffraction, cyclic voltammetry, fluorescence, density functional theory, biological activity, and molecular docking studies. Applied Organometallic Chemistry, 2021, 35, e6250.	3.5	17
4413	Mechanism and Active Species in NH ₃ Dehydrogenation under an Electrochemical Environment: An <i>Ab Initio</i> Molecular Dynamics Study. ACS Catalysis, 2021, 11, 4310-4318.	11.2	37
4414	First-Principles Study of a MoS2-PbS van der Waals Heterostructure Inspired by Naturally Occurring Merelaniite. Materials, 2021, 14, 1649.	2.9	4
4415	Enhanced electrochemical CO2 reduction to ethylene over CuO by synergistically tuning oxygen vacancies and metal doping. Cell Reports Physical Science, 2021, 2, 100356.	5.6	39
4416	Comparative study of single-atom gold and iridium on CeO2 $\{111\}$. Journal of Chemical Physics, 2021, 154, 164703.	3.0	2
4417	Toward accurate electronic, optical, and vibrational properties of hexagonal Si, Ge, and Silâ^' <i>x</i> Ge <i>x</i> alloys from first-principle simulations. Journal of Applied Physics, 2021, 129, .	2.5	10
4418	Insight into the adsorption mechanisms of CH4, CO2, and H2O molecules on illite (001) surfaces: A first-principles study. Surfaces and Interfaces, 2021, 23, 101039.	3.0	4
4419	On the Reactivity Enhancement of Graphene by Metallic Substrates towards Aryl Nitrene Cycloadditions. Chemistry - A European Journal, 2021, 27, 7887-7896.	3.3	6
4420	Performance of Made Simple Meta-GGA Functionals with rVV10 Nonlocal Correlation for $H \cdot sub \cdot 2 \cdot /sub + Cu(111)$, $D \cdot sub \cdot 2 \cdot /sub + Ag(111)$, $H \cdot sub \cdot 2 \cdot /sub + Au(111)$, and $D \cdot sub \cdot 2 \cdot /sub + Pt(111)$ Journal of Physical Chemistry C, 2021, 125, 8993-9010.)3.1	11
4421	Achieving Highly Efficient Carbon Dioxide Electrolysis by <i>In Situ</i> Heterostructure. ACS Applied Materials & mp; Interfaces, 2021, 13, 20060-20069. Bonding behavior and passivation mechanism of organic ligands (-SH, -NH2, -COOH) on ZnS (<mml:math) etqq<="" td="" tj=""><td>8.0 0 0 0 rgB⁻</td><td>32 F/Overlock</td></mml:math)>	8.0 0 0 0 rgB ⁻	32 F/Overlock
4422		6.1	9
4423	surface from first-principles calculations. Applied Surface Science, 2021, 545, 148970. Structure and New Substructure of \hat{l}_{\pm} -Ti2O3: X-ray Diffraction and Theoretical Study. Journal of Modern Materials, 2021, 8, 3-11.	0.4	2
4424	Gas Sensor Based on Semihydrogenated and Semifluorinated h-BN for SFâ,† Decomposition Components Detection. IEEE Transactions on Electron Devices, 2021, 68, 1878-1885.	3.0	12
4425	A Strategy for the Analysis of the Far-Infrared Vibrational Modes of Hydrogen-Disordered Ice V. Journal of Physical Chemistry C, 2021, 125, 7913-7918.	3.1	4
4426	Influence of Fe and Ni Doping on the OER Performance at the Co ₃ O ₄ (001) Surface: Insights from DFT+ <i>U</i> Valculations. ACS Catalysis, 2021, 11, 5601-5613.	11.2	86
4427	Interface promoted CO2 methanation: A theoretical study of Ni/La2O3. Chemical Physics Letters, 2021, 768, 138396.	2.6	11
4428	Atomistic Insights into H ₂ O ₂ Direct Synthesis of Ni–Pt Nanoparticle Catalysts under Water Solvents by Reactive Molecular Dynamics Simulations. ACS Applied Materials & ACS ACS Applied Materials & ACS ACS ACS & ACS ACS & AC	8.0	7
4429	Effects of Uniaxial Lattice Strain and Explicit Water Solvation on CO ₂ Electroreduction over a Cu Electrode: A Density Functional Theory Perspective. Journal of Physical Chemistry C, 2021, 125, 9138-9149.	3.1	10

#	Article	IF	CITATIONS
4430	Excitonic effects in the optical spectra of Li2SiO3 compound. Scientific Reports, 2021, 11, 7683.	3.3	11
4431	Identification of Active Sites for CO ₂ Reduction on Grapheneâ€Supported Singleâ€Atom Catalysts. ChemSusChem, 2021, 14, 2475-2480.	6.8	5
4432	Impact of N ₂ O Gas Adsorption Upon Electronic Properties of 2D MoSe ₂ Monolayer: A DFT Approach. IEEE Sensors Journal, 2021, 21, 9756-9762.	4.7	24
4433	Concepts, models, and methods in computational heterogeneous catalysis illustrated through <scp>CO₂</scp> conversion. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1530.	14.6	24
4434	A Good Prediction of the Overall Reaction Rate May Not Mean a Correct Description of the Reaction Kinetics: A Case Study for CO Oxidation on RuO ₂ (110) Surfaces. Journal of Physical Chemistry C, 2021, 125, 9169-9177.	3.1	7
4435	Towards constant potential modeling of CO-CO coupling at liquid water-Cu(1 0 0) interfaces. Journal of Catalysis, 2021, 396, 251-260.	6.2	16
4436	Study of the Rate-Determining Step of Rh Catalyzed CO2 Reduction: Insight on the Hydrogen Assisted Molecular Dissociation. Catalysts, 2021, 11 , 538 .	3.5	6
4437	Stable Hollowâ€Structured Silicon Suboxideâ€Based Anodes toward Highâ€Performance Lithiumâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2101796.	14.9	127
4438	Impact of Water Coadsorption on the Electrode Potential of H-Pt(1 1 1)-Liquid Water Interfaces. Physical Review Letters, 2021, 126, 166802.	7.8	21
4439	Electronic band profiles, magnetic stability, antiferromagnetic spins ordering and thermodynamics properties of novel antiferromagnet CaCr2Sb2. European Physical Journal Plus, 2021, 136, 1.	2.6	13
4440	Revisiting Understanding of Electrochemical CO ₂ Reduction on Cu(111): Competing Proton-Coupled Electron Transfer Reaction Mechanisms Revealed by Embedded Correlated Wavefunction Theory. Journal of the American Chemical Society, 2021, 143, 6152-6164.	13.7	65
4441	Nano-design of Zeolites Biomass Wastes Valorization: Dehydration of Lactic Acid into Acrylic Acid. Inzynieria Mineralna, 2021, 1, .	0.2	0
4442	Metal-to-Semiconductor Transition in Two-Dimensional Metal–Organic Frameworks: An ⟨i⟩Ab Initio⟨/i⟩ Dynamics Perspective. ACS Applied Materials & Samp; Interfaces, 2021, 13, 25270-25279.	8.0	8
4443	Calculations of Hydrogen Associative Desorption on Mono- and Bimetallic Catalysts. Journal of Physical Chemistry C, 2021, 125, 12028-12037.	3.1	12
4444	Molecular Adsorption Kinetics: Nonlinear Entropy–Enthalpy Loss Quantified by Constrained AIMD and Insights into the Adsorption-Site Determination on Metal Oxides. Journal of Physical Chemistry C, 2021, 125, 10974-10982.	3.1	6
4445	Engineering Electronic Structure and Band Alignment of 2D Mg(OH)2 via Anion Doping for Photocatalytic Applications. Materials, 2021, 14, 2640.	2.9	3
4446	Optimization of High-Entropy Alloy Catalyst for Ammonia Decomposition and Ammonia Synthesis. Journal of Physical Chemistry Letters, 2021, 12, 5185-5192.	4.6	46
4447	Ru-supported lanthania-ceria composite as an efficient catalyst for COx-free H2 production from ammonia decomposition. Applied Catalysis B: Environmental, 2021, 285, 119831.	20.2	54

#	Article	IF	CITATIONS
4448	Density Functional Theory Study of a Graphdiyne-Supported Single Au Atom Catalyst for Highly Efficient Acetylene Hydrochlorination. ACS Applied Nano Materials, 2021, 4, 6152-6159.	5.0	22
4449	Spin-polarized oxygen evolution reaction under magnetic field. Nature Communications, 2021, 12, 2608.	12.8	242
4450	Uncertainty of exchangeâ€correlation functionals in density functional theory calculations for lithiumâ€based solid electrolytes on the case study of lithium phosphorus oxynitride. Journal of Computational Chemistry, 2021, 42, 1283-1295.	3.3	6
4451	Toward the Mechanism of <i>>o</i> -Xylene Isomerization in Selected Zeolites of Different Si/Al Ratios and Channel Sizesâ€"Experiment Corroborated by Periodic DFT + D Simulations. Journal of Physical Chemistry C, 2021, 125, 10334-10348.	3.1	4
4452	Global optimization of atomic structures with gradient-enhanced Gaussian process regression. Physical Review B, 2021, 103, .	3.2	22
4453	Treatment of highly concentrated formaldehyde effluent using adsorption and ultrasonic dissociation on mesoporous copper iodide (CuI) nano-powder. Journal of Environmental Management, 2021, 285, 112085.	7.8	16
4454	Molecular engineering of piezoelectricity in collagen-mimicking peptide assemblies. Nature Communications, 2021, 12, 2634.	12.8	68
4455	Insights into the mechanism and kinetics of propene oxidation and ammoxidation over bismuth molybdate catalysts derived from experiments and theory. Journal of Catalysis, 2022, 408, 436-452.	6.2	18
4456	Polarization of CO2 for improved CO2 adsorption by MgO and Mg(OH)2. Applied Surface Science, 2021, 562, 150187.	6.1	25
4457	Surface phase stability of surface segregated AgPd and AgCu nanoalloys in an oxygen atmosphere. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	3
4458	An in-situ solidification strategy to block polysulfides in Lithium-Sulfur batteries. Energy Storage Materials, 2021, 37, 224-232.	18.0	55
4459	Unravelling the Role of Strong Metal–Support Interactions in Boosting the Activity toward Hydrogen Evolution Reaction on Ir Nanoparticle/N-Doped Carbon Nanosheet Catalysts. ACS Applied Materials & Samp; Interfaces, 2021, 13, 22448-22456.	8.0	34
4460	Charge-Modulated VS ₂ Monolayer for Effective Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2021, 125, 12004-12011.	3.1	13
4461	Assessment of Performance of Density Functionals for Predicting Potential Energy Curves in Hydrogen Storage Applications. Journal of Physical Chemistry A, 2021, 125, 4245-4257.	2.5	2
4463	Charge Transport and Optical Absorption Properties of Dibenzocoronene Tetracarboxdiimide Based Liquid Crystalline Molecules: A Theoretical Study. Journal of Physical Chemistry A, 2021, 125, 3852-3862.	2.5	8
4464	Analysis of Catalytic Activity of Au@Pd Core-shell Nanodendrites for Highly Efficient Ethanol Electrooxidation. Chinese Journal of Analytical Chemistry, 2021, 49, e21087-e21095.	1.7	6
4466	Structure sensitivity of ammonia electro-oxidation on transition metal surfaces: A first-principles study. Journal of Catalysis, 2021, 397, 137-147.	6.2	31
4467	First-Principles Study of the Surfaces and Equilibrium Shape of Discharge Products in Li–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 24984-24994.	8.0	7

#	Article	IF	CITATIONS
4468	Research of weak interaction between water and different monolayer graphene systems. Journal of Molecular Graphics and Modelling, 2021, 104, 107835.	2.4	1
4469	Tunable Schottky contact in the graphene/WSe2(1â^'x)O2x heterostructure by asymmetric O doping. Journal of Applied Physics, 2021, 129, .	2.5	9
4470	Comparative Analysis of Hydrogen-Bonding Vibrations of Ice VI. ACS Omega, 2021, 6, 14442-14446.	3.5	3
4471	Unparalleled Armour for Aramid Fiber with Excellent UV Resistance in Extreme Environment. Advanced Science, 2021, 8, 2004171.	11.2	21
4472	Electrochemical Construction of Low-Crystalline CoOOH Nanosheets with Short-Range Ordered Grains to Improve Oxygen Evolution Activity. ACS Catalysis, 2021, 11, 6104-6112.	11.2	103
4473	Competitive Cr ³⁺ occupation in persistent phosphors toward tunable traps distribution for dynamic antiâ€counterfeiting. Journal of the American Ceramic Society, 2021, 104, 5224-5234.	3.8	11
4474	Guiding the design of oxidation-resistant Fe-based single atom alloy catalysts with insights from configurational space. Journal of Chemical Physics, 2021, 154, 174709.	3.0	3
4475	Lattice distortion releasing local surface strain on high-entropy alloys. Nano Research, 2022, 15, 4775-4779.	10.4	16
4476	Adsorption of transition metal clusters on Boron-graphdiyne. Applied Surface Science, 2021, 548, 149270.	6.1	4
4477	Pressure-dependent interfacial charge transfer excitons in WSe2-MoSe2 heterostructures in near infrared region. Results in Physics, 2021, 24, 104110.	4.1	22
4478	Unveiling Zwitterionization of Glycine in the Microhydration Limit. ACS Omega, 2021, 6, 12676-12683.	3.5	8
4479	Analysis of the limitations in the oxygen reduction activity of transition metal oxide surfaces. Nature Catalysis, 2021, 4, 463-468.	34.4	156
4480	Competing HCOOH and CO Pathways in CO ₂ Electroreduction at Copper Electrodes: Calculations of Voltage-Dependent Activation Energy. Journal of Physical Chemistry C, 2021, 125, 13802-13808.	3.1	7
4481	Synergistic Effect of Co(III) and Co(II) in a 3D Structured Co ₃ O ₄ /Carbon Felt Electrode for Enhanced Electrochemical Nitrate Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2021, 13, 28348-28358.	8.0	66
4482	First principles study of Bi12GeO20: Electronic, optical and thermodynamic characterizations. Materials Today Communications, 2021, 27, 102299.	1.9	4
4483	Comparative study of the effect of the Hubbard coefficient U on the properties of TiO2 and ZnO. Materials Today Communications, 2021, 27, 102368.	1.9	6
4484	C60Con complexes as hydrogen adsorbing materials. International Journal of Hydrogen Energy, 2021, 46, 20594-20606.	7.1	7
4485	DFT calculation of square MoS2 nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 130, 114693.	2.7	3

#	ARTICLE	IF	CITATIONS
4486	An effective scheme to determine surface energy and its relation with adsorption energy. Acta Materialia, 2021, 212, 116895.	7.9	16
4487	Missing Piece in the Crystal Chemistry of Zna€ Sb Secondary Phases in ZnOâ€"Sb ₂ O ₃ Varistor Ceramics: Orthorhombic β-Zn ₇ Sb ₂ O ₁₂ . An Experimental and Theoretical Study of the Crystal Structure and Its Thermal and Vibrational Spectroscopic Characterization. Inorganic Chemistry, 2021,	4.0	3
4488	Binding of CO and O on Low-Symmetry Pt Clusters Supported on Amorphous Silica. Journal of Physical Chemistry C, 2021, 125, 13780-13787.	3.1	4
4489	Rectification with controllable directions in sulfur-doped armchair graphene nanoribbon heterojunctions. Chemical Physics, 2021, 546, 111140.	1.9	1
4490	Interplay between invasive single atom Pt and native oxygen vacancy in rutile TiO2(110) surface: A theoretical study. Nano Research, 2022, 15, 669-676.	10.4	15
4491	A density functional theory study of the mechanism and onset potentials for the major products of NO electroreduction on transition metal catalysts. Applied Surface Science, 2021, 552, 149063.	6.1	28
4492	Insights into the activity and selectivity trends in non-oxidative dehydrogenation of primary and secondary alcohols over the copper catalyst. Catalysis Today, 2021, 370, 151-160.	4.4	17
4493	Studies of Hydrogen Bond Vibrations of Hydrogen-Disordered Ice Ic. Crystals, 2021, 11, 668.	2.2	4
4494	Ultrasonic Assisted Nano-structures of Novel Organotin Supramolecular Coordination Polymers as Potent Antitumor Agents. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 3962-3975.	3.7	2
4495	Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nature Communications, 2021, 12, 3634.	12.8	186
4496	Synergistic degradation mechanism of chlorobenzene and NO over the multi-active center catalyst: The role of NO2, BrÃ,nsted acidic site, oxygen vacancy. Applied Catalysis B: Environmental, 2021, 286, 119865.	20.2	70
4497	Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst. Nature Communications, 2021, 12, 3992.	12.8	151
4498	Hollow hierarchical zinc cobalt sulfides derived from bimetallic-organic-framework as a non-precious electrocatalyst for oxygen reduction reaction. Molecular Catalysis, 2021, 509, 111614.	2.0	5
4499	Single-Step Direct Laser Writing of Multimetal Oxygen Evolution Catalysts from Liquid Precursors. ACS Nano, 2021, 15, 9796-9807.	14.6	11
4500	Insights into the Coadsorption and Reactivity of O and CO on Ru(0001) and Their Coverage Dependence. Journal of Physical Chemistry C, 2021, 125, 12614-12627.	3.1	9
4501	Probing lattice vibration of alkali halide crystals by broadband terahertz spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 254, 119671.	3.9	3
4502	Synergistic Effect of Metal Doping and Tethered Ligand Promoted Highâ€Selectivity Conversion of CO ₂ to C ₂ Oxygenates at Ultraâ€Low Potential. Energy and Environmental Materials, 2022, 5, 892-898.	12.8	14
4503	Tuning the Coordination Environment to Effect the Electrocatalytic Behavior of a Single-Atom Catalyst toward the Nitrogen Reduction Reaction. Journal of Physical Chemistry C, 2021, 125, 11963-11974.	3.1	21

#	Article	IF	CITATIONS
4504	Boron Nanosheet-Supported Rh Catalysts for Hydrogen Evolution: A New Territory for the Strong Metal-Support Interaction Effect. Nano-Micro Letters, 2021, 13, 138.	27.0	37
4505	Multi-scale regulation in S, N co-incorporated carbon encapsulated Fe-doped Co9S8 achieving efficient water oxidation with low overpotential. Nano Research, 2022, 15, 872-880.	10.4	31
4506	Removal of gas-phase arsenic and selenium in flue gas by a new combined spray-and-scattered-bubble technology based on ammonia desulphurization. Science of the Total Environment, 2021, 772, 145622.	8.0	7
4507	Accelerated mapping of electronic density of states patterns of metallic nanoparticles via machine-learning. Scientific Reports, 2021, 11, 11604.	3.3	11
4508	C2H2 selective hydrogenation over the CuxMy or PdxNy intermetallic compounds: The influences of partner metal type and ratio on the catalytic performance. Molecular Catalysis, 2021, 510, 111660.	2.0	2
4509	DFT study of chain length dependence of alkyl phosphonic acid molecules structure on Al2O3 in pure and mixed monolayers. Materials Today Communications, 2021, 27, 102298.	1.9	O
4510	Light-Off in Plasmon-Mediated Photocatalysis. ACS Nano, 2021, 15, 11535-11542.	14.6	14
4511	Surface Electronic Modulation with Hetero-Single Atoms to Enhance Oxygen Evolution Catalysis. ACS Nano, 2021, 15, 11891-11897.	14.6	27
4512	Structural Investigation of Silver Vanadium Phosphorus Oxide (Ag2VO2PO4) and Its Reduction Products. Chemistry of Materials, 2021, 33, 4425-4434.	6.7	0
4513	Reconciling the Experimental and Computational Hydrogen Evolution Activities of Pt(111) through DFT-Based Constrained MD Simulations. ACS Catalysis, 2021, 11, 8062-8078.	11.2	52
4514	Hierarchically Assembled Cobalt Oxynitride Nanorods and N-Doped Carbon Nanofibers for Efficient Bifunctional Oxygen Electrocatalysis with Exceptional Regenerative Efficiency. ACS Nano, 2021, 15, 11218-11230.	14.6	45
4515	Alloying non-precious metals into Ni-based electrocatalysts for enhanced hydrogen oxidation reaction in alkaline media: A computational study. Applied Surface Science, 2021, 554, 149627.	6.1	10
4516	SPARC: Simulation Package for Ab-initio Real-space Calculations. SoftwareX, 2021, 15, 100709.	2.6	27
4517	The trapping of methane on Ir(111): A first-principles quantum study. Journal of Chemical Physics, 2021, 155, 044705.	3.0	5
4518	Intrinsic ferroelectricity and large bulk photovoltaic effect in novel two-dimensional buckled honeycomb-like lattice of NbP: first-principles study. Journal of Physics Condensed Matter, 2021, 33, 385302.	1.8	4
4519	Molecular Routes of Dynamic Autocatalysis for Methanol-to-Hydrocarbons Reaction. Journal of the American Chemical Society, 2021, 143, 12038-12052.	13.7	60
4520	Automated Adsorption Workflow for Semiconductor Surfaces and the Application to Zinc Telluride. Journal of Chemical Information and Modeling, 2021, 61, 3908-3916.	5.4	11
4521	Understanding potential-dependent competition between electrocatalytic dinitrogen and proton reduction reactions. Nature Communications, 2021, 12, 4353.	12.8	78

#	Article	IF	CITATIONS
4522	Sulfonate-Assisted Surface Iodide Management for High-Performance Perovskite Solar Cells and Modules. Journal of the American Chemical Society, 2021, 143, 10624-10632.	13.7	101
4523	Factors that influence hydrogen binding at metal-atop sites. Journal of Chemical Physics, 2021, 155, 024703.	3.0	7
4524	Coexistence of large out-of-plane and in-plane piezoelectricity in 2D monolayer Li-based ternary chalcogenides LiMX2. Results in Physics, 2021, 26, 104398.	4.1	14
4525	Low-Cost Pt Alloys for Heterogeneous Catalysis Predicted by Density Functional Theory and Active Learning. Journal of Physical Chemistry Letters, 2021, 12, 7305-7311.	4.6	8
4526	Superiority of the (100) Over the (111) Facets of the Nitrides for Hydrogen Evolution Reaction. Topics in Catalysis, 2022, 65, 262-269.	2.8	6
4527	Dynamic Modification of Palladium Catalysts with Chain Alkylamines for the Selective Hydrogenation of Alkynes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 31775-31784.	8.0	30
4528	Strontium Stannate as an Alternative Anode Material for Li-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 14947-14956.	3.1	9
4529	Atomic Layer Deposition of Ru for Replacing Cu-Interconnects. Chemistry of Materials, 2021, 33, 5639-5651.	6.7	27
4530	Probing the Effects of Acid Electrolyte Anions on Electrocatalyst Activity and Selectivity for the Oxygen Reduction Reaction. ChemElectroChem, 2021, 8, 2467-2478.	3.4	25
4531	Comprehensive Mechanism of CO ₂ Electroreduction toward Ethylene and Ethanol: The Solvent Effect from Explicit Water–Cu(100) Interface Models. ACS Catalysis, 2021, 11, 9688-9701.	11.2	65
4532	First-principles calculations to investigate the electronic and optical properties of (MoS2)4-n/(MoSSe)n lateral heterostructure. Journal of Physics and Chemistry of Solids, 2021, 154, 110049.	4.0	8
4533	Surface phase stability of PdAg core-shell nanoalloys in oxidizing atmospheres and its relevance to surface atomic charge. Journal of Alloys and Compounds, 2021, 869, 159345.	5 . 5	6
4534	Atomic level N-coordinated Fe dual-metal embedded in graphene: An efficient double atoms catalyst for CO oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621, 126575.	4.7	7
4535	C ₂ H ₂ Selective Hydrogenation to C ₂ H ₄ : Engineering the Surface Structure of Pd-Based Alloy Catalysts to Adjust the Catalytic Performance. Journal of Physical Chemistry C, 2021, 125, 15251-15261.	3.1	13
4536	Selective electrocatalytic semihydrogenation of acetylene impurities for the production of polymer-grade ethylene. Nature Catalysis, 2021, 4, 557-564.	34.4	90
4537	Mechanistic Insights into the Electrochemical Reduction of CO ₂ and N ₂ on the Regulation of a Boron Nitride Defect-Derived Two-Dimensional Catalyst using Density Functional Theory Calculations. Journal of Physical Chemistry Letters, 2021, 12, 7151-7158.	4.6	9
4538	Tuning Schottky Barrier and Contact Type of Metal–Semiconductor in Ti ₃ C ₂ T ₂ /MoS ₂ (T = F, O, OH) by Strain: A First-Principles Study. Journal of Physical Chemistry C, 2021, 125, 16200-16210.	3.1	29
4539	Are Carbon-Based Materials Good Supports for the Catalytic Reforming of Ammonia?. Journal of Physical Chemistry C, 2021, 125, 15950-15958.	3.1	10

#	Article	IF	CITATIONS
4540	Critical Role of Thermal Fluctuations for CO Binding on Electrocatalytic Metal Surfaces. Jacs Au, 2021, 1, 1708-1718.	7.9	10
4541	On the structure sensitivity of and CO coverage effects on formic acid decomposition on Pd surfaces. Surface Science, 2021, 709, 121846.	1.9	11
4542	Regularized machine learning on molecular graph model explains systematic error in DFT enthalpies. Scientific Reports, 2021, 11, 14372.	3.3	10
4543	Enhancing activity, selectivity and stability of palladium catalysts in formic acid decomposition: Effect of support functionalization. Catalysis Today, 2021, 382, 61-70.	4.4	16
4544	Interactions between stearic acid and calcite surfaces: Experimental and computer simulation studies. Biosurface and Biotribology, 2021, 7, 126-132.	1.5	0
4545	GaAs quantum dot/TiO2 heterojunction for visible-light photocatalytic hydrogen evolution: promotion of oxygen vacancy. Advanced Composites and Hybrid Materials, 2022, 5, 450-460.	21.1	28
4546	Measuring bulk and surface acoustic modes in diamond by angle-resolved Brillouin spectroscopy. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1 .	5.1	5
4547	Orthorhombic Y0.95-xSrxCo0.3Fe0.7O3-l´anode for oxygen evolution reaction in solid oxide electrolysis cells. Fundamental Research, 2021, 1, 439-447.	3.3	10
4548	Machine Learning-Based Screening of Highly Stable and Active Ternary Pt Alloys for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2021, 125, 16963-16974.	3.1	10
4549	Experimental and Theoretical Studies of Sonically Prepared Cu–Y, Cu–USY and Cu–ZSM-5 Catalysts for SCR deNOx. Catalysts, 2021, 11, 824.	3.5	8
4550	Fabrication and Mechanical Properties of Cr, V Doped Mo ₂ NiB ₂ Hard Materials Based on Crystallographic Approaches. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2021, 68, 278-285.	0.2	0
4551	Theory-Guided Discovery of Novel Materials. Journal of Physical Chemistry Letters, 2021, 12, 6499-6513.	4.6	11
4552	Disclosing the Role of Gold on Palladium – Gold Alloyed Supported Catalysts in Formic Acid Decomposition. ChemCatChem, 2021, 13, 4210-4222.	3.7	16
4554	Selective transfer hydrogenation of biomass derived furanic molecules using cyclohexanol as a hydrogen donor over nanostructured Cu/MgO catalyst. Molecular Catalysis, 2021, 513, 111812.	2.0	8
4555	Improved Reliability of Silver Nanowire-Based Composites by Electroplating: A Theoretical and Experimental Study. ACS Applied Electronic Materials, 2021, 3, 3329-3337.	4.3	4
4556	The puzzle of rapid hydrogen oxidation on Pt(111). Molecular Physics, 2021, 119, .	1.7	7
4557	Direct observation of ultrafast hydrogen bond strengthening in liquid water. Nature, 2021, 596, 531-535.	27.8	53
4558	Cobalt–Nitrogen Compounds at High Pressure. Inorganic Chemistry, 2021, 60, 14022-14030.	4.0	13

#	Article	IF	CITATIONS
4559	Investigation Electrical and Thermoelectrical properties of Ferrocene in staggered and eclipsed conformations. Journal of Physics: Conference Series, 2021, 1973, 012055.	0.4	1
4560	Solvent Effects in the Ultraviolet and X-ray Absorption Spectra of Pyridazine in Aqueous Solution. Journal of Physical Chemistry A, 2021, 125, 7198-7206.	2.5	7
4561	Enhanced dielectric response of ternary polymeric composite films via interfacial bonding between V2C MXene and wide-bandgap ZnS. Ceramics International, 2021, 47, 32938-32946.	4.8	9
4562	The Role of Roughening to Enhance Selectivity to C ₂₊ Products during CO ₂ Electroreduction on Copper. ACS Energy Letters, 2021, 6, 3252-3260.	17.4	38
4563	Selective upgrading of biomass-derived benzylic ketones by (formic acid)–Pd/HPC–NH2 system with high efficiency under ambient conditions. CheM, 2021, 7, 3069-3084.	11.7	18
4564	Oriented hyperlens based on passivated porous graphene phases for sub-diffraction visible imaging. Optical Materials Express, 2021, 11, 2839.	3.0	0
4565	Molecular Properties and Chemical Transformations Near Interfaces. Journal of Physical Chemistry B, 2021, 125, 9037-9051.	2.6	17
4566	High-throughput computational-experimental screening protocol for the discovery of bimetallic catalysts. Npj Computational Materials, 2021, 7, .	8.7	20
4567	Exploring the catalytic mechanisms of non-noble VIIIB metal dimer embedded in graphene toward CO oxidation by density functional theory analysis. Applied Surface Science, 2021, 556, 149780.	6.1	6
4568	Properties of the Pt(111)/electrolyte electrochemical interface studied with a hybrid DFT–solvation approach. Journal of Physics Condensed Matter, 2021, 33, 444004.	1.8	22
4569	Reactivity of transition-metal alloys to oxygen and sulfur. Physical Review Materials, 2021, 5, .	2.4	1
4570	The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nature Catalysis, 2021, 4, 711-718.	34.4	182
4571	CO2 Utilization Through its Reduction to Methanol: Design of Catalysts Using Quantum Mechanics and Machine Learning., 2022, 7, 1-11.		3
4572	Ingenious control of adsorbed oxygen species to construct dual reaction centers ZnO@FePc photo-Fenton catalyst with high-speed electron transmission channel for PPCPs degradation. Applied Catalysis B: Environmental, 2021, 291, 120064.	20.2	50
4573	Adsorption and dissociation behavior of water on pristine and defected calcite $\{1\ 0\ 4\}$ surfaces: A DFT study. Applied Surface Science, 2021, 556, 149777.	6.1	22
4574	Comparing alkene-mediated and formaldehyde-mediated diene formation routes in methanol-to-olefins catalysis in MFI and CHA. Journal of Catalysis, 2021, 400, 124-139.	6.2	12
4575	Optimizing Nitrogen Reduction Reaction on Nitrides: A Computational Study on Crystallographic Orientation. Topics in Catalysis, 2022, 65, 252-261.	2.8	14
4576	Prediction on the highâ€energy density covalent organic frameworks with diamond network. International Journal of Quantum Chemistry, 2021, 121, e26790.	2.0	0

#	Article	IF	CITATIONS
4577	A mechanistic periodic DFT study of CH, CO, and OH dissociations in methanol: M-doped carbon nanotubes (M=Pt, B, Al, N, P) versus Pt(100), Pt(110) and Pt(111) surfaces. Molecular Catalysis, 2021, 512, 111781.	2.0	2
4578	Effects of the Goethite Surface Hydration Microstructure on the Adsorption of the Collectors Dodecylamine and Sodium Oleate. Langmuir, 2021, 37, 10052-10060.	3.5	18
4579	<scp>MCML</scp> : Combining physical constraints with experimental data for a multiâ€purpose metaâ€generalized gradient approximation. Journal of Computational Chemistry, 2021, 42, 2004-2013.	3.3	10
4580	Quantifying the Impact of Parametric Uncertainty on Automatic Mechanism Generation for CO ₂ Hydrogenation on Ni(111). Jacs Au, 2021, 1, 1656-1673.	7.9	30
4581	Surface Pourbaix diagram of AgPd nanoalloys and its application in formate oxidation reaction. Electrochimica Acta, 2021, 386, 138465.	5.2	9
4582	A subtle structure evolution of metal-adsorbed water bilayer and the effect of dispersion correction. Computational Materials Science, 2021, 196, 110533.	3.0	3
4583	Ab initio molecular dynamics investigation of Cs adsorption on Mo(0Â0Â1): Beyond a single monolayer coverage. Applied Surface Science, 2021, 559, 149822.	6.1	4
4584	Volume-matched ferroelectric and piezoelectric ZnO/MgO superlattice. Journal of Alloys and Compounds, 2021, 876, 160167.	5.5	7
4585	Understanding the Synergistic Oxidation in Dichalcogenides through Electrochemiluminescence Blinking at Millisecond Resolution. Advanced Materials, 2021, 33, e2105039.	21.0	12
4586	Glutamate adsorption on gold electrodes at different pH values. Journal of Electroanalytical Chemistry, 2021, 896, 115148.	3.8	0
4587	Adsorption and gas sensing properties of CuO modiï¬ed MoSe2 to C3F7CN decomposition products. Materials Today Communications, 2021, 28, 102677.	1.9	4
4588	Novel niobium-doped titanium oxide towards electrochemical destruction of forever chemicals. Scientific Reports, 2021, 11, 18020.	3.3	4
4589	Effect of the coverage of modulated Au(Pd) atoms over bimetallic Pd-Au catalysts on catalytic performance for direct oxidative esterification of methacrolein into methyl methacrylate. Molecular Catalysis, 2021, 514, 111783.	2.0	3
4590	Strong Electron Coupling of Ru and Vacancyâ€Rich Carbon Dots for Synergistically Enhanced Hydrogen Evolution Reaction. Small, 2021, 17, e2102496.	10.0	31
4591	Noble metal encapsulated sulfide catalyst for the production of aviation biofuel from the hydroprocessing of non-edible oils. Materials Science for Energy Technologies, 2021, 4, 413-422.	1.8	0
4592	Hierarchical Ni-Mo2C/N-doped carbon Mott-Schottky array for water electrolysis. Applied Catalysis B: Environmental, 2021, 292, 120168.	20.2	60
4593	First-principle-data-integrated machine-learning approach for high-throughput searching of ternary electrocatalyst toward oxygen reduction reaction. Chem Catalysis, 2021, 1, 855-869.	6.1	28
4594	Importance of the gas-phase error correction for O2 when using DFT to model the oxygen reduction and evolution reactions. Journal of Electroanalytical Chemistry, 2021, 896, 115178.	3.8	37

#	Article	IF	CITATIONS
4595	Infusing theory into deep learning for interpretable reactivity prediction. Nature Communications, 2021, 12, 5288.	12.8	38
4596	SO ₂ Poisoning Mechanism of the Multi-active Center Catalyst for Chlorobenzene and NO _{<i>x</i>} Synergistic Degradation at Dry and Humid Environments. Environmental Science & Envi	10.0	6
4597	Theoretical Insights on Auâ€based Bimetallic Alloy Electrocatalysts for Nitrogen Reduction Reaction with High Selectivity and Activity. ChemSusChem, 2021, 14, 4525-4535.	6.8	11
4598	Assessment of the Accuracy of Density Functionals for Calculating Oxygen Reduction Reaction on Nitrogen-Doped Graphene. Journal of Chemical Theory and Computation, 2021, 17, 6405-6415.	5.3	9
4599	Promotional Role of a Cation Intermediate Complex in C ₂ Formation from Electrochemical Reduction of CO ₂ over Cu. ACS Catalysis, 2021, 11, 12336-12343.	11,2	60
4600	Atomic iridium species anchored on porous carbon network support: An outstanding electrocatalyst for CO2 conversion to CO. Applied Catalysis B: Environmental, 2021, 292, 120173.	20.2	20
4601	Effect of facile nitrogen doping on catalytic performance of NaW/Mn/SiO2 for oxidative coupling of methane. Applied Catalysis B: Environmental, 2021, 292, 120161.	20.2	10
4602	Solar energy-driven Câ^'H activation of methanol for direct Câ^'C coupling to ethylene glycol with high stability by nitrogen doped tantalum oxide. Chinese Journal of Catalysis, 2021, 42, 1459-1467.	14.0	20
4603	Stability and Catalytic Performance of Singleâ∈Atom Supported on Ti ₂ CO ₂ for Lowâ∈Temperature CO Oxidation: A Firstâ∈Principles Study. ChemPhysChem, 2021, 22, 2352-2361.	2.1	11
4604	Exploring adsorption mechanism of glyphosate on pristine and elemental doped graphene. Chemical Physics Letters, 2021, 779, 138849.	2.6	6
4605	Multi-sensing response, molecular docking, and anticancer activity of donor–acceptor chalcone containing phenanthrene and thiophene moieties. Journal of Molecular Structure, 2021, 1240, 130581.	3.6	5
4606	Chemical Modifications of Ag Catalyst Surfaces with Imidazolium Ionomers Modulate H ₂ Evolution Rates during Electrochemical CO ₂ Reduction. Journal of the American Chemical Society, 2021, 143, 14712-14725.	13.7	44
4607	Overcoming Metastable CO ₂ Adsorption in a Bulky Diamine-Appended Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 15258-15270.	13.7	51
4608	Theoretical Understanding of the Interface Effect in Promoting Electrochemical CO ₂ Reduction on Cu–Pd Alloys. Journal of Physical Chemistry C, 2021, 125, 21381-21389.	3.1	17
4609	Tunable band gap energy of single-walled zigzag ZnO nanotubes as a potential application in photodetection. Current Applied Physics, 2021, 29, 138-147.	2.4	8
4610	Twin boundary migration in an individual platinum nanocrystal during catalytic CO oxidation. Nature Communications, 2021, 12, 5385.	12.8	14
4611	vdW-DF-ahcx: a range-separated van der Waals density functional hybrid. Journal of Physics Condensed Matter, 2021, 34, .	1.8	7
4612	Density Functional Theory Study on Dependence of Stability of Fe, Cu, and Ni Atoms on Surface Orientation of Si Crystal. ECS Journal of Solid State Science and Technology, 2021, 10, 094002.	1.8	O

#	Article	IF	CITATIONS
4613	Highly stable TiOF monolayer as anode material for the applications of Li/Na-ion batteries. Applied Surface Science, 2022, 574, 151296.	6.1	17
4614	Unimolecular and bimolecular formic acid decomposition routes on dispersed Cu nanoparticles. Journal of Catalysis, 2021, 404, 814-831.	6.2	5
4615	Lattice mismatch, mechanical properties and lattice-compensation effect in Si1-xGex alloys by using first-principles calculations combined with virtual crystal approximation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 411, 127528.	2.1	6
4616	Exploration of Dynamic Structure–Activity Relationship of a Platinum Nanoparticle in the CO Oxidation Reaction. Journal of Physical Chemistry C, 2021, 125, 19756-19762.	3.1	9
4617	Proton dynamics in a single H2O confined in a Buckyball. Vibrational Spectroscopy, 2021, 116, 103287.	2.2	0
4618	Achieving efficient N2 electrochemical reduction by stabilizing the N2H* intermediate with the frustrated Lewis pairs. Journal of Energy Chemistry, 2022, 66, 628-634.	12.9	13
4619	Rational design of black phosphorene/g-C3B heterostructures as high-performance electrodes for Li and Na-ion batteries. Applied Surface Science, 2021, 561, 150093.	6.1	13
4620	Can We Predict the Isosymmetric Phase Transition? Application of DFT Calculations to Study the Pressure Induced Transformation of Chlorothiazide. International Journal of Molecular Sciences, 2021, 22, 10100.	4.1	4
4621	Valence State Modulation of Chromium in Selective Hydrogen Peroxide Production Electrocatalysts. ACS Applied Energy Materials, 2021, 4, 10114-10123.	5.1	2
4622	Realization of interstitial boron ordering and optimal near-surface electronic structure in Pd-B alloy electrocatalysts. Chemical Engineering Journal, 2021, 419, 129568.	12.7	23
4623	Theoretical and Experimental Characterization of Adsorbed CO and NO on Î ³ -Al ₂ O ₃ -Supported Rh Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 19733-19755.	3.1	9
4624	Prediction of Transition-State Scaling Relationships and Universal Transition-State Vibrational and Entropic Correlations for Dehydrogenations. Journal of Physical Chemistry C, 2021, 125, 19780-19790.	3.1	3
4625	Density functional study on formic acid decomposition on $Pd(111)$ surface: a revisit and comparison with other density functional methods. Journal of Molecular Modeling, 2021, 27, 285.	1.8	0
4626	Machine Learning Approach for Describing Water OH Stretch Vibrations. Journal of Chemical Theory and Computation, 2021, 17, 6353-6365.	5. 3	7
4627	Long-range migration of H-atoms from electron-induced dissociation of HS on Si(111). Journal of Physics Condensed Matter, 2021, 33, 474001.	1.8	1
4628	A quantitative simulation method for electrochemical infrared and Raman spectroscopies of single-crystal metal electrodes. Journal of Electroanalytical Chemistry, 2021, 896, 115337.	3.8	2
4629	Surface Properties of Octacalcium Phosphate Nanocrystals Are Crucial for Their Bioactivities. ACS Omega, 2021, 6, 25372-25380.	3.5	4
4630	Galvanic Deposition of Pt Nanoparticles on Black TiO ₂ Nanotubes for Hydrogen Evolving Cathodes. ChemSusChem, 2021, 14, 4993-5003.	6.8	14

#	Article	IF	CITATIONS
4631	[Pd(4-RSi-IPr)(allyl)Cl]/KCO/EtOH: A highly effective catalytic system for the Suzuki-Miyaura cross-coupling reaction. Journal of Organometallic Chemistry, 2021, 954-955, 122096.	1.8	5
4632	Hierarchically assembling cobalt/nickel carbonate hydroxide on copper nitride nanowires for highly efficient water splitting. Applied Catalysis B: Environmental, 2021, 292, 120148.	20.2	62
4633	Investigation into Enhanced Catalytic Performance for Epoxidation of Styrene over LaSrCo _{<i>x</i>} Fe _{2â€"<i>x</i>} O ₆ Double Perovskites: The Role of Singlet Oxygen Species Promoted by the Photothermal Effect. ACS Catalysis, 2021, 11, 11855-11866.	11.2	30
4634	Insight into efficient degradation of 3,5-dichlorosalicylic acid by Fe-Si-B amorphous ribbon under neutral condition. Applied Catalysis B: Environmental, 2021, 294, 120258.	20.2	25
4635	CO2 activation at Au(110)–water interfaces: An <i>ab initio</i> molecular dynamics study. Journal of Chemical Physics, 2021, 155, 134703.	3.0	13
4636	High-temperature Mo-based bulk metallic glasses. Scripta Materialia, 2021, 203, 114095.	5.2	16
4637	Triple perovskite structured Nd1.5Ba1.5CoFeMnO9â^' oxygen electrode materials for highly efficient and stable reversible protonic ceramic cells. Journal of Power Sources, 2021, 510, 230409.	7.8	24
4638	CO and H2 adsorption on Au-Ni bimetallic surfaces: a combined experimental and DFT theoretical study. Surface Science, 2021, 712, 121892.	1.9	6
4639	Anisotropic growth of Pt on Pd nanocube promotes direct synthesis of hydrogen peroxide. Applied Surface Science, 2021, 562, 150031.	6.1	16
4640	Grafting nanometer metal/oxide interface towards enhanced low-temperature acetylene semi-hydrogenation. Nature Communications, 2021, 12, 5770.	12.8	43
4641	Theoretical insight into electronic and optical behaviour of H-adsorbed Zn-terminated Zn3N2-(100)-non-polar surface. Vacuum, 2021, 192, 110467.	3.5	1
4642	Preparation of hybrid ceramic/PVC composites showing both high dielectric constant and breakdown strength ascribed to interfacial effect between V2C MXene and Cu2O. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127650.	4.7	13
4643	Simulation of metal-supported metal-Nanoislands: A comparison of DFT methods. Surface Science, 2021, 712, 121889.	1.9	7
4644	Ternary Fe–W–B bulk metallic glasses with ultrahigh thermal stabilities. Materials Science & Camp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 142034.	5.6	2
4645	Effective active sites of triangular Mo-S Nano-catalysts from first-principle calculations. Surfaces and Interfaces, 2021, 26, 101373.	3.0	1
4646	The new valence state [Ga]â^'5 in Li-Ga-Te system under high pressure. Solid State Communications, 2021, 336, 114402.	1.9	0
4647	Microstructure and catalytic properties of Fe3O4/BN, Fe3O4(Pt)/BN, and FePt/BN heterogeneous nanomaterials in CO2 hydrogenation reaction: Experimental and theoretical insights. Journal of Catalysis, 2021, 402, 130-142.	6.2	21
4648	Sorption mechanisms of pesticides removal from effluent matrix using biochar: Conclusions from molecular modelling studies validated by single-, binary and ternary solute experiments. Journal of Environmental Management, 2021, 295, 113104.	7.8	27

#	Article	IF	CITATIONS
4649	Charge transfer channels of silver @ cuprous oxide heterostructure core-shell nanoparticles strengthen high photocatalytic antibacterial activity. Journal of Colloid and Interface Science, 2021, 601, 531-543.	9.4	28
4650	Single-atomic Pt sites anchored on defective TiO2 nanosheets as a superior photocatalyst for hydrogen evolution. Journal of Energy Chemistry, 2021, 62, 1-10.	12.9	70
4651	Divalent cobalt, copper and zinc complexes of (2Z,2′Z)-2,2′-(oxalylbis(hydrazin-2-yl-1-ylidene))dipropionic acid (H4OPA): Synthesis, characterization, computational, conductometric titration and biological potency. Inorganic Chemistry Communication, 2021, 133, 108937.	3.9	3
4652	Probing the reaction mechanism of acetylene hydrochlorination on metal-free doped boron nitride: Decisive role of carbon dopant. Applied Surface Science, 2021, 566, 150710.	6.1	1
4653	Chemisorption mechanism of defluorinated fluorine on bcc Fe surface during formation of PTFE transfer film. Applied Surface Science, 2021, 567, 150777.	6.1	4
4654	Improved structural stability and adsorption capacity of adsorbent material Li1.6Mn1.6O4 via facile surface fluorination. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127465.	4.7	16
4655	Synthesis, spectral characterization, optical properties and X-ray structural studies of S centrosymmetric N2S2 or N2S2O2 donor Schiff base ligand and its binuclear transition metal complexes. Journal of Molecular Structure, 2021, 1244, 130974.	3.6	10
4656	A lattice defect-inspired leaching strategy toward simultaneous recovery and separation of value metals from spent cathode materials. Waste Management, 2021, 135, 40-46.	7.4	9
4657	Aluminum plasmon-enhanced deep ultraviolet fluorescence resonance energy transfer in h-BN/graphene heterostructure. Optics Communications, 2021, 498, 127224.	2.1	11
4658	Well-coordinated dielectric properties in polymer composites bearing hybrid ceramic via interfacial effect between Ti2C MXene particles and large-aspect-ratio ZrO2 fibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127505.	4.7	5
4659	Interfacial charge redistribution in interconnected network of Ni2P–Co2P boosting electrocatalytic hydrogen evolution in both acidic and alkaline conditions. Chemical Engineering Journal, 2021, 424, 130444.	12.7	76
4660	V2C MXene synergistically coupling FeNi LDH nanosheets for boosting oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, 297, 120474.	20.2	106
4661	Laser-induced energetic material ignition with various fluorinated graphenes: Theoretical and experimental studies. Applied Surface Science, 2021, 570, 151187.	6.1	7
4662	Enhanced overall water splitting under visible light of MoSSeâ^£WSSe heterojunction by lateral interfacial engineering. Journal of Catalysis, 2021, 404, 18-31.	6.2	13
4663	The photocatalytic efficiency enhancement of Bi4O5Br2 by Li-intercalation for NO removal. Journal of Physics and Chemistry of Solids, 2021, 159, 110256.	4.0	4
4664	Electrically-tuned transition of band alignment in arsenene/MoTe2 van der Waals heterostructures. Vacuum, 2021, 194, 110612.	3.5	3
4665	Spectroscopic and theoretical studies on some carbohydrazone complexes and evaluation of their biological potency, catalytic, and ionophore activities. Journal of Molecular Structure, 2021, 1245, 131110.	3.6	9
4666	Adsorption of acetone onto the pristine and Al-doped ZnO nanotubes: A dispersion corrected DFT study. Materials Science in Semiconductor Processing, 2021, 136, 106141.	4.0	3

#	Article	IF	CITATIONS
4667	OH and O mediated interaction of CO2 with Ni($1\hat{A}1\hat{A}0$) surface, and its implications on biomimetic CO2 hydration. Chemical Engineering Science, 2021, 246, 116872.	3.8	2
4668	Unique water H-bonding types on metal surfaces: from the bonding nature to cooperativity rules. Materials Today Advances, 2021, 12, 100172.	5.2	2
4669	Tuning the reversible chemisorption of hydroxyl ions to promote the electrocatalysis on ultrathin metal-organic framework nanosheets. Journal of Energy Chemistry, 2022, 65, 71-77.	12.9	17
4670	Atomic-resolution investigation of structural transformation caused by oxygen vacancy in La0.9Sr0.1TiO3+ titanate layer perovskite ceramics. Journal of Materials Science and Technology, 2022, 104, 172-182.	10.7	18
4671	Synthesis, spectroscopic characterization, crystal structure, Hirshfeld surface analysis, linear and NLO properties of new hybrid compound based on tin fluoride oxalate and organic amine molecule (C12N2H9)2[SnF2(C2O4)2]2H2O. Journal of Molecular Structure, 2022, 1248, 131392.	3.6	14
4672	Effects of artificial stacking configurations and biaxial strain on the structural, electronic and transport properties of bilayer GaSe- A first principle study. Materials Science in Semiconductor Processing, 2022, 137, 106236.	4.0	12
4673	Construction of double-functionalized g-C3N4 heterojunction structure via optimized charge transfer for the synergistically enhanced photocatalytic degradation of sulfonamides and H2O2 production. Journal of Hazardous Materials, 2022, 422, 126868.	12.4	49
4674	Conductive Fe2N/N-rGO composite boosts electrochemical redox reactions in wide temperature accommodating lithium-sulfur batteries. Chemical Engineering Journal, 2022, 427, 131622.	12.7	12
4675	Exploration of the toxic target gas molecules for layered and tubular g-C3N4: Density functional theory. Applied Surface Science, 2022, 571, 151230.	6.1	5
4676	Theoretical investigation of novel p-block metal-based electrocatalysts for nitrogen reduction reaction. Applied Surface Science, 2022, 572, 151441.	6.1	7
4677	The crucial role of deoxygenation in syngas refinement and carbon dioxide utilization during chemical looping-based biomass gasification. Chemical Engineering Journal, 2022, 428, 132068.	12.7	40
4678	Directionally maximizing CO selectivity to near-unity over cupric oxide with indium species for electrochemical CO2 reduction. Chemical Engineering Journal, 2022, 427, 131654.	12.7	18
4679	Improved thermal stability and infrared emissivity of high-entropy REMgAl11019 and LaMAl11019 (RE=La,) Tj ET	Qq8,90 rş	gBT /Overloc
4680	Electronic properties of boron-rich graphene nanowiggles. Computational Materials Science, 2022, 201, 110907.	3.0	1
4681	Monolayer MoSi2N4- as promising electrocatalyst for hydrogen evolution reaction: A DFT prediction. Journal of Materials Science and Technology, 2022, 99, 215-222.	10.7	31
4682	Dissociative adsorption of H2O and CO2 on the clean and O-pre-covered high index Ru surfaces: Corrugated Ru(11â^21) and stepped Ru(20â^21) surfaces. Surface Science, 2022, 715, 121936.	1.9	3
4683	Alkylation of poly-substituted aromatics to probe effects of mesopores in hierarchical zeolites with differing frameworks and crystal sizes. Molecular Systems Design and Engineering, 2021, 6, 903-917.	3.4	6
4684	Predicting activation energies for vacancy-mediated diffusion in alloys using a transition-state cluster expansion. Physical Review Materials, 2021, 5, .	2.4	7

#	Article	IF	CITATIONS
4685	Mechanism of methanol synthesis on Ni(110). Catalysis Science and Technology, 2021, 11, 3279-3294.	4.1	6
4686	Delivery of Electrons by Proton-Hole Transfer in Ice at 10 K: Role of Surface OH Radicals. Journal of Physical Chemistry Letters, 2021, 12, 704-710.	4.6	6
4687	Aqueous TMAO solution under high hydrostatic pressure. Physical Chemistry Chemical Physics, 2021, 23, 11355-11365.	2.8	3
4688	A computational study of the properties of low- and high-index Pd, Cu and Zn surfaces. Physical Chemistry Chemical Physics, 2021, 23, 14649-14661.	2.8	5
4689	Co–Fe–Cr (oxy)Hydroxides as Efficient Oxygen Evolution Reaction Catalysts. Advanced Energy Materials, 2021, 11, 2003412.	19.5	94
4690	Tuning metal single atoms embedded in N _x C _y moieties toward high-performance electrocatalysis. Energy and Environmental Science, 2021, 14, 3455-3468.	30.8	176
4691	The design of Co3S4@MXene heterostructure as sulfur host to promote the electrochemical kinetics for reversible magnesium-sulfur batteries. Journal of Magnesium and Alloys, 2021, 9, 78-89.	11.9	46
4692	How bulk and surface properties of Ti ₄ SiC ₃ , V ₄ SiC ₃ , Nb ₄ SiC ₃ and Zr ₄ SiC ₃ tune reactivity: a computational study. Faraday Discussions, 2021, 230, 87-99.	3.2	2
4693	Theoretical study on the adsorption and catalytic degradation mechanism of sulfacetamide on anatase TiO ₂ (001) and (101) surfaces. New Journal of Chemistry, 2021, 45, 3234-3241.	2.8	5
4694	Kinetic and mechanistic analysis of NH ₃ decomposition on Ru(0001), Ru(111) and Ir(111) surfaces. Nanoscale Advances, 2021, 3, 1624-1632.	4.6	19
4695	Adsorption of Transition Metal Catalysts on Carbon Supports: A Theoretical Perspective. Johnson Matthey Technology Review, 2022, 66, 4-20.	1.0	1
4696	Surface overgrowth on gold nanoparticles modulating high-energy facets for efficient electrochemical CO2 reduction. Nanoscale, 2021, 13, 14346-14353.	5.6	4
4697	Surface oxygen vacancies promoted Pt redispersion to single-atoms for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2021, 9, 13890-13897.	10.3	38
4698	Modulation of Cu and Rh single-atoms and nanoparticles for high-performance hydrogen evolution activity in acidic media. Journal of Materials Chemistry A, 2021, 9, 10326-10334.	10.3	70
4699	Ion association in hydrothermal aqueous NaCl solutions: implications for the microscopic structure of supercritical water. Physical Chemistry Chemical Physics, 2021, 23, 14845-14856.	2.8	5
4700	Mixed dimensional 0D/3D perovskite heterostructure for efficient green light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 14318-14326.	5.5	8
4701	Mn ²⁺ /Mn ⁴⁺ co-doped LaM _{1â^'x} Al _{11â^'y} O ₁₉ (M) properties. Dalton Transactions, 2021, 50, 4651-4662.) Tj ETQq0 3 . 3	0 0 rgBT /Ov 19
4702	Engineering Bimetallic NiFeâ€Based Hydroxides/Selenides Heterostructure Nanosheet Arrays for Highlyâ€Efficient Oxygen Evolution Reaction. Small, 2021, 17, e2007334.	10.0	103

#	Article	IF	CITATIONS
4703	Relations between Surface Oxygen Vacancies and Activity of Methanol Formation from CO ₂ Hydrogenation over In ₂ O ₃ Surfaces. ACS Catalysis, 2021, 11, 1780-1786.	11.2	88
4704	Mechanistic insights into the dominant reaction route and catalyst deactivation in biogas reforming using <i>ab initio</i> microkinetic modeling. Catalysis Science and Technology, 2021, 11, 2130-2143.	4.1	14
4705	Tuning the electronic structure of Ag-Pd alloys to enhance performance for alkaline oxygen reduction. Nature Communications, 2021, 12, 620.	12.8	107
4706	Theoretical Basis of the Activation of Light Alkanes. , 2005, , 85-105.		2
4707	Hohenberg-Kohn-Sham Density Functional Theory. Challenges and Advances in Computational Chemistry and Physics, 2007, , 153-201.	0.6	1
4708	First-Principles Structure Prediction of Dual Cation Ammine Borohydrides: LiMg(BH4)3(NH3)x. Springer Proceedings in Physics, 2014, , 457-462.	0.2	2
4709	O2 Adsorption Dynamics at Metal Surfaces: Non-adiabatic Effects, Dissociation and Dissipation. Springer Series in Surface Sciences, 2013, , 389-419.	0.3	15
4710	Possible Electronic Modifications of VO-based catalysts. , 2003, , 301-320.		2
4711	Research of n-type arsenic doped diamond: Theoretical analysis of electronic and mechanical properties. Diamond and Related Materials, 2020, 108, 107924.	3.9	8
4712	Copper induced phosphide for enhanced electrochemical hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 21422-21430.	7.1	15
4713	Sustainable utilization of chlorine via converting HCl to Cl2 over a robust copper catalyst. Molecular Catalysis, 2020, 492, 110977.	2.0	7
4714	Towards quaternary alloy Au–Pd catalysts for direct synthesis of hydrogen peroxide. Materials Today Energy, 2020, 16, 100399.	4.7	5
4715	Investigating the solution and diffusion properties of hydrogen in α-Uranium by first-principles calculations. Progress in Nuclear Energy, 2020, 122, 103268.	2.9	8
4716	Cobalt Carbide from Co–Mn Layered Double Hydroxide: Highly Efficient Catalyst for Toluene Pyrolysis. Energy & Fuels, 2020, 34, 2221-2229.	5.1	6
4717	Coupling Surface Coverage and Electrostatic Effects on the Interfacial Adlayer–Water Structure of Hydrogenated Single-Crystal Platinum Electrodes. Journal of Physical Chemistry C, 2020, 124, 13706-13714.	3.1	15
4718	Lithium Peroxide Growth in Li–O2 Batteries via Chemical Disproportionation and Electrochemical Mechanisms: A Potential-Dependent Ab Initio Study with Implicit Solvation. Journal of Physical Chemistry C, 2021, 125, 436-445.	3.1	8
4719	Amorphous, Periodic Model of a Copper Electrocatalyst with Subsurface Oxygen for Enhanced CO Coverage and Dimerization. Journal of Physical Chemistry C, 2019, 123, 4961-4968.	3.1	13
4720	Influence of the Artificial Nanostructure on the LiF Formation at the Solid–Electrolyte Interphase of Carbon-Based Anodes. ACS Applied Energy Materials, 2021, 4, 35-41.	5.1	2

#	Article	lF	CITATIONS
4721	Three-Dimensional Carbon Electrocatalysts for CO ₂ or CO Reduction. ACS Catalysis, 2021, 11, 533-541.	11.2	29
4722	Ab Initio Calculations on the Structural and Electronic Properties of AgAu Alloys. ACS Omega, 2020, 5, 31391-31397.	3.5	25
4723	Coverage dependent adsorption properties of atomic adsorbates on late transition metal surfaces. Catalysis, 0, , 83-115.	1.0	7
4724	Improved H ₂ utilization by Pd doping in cobalt catalysts for reductive amination of polypropylene glycol. RSC Advances, 2020, 10, 45159-45169.	3.6	6
4725	Quantum Monte Carlo calculations on dissociative chemisorption of H2 + Al(110): Minimum barrier heights and their comparison to DFT values. Journal of Chemical Physics, 2020, 153, 224701.	3.0	16
4726	The Hubbard-U correction and optical properties of d metal oxide photocatalysts. Journal of Chemical Physics, 2020, 153, 224116.	3.0	10
4727	Machine learning with bond information for local structure optimizations in surface science. Journal of Chemical Physics, 2020, 153, 234116.	3.0	12
4728	Pressure-Stabilized New Phase of CaN ₄ *. Chinese Physics Letters, 2020, 37, 047101.	3.3	10
4729	Machine learning enabled discovery of application dependent design principles for two-dimensional materials. Machine Learning: Science and Technology, 2020, 1, 035015.	5.0	9
4730	Phase transitions of titanite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CaTiSiO</mml:mi><mml:mn>5<td>m2:m1:×<td>າາສາໄ:msub> ‹</td></td></mml:mn></mml:msub></mml:math>	m2:m1:× <td>າາສາໄ:msub> ‹</td>	າາ ສ າໄ:msub> ‹
4731	Evaluating transition metal oxides within DFT-SCAN and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>SCAN</mml:mtext><mml:mo>-frameworks for solar thermochemical applications. Physical Review Materials, 2018, 2, .</mml:mo></mml:mrow></mml:math>	+ <i>⊘ p</i> anml:m	o 9₹mml:mi>
4732	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>U</mml:mi> for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>3</mml:mn><mml:mi>d</mml:mi><mml:mi>U</mml:mi></mml:mrow></mml:math> framework.	> <u>{/</u> mml:m	row>
4733	Prediction of Li intercalation voltages in rechargeable battery cathode materials: Effects of exchange-correlation functional, van der Waals interactions, and Hubbard <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>U</mml:mi></mml:math> . Physical Review Materials, 2020, 4, .	2.4	15
4734	Comprehensive analysis of the influence of dispersion on group-14 rutile-type solids. Physical Review Materials, 2020, 4, .	2.4	1
4735	First-principle calculations of crystal structures, electronic structures, and optical properties of RETaO4 (RE = Y, La, Sm, Eu, Dy, Er). Optical Engineering, 2018, 57, 1.	1.0	6
4736	First-principles calculations of crystal structure, electronic structure and optical properties of RETaO4(RE= Y, La, Sm, Eu, Dy, Er). , 2017 , , .		1
4737	Oxygen Sites at Molybdena and Vanadia Surfaces: Energetics of the Re-Oxidation Process. Collection of Czechoslovak Chemical Communications, 2004, 69, 121-140.	1.0	9
4738	Facile aqueous-phase synthesis of Ag–Cu–Pt–Pd quadrometallic nanoparticles. Nano Convergence, 2019, 6, 38.	12.1	23

#	Article	IF	CITATIONS
4739	Fundamental Concepts in Molecular Simulation of NOx Catalysis. , 2005, , 233-268.		5
4740	Stable Structure and Electronic Properties of Carbon Nanoarch Encapsulating Fe Nanowire on Ni(111). E-Journal of Surface Science and Nanotechnology, 2005, 3, 266-269.	0.4	7
4741	Computational Study of Site-Specific Correlations among Oxygen Reduction Intermediates on Pd3Y (111). Journal of Advanced Catalysis Science and Technology, 2014, 1, 1-9.	1.0	1
4742	Density Functional Theory Calculations on Interface Structures and Adsorption Properties of Graphenes: A Review. The Open Nanoscience Journal, 2009, 3, 34-55.	1.8	9
4744	A Behavior of a Hydrogen Atom of Pd0.75Ag0.25(111). Shinku/Journal of the Vacuum Society of Japan, 2007, 50, 440-443.	0.2	2
4745	Effect of van der Waals Interaction on Ortho-Para Conversion of H2 on Ag(111) Surfaces. Journal of the Vacuum Society of Japan, 2012, 55, 115-117.	0.3	6
4746	Selective Electrochemical Reduction of Nitrogen to Ammonia by Adjusting the Three-Phase Interface. Research, 2019, 2019, 1401209.	5.7	29
4747	A Density Functional Theory Study of Methoxy and Atomic Hydrogen Chemisorption on Au(100) Surface. Journal of Modern Physics, 2013, 04, 409-417.	0.6	6
4748	First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Wuli Xuebao/Acta Physica Sinica, 2012, 61, 036105.	0.5	3
4749	The electronic theory study on high-temperature oxidation mechanism of TiAl alloy. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 177101.	0.5	7
4750	Electrical and thermoelectrical properties investigation of oligomeric ferrocene: Staircase versus flatcase. AIP Conference Proceedings, 2021, , .	0.4	0
4751	Enhanced Electronic and Magnetic Properties of N ₂ O Gas Adsorbed Mn-Doped MoSe ₂ Monolayer. IEEE Transactions on Electron Devices, 2022, 69, 1634-1641.	3.0	14
4752	Creating supramolecular semiregular Archimedean tilings via gas-mediated deprotonation of a terminal alkyne derivative. CrystEngComm, $0, \dots$	2.6	2
4753	How to extract adsorption energies, adsorbate–adsorbate interaction parameters and saturation coverages from temperature programmed desorption experiments. Physical Chemistry Chemical Physics, 2021, 23, 24396-24402.	2.8	1
4754	Structural, Theoretical and Biological Studies of (Z)-3-Amino-N-(3-Amino Pyrazine-2-Carbonyl) Pyrazine-2-Carbohydrazonic Acid (APA; L) and Its Cu ²⁺ , Co ²⁺ , Pt ⁴⁺ and Pd ²⁺ Chelates. Open Journal of Inorganic Chemistry, 2021, 10, 145-175.	0.7	0
4755	Stable and Antisintering Tungsten Carbides with Controllable Active Phase for Selective Cleavage of Aryl Ether C–O Bonds. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8274-8284.	8.0	4
4756	Theory-Guided Inelastic Neutron Scattering of Crystalline Alkaline Aluminate Salts Bearing Principal Motifs of Solution-State Species. Inorganic Chemistry, 2021, 60, 16223-16232.	4.0	4
4757	Asymmetric Sodiophilic Host Based on a Ag-Modified Carbon Fiber Framework for Dendrite-Free Sodium Metal Anodes. ACS Applied Materials & Sodium Metal Anodes. ACS Applied Metal Anodes. ACS Applied Materials & Sodium Metal Anodes. ACS Applied Metal Anodes. ACS Appli	8.0	33

#	Article	IF	CITATIONS
4758	Data-driven simulation and characterisation of gold nanoparticle melting. Nature Communications, 2021, 12, 6056.	12.8	29
4759	Theoretical Investigations of Magnetic Properties and Mechanical Stability of Quaternary Heusler Compounds FeYCrZ (Z = Al, Ga, Ge, and Si): a Spin Gapless Semiconductor. Journal of Superconductivity and Novel Magnetism, 2022, 35, 223-234.	1.8	5
4760	Computational examination of the kinetics of electrochemical nitrogen reduction and hydrogen evolution on a tungsten electrode. Journal of Catalysis, 2021, 404, 362-370.	6.2	12
4761	Cu embedded Co oxides and its fenton-like activity for metronidazole degradation over a wide pH range: Active sites of Cu doped Co3O4 with $\{1\ 1\ 2\}$ exposed facet. Chemical Engineering Journal, 2022, 435, 132910.	12.7	16
4762	Predicting New MXene-like Two-Dimensional Materials Pb ₂ CO ₂ and Sn ₂ CO ₂ as Potential Hydrogen Evolution Reaction Catalysts. Journal of Physical Chemistry C, 2021, 125, 22562-22569.	3.1	5
4763	Highly accurate and constrained density functional obtained with differentiable programming. Physical Review B, 2021, 104, .	3.2	21
4764	First-principles investigations of the geometric structures and electronic properties of pristine and Ag/Au-doped Janus MoSSe/C60 and WSSe/C60 heterostructures. Applied Surface Science, 2022, 575, 151660.	6.1	5
4765	Thermokinetic and Spectroscopic Mapping of Carbon Monoxide Adsorption on Highly Dispersed Pt/γ-Al ₂ O ₃ . ACS Catalysis, 2021, 11, 13280-13293.	11.2	17
4767	Atomic Structure Optimization with Machine-Learning Enabled Interpolation between Chemical Elements. Physical Review Letters, 2021, 127, 166001.	7.8	11
4768	Extraordinary acidic oxygen evolution on new phase 3R-iridium oxide. Joule, 2021, 5, 3221-3234.	24.0	73
4769	Schottky Heterojunction Nanosheet Array Achieving Highâ€Currentâ€Density Oxygen Evolution for Industrial Water Splitting Electrolyzers. Advanced Energy Materials, 2021, 11, 2102353.	19.5	177
4770	DFT-Based Approach Enables Deliberate Tuning of Alloy Nanostructure Plasmonic Properties. Journal of Physical Chemistry C, 2021, 125, 24032-24042.	3.1	5
4771	Single-atom dispersed Cu or Co on 2H-MoS2 monolayer for improving electrocatalytic activity of overall water splitting. Surfaces and Interfaces, 2021, 27, 101538.	3.0	9
4772	Theoretical investigation of the effect of auxiliary ligands on dipyrazole-bridged binuclear Cu(II) complexes. Chemical Physics Letters, 2021, 784, 139102.	2.6	6
4773	First-Principles Studies on Heterogeneous Catalysis of Amination: Mechanisms and Support Effects. , 2002, , 385-403.		0
4774	Polybutylene Terephthalate Adhesion on Metals: A Density Functional Theory Investigation. Shinku/Journal of the Vacuum Society of Japan, 2006, 49, 433-436.	0.2	1
4775	Tailoring the Surface Reactivity: Comparison of Pd/Nb(110) and Rh/Nb(110). Collection of Czechoslovak Chemical Communications, 2008, 73, 745-754.	1.0	1
4778	Mechanism of the influence of the interaction between interstitial H atom and doped atom on the dehydrogenation performance of LiNH2. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 117101.	0.5	1

#	Article	IF	CITATIONS
4779	Interpretation of dehydrogenation ability of high-density hydrogen storage materials by density functional theory. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 026103.	0.5	8
4780	First-principles study on influence of alloying element substitution on dehydrogenation ability of Li4BN3H10 hydrogen storage materials. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 047109.	0.5	1
4781	Some Practical Considerations for Density Functional Theory Studies of Chemistry at Metal Surfaces. , $2011, , .$		4
4782	Computational Investigations of Metal Oxide Surfaces. , 2011, , .		O
4783	A Relativistic Density Functional Study of the U ₂ F ₆ Molecule. Journal of Modern Physics, 2012, 03, 865-869.	0.6	0
4784	First-principles investigations on the electronic, elastic and thermodynamic properties of Cr2MC(M=Al, Ga). Wuli Xuebao/Acta Physica Sinica, 2012, 61, 046301.	0.5	7
4785	Investigation of electronic structure of Nd ₂ 0 ₃ : Experiment and theory. Natural Science, 2012, 04, 797-802.	0.4	0
4786	4.3.2 Assessment and modeling of NH3SnO2 interactions using individual nanowire sensors. , 2012, , .		0
4787	Results for Various Interfaces: C $\$_{60}$, Benzene, TTF, TCNQ and Pentacene over Au(111). Springer Theses, 2013, , 115-158.	0.1	0
4788	- Gas Adsorption by Fullerenes and Polyhedral Multi-Walled Carbon Nanostructures. , 2012, , 177-202.		0
4789	Dynamics of H2 Interacting with Substitutional Bimetallic Surface Alloys. Springer Series in Surface Sciences, 2013, , 131-155.	0.3	0
4790	First-principles study of pressure induced phase transition, electronic structure and elastic properties of CdS. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 087104.	0.5	4
4791	Influence of Al doping on stability of Mg1-xTix and their hydrides. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 138801.	0.5	1
4792	The Density Functional Theory Investigation of Acetylene Hydrogenation on the $Pd(111)$ Surface with Point Defect. Journal of Advances in Physical Chemistry, 2013, 02, 40-46.	0.1	0
4793	An Overview of Modern Density Functional Theory. Springer Briefs in Molecular Science, 2014, , 1-24.	0.1	0
4796	Charge-Transfer Metal-Insulator Transitions and Electronic Properties in Vanadium Dioxide. Advances in Condensed Matter Physics, 2015, 04, 119-127.	0.1	0
4797	First-principles study on the elastic and thermal properties of Ca0.5Sr0.5TiO3. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 207102.	0.5	1
4798	First-principles study on the electronic structure of Ti-doped NbSe2. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 207101.	0.5	0

#	ARTICLE	IF	CITATIONS
4801	Performance Evaluation on Several Exchange-correlation Functional Ap-proximations in Calculations of Alkali-metals and IB Group Metals Pair Potentials. Open Physics Journal, 2015, 2, 1-10.	1.0	0
4802	Ab Initio Studies on Structural, Elastic, Thermodynamic and Electronic Properties of FeCrAs under Pressures. Acta Physica Polonica A, 2015, 127, 1637-1644.	0.5	0
4804	Theoretical Predication of the Synthesis of ReNCl., 2016,,.		0
4805	Nanocluster-Assembled Materials. , 2016, , 127-162.		0
4806	Density Functional Theory Studies of Oxygen Affinity of Small Au Nanoparticles. Korean Journal of Materials Research, 2017, 27, 229-235.	0.2	0
4807	Efectos de intercambio y correlaci \tilde{A}^3 n en las propiedades estructurales y electr \tilde{A}^3 nicas del TiO2 en la fase rutilo. Ciencia En Desarrollo, 2017, 8, .	0.1	2
4808	Determination of the total energy of a many-particle system. , 2018, , 28-37.		0
4809	Vibrational Structure of Selected Compounds Derived from Biomass: Lignin Dimers, Selected Aldopentoses and Aldohexoses. Journal of Chemistry and Chemical Engineering, 2018, 12, .	0.3	1
4810	ANALYSIS OF STRUCTURAL FEATURES OF EPONYMS AND TOPONYMS IN THE ENGLISH SCIENTIFIC-TECHNICAL DISCOURSE. FilologiÄeskie Nauki Voprosy Teorii I Praktiki, 2018, , 124-128.	0.1	0
4811	Crystal Structure and Hydrogen Storage Properties of Kalium Hydride from Theoretical Calculations. Journal of Advances in Physical Chemistry, 2018, 07, 147-151.	0.1	O
4812	Porosity and Fractality of MoS2 and MoS2/Co-catalytic Spheres. , 2019, , 151-166.		0
4814	Uncertainty quantification in first-principles predictions of phonon properties and lattice thermal conductivity. Physical Review Materials, 2020, 4, .	2.4	2
4815	Density functional theory studies of hydrogen bonding vibrations in sI gas hydrates. New Journal of Physics, 2020, 22, 093066.	2.9	6
4816	Pt-MS Electrocatalysts for ORR. Energy and Environment Research in China, 2021, , 63-125.	1.1	0
4817	Electrocatalytic oxidation of ammonia on Pt: Mechanistic insights into the formation of N2 in alkaline media. Journal of Catalysis, 2022, 405, 626-633.	6.2	17
4818	Ab Initio Study of Nuclear Quantum Effects on Sub- and Supercritical Water. Journal of Chemical Physics, 2021, 155, 194107.	3.0	6
4819	An integrated surface coating strategy to enhance the electrochemical performance of nickel-rich layered cathodes. Nano Energy, 2022, 91, 106665.	16.0	143
4820	Lactic acid conversion into acrylic acid and other products over natural and synthetic zeolite catalysts: theoretical and experimental studies. Catalysis Today, 2022, 387, 172-185.	4.4	11

#	Article	IF	CITATIONS
4821	Photoinduced electron transfer properties of 4-phenyl-Pyridine-N-Oxide and its coordination compound. Dyes and Pigments, 2022, 197, 109917.	3.7	2
4822	Function of Doping Ru Element in the Hydrogen Evolution Reaction in Rare-Earth Transition-Metal Intermetallics. Inorganic Chemistry, 2021, 60, 16754-16760.	4.0	9
4823	Phase transition impact on electronic and optical properties of Fe-doped MoSe2 monolayer via N2O adsorption. Superlattices and Microstructures, 2021, 160, 107083.	3.1	10
4824	Simultaneous anchoring of Ni nanoparticles and single-atom Ni on BCN matrix promotes efficient conversion of nitrate in water into high-value-added ammonia. Chemical Engineering Journal, 2022, 433, 133190.	12.7	46
4825	Fe decorated CeO2 microsphere catalyst with surface oxygen defect for NO reduction by CO. Molecular Catalysis, 2021, 516, 111973.	2.0	3
4826	Outstanding Oxygen Reduction Reaction Catalytic Performance of In–PtNi Octahedral Nanoparticles Designed via Computational Dopant Screening. Chemistry of Materials, 2021, 33, 8895-8903.	6.7	17
4827	Structure of Electrode-Electrolyte Interfaces, Modeling of Double Layer and Electrode Potential. , 2020, , 1439-1472.		0
4828	DFT Study of MAX Phase Surfaces for Electrocatalyst Support Materials in Hydrogen Fuel Cells. Materials, 2021, 14, 77.	2.9	7
4829	Insights into the interactions of g-C3N4/LaMnO3 hetero-junction to their structures and electronic properties by DFT calculations. Journal of Solid State Chemistry, 2020, 292, 121727.	2.9	9
4830	Graphene-Supported Fe/Ni, \hat{l}^2 -Mo2C Nanoparticles: Experimental and DFT Integrated Approach to Catalyst Development for Synergistic Hydrogen Production through Lignin-Rich Biomass Reforming and Reduced Shale Gas Flaring. ACS Catalysis, 2021, 11, 364-382.	11.2	9
4831	Phase-structure-dependent Na ion transport in yttrium-iodide sodium superionic conductor Na ₃ YI ₆ . Journal of Materials Chemistry A, 2021, 9, 26256-26265.	10.3	13
4832	Spin-crossover complexes in nanoscale devices: main ingredients of the molecule–substrate interactions. Nanoscale, 2021, 13, 18702-18713.	5.6	13
4833	Synthesis, spectral characterization, crystal structure and catalytic activity of a novel dioxomolybdenum Schiff base complex containing 4-aminobenzhydrazone ligand: A combined experimental and theoretical study. Journal of Molecular Structure, 2022, 1249, 131645.	3.6	27
4834	First-principles study on the structures and elastic properties of W-Ta-V ternary alloys. Computational Materials Science, 2022, 202, 110940.	3.0	8
4835	Tuning selectivity of electrochemical reduction reaction of CO2 by atomically dispersed Pt into SnO2 nanoparticles. Chemical Engineering Journal, 2022, 430, 133035.	12.7	23
4836	Ligand effects on surface oxide at RhPd(100) alloy surfaces: A density functional theory calculation study. Surface Science, 2022, 716, 121958.	1.9	3
4837	Energetic Ground State Calculations, Electronic Band Structure at Surfaces. Springer Handbooks, 2020, , 471-498.	0.6	0
4838	Interaction of flotation reagents with mineral surface. , 2020, , 237-305.		0

#	Article	IF	CITATIONS
4839	First-principles study of Ca $<$ sub $>$ 5 $<$ /sub $>$ N $<$ sub $>$ 4 $<$ /sub $>$ at high pressure. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 067101.	0.5	1
4840	Tuning CuZn interfaces in metal–organic framework-derived electrocatalysts for enhancement of CO ₂ conversion to C ₂ products. Catalysis Science and Technology, 2021, 11, 8065-8078.	4.1	17
4841	Toward Understanding and Simplifying the Reaction Network of Ketene Production on ZnCr ₂ O ₄ Spinel Catalysts. Journal of Physical Chemistry C, 2021, 125, 24902-24914.	3.1	8
4842	Dual optimization approach to Mo single atom dispersed g-C3N4 photocatalyst: Morphology and defect evolution. Applied Catalysis B: Environmental, 2022, 303, 120904.	20.2	203
4843	The Restructuring-Induced CoO _{<i>x</i>} Catalyst for Electrochemical Water Splitting. Jacs Au, 2021, 1, 2216-2223.	7.9	32
4844	Optimization of Nanostructured Copper Sulfide to Achieve Enhanced Enzyme-Mimic Activities for Improving Anti-Infection Performance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 53659-53670.	8.0	11
4845	Computational understanding of Fe-Pt synergy in promoting guaiacol hydrodeoxygenation. Surface Science, 2022, 717, 121985.	1.9	4
4846	Late Transition Metal Doped MXenes Showing Superb Bifunctional Electrocatalytic Activities for Water Splitting via Distinctive Mechanistic Pathways. Advanced Energy Materials, 2021, 11, 2102388.	19.5	73
4847	Density functional theory study on the decomposition mechanism of HFC-32 on a Cu(1 $1\ 1$) surface: The impact of H2O and O2. Journal of Molecular Liquids, 2022, 348, 118027.	4.9	8
4848	Theoretical Study of Weakly Bound Adsorbates on Au(111): Tests on van der Waals Density Functionals. Journal of Physical Chemistry C, 2021, 125, 24958-24966.	3.1	2
4849	Cofactorâ€Assisted Artificial Enzyme with Multiple Liâ€Bond Networks for Sustainable Polysulfide Conversion in Lithium–Sulfur Batteries. Advanced Science, 2022, 9, e2104205.	11.2	20
4851	3.7.2.6 References for 3.7.2. , 0, , 352-361.		0
4852	Reaction Processes on Catalytically Active Surfaces. , 2007, , 311-340.		0
4853	Crystal structure, thermal properties and detonation characterization of bis(5-amino-1,2,4-triazol-4-ium-3-yl)methane dinitrate. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 965-971.	0.5	3
4854	Negating Li ⁺ Transfer Barrier at Solid-Liquid Electrolyte Interface in Hybrid Batteries. SSRN Electronic Journal, 0, , .	0.4	0
4855	CO ₂ reduction to CH ₄ on Cu-doped phosphorene: a first-principles study. Nanoscale, 2021, 13, 20541-20549.	5.6	9
4856	Theoretical studies on dicopper(II) complexes of phenoxido-bridged ligands: Magneto-structural correlations. Computational and Theoretical Chemistry, 2022, 1207, 113524.	2.5	6
4857	The effect of Ag atoms diffusion into Î-phase CsPbI3-based memory device. Microelectronic Engineering, 2022, 251, 111668.	2.4	3

#	Article	IF	CITATIONS
4858	High-energy ball-milling constructing P-doped g-C3N4/MoP heterojunction with Mo N bond bridged interface and Schottky barrier for enhanced photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2022, 303, 120933.	20.2	93
4859	Data-efficient iterative training of Gaussian approximation potentials: Application to surface structure determination of rutile IrO2 and RuO2. Journal of Chemical Physics, 2021, 155, 244107.	3.0	16
4860	X-ray emission spectroscopy: a genetic algorithm to disentangle core–hole-induced dynamics. Theoretical Chemistry Accounts, 2021, 140, 1.	1.4	6
4861	Stripping away ion hydration shells in electrical double-layer formation: Water networks matter. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	20
4862	Synergistic effect of Cu-doped NiO for enhancing urea electrooxidation: Comparative electrochemical and DFT studies. Journal of Alloys and Compounds, 2022, 896, 162857.	5.5	46
4863	Strontium stannate as an alternative anode for Na- and K-lon batteries: A theoretical study. Journal of Physics and Chemistry of Solids, 2022, 162, 110505.	4.0	6
4864	Engineering Efficient Nilr _{<i>x</i>} /CNT Hybrid Nanostructures for pH-Universal Oxygen Evolution. Journal of Physical Chemistry C, 2021, 125, 26003-26012.	3.1	6
4865	Accelerated prediction of Cu-based single-atom alloy catalysts for CO2 reduction by machine learning. Green Energy and Environment, 2023, 8, 820-830.	8.7	16
4866	Unified mechanistic understanding of CO2 reduction to CO on transition metal and single atom catalysts. Nature Catalysis, 2021, 4, 1024-1031.	34.4	154
4867	Efficient electrocatalytic acetylene semihydrogenation by electron–rich metal sites in N–heterocyclic carbene metal complexes. Nature Communications, 2021, 12, 6574.	12.8	30
4868	Synthesis and Characterization of Some Complexes Derived from Isatin Dye Ligand and Study of their Biological Potency and Anticorrosive Behavior on Aluminum Metal in Acidic Medium. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 895-911.	3.7	10
4869	Two-dimensional metal carbides for electro- and photocatalytic CO2 reduction: Review. Journal of CO2 Utilization, 2022, 55, 101814.	6.8	23
4870	Static and dynamic water structures at interfaces: A case study with focus on Pt(111). Journal of Chemical Physics, 2021, 155, 194702.	3.0	3
4871	Carbothermal shock-induced bifunctional Pt-Co alloy electrocatalysts for high-performance seawater batteries. Energy Storage Materials, 2022, 45, 281-290.	18.0	11
4872	Three-in-One Strategy to Improve Both Catalytic Activity and Selectivity: Nonconcentric Pd–Au Nanoparticles. Journal of Physical Chemistry Letters, 2021, 12, 11098-11105.	4.6	5
4873	The synergistic effect of carbon edges and dopants towards efficient oxygen reduction reaction. Journal of Colloid and Interface Science, 2022, 610, 486-494.	9.4	16
4874	Tuning mobility of intermediate and electron transfer to enhance electrochemical reduction of nitrate to ammonia on Cu2O/Cu interface. Chemical Engineering Journal, 2022, 433, 133680.	12.7	41
4875	Bimetallic Twoâ€Dimensional Metal–Organic Frameworks for the Chemiresistive Detection of Carbon Monoxide. Angewandte Chemie, 2022, 134, e202113665.	2.0	5

#	Article	IF	Citations
4876	Defectâ€Assisted Anchoring of Pt Single Atoms on MoS ₂ Nanosheets Produces Highâ€Performance Catalyst for Industrial Hydrogen Evolution Reaction. Small, 2022, 18, e2104824.	10.0	36
4877	Diffusion Barriers for Carbon Monoxide on the Cu(001) Surface Using Many-Body Perturbation Theory and Various Density Functionals. Journal of Chemical Theory and Computation, 2021, 17, 7862-7872.	5.3	10
4878	Modeling Potential-Dependent Electrochemical Activation Barriers: Revisiting the Alkaline Hydrogen Evolution Reaction. Journal of the American Chemical Society, 2021, 143, 19341-19355.	13.7	25
4879	Nutraceuticals in Bulk and Dosage Forms: Analysis by ³⁵ Cl and ¹⁴ N Solid-State NMR and DFT Calculations. Molecular Pharmaceutics, 2022, 19, 440-455.	4.6	12
4880	Bimetallic Twoâ€Dimensional Metal–Organic Frameworks for the Chemiresistive Detection of Carbon Monoxide. Angewandte Chemie - International Edition, 2022, 61, e202113665.	13.8	21
4881	Enhanced sorption of trivalent antimony by chitosan-loaded biochar in aqueous solutions: Characterization, performance and mechanisms. Journal of Hazardous Materials, 2022, 425, 127971.	12.4	89
4882	Calculating Entropies of Large Molecules in Aqueous Phase. Journal of Chemical Theory and Computation, 2021, , .	5. 3	6
4883	O2 on Ag(110): A puzzle for exchange-correlation functionals. Chemical Physics, 2021, 554, 111424.	1.9	0
4884	Gas sensing behavior and adsorption mechanism on χ3 borophene surface. Chemical Engineering Journal, 2022, 431, 133947.	12.7	13
4885	Selective decomposition of hydrazine over metal free carbonaceous materials. Physical Chemistry Chemical Physics, 2022, 24, 3017-3029.	2.8	3
4886	Polyvinylpyrrolidone gel based Pt/Ni(OH) ₂ heterostructures with redistributing charges for enhanced alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 27061-27071.	10.3	24
4887	X-ray absorption spectra of aqueous cellobiose: Experiment and theory. Journal of Chemical Physics, 2022, 156, 044202.	3.0	4
4889	Ï€-Adsorption promoted electrocatalytic acetylene semihydrogenation on single-atom Ni dispersed N-doped carbon. Journal of Materials Chemistry A, 2022, 10, 6122-6128.	10.3	14
4890	Spin-crossover Fe(<scp>ii</scp>) complexes on a surface: a mixture of low-spin and high-spin molecules at low temperature from quantum-chemistry calculations. Inorganic Chemistry Frontiers, 2022, 9, 753-760.	6.0	5
4891	Synergistic Manipulation of Na ⁺ Flux and Surfaceâ€Preferred Effect Enabling Highâ€Arealâ€Capacity and Dendriteâ€Free Sodium Metal Battery. Advanced Science, 2022, 9, e2103845.	11.2	26
4892	First-principles study of structural, electronic, elastic, and optical properties of the tetragonal AlnS2 (A=K, Rb, Cs) chalcogenides. Computational Condensed Matter, 2022, 30, e00644.	2.1	2
4893	Mechanism of silica nanoparticles removal in an isopropyl alcohol/water solution with an anion exchange membrane. Journal of Molecular Liquids, 2022, 347, 118366.	4.9	2
4894	Doping and defects: The coloring mechanism of black plasma electrolytic oxidation (PEO) films on aluminum alloys. Surface and Coatings Technology, 2022, 431, 128035.	4.8	8

#	Article	IF	CITATIONS
4895	Boundary in electrocatalytic hydrogen evolution reaction: From single metal to binary intermetallic compounds. Catalysis Communications, 2022, 162, 106378.	3.3	8
4896	A mechanistic periodic DFT study on the dissociation of tetrachlorodibenzofuran (TCDF) by M-doped carbon nanotube catalysts (MÂ=ÂAl, Fe, Mn). Applied Surface Science, 2022, 579, 152217.	6.1	3
4897	Identification of active sites available for hydrogen evolution of Single-Atom Ni1/TiO2 catalysts. Applied Surface Science, 2022, 579, 152139.	6.1	11
4898	Metal phthalocyanines as efficient electrocatalysts for acetylene semihydrogenation. Chemical Engineering Journal, 2022, 431, 134129.	12.7	14
4899	Mesoporous IrNiTa metal glass ribbon as a superior self-standing bifunctional catalyst for water electrolysis. Chemical Engineering Journal, 2022, 431, 134210.	12.7	16
4900	Structure of PtRu/Ru(OÂOÂOÂ1) and AgPd/Pd(1Â1Â1) surface alloys: A kinetic Monte Carlo study. Chemical Physics, 2022, 555, 111428.	1.9	4
4901	Phonon-assisted Interfacial Charge Transfer Excitons in Graphene/h-BN van der Waals Heterostructures. Chinese Journal of Physics, 2022, 76, 110-120.	3.9	2
4902	First-principles calculations of molecular adsorption on the surface of two-dimensional BCOH. Chemical Physics, 2022, 555, 111442.	1.9	1
4903	Crystal facet dependence of SiHCl3 reduction to Si mechanism on silicon rod. Applied Surface Science, 2022, 580, 152366.	6.1	6
4904	Spin-polarized DFT calculations of elemental effects on hydrogen atom adsorption on FeCrAl (1 1 0) surface. Applied Surface Science, 2022, 581, 152273.	6.1	3
4905	Selective bimetallic sites supported on graphene as a promising catalyst for CO2 Reduction: A first-principles study. Applied Surface Science, 2022, 582, 152472.	6.1	6
4906	Restricted diffusion preparation of fully-exposed Fe single-atom catalyst on carbon nanospheres for efficient oxygen reduction reaction. Applied Catalysis B: Environmental, 2022, 305, 121058.	20.2	42
4907	Thermal Assisted Heterogeneous Activation of Peroxymonosulfate by Activated Carbon to Degrade Perfluorooctanoic Acid in Soil. SSRN Electronic Journal, 0, , .	0.4	0
4908	Revealing Improved Electrocatalytic Performances of Electrochemically Synthesized S and Ni Doped Fe ₂ O ₃ Nanostructure Interfaces. SSRN Electronic Journal, 0, , .	0.4	0
4909	Theoretical Study of Infrared Nonlinear Optical Crystal BaGa ₄ Se ₇ Tetragonal System. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 1332-1341.	0.5	1
4910	Ni ²⁺ -Doped Garnet Solid-Solution Phosphor-Converted Broadband Shortwave Infrared Light-Emitting Diodes toward Spectroscopy Application. ACS Applied Materials & Diodes	8.0	68
4911	Ternary platinum–cobalt–indium nanoalloy on ceria as a highly efficient catalyst for the oxidative dehydrogenation of propane using CO2. Nature Catalysis, 2022, 5, 55-65.	34.4	76
4912	Iridium boosts the selectivity and stability of cobalt catalysts for syngas to liquid fuels. CheM, 2022, 8, 1050-1066.	11.7	26

#	Article	IF	CITATIONS
4913	Simulations of x-ray absorption spectra for CO desorbing from Ru(0001) with transition-potential and time-dependent density functional theory approaches. Structural Dynamics, 2022, 9, 014101.	2.3	1
4914	Effect of heat treatment temperature on the Pt3Co binary metal catalysts for oxygen reduced reaction and DFT calculations. Journal of Fuel Chemistry and Technology, 2022, 50, 114-121.	2.0	3
4915	C $<$ sub $>$ 2 $<$ /sub $>$ H $<$ sub $>$ 2 $<$ /sub $>$ Semi-Hydrogenation: Engineering the Surface Structure of Pt-Based Bimetallic Catalysts to Adjust Catalytic Performance. SSRN Electronic Journal, 0, , .	0.4	0
4916	Solid-state ¹⁷ O NMR study of α- <scp>d</scp> -glucose: exploring new frontiers in isotopic labeling, sensitivity enhancement, and NMR crystallography. Chemical Science, 2022, 13, 2591-2603.	7.4	13
4917	Impact of Mn- and Fe-Doping on Electronic and Magnetic Properties of MoXâ,, (<i>X</i> = S, Se) Monolayer. IEEE Transactions on Electron Devices, 2022, 69, 1553-1560.	3.0	7
4918	Insight into enhanced hydrogen evolution of single-atom Cu1/TiO2 catalysts from first principles. International Journal of Hydrogen Energy, 2022, 47, 4653-4661.	7.1	15
4919	Reducing the Irreducible: Dispersed Metal Atoms Facilitate Reduction of Irreducible Oxides. Journal of Physical Chemistry C, 2022, 126, 933-945.	3.1	11
4920	Ab initio mechanistic insights into the stability, diffusion and storage capacity of sI clathrate hydrate containing hydrogen. International Journal of Hydrogen Energy, 2022, 47, 8419-8433.	7.1	10
4921	Ab-Initio Investigation of Finite Size Effects in Rutile Titania Nanoparticles with Semilocal and Nonlocal Density Functionals. Journal of Physical Chemistry C, 2022, 126, 2121-2130.	3.1	3
4922	Bimetallic Gold–Silver Nanostructures Drive Low Overpotentials for Electrochemical Carbon Dioxide Reduction. ACS Applied Materials & Interfaces, 2022, 14, 6604-6614.	8.0	14
4923	A structural investigation of organic battery anode materials by NMR crystallography. Magnetic Resonance in Chemistry, 2022, 60, 489-503.	1.9	3
4924	Origins of the hydrogen signal in atom probe tomography: case studies of alkali and noble metals. New Journal of Physics, 2022, 24, 013008.	2.9	10
4925	2D Ultrathin pâ€ŧype ZnTe with High Environmental Stability. Advanced Electronic Materials, 2022, 8, .	5.1	9
4926	Adsorption Sites on Pd Nanoparticles Unraveled by Machine-Learning Potential with Adaptive Sampling. Molecules, 2022, 27, 357.	3.8	3
4927	Study of New Infrared Non-Linear Optical Crystal BaGa4Se7 Based on First Principle. Crystals, 2022, 12, 143.	2.2	0
4928	Ab Initio Simulations of Water/Metal Interfaces. Chemical Reviews, 2022, 122, 10746-10776.	47.7	72
4929	Comparative Analysis of the Hydrogen Bond Vibrations of Ice XII. ACS Omega, 2022, 7, 2970-2974.	3.5	2
4930	Modulating the Electronic Structure of Nickel Sulfide Electrocatalysts by Chlorine Doping toward Highly Efficient Alkaline Hydrogen Evolution. ACS Applied Materials & Interfaces, 2022, 14, 6869-6875.	8.0	25

#	Article	IF	CITATIONS
4931	Optoelectronic investigation of lithium di-manganese oxide with doping of Nickel via Li1-xNixMn2O4 where $X=4\%$ and 8% composition and their application. Journal of Solid State Chemistry, 2022, 309, 122918.	2.9	1
4932	Fast and recoverable NO ₂ detection achieved by assembling ZnO on Ti ₃ C ₂ T _{<i>x</i>} MXene nanosheets under UV illumination at room temperature. Nanoscale, 2022, 14, 3441-3451.	5.6	65
4933	Modelling the physical properties of environmentally friendly optical magnetic switches: DFT and TD-DFT., 2022,, 355-384.		2
4934	Exfoliating spent cathode materials with robust interlayer interactions into atomic-thin nanosheets for boosting the oxygen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 3359-3372.	10.3	11
4935	Density-functional-theory predictions of mechanical behaviour and thermal properties as well as experimental hardness of the Ga-bilayer Mo2Ga2C. Journal of Advanced Ceramics, 2022, 11, 273-282.	17.4	26
4936	Theoretical Studies on the Mechanism of deNOx Process in Cu–Zn Bimetallic System—Comparison of FAU and MFI Zeolites. Molecules, 2022, 27, 300.	3.8	2
4937	Regulation of hydrogen evolution performance of titanium oxide–carbon composites at high current density with a Ti–O hybrid orbital. , 2022, 4, 480-490.		11
4938	Molecular Modelling of Optical Biosensor Phosphorene-Thioguanine for Optimal Drug Delivery in Leukemia Treatment. Cancers, 2022, 14, 545.	3.7	7
4939	Origin of Enhanced Ammonia Synthesis on Ru–Co Catalysts Unraveled by Density Functional Theory. ACS Catalysis, 2022, 12, 1090-1097.	11.2	25
4940	Coexistence of carbonyl and ether groups on oxygen-terminated (110)-oriented diamond surfaces. Communications Materials, 2022, 3, .	6.9	10
4941	Theoretical Study on Carbon Monoxide Adsorption on Unsupported and γ-Al ₂ O ₃ -Supported Silver Nanoparticles: Size, Shape, and Support Effects. ACS Omega, 2022, 7, 4405-4412.	3. 5	8
4942	Atomic Structure Modification of Feâ€'Nâ€'C Catalysts via Morphology Engineering of Graphene for Enhanced Conversion Kinetics of Lithiumâ€"Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	14.9	45
4943	Eliminating Delocalization Error to Improve Heterogeneous Catalysis Predictions with Molecular DFT $+ \langle i \rangle U \langle j \rangle$. Journal of Chemical Theory and Computation, 2022, 18, 1142-1155.	5. 3	7
4944	Zwitter Ionization of Glycine at Outer Space Conditions due to Microhydration by Six Water Molecules. Physical Review Letters, 2022, 128, 033001.	7.8	7
4946	First-principles study on CO oxidation on CuO(111) surface prefers the Eleyâ 'Rideal or Langmuirâ' Hinshelwood pathway. Nanotechnology, 2022, 33, 205504.	2.6	1
4947	Predicting diffusion barriers and diffusivities of C6–C12 methylbenzenes in MFI zeolites. Microporous and Mesoporous Materials, 2022, 333, 111705.	4.4	7
4948	Achieving a high dielectric constant and low dielectric loss of polymer composites filled with an interface-bonded g-C3N4@PbS narrow-bandgap semiconductor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 640, 128501.	4.7	3
4949	Topological viewpoint of two-dimensional group III–V and IV–IV compounds in the presence of electric field and spin–orbit coupling by density functional theory and tight-binding model. Journal of Physics Condensed Matter, 2022, 34, 145502.	1.8	6

#	ARTICLE	IF	CITATIONS
4950	Solution-Phase Synthesis of PdH _{0.706} Nanocubes with Enhanced Stability and Activity toward Formic Acid Oxidation. Journal of the American Chemical Society, 2022, 144, 2556-2568.	13.7	42
4951	Two-Dimensional Perovskite/HfS ₂ van der Waals Heterostructure as an Absorber Material for Photovoltaic Applications. ACS Applied Energy Materials, 2022, 5, 2300-2307.	5.1	9
4952	Identification of Valence Electronic States Reflecting the Hydrogen Bonding in Liquid Ethanol. Journal of Physical Chemistry B, 2022, 126, 1101-1107.	2.6	2
4953	Experiments combined with theoretical research on the effect of hydrogen evolution by the nanosheet of NiS–CdS–CN catalyst. International Journal of Hydrogen Energy, 2022, 47, 7724-7737.	7.1	10
4954	gpaw-tools – higher-level user interaction scripts for GPAW calculations and interatomic potential based structure optimization. Computational Materials Science, 2022, 204, 111201.	3.0	3
4955	Alkali ions pre-intercalation of $\hat{\Gamma}$ -MnO2 nanosheets for high-capacity and stable Zn-ion battery. Materials Today Energy, 2022, 24, 100934.	4.7	35
4956	Melatonin/nanoclay hybrids for skin delivery. Applied Clay Science, 2022, 218, 106417.	5.2	2
4957	An optimum thermoelectric figure of merit using Ge2Se2 monolayer: An ab-initio approach. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 138, 115060.	2.7	5
4958	Effect of W on the thermal stability, mechanical properties and corrosion resistance of Fe-based bulk metallic glass. Intermetallics, 2022, 143, 107485.	3.9	16
4959	Understanding catalyst inhibition from biogenic impurities in transfer hydrogenation of a biorenewable platform chemical. Journal of Environmental Chemical Engineering, 2022, 10, 107132.	6.7	0
4960	The influence of spatial scale of active sites on the catalytic performance: Probing into C2H2 semi-hydrogenation on the Cu and S-modified Cu catalysts. Fuel, 2022, 315, 123180.	6.4	5
4961	The effect of the presence of a hydroxyl group on the vibration frequencies of NO and NH3 adsorbates on Cu-Zn bimetallic nanoparticles in ZSM-5 and FAU zeolite – a DFT study. Journal of Molecular Structure, 2022, 1255, 132440.	3.6	2
4962	Zirconia nanofibers-loaded reduced graphene oxide fabrication for specific electrochemical detection of methyl parathion. Journal of Alloys and Compounds, 2022, 904, 163798.	5.5	20
4963	Single palladium site in ordered porous heteroatom-doped carbon for high-performance alkaline hydrogen oxidation. Applied Catalysis B: Environmental, 2022, 306, 121029.	20.2	67
4964	In-situ Formed Surface Complexes Promoting NIR-Light-Driven Carbonylation of Diamine with CO on Ultrathin Co2CO3(OH)2 Nanosheets. Applied Catalysis B: Environmental, 2022, 306, 121103.	20.2	6
4965	Simulation of the Physicochemical Properties of Anatase TiO2 with Oxygen Vacancies and Doping of Different Elements for Photocatalysis Processes. Lecture Notes in Networks and Systems, 2022, , 238-249.	0.7	O
4966	A predictive model of surface adsorption in dissolution on transition metals and alloys. Journal of Materials Chemistry A, 2022, 10, 6731-6739.	10.3	7
4967	The Fischer-Tropsch synthesis: A few enduring mechanistic conundrums revisited. Journal of Catalysis, 2022, 405, 614-625.	6.2	7

#	ARTICLE	IF	CITATIONS
4968	Strong interfacial energetics between catalysts and current collectors in aqueous sodium–air batteries. Journal of Materials Chemistry A, 2022, 10, 4601-4610.	10.3	10
4969	Synthesis of metal silicides using polyhedral oligomeric silsesquioxane as a silicon source for semi-hydrogenation of phenylacetylene. Inorganic Chemistry Frontiers, 2022, 9, 1386-1394.	6.0	0
4970	Cr(III) and Ni(II) complexes of isatin-hydrazone ligand: preparation, characterization, DFT studies, biological activity, and ion-flotation separation of Ni(II). Inorganic Chemistry Communication, 2022, 138, 109278.	3.9	6
4971	Superselective Hg(II) Removal from Water Using a Thiol-Laced MOF-Based Sponge Monolith: Performance and Mechanism. Environmental Science & Environment	10.0	62
4972	Exploring the Formation Mechanism of Coamorphous Andrographolide-Oxymatrine Based on Molecular Dynamics and Spectroscopy. Journal of Pharmaceutical Sciences, 2022, 111, 2056-2071.	3.3	10
4973	Stabilization of Cu ₂ 0 through Site-Selective Formation of a Co ₁ Cu Hybrid Single-Atom Catalyst. Chemistry of Materials, 2022, 34, 2313-2320.	6.7	5
4974	Electronic structures and optical properties of monolayer borophenes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 272, 121014.	3.9	6
4975	Ultrafast Solution-Phase Photophysical and Photochemical Dynamics of Hexaiodobismuthate(III), the Heart of Bismuth Halide Perovskite Solar Cells. Journal of Physical Chemistry B, 2022, 126, 1254-1267.	2.6	3
4976	Propane Dehydrogenation on Platinum Catalysts: Identifying the Active Sites through Bayesian Analysis. ACS Catalysis, 2022, 12, 2487-2498.	11.2	15
4977	Interaction of Mg with the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide—An experimental and computational model study of the electrode–electrolyte interface in post-lithium batteries. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40.	2.1	6
4978	C2H2 semi-hydrogenation over Cu catalysts: Revealing the influence of Cu active site types on the catalytic performance. Chemical Engineering Science, 2022, 251, 117494.	3.8	4
4979	Spherical vs. planar: Steering the electronic communication between Ru nanoparticle and single atom to boost the electrocatalytic hydrogen evolution activity both in acid and alkaline. Applied Catalysis B: Environmental, 2022, 307, 121193.	20.2	36
4980	Edge Effect Promotes Graphene-Confining Single-Atom Co–N ₄ and Rh–N ₄ for Bifunctional Oxygen Electrocatalysis. Journal of Physical Chemistry C, 2022, 126, 30-39.	3.1	17
4981	NMR Response of the Tetrel Bond Donor. Journal of Physical Chemistry C, 2022, 126, 851-865.	3.1	10
4982	In situ Raman spectroscopyÂreveals the structure and dissociation of interfacial water. Nature, 2021, 600, 81-85.	27.8	381
4983	Assessing density functionals for describing methane dissociative chemisorption on $Pt(110)-(2\tilde{A}-1)$ surface. Chinese Journal of Chemical Physics, 2021, 34, 883-895.	1.3	2
4984	High-Rate and Durable Sulfide-Based All-Solid-State Lithium Battery with <i>in situ</i> Li ₂ O Buffering. SSRN Electronic Journal, 0, , .	0.4	0
4985	Homologous Nicop@Nifep Heterojunction Array Achieving High-Current Hydrogen Evolution for Alkaline Anion Exchange Membrane Electrolyzers. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
4986	Visible-Light Photocatalytic Chlorite Activation Mediated by Oxygen Vacancy for Efficient Chlorine Dioxide Generation and Pollutant Degradation. SSRN Electronic Journal, 0, , .	0.4	0
4987	Ti4o7 Regulating Both Zn(Oh)42– and Electrons for Improving Zn–Ni Batteries. SSRN Electronic Journal, 0, , .	0.4	0
4988	Density Functional Theory for Transition Metal Catalysis. , 2024, , 562-585.		O
4989	Intrinsic Activity and Selectivity Enhancement of Single-Atom Rh in Syngas-to-C2 Oxygenates by Engineering the Local Coordination Atom. SSRN Electronic Journal, 0, , .	0.4	0
4990	Impact of alkaline-earth doping on electronic properties of the photovoltaic perovskite CsSnl ₃ : insights from a DFT perspective. Dalton Transactions, 2022, 51, 6607-6621.	3.3	7
4991	Circumventing the scaling relationship on bimetallic monolayer electrocatalysts for selective CO ₂ reduction. Chemical Science, 2022, 13, 3880-3887.	7.4	9
4992	Regulating Interfacial Structure Enables High-Voltage Dilute Ether Electrolytes. SSRN Electronic Journal, 0, , .	0.4	0
4993	Effects of vibrational and rotational excitations on dissociative chemisorption dynamics of N2 on Fe(111). Chinese Journal of Chemical Physics, 2022, 35, 443-450.	1.3	2
4994	Fabricating Ga doped and MgO embedded nanomaterials for sorption-enhanced steam reforming of methanol. Journal of Materials Chemistry A, 2022, 10, 7300-7313.	10.3	14
4995	Selective separation of uranyl ions from some lanthanide elements using a promising \hat{l}^2 -enaminoester ligand by cloud point extraction. RSC Advances, 2022, 12, 8520-8529.	3.6	3
4996	Selective preconcentration separation of Hg(<scp>ii</scp>) and Cd(<scp>ii</scp>) from water, fish muscles, and cucumber samples using recycled aluminum adsorbents. RSC Advances, 2022, 12, 7941-7949.	3.6	2
4997	Engineering metal–metal oxide surfaces for high-performance oxygen reduction on Ag–Mn electrocatalysts. Energy and Environmental Science, 2022, 15, 1611-1629.	30.8	22
4998	A first-principles study of water adsorbed on flat and stepped silver surfaces. Physical Chemistry Chemical Physics, 2022, 24, 6803-6810.	2.8	4
4999	Revealing the role of HBr in propane dehydrogenation on CeO ₂ (111) <i>via</i> DFT-based microkinetic simulation. Physical Chemistry Chemical Physics, 2022, 24, 9718-9726.	2.8	3
5000	Controllable Fabrication of Atomic Dispersed Low-Coordination Nickel-Nitrogen Sites for Highly Efficient Electrocatalytic Co2 Reduction. SSRN Electronic Journal, 0, , .	0.4	0
5001	Insight into the photoelectrical properties of metal adsorption on a two-dimensional organic–inorganic hybrid perovskite surface: theoretical and experimental research. RSC Advances, 2022, 12, 5595-5611.	3.6	O
5002	Ab Initio Study of Negative Electron Affinity on the Scandium-Terminated Diamond (100) Surface for Electron Emission Devices. SSRN Electronic Journal, 0, , .	0.4	0
5003	Directional Utilization Disorder Charge Via In-Plane Driving Force of Functionalized Graphite Carbon Nitride for the Robust Photocatalytic Degradation of Fluoroquinolone. SSRN Electronic Journal, 0, , .	0.4	O

#	Article	IF	CITATIONS
5004	Multi-component crystals containing urea: mechanochemical synthesis and characterization by ³⁵ Cl solid-state NMR spectroscopy and DFT calculations. CrystEngComm, 2022, 24, 2626-2641.	2.6	7
5005	Cr2o3-Doped Graphene Sensor for Early Diagnosis of Liver Cirrhosis: A First-Principles Study. SSRN Electronic Journal, 0, , .	0.4	0
5006	Homologous NiCoP@NiFeP heterojunction array achieving high-current hydrogen evolution for alkaline anion exchange membrane electrolyzers. Journal of Materials Chemistry A, 2022, 10, 10209-10218.	10.3	24
5007	Catalytic Ozonation of Ch2cl2 Over Hollow Urchin-Like Mno2 with Regulation of Active Oxygen by Catalyst Modification and Ozone Promotion. SSRN Electronic Journal, 0, , .	0.4	0
5008	Shifting and Breaking Scaling Relations at Transition Metal Telluride Edges for Selective Electrochemical CO ₂ Reduction. Journal of Materials Chemistry A, O, , .	10.3	4
5009	Enhanced charge collection and surface activity of a CuBi ₂ O ₄ photocathode <i>via</i> crystal facet engineering. Journal of Materials Chemistry A, 2022, 10, 9427-9434.	10.3	9
5010	Binding and Exchange Reactions of Hydrogen Isotopes on Surfaces of Dispersed Pt Nanoparticles. Journal of Physical Chemistry C, 2022, 126, 3923-3938.	3.1	3
5011	Interfacial Effect on Photo-Modulated Magnetic Properties of Core/Shell-Structured NiFe/NiFe2O4 Nanoparticles. Materials, 2022, 15, 1347.	2.9	0
5012	Acid anion electrolyte effects on platinum for oxygen and hydrogen electrocatalysis. Communications Chemistry, 2022, 5, .	4.5	48
5013	Thermal assisted heterogeneous activation of peroxymonosulfate by activated carbon to degrade perfluorooctanoic acid in soil. Journal of Environmental Chemical Engineering, 2022, , 107475. Improving the transferability of density functional theory predictions through correlation analysis:	6.7	3
5014	Structural and energetic properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Ni</mml:mi><mml:mi>X</mml:mi>alloys <mml:math< td=""><td>> <td>row></td></td></mml:math<></mml:mrow></mml:math>	> <td>row></td>	row>

alloys <mml:math

#	ARTICLE	IF	Citations
5022	Atomic Model of Gold Adsorption onto the Pyrite Surface with DFT Study. Minerals (Basel,) Tj ETQq0 0 0 rgBT /Ov	erlock 10 2.0	Tf ₄ 50 742 Td
5023	Binary dopant segregation enables hematite-based heterostructures for highly efficient solar H2O2 synthesis. Nature Communications, 2022, 13, 1499.	12.8	24
5024	First-principles thermochemical properties of hexagonal and cubic phase BaMnO3. Materials Today Communications, 2022, 31, 103453.	1.9	5
5025	Catalytic Performance and Near-Surface X-ray Characterization of Titanium Hydride Electrodes for the Electrochemical Nitrate Reduction Reaction. Journal of the American Chemical Society, 2022, 144, 5739-5744.	13.7	31
5026	Migration Barrier Estimation of Carbon in Lead for Lead–Acid Battery Applications: A Density Functional Theory Approach. Solids, 2022, 3, 177-187.	2.4	2
5027	An assessment of density functionals for predicting CO2 adsorption in diamine-functionalized metal–organic frameworks. Journal of Chemical Physics, 2022, 156, 154113.	3.0	7
5028	Ultralow thermal conductivity and anharmonic rattling in two-dimensional WB4 monolayer. Applied Physics Letters, 2022, 120, .	3.3	5
5029	How atoms of polycrystalline Nb20.6Mo21.7Ta15.6W21.1V21.0 refractory high-entropy alloys rearrange during the melting process. Scientific Reports, 2022, 12, 5183.	3.3	5
5030	OH Binding Energy as a Universal Descriptor of the Potential of Zero Charge on Transition Metal Surfaces. Journal of Physical Chemistry C, 2022, 126, 5521-5528.	3.1	12
5031	Insights into the Hydrogen Evolution Reaction on 2D Transition-Metal Dichalcogenides. Journal of Physical Chemistry C, 2022, 126, 5151-5158.	3.1	32
5032	Nanoporous Intermetallic SnTe Enables Efficient Electrochemical CO ₂ Reduction into Formate via Promoting the Fracture of Metal–Oxygen Bonding. Small, 2022, 18, e2107968.	10.0	14
5033	Lateral Interactions of Dynamic Adlayer Structures from Artificial Neural Networks. Journal of Physical Chemistry C, 2022, 126, 5529-5540.	3.1	5
5034	Predicting properties of periodic systems from cluster data: A case study of liquid water. Journal of Chemical Physics, 2022, 156, 114103.	3.0	13
5035	A universal chemical-induced tensile strain tuning strategy to boost oxygen-evolving electrocatalysis on perovskite oxides. Applied Physics Reviews, 2022, 9, .	11.3	67
5036	On the role of Zn doping on tuning the electronic and optical properties of MnCr ₂ O ₄ spinel via Mn _{0.5} Zn _{0.5} Cr ₂ O ₄ doping scheme: A first-principles quantum computational analysis. Physica Scripta, 2022, 97, 045812.	2.5	3
5037	Ultra-low lattice thermal conductivity and high figure of merit for Janus MoSeTe monolayer: a peerless material for high temperature regime thermoelectric devices. Journal of Materials Science, 2022, 57, 7012-7022.	3.7	5
5038	Elucidating the Role of B-Site Cations toward CO ₂ Reduction in Perovskite-Based Solid Oxide Electrolysis Cells. Journal of the Electrochemical Society, 2022, 169, 034532.	2.9	8
5039	Revealing the Origin of Nitrogen Electroreduction Activity of Molybdenum Disulfide Supported Iron Atoms. Journal of Physical Chemistry C, 2022, 126, 5180-5188.	3.1	22

#	ARTICLE	IF	Citations
5040	First-principles study on the strain-modulated structure and electronic properties of janus tin oxide selenide monolayer., 2022, 166, 207212.		6
5041	Increased Efficiency of Organic Solar Cells by Seeded Control of the Molecular Morphology in the Active Layer. Solar Rrl, 2022, 6, .	5.8	5
5042	Computational Screening of Single and Di-Atom Catalysts for Electrochemical CO ₂ Reduction. ACS Catalysis, 2022, 12, 4818-4824.	11.2	46
5043	First-Row Transition Metal Antimonates for the Oxygen Reduction Reaction. ACS Nano, 2022, 16, 6334-6348.	14.6	23
5044	Theoretical and experimental study of the effects of cobalt and nickel doping within IrO2 on the acidic oxygen evolution reaction. Journal of Catalysis, 2022, 408, 64-80.	6.2	10
5045	Dual-Anion Doping Enables NiSe ₂ Electrocatalysts to Accelerate Alkaline Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 5036-5043.	5.1	12
5046	Accounting for Dispersion Effects in the DFT Framework of Electrocatalysis: A Hybrid Solvation Model-Based Case Study of the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2022, 126, 6171-6188.	3.1	3
5047	Boosting acidic water oxidation performance by constructing arrays-like nanoporous lrxRu1â^'xO2 with abundant atomic steps. Nano Research, 2022, 15, 5933-5939.	10.4	25
5048	Bonding character of intermediates in onâ€surface Ullmann reactions revealed with energy decomposition analysis. Journal of Computational Chemistry, 2023, 44, 179-189.	3.3	2
5049	Local Structure of Sulfur Vacancies on the Basal Plane of Monolayer MoS ₂ . ACS Nano, 2022, 16, 6725-6733.	14.6	17
5050	Hydrogen adsorption behavior on AXenes Na ₂ N and K ₂ N: a first-principles study. Materials Research Express, 2022, 9, 045501.	1.6	4
5051	Catalytic oxidation mechanism of CO on FeN2-doped graphene. Chemical Physics, 2022, 559, 111536.	1.9	11
5052	Fermi–Löwdin orbital self-interaction correction of adsorption energies on transition metal ions. Journal of Chemical Physics, 2022, 156, 134102.	3.0	2
5053	Local Order in AgAuCuPdPt High-Entropy Alloy Surfaces. Journal of Physical Chemistry C, 2022, 126, 6782-6790.	3.1	5
5054	Impact of Intrinsic Density Functional Theory Errors on the Predictive Power of Nitrogen Cycle Electrocatalysis Models. ACS Catalysis, 2022, 12, 4784-4791.	11,2	20
5055	A universal picture for ejecting atoms on metallics. Acta Materialia, 2022, 228, 117792.	7.9	3
5056	Redox-active Hexaazatriphenylene@MXene composite for high-performance flexible proton batteries. Composites Part B: Engineering, 2022, 235, 109750.	12.0	21
5057	Interface Engineering of Co(OH) ₂ Nanosheets Growing on the KNbO ₃ Perovskite Based on Electronic Structure Modulation for Enhanced Peroxymonosulfate Activation. Environmental Science & Environmental Sc	10.0	136

#	Article	IF	CITATIONS
5058	CO2 reduction to formate on an affordable bismuth metal-organic framework based catalyst. Journal of CO2 Utilization, 2022, 59, 101937.	6.8	12
5059	Atomic bonding and electrical characteristics of two-dimensional graphene/boron nitride van der Waals heterostructures with manufacturing defects via binding energy and bond-charge model. Chemical Physics Letters, 2022, 794, 139474.	2.6	5
5060	Lattice inversion potential with neural network corrections for metallic systems. Computational Materials Science, 2022, 207, 111311.	3.0	1
5061	The interaction of H2O, O2 and H2OÂ+ÂO2 molecules with g-C3N4 surface:A first-principle study. Diamond and Related Materials, 2022, 125, 108995.	3.9	3
5062	Leaching of palladium atoms from small cluster models during Heck reactions – An experimental and theoretical study. Catalysis Communications, 2022, 165, 106441.	3.3	4
5063	Highly efficient emission in lead-free inorganic vacancy-ordered Sb-Bi-alloyed halide quadruple perovskites. Chemical Physics Letters, 2022, 795, 139536.	2.6	3
5064	The local structure of water from combining diffraction and X-ray spectroscopy. Journal of Non-Crystalline Solids: X, 2022, 14, 100087.	1.2	3
5065	Ultra-long cycle H-doped VO2(B) cathode for high capacity aqueous Zn-ion battery. Materials Today Advances, 2022, 14, 100230.	5.2	10
5066	Revealing improved electrocatalytic performances of electrochemically synthesized S and Ni doped Fe2O3 nanostructure interfaces. Applied Surface Science, 2022, 588, 152894.	6.1	6
5067	Hot atom chemistry: Oxygen at stepped platinum surfaces. Applied Surface Science Advances, 2022, 9, 100240.	6.8	1
5068	Self-templating construction of flower-like mesoporous magnesium silicate composites from sepiolite for high-efficiency adsorption of aflatoxin B1. Separation and Purification Technology, 2022, 291, 120953.	7.9	19
5069	Effect of boron on the structural stability, mechanical properties, and electronic structures of γ′-Ni3Al in TLP joints of nickel-based single-crystal alloys. Materials Today Communications, 2022, 31, 103375.	1.9	22
5070	Study on the most effective pressure application method to increase the critical temperature of MgB2. Materials Today Communications, 2022, 31, 103432.	1.9	0
5071	Design and tailoring of carbon-Al2O3 double coated nickel-based cation-disordered cathodes towards high-performance Li-ion batteries. Nano Energy, 2022, 96, 107071.	16.0	26
5072	Controllable fabrication of atomic dispersed low-coordination nickel-nitrogen sites for highly efficient electrocatalytic CO2 reduction. Chemical Engineering Journal, 2022, 440, 135956.	12.7	23
5073	Subtle modulation on electronic properties of platinum by Cu-Nx containing carbon support for highly efficient electrocatalytic hydrogen evolution. Applied Surface Science, 2022, 591, 153057.	6.1	7
5074	Tandem catalysis on adjacent active motifs of copper grain boundary for efficient CO2 electroreduction toward C2 products. Journal of Energy Chemistry, 2022, 70, 219-223.	12.9	29
5075	A biocompatible bismuth based metal-organic framework as efficient light-sensitive drug carrier. Journal of Colloid and Interface Science, 2022, 617, 578-584.	9.4	12

#	ARTICLE	IF	Citations
5076	Quantum studies of methane-metal inelastic diffraction and trapping: The variation with molecular orientation and phonon coupling. Chemical Physics, 2022, 559, 111516.	1.9	6
5077	MOF etching-induced Co-doped hollow carbon nitride catalyst for efficient removal of antibiotic contaminants by enhanced perxymonosulfate activation. Chemical Engineering Journal, 2022, 441, 136074.	12.7	45
5078	C2H2 semi-hydrogenation: Engineering the surface structure of Pt-based bimetallic catalysts to adjust catalytic performance. Fuel, 2022, 321, 124118.	6.4	7
5079	Directional utilization disorder charge via In-plane driving force of functionalized graphite carbon nitride for the robust photocatalytic degradation of fluoroquinolone. Chemical Engineering Journal, 2022, 442, 135943.	12.7	14
5080	Unsaturated Sulfur Crown Ethers Can Extract Mercury(II) and Show Promise for Future Copernicium(II) Studies: A Combined Experimental and Computational Study. Inorganic Chemistry, 2022, 61, 807-817.	4.0	1
5081	Ligand Exchange Strategy to Achieve Chiral Perovskite Nanocrystals with a High Photoluminescence Quantum Yield and Regulation of the Chiroptical Property. ACS Applied Materials & Emp; Interfaces, 2022, 14, 3385-3394.	8.0	25
5082	Study on the relationship between uniaxial strain and critical transition temperature of MgB ₂ based on first-principles. Journal of Physics Condensed Matter, 2022, 34, 105601.	1.8	1
5083	Rationally Tailoring Catalysts for the CO Oxidation Reaction by Using DFT Calculations. ACS Catalysis, 2022, 12, 116-125.	11.2	8
5084	Alteration of Electronic Band Structure ⟨i⟩via⟨ i⟩ a Metal–Semiconductor Interfacial Effect Enables High Faradaic Efficiency for Electrochemical Nitrogen Fixation. ACS Nano, 2021, 15, 20364-20376.	14.6	32
5085	Effective Breaking of the Fluorocarbon Chain by the Interface Bi ₂ O ₂ X···PFOA Complex Strategy via Coordinated Se on Construction of the Internal Photogenerated Carrier Pathway. ACS Applied Materials & Samp; Interfaces, 2022, 14, 654-667.	8.0	13
5086	Magnetically Collected Platinum/Nickel Alloy Nanoparticles as Catalysts for Hydrogen Evolution. ACS Applied Nano Materials, 2021, 4, 12957-12965.	5.0	9
5087	Piecewise Multipole-Expansion Implicit Solvation for Arbitrarily Shaped Molecular Solutes. Journal of Chemical Theory and Computation, 2022, 18, 461-478.	5. 3	2
5088	Computational Screening of Bimetallic Catalysts: Application to Ammonia Decomposition. Journal of Physical Chemistry C, 2022, 126, 192-202.	3.1	1
5089	Synthesis, Structural Characterization, Thermogravimetric, and Molecular Modelling of Novel Mn(II), Co(II), and Ni(II) Metal Complexes Derived from New Synthesized 4,6-Diaryl-2-oxonicotinonitrile Ligand. Russian Journal of General Chemistry, 2021, 91, 2564-2580.	0.8	1
5090	Cooperative catalysis coupling photo-/photothermal effect to drive Sabatier reaction with unprecedented conversion and selectivity. Joule, 2021, 5, 3235-3251.	24.0	91
5091	Implicit Solvation Methods for Catalysis at Electrified Interfaces. Chemical Reviews, 2022, 122, 10777-10820.	47.7	82
5092	Monitoring oxygen production on mass-selected iridium–tantalum oxide electrocatalysts. Nature Energy, 2022, 7, 55-64.	39.5	108
5093	Computer simulation of hypothetical hydrogen ordered structure of ice XIX. Physical Chemistry Chemical Physics, 2022, 24, 11023-11029.	2.8	2

#	Article	IF	CITATIONS
5094	Structures of liquid and aqueous water isotopologues at ambient temperature from <i>ab initio</i> path integral simulations. Physical Chemistry Chemical Physics, 2022, 24, 10851-10859.	2.8	3
5095	Revealing the different performance of Li ₄ SiO ₄ and Ca ₂ SiO ₄ for CO ₂ adsorption by density functional theory. RSC Advances, 2022, 12, 11190-11201.	3.6	5
5096	Atomistic modeling of Li- and post-Li-ion batteries. Physical Review Materials, 2022, 6, .	2.4	17
5097	Electron-Level Mechanistic Insights into Ce Doping for Enhanced Efficiency Degradation of Bisphenol A under Visible Light Irradiation. Nanomaterials, 2022, 12, 1382.	4.1	6
5098	NaClO-induced sodium-doped cyano-rich graphitic carbon nitride nanosheets with nitrogen vacancies to boost photocatalytic hydrogen peroxide production. Chemical Engineering Journal, 2022, 443, 136501.	12.7	22
5099	Asymmetrical C–C Coupling for Electroreduction of CO on Bimetallic Cu–Pd Catalysts. ACS Catalysis, 2022, 12, 5275-5283.	11.2	35
5100	Boosting hydrogen and oxygen evolution of porous CoP nanosheet arrays through electronic modulating with oxygen-anion-incorporation. Journal of Colloid and Interface Science, 2022, 622, 239-249.	9.4	11
5101	Spectroscopic investigations and density functional theory calculations reveal differences in retention mechanisms of lead and copper on chemically-modified phytolith-rich biochars. Chemosphere, 2022, 301, 134590.	8.2	6
5102	Unlocking bimetallic active sites via a desalination strategy for photocatalytic reduction of atmospheric carbon dioxide. Nature Communications, 2022, 13, 2146.	12.8	60
5103	Surface hydroxyl dependent adsorption of ruthenium on SiO2(0 0 1) – Understanding metal–support interaction. Applied Surface Science, 2022, 593, 153396.	6.1	3
5104	Substrate effect on hydrogen evolution reaction in two-dimensional Mo2C monolayers. Scientific Reports, 2022, 12, 6076.	3.3	3
5105	Greatly Enhanced Methanol Oxidation Reaction of <scp>CoPt</scp> Truncated Octahedral Nanoparticles by External Magnetic Fields. Energy and Environmental Materials, 2023, 6, .	12.8	6
5106	High performance self-supporting 3D nanoporous PdNi alloy foam for methanol oxidation electrocatalysis. Journal of Porous Materials, 2022, 29, 1199-1209.	2.6	5
5107	Enhanced Catalytic Performance of N-Doped Carbon Sphere-Supported Pd Nanoparticles by Secondary Nitrogen Source Regulation for Formic Acid Dehydrogenation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 18550-18560.	8.0	16
5108	Exploration of novel high-temperature heavy metals adsorbent for sludge incineration process: Experiments and theoretical calculations. Journal of Environmental Chemical Engineering, 2022, 10, 107755.	6.7	11
5109	Graph neural networks accelerated molecular dynamics. Journal of Chemical Physics, 2022, 156, 144103.	3.0	19
5110	Pathways for the Formation of C ₂₊ Products under Alkaline Conditions during the Electrochemical Reduction of CO ₂ . ACS Energy Letters, 2022, 7, 1679-1686.	17.4	27
5111	Adsorption and Activation of CO2 on a Au19Pt Subnanometer Cluster in Aqueous Environment. Computational and Theoretical Chemistry, 2022, , 113701.	2.5	2

#	Article	IF	CITATIONS
5112	Active and conductive layer stacked superlattices for highly selective CO2 electroreduction. Nature Communications, 2022, 13, 2039.	12.8	69
5113	Study of narrow band gap double perovskites (Sr/Ba)2BB'O6 (B = In, Tl, B' = Sb, Bi) for optical, thermoelectric, and mechanical properties. Materials Today Communications, 2022, 31, 103547.	1.9	9
5114	Molecular insight into iron corrosion induced by chloride and sulphate. Computational Materials Science, 2022, 209, 111429.	3.0	16
5115	Building dual active sites Co3O4/Cu electrode to break scaling relations for enhancement of electrochemical reduction of nitrate to high-value ammonia. Journal of Hazardous Materials, 2022, 434, 128887.	12.4	25
5116	Ti4O7 regulating both Zn(OH)42– and electrons for improving Zn–Ni batteries. Chemical Engineering Journal, 2022, 443, 136342.	12.7	10
5117	Quantum Theory of Reactive Scattering and Adsorption at Surfaces. , 2005, , 1713-1733.		0
5118	Epitaxially Grown Porous Heterostructure of Hexagonal Boron Nitride/Graphene as Efficient Electrocatalyst for H2o2ÂGeneration. SSRN Electronic Journal, 0, , .	0.4	0
5119	Designing 3d metal oxides: selecting optimal density functionals for strongly correlated materials. Physical Chemistry Chemical Physics, 2022, 24, 14119-14139.	2.8	4
5120	Transition metal decorated phthalocyanine as a potential host material for lithium polysulfides: a first-principles study. RSC Advances, 2022, 12, 13975-13984.	3.6	3
5121	Photoelectric Modification of La- and Er-Doped Mg2si Semiconductors with High Absorption Coefficients in the Infrared and Ultraviolet Regions. SSRN Electronic Journal, 0, , .	0.4	0
5123	Vacancy Engineering in Ws2 Nanosheets for Enhanced Potassium″on Storage. SSRN Electronic Journal, 0, , .	0.4	0
5124	Realizing Rapid Kinetics of Mg2+ in Ti-Nb Oxides Through a Li+ Intercalation Activated Strategy Toward Extremely Fast Charge/Discharge Dual-Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
5125	Investigation of Sensing Properties of NOx Adsorbed Gas Molecules on Fe-Doped MoSeâ,, Monolayer. IEEE Sensors Journal, 2022, 22, 11665-11672.	4.7	7
5126	High-Performance Intermetallic Ptco Oxygen Reduction Catalyst Promoted by Molybdenum. SSRN Electronic Journal, 0, , .	0.4	O
5127	Polar Co9s8 Anchored on Pyrrole-Modified Graphene with in Situ Growth of Cnts as Multifunctional Flexible Medium for Efficient Lithium-Sulfur Batteries. SSRN Electronic Journal, 0, , .	0.4	0
5128	Anisotropy of thermal transport in phosphorene: A comparative first-principles study using different exchange-correlation functional. Materials Advances, 0, , .	5.4	0
5129	Synergistically engineering of shell thickness and core ordering to boost the oxygen reduction performance. Physical Chemistry Chemical Physics, 0, , .	2.8	2
5130	Boosting the Performance Gain of Ru/C for Hydrogen Evolution Reaction Via Surface Engineering. Energy and Environmental Materials, 2023, 6, .	12.8	7

#	ARTICLE	IF	CITATIONS
5131	Breaking adsorption-energy scaling limitations of electrocatalytic nitrate reduction on intermetallic CuPd nanocubes by machine-learned insights. Nature Communications, 2022, 13, 2338.	12.8	119
5132	Efficient and stable noble-metal-free catalyst for acidic water oxidation. Nature Communications, 2022, 13, 2294.	12.8	89
5133	Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution. Nature Communications, 2022, 13, 2473.	12.8	73
5134	Tailored modular assembly derived self-healing polythioureas with largely tunable properties covering plastics, elastomers and fibers. Nature Communications, 2022, 13, 2633.	12.8	19
5135	A Monodisperse ε′-(Co _{<i>x</i>} Fe _{1–<i>x</i>}) _{2.2} C Bimetallic Carbide Catalyst for Direct Conversion of Syngas to Higher Alcohols. ACS Catalysis, 2022, 12, 6016-6028.	11.2	13
5136	Single-Atom Mo Anchored on a Poly(heptazine imide) Nanosheet as a Novel Electrocatalyst Showing Excellent Behavior toward Nitrogen Reduction Reaction. Journal of Physical Chemistry C, 2022, 126, 7859-7869.	3.1	5
5137	Transient Solidâ€State Laser Activation of Indium for Highâ€Performance Reduction of CO ₂ to Formate. Small, 2022, 18, e2201311.	10.0	22
5138	Predicting catalytic activity in hydrogen evolution reaction. Current Opinion in Electrochemistry, 2022, 35, 101037.	4.8	8
5139	SO2 adsorption and conversion on pristine and defected calcite $\{1\ 0\ 4\}$ surface: A density functional theory study. Applied Surface Science, 2022, 596, 153575.	6.1	11
5140	Theoretical analysis of selective catalytic oxidation of H2S on Fe-N3 co-doped graphene. Molecular Catalysis, 2022, 524, 112318.	2.0	3
5141	First principles calculations investigation of optoelectronic properties and photocatalytic CO2 reduction of (MoSi2N4)5-n/(MoSiGeN4)n in-plane heterostructures. Results in Physics, 2022, 37, 105549.	4.1	19
5142	Structural, electronic, mechanical and thermodynamic properties of U–Si intermetallic compounds: A comprehensive first principles calculations. Progress in Nuclear Energy, 2022, 148, 104229.	2.9	5
5143	Ab initio study of negative electron affinity on the scandium-terminated diamond (100) surface for electron emission devices. Carbon, 2022, 196, 176-185.	10.3	6
5144	Bottom-up strategy for precisely designing and fabricating direct Z-scheme photocatalyst with wedge-type heterointerface bridged by chemical bond. Chemical Engineering Journal, 2022, 445, 136785.	12.7	10
5145	Study of \hat{l}^3 -valerolactone production from hydrogenation of levulinic acid over nanostructured Pt-hydrotalcite catalysts at low temperature. Fuel, 2022, 323, 124272.	6.4	12
5146	Flower-like FeMoO4@1T-MoS2 micro-sphere for effectively cleaning binary dyes via photo-Fenton oxidation. Journal of Colloid and Interface Science, 2022, 622, 284-297.	9.4	23
5147	Triptycene incorporated carbon nitride based donor-acceptor conjugated polymers with superior visible-light photocatalytic activities. Journal of Colloid and Interface Science, 2022, 622, 675-689.	9.4	8
5148	CO2/carbonate-mediated electrochemical water oxidation to hydrogen peroxide. Nature Communications, 2022, 13, 2668.	12.8	44

#	Article	IF	CITATIONS
5149	Gasâ€Phase Errors Affect DFTâ€Based Electrocatalysis Models of Oxygen Reduction to Hydrogen Peroxide. ChemElectroChem, 2022, 9, .	3.4	2
5150	Manganese promotion of a cobalt Fischer-Tropsch catalyst to improve operation at high conversion. Journal of Catalysis, 2022, 411, 97-108.	6.2	12
5151	Performance improvement of dye-sensitized double perovskite solar cells by adding Ti3C2T MXene. Chemical Engineering Journal, 2022, 446, 136963.	12.7	37
5152	Lattice Oxygen of PbO ₂ (101) Consuming and Refilling via Electrochemical Ozone Production and H ₂ O Dissociation. Journal of Physical Chemistry C, 2022, 126, 8627-8636.	3.1	7
5153	Organic phosphoric acid induced coral-like palladium network nanostructures for superior polyhydric alcohols electrocatalysis. Journal of Colloid and Interface Science, 2022, 623, 1122-1131.	9.4	3
5154	Electronic properties of the GaN nanowires surface activated by Cs/Li/NF3/Cs/Li alternate method in a high-concentration residual gas environment. Physica E: Low-Dimensional Systems and Nanostructures, 2022, , 115285.	2.7	0
5155	Insights into the mechanism of carbon chain growth on zeolite-based Fischer–Tropsch Co/Y catalysts. Physical Chemistry Chemical Physics, 2022, 24, 14751-14762.	2.8	2
5156	Atomically miniaturized bi-phase IrO _{<i>x</i>} /Ir catalysts loaded on N-doped carbon nanotubes for high-performance Li–CO ₂ batteries. Journal of Materials Chemistry A, 2022, 10, 19710-19721.	10.3	21
5157	Onâ€purpose Ethylene Production via CO ₂ â€assisted Ethane Oxidative Dehydrogenation: Selectivity Control of Iron Oxide Catalysts. ChemCatChem, 2022, 14, .	3.7	6
5158	Unraveling the effect of sulfur doping into electronic and optical performance of monoclinic hafnium dioxide (m-HfO2: S): an (DFT + U) insights report. Applied Physics A: Materials Science and Processing, 2022, 128, .	2.3	3
5159	Separation of Fe from wastewater and its use for NOx reduction; a sustainable approach for environmental remediation. Chemosphere, 2022, 303, 135103.	8.2	11
5160	Powder metallurgical 3D nickel current collectors with plasma-induced Ni3N nanocoatings enabling long-life and dendrite-free lithium metal anode. Journal of Energy Chemistry, 2022, 72, 149-157.	12.9	16
5161	Novel Self-assembly Pd(II)-Schiff Base Complex Modified Glassy Carbon Electrode for Electrochemical Detection of Paracetamol. Electrocatalysis, 2022, 13, 598-610.	3.0	19
5162	Enhancing surface polarization and reducing bandgap of BaTiO3 nanofiller for preparing dielectric traits-improved composites via its hybridization with layered g-C3N4. Surfaces and Interfaces, 2022, 31, 102060.	3.0	5
5163	Highly dispersed nickel species on iron-based perovskite for CO2 electrolysis in solid oxide electrolysis cell. Chinese Journal of Catalysis, 2022, 43, 1710-1718.	14.0	10
5164	Catalytic ozonation of CH2Cl2 over hollow urchin-like MnO2 with regulation of active oxygen by catalyst modification and ozone promotion. Journal of Hazardous Materials, 2022, 436, 129217.	12.4	18
5165	Sulfur-Dopant-Promoted Electrocatalytic Reduction of Nitrate by a Self-Supported Iron Cathode: Selectivity, Stability, and Underlying Mechanism. SSRN Electronic Journal, 0, , .	0.4	0
5166	Dual Functional Effect of Oxygen Vacancies and Depolarity Shield Embedded Nico2o4 Cathode in Lithium Sulfur Battery. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
5167	Effect of Synthesis Temperature on Water Adsorption in UiO-66 Derivatives: Experiment, DFT+D Modeling, and Monte Carlo Simulations. Journal of Physical Chemistry C, 2022, 126, 9185-9194.	3.1	6
5168	Revisiting Activity Tuning Using Lattice Strain: CO Decomposition in Terrace Ru(0001) and Stepped Ru(1015) Surfaces. Journal of Physical Chemistry C, 0, , .	3.1	1
5169	Design of Catalysts for Selective Hydrogenation of Acrylonitrile via Confining Single Metal Atoms within a C ₂ N Framework. Journal of Physical Chemistry C, 2022, 126, 10053-10060.	3.1	7
5170	Mechanism of remote epitaxy of stanene on Cu(111) substrate through monolayer graphene linking. Journal of Applied Physics, 2022, 131, 205301.	2.5	0
5171	$\label{lem:hubbard mullimath} Hubbard < mml:mi>U parameters for transition metals from first principles. Physical Review B, 2022, 105, .$	3.2	23
5172	Strong Hydrogen Bonds in Acetylenedicarboxylic Acid Dihydrate. International Journal of Molecular Sciences, 2022, 23, 6164.	4.1	0
5173	Implementation of self-consistent MGGA functionals in augmented plane wave based methods. Physical Review B, 2022, 105, .	3.2	4
5174	Modeling Interfacial Evolutions at Atomistic Scale in the Process of Titanium Oxide Inducing Ferrite Nucleation in Steels. Crystal Growth and Design, 2022, 22, 4059-4071.	3.0	5
5175	Atomically dispersed Pt and Fe sites and Pt–Fe nanoparticles for durable proton exchange membrane fuel cells. Nature Catalysis, 2022, 5, 503-512.	34.4	155
5176	Unfolding the structural stability of nanoalloys via symmetry-constrained genetic algorithm and neural network potential. Npj Computational Materials, 2022, 8, .	8.7	9
5177	Constructing highly active alloy-perovskite interfaces for efficient electrochemical CO2 reduction reaction. Separation and Purification Technology, 2022, 296, 121411.	7.9	15
5178	Aqueous-phase hydrogenation of α-pinene catalyzed by Ni-B alloys loaded on a Janus amphiphilic carbon@silica nanomaterial. Industrial Crops and Products, 2022, 185, 115140.	5. 2	5
5179	Metal-organic coordination networks on a titanium carbide MXene: DFT based grand canonical Monte Carlo simulation. Applied Surface Science, 2022, 598, 153834.	6.1	6
5181	Structural, Theoretical and Biological Studies of (2)-3-Amino-N-(3-Amino Pyrazine-2-Carbonyl) Pyrazine-2-Carbohydrazonic Acid (APA; L) and Its Cu ²⁺ , Co ²⁺ Pt ⁴⁺ and Pd ²⁺ Chelates. Open Journal of Inorganic Chemistry, 2021, 11,	0.7	0
5182	Computational Investigation of Magnetic Properties of (Fe)-Doped-MoSe ₂ Monolayer Through Spin Angle Rotation. IEEE Transactions on Magnetics, 2022, 58, 1-8.	2.1	0
5183	Exploring the synergistic effect of alloying toward hydrogen evolution reaction: a case study of Ni ₃ M (M = Ti, Ge and Sn) series. Dalton Transactions, 2022, 51, 9728-9734.	3.3	4
5184	First-Principles Calculation of Ferromagnetic Elements (Fe, Co)-Doped Znv2o4. SSRN Electronic Journal, O, , .	0.4	0
5185	Reaction mechanism and kinetics for carbon dioxide reduction on iron–nickel Bi-atom catalysts. Journal of Materials Chemistry A, 2022, 10, 13266-13277.	10.3	6

#	Article	IF	CITATIONS
5186	Engineering the Photocatalytic Performance of B-C3n4@Bi2s3 Hybrid Heterostructures for Fullâ€5pectrumâ€Driven Cr(Vi) Reduction and In-Situ H2o2 Generation: Experimental and Dft Studies. SSRN Electronic Journal, 0, , .	0.4	0
5187	Role of vacancies in tuning the electronic and magnetic properties of BiCoO ₃ . Physica Scripta, 2022, 97, 075819.	2.5	1
5188	First-principles prediction of the half-metallicity in quaternary Heusler CoRhCrAl thin films. Physica Scripta, 2022, 97, 075812.	2.5	1
5189	Visible-Light-Activated Enhanced Shift Current Bulk Photovoltaic Effect in Lead-Free Oxychalcogenide Perovskites: Emergence of Fully Inorganic Photovoltaic Materials. Journal of Physical Chemistry C, 2022, 126, 10258-10265.	3.1	2
5190	Influence of Hexagonal Boron Nitride on Electronic Structure of Graphene. Molecules, 2022, 27, 3740.	3.8	2
5191	How to Change the Reaction Chemistry on Nonprecious Metal Oxide Nanostructure Materials for Electrocatalytic Oxidation of Biomassâ€Derived Glycerol to Renewable Chemicals. Advanced Materials, 2023, 35, .	21.0	17
5192	Insight into electronic structure and optical properties of ZnTPP thin films for energy conversion applications: Experimental and computational study. Materials Today Communications, 2022, 32, 103874.	1.9	10
5193	Molecularly Engineered Carbon Platform To Anchor Edge-Hosted Single-Atomic M–N/C (M = Fe, Co, Ni,) Tj ETQq	1 ₁ 1.0.784	314 rgBT /C
5194	Multi-defects engineering of NiCo2O4 for catalytic propane oxidation. Applied Surface Science, 2022, 600, 154040.	6.1	45
5195	Decoupling the electronic and geometric effects of Pt catalysts in selective hydrogenation reaction. Nature Communications, 2022, 13, .	12.8	39
5196	What is the optimal mGGA exchange functional for solids?. Journal of Chemical Physics, 2022, 157, .	3.0	3
5197	Limits to scaling relations between adsorption energies?. Journal of Chemical Physics, 2022, 156, .	3.0	12
5198	Reconciling the Volcano Trend with the Butler–Volmer Model for the Hydrogen Evolution Reaction. Journal of Physical Chemistry Letters, 2022, 13, 5310-5315.	4.6	10
5199	Oxygen-Doped Carbon Supports Modulate the Hydrogenation Activity of Palladium Nanoparticles through Electronic Metal–Support Interactions. ACS Catalysis, 2022, 12, 7344-7356.	11.2	22
5200	Comparative density functional theory study for predicting oxygen reduction activity of single-atom catalyst. Surface Science, 2022, 724, 122144.	1.9	3
5201	Solvation of Small Gold Clusters in Supercritical Water. Journal of Molecular Liquids, 2022, , 119715.	4.9	1
5202	Direct electro-synthesis of valuable C=N compound from NO. Chem Catalysis, 2022, 2, 1807-1818.	6.1	21
5203	Surface stability of GaN nanowires under Cs/O/Cs, Cs/NF3/Cs, Cs/Li/NF3/Cs/Li-activated conditions based on first principles. MRS Bulletin, 2022, 47, 906-912.	3.5	2

#	Article	IF	CITATIONS
5204	Theoretical analysis of the NH3, NO, and NO2 adsorption on boron-nitrogen and boron-phosphorous co-doped monolayer graphene - A comparative study. FlatChem, 2022, 34, 100392.	5.6	24
5205	Theoretical design of Janus-In2STe/InSe lateral heterostructure: A DFT investigation. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 143, 115359.	2.7	5
5206	Full atomistic mechanism study of hydrogen evolution reaction on Pt surfaces at universal pHs: Ab initio simulations at electrochemical interfaces. Electrochimica Acta, 2022, 425, 140709.	5.2	9
5207	Synergistic bonding stabilized interface for perovskite solar cells with over 24% efficiency. Nano Energy, 2022, 100, 107518.	16.0	18
5208	In situ reconstruction of defect-rich SnO2 through an analogous disproportionation process for CO2 electroreduction. Chemical Engineering Journal, 2022, 446, 137444.	12.7	7
5209	Predict Low Energy Structures of Bsi Monolayer as High-Performance Li/Na/K Ion Battery Anode. SSRN Electronic Journal, 0, , .	0.4	0
5210	The Humidity Sensitivity of Eu-Doped Tio2 Prepared by Hydrothermal Synthesis. SSRN Electronic Journal, 0, , .	0.4	0
5211	Understanding the effect of the exchange-correlation functionals on methane and ethane formation over ruthenium catalysts. Chinese Journal of Chemical Physics, 0, , .	1.3	1
5212	Analysing oxygen reduction electrocatalysis on transition metal doped niobium oxide (110). Physical Chemistry Chemical Physics, 0 , , .	2.8	2
5213	Electrochemical CO ₂ reduction on Cu single atom catalyst and Cu nanoclusters: an <i>ab initio</i> approach. Physical Chemistry Chemical Physics, 2022, 24, 15767-15775.	2.8	4
5214	DFT Study on Methanol Oxidation Reaction Catalyzed by PtmPdn Alloys. Coatings, 2022, 12, 918.	2.6	6
5215	Alâ€Doping Driven Suppression of Capacity and Voltage Fadings in 4dâ€Element Containing Liâ€Ionâ€Battery Cathode Materials: Machine Learning and Density Functional Theory. Advanced Energy Materials, 2022, 12, .	19.5	42
5216	Dual-metal precursors for the universal growth of non-layered 2D transition metal chalcogenides with ordered cation vacancies. Science Bulletin, 2022, 67, 1649-1658.	9.0	10
5217	Modeling Electrochemical Processes with Grand Canonical Treatment of Many-Body Perturbation Theory. Journal of Physical Chemistry Letters, 2022, 13, 6079-6084.	4.6	8
5218	A Deep Neural Network Potential for Water Confined in Graphene Nanocapillaries. Journal of Physical Chemistry C, 2022, 126, 10546-10553.	3.1	7
5219	Connecting Thermodynamics of Alkali Ion Exchange on the Quartz (101) Surface with Density Functional Theory Calculations. Journal of Physical Chemistry A, 2022, 126, 4286-4294.	2.5	2
5220	A Hybrid Quantum–Classical Study of Ion Adsorption at the Copper Electrode. Journal of Physical Chemistry C, 2022, 126, 12413-12423.	3.1	1
5221	Dilute Limit Alloy Pd–Cu Bimetallic Catalysts Prepared by Simultaneous Strong Electrostatic Adsorption: A Combined Infrared Spectroscopic and Density Functional Theory Investigation. Journal of Physical Chemistry C, 2022, 126, 11111-11128.	3.1	4

#	Article	IF	CITATIONS
5222	A Meanâ€Field Model for Oxygen Reduction Electrocatalytic Activity on Highâ€Entropy Alloys**. ChemCatChem, 2022, 14, .	3.7	1
5223	Visible-Light Photocatalytic Chlorite Activation Mediated by Oxygen Vacancy Abundant Nd-Doped BiVO ₄ for Efficient Chlorine Dioxide Generation and Pollutant Degradation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 31920-31932.	8.0	12
5224	Electron transport properties of the transition metal dichalcogenides composite WX2-MoX2 (X≡S, Se,) Tj ETQ	q0 <u>0</u> 0 rgE	3T Overlock
5225	Insights into simultaneous adsorption and oxidation of antimonite [Sb(III)] by crawfish shell-derived biochar: spectroscopic investigation and theoretical calculations. Biochar, 2022, 4, .	12.6	15
5226	Carbazoleâ€Containing Polymerâ€Assisted Trap Passivation and Holeâ€Injection Promotion for Efficient and Stable CsCu ₂ 1 ₃ â€Based Yellow LEDs. Advanced Science, 2022, 9, .	11.2	32
5227	Interfacial engineering of Co-doped 1T-MoS2 coupled with V2C MXene for efficient electrocatalytic hydrogen evolution. Chemical Engineering Journal, 2022, 450, 138157.	12.7	30
5228	Synthesis, Characterization, X-Ray Single-Crystal Structure, Potentiometric Measurements, Molecular Modeling, and Bioactivity Screening of Some Thiosemicarbazones. Journal of Chemistry, 2022, 2022, 1-15.	1.9	1
5229	Accurate diffusion coefficients of the excess proton and hydroxide in water via extensive <i>ab initio</i> simulations with different schemes. Journal of Chemical Physics, 2022, 157, .	3.0	2
5230	Ethanol Electro-oxidation Reaction Selectivity on Platinum in Aqueous Media. ACS Sustainable Chemistry and Engineering, 2023, 11, 4960-4968.	6.7	8
5231	Structure-Dependent Electrical Double-Layer Capacitances of the Basal Plane Pd(<i>hkl</i>) Electrodes in HClO ₄ . Journal of Physical Chemistry C, 2022, 126, 11414-11420.	3.1	5
5232	Anchoring of 2D CdS on Nb2CTX MXene nanosheets for boosting photocatalytic H2 evolution. Journal of Alloys and Compounds, 2022, 923, 166256.	5.5	29
5233	Bixbyite-type Ln2O3 as promoters of metallic Ni for alkaline electrocatalytic hydrogen evolution. Nature Communications, 2022, 13, .	12.8	62
5234	Suitability of chlorobenzene-based single-electron transistor as HCN, AsH3, and COCl2 sensor. Journal of Molecular Modeling, 2022, 28, .	1.8	0
5235	Experimental and theoretical research on pore-modified and K-doped Al2O3 catalysts for COS hydrolysis: The role of oxygen vacancies and basicity. Chemical Engineering Journal, 2022, 450, 138091.	12.7	20
5236	First-principles probing of Au-doped WS2 monolayer as a superb CO sensor with high selectivity and fast diffusion. Materials Today Communications, 2022, 32, 103922.	1.9	5
5237	On the shifting peak of volcano plots for oxygen reduction and evolution. Electrochimica Acta, 2022, 426, 140799.	5.2	11
5238	Novel Cr(III), Ni(II), and Zn(II) complexes of thiocarbamide derivative: Synthesis, investigation, theoretical, catalytic, potentiometric, molecular docking and biological studies. Arabian Journal of Chemistry, 2022, 15, 104104.	4.9	0
5239	Vacancy engineering in WS2 nanosheets for enhanced potassiumâ€ion storage. Journal of Power Sources, 2022, 542, 231791.	7.8	6

#	Article	IF	CITATIONS
5240	Infrared spectra and structures of C60Rhn+ complexes. Carbon, 2022, 197, 535-543.	10.3	7
5241	Three-dimensional nitrogen-doped MXene as support to form high-performance platinum catalysts for water-electrolysis to produce hydrogen. Chemical Engineering Journal, 2022, 446, 137443.	12.7	18
5242	First-principles study of electronic properties of amine ligand-capped CsPbBr3 surface with organo-metallic alumina precursor treatment. Applied Surface Science, 2022, 600, 154070.	6.1	5
5243	High-rate and durable sulfide-based all-solid-state lithium battery with in situ Li2O buffering. Energy Storage Materials, 2022, 51, 306-316.	18.0	33
5244	Theoretical insight into the effect of impurity on the acetoxylation of ethylene to form vinyl acetate: A DFT study of acetylene coversion on PdAu(1 0 0) surface. Fuel, 2022, 326, 125047.	6.4	5
5245	Dopant induced modification of support-surface structure for high throughput conversion of CO in aqueous media. Fuel, 2022, 326, 124961.	6.4	2
5246	Tin-based metal organic framework catalysts for high-efficiency electrocatalytic CO2 conversion into formate. Journal of Colloid and Interface Science, 2022, 626, 836-847.	9.4	26
5247	Electronic and Optical Properties of Novel Grapheneâ€Like InTe Monolayer: First Principle Calculations. Crystal Research and Technology, 2020, 55, .	1.3	5
5248	Role of H ₂ in the Substrate-Directed Synthesis of Size-tunable MoSe ₂ Nanoribbons for Exciton Engineering. ACS Applied Nano Materials, 2022, 5, 11423-11428.	5.0	3
5249	Effect of exchange-correlation functionals on the estimation of migration barriers in battery materials. Npj Computational Materials, 2022, 8, .	8.7	18
5250	A Career in Catalysis: Jens Kehlet NÃ,rskov. ACS Catalysis, 2022, 12, 9679-9689.	11.2	19
5251	High-performance intermetallic PtCo oxygen reduction catalyst promoted by molybdenum. Applied Catalysis B: Environmental, 2022, 317, 121767.	20.2	7
5252	Cooperative Catalysis of Vibrationally Excited CO ₂ and Alloy Catalyst Breaks the Thermodynamic Equilibrium Limitation. Journal of the American Chemical Society, 2022, 144, 14140-14149.	13.7	24
5253	Structure, magnetic and adsorption properties of novel FePt/h-BN heteromaterials. Nano Research, 0, ,	10.4	2
5254	Constructing Cu-CuO heterostructured skin on Cu cubes to promote electrocatalytic ammonia production from nitrate wastewater. Journal of Hazardous Materials, 2022, 439, 129653.	12.4	32
5255	Enhanced photoluminescence stability and internal defect evolution of the all-inorganic lead-free CsEuCl ₃ perovskite nanocrystals. Physical Chemistry Chemical Physics, 2022, 24, 18860-18867.	2.8	2
5256	Re Nanoflower-Decorated Carbon Cloth for Ph-Universal Hydrogen Evolution Reaction: Unveiling the Intrinsic Electrocatalytic Activity of Metallic Re. SSRN Electronic Journal, 0, , .	0.4	0
5257	The effect of co-alloying elements on site preference and shear deformation resistance of $\hat{I}^3\hat{a}\in^2$ -Ni ₃ Al. Ferroelectrics, 2022, 593, 166-173.	0.6	1

#	Article	IF	CITATIONS
5258	A giant thermoelectric figure of merit and ultra-low lattice thermal conductivity using Janus \$\$Ge_{2}SeTe\$\$ monolayer: a first principle investigation. European Physical Journal Plus, 2022, 137, .	2.6	1
5259	Data-Driven Investigation of Tellurium-Containing Semiconductors for CO ₂ Reduction: Trends in Adsorption and Scaling Relations. Journal of Physical Chemistry C, 2022, 126, 13224-13236.	3.1	1
5260	Atomicâ€Scale Homogeneous RuCu Alloy Nanoparticles for Highly Efficient Electrocatalytic Nitrogen Reduction. Advanced Materials, 2022, 34, .	21.0	34
5261	Mechanism of Photocatalytic Reduction of CO ₂ to CH ₃ OH by Cu Nanoparticle and Metal Atom (Ag, Au, Pd, Zn)-Doped Cu Catalyst: A Theoretical Study. Organometallics, 2022, 41, 2001-2010.	2.3	2
5262	Balanced nitrogen and hydrogen chemisorption by [RuH6] catalytic center favors low-temperature NH3 synthesis. Cell Reports Physical Science, 2022, 3, 100970.	5 . 6	5
5263	Quantum effects in thermal reaction rates at metal surfaces. Science, 2022, 377, 394-398.	12.6	11
5264	Hierarchical Thiospinel NiCo ₂ S ₄ /Polyaniline Hybrid Nanostructures as a Bifunctional Electrocatalyst for Highly Efficient and Durable Overall Water Splitting. Advanced Materials Interfaces, 2022, 9, .	3.7	6
5265	Computational Modeling of Physical Surface Reactions of Precursors in Atomic Layer Deposition by Monte Carlo Simulations on a Home Desktop Computer. Chemistry of Materials, 2022, 34, 7635-7649.	6.7	7
5266	Mechanistic insights into hydrogen evolution reaction on Ni2B(001) facet using first-principle calculations. International Journal of Hydrogen Energy, 2022, 47, 29622-29635.	7.1	6
5267	P-type ohmic contacts of MBenes with MoS ₂ for nanodevices and logic circuits. 2D Materials, 2022, 9, 045022.	4.4	5
5268	Revealing the Synergetic Effects between Reactants in Oxidative Coupling of Methane on Stepped $MgO(100)$ Catalyst. Catalysts, 2022, 12, 903.	3. 5	0
5269	Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation. Nature Communications, 2022, 13, .	12.8	112
5270	Interactions of nitric oxide molecules with pure and oxidized silver clusters Agn±/Ag <i>n</i> O± (<i>n</i> =11–13): A computational study. Journal of Chemical Physics, 2022, 157, .	3.0	3
5271	A Universal Framework for Featurization of Atomistic Systems. Journal of Physical Chemistry Letters, 2022, 13, 7911-7919.	4.6	8
5272	Lanthanide-Doped MAPbl ₃ Single Crystals: Fabrication, Optical and Electrical Properties, and Multi-mode Photodetection. Chemistry of Materials, 2022, 34, 7412-7423.	6.7	11
5273	Improving the Accuracy of Modelling CO2 Electroreduction on Copper Using Manyâ€Body Perturbation Theory. Angewandte Chemie, 0, , .	2.0	2
5274	Equivariant graph neural networks for fast electron density estimation of molecules, liquids, and solids. Npj Computational Materials, 2022, 8, .	8.7	12
5275	Strategies for Modulating the Catalytic Activity and Selectivity of Manganese Antimonates for the Oxygen Reduction Reaction. ACS Catalysis, 2022, 12, 10826-10840.	11,2	4

#	Article	IF	CITATIONS
5276	The effect of molecular structure on the control of mild steel dissolution in acidic environment: theoretical, experimental and surface probe approach. Safety in Extreme Environments, 2022, 4, 211-229.	3.1	1
5277	Strain-induced ferroelectricity and piezoelectricity in centrosymmetric binary oxides. Physical Review B, 2022, 106, .	3.2	1
5278	Highly Efficient ZIF-67-Derived PtCo Alloy–CN Interface for Low-Temperature Aqueous-Phase Fischer–Tropsch Synthesis. ACS Applied Materials & Samp; Interfaces, 2022, 14, 38905-38920.	8.0	7
5279	Theoretical Investigation of Cu–Au Alloy for Carbon Dioxide Electroreduction: Cu/Au Ratio Determining C ₁ /C ₂ Selectivity. Journal of Physical Chemistry Letters, 2022, 13, 8002-8009.	4.6	7
5280	Electronic structure factors and the importance of adsorbate effects in chemisorption on surface alloys. Npj Computational Materials, 2022, 8, .	8.7	15
5281	Enhanced shift current bulk photovoltaic effect in ferroelectric Rashba semiconductor α-GeTe: ab initio study from three- to two-dimensional van der Waals layered structures. Journal of Physics Condensed Matter, 2022, 34, 435404.	1.8	1
5282	Adsorption and Absorption Energies of Hydrogen with Palladium. Journal of Physical Chemistry C, 2022, 126, 14500-14508.	3.1	7
5283	First-Principles Study of Stability and N2 Activation on the Octahedron RuRh Clusters. Catalysts, 2022, 12, 881.	3.5	0
5284	Boosting the stability of perovskites with exsolved nanoparticles by B-site supplement mechanism. Nature Communications, 2022, 13, .	12.8	27
5285	Improving the Accuracy of Modelling CO ₂ Electroreduction on Copper Using Manyâ€Body Perturbation Theory. Angewandte Chemie - International Edition, 2022, 61, .	13.8	6
5286	Sulfur-dopant-promoted electrocatalytic reduction of nitrate by a self-supported iron cathode: Selectivity, stability, and underlying mechanism. Applied Catalysis B: Environmental, 2022, 319, 121862.	20.2	19
5287	High-Entropy Intermetallics Serve Ultrastable Single-Atom Pt for Propane Dehydrogenation. Journal of the American Chemical Society, 2022, 144, 15944-15953.	13.7	42
5288	Theoretical Relations between Electronic and Ionic Work Functions, Standard Reduction Potentials for Metal Dissolution and the Corrosion Potential. Journal of the Electrochemical Society, 2022, 169, 081506.	2.9	3
5289	First-Principles Study of the Gas Sensing of Benzene and Formaldehyde by Ag ₂ O- and CuO-Modified MoSe ₂ Nanosheets. ACS Applied Nano Materials, 2022, 5, 12907-12914.	5.0	8
5290	Trinuclear Magnesium Imidazolate Borohydride Complex. Inorganic Chemistry, 2022, 61, 12708-12718.	4.0	0
5291	Density functional theory calculations of electronic structure and thermoelectric properties of Kâ€based double perovskite materials. Energy Storage, 2023, 5, .	4.3	8
5292	Electronically engineering microstructural design for developing advanced steels: An exploration of high Si bainitic steel. Materials and Design, 2022, 221, 111011.	7.0	4
5293	Co-Nx-enriched porous carbon nanofibers as efficient oxygen electrocatalyst for flexible Zn-air batteries. Journal of Power Sources, 2022, 544, 231865.	7.8	10

#	Article	IF	CITATIONS
5294	Towards a deeper understanding of superlubricity on graphite governed by interfacial adhesion. Carbon, 2022, 199, 479-485.	10.3	5
5295	Improved photoresponse of graphitic carbon nitride films via pressure engineering. Carbon, 2022, 199, 453-461.	10.3	5
5296	Shell DFT-1/2 method towards engineering accuracy for semiconductors: GGA versus LDA. Computational Materials Science, 2022, 213, 111669.	3.0	5
5297	The surface double-coupling on single-crystal LiNi0.8Co0.1Mn0.1O2 for inhibiting the formation of intragranular cracks and oxygen vacancies. Energy Storage Materials, 2022, 52, 534-546.	18.0	83
5298	Realizing rapid electrochemical kinetics of Mg2+ in Ti-Nb oxides through a Li+ intercalation activated strategy toward extremely fast charge/discharge dual-ion batteries. Energy Storage Materials, 2022, 52, 94-103.	18.0	9
5299	C2H2 hydrochlorination over the diatomic RuM catalysts anchored over the N-doped graphene: Influences of metal M type and coordination environment. Applied Surface Science, 2022, 604, 154583.	6.1	2
5300	Realizing efficient C-N coupling via electrochemical co-reduction of CO2 and NO3- on AuPd nanoalloy to form urea: Key C-N coupling intermediates. Applied Catalysis B: Environmental, 2022, 318, 121819.	20.2	36
5301	Optical spectra of bilayer borophene synthesized on Ag(1 1 1) film. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 282, 121711.	3.9	8
5302	Polar Co9S8 anchored on Pyrrole-Modified graphene with in situ growth of CNTs as multifunctional Self-Supporting medium for efficient Lithium-Sulfur batteries. Chemical Engineering Journal, 2023, 451, 138370.	12.7	19
5303	Preparation, investigation, DFT, pH-metric and cyclic voltammetry of Cr(III), Fe(III), Co(II), Ni(II) and Cu(II) complexes derived from 2-(2-((2Z,3Z)-3-(hydroxyimino) butan-2-ylidene)) Tj ETQq1 1 0.784314 rgBT /Overlock 10 lournal of Molecular Structure, 2022 134156.	Tf 50 382	l Ţd (hydraz
5304	Low power consumed PV-electrolysis with CoFeP nanowires for hydrazine-assisted hydrogen production. Applied Surface Science, 2022, 606, 154951.	6.1	7
5305	Metal-modified s-C3N6 as a potential superior sensing medium for effective capture of toxic waste gases CO, H2S and SO2 in the iron and steel industry based on first-principles investigations. Applied Surface Science, 2022, 606, 154947.	6.1	3
5306	Theoretical study of Li2Ti6O13, Li2Sn6O13 and Li2Zr6O13 as possible cathode in Li-ion batteries. Materials Science in Semiconductor Processing, 2022, 152, 107074.	4.0	1
5307	Calcium and magnesium silicate hydrates formed in the presence of sodium hydroxide: Insight from experiments and DFT simulation. Materials Today Communications, 2022, 33, 104362.	1.9	3
5308	Structure and reactivity of sodium aluminate complexes in alkaline solutions. Journal of Molecular Liquids, 2022, 367, 120379.	4.9	2
5309	A metal-organic framework surrounded with conjugate acid-base pairs for the efficient capture of Cr(VI) via hydrogen bonding over a wide pH range. Journal of Hazardous Materials, 2023, 441, 129945.	12.4	12
5310	CO2-derived free-standing carbon interlayer embedded with molecular catalysts for improving redox performance in Li-S batteries. Chemical Engineering Journal, 2023, 451, 138909.	12.7	14
5311	Fluorescence, cyclic voltammetric, computational, and spectroscopic studies of Mn(II), Co(II), Pd(II), Zn(II) and Cd(II) complexes of salen ligand and their biological applications. Journal of Molecular Structure, 2023, 1271, 134142.	3.6	6

#	Article	IF	CITATIONS
5312	Oxidation of iodide by PbO2, the major lead pipe corrosion product: Kinetics, mechanism and formation of toxic iodinated disinfection by-products. Chemical Engineering Journal, 2023, 451, 139033.	12.7	4
5313	Urea-modified Cu-based materials: Highly efficient and support-free adsorbents for removal of H2S in an anaerobic and dry environment. Chemical Engineering Journal, 2023, 451, 138815.	12.7	18
5314	Investigation (IR, UV-visible, fluorescence, X-ray diffraction and thermogravimetric) studies of Mn(II), Fe(III) and Cr(III) complexes of thiosemicarbazone derived from 4- pyridyl thiosemicarbazide and monosodium 5-sulfonatosalicylaldehyde and evaluation of their biological applications. Journal of Molecular Structure, 2023, 1271, 134139.	3.6	7
5315	Single metal atom anchored on porous boron nitride nanosheet for efficient collaborative urea electrosynthesis: A computational study. Chemical Engineering Journal, 2023, 451, 138885.	12.7	18
5316	Erbium ion implantation into LiNbO ₃ , Al ₂ O ₃ , ZnO and diamond – measurement and modelling – an overview. Physical Chemistry Chemical Physics, 2022, 24, 19052-19072.	2.8	2
5317	Pericyclic reaction benchmarks: hierarchical computations targeting CCSDT(Q)/CBS and analysis of DFT performance. Physical Chemistry Chemical Physics, 2022, 24, 18028-18042.	2.8	14
5318	Nanoconfinement effects on water in narrow graphene-based slit pores as revealed by THz spectroscopy. Physical Chemistry Chemical Physics, 2022, 24, 24734-24747.	2.8	6
5319	Catalytic centers with multiple oxidation states: a strategy for breaking the overpotential ceiling from the linear scaling relation in oxygen evolution. Journal of Materials Chemistry A, 2022, 10, 23079-23086.	10.3	2
5320	Direct observation of narrow electronic energy band formation in 2D molecular self-assembly. Nanoscale Advances, 2022, 4, 3845-3854.	4.6	1
5321	Using metal substrates to enhance the reactivity of graphene towards Diels–Alder reactions. Physical Chemistry Chemical Physics, 2022, 24, 20082-20093.	2.8	0
5322	A coordination environment effect of single-atom catalysts on their nitrogen reduction reaction performance. Physical Chemistry Chemical Physics, 2022, 24, 18854-18859.	2.8	6
5323	Hydroxamate based transition metal–organic coordination polymers with semiconductive properties. Dalton Transactions, 2022, 51, 12709-12716.	3.3	5
5324	Improving the DFT Computational Accuracy for CO Activation on Fe Surfaces by Bayesian Error Estimation Functional With Van der Waals Correlation. SSRN Electronic Journal, 0, , .	0.4	0
5325	Doped MXene combinations as highly efficient bifunctional and multifunctional catalysts for water splitting and metal–air batteries. Journal of Materials Chemistry A, 2022, 10, 22500-22511.	10.3	16
5326	Theoretical design of high-performance halogen anion batteries with MXene electrodes: influence of functional groups, metals, and anions. Journal of Materials Chemistry A, 2022, 10, 21611-21621.	10.3	9
5327	Active and Selective Reverse Water-Gas Shift Reaction Over Pt/Na-Zeolite Catalysts. SSRN Electronic Journal, 0, , .	0.4	0
5328	Direct synthesis of a stable radical doped electrically conductive coordination polymer. Inorganic Chemistry Frontiers, 2022, 9, 5016-5023.	6.0	3
5329	Discovering surface reaction pathways using accelerated molecular dynamics and network analysis tools. RSC Advances, 2022, 12, 23274-23283.	3.6	1

#	ARTICLE	IF	CITATIONS
5330	Transition Metal Dual–Atom Ni2/Tio2 Catalysts for Photoelectrocatalytic Hydrogen Evolution: A Density Functional Theory Study. SSRN Electronic Journal, 0, , .	0.4	0
5331	Engineering Ni(Oh)X/(Ni, Cu)Se2 Heterostructure Nanosheet Arrays for Highly-Efficient Water Oxidation. SSRN Electronic Journal, 0, , .	0.4	O
5332	Pt nanoparticles under oxidizing conditions $\hat{a}\in$ " implications of particle size, adsorption sites and oxygen coverage on stability. Nanoscale Advances, 0, , .	4.6	1
5333	The role of Mo species in Ni–Mo catalysts for dry reforming of methane. Physical Chemistry Chemical Physics, 2022, 24, 21461-21469.	2.8	4
5334	Anti-corrosion MgO nanoparticle-equipped graphene oxide nanosheet for efficient room-temperature H ₂ S removal. Journal of Materials Chemistry A, 2022, 10, 18308-18321.	10.3	13
5335	Partially Oxidized Ultrathin SnS2 Nanosheets Realizing High-Efficiency CO2 Photoreduction Performance. Springer Theses, 2022, , 65-86.	0.1	O
5336	Transition metal Dual–Atom Ni2/TiO2 catalysts for photoelectrocatalytic hydrogen Evolution: A density functional theory study. Applied Surface Science, 2023, 608, 155132.	6.1	7
5337	Re nanoflower-decorated carbon cloth for pH-universal hydrogen evolution reaction: Unveiling the intrinsic electrocatalytic activity of metallic Re. Chemical Engineering Journal, 2023, 452, 139461.	12.7	8
5338	Engineering the photocatalytic performance of B-C3N4@Bi2S3 hybrid heterostructures for fullâ∈spectrumâ∈driven Cr(VI) reduction and in-situ H2O2 generation: Experimental and DFT studies. Chemical Engineering Journal, 2023, 452, 139435.	12.7	27
5339	Systematic DFT studies of CO-Tolerance and CO oxidation on Cu-doped Ni surfaces. Journal of Molecular Graphics and Modelling, 2023, 118, 108343.	2.4	16
5340	High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2. Nature Communications, 2022, 13, .	12.8	45
5341	Co-Operative Influence of O ₂ and H ₂ O in the Degradation of Layered Black Arsenic. Journal of Physical Chemistry C, 2022, 126, 15222-15228.	3.1	1
5342	Evolution of the structural and electronic properties of AlnP13â^'n (n = 0–13) clusters. Theoretical Chemistry Accounts, 2022, 141, .	1.4	0
5343	Impact of Carcinogenic Benzene on Electronic Properties of Mn- and Fe-Doped MoSe2 Monolayer. Lecture Notes in Electrical Engineering, 2023, , 111-118.	0.4	O
5344	Atomicâ€Level Phosphorusâ€Doped Ultrathin Pt Nanodendrites as Efficient Electrocatalysts. Advanced Functional Materials, 2022, 32, .	14.9	32
5345	CO2-free high-purity ethylene from electroreduction of CO2 with 4% solar-to-ethylene and 10% solar-to-carbon efficiencies. Cell Reports Physical Science, 2022, 3, 101053.	5.6	8
5346	Role of Graphene on Ni/NiO for the Hydrogen Evolution Reaction. Journal of Physical Chemistry C, 2022, 126, 16158-16163.	3.1	4
5347	Computational exploration and screening of novel Janus MA2Z4 (M = Sc-Zn, Y-Ag, Hf-Au; A=Si, Ge; Z=N,) Tj ETQq1	1.0.7843	14 rgBT /O\ 17

#	Article	IF	CITATIONS
5348	Molecular Spin Qubits Impregnated in a Hexagonal Self-Ordered Mesoporous Silica. Chemistry of Materials, 2022, 34, 8427-8436.	6.7	4
5350	Could one non-noble metal surface with non-noble substrate be a good hydrogen evolution catalyst: Performance of transition metal A monolayer on B substrate in theory frame. International Journal of Hydrogen Energy, 2022, 47, 36149-36162.	7.1	1
5351	Cu Catalysts Doped with a Heteroatom into the Subsurface: Unraveling the Role of Subsurface Chemistry in Tuning the Catalytic Performance of C ₂ H ₂ Selective Hydrogenation. ACS Applied Materials & Subsurfaces, 2022, 14, 41896-41911.	8.0	1
5352	Direct O–O Coupling Promoted the Oxygen Evolution Reaction by Dual Active Sites from Ag/LaNiO ₃ Interfaces. ACS Applied Energy Materials, 2022, 5, 14658-14668.	5.1	8
5353	Exploring the Composition Space of High-Entropy Alloy Nanoparticles for the Electrocatalytic H ₂ /CO Oxidation with Bayesian Optimization. ACS Catalysis, 2022, 12, 11263-11271.	11.2	15
5354	Ca ₃ Mn ₂ O ₇ â€layered perovskites: Effects of La―and Yâ€doping on phase stability, microstructure, and thermoelectric transport. Journal of the American Ceramic Society, 2023, 106, 213-226.	3.8	5
5355	Evolving symbolic density functionals. Science Advances, 2022, 8, .	10.3	13
5356	Experimental and Theoretical Characterization of Rh Single Atoms Supported on \hat{l}^3 -Al ₂ O ₃ with Varying Hydroxyl Contents during NO Reduction by CO. ACS Catalysis, 2022, 12, 11697-11715.	11.2	14
5357	The adsorption of NO2, SO2, and O3 molecules on the Al-doped stanene nanotube: a DFT study. Journal of Molecular Modeling, 2022, 28, .	1.8	7
5359	Theory-Guided Modulation of Optimal Silver Nanoclusters toward Efficient CO ₂ Electroreduction. ACS Applied Materials & Interfaces, 2022, 14, 43257-43264.	8.0	6
5360	Adsorption Energy in Oxygen Electrocatalysis. Chemical Reviews, 2022, 122, 17028-17072.	47.7	45
5361	Ultrasensitive Formaldehyde Sensor Based on SnO ₂ with Rich Adsorbed Oxygen Derived from a Metal Organic Framework. ACS Sensors, 2022, 7, 2577-2588.	7.8	17
5362	Cu–Au nanoparticles produced by the aggregation of gasâ€phase metal atoms for CO oxidation. Aggregate, 2022, 3, .	9.9	9
5363	Exploring Structure-Sensitive Relations for Small Species Adsorption Using Machine Learning. Journal of Chemical Information and Modeling, 2022, 62, 4361-4368.	5.4	13
5364	The C-H Bond Activation Triggered by Subsurface Mo Dopant on MgO Catalyst in Oxidative Coupling of Methane. Catalysts, 2022, 12, 1083.	3.5	1
5365	Improved Electrocatalytic Selectivity and Activity for Ammonia Synthesis on Diporphyrin Catalysts. Journal of Physical Chemistry C, 2022, 126, 16636-16642.	3.1	3
5366	Nitrogen-skinned carbon nanocone enables non-dynamic electrochemistry of individual metal particles. Science China Chemistry, 2022, 65, 2031-2037.	8.2	6
5367	Defect effect on the stability, electronic and magnetic properties equal-atomic CrLaCoAl alloy by the first-principles calculations. Applied Physics A: Materials Science and Processing, 2022, 128, .	2.3	1

#	Article	IF	CITATIONS
5369	Experimental and theoretical study of lead sulfide nanocrystals attached to nitrogen-doped carbon nanotubes. Carbon Letters, 0 , , .	5.9	0
5370	Fabrication of novel Fe (III), Co (II), Hg (II), and Pd (II) complexes based on waterâ€soluble ligand (NaH ₂ PH): structural characterization, cyclic voltammetric, powder Xâ€ray diffraction, zeta potential, and biological studies. Applied Organometallic Chemistry, 2023, 37, .	3.5	4
5371	Enhancing hydrodeoxygenation-isomerization of FAME over M-SAPO-11 in one-step process: Effect of in-situ isomorphic substitution of transition metals and synergy of PtxSny alloy. Chemical Engineering Journal, 2023, 452, 139528.	12.7	10
5372	Construction of high-performance catalysts for CO2 hydrogenation to aromatics with the assisted of DFT calculations. Applied Surface Science, 2023, 608, 155158.	6.1	4
5373	Random forest incorporating ab-initio calculations for corrosion rate prediction with small sample Al alloys data. Npj Materials Degradation, 2022, 6, .	5.8	8
5374	Efficient electrochemical CO2 reduction reaction on a robust perovskite type cathode with in-situ exsolved Fe-Ru alloy nanocatalysts. Separation and Purification Technology, 2023, 304, 122287.	7.9	17
5375	A Combined XPS and Computational Study of the Chemical Reduction of BMPâ€₹FSI by Lithium**. Batteries and Supercaps, 2022, 5, .	4.7	4
5376	Ab Initio to Activity: Machine Learning-Assisted Optimization of High-Entropy Alloy Catalytic Activity. , 2023, 1, 120-133.		10
5377	Defect-induced tuning of polarity-dependent adsorption in hydrophobic–hydrophilic UiO-66. Communications Chemistry, 2022, 5, .	4.5	7
5378	How good are recent density functionals for ground and excited states of one-electron systems?. Journal of Chemical Physics, 2022, 157, .	3.0	6
5379	Low-Temperature Methanol Synthesis by a Cu-Loaded LaH _{2+<i>x</i>} Electride. ACS Catalysis, 2022, 12, 12572-12581.	11.2	4
5380	Multicomponent transition metal oxides and (oxy)hydroxides for oxygen evolution. Nano Research, 2023, 16, 1913-1966.	10.4	59
5381	Stability trend, weak bonding, and magnetic properties of the Al―and Siâ€containing ternaryâ€layered borides MAB phases. Journal of the American Ceramic Society, 2023, 106, 1513-1530.	3.8	10
5382	Nonâ€Stoichiometric NiFeMo Solid Solutions; Tuning the Hydrogen Adsorption Energy via Molybdenum Incorporation. Advanced Materials Interfaces, 2022, 9, .	3.7	6
5383	Tuning the coordination environment of Fe atoms enables 3D porous Fe/N-doped carbons as bifunctional electrocatalyst for rechargeable zinc-air battery. Journal of Colloid and Interface Science, 2022, 628, 1067-1076.	9.4	4
5384	P-block atom modified Sn(200) surface as a promising electrocatalyst for two-electron CO ₂ reduction: a first-principles study. Physical Chemistry Chemical Physics, 2022, 24, 26556-26563.	2.8	2
5385	Transition metal single atom embedded GaN monolayer surface for efficient and selective CO ₂ electroreduction. Journal of Materials Chemistry A, 2022, 10, 24280-24289.	10.3	5
5386	Non-oxidative methane conversion by Fe single site catalysts: quantifying temperature limitations imposed by gas-phase pyrolysis. Catalysis Science and Technology, 2022, 12, 6903-6919.	4.1	2

#	Article	IF	Citations
5387	Nanoconfinement facilitates reactions of carbon dioxide in supercritical water. Nature Communications, $2022,13,.$	12.8	7
5389	Br Vacancy Defects Healed Perovskite Indoor Photovoltaic Modules with Certified Power Conversion Efficiency Exceeding 36%. Advanced Science, 2022, 9, .	11.2	18
5391	Multi-twinned gold nanoparticles with tensile surface steps for efficient electrocatalytic CO2 reduction. Science China Chemistry, 0 , , .	8.2	1
5393	On the Mechanism of Heterogeneous Water Oxidation Catalysis: A Theoretical Perspective. Inorganics, 2022, 10, 182.	2.7	3
5394	Hydrogen-Induced Restructuring of a Cu(100) Electrode in Electroreduction Conditions. Journal of the American Chemical Society, 2022, 144, 19284-19293.	13.7	20
5395	A Mechanistic Study of Methanol Steam Reforming on Ni2P Catalyst. Catalysts, 2022, 12, 1174.	3.5	7
5396	Quinary, Senary, and Septenary High Entropy Alloy Nanoparticle Catalysts from Core@Shell Nanoparticles and the Significance of Intraparticle Heterogeneity. ACS Nano, 2022, 16, 18873-18885.	14.6	32
5397	Electro-Design of Bimetallic PdTe Electrocatalyst for Ethanol Oxidation: Combined Experimental Approach and Ab Initio Density Functional Theory (DFT)—Based Study. Nanomaterials, 2022, 12, 3607.	4.1	2
5398	Electrochemical Hydrogenation of CO on Cu(100): Insights from Accurate Multiconfigurational Wavefunction Methods. Journal of Physical Chemistry Letters, 2022, 13, 10282-10290.	4.6	6
5399	Many recent density functionals are numerically ill-behaved. Journal of Chemical Physics, 2022, 157, .	3.0	14
5400	Steep-slope transistors enabled with 2D quantum coupling stacks. Nanotechnology, 0, , .	2.6	0
5401	Volume-matched piezoelectric LaN/REN superlattices from first-principles. Applied Physics Letters, 2022, 121, 172104.	3.3	0
5402	Ni–O ₄ as Active Sites for Efficient Oxygen Evolution Reaction with Electronic Metal–Support Interactions. ACS Applied Materials & Samp; Interfaces, 2022, 14, 47542-47548.	8.0	3
5403	Stable CsPbBr ₃ Achieved by Porphyrin–Thiol Surface Management and Their Dualâ€5timuli Responsive for Optical Encoding. Advanced Materials Interfaces, 2023, 10, .	3.7	5
5404	Structure Sensitivity of CO ₂ Conversion over Nickel Metal Nanoparticles Explained by Micro-Kinetics Simulations. Jacs Au, 2022, 2, 2714-2730.	7.9	28
5405	Charting $C\hat{a}\in C$ coupling pathways in electrochemical CO $<$ sub $>$ 2 $<$ /sub $>$ reduction on Cu(111) using embedded correlated wavefunction theory. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	21
5406	Potential of zinc carbide 2D monolayers as a new drug delivery system for nitrosourea (NU) anti-cancer drug. Computational and Theoretical Chemistry, 2022, 1217, 113927.	2.5	1
5407	Precise Construction of High Metallicity and High Stability TM1/Cu2O(111) Single-Atom Catalysts by First-Principles. Catalysis Letters, 0 , , .	2.6	O

#	Article	IF	CITATIONS
5408	Generalized BrÃ,nstedâ€Evansâ€Polanyi Relationships for Reactions on Metal Surfaces from Machine Learning. ChemCatChem, 2022, 14, .	3.7	8
5409	Revealing the Tunable Effects of Single Metal Atoms Supported on Nitrogen-Doped Carbon Nanotubes during NO Oxidation from Microkinetic Simulation. Journal of Physical Chemistry C, 2022, 126, 18275-18281.	3.1	3
5410	Synthesis of Bis(methoxymethyl)silanes and Their Application in MgCl ₂ -Supported Ziegler–Natta Propylene Polymerization as External Donors. Industrial & Engineering Chemistry Research, 2022, 61, 16610-16615.	3.7	0
5411	Photocatalytic degradation of dyes using phosphotungstate-hexamine hybrid under sunlight and UV irradiation: A combined experimental and DFT study. Advances in Materials and Processing Technologies, 0, , 1-19.	1.4	2
5412	Hydrates of active pharmaceutical ingredients: A 35Cl and 2H solid-state NMR and DFT study. Solid State Nuclear Magnetic Resonance, 2022, 122, 101837.	2.3	6
5413	Geometries and electronic structures of PnÂâ^'Â1Al (nÂ=Â20–40) cages: A DFT study. Computational and Theoretical Chemistry, 2022, 1217, 113922.	2.5	0
5414	Solvation structure and dynamics of Li and LiO2 and their transformation in non-aqueous organic electrolyte solvents from first-principles simulations. Chinese Journal of Catalysis, 2022, 43, 2850-2857.	14.0	2
5415	Tunable activity of electrocatalytic CO dimerization on strained Cu surfaces: Insights from ab initio molecular dynamics simulations. Chinese Journal of Catalysis, 2022, 43, 2898-2905.	14.0	4
5416	Extraction of tungsten and molybdenum from waste alloy assisted by a recyclable roasting additive: β-MnO2. Journal of Cleaner Production, 2022, 380, 135018.	9.3	3
5417	Squarate-Based Metal-Organic Frameworks for Highly Selective and Sensitive Electrochemical Sensing of Dopamine. Journal of the Electrochemical Society, 2022, 169, 116504.	2.9	2
5418	Theoretical investigation of the edge substitution of Co-(Ni-)MoS2 by water during hydrodeoxygenation. Applied Catalysis A: General, 2022, 648, 118919.	4.3	2
5419	Active and selective reverse water-gas shift reaction over Pt/Na-Zeolite catalysts. Journal of CO2 Utilization, 2022, 66, 102291.	6.8	3
5420	Local coordination atom and metal types of single-atom catalysts to regulate catalytic performance of C2H2 selective hydrogenation. Chemical Engineering Science, 2023, 265, 118242.	3.8	5
5421	Structural screening and descriptor exploration of black phosphorus carbide supported bifunctional catalysts for lithium-sulfur batteries. Journal of Colloid and Interface Science, 2023, 630, 317-327.	9.4	3
5422	Nickel-iron layered silicate nanomembrane as efficient electrocatalyst for oxygen evolution reaction in alkaline media. Fuel, 2023, 332, 126209.	6.4	5
5423	Predict low energy structures of BSi monolayer as high-performance Li/Na/K ion battery anode. Applied Surface Science, 2023, 609, 155222.	6.1	8
5424	Efficient Pd on carbon catalyst for ammonium formate dehydrogenation: Effect of surface oxygen functional groups. Applied Catalysis B: Environmental, 2023, 321, 122015.	20.2	8
5425	Efficient catalytic ozonation over Co-ZFO@Mn-CN for oxalic acid degradation: Synergistic effect of oxygen vacancies and HOO-Mn-NX bonds. Applied Catalysis B: Environmental, 2023, 322, 122085.	20.2	14

#	Article	IF	CITATIONS
5426	Cu-ZnO Heterojunction Catalytic SF ₆ /H ₂ Gas Conversion Mechanism and Reaction Network Construction. IEEE Transactions on Dielectrics and Electrical Insulation, 2023, 30, 667-673.	2.9	0
5427	Exploration of the physical properties of the newly synthesized kagome superconductor Lalr ₃ Ga ₂ using different exchangeâ€"correlation functionals. Physical Chemistry Chemical Physics, 2022, 24, 29640-29654.	2.8	5
5428	Synergistic effect of p-type and n-type dopants in semiconductors for efficient electrocatalytic water splitting. Chemical Science, 2022, 13, 13879-13892.	7.4	2
5429	An Introductory Primer for Modeling Atomically Dispersed Catalysts using Density Functional Theory. , 2024, , 586-600.		0
5430	Investigating the Infrared Absorption and Optoelectronic Properties of Mn-Doped MoSe ₂ ML by Adsorption of NO _{<i>x</i>} Gas Molecules. IEEE Sensors Journal, 2022, 22, 22564-22570.	4.7	3
5431	Understanding the oxygen-evolution-reaction catalytic activity of metal oxides based on the intrinsic descriptors. Physical Chemistry Chemical Physics, 2022, 24, 28632-28640.	2.8	1
5432	Achieving fast ion diffusion in aqueous zinc-ion batteries by cathode reconstruction design. Chemical Engineering Journal, 2023, 454, 140260.	12.7	8
5433	Engineering Ni(OH)x/(Ni, Cu)Se2 heterostructure nanosheet arrays for highly-efficient water oxidation. Journal of Alloys and Compounds, 2023, 933, 167730.	5.5	2
5434	Comparative analysis of NOx reduction on Pt, Pd, and Rh catalysts by DFT calculation and microkinetic modeling. Applied Surface Science, 2023, 611, 155572.	6.1	4
5435	Topological defects and their induced metallicity in monolayer semiconducting \hat{I}^3 -phase group IV monochalcogenides. Science China Materials, 0 , , .	6.3	0
5436	Artificial formate oxidase reactivity with nano-palladium embedded in intrinsically microporous polyamine (Pd@PIM-EA-TB) driving the H2O2 – 3,5,3′,5′-tetramethylbenzidine (TMB) colour reaction. Journal of Catalysis, 2022, 416, 253-266.	6.2	2
5437	Effects of Site Geometry and Local Composition on Hydrogenation of Surface Carbon to Methane on Ni, Co, and NiCo Catalysts. Catalysts, 2022, 12, 1380.	3.5	0
5438	Critical role of hydrogen sorption kinetics in electrocatalytic CO2 reduction revealed by on-chip in situ transport investigations. Nature Communications, 2022, 13 , .	12.8	14
5439	Second harmonic generation in air-exposed few-layer black phosphorus. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 147, 115572.	2.7	1
5440	Computational screening of transition metal-doped CdS for photocatalytic hydrogen production. Npj Computational Materials, 2022, 8, .	8.7	8
5441	Chloride-Promoted High-Rate Ambient Electrooxidation of Methane to Methanol on Patterned Cu–Ti Bimetallic Oxides. ACS Catalysis, 2022, 12, 14321-14329.	11.2	7
5442	Porosity Engineering towards Nitrogen-Rich Carbon Host Enables Ultrahigh Capacity Sulfur Cathode for Room Temperature Potassium–Sulfur Batteries. Nanomaterials, 2022, 12, 3968.	4.1	2
5443	Three-phase interface induced charge modulation on MoO2/Mo2C-carbon tube for enhanced hydrogen evolution. Nano Research, 2023, 16, 4706-4714.	10.4	9

#	Article	IF	Citations
5444	Ultrathin Fe–ReS ₂ Nanosheets as Electrocatalysts for Accelerating Sulfur Reduction in Li–S Batteries. ACS Applied Materials & Lia€"S Batteries.	8.0	6
5445	Ball-Milled Processed, Selective Fe/ <i>h</i> -BN Nanocatalysts for CO ₂ Hydrogenation. ACS Applied Nano Materials, 2022, 5, 16475-16488.	5.0	6
5446	Unveiling a Surface Electronic Descriptor for Fe–Co Mixing Enhanced the Stability and Efficiency of Perovskite Oxygen Evolution Electrocatalysts. ACS Catalysis, 2022, 12, 14698-14707.	11,2	3
5447	Filling Selenium into Sulfur Vacancies in Ultrathin Tungsten Sulfide Nanosheets for Superior Potassium Storage. ACS Applied Materials & Samp; Interfaces, 2022, 14, 51994-52006.	8.0	4
5448	Effects of Silica Modification (Mg, Al, Ca, Ti, and Zr) on Supported Cobalt Catalysts for H ₂ -Dependent CO ₂ Reduction to Metabolic Intermediates. Journal of the American Chemical Society, 2022, 144, 21232-21243.	13.7	15
5449	Autocatalytic reduction-assisted synthesis of segmented porous PtTe nanochains for enhancing methanol oxidation reaction., 2023, 2, e9120041.		20
5450	Low-temperature crystallization of LaFeO3 perovskite with inherent catalytically surface for the enhanced oxygen evolution reaction. Nano Energy, 2023, 105, 108003.	16.0	4
5452	Ordered CoPt oxygen reduction catalyst with high performance and durability. Chem Catalysis, 2022, 2, 3559-3572.	6.1	13
5453	Adsorption energies on transition metal surfaces: towards an accurate and balanced description. Nature Communications, 2022, 13, .	12.8	24
5454	Atomistic origin of mechanochemical NH3 synthesis on Fe catalysts. International Journal of Hydrogen Energy, 2023, 48, 3931-3941.	7.1	5
5455	Theoretical Study on the Degradation Mechanism of Sulfonamide Catalyzed by Titanium Dioxide. ChemistrySelect, 2022, 7, .	1.5	0
5456	Theoretical study of n-type diamond with Li doping and Li-B co-doping: A density functional simulation. Diamond and Related Materials, 2023, 131, 109544.	3.9	5
5457	Big Data in a Nano World: A Review on Computational, Data-Driven Design of Nanomaterials Structures, Properties, and Synthesis. ACS Nano, 2022, 16, 19873-19891.	14.6	13
5458	Bridging the Catalyst Reactivity Gap between Au and Cu for the Reverse Water–Gas Shift Reaction. Journal of Physical Chemistry C, 2022, 126, 19756-19765.	3.1	1
5459	Adsorption Behaviors of Chlorosilanes, HCl, and H ₂ on the Si(100) Surface: A First-Principles Study. ACS Omega, 2022, 7, 42105-42114.	3.5	2
5460	Electrochemistry from the atomic scale, in the electronically grand-canonical ensemble. Journal of Chemical Physics, 2022, 157, .	3.0	8
5461	Extending the reach of quantum computing for materials science with machine learning potentials. AIP Advances, 2022, 12, 115321.	1.3	1
5462	Steric Hindrance of NH $<$ sub $>$ 3 $<$ /sub $>$ Diffusion on Pt(111) by Co-Adsorbed O-Atoms. Journal of the American Chemical Society, 2022, 144, 21791-21799.	13.7	6

#	Article	IF	CITATIONS
5463	Catalytic conversion mechanism of guaiacol as the intermediate of lignin catalytic pyrolysis on MgO surface: Density functional theory calculation. Journal of Molecular Liquids, 2023, 369, 120920.	4.9	4
5464	A graphene-like semiconducting BC ₂ P monolayer as a promising material for a Li-ion battery and CO ₂ adsorbent. Physical Chemistry Chemical Physics, 2023, 25, 2430-2438.	2.8	11
5465	Rich magnetic phase transitions and completely dual-spin polarization of zigzag PC3 nanoribbons under uniaxial strain. Physical Chemistry Chemical Physics, 0, , .	2.8	4
5466	Why copper catalyzes electrochemical reduction of nitrate to ammonia. Faraday Discussions, 0, 243, 502-519.	3.2	9
5467	Si regulation of hydrogen adsorption on nanoporous PdSi hybrids towards enhancing electrochemical hydrogen evolution activity. Inorganic Chemistry Frontiers, 2023, 10, 1101-1111.	6.0	3
5468	Novel high-pressure phases of nitrogen-rich Y–N compounds. Dalton Transactions, 2023, 52, 1000-1008.	3.3	2
5469	Improving the DFT computational accuracy for CO activation on Fe surfaces by Bayesian error estimation functional with van der Waals correlation. Computational and Theoretical Chemistry, 2023, 1219, 113968.	2.5	0
5470	Adsorption of aromatic molecules on a black phosphorene surface: a first-principles study. New Journal of Chemistry, 2023, 47, 1842-1851.	2.8	1
5471	A comprehensive benchmark investigation of quantum chemical methods for carbocations. Physical Chemistry Chemical Physics, 2023, 25, 1903-1922.	2.8	3
5472	Exploring coverage-dependent chain-growth mechanisms on Ru(111) for Fischer–Tropsch synthesis. Catalysis Science and Technology, 2023, 13, 437-456.	4.1	2
5473	Magneto-structural correlations of dinickel(II) complexes with phenoxido/azido coligands: A theoretical investigation. Chemical Physics Letters, 2023, 811, 140241.	2.6	2
5474	Strain-enhanced properties of Janus Si2PAs monolayer as a promising photocatalyst for the splitting of water: Insights from first-principles calculations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 659, 130782.	4.7	10
5475	Segregation behaviors of nonmetallic impurities on grain boundary of austenitic steel. Materials Chemistry and Physics, 2023, 296, 127227.	4.0	2
5476	Pressure-induced dynamically stable HeK2S under moderate conditions. Solid State Communications, 2023, 360, 115054.	1.9	0
5477	Enhanced electrochemical chlorination of anisole in Fe2O3 nanoparticles integrating with crystal facet effect. Applied Surface Science, 2023, 612, 155802.	6.1	1
5478	Highly selective nitrate reduction to ammonia on CoO/Cu foam via constructing interfacial electric field to tune adsorption of reactants. Applied Catalysis B: Environmental, 2023, 324, 122201.	20.2	21
5479	Experimental and theoretical investigations on the anti-perovskite nitrides Co ₃ CuN, Ni ₃ CuN and Co ₃ MoN for ammonia synthesis. Faraday Discussions, 0, 243, 97-125.	3.2	2
5480	Electronic structure and catalytic activity of exsolved Ni on Pd core–shell nanoparticles. Physical Chemistry Chemical Physics, 2022, 24, 29801-29816.	2.8	0

#	Article	IF	Citations
5481	Quantum tailoring of electronic properties in covalently functionalized graphene: application to ammonia gas detection. RSC Advances, 2022, 12, 36002-36011.	3.6	2
5482	<i>Ab initio</i> methods for the computation of physical properties and performance parameters of electrochemical energy storage devices. Physical Chemistry Chemical Physics, 2023, 25, 1476-1503.	2.8	3
5483	The thermodynamically directed dendrite-free lithium metal batteries on LiZn alloy surface. Nano Research, 2023, 16, 8354-8359.	10.4	2
5484	Acid-stable antimonate based catalysts for the electrocatalytic oxygen evolution reaction. Nano Research, 2023, 16, 4691-4697.	10.4	4
5485	Dualâ€Site Functionalization on Supported Metal Monolayer Electrocatalysts for Selective CO ₂ Reduction. Advanced Energy Materials, 2023, 13, .	19.5	17
5486	Lithium-ion diffusion path of tetragonal tungsten bronze (TTB) phase Nb18W16O93. Transactions of Nonferrous Metals Society of China, 2022, 32, 3679-3686.	4.2	2
5487	Influence Mechanism of O2/H2O Adsorption on Cu(111) Surface on SF6 Overheating Failure Decomposition. Plasma Chemistry and Plasma Processing, 0, , .	2.4	0
5488	Coupled Cluster Molecular Dynamics of Condensed Phase Systems Enabled by Machine Learning Potentials: Liquid Water Benchmark. Physical Review Letters, 2022, 129, .	7.8	25
5489	Nitrogen-Doped Bismuth Nanosheet as an Efficient Electrocatalyst to CO2 Reduction for Production of Formate. International Journal of Molecular Sciences, 2022, 23, 14485.	4.1	5
5490	Low-crystalline Ni(OH)2 ultrathin nanosheets upcycled from solid wastes for efficient photoconversion of low-concentration CO2. Chemical Engineering Journal, 2022, , 140507.	12.7	1
5491	Discovery of LaAlO3 as an efficient catalyst for two-electron water electrolysis towards hydrogen peroxide. Nature Communications, 2022, 13, .	12.8	21
5492	Highly selective electrochemical oxidation of 2-nitro-4-methylsulfonyltoluene to 2-nitro-4-methylsulfonylbenzoic acid enabled by molybdate. Journal of Applied Electrochemistry, 2023, 53, 705-712.	2.9	1
5493	N-doped LaPO4: An effective Pt-free catalyst for electrocatalytic oxygen reduction. Chem Catalysis, 2022, 2, 3590-3606.	6.1	40
5494	Predicting the Stability and Loading for Electrochemical Preparation of Single-Atom Catalysts. ACS Catalysis, 2023, 13, 79-86.	11.2	5
5495	Quantum dynamics reveal different ligand effects by vibrational excitation in the dissociative chemisorption of HCl on the Au/Ag(111) surface. Journal of Chemical Physics, 2022, 157, .	3.0	3
5496	Membrane-damage antibacterial mechanism of phenanthrene compounds from Arundina graminifolia (D.Don) Hochr. South African Journal of Botany, 2022, 151, 1008-1017.	2.5	4
5497	Sulfurâ€Doped rGO Aerogel Enables the Anchoring of 1T/2H MoS ₂ for Durable Oxygen Reduction Reaction Catalyst Support. ChemSusChem, 2023, 16, .	6.8	2
5498	Towards extreme fast charging of 4.6ÂV LiCoO2 via mitigating high-voltage kinetic hindrance. Journal of Energy Chemistry, 2023, 78, 13-20.	12.9	6

#	Article	IF	CITATIONS
5499	SBH17: Benchmark Database of Barrier Heights for Dissociative Chemisorption on Transition Metal Surfaces. Journal of Chemical Theory and Computation, 2023, 19, 245-270.	5. 3	8
5500	The role of coverage effects on the structure–sensitivity of formic acid electrooxidation on Pd surfaces. Journal of Catalysis, 2023, 417, 408-420.	6.2	1
5501	Pressure dependent structural, dynamical, mechanical and electronic properties of magnesium dicarbide. Philosophical Magazine, 0, , 1-22.	1.6	0
5502	2D, Metalâ€Free Electrocatalysts for the Nitrogen Reduction Reaction. Advanced Functional Materials, 2023, 33, .	14.9	17
5503	The Role of Hydrogen Adsorption Site Diversity in Catalysis on Transition-Metal Phosphide Surfaces. ACS Catalysis, 2023, 13, 287-295.	11.2	11
5504	Efficient electrolytic conversion of nitrogen oxyanion and oxides to gaseous ammonia in molten alkali. Chemical Engineering Journal, 2023, 456, 141060.	12.7	2
5505	Partial Sulphidation to Regulate Coordination Structure of Single Nickel Atoms on Graphitic Carbon Nitride for Efficient Solar H ₂ Evolution. Small, 2023, 19, .	10.0	6
5506	Glycolaldehyde formation mediated by interstellar amorphous ice: a computational study. Monthly Notices of the Royal Astronomical Society, 2022, 519, 2518-2527.	4.4	2
5507	An examination of phonon–inelastic molecule–metal scattering using reduced density matrix and stochastic wave packet methods. Journal of Chemical Physics, 2023, 158, 024701.	3.0	0
5508	Tuning the C ₁ /C ₂ Selectivity of Electrochemical CO ₂ Reduction on Cu–CeO ₂ Nanorods by Oxidation State Control. Advanced Materials, 2023, 35, .	21.0	17
5509	First-Principles Calculations of Crystallographic and Electronic Structural Properties of Au-Cu Alloys. Journal of Composites Science, 2022, 6, 383.	3.0	3
5510	Theoretical and Experimental Study of the Crystal Orientation Effect of the Anode on the Aluminum-Air Battery Performance. Journal of the Electrochemical Society, 2022, 169, 120541.	2.9	3
5511	Facet-Dependent SERS Activity of Co3O4. International Journal of Molecular Sciences, 2022, 23, 15930.	4.1	4
5512	Strain in Catalysis: Rationalizing Material, Adsorbate, and Site Susceptibilities to Biaxial Lattice Strain. Journal of Physical Chemistry C, 2022, 126, 20892-20902.	3.1	4
5513	Mechanisms and Kinetics of the Dehydrogenation of C ₆ –C ₈ Cycloalkanes, Cycloalkenes, and Cyclodienes to Aromatics in H-MFI Zeolite Framework. ACS Catalysis, 2023, 13, 99-112.	11.2	5
5514	Porous heterostructure of graphene/hexagonal boron nitride as an efficient electrocatalyst for hydrogen peroxide generation., 2023, 5, .		12
5515	Degradation of bisphenol A in an oxidation system constructed from Mo2C MXene and peroxymonosulfate. Npj Clean Water, 2022, 5, .	8.0	9
5516	The bio-inspired heterogeneous single-cluster catalyst Ni100–Fe ₄ S ₄ for enhanced electrochemical CO ₂ reduction to CH ₄ . Nanoscale, 2023, 15, 2756-2766.	5.6	17

#	Article	IF	CITATIONS
5517	The effect of dissolved chlorides on the photocatalytic degradation properties of titania in wastewater treatment. Physical Chemistry Chemical Physics, 2023, 25, 4161-4176.	2.8	4
5518	Cation-Coordinated Inner-Sphere CO ₂ Electroreduction at Au–Water Interfaces. Journal of the American Chemical Society, 2023, 145, 1897-1905.	13.7	31
5519	Blocking the reverse reactions of overall water splitting on a Rh/GaN–ZnO photocatalyst modified with Al2O3. Nature Catalysis, 2023, 6, 80-88.	34.4	41
5520	ZIF-derived non-bonding Co/Zn coordinated hollow carbon nitride for enhanced removal of antibiotic contaminants by peroxymonosulfate activation: Performance and mechanism. Applied Catalysis B: Environmental, 2023, 325, 122401.	20.2	29
5521	Single-photon hot-electron ionization of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi mathvariant="normal">C</mml:mi></mml:mrow><mml:mn>70</mml:mn></mml:msub></mml:math> . Physical Review A, 2023, 107, .	2.5	1
5522	The surface charge induced high activity of oxygen reduction reaction on the PdTe ₂ bilayer. Physical Chemistry Chemical Physics, 2023, 25, 4105-4112.	2.8	2
5523	Revealing the Self-Doping Defects in Carbon Materials for the Compact Capacitive Energy Storage of Zn-Ion Capacitors. ACS Applied Materials & Samp; Interfaces, 2023, 15, 3006-3016.	8.0	8
5524	Coverage-driven selectivity switch from ethylene to acetate in high-rate CO2/CO electrolysis. Nature Nanotechnology, 2023, 18, 299-306.	31.5	59
5525	One-electron self-interaction error and its relationship to geometry and higher orbital occupation. Journal of Chemical Physics, 2023, 158, .	3.0	5
5526	Steering from electrochemical denitrification to ammonia synthesis. Nature Communications, 2023, 14, .	12.8	14
5527	Computational demonstration of isomer- and spin-state-dependent charge transport in molecular junctions composed of charge-neutral iron(<scp>ii</scp>) spin-crossover complexes. Dalton Transactions, 2023, 52, 1229-1240.	3.3	4
5528	Hydrogen and oxygen on tungsten (110) surface: adsorption, absorption and desorption investigated by density functional theory. Nuclear Fusion, 2023, 63, 036017.	3.5	1
5529	Dual-functional vinylpyrrolidone electrolyte additive as anode surface leveler and cathode catalyst for lithium Metal-Oxygen batteries. Chemical Engineering Journal, 2023, 458, 141383.	12.7	9
5530	Unlocking low-temperature and anti-SO2 poisoning performance of bimetallic PdV/TiO2 catalyst for chlorobenzene/NO catalytic removal by antimony modification design. Chemical Engineering Journal, 2023, 457, 141210.	12.7	6
5531	Overcoming significant challenges in extracting off-stoichiometric thermodynamics using the compound energy formalism through complementary use of experimental and first principles data: A case study of Ba1-xSrxFeO3-Î'. Solid State Ionics, 2023, 390, 116115.	2.7	0
5532	Realizing high reversibility and safety of Zn anode via binary mixture of organic solvents. Nano Energy, 2023, 107, 108175.	16.0	20
5533	Growth of high-density horizontal SWNT arrays by pre-cracking of carbon source. Carbon, 2023, 205, 27-32.	10.3	1
5534	Theoretical insight into the mechanism of CO2 and H2O formation from CO and OH over stepped Ni and Fe/Ni bimetallic surfaces. Applied Surface Science, 2023, 615, 156320.	6.1	2

#	Article	IF	Citations
5535	Nickel-doped tungsten oxide promotes stable and efficient hydrogen evolution in seawater. Applied Catalysis B: Environmental, 2023, 325, 122397.	20.2	16
5536	Direction-Based Graph Representation to Accelerate Stable Catalyst Discovery. Chemistry of Materials, 2023, 35, 63-70.	6.7	3
5537	Optimizing density-functional simulations for two-dimensional metals. Physical Review Materials, 2022, 6, .	2.4	1
5538	Photocatalytic property of two dimensional heterostructure MoS2/WS2 for hydrogen evolution via water splitting; a first principles calculation. International Journal of Hydrogen Energy, 2023, 48, 9371-9376.	7.1	6
5540	Atom-Specific Probing of Electron Dynamics in an Atomic Adsorbate by Time-Resolved X-Ray Spectroscopy. Physical Review Letters, 2022, 129, .	7.8	1
5541	"O-S―Charge Transfer Mechanism Guiding Design of a ZnIn ₂ S ₄ /SnSe ₂ /In ₂ Se ₃ Heterostructure Photocatalyst for Efficient Hydrogen Production. ACS Catalysis, 2023, 13, 1020-1032.	11.2	13
5542	Binding Energy and Diffusion Barrier of Formic Acid on Pd(111). Journal of Physical Chemistry A, 2023, 127, 142-152.	2.5	0
5543	First Ultrathin Pure Polyoxometalate 2D Material as a Peroxidase-Mimicking Catalyst for Detecting Oxidative Stress Biomarkers. ACS Applied Materials & Early; Interfaces, 2023, 15, 1486-1494.	8.0	14
5544	Hybrid-Density Functional Calculations of Structural, Electronic, Magnetic, and Thermodynamic Properties of 1±-Cu2P2O7. Applied Sciences (Switzerland), 2023, 13, 498.	2.5	2
5545	Surface Engineering of Copper Catalyst through CO* Adsorbate. Journal of Physical Chemistry C, 2023, 127, 1789-1797.	3.1	4
5546	Spectroscopy from Machine Learning by Accurately Representing the Atomic Polar Tensor. Journal of Chemical Theory and Computation, 2023, 19, 705-712.	5.3	8
5547	Optimizing the electronic structures of Ca Sr1-Co0.7Fe0.3O3-δ anodes for high-temperature oxygen evolution reaction. Chem Catalysis, 2023, 3, 100504.	6.1	5
5548	Effect of MgO, Ti2O3, and Al2O3 Inclusions on the Formation of Manganese-Depleted Zones Through First-Principles Calculation. Minerals, Metals and Materials Series, 2023, , 1057-1066.	0.4	0
5549	Screening High-Entropy Alloys for Carbon Dioxide Reduction Reaction Using Alchemical Perturbation Density Functional Theory. Minerals, Metals and Materials Series, 2023, , 119-126.	0.4	0
5550	Engineering Pt Coordination Environment with Atomically Dispersed Transition Metal Sites Toward Superior Hydrogen Evolution. Advanced Energy Materials, 2023, 13, .	19.5	43
5551	Adsorbed CO ₂ -Mediated CO ₂ Photoconversion Cycle into Solar Fuel at the O Vacancy Site of Zirconium Oxide. Journal of Physical Chemistry C, 2023, 127, 1776-1788.	3.1	4
5553	Interstitial Carbon Dopant in Palladium–Gold Alloy Boosting the Catalytic Performance in Vinyl Acetate Monomer Synthesis. Journal of the American Chemical Society, 2023, 145, 2985-2998.	13.7	11
5554	First-Principles Investigation on the High-Temperature Mechanical Properties and Thermal Properties of Pt-40Rh. Transactions of the Indian Institute of Metals, 2023, 76, 1545-1552.	1.5	1

#	Article	IF	Citations
5555	The role of overlayered nitride electro-materials for N2 reduction to ammonia. Frontiers in Catalysis, 0, 2, .	3.9	2
5556	Substituent Effects of the Nitrogen Heterocycle on Indole and Quinoline HDN Performance: A Combination of Experiments and Theoretical Study. International Journal of Molecular Sciences, 2023, 24, 3044.	4.1	O
5557	Theoretical investigation of the structural, electronic, elastic and optical properties of the new layered ternary chalcogenide tetragonal compounds Cu2MX4 (M = W and Mo; X=S and Se). Journal of Solid State Chemistry, 2023, 321, 123880.	2.9	3
5558	First-principles study of different oxidation process on Al(111) and Cu(111): Metal pulled-off effect. Surface Science, 2023, 731, 122260.	1.9	0
5559	Transition-state correlations for predicting thermochemistry of adsorbates and surface reactions. Physical Chemistry Chemical Physics, 2023, 25, 8412-8423.	2.8	0
5560	Enabling triferroics coupling in breathing kagome lattice Nb $<$ sub $>3sub>X<sub>8sub> (X = Cl, Br, I) monolayers. Journal of Materials Chemistry C, 2023, 11, 5762-5769.$	5.5	4
5561	Structural water in amorphous carbonate minerals: <i>ab initio</i> molecular dynamics simulations of X-ray pair distribution experiments. Physical Chemistry Chemical Physics, 2023, 25, 6768-6779.	2.8	1
5562	Structural, Electronic, and Optical Properties of SnBr2 Monolayer by Density Functional Approach. Materials Today: Proceedings, 2023, , .	1.8	4
5563	Microwave enhanced catalytic hydration of acrolein to 3-hydroxypropionaldehyde using simultaneous cooling: Experimental and theoretical studies. Chemical Engineering Science, 2023, 269, 118493.	3.8	0
5564	Synthesis of core/shell nanocrystals with ordered intermetallic single-atom alloy layers for nitrate electroreduction to ammonia., 2023, 2, 624-634.		37
5565	Active and durable R2MnRuO7 pyrochlores with low Ru content for acidic oxygen evolution. Nature Communications, 2023, 14, .	12.8	9
5566	Deducing subnanometer cluster size and shape distributions of heterogeneous supported catalysts. Nature Communications, 2023, 14, .	12.8	5
5567	Efficient Synthesis of 2D Mica Nanosheets by Solvothermal and Microwave-Assisted Techniques for CO2 Capture Applications. Materials, 2023, 16, 2921.	2.9	2
5568	Green synthesis of glyco-CulnS2 QDs with visible/NIR dual emission for 3D multicellular tumor spheroid and in vivo imaging. Journal of Nanobiotechnology, 2023, 21, .	9.1	2
5569	Enhanced Durability of Automotive Fuel Cells via Selectivity Implementation by Hydrogen Spillover on the Electrocatalyst Surface. ACS Energy Letters, 2023, 8, 2201-2213.	17.4	7
5570	Simultaneously mastering operando strain and reconstruction effects via phase-segregation strategy for enhanced oxygen-evolving electrocatalysis. Journal of Energy Chemistry, 2023, 82, 572-580.	12.9	36
5571	Role of phosphorous in transition metal phosphides for selective hydrogenolysis of hindered C–O bonds. Journal of Catalysis, 2023, 421, 403-418.	6.2	1
5572	Energetic and configurational mechanisms to facilitate mica nanosheets synthesis by organo-ammonium cation intercalation. Computational Materials Science, 2023, 224, 112162.	3.0	1

#	Article	IF	CITATIONS
5573	Phosphoric acid resistance PtCu/C oxygen reduction reaction electrocatalyst for HT-PEMFCs: A theoretical and experimental study. Applied Surface Science, 2023, 619, 156663.	6.1	7
5574	Effect of N-doping-derived solvent adsorption on electrochemical double layer structure and performance of porous carbon. Journal of Energy Chemistry, 2023, 80, 120-127.	12.9	2
5575	WOx nanowire supported ultra-fine Ir-IrOx nanocatalyst with compelling OER activity and durability. Chemical Engineering Journal, 2023, 464, 142613.	12.7	9
5576	Prediction of mechanical properties of AlTiCrVNb high entropy alloys with B2 ordered structure. Journal of Materials Research and Technology, 2023, 24, 440-448.	5.8	2
5577	Meticulous integration of N and C active sites in Ni2P electrocatalyst for sustainable ammonia oxidation and efficient hydrogen production. Chemical Engineering Journal, 2023, 463, 142314.	12.7	17
5578	Application of zinc carbide nanosheet as a promising material for 5-fluorouracil drug delivery. Inorganic Chemistry Communication, 2023, 152, 110630.	3.9	0
5579	Design of catalyst for syngas conversion to C2 oxygenates via confining diatomic metal within the framework of 2D carbon-based materials. Fuel, 2023, 342, 127858.	6.4	1
5580	Synergic effect of defects on carbon nanoparticles under interaction with calcium silicate hydrate composites. Applied Surface Science, 2023, 622, 156712.	6.1	2
5581	A comparative study of cubic methylammonium lead iodide (CH3NH3PbI3) perovskite by using density functional theory. Materials Today Communications, 2023, 35, 105814.	1.9	1
5582	The mechanism of carcinogenic heavy metal adsorption on a new monolayer AlP5. Applied Surface Science, 2023, 623, 157025.	6.1	1
5583	A Janus separator towards dendrite-free and stable zinc anodes for long-duration aqueous zinc ion batteries. Journal of Energy Chemistry, 2023, 81, 583-592.	12.9	11
5584	The mechanism of easier desorption of Fe atoms on the (1 0 0) surface of LiFePO4 and FePO4. Chemical Physics, 2023, 570, 111891.	1.9	1
5585	Robust magnetism of the cluster assembled (Fe@In6)Ba2 crystal. Computational and Theoretical Chemistry, 2023, 1224, 114106.	2.5	0
5586	Chemical functionalization induced photocatalytic performance for water splitting of silicene: A first-principles investigation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 667, 131379.	4.7	9
5587	Theoretical approach to the one-step versus two-step spin transitions in Hofmann-like Fell SCO metal-organic frameworks. Materials Today Chemistry, 2023, 30, 101489.	3.5	1
5588	Dual functional effect of oxygen vacancies and depolarity shield embedded NiCo2O4 cathode in lithium sulfur battery. Applied Surface Science, 2023, 622, 156939.	6.1	3
5589	G-C3N5 nanotube as a promising candidate for adsorption and inactivation of aflatoxin B1: A first-principles study. Surfaces and Interfaces, 2023, 38, 102868.	3.0	0
5590	Band gap tailoring with octahedral distortion and bader charge analysis for 2D-Ruddlesden–Popper monolayer tin halide perovskites. Materials Science in Semiconductor Processing, 2023, 162, 107490.	4.0	1

#	Article	IF	CITATIONS
5591	Improved activity and significant SO2 tolerance of Sb–Pd–V oxides on N-doped TiO2 for CB/NO synergistic degradation. Chemosphere, 2023, 329, 138613.	8.2	2
5592	Stabilizing Fe in intermetallic L10-PtAuFe nanoparticles with strong Au-Fe bond to boost oxygen reduction reaction activity and durability. Chemical Engineering Journal, 2023, 465, 142748.	12.7	4
5593	Thickness-dependent oxygen chemisorption behaviors on $(1\ 1\ 1)$ surfaces of two-dimensional FCC metals Al and Cu: First-principles study. Computational Materials Science, 2023, 219, 112022.	3.0	1
5594	First-principles prediction of two-dimensional MnOX ($X = Cl$, Br) monolayers: the half-metallic multiferroics with magnetoelastic coupling. Nanoscale, 2023, 15, 4546-4552.	5. 6	4
5595	Merging Platinum Single Atoms to Achieve Ultrahigh Mass Activity and Low Hydrogen Production Cost. ACS Nano, 2023, 17, 2923-2931.	14.6	6
5596	Pseudo-Pt Monolayer for Robust Hydrogen Oxidation. Journal of the American Chemical Society, 2023, 145, 4088-4097.	13.7	12
5597	A novel azoâ€azomethine benzoxazoleâ€based ligand and its transition metal (II), (III), (IV) complexes: Synthesis, characterization, theoretical studies, biological evaluation,Âand catalytic application. Applied Organometallic Chemistry, 2023, 37, .	3.5	2
5598	Change in the Nature of ZSM-5 Zeolite Depending on the Type of Metal Adsorbentâ€"The Analysis of DOS and Orbitals for Iron Species. International Journal of Molecular Sciences, 2023, 24, 3374.	4.1	1
5599	Experimental and Computational Study for the Design of Sulfathiazole Dosage Form with Clay Mineral. Pharmaceutics, 2023, 15, 575.	4.5	2
5600	Strengthening the Hydrogen Spillover Effect via the Phase Transformation of W ₁₈ O ₄₉ for Boosted Hydrogen Oxidation Reaction. ACS Catalysis, 2023, 13, 2834-2846.	11.2	9
5601	Comparative study of neutronic, mechanical and thermodynamic properties of accident tolerant cladding materials: SiC, TiC and ZrC. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 290, 116352.	3.5	3
5602	Kineticâ€Modulated Crystal Phase of Ru for Hydrogen Oxidation. Small, 2023, 19, .	10.0	2
5603	Interpretable design of Ir-free trimetallic electrocatalysts for ammonia oxidation with graph neural networks. Nature Communications, 2023, 14 , .	12.8	17
5604	Thermodynamics of native defects in V2O5 crystal: A first-principles method. Computational Materials Science, 2023, 220, 112071.	3.0	2
5605	Optical method for quantifying the potential of zero charge at the platinum–water electrochemical interface. Nature Materials, 2023, 22, 503-510.	27. 5	18
5606	Unraveling different influences of the fraction of the tetragonal phase in oxide films on the corrosion resistance of Zr alloys from the phase transition mechanism. Physical Chemistry Chemical Physics, 2023, 25, 8934-8947.	2.8	0
5607	Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science, 2023, 379, 707-712.	12.6	107
5608	A non-self-consistent tight-binding electronic structure potential in a polarized double- $\langle i \rangle \hat{\P} \langle i \rangle$ basis set for all $\langle i \rangle$ spd $\langle i \rangle$ -block elements up to Z = 86. Journal of Chemical Physics, 2023, 158, .	3.0	5

#	Article	IF	CITATIONS
5609	Post-dissociation Dynamics of N ₂ on Ru(0001): How Far Can the "Hot―N Atoms Travel?. Journal of Physical Chemistry C, 2023, 127, 4079-4086.	3.1	2
5610	Combining Machine Learning and Many-Body Calculations: Coverage-Dependent Adsorption of CO on Rh(111). Physical Review Letters, 2023, 130, .	7.8	11
5611	MoS2/NiSe2/rGO Multiple-Interfaced Sandwich-like Nanostructures as Efficient Electrocatalysts for Overall Water Splitting. Nanomaterials, 2023, 13, 752.	4.1	2
5612	Synthesis of Bivalent Ni(II), Cu(II) and Zn(II) Complexes of Azodicarbonamide in Mixture of Methanol and Aqueous Solvents: Spectral Characterizations and Anti-Microbial Studies. Crystals, 2023, 13, 367.	2.2	1
5613	Modulation of Local Charge Distribution Stabilized the Anionic Redox Process in Mn-Based P2-Type Layered Oxides. ACS Applied Materials & Samp; Interfaces, 2023, 15, 11691-11702.	8.0	9
5614	Paradox of thiourea: A false-positive and promoter for electrochemical nitrogen reduction on nickel sulfide catalysts. Applied Catalysis B: Environmental, 2023, 328, 122485.	20.2	5
5616	Quantum Molecular Descriptors of 6-Thioguanine Adsorbed PPy-PNVK Conducting Polymer: A DFT Analysis. Asian Journal of Chemistry, 2023, 35, 555-562.	0.3	0
5617	Development of a Highly Stable Ternary Alloy Catalyst for Dry Reforming of Methane. ACS Catalysis, 2023, 13, 3541-3548.	11.2	10
5618	A Strong Magnetic Field Alters the Activity and Selectivity of the CO2RR by Restraining C–C Coupling. Magnetochemistry, 2023, 9, 65.	2.4	5
5619	A Coverage Self-Consistent Microkinetic Model for Vapor-Phase Formic Acid Decomposition over Pd/C Catalysts. ACS Catalysis, 2023, 13, 3655-3667.	11.2	5
5620	Interface and energy band manipulation of Bi2O3-Bi2S3 electrode enabling advanced magnesium-ion storage. Journal of Magnesium and Alloys, 2023, , .	11.9	1
5621	Chlorine-induced mixed valence of CuOx/C to promote the electroreduction of carbon dioxide to ethylene. Nano Research, 2023, 16, 8827-8835.	10.4	2
5622	Effect of TiO2-Al2O3 support surface properties on active phase structure and hydrodenitrogenation performances of the corresponding NiWS supported catalysts. Fuel, 2023, 343, 127922.	6.4	6
5623	Iridium oxide nanoribbons with metastable monoclinic phase for highly efficient electrocatalytic oxygen evolution. Nature Communications, 2023, 14, .	12.8	31
5624	Methane Activation and Coupling Pathways on Ni2P Catalyst. Catalysts, 2023, 13, 531.	3.5	3
5625	Rectangular Transition Metal-rTCNQ Organic Frameworks Enabling Polysulfide Anchoring and Fast Electrocatalytic Activity in Li-Sulfur Batteries: A Density Functional Theory Perspective. Molecules, 2023, 28, 2389.	3.8	1
5626	lodine capture by ZSM-5 with different Si/Al ratios: An experimental and molecular simulation investigation. Microporous and Mesoporous Materials, 2023, 354, 112536.	4.4	5
5627	Microscopic insights on the effects of flue gas components on CH4–CO2 replacement in natural gas hydrate. , 2023, 112, 204947.		2

#	Article	IF	CITATIONS
5628	Engineering the catalytic properties of CeO2 catalyst in HCl-assisted propane dehydrogenation by effective doping: A first-principles-based microkinetic simulation. Frontiers in Chemistry, $0,11,1$	3.6	0
5629	Electrochemical Reduction of Nitrates on CoO Nanoclustersâ€Functionalized Graphene with Highest Mass Activity and Nearly 100% Selectivity to Ammonia. Advanced Energy Materials, 2023, 13, .	19.5	22
5630	Computational Analysis of Vibrational Spectra of Hydrogen Bonds in sII and sH Gas Hydrates. ACS Omega, 2023, 8, 11634-11639.	3 . 5	0
5631	Simulating Highly Activated Sticking of H ₂ on Al(110): Quantum versus Quasi-Classical Dynamics. Journal of Physical Chemistry C, 2023, 127, 5395-5407.	3.1	1
5632	High mobility and excellent thermoelectric performance monolayer $ZnX < sub > 2 < sub > 2 < sub > 4 < sub > (X = In, Al, Ga; Z = S, Se, Te) materials. Physical Chemistry Chemical Physics, 2023, 25, 10335-10342.$	2.8	2
5633	Superior Thermoelectric Properties of Twistâ€Angle Superlattice Borophene Induced by Interlayer Electrons Transport. Small, 2023, 19, .	10.0	16
5634	Novel ((E)-((2-hydroxynaphthalen-1-yl)methylidene)amino)urea ligand and its $Mn(II)$, $Co(II)$, $Ni(II)$, $Cu(II)$, and $Zn(II)$ complexes: Synthesis, characterization, molecular docking, and anti-cancer activities. Inorganic and Nano-Metal Chemistry, O , O , O 1-13.	1.6	0
5636	Topological Bonding and Electronic Properties of Cd ₄₃ Te ₂₈ Semiconductor Material with Microporous Structure. Physica Status Solidi (B): Basic Research, 2023, 260, .	1.5	2
5637	Understanding the fundamentals of TiO ₂ surfacesPart II. Reactivity and surface chemistry of TiO ₂ single crystals. Surface Engineering, 2022, 38, 846-906.	2,2	0
5639	Highly selective electrocatalytic alkynol semi-hydrogenation for continuous production of alkenols. Nature Communications, 2023, 14, .	12.8	16
5640	Structural Sampling and Solvation Models for the Simulation of Electronic Spectra: Pyrazine as a Case Study. Journal of Chemical Theory and Computation, 2023, 19, 2291-2303.	5. 3	1
5641	Reconciling experimental catalytic data stemming from structure sensitivity. Chemical Science, 2023, 14, 4337-4345.	7.4	2
5642	Copper Growth on a Stepped Nickel Surface: Electronic and Geometric Effects on CO Reactivity. Journal of Physical Chemistry C, 2023, 127, 6337-6346.	3.1	2
5643	Catalytic Activity Maps for Alloy Nanoparticles. Journal of the American Chemical Society, 2023, 145, 7352-7360.	13.7	10
5644	Electronic structure and optical properties of Br- and Cl-doped rutile TiO2 for application in self-cleaning and photovoltaic panel's coatings: first-principle calculations. Environmental Science and Pollution Research, 2023, 30, 81697-81706.	5. 3	2
5645	Machine learning transferable atomic forces for large systems from underconverged molecular fragments. Physical Chemistry Chemical Physics, 2023, 25, 12979-12989.	2.8	5
5646	Insight into the ion-dependent capacity mismatch in alkali metal ion batteries by in situ magnetometry. Energy Storage Materials, 2023, 58, 299-310.	18.0	2
5647	Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis. Nature Communications, 2023, 14, .	12.8	18

#	Article	IF	CITATIONS
5648	Methyl Group-Promoted Generation of Oxygen Vacancies in an Aerobically Annealed TiO ₂ Nanostructure for Photocatalytic H ₂ Production. ACS Applied Nano Materials, 2023, 6, 6076-6085.	5.0	4
5649	Progress of electrochemical synthesis of nitric acid: catalyst design, mechanistic insights, protocol and challenges. Journal of Materials Chemistry A, 2023, 11, 10125-10148.	10.3	12
5650	DFT and simulation of solid-liquid interface properties and processes. , 2024, , 723-734.		0
5651	Atomistic modeling of the mechanical properties: the rise of machine learning interatomic potentials. Materials Horizons, 2023, 10, 1956-1968.	12.2	17
5652	Proton Transport in Perfluorinated Ionomer Simulated by Machine-Learned Interatomic Potential. Journal of Physical Chemistry Letters, 2023, 14, 3581-3588.	4.6	5
5653	Efficient all-thermally evaporated perovskite light-emitting diodes for active-matrix displays. Nature Photonics, 2023, 17, 435-441.	31.4	25
5654	First-principles surface reaction rates by ring polymer molecular dynamics and neural network potential: role of anharmonicity and lattice motion. Chemical Science, 2023, 14, 5087-5098.	7.4	3
5655	Diffusion of O Atoms on a CO-Covered Ru(0001) Surface─A Combined High-Speed Scanning Tunneling Microscopy and Density Functional Theory Study at an Enhanced CO Coverage. Journal of Physical Chemistry C, 2023, 127, 7197-7210.	3.1	0
5656	Polyaniline-Supported Nickel Oxide Flower for Efficient Nitrite Electrochemical Detection in Water. Polymers, 2023, 15, 1804.	4.5	15
5657	Design new organic material based on triphenylamine (TPA) with D-Ï€-A-Ï€-D structure used as an electron donor for organic solar cells: A DFT approach. Journal of Molecular Graphics and Modelling, 2023, 122, 108470.	2.4	2
5658	Li–N ₂ Battery for Ammonia Synthesis and Computational Insight. ACS Applied Materials & Li–N (Sub) Battery for Ammonia Synthesis and Computational Insight. ACS Applied Materials & Li–N (Sub) Battery for Ammonia Synthesis and Computational Insight. ACS Applied Materials & Li–N (Sub) Battery for Ammonia Synthesis and Computational Insight. ACS Applied Materials & Li–N (Sub) Battery for Ammonia Synthesis and Computational Insight. ACS Applied Materials & Li–N (Sub) Battery for Ammonia Synthesis and Computational Insight. ACS Applied Materials & Li–N (Sub) Battery for Ammonia Synthesis and Computational Insight. ACS Applied Materials & Liâbet & Liâb	8.0	1
5659	Growth Dynamics of Ultrathin Films of Benzo[1,2- <i>b</i> :4,5- <i>b</i> i>']dithiophene Derivatives on Au(111): A Photoelectron Spectroscopy Investigation. Langmuir, 2023, 39, 5602-5609.	3.5	0
5660	Elucidating the Role of Noncovalent Interactions in Favipiravir, a Drug Active against Various Human RNA Viruses; a 1H-14N NQDR/Periodic DFT/QTAIM/RDS/3D Hirshfeld Surfaces Combined Study. Molecules, 2023, 28, 3308.	3.8	4
5661	Gas sensor based on graphene sheet derivatives decorated by Ni and As atoms. Modern Physics Letters B, 2023, 37, .	1.9	1
5662	Selective nitric oxide electroreduction at monodispersed transition-metal sites with atomically precise coordination environment. Chem Catalysis, 2023, 3, 100598.	6.1	2
5663	Cd-doping-assisted tuning of transparency and conductivity of MnIn2O4 by density functional quantum theoretical approach. European Physical Journal Plus, 2023, 138, .	2.6	1
5664	Tunable hydrogen evolution activity of black antimony–phosphorus monolayers via strain engineering: a first-principles calculation. Applied Physics A: Materials Science and Processing, 2023, 129, .	2.3	1
5665	A chemically inspired convolutional neural network using electronic structure representation. Journal of Materials Chemistry A, 2023, 11, 10184-10194.	10.3	1

#	ARTICLE	IF	Citations
5666	Theoretical insight into the generation mechanism of vinyl acrylate in the production of vinyl acetate on PdAu(100). New Journal of Chemistry, 2023, 47, 9323-9334.	2.8	1
5667	13C CPMAS NMR as an Alternative Method to Verify the Quality of Dietary Supplements Containing Curcumin. Molecules, 2023, 28, 3442.	3.8	2
5668	Enhanced Photoassisted Liâ€O ₂ Battery with Ceâ€UiOâ€66 Metalâ€Organic Framework Based Photocathodes. Advanced Materials Interfaces, 2023, 10, .	3.7	1
5669	Comparison of the Performance of Density Functional Methods for the Description of Spin States and Binding Energies of Porphyrins. Molecules, 2023, 28, 3487.	3.8	3
5670	Self-reconstruction of (CoNiFeCuCr)Se high-entropy selenide for efficient oxygen evolution reaction. Applied Surface Science, 2023, 627, 157282.	6.1	4
5671	Density Functional Theory Investigation of Glucose Oxidation on Au Surfaces. Chemistry Letters, 2023, 52, 361-364.	1.3	0
5672	Exploring the mobility of Cu in bimetallic nanocrystals to promote atomic-scale transformations under a reactive gas environment. Journal of Materials Chemistry A, O, , .	10.3	0
5673	Reconstructing Oxygenâ€Deficient Zirconia with Ruthenium Catalyst on Atomicâ€Scale Interfaces toward Hydrogen Production. Advanced Functional Materials, 2023, 33, .	14.9	3
5674	Impact of charge-compensated Fe and Nb co-substitution on BaTiO3: Bandgap and grain size reduction and enhanced bulk photovoltaic power of Al/BFNT/Ag solar cell. Solar Energy, 2023, 257, 34-44.	6.1	4
5675	Surface Rearrangement and Sublimation Kinetics of Supported Gold Nanoparticle Catalysts. ACS Nano, 2023, 17, 8098-8107.	14.6	4
5676	Synthesis and Characterization of Xylazine Hydrochloride Polymorphs, Hydrates, and Cocrystals: A ³⁵ Cl Solid-State NMR and DFT Study. Crystal Growth and Design, 2023, 23, 3412-3426.	3.0	3
5677	Analysis of the NH3 Adsorption on Boron-Arsenic Co-doped Monolayer Graphene: A First Principle Study. Lecture Notes in Electrical Engineering, 2023, , 19-31.	0.4	1
5678	High nitrogen polymer in silver polynitrides. Journal of Physics Condensed Matter, 0, , .	1.8	0
5679	Regulating side chain of flexible polyacrylate resins for efficient removal of trace dissolved organics with moderate polarity. Chemical Engineering Science, 2023, 276, 118832.	3.8	1
5680	Revealing the interfacial water structure on a $\langle i \rangle p \langle i \rangle$ -nitrobenzoic acid specifically adsorbed Au(111) surface. Chemical Science, 2023, 14, 4905-4912.	7.4	3
5681	Mn(II) and Fe(III) complexes of N'1, N'2-bis((E)-2-hydroxybenzylidene) oxalohydrazide: Synthesis, characterization, DFT studies, biological activity, and ion-flotation separation of Fe(III). Journal of Molecular Structure, 2023, 1287, 135652.	3.6	2
5682	Is the doped MoS ₂ basal plane an efficient hydrogen evolution catalyst? Calculations of voltage-dependent activation energy. Physical Chemistry Chemical Physics, 2023, 25, 15162-15172.	2.8	2
5683	Pt-modified BiVO4 nanosheets for enhanced acetone sensing. Sensors and Actuators B: Chemical, 2023, 389, 133853.	7.8	6

#	Article	IF	CITATIONS
5684	Unveiling the role of hydroxyl groups in glycerol as a critical descriptor for efficient electrocatalytic reforming of biomass molecules using PtCu alloy nanoparticle catalysts. Chemical Engineering Journal, 2023, 466, 143138.	12.7	6
5685	ReaxFF Reactive Molecular Dynamics Study on Methanation Reaction from Syngas. Journal of Physical Chemistry C, 2023, 127, 8557-8575.	3.1	1
5686	Construction of Zn-doped RuO2 nanowires for efficient and stable water oxidation in acidic media. Nature Communications, 2023, 14 , .	12.8	35
5687	Electronic structures and optical properties of Janus GeXY (X , Y = P , As and Sb): First-principles predictions. Applied Physics Express, 2023, 16, 052005.	2.4	0
5688	Metalâ€"Support Interaction from Single Atoms to Single Clusters on the Fully Dehydrated Silica Surface. Journal of Physical Chemistry C, 2023, 127, 8963-8977.	3.1	0
5689	Density functional theoryÂmodeling of critical properties of perovskite oxides for water splitting applications. Wiley Interdisciplinary Reviews: Energy and Environment, 0, , .	4.1	2
5690	Screening of Ionic Liquid-Based Electrolytes for Al Dual-Ion Batteries: Thermodynamic Cycle and Combined MD-DFT Approaches. Journal of Physical Chemistry C, 2023, 127, 8913-8924.	3.1	3
5691	Piezostrain-controlled magnetization compensation temperature in ferrimagnetic GdFeCo alloy films. Physical Review B, 2023, 107, .	3.2	3
5692	Janus-functionalization induced magnetism and improved optoelectronic properties in two-dimension silicene and germanene: insights from first-principles calculations. Journal of Physics Condensed Matter, 2023, 35, 335501.	1.8	7
5693	Case Studies: Raman Spectroscopy. Springer Handbooks, 2023, , 111-129.	0.6	0
5694	The Enhancement of CO Oxidation Performance and Stability in SO2 and H2S Environment on Pd-Au/FeOX/Al2O3 Catalysts. Materials, 2023, 16, 3755.	2.9	0
5695	Intrinsic defects on $\hat{l}\pm, \hat{l}^3$ and \hat{l} -CsPbl ₃ (001) surfaces and implications for the $\hat{l}\pm/\hat{l}^3$ to \hat{l} phase transition. Physical Chemistry Chemical Physics, 2023, 25, 16077-16085.	2.8	1
5696	First-principles study on electronic and optical properties of sn-doped topological insulator Bi2Se3. Computational and Theoretical Chemistry, 2023, 1225, 114170.	2.5	3
5697	Machine learning-enabled exploration of the electrochemical stability of real-scale metallic nanoparticles. Nature Communications, 2023, 14, .	12.8	3
5698	C4S Nanosheet: A Potential Anode Material for Potassium-Ion Batteries. Batteries, 2023, 9, 288.	4.5	2
5699	On the Challenge of Obtaining an Accurate Solvation Energy Estimate in Simulations of Electrocatalysis. Topics in Catalysis, 2023, 66, 1244-1259.	2.8	1
5700	Insight into the direct conversion of methane to methanol on modified ZIF-204 from the perspective of DFT-based calculations. RSC Advances, 2023, 13, 15926-15933.	3.6	1
5701	Temperature effects on elastic constants and related properties of apatites. Materials Today Communications, 2023, 35, 106223.	1.9	0

#	Article	IF	CITATIONS
5702	Trapping and Adsorption Characteristics of ZIF-8 on SF and Its Decomposition Products < sub />. IEEE Transactions on Dielectrics and Electrical Insulation, 2023, 30, 2650-2656.	2.9	0
5704	Coupling MnS and CoS Nanocrystals on Self-Supported Porous N-doped Carbon Nanofibers to Enhance Oxygen Electrocatalytic Performance for Flexible Zn-Air Batteries. ACS Applied Materials & Samp; Interfaces, 2023, 15, 26766-26777.	8.0	3
5705	Breaking the Scaling Relationship on Single-Atom Embedded MBene for Selective CO ₂ Electroreduction. Journal of Physical Chemistry Letters, 2023, 14, 5172-5180.	4.6	8
5706	Dynamically confined single-atom catalytic sites within a porous heterobilayer for CO oxidation via electronic antenna effects. Physical Review B, 2023, 107, .	3.2	3
5707	Strain engineering of the electrocatalytic activity of nitrogen-rich BeN4 Dirac monolayer for hydrogen evolution reaction. Nano Energy, 2023, 113, 108557.	16.0	2
5709	Current, photocurrent and thermocurrent of borophene-black phosphorus heterostructures. Results in Physics, 2023, 50, 106583.	4.1	0
5710	Competition between intrinsic and extrinsic phonon scatterings in cubic BP and BAs with point defects. Physical Review B, 2023, 107, .	3.2	2
5711	Tapping the Performance of a Tungsten Disulfide Field-Effect Transistor with Deep Structure Optimization and Theoretical Simulation. ACS Applied Electronic Materials, 2023, 5, 3384-3393.	4.3	1
5712	Influence of residual chlorine on Ru/TiO2 active sites during CO2 methanation. Applied Catalysis A: General, 2023, 663, 119292.	4.3	0
5713	Highly dispersed nickel site catalysts for diluted CO2 photoreduction to CO with nearly 100% selectivity. Applied Catalysis B: Environmental, 2023, 337, 122958.	20.2	4
5714	Highly c-disordered birnessite with abundant out-of-layer oxygen vacancies for enhanced ozone catalytic decomposition. Separation and Purification Technology, 2023, 322, 124254.	7.9	3
5715	Thermochemistry of Elementary Reactions in Water–Gas Shift Reaction on Ni(111): An <i>Ab Initio</i> Study., 2023, 01,.		0
5716	Ga(IO ₃) ₃ : a mid-IR nonlinear optical iodate with balanced performance between band gap and second harmonic generation response. Journal of Materials Chemistry C, 0, , .	5 . 5	1
5717	The ferryl generation by fenton reaction driven by catechol. Chemosphere, 2023, 335, 139155.	8.2	3
5718	Tuning the intrinsic catalytic sites of magnetite to concurrently enhance the reduction of H2O2 and O2: Mechanism analysis and application potential evaluation. Journal of Hazardous Materials, 2023, 457, 131800.	12.4	2
5719	Fluxionality Modulating the Magnetic Anisotropy in Lanthanoarene [(ηC _{<i>n</i>} <i>nnn</i>) ₂ Ln(II/III)] (<i>n</i> <td>4.0</td> <td>1</td>	4.0	1
5720	Enhanced hydrogen desorption via charge transfer in Pt Nanoclusters/ReS2 hybrid electrocatalyst for efficient hydrogen evolution reaction. Journal of Power Sources, 2023, 579, 233287.	7.8	6
5721	Manipulating local coordination of copper single atom catalyst enables efficient CO2-to-CH4 conversion. Nature Communications, 2023, 14, .	12.8	23

#	Article	IF	CITATIONS
5722	Applicability of the Fridman–Macheret α-Model to Heterogeneous Processes in the Case of Dissociative Adsorption of N ₂ on the Ru Surface. Journal of Physical Chemistry C, 2023, 127, 11536-11541.	3.1	0
5723	Carbon dots modified dendritic TiO2-CdS heterojunction for enhanced photodegradation of rhodamine and hydrogen evolution. Diamond and Related Materials, 2023, 137, 110115.	3.9	6
5724	Inverted Region in Electrochemical Reduction of CO ₂ Induced by Potential-Dependent Pauli Repulsion. Journal of the American Chemical Society, 2023, 145, 14267-14275.	13.7	11
5725	Defective Ru-doped α-MnO2 nanorods enabling efficient hydrazine oxidation for energy-saving hydrogen production via proton exchange membranes at near-neutral pH. Chemical Engineering Journal, 2023, 470, 144050.	12.7	8
5726	On the Role of Cu ⁺ and CuNi Alloy Phases in Mesoporous CuNi Catalyst for Furfural Hydrogenation. ACS Catalysis, 2023, 13, 8437-8444.	11.2	9
5727	Black box vs gray box: Comparing GAP and GPrep-DFTB for ruthenium and ruthenium oxide. Journal of Chemical Physics, 2023, 158, .	3.0	3
5728	Tuning the Coordination Environment of Singleâ€Atom Iron Catalysts Towards Effective Nitrogen Reduction. ChemCatChem, 2023, 15, .	3.7	3
5729	Indium Cyanamide for Industrial-Grade CO ₂ Electroreduction to Formic Acid. Journal of the American Chemical Society, 2023, 145, 14101-14111.	13.7	11
5730	The elemental effects on the H2 dissociative adsorption on FeCrAl (110) surface. International Journal of Hydrogen Energy, 2023, , .	7.1	0
5731	Periodic hybrid-DFT study on the N-doped TiO2 (001) nanotubes as solar water splitting catalysts: A comparison with the rutile and anatase bulk phases. International Journal of Hydrogen Energy, 2023, 48, 35584-35598.	7.1	1
5732	Comprehensive study on selective dehydrochlorination of 2-chloro-3,3,3-trifluoropropene over carbon-based catalysts and catalyst deactivation. Molecular Catalysis, 2023, 547, 113314.	2.0	0
5733	Performance of the r ² SCAN Functional in Transition Metal Oxides. Journal of Chemical Theory and Computation, 2023, 19, 4202-4215.	5.3	4
5734	Constructing the oxygen diffusion paths for promoting the stability of acidic water oxidation catalysts. Chem Catalysis, 2023, 3, 100667.	6.1	6
5735	High efficiency carbon nanotubes-based single-atom catalysts for nitrogen reduction. Scientific Reports, 2023, 13, .	3.3	0
5736	Lewis acid-base modulation for efficient CO2 oxidative propane dehydrogenation: A case study of a La-modified binuclear Feoxo site. Chem Catalysis, 2023, , 100663.	6.1	0
5738	On the role of metal cation in MXene in boosting the catalytic activity of single/double atom toward electrochemical NH3 production. Chemical Engineering Journal, 2023, 470, 144243.	12.7	3
5739	Efficient Screening of Metal Promoters of Pt Catalysts for Câ€"H Bond Activation in Propane Dehydrogenation from a Combined First-Principles Calculations and Machine-Learning Study. ACS Omega, 0, , .	3.5	0
5740	Chemical mechanism of oxidative etching of ruthenium: Insights into continuous versus self-limiting conditions. Applied Surface Science, 2023, 636, 157864.	6.1	0

#	ARTICLE	IF	CITATIONS
5741	Efficient utilization of lithium polysulfides in CO2-derived CNT free-standing electrode of Li-S batteries. Chemical Engineering Journal, 2023, 470, 144337.	12.7	7
5742	Defect Engineering in OD/2D S-Scheme Heterojunction Photocatalysts for Water Activation: Synergistic Roles of Nickel Doping and Oxygen Vacancy. ACS Applied Materials & Defect Engineering in OD/2D S-Scheme Heterojunction Photocatalysts for Water Activation:	8.0	O
5743	Computational design of promising 2D electrode materials for Li-ion and Li–S battery applications. Materials Reports Energy, 2023, 3, 100213.	3.2	4
5745	Experimental and DFT investigations on the influence of cetrimonium bromide (CTAB) on surface morphology and anti-tarnishing performance of pulse galvanostatically deposited gold coatings from a cyanide-free electroplating solution. Surfaces and Interfaces, 2023, 40, 103132.	3.0	2
5746	Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution. Nature Communications, 2023, 14, .	12.8	32
5747	Thermokinetics of point defects in α-Fe ₂ O ₃ . Electronic Structure, 2023, 5, 024007.	2.8	0
5748	Direct growth and interface reactions of ferroelectric Hf0.5Zr0.5O2 films on MoS2. Applied Surface Science, 2023, 629, 157426.	6.1	0
5749	Computational insights on potential dependence of electrocatalytic synthesis of ammonia from nitrate. Chinese Journal of Catalysis, 2023, 48, 205-213.	14.0	8
5750	A portable highly uniform and reproducible microflower CuS/rGO hybrid sensor: An effective electrochemical and DFT evaluation method for nitrite in water. Journal of Environmental Chemical Engineering, 2023, 11, 110057.	6.7	7
5751	External Fields Assisted Highly Efficient Oxygen Evolution Reaction of Confined 1Tâ€VSe ₂ Ferromagnetic Nanoparticles. Small, 2023, 19, .	10.0	1
5752	Theoretical study on the adsorption and oxidation of glucose on $Au(111)$ surface. Journal of Molecular Modeling, 2023, 29, .	1.8	0
5753	Furfural electrovalorisation using single-atom molecular catalysts. Energy and Environmental Science, 2023, 16, 2934-2944.	30.8	9
5754	Site preference and effect on shear deformation of co-alloying elements addition to ^{ĵ3} ′-Ni ₃ Al phase in Ni-based single crystal superalloys. Integrated Ferroelectrics, 2023, 233, 174-186.	0.7	0
5755	Adsorption Behaviors of Hydrogen on Equal Atomic Ratio TiZrV Film Applied in AB-BNCT by Density Functional Theory Study. Springer Proceedings in Physics, 2023, , 792-799.	0.2	O
5756	ZnFe ₂ O ₄ Magnetic Material: A Comparative DFT and DFT + U Study. Integrate Ferroelectrics, 2023, 233, 128-138.	ed _{0.7}	0
5757	Theory-Directed Designing of an Intrinsic-Activity-Modulated Metal-Doped Copper Oxide Electrode for Nitrate to Ammonia Synthesis. ACS Applied Energy Materials, 2023, 6, 6111-6119.	5.1	3
5758	Assessing catalytic rates of bimetallic nanoparticlesÂwith active-site specificity: A case study using NO decomposition. Chem Catalysis, 2023, 3, 100636.	6.1	2
5759	High stability In–Sn–Bi multi-element alloy anode for Mg ion batteries. Journal of Power Sources, 2023, 575, 233141.	7.8	3

#	Article	IF	CITATIONS
5760	Iron phthalocyanine derived Fe ₁ /h-BN single atom catalysts for CO ₂ hydrogenation. Journal of Materials Chemistry A, 2023, 11, 11874-11888.	10.3	1
5761	Theoretical calculation and comparison of H diffusion on $Cu(111)$, $Ni(111)$, $Pd(111)$, and $Au(111)$. Physical Review B, 2023, 107, .	3.2	0
5762	Challenging breaking thermoelectric performance limits by twistronics. Journal of Materials Chemistry A, 2023, 11, 13519-13526.	10.3	9
5763	Toward the Formation of the Solid Electrolyte Interphase on Alkaline Metal Anodes: Ab Initio Simulations**. Batteries and Supercaps, 2023, 6, .	4.7	2
5764	Study of the Electrophysical Properties of Solid Solutions with a Perovskite Structure in La2O3–SrO–Ni(Co,Fe)2O3–Î′ Systems for Cathode Electrodes for Fuel Cells. Glass Physics and Chemistry, 2023, 49, 177-185.	0.7	0
5765	The kinetics of the ice–water interface from <i>abÂinitio</i> machine learning simulations. Journal of Chemical Physics, 2023, 158, .	3.0	4
5766	Y doping of BaZrO ₃ may lead to optimum conditions for proton conduction at operating temperature of solid oxide fuel cells: a first principles study. Materials Research Express, 2023, 10, 065504.	1.6	0
5767	Adsorption of multiple NO molecules on Au $<$ sub $>$ 10 $<$ /sub $>$ <sup<math>>â$^{\circ}$</sup<math> > and Au $<$ sub $>$ 9 $<$ /sub $>$ Zn $<$ sup $>$ 2 $^{\circ}$ > planar clusters. A comparative DFT study. Physical Chemistry Chemical Physics, 2023, 25, 17176-17185.	2.8	0
5768	Superhydrophobic wrinkled skin grown on polypropylene membranes enhances oil-water emulsions separation. Journal of Environmental Chemical Engineering, 2023, 11, 110247.	6.7	1
5769	Beyond independent error assumptions in large GNN atomistic models. Journal of Chemical Physics, 2023, 158, .	3.0	2
5770	The rational design of high-performance graphene-based single-atom electrocatalysts for the ORR using machine learning. Physical Chemistry Chemical Physics, 2023, 25, 18983-18989.	2.8	3
5771	Operando Reconstructed Molecule Fence to Stabilize NiFeâ€Based Oxygen Evolution Catalysts. Advanced Energy Materials, 2023, 13, .	19.5	6
5772	Nanoclusters and nanoalloys of group 13 elements (B, Al, and Ga): benchmarking of methods and analysis of their structures and energies. Physical Chemistry Chemical Physics, 2023, 25, 19986-20000.	2.8	2
5773	Increasing CO Binding Energy and Defects by Preserving Cu Oxidation State via O ₂ -Plasma-Assisted N Doping on CuO Enables High C ₂₊ Selectivity and Long-Term Stability in Electrochemical CO ₂ Reduction. ACS Catalysis, 2023, 13, 9222-9233.	11.2	11
5774	Surface chiral Berry plasmons on disordered permalloys. Physical Review B, 2023, 107, .	3.2	0
5775	First-Principles Study on the Effect of Ir Doping on the Mechanical and Thermodynamic Properties of Pt–20Rh Alloy. Transactions of the Indian Institute of Metals, 0, , .	1.5	0
5776	Role of Catalytic Conversions of Ethylene Carbonate, Water, and HF in Forming the Solid-Electrolyte Interphase of Li-Ion Batteries. ACS Catalysis, 2023, 13, 9289-9301.	11.2	2
5777	C2H2 Semi-hydrogenation over S-modified PdM IMCs: Tuning catalytic performance by surface S Atom, and metal M type and ratio. Applied Surface Science, 2023, 637, 157906.	6.1	2

#	Article	IF	CITATIONS
5778	Lattice thermal conductivity of two-dimensional CrB4 and MoB4 monolayers against Slack's guideline. Results in Physics, 2023, 51, 106696.	4.1	3
5779	Temperature-dependent ethylene dissociative adsorption on ruthenium. Applied Surface Science, 2023, 637, 157922.	6.1	0
5780	Area-Selective Deposition of Ruthenium Using Homometallic Precursor Inhibitor. Chemistry of Materials, 2023, 35, 5331-5340.	6.7	1
5781	Nanoâ€Niâ€Induced Electronic Modulation of <scp>MoS _{2 < /sub> < /scp> Nanosheets Enables Energyâ€Saving <scp>H _{2 < /sub> < /scp> Production and Sulfide Degradation. Energy and Environmental Materials, 0, , .}</scp>}</scp>	12.8	6
5783	Alloyed Ru0.48Re0.52 nanocatalysts with electronic structure regulation for intensified alkaline hydrogen evolution reaction. Applied Surface Science, 2023, 638, 157971.	6.1	4
5788	Heterogeneous Catalyst as a Functional Substrate Governing the Shape of Electrochemical Precipitates in Oxygen-Fueled Rechargeable Batteries. Journal of the American Chemical Society, 2023, 145, 15425-15434.	13.7	1
5789	Oxygen Reduction Reaction on Single-Atom Catalysts From Density Functional Theory Calculations Combined with an Implicit Solvation Model. Journal of Physical Chemistry C, 2023, 127, 13623-13631.	3.1	0
5790	Assessing the performance of approximate density functional theory on 95 experimentally characterized Fe(II) spin crossover complexes. Journal of Chemical Physics, 2023, 159, .	3.0	5
5791	Accelerating anhydrous proton conduction <i>via</i> anion rotation and hydrogen bond recombination: a machine-learning molecular dynamics. Journal of Materials Chemistry A, O, , .	10.3	0
5792	Unraveling segregation behavior of inactive secondary phase driven by ion-competition reaction for perovskite-2D PbI2 heterojunction solar cells. Nano Energy, 2023, 115, 108690.	16.0	1
5793	Accelerating explicit solvent models of heterogeneous catalysts with machine learning interatomic potentials. Chemical Science, 2023, 14, 8338-8354.	7.4	1
5794	One-Dimensional Hybrid Copper(I) Iodide Single Crystal with Renewable Scintillation Properties. Inorganic Chemistry, 2023, 62, 11350-11359.	4.0	5
5795	Investigation of Optoelectronic Properties of HfClBr Janus Monolayer under the Biaxial Strain Effect. ChemistrySelect, 2023, 8, .	1.5	3
5796	Micro-kinetic mean-field model of subsurface oxidation in a platinum electrocatalyst. Electrochimica Acta, 2023, 464, 142867.	5.2	0
5797	Determining Catalytically Relevant Surfaces through Coverage-Dependent Lattice Gas Models: Carbon Adsorption on Fe(100). Journal of Physical Chemistry C, 2023, 127, 14163-14176.	3.1	0
5798	Oxygen effect on the synthesis of vinyl acetate on Pd (100) and Pd/Au (100) surfaces: A periodic DFT study. Molecular Catalysis, 2023, 547, 113337.	2.0	0
5799	Review of Approximations for the Exchange-Correlation Energy in Density-Functional Theory. , 2023, , 1-90.		3
5800	Transition from Schottky to ohmic contacts in the C ₃₁ and MoS ₂ van der Waals heterostructure. Physical Chemistry Chemical Physics, 2023, 25, 20128-20133.	2.8	O

#	Article	IF	CITATIONS
5801	Enhanced DFT predictions of the structural and optoelectronic properties of MoTe2 for high performance photodetection: Application to GW-based functionals and Hubbard U and V corrections. Chemical Physics, 2023, 573, 112018 .	1.9	0
5802	Potential–dependent Ru (0 0 0 1) surface oxidative corrosion and OER performance by grand canonical method. Computational and Theoretical Chemistry, 2023, 1227, 114253.	2.5	1
5803	Enhanced Low-Temperature Thermoelectric Performance in the Two-Dimensional <i>A</i> <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Mn</mml:mi></mml:math> <i>X</i> Family. Physical Review Applied, 2023, 20, .	3.8	O
5804	CO2 capture by Li2CaSiO4 and enhancement with alkali carbonates. Physical Chemistry Chemical Physics, 0, , .	2.8	0
5805	Machine learning filters out efficient electrocatalysts in the massive ternary alloy space for fuel cells. Applied Catalysis B: Environmental, 2023, 339, 123128.	20.2	2
5806	Modulating the electronic structures of cobalt-organic frameworks for efficient electrocatalytic oxygen evolution. Journal of Colloid and Interface Science, 2023, 650, 1949-1957.	9.4	4
5807	Balance between Activity and Stability of Single Metal and Intermetallic Compounds for Electrocatalytic Hydrogen Evolution Reaction. Inorganic Chemistry, 2023, 62, 12175-12180.	4.0	1
5808	Origin of the superior oxygen reduction activity of zirconium nitride in alkaline media. Chemical Science, 2023, 14, 9000-9009.	7.4	6
5809	CO electroreduction on single-atom copper. Science Advances, 2023, 9, .	10.3	8
5810	Coupling ferromagnetic ordering electron transfer channels and surface reconstructed active species for spintronic electrocatalysis of water oxidation. Journal of Energy Chemistry, 2023, 85, 570-580.	12.9	6
5811	Acid-Stable Ebonex for Continuous-Flow Nitrogen Electrofixation. Energy & Electrofixation.	5.1	2
5812	Firstâ€Principles Microkinetic Study of the Catalytic Hydrodeoxygenation of Guaiacol on Transition Metal Surfaces. ChemCatChem, 2023, 15, .	3.7	0
5813	Kinetic Study of Hybrid Supercapacitor using Transition Metal Quantum Dots @ Graphenes Composite as a Model Electrode. Applied Surface Science, 2023, , 158121.	6.1	0
5814	Insights into SnO2 Nanoparticles Supported on Fibrous Mesoporous Silica for CO Catalytic Oxidation. Catalysts, 2023, 13, 1156.	3.5	1
5815	Enhanced Alcohol Electrochemical Oxidation by Using an Environmentally Friendly Xanthan Gum Binder. ACS Sustainable Chemistry and Engineering, 2023, 11, 11681-11692.	6.7	0
5816	Off-Stoichiometric Restructuring and Sliding Dynamics of Hexagonal Boron Nitride Edges in Conditions of Oxidative Dehydrogenation of Propane. Journal of the American Chemical Society, 2023, 145, 17265-17273.	13.7	4
5817	Grand canonical DFT based constant charge method for electrochemical deuterium/hydrogen evolution reaction micro-kinetics on Pt (1 1 1). Computational Materials Science, 2023, 229, 112397.	3.0	2
5818	Genetically evolved graphene encapsulated random alloy nanoparticles for Li-Air battery. Catalysis Today, 2023, 424, 114303.	4.4	O

#	Article	IF	Citations
5819	Effect of intrinsic and extrinsic activity of electrocatalysts on anion exchange membrane water electrolyzer. Chemical Engineering Journal, 2023, 472, 145150.	12.7	1
5820	Effect of Fe on the oxidation, sulfidation and carburization behaviors of alloys in CO2 containing SO2. Corrosion Science, 2023, 222, 111438.	6.6	0
5822	Controlling surface cation segregation in a double perovskite for oxygen anion transport in high temperature energy conversion devices. Physical Chemistry Chemical Physics, 2023, 25, 22022-22031.	2.8	2
5823	Electronic structures, transport properties, and optical absorption of bilayer blue phosphorene nanoribbons. Physical Chemistry Chemical Physics, 2023, 25, 22487-22496.	2.8	O
5824	Pt3Cu alloy anchored on nanoporous WO3 with high activity and stability in methanol oxidation. International Journal of Hydrogen Energy, 2024, 50, 1441-1449.	7.1	0
5825	Mechanical, electronic and thermodynamic properties of crystalline molecular hydrogen at high pressure. Physics Letters, Section A: General, Atomic and Solid State Physics, 2023, 483, 129040.	2.1	1
5826	Stability of Single Gold Atoms on Defective and Doped Diamond Surfaces. Journal of Physical Chemistry C, 2023, 127, 16187-16203.	3.1	1
5827	Structural and Mechanical Properties of Doped Tobermorite. Nanomaterials, 2023, 13, 2279.	4.1	0
5828	Synthesis, characterization, DFT calculations and biological activity of new Schiff base complexes. Heliyon, 2023, 9, e18988.	3.2	4
5829	The influence of phenanthrene on the adsorption and conversion of SO2 on the hydroxylated {001} surface of α-quartz: A DFT study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 676, 132216.	4.7	1
5830	Pynta─An Automated Workflow for Calculation of Surface and Gas–Surface Kinetics. Journal of Chemical Information and Modeling, 2023, 63, 5153-5168.	5.4	2
5831	Theoretical exploration on the performance of single and dual-atom Cu catalysts on the CO ₂ electroreduction process: a DFT study. Physical Chemistry Chemical Physics, 0, , .	2.8	0
5832	Ni–N synergy enhanced the synthesis of formic acid <i>via</i> CO ₂ hydrogenation under mild conditions. Green Chemistry, 2023, 25, 7729-7742.	9.0	1
5833	Effects of P:Ni Ratio on Methanol Steam Reforming on Nickel Phosphide Catalysts. Molecules, 2023, 28, 6079.	3.8	0
5834	Transition metal-doped V-shaped RuO ₂ 103 nanotwins as highly active electrocatalysts for enhanced oxygen evolution in acidic media. Journal Physics D: Applied Physics, 2023, 56, 475501.	2.8	0
5835	Effect of Activating a Nickel–Molybdenum Catalyst in an Anion Exchange Membrane Water Electrolyzer. ACS Catalysis, 2023, 13, 11589-11597.	11.2	4
5836	Toward efficient electrodes for a high-performance fast-charge Li-ion battery: molecular dynamics simulation and DFT calculations. Physical Chemistry Chemical Physics, 0, , .	2.8	0
5837	Computation-aided design of oxygen-ligand-steered single-atom catalysts: Sewing unzipped carbon nanotubes. CheM, 2023, 9, 3304-3318.	11.7	4

#	Article	IF	CITATIONS
5838	Electronic structures and optical properties of defective KDP with V-doped: A first-principles study. Vacuum, 2023, 217, 112512.	3 . 5	3
5839	Ab Initio Molecular Dynamics Simulation Study on Phosphorus/Boron Co-Doped Si Nanocrystals/SiO ₂ Core/Shell Structures. Journal of Physical Chemistry C, 0, , .	3.1	0
5840	Solvation of furfural at metal–water interfaces: Implications for aqueous phase hydrogenation reactions. Journal of Chemical Physics, 2023, 159, .	3.0	0
5841	Theoretical investigation of dinitrogen to ammonia by Fe single atoms anchored on B/N-doped graphyne catalysts. Diamond and Related Materials, 2023, 139, 110341.	3.9	0
5842	Adsorption of gas molecules on monolayer As/Sb lateral heterostructures investigated by first principles. Surface Science, 2023, , 122381.	1.9	0
5843	GaN/graphene heterostructures as promising anode materials for Li-ion batteries. Surfaces and Interfaces, 2023, 42, 103333.	3.0	1
5844	A Novel Hybrid Multifunctional Compound: (CMQ)BiCl ₅ Showing Enhancement in Physical Properties by Halogen Substitution. ChemistrySelect, 2023, 8, .	1.5	3
5845	Effects of secondary carbide addition on the mechanical properties of $(Ti < sub > 1 - x < / sub > TM < sub > x < / sub >)C-based 20Ni cermets (TM = V, Mo, and W): a study combining ab initio calculation and experimental results. Materials Technology, 2023, 38, .$	3.0	0
5846	Staged Training of Machine-Learning Potentials from Small to Large Surface Unit Cells: Efficient Global Structure Determination of the RuO $<$ sub $>$ 2 $<$ /sub $>$ (100)- $<$ i $>>$ c $<$ /i $>$ (2 \tilde{A} — 2) Reconstruction and (410) Vicinal. Journal of Physical Chemistry C, 2023, 127, 17599-17608.	3.1	2
5847	First Step of the Oxygen Reduction Reaction on Au(111): A Computational Study of O ₂ Adsorption at the Electrified Metal/Water Interface. ACS Catalysis, 0, , 12074-12081.	11.2	2
5848	Ultra-low loading Pt atomic cluster electrode with Pt-O bond as an active site with the high hydrogen evolution reaction performance. Inorganic Chemistry Frontiers, 0, , .	6.0	0
5849	Deciphering nickel-catalyzed electrochemical ammonia synthesis from nitric oxide. CheM, 2023, 9, 3555-3572.	11.7	4
5850	Boron–Sulfur Pairs for Highly Active 2e [–] Oxygen Reduction Reaction to Electrochemically Synthesize Hydrogen Peroxide. ACS Sustainable Chemistry and Engineering, 2023, 11, 13363-13373.	6.7	3
5851	Flexible and free-standing La0.33Ti2(PO4)3/C nanofibers film as a novel high-performance anode for sodium- and potassium-ion batteries. Rare Metals, 0, , .	7.1	1
5852	3D Lithiophilic CuZrAg Metallic Glass Basedâ€Current Collector for Highâ€Performance Lithium Metal Anode. Small, 0, , .	10.0	0
5853	Highly-dispersed Nickel Species on Nitrogen-doped Porous Carbon: Significant local pH-Buffering Capacity and Favorable CO desorption for Efficient and Robust Electro-reduction of CO2. Journal of Colloid and Interface Science, 2023, , .	9.4	1
5854	Lattice-strained and ultra stable non-noble metal electrocatalysts for overall water splitting. Electrochimica Acta, 2023, 468, 143124.	5.2	1
5855	The more the better: on the formation of single-phase high entropy alloy nanoparticles as catalysts for the oxygen reduction reaction. , 2023, 1, 950-960.		2

#	Article	IF	CITATIONS
5856	Identifying hexagonal 2D planar electrocatalysts with strong OCHO* binding for selective CO ₂ reduction. Journal of Materials Chemistry A, 2023, 11, 20528-20538.	10.3	0
5857	Nitrogen Reduction Reaction to Ammonia on Transition Metal Carbide Catalysts. ChemSusChem, 0, , .	6.8	1
5858	Theoretical study coupling DFT calculations and kMC simulation of CO methanation on Ni(111) and Ni ₃ Fe(111). New Journal of Chemistry, 2023, 47, 17923-17936.	2.8	0
5859	C2H2 semi-hydrogenation over N-doped graphene supported diatomic metal catalysts: Unraveling the roles of metal type and its coordination environment in tuning catalytic performance. Applied Surface Science, 2023, 641, 158413.	6.1	0
5860	Atomic bonding states of metal and semiconductor elements. Physica Scripta, 2023, 98, 105908.	2.5	1
5861	Constructing a square-like copper cluster to boost C–C coupling for CO ₂ electroreduction to ethylene. Journal of Materials Chemistry A, 2023, 11, 19444-19454.	10.3	1
5862	Self-promoted ammonia selectivity for the electro-reduction of nitrogen on <i>gt</i> -C ₃ N ₄ supported single metal catalysts: the machine learning model and physical insights. Inorganic Chemistry Frontiers, 0, , .	6.0	0
5863	A TiSe monolayer as a superior anode for applications of Li/Na/K-ion batteries. Physical Chemistry Chemical Physics, 2023, 25, 24625-24635.	2.8	2
5864	Comparison of the Mechanisms of deNOx and deN2O Processes on Bimetallic Cu–Zn and Monometallic Cu–Cu Dimers in Clinoptilolite Zeolite—A DFT Study Simulating Industrial Conditions. Catalysts, 2023, 13, 1210.	3.5	0
5865	Tuning the chemical composition of binary alloy nanoparticles to prevent their dissolution. Nanoscale, 2023, 15, 16697-16705.	5.6	0
5866	Synthesis, spectroscopic, molecular docking, theoretical calculations, DNAâ€binding, and anticancer activity studies of gold (III), platinum (II), palladium (II), and ruthenium (III) complexes with Girardâ€T reagent. Applied Organometallic Chemistry, 2023, 37, .	3.5	1
5867	Methyl radical chemistry in non-oxidative methane activation over metal single sites. Nature Communications, 2023, 14, .	12.8	2
5868	Tailoring Midâ€Gap States of Chalcogenide Glass by Pressureâ€Induced Hypervalent Bonding Towards the Design of Electrical Switching Materials. Advanced Functional Materials, 2023, 33, .	14.9	6
5869	Non-orthogonal Configuration Interaction Study on the Effect of Thermal Distortions on the Singlet Fission Process in Photoexcited Pure and B,N-Doped Pentacene Crystals. Journal of Physical Chemistry C, 2023, 127, 16249-16258.	3.1	0
5870	Breaking new ground in mica exfoliation: Harnessing biaxial straining principles through H2 and N2 intercalation for enhanced layer separation. Materials Today Advances, 2023, 19, 100406.	5.2	3
5871	Correlation between charge transport and lattice dynamics in La- and Y-doped Ca2MnO4 perovskites. Acta Materialia, 2023, 259, 119293.	7.9	4
5872	Effect of vanadium element on the microstructure and mechanical properties of Cu-3.2Ti-0.2Fe alloys. Intermetallics, 2023, 162, 108005.	3.9	0
5873	Crystalline/amorphous Ni/NixSy supported on hierarchical porous nickel foam for high-current-density hydrogen evolution. Applied Catalysis B: Environmental, 2024, 340, 123195.	20.2	8

#	Article	IF	CITATIONS
5874	Atomic-scale imaging of ytterbium ions in lead halide perovskites. Science Advances, 2023, 9, .	10.3	12
5875	Enhanced production and control of liquid alkanes in the hydrogenolysis of polypropylene over shaped Ru/CeO2 catalysts. Applied Catalysis A: General, 2023, 666, 119431.	4.3	2
5876	A DFT study on the mechanism of acetaldehyde generation during vinyl acetate synthesis from gas-phase ethylene acetoxylation on Pd/Au (100) surface. Molecular Catalysis, 2023, 549, 113461.	2.0	0
5877	Selectivity of Electrochemical CO ₂ Reduction on Metal Electrodes: The Role of the Surface Oxidized Layer. ACS Catalysis, 2023, 13, 13089-13100.	11.2	3
5878	Engineering the Coordination Environment of Singleâ€Rhâ€Site with N and S Atoms for Efficient Methanol Carbonylation. Advanced Functional Materials, 2023, 33, .	14.9	2
5879	Enrichment of anchoring sites by introducing supramolecular halogen bonds for the efficient perovskite nanocrystal LEDs. Light: Science and Applications, 2023, 12, .	16.6	13
5880	Enhancing phenanthrene hydrogenation via controllable phosphate deposition over Ni2P/Al2O3 catalysts. Chemical Engineering Science, 2023, 282, 119251.	3.8	0
5881	Halide Adsorption Enhances Electrochemical Hydrogenolysis of 5-Hydroxymethylfurfural by Suppressing Hydrogenation. Journal of the American Chemical Society, 2023, 145, 20473-20484.	13.7	0
5882	Controllable construction of NiFe MOF/LDH heterojunction with interfacial charge transfer as efficient oxygen evolution electrocatalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 677, 132400.	4.7	0
5883	Emergence of Invar effect with excellent mechanical property by electronic structure modulation in LaFe11.6-xCoxSi1.4 magnetocaloric materials. Acta Materialia, 2023, 260, 119312.	7.9	1
5884	Optical band gap engineering of phosphotungstic acid upon hybridization with hexamine-nickel and -cobalt for solar/visible light photocatalysis: a combined experimental and theoretical approach. Journal of Modern Optics, 2023, 70, 349-363.	1.3	1
5885	Connecting mechanical properties to hydrogen defects in PAN-based carbon fibers. Physical Review Materials, 2023, 7, .	2.4	0
5886	Promoting ordering degree of intermetallic fuel cell catalysts by low-melting-point metal doping. Nature Communications, 2023, 14, .	12.8	4
5887	Estimating Free Energy Barriers for Heterogeneous Catalytic Reactions with Machine Learning Potentials and Umbrella Integration. Journal of Chemical Theory and Computation, 2023, 19, 6796-6804.	5.3	1
5888	Crystal Face Effects in Ni-Catalyzed Biomimetic Carbon Dioxide Hydration. Journal of Physical Chemistry C, 2023, 127, 19509-19519.	3.1	0
5889	D-π-A push-pull chromophores based on N,N-Diethylaniline as a donor for NLO applications: Effects of structural modification of π-linkers. Journal of Molecular Structure, 2024, 1295, 136602.	3.6	5
5890	Rapid mapping of alloy surface phase diagrams via Bayesian evolutionary multitasking. Npj Computational Materials, 2023, 9, .	8.7	2
5891	Phase-dependent growth of Pt on MoS2 for highly efficient H2 evolution. Nature, 2023, 621, 300-305.	27.8	49

#	ARTICLE	IF	CITATIONS
5892	Gas-phase errors in computational electrocatalysis: a review., 2024, 2, 157-179.		2
5893	Accurate energy barriers for catalytic reaction pathways: an automatic training protocol for machine learning force fields. Npj Computational Materials, 2023, 9, .	8.7	4
5894	High-throughput computational screening of doped transition metal oxides as catalysts for nitrogen reduction. Cell Reports Physical Science, 2023, 4, 101595.	5 . 6	0
5895	Directing the Selectivity of CO Electrolysis to Acetate by Constructing Metalâ€Organic Interfaces. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
5896	Directing the Selectivity of CO Electrolysis to Acetate by Constructing Metalâ€Organic Interfaces. Angewandte Chemie, 0, , .	2.0	0
5897	Volcanic-Size-Dependent Activity Trends in Ru-Catalyzed Alkaline Hydrogen Evolution Reaction. ACS Catalysis, 2023, 13, 13638-13649.	11.2	0
5898	Self-assembly, structure and catalytic activity of Ni3 on TiO2: A triple-atom catalyst for hydrogen evolution. Applied Surface Science, 2024, 643, 158719.	6.1	1
5899	Unveiling Static and Dynamic Structures of Pd Clusters Influenced by Al ₂ O ₃ Surfaces: DFT and AIMD Studies. Journal of Physical Chemistry C, 2023, 127, 20267-20275.	3.1	0
5900	Accelerating Ru ⁰ /Ru ⁴⁺ Adjacent Dual Sites Construction by Copper Switch for Efficient Alkaline Hydrogen Evolution. Advanced Energy Materials, 2023, 13, .	19.5	2
5901	Low-temperature non-equilibrium synthesis of anisotropic multimetallic nanosurface alloys for electrochemical CO2 reduction., 2024, 3, 47-57.		3
5902	DFT Calculation of Carbon-Doped TiO2 Nanocomposites. Materials, 2023, 16, 6117.	2.9	1
5903	Activity And Stability of Single―And Diâ€Atom Catalysts for the O ₂ Reduction Reaction. Angewandte Chemie - International Edition, 2023, 62, .	13.8	7
5904	Synergistic Modulation of In‧itu Hybrid Interface Construction and pH Buffering Enabled Ultra‧table Zinc Anode at High Current Density and Areal Capacity. Angewandte Chemie - International Edition, 2023, 62, .	13.8	8
5905	Ultra-low metal loading rhodium phosphide electrode for efficient alkaline hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, , .	7.1	0
5906	Efficient hydrogen production over Bi2Te3-modified TiO2 catalysts: A first principles study. Surface Science, 2024, 739, 122401.	1.9	0
5907	DFT investigation of the oxygen reduction reaction over nitrogen (N) doped graphdiyne as an electrocatalyst: the importance of pre-adsorbed OH* and the solvation effect. Materials Advances, 2023, 4, 6542-6552.	5.4	1
5908	High-entropy L12-Pt(FeCoNiCuZn)3 intermetallics for ultrastable oxygen reduction reaction. Journal of Energy Chemistry, 2023, 86, 158-166.	12.9	7
5909	Perovskite CsPbBr3 quantum dots capped with zinc acetylacetonate: Gas sensing of ethanol in humidity with aid of machine-learning. Materials Science in Semiconductor Processing, 2023, 167, 107790.	4.0	O

#	Article	lF	CITATIONS
5910	Al-Doped Octahedral Cu2O Nanocrystal for Electrocatalytic CO2 Reduction to Produce Ethylene. International Journal of Molecular Sciences, 2023, 24, 12680.	4.1	0
5911	Au/Pt Bimetallic Nanowires with Stepped Pt Sites for Enhanced C–C Cleavage in C2+ Alcohol Electro-oxidation Reactions. Journal of the American Chemical Society, 2023, 145, 19076-19085.	13.7	6
5912	Superhard BN allotropes with tunable hybridization sp2/sp3 ratios by compressed nanotubes. Diamond and Related Materials, 2023, 139, 110313.	3.9	0
5913	Mechanistic study on the depression of calcite by sodium hexametaphosphate in sodium oleate system. Applied Surface Science Advances, 2023, 17, 100451.	6.8	1
5914	Deciphering Particle Morphology Effects in Cinnamaldehyde Hydrogenation over Palladium Nanostructures. ACS Engineering Au, 0, , .	5.1	0
5915	Theoretical studies of the dissociation of Mn atoms on different crystal surfaces of LiMn0.5Fe0.5PO4. Chemical Physics, 2023, 575, 112083.	1.9	0
5916	Low-Cost, Multifunctional, and Sustainable Sodium Sulfido Ferrate(II). Inorganic Chemistry, 2023, 62, 15358-15366.	4.0	0
5917	Minimum conditions for accurate modeling of urea production via co-electrolysis. Communications Chemistry, 2023, 6, .	4.5	4
5918	Exploring the interfacial structure and crystallinity for direct growth of Mn3Sn(0001) on sapphire (0001) by molecular beam epitaxy. Surfaces and Interfaces, 2023, 42, 103379.	3.0	0
5919	Adsorption Site Regulations of [W–O]-Doped CoP Boosting the Hydrazine Oxidation-Coupled Hydrogen Evolution at Elevated Current Density. Nano-Micro Letters, 2023, 15, .	27.0	0
5920	Nano-scale Interaction of Chloromethane (CH ₃ Cl) with the Fe(110) Surface; A van der Waals Calculation. E-Journal of Surface Science and Nanotechnology, 2023, 22, 16-24.	0.4	0
5922	Revisiting the Electrified Pt(111)/Water Interfaces through an Affordable Double-Reference Ab Initio Approach. Journal of Physical Chemistry C, 2023, 127, 19857-19866.	3.1	2
5923	Role of interfacial layer on exchange-coupled magnetic properties of bi-magnetic nanostructures: An experimental and theoretical approach. Journal of Magnetism and Magnetic Materials, 2023, 587, 171306.	2.3	3
5924	Synergistic Modulation of In‧itu Hybrid Interface Construction and pH Buffering Enabled Ultra‧table Zinc Anode at High Current Density and Areal Capacity. Angewandte Chemie, 0, , .	2.0	1
5925	Effects of oxygen functionalities on hydrous hydrazine decomposition over carbonaceous materials. Dalton Transactions, 0, , .	3.3	0
5926	Coupled sorptive and oxidative antimony(III) removal by iron-modified biochar: Mechanisms of electron-donating capacity and reactive Fe species. Environmental Pollution, 2023, 337, 122637.	7.5	2
5927	Compressibility behavior of CoxB: Experiment and computation. Physica B: Condensed Matter, 2023, 670, 415367.	2.7	0
5929	Activity And Stability of Single―And Diâ€Atom Catalysts for the O ₂ Reduction Reaction. Angewandte Chemie, 2023, 135, .	2.0	1

#	Article	IF	CITATIONS
5930	Electrochemical carbonyl reduction on single-site Mâ \in "Nâ \in "C catalysts. Communications Chemistry, 2023, 6, .	4.5	1
5931	Development of Exchange-Correlation Functionals Assisted by Machine Learning. Challenges and Advances in Computational Chemistry and Physics, 2023, , 91-112.	0.6	1
5932	Role of vacancies in structural thermalization of binary and high-entropy alloys. Acta Materialia, 2023, 261, 119398.	7.9	0
5933	The effect of coordination states of cobalt on Co-Nx co-doped graphene for selective oxidation of H2S: A DFT study. Diamond and Related Materials, 2023, 140, 110477.	3.9	1
5934	Reactive Interactions between the Ionic Liquid BMPâ€₹FSI and a Na Surface. Batteries and Supercaps, 2023, 6, .	4.7	0
5935	Modelling Selective CO2 Absorption and Validation via Photosynthetic Bacteria and Chemical Adsorbents for Methane Purification in Anaerobic Fermentation Bioreactors. Materials, 2023, 16, 6533.	2.9	0
5936	Relieving Stress Concentration through Anion–Cation Codoping toward Highly Stable Nickel-Rich Cathode. ACS Nano, 2023, 17, 20621-20633.	14.6	19
5937	LaAlO ₃ -Tailored Active Pairs of Co ⁰ –Co ^{Î′+} Supported on ZrO ₂ for Higher Alcohol Synthesis from Syngas. Industrial & Description of Engineering Chemistry Research, 2023, 62, 16696-16706.	3.7	0
5938	From binary to ternary and back to binary: Transition of electromagnetic wave shielding to absorption among MAB phase Ni $\langle sub \rangle 3 \langle sub \rangle ZnB \langle sub \rangle 2 \langle sub \rangle$ and corresponding binary borides Ni $\langle sub \rangle \langle i \rangle n \langle i \rangle + 1 \langle sub \rangle B \langle sub \rangle \langle i \rangle n \langle i \rangle \langle sub \rangle (\langle i \rangle n \langle i \rangle = 1, 3)$. Journal of Advanced Ceramics, 2023, 12, 2101-2111.	17.4	4
5939	Ru rich Ru-Mn-O phases for selective suppression of chlorine evolution in sea water electrolysis. Electrochimica Acta, 2023, 470, 143295.	5.2	1
5940	Mechanistic study of the production of ethylene glycol diacetate as a byproduct of the ethylene vapor phase process for vinyl acetate on PdAu(100) surface. Molecular Catalysis, 2023, 550, 113594.	2.0	0
5941	Mechanistic Insights into Water Autoionization through Metadynamics Simulation Enhanced by Machine Learning. Physical Review Letters, 2023, 131, .	7.8	0
5942	Density-Corrected Density Functional Theory for Open Shells: How to Deal with Spin Contamination. Journal of Physical Chemistry Letters, 2023, 14, 9230-9237.	4.6	1
5943	Controllable Spin–Orbit Torque Induced by Interfacial Ion Absorption in Ta/CoFeB/MgO Multilayers with Canted Magnetizations. ACS Applied Materials & Samp; Interfaces, 2023, 15, 49902-49910.	8.0	0
5944	Unraveling Propylene Oxide Formation in Alkali Metal Batteries. ChemSusChem, 2024, 17, .	6.8	1
5946	Flexible multilevel nonvolatile biocompatible memristor with high durability. Journal of Nanobiotechnology, 2023, 21, .	9.1	1
5947	Cobalt(II)-complex modified Ag electrode for efficient and selective electrochemical reduction of CO2 to CO. Journal of Electroanalytical Chemistry, 2023, 949, 117860.	3.8	3
5948	Fostering mica exfoliation through biaxial straining strategy with monovalent cation substitution. FlatChem, 2023, 42, 100565.	5.6	1

#	Article	IF	Citations
5949	Many-Body Effects on the Electronic and Optical Properties of Lead-Free KNbO $<$ sub>3â $<$ " $<$ i> $>$ x $<$ i> $<$ sub>Q $<$ sub> $<$ i> $>$ x $<$ i> $<$ sub> ($<$ i> $>$ x $<$ i> $>$ = 0, 1, 2; Q = S, Se) Oxychalcogenide Perovskites. Journal of Physical Chemistry C, 2023, 127, 20563-20571.	3.1	0
5951	Nonlinearity induced negative Poisson's ratio of two-dimensional nanomaterials. Nanotechnology, 0, ,	2.6	0
5952	A covalency-aided electrochemical mechanism for CO ₂ reduction: the synergistic effect of copper and boron dual active sites drives the formation of a high-efficiency ethanol product. Nanoscale, 2023, 15, 17776-17784.	5.6	1
5953	Comparative study for effect of Ti, Nb and W incorporation on the electronic and optical properties of pristine hafnia (m-HfO2): DFT theoretical prospective. Journal of Computational Electronics, 2023, 22, 1615-1625.	2.5	0
5954	The Use of DFT-Based <i>ab-initio</i> Technique to Determine the Stability Difference in B2 Ti-PGM Compounds. , 0, , .		0
5955	Steering Competitive N2 and CO Adsorption toward Efficient Urea Production with the Confined Dual Site. Chemical Science, 0, , .	7.4	1
5956	Performance improvement of Na4SiO4 doped with Li2CO3-K2CO3 for high-temperature CO2 capture and thermochemical energy storage. Chemical Engineering Journal, 2023, 476, 146921.	12.7	1
5957	Direct Electrosynthesis of Metal Nanoparticles on Ti ₃ C ₂ T _{i>xChemistry, 0, , .}	4.0	0
5958	Insights into Selective Mechanism of NiO-TiO ₂ Heterojunction to H ₂ and CO. ACS Sensors, 2023, 8, 4121-4131.	7.8	3
5959	First-Principles Study Combined with Interpretable Machine-Learning Models of Bayesian Optimization for the Design of Ultrawide Bandgap Double Perovskites. Journal of Physical Chemistry C, 0, , .	3.1	0
5960	Atomic Cu Sites Engineering Enables Efficient CO2 Electroreduction to Methane with High CH4/C2H4 Ratio. Nano-Micro Letters, 2023, 15 , .	27.0	2
5961	High-throughput design of bimetallic core–shell catalysts for the electrochemical nitrogen reduction reaction. Journal of Materials Chemistry A, 2023, 11, 24686-24697.	10.3	0
5962	Unveil the potential in hydrogen activation and spillover towards NiMoS by Ni3S2 - A theoretical study. Fuel, 2024, 358, 130270.	6.4	0
5963	Conductive Covalent Organic Frameworks of Polymetallophthalocyanines as a Tunable Platform for Electrocatalysis. Journal of the American Chemical Society, 2023, 145, 24230-24239.	13.7	3
5964	High or Low Coordination: Insight into the Active Site of Pt Nanoparticles toward CO Oxidation. Journal of Physical Chemistry Letters, 2023, 14, 9848-9854.	4.6	0
5965	Metal–organic framework electrocatalysis: More than a sum of parts?. , 2023, 1, .		0
5966	Electrochemical synthesis of ammonia from nitric oxide using a copper–tin alloy catalyst. Nature Energy, 2023, 8, 1273-1283.	39.5	14
5967	Selective glucose oxidation to glucaric acid using bimetallic catalysts: Lattice expansion or electronic structure effect?. Applied Catalysis B: Environmental, 2024, 343, 123455.	20.2	0

#	Article	IF	CITATIONS
5968	Density Functional Theory Study of Adsorption and Selection Behavior of Harmful Gas Molecules on the Surface of SWNTs: Implications for Gas Sensing. ACS Applied Nano Materials, 2023, 6, 19786-19796.	5.0	1
5969	Structure-driven tuning of O and CO adsorption on AuCu nanoparticles: A density functional theory study. Physical Review B, 2023, 108, .	3.2	1
5970	Iron-Single Sites Confined by Graphene Lattice for Ammonia Synthesis under Mild Conditions. ACS Catalysis, 2023, 13, 14385-14394.	11.2	4
5971	Calcium-mediated nitrogen reduction for electrochemical ammonia synthesis. Nature Materials, 2024, 23, 101-107.	27.5	7
5972	Data-driven discovery of electrocatalysts for CO2 reduction using active motifs-based machine learning. Nature Communications, 2023, 14 , .	12.8	5
5973	The aluminum chemistry involved redox mechanisms in transition metal dichalcogenides. Chemical Engineering Journal, 2023, 477, 147196.	12.7	1
5974	H2O2(s) and H2O2·2H2O(s) crystals compared with ices: DFT functional assessment and D3 analysis. Journal of Chemical Physics, 2023, 159, .	3.0	2
5975	BTEX sensing potential of elemental-doped graphene: a DFT study. Physical Chemistry Chemical Physics, 2023, 25, 30708-30715.	2.8	1
5976	First-principles study on the structural, elastic, thermodynamic and electronic properties of In-doped bulk WSe2. Bulletin of Materials Science, 2023, 46, .	1.7	0
5977	Covalent bonds formed in MoS2–C60/Ferrocene heterostructure under high pressure. Carbon, 2024, 217, 118644.	10.3	1
5978	Effect of Electrolyte Ions on Crystalline/Amorphous \hat{l} ±-PtO ₂ Formation in the Electrocatalytic Oxidation of Pt(100) Preferentially Oriented Nanoparticles. ACS Catalysis, 2023, 13, 14753-14762.	11.2	0
5979	Heterogeneous N-heterocyclic carbenes supported single-atom catalysts for nitrogen fixation: A combined density functional theory and machine learning study. Applied Surface Science, 2024, 644, 158802.	6.1	0
5980	CO2-mediated porphyrin catalysis in reversible Li-CO2 cells. Chemical Engineering Journal, 2023, 477, 147141.	12.7	0
5981	Electrochemical interfacial catalysis in Co-based battery electrodes involving spin-polarized electron transfer. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	1
5982	Synthesis and Characterization of U≡C Triple Bonds in Fullerene Compounds. Journal of the American Chemical Society, 2023, 145, 25440-25449.	13.7	0
5983	Many-Body Methods for Surface Chemistry Come of Age: Achieving Consensus with Experiments. Journal of the American Chemical Society, 2023, 145, 25372-25381.	13.7	O
5984	Sulfur-deficient edges as active sites for hydrogen evolution on MoS ₂ . Physical Chemistry Chemical Physics, 2023, 25, 32541-32548.	2.8	0
5985	Regulating intragap states in colloidal quantum dots for universal photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2024, 343, 123572.	20.2	O

#	ARTICLE	IF	CITATIONS
5986	Tandem reactions on phase separated MnO2 and C to enhance formaldehyde conversion to hydrogen. International Journal of Hydrogen Energy, 2024, 51, 982-992.	7.1	0
5987	Controllable construction of bifunctional sites on Ir@Ni/NiO core/shell porous nanorod arrays for efficient water splitting. Applied Energy, 2024, 356, 122369.	10.1	0
5988	Developing a class of dual atom materials for multifunctional catalytic reactions. Nature Communications, $2023, 14, \ldots$	12.8	7
5989	First-principles calculations to investigate structural and electronic properties of novel halides $ZrIX$ ($X = Cl, Br$) for photovoltaic application. Physica B: Condensed Matter, 2024, 673, 415499.	2.7	2
5990	Alternative B-site-doped La0.6Sr0.4Co0.2Fe0.8-xMxO3 (MÂ=ÂNi, Cu, Nb; xÂ=Â0, 0.1, 0.2) as innovative cathode material for LT-SOFC with enhanced charge transfer and oxygen ion diffusion. Applied Energy, 2024, 353, 122096.	10.1	3
5991	Enhanced HER Efficiency of Monolayer MoS ₂ via S Vacancies and Nano ones Array Induced Strain Engineering. Small, 0, , .	10.0	0
5992	Stable Seawater Oxidation at High-Salinity Conditions Promoted by Low Iron-Doped Non-Noble-Metal Electrocatalysts. ACS Catalysis, 2023, 13, 15581-15590.	11.2	0
5993	Adsorption of 4-(<i>N</i> , <i>N</i> -Dimethylamino)-4′-nitrostilbene on an Amorphous Silica Glass Surface. Journal of Physical Chemistry C, 2023, 127, 22964-22974.	3.1	0
5994	Enhancing multifunctional photocatalysis with acetate $\hat{a} \in \mathbf{e}$ ssisted cesium doping and unlocking the potential of Z $\hat{a} \in \mathbf{s}$ cheme solar water splitting. , 0, , .		0
5995	Benchmarking the Accuracy of Density Functional Theory against the Random Phase Approximation for the Ethane Dehydrogenation Network on $Pt(111)$. Journal of Physical Chemistry Letters, 2023, 14, 10769-10778.	4.6	1
5996	Enhanced CO ₂ Reactive Capture and Conversion Using Aminothiolate Ligand–Metal Interface. Journal of the American Chemical Society, 2023, 145, 26038-26051.	13.7	0
5997	CO ₂ electro-reduction reaction <i>via</i> a two-dimensional TM@TAP single-atom catalyst. RSC Advances, 2023, 13, 35231-35239.	3.6	O
5998	O- and OH-induced dopant segregation in single atom alloy surfaces: A combined density functional theory and machine learning study. Computational Materials Science, 2024, 232, 112607.	3.0	0
5999	A new coordination polymer of $Cd(II)$ with 4-methyl-1,2,4-triazole-3-thiol ligand: synthesis, characterization, crystal structure, photoluminescence and DFT calculation. Transition Metal Chemistry, 0 , , .	1.4	O
6000	Identifying Stable Electrocatalysts Initialized by Data Mining: Sb ₂ WO ₆ for Oxygen Reduction. Advanced Science, 0, , .	11.2	0
6002	Design and Development of B2 Ti50Pd50-xMx (M= Os, Ru, Co) as Potential High Temperature Shape Memory Alloys. , 0, , .		0
6003	Novel thiazole carbamothioyl benzamide derivative Mn(II), Ni(II), and Cu(II) complexes: synthesis, structural characterisation, computational, and biological potency. Optical and Quantum Electronics, 2024, 56, .	3.3	0
6004	CO Dimerization on Cu Nanoparticles under High CO Coverage. Industrial & Engineering Chemistry Research, 2023, 62, 20107-20115.	3.7	O

#	ARTICLE	IF	CITATIONS
6005	Tuning the surface properties of AuPd nanoparticles for adsorption of O and CO. Physical Chemistry Chemical Physics, 2023, 25, 33031-33037.	2.8	1
6007	Mechanisms of Al2O3 and Cr2O3 formation during FeCrAl alloy Oxidation: A First-Principles study. Applied Surface Science, 2024, 644, 158782.	6.1	1
6008	Chemical shift tensors as probes of chalcogen bonds: solid-state NMR study of telluradiazole-XCN ^{â^'} (XÂ=ÂO, S, Se) salt cocrystals. Facets, 2023, 8, 1-14.	2.4	0
6009	Effect of Dopants on Σ3 (111) Grain Boundary in Diamond. Physica Status Solidi (B): Basic Research, 2024, 261, .	1.5	0
6010	A single response to reducing gases by NiO-TiO2 heterojunction nanocrystals. Applied Surface Science, 2024, 644, 158821.	6.1	3
6011	Trends of Pd ₃ Au(111) Alloy Surface Segregation in Oxygen, Carbon, and Nitrogen Environments. Journal of Physical Chemistry C, 2023, 127, 22060-22066.	3.1	O
6012	Effect of sulfur content on precipitation behaviour of MnS-containing inclusions in X70 pipeline steel. Journal of Materials Research and Technology, 2023, 27, 5868-5880.	5.8	0
6014	Periodic and non-periodic DFT studies of an organic semiconductor material: Structural, electronic, optical, and vibrational properties of ninhydrin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2024, 307, 123636.	3.9	2
6015	Quantifying the Accuracy of Density Functionals on Transition Metal Bulk and Surface Properties. Journal of Chemical Theory and Computation, 2023, 19, 8285-8292.	5.3	2
6016	Synthetic pathway of shallow n-type donor: Theoretical study of Li and B co-doped diamonds. Diamond and Related Materials, 2024, 141, 110599.	3.9	0
6017	Study on the splitting mechanism of H2O/CO2 on the surface of reduced CaFe2O4. Fuel, 2024, 358, 130279.	6.4	0
6018	First-principles study on the photocatalytic field of two-dimensional Janus BiSY (Y = I, Br, Cl) monolayers. Journal of Materials Chemistry A, 2023, 11, 26442-26451.	10.3	0
6021	Supercritical water gasification of waste R410A refrigerant mixture for the resource utilization: ReaxFF reactive molecular dynamic simulation and density functional theory calculation study. International Journal of Refrigeration, 2024, 158, 25-34.	3.4	0
6023	Catalytic Performance of Doped Ni2P Surfaces for Ammonia Synthesis â€. , 0, , .		0
6024	Atomistic Analysis of the Microbial Influence on the Adsorption Characteristic of Sulfur, Hydrogen, and SO ₄ on Iron Surfaces. Industrial & Engineering Chemistry Research, 2023, 62, 20777-20788.	3.7	0
6025	Kinetic, Spectroscopic, and Theoretical Study of Toluene Alkylation with Ethylene on Acidic Mordenite Zeolite. ACS Catalysis, 0, , 16012-16031.	11.2	0
6026	Dependence of tetragonal barium titanate spontaneous polarization and refractive indices on DFT exchange-correlation functionals. Physica B: Condensed Matter, 2024, 674, 415536.	2.7	0
6027	Cationâ€Deficient Perovskites Greatly Enhance the Electrocatalytic Activity for Oxygen Reduction Reaction. Advanced Materials, 2024, 36, .	21.0	1

#	Article	IF	CITATIONS
6028	Catalyst Energy Prediction with CatBERTa: Unveiling Feature Exploration Strategies through Large Language Models. ACS Catalysis, 2023, 13, 16032-16044.	11.2	2
6029	The design and optimization of heterogeneous catalysts using computational methods. Catalysis Science and Technology, 2024, 14, 515-532.	4.1	0
6030	Boosting Electrochemical CO ₂ Reduction via Surface Hydroxylation over Cu-Based Electrocatalysts. ACS Catalysis, 2023, 13, 16114-16125.	11.2	3
6031	Machine Learning Interatomic Potentials for Reactive Hydrogen Dynamics at Metal Surfaces Based on Iterative Refinement of Reaction Probabilities. Journal of Physical Chemistry C, 0, , .	3.1	O
6032	Iridium-Cooperated, Symmetry-Broken Manganese Oxide Nanocatalyst for Water Oxidation. Journal of the American Chemical Society, 0, , .	13.7	1
6033	Constructing Mixed Density Functionals for Describing Dissociative Chemisorption on Metal Surfaces: Basic Principles. Journal of Physical Chemistry A, O, , .	2.5	O
6034	Intentional corrosion-induced reconstruction of defective NiFe layered double hydroxide boosts electrocatalytic nitrate reduction to ammonia., 2023, 1, 1068-1078.		2
6036	Regulation of interfacial polymerization by organic base for high-permselective nanofiltration. Desalination, 2024, 573, 117212.	8.2	O
6037	Mica nanosheets synthesized <i>via</i> liquid Ga embrittlement: demonstrating enhanced CO ₂ capture. Materials Advances, 0, , .	5.4	0
6038	altimg="si59.svg" display="inline" id="d1e297"> <mml:mi>i€</mml:mi> â€" <mml:math altimg="si59.svg" display="inline" id="d1e302" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>i€</mml:mi></mml:math> stacking and hydrogen bonding behavior in simple aromatic molecules â€" An Ab initio MD study, lournal of Molecular Graphics and Modelling, 2024, 127.	2.4	O
6039	108693. The value of charge of Fe single to multiple atoms doped in Ge: Combined experimental and density functional theory study. Solid State Communications, 2024, 378, 115409.	1.9	0
6040	Analysis of the adsorption characteristics of SF ₆ and its decomposition products in ZIF-67: based on GCMC and DFT. Journal Physics D: Applied Physics, 2024, 57, 105501.	2.8	O
6041	Silver-decorated Palladium on Carbon Catalyst for Enhanced Ammonium Formate Dehydrogenation. Catalysis Science and Technology, 0, , .	4.1	0
6042	Metastable defect curing by alkaline earth metal in chalcogenide thin-film solar cells. Applied Surface Science Advances, 2024, 19, 100539.	6.8	1
6043	Complimentary Computational Cues for Water Electrocatalysis: A DFT and MLÂPerspective. Advanced Functional Materials, 2024, 34, .	14.9	0
6044	Assessing the dynamics of CO adsorption on $\text{Cu}(110)$ using the vdW-DF2 functional and artificial neural networks. Journal of Chemical Physics, 2023, 159, .	3.0	O
6045	Formation mechanism of CO2 in the production of allyl acetate from propylene on PdCu(111) surface: A DFT study. Molecular Catalysis, 2024, 553, 113783.	2.0	0
6046	A critical comparative review of generalized gradient approximation: the ground state of Fe ₃ Al as a test case. Modelling and Simulation in Materials Science and Engineering, 2023, 31, 085022.	2.0	O

#	Article	IF	CITATIONS
6047	Diffusion quantum Monte Carlo study on magnesium clusters as large as nanoparticles. Journal of Chemical Physics, 2023, 159, .	3.0	0
6048	Ultrafine iridium nanoparticles grown on sea urchin-like PdCu with boosted activity toward acidic oxygen evolution. Materials Today Energy, 2024, 39, 101480.	4.7	1
6049	Theoretical Insights of the Photocatalytic and Hydrogen Storage Ability of Two-dimensional (2D) MoSe2 (MX2) and MoSSe (MXY) (X=Se, Y=S) ML using DFT Study. IEEE Sensors Journal, 2023, , 1-1.	4.7	0
6050	Probing the nanoscale driving forces for adsorbate-induced Rh ₅₀ Pd ₅₀ nanoparticle reconstruction <i>via</i> mean-field models of multi-faceted nanoparticles. Catalysis Science and Technology, 2024, 14, 1122-1137.	4.1	O
6051	Mechanical, electronic and dynamical properties of T2-Al $<$ sub $>$ 2 $<$ /sub $>$ MgC $<$ sub $>$ 2 $<$ /sub $>$ under pressure. Modern Physics Letters B, O, , .	1.9	0
6052	Hydrogen atom scattering at the Al ₂ O ₃ (0001) surface: a combined experimental and theoretical study. Physical Chemistry Chemical Physics, 2024, 26, 1696-1708.	2.8	0
6053	Unveiling the remarkable deNOx performance of MnMoVOx catalysts via dual regulation of the redox and acid sites. Applied Catalysis B: Environmental, 2024, 344, 123612.	20.2	0
6054	Boron Nitride Nanotubes Supported Icosahedral Pd Nanoparticles: Enabling Ultrahigh Current Density-Superior Hydrogen Evolution activity and Theoretical Insights. Applied Catalysis B: Environmental, 2023, , 123609.	20.2	1
6055	First-principles study of H2S adsorption and dissociation on the $Ni(111)$ and Cl -covered $Ni(111)$ surfaces. Computational and Theoretical Chemistry, 2024, 1231, 114443.	2.5	0
6056	Regulating the coordination environment of single atom catalysts anchored on C3N monolayer for Li-S battery by first-principles calculations. Journal of Colloid and Interface Science, 2024, 658, 795-804.	9.4	0
6057	TiNX (XÂ=ÂF, Cl) monolayer as potential anode materials for Li/Na-ion batteries applications. Journal of Energy Storage, 2024, 78, 110105.	8.1	2
6058	Fracture toughness and critical thickness of \hat{l}^2 -(ln _{<i>x</i>>i>x>} <2<0 _{<3} <2<0 _{<3} <td>/sub></td> <td>0</td>	/sub>	0
6059	Alkali Etching of Porous PdCoZn Nanosheets for Boosting Câ^'C Bond Cleavage of Ethylene Glycol Oxidation. Small, 0, , .	10.0	2
6060	Addressing the Effectiveness and Molecular Mechanism of the Catalytic CO ₂ Hydration in Aqueous Solutions by Nickel Nanoparticles. ACS Omega, 0, , .	3.5	0
6061	Gas Sensing Properties of Pd-Decorated GeSe Monolayer toward Formaldehyde and Benzene Molecules: A First-Principles Study. Langmuir, 2024, 40, 997-1006.	3.5	1
6062	Origin of the success of mGGAs for bandgaps. Journal of Chemical Physics, 2023, 159, .	3.0	O
6063	S dopant-mediated hydrogen evolution reaction activity of CoSe2. International Journal of Hydrogen Energy, 2024, 56, 604-610.	7.1	0
6064	Theoretical study on the synthesis of urea by series electrocatalysis of lithium main group embedded in COF structure. Journal of Solid State Chemistry, 2024, 332, 124539.	2.9	O

#	Article	IF	CITATIONS
6065	A replacement strategy for regulating local environment of single-atom Co-SxN4â°'x catalysts to facilitate CO2 electroreduction. Nature Communications, 2024, 15, .	12.8	1
6066	Adsorbed oxygen atoms for improving the oxidative dehydrogenation of ethane over B-site-doped layered perovskite La2Ti2O7. Chemical Engineering Journal, 2024, 481, 148554.	12.7	0
6067	Calcium ferrites for phosphate adsorption and recovery from wastewater. RSC Advances, 2024, 14, 1612-1624.	3.6	0
6068	Best-of-Both-Worlds Predictive Approach to Dissociative Chemisorption on Metals. Journal of Physical Chemistry Letters, 0, , 307-315.	4.6	0
6069	Dispersed Cu (Ni, Co) in MN3 moiety on graphene as active site via electrolytic water towards electro-epoxidation of ethylene. Applied Surface Science, 2024, 652, 159362.	6.1	0
6070	Extraordinary d–d hybridization in Co(Cu)0.50xHy microcubes facilitates PhCH2O*–Co(â£) coupling for benzyl alcohol electrooxidation. Applied Catalysis B: Environmental, 2024, 346, 123739.	20.2	O
6071	Novel pentagonal carbon-based materials as multifunctional electrodes in lithium-sulfur batteries, a theoretical study. Applied Surface Science, 2024, 652, 159365.	6.1	0
6072	The origins of formic acid electrooxidation on selected surfaces of Pt, Pd, and their alloys with Sn. Journal of Materials Chemistry A, 2024, 12, 3311-3322.	10.3	O
6073	Dynamics of "Hot―Oxygen Atoms on Ag(100) Surface upon O ₂ Dissociation. Journal of Physical Chemistry C, 2023, 127, 21568-21577.	3.1	0
6074	Design of High-Efficiency Hydrogen Evolution Catalysts in a Chiral Crystal. ACS Catalysis, 2024, 14, 1030-1036.	11.2	O
6075	Unravelling competitive adsorption phenomena in the aqueous phase reforming of carboxylic acids on Pt catalysts: An experimental and theoretical study. Chemical Engineering Journal, 2024, 482, 148902.	12.7	0
6076	First-principle study on the optical properties of TiO2 doped with different Lu contents., 2023, 19, 775-782.		O
6077	Hydrogen Diffusion on Graphene Surface: The Effects of Neighboring Adsorbate and Quantum Tunneling. Journal of Physical Chemistry C, 2024, 128, 840-849.	3.1	0
6078	Pulsing the Applied Potential in Electrochemical CO ₂ Reduction Enhances the C ₂ Activity by Modulating the Dynamic Competitive Binding of *CO and *H. ACS Catalysis, 2024, 14, 785-796.	11.2	O
6079	A First-Principles Approach to Modeling Surface Site Stabilities on Multimetallic Catalysts. ACS Catalysis, 2024, 14, 874-885.	11.2	0
6080	Acid-stable manganese oxides for proton exchange membrane water electrolysis. Nature Catalysis, 2024, 7, 252-261.	34.4	0
6081	The use of LDHs-NO3- and LDHs-NO2- as corrosion inhibitors in simulated concrete pore solution: An experimental and theoretical study. Construction and Building Materials, 2024, 411, 134779.	7.2	0
6082	Coupling the Electronic Distribution and Oxygen Redox Potential via Cu Substitution of Layered Oxide Cathodes for Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2024, 12, 816-825.	6.7	O

#	Article	IF	CITATIONS
6083	Vitamin C-induced CO2 capture enables high-rate ethylene production in CO2 electroreduction. Nature Communications, 2024, 15 , .	12.8	1
6084	Unraveling the intricacies of surface salt formation on Mg(0001): Implications for chloride-ion batteries. Physical Review Materials, 2024, 8 , .	2.4	0
6086	Modulating Thermoelectric Properties of the MoSe ₂ /WSe ₂ Superlattice Heterostructure by Twist Angles. ACS Applied Materials & Samp; Interfaces, 2024, 16, 3325-3333.	8.0	0
6087	An Interfaceâ€cascading Silicon Photoanode with Strengthened Builtâ€in Electric Field and Enriched Surface Oxygen Vacancies for Efficient Photoelectrochemical Water Splitting. Chemistry - A European Journal, 2024, 30, .	3.3	O
6088	InCl ₃ â€Assisted Surface Defects Restoring to Enhance Leadâ€Free Cs ₂ ZrCl ₆ Nanocrystals for Xâ€Ray Imaging and Blue LED Applications. Small, 0, ,	10.0	1
6089	Invariant Molecular Representations for Heterogeneous Catalysis. Journal of Chemical Information and Modeling, 2024, 64, 327-339.	5.4	0
6090	Unraveling the pH-Dependent Oxygen Reduction Performance on Single-Atom Catalysts: From Single-to Dual-Sabatier Optima. Journal of the American Chemical Society, 2024, 146, 3210-3219.	13.7	2
6091	Facile synthesis of distinctive nitrogen defect-regulated g-C3N4 for efficient photocatalytic hydrogen evolution. Diamond and Related Materials, 2024, 142, 110816.	3.9	O
6092	First-principles study on the optoelectronic and photocatalytic properties of the C2h-Janus Al2XY(X/Y) Tj ETQq0 C	0 0 ₃ .gBT /C	verlock 10 1
6093	Unraveling FeOx Nanoparticles Confined on Fibrous Mesoporous Silica Catalyst Construction and CO Catalytic Oxidation Performance. Catalysts, 2024, 14, 63.	3.5	O
6094	Information bottleneck in peptide conformation determination by x-ray absorption spectroscopy. Journal of Physics Communications, 2024, 8, 025001.	1.2	0
6095	Carbonâ€13 chemical shift tensor measurements for nitrogenâ€dense compounds. Magnetic Resonance in Chemistry, 2024, 62, 179-189.	1.9	O
6096	A combination of DFT and kMC to solve two engineering problems in the production of vinyl acetate. Molecular Catalysis, 2024, 554, 113849.	2.0	0
6097	Revealing H-bonding interactions of 2D ice on Au(1 1 1). Chemical Physics Letters, 2024, 838, 141093.	2.6	O
6098	Molecular understanding of the critical role of alkali metal cations in initiating CO2 electroreduction on $\text{Cu}(100)$ surface. Nature Communications, 2024, 15, .	12.8	2
6099	ScB2C2: The first high damage tolerant ultra-high temperature ceramic with hydrolysis resistance. Journal of the European Ceramic Society, 2024, 44, 3683-3695.	5.7	O
6100	Discovering the remarkable deNOx activity and anti-K poisoning of MnFeOx/H-Beta composite catalyst. Separation and Purification Technology, 2024, 337, 126410.	7.9	0
6101	Interface engineering for high-strength and high-ampacity of carbon nanotube/copper composite wires. Carbon, 2024, 219, 118845.	10.3	O

#	Article	IF	CITATIONS
6102	Tuning the optoelectronic and thermoelectric properties of vacancy-ordered halide perovskites Cs2Ge(1-x)PtxCl6 (x=0, 0.25, 0.50, 0.75 and 1.00) via substitutional doping of Pt using first-principles approach. Materials Chemistry and Physics, 2024, 315, 128947.	4.0	0
6103	Electroreduction of CO ₂ on Cu, Fe, or Niâ€doped Diamane Sheets: A DFT Study. Chemistry - A European Journal, 2024, 30, .	3.3	0
6105	Ten-electron count rule for the binding of adsorbates on single-atom alloy catalysts. Nature Chemistry, $0, , .$	13.6	0
6106	Vibrational spectrum perturbations of alkanethiol self-assembled monolayers with noble gases and chlorinated species. Canadian Journal of Chemistry, 0, , .	1.1	0
6107	Interception of Layered LP-N and HLP-N at Ambient Conditions by Confined Template. Chinese Physics Letters, 2024, 41, 036101.	3.3	0
6108	Active site tuning based on pseudo-binary alloys for low-temperature acetylene semihydrogenation. Chemical Science, 2024, 15, 4086-4094.	7.4	0
6109	Multiple Metal–Nitrogen Bonds Synergistically Boosting the Activity and Durability of High-Entropy Alloy Electrocatalysts. Journal of the American Chemical Society, 2024, 146, 3010-3022.	13.7	0
6110	First-principles study on the electronic, magnetic and optical properties of the novel squared SN2 monolayer with 3d transition metal doping and point vacancy. Results in Physics, 2024, 57, 107396.	4.1	0
6111	Biomimetic-photo-coupled catalysis for boosting H2O2 production. Chemical Engineering Journal, 2024, 483, 149183.	12.7	0
6112	An unusual ionic cocrystal of ponatinib hydrochloride: characterization by single-crystal X-ray diffraction and ultra-high field NMR spectroscopy. CrystEngComm, 2024, 26, 1219-1233.	2.6	0
6113	Reinforcing hydrogen and carbon nanotube co-production <i>via</i> Cr–O–Ni catalyzed methane decomposition. Journal of Materials Chemistry A, 2024, 12, 4893-4902.	10.3	0
6114	Density Functional Theory (DFT) Simulation of Microsurface Properties of FeO. Minerals, Metals and Materials Series, 2024, , 227-237.	0.4	0
6115	Systematic screening of transition-metal-doped hydroxyapatite for efficient photocatalytic CO2 reduction. Journal of CO2 Utilization, 2024, 80, 102692.	6.8	0
6116	Ammonia cracking on single-atom catalysts: A mechanistic and microkinetic study. Applied Catalysis A: General, 2024, 673, 119589.	4.3	0
6117	Insight into Selectivity Differences of Glycerol Electro-Oxidation on Pt(111) and Ag(111). ACS Catalysis, 2024, 14, 2455-2462.	11.2	0
6118	The carbon deposition process on NiFe catalyst in CO methanation: A combined DFT and KMC study. Applied Surface Science, 2024, 655, 159527.	6.1	0
6119	Ultrastable and Phosphoric Acid-Resistant PtRhCu@Pt Oxygen Reduction Electrocatalyst for High-Temperature Polymer Electrolyte Fuel Cells. ACS Catalysis, 2024, 14, 2572-2581.	11.2	0
6120	Ultrastable electrocatalytic seawater splitting at ampere-level current density. Nature Sustainability, 2024, 7, 158-167.	23.7	0

#	Article	IF	CITATIONS
6121	The accuracy limit of chemical shift predictions for species in aqueous solution. Physical Chemistry Chemical Physics, 2024, 26, 6386-6395.	2.8	0
6122	AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2024, , 109586.	9.0	0
6123	Naphthalene Dehydrogenation on Ni(111) in the Presence of Chemisorbed Oxygen and Nickel Oxide. Catalysts, 2024, 14, 124.	3.5	0
6124	Real-time tracking of electron transfer at catalytically active interfaces in lithium-ion batteries. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
6125	Developing Cheap but Useful Machine Learning-Based Models for Investigating High-Entropy Alloy Catalysts. Langmuir, 2024, 40, 3691-3701.	3.5	0
6126	Elucidating the Oxidation Mechanisms in Cr ₂ AlB ₂ Using Density Functional Theory and Thermodynamic Modeling. Journal of Physical Chemistry C, 2024, 128, 2471-2483.	3.1	0
6127	Gas sensing characteristics of two-dimensional palladium-based penta-materials. Sensors and Actuators A: Physical, 2024, 368, 115113.	4.1	0
6128	Facet-Defined Dilute Metal Alloy Nanorods for Efficient Electroreduction of CO ₂ to <i>n</i> -Propanol. Journal of the American Chemical Society, 2024, 146, 4508-4520.	13.7	0
6129	Amorphous RuPd bimetallene for hydrogen evolution reaction in acidic and alkaline conditions: a first-principles study. Physical Chemistry Chemical Physics, 2024, 26, 7896-7906.	2.8	0
6130	Bulkâ€Heterojunction Electrocatalysts in Confined Geometry Boosting Stable, Acid/Alkalineâ€Universal Water Electrolysis. Advanced Energy Materials, 2024, 14, .	19.5	1
6131	Laterally Resolved Free Energy Profiles and Vibrational Spectra of Chemisorbed H Atoms on Pt(111). Journal of Chemical Theory and Computation, 2024, 20, 2192-2201.	5.3	0
6132	Reactive Force Field Development for Propane Dehydrogenation on Platinum Surfaces. Journal of Physical Chemistry C, 2024, 128, 2844-2855.	3.1	0
6133	Mechanistic Pathways for the Dehydrogenation of Alkanes on Pt(111) and Ru(0001) Surfaces. ChemCatChem, 0, , .	3.7	0
6134	A surface strategy boosting the ethylene selectivity for CO2 reduction and in situ mechanistic insights. Nature Communications, 2024, 15 , .	12.8	0
6135	The impact of gamma rays on the structure, optical, electrical, and DFT of tin (II) 2,3-naphthalocyanine dye thin films for photonic and organic solar cell applications. Optical Materials, 2024, 149, 115020.	3.6	0
6136	Electric, Optoelectronic, and Thermoelectric Properties of Moir \tilde{A} © Superlattices of Bilayer Borophene with Different Twist Angles. Advanced Electronic Materials, 0, , .	5.1	0
6137	Rational Tailoring of Metal Precursor Interactions with the Zeolite Support in the Mo/HZSM-5 Catalyst for Methane Dehydroaromatization. Crystal Growth and Design, 2024, 24, 1529-1543.	3.0	0
6138	First Principles Calculation of Gas Sensitive Properties of Pd ₃ â€Modified Monolayer PtSe ₂ to SF ₆ Decomposition Products. Physica Status Solidi - Rapid Research Letters, 2024, 18, .	2.4	O

#	Article	IF	CITATIONS
6139	Fabrication of (H2PO4â^', Ni2+)Ââ€"Âα-Fe2O3/Bi2S3 heterojunction photocatalysts with improved visible-light catalytic activity. Chemical Engineering Science, 2024, 289, 119874.	3.8	0
6140	Promotion of activity and stability mechanisms of adjusting the Co ratio in nickel-based catalysts for dry reforming of methane reaction. Molecular Catalysis, 2024, 556, 113946.	2.0	0
6141	Transitioning from Methanol to Olefins (MTO) toward a Tandem CO ₂ Hydrogenation Process: On the Role and Fate of Heteroatoms (Mg, Si) in MAPO-18 Zeotypes. Jacs Au, 2024, 4, 744-759.	7.9	0
6142	Benchmarking a Molecular Flake Model on the Road to Programmable Graphene-Based Single-Atom Catalysts. Journal of Physical Chemistry C, 2024, 128, 2876-2883.	3.1	0
6144	Atomistic modelling of tritium thermodynamics and kinetics in tungsten and its oxides. Nuclear Materials and Energy, 2024, 38, 101611.	1.3	0
6145	Structure and dynamics of liquid water from <i>ab initio</i> simulations: adding Minnesota density functionals to Jacob's ladder. Chemical Science, 2024, 15, 4434-4451.	7.4	0
6146	Hydrogen evolution mediated by sulfur vacancies and substitutional Mn in few-layered molybdenum disulfide. Materials Today Energy, 2024, 41, 101524.	4.7	0
6147	Photocatalytic CO ₂ Reduction Using Ti ₃ C ₂ X _{<i>y</i>} (X = Oxo, OH, F, or Cl) MXene–ZrO ₂ : Structure, Electron Transmission, and the Stability. Langmuir, 2024, 40, 6330-6341.	3.5	O
6148	Computational investigation of the oxygen reduction reaction on the edges of differently-sized, shaped and terminated graphene nanoclusters. Carbon, 2024, 222, 118942.	10.3	0
6149	Reactant-Induced Dynamic Stabilization of Highly Dispersed Pt Catalysts on Ceria Dictating the Reactivity of CO Oxidation. ACS Catalysis, 2024, 14, 3504-3513.	11.2	0
6150	Centimeter-sized diamond composites with high electrical conductivity and hardness. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
6151	Adsorption properties of MoS2 monolayers modified with TM (Au, Ag, and Cu) on hazardous gases: A first-principles study. Materials Science in Semiconductor Processing, 2024, 174, 108254.	4.0	0
6152	Materials Genes of CO ₂ Hydrogenation on Supported Cobalt Catalysts: An Artificial Intelligence Approach Integrating Theoretical and Experimental Data. Journal of the American Chemical Society, 2024, 146, 5433-5444.	13.7	0
6153	First-principles prediction of n-type diamond: novel co-doped structure using N and Be impurities. Journal Physics D: Applied Physics, 2024, 57, 215107.	2.8	0
6154	General synthesis and atomic arrangement identification of ordered Bi–Pd intermetallics with tunable electrocatalytic CO2 reduction selectivity. Nature Communications, 2024, 15, .	12.8	0
6155	Protective effects of Pt-N-C single-atom nanozymes against myocardial ischemia-reperfusion injury. Nature Communications, 2024, 15, .	12.8	0
6156	Mesoporous and Encapsulated In ₂ C ₂ T _{<i>x</i>} Schottky Heterojunctions for Rapid and ppb-Level NO ₂ Detection at Room Temperature. ACS Sensors, O, , .	7.8	0
6157	High-Capacity, Cooperative CO ₂ Capture in a Diamine-Appended Metal–Organic Framework through a Combined Chemisorptive and Physisorptive Mechanism. Journal of the American Chemical Society, 2024, 146, 6072-6083.	13.7	0

#	ARTICLE	IF	CITATIONS
6158	An interesting synergistic effect of heteronuclear dual-atom catalysts for hydrogen production: Offsetting or promoting. Nano Research, 0, , .	10.4	0
6159	Impact of Potential and Active-Site Environment on Single-Iron-Atom-Catalyzed Electrochemical CO ₂ Reduction from Accurate Quantum Many-Body Simulations. ACS Catalysis, 2024, 14, 3933-3942.	11.2	0
6160	van der Waals multiferroic tunnel junctions based on sliding multiferroic layered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>VSi</mml:mi><mml:mathvariant="normal">N<mml:mn>4</mml:mn></mml:mathvariant="normal"></mml:msub></mml:mrow></mml:math> . Physical Review B, 2024, 109, .	nn>23.2	nl:mn>
6161	Continuous strain tuning of oxygen evolution catalysts with anisotropic thermal expansion. Nature Communications, 2024, 15, .	12.8	o
6162	Leveraging bismuth immiscibility to create highly concave noble-metal nanoparticles. CheM, 2024, , .	11.7	0
6163	Iron-doping and facet engineering of NiSe octahedron for synergistically enhanced triiodide reduction activity in photovoltaics. Journal of Colloid and Interface Science, 2024, 663, 674-684.	9.4	O
6164	Theoretical study of hydrogen desorption on the Ni(100) surface through simulated temperature programmed desorption spectra. Surface Science, 2024, 744, 122467.	1.9	0
6165	An efficient synthesis for Cd(II), Cu(II), and UO2(II) complexes with N-ethyl-2-(1-(naphthalen-1-yl)ethylidene)hydrazine-1-carbothioamide under solvent-free condition using ball milling as green protocol. Journal of Molecular Structure, 2024, 1306, 137928.	3.6	0
6166	The SCAPS-1D simulation of non-toxic KGeCl3 perovskite from DFT derived properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2024, 303, 117268.	3.5	0
6167	Theoretical Insights into Band Gap Tuning Through Cu Doping and Ga Vacancy in GaSe Monolayer: A First-Principles Perspective. Journal of Electronic Materials, 2024, 53, 2398-2409.	2.2	0
6168	Effects of transition metals (Nb, Mo and Cd) and main group metals (In, Ge and Sb) on mechanical properties of Al2Cu: A first-principles study. Materials Today Communications, 2024, 39, 108537.	1.9	0
6169	Exploring the Strain-Enhanced Li-lon Migration in Li _{1.33} Al _{0.33} Ti _{1.67} (PO ₄) ₃ Solid Electrolyte., 2024, 6, 1224-1230.		0
6170	Enabling fast diffusion/conversion kinetics by thiourea-induced wrinkled N, S co-doped functional MXene for lithium-sulfur battery. Energy Storage Materials, 2024, 67, 103328.	18.0	0
6172	Antagonism effect of residual S triggers the dual-path mechanism for water oxidation. Journal of Energy Chemistry, 2024, 93, 568-579.	12.9	0
6173	Sorption enhanced CO ₂ hydrogenation to formic acid over CuZn-MOF derived catalysts. Journal of Materials Chemistry A, 2024, 12, 8457-8473.	10.3	0
6174	GPAW: An open Python package for electronic structure calculations. Journal of Chemical Physics, 2024, 160, .	3.0	0
6175	Synergistically S/N self-doped biochar as a green bifunctional cathode catalyst in electrochemical degradation of organic pollutant. Green Energy and Environment, 2024, , .	8.7	0
6176	Electrochemical Conversion of CO ₂ into Formate Boosted by In Situ Reconstruction of Bi-MOF to Bi ₂ O ₂ CO ₃ Ultrathin Nanosheets. ACS Applied Materials & ACS ACS Applied Materials & ACS Applied Materials & ACS ACS Applied Materials & ACS	8.0	0

#	Article	IF	Citations
6177	Ag-doped non–imperfection-enabled uniform memristive neuromorphic device based on van der Waals indium phosphorus sulfide. Science Advances, 2024, 10, .	10.3	0
6178	Structure Sensitivity of Metal Catalysts Revealed by Interpretable Machine Learning and First-Principles Calculations. Journal of the American Chemical Society, 2024, 146, 8737-8745.	13.7	0
6179	A theoretical study of the electronic properties of hydrogenated sphericalâ€like <scp>SiC</scp> quantum dots with <scp>C</scp> â€rich and <scp>Si</scp> â€rich compositions. International Journal of Quantum Chemistry, 2024, 124, .	2.0	0
6180	Polarizability Engineering of Surface Flattening Molecular Dipoles for Fast and Long Lithium Metal Battery Operation. Small Structures, 0, , .	12.0	0
6182	Catalytic Activity and Electrochemical Stability of Ru _{1â€"<i>x</i>xy} M _{<i>x</i>>} O ₂ (M = Zr, Nb, Ta): Computational and Experimental Study of the Oxygen Evolution Reaction. ACS Applied Materials & Diterfaces, 2024, 16, 16373-16398.	8.0	0
6183	New Schiff's base derivative and their nanoâ€sized Cr (III), Fe (III), Ru (III), and Ir (III) complexes: Preparation, DFT, characterization, bio atalytic, DNA interactions, cytotoxicity, and docking studies. Applied Organometallic Chemistry, 2024, 38, .	3.5	0
6184	Comparing machine learning potentials for water: Kernel-based regression and Behler–Parrinello neural networks. Journal of Chemical Physics, 2024, 160, .	3.0	0
6185	Water-participated mild oxidation of ethane to acetaldehyde. Nature Communications, 2024, 15, .	12.8	0
6186	High stability and high corrosion resistance of a class of Co–Cr–Mo–Nb–B high-entropy metallic glasses. Journal of Materials Research and Technology, 2024, 30, 256-266.	5.8	0
6187	Explainable AI for optimizing oxygen reduction on Pt monolayer core–shell catalysts. Electrochemical Science Advances, 0, , .	2.8	0
6188	Kinetics and reaction mechanism of Pd-Catalyzed chlorobenzene hydrogenolysis. Journal of Catalysis, 2024, 432, 115435.	6.2	0
6189	Preparation of Nickel Slag–Based Microelectrolysis Filler Material and Eco-friendly Utilization in the Degradation of Azo Compound Wastewater. Water, Air, and Soil Pollution, 2024, 235, .	2.4	0
6190	Revealing Local and Directional Aspects of Catalytic Active Sites by the Nuclear and Surface Electrostatic Potential. Journal of Physical Chemistry C, 2024, 128, 4544-4558.	3.1	0
6191	Comprehensive Analysis of Methyl- \hat{l}^2 - <scp>D</scp> -ribofuranoside: A Multifaceted Spectroscopic and Theoretical Approach. Journal of Physical Chemistry A, 2024, 128, 2111-2120.	2.5	0
6192	Dealing with the big data challenges in AI for thermoelectric materials. Science China Materials, 2024, 67, 1173-1182.	6.3	0
6193	First principles insights into Cs2XAgCl6 (X= Sc, Y) compounds for energy harvesting applications. Digest Journal of Nanomaterials and Biostructures, 2024, 19, 295-308.	0.8	0
6194	Self-assembly of an amino acid derivative as an anode interface layer for advanced alkaline Al–air batteries. Physical Chemistry Chemical Physics, 2024, 26, 10892-10903.	2.8	0
6195	Benchmarking pH-field coupled microkinetic modeling against oxygen reduction in large-scale Fe–azaphthalocyanine catalysts. Chemical Science, 2024, 15, 5123-5132.	7.4	0

#	Article	IF	CITATIONS
6196	Micro-kinetic modelling of the CO reduction reaction on single atom catalysts accelerated by machine learning. Physical Chemistry Chemical Physics, 2024, 26, 11037-11047.	2.8	0
6197	Benzohydrazide derivative metal complex's antimicrobial and inhibitory effects on liver cancer cell lines and quinone oxidoreductase 2: Experimental, molecular docking, and DFT investigations. Journal of Molecular Structure, 2024, 1308, 138073.	3.6	O
6198	Influence of Alkali Metal Cations on the Oxygen Reduction Activity of Pt ₅ Y and Pt ₅ Gd Alloys. Journal of Physical Chemistry C, 2024, 128, 4969-4977.	3.1	0
6199	A DFT insight into the physical features of alkaline based perovskite compounds AlnBr3 (AÂ=ÂK, Rb). Solid State Ionics, 2024, 409, 116513.	2.7	0
6200	Stiffening of double-shelled fullerene molecules under uniaxial strains. Fullerenes Nanotubes and Carbon Nanostructures, 0, , 1-7.	2.1	0
6201	Potassium Promoted Ferrocene/Graphene for Ammonia Synthesis. Chemical Research in Chinese Universities, 0, , .	2.6	0
6202	Ligninâ€derived carbon with pyridine Nâ€B doping and a nanosandwich structure for high and stable lithium storage. , 0, , .		0
6203	Ab-initio study of point defects in Th and U alloy. Journal of Nuclear Materials, 2024, 595, 155034.	2.7	0
6205	First-principles study of the magnetic and optical properties of PtSe ₂ doped with halogen elements F, Cl, and Br. Physica Scripta, 2024, 99, 045508.	2.5	0
6206	CO Hydrogenation Promoted by Oxygen Atoms Adsorbed onto Cu(100). Journal of Physical Chemistry C, 2024, 128, 4607-4615.	3.1	0