$\hat{I}^2\text{-}catenin$ is a target for the ubiquitinâ ${\ensuremath{\mathbb C}}$ "proteasome particular definition of the second second

EMBO Journal 16, 3797-3804 DOI: 10.1093/emboj/16.13.3797

Citation Report

#	Article	IF	CITATIONS
1	Regulation of Î ² -Catenin Levels and Localization by Overexpression of Plakoglobin and Inhibition of the Ubiquitin-Proteasome System. Journal of Cell Biology, 1997, 139, 1325-1335.	5.2	139
2	Phosphorylation of Sic1p by G1 Cdk Required for Its Degradation and Entry into S Phase. Science, 1997, 278, 455-460.	12.6	454
3	Wnt signaling: a common theme in animal development. Genes and Development, 1997, 11, 3286-3305.	5.9	2,276
4	Cadherins, catenins and APC protein: interplay between cytoskeletal complexes and signaling pathways. Current Opinion in Cell Biology, 1997, 9, 683-690.	5.4	518
5	Armadillo and dTCF: a marriage made in the nucleus. Current Opinion in Genetics and Development, 1997, 7, 459-466.	3.3	75
6	A Complex of Cdc4p, Skp1p, and Cdc53p/Cullin Catalyzes Ubiquitination of the Phosphorylated CDK Inhibitor Sic1p. Cell, 1997, 91, 221-230.	28.9	789
7	Expression of β-catenin and the adenomatous polyposis coli tumour suppressor protein in mouse neocortical cells in vitro. Neuroscience Letters, 1997, 235, 129-132.	2.1	20
8	Inhibition of NF-kappa B cellular function via specific targeting of the Ikappa B-ubiquitin ligase. EMBO Journal, 1997, 16, 6486-6494.	7.8	221
9	The ubiquitin-proteasome pathway: on protein death and cell life. EMBO Journal, 1998, 17, 7151-7160.	7.8	1,230
10	Axin, a negative regulator of the Wnt signaling pathway, forms a complex with CSK-3beta and beta -catenin and promotes CSK-3beta -dependent phosphorylation of beta -catenin. EMBO Journal, 1998, 17, 1371-1384.	7.8	1,120
11	THE UBIQUITIN SYSTEM. Annual Review of Biochemistry, 1998, 67, 425-479.	11.1	7,702
12	Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature, 1998, 391, 493-496.	27.8	1,610
13	Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature, 1998, 391, 496-499.	27.8	828
14	Stress-activated kinases regulate protein stability. Oncogene, 1998, 17, 1483-1490.	5.9	152
15	Combinatorial control in ubiquitin-dependent proteolysis: don't Skp the F-box hypothesis. Trends in Genetics, 1998, 14, 236-243.	6.7	495
16	Wingless signaling: The inconvenient complexities of life. Current Biology, 1998, 8, R140-R144.	3.9	75
17	Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of β-catenin. Current Biology, 1998, 8, 181-190.	3.9	407
18	From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus. BioEssays, 1998, 20, 536-546.	2.5	292

#	Article	IF	Citations
19	A Î ² -catenin mutation in a sporadic colorectal tumor of the RER phenotype and absence of Î ² -catenin germline mutations in FAP patients. Genes Chromosomes and Cancer, 1998, 22, 37-41.	2.8	25
20	Axin, an inhibitor of the Wnt signalling pathway, interacts with β-catenin, GSK-3β and APC and reduces the β-catenin level. Genes To Cells, 1998, 3, 395-403.	1.2	272
21	The proteasome: a proteinâ€destroying machine. Genes To Cells, 1998, 3, 499-510.	1.2	88
22	MECHANISMS OF WNT SIGNALING IN DEVELOPMENT. Annual Review of Cell and Developmental Biology, 1998, 14, 59-88.	9.4	1,870
23	5 Cellular Mechanisms of Wingless/Wnt Signal Transduction. Current Topics in Developmental Biology, 1998, 43, 153-190.	2.2	157
24	Differential molecular interactions of β-catenin and plakoglobin in adhesion, signaling and cancer. Current Opinion in Cell Biology, 1998, 10, 629-639.	5.4	320
25	Wnt signaling: why is everything so negative?. Current Opinion in Cell Biology, 1998, 10, 182-187.	5.4	110
26	β-catenin: a key mediator of Wnt signaling. Current Opinion in Genetics and Development, 1998, 8, 95-102.	3.3	700
27	GBP, an Inhibitor of GSK-3, Is Implicated in Xenopus Development and Oncogenesis. Cell, 1998, 93, 1031-1041.	28.9	304
28	De Novo Hair Follicle Morphogenesis and Hair Tumors in Mice Expressing a Truncated β-Catenin in Skin. Cell, 1998, 95, 605-614.	28.9	1,301
29	Direct association of presenilin-1 with \hat{l}^2 -catenin. FEBS Letters, 1998, 433, 73-77.	2.8	151
30	β-TrCP is a negative regulator of the Wnt/β-catenin signaling pathway and dorsal axis formation in Xenopus embryos. Mechanisms of Development, 1998, 77, 75-80.	1.7	138
31	WNT-1 and HGF Regulate GSK3β Activity and β-Catenin Signaling in Mammary Epithelial Cells. Biochemical and Biophysical Research Communications, 1998, 247, 851-858.	2.1	186
32	NF-κB AND REL PROTEINS: Evolutionarily Conserved Mediators of Immune Responses. Annual Review of Immunology, 1998, 16, 225-260.	21.8	4,878
33	Desmosomes: Intercellular Adhesive Junctions Specialized for Attachment of Intermediate Filaments. International Review of Cytology, 1998, 185, 237-302.	6.2	206
34	Intracellular Proteinases of Invertebrates: Calcium-Dependent and Proteasome/Ubiquitin-Dependent Systems. International Review of Cytology, 1998, 184, 157-289.	6.2	80
35	Dysregulation of the E-Cadherin/Catenin Complex by Irreversible Mutations in Human Carcinomas. Cell Adhesion and Communication, 1998, 6, 171-184.	1.7	97
36	Functional Interaction of an Axin Homolog, Conductin, with β-Catenin, APC, and GSK3β. Science, 1998, 280, 596-599.	12.6	1,195

#	Article	IF	CITATIONS
37	Expression of Alzheimer's Disease-associated Presenilin-1 Is Controlled by Proteolytic Degradation and Complex Formation. Journal of Biological Chemistry, 1998, 273, 32322-32331.	3.4	182
38	Oncogenic Abl and Src tyrosine kinases elicit the ubiquitin-dependent degradation of target proteins through a Ras-independentÂpathway. Genes and Development, 1998, 12, 1415-1424.	5.9	103
39	Differential Nuclear Translocation and Transactivation Potential of β-Catenin and Plakoglobin. Journal of Cell Biology, 1998, 141, 1433-1448.	5.2	253
40	Phosphorylation and Inhibition of Rat Glucocorticoid Receptor Transcriptional Activation by Glycogen Synthase Kinase-3 (GSK-3). Journal of Biological Chemistry, 1998, 273, 14315-14321.	3.4	112
41	Axin, a Negative Regulator of the Wnt Signaling Pathway, Directly Interacts with Adenomatous Polyposis Coli and Regulates the Stabilization of β-Catenin. Journal of Biological Chemistry, 1998, 273, 10823-10826.	3.4	441
42	The Armadillo Family of Structural Proteins. International Review of Cytology, 1998, 186, 179-224.	6.2	211
43	Di-leucine-mediated Internalization of Ligand by a Truncated Growth Hormone Receptor Is Independent of the Ubiquitin Conjugation System. Journal of Biological Chemistry, 1998, 273, 16426-16433.	3.4	41
44	A Novel Component Involved in Ubiquitination Is Required for Development of Dictyostelium discoideum. Journal of Biological Chemistry, 1998, 273, 24131-24138.	3.4	29
45	Inhibition of β-catenin-mediated transactivation by cadherin derivatives. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 15339-15344.	7.1	206
46	The Ras Target AF-6 is a Substrate of the Fam Deubiquitinating Enzyme. Journal of Cell Biology, 1998, 142, 1053-1062.	5.2	109
47	Axil, a Member of the Axin Family, Interacts with Both Clycogen Synthase Kinase 3β and β-Catenin and Inhibits Axis Formation of <i>Xenopus</i> Embryos. Molecular and Cellular Biology, 1998, 18, 2867-2875.	2.3	195
48	β-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9343-9348.	7.1	267
49	Two Members of the Tcf Family Implicated in Wnt/β-Catenin Signaling during Embryogenesis in the Mouse. Molecular and Cellular Biology, 1998, 18, 1248-1256.	2.3	309
50	Interaction of Glycogen Synthase Kinase 3β with the DF3/MUC1 Carcinoma-Associated Antigen and β-Catenin. Molecular and Cellular Biology, 1998, 18, 7216-7224.	2.3	236
51	Wnt-1 Induces Growth, Cytosolic β-Catenin, and Tcf/Lef Transcriptional Activation in Rat-1 Fibroblasts. Molecular and Cellular Biology, 1998, 18, 2474-2485.	2.3	145
52	Somatic mutations of the β-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 8847-8851.	7.1	1,035
53	Signal transduction by the Wnt family of ligands. Biochemical Journal, 1998, 329, 209-223.	3.7	440
54	<i>In vivo</i> phosphorylation of the epithelial sodium channel. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3301-3305.	7.1	163

#	Article	IF	CITATIONS
55	Human CUL1 forms an evolutionarily conserved ubiquitin ligase complex (SCF) with SKP1 and an F-box protein. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7451-7456.	7.1	125
56	Presenilin 1 Facilitates the Constitutive Turnover of β-Catenin: Differential Activity of Alzheimer's Disease–Linked PS1 Mutants in the β-Catenin–Signaling Pathway. Journal of Neuroscience, 1999, 19, 4229-4237.	3.6	183
57	Changes of E-cadherin and beta-catenin levels during induced differentiation of colorectal carcinoma cells International Journal of Molecular Medicine, 1999, 4, 541-4.	4.0	4
58	Calpain inhibitor causes accumulation of ubiquitinated P-glycoprotein at the cell surface: possible role of calpain in P-glycoprotein turnover International Journal of Oncology, 1999, 15, 677-86.	3.3	10
59	H-Ras Activation Promotes Cytoplasmic Accumulation and Phosphoinositide 3-Oh Kinase Association of β-Catenin in Epidermal Keratinocytes. Journal of Cell Biology, 1999, 146, 967-980.	5.2	85
60	A Cell-Free Assay System for β-Catenin Signaling That Recapitulates Direct Inductive Events in the Early Xenopus laevis Embryo. Journal of Cell Biology, 1999, 147, 367-374.	5.2	25
61	Axin Directly Interacts with Plakoglobin and Regulates Its Stability. Journal of Biological Chemistry, 1999, 274, 27682-27688.	3.4	70
62	Establishment of the Dorsal–Ventral Axis inXenopus Embryos Coincides with the Dorsal Enrichment of Dishevelled That Is Dependent on Cortical Rotation. Journal of Cell Biology, 1999, 146, 427-438.	5.2	236
63	Nuclear β-catenin in Colorectal Tumors: To Freeze or Not To Freeze?. Journal of Histochemistry and Cytochemistry, 1999, 47, 1089-1094.	2.5	17
64	β2-Adrenergic Receptor Down-regulation. Journal of Biological Chemistry, 1999, 274, 28900-28908.	3.4	83
65	Nuclear endpoint of Wnt signaling: Neoplastic transformation induced by transactivating lymphoid-enhancing factor 1. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 139-144.	7.1	167
66	Suppression of Glycogen Synthase Kinase Activity Is Not Sufficient for Leukemia Enhancer Factor-1 Activation. Journal of Biological Chemistry, 1999, 274, 30419-30423.	3.4	97
67	Identification of a Domain of Axin That Binds to the Serine/Threonine Protein Phosphatase 2A and a Self-binding Domain. Journal of Biological Chemistry, 1999, 274, 3439-3445.	3.4	224
68	Dysregulation of β-Catenin is Common in Canine Sporadic Colorectal Tumors. Veterinary Pathology, 1999, 36, 228-236.	1.7	37
69	Down-regulation of p27 by Two Mechanisms, Ubiquitin-mediated Degradation and Proteolytic Processing. Journal of Biological Chemistry, 1999, 274, 13886-13893.	3.4	208
70	The Beginning of the End: IκB Kinase (IKK) and NF-κB Activation. Journal of Biological Chemistry, 1999, 274, 27339-27342.	3.4	593
71	Degradation of the Basic Helix-Loop-Helix/Per-ARNT-Sim Homology Domain Dioxin Receptor Via the Ubiquitin/Proteasome Pathway. Journal of Biological Chemistry, 1999, 274, 36351-36356.	3.4	107
72	Dishevelled Proteins Lead to Two Signaling Pathways. Journal of Biological Chemistry, 1999, 274, 129-134.	3.4	265

#	Article	IF	CITATIONS
73	Focal Adhesions and Adherens Junctions: Their Role in Tumorigenesis. Advances in Molecular and Cell Biology, 1999, 28, 135-163.	0.1	4
74	Phosphorylation and Free Pool of β-Catenin Are Regulated by Tyrosine Kinases and Tyrosine Phosphatases during Epithelial Cell Migration. Journal of Biological Chemistry, 1999, 274, 10173-10183.	3.4	259
75	The Ubiquitin-Proteasome Pathway and Serine Kinase Activity Modulate Adenomatous Polyposis Coli Protein-mediated Regulation of β-Catenin-Lymphocyte Enhancer-binding Factor Signaling. Journal of Biological Chemistry, 1999, 274, 16641-16645.	3.4	60
76	T cell factor-activated transcription is not sufficient to induce anchorage-independent growth of epithelial cells expressing mutant Â-catenin. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 4947-4952.	7.1	61
77	Ubiquitin-dependent degradation of IÂBÂ is mediated by a ubiquitin ligase Skp1/Cul 1/F-box protein FWD1. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3859-3863.	7.1	192
78	Regulation of Nuclear Localization: A Key to a Door. Annual Review of Cell and Developmental Biology, 1999, 15, 291-339.	9.4	286
79	Membrane-anchored Plakoglobins Have Multiple Mechanisms of Action in Wnt Signaling. Molecular Biology of the Cell, 1999, 10, 3151-3169.	2.1	50
80	The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 5522-5527.	7.1	2,051
81	Activation of Rat Frizzled-1 Promotes Wnt Signaling and Differentiation of Mouse F9 Teratocarcinoma Cells via Pathways That Require Gαq and Gαo Function. Journal of Biological Chemistry, 1999, 274, 33539-33544.	3.4	89
82	Activation of a Frizzled-2/beta -adrenergic receptor chimera promotes Wnt signaling and differentiation of mouse F9 teratocarcinoma cells via Galpha o and Galpha t. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14383-14388.	7.1	127
83	Â-Trcp couples Â-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 6273-6278.	7.1	357
84	The Polycystic Kidney Disease 1 Gene Product Modulates Wnt Signaling. Journal of Biological Chemistry, 1999, 274, 4947-4953.	3.4	254
85	Regulation of the Protein Kinase Activity of ShaggyZeste-white3 by Components of the Wingless Pathway in Drosophila Cells and Embryos. Journal of Biological Chemistry, 1999, 274, 21790-21796.	3.4	76
86	Cell-Cell Dissociation upon Epithelial Cell Scattering Requires a Step Mediated by the Proteasome. Journal of Biological Chemistry, 1999, 274, 24579-24584.	3.4	56
87	Characterization of a Novel Type of Serine/Threonine Kinase That Specifically Phosphorylates the Human Goodpasture Antigen. Journal of Biological Chemistry, 1999, 274, 12642-12649.	3.4	77
88	The role of the E-cadherin complex in gastrointestinal cell differentiation. Cell Proliferation, 1999, 32, 79-84.	5.3	11
89	The deubiquitinating enzyme Fam interacts with and stabilizes β-catenin. Genes To Cells, 1999, 4, 757-767.	1.2	123
90	The secondary fungal metabolite gliotoxin targets proteolytic activities of the proteasome. Chemistry and Biology, 1999, 6, 689-698.	6.0	133

# 91	ARTICLE Four-dimensional control of the cell cycle. Nature Cell Biology, 1999, 1, E73-E79.	IF 10.3	Citations 349
92	Upregulation of RCS7 may contribute to tumor necrosis factor-induced changes in central nervous function. Nature Medicine, 1999, 5, 913-918.	30.7	71
93	The TAK1–NLK–MAPK-related pathway antagonizes signalling between β-catenin and transcription factor TCF. Nature, 1999, 399, 798-802.	27.8	569
94	β-Catenin (Ctnnb1) Gene Mutations in Diethylnitrosamine (DEN)-induced Liver Tumors in Male F344 Rats. Japanese Journal of Cancer Research, 1999, 90, 824-828.	1.7	25
95	Presenilin mutations associated with Alzheimer disease cause defective intracellular trafficking of β-catenin,a component of the presenilin protein complex. Nature Medicine, 1999, 5, 164-169.	30.7	235
96	BMPs inhibit neurogenesis by a mechanism involving degradation of a transcription factor. Nature Neuroscience, 1999, 2, 339-345.	14.8	154
97	A common human skin tumour is caused by activating mutations in β-catenin. Nature Genetics, 1999, 21, 410-413.	21.4	849
98	Axin prevents Wnt-3a-induced accumulation of β-catenin. Oncogene, 1999, 18, 979-985.	5.9	120
99	HOS, a human homolog of Slimb, forms an SCF complex with Skp1 and Cullin1 and targets the phosphorylation-dependent degradation of llºB and l²-catenin. Oncogene, 1999, 18, 2039-2046.	5.9	176
100	Mutation of β-catenin is an early event in chemically induced mouse hepatocellular carcinogenesis. Oncogene, 1999, 18, 4726-4733.	5.9	113
101	CDX2 is mutated in a colorectal cancer with normal APC/ \hat{l}^2 -catenin signaling. Oncogene, 1999, 18, 5010-5014.	5.9	117
102	How NF-κB is activated: the role of the lκB kinase (IKK) complex. Oncogene, 1999, 18, 6867-6874.	5.9	1,078
103	Cli genes in development and cancer. Oncogene, 1999, 18, 7852-7859.	5.9	167
104	Cadherins and catenins: role in signal transduction and tumor progression. Cancer and Metastasis Reviews, 1999, 18, 15-30.	5.9	258
105	The control of beta-catenin and TCF during embryonic development and cancer. , 1999, 18, 231-246.		56
106	Wnt signalling in mammalian development and cancer. , 1999, 18, 215-230.		191
107	TNF-α and IL-1β Suppress N-Cadherin Expression in MC3T3-E1 Cells. Journal of Bone and Mineral Research, 1999, 14, 1751-1760.	2.8	29
108	Identification of a novel ubiquitin conjugation motif, required for ligand-induced internalization of the growth hormone receptor. EMBO Journal, 1999, 18, 28-36.	7.8	175

#	Article	IF	CITATIONS
109	Interaction of Axin and Dvl-2 proteins regulates Dvl-2-stimulated TCF-dependent transcription. EMBO Journal, 1999, 18, 2823-2835.	7.8	226
110	Excess beta -catenin promotes accumulation of transcriptionally active p53. EMBO Journal, 1999, 18, 3054-3063.	7.8	213
111	Intestinal polyposis in mice with a dominant stable mutation of the beta -catenin gene. EMBO Journal, 1999, 18, 5931-5942.	7.8	1,074
112	The C-terminal domain of Armadillo binds to hypophosphorylated Teashirt to modulate Wingless signalling in Drosophila. EMBO Journal, 1999, 18, 2208-2217.	7.8	70
113	An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β-catenin. EMBO Journal, 1999, 18, 2401-2410.	7.8	505
114	Signaling through ?-catenin and Lef/Tcf. Cellular and Molecular Life Sciences, 1999, 56, 523-537.	5.4	287
115	Conservation of intracellular Wnt signaling components in dorsal-ventral axis formation in zebrafish. Development Genes and Evolution, 1999, 209, 48-58.	0.9	34
116	TCF transcription factors: molecular switches in carcinogenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 1999, 1424, M23-M37.	7.4	158
117	Roles of Axin in the Wnt Signalling Pathway. Cellular Signalling, 1999, 11, 777-788.	3.6	179
118	Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Current Opinion in Cell Biology, 1999, 11, 233-240.	5.4	504
119	Identification of APC2, a homologue of the adenomatous polyposis coli tumour suppressor. Current Biology, 1999, 9, 105-S2.	3.9	106
120	Cytoplasmic ?-catenin in esophageal cancers. , 1999, 84, 174-178.		46
121	?-Catenin mutation and expression analysis in ovarian cancer: Exon 3 mutations and nuclear translocation in 16% of endometrioid tumours. International Journal of Cancer, 1999, 82, 625-629.	5.1	119
122	Lithium induces morphological differentiation of mouse neuroblastoma cells. , 1999, 57, 261-270.		24
123	β-catenin signaling and cancer. BioEssays, 1999, 21, 1021-1030.	2.5	787
124	Synergy Between Tumor Suppressor APC and the -Catenin-Tcf4 Target Tcf1. Science, 1999, 285, 1923-1926.	12.6	428
125	The Cadherin-Catenin System: Implications for Growth and Differentiation of Endocrine Tissues. Endocrine Reviews, 1999, 20, 207-239.	20.1	100
126	Apoptosis-associated cleavage of β-catenin in human colon cancer and rat hepatoma cells. International Journal of Biochemistry and Cell Biology, 1999, 31, 519-529.	2.8	55

	CHANON R		
#	Article	IF	CITATIONS
127	Modulation of Wnt signaling by Axin and Axil. Cytokine and Growth Factor Reviews, 1999, 10, 255-265.	7.2	75
128	APC: the plot thickens. Current Opinion in Genetics and Development, 1999, 9, 595-603.	3.3	91
129	Regulation of Wnt Signaling by Sox Proteins. Molecular Cell, 1999, 4, 487-498.	9.7	334
130	Ubiquitin Ligase Activity and Tyrosine Phosphorylation Underlie Suppression of Growth Factor Signaling by c-Cbl/Sli-1. Molecular Cell, 1999, 4, 1029-1040.	9.7	912
131	Recruitment of a ROC1–CUL1 Ubiquitin Ligase by Skp1 and HOS to Catalyze the Ubiquitination of lκBα. Molecular Cell, 1999, 3, 527-533.	9.7	323
132	Effects of axotomy on the expression and ultrastructural localization of N-cadherin and neural cell adhesion molecule in the quail ciliary ganglion: an in vivo model of neuroplasticity. Neuroscience, 1999, 91, 707-722.	2.3	28
133	Negative regulation of axis formation and Wnt signaling in Xenopus embryos by the F-box/WD40 protein βTrCP. Mechanisms of Development, 1999, 80, 101-106.	1.7	31
134	The C-terminal transactivation domain of β-catenin is necessary and sufficient for signaling by the LEF-1/β-catenin complex in Xenopus laevis. Mechanisms of Development, 1999, 81, 65-74.	1.7	97
135	Direct regulation of the Xenopus engrailed-2 promoter by the Wnt signaling pathway, and a molecular screen for Wnt-responsive genes, confirm a role for Wnt signaling during neural patterning in Xenopus. Mechanisms of Development, 1999, 87, 21-32.	1.7	112
136	Identification of a novel 300-kDa factor termed lκBαE3-F1 that is required for ubiquitinylation of lκBα. FEBS Letters, 1999, 458, 343-348.	2.8	2
137	Substrate Targeting in the Ubiquitin System. Cell, 1999, 97, 427-430.	28.9	417
138	Nuclear Trafficking of Cubitus interruptus in the Transcriptional Regulation of Hedgehog Target Gene Expression. Cell, 1999, 98, 305-316.	28.9	248
139	The Yin-Yang of TCF/β-Catenin Signaling. Advances in Cancer Research, 1999, 77, 1-24.	5.0	239
140	Axin and Frat1 interact with Dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1. EMBO Journal, 1999, 18, 4233-4240.	7.8	360
141	β-Catenin Expression Pattern in Stage I and II Ovarian Carcinomas. American Journal of Pathology, 1999, 155, 527-536.	3.8	217
142	β-Catenin Mutations Are Frequent in Human Hepatocellular Carcinomas Associated with Hepatitis C Virus Infection. American Journal of Pathology, 1999, 155, 1795-1801.	3.8	261
143	THE UBIQUITIN-PROTEASOME PATHWAY AND PATHOGENESIS OF HUMAN DISEASES. Annual Review of Medicine, 1999, 50, 57-74.	12.2	426
144	Cloning of the Human Homolog of Conductin (AXIN2), a Gene Mapping to Chromosome 17q23–q24. Genomics, 1999, 55, 341-344.	2.9	77

D

#	Article	IF	CITATIONS
145	Structure and Expression of the Gene Encoding Mouse F-Box Protein, Fwd2. Genomics, 1999, 62, 50-58.	2.9	18
146	The Role of the E-Cadherin/Catenin Adhesion Complex in the Development and Progression of Cancer. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 1999, 2, 77-85.	1.6	166
147	lκBα Ubiquitination Is Catalyzed by an SCF-like Complex Containing Skp1, Cullin-1, and Two F-Box/WD40-Repeat Proteins, βTrCP1 and βTrCP2. Biochemical and Biophysical Research Communications, 1999, 256, 127-132.	2.1	116
148	Identification of Tcf4 Residues Involved in High-Affinity β-Catenin Binding. Biochemical and Biophysical Research Communications, 1999, 256, 584-590.	2.1	64
149	A CSK3β Phosphorylation Site in Axin Modulates Interaction with β-Catenin and Tcf-Mediated Gene Expression. Biochemical and Biophysical Research Communications, 1999, 266, 28-35.	2.1	95
150	The SCFbeta -TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in Ikappa Balpha and beta -catenin and stimulates Ikappa Balpha ubiquitination in vitro. Genes and Development, 1999, 13, 270-283.	5.9	845
151	A ubiquitin ligase complex essential for the NF-kappa B, Wnt/Wingless, and Hedgehog signaling pathways. Genes and Development, 1999, 13, 505-510.	5.9	384
152	DIX Domains of Dvl and Axin Are Necessary for Protein Interactions and Their Ability To Regulate β-Catenin Stability. Molecular and Cellular Biology, 1999, 19, 4414-4422.	2.3	365
153	Nuclear localization of β-catenin in adult mouse thalamus correlates with low levels of GSK-3β. NeuroReport, 1999, 10, 2699-2703.	1.2	12
154	The role of β-catenin stability in mutant PS1-associated apoptosis. NeuroReport, 1999, 10, 2527-2532.	1.2	31
155	Neoplastic Transformation of RK3E by Mutant β-Catenin Requires Deregulation of Tcf/Lef Transcription but Not Activation of c- <i>myc</i> Expression. Molecular and Cellular Biology, 1999, 19, 5696-5706.	2.3	287
156	Regulation of Ribosomal S6 Protein Kinase-p90 ^{<i>rsk</i>} , Glycogen Synthase Kinase 3, and β-Catenin in Early <i>Xenopus</i> Development. Molecular and Cellular Biology, 1999, 19, 1427-1437.	2.3	54
157	Nuclear Localization and Formation of β-Catenin–Lymphoid Enhancer Factor 1 Complexes Are Not Sufficient for Activation of Gene Expression. Molecular and Cellular Biology, 1999, 19, 4503-4515.	2.3	87
158	Activation and Repression of Wingless/Wnt Target Genes by the TCF/LEF-1 Family of Transcription Factors. Cold Spring Harbor Symposia on Quantitative Biology, 1999, 64, 141-148.	1.1	27
159	Wnt-induced dephosphorylation of Axin releases beta -catenin from the Axin complex. Genes and Development, 1999, 13, 1768-1773.	5.9	300
160	The adenomatous polyposis coli protein. Journal of Clinical Pathology, 1999, 52, 169-173.	1.9	24
161	Interaction among Gsk-3, Gbp, Axin, and APC in <i>Xenopus</i> Axis Specification. Journal of Cell Biology, 2000, 148, 691-702.	5.2	156
162	Patterning the early sea urchin embryo. Current Topics in Developmental Biology, 2000, 50, 1-44.	2.2	45

#	Article	IF	CITATIONS
163	Characterisation of the human and mouse orthologues of the Drosophila <i>ariadne</i> gene. Cytogenetic and Genome Research, 2000, 90, 242-245.	1.1	8
164	The ubiquitin-activating enzyme E1-like protein in lung cancer cell lines. , 2000, 85, 871-876.		47
165	Modes of regulation of ubiquitin-mediated protein degradation. Journal of Cellular Physiology, 2000, 182, 1-11.	4.1	242
166	Catenins, Wnt signaling and cancer. BioEssays, 2000, 22, 961-965.	2.5	208
168	Sequence variants of the axin gene in breast, colon, and other cancers: An analysis of mutations that interfere with GSK3 binding. Genes Chromosomes and Cancer, 2000, 28, 443-453.	2.8	137
169	beta-Catenin expression in human neural cell lines following exposure to cytokines and growth factors. Neuropathology, 2000, 20, 113-123.	1.2	30
170	c-met tyrosine kinase receptor expression is associated with abnormal β-catenin expression and favourable prognostic factors in invasive breast carcinoma. Histopathology, 2000, 36, 313-325.	2.9	68
171	Effects of rat Axin domains on axis formation in Xenopus embryos. Development Growth and Differentiation, 2000, 42, 489-498.	1.5	12
172	Hot spots in beta-catenin for interactions with LEF-1, conductin and APC. Nature Structural Biology, 2000, 7, 800-807.	9.7	171
173	Activation of \hat{I}^2 -catenin in epithelial and mesenchymal hepatoblastomas. Oncogene, 2000, 19, 498-504.	5.9	171
174	GSK-3β-dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by β-catenin and protein phosphatase 2A complexed with Axin. Oncogene, 2000, 19, 537-545.	5.9	170
175	Differential interaction of plakoglobin and β-catenin with the ubiquitin-proteasome system. Oncogene, 2000, 19, 1992-2001.	5.9	61
176	Cell cycle regulation of the endogenous wild type Bloom's syndrome DNA helicase. Oncogene, 2000, 19, 2731-2738.	5.9	110
177	Mutations in β-Catenin and APC Genes are Uncommon in Esophageal and Esophagogastric Junction Adenocarcinomas. Modern Pathology, 2000, 13, 1055-1059.	5.5	44
178	The adenomatous polyposis coli (APC) tumour suppressor – genetics, function and disease. Trends in Molecular Medicine, 2000, 6, 462-469.	2.6	105
179	Aberrant expression ofβâ€catenin and mutation of exon 3 of theβâ€catenin gene in renal and urothelial carcinomas. Pathology International, 2000, 50, 945-952.	1.3	32
180	Roles of Wnt proteins in neural development and maintenance. Current Opinion in Neurobiology, 2000, 10, 392-399.	4.2	295
181	E-cadherin complex and its abnormalities in human breast cancer. Surgical Oncology, 2000, 9, 151-171.	1.6	37

ARTICLE IF CITATIONS Cellular interactions and signaling in cartilage development. Osteoarthritis and Cartilage, 2000, 8, 1.3 710 182 309-334. Rare Activation of the TCF \hat{I}^2 -Catenin Pathway in Ovarian Cancer. Gynecologic Oncology, 2000, 77, 97-104. 1.4 184 Genetics of hepatocellular carcinoma. Seminars in Cancer Biology, 2000, 10, 185-200. 295 9.6 The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in 185 532 vertebrates. EMBO Journal, 2000, 19, 1839-1850. Nuclear Accumulation of Î²-Catenin in Human Endocrine Tumors: Association with Ki-67 (MIB-1) 186 9.0 48 Proliferative Activity. Endocrine Pathology, 2000, 11, 243-250. Phosphorylation Meets Ubiquitination: The Control of NF-Î^eB Activity. Annual Review of Immunology, 21.8 4,367 2000, 18, 621-663. Nuclear accumulation of beta-catenin in intestinal-type gastric carcinoma: correlation with early 188 tumor invasion. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische 2.8 54 Medizin, 2000, 437, 508-513. c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased 1.4 244 proteasome-mediated turnover. Blood, 2000, 95, 2104-2110. Differential expression of cell-cell adhesion proteins and cyclin D in MEK1-transdifferentiated MDCK 190 4.6 14 cells. American Journal of Physiology - Cell Physiology, 2000, 279, C1472-C1482. Biology of the Adenomatous Polyposis Coli Tumor Suppressor. Journal of Clinical Oncology, 2000, 18, 1967-1979. 1.6 Apoptosis-induced Cleavage of \hat{l}^2 -Catenin by Caspase-3 Results in Proteolytic Fragments with Reduced 192 3.4 138 Transactivation Potential. Journal of Biological Chemistry, 2000, 275, 16345-16353. Differential Regulation of Endogenous Cadherin Expression in Madin-Darby Canine Kidney Cells by Cell-Cell Adhesion and Activation of Î²-Catenin Signaling. Journal of Biological Chemistry, 2000, 275, 3.4 49 20707-20716. The Akt-Glycogen Synthase Kinase 3^{î2} Pathway Regulates Transcription of Atrial Natriuretic Factor Induced by Î²-Ădrenergic Receptor Stimulation in Cardiac Myocytes. Journal of Biological Chemistry, 194 3.4 234 2000, 275, 14466-14475. A Positive Role for the PP2A Catalytic Subunit in Wnt Signal Transduction. Journal of Biological Chemistry, 2000, 275, 35680-35683. 3.4 Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of beta 196 -catenin. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7.1 261 12103-12108. Glycogen Synthase Kinase-3Î² Facilitates Staurosporine- and Heat Shock-induced Apoptosis. Journal of 288 Biological Chemistry, 2000, 275, 7583-7590. Casein Kinase II Phosphorylation of E-cadherin Increases E-cadherin/Î²-Catenin Interaction and 198 3.4 179 Strengthens Cell-Cell Adhesion. Journal of Biological Chemistry, 2000, 275, 5090-5095. Complex Formation of Adenomatous Polyposis Coli Gene Product and Axin Facilitates Glycogen 199 Synthase Kinase-312-dependent Phosphorylation of 12-Catenin and Down-regulates 12-Catenin. Journal of 116

CITATION REPORT

Biological Chemistry, 2000, 275, 34399-34406.

#	Article	IF	CITATIONS
200	Phosphorylation-dependent targeting of cAMP response element binding protein to the ubiquitin/proteasome pathway in hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12091-12096.	7.1	122
201	Nedd8 Modification of Cul-1 Activates SCF β TrCP -Dependent Ubiquitination of lκBα. Molecular and Cellular Biology, 2000, 20, 2326-2333.	2.3	359
202	Insulin-Like Growth Factor I-Induced Degradation of Insulin Receptor Substrate 1 Is Mediated by the 26S Proteasome and Blocked by Phosphatidylinositol 3′-Kinase Inhibition. Molecular and Cellular Biology, 2000, 20, 1489-1496.	2.3	113
203	Wnt Signaling to β-Catenin Involves Two Interactive Components. Journal of Biological Chemistry, 2000, 275, 17894-17899.	3.4	201
204	Caveolin-1 Expression Inhibits Wnt/β-Catenin/Lef-1 Signaling by Recruiting β-Catenin to Caveolae Membrane Domains. Journal of Biological Chemistry, 2000, 275, 23368-23377.	3.4	162
205	Differential Regulation of Glycogen Synthase Kinase 3β by Insulin and Wnt Signaling. Journal of Biological Chemistry, 2000, 275, 32475-32481.	3.4	390
206	The Cadherin-Catenin Complex Is Expressed Alternately with the Adenomatous Polyposis Coli Protein During Rat Incisor Amelogenesis. Journal of Histochemistry and Cytochemistry, 2000, 48, 397-406.	2.5	26
207	Requirement for β-Catenin in Anterior-Posterior Axis Formation in Mice. Journal of Cell Biology, 2000, 148, 567-578.	5.2	592
208	Regulation of beta-catenin mRNA and protein levels in human villous cytotrophoblasts undergoing aggregation and fusion in vitro: correlation with E-cadherin expression. Reproduction, 2000, 119, 59-68.	2.6	34
209	Plakoglobin Suppresses Epithelial Proliferation and Hair Growth in Vivo. Journal of Cell Biology, 2000, 149, 503-520.	5.2	378
210	Plakoglobin Regulates the Expression of the Anti-apoptotic Protein BCL-2. Journal of Biological Chemistry, 2000, 275, 10905-10911.	3.4	79
211	Overexpression of β-Catenin Induces Apoptosis Independent of Its Transactivation Function with LEF-1 or the Involvement of Major G1 Cell Cycle Regulators. Molecular Biology of the Cell, 2000, 11, 3509-3523.	2.1	190
212	Feedback Interactions between Cell–Cell Adherens Junctions and Cytoskeletal Dynamics in Newt Lung Epithelial Cells. Molecular Biology of the Cell, 2000, 11, 2471-2483.	2.1	155
213	Yeast Glycogen Synthase Kinase 3 Is Involved in Protein Degradation in Cooperation with Bul1, Bul2, and Rsp5. Molecular and Cellular Biology, 2000, 20, 6712-6720.	2.3	56
214	Down-regulation of β-Catenin by the Colorectal Tumor Suppressor APC Requires Association with Axin and β-Catenin. Journal of Biological Chemistry, 2000, 275, 8369-8374.	3.4	52
215	Altered expression of \hat{l}^2 -catenin, inducible nitric oxide synthase and cyclooxygenase-2 in azoxymethane-induced rat colon carcinogenesis. Carcinogenesis, 2000, 21, 1319-1327.	2.8	144
216	Homodimer of Two F-box Proteins βTrCP1 or βTrCP2 Binds to lκBα for Signal-dependent Ubiquitination. Journal of Biological Chemistry, 2000, 275, 2877-2884.	3.4	121
217	Expression of beta-catenin and full-length APC protein in normal and neoplastic colonic tissues. Carcinogenesis, 2000, 21, 1935-1940.	2.8	105

#	Article	IF	CITATIONS
218	Glycogen Synthase Kinase-3β Is a Negative Regulator of Cardiomyocyte Hypertrophy. Journal of Cell Biology, 2000, 151, 117-130.	5.2	368
219	Exogenous Expression of the Amino-Terminal Half of the Tight Junction Protein Zo-3 Perturbs Junctional Complex Assembly. Journal of Cell Biology, 2000, 151, 825-836.	5.2	56
220	It's Got You Covered. Journal of Cell Biology, 2000, 149, 999-1004.	5.2	116
221	Endogenous Protein Kinase CK2 Participates in Wnt Signaling in Mammary Epithelial Cells. Journal of Biological Chemistry, 2000, 275, 23790-23797.	3.4	175
222	Differential Mechanisms of LEF/TCF Family-Dependent Transcriptional Activation by β-Catenin and Plakoglobin. Molecular and Cellular Biology, 2000, 20, 4238-4252.	2.3	176
223	The SCF HOS/β-TRCP -ROC1 E3 Ubiquitin Ligase Utilizes Two Distinct Domains within CUL1 for Substrate Targeting and Ubiquitin Ligation. Molecular and Cellular Biology, 2000, 20, 1382-1393.	2.3	110
224	Epithelial Mesenchymal Transition by c-Fos Estrogen Receptor Activation Involves Nuclear Translocation of β-Catenin and Upregulation of β-Catenin/Lymphoid Enhancer Binding Factor-1 Transcriptional Activity. Journal of Cell Biology, 2000, 148, 173-187.	5.2	208
225	The E-cadherin–catenin complex in tumour metastasis. European Journal of Cancer, 2000, 36, 1607-1620.	2.8	334
226	Regulation of β-Catenin Signaling in the Wnt Pathway. Biochemical and Biophysical Research Communications, 2000, 268, 243-248.	2.1	240
227	Molecular Cloning and Genomic Structure of the βTRCP2 Gene on Chromosome 5q35.1. Biochemical and Biophysical Research Communications, 2000, 269, 103-109.	2.1	25
228	Inhibition of Alanyl-Aminopeptidase Suppresses the Activation-Dependent Induction of Glycogen Synthase Kinase-3β (GSK-3β) in Human T Cells. Biochemical and Biophysical Research Communications, 2000, 273, 62-65.	2.1	19
229	Inhibiting Proteasomes in Human HepG2 and LNCaP Cells Increases Endogenous Androgen Receptor Levels. Biochemical and Biophysical Research Communications, 2000, 276, 144-150.	2.1	103
230	Domains of Axin and Disheveled Required for Interaction and Function in Wnt Signaling. Biochemical and Biophysical Research Communications, 2000, 276, 1162-1169.	2.1	61
231	Posttranscriptional Regulation of α-Catenin Expression Is Required for Wnt Signaling in L Cells. Biochemical and Biophysical Research Communications, 2000, 277, 691-698.	2.1	34
232	A Mode of Regulation of β-Catenin Signaling Activity in Xenopus Embryos Independent of Its Levels. Developmental Biology, 2000, 223, 441-448.	2.0	63
233	GSK-3: New Thoughts on an Old Enzyme. Developmental Biology, 2000, 225, 471-479.	2.0	104
234	Analysis of β-Catenin Aggregation and Localization Using GFP Fusion Proteins: Nuclear Import of α-Catenin by the β-Catenin/Tcf Complex. Experimental Cell Research, 2000, 255, 207-220.	2.6	40
235	The Integration of Cell Adhesion with Gene Expression: The Role of β-Catenin. Experimental Cell Research, 2000, 261, 75-82.	2.6	89

		CITATION R	EPORT	
#	Article		IF	Citations
236	Wnt signaling function in Alzheimer's disease. Brain Research Reviews, 2000, 33, 2	l-12.	9.0	275
237	Biochemical interactions in the wnt pathway. Biochimica Et Biophysica Acta - Molecula 2000, 1495, 168-182.	r Cell Research,	4.1	233
238	Nuclear β-catenin displays GSK-3β- and APC-independent proteasome sensitivity in me Biochimica Et Biophysica Acta - Molecular Cell Research, 2000, 1495, 308-318.	elanoma cells.	4.1	12
239	Pilomatricomas contain activating mutations in ?-catenin*. Journal of the American Aca Dermatology, 2000, 43, 701-702.	ademy of	1.2	21
240	Presenilins and Alzheimer's disease: biological functions and pathogenic mechanis Neurobiology, 2000, 60, 363-384.	ms. Progress in	5.7	135
241	The Disruption of Adherens Junctions Is Associated with a Decrease of E-Cadherin Phos Protein Kinase CK2. Experimental Cell Research, 2000, 257, 255-264.	phorylation by	2.6	64
242	Wnt/Î ² -catenin signaling. Cytokine and Growth Factor Reviews, 2000, 11, 273-282.		7.2	322
243	Involvement of adenomatous polyposis coli (APC)/β-catenin signalling in human breas European Journal of Cancer, 2000, 36, 242-248.	t cancer.	2.8	83
244	Truncated adenomatous polyposis coli (APC) tumour suppressor protein can undergo phosphorylation. European Journal of Cancer, 2000, 36, 525-532.	tyrosine	2.8	3
245	Control of \hat{I}^2 -Catenin Stability. Molecular Cell, 2000, 5, 523-532.		9.7	339
246	CSK3, a master switch regulating cell-fate specification and tumorigenesis. Current Op Genetics and Development, 2000, 10, 508-514.	vinion in	3.3	212
247	Linking Colorectal Cancer to Wnt Signaling. Cell, 2000, 103, 311-320.		28.9	1,386
248	Brachyury is a target gene of the Wnt/β-catenin signaling pathway. Mechanisms of De 91, 249-258.	velopment, 2000,	1.7	269
249	Prokaryotic Regulation of Epithelial Responses by Inhibition of ll̂ºB-α Ubiquitination. So 1560-1563.	cience, 2000, 289,	12.6	825
250	Tumor-Derived Mutated E-Cadherin Influences <i>β</i> -Catenin Localization and Increa to Actin Cytoskeletal Changes Induced by Pervanadate. Cell Adhesion and Communica 391-408.		1.7	33
251	Regulators of growth hormone signaling. Vitamins and Hormones, 2000, 59, 71-97.		1.7	27
252	Scanning Probe-Based Frequency-Dependent Microrheology of Polymer Gels and Biolo Physical Review Letters, 2000, 85, 880-883.	gical Cells.	7.8	443
253	E-cadherin regulates cell growth by modulating proliferation-dependent β-catenin tran activity. Journal of Cell Biology, 2001, 154, 1185-1196.	scriptional	5.2	307

#	Article	IF	CITATIONS
254	Wnt Signaling and Heterotrimeric G-Proteins: Strange Bedfellows or a Classic Romance?. Biochemical and Biophysical Research Communications, 2001, 287, 589-593.	2.1	91
255	Vertebrate Proteins Related to Drosophila Naked Cuticle Bind Dishevelled and Antagonize Wnt Signaling. Developmental Biology, 2001, 234, 93-106.	2.0	123
256	Missing Links in GSK3 Regulation. Developmental Biology, 2001, 235, 303-313.	2.0	57
257	The Many Faces of the Tumor Suppressor Gene APC. Experimental Cell Research, 2001, 264, 126-134.	2.6	113
258	Distinctive Molecular Genetic Alterations in Sporadic and Familial Adenomatous Polyposis-Associated Pancreatoblastomas. American Journal of Pathology, 2001, 159, 1619-1627.	3.8	251
259	Sporadic Fundic Gland Polyps. American Journal of Pathology, 2001, 158, 1005-1010.	3.8	160
260	Frequent β-Catenin Mutations in Juvenile Nasopharyngeal Angiofibromas. American Journal of Pathology, 2001, 158, 1073-1078.	3.8	145
261	Wnt signaling and mammary tumorigenesis. Journal of Mammary Gland Biology and Neoplasia, 2001, 6, 37-52.	2.7	63
262	FAM deubiquitylating enzyme is essential for preimplantation mouse embryo development. Mechanisms of Development, 2001, 109, 151-160.	1.7	61
263	Dynamic expression and nuclear accumulation of β-catenin during the development of hair follicle-derived structures. Mechanisms of Development, 2001, 109, 173-181.	1.7	39
264	Somatic β-catenin mutation in gastric carcinoma – an infrequent event that is not specific for microsatellite instability. Cancer Letters, 2001, 163, 125-130.	7.2	23
265	Downregulation of wild-type β-catenin expression by interleukin 6 in human hepatocarcinoma HepG2 cells: a possible role in the growth-regulatory effects of the cytokine?. European Journal of Cancer, 2001, 37, 512-519.	2.8	20
266	The Structure of the β-Catenin/E-Cadherin Complex and the Molecular Basis of Diverse Ligand Recognition by β-Catenin. Cell, 2001, 105, 391-402.	28.9	699
267	β-Catenin Controls Hair Follicle Morphogenesis and Stem Cell Differentiation in the Skin. Cell, 2001, 105, 533-545.	28.9	1,254
268	Crystal Structure of Glycogen Synthase Kinase 3β. Cell, 2001, 105, 721-732.	28.9	610
269	Isolation of a Novel Human Gene, MARKLI, Homologous to MARK3 and Its Involvement in Hepatocellular Carcinogenesis. Neoplasia, 2001, 3, 4-9.	5.3	88
270	Analysis of Ubiquitination In Vivo Using a Transgenic Mouse Model. BioTechniques, 2001, 31, 120-130.	1.8	46
271	Nonsteroidal antiinflammatory drugs, cyclooxygenase-2, and colorectal cancer prevention. Current Opinion in Gastroenterology, 2001, 17, 65-71.	2.3	6

		CITATION REPORT		
#	Article	IF	-	CITATIONS
272	GSK3 takes centre stage more than 20 years after its discovery. Biochemical Journal, 2001, 359, 1-1	6. 3.	.7	1,196
273	GSK3 takes centre stage more than 20 years after its discovery. Biochemical Journal, 2001, 359, 1.	3.	.7	942
275	Chapter 11 Proteinase families and their inhibitors. Methods in Cell Biology, 2001, 66, 247-287.	1.	.1	10
276	β- And γ-catenin expression in endometrial carcinoma. Relationship with clinicopathological feature and microsatellite instability. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2001, 438, 464-469.	s 2.	.8	52
277	Inhibitory effect of a presenilin 1 mutation on the Wnt signalling pathway by enhancement of \hat{l}^2 -cate phosphorylation. FEBS Journal, 2001, 268, 3036-3041.	enin O	.2	30
278	Different patterns of β-catenin expression in gastric carcinomas: relationship with clinicopathological parameters and prognostic outcome. Histopathology, 2001, 39, 141-149.	2.	.9	40
279	Evidence for Direct Involvement of β-Catenin in Phorbol Ester-Induced Neurite Outgrowth in GT1-1 Hypothalamic Neurones. Journal of Neuroendocrinology, 2001, 13, 249-260.	2.	.6	22
280	Frequent Î ² -catenin aberration in human hepatocellular carcinoma. Hepatology Research, 2001, 20,	39-51. 3.	.4	49
281	The use of coiled-coil interactions for the analysis and micropreparative isolation of adenomatous polyposis coli protein complexes. Chemical Biology and Drug Design, 2001, 58, 493-503.	1.	.1	6
282	A possible role of catenin dyslocalization in pemphigus vulgaris pathogenesis. Journal of Cutaneous Pathology, 2001, 28, 460-469.	1.	.3	8
283	PEAZ-1: A new human prostate neoplastic epithelial cell line. Prostate, 2001, 48, 79-92.	2.	.3	11
284	The ubiquitinâ€proteasome pathway and proteasome inhibitors. Medicinal Research Reviews, 2001, 245-273.	21, 10	0.5	406
285	\hat{l}^2 -catenin mutation and overexpression in hepatocellular carcinoma. Cancer, 2001, 92, 136-145.	4.	.1	320
286	Decreased expression of catenins (? and ?), p120 CTN, and E-cadherin cell adhesion proteins and E-cadherin gene promoter methylation in prostatic adenocarcinomas. Cancer, 2001, 92, 2786-2795	. 4.	.1	110
287	Nuclear localization of ?-catenin is an important prognostic factor in hepatoblastoma. Journal of Pathology, 2001, 193, 483-490.	4.	.5	106
288	Cytoplasmic and nuclear accumulation of ?-catenin is rarely caused byCTNNB1 exon 3 mutations in cutaneous malignant melanoma. International Journal of Cancer, 2001, 92, 839-842.	5.	.1	92
289	N-Cadherin andβ-Catenin involvement in BMP-2 induction of mesenchymal chondrogenesis. Signal Transduction, 2001, 1, 66-78.	0	.4	5
290	Transcriptional Control of T Lymphocyte Differentiation. Stem Cells, 2001, 19, 165-179.	3.	.2	68

		CITATION REPORT		
#	Article		IF	CITATIONS
291	The Cadherin-Catenin Superfamily in Endocrine Tumors. Endocrine Pathology, 2001, 12	2, 01-14.	9.0	9
292	Analysis of β-Catenin Mutations and α-, β-, and γ-Catenin Expression in Normal and N Pituitary Tissues. Endocrine Pathology, 2001, 12, 125-136.	eoplastic Human	9.0	32
293	Changes in WNT/ \hat{l}^2 -catenin pathway during regulated growth in rat liver regeneration. 2001, 33, 1098-1109.	Hepatology,	7.3	257
294	β- Catenin mutations and aberrant nuclear expression during endometrial tumorigene Journal of Cancer, 2001, 84, 209-217.	sis. British	6.4	155
295	Deregulated beta-catenin induces a p53- and ARF-dependent growth arrest and cooper transformation. EMBO Journal, 2001, 20, 4912-4922.	rates with Ras in	7.8	185
296	Molecular mechanisms of beta-catenin recognition by adenomatous polyposis coli reve structure of an APC-beta-catenin complex. EMBO Journal, 2001, 20, 6203-6212.	ealed by the	7.8	115
297	GSK-3 kinase Mck1 and calcineurin coordinately mediate Hsl1 down-regulation by Ca2 yeast. EMBO Journal, 2001, 20, 1074-1085.	+ in budding	7.8	64
298	Modulation of integrin signal transduction by ILKAP, a protein phosphatase 2C associa integrin-linked kinase, ILK1. EMBO Journal, 2001, 20, 2160-2170.	ting with the	7.8	124
299	Expression of cadherins and their undercoat proteins (?-, ?-, and ?-catenins and p120) a of ?-catenin with no gene mutations in synovial sarcoma. Virchows Archiv Fur Patholog Anatomie Und Physiologie Und Fur Klinische Medizin, 2001, 438, 23-30.	nd accumulation ;ische	2.8	42
300	Inhibition of integrin linked kinase (ILK) suppresses β-catenin-Lef/Tcf-dependent transc expression of the E-cadherin repressor, snail, in APCâ^'/â^' human colon carcinoma cells 20, 133-140.	ription and . Oncogene, 2001,	5.9	241
301	Insulin and IGF-1 stimulate the β-catenin pathway through two signalling cascades inv inhibition and Ras activation. Oncogene, 2001, 20, 252-259.	olving GSK-3β	5.9	298
302	Suppression of Occurrence and Advancement of β-Catenin-accumulated Crypts, Possil Lesions of Colon Cancer, by Selective Cyclooxygenase-2 Inhibitor, Celecoxib. Japanese Cancer Research, 2001, 92, 617-623.	ble Premalignant Journal of	1.7	38
303	The adenomatous polyposis coli protein: in the limelight out at the edge. Trends in Cell 11, 378-384.	Biology, 2001,	7.9	80
304	β-catenin: molecular plasticity and drug design. Trends in Biochemical Sciences, 2001,	26, 672-678.	7.5	80
305	Absence of mutations in the beta-catenin and adenomatous polyposis coli genes in pap follicular thyroid carcinomas. Pathology International, 2001, 51, 680-685.	pillary and	1.3	36
306	Judging a Protein by More Than Its Name: GSK-3. Science Signaling, 2001, 2001, re12-r	re12.	3.6	210
307	Oncogenic Mutants of RON and MET Receptor Tyrosine Kinases Cause Activation of th Pathway. Molecular and Cellular Biology, 2001, 21, 5857-5868.	e Î ² -Catenin	2.3	155
308	Identification of a Wnt/Î ² -Catenin Signaling Pathway in Human Thyroid Cells. Endocrino 5261-5266.	blogy, 2001, 142,	2.8	41

#	Article	IF	CITATIONS
309	A Possible Role for the Wnt~1 Pathway in Oral Carcinogenesis. Critical Reviews in Oral Biology and Medicine, 2001, 12, 152-165.	4.4	38
310	The interaction between β-catenin, GSK3β and APC after motogen induced cell-cell dissociation, and their involvement in signal transduction pathways in prostate cancer. International Journal of Oncology, 2001, 18, 843-7.	3.3	14
311	All Tcf HMG box transcription factors interact with Groucho-related co-repressors. Nucleic Acids Research, 2001, 29, 1410-1419.	14.5	321
312	FP Prostanoid Receptor Activation of a T-cell Factor/β-Catenin Signaling Pathway. Journal of Biological Chemistry, 2001, 276, 12489-12492.	3.4	58
313	Physiological regulation of β-catenin stability by Tcf3 and CK1ϵ. Journal of Cell Biology, 2001, 154, 983-994.	5.2	142
314	p53-dependent Transcriptional Regulation of theAPC Promoter in Colon Cancer Cells Treated with DNA Alkylating Agents. Journal of Biological Chemistry, 2001, 276, 18193-18199.	3.4	44
315	Regulation and Possible Function of β-Catenin in Human Monocytes. Journal of Immunology, 2001, 167, 6786-6793.	0.8	32
316	Glycogen Synthase Kinase 3β Regulates GATA4 in Cardiac Myocytes. Journal of Biological Chemistry, 2001, 276, 28586-28597.	3.4	201
317	Butyrate Suppression of Colonocyte NF-κB Activation and Cellular Proteasome Activity. Journal of Biological Chemistry, 2001, 276, 44641-44646.	3.4	234
318	Cadherins and catenins, Wnts and SOXs: Embryonic patterning in Xenopus. International Review of Cytology, 2001, 203, 291-355.	6.2	18
319	Â-Catenin mutation in rat colon tumors initiated by 1,2-dimethylhydrazine and 2-amino-3-methylimidazo[4,5-f]quinoline, and the effect of post-initiation treatment with chlorophyllin and indole-3-carbinol. Carcinogenesis, 2001, 22, 315-320.	2.8	53
320	Altered Expression of β-Catenin without Genetic Mutation in Intrahepatic Cholangiocarcinoma. Modern Pathology, 2001, 14, 900-905.	5.5	110
321	Predominant mutation of codon 41 of the β-catenin proto-oncogene in rat colon tumors induced by 1,2-dimethylhydrazine using a complete carcinogenic protocol. Carcinogenesis, 2001, 22, 1885-1890.	2.8	31
322	Presenilin 1 Negatively Regulates β-Catenin/T Cell Factor/Lymphoid Enhancer Factor-1 Signaling Independently of β-Amyloid Precursor Protein and Notch Processing. Journal of Cell Biology, 2001, 152, 785-794.	5.2	202
323	The c-Src Tyrosine Kinase Regulates Signaling of the Human DF3/MUC1 Carcinoma-associated Antigen with CSK3β and β-Catenin. Journal of Biological Chemistry, 2001, 276, 6061-6064.	3.4	203
324	Differential Molecular Assemblies Underlie the Dual Function of Axin in Modulating the Wnt and JNK Pathways. Journal of Biological Chemistry, 2001, 276, 32152-32159.	3.4	38
325	The ABC of APC. Human Molecular Genetics, 2001, 10, 721-733.	2.9	759
326	Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes and Development, 2001, 15, 304-315.	5.9	456

CITATION REPORT ARTICLE IF CITATIONS SEL-10 Is an Inhibitor of Notch Signaling That Targets Notch for Ubiquitin-Mediated Protein 2.3 299 Degradation. Molecular and Cellular Biology, 2001, 21, 7403-7415. Impaired mammary gland and lymphoid development caused by inducible expression of Axin in transgenic mice. Journal of Cell Biology, 2001, 155, 1055-1064. 5.2 118 naked cuticle targets dishevelled to antagonize Wnt signal transduction. Genes and Development, 5.9 146 2001, 15, 658-671. Tuberin Phosphorylation Regulates Its Interaction with Hamartin. Journal of Biological Chemistry, 2001, 276, 21017-21021. A mutation in the Gsk3-binding domain of zebrafish Masterblind/Axin1 leads to a fate transformation 5.9 242 of telencephalon and eyes to diencephalon. Genes and Development, 2001, 15, 1427-1434. Gas6 Induces Growth, Î²-Catenin Stabilization, and T-Cell Factor Transcriptional Activation in 2.3 Contact-Inhibited C57 Mammary Cells. Molecular and Cellular Biology, 2001, 21, 902-915. Patterning and lineage specification in the amphibian embryo. Current Topics in Developmental 2.2 42 Biology, 2001, 51, 1-67. Tumor Suppressor Pten Inhibits Nuclear Accumulation of Î2-Catenin and T Cell/Lymphoid Enhancer 5.2 224 Factor 1âĖ"Mediated Transcriptional Activation. Journal of Cell Biology, 2001, 153, 1161-1174. E2-Induced Degradation of Uterine Insulin Receptor Substrate-2: Requirement for an IGF-I-Stimulated, 2.8 11 Proteasome-Dependent Pathway. Endocrinology, 2001, 142, 3842-3849. Roles of cytoskeletal and junctional plaque proteins in nuclear signaling. International Review of 6.2 Cytology, 2001, 208, 207-265. Sodium Butyrate-Induced Differentiation of Human LIM2537 Colon Cancer Cells Decreases GSK-3Î² Activity and Increases Levels of Both Membrane-Bound and APC/Axin/GSK-3¹² Complex-Associated Pools 13 1.5 of Î²-Catenin. Oncology Research, 2001, 12, 193-201. The Transcriptional Factor Tcf-4 Contains Different Binding Sites for Î²-Catenin and Plakoglobin. 3.4 106 Journal of Biological Chemistry, 2002, 277, 1884-1891. A Ubiquitin-interacting Motif (UIM) Is Essential for Eps15 and Eps15R Ubiquitination. Journal of Biological Chemistry, 2002, 277, 30746-30753. 3.4 88 Selection of Multipotent Stem Cells during Morphogenesis of Small Intestinal Crypts of Lieberkühn Is Perturbed by Stimulation of Lef-1/β-Catenin Signaling. Journal of Biological Chemistry, 2002, 277, 3.4 68 15843-15850. Glycogen Synthase Kinase-3Î² Inhibitors Prevent Cellular Polyglutamine Toxicity Caused by the 183 3.4 Huntington's Disease Mutation. Journal of Biological Chemistry, 2002, 277, 33791-33798. Zinc-dependent Interaction between Dishevelled and the Drosophila Wnt Antagonist Naked Cuticle. Journal of Biological Chemistry, 2002, 277, 49019-49026.

Activation of the β-Catenin/Lef-Tcf Pathway Is Obligate for Formation of Primitive Endoderm by Mouse 344 F9 Totipotent Teratocarcinoma Cells in Response to Retinoic Acid. Journal of Biological Chemistry, 3.4 45 2002, 277, 30887-30891.

3.4

164

Acetylation of Î²-Catenin by CREB-binding Protein (CBP). Journal of Biological Chemistry, 2002, 277,

25562-25567.

327

328

329

330

331

333

334

335

337

339

340

341

342

		CITATION REPORT	
#	Article	IF	CITATIONS
345	Linking Î ² -Catenin to Androgen-signaling Pathway. Journal of Biological Chemistry, 2002, 277, 11336-11344.	3.4	308
346	Identification of a Multifunctional Binding Site on Ubc9p Required for Smt3p Conjugation. Journal of Biological Chemistry, 2002, 277, 47938-47945.	3.4	113
348	Pattern Formation in Zebrafish. Results and Problems in Cell Differentiation, 2002, , .	0.7	8
349	Negative Feedback Loop of Wnt Signaling through Upregulation of Conductin/Axin2 in Colorectal and Liver Tumors. Molecular and Cellular Biology, 2002, 22, 1184-1193.	2.3	934
350	Regulation of Wnt Signaling during Adipogenesis. Journal of Biological Chemistry, 2002, 277, 30998-31004.	3.4	647
351	Targeted inactivation of CTNNB1 reveals unexpected effects of Â-catenin mutation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8265-8270.	7.1	120
352	Transcription-coupled and DNA damage-dependent ubiquitination of RNA polymerase II in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4239-4244.	7.1	162
353	β-Catenin stabilization dysregulates mesenchymal cell proliferation, motility, and invasiveness and causes aggressive fibromatosis and hyperplastic cutaneous wounds. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6973-6978.	7.1	298
354	Calpain as an effector of the Gq signaling pathway for inhibition of Wnt/Â-catenin-regulated cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13254-13259.	7.1	79
355	Wnt-3A/β-Catenin Signaling Induces Transcription from the LEF-1 Promoter. Journal of Biological Chemistry, 2002, 277, 33398-33410.	3.4	226
356	Disulfide Bond Assignments of Secreted Frizzled-related Protein-1 Provide Insights about Frizzled Homology and Netrin Modules. Journal of Biological Chemistry, 2002, 277, 5134-5144.	3.4	89
357	Phosphatidylinositol 3-Kinase/Akt Stimulates Androgen Pathway through GSK3β Inhibition and Nuclear β-Catenin Accumulation. Journal of Biological Chemistry, 2002, 277, 30935-30941.	3.4	263
358	Modulation of Transforming Growth Factor β (TGFβ)/Smad Transcriptional Responses through Targeted Degradation of TGFβ-inducible Early Gene-1 by Human Seven in Absentia Homologue. Journal of Biological Chemistry, 2002, 277, 30754-30759.	3.4	74
359	SUMO-1 Modification of the C-terminal KVEKVD of Axin Is Required for JNK Activation but Has No Effect on Wnt Signaling. Journal of Biological Chemistry, 2002, 277, 42981-42986.	3.4	77
360	A yeast model system for functional analysis of β-catenin signaling. Journal of Cell Biology, 2002, 158, 1067-1078.	5.2	5
361	I-mfa Domain Proteins Interact with Axin and Affect Its Regulation of the Wnt and c-Jun N-Terminal Kinase Signaling Pathways. Molecular and Cellular Biology, 2002, 22, 6393-6405.	2.3	70
362	Protein kinase CKII regulates the interaction of β-catenin withα-catenin and its protein stability. Journal of Cell Science, 2002, 115, 4743-4753.	2.0	85
363	RelA suppresses the Wnt/β-catenin pathway without exerting trans-acting transcriptional ability. International Journal of Molecular Medicine, 2002, 9, 489.	4.0	4

#	Article	IF	CITATIONS
364	Liganded Androgen Receptor Interaction with β-Catenin. Journal of Biological Chemistry, 2002, 277, 20702-20710.	3.4	153
365	Expression and Characterization of GSK-3 Mutants and Their Effect on β-Catenin Phosphorylation in Intact Cells. Journal of Biological Chemistry, 2002, 277, 23330-23335.	3.4	85
366	Modulation of Cadherin and Catenins Expression by Tumor Necrosis Factor- α and Dexamethasone in Human Bronchial Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2002, 26, 341-347.	2.9	60
367	Loss of Membranous Expression of β-Catenin Is Associated with Tumor Progression in Cutaneous Melanoma and Rarely Caused by Exon 3 Mutations. Modern Pathology, 2002, 15, 454-461.	5.5	71
368	Protein kinase C inhibits amyloid βâ€peptide neurotoxicity by acting on members of the Wnt pathway. FASEB Journal, 2002, 16, 1982-1984.	0.5	156
369	Glycogen Synthase Kinase-3β. Circulation Research, 2002, 90, 1055-1063.	4.5	368
370	Glucocorticoids Inhibit Cell Cycle Progression in Differentiating Osteoblasts via Glycogen Synthase Kinase-3β. Journal of Biological Chemistry, 2002, 277, 18191-18197.	3.4	85
371	Glycogen Synthase Kinase-3β Mutagenesis Identifies a Common Binding Domain for GBP and Axin. Journal of Biological Chemistry, 2002, 277, 16147-16152.	3.4	57
372	Two Putative BIN2 Substrates Are Nuclear Components of Brassinosteroid Signaling. Plant Physiology, 2002, 130, 1221-1229.	4.8	219
373	The LIM-only protein FHL2 interacts with β-catenin and promotes differentiation of mouse myoblasts. Journal of Cell Biology, 2002, 159, 113-122.	5.2	129
374	IQGAP1-mediated Stimulation of Transcriptional Co-activation by β-Catenin Is Modulated by Calmodulin. Journal of Biological Chemistry, 2002, 277, 7453-7465.	3.4	100
375	Axin-mediated CKI phosphorylation of beta -catenin at Ser 45: a molecular switch for the Wnt pathway. Genes and Development, 2002, 16, 1066-1076.	5.9	621
376	The Gibberellin Signaling Pathway Is Regulated by the Appearance and Disappearance of SLENDER RICE1 in Nuclei. Plant Cell, 2002, 14, 57-70.	6.6	429
377	Desumoylation Activity of Axam, a Novel Axin-Binding Protein, Is Involved in Downregulation of β-Catenin. Molecular and Cellular Biology, 2002, 22, 3803-3819.	2.3	64
378	The Tight Junction-specific Protein Occludin Is a Functional Target of the E3 Ubiquitin-protein Ligase Itch. Journal of Biological Chemistry, 2002, 277, 10201-10208.	3.4	174
379	The ankyrin repeat protein Diversin recruits Casein kinase lepsilon to the beta -catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling. Genes and Development, 2002, 16, 2073-2084.	5.9	181
380	Wnt-3A Enhances Bone Morphogenetic Protein-2-mediated Chondrogenesis of Murine C3H10T1/2 Mesenchymal Cells. Journal of Biological Chemistry, 2002, 277, 30870-30878.	3.4	140
381	The Gene for High Bone Mass. , 2002, 12, 445-453.		33

#	Article	IF	CITATIONS
382	Expression of lymphoid enhancer factor/T-cell factor proteins in colon cancer. Current Opinion in Gastroenterology, 2002, 18, 53-59.	2.3	5
383	Phosphorylation and Regulation of Â-Catenin by Casein Kinase IÂ. Journal of Biochemistry, 2002, 132, 697-703.	1.7	60
384	Mutations in exon 3 of the β-catenin gene are rare in melanoma cell lines. Melanoma Research, 2002, 12, 183-186.	1.2	34
385	Interaction between the Transforming Growth Factor-β Type II Receptor/Smad Pathway and β-Catenin during Transforming Growth Factor-β1-Mediated Adherens Junction Disassembly. American Journal of Pathology, 2002, 160, 1619-1628.	3.8	104
386	A Mouse Model of Hepatocellular Carcinoma. American Journal of Pathology, 2002, 160, 2295-2307.	3.8	325
387	Solid-Pseudopapillary Tumors of the Pancreas Are Genetically Distinct from Pancreatic Ductal Adenocarcinomas and Almost Always Harbor β-catenin Mutations. American Journal of Pathology, 2002, 160, 1361-1369.	3.8	451
388	Identification of Two Novel Regulated Serines in the N Terminus of β-Catenin. Experimental Cell Research, 2002, 276, 264-272.	2.6	39
389	Regulation of Epithelial Cell Migration and Tumor Formation by β-Catenin Signaling. Experimental Cell Research, 2002, 280, 119-133.	2.6	158
390	Subcellular Localization of \hat{l}^2 -Catenin Is Regulated by Cell Density. Biochemical and Biophysical Research Communications, 2002, 292, 195-199.	2.1	59
391	APC as a checkpoint gene: The beginning or the end?. Gastroenterology, 2002, 123, 935-939.	1.3	19
392	Wnt signaling promotes oncogenic transformation by inhibiting c-Myc–induced apoptosis. Journal of Cell Biology, 2002, 157, 429-440.	5.2	203
393	Regulation of leukemic cell adhesion, proliferation, and survival by β-catenin. Blood, 2002, 100, 982-990.	1.4	125
394	Wnt/Beta-Catenin/Tcf Signaling: A Critical Pathway in Gastrointestinal Tumorigenesis. Digestion, 2002, 66, 131-144.	2.3	272
395	Immunoblotting Methods for the Study of Protein Ubiquitination. , 2002, 194, 179-203.		6
396	Fibroblast Growth Factor-2 Induces Lef/Tcf-dependent Transcription in Human Endothelial Cells. Journal of Biological Chemistry, 2002, 277, 45847-45853.	3.4	115
397	Control of β-Catenin Phosphorylation/Degradation by a Dual-Kinase Mechanism. Cell, 2002, 108, 837-847.	28.9	1,823
398	WNT Signaling and Lymphocyte Development. Cell, 2002, 109, S13-S19.	28.9	119
399	Presenilin Couples the Paired Phosphorylation of β-Catenin Independent of Axin. Cell, 2002, 110, 751-762.	28.9	236

#	Article	IF	CITATIONS
400	Evidence that Armadillo Transduces Wingless by Mediating Nuclear Export or Cytosolic Activation of Pangolin. Cell, 2002, 111, 265-280.	28.9	57
401	Identification of a Wnt/Dvl/lî²-Catenin → Pitx2 Pathway Mediating Cell-Type-Specific Proliferation during Development. Cell, 2002, 111, 673-685.	28.9	519
402	Characterisation of the phosphorylation of β-catenin at the GSK-3 priming site Ser45. Biochemical and Biophysical Research Communications, 2002, 294, 324-328.	2.1	87
403	Inhibition of β-catenin/Tcf activity by white tea, green tea, and epigallocatechin-3-gallate (EGCG): minor contribution of H2O2 at physiologically relevant EGCG concentrations. Biochemical and Biophysical Research Communications, 2002, 296, 584-588.	2.1	124
404	Stimulation of Cdx1 by oncogenic β-catenin/Tcf4 in colon cancer cells; opposite effect of the CDX2 homeoprotein. FEBS Letters, 2002, 518, 83-87.	2.8	27
405	Protein degradation and the generation of MHC class I-presented peptides. Advances in Immunology, 2002, 80, 1-70.	2.2	300
406	Fibromatosis of the breast and mutations involving the APC/β-catenin pathway. Human Pathology, 2002, 33, 39-46.	2.0	179
407	Ubiquitin-dependent proteolysis: its role in human diseases and the design of therapeutic strategies. Molecular Genetics and Metabolism, 2002, 77, 44-56.	1.1	75
408	ICAT Inhibits β-Catenin Binding to Tcf/Lef-Family Transcription Factors and the General Coactivator p300 Using Independent Structural Modules. Molecular Cell, 2002, 10, 573-584.	9.7	159
409	Depolarization Drives β-Catenin into Neuronal Spines Promoting Changes in Synaptic Structure and Function. Neuron, 2002, 35, 91-105.	8.1	316
410	Drosophila Nedd4, a Ubiquitin Ligase, Is Recruited by Commissureless to Control Cell Surface Levels of the Roundabout Receptor. Neuron, 2002, 35, 447-459.	8.1	158
411	Wnt signaling involvement in β-amyloid-dependent neurodegeneration. Neurochemistry International, 2002, 41, 341-344.	3.8	80
412	Lithium induces gene expression through lymphoid enhancer-binding factor/T-cell factor responsive element in rat PC12 cells. Neuroscience Letters, 2002, 317, 50-52.	2.1	16
413	β-Catenin Mutations Correlate with Over Expression of C-myc and Cyclin D1 Genes in Bladder Cancer. Journal of Urology, 2002, 168, 2220-2226.	0.4	51
414	Heat shock protein and proteasome targeting agents. Hematology/Oncology Clinics of North America, 2002, 16, 1269-1285.	2.2	18
415	Interactions between GSK3β and caspase signalling pathways during NGF deprivation induced cell death. Journal of Alzheimer's Disease, 2002, 4, 291-301.	2.6	28
416	Lithium and valproic acid: parallels and contrasts in diverse signaling contexts. , 2002, 96, 45-66.		151
417	The Xenopus laevis βTrCP gene: genomic organization, alternative splicing, 5′ and 3′ region characterization and comparison of its structure with that of human βTrCP genes. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1577, 81-92.	2.4	7

#	Article	IF	CITATIONS
418	Glycogen Synthase Kinase-3β Modulates Notch Signaling and Stability. Current Biology, 2002, 12, 1006-1011.	3.9	241
419	p120cat delocalization in cell lines of oral cancer. Oral Oncology, 2002, 38, 64-72.	1.5	14
420	Expression of β-catenin in rat oral epithelial dysplasia induced by 4-nitroquinoline 1-oxide. Oral Oncology, 2002, 38, 772-778.	1.5	25
421	The protein kinase B/Akt signalling pathway in human malignancy. Cellular Signalling, 2002, 14, 381-395.	3.6	1,475
422	Regulation of protein kinases in insulin, growth factor and Wnt signalling. Current Opinion in Structural Biology, 2002, 12, 761-767.	5.7	66
423	Genetic alterations in hepatoblastoma and hepatocellular carcinoma: Common and distinctive aspects. Medical and Pediatric Oncology, 2002, 39, 530-535.	1.0	136
424	DIRECT EVIDENCE FOR A ROLE OF β ATENIN/LEFâ€1 SIGNALING PATHWAY IN INDUCTION OF EMT. Cell Biolo International, 2002, 26, 463-476.	gy _{3.0}	394
425	Wnt signaling during BMP-2 stimulation of mesenchymal chondrogenesis. Journal of Cellular Biochemistry, 2002, 84, 816-831.	2.6	107
426	Frequent alterations in the Wnt signaling pathway in colorectal cancer with microsatellite instability. Genes Chromosomes and Cancer, 2002, 33, 73-81.	2.8	67
427	The Frizzled-1/β 2 -adrenergic receptor chimera: pharmacological properties of a unique G protein-linked receptor. Naunyn-Schmiedeberg's Archives of Pharmacology, 2002, 365, 341-348.	3.0	18
428	Long-term treatment with angiotensin II type 1 receptor antagonist, CV-11974, restores β-catenin mRNA expression in volume-overloaded rabbit hearts. Heart and Vessels, 2002, 17, 36-41.	1.2	14
429	Cell adhesion molecules and adhesion abnormalities in prostate cancer. Critical Reviews in Oncology/Hematology, 2002, 41, 11-28.	4.4	52
430	The colorectal adenoma–carcinoma sequence. British Journal of Surgery, 2002, 89, 845-860.	0.3	553
431	Molecular causes of colon cancer. European Journal of Clinical Investigation, 2002, 32, 448-457.	3.4	122
432	Ruk is ubiquitinated but not degraded by the proteasome. FEBS Journal, 2002, 269, 3402-3408.	0.2	26
433	Antiproliferative proteins of the BTG/Tob family are degraded by the ubiquitin-proteasome system. FEBS Journal, 2002, 269, 3596-3604.	0.2	46
434	 β atenin expression in hepatocellular carcinoma: A possible participation of β â€catenin in the dedifferentiation process. Journal of Gastroenterology and Hepatology (Australia), 2002, 17, 994-1000.	2.8	77
435	Anticancer drugs-induced apoptotic cell death in leukemia cells is associated with proteolysis of β-catenin. Leukemia Research, 2002, 26, 863-871.	0.8	12

#	Article	IF	CITATIONS
436	Analysis of the β-Catenin/T Cell Factor Signaling Pathway in 36 Gastrointestinal and Liver Cancer Cells. Japanese Journal of Cancer Research, 2002, 93, 1213-1220.	1.7	46
437	In vitro evidence for complex modes of nuclear β-catenin signaling during prostate growth and tumorigenesis. Oncogene, 2002, 21, 2679-2694.	5.9	160
438	CK2-dependent phosphorylation of the E2 ubiquitin conjugating enzyme UBC3B induces its interaction with β-TrCP and enhances β-catenin degradation. Oncogene, 2002, 21, 3978-3987.	5.9	50
439	Frequent mutations of the Trp53, Hras1 and β-catenin (Catnb) genes in 1,3-butadiene-induced mammary adenocarcinomas in B6C3F1 mice. Oncogene, 2002, 21, 5643-5648.	5.9	18
440	Activation of different Wnt/ \hat{l}^2 -catenin signaling components in mammary epithelium induces transdifferentiation and the formation of pilar tumors. Oncogene, 2002, 21, 5548-5556.	5.9	113
441	Abnormalities of the APC/β-catenin pathway in endometrial cancer. Oncogene, 2002, 21, 7981-7990.	5.9	252
442	Role and Function of the 26S Proteasome in Proliferation and Apoptosis. Laboratory Investigation, 2002, 82, 965-980.	3.7	237
443	Gene Mutations in Lymphoproliferative Disorders of T and NK/T Cell Phenotypes Developing in Renal Transplant Patients. Laboratory Investigation, 2002, 82, 257-264.	3.7	30
444	Molecular mechanisms of thrombin-induced endothelial cell permeability. Biochemistry (Moscow), 2002, 67, 75-84.	1.5	157
445	Wnt signals are transmitted through Nâ€ŧerminally dephosphorylated β atenin. EMBO Reports, 2002, 3, 63-68.	4.5	291
446	Casein kinase I phosphorylates the Armadillo protein and induces its degradation in Drosophila. EMBO Journal, 2002, 21, 1733-1742.	7.8	163
447	Expression of E-Cadherin, β-Catenin, and Ki-67 in Goblet Cell Carcinoids of the Appendix: An Immunohistochemical Study with Clinical Correlation. Endocrine Pathology, 2002, 13, 47-58.	9.0	37
448	Dysregulation of ?-Catenin Expression Correlates With Tumor Differentiation in Pancreatic Duct Adenocarcinoma. Annals of Surgical Oncology, 2003, 10, 284-290.	1.5	60
450	Brassinosteroid Signal Transduction: A Mix of Conservation and Novelty. Journal of Plant Growth Regulation, 2003, 22, 298-312.	5.1	31
451	Epithelial cell adhesion and the regulation of gene expression. Trends in Cell Biology, 2003, 13, 310-318.	7.9	133
452	Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell, 2003, 4, 499-515.	16.8	617
453	Elevated levels of β-catenin and fibronectin in three-dimensional collagen cultures of Dupuytren's disease cells are regulated by tension in vitro. BMC Musculoskeletal Disorders, 2003, 4, 16.	1.9	47
454	Promotion versus suppression of rat colon carcinogenesis by chlorophyllin and chlorophyll: modulation of apoptosis, cell proliferation, and β-catenin/Tcf signaling. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 523-524, 217-223.	1.0	23

ARTICLE IF CITATIONS # Low-level arsenite causes accumulation of ubiquitinated proteins in rabbit renal cortical slices and 455 2.8 68 HEK293 cells. Toxicology and Applied Pharmacology, 2003, 186, 101-109. TCDD-dependent downregulation of ?-catenin in rat liver epithelial cells (WB-F344). International 5.1 Journal of Cancer, 2003, 103, 435-439. Thymic epithelial cells provide Wnt signals to developing thymocytes. European Journal of 457 2.9 82 Immunology, 2003, 33, 1949-1956. Mutational analysis of Ctnnb1 and Apc in tumors from rats given 1,2-dimethylhydrazine or 2-amino-3-methylimidazo[4,5-f]quinoline: Mutational †hotspots†m and the relative expression of l2-catenin and c-jun. Molecular Carcinogenesis, 2003, 36, 195-203 Protein evolution: structure-function relationships of the oncogene beta-catenin in the evolution of 459 1.4 56 multicellular animals. The Journal of Experimental Zoology, 2003, 295B, 25-44. 460 Wnt signaling in the thymus. Current Opinion in Immunology, 2003, 15, 204-208. 5.5 Negative regulation of Wnt signalling by HMG2L1, a novel NLK-binding protein. Genes To Cells, 2003, 8, 461 1.2 30 677-684. Apolipoprotein E and Î²-amyloid (1-42) regulation of glycogen synthase kinase-3Î². Journal of 462 3.9 Neurochemistry, 2003, 87, 1152-1164. Keratinocyte Adherens Junctions Initiate Nuclear Signaling byTranslocation of Plakoglobin from the 463 0.7 33 Membrané to the Nucleus. Journal of Investigative Dermatology, 2003, 121, 242-251. Nuclear accumulation of ?-catenin protein in Wilms' tumours. Journal of Pathology, 2003, 199, 68-76. 4.5 464 Nuclear ?-catenin is a molecular feature of type I endometrial carcinoma. Journal of Pathology, 2003, 465 4.575 201, 460-465. Analysis of p53, K-ras, c-kit, and beta-catenin gene mutations in sinonasal NK/T cell lymphoma in 466 46 northeast district of China. Cancer Science, 2003, 94, 297-301. Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by 467 7.9 316 Î²-amyloid fibrils. Molecular Psychiatry, 2003, 8, 195-208. Overexpression of the thymosin \hat{l}^2 -4 gene is associated with malignant progression of SW480 colon cancer cells. Oncogene, 2003, 22, 3297-3306. Estrogen receptor-1± regulates the degradation of insulin receptor substrates 1 and 2 in breast cancer 469 5.9 62 cells. Oncogene, 2003, 22, 4007-4016. How the ubiquitin–proteasome system controls transcription. Nature Reviews Molecular Cell Biology, 2003, 4, 192-201. Whts and TGFÎ² in synaptogenesis: old friends signalling at new places. Nature Reviews Neuroscience, 471 10.2 109 2003, 4, 113-120. Wnt-1 signaling inhibits human umbilical vein endothelial cell proliferation and alters cell 472 morphology. Experimental Cell Research, 2003, , .

ARTICLE IF CITATIONS Ligand Activation of the Androgen Receptor Downregulates E-Cadherin-Mediated Cell Adhesion and 5.3 23 474 Promotes Apoptosis of Prostatic Cancer Cells. Neoplasia, 2003, 5, 347-361. Role of APC and DNA mismatch repair genes in the development of colorectal cancers. Molecular 19.2 Cancer, 2003, 2, 41. Anti-Müllerian hormone, β-catenin and Müllerian duct regression. Molecular and Cellular 476 3.2 33 Endocrinology, 2003, 211, 115-121. Alterations of β-Catenin Pathway in Non-Melanoma Skin Tumors. American Journal of Pathology, 2003, 329 163, 2277-2287. Wnt-1 signaling inhibits human umbilical vein endothelial cell proliferation and alters cell 478 2.6 57 morphology. Experimental Cell Research, 2003, 291, 415-425. Runnin' with the Dvl: Proteins That Associate with Dsh/Dvl and Their Significance to Wnt Signal 479 296 Transduction. Developmental Biology, 2003, 253, 1-17. Integrin-linked kinase is a positive mediator of L6 myoblast differentiation. Biochemical and 480 2.1 21 Biophysical Research Communications, 2003, 310, 796-803. The canonical Wnt pathway directly regulates NRSF/REST expression in chick spinal cord. Biochemical 2.1 66 and Biophysical Research Communications, 2003, 311, 55-63. 482 O-GlcNAc Modification Is an Endogenous Inhibitor of the Proteasome. Cell, 2003, 115, 715-725. 28.9 374 PECAM-1 promotes Î²-catenin accumulation and stimulates endothelial cell proliferation. Biochemical 2.1 and Biophysical Research Communications, 2003, 303, 212-218. Tcl-2 encodes a novel protein that acts synergistically with Wnt signaling pathways in C. elegans. 484 2.0 7 Developmental Biology, 2003, 256, 276-289. \hat{l}^2 -Catenin signals regulate cell growth and the balance between progenitor cell expansion and 2.0 442 differentiation in the nervous system. Developmental Biology, 2003, 258, 406-418. The Wnt signaling pathway in solid childhood tumors. Cancer Letters, 2003, 198, 123-138. 486 7.2 44 APC, Î²-Catenin and hTCF-4; an unholy trinity in the genesis of colorectal cancer. European Journal of Surgical Oncology, 2003, 29, 107-117. 487 1.0 Glycogen synthase kinase-3 and Axin function in a Î²-catenin-independent pathway that regulates neurite 488 2.2 45 outgrowth in neuroblastoma cells. Molecular and Cellular Neurosciences, 2003, 24, 673-686. Structure of a Î²-TrCP1-Skp1-Î²-Catenin Complex. Molecular Cell, 2003, 11, 1445-1456. 489 560 Sequence, gene structure, and expression pattern of CTNNBL1, a minor-class intron-containing gene—evidence for a role in apoptosisâ~†â~†Sequence data from this article have been deposited with the GenBank Data Libraries under accession numbers as follows: Homo sapiens CTNNBL1: AF239607, 490 2.9 28 AL109964, AL023804, AL118499. Mus musculus CTNNBL1: AY009405. Caenorhabditis elegans CTNNBL1: AAB37831, U80450. Drosophila melanogaster CTNNBL1: AE003681, AAF54309. Schizosaccharomyces pombe CTNNBL1: CAB52570. Arabidopsis thalia. Genomics, 2003, 81, 292-303. The Latency-Associated Nuclear Antigen of Kaposi's Sarcoma-Associated Herpesvirus Manipulates the 491 124 Activity of Glycogen Synthase Kinase-3l². Journal of Virology, 2003, 77, 8019-8030.

#	Article	IF	CITATIONS
492	beta-Catenin mutation is selected during malignant transformation in colon carcinogenesis. Carcinogenesis, 2003, 24, 91-97.	2.8	40
493	The TAK1-NLK Mitogen-Activated Protein Kinase Cascade Functions in the Wnt-5a/Ca ²⁺ Pathway To Antagonize Wnt/l²-Catenin Signaling. Molecular and Cellular Biology, 2003, 23, 131-139.	2.3	503
494	Impaired degradation of inhibitory subunit of NF-ÂB (lÂB) and Â-catenin as a result of targeted disruption of the Â-TrCP1 gene. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8752-8757.	7.1	106
495	Cellular levels of p120 catenin function as a set point for cadherin expression levels in microvascular endothelial cells. Journal of Cell Biology, 2003, 163, 535-545.	5.2	377
496	Akt Activation Promotes Degradation of Tuberin and FOXO3a via the Proteasome. Journal of Biological Chemistry, 2003, 278, 12361-12366.	3.4	321
497	Degradation of Transcription Repressor ZBRK1 through the Ubiquitin-Proteasome Pathway Relieves Repression of Gadd45a upon DNA Damage. Molecular and Cellular Biology, 2003, 23, 7305-7314.	2.3	45
498	Regulation of Lymphoid Enhancer Factor 1/T-Cell Factor by Mitogen-Activated Protein Kinase-Related Nemo-Like Kinase-Dependent Phosphorylation in Wnt/β-Catenin Signaling. Molecular and Cellular Biology, 2003, 23, 1379-1389.	2.3	202
499	Eradication of pathogenic Â-catenin by Skp1/Cullin/F box ubiquitination machinery. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12729-12734.	7.1	55
500	Lithium Stabilizes the CCAAT/Enhancer-binding Protein α (C/EBPα) through a Glycogen Synthase Kinase 3 (GSK3)-independent Pathway Involving Direct Inhibition of Proteasomal Activity. Journal of Biological Chemistry, 2003, 278, 19674-19681.	3.4	45
501	Activation of the Canonical β-Catenin Pathway by Histamine. Journal of Biological Chemistry, 2003, 278, 52491-52496.	3.4	23
502	IKKα Regulates Mitogenic Signaling through Transcriptional Induction of Cyclin D1 via Tcf. Molecular Biology of the Cell, 2003, 14, 585-599.	2.1	142
503	HMG box transcription factor TCF-4's interaction with CtBP1 controls the expression of the Wnt target Axin2/Conductin in human embryonic kidney cells. Nucleic Acids Research, 2003, 31, 2369-2380.	14.5	109
504	Epithelial-mesenchymal transition and its implications for fibrosis. Journal of Clinical Investigation, 2003, 112, 1776-1784.	8.2	1,937
505	Genetic screening for hereditary diffuse gastric cancer. Expert Review of Molecular Diagnostics, 2003, 3, 201-215.	3.1	46
507	Yeast Glycogen Synthase Kinase-3 Activates Msn2p-dependent Transcription of Stress Responsive Genes. Molecular Biology of the Cell, 2003, 14, 302-312.	2.1	79
508	Frizzled receptor dimerization is sufficient to activate the Wnt/Î ² -catenin pathway. Journal of Cell Science, 2003, 116, 2541-2550.	2.0	115
509	β-Catenin Inversely Regulates Vascular Endothelial Growth Factor-D mRNA Stability. Journal of Biological Chemistry, 2003, 278, 44650-44656.	3.4	33
510	Stabilization of Â-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4610-4615.	7.1	220

#	Article	IF	CITATIONS
511	Casein Kinase Iε Enhances the Binding of Dvl-1 to Frat-1 and Is Essential for Wnt-3a-induced Accumulation of β-Catenin. Journal of Biological Chemistry, 2003, 278, 14066-14073.	3.4	95
512	Glycogen Synthase Kinase-3β Regulates NF-κB1/p105 Stability. Journal of Biological Chemistry, 2003, 278, 39583-39590.	3.4	145
513	Identification of a Promoter-specific Transcriptional Activation Domain at the C Terminus of the Wnt Effector Protein T-cell Factor 4. Journal of Biological Chemistry, 2003, 278, 3776-3785.	3.4	85
514	A Functional Screen in Human Cells Identifies UBF2 as an RNA Polymerase II Transcription Factor That Enhances the β-Catenin Signaling Pathway. Molecular and Cellular Biology, 2003, 23, 3936-3950.	2.3	25
515	Plakoglobin Is O-Glycosylated Close to the N-terminal Destruction Box. Journal of Biological Chemistry, 2003, 278, 37745-37752.	3.4	35
516	DF3/MUC1 Signaling In Multiple Myeloma Cells Is Regulated by Interleukin-7. Cancer Biology and Therapy, 2003, 2, 187-193.	3.4	72
517	Pre-cancerous lesions for colorectal cancers in rodents: a new concept. Carcinogenesis, 2003, 24, 1015-1019.	2.8	57
518	The APC Tumor Suppressor Pathway. , 2003, 222, 021-040.		3
519	The Tissue Microenvironment as an Epigenetic Tumor Modifier. , 2003, 223, 315-348.		15
520	TGF-β ₁ -mediated alterations of renal proximal tubular epithelial cell phenotype. American Journal of Physiology - Renal Physiology, 2003, 285, F130-F142.	2.7	79
521	Real-Time Analysis of β- and γ-Catenin mRNA Expression in ret/PTC-1 Activated and Nonactivated Thyroid Tissues. Diagnostic Molecular Pathology, 2003, 12, 44-49.	2.1	4
522	Gene expression profiling reveals a highly specialized genetic program of plasma cells. Blood, 2003, 101, 4013-4021.	1.4	88
523	Increased cyclin D1 expression in cancer of the ampulla of Vater: relevance to nuclear catenin accumulation and k-ras gene mutation. Journal of Clinical Pathology, 2003, 56, 336-341.	1.9	23
524	The cadherin superfamily in neural development diversity function and interaction with other molecules. Frontiers in Bioscience - Landmark, 2003, 8, d306-356.	3.0	134
525	Physiological Roles of Glycogen Synthase Kinase-3: Potential as a Therapeutic Target for Diabetes and Other Disorders. Current Drug Targets Immune, Endocrine and Metabolic Disorders, 2003, 3, 281-290.	1.8	75
526	Gastrin-induced gastric adenocarcinoma growth is mediated through cyclin D1. American Journal of Physiology - Renal Physiology, 2003, 285, G217-G222.	3.4	39
527	APC dosage effects in tumorigenesis and stem cell differentiation. International Journal of Developmental Biology, 2004, 48, 377-386.	0.6	110
528	Specificity of WNT-receptor interactions. Frontiers in Bioscience - Landmark, 2004, 9, 1333.	3.0	40

#	Article	IF	CITATIONS
529	Immunohistochemical and Sequencing Analyses of the Wnt Signaling Components in Japanese Anaplastic Thyroid Cancers. Thyroid, 2004, 14, 1020-1029.	4.5	52
530	Suppression of Androgen Receptor-mediated Transactivation and Cell Growth by the Glycogen Synthase Kinase 31² in Prostate Cells. Journal of Biological Chemistry, 2004, 279, 32444-32452.	3.4	86
531	Wnt-Independent ?-catenin Transactivation in Tumor Developement. Cell Cycle, 2004, 3, 569-571.	2.6	32
533	Glucocorticoids Control β-Catenin Protein Expression and Localization through Distinct Pathways that Can Be Uncoupled by Disruption of Signaling Events Required for Tight Junction Formation in Rat Mammary Epithelial Tumor Cells. Molecular Endocrinology, 2004, 18, 214-227.	3.7	27
534	Proteomic analysis identifies that 14-3-3Â interacts with Â-catenin and facilitates its activation by Akt. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15370-15375.	7.1	138
535	Biochemical Characterization of the Drosophila Wingless Signaling Pathway Based on RNA Interference. Molecular and Cellular Biology, 2004, 24, 2012-2024.	2.3	52
537	Modulation of β-Catenin Phosphorylation/Degradation by Cyclin-dependent Kinase 2. Journal of Biological Chemistry, 2004, 279, 19592-19599.	3.4	42
538	Epithelial-Cadherin and β-Catenin Expression Changes in Pancreatic Intraepithelial Neoplasia. Clinical Cancer Research, 2004, 10, 1235-1240.	7.0	101
539	Glycogen Synthase Kinase 3β Is a Negative Regulator of Growth Factor-induced Activation of the c-Jun N-terminal Kinase. Journal of Biological Chemistry, 2004, 279, 51075-51081.	3.4	42
540	Adenomatous Polyposis Coli Is Down-regulated by the Ubiquitin-Proteasome Pathway in a Process Facilitated by Axin. Journal of Biological Chemistry, 2004, 279, 49188-49198.	3.4	39
541	β-Catenin-Dependent and -Independent Effects of ΔN-Plakoglobin on Epidermal Growth and Differentiation. Molecular and Cellular Biology, 2004, 24, 8649-8661.	2.3	28
542	Cyclin D1 Genetic Heterozygosity Regulates Colonic Epithelial Cell Differentiation and Tumor Number in Apc Min Mice. Molecular and Cellular Biology, 2004, 24, 7598-7611.	2.3	143
543	Integrin-linked Kinase Regulates the Nuclear Entry of the c-Jun Coactivator α-NAC and Its Coactivation Potency. Journal of Biological Chemistry, 2004, 279, 43893-43899.	3.4	45
544	Tumor Viruses and Cell Signaling Pathways: Deubiquitination versus Ubiquitination. Molecular and Cellular Biology, 2004, 24, 5089-5093.	2.3	56
545	Associations Among Â-TrCP, an E3 Ubiquitin Ligase Receptor, Â-Catenin, and NF-ÂB in Colorectal Cancer. Journal of the National Cancer Institute, 2004, 96, 1161-1170.	6.3	151
546	Functional Studies of Shaggy/Glycogen Synthase Kinase 3 Phosphorylation Sites in <i>Drosophila melanogaster</i> . Molecular and Cellular Biology, 2004, 24, 4909-4919.	2.3	78
547	A close correlation in the expression patterns of Af-6 and Usp9x in Sertoli and granulosa cells of mouse testis and ovary. Reproduction, 2004, 128, 583-594.	2.6	8
548	Nemo is an inducible antagonist of Wingless signaling during Drosophila wing development. Development (Cambridge), 2004, 131, 2911-2920.	2.5	47

#	LE		CITATIONS
549	Uncomplicated human obesity is associated with a specific cardiac transcriptome: involvement of the Wnt pathway. FASEB Journal, 2004, 18, 1539-1540.	0.5	17
550	Requirement of PEN-2 for Stabilization of the Presenilin N-/C-terminal Fragment Heterodimer within the Î ³ -Secretase Complex. Journal of Biological Chemistry, 2004, 279, 23255-23261.	3.4	107
551	Ubiquitination and Down-regulation of Gap Junction Protein Connexin-43 in Response to 12-O-Tetradecanoylphorbol 13-Acetate Treatment. Journal of Biological Chemistry, 2004, 279, 50089-50096.	3.4	149
552	The FAM Deubiquitylating Enzyme Localizes to Multiple Points of Protein Trafficking in Epithelia, where It Associates with E-cadherin and β-catenin. Molecular Biology of the Cell, 2004, 15, 1591-1599.	2.1	75
553	Axin: A Master Scaffold for Multiple Signaling Pathways. NeuroSignals, 2004, 13, 99-113.	0.9	136
554	Induction of apoptosis by the proteasome inhibitor MG132 in human HCC cells: Possible correlation with specific caspase-dependent cleavage of β-catenin and inhibition of β-catenin-mediated transactivation. International Journal of Molecular Medicine, 2004, 13, 741.	4.0	10
555	Thyroid-stimulating Hormone/cAMP and Glycogen Synthase Kinase 3β Elicit Opposing Effects on Rap1GAP Stability. Journal of Biological Chemistry, 2004, 279, 5501-5507.	3.4	39
556	Multiple Mechanisms for Wnt11-mediated Repression of the Canonical Wnt Signaling Pathway. Journal of Biological Chemistry, 2004, 279, 24659-24665.	3.4	123
557	Stabilization of β-catenin in the mouse zygote leads to premature epithelial-mesenchymal transition in the epiblast. Development (Cambridge), 2004, 131, 5817-5824.	2.5	139
558	Identification of BMP and Activin Membrane-bound Inhibitor (BAMBI), an Inhibitor of Transforming Growth Factor-β Signaling, as a Target of the β-Catenin Pathway in Colorectal Tumor Cells. Journal of Biological Chemistry, 2004, 279, 6840-6846.	3.4	144
559	Wnt-3a and Dvl Induce Neurite Retraction by Activating Rho-Associated Kinase. Molecular and Cellular Biology, 2004, 24, 4487-4501.	2.3	120
560	β-Catenin Is Dispensable for Hematopoiesis and Lymphopoiesis. Journal of Experimental Medicine, 2004, 199, 221-229.	8.5	338
561	Cell Adhesion, Polarity, and Epithelia in the Dawn of Metazoans. Physiological Reviews, 2004, 84, 1229-1262.	28.8	145
562	Differential Effects of Parkinson's Disease-associated Mutations on Stability and Folding of DJ-1. Journal of Biological Chemistry, 2004, 279, 6943-6951.	3.4	85
563	Towards discovery-driven translational research in breast cancer. FEBS Journal, 2004, 272, 2-15.	4.7	45
564	Tumor formation is correlated with expression of beta-catenin-accumulated crypts in azoxymethane-induced colon carcinogenesis in mice. Cancer Science, 2004, 95, 316-320.	3.9	36
565	Characterization of the E-cadherin/catenin complex in colorectal carcinoma cell lines. International Journal of Experimental Pathology, 2004, 85, 65-74.	1.3	46
566	Pathways of apoptotic and non-apoptotic death in tumour cells. Nature Reviews Cancer, 2004, 4, 592-603.	28.4	939

#	Article	IF	Citations
T 567	Csk defines the ability of integrin-mediated cell adhesion and migration in human colon cancer cells:	5.9	44
007	implication for a poténtial role in cancer metastasis. Oncogene, 2004, 23, 289-297.	0.7	
568	Density-dependent location and interactions of truncated APC and β-catenin. Oncogene, 2004, 23, 1412-1419.	5.9	15
569	The many faces of Î ² -TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer. Oncogene, 2004, 23, 2028-2036.	5.9	288
570	Ubiquitin-like protein activation. Oncogene, 2004, 23, 1958-1971.	5.9	71
571	PIN1 overexpression and \hat{l}^2 -catenin gene mutations are distinct oncogenic events in human hepatocellular carcinoma. Oncogene, 2004, 23, 4182-4186.	5.9	101
572	Phosphorylation and ubiquitination of oncogenic mutants of β-catenin containing substitutions at Asp32. Oncogene, 2004, 23, 4839-4846.	5.9	35
573	Paired-like homeodomain protein ESXR1 possesses a cleavable C-terminal region that inhibits cyclin degradation. Oncogene, 2004, 23, 6590-6602.	5.9	15
574	Tumor-associated E-cadherin mutations do not induce Wnt target gene expression, but affect E-cadherin repressors. Laboratory Investigation, 2004, 84, 1372-1386.	3.7	16
575	Frequent β-catenin overexpression without exon 3 mutation in cutaneous lymphomas. Modern Pathology, 2004, 17, 1275-1281.	5.5	26
576	Disruption of cell?cell contact maximally but transiently activates AhR-mediated transcription in 10T1/2 fibroblasts*1. Toxicology and Applied Pharmacology, 2004, 199, 220-238.	2.8	58
577	The ins and outs of Wingless signaling. Trends in Cell Biology, 2004, 14, 45-53.	7.9	82
578	Down-regulation of beta catenin inhibits the growth of esophageal carcinoma cells. Journal of Thoracic and Cardiovascular Surgery, 2004, 127, 92-98.	0.8	34
579	Degradation of Pro-Insulin-Receptor Proteins by Proteasomes. Archives of Medical Research, 2004, 35, 18-23.	3.3	2
580	Inhibition of glycogen synthase kinase 3β is involved in the resistance to oxidative stress in neuronal HT22 cells. Brain Research, 2004, 1005, 84-89.	2.2	85
581	Lymphoid enhancer factor/T cell factor expression in colorectal cancer. Cancer and Metastasis Reviews, 2004, 23, 41-52.	5.9	95
582	α-T-Catenin Is Expressed in Human Brain and Interacts With the Wnt Signaling Pathway But Is Not Responsible for Linkage to Chromosome 10 in Alzheimer's Disease. NeuroMolecular Medicine, 2004, 5, 133-146.	3.4	41
583	Subcellular Localization of Immunohistochemical Signals. International Journal of Surgical Pathology, 2004, 12, 185-206.	0.8	45
584	Subcellular localization of �-catenin and cadherin expression in the cap-stage enamel organ of the mouse molar. Histochemistry and Cell Biology, 2004, 121, 351-358.	1.7	22

#	Article	IF	CITATIONS
585	Manipulation of glycogen-synthase kinase-3 activity in KSHV-associated cancers. Journal of Molecular Medicine, 2004, 82, 223-231.	3.9	33
586	Wnt-frizzled signaling to G-protein-coupled effectors. Cellular and Molecular Life Sciences, 2004, 61, 69-75.	5.4	62
587	Mutations and elevated transcriptional activity ofconductin (AXIN2) in hepatoblastomas. Journal of Pathology, 2004, 204, 546-554.	4.5	52
588	-Catenin and p53 analyses of a breast carcinoma tissue microarray. Cancer, 2004, 100, 2084-2092.	4.1	73
589	Up-regulation of Wnt-1 and ?-catenin production in patients with advanced metastatic prostate carcinoma. Cancer, 2004, 101, 1345-1356.	4.1	267
590	Modulation of O-GlcNAc glycosylation duringXenopus oocyte maturation. Journal of Cellular Biochemistry, 2004, 93, 999-1010.	2.6	39
591	Role of CRMP-2 in neuronal polarity. Journal of Neurobiology, 2004, 58, 34-47.	3.6	168
592	Effects of ligand binding and conformational switching on intracellular stability of human thymidylate synthase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2004, 1696, 15-22.	2.3	41
593	VE-cadherin: adhesion at arm's length. American Journal of Physiology - Cell Physiology, 2004, 286, C987-C997.	4.6	155
594	Wnt3a Growth Factor Induces Androgen Receptor-Mediated Transcription and Enhances Cell Growth in Human Prostate Cancer Cells. Cancer Research, 2004, 64, 8860-8866.	0.9	127
595	Functional Switches in Transcription Regulation; Molecular Mimicry and Plasticity in Proteinâ [^] Protein Interactions. Biochemistry, 2004, 43, 7983-7991.	2.5	17
596	GSK3β-Dependent Phosphorylation of the αNAC Coactivator Regulates Its Nuclear Translocation and Proteasome-Mediated Degradationâ€. Biochemistry, 2004, 43, 2906-2914.	2.5	37
597	Bacterial activation of β-catenin signaling in human epithelia. American Journal of Physiology - Renal Physiology, 2004, 287, G220-G227.	3.4	100
598	The Met Receptor Degradation Pathway. Journal of Biological Chemistry, 2004, 279, 52835-52839.	3.4	58
599	β-Catenin is temporally regulated during normal liver developmentâ~†. Gastroenterology, 2004, 126, 1134-1146.	1.3	178
600	Rapid antidepressive-like activity of specific glycogen synthase kinase-3 inhibitor and its effect on β-catenin in mouse hippocampus. Biological Psychiatry, 2004, 55, 781-784.	1.3	269
601	Negative regulators of cardiac hypertrophy. Cardiovascular Research, 2004, 63, 500-509.	3.8	110
602	Mammalian Ryk Is a Wnt Coreceptor Required for Stimulation of Neurite Outgrowth. Cell, 2004, 119, 97-108.	28.9	417

ARTICLE IF CITATIONS Wht signaling in osteoblasts and bone diseases. Gene, 2004, 341, 19-39. 603 2.2 724 Signal transduction during amyloid-12-peptide neurotoxicity: role in Alzheimer disease. Brain Research 604 Reviews, 2004, 47, 275-289. Hydrogen peroxide negatively modulates Wnt signaling through downregulation of Î²-catenin. Cancer 605 7.2 98 Letters, 2004, 212, 225-231. Cyclin-dependent kinase 2 regulates the interaction of Axin with \hat{I}^2 -catenin. Biochemical and Biophysical 606 Résearch Communications, 2004, 317, 478-483. 70-kDa-heat shock protein presents an adjustable lectinic activity towards O-linked 607 2.1 48 N-acetylglucosamine. Biochemical and Biophysical Research Communications, 2004, 319, 21-26. A regulatory role of Wnt signaling pathway in the hematopoietic differentiation of murine embryonic stem cells. Biochemical and Biophysical Research Communications, 2004, 324, 1333-1339. 608 2.1 Characterization of C. elegans RING finger protein 1, a binding partner of ubiquitin-conjugating 609 2.0 12 enzyme 1. Developmental Biology, 2004, 265, 446-459. Wnt impacts growth and differentiation in ex vivo liver development. Experimental Cell Research, 610 2.6 130 2004, 292, 157-169. Growth factors regulate ¹/₂-catenin-mediated TCF-dependent transcriptional activation in fibroblasts 611 2.6 141 during the proliferative phase of wound healing. Experimental Cell Research, 2004, 293, 267-274. Fibroblast growth factor-2 induces osteoblast survival through a phosphatidylinositol 3-kinase-dependent, -Î²-catenin-independent signaling pathway. Experimental Cell Research, 2004, 297, 2.6 235-246. Cloning of the rat \hat{l}^2 -catenin gene (Ctnnb1) promoter and its functional analysis compared with the 613 49 2.9 Catnb and CTNNB1 promoters. Genomics, 2004, 83, 231-242. Structure and function of amyloid in Alzheimer's disease. Progress in Neurobiology, 2004, 74, 323-349. 5.7 614 126 Multiple functions for the cadherin/catenin complex during neuronal development. 615 4.1 53 Neuropharmacology, 2004, 47, 779-786. Crystal Structure of a Î²-Catenin/APC Complex Reveals a Critical Role for APC Phosphorylation in APC Function. Molecular Cell, 2004, 15, 523-533. M1 muscarinic receptor activation protects neurons from \hat{l}^2 -amyloid toxicity. A role for Wnt signaling 617 4.4 71 pathway. Neurobiology of Disease, 2004, 17, 337-348. Dietary influences on endocrine $\hat{a} \in$ inflammatory interactions in prostate cancer development. Archives 43 of Biochemistry and Biophysics, 2004, 428, 109-117. THE WNT SIGNALING PATHWAY IN DEVELOPMENT AND DISEASE. Annual Review of Cell and Developmental 619 9.4 4,672 Biology, 2004, 20, 781-810. Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer and Metastasis Reviews, 2004, 429 23, 101-117.

		CITATION REI	PORT	
#	Article		IF	CITATIONS
621	Activated Protein Kinases and Phosphorylated Tau Protein in Alzheimer Disease. , 2004, , 225-23	5.		0
622	Intermediate Filaments and Multiparameter Flow Cytometry for the Study of Solid Tumors. Metl Cell Biology, 2004, 78, 163-204.	nods in	1.1	1
623	Lymphodepletion in the ApcMin/+ mouse model of intestinal tumorigenesis. Blood, 2004, 103, 2	050-1058.	1.4	54
624	PDE6 is an effector for the Wnt/Ca2+/cGMP-signalling pathway in development. Biochemical So Transactions, 2004, 32, 792-796.	ciety	3.4	41
625	Fluctuations and noise in cancer development. , 2004, , .			4
626	What do insulin, estrogen, valproic acid, and TDZD-8 have in common?*. Critical Care Medicine, 33, 2115-2117.	2005,	0.9	4
627	Alterations and correlations of the components in the Wnt signaling pathway and its target ger breast cancer. Oncology Reports, 2005, 14, 1437-43.	es in	2.6	56
628	Targeting the Proteasome in Cancer Therapy. , 2005, , 243-274.			1
629	Pro-inflammatory mediator leukotriene D4 induces transcriptional activity of potentially oncoge genes. Biochemical Society Transactions, 2005, 33, 698-700.	nic	3.4	14
630	Cooperating pre–T-cell receptor and TCF-1–dependent signals ensure thymocyte survival. B 106, 1726-1733.	lood, 2005,	1.4	61
631	Phospho-β-Catenin Accumulation in Alzheimer's Disease and in Aggresomes Attributable to Pro Dysfunction. Journal of Molecular Neuroscience, 2005, 25, 079-094.	teasome	2.3	56
632	The Role of the Casein Kinase 1 (CK1) Family in Different Signaling Pathways Linked to Cancer Development. Oncology Research and Treatment, 2005, 28, 508-514.		1.2	86
633	The effects of antipsychotics on β-catenin, glycogen synthase kinase-3 and dishevelled in the ve midbrain of rats. Journal of Neurochemistry, 2005, 95, 513-525.	ntral	3.9	91
634	Functional consequences of integrin-linked kinase activation in podocyte damage. Kidney International, 2005, 67, 514-523.		5.2	71
635	Î ² -catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nature Structural and Molecular Biology, 2005, 12, 364-371.		8.2	476
636	Gastrin stabilises β-catenin protein in mouse colorectal cancer cells. British Journal of Cancer, 20 92, 1581-1587.	005,	6.4	13
637	Initiation factor modifications in the preapoptotic phase. Cell Death and Differentiation, 2005, 1 571-584.	.2,	11.2	87
638	Wnt signaling in disease and in development. Cell Research, 2005, 15, 28-32.		12.0	872

~			-	
	ΙΤΔΤ	10N	Repo	DL.
<u> </u>	/			IX I

#	Article	IF	CITATIONS
639	Functional correlates of mutation of the Asp32 and Cly34 residues of beta-catenin. Oncogene, 2005, 24, 2667-2676.	5.9	32
640	Phosphorylation of the homeotic tumor suppressor Cdx2 mediates its ubiquitin-dependent proteasome degradation. Oncogene, 2005, 24, 7955-7963.	5.9	39
641	Expression of novel markers of pancreatic ductal adenocarcinoma in pancreatic nonductal neoplasms: additional evidence of different genetic pathways. Modern Pathology, 2005, 18, 752-761.	5.5	88
642	Transcriptional regulation of a metastasis suppressor gene by Tip60 and β-catenin complexes. Nature, 2005, 434, 921-926.	27.8	283
643	Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature, 2005, 434, 926-933.	27.8	308
644	Number 1Epithelial biology. Oral Diseases, 2005, 11, 58-71.	3.0	14
645	Mucosal Diseases series. Oral Diseases, 2005, 11, 57-57.	3.0	5
646	Lysosomal trafficking of β-catenin induced by the tea polyphenol epigallocatechin-3-gallate. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 591, 161-172.	1.0	33
647	Breaking the relay in deregulated cellular signal transduction as a rationale for chemoprevention with anti-inflammatory phytochemicals. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 591, 123-146.	1.0	133
648	Receptor and secreted targets of Wnt-1/β-catenin signalling in mouse mammary epithelial cells. BMC Cancer, 2005, 5, 3.	2.6	50
649	cAMP perturbs inter-sertoli tight junction permeability barrier in vitro via its effect on proteasome-sensitive ubiquitination of occludin. Journal of Cellular Physiology, 2005, 203, 564-572.	4.1	61
650	Wnt/?-catenin-pathway as a molecular target for future anti-cancer therapeutics. International Journal of Cancer, 2005, 113, 515-524.	5.1	181
651	β-catenin-mediated cell-adhesion is vital for embryonic forebrain development. Developmental Dynamics, 2005, 233, 528-539.	1.8	98
652	Tau is not normally degraded by the proteasome. Journal of Neuroscience Research, 2005, 80, 400-405.	2.9	43
653	Wnt signaling: multiple functions in neural development. Cellular and Molecular Life Sciences, 2005, 62, 1100-1108.	5.4	164
654	A subset of high-grade pulmonary neuroendocrine carcinomas shows up-regulation of matrix metalloproteinase-7 associated with nuclear β-catenin immunoreactivity, independent of ECFR and HER-2 gene amplification or expression. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2005, 447, 969-977.	2.8	15
655	Mutations of the APC, beta-catenin, and axin 1 genes and cytoplasmic accumulation of beta-catenin in oral squamous cell carcinoma. Journal of Cancer Research and Clinical Oncology, 2005, 131, 773-782.	2.5	65
656	APC and β-catenin protein expression patterns in HNPCC-related endometrial and colorectal cancers. Familial Cancer, 2005, 4, 187-190.	1.9	19

#	Article	IF	CITATIONS
657	Two Sides of the Same Coin: Wnt Signaling in Neurodegeneration and Neuro-Oncology. Bioscience Reports, 2005, 25, 309-327.	2.4	69
658	Xenopus frizzled-4S, a splicing variant of Xfz4 is a context-dependent activator and inhibitor of Wnt/beta-catenin signaling. Cell Communication and Signaling, 2005, 3, 12.	6.5	29
659	The Wnt/β-Catenin Pathway. , 2005, , 173-192.		1
660	Alterations of Lymphoid Enhancer Factor-1 Isoform Expression in Solid Tumors and Acute Leukemias. Acta Biochimica Et Biophysica Sinica, 2005, 37, 173-180.	2.0	21
661	Functional Significance of Type 1 Insulin-like Growth Factor-mediated Nuclear Translocation of the Insulin Receptor Substrate-1 and β-Catenin. Journal of Biological Chemistry, 2005, 280, 29912-29920.	3.4	90
662	Wnt Signaling in Lymphopoiesis. , 2005, 290, 225-252.		17
663	Gene regulation of ENaC subunits by serum- and glucocorticoid-inducible kinase-1. American Journal of Physiology - Renal Physiology, 2005, 288, F505-F512.	2.7	49
664	Viral FLIP Enhances Wnt Signaling Downstream of Stabilized β-Catenin, Leading to Control of Cell Growth. Molecular and Cellular Biology, 2005, 25, 9249-9258.	2.3	32
665	Genetic Interaction of Lobe With Its Modifiers in Dorsoventral Patterning and Growth of the Drosophila Eye. Genetics, 2005, 171, 169-183.	2.9	32
666	Vital Elements of the Wnt-Frizzled Signaling Pathway in the Nervous System. Current Neurovascular Research, 2005, 2, 331-340.	1.1	93
667	Induction of Dickkopf-1, a Negative Modulator of the Wnt Pathway, Is Required for the Development of Ischemic Neuronal Death. Journal of Neuroscience, 2005, 25, 2647-2657.	3.6	127
668	The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity. Development (Cambridge), 2005, 132, 4421-4436.	2.5	398
669	Elevated Expression of Wnt Antagonists Is a Common Event in Hepatoblastomas. Clinical Cancer Research, 2005, 11, 4295-4304.	7.0	145
670	The adenomatous polyposis coli protein (APC) exists in two distinct soluble complexes with different functions. Journal of Cell Science, 2005, 118, 4741-4750.	2.0	37
671	BACE Is Degraded via the Lysosomal Pathway. Journal of Biological Chemistry, 2005, 280, 32499-32504.	3.4	149
672	Glycogen Synthase Kinase-3 Mediates Endothelial Cell Activation by Tumor Necrosis Factor-α. Circulation, 2005, 112, 1316-1322.	1.6	52
673	Mechanisms of Cytoplasmic β-Catenin Accumulation and Its Involvement in Tumorigenic Activities Mediated by Oncogenic Splicing Variant of the Receptor Originated from Nantes Tyrosine Kinase. Journal of Biological Chemistry, 2005, 280, 25087-25094.	3.4	27
674	Expression of cell adhesion molecules in oesophageal carcinoma and its prognostic value. Journal of Clinical Pathology, 2005, 58, 343-351.	2.0	88

#	Article	IF	CITATIONS
675	Monitoring Proteasome Activity In Cellulo and in Living Animals by Bioluminescent Imaging: Technical Considerations for Design and Use of Genetically Encoded Reporters. Methods in Enzymology, 2005, 399, 512-530.	1.0	24
676	β-Catenin Is Involved in Insulin-Like Growth Factor 1-Mediated Transactivation of the Androgen Receptor. Molecular Endocrinology, 2005, 19, 391-398.	3.7	61
677	The Ubiquitin-Proteasome Pathway and Its Role in Cancer. Journal of Clinical Oncology, 2005, 23, 4776-4789.	1.6	477
678	Resveratrol Promotes Clearance of Alzheimer's Disease Amyloid-β Peptides. Journal of Biological Chemistry, 2005, 280, 37377-37382.	3.4	669
679	Rise and Fall of Epithelial Phenotype. , 2005, , .		11
680	Regulation of β-Catenin Signaling and Maintenance of Chondrocyte Differentiation by Ubiquitin-independent Proteasomal Degradation of α-Catenin. Journal of Biological Chemistry, 2005, 280, 12758-12765.	3.4	88
681	Stabilized β-Catenin Extends Thymocyte Survival by Up-Regulating Bcl-xL. Journal of Immunology, 2005, 175, 7981-7988.	0.8	79
682	DNA Vaccines Expressing Different Forms of Simian Immunodeficiency Virus Antigens Decrease Viremia upon SIVmac251 Challenge. Journal of Virology, 2005, 79, 8480-8492.	3.4	93
683	Intraneuronal Â-Amyloid Expression Downregulates the Akt Survival Pathway and Blunts the Stress Response. Journal of Neuroscience, 2005, 25, 10960-10969.	3.6	109
684	Molecular Pathogenesis of Focal Cortical Dysplasia and Hemimegalencephaly. Journal of Child Neurology, 2005, 20, 330-336.	1.4	69
685	The proinvasive activity of Wntâ€2 is mediated through a noncanonical Wnt pathway coupled to GSKâ€3β and c―Jun/APâ€1 signaling. FASEB Journal, 2005, 19, 144-146.	0.5	65
686	Exon 3 Â-catenin mutations are specifically associated with colorectal carcinomas in hereditary non-polyposis colorectal cancer syndrome. Gut, 2005, 54, 264-267.	12.1	101
687	Microsatellite analysis of the adenomatous polyposis coli (APC) gene and immunoexpression of Â catenin in nephroblastoma: a study including 83 cases treated with preoperative chemotherapy. Journal of Clinical Pathology, 2005, 58, 44-50.	2.0	8
688	Regulation of the Versican Promoter by the β-Catenin-T-cell Factor Complex in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2005, 280, 13019-13028.	3.4	77
689	FBW2 Targets GCMa to the Ubiquitin-Proteasome Degradation System. Journal of Biological Chemistry, 2005, 280, 10083-10090.	3.4	45
690	STD and TRNOESY NMR Studies on the Conformation of the Oncogenic Protein β-Catenin Containing the Phosphorylated Motif DpSGXXpS Bound to the β-TrCP Protein. Journal of Biological Chemistry, 2005, 280, 29107-29116.	3.4	23
691	Regulation of Serum Response Factor-Dependent Gene Expression by Proteasome Inhibitors. Molecular Pharmacology, 2005, 67, 789-797.	2.3	19
692	PR72, a novel regulator of Wnt signaling required for Naked cuticle function. Genes and Development, 2005, 19, 376-386.	5.9	67

#	Article	IF	CITATIONS
693	β-Catenin cleavage in non-apoptotic cells with reduced cell adhesion activity. International Journal of Molecular Medicine, 2005, 15, 973.	4.0	8
694	Wnt signaling through canonical and non-canonical pathways: Recent progress. Growth Factors, 2005, 23, 111-116.	1.7	196
695	Direct metabolic regulation of β-catenin activity by the p85α regulatory subunit of phosphoinositide 3-OH kinase. Experimental Cell Research, 2005, 305, 409-417.	2.6	6
696	Trolox and 17β-Estradiol Protect against Amyloid β-Peptide Neurotoxicity by a Mechanism That Involves Modulation of the Wnt Signaling Pathway. Journal of Biological Chemistry, 2005, 280, 11615-11625.	3.4	109
697	Developmental Regulation of Wnt/β-Catenin Signals Is Required for Growth Plate Assembly, Cartilage Integrity, and Endochondral Ossification. Journal of Biological Chemistry, 2005, 280, 19185-19195.	3.4	295
698	MOLECULAR MECHANISMS OF STEROID HORMONE SIGNALING IN PLANTS. Annual Review of Cell and Developmental Biology, 2005, 21, 177-201.	9.4	369
699	Morpholino oligonucleotide-triggered β-catenin knockdown compromises normal liver regeneration. Journal of Hepatology, 2005, 43, 132-141.	3.7	72
700	Erk Associates with and Primes GSK-3β for Its Inactivation Resulting in Upregulation of β-Catenin. Molecular Cell, 2005, 19, 159-170.	9.7	535
701	The anti-inflammatory and cholinesterase inhibitor bifunctional compound IBU-PO protects from β-amyloid neurotoxicity by acting on Wnt signaling components. Neurobiology of Disease, 2005, 18, 176-183.	4.4	35
702	Abnormal β-catenin expression in oral cancer with no gene mutation: correlation with expression of cyclin D1 and epidermal growth factor receptor, Ki-67 labeling index, and clinicopathological features. Human Pathology, 2005, 36, 234-241.	2.0	51
703	Identification of MYCBP as a β-catenin/LEF-1 target using DNA microarray analysis. Life Sciences, 2005, 77, 1249-1262.	4.3	35
704	The transcription factor Sox9 is degraded by the ubiquitin?proteasome system and stabilized by a mutation in a ubiquitin-target site. Matrix Biology, 2005, 23, 499-505.	3.6	56
705	Doublecortin interacts with the ubiquitin protease DFFRX, which associates with microtubules in neuronal processes. Molecular and Cellular Neurosciences, 2005, 28, 153-164.	2.2	43
706	Inhibition of β-catenin-mediated transactivation by flavanone in AGS gastric cancer cells. Biochemical and Biophysical Research Communications, 2005, 331, 1222-1228.	2.1	34
707	The F Box Protein Dsg1/Mdm30 Is a Transcriptional Coactivator that Stimulates Gal4 Turnover and Cotranscriptional mRNA Processing. Cell, 2005, 120, 887-899.	28.9	155
708	RNF11 is a multifunctional modulator of growth factor receptor signalling and transcriptional regulation. European Journal of Cancer, 2005, 41, 2549-2560.	2.8	52
709	Proteasome inhibition and Tau proteolysis: an unexpected regulation. FEBS Letters, 2005, 579, 1-5.	2.8	48
710	Cross-talk between the TGFÎ ² and Wnt signaling pathways in murine embryonic maxillary mesenchymal cells. FEBS Letters, 2005, 579, 3539-3546.	2.8	53

#	Article	IF	CITATIONS
711	Diclofenac attenuates Wnt/β-catenin signaling in colon cancer cells by activation of NF-κB. FEBS Letters, 2005, 579, 4213-4218.	2.8	55
712	Solution structure of a peptide derived from the oncogenic protein β-Catenin in its phosphorylated and nonphosphorylated states. Peptides, 2005, 26, 227-241.	2.4	20
713	DYRK2 and GSK-3 phosphorylate and promote the timely degradation of OMA-1, a key regulator of the oocyte-to-embryo transition in C. elegans. Developmental Biology, 2005, 288, 139-149.	2.0	82
714	Regulation of the cell cycle by SCF-type ubiquitin ligases. Seminars in Cell and Developmental Biology, 2005, 16, 323-333.	5.0	314
715	Oncogenic K-ras Stimulates Wnt Signaling in Colon Cancer Through Inhibition of GSK-3β. Gastroenterology, 2005, 128, 1907-1918.	1.3	92
716	Epidermal Growth Factor Receptor: A Novel Target of the Wnt/β-Catenin Pathway in Liver. Gastroenterology, 2005, 129, 285-302.	1.3	201
717	Antipsychotics alter the protein expression levels of \hat{l}^2 -catenin and GSK-3 in the rat medial prefrontal cortex and striatum. Biological Psychiatry, 2005, 57, 533-542.	1.3	186
718	Novel Daple-like protein positively regulates both the Wnt/β-catenin pathway and the Wnt/JNK pathway in Xenopus. Mechanisms of Development, 2005, 122, 1138-1153.	1.7	27
720	Aberrant Wnt∫β-Catenin Signaling in Pancreatic Adenocarcinoma. Neoplasia, 2006, 8, 279-289.	5.3	184
721	Plasticity and Second Messengers During Synapse Development. International Review of Neurobiology, 2006, 75, 237-265.	2.0	24
722	Versican: signaling to transcriptional control pathwaysThis paper is one of a selection of papers published in this Special Issue, entitled Young Investigator's Forum Canadian Journal of Physiology and Pharmacology, 2006, 84, 77-92.	1.4	99
723	Transforming Growth Factor-Î ² Stimulates Cyclin D1 Expression through Activation of Î ² -Catenin Signaling in Chondrocytes. Journal of Biological Chemistry, 2006, 281, 21296-21304.	3.4	74
724	Nitric Oxide-Induced Down-Regulation of β-Catenin in Colon Cancer Cells by a Proteasome-Independent Specific Pathway. Gastroenterology, 2006, 131, 1142-1152.	1.3	28
725	The Metastasis-Associated Gene S100A4 Is a Novel Target of β-catenin/T-cell Factor Signaling in Colon Cancer. Gastroenterology, 2006, 131, 1486-1500.	1.3	196
726	Wnt signalling in lung development and diseases. Respiratory Research, 2006, 7, 15.	3.6	191
727	Primary mouse hepatocytes for systems biology approaches: a standardized in vitro system for modelling of signal transduction pathways. IET Systems Biology, 2006, 153, 433.	2.0	122
728	Catenin, beta. The AFCS-nature Molecule Pages, 2006, , .	0.2	6
729	Multifunctional Arm Repeat Domains in Plants. International Review of Cytology, 2006, 253, 1-26.	6.2	58

#	Article	IF	CITATIONS
730	β-Catenin and E-Cadherin Expression in Salivary Gland Tumors. International Journal of Surgical Pathology, 2006, 14, 212-217.	0.8	30
731	Threonine 41 in β-Catenin Serves as a Key Phosphorylation Relay Residue in β-Catenin Degradationâ€. Biochemistry, 2006, 45, 5319-5323.	2.5	58
732	Wnt Signaling as a Therapeutic Target for Cancer. , 2007, 361, 63-92.		65
733	STD and TRNOESY NMR studies for the epitope mapping of the phosphorylation motif of the oncogenic protein Î ² -catenin recognized by a selective monoclonal antibody. FEBS Letters, 2006, 580, 5411-5422.	2.8	11
734	Wnt/β-Catenin Signaling in Development and Disease. Cell, 2006, 127, 469-480.	28.9	4,999
735	MYO18B interacts with the proteasomal subunit Sug1 and is degraded by the ubiquitin–proteasome pathway. Biochemical and Biophysical Research Communications, 2006, 342, 829-834.	2.1	12
736	Adhesions that mediate invasion. International Journal of Biochemistry and Cell Biology, 2006, 38, 1875-1892.	2.8	102
737	Roles and regulation of Wnt signaling and β-catenin in prostate cancer. Cancer Letters, 2006, 237, 22-32.	7.2	166
738	Parallel epigenetic and genetic changes in the pathogenesis of hepatitis virus-associated hepatocellular carcinoma. Cancer Letters, 2006, 239, 10-20.	7.2	61
739	Frodo Links Dishevelled to the p120-Catenin/Kaiso Pathway: Distinct Catenin Subfamilies Promote Wnt Signals. Developmental Cell, 2006, 11, 683-695.	7.0	91
740	Mechanisms of self-renewal in human embryonic stem cells. European Journal of Cancer, 2006, 42, 1257-1272.	2.8	51
741	The Third 20 Amino Acid Repeat Is the Tightest Binding Site of APC for β-Catenin. Journal of Molecular Biology, 2006, 360, 133-144.	4.2	78
742	Structural Determinants Involved in the Regulation of CXCL14/BRAK Expression by the 26 S Proteasome. Journal of Molecular Biology, 2006, 363, 813-822.	4.2	34
743	Role of the mitogen-activated protein kinase and phosphoinositide 3-kinase/AKT pathways downstream molecules, phosphorylated extracellular signal–regulated kinase, and phosphorylated AKT in colorectal cancer—A tissue microarray–based approachâ~†. Human Pathology, 2006, 37, 1022-1031.	2.0	40
744	The canonical Wnt pathway in embryonic axis polarity. Seminars in Cell and Developmental Biology, 2006, 17, 168-174.	5.0	64
745	Glycogen synthase kinase-3β/β-catenin promotes angiogenic and anti-apoptotic signaling through the induction of VEGF, Bcl-2 and survivin expression in rat ischemic preconditioned myocardium. Journal of Molecular and Cellular Cardiology, 2006, 40, 138-147.	1.9	130
746	Developmental Signaling Networks Wnt/β-Catenin Signaling in the Gastrointestinal Tract. , 2006, , 247-270.		0
747	The WNT/Beta-catenin pathway in melanoma. Frontiers in Bioscience - Landmark, 2006, 11, 733.	3.0	220

#	Article	IF	CITATIONS
749	Polypeptide and Protein Aggregates with Neurotoxic Properties in Neurodegenerative Disorders: Emphasis on β-Amyloid-Induced Dysfunction of Receptor-Mediated Signal Transduction Pathways. Current Signal Transduction Therapy, 2006, 1, 97-112.	0.5	6
750	Tankyrase recruitment to the lateral membrane in polarized epithelial cells: regulation by cell–cell contact and protein poly(ADP-ribosyl)ation. Biochemical Journal, 2006, 399, 415-425.	3.7	37
751	GSK-3, a Key Player in Alzheimer's Disease. , 0, , 105-124.		0
752	Wnt expression is not correlated with \hat{l}^2 -catenin dysregulation in Dupuytren's Disease. Journal of Negative Results in BioMedicine, 2006, 5, 13.	1.4	24
753	Targeted Gene Expression Analysis in Hemimegalencephaly: Activation of β atenin Signaling. Brain Pathology, 2005, 15, 179-186.	4.1	29
754	Control of β atenin Signaling in Tumor Development. Annals of the New York Academy of Sciences, 2000, 910, 21-35.	3.8	200
755	Hematopoietic stem cell and multilineage defects generated by constitutive β-catenin activation. Nature Immunology, 2006, 7, 1037-1047.	14.5	370
756	Pemphigus vulgaris identifies plakoglobin as key suppressor of c-Myc in the skin. EMBO Journal, 2006, 25, 3298-3309.	7.8	177
757	New therapies for hepatocellular carcinoma. Oncogene, 2006, 25, 3866-3884.	5.9	362
758	The E3 ubiquitin ligase CHIP binds the androgen receptor in a phosphorylation-dependent manner. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2006, 1764, 1073-1079.	2.3	47
759	MG132 induced apoptosis is associated with p53-independent induction of pro-apoptotic Noxa and transcriptional activity of β-catenin. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 627-641.	4.9	36
760	β-Catenin regulation during matrigel-induced rat hepatocyte differentiation. Cell and Tissue Research, 2006, 323, 71-79.	2.9	36
761	Gene expression of β–catenin is up-regulated in inner dental epithelium and enamel knots during molar tooth morphogenesis in the mouse. Cell and Tissue Research, 2006, 325, 197-201.	2.9	21
762	AU-rich elements and alternative splicing in the β-catenin 3′UTR can influence the human β-catenin mRNA stability. Experimental Cell Research, 2006, 312, 2367-2378.	2.6	39
763	Involvement of glycogen synthase kinase-3β in hydrogen peroxide-induced suppression of Tcf/Lef-dependent transcriptional activity. Cellular Signalling, 2006, 18, 601-607.	3.6	38
764	β-catenin-mediated signaling: A novel molecular target for chemoprevention with anti-inflammatory substances. Biochimica Et Biophysica Acta: Reviews on Cancer, 2006, 1765, 14-24.	7.4	21
765	Tumors from rats given 1,2-dimethylhydrazine plus chlorophyllin or indole-3-carbinol contain transcriptional changes in β-catenin that are independent of β-catenin mutation status. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2006, 601, 11-18.	1.0	11
766	Inhibition of Wnt signaling, modulation of Tau phosphorylation and induction of neuronal cell death by DKK1. Neurobiology of Disease, 2006, 24, 254-265.	4.4	107

#	Article	IF	CITATIONS
767	Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor. Journal of Cellular Physiology, 2006, 208, 77-86.	4.1	195
768	Control of Murine Kidney Development by Sonic Hedgehog and its GLI Effectors. Cell Cycle, 2006, 5, 1426-1430.	2.6	58
769	Absence of β-Catenin Alteration in Hepatic Tumors Induced by p-Nitroanisole in Crj:BDF1 Mice. Toxicologic Pathology, 2006, 34, 237-242.	1.8	1
770	Molecular Bases of the Regulation of Bone Remodeling by the Canonical Wnt Signaling Pathway. Current Topics in Developmental Biology, 2006, 73, 43-84.	2.2	117
771	Inhibition of the Proteasomal Function in Chondrocytes Down-Regulates Growth Plate Chondrogenesis and Longitudinal Bone Growth. Endocrinology, 2006, 147, 3761-3768.	2.8	23
772	Increased colon tumor susceptibility in azoxymethane treated CEABAC transgenic mice. Carcinogenesis, 2006, 27, 1909-1916.	2.8	37
773	Adenomatous Polyposis Coli (APC) Differentially Regulates β-Catenin Phosphorylation and Ubiquitination in Colon Cancer Cells. Journal of Biological Chemistry, 2006, 281, 17751-17757.	3.4	180
774	Phosphorylation of β-Catenin by Cyclic AMP-dependent Protein Kinase*. Journal of Biological Chemistry, 2006, 281, 9971-9976.	3.4	373
775	Inhibition of Phosphatidylinositol 3-Kinase Destabilizes Mycn Protein and Blocks Malignant Progression in Neuroblastoma. Cancer Research, 2006, 66, 8139-8146.	0.9	186
776	Hexachlorophene Inhibits Wnt/β-Catenin Pathway by Promoting Siah-Mediated β-Catenin Degradation. Molecular Pharmacology, 2006, 70, 960-966.	2.3	112
777	Inhibition of glycogen synthase kinase-3β activity is sufficient to stimulate myogenic differentiation. American Journal of Physiology - Cell Physiology, 2006, 290, C453-C462.	4.6	93
778	From Gut Homeostasis to Cancer. Current Molecular Medicine, 2006, 6, 275-289.	1.3	104
779	Protein phosphatase 2A is required for mesalazine-dependent inhibition of Wnt/Â-catenin pathway activity. Carcinogenesis, 2006, 27, 2371-2382.	2.8	79
780	Genetic and Expression Aberrations of E3 Ubiquitin Ligases in Human Breast Cancer. Molecular Cancer Research, 2006, 4, 695-707.	3.4	59
781	Engrailed-1 Negatively Regulates β-Catenin Transcriptional Activity by Destabilizing β-Catenin via a Glycogen Synthase Kinase-3β–independent Pathway. Molecular Biology of the Cell, 2006, 17, 2572-2580.	2.1	31
782	Nucleo-cytoplasmic distribution of β-catenin is regulated by retention. Journal of Cell Science, 2006, 119, 1453-1463.	2.0	221
783	The Inflammatory Mediator Leukotriene D4 Induces β-Catenin Signaling and Its Association with Antiapoptotic Bcl-2 in Intestinal Epithelial Cells. Journal of Biological Chemistry, 2006, 281, 6776-6784.	3.4	49
784	Dapper 1 Antagonizes Wnt Signaling by Promoting Dishevelled Degradation. Journal of Biological Chemistry, 2006, 281, 8607-8612.	3.4	132

#	Article	IF	CITATIONS
785	Lysine Residues Lys-19 and Lys-49 of β-Catenin Regulate Its Levels and Function in T Cell Factor Transcriptional Activation and Neoplastic Transformation. Journal of Biological Chemistry, 2006, 281, 26181-26187.	3.4	47
786	Cell Confluence Regulates Hepatocyte Growth Factor-Stimulated Cell Morphogenesis in a β-Catenin-Dependent Manner. Molecular and Cellular Biology, 2006, 26, 9232-9243.	2.3	52
787	Transcriptional Regulation of CD4 Gene Expression by T Cell Factor-1/β-Catenin Pathway. Journal of Immunology, 2006, 176, 4880-4887.	0.8	40
788	Effective Treatment of Tumors with Strong β-Catenin/T-Cell Factor Activity by Transcriptionally Targeted Oncolytic Herpes Simplex Virus Vector. Cancer Research, 2006, 66, 10127-10135.	0.9	44
789	Protein-kinase-C-mediated β-catenin phosphorylation negatively regulates the Wnt/β-catenin pathway. Journal of Cell Science, 2006, 119, 4702-4709.	2.0	95
790	Regulation of Human Nitric Oxide Synthase 2 Expression by Wnt β-Catenin Signaling. Cancer Research, 2006, 66, 7024-7031.	0.9	101
791	Laforin, a Dual Specificity Phosphatase That Dephosphorylates Complex Carbohydrates. Journal of Biological Chemistry, 2006, 281, 30412-30418.	3.4	183
792	Adenomatous Polyposis Coli Control of C-terminal Binding Protein-1 Stability Regulates Expression of Intestinal Retinol Dehydrogenases. Journal of Biological Chemistry, 2006, 281, 37828-37835.	3.4	53
793	Mediator Is a Transducer of Wnt/β-Catenin Signaling. Journal of Biological Chemistry, 2006, 281, 14066-14075.	3.4	260
794	Ginsenoside-Rg1 Induces Vascular Endothelial Growth Factor Expression through the Glucocorticoid Receptor-related Phosphatidylinositol 3-Kinase/Akt and β-Catenin/T-cell Factor-dependent Pathway in Human Endothelial Cells. Journal of Biological Chemistry, 2006, 281, 36280-36288.	3.4	118
795	Wnt-7a Induces Presynaptic Colocalization of Â7-Nicotinic Acetylcholine Receptors and Adenomatous Polyposis Coli in Hippocampal Neurons. Journal of Neuroscience, 2007, 27, 5313-5325.	3.6	101
796	Decursin Suppresses Human Androgen-Independent PC3 Prostate Cancer Cell Proliferation by Promoting the Degradation of \hat{l}^2 -Catenin. Molecular Pharmacology, 2007, 72, 1599-1606.	2.3	56
797	Sox17 and Sox4 Differentially Regulate β-Catenin/T-Cell Factor Activity and Proliferation of Colon Carcinoma Cells. Molecular and Cellular Biology, 2007, 27, 7802-7815.	2.3	283
798	Retinoic Acid Inhibits β-Catenin through Suppression of Cox-2. Journal of Biological Chemistry, 2007, 282, 29394-29400.	3.4	23
799	Structural Determinants of the C-terminal Helix-Kink-Helix Motif Essential for Protein Stability and Survival Promoting Activity of DJ-1. Journal of Biological Chemistry, 2007, 282, 13680-13691.	3.4	69
800	Polarity of Response to Transforming Growth Factor-β1 in Proximal Tubular Epithelial Cells Is Regulated by β-Catenin. Journal of Biological Chemistry, 2007, 282, 28639-28647.	3.4	13
801	Drosophila split ends Homologue SHARP Functions as a Positive Regulator of Wnt/β-Catenin/T-Cell Factor Signaling in Neoplastic Transformation. Cancer Research, 2007, 67, 482-491.	0.9	32
802	Proteasome Function Is Regulated by Cyclic AMP-dependent Protein Kinase through Phosphorylation of Rpt6. Journal of Biological Chemistry, 2007, 282, 22460-22471.	3.4	177

#	Article	IF	CITATIONS
803	Anabolic Agents and the Bone Morphogenetic Protein Pathway. Current Topics in Developmental Biology, 2007, 78, 127-171.	2.2	33
804	Significance of inflammation-associated regenerative mucosa characterized by Paneth cell metaplasia and Â-catenin accumulation for the onset of colorectal carcinogenesis in rats initiated with 1,2-dimethylhydrazine. Carcinogenesis, 2007, 28, 2199-2206.	2.8	10
805	Conditional Inactivation of the E-Cadherin Gene in Thyroid Follicular Cells Affects Gland Development but Does Not Impair Junction Formation. Endocrinology, 2007, 148, 2737-2746.	2.8	42
806	Glucocorticoid-Induced Degradation of Glycogen Synthase Kinase-3 Protein Is Triggered by Serum- and Glucocorticoid-Induced Protein Kinase and Akt Signaling and Controls β-Catenin Dynamics and Tight Junction Formation in Mammary Epithelial Tumor Cells. Molecular Endocrinology, 2007, 21, 2403-2415.	3.7	62
807	Targeting the Wnt signaling pathway to treat Barrett's esophagus. Expert Opinion on Therapeutic Targets, 2007, 11, 375-389.	3.4	26
808	RGS19 regulates Wnt–β-catenin signaling through inactivation of Gαo. Journal of Cell Science, 2007, 120, 3404-3414.	2.0	33
809	Hepatitis B virus X protein differentially affects the ubiquitin-mediated proteasomal degradation of β-catenin depending on the status of cellular p53. Journal of General Virology, 2007, 88, 2144-2154.	2.9	37
810	Essential Role of Wnt3a-Mediated Activation of Mitogen-Activated Protein Kinase p38 for the Stimulation of Alkaline Phosphatase Activity and Matrix Mineralization in C3H10T1/2 Mesenchymal Cells. Endocrinology, 2007, 148, 5323-5330.	2.8	95
811	Morphogens and the Control of Cell Proliferation and Patterning in the Spinal Cord. Cell Cycle, 2007, 6, 2640-2649.	2.6	189
812	Activation of Integrin-Linked Kinase Is a Critical Prosurvival Pathway Induced in Leukemic Cells by Bone Marrow–Derived Stromal Cells. Cancer Research, 2007, 67, 684-694.	0.9	178
813	Physiological Roles of Calcineurin inSaccharomyces cerevisiaewith Special Emphasis on Its Roles in G2/M Cell-Cycle Regulation. Bioscience, Biotechnology and Biochemistry, 2007, 71, 633-645.	1.3	68
814	Degradation of Mcl-1 by β-TrCP Mediates Glycogen Synthase Kinase 3-Induced Tumor Suppression and Chemosensitization. Molecular and Cellular Biology, 2007, 27, 4006-4017.	2.3	348
815	WNT10B Functional Dualism: β-Catenin/Tcf-dependent Growth Promotion or Independent Suppression with Deregulated Expression in Cancer. Molecular Biology of the Cell, 2007, 18, 4292-4303.	2.1	32
816	Bortezomib Inhibits Cell-Cell Adhesion and Cell Migration and Enhances Epidermal Growth Factor Receptor Inhibitor–Induced Cell Death in Squamous Cell Cancer. Cancer Research, 2007, 67, 727-734.	0.9	64
817	β-Catenin induces immortalization of melanocytes by suppressing <i>p16^{INK4a}</i> expression and cooperates with N-Ras in melanoma development. Genes and Development, 2007, 21, 2923-2935.	5.9	283
818	Ku70 and Poly(ADP-Ribose) Polymerase-1 Competitively Regulate β-Catenin and T-Cell Factor-4–Mediated Gene Transactivation: Possible Linkage of DNA Damage Recognition and Wnt Signaling. Cancer Research, 2007, 67, 911-918.	0.9	70
819	Long-Lasting Decrease in Viremia in Macaques Chronically Infected with Simian Immunodeficiency Virus SIVmac251 after Therapeutic DNA Immunization. Journal of Virology, 2007, 81, 1972-1979.	3.4	42
820	Inactivation of glycogen synthase kinase-3β, a downstream target of the raf-1 pathway, is associated with growth suppression in medullary thyroid cancer cells. Molecular Cancer Therapeutics, 2007, 6, 1151-1158.	4.1	100

#	Article	IF	CITATIONS
821	Cancer Stem Cells. , 2007, , .		2
822	N-terminal Cleavage of GSK-3 by Calpain. Journal of Biological Chemistry, 2007, 282, 22406-22413.	3.4	120
823	Role of GAC63 in transcriptional activation mediated by Â-catenin. Nucleic Acids Research, 2007, 35, 2084-2092.	14.5	22
824	β-Catenin Overexpression in the Mouse Brain Phenocopies Lithium-Sensitive Behaviors. Neuropsychopharmacology, 2007, 32, 2173-2183.	5.4	129
825	IFN-β Signaling Positively Regulates Tumorigenesis in Aggressive Fibromatosis, Potentially by Modulating Mesenchymal Progenitors. Cancer Research, 2007, 67, 7124-7131.	0.9	27
826	Phosphorylation of β-Catenin by AKT Promotes β-Catenin Transcriptional Activity. Journal of Biological Chemistry, 2007, 282, 11221-11229.	3.4	740
827	Parallels between Global Transcriptional Programs of Polarizing Caco-2 Intestinal Epithelial Cells In Vitro and Gene Expression Programs in Normal Colon and Colon Cancer. Molecular Biology of the Cell, 2007, 18, 4245-4260.	2.1	114
828	Metabolic Control of Proteasome Function. Physiology, 2007, 22, 373-379.	3.1	31
829	Regulation of Cidea protein stability by the ubiquitin-mediated proteasomal degradation pathway. Biochemical Journal, 2007, 408, 259-266.	3.7	22
830	β-Catenin stabilization stalls the transition from double-positive to single-positive stage and predisposes thymocytes to malignant transformation. Blood, 2007, 109, 5463-5472.	1.4	117
831	Wnt Signaling in Stem Cells and Lung Cancer. , 2007, , 27-58.		20
832	RING finger proteins of infectious spleen and kidney necrosis virus (ISKNV) function as ubiquitin ligase enzymes. Virus Research, 2007, 123, 170-177.	2.2	11
833	Wnt/β-catenin signaling controls Mespo expression to regulate segmentation during Xenopus somitogenesis. Developmental Biology, 2007, 304, 836-847.	2.0	15
834	Analysis of dishevelled localization and function in the early sea urchin embryo. Developmental Biology, 2007, 306, 50-65.	2.0	36
835	Glycogen synthase kinase-3β plays a pro-apoptotic role in β-adrenergic receptor-stimulated apoptosis in adult rat ventricular myocytes: Role of β1 integrins. Journal of Molecular and Cellular Cardiology, 2007, 42, 653-661.	1.9	48
836	NMDA-Receptor Activation Induces Calpain-Mediated Î ² -Catenin Cleavages for Triggering Gene Expression. Neuron, 2007, 53, 387-397.	8.1	132
837	The role of GSK3 in glucose homeostasis and the development of insulin resistance. Diabetes Research and Clinical Practice, 2007, 77, S49-S57.	2.8	198
838	Effects of continuous activation of vitamin D and Wnt response pathways on osteoblastic proliferation and differentiation. Bone, 2007, 41, 87-96.	2.9	54

	CHAIION	REPORT	
#	Article	IF	CITATIONS
839	β-Catenin Signaling in Fibroproliferative Disease. Journal of Surgical Research, 2007, 138, 141-150.	1.6	106
840	Human scribble accumulates in colorectal neoplasia in association with an altered distribution of β-catenin. Human Pathology, 2007, 38, 1273-1281.	2.0	35
841	GSK-3 inhibitors for Alzheimer's disease. Expert Review of Neurotherapeutics, 2007, 7, 1527-1533.	2.8	76
842	Activated β-catenin induces myogenesis and inhibits adipogenesis in BM-derived mesenchymal stromal cells. Cytotherapy, 2007, 9, 667-681.	0.7	57
843	Metastasis of Prostate Cancer. Cancer Metastasis - Biology and Treatment, 2007, , .	0.1	4
844	The Wnt Signaling Pathway in Familial Exudative Vitreoretinopathy and Norrie Disease. Seminars in Ophthalmology, 2007, 22, 211-217.	1.6	73
845	Wnt pathway in the formation of ischemic brain injuryInterventional pathway of basic fibroblast growth factor. Neural Regeneration Research, 2007, 2, 395-398.	3.0	0
846	BCL9-2 binds Arm/\hat{l}^2 -catenin in a Tyr142-independent manner and requires Pygopus for its function in Wg/Wnt signaling. Mechanisms of Development, 2007, 124, 59-67.	1.7	36
847	Aberrant nuclear localization of beta-catenin without genetic alterations in beta-catenin or Axin genes in esophageal cancer. World Journal of Surgical Oncology, 2007, 5, 21.	1.9	29
848	Cell-Cell Contacts Prevent Anoikis in Primary Human Colonic Epithelial Cells. Gastroenterology, 2007, 132, 587-600.	1.3	127
849	Involvement of Splicing Factor-1 in β-Catenin/T-Cell Factor-4-Mediated Gene Transactivation and Pre-mRNA Splicing. Gastroenterology, 2007, 132, 1039-1054.	1.3	59
850	Functional Interaction of DNA Topoisomerase IIα With the β-Catenin and T-Cell Factor-4 Complex. Gastroenterology, 2007, 133, 1569-1578.	1.3	28
851	Antitumor Activity of PR-171, a Novel Irreversible Inhibitor of the Proteasome. Cancer Research, 2007, 67, 6383-6391.	0.9	616
852	The Molecular Basis of Lymphoid Architecture in the Mouse. , 2007, , 57-108.		0
854	Downregulation of the upstream binding factor1 by glycogen synthase kinase3β in myeloid cells induced to differentiate. Journal of Cellular Biochemistry, 2007, 100, 1154-1169.	2.6	14
855	βâ€Catenin signaling in biological control and cancer. Journal of Cellular Biochemistry, 2007, 102, 820-828.	2.6	155
856	β-Catenin nuclear accumulation in head and neck mucoepidermoid carcinoma: Its role in cyclin D1 overexpression and tumor progression. Head and Neck, 2007, 29, 577-584.	2.0	16
857	Elucidating the interactions between the adhesive and transcriptional functions of -catenin in normal and cancerous cells. Journal of Theoretical Biology, 2007, 247, 77-102.	1.7	56

#	Article	IF	Citations
858	Crystallization and preliminary X-ray crystallographic studies of the axin DIX domain. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 529-531.	0.7	14
859	Insights into unbinding mechanisms upon two mutations investigated by molecular dynamics study of GSK3β-axin complex: Role of packing hydrophobic residues. Proteins: Structure, Function and Bioinformatics, 2007, 67, 941-949.	2.6	22
860	GSK3Î ² mediates suppression of cyclin D2 expression by tumor suppressor PTEN. Oncogene, 2007, 26, 2471-2482.	5.9	87
861	A hidden oncogenic positive feedback loop caused by crosstalk between Wnt and ERK Pathways. Oncogene, 2007, 26, 4571-4579.	5.9	141
862	Id2 gene-targeted crosstalk between Wnt and retinoid signaling regulates proliferation in human keratinocytes. Oncogene, 2007, 26, 5038-5045.	5.9	26
863	Bcl-2 overexpression in PhIP-induced colon tumors: cloning of the rat Bcl-2 promoter and characterization of a pathway involving β-catenin, c-Myc and E2F1. Oncogene, 2007, 26, 6194-6202.	5.9	55
864	Gadd45a regulates β-catenin distribution and maintains cell–cell adhesion/contact. Oncogene, 2007, 26, 6396-6405.	5.9	26
865	A novel role of Rac1 GTPase in JCV T-antigen-mediated β-catenin stabilization. Oncogene, 2007, 26, 7628-7636.	5.9	33
866	Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response. Nature Genetics, 2007, 39, 1350-1360.	21.4	361
867	CIN85, a Cbl-interacting protein, is a component of AMAP1-mediated breast cancer invasion machinery. EMBO Journal, 2007, 26, 647-656.	7.8	60
868	Neuronal apoptosis and reversible motor deficit in dominant-negative GSK-3 conditional transgenic mice. EMBO Journal, 2007, 26, 2743-2754.	7.8	59
869	FLT3 regulates β-catenin tyrosine phosphorylation, nuclear localization, and transcriptional activity in acute myeloid leukemia cells. Leukemia, 2007, 21, 2476-2484.	7.2	38
870	Increased Dickkopf-1 expression in breast cancer bone metastases. British Journal of Cancer, 2007, 97, 964-970.	6.4	159
871	Regulation of hematopoiesis and the hematopoietic stem cell niche by Wnt signaling pathways. Cell Research, 2007, 17, 746-758.	12.0	62
872	Genetic alterations of Wnt signaling pathway–associated genes in hepatocellular carcinoma. Journal of Gastroenterology and Hepatology (Australia), 2008, 23, 110-118.	2.8	58
873	Role of Wnt/βâ€catenin signaling pathway in epithelialâ€mesenchymal transition of human prostate cancer induced by hypoxiaâ€inducible factorâ€1α. International Journal of Urology, 2007, 14, 1034-1039.	1.0	194
874	Oxidative stress induces p53â€dependent apoptosis in hepatoblastoma cell through its nuclear translocation. Genes To Cells, 2007, 12, 461-471.	1.2	34
875	Prognostic significance of the wnt signalling pathway molecules APC, ?-catenin and E-cadherin in colorectal cancer?a tissue microarray-based analysis. Histopathology, 2007, 50, 453-464.	2.9	118

# 876	ARTICLE Inhibition of Akt induces significant downregulation of survivin and cytotoxicity in human multiple myeloma cells. British Journal of Haematology, 2007, 138, 783-791.	IF 2.5	CITATIONS
877	Increased susceptibility of <i>Sf1</i> ^{+/–} mice to azoxymethaneâ€induced colon tumorigenesis. Cancer Science, 2007, 98, 1862-1867.	3.9	25
878	Gi-coupled P2Y-ADP receptor mediates GSK-3 phosphorylation and β-catenin nuclear translocation in granule neurons. Journal of Neurochemistry, 2007, 104, 071106220615001-???.	3.9	28
879	Wnt3a signaling promotes proliferation, myogenic differentiation, and migration of rat bone marrow mesenchymal stem cells. Acta Pharmacologica Sinica, 2007, 28, 1761-1774.	6.1	72
880	NSAIDs enhance proteasomic degradation of survivin, a mechanism of gastric epithelial cell injury and apoptosis. Biochemical Pharmacology, 2007, 74, 1485-1495.	4.4	23
881	The PI3 kinase-Akt pathway mediates Wnt3a-induced proliferation. Cellular Signalling, 2007, 19, 511-518.	3.6	65
882	Modulation of Î ² -catenin by cyclin-dependent kinase 6 in Wnt-stimulated cells. European Journal of Cell Biology, 2007, 86, 111-123.	3.6	6
883	Zinc induces cell death in immortalized embryonic hippocampal cells via activation of Akt-GSK-3β signaling. Experimental Cell Research, 2007, 313, 312-321.	2.6	33
884	Canonical Wnt signaling transiently stimulates proliferation and enhances neurogenesis in neonatal neural progenitor cultures. Experimental Cell Research, 2007, 313, 572-587.	2.6	84
885	CagA-independent disruption of adherence junction complexes involves E-cadherin shedding and implies multiple steps in Helicobacter pylori pathogenicity. Experimental Cell Research, 2007, 313, 3459-3471.	2.6	64
886	Glycogen synthase kinase 3β and β-catenin are involved in the injury and repair of bronchial epithelial cells induced by scratching. Experimental and Molecular Pathology, 2007, 83, 30-38.	2.1	22
887	Pathogenesis of colorectal carcinoma and therapeutic implications: the roles of the ubiquitin?proteasome system and Cox-2. Journal of Cellular and Molecular Medicine, 2007, 11, 252-285.	3.6	69
888	The role of cyclooxygenase-2 and prostaglandins in colon cancer. Prostaglandins and Other Lipid Mediators, 2007, 82, 147-154.	1.9	81
889	Wnt10b Increases Postnatal Bone Formation by Enhancing Osteoblast Differentiation. Journal of Bone and Mineral Research, 2007, 22, 1924-1932.	2.8	244
890	Adenomatous polyposis coli (APC) plays multiple roles in the intestinal and colorectal epithelia. Medical Molecular Morphology, 2007, 40, 68-81.	1.0	94
891	Cullin4B/E3-ubiquitin ligase negatively regulates β-catenin. Journal of Biosciences, 2007, 32, 1133-1138.	1.1	17
892	The Wnt Antagonist, Dickkopf-1, as a Target for the Treatment of Neurodegenerative Disorders. Neurochemical Research, 2008, 33, 2401-2406.	3.3	55
893	Human cytomegalovirus immediate-early-gene expression disrupts embryogenesis in transgenic Drosophila. Transgenic Research, 2008, 17, 105-119.	2.4	15

#	Article	IF	CITATIONS
894	Nuclear receptors, intestinal architecture and colon cancer: an intriguing link. Cellular and Molecular Life Sciences, 2008, 65, 1523-1543.	5.4	51
895	Wnt/Ĵ²-catenin signaling pathway and its role in hepatocellular carcinoma. Frontiers of Medicine in China, 2008, 2, 216-228.	0.1	3
896	Cancer and deregulation of stem cells pathways. Oncology Reviews, 2008, 2, 199-202.	1.8	2
897	Anti-myeloma effect of homoharringtonine with concomitant targeting of the myeloma-promoting molecules, Mcl-1, XIAP, and β-catenin. International Journal of Hematology, 2008, 87, 507-515.	1.6	53
898	The role of Wnt signaling in neuronal dysfunction in Alzheimer's Disease. Molecular Neurodegeneration, 2008, 3, 9.	10.8	164
899	Wnt and Frizzled RNA expression in human mesenchymal and embryonic (H7) stem cells. Journal of Molecular Signaling, 2008, 3, 16.	0.5	28
900	Second hit in cervical carcinogenesis process: involvement of wnt/beta catenin pathway. International Archive of Medicine, 2008, 1, 10.	1.2	63
901	Alterations in β atenin expression and localization in prostate cancer. Prostate, 2008, 68, 1196-1205.	2.3	67
902	The influence of glycogen synthase kinase 3 in limiting cell addition in the mammalian ear. Developmental Neurobiology, 2008, 68, 1059-1075.	3.0	27
903	CPEB1 regulates βâ€catenin mRNA translation and cell migration in astrocytes. Clia, 2008, 56, 1401-1413.	4.9	33
904	KIT regulates tyrosine phosphorylation and nuclear localization of β-catenin in mast cell leukemia. Leukemia Research, 2008, 32, 761-770.	0.8	31
905	Arsenic trioxide and 2-methoxyestradiol reduce β-catenin accumulation after proteasome inhibition and enhance the sensitivity of myeloma cells to Bortezomib. Leukemia Research, 2008, 32, 1674-1683.	0.8	22
906	Human immunodeficiency virus type 1 gp120–mediated disruption of tight junction proteins by induction of proteasome-mediated degradation of zonula occludens-1 and -2 in human brain microvascular endothelial cells. Journal of NeuroVirology, 2008, 14, 186-195.	2.1	66
907	Sporadic childhood hepatoblastomas show activation of β-catenin, mismatch repair defects and p53 mutations. Modern Pathology, 2008, 21, 7-14.	5.5	65
908	Effects of protein phosphorylation on ubiquitination and stability of the translational inhibitor protein 4E-BP1. Oncogene, 2008, 27, 811-822.	5.9	61
909	Molecular association between β-catenin degradation complex and Rac guanine exchange factor DOCK4 is essential for Wnt/β-catenin signaling. Oncogene, 2008, 27, 5845-5855.	5.9	59
910	Recruitment of adenomatous polyposis coli and β-catenin to axin-puncta. Oncogene, 2008, 27, 5808-5820.	5.9	63
911	Jade-1 inhibits Wnt signalling by ubiquitylating Î ² -catenin and mediates Wnt pathway inhibition by pVHL. Nature Cell Biology, 2008, 10, 1208-1216.	10.3	162

#	Article	IF	Citations
912	Wnt signalling and its impact on development and cancer. Nature Reviews Cancer, 2008, 8, 387-398.	28.4	1,390
913	WNT signalling in the immune system: WNT is spreading its wings. Nature Reviews Immunology, 2008, 8, 581-593.	22.7	489
914	Outside-in Signaling through Integrins and Cadherins: A Central Mechanism to Control Epidermal Growth and Differentiation?. Journal of Investigative Dermatology, 2008, 128, 501-516.	0.7	138
915	TRAILâ€related neurotoxicity implies interaction with the Wnt pathway in human neuronal cells <i>in vitro</i> . Journal of Neurochemistry, 2008, 105, 1915-1923.	3.9	15
916	Dynamic regulation of PGCâ€lα localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response. Aging Cell, 2008, 7, 101-111.	6.7	250
917	β-catenin signalling in mesenchymal islet-derived precursor cells. Cell Proliferation, 2008, 41, 474-491.	5.3	10
918	Inhibition of CSK3 differentially modulates NF-κB, CREB, AP-1 and β-catenin signaling in hepatocytes, but fails to promote TNF-α-induced apoptosis. Experimental Cell Research, 2008, 314, 1351-1366.	2.6	69
919	O-GlcNAc-glycosylation of β-catenin regulates its nuclear localization and transcriptional activity. Experimental Cell Research, 2008, 314, 2774-2787.	2.6	71
920	The role of glycogen synthase kinase 3 in the early stages of Alzheimers' disease. FEBS Letters, 2008, 582, 3848-3854.	2.8	77
921	OSTM1 regulates β-catenin/Lef1 interaction and is required for Wnt/β-catenin signaling. Cellular Signalling, 2008, 20, 949-957.	3.6	26
922	Anti-apoptotic action of Wnt5a in dermal fibroblasts is mediated by the PKA signaling pathways. Cellular Signalling, 2008, 20, 1256-1266.	3.6	49
923	Wnt and beyond Wnt: Multiple mechanisms control the transcriptional property of β-catenin. Cellular Signalling, 2008, 20, 1697-1704.	3.6	208
924	Adherens junction breakdown in the periderm following cadmium administration in the chick embryo: distribution of cadherins and associated molecules. Reproductive Toxicology, 2008, 25, 39-46.	2.9	39
925	Regulation of metastasis in colorectal adenocarcinoma: A collision between development and tumor biology. Surgery, 2008, 144, 353-366.	1.9	24
926	Regulation of Wnt Signaling by the Nuclear Pore Complex. Gastroenterology, 2008, 134, 1961-1971.e4.	1.3	65
927	The Canonical Wnt/β-Catenin Signalling Pathway. Methods in Molecular Biology, 2008, 468, 5-15.	0.9	160
930	Role of adenomatous polyposis coli (APC) and microtubules in directional cell migration and neuronal polarization. Seminars in Cell and Developmental Biology, 2008, 19, 245-251.	5.0	82
931	Modifying the HIV-1 env gp160 gene to improve pDNA vaccine-elicited cell-mediated immune responses. Vaccine, 2008, 26, 5083-5094.	3.8	19

#	Article	IF	CITATIONS
932	<i>Wt1</i> negatively regulates β-catenin signaling during testis development. Development (Cambridge), 2008, 135, 1875-1885.	2.5	151
933	Osteocytes, mechanosensing and Wnt signaling. Bone, 2008, 42, 606-615.	2.9	904
934	An acidic extracellular pH induces Src kinase-dependent loss of β-catenin from the adherens junction. Cancer Letters, 2008, 267, 37-48.	7.2	28
935	Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 660-669.	2.6	1,204
936	Generation and behavioral characterization of β-catenin forebrain-specific conditional knock-out mice. Behavioural Brain Research, 2008, 189, 117-125.	2.2	76
937	Bisindoylmaleimide I suppresses adipocyte differentiation through stabilization of intracellular β-catenin protein. Biochemical and Biophysical Research Communications, 2008, 367, 195-200.	2.1	9
938	E-Cadherin negatively modulates δ-catenin-induced morphological changes and RhoA activity reduction by competing with p190RhoGEF for δ-catenin. Biochemical and Biophysical Research Communications, 2008, 377, 636-641.	2.1	19
939	Natural derivatives of curcumin attenuate the Wnt/Ĵ²-catenin pathway through down-regulation of the transcriptional coactivator p300. Biochemical and Biophysical Research Communications, 2008, 377, 1304-1308.	2.1	136
940	Chapter 7 Ciliary Function and Wnt Signal Modulation. Current Topics in Developmental Biology, 2008, 85, 175-195.	2.2	64
941	Targeting glycogen synthase kinase-3 (GSK-3) in the treatment of Type 2 diabetes. Expert Opinion on Therapeutic Targets, 2008, 12, 1265-1274.	3.4	99
942	Posttranslational Regulation of NF-YA Modulates NF-Y Transcriptional Activity. Molecular Biology of the Cell, 2008, 19, 5203-5213.	2.1	46
943	Rad6B Is a Positive Regulator of β-Catenin Stabilization. Cancer Research, 2008, 68, 1741-1750.	0.9	53
944	Defining the Roles of β-Catenin and Plakoglobin in LEF/T-Cell Factor-Dependent Transcription Using β-Catenin/Plakoglobin-Null F9 Cells. Molecular and Cellular Biology, 2008, 28, 825-835.	2.3	41
945	Enhanced Tau Phosphorylation in the Hippocampus of Mice Treated with 3,4-Methylenedioxymethamphetamine ("Ecstasyâ€) . Journal of Neuroscience, 2008, 28, 3234-3245.	3.6	45
946	Polyubiquitination of Prolactin Receptor Stimulates Its Internalization, Postinternalization Sorting, and Degradation via the Lysosomal Pathway. Molecular and Cellular Biology, 2008, 28, 5275-5287.	2.3	78
947	Wnt/Notch signalling and information processing during development. Development (Cambridge), 2008, 135, 411-424.	2.5	260
948	Signaling function of α-catenin in microtubule regulation. Cell Cycle, 2008, 7, 2377-2383.	2.6	22
949	HAT cofactor TRRAP mediates β-Catenin ubiquitination on the chromatin and the regulation of the canonical Wnt pathway. Cell Cycle, 2008, 7, 3908-3914.	2.6	16

#	Article	IF	CITATIONS
950	<i>Bacillus anthracis</i> Edema Toxin Activates Nuclear Glycogen Synthase Kinase 3β. Infection and Immunity, 2008, 76, 4895-4904.	2.2	21
951	β-catenin promotes self-renewal of skeletal-muscle satellite cells. Journal of Cell Science, 2008, 121, 1373-1382.	2.0	59
952	Dapper1 Is a Nucleocytoplasmic Shuttling Protein That Negatively Modulates Wnt Signaling in the Nucleus. Journal of Biological Chemistry, 2008, 283, 35679-35688.	3.4	51
953	Amyloid-β Binds to the Extracellular Cysteine-rich Domain of Frizzled and Inhibits Wnt/β-Catenin Signaling. Journal of Biological Chemistry, 2008, 283, 9359-9368.	3.4	214
954	Interaction of FOXO with β-Catenin Inhibits β-Catenin/T Cell Factor Activity. Journal of Biological Chemistry, 2008, 283, 9224-9230.	3.4	244
955	Helicobacter pylori Suppresses Glycogen Synthase Kinase 3β to Promote β-Catenin Activity. Journal of Biological Chemistry, 2008, 283, 29367-29374.	3.4	58
956	Stabilized β-Catenin Potentiates Fas-Mediated T Cell Apoptosis. Journal of Immunology, 2008, 180, 6586-6592.	0.8	15
957	Crosstalk between the Androgen Receptor and β-Catenin in Castrate-Resistant Prostate Cancer. Cancer Research, 2008, 68, 9918-9927.	0.9	131
958	Homozygous deletion of glycogen synthase kinase 3Î ² bypasses senescence allowing Ras transformation of primary murine fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5248-5253.	7.1	22
959	Glycogen Synthase Kinase 3Î ² Suppresses Myogenic Differentiation through Negative Regulation of NFATc3. Journal of Biological Chemistry, 2008, 283, 358-366.	3.4	60
960	Functional blockade of Smad4 leads to a decrease in β-catenin levels and signaling activity in human pancreatic carcinoma cells. Carcinogenesis, 2008, 29, 1070-1076.	2.8	36
961	Nuclear targeting of β-catenin and p120ctn during thrombin-induced endothelial barrier dysfunction. Cardiovascular Research, 2008, 79, 679-688.	3.8	30
962	Structure-Function Implications in Alzheimers Disease: Effect of Aβ Oligomers at Central Synapses. Current Alzheimer Research, 2008, 5, 233-243.	1.4	91
963	Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. Genes and Development, 2008, 22, 528-542.	5.9	111
964	The Role of LEF/TCF Factors in Neoplastic Transformation. Current Molecular Medicine, 2008, 8, 38-50.	1.3	36
965	The Genomics of Colorectal Cancer: State of the Art. Current Genomics, 2008, 9, 1-10.	1.6	14
966	Phosphorylation of β-catenin by PKA promotes ATP-induced proliferation of vascular smooth muscle cells. American Journal of Physiology - Cell Physiology, 2008, 294, C1169-C1174.	4.6	66
967	Oncogene-Mediated Inhibition of Glycogen Synthase Kinase 3β Impairs Degradation of Prolactin Receptor. Cancer Research, 2008, 68, 1354-1361.	0.9	42

#	Article	IF	CITATIONS
968	Dual Positive and Negative Regulation of Wingless Signaling by Adenomatous Polyposis Coli. Science, 2008, 319, 333-336.	12.6	53
969	CHD8 Is an ATP-Dependent Chromatin Remodeling Factor That Regulates β-Catenin Target Genes. Molecular and Cellular Biology, 2008, 28, 3894-3904.	2.3	187
970	Retinal degeneration triggered by inactivation of PTEN in the retinal pigment epithelium. Genes and Development, 2008, 22, 3147-3157.	5.9	68
971	Beta-Catenin Mutations Do Not Contribute to Cardiac Fibroma Pathogenesis. Pediatric and Developmental Pathology, 2008, 11, 291-294.	1.0	9
972	Downregulation of Dkk3 activates β-catenin/TCF-4 signaling in lung cancer. Carcinogenesis, 2008, 29, 84-92.	2.8	145
973	Laforin Negatively Regulates Cell Cycle Progression through Glycogen Synthase Kinase 3β-Dependent Mechanisms. Molecular and Cellular Biology, 2008, 28, 7236-7244.	2.3	20
974	Canonical Wnt signalling induces satellite-cell proliferation during adult skeletal muscle regeneration. Journal of Cell Science, 2008, 121, 2939-2950.	2.0	247
975	Differential Coupling of M1 Muscarinic and α7 Nicotinic Receptors to Inhibition of Pemphigus Acantholysis. Journal of Biological Chemistry, 2008, 283, 3401-3408.	3.4	42
976	Inhibition of Fibroblast Growth Factor 19 Reduces Tumor Growth by Modulating β-Catenin Signaling. Cancer Research, 2008, 68, 5086-5095.	0.9	116
977	Role of Akt/GSK-3β/β-Catenin Transduction Pathway in the Muscle Anti-Atrophy Action of Insulin-Like Growth Factor-I in Glucocorticoid-Treated Rats. Endocrinology, 2008, 149, 3900-3908.	2.8	69
978	Wnt signaling in skin organogenesis. Organogenesis, 2008, 4, 123-133.	1.2	67
979	Adeno-sh-β-Catenin Abolishes Ischemic Preconditioning–Mediated Cardioprotection by Downregulation of Its Target Genes VEGF, Bcl-2, and Survivin in Ischemic Rat Myocardium. Antioxidants and Redox Signaling, 2008, 10, 1475-1484.	5.4	33
980	Wnt Signaling in Renal Cancer. Current Drug Targets, 2008, 9, 591-600.	2.1	34
981	Is Metabolic Syndrome X a Disorder of the Brain?. Current Nutrition and Food Science, 2008, 4, 73-108.	0.6	15
982	Characterization and Comparison of Intercellular Adherent Junctions Expressed by Human Corneal Endothelial Cells In Vivo and In Vitro. , 2008, 49, 3879.		61
983	Olig2-Induced Neural Stem Cell Differentiation Involves Downregulation of Wnt Signaling and Induction of Dickkopf-1 Expression. PLoS ONE, 2008, 3, e3917.	2.5	36
984	Direct Inhibition of GSK3β by the Phosphorylated Cytoplasmic Domain of LRP6 in Wnt/β-Catenin Signaling. PLoS ONE, 2008, 3, e4046.	2.5	181
985	Wnt Signaling and Bone. , 2008, , 121-137.		3

#	Article	IF	CITATIONS
986	A β-Catenin-Dependent Wnt Pathway Mediates Anteroposterior Axon Guidance in C. elegans Motor Neurons. PLoS ONE, 2009, 4, e4690.	2.5	39
987	Inhibition of GSK3 Phosphorylation of \hat{l}^2 -Catenin via Phosphorylated PPPSPXS Motifs of Wnt Coreceptor LRP6. PLoS ONE, 2009, 4, e4926.	2.5	182
988	Synergy between Proteasome Inhibitors and Imatinib Mesylate in Chronic Myeloid Leukemia. PLoS ONE, 2009, 4, e6257.	2.5	39
989	Dynamic Telomerase Gene Suppression via Network Effects of GSK3 Inhibition. PLoS ONE, 2009, 4, e6459.	2.5	34
990	Regenerative medicine and tissue engineering in orthopaedic surgery. Frontiers in Bioscience - Elite, 2009, E3, 923.	1.8	1
991	Glucocorticoids and Lithium Reciprocally Regulate the Proliferation of Adult Dentate Gyrus-Derived Neural Precursor Cells Through GSK-3β and I²-Catenin/TCF Pathway. Neuropsychopharmacology, 2009, 34, 805-815.	5.4	78
992	SHIP2 (SH2 Domain-containing Inositol Phosphatase 2) SH2 Domain Negatively Controls SHIP2 Monoubiquitination in Response to Epidermal Growth Factor. Journal of Biological Chemistry, 2009, 284, 36062-36076.	3.4	13
993	GSK-3 Phosphorylates δ-Catenin and Negatively Regulates Its Stability via Ubiquitination/Proteosome-mediated Proteolysis. Journal of Biological Chemistry, 2009, 284, 28579-28589.	3.4	42
994	β-Catenin/Tcf Determines the Outcome of Thymic Selection in Response to αβTCR Signaling. Journal of Immunology, 2009, 183, 3873-3884.	0.8	34
995	Activation of Clycogen Synthase Kinase-3β Is Required for Hyperdopamine and D ₂ Receptor-Mediated Inhibition of Synaptic NMDA Receptor Function in the Rat Prefrontal Cortex. Journal of Neuroscience, 2009, 29, 15551-15563.	3.6	83
996	Essential roles of CKIΙ̂´ and CKIÎμ in the mammalian circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21359-21364.	7.1	156
997	Axin2 controls bone remodeling through the β-catenin–BMP signaling pathway in adult mice. Journal of Cell Science, 2009, 122, 3566-3578.	2.0	101
998	A serine cluster mediates BMAL1-dependent CLOCK phosphorylation and degradation. Cell Cycle, 2009, 8, 4138-4146.	2.6	124
999	Constructing and Deconstructing Roles for the Primary Cilium in Tissue Architecture and Cancer. Methods in Cell Biology, 2009, 94, 299-313.	1.1	19
1000	Activation of Wnt/β-Catenin Signaling Increases Insulin Sensitivity through a Reciprocal Regulation of Wnt10b and SREBP-1c in Skeletal Muscle Cells. PLoS ONE, 2009, 4, e8509.	2.5	110
1001	Guanylyl cyclase C in colorectal cancer: susceptibility gene and potential therapeutic target. Future Oncology, 2009, 5, 509-522.	2.4	30
1002	Regulation of protein stability by GSK3 mediated phosphorylation. Cell Cycle, 2009, 8, 4032-4039.	2.6	176
1003	TNF-induced activation of pulmonary microvessel endothelial cells: a role for GSK3β. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L700-L709.	2.9	14

#	Article	IF	CITATIONS
1004	Epstein-Barr Virus Latent Membrane Protein-1 Effects on Junctional Plakoglobin and Induction of a Cadherin Switch. Cancer Research, 2009, 69, 5734-5742.	0.9	42
1005	PCAF Acetylates β-Catenin and Improves Its Stability. Molecular Biology of the Cell, 2009, 20, 419-427.	2.1	103
1006	Pre-TCR-Induced β-Catenin Facilitates Traversal through β-Selection. Journal of Immunology, 2009, 182, 751-758.	0.8	26
1007	JNK phosphorylates βâ€catenin and regulates adherens junctions. FASEB Journal, 2009, 23, 3874-3883.	0.5	91
1008	Overactive Beta-Catenin Signaling Causes Testicular Sertoli Cell Tumor Development in the Mouse1. Biology of Reproduction, 2009, 81, 842-849.	2.7	36
1009	Decorin is a novel antagonistic ligand of the Met receptor. Journal of Cell Biology, 2009, 185, 743-754.	5.2	207
1010	Homeodomain-interacting protein kinases (Hipks) promote Wnt/Wg signaling through stabilization of β-catenin/Arm and stimulation of target gene expression. Development (Cambridge), 2009, 136, 241-251.	2.5	74
1011	Smurf2 induces degradation of GSK-3β and upregulates β-catenin in chondrocytes: A potential mechanism for Smurf2-induced degeneration of articular cartilage. Experimental Cell Research, 2009, 315, 2386-2398.	2.6	59
1012	Canonical Wnt pathway signaling suppresses VCAM-1 expression by marrow stromal and hematopoietic cells. Experimental Hematology, 2009, 37, 19-30.	0.4	41
1013	Multiple isoforms of β-TrCP display differential activities in the regulation of Wnt signaling. Cellular Signalling, 2009, 21, 43-51.	3.6	26
1014	Adenosine triphosphatase pontin is overexpressed in hepatocellular carcinoma and coregulated with reptin through a new posttranslational mechanism. Hepatology, 2009, 50, 1871-1883.	7.3	54
1015	HINT1 inhibits βâ€catenin/TCF4, USF2 and NFκB activity in human hepatoma cells. International Journal of Cancer, 2009, 124, 1526-1534.	5.1	41
1016	Wnt won the war: Antagonistic role of Wnt over Shh controls dorsoâ€ventral patterning of the vertebrate neural tube. Developmental Dynamics, 2010, 239, 69-76.	1.8	130
1017	The trimeric G protein Go inflicts a double impact on axin in the Wnt/frizzled signaling pathway. Developmental Dynamics, 2010, 239, 168-183.	1.8	37
1018	β atenin–mediated signaling and cell adhesion in postgastrulation mouse embryos. Developmental Dynamics, 2010, 239, 191-199.	1.8	15
1019	Threonine 393 of βâ€catenin regulates interaction with Axin. Journal of Cellular Biochemistry, 2009, 108, 52-63.	2.6	27
1020	BMPâ€2 modulates βâ€catenin signaling through stimulation of <i>Lrp5</i> expression and inhibition of βâ€TrCP expression in osteoblasts. Journal of Cellular Biochemistry, 2009, 108, 896-905.	2.6	75
1021	Calpainâ€mediated truncation of GSKâ€3 in postâ€mortem brain samples. Journal of Neuroscience Research, 2009, 87, 1156-1161.	2.9	18

#	Article	IF	CITATIONS
1022	2,2′,4,4′,5,5′-Hexachlorobiphenyl (PCB 153) induces degradation of adherens junction proteins and inhibits β-catenin-dependent transcription in liver epithelial cells. Toxicology, 2009, 260, 104-111.	4.2	11
1023	Wnt/β-catenin/Tcf Signaling Pathway Activation in Malignant Progression of Rat Gliomas Induced by Transplacental N-Ethyl-N-Nitrosourea Exposure. Neurochemical Research, 2009, 34, 1278-1288.	3.3	37
1024	Lack of β-catenin in early life induces abnormal glucose homeostasis in mice. Diabetologia, 2009, 52, 1608-1617.	6.3	34
1025	5αâ€Dihydrotestosterone (DHT) retards wound closure by inhibiting reâ€epithelialization. Journal of Pathology, 2009, 217, 73-82.	4.5	63
1026	Novel association of APC with intermediate filaments identified using a new versatile APC antibody. BMC Cell Biology, 2009, 10, 75.	3.0	22
1027	The ISWIâ€containing NURF complex regulates the output of the canonical Wingless pathway. EMBO Reports, 2009, 10, 1140-1146.	4.5	42
1028	Induction of the Wnt Antagonist, Dickkopf-1, Contributes to the Development of Neuronal Death in Models of Brain Focal Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 264-276.	4.3	108
1029	β-catenin mediates glandular formation and dysregulation of β-catenin induces hyperplasia formation in the murine uterus. Oncogene, 2009, 28, 31-40.	5.9	189
1030	The aurora kinase A regulates CSK-3β in gastric cancer cells. Oncogene, 2009, 28, 866-875.	5.9	125
1031	P-21-activated protein kinase-1 functions as a linker between insulin and Wnt signaling pathways in the intestine. Oncogene, 2009, 28, 3132-3144.	5.9	51
1032	Molecular pathways involved in hair follicle tumor formation: all about mammalian target of rapamycin?. Experimental Dermatology, 2009, 18, 185-191.	2.9	22
1033	Target Gene Activation of the Wnt Signaling Pathway in Nuclear βâ€Catenin Accumulating Cells of Adamantinomatous Craniopharyngiomas. Brain Pathology, 2009, 19, 357-364.	4.1	72
1034	Rapid constitutive and ligandâ€activated endocytic trafficking of P2X ₃ receptor. Journal of Neurochemistry, 2009, 109, 1031-1041.	3.9	34
1035	Chapter 1 Recent Advances in the Discovery of GSK-3 Inhibitors and a Perspective on their Utility for the Treatment of Alzheimer's Disease. Annual Reports in Medicinal Chemistry, 2009, , 3-26.	0.9	7
1036	Zfp521 antagonizes Runx2, delays osteoblast differentiation in vitro, and promotes bone formation in vivo. Bone, 2009, 44, 528-536.	2.9	85
1037	Wnt signaling inhibits cementoblast differentiation and promotes proliferation. Bone, 2009, 44, 805-812.	2.9	124
1038	The role of GSK3 in Alzheimer disease. Brain Research Bulletin, 2009, 80, 248-250.	3.0	64
1039	Hexachlorophene suppresses Î ² -catenin expression by up-regulation of Siah-1 in EBV-infected B lymphoma cells. Cancer Letters, 2009, 276, 136-142.	7.2	7

# 1040	ARTICLE Disrupted in Schizophrenia 1 Regulates Neuronal Progenitor Proliferation via Modulation of GSK31²/Ĵ²-Catenin Signaling. Cell, 2009, 136, 1017-1031.	IF 28.9	CITATIONS
1041	The role of the Ser/Thr cluster in the phosphorylation of PPPSP motifs in Wnt coreceptors. Biochemical and Biophysical Research Communications, 2009, 381, 345-349.	2.1	19
1042	lsoreserpine promotes β-catenin degradation via Siah-1 up-regulation in HCT116 colon cancer cells. Biochemical and Biophysical Research Communications, 2009, 387, 444-449.	2.1	22
1043	Cardamonin suppresses melanogenesis by inhibition of Wnt/β-catenin signaling. Biochemical and Biophysical Research Communications, 2009, 390, 500-505.	2.1	63
1044	Wnt-pathway activation during the early stage of neurodegeneration in FTDP-17 mice. Neurobiology of Aging, 2009, 30, 14-21.	3.1	17
1045	Proteasome inhibition increases tau accumulation independent of phosphorylation. Neurobiology of Aging, 2009, 30, 1949-1961.	3.1	49
1046	Follicular Thyroid Cancer Cell Growth Inhibition By Proteosome Inhibitor MG132. Journal of Surgical Research, 2009, 156, 39-44.	1.6	8
1047	Enhanced activity of very low density lipoprotein receptor II promotes SGC7901 cell proliferation and migration. Life Sciences, 2009, 84, 402-408.	4.3	16
1048	Caffeic acid phenethyl ester accumulates β-catenin through GSK-3β and participates in proliferation through mTOR in C2C12 cells. Life Sciences, 2009, 84, 755-759.	4.3	8
1049	Is Wnt signalling the final common pathway leading to bone formation?. Molecular and Cellular Endocrinology, 2009, 310, 52-62.	3.2	116
1050	Autophagy Inhibition Compromises Degradation of Ubiquitin-Proteasome Pathway Substrates. Molecular Cell, 2009, 33, 517-527.	9.7	580
1051	RVB1/RVB2: Running Rings around Molecular Biology. Molecular Cell, 2009, 34, 521-533.	9.7	202
1052	Evidence that Fold-Change, and Not Absolute Level, of β-Catenin Dictates Wnt Signaling. Molecular Cell, 2009, 36, 872-884.	9.7	283
1053	Noncanonical Wnt Signaling in Tumor Progression and Metastasis. Zebrafish, 2009, 6, 21-28.	1.1	61
1054	Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis. Physical Biology, 2009, 6, 016008.	1.8	131
1057	Anatomic Pathology. , 2008, , 154-154.		0
1058	Inhibition of GSK-3β enhances reovirus-induced apoptosis in colon cancer cells. International Journal of Oncology, 2009, 35, .	3.3	6
1059	Targeting PKC: a novel role for beta-catenin in ER stress and apoptotic signaling. Blood, 2009, 113, 1513-1521.	1.4	65

#	Article	IF	CITATIONS
1060	Bortezomib induces osteoblast differentiation via Wnt-independent activation of β-catenin/TCF signaling. Blood, 2009, 113, 4319-4330.	1.4	132
1061	Aurora kinase A is a target of Wnt/β-catenin involved in multiple myeloma disease progression. Blood, 2009, 114, 2699-2708.	1.4	96
1062	C. elegans Genetic Networks Predict Roles for O-GlcNAc Cycling in Key Signaling Pathways. Current Signal Transduction Therapy, 2010, 5, 60-73.	0.5	2
1063	The Role of Wnt/Beta-Catenin Signaling in Renal Carcinogenesis: Lessons from Cadmium Toxicity Studies. Current Molecular Medicine, 2010, 10, 387-404.	1.3	43
1064	Intracellular pathways underlying the effects of lithium. Behavioural Pharmacology, 2010, 21, 473-492.	1.7	99
1065	Selective inhibition of chymotrypsin-like activity of the immunoproteasome and constitutive proteasome in WaldenstrA¶m macroglobulinemia. Blood, 2010, 115, 4051-4060.	1.4	77
1066	Regulation of Lrp6 phosphorylation. Cellular and Molecular Life Sciences, 2010, 67, 2551-2562.	5.4	161
1067	\hat{I}^3 -Catenin is an independent prognostic marker in early stage colorectal cancer. International Journal of Colorectal Disease, 2010, 25, 1301-1309.	2.2	11
1068	Genome-wide identification of new Wnt/ \hat{l}^2 -catenin target genes in the human genome using CART method. BMC Genomics, 2010, 11, 348.	2.8	50
1069	Striking the target in Wnt-y conditions: Intervening in Wnt signaling during cancer progression. Biochemical Pharmacology, 2010, 80, 702-711.	4.4	44
1070	PLAGL2 Regulates Wnt Signaling to Impede Differentiation in Neural Stem Cells and Gliomas. Cancer Cell, 2010, 17, 497-509.	16.8	224
1071	Identification of <i>ptpro</i> as a novel target gene of Wnt signaling and its potential role as a receptor for Wnt. FEBS Letters, 2010, 584, 3923-3928.	2.8	13
1072	4â€Aminoethylaminoâ€emodin – a novel potent inhibitor of GSKâ€3β– acts as an insulinâ€sensitizer avoidin downstream effects of activated βâ€catenin. Journal of Cellular and Molecular Medicine, 2010, 14, 1276-1293.	g 3.6	11
1073	βâ€catenin mediates insulinâ€like growth factorâ€l actions to promote cyclin D1 mRNA expression, cell proliferation and survival in oligodendroglial cultures. Clia, 2010, 58, 1031-1041.	4.9	43
1074	Accelerated liver regeneration and hepatocarcinogenesis in mice overexpressing serine-45 mutant β-catenin. Hepatology, 2010, 51, 1603-1613.	7.3	133
1075	SOX9 determines RUNX2 transactivity by directing intracellular degradation. Journal of Bone and Mineral Research, 2010, 25, 2680-2689.	2.8	124
1076	Wnt signaling in hematopoiesis: Crucial factors for selfâ€renewal, proliferation, and cell fate decisions. Journal of Cellular Biochemistry, 2010, 109, 844-849.	2.6	65
1077	Inhibition of βâ€catenin/Tcf signaling by flavonoids. Journal of Cellular Biochemistry, 2010, 110, 1376-1385.	2.6	51

#	Article	IF	CITATIONS
1078	Î′ atenin/NPRAP: A new member of the glycogen synthase kinaseâ€3β signaling complex that promotes β atenin turnover in neurons. Journal of Neuroscience Research, 2010, 88, 2350-2363.	2.9	28
1079	Dynamic proteomic overview of glioblastoma cells (A172) exposed to perillyl alcohol. Journal of Proteomics, 2010, 73, 1018-1027.	2.4	23
1080	An active extract of Lindera obtusiloba inhibits adipogenesis via sustained Wnt signaling and exerts anti-inflammatory effects in the 3T3-L1 preadipocytes. Journal of Nutritional Biochemistry, 2010, 21, 1170-1177.	4.2	32
1081	Substrate Competitive GSK-3 Inhibitors strategy and Implications. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 598-603.	2.3	50
1082	Dual-Color Click Beetle Luciferase Heteroprotein Fragment Complementation Assays. Chemistry and Biology, 2010, 17, 1018-1029.	6.0	65
1083	Dishevelled-3 C-terminal His single amino acid repeats are obligate for Wnt5a activation of non-canonical signaling. Journal of Molecular Signaling, 2010, 5, 19.	0.5	14
1084	Glycogen synthase kinaseâ€3β does not correlate with the expression and activity of βâ€catenin in gastric cancer. Apmis, 2010, 118, 782-790.	2.0	9
1085	Wnt signaling stabilizes the DIXDC1 protein through decreased ubiquitinâ€dependent degradation. Cancer Science, 2010, 101, 700-706.	3.9	12
1086	GSK3 signalling in neural development. Nature Reviews Neuroscience, 2010, 11, 539-551.	10.2	713
1087	Role of CK1 in GSK3Î ² -mediated phosphorylation and degradation of Snail. Oncogene, 2010, 29, 3124-3133.	5.9	71
1088	Mutant huntingtin-impaired degradation of β-catenin causes neurotoxicity in Huntington's disease. EMBO Journal, 2010, 29, 2433-2445.	7.8	108
1089	Peripheral blood gene expression in alopecia areata reveals molecular pathways distinguishing heritability, disease and severity. Genes and Immunity, 2010, 11, 531-541.	4.1	31
1090	Critical molecular pathways in cancer stem cells of chronic myeloid leukemia. Leukemia, 2010, 24, 1545-1554.	7.2	57
1091	Positive Feedback Regulation between Phospholipase D and Wnt Signaling Promotes Wnt-Driven Anchorage-Independent Growth of Colorectal Cancer Cells. PLoS ONE, 2010, 5, e12109.	2.5	44
1092	Independent Interactions of Phosphorylated \hat{l}^2 -Catenin with E-Cadherin at Cell-Cell Contacts and APC at Cell Protrusions. PLoS ONE, 2010, 5, e14127.	2.5	38
1093	Immunohistochemical study of β-catenin and functionally related molecular markers in tongue squamous cell carcinoma and its correlation with cellular proliferation. Oncology Letters, 2010, 1, 437-443.	1.8	9
1094	Molecular Characteristics and Risk Factors in Endometrial Cancer. International Journal of Gynecological Cancer, 2010, 20, 1207-1216.	2.5	10
1095	In silico Based Ligand Design and Docking Studies of CSK-3β Inhibitors. Chem-Bio Informatics Journal, 2010, 10, 1-12.	0.3	10

#	Article	IF	CITATIONS
1096	SOST and DKK: Antagonists of LRP Family Signaling as Targets for Treating Bone Disease. Journal of Osteoporosis, 2010, 2010, 1-9.	0.5	32
1097	Smad3 Prevents β-Catenin Degradation and Facilitates β-Catenin Nuclear Translocation in Chondrocytes. Journal of Biological Chemistry, 2010, 285, 8703-8710.	3.4	81
1098	The Motor Protein Myosin-X Transports VE-Cadherin along Filopodia To Allow the Formation of Early Endothelial Cell-Cell Contacts. Molecular and Cellular Biology, 2010, 30, 1703-1717.	2.3	71
1099	Identification and regulation of glycogen synthase kinase-3 during bovine embryo development. Reproduction, 2010, 140, 83-92.	2.6	42
1100	Ionizing Radiation Induces Cellular Senescence of Articular Chondrocytes via Negative Regulation of SIRT1 by p38 Kinase. Journal of Biological Chemistry, 2010, 285, 1283-1295.	3.4	141
1101	Shared molecular mechanisms regulate multiple catenin proteins: canonical Wnt signals and components modulate p120-catenin isoform-1 and additional p120 subfamily members. Journal of Cell Science, 2010, 123, 4351-4365.	2.0	53
1102	Quantitative Proteomic Analyses of Influenza Virus-Infected Cultured Human Lung Cells. Journal of Virology, 2010, 84, 10888-10906.	3.4	151
1103	Attenuation of the Wnt/β-catenin/TCF pathway by <i>in vivo</i> interferon-α2b (IFN-α2b) treatment in preneoplastic rat livers. Growth Factors, 2010, 28, 166-177.	1.7	8
1104	Glucocorticoids and Lithium in Adult Hippocampal Neurogenesis. Vitamins and Hormones, 2010, 82, 421-431.	1.7	14
1105	Coop functions as a corepressor of Pangolin and antagonizes Wingless signaling. Genes and Development, 2010, 24, 881-886.	5.9	17
1106	Antipermeability Function of PEDF Involves Blockade of the MAP Kinase/GSK/Ĵ²-Catenin Signaling Pathway and uPAR Expression. , 2010, 51, 3273.		47
1107	Wnt/β-Catenin Signaling in T-Cell Immunity and Cancer Immunotherapy. Clinical Cancer Research, 2010, 16, 4695-4701.	7.0	145
1108	The aryl hydrocarbon receptor (AhR) in the regulation of cell-cell contact and tumor growth. Carcinogenesis, 2010, 31, 1319-1328.	2.8	204
1109	Effects of Regulator of G Protein Signaling 19 (RGS19) on Heart Development and Function. Journal of Biological Chemistry, 2010, 285, 28627-28634.	3.4	14
1110	Nuclear Accumulation of β-Catenin Protein Indicates Activation of wnt Signaling in Chemically Induced Rat Nephroblastomas. Pediatric and Developmental Pathology, 2010, 13, 1-8.	1.0	17
1111	Homozygous Mutations in the 5′ Region of the JUP Gene Result in Cutaneous Disease but Normal Heart Development in Children. Journal of Investigative Dermatology, 2010, 130, 1543-1550.	0.7	49
1112	Cytoplasmic Localization of β-Catenin is a Marker of Poor Outcome in Breast Cancer Patients. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 301-309.	2.5	139
1113	The various roles of ubiquitin in Wnt pathway regulation. Cell Cycle, 2010, 9, 3724-3733.	2.6	74

#	Article	IF	Citations
1114	The WNT/β-Catenin Pathway. , 2010, , 367-391.		1
1115	Regulation of the Nrf2–Keap1 Antioxidant Response by the Ubiquitin Proteasome System: An Insight into Cullin-Ring Ubiquitin Ligases. Antioxidants and Redox Signaling, 2010, 13, 1699-1712.	5.4	355
1116	Insulin regulates Presenilin 1 localization via PI3K/Akt signaling. Neuroscience Letters, 2010, 483, 157-161.	2.1	9
1117	Innate antimicrobial host defense in small intestinal Crohn's disease. International Journal of Medical Microbiology, 2010, 300, 34-40.	3.6	47
1118	The Hippo Pathway Regulates Wnt/β-Catenin Signaling. Developmental Cell, 2010, 18, 579-591.	7.0	490
1119	O-linked β-N-acetylglucosamine (O-GlcNAc): Extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 96-106.	2.4	366
1120	Murrayafoline A attenuates the Wnt/ \hat{l}^2 -catenin pathway by promoting the degradation of intracellular \hat{l}^2 -catenin proteins. Biochemical and Biophysical Research Communications, 2010, 391, 915-920.	2.1	35
1121	Repeated DNA therapeutic vaccination of chronically SIV-infected macaques provides additional virological benefit. Vaccine, 2010, 28, 1962-1974.	3.8	34
1122	Interplay of Cadherin-Mediated Cell Adhesion and Canonical Wnt Signaling. Cold Spring Harbor Perspectives in Biology, 2010, 2, a002915-a002915.	5.5	546
1123	Role of glycogen synthase kinase-3 in Alzheimer's disease pathogenesis and glycogen synthase kinase-3 inhibitors. Expert Review of Neurotherapeutics, 2010, 10, 703-710.	2.8	111
1125	SCF/β-TrCP Promotes Glycogen Synthase Kinase 3-Dependent Degradation of the Nrf2 Transcription Factor in a Keap1-Independent Manner. Molecular and Cellular Biology, 2011, 31, 1121-1133.	2.3	647
1126	Structural Characterization of Partially Disordered Human Chibby: Insights into Its Function in the Wnt-Signaling Pathway. Biochemistry, 2011, 50, 715-726.	2.5	21
1127	5-Azacytidine. , 2011, , 324-325.		0
1128	Primary Hepatocellular Carcinoma. Molecular Pathology Library, 2011, , 831-848.	0.1	0
1129	Upregulation of Glycogen Synthase Kinase 3β in Human Colorectal Adenocarcinomas Correlates With Accumulation of CTNNB1. Clinical Colorectal Cancer, 2011, 10, 30-36.	2.3	18
1130	Angiogenic/Angiostatic Chemokines. , 2011, , 187-187.		0
1131	Androgen Receptor. , 2011, , 174-178.		0
1132	New Insights into the Mechanism of Wnt Signaling Pathway Activation. International Review of Cell and Molecular Biology, 2011, 291, 21-71.	3.2	224

#	Article	IF	CITATIONS
1133	AJCC., 2011,, 115-115.		0
1135	Role of Wnt/β-catenin signaling in liver metabolism and cancer. International Journal of Biochemistry and Cell Biology, 2011, 43, 1021-1029.	2.8	138
1136	Dysregulation of developmental pathways in bone metastasis. Bone, 2011, 48, 16-22.	2.9	37
1137	Growth inhibition of imatinib-resistant CML cells with the T315I mutation and hypoxia-adaptation by AV65 – a novel Wnt/β-catenin signaling inhibitor. Cancer Letters, 2011, 312, 91-100.	7.2	20
1138	The oncogenic PIM kinase family regulates drug resistance through multiple mechanisms. Drug Resistance Updates, 2011, 14, 203-211.	14.4	60
1139	Streptonigrin inhibits β-Catenin/Tcf signaling and shows cytotoxicity in β-catenin-activated cells. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 1340-1345.	2.4	13
1140	Identification of phosphorylation sites on the E3 ubiquitin ligase UBR5/EDD. Journal of Proteomics, 2011, 75, 603-609.	2.4	7
1141	Critical Scaffolding Regions of the Tumor Suppressor Axin1 Are Natively Unfolded. Journal of Molecular Biology, 2011, 405, 773-786.	4.2	58
1142	Wnt/βâ€catenin signaling is stimulated by αâ€melanocyteâ€stimulating hormone in melanoma and melanocyte cells: implication in cell differentiation. Pigment Cell and Melanoma Research, 2011, 24, 309-325.	3.3	80
1143	T Cell Factor 1 Regulates Thymocyte Survival via a RORγt-Dependent Pathway. Journal of Immunology, 2011, 187, 5964-5973.	0.8	34
1144	Basic Principles and Emerging Concepts in the Redox Control of Transcription Factors. Antioxidants and Redox Signaling, 2011, 15, 2335-2381.	5.4	493
1145	The Role of Glycogen Synthase Kinase-3 (GSK-3) in Alzheimer's Disease. , 0, , .		4
1146	Genetic, Epigenetic and Molecular Changes in Melanoma: A New Paradigm for Biological Classification. , 0, , .		1
1147	Targeting the osteoblast: approved and experimental anabolic agents for the treatment of osteoporosis. Hormones, 2011, 10, 174-195.	1.9	23
1148	Regulation of cell fate determination by Skp1-Cullin1-F-box (SCF) E3 ubiquitin ligases. International Journal of Developmental Biology, 2011, 55, 249-260.	0.6	15
1149	Aneuploidy. , 2011, , 178-184.		0
1150	Regenerative medicine and tissue engineering in orthopaedic surgery. Frontiers in Bioscience - Elite, 2011, E3, 923-944.	1.8	53
1151	Deconstructing GSK-3: The Fine Regulation of Its Activity. International Journal of Alzheimer's Disease, 2011, 2011, 1-12.	2.0	113

#	Article	IF	CITATIONS
1152	Salmonella Interaction with and Passage through the Intestinal Mucosa: Through the Lens of the Organism. Frontiers in Microbiology, 2011, 2, 88.	3.5	53
1153	Modulation of GSK-3 as a Therapeutic Strategy on Tau Pathologies. Frontiers in Molecular Neuroscience, 2011, 4, 24.	2.9	95
1154	GSK-3: Functional Insights from Cell Biology and Animal Models. Frontiers in Molecular Neuroscience, 2011, 4, 40.	2.9	396
1155	Wnt/β-Catenin Signaling Enhances Cyclooxygenase-2 (COX2) Transcriptional Activity in Gastric Cancer Cells. PLoS ONE, 2011, 6, e18562.	2.5	97
1156	Role of β-Catenin in Regulating Microvascular Endothelial Cell Hyperpermeability. Journal of Trauma, 2011, 70, 481-488.	2.3	18
1157	Chronic stress targets posttranscriptional mechanisms to rapidly upregulate α _{1C} -subunit of Ca _v 1.2b calcium channels in colonic smooth muscle cells. American Journal of Physiology - Renal Physiology, 2011, 300, G154-G163.	3.4	11
1158	Endocytic Trafficking and Wnt/β-Catenin Signaling. Current Drug Targets, 2011, 12, 1216-1222.	2.1	8
1159	Xrel3/XrelA attenuates β-catenin-mediated transcription during mesoderm formation in <i>Xenopus</i> embryos. Biochemical Journal, 2011, 435, 247-257.	3.7	3
1160	l²-catenin is a molecular switch that regulates transition of cell-cell adhesion to fusion. Scientific Reports, 2011, 1, 68.	3.3	28
1161	The regulatory mechanism of melanogenesis by FTY720, a sphingolipid analogue. Experimental Dermatology, 2011, 20, 237-241.	2.9	15
1162	The eye of Drosophila as a model system for studying intracellular signaling in ontogenesis and pathogenesis. Biochemistry (Moscow), 2011, 76, 1556-1581.	1.5	9
1163	Testosterone regulates cell proliferation in aggressive fibromatosis (desmoid tumour). British Journal of Cancer, 2011, 104, 1452-1458.	6.4	18
1164	Reactive astrocytes and Wnt/l²-catenin signaling link nigrostriatal injury to repair in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Neurobiology of Disease, 2011, 41, 508-527.	4.4	177
1165	Wnt signaling and colon tumorigenesis — A view from the periphery. Experimental Cell Research, 2011, 317, 2748-2758.	2.6	69
1166	Evolution of the parathyroid hormone family and skeletal formation pathways. General and Comparative Endocrinology, 2011, 170, 79-91.	1.8	15
1167	S-Adenosylmethionine regulates connexins sub-types expressed by hepatocytes. European Journal of Cell Biology, 2011, 90, 312-322.	3.6	10
1168	Tumor necrosis factor-α induces increased lung vascular permeability: A role for GSK3α/β. European Journal of Pharmacology, 2011, 657, 159-166.	3.5	7
1169	Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nature Cell Biology, 2011, 13, 838-845.	10.3	475

~	~
CITATION	REPORT

#	Article	IF	CITATIONS
1170	Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnology Journal, 2011, 6, 1130-1146.	3.5	380
1171	Luteolin inhibits cell proliferation during Azoxymethane-induced experimental colon carcinogenesis via Wnt/ β-catenin pathway. Investigational New Drugs, 2011, 29, 273-284.	2.6	73
1172	A mouse transgenic approach to induce β-catenin signaling in a temporally controlled manner. Transgenic Research, 2011, 20, 827-840.	2.4	9
1173	Osteoblast physiology in normal and pathological conditions. Cell and Tissue Research, 2011, 343, 289-302.	2.9	268
1174	Protein kinase A antagonist inhibits β-catenin nuclear translocation, c-Myc and COX-2 expression and tumor promotion in ApcMin/+ mice. Molecular Cancer, 2011, 10, 149.	19.2	41
1175	Regulation of β-catenin by t-DARPP in upper gastrointestinal cancer cells. Molecular Cancer, 2011, 10, 32.	19.2	26
1176	A Wnt1 regulated Frizzled-1/β-Cateninsignaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection. Molecular Neurodegeneration, 2011, 6, 49.	10.8	179
1177	Crystallographic characterization of the DIX domain of the Wnt signalling positive regulator Ccd1. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 758-761.	0.7	1
1178	Interleukin-18/WNT1-inducible signaling pathway protein-1 signaling mediates human saphenous vein smooth muscle cell proliferation. Journal of Cellular Physiology, 2011, 226, 3303-3315.	4.1	67
1179	Beta atenin signaling in hepatic development and progenitors: Which way does the WNT blow?. Developmental Dynamics, 2011, 240, 486-500.	1.8	71
1180	Negative regulation of HIF-1α by an FBW7-mediated degradation pathway during hypoxia. Journal of Cellular Biochemistry, 2011, 112, 3882-3890.	2.6	79
1181	Mechanism of kinase inactivation and nonbinding of fratide to GSK3β due to K85M mutation: Molecular dynamics simulation and normal mode analysis. Biopolymers, 2011, 95, 669-681.	2.4	19
1182	Inhibitory effect of nordihydroguaiaretic acid on β-catenin/Tcf signalling in β-catenin-activated cells. Cell Biochemistry and Function, 2011, 29, 22-29.	2.9	2
1183	Regulation of stem cell signaling by nanoparticle-mediated intracellular protein delivery. Biomaterials, 2011, 32, 3210-3219.	11.4	56
1184	Nucleo-cytoplasmic shuttling of APC can maximize β atenin/TCF concentration. Journal of Theoretical Biology, 2011, 279, 132-142.	1.7	13
1185	AV-65, a novel Wnt/ \hat{l}^2 -catenin signal inhibitor, successfully suppresses progression of multiple myeloma in a mouse model. Blood Cancer Journal, 2011, 1, e43-e43.	6.2	43
1186	Wnt Signaling. Current Topics in Developmental Biology, 2011, 97, 21-53.	2.2	47
1187	GATA Transcription Factors in the Developing Reproductive System. Advances in Genetics, 2011, 76, 93-134.	1.8	32

#	Article	IF	CITATIONS
1188	Points of Therapeutic Intervention Along the Wnt Signaling Pathway in Hepatocellular Carcinoma. Anti-Cancer Agents in Medicinal Chemistry, 2011, 11, 549-559.	1.7	20
1189	A Novel Conditionally Replicating "Armed―Adenovirus Selectively Targeting Gastrointestinal Tumors with Aberrant wnt Signaling. Human Gene Therapy, 2011, 22, 427-437.	2.7	6
1190	Age-dependent Accumulation of Soluble Amyloid Î ² (AÎ ²) Oligomers Reverses the Neuroprotective Effect of Soluble Amyloid Precursor Protein-α (sAPPα) by Modulating Phosphatidylinositol 3-Kinase (PI3K)/Akt-GSK-3Î ² Pathway in Alzheimer Mouse Model. Journal of Biological Chemistry, 2011, 286, 18414-18425.	3.4	164
1191	Distinct Molecular Regulation of Glycogen Synthase Kinase-3α Isozyme Controlled by Its N-terminal Region. Journal of Biological Chemistry, 2011, 286, 13470-13480.	3.4	41
1192	The EDD E3 ubiquitin ligase ubiquitinates and up-regulates β-catenin. Molecular Biology of the Cell, 2011, 22, 399-411.	2.1	99
1193	Snapshots of Protein Dynamics and Post-translational Modifications In One Experiment—β-Catenin and Its Functions. Molecular and Cellular Proteomics, 2011, 10, M110.007377.	3.8	18
1194	Modulation of the ligand-independent traffic of Notch by Axin and Apc contributes to the activation of Armadillo in Drosophila. Development (Cambridge), 2011, 138, 1501-1506.	2.5	29
1195	Galangin Suppresses the Proliferation of β-Catenin Response Transcription-Positive Cancer Cells by Promoting Adenomatous Polyposis Coli/Axin/Glycogen Synthase Kinase-3β-Independent β-Catenin Degradation. Molecular Pharmacology, 2011, 79, 1014-1022.	2.3	40
1196	Wnt signaling meets internal dissent: Figure 1 Genes and Development, 2011, 25, 1759-1762.	5.9	9
1197	Acute Myeloid Leukemia. , 2011, , 29-32.		0
1197 1198	Acute Myeloid Leukemia. , 2011, , 29-32. Platelet-Derived Growth Factor Regulates Breast Cancer Progression via Î ² -Catenin Expression. Pathobiology, 2011, 78, 253-260.	3.8	0 16
	Platelet-Derived Growth Factor Regulates Breast Cancer Progression via Î ² -Catenin Expression.	3.8 2.6	
1198	Platelet-Derived Growth Factor Regulates Breast Cancer Progression via Î ² -Catenin Expression. Pathobiology, 2011, 78, 253-260. Identification of Mom12 and Mom13, two novel modifier loci of ApcMin-mediated intestinal		16
1198 1199	 Platelet-Derived Growth Factor Regulates Breast Cancer Progression via Î²-Catenin Expression. Pathobiology, 2011, 78, 253-260. Identification of Mom12 and Mom13, two novel modifier loci of ApcMin-mediated intestinal tumorigenesis. Cell Cycle, 2011, 10, 1092-1099. Mislocalization of the E3 Ligase, Î²-Transducin Repeat-containing Protein 1 (Î²-TrCP1), in Glioblastoma Uncouples Negative Feedback between the Pleckstrin Homology Domain Leucine-rich Repeat Protein 	2.6	16 18
1198 1199 1200	 Platelet-Derived Growth Factor Regulates Breast Cancer Progression via Î²-Catenin Expression. Pathobiology, 2011, 78, 253-260. Identification of Mom12 and Mom13, two novel modifier loci of ApcMin-mediated intestinal tumorigenesis. Cell Cycle, 2011, 10, 1092-1099. Mislocalization of the E3 Ligase, Î²-Transducin Repeat-containing Protein 1 (Î²-TrCP1), in Glioblastoma Uncouples Negative Feedback between the Pleckstrin Homology Domain Leucine-rich Repeat Protein Phosphatase 1 (PHLPP1) and Akt. Journal of Biological Chemistry, 2011, 286, 19777-19788. Î²-Catenin Inhibits T Cell Activation by Selective Interference with Linker for Activation of T 	2.6 3.4	16 18 43
1198 1199 1200 1201	Platelet-Derived Growth Factor Regulates Breast Cancer Progression via β-Catenin Expression. Pathobiology, 2011, 78, 253-260. Identification of Mom12 and Mom13, two novel modifier loci of ApcMin-mediated intestinal tumorigenesis. Cell Cycle, 2011, 10, 1092-1099. Mislocalization of the E3 Ligase, β-Transducin Repeat-containing Protein 1 (β-TrCP1), in Glioblastoma Uncouples Negative Feedback between the Pleckstrin Homology Domain Leucine-rich Repeat Protein Phosphatase 1 (PHLPP1) and Akt. Journal of Biological Chemistry, 2011, 286, 19777-19788. β-Catenin Inhibits T Cell Activation by Selective Interference with Linker for Activation of T Cellsâ€"Phospholipase C-γ1 Phosphorylation. Journal of Immunology, 2011, 186, 784-790. Presenilin Regulates Insulin Signaling via a γ-Secretase-independent Mechanism. Journal of Biological	2.6 3.4 0.8	16 18 43 50
1198 1199 1200 1201 1202	 Platelet-Derived Growth Factor Regulates Breast Cancer Progression via Î²-Catenin Expression. Pathobiology, 2011, 78, 253-260. Identification of Mom12 and Mom13, two novel modifier loci of ApcMin-mediated intestinal tumorigenesis. Cell Cycle, 2011, 10, 1092-1099. Mislocalization of the E3 Ligase, Î²-Transducin Repeat-containing Protein 1 (Î²-TrCP1), in Glioblastoma Uncouples Negative Feedback between the Pleckstrin Homology Domain Leucine-rich Repeat Protein Phosphatase 1 (PHLPP1) and Akt. Journal of Biological Chemistry, 2011, 286, 19777-19788. Î²-Catenin Inhibits T Cell Activation by Selective Interference with Linker for Activation of T Cellsãe" Phospholipase C-Î³1 Phosphorylation. Journal of Immunology, 2011, 186, 784-790. Presenilin Regulates Insulin Signaling via a Î³-Secretase-independent Mechanism. Journal of Biological Chemistry, 2011, 286, 25309-25316. SRY-Box Containing Gene 17 Regulates the Wnt/Î²-Catenin Signaling Pathway in Oligodendrocyte 	2.6 3.4 0.8 3.4	16 18 43 50 12

#	Article	IF	CITATIONS
1206	Wnt/β-catenin Signaling in Normal and Cancer Stem Cells. Cancers, 2011, 3, 2050-2079.	3.7	107
1207	The β-Catenin Binding Protein ICAT Modulates Androgen Receptor Activity. Molecular Endocrinology, 2011, 25, 1677-1688.	3.7	16
1208	NLK positively regulates Wnt/β-catenin signalling by phosphorylating LEF1 in neural progenitor cells. EMBO Journal, 2012, 31, 1904-1915.	7.8	69
1209	Human Cytomegalovirus Infection Dysregulates the Canonical Wnt/β-catenin Signaling Pathway. PLoS Pathogens, 2012, 8, e1002959.	4.7	75
1210	HEB in the Spotlight: Transcriptional Regulation of T-Cell Specification, Commitment, and Developmental Plasticity. Clinical and Developmental Immunology, 2012, 2012, 1-15.	3.3	33
1211	Our evolving view of Wnt signaling in C. elegans. Worm, 2012, 1, 82-89.	1.0	5
1212	Function of Wnt/β-catenin in counteracting Tcf3 repression through the Tcf3–β-catenin interaction. Development (Cambridge), 2012, 139, 2118-2129.	2.5	97
1213	GSK-3 Promotes Cell Survival, Growth, and PAX3 Levels in Human Melanoma Cells. Molecular Cancer Research, 2012, 10, 1065-1076.	3.4	31
1214	The influence of 5-aminosalicylic acid on the progression of colorectal adenomas via the ss-catenin signaling pathway. Carcinogenesis, 2012, 33, 637-643.	2.8	36
1215	Reversible Modification of Adenomatous Polyposis Coli (APC) with K63-linked Polyubiquitin Regulates the Assembly and Activity of the β-Catenin Destruction Complex. Journal of Biological Chemistry, 2012, 287, 28552-28563.	3.4	29
1216	Hepatitis C Virus Induces Epithelial-Mesenchymal Transition in Primary Human Hepatocytes. Journal of Virology, 2012, 86, 13621-13628.	3.4	64
1217	α7 Nicotinic Acetylcholine Receptor Agonism Confers Neuroprotection Through GSK-3β Inhibition in a Mouse Model of Intracerebral Hemorrhage. Stroke, 2012, 43, 844-850.	2.0	95
1218	WNT/β-Catenin-Signaling Pathway Stimulates the Proliferation of Cultured Adult Human Sertoli Cells via Upregulation of C-myc Expression. Reproductive Sciences, 2012, 19, 1232-1240.	2.5	29
1219	Wnt/β-Catenin Signaling Participates in Cementoblast/Osteoblast Differentiation of Dental Follicle Cells. Connective Tissue Research, 2012, 53, 390-397.	2.3	40
1220	Three decades of Wnts: a personal perspective on how a scientific field developed. EMBO Journal, 2012, 31, 2670-2684.	7.8	350
1221	The kinase Sgg modulates temporal development of macrochaetes in Drosophila by phosphorylation of Scute and Pannier. Development (Cambridge), 2012, 139, 325-334.	2.5	20
1222	The dopamine D2 receptor regulates Akt and GSK-3 via Dvl-3. International Journal of Neuropsychopharmacology, 2012, 15, 965-979.	2.1	43
1223	A Novel Function of YWHAZ/β-Catenin Axis in Promoting Epithelial–Mesenchymal Transition and Lung Cancer Metastasis. Molecular Cancer Research, 2012, 10, 1319-1331.	3.4	88

#	Article	IF	CITATIONS
1224	Structural and Functional Characterization of Nrf2 Degradation by the Glycogen Synthase Kinase 3/β-TrCP Axis. Molecular and Cellular Biology, 2012, 32, 3486-3499.	2.3	338
1225	Developing and Activated T Cell Survival Depends on Differential Signaling Pathways to Regulate Anti-Apoptotic Bcl-x _{L} . Clinical and Developmental Immunology, 2012, 2012, 1-6.	3.3	9
1226	Recent developments in bone anabolic therapy for osteoporosis. Expert Review of Endocrinology and Metabolism, 2012, 7, 677-685.	2.4	6
1227	Targeting a Novel Onco-glycoprotein Antigen at Tumoral Pancreatic Cell Surface by mAb16D10 Induces Cell Death. Journal of Immunology, 2012, 189, 3386-3396.	0.8	11
1228	Small molecule-based disruption of the Axin/β-catenin protein complex regulates mesenchymal stem cell differentiation. Cell Research, 2012, 22, 237-247.	12.0	113
1229	β-Catenin Dynamics in the Regulation of Microvascular Endothelial Cell Hyperpermeability. Shock, 2012, 37, 306-311.	2.1	34
1230	Signalling through the Type 1 Insulin-Like Growth Factor Receptor (IGF1R) Interacts with Canonical Wnt Signalling to Promote Neural Proliferation in Developing Brain. ASN Neuro, 2012, 4, AN20120009.	2.7	27
1231	Targeting the Wingless Signaling Pathway with Natural Compounds as Chemopreventive or Chemotherapeutic Agents. Current Pharmaceutical Biotechnology, 2012, 13, 245-254.	1.6	46
1232	The Prognostic Value of the Immunohistochemical Expression and Mutational Pattern of the Key Mediator of Wnt Signaling. Applied Immunohistochemistry and Molecular Morphology, 2012, 20, 62-70.	1.2	9
1233	Tumor stem cells: A new approach for tumor therapy (Review). Oncology Letters, 2012, 4, 187-193.	1.8	6
1234	FANCL ubiquitinates \hat{I}^2 -catenin and enhances its nuclear function. Blood, 2012, 120, 323-334.	1.4	30
1235	The role of sirtuin 2 activation by nicotinamide phosphoribosyltransferase in the aberrant proliferation and survival of myeloid leukemia cells. Haematologica, 2012, 97, 551-559.	3.5	87
1236	Ursolic Acid from <i>Oldenlandia diffusa</i> Induces Apoptosis <i>via</i> Activation of Caspases and Phosphorylation of Clycogen Synthase Kinase 3 Beta in SK-OV-3 Ovarian Cancer Cells. Biological and Pharmaceutical Bulletin, 2012, 35, 1022-1028.	1.4	55
1237	Wnt Signaling: Role in Alzheimer Disease and Schizophrenia. Journal of NeuroImmune Pharmacology, 2012, 7, 788-807.	4.1	165
1238	Differential requirements for Wnt and Notch signaling in hematopoietic versus thymic niches. Annals of the New York Academy of Sciences, 2012, 1266, 78-93.	3.8	15
1239	Plasticity of Subventricular Zone Neuroprogenitors in MPTP (1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine) Mouse Model of Parkinson's Disease Involves Cross Talk between Inflammatory and Wnt/Á-Catenin Signaling Pathways: Functional Consequences for Neuroprotection and Repair, Journal of Neuroscience, 2012, 32, 2062-2085.	3.6	123
1240	Wnt Signaling and Cardiac Differentiation. Progress in Molecular Biology and Translational Science, 2012, 111, 153-174.	1.7	29
1241	Wnt/beta-Catenin Signaling in Glioma. Journal of NeuroImmune Pharmacology, 2012, 7, 740-749.	4.1	113

#	Article	IF	CITATIONS
1242	FOXO3a and Î ² -catenin co-localization: double trouble in colon cancer?. Nature Medicine, 2012, 18, 854-856.	30.7	14
1243	Inhibition of IGF-1 Signaling by Genistein: Modulation of E-Cadherin Expression and Downregulation of Î ² -Catenin Signaling in Hormone Refractory PC-3 Prostate Cancer Cells. Nutrition and Cancer, 2012, 64, 153-162.	2.0	54
1244	Mechanosignaling pathways in cutaneous scarring. Archives of Dermatological Research, 2012, 304, 589-597.	1.9	78
1245	Wnt signaling though beta-catenin is required for prostate lineage specification. Developmental Biology, 2012, 371, 246-255.	2.0	48
1246	The Roles of Intrinsic Disorder in Orchestrating the Wnt-Pathway. Journal of Biomolecular Structure and Dynamics, 2012, 29, 843-861.	3.5	44
1247	Clinicopathological Analysis of β-catenin and Axin-1 in Solid Pseudopapillary Neoplasms of the Pancreas. Annals of Surgical Oncology, 2012, 19, 438-446.	1.5	27
1248	Combination of Apolipoprotein E4 and High Carbohydrate Diet Reduces Hippocampal BDNF and Arc Levels and Impairs Memory in Young Mice. Journal of Alzheimer's Disease, 2012, 32, 341-355.	2.6	38
1249	RUNX3-mediated transcriptional inhibition of Akt suppresses tumorigenesis of human gastric cancer cells. Oncogene, 2012, 31, 4302-4316.	5.9	39
1250	Endogenous Inhibitory Mechanisms and the Regulation of Platelet Function. Methods in Molecular Biology, 2012, 788, 341-366.	0.9	28
1251	Paths to stemness: building the ultimate antitumour T cell. Nature Reviews Cancer, 2012, 12, 671-684.	28.4	487
1252	Leptin restores adult hippocampal neurogenesis in a chronic unpredictable stress model of depression and reverses glucocorticoid-induced inhibition of GSK-31²/l²-catenin signaling. Molecular Psychiatry, 2012, 17, 790-808.	7.9	180
1253	Mitotic and mitogenic Wnt signalling. EMBO Journal, 2012, 31, 2705-2713.	7.8	251
1254	Differential requirements for β-catenin during mouse development. Development (Cambridge), 2012, 139, 3711-3721.	2.5	52
1255	Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia, 2012, 26, 414-421.	7.2	180
1256	β-catenin expression in areca quid chewing-associated oral squamous cell carcinomas and upregulated by arecoline in human oral epithelial cells. Journal of the Formosan Medical Association, 2012, 111, 194-200.	1.7	19
1257	Circadian regulation of cellular homeostasis – Implications for cell metabolism and clinical diseases. Medical Hypotheses, 2012, 79, 17-24.	1.5	1
1258	SIRT1 inhibits proliferation of pancreatic cancer cells expressing pancreatic adenocarcinoma up-regulated factor (PAUF), a novel oncogene, by suppression of β-catenin. Biochemical and Biophysical Research Communications, 2012, 423, 270-275.	2.1	43
1259	Blockade of VEGF-induced GSK/β-catenin signaling, uPAR expression and increased permeability by dominant negative p38α. Experimental Eye Research, 2012, 100, 101-108.	2.6	10

.

#	Article	IF	Citations
1260	The effect of citalopram on chronic stress-induced depressive-like behavior in rats through GSK3β/β-catenin activation in the medial prefrontal cortex. Brain Research Bulletin, 2012, 88, 338-344.	3.0	33
1261	Wnt Signaling through Inhibition of β-Catenin Degradation in an Intact Axin1 Complex. Cell, 2012, 149, 1245-1256.	28.9	747
1262	Association of <i>DVL2</i> and <i>AXIN2</i> gene polymorphisms with cleft lip with or without cleft palate in a polish population. Birth Defects Research Part A: Clinical and Molecular Teratology, 2012, 94, 943-950.	1.6	20
1263	Proteasome Inhibitors and Bone Disease. Seminars in Hematology, 2012, 49, 243-248.	3.4	26
1264	β-Catenin mutations in 2 nested stromal epithelial tumors of the liver—a neoplasia with defective mesenchymal-epithelial transition. Human Pathology, 2012, 43, 1815-1827.	2.0	39
1265	Lysine 394 is a novel Rad6B-induced ubiquitination site on beta-catenin. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1686-1696.	4.1	23
1266	Beneficial effects of sulindac in focal cerebral ischemia: A positive role in Wnt/β-catenin pathway. Brain Research, 2012, 1482, 71-80.	2.2	37
1267	Isolation and nucleotide sequence analysis of the of Rhinella arenarum β-catenin: An mRNA and protein expression study during the larval stages of the digestive tract development. Gene, 2012, 511, 256-264.	2.2	5
1268	Developmental Signaling Networks. , 2012, , 279-302.		0
1269	Protein Kinase Technologies. Neuromethods, 2012, , .	0.3	0
1270	Sonic Hedgehog Regulates Wnt Activity During Neural Circuit Formation. Vitamins and Hormones, 2012, 88, 173-209.	1.7	19
1271	Adherens Junctions: from Molecular Mechanisms to Tissue Development and Disease. Sub-Cellular Biochemistry, 2012, , .	2.4	6
1272	Activating Mutations in \hat{l}^2 -Catenin in Colon Cancer Cells Alter Their Interaction with Macrophages; the Role of Snail. PLoS ONE, 2012, 7, e45462.	2.5	45
1273	Small Molecule-Based Promotion of PKCα-Mediated β-Catenin Degradation Suppresses the Proliferation of CRT-Positive Cancer Cells. PLoS ONE, 2012, 7, e46697.	2.5	32
1274	Regulation of Amphiregulin Gene Expression by β-Catenin Signaling in Human Hepatocellular Carcinoma Cells: A Novel Crosstalk between FGF19 and the EGFR System. PLoS ONE, 2012, 7, e52711.	2.5	45
1275	Structural and Functional Relationships Between GSK31 $^\pm$ and GSK31 2 Proteins. Current Biotechnology, 2012, 1, 80-87.	0.4	2
1276	Role and Function of Wnts in the Regulation of Myogenesis: When Wnt Meets Myostatin. , 0, , .		4
1277	Wnt signaling pathways in urological cancers: past decades and still growing. Molecular Cancer, 2012, 11, 7	19.2	52

#	Article	IF	CITATIONS
1278	Cortical rotation and messenger RNA localization in <i>Xenopus</i> axis formation. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 371-388.	5.9	38
1279	Signaling in Cell Differentiation and Morphogenesis. Cold Spring Harbor Perspectives in Biology, 2012, 4, a008151-a008151.	5.5	121
1280	Chemoprevention of familial adenomatous polyposis by bromoâ€noscapine (EM011) in the <i>Apc^{Min/+}</i> mouse model. International Journal of Cancer, 2012, 131, 1435-1444.	5.1	8
1281	Wnt and BMP signals control intestinal adenoma cell fates. International Journal of Cancer, 2012, 131, 2242-2252.	5.1	21
1282	Wnt/β-Catenin Signaling and Disease. Cell, 2012, 149, 1192-1205.	28.9	4,658
1283	Conditional activation of β atenin signaling in mice leads to severe defects in intervertebral disc tissue. Arthritis and Rheumatism, 2012, 64, 2611-2623.	6.7	92
1284	Cartilage development and degeneration: a Wnt Wnt situation. Cell Biochemistry and Function, 2012, 30, 633-642.	2.9	35
1285	IFN-γ and TNF-α-induced GBP-1 inhibits epithelial cell proliferation through suppression of β-catenin/TCF signaling. Mucosal Immunology, 2012, 5, 681-690.	6.0	55
1286	Wnt/β-Catenin Signaling Regulates Telomerase in Stem Cells and Cancer Cells. Science, 2012, 336, 1549-1554.	12.6	460
1287	FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death and Differentiation, 2012, 19, 968-979.	11.2	235
1288	Novel aspects of the apolipoprotein-E receptor family: regulation and functional role of their proteolytic processing. Frontiers in Biology, 2012, 7, 113-143.	0.7	6
1289	Effect of double mutations K214/A–E215/Q of FRATide on GSK3β: insights from molecular dynamics simulation and normal mode analysis. Amino Acids, 2012, 43, 267-277.	2.7	17
1290	Osteocytes: central conductors of bone biology in normal and pathological conditions. Acta Physiologica, 2012, 204, 317-330.	3.8	44
1291	Role of CSN5/JAB1 in Wnt/β atenin activation in colorectal cancer cells. FEBS Letters, 2012, 586, 1645-1651.	2.8	30
1292	Protein levels of β-catenin and activation state of glycogen synthase kinase-3β in major depression. A study with postmortem prefrontal cortex. Journal of Affective Disorders, 2012, 136, 185-188.	4.1	80
1293	Glycogen synthase kinase-3 (CSK-3) inhibition induces apoptosis in leukemic cells through mitochondria-dependent pathway. Leukemia Research, 2012, 36, 499-508.	0.8	32
1294	Capsaicin represses transcriptional activity of β-catenin in human colorectal cancer cells. Journal of Nutritional Biochemistry, 2012, 23, 646-655.	4.2	78
1295	Wnt/β-catenin signalling in adrenal physiology and tumour development. Molecular and Cellular Endocrinology, 2012, 351, 87-95.	3.2	111

#	Article	IF	CITATIONS
1296	β-Catenin stabilization in skeletal muscles, but not in motor neurons, leads to aberrant motor innervation of the muscle during neuromuscular development in mice. Developmental Biology, 2012, 366, 255-267.	2.0	33
1297	raw Functions through JNK signaling and cadherin-based adhesion to regulate Drosophila gonad morphogenesis. Developmental Biology, 2012, 367, 114-125.	2.0	22
1298	Hair follicle stem cell differentiation is inhibited through crossâ€ŧalk between Wnt/β atenin and androgen signalling in dermal papilla cells from patients with androgenetic alopecia. British Journal of Dermatology, 2012, 166, 1035-1042.	1.5	115
1299	Effects of Wnt/βâ€catenin signalling on proliferation and differentiation of apical papilla stem cells. Cell Proliferation, 2012, 45, 121-131.	5.3	57
1300	Epigenetic silencing of sFRP1 activates the canonical Wnt pathway and contributes to increased cell growth and proliferation in hepatocellular carcinoma. Tumor Biology, 2012, 33, 325-336.	1.8	47
1301	A Class III Semaphorin (Sema3e) Inhibits Mouse Osteoblast Migration and Decreases Osteoclast Formation In Vitro. Calcified Tissue International, 2012, 90, 151-162.	3.1	40
1302	Oct4 was a novel target of Wnt signaling pathway. Molecular and Cellular Biochemistry, 2012, 362, 233-240.	3.1	49
1303	GSK3Î ² phosphorylation of the KLF6 tumor suppressor promotes its transactivation of p21. Oncogene, 2013, 32, 4557-4564.	5.9	36
1304	Regulation of \hat{I}^2 -catenin stabilization in human platelets. Biochimie, 2013, 95, 1252-1257.	2.6	11
1305	Canonical Wnt Signaling Negatively Modulates Regulatory T Cell Function. Immunity, 2013, 39, 298-310.	14.3	183
1305 1306	Canonical Wnt Signaling Negatively Modulates Regulatory T Cell Function. Immunity, 2013, 39, 298-310. Emerging phytochemicals for prevention of melanoma invasion. Cancer Letters, 2013, 335, 251-258.	14.3 7.2	183 22
1306	Emerging phytochemicals for prevention of melanoma invasion. Cancer Letters, 2013, 335, 251-258. Loss of Xenopus cadherin-11 leads to increased Wnt/Ĵ²-catenin signaling and up-regulation of target	7.2	22
1306 1307	Emerging phytochemicals for prevention of melanoma invasion. Cancer Letters, 2013, 335, 251-258. Loss of Xenopus cadherin-11 leads to increased Wnt/β-catenin signaling and up-regulation of target genes c-myc and cyclin D1 in neural crest. Developmental Biology, 2013, 383, 132-145. Adherens junctions as targets of microorganisms: A focus on <i>Helicobacter pylori</i> . FEBS Letters,	7.2 2.0	22 47
1306 1307 1308	Emerging phytochemicals for prevention of melanoma invasion. Cancer Letters, 2013, 335, 251-258. Loss of Xenopus cadherin-11 leads to increased Wht/β-catenin signaling and up-regulation of target genes c-myc and cyclin D1 in neural crest. Developmental Biology, 2013, 383, 132-145. Adherens junctions as targets of microorganisms: A focus on <i>Helicobacter pylori</i> . FEBS Letters, 2013, 587, 259-265. Characterization of xanthatin: Anticancer properties and mechanisms of inhibited murine melanoma in	7.2 2.0 2.8	22 47 30
1306 1307 1308 1309	Emerging phytochemicals for prevention of melanoma invasion. Cancer Letters, 2013, 335, 251-258. Loss of Xenopus cadherin-11 leads to increased Wht/l²-catenin signaling and up-regulation of target genes c-myc and cyclin D1 in neural crest. Developmental Biology, 2013, 383, 132-145. Adherens junctions as targets of microorganisms: A focus on <i>Helicobacter pylori</i> . FEBS Letters, 2013, 587, 259-265. Characterization of xanthatin: Anticancer properties and mechanisms of inhibited murine melanoma in vitro and in vivo. Phytomedicine, 2013, 20, 865-873. Wht/l²-catenin signalling regulates <i>Sox17</i> expression and is essential for organizer and	7.22.02.85.3	22 47 30 27
1306 1307 1308 1309 1310	Emerging phytochemicals for prevention of melanoma invasion. Cancer Letters, 2013, 335, 251-258. Loss of Xenopus cadherin-11 leads to increased Whtĺĵ²-catenin signaling and up-regulation of target genes c-myc and cyclin D1 in neural crest. Developmental Biology, 2013, 383, 132-145. Adherens junctions as targets of microorganisms: A focus on <i>Helicobacter pylori</i> . FEBS Letters, 2013, 587, 259-265. Characterization of xanthatin: Anticancer properties and mechanisms of inhibited murine melanoma in vitro and in vivo. Phytomedicine, 2013, 20, 865-873. Whtĺĵ²-catenin signalling regulates <i>Sox17</i> expression and is essential for organizer and endoderm formation in the mouse. Development (Cambridge), 2013, 140, 3128-3138. ARF6-Regulated Endocytosis of Growth Factor Receptors Links Cadherin-Based Adhesion to Canonical	 7.2 2.0 2.8 5.3 2.5 	22 47 30 27 84

ARTICLE IF CITATIONS Identification of a Novel Role of ZMIZ2 Protein in Regulating the Activity of the Wnt/Î²-Catenin 1314 3.4 20 Signaling Pathway. Journal of Biological Chemistry, 2013, 288, 35913-35924. The Ephrin Signaling Pathway Regulates Morphology and Adhesion of Mouse Granulosa Cells In 2.7 Vitro1. Biology of Reproduction, 2013, 88, 25. ATR controls cellular adaptation to hypoxia through positive regulation of hypoxia-inducible factor 1 1316 5.9 43 (HIF-1) expression. Oncogene, 2013, 32, 4387-4396. Analysing the impact of nucleo-cytoplasmic shuttling of Î²-catenin and its antagonists APC, Axin and GSK3 on Wnt/l²-catenin signalling. Cellular Signalling, 2013, 25, 2210-2221. Intersection of Hippo/YAP and Wnt/β-catenin signaling pathways. Acta Biochimica Et 1318 2.0 62 Biophysica Sinica, 2013, 45, 71-79. Wnt signalling in kidney diseases: dual roles in renal injury and repair. Journal of Pathology, 2013, 229, 4.5 171 221-231. Novel Agents for Multiple Myeloma to Overcome Resistance in Phase III Clinical Trials. Seminars in 1320 2.2 38 Oncology, 2013, 40, 634-651. Targeting Stem Cell Behavior in Desmoid Tumors (Aggressive Fibromatosis) by Inhibiting Hedgehog 1321 5.3 16 Signaling. Neoplasia, 2013, 15, 712-719. Protein phosphatase 2A activity is required for functional adherent junctions in endothelial cells. 1322 2.5 18 Microvascular Research, 2013, 89, 86-94. Tubulin polymerization promoting protein 1 (TPPP1) increases \hat{I}^2 -catenin expression through inhibition of HDAC6 activity in U2OS osteosarcoma cells. Biochemical and Biophysical Research 2.1 Communications, 2013, 436, 571-577. <scp>A</scp> ntimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO 1324 293 6.9 Molecular Medicine, 2013, 5, 1465-1483. Glycogen synthase kinase-31² (GSK-31²) and its dysregulation in glioblastoma multiforme. Journal of 1.5 36 Clínical Neúroscience, 2013, 20, 1185-1192. Regulation of Tcf7l1 DNA Binding and Protein Stability as Principal Mechanisms of Wnt/î²-Catenin 1326 6.4 109 Signaling. Cell Reports, 2013, 4, 1-9. Mechanotransduction Pathways Promoting Tumor Progression Are Activated in Invasive Human 1327 3.8 Squamous Cell Carcinoma. American Journal of Pathology, 2013, 183, 930-937. 1328 The PI3K/Akt1 pathway enhances steady state levels of FANCL. Experimental Hematology, 2013, 41, S42. 0.4 0 ROCK2 regulates bFGF-induced proliferation of SH-SY5Y cells through GSK-31² and 1²-catenin pathway. 2.2 Brain Research, 2013, 1492, 7-17. Neural stem cells inhibit melanin production by activation of Wnt inhibitors. Journal of 1330 1.9 25 Dermatological Science, 2013, 72, 274-283. Decreasing stearoylâ€<scp>C</scp>o<scp>A</scp> desaturaseâ€1 expression inhibits βâ€catenin signaling in breast cancer cells. Cancer Science, 2013, 104, 36-42.

#	Article	IF	CITATIONS
1332	The Â-Catenin Destruction Complex. Cold Spring Harbor Perspectives in Biology, 2013, 5, a007898-a007898.	5.5	813
1333	Gene Regulatory Networks Mediating Canonical Wnt Signal-Directed Control of Pluripotency and Differentiation in Embryo Stem Cells. Stem Cells, 2013, 31, 2667-2679.	3.2	89
1334	Quantifying the transcriptional output of single alleles in single living mammalian cells. Nature Protocols, 2013, 8, 393-408.	12.0	27
1335	Wnt signaling: Role in LTP, neural networks and memory. Ageing Research Reviews, 2013, 12, 786-800.	10.9	76
1336	Paradoxical oncogenesis—the long-term effects of BRAF inhibition in melanoma. Nature Reviews Clinical Oncology, 2013, 10, 390-399.	27.6	171
1337	Systemic effects of Wnt signaling. Journal of Cellular Physiology, 2013, 228, 1428-1432.	4.1	45
1338	The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling. Developmental Biology, 2013, 379, 16-27.	2.0	7
1339	Aging-Induced <i>Nrf2-ARE</i> Pathway Disruption in the Subventricular Zone Drives Neurogenic Impairment in Parkinsonian Mice via <i>PI3K-Wnt/</i> β <i>Catenin</i> Dysregulation. Journal of Neuroscience, 2013, 33, 1462-1485.	3.6	90
1340	The Cdc42/Rac Nucleotide Exchange Factor Protein β1Pix (Pak-interacting Exchange Factor) Modulates β-Catenin Transcriptional Activity in Colon Cancer Cells. Journal of Biological Chemistry, 2013, 288, 34019-34029.	3.4	15
1341	The Wnt/βâ€catenin/Tâ€cell factor 4 pathway upâ€regulates highâ€mobility group A1 expression in colon cancer. Cell Biochemistry and Function, 2013, 31, 228-236.	2.9	34
1342	Curcumin suppresses proliferation and induces apoptosis of human hepatocellular carcinoma cells via the wnt signaling pathway. International Journal of Oncology, 2013, 43, 1951-1959.	3.3	60
1343	PHA-543613 Preserves Blood–Brain Barrier Integrity After Intracerebral Hemorrhage in Mice. Stroke, 2013, 44, 1743-1747.	2.0	58
1344	The Role of Arrestins in Development. Progress in Molecular Biology and Translational Science, 2013, 118, 225-242.	1.7	13
1345	Pomegranate Bioactive Constituents Suppress Cell Proliferation and Induce Apoptosis in an Experimental Model of Hepatocellular Carcinoma: Role of Wnt/ <i>l²</i> -Catenin Signaling Pathway. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-15.	1.2	41
1346	Modeling the Effect of APC Truncation on Destruction Complex Function in Colorectal Cancer Cells. PLoS Computational Biology, 2013, 9, e1003217.	3.2	23
1347	Heterozygous LmnadelK32 mice develop dilated cardiomyopathy through a combined pathomechanism of haploinsufficiency and peptide toxicity. Human Molecular Genetics, 2013, 22, 3152-3164.	2.9	72
1348	Preventive Inositol Hexaphosphate Extracted from Rice Bran Inhibits Colorectal Cancer through Involvement of Wnt/ <i>î²</i> -Catenin and COX-2 Pathways. BioMed Research International, 2013, 2013, 1-10.	1.9	40
1349	A membrane-associated \hat{l}^2 -catenin/Oct4 complex correlates with ground-state pluripotency in mouse embryonic stem cells. Development (Cambridge), 2013, 140, 1171-1183.	2.5	113

#	Article	IF	CITATIONS
1350	Wnt Signaling Regulates the Lineage Differentiation Potential of Mouse Embryonic Stem Cells through Tcf3 Down-Regulation. PLoS Genetics, 2013, 9, e1003424.	3.5	76
1351	Cross talk between Wnt/β-catenin and Irf8 in leukemia progression and drug resistance. Journal of Experimental Medicine, 2013, 210, 2239-2256.	8.5	47
1352	Leucine Zipper Tumor Suppressor 2 Inhibits Cell Proliferation and Regulates Lef/Tcf-dependent Transcription through Akt/GSK3β Signaling Pathway in Lung Cancer. Journal of Histochemistry and Cytochemistry, 2013, 61, 659-670.	2.5	6
1353	Signal Transducer and Activator of Transcription 3 (STAT3) Degradation by Proteasome Controls a Developmental Switch in Neurotrophin Dependence. Journal of Biological Chemistry, 2013, 288, 20151-20161.	3.4	18
1354	Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy Type 1: A Light on Molecular Mechanisms. Genetics Research International, 2013, 2013, 1-8.	2.0	1
1355	The PI3K/Akt1 pathway enhances steady-state levels of FANCL. Molecular Biology of the Cell, 2013, 24, 2582-2592.	2.1	7
1356	Pharmacological modulation of beta atenin and its applications in cancer therapy. Journal of Cellular and Molecular Medicine, 2013, 17, 449-456.	3.6	81
1357	Uncovering novel actors in astrocyte–neuron crosstalk in <scp>P</scp> arkinson's disease: the <scp>W</scp> nt/l²â€catenin signaling cascade as the common final pathway for neuroprotection and selfâ€repair. European Journal of Neuroscience, 2013, 37, 1550-1563.	2.6	81
1358	Degraded Iota-Carrageenan Can Induce Apoptosis in Human Osteosarcoma Cells Via the Wnt/β-Catenin Signaling Pathway. Nutrition and Cancer, 2013, 65, 126-131.	2.0	31
1359	<i>l²</i> -Catenin activation contributes to the pathogenesis of adenomyosis through epithelial-mesenchymal transition. Journal of Pathology, 2013, 231, 210-222.	4.5	76
1360	Epigenetic regulation of the Wnt signaling inhibitor <i><i>DACT2</i></i> in human hepatocellular carcinoma. Epigenetics, 2013, 8, 373-382.	2.7	33
1361	Lithium chloride attenuates cell death in oculopharyngeal muscular dystrophy by perturbing Wnt/β-catenin pathway. Cell Death and Disease, 2013, 4, e821-e821.	6.3	45
1362	Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by CSK-3 activity. Oncogene, 2013, 32, 3765-3781.	5.9	500
1363	γ-Catenin is overexpressed in acute myeloid leukemia and promotes the stabilization and nuclear localization of β-catenin. Leukemia, 2013, 27, 336-343.	7.2	46
1364	c-Cbl, a Ubiquitin E3 Ligase That Targets Active β-Catenin. Journal of Biological Chemistry, 2013, 288, 23505-23517.	3.4	47
1365	HectD1 E3 Ligase Modifies Adenomatous Polyposis Coli (APC) with Polyubiquitin to Promote the APC-Axin Interaction. Journal of Biological Chemistry, 2013, 288, 3753-3767.	3.4	58
1366	Cardamonin Suppresses the Proliferation of Colon Cancer Cells by Promoting β-Catenin Degradation. Biological and Pharmaceutical Bulletin, 2013, 36, 1040-1044.	1.4	51
1367	Wnt signaling in the regulation of adult hippocampal neurogenesis. Frontiers in Cellular Neuroscience, 2013, 7, 100.	3.7	151

#	Article	IF	CITATIONS
1368	A Comprehensive Overview of Skeletal Phenotypes Associated with Alterations in Wnt/\hat{l}^2 -catenin Signaling in Humans and Mice. Bone Research, 2013, 1, 27-71.	11.4	109
1369	Heavy Ion Radiation Exposure Triggered Higher Intestinal Tumor Frequency and Greater β-Catenin Activation than γ Radiation in APCMin/+ Mice. PLoS ONE, 2013, 8, e59295.	2.5	59
1370	A Novel Strategy to Increase the Proliferative Potential of Adult Human β-Cells While Maintaining Their Differentiated Phenotype. PLoS ONE, 2013, 8, e66131.	2.5	32
1371	Diabetes-Induced Superoxide Anion and Breakdown of the Blood-Retinal Barrier: Role of the VEGF/uPAR Pathway. PLoS ONE, 2013, 8, e71868.	2.5	25
1372	Characterization of the Molecular Mechanism of the Bone-Anabolic Activity of Carfilzomib in Multiple Myeloma. PLoS ONE, 2013, 8, e74191.	2.5	39
1373	Recycling of Kinesin-1 Motors by Diffusion after Transport. PLoS ONE, 2013, 8, e76081.	2.5	36
1374	Canonical Wnt/β-Catenin Signalling Is Essential for Optic Cup Formation. PLoS ONE, 2013, 8, e81158.	2.5	52
1375	Wnts in adult brain: from synaptic plasticity to cognitive deficiencies. Frontiers in Cellular Neuroscience, 2013, 7, 224.	3.7	128
1376	Neural Plasticity and Proliferation in the Generation of Antidepressant Effects: Hippocampal Implication. Neural Plasticity, 2013, 2013, 1-21.	2.2	73
1377	Intestinal barrier: Molecular pathways and modifiers. World Journal of Gastrointestinal Pathophysiology, 2013, 4, 94.	1.0	49
1378	The Role of E-Cadherin-Catenin Complex in Prostate Cancer Progression. , 0, , .		0
1379	Wnt Signaling Roles on the Structure and Function of the Central Synapses: Involvement in Alzheimer's Disease. , 0, , .		0
1380	GSK3β-Dependent Phosphorylation Alters DNA Binding, Transactivity and Half-Life of the Transcription Factor USF2. PLoS ONE, 2014, 9, e107914.	2.5	6
1381	Lithium Promotes Neuronal Repair and Ameliorates Depression-Like Behavior following Trimethyltin-Induced Neuronal Loss in the Dentate Gyrus. PLoS ONE, 2014, 9, e87953.	2.5	21
1382	KCTD1 Suppresses Canonical Wnt Signaling Pathway by Enhancing β-catenin Degradation. PLoS ONE, 2014, 9, e94343.	2.5	37
1383	Chronic hypoxia induces the activation of the Wnt/β-catenin signaling pathway and stimulates hippocampal neurogenesis in wild-type and APPswe-PS1ΔE9 transgenic mice in vivo. Frontiers in Cellular Neuroscience, 2014, 8, 17.	3.7	60
1384	llimaquinone and Ethylsmenoquinone, Marine Sponge Metabolites, Suppress the Proliferation of Multiple Myeloma Cells by Down-Regulating the Level of β-Catenin. Marine Drugs, 2014, 12, 3231-3244.	4.6	32
1385	Alkylating Agents. , 2014, , 178-183.		Ο

#	Article	IF	CITATIONS
1386	Piceatannol exhibits selective toxicity to multiple myeloma cells and influences the Wnt/ beta atenin pathway. Hematological Oncology, 2014, 32, 197-204.	1.7	14
1387	Smurf1-mediated Axin Ubiquitination Requires Smurf1 C2 Domain and Is Cell Cycle-dependent. Journal of Biological Chemistry, 2014, 289, 14170-14177.	3.4	19
1388	The Role of Glycogen Synthase Kinase 3 in the Mechanisms of Learning and Memory. Neuroscience and Behavioral Physiology, 2014, 44, 1051-1058.	0.4	1
1389	Transforming Growth Factor-β1 (TGF-β1) Induces Mouse Precartilaginous Stem Cell Proliferation through TGF-β Receptor II (TGFRII)-Akt-β-Catenin Signaling. International Journal of Molecular Sciences, 2014, 15, 12665-12676.	4.1	14
1390	From β-Catenin to ARM-Repeat Proteins in Adrenocortical Disorders. Hormone and Metabolic Research, 2014, 46, 889-896.	1.5	23
1391	Signaling Pathways in Cartilage Repair. International Journal of Molecular Sciences, 2014, 15, 8667-8698.	4.1	127
1392	Gene Expression Profiling in Mouse Embryonic Stem Cells Reveals Glycogen Synthase Kinase-3-Dependent Targets of Phosphatidylinositol 3-Kinase and Wnt/β-Catenin Signaling Pathways. Frontiers in Endocrinology, 2014, 5, 133.	3.5	8
1393	Roles of F-box proteins in human digestive system tumors (Review). International Journal of Oncology, 2014, 45, 2199-2207.	3.3	12
1394	Ubiquitin-proteasomal degradation of antiapoptotic survivin facilitates induction of apoptosis in prostate cancer cells by pristimerin. International Journal of Oncology, 2014, 45, 1735-1741.	3.3	33
1395	Induction of Gsk3β-β-TrCP Interaction Is Required for Late Phase Stabilization of β-Catenin in Canonical Wnt Signaling. Journal of Biological Chemistry, 2014, 289, 7099-7108.	3.4	25
1396	The RNA-Binding Protein Musashi-1 Regulates Proteasome Subunit Expression in Breast Cancer- and Glioma-Initiating Cells. Stem Cells, 2014, 32, 135-144.	3.2	70
1397	Reg4â€induced mitogenesis involves Aktâ€GSK3βâ€Î²â€Cateninâ€TCFâ€4 signaling in human colorectal cancer. Molecular Carcinogenesis, 2014, 53, E169-80.	2.7	29
1398	Primary Cilium Regulates CaV1.2 Expression Through Wnt Signaling. Journal of Cellular Physiology, 2014, 229, 1926-1934.	4.1	14
1399	Glycogen synthase kinase 3 beta inhibits microRNA-183-96-182 cluster via the β-Catenin/TCF/LEF-1 pathway in gastric cancer cells. Nucleic Acids Research, 2014, 42, 2988-2998.	14.5	79
1400	TCF4 silencing sensitizes the colon cancer cell line to oxaliplatin as a common chemotherapeutic drug. Anti-Cancer Drugs, 2014, 25, 908-916.	1.4	17
1401	Targeting Wnt signaling at the neuroimmune interface for dopaminergic neuroprotection/repair in Parkinson's disease. Journal of Molecular Cell Biology, 2014, 6, 13-26.	3.3	73
1402	Wnt and lithium: a common destiny in the therapy of nervous system pathologies?. Cellular and Molecular Life Sciences, 2014, 71, 1123-1148.	5.4	52
1403	Small-scale transcriptomics reveals differences among gonadal stages in Asian seabass (Lates) Tj ETQq1 1 0.7843	14.rgBT /0	Dverlock 10

#	Article	IF	CITATIONS
1404	Factors Affecting the Nuclear Localization of β atenin in Normal and Malignant Tissue. Journal of Cellular Biochemistry, 2014, 115, 1351-1361.	2.6	47
1405	GSK-3 – at the crossroads of cell death and survival. Journal of Cell Science, 2014, 127, 1369-1378.	2.0	157
1406	Phosphorylation of SRSF1 by SRPK1 regulates alternative splicing of tumor-related Rac1b in colorectal cells. Rna, 2014, 20, 474-482.	3.5	83
1407	Activated macrophages promote Wnt/β-catenin signaling in cholangiocarcinoma cells. Tumor Biology, 2014, 35, 5357-5367.	1.8	87
1408	Regulation of Induced Pluripotent Stem (iPS) Cell Induction by Wnt/β-Catenin Signaling. Journal of Biological Chemistry, 2014, 289, 9221-9232.	3.4	47
1409	The Drosophila tankyrase regulates Wg signaling depending on the concentration of Daxin. Cellular Signalling, 2014, 26, 1717-1724.	3.6	21
1410	Developing Insights in Cartilage Repair. , 2014, , .		3
1411	The expression of β-catenin in different subtypes of breast cancer and its clinical significance. Tumor Biology, 2014, 35, 7693-7698.	1.8	33
1412	Mitotic Wnt Signaling Promotes Protein Stabilization and Regulates Cell Size. Molecular Cell, 2014, 54, 663-674.	9.7	203
1413	Wnt signaling in adult intestinal stem cells and cancer. Cellular Signalling, 2014, 26, 570-579.	3.6	307
1414	Valproate recovers the inhibitory effect of dexamethasone on the proliferation of the adult dentate gyrus-derived neural precursor cells via GSK-3β and β-catenin pathway. European Journal of Pharmacology, 2014, 723, 425-430.	3.5	13
1415	Tussilagone suppresses colon cancer cell proliferation by promoting the degradation of β-catenin. Biochemical and Biophysical Research Communications, 2014, 443, 132-137.	2.1	33
1416	Green tea polyphenol <scp>EGCG</scp> suppresses <scp>W</scp> nt/βâ€catenin signaling by promoting <scp>GSK</scp> â€3β―and <scp>PP2A</scp> â€independent βâ€catenin phosphorylation/degradation. BioFact 2014, 40, 586-595.	0554	80
1417	AXIN1 and AXIN2 variants in gastrointestinal cancers. Cancer Letters, 2014, 355, 1-8.	7.2	109
1418	Ubiquitin-like Protein FAT10 Promotes the Invasion and Metastasis of Hepatocellular Carcinoma by Modifying β-Catenin Degradation. Cancer Research, 2014, 74, 5287-5300.	0.9	96
1419	Cell signaling pathways involved in hematopoietic stem cell specification. Experimental Cell Research, 2014, 329, 227-233.	2.6	30
1420	PTPN13 regulates cellular signalling and β-catenin function during megakaryocytic differentiation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2886-2899.	4.1	19
1421	Cognitive flexibility and long-term depression (LTD) are impaired following β-catenin stabilization in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8631-8636	7.1	75

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1422	Melatonin as a proteasome inhibitor. Is there any clinical evidence?. Life Sciences, 2014	ł, 115, 8-14.	4.3	55
1424	Design and Characterization of a Twin Ribozyme for Potential Repair of a Deletion Mut the Oncogenic <i>CTNNB1</i> â€Î"S45 mRNA. ChemMedChem, 2014, 9, 2128-2137.	ation within	3.2	13
1425	Autophagy eliminates cytoplasmic β-catenin and NICD to promote the cardiac differen cells. Cellular Signalling, 2014, 26, 2299-2305.	tiation of P19CL6	3.6	53
1426	Epigenetic regulation of the secreted frizzled-related protein family in human glioblastc multiforme. Cancer Gene Therapy, 2014, 21, 297-303.	oma	4.6	40
1427	Wnt/β-catenin signaling regulates Helicoverpa armigera pupal development by up-regu AP-4. Insect Biochemistry and Molecular Biology, 2014, 53, 44-53.	ılating c-Myc and	2.7	53
1428	Wnt–Notch signalling crosstalk in development and disease. Cellular and Molecular I 2014, 71, 3553-3567.	Life Sciences,	5.4	153
1429	Regulation of Wnt/ \hat{l}^2 -catenin signaling by posttranslational modifications. Cell and Bios 13.	science, 2014, 4,	4.8	181
1430	GSK3β Promotes the Differentiation of Oligodendrocyte Precursor Cells via β-Catenin- Transcriptional Regulation. Molecular Neurobiology, 2014, 50, 507-519.	Mediated	4.0	18
1431	β-catenin promotes the type I IFN synthesis and the IFN-dependent signaling response influenza A virus-induced RIC-I/NF-κB signaling. Cell Communication and Signaling, 201	but is suppressed by .4, 12, 29.	6.5	57
1432	Analysis of Wnt signaling \hat{l}^2 -catenin spatial dynamics in HEK293T cells. BMC Systems B	iology, 2014, 8, 44.	3.0	22
1433	β-Catenin is O-GlcNAc glycosylated at Serine 23: Implications for β-catenin's subcellula transactivator function. Experimental Cell Research, 2014, 321, 153-166.	ar localization and	2.6	45
1434	Nuclear transport of galectin-3 and its therapeutic implications. Seminars in Cancer Bic 30-38.	logy, 2014, 27,	9.6	60
1435	Study of Wnt2 secreted by A-549 cells in paracrine activation of β-catenin in co-culture stem cells. Biochemistry (Moscow), 2014, 79, 524-530.	ed mesenchymal	1.5	2
1436	The β-catenin E3 ubiquitin ligase SIAH-1 is regulated by CSN5/JAB1 in CRC cells. Cellula 26, 2051-2059.	r Signalling, 2014,	3.6	21
1437	Stem cells and biopharmaceuticals: Vital roles in the growth of tissue-engineered small Seminars in Pediatric Surgery, 2014, 23, 141-149.	intestine.	1.1	18
1438	NR5A1 prevents centriole splitting by inhibiting centrosomal DNA-PK activation and \hat{I}^2 -accumulation. Cell Communication and Signaling, 2014, 12, 55.	catenin	6.5	7
1439	Wnt signalling induces accumulation of phosphorylated β-catenin in two distinct cytos Open Biology, 2014, 4, 140120.	solic complexes.	3.6	41
1440	Increased Gut Permeability and Microbiota Change Associate with Mesenteric Fat Infl a Metabolic Dysfunction in Diet-Induced Obese Mice. , 2014, , 77-102.	mmation and		0

#	Article	IF	CITATIONS
1441	Antimicrobial Peptides and Gut Microbiota in Homeostasis and Pathology. , 2014, , 171-218.		0
1442	The loss of MiR-139-5p promotes colitis-associated tumorigenesis by mediating PI3K/AKT/Wnt signaling. International Journal of Biochemistry and Cell Biology, 2015, 69, 153-161.	2.8	33
1443	Wnt and FGF mediated epithelialâ€mesenchymal crosstalk during lung development. Developmental Dynamics, 2015, 244, 342-366.	1.8	119
1444	Aplasia Ras homolog member I expression induces apoptosis in renal cancer cells via the β-catenin signaling pathway. Molecular Medicine Reports, 2015, 11, 475-481.	2.4	2
1445	Contralateral recurrence of aggressive fibromatosis in a young woman: A case report and review of the literature. Oncology Letters, 2015, 10, 325-328.	1.8	5
1446	Dual regulation of transcription factor Nrf2 by Keap1 and by the combined actions of β-TrCP and GSK-3. Biochemical Society Transactions, 2015, 43, 611-620.	3.4	143
1447	Morphine protects SH-SY5Y human neuroblastoma cells against Dickkopf1-induced apoptosis. Molecular Medicine Reports, 2015, 11, 1174-1180.	2.4	10
1448	1H-pyrrole-2,5-dione-based small molecule-induced generation of mesenchymal stem cell-derived functional endothelial cells that facilitate rapid endothelialization after vascular injury. Stem Cell Research and Therapy, 2015, 6, 174.	5.5	8
1449	Ovarian microcystic stromal tumor: A novel extracolonic tumor in familial adenomatous polyposis. Genes Chromosomes and Cancer, 2015, 54, 353-360.	2.8	39
1450	Targeting Wnt pathway in mantle cell lymphoma-initiating cells. Journal of Hematology and Oncology, 2015, 8, 63.	17.0	43
1451	The Increase in Maternal Expression of <i>axin1</i> and <i>axin2</i> Contribute to the Zebrafish Mutant <i>Ichabod</i> Ventralized Phenotype. Journal of Cellular Biochemistry, 2015, 116, 418-430.	2.6	7
1452	Effects of the proteasome inhibitor, bortezomib, on cytodifferentiation and mineralization of periodontal ligament cells. Journal of Periodontal Research, 2015, 50, 248-255.	2.7	13
1453	Wnt/Glycogen Synthase Kinase 3β/β-catenin Signaling Activation Mediated Sevoflurane Preconditioning-induced Cardioprotection. Chinese Medical Journal, 2015, 128, 2346-2353.	2.3	12
1454	Underexpression of LKB1 tumor suppressor is associated with enhanced Wnt signaling and malignant characteristics of human intrahepatic cholangiocarcinoma. Oncotarget, 2015, 6, 18905-18920.	1.8	30
1455	Signaling in Fibrosis: TGF-β, WNT, and YAP/TAZ Converge. Frontiers in Medicine, 2015, 2, 59.	2.6	350
1456	Serum Dickkopf-1 levels as a clinical and prognostic factor in patients with bladder cancer. Genetics and Molecular Research, 2015, 14, 18181-18187.	0.2	19
1457	Role of the Wnt/β-catenin pathway in gastric cancer: An in-depth literature review. World Journal of Experimental Medicine, 2015, 5, 84.	1.7	246
1458	The Crucial Role of Atg5 in Cortical Neurogenesis During Early Brain Development. Scientific Reports, 2014, 4, 6010.	3.3	65

#	Article	IF	CITATIONS
1459	Andrographolide activates the canonical Wnt signalling pathway by a mechanism that implicates the non-ATP competitive inhibition of GSK-3β: autoregulation of GSK-3β <i>inÂvivo</i> . Biochemical Journal, 2015, 466, 415-430.	3.7	68
1460	Scopadulciol, Isolated from <i>Scoparia dulcis</i> , Induces β-Catenin Degradation and Overcomes Tumor Necrosis Factor-Related Apoptosis Ligand Resistance in AGS Human Gastric Adenocarcinoma Cells. Journal of Natural Products, 2015, 78, 864-872.	3.0	21
1461	Endometrial cancer: redefining the molecular-targeted approach. Cancer Chemotherapy and Pharmacology, 2015, 76, 1-11.	2.3	24
1462	Boehmenan, a lignan from Hibiscus ficulneus, showed Wnt signal inhibitory activity. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2735-2738.	2.2	7
1463	Cytokine-induced monocyte MMP-1 is negatively regulated by CSK-3 through a p38 MAPK-mediated decrease in ERK1/2 MAPK activation. Journal of Leukocyte Biology, 2015, 97, 921-927.	3.3	4
1464	Mechanical strain induces E-cadherin–dependent Yap1 and β-catenin activation to drive cell cycle entry. Science, 2015, 348, 1024-1027.	12.6	454
1465	Adenomatous polyposis coli (APC)-induced apoptosis of HT29 colorectal cancer cells depends on mitochondrial oxidative metabolism. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1719-1728.	3.8	6
1466	Iron and colorectal cancer: evidence from in vitro and animal studies. Nutrition Reviews, 2015, 73, 308-317.	5.8	28
1467	The role of the ubiquitin proteasome system in cerebellar development and medulloblastoma. Molecular Brain, 2015, 8, 64.	2.6	20
1468	Dynamic Regulation of Adherens Junctions: Implication in Cell Differentiation and Tumor Development. , 2015, , 53-149.		2
1468 1469		4.0	2
	Development. , 2015, , 53-149. Ischemic preconditioning increases GSK-3β/β-catenin levels and ameliorates liver ischemia/reperfusion	4.0	
1469	Development. , 2015, , 53-149. Ischemic preconditioning increases GSK-3Î ² /Î ² -catenin levels and ameliorates liver ischemia/reperfusion injury in rats. International Journal of Molecular Medicine, 2015, 35, 1625-1632. A novel adamantyl benzylbenzamide derivative, AP736, inhibits melanogenesis in B16F10 mouse melanoma cells via glycogen synthase kinase 3Î ² phosphorylation. International Journal of Molecular Medicine,		17
1469 1470	Development. , 2015, , 53-149. Ischemic preconditioning increases GSK-3Î ² /Î ² -catenin levels and ameliorates liver ischemia/reperfusion injury in rats. International Journal of Molecular Medicine, 2015, 35, 1625-1632. A novel adamantyl benzylbenzamide derivative, AP736, inhibits melanogenesis in B16F10 mouse melanoma cells via glycogen synthase kinase 3Î ² phosphorylation. International Journal of Molecular Medicine, 2015, 36, 1353-1360.	4.0	17
1469 1470 1471	 Development. , 2015, , 53-149. Ischemic preconditioning increases GSK-3Î²/Î²-catenin levels and ameliorates liver ischemia/reperfusion injury in rats. International Journal of Molecular Medicine, 2015, 35, 1625-1632. A novel adamantyl benzylbenzamide derivative, AP736, inhibits melanogenesis in B16F10 mouse melanoma cells via glycogen synthase kinase 3Î² phosphorylation. International Journal of Molecular Medicine, 2015, 36, 1353-1360. Dynamics of p53 and Wnt cross talk. Computational Biology and Chemistry, 2015, 59, 55-66. Adrenal cortex tissue homeostasis and zonation: A WNT perspective. Molecular and Cellular 	4.0 2.3	17 11 10
1469 1470 1471 1472	 Development., 2015, , 53-149. Ischemic preconditioning increases CSK-3Î²/Î²-catenin levels and ameliorates liver ischemia/reperfusion injury in rats. International Journal of Molecular Medicine, 2015, 35, 1625-1632. A novel adamantyl benzylbenzamide derivative, AP736, inhibits melanogenesis in B16F10 mouse melanoma cells via glycogen synthase kinase 3Î² phosphorylation. International Journal of Molecular Medicine, 2015, 36, 1353-1360. Dynamics of p53 and Wnt cross talk. Computational Biology and Chemistry, 2015, 59, 55-66. Adrenal cortex tissue homeostasis and zonation: A WNT perspective. Molecular and Cellular Endocrinology, 2015, 408, 156-164. Adamantinomatous craniopharyngioma: pathology, molecular genetics and mouse models. Journal of 	4.0 2.3 3.2	17 11 10 41
1469 1470 1471 1472 1473	Development., 2015, , 53-149. Ischemic preconditioning increases GSK-3β/β-catenin levels and ameliorates liver ischemia/reperfusion injury in rats. International Journal of Molecular Medicine, 2015, 35, 1625-1632. A novel adamantyl benzylbenzamide derivative, AP736, inhibits melanogenesis in B16F10 mouse melanoma cells via glycogen synthase kinase 3β phosphorylation. International Journal of Molecular Medicine, 2015, 36, 1353-1360. Dynamics of p53 and Wnt cross talk. Computational Biology and Chemistry, 2015, 59, 55-66. Adrenal cortex tissue homeostasis and zonation: A WNT perspective. Molecular and Cellular Endocrinology, 2015, 408, 156-164. Adamantinomatous craniopharyngioma: pathology, molecular genetics and mouse models. Journal of Pediatric Endocrinology and Metabolism, 2015, 28, 7-17. Paracrine communication modulates production of Wnt antagonists and COX1-mediated prostaglandins in a decidual-trophoblast co-culture model. Molecular and Cellular Endocrinology,	4.0 2.3 3.2 0.9	17 11 10 41 52

#	Article	IF	Citations
1477	Investigation of phosphoproteome in RAGE signaling. Proteomics, 2015, 15, 245-259.	2.2	16
1478	The osteoblastic niche in the context of multiple myeloma. Annals of the New York Academy of Sciences, 2015, 1335, 45-62.	3.8	49
1479	Tumour suppressor TRIM33 targets nuclear Î ² -catenin degradation. Nature Communications, 2015, 6, 6156.	12.8	114
1480	Limonoids with Wnt signal inhibitory activity isolated from the fruits of Azadirachta excelsa. Phytochemistry Letters, 2015, 11, 280-285.	1.2	8
1481	La FAM fatale: USP9X in development and disease. Cellular and Molecular Life Sciences, 2015, 72, 2075-2089.	5.4	145
1482	β-Catenin Signaling and Roles in Liver Homeostasis, Injury, and Tumorigenesis. Gastroenterology, 2015, 148, 1294-1310.	1.3	369
1483	CSK3β-activation is a point of convergence for HIV-1 and opiate-mediated interactive neurotoxicity. Molecular and Cellular Neurosciences, 2015, 65, 11-20.	2.2	18
1484	Inhibition of Matrix Metalloproteinase Activity Reverses Corneal Endothelial-Mesenchymal Transition. American Journal of Pathology, 2015, 185, 2158-2167.	3.8	24
1485	SET7/9 regulates cancer cell proliferation by influencing β atenin stability. FASEB Journal, 2015, 29, 4313-4323.	0.5	63
1486	The Proteasome Inhibitor Carfilzomib Suppresses Parathyroid Hormone-induced Osteoclastogenesis through a RANKL-mediated Signaling Pathway. Journal of Biological Chemistry, 2015, 290, 16918-16928.	3.4	21
1487	WNT3 and membrane-associated β-catenin regulate trophectoderm lineage differentiation in human blastocysts. Molecular Human Reproduction, 2015, 21, 711-722.	2.8	33
1488	Transcription factor IKZF1 is degraded during the apoptosis of multiple myeloma cells induced by kinase inhibition. FEBS Letters, 2015, 589, 2233-2240.	2.8	8
1489	Glucagon phosphorylates serine 552 of β -catenin leading to increased expression of cyclin D1 and c-Myc in the isolated rat liver. Archives of Physiology and Biochemistry, 2015, 121, 88-96.	2.1	13
1490	The transition zone protein Rpgrip1l regulates proteasomal activity at the primary cilium. Journal of Cell Biology, 2015, 210, 1027-1045.	5.2	77
1491	60 YEARS OF NEUROENDOCRINOLOGY: Biology of human craniopharyngioma: lessons from mouse models. Journal of Endocrinology, 2015, 226, T161-T172.	2.6	29
1492	Dissociation of E-cadherin/β-catenin complex by MG132 and bortezomib enhances CDDP induced cell death in oral cancer SCC-25 cells. Toxicology in Vitro, 2015, 29, 1965-1976.	2.4	7
1493	Pten Mutations Alter Brain Growth Trajectory and Allocation of Cell Types through Elevated Â-Catenin Signaling. Journal of Neuroscience, 2015, 35, 10252-10267.	3.6	93
1494	LRP receptor family member associated bone disease. Reviews in Endocrine and Metabolic Disorders, 2015, 16, 141-148.	5.7	46

#	Article	IF	CITATIONS
1495	miR-33a suppresses the nuclear translocation of β-catenin to enhance gemcitabine sensitivity in human pancreatic cancer cells. Tumor Biology, 2015, 36, 9395-9403.	1.8	34
1496	β-Catenin Regulates Primitive Streak Induction through Collaborative Interactions with SMAD2/SMAD3 and OCT4. Cell Stem Cell, 2015, 16, 639-652.	11.1	119
1497	Protein kinases as switches for the function of upstream stimulatory factors: implications for tissue injury and cancer. Frontiers in Pharmacology, 2015, 6, 3.	3.5	26
1498	Andrographolide suppresses melanin synthesis through Akt/GSK3β/β-catenin signal pathway. Journal of Dermatological Science, 2015, 79, 74-83.	1.9	48
1499	N-cadherin-based adherens junction regulates the maintenance, proliferation, and differentiation of neural progenitor cells during development. Cell Adhesion and Migration, 2015, 9, 183-192.	2.7	85
1500	FOXKs Promote Wnt/ \hat{l}^2 -Catenin Signaling by Translocating DVL into the Nucleus. Developmental Cell, 2015, 32, 707-718.	7.0	106
1501	Influenza A virus infection of vascular endothelial cells induces GSK-3β-mediated β-catenin degradation in adherens junctions, with a resultant increase in membrane permeability. Archives of Virology, 2015, 160, 225-234.	2.1	18
1502	The Hippo pathway effector Yki downregulates Wg signaling to promote retinal differentiation in the <i>Drosophila</i> eye. Development (Cambridge), 2015, 142, 2002-2013.	2.5	32
1503	Curcumin induces apoptotic cell death via Oct4 inhibition and GSKâ€3β activation in NCCIT cells. Molecular Nutrition and Food Research, 2015, 59, 1053-1062.	3.3	26
1504	Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase 3/β-TrCP. Free Radical Biology and Medicine, 2015, 88, 147-157.	2.9	196
1505	MIMP: predicting the impact of mutations on kinase-substrate phosphorylation. Nature Methods, 2015, 12, 531-533.	19.0	75
1506	Towards multiplexed protein–protein interaction analysis using protein tag-specific nanobodies. Journal of Proteomics, 2015, 127, 289-299.	2.4	6
1507	Microcystic Stromal Tumor of the Ovary With Mutation in Exon 3 of β-catenin. International Journal of Gynecological Pathology, 2015, 34, 121-125.	1.4	25
1508	Cytoskeletal mechanisms regulating vascular endothelial barrier function in response to acute lung injury. Tissue Barriers, 2015, 3, e974448.	3.2	83
1509	Genome-wide identification of phospho-regulators of Wnt signaling in <i>Drosophila</i> . Development (Cambridge), 2015, 142, 1502-1515.	2.5	28
1510	Tissue inhibitor of metalloproteinase 2 inhibits activation of the β-catenin signaling in melanoma cells. Cell Cycle, 2015, 14, 1666-1674.	2.6	21
1511	Glucose Deprivation Triggers Protein Kinase C-dependent Î ² -Catenin Proteasomal Degradation. Journal of Biological Chemistry, 2015, 290, 9863-9873.	3.4	19
1512	Natural compounds with Wnt signal modulating activity. Natural Product Reports, 2015, 32, 1622-1628.	10.3	33

#	Article	IF	CITATIONS
1513	Antidepressants for neuroprotection in Huntington's disease: A review. European Journal of Pharmacology, 2015, 769, 33-42.	3.5	20
1514	The role of WNT signaling in adult ovarian folliculogenesis. Reproduction, 2015, 150, R137-R148.	2.6	99
1515	Rock2 stabilizes β-catenin to promote tumor invasion and metastasis in colorectal cancer. Biochemical and Biophysical Research Communications, 2015, 467, 629-637.	2.1	21
1516	The molecular regulation of arteriovenous specification and maintenance. Developmental Dynamics, 2015, 244, 391-409.	1.8	124
1517	Targeting Wnt signaling in colorectal cancer. A Review in the Theme: Cell Signaling: Proteins, Pathways and Mechanisms. American Journal of Physiology - Cell Physiology, 2015, 309, C511-C521.	4.6	276
1518	Prolyl isomerase Pin1 regulates cadmium-induced autophagy via ubiquitin-mediated post-translational stabilization of phospho-Ser GSK3αβ in human hepatocellular carcinoma cells. Biochemical Pharmacology, 2015, 98, 511-521.	4.4	6
1519	Bead-Based Peptide Arrays for Profiling the Specificity of Modification State-Specific Antibodies. Methods in Molecular Biology, 2015, 1348, 251-265.	0.9	2
1520	Diabetes in Pregnancy Adversely Affects the Expression of Glycogen Synthase Kinase-3β in the Hippocampus of Rat Neonates. Journal of Molecular Neuroscience, 2015, 57, 273-281.	2.3	10
1521	Crosstalk between SOXB1 proteins and WNT/β-catenin signaling in NT2/D1 cells. Histochemistry and Cell Biology, 2015, 144, 429-441.	1.7	5
1522	Androgen receptor, androgen-producing enzymes and their transcription factors in extramammary Paget disease. Human Pathology, 2015, 46, 1662-1669.	2.0	18
1523	CD44 functions in Wnt signaling by regulating LRP6 localization and activation. Cell Death and Differentiation, 2015, 22, 677-689.	11.2	127
1524	Downregulation of canonical Wnt signaling in hippocampus of SAMP8 mice. Neurobiology of Aging, 2015, 36, 720-729.	3.1	58
1525	The Wnt Signalling Cascade and the Adherens Junction Complex in Craniopharyngioma Tumorigenesis. Endocrine Pathology, 2015, 26, 1-8.	9.0	29
1526	Activation of \hat{l}^2 -catenin signalling by TFF1 loss promotes cell proliferation and gastric tumorigenesis. Gut, 2015, 64, 1028-1039.	12.1	73
1527	Ankyrin-G regulates neurogenesis and Wnt signaling by altering the subcellular localization of \hat{l}^2 -catenin. Molecular Psychiatry, 2015, 20, 388-397.	7.9	54
1528	Targeting the Wnt pathway in human cancers: Therapeutic targeting with a focus on OMP-54F28. , 2015, 146, 1-11.		201
1529	Deubiquitinase USP9X deubiquitinates β-catenin and promotes high grade glioma cell growth. Oncotarget, 2016, 7, 79515-79525.	1.8	40
1530	Inhibition of endothelial Cdk5 reduces tumor growth by promoting non-productive angiogenesis. Oncotarget, 2016, 7, 6088-6104.	1.8	32

		CITATION REPORT		
#	Article		IF	CITATIONS
1531	Investigating the Process of Renal Epithelial Repair to Develop New Therapies. , 2016, $\frac{1}{2}$, 381-393.		4
1532	PTEN gene mutations correlate to poor prognosis in glioma patients: a meta-analysis. Therapy, 2016, 9, 3485.	OncoTargets and	2.0	48
1533	Altered Wnt Signaling Pathway in Cognitive Impairment Caused by Chronic Intermitte Chinese Medical Journal, 2016, 129, 838-845.	nt Hypoxia.	2.3	21
1534	Early Transcriptional Changes Induced by Wnt/β-Catenin Signaling in Hippocampal Ne Plasticity, 2016, 2016, 1-13.	urons. Neural	2.2	19
1535	Synaptic Wnt/GSK3 <i>β</i> Signaling Hub in Autism. Neural Plasticity, 2016, 2016, 1-	10.	2.2	58
1536	Moringin activates Wnt canonical pathway by inhibiting GSK3β in a mouse r experimental autoimmune encephalomyelitis. Drug Design, Development and Therapy 3291-3304.	model of , 2016, Volume 10,	4.3	30
1537	Novel Non-phosphorylated Serine 9/21 GSK3 \hat{i}^2/\hat{i}_{\pm} Antibodies: Expanding the Tools for S Regulation. Frontiers in Molecular Neuroscience, 2016, 9, 123.	Studying GSK3	2.9	15
1538	Wnt Signaling in Renal Cell Carcinoma. Cancers, 2016, 8, 57.		3.7	70
1539	Mammary Development and Breast Cancer: A Wnt Perspective. Cancers, 2016, 8, 65.		3.7	91
1540	The Role of Gammaherpesviruses in Cancer Pathogenesis. Pathogens, 2016, 5, 18.		2.8	101
1541	The Integrated Role of Wnt/β-Catenin, N-Clycosylation, and E-Cadherin-Mediated Adhe Dynamics. PLoS Computational Biology, 2016, 12, e1005007.	esion in Network	3.2	20
1542	Construction and Experimental Validation of a Petri Net Model of Wnt/ \hat{l}^2 -Catenin Sign 2016, 11, e0155743.	aling. PLoS ONE,	2.5	16
1543	Phosphorylations of Serines 21/9 in Glycogen Synthase Kinase $3\hat{l} \pm / \hat{l}^2$ Are Not Required Commitment or WNT Signaling in the Normal Mouse Intestine. PLoS ONE, 2016, 11, e	for Cell Lineage 0156877.	2.5	4
1544	Increasing \hat{l}^2 -catenin/Wnt3A activity levels drive mechanical strain-induced cell cycle p through mitosis. ELife, 2016, 5, .	rogression	6.0	39
1545	Synthesis and evaluation of (+)-decursin derivatives as inhibitors of the Wnt/β-catenin Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3529-3532.	pathway.	2.2	6
1546	Remarkable impairment of Wnt/βâ€catenin signaling in the brains of the mice infected Journal of Neurochemistry, 2016, 136, 731-740.	d with scrapie agents.	3.9	11
1547	Abscisic acid promotes proteasomeâ€mediated degradation of the transcription coact <scp>NPR</scp> 1 in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 86, 20-34.	ivator	5.7	75
1548	The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sciences, 2	2016, 158, 78-88.	4.3	121

#	Article	IF	CITATIONS
1549	Role of MCP-1 in alcohol-induced aggressiveness of colorectal cancer cells. Molecular Carcinogenesis, 2016, 55, 1002-1011.	2.7	32
1550	CSK-3 inhibitor inhibits cell proliferation and induces apoptosis in human osteosarcoma cells. Oncology Reports, 2016, 35, 2348-2354.	2.6	15
1551	DDX3 promotes tumor invasion in colorectal cancer via the CK1ε/Dvl2 axis. Scientific Reports, 2016, 6, 21483.	3.3	33
1552	Cullin-4 regulates Wingless and JNK signaling-mediated cell death in the Drosophila eye. Cell Death and Disease, 2016, 7, e2566-e2566.	6.3	18
1553	Current status and clinical association of beta-catenin with juvenile nasopharyngeal angiofibroma. Journal of Laryngology and Otology, 2016, 130, 907-913.	0.8	9
1554	A Mechanistic Model of Platelet-Rich Plasma Treatment for Androgenetic Alopecia. Dermatologic Surgery, 2016, 42, 1335-1339.	0.8	73
1555	Differential alterations of positive and negative regulators of beta catenin enhance endogenous expression and activity of beta catenin in A549 non small cell lung cancer (NSCLC) cells. Genes and Diseases, 2016, 3, 282-288.	3.4	1
1556	Opposing actions of the synapse-associated protein of 97-kDa molecular weight (SAP97) and Disrupted in Schizophrenia 1 (DISC1) on Wnt/β-catenin signaling. Neuroscience, 2016, 326, 22-30.	2.3	8
1557	The role of the wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth. International Journal of Biochemistry and Cell Biology, 2016, 77, 23-29.	2.8	263
1558	Signaling Pathways Involved in Mammalian Sex Determination and Gonad Development. Sexual Development, 2015, 9, 297-315.	2.0	84
1559	Rhapontigenin inhibits TGF- \hat{l}^2 -mediated epithelial-mesenchymal transition via the PI3K/AKT/mTOR pathway and is not associated with HIF-1 \hat{l} ± degradation. Oncology Reports, 2016, 35, 2887-2895.	2.6	21
1560	Cloning, identification and functional analysis of a β-catenin homologue from Pacific white shrimp, Litopenaeus vannamei. Fish and Shellfish Immunology, 2016, 54, 411-418.	3.6	33
1561	Granulovacuolar degeneration: a neurodegenerative change that accompanies tau pathology. Acta Neuropathologica, 2016, 132, 339-359.	7.7	57
1562	Tolfenamic acid downregulates Î ² -catenin in colon cancer. International Immunopharmacology, 2016, 35, 287-293.	3.8	8
1563	Intestinal knockout of Nedd4 enhances growth of Apcmin tumors. Oncogene, 2016, 35, 5839-5849.	5.9	24
1564	Tumour necrosis factor-α inhibits hepatic lipid deposition through GSK-3β/β-catenin signaling in juvenile turbot (Scophthalmus maximus L.). General and Comparative Endocrinology, 2016, 228, 1-8.	1.8	10
1565	The A-Kinase Anchoring Protein (AKAP) Glycogen Synthase Kinase 3β Interaction Protein (GSKIP) Regulates β-Catenin through Its Interactions with Both Protein Kinase A (PKA) and GSK3β. Journal of Biological Chemistry, 2016, 291, 19618-19630.	3.4	36
1566	Positive Feedback Loops between NrCAM and Major Signaling Pathways Contribute to Thyroid Tumorigenesis. Journal of Clinical Endocrinology and Metabolism, 2017, 102, jc.2016-1677.	3.6	19

#	Article	IF	CITATIONS
1567	Gsk3β and Tomm20 are substrates of the SCFFbxo7/PARK15 ubiquitin ligase associated with Parkinson's disease. Biochemical Journal, 2016, 473, 3563-3580.	3.7	45
1568	Engineering and <i>In Vitro</i> Evaluation of Acid Labile Cholesterol Tethered MG132 Nanoparticle for Targeting Ubiquitin-Proteasome System in Cancer. ChemistrySelect, 2016, 1, 5099-5106.	1.5	0
1569	The roles of microRNAs related with progression and metastasis in human cancers. Tumor Biology, 2016, 37, 15383-15397.	1.8	25
1570	Silencing FAT10 inhibits metastasis of osteosarcoma. International Journal of Oncology, 2016, 49, 666-674.	3.3	10
1571	Nuclear CSK3Î ² promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nature Cell Biology, 2016, 18, 954-966.	10.3	129
1572	Wnt/β atenin signaling plays a key role in the development of spondyloarthritis. Annals of the New York Academy of Sciences, 2016, 1364, 25-31.	3.8	46
1573	β-Catenin-Independent Roles of Wnt/LRP6 Signaling. Trends in Cell Biology, 2016, 26, 956-967.	7.9	149
1574	Siah2 Protein Mediates Early Events in Commitment to an Adipogenic Pathway. Journal of Biological Chemistry, 2016, 291, 27289-27297.	3.4	11
1575	Self-regulation of functional pathways by motifs inside the disordered tails of beta-catenin. BMC Genomics, 2016, 17, 484.	2.8	10
1576	Regulation of Cadherin–Catenin Biology by Mechanical Force and Phosphorylation. , 2016, , 93-114.		2
1577	The Cadherin Superfamily. , 2016, , .		1
1578	Investigation of the molecular mechanism of Î-catenin ubiquitination: Implication of Î2-TrCP-1 as a potential E3 ligase. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2311-2321.	4.1	7
1579	Cytotoxic activity of aeroplysinin-1 against colon cancer cells by promoting Î ² -catenin degradation. Food and Chemical Toxicology, 2016, 93, 66-72.	3.6	15
1580	The coiled-coil domain containing protein Ccdc136b antagonizes maternal Wnt/β-catenin activity during zebrafish dorsoventral axial patterning. Journal of Genetics and Genomics, 2016, 43, 431-438.	3.9	5
1581	Update of Wnt signaling in implantation and decidualization. Reproductive Medicine and Biology, 2016, 15, 95-105.	2.4	30
1582	Role of Wnt signalling in early pregnancy. Reproduction, Fertility and Development, 2016, 28, 525.	0.4	21
1583	Androgen signaling is a confounding factor for Î ² -catenin-mediated prostate tumorigenesis. Oncogene, 2016, 35, 702-714.	5.9	25
1584	Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes and Diseases, 2016, 3, 11-40.	3.4	223

#	Article	IF	CITATIONS
1585	Discovery of novel phenoxazinone derivatives as DKK1/LRP6 interaction inhibitors: Synthesis, biological evaluation and structure–activity relationships. Bioorganic and Medicinal Chemistry, 2016, 24, 1014-1022.	3.0	6
1586	Crosstalk of the Wnt/Î ² -catenin pathway with other pathways in cancer cells. Genes and Diseases, 2016, 3, 41-47.	3.4	71
1587	Transcription factor 7-like 1 is involved in hypothalamo–pituitary axis development in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E548-57.	7.1	47
1588	Shear-Sensitive Genes in Aortic Valve Endothelium. Antioxidants and Redox Signaling, 2016, 25, 401-414.	5.4	40
1589	Activation of AKT1/GSK-3β/β-Catenin–TRIM11/Survivin Pathway by Novel GSK-3β Inhibitor Promotes Neuron Cell Survival: Study in Differentiated SH-SY5Y Cells in OGD Model. Molecular Neurobiology, 2016, 53, 6716-6729.	4.0	31
1590	In silico identification of BESS-DC genes and expression analysis in the silkworm, Bombyx mori. Gene, 2016, 575, 478-487.	2.2	2
1591	The rise and fall of insulin signaling in Alzheimer's disease. Metabolic Brain Disease, 2016, 31, 497-515.	2.9	42
1592	IGF-1 protects dopamine neurons against oxidative stress: association with changes in phosphokinases. Experimental Brain Research, 2016, 234, 1863-1873.	1.5	35
1593	Klotho inhibits angiotensin II-induced cardiomyocyte hypertrophy through suppression of the AT1R/beta catenin pathway. Biochemical and Biophysical Research Communications, 2016, 473, 455-461.	2.1	33
1594	MEKK2 mediates an alternative Î ² -catenin pathway that promotes bone formation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1226-35.	7.1	47
1595	Wnt/β-catenin signaling participates in the regulation of lipogenesis in the liver of juvenile turbot (Scophthalmus maximus L.). Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2016, 191, 155-162.	1.6	16
1596	Identification and expression characterization of three Wnt signaling genes in pearl oyster (Pinctada) Tj ETQq1 1 196-197, 92-101.	0.784314 1.6	rgBT /Over 13
1597	Non-viral gene therapy: Gains and challenges of non-invasive administration methods. Journal of Controlled Release, 2016, 240, 165-190.	9.9	179
1598	Tumor necrosis factor alpha suppresses osteogenic differentiation of MSCs by inhibiting semaphorin 3B via Wnt/β-catenin signaling in estrogen-deficiency induced osteoporosis. Bone, 2016, 84, 78-87.	2.9	48
1599	Regulation of tumorigenic Wnt signaling by cyclooxygenase-2, 5-lipoxygenase and their pharmacological inhibitors: A basis for novel drugs targeting cancer cells?. , 2016, 157, 43-64.		36
1600	Beyond the brain: disrupted in schizophrenia 1 regulates pancreatic βâ€cell function <i>via</i> glycogen synthase kinaseâ€3β. FASEB Journal, 2016, 30, 983-993.	0.5	16
1601	Decorin as a multivalent therapeutic agent against cancer. Advanced Drug Delivery Reviews, 2016, 97, 174-185.	13.7	101
1602	Epithelial–Mesenchymal Transition Protein Expression in Basal Cell Adenomas and Basal Cell Adenocarcinomas. Head and Neck Pathology, 2016, 10, 176-181.	2.6	3

#	Article	IF	CITATIONS
1603	Intermittent cyclic mechanical tension promotes endplate cartilage degeneration via canonical Wnt signaling pathway and E-cadherin/β-catenin complex cross-talk. Osteoarthritis and Cartilage, 2016, 24, 158-168.	1.3	44
1604	GSK-3β participates in the regulation of hepatic lipid deposition in large yellow croaker (Larmichthys) Tj ETQq1 1	0.784314	rgBT /Overlo
1605	Structural Insights into KCTD Protein Assembly and Cullin3 Recognition. Journal of Molecular Biology, 2016, 428, 92-107.	4.2	47
1606	Animal models of bipolar mania: The past, present and future. Neuroscience, 2016, 321, 163-188.	2.3	100
1607	Pathogenic LRRK2 variants are gain-of-function mutations that enhance LRRK2-mediated repression of β-catenin signaling. Molecular Neurodegeneration, 2017, 12, 9.	10.8	45
1608	TREM2 Promotes Microglial Survival by Activating Wnt/β-Catenin Pathway. Journal of Neuroscience, 2017, 37, 1772-1784.	3.6	242
1609	The thyroid hormone nuclear receptors and the Wnt/β-catenin pathway: An intriguing liaison. Developmental Biology, 2017, 422, 71-82.	2.0	39
1610	Metabolic zonation of the liver: The oxygen gradient revisited. Redox Biology, 2017, 11, 622-630.	9.0	350
1611	USP7 inhibitor P5091 inhibits Wnt signaling and colorectal tumor growth. Biochemical Pharmacology, 2017, 131, 29-39.	4.4	92
1612	Transcription factor APâ€2β suppresses cervical cancer cell proliferation by promoting the degradation of its interaction partner βâ€catenin. Molecular Carcinogenesis, 2017, 56, 1909-1923.	2.7	16
1613	Reelin transiently promotes N-cadherin–dependent neuronal adhesion during mouse cortical development. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2048-2053.	7.1	46
1614	<scp>UVB</scp> represses melanocyte cell migration and acts through βâ€catenin. Experimental Dermatology, 2017, 26, 875-882.	2.9	13
1615	Mutational profiling of acral melanomas in Korean populations. Experimental Dermatology, 2017, 26, 883-888.	2.9	23
1616	Asymmetric Cell Division in Development, Differentiation and Cancer. Results and Problems in Cell Differentiation, 2017, , .	0.7	5
1617	Osteoblast role in osteoarthritis pathogenesis. Journal of Cellular Physiology, 2017, 232, 2957-2963.	4.1	105
1618	A Comparative Perspective on Wnt/ \hat{l}^2 -Catenin Signalling in Cell Fate Determination. Results and Problems in Cell Differentiation, 2017, 61, 323-350.	0.7	19
1619	The role of Wnt signaling in hematopoietic stem cell development. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 414-424.	5.2	54
1620	RNA editing signature during myeloid leukemia cell differentiation. Leukemia, 2017, 31, 2824-2832.	7.2	29

#	Article	IF	Citations
1621	GSK-3 as a novel prognostic indicator in leukemia. Advances in Biological Regulation, 2017, 65, 26-35.	2.3	33
1622	Thymus neuroendocrine tumors with CTNNB1 gene mutations, disarrayed ß-catenin expression, and dual intra-tumor Ki-67 labeling index compartmentalization challenge the concept of secondary high-grade neuroendocrine tumor: a paradigm shift. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2017, 471, 31-47.	2.8	31
1623	Reduced β-catenin expression affects patterning of bone primordia, but not bone maturation. Biology Open, 2017, 6, 582-588.	1.2	2
1624	Bile acids and colon cancer: Is FXR the solution of the conundrum?. Molecular Aspects of Medicine, 2017, 56, 66-74.	6.4	69
1625	Tricellulin is a target of the ubiquitin ligase Itch. Annals of the New York Academy of Sciences, 2017, 1397, 157-168.	3.8	10
1626	The guanine nucleotide exchange factor Net1 facilitates the specification of dorsal cell fates in zebrafish embryos by promoting maternal β-catenin activation. Cell Research, 2017, 27, 202-225.	12.0	27
1627	NOR1 Suppresses Cancer Stemâ€Like Cells Properties of Tumor Cells via the Inhibition of the AKTâ€GSKâ€3βâ€Wnt/βâ€cateninâ€ALDH1A1 Signal Circuit. Journal of Cellular Physiology, 2017, 232, 2829-28	40 ^{4.1}	38
1628	Low-Density Lipoprotein Receptor-Related Proteins in Skeletal Development and Disease. Physiological Reviews, 2017, 97, 1211-1228.	28.8	27
1629	Context-dependent regulation of the β-catenin transcriptional complex supports diverse functions of Wnt/β-catenin signaling. Journal of Biochemistry, 2017, 161, 9-17.	1.7	31
1630	The emerging role of Wnt signaling dysregulation in the understanding and modification of age-associated diseases. Ageing Research Reviews, 2017, 37, 135-145.	10.9	51
1631	Effect Of Microgravity On Aromatase Expression In Sertoli Cells. Scientific Reports, 2017, 7, 3469.	3.3	4
1632	Enhancement of synergistic gene silencing by RNA interference using branched "3-in-1―trimer siRNA. Journal of Materials Chemistry B, 2017, 5, 4044-4051.	5.8	6
1633	Ubiquitin-Dependent Regulation of Stem Cell Biology. Trends in Cell Biology, 2017, 27, 568-579.	7.9	39
1634	E-Cadherin/β-Catenin Complex: A Target for Anticancer and Antimetastasis Plants/Plant-derived Compounds. Nutrition and Cancer, 2017, 69, 702-722.	2.0	32
1635	Morphological changes and regulation of the genes dmrt1 and cyp11b during the sex differentiation of barramundi (Lates calcarifer Bloch). Aquaculture, 2017, 479, 75-84.	3.5	14
1636	Canonical Wnt signaling in diabetic retinopathy. Vision Research, 2017, 139, 47-58.	1.4	56
1637	Dual hypopigmentary effects of punicalagin via the ERK and Akt pathways. Biomedicine and Pharmacotherapy, 2017, 92, 122-127.	5.6	8
1638	WWC3 regulates the Wnt and Hippo pathways via Dishevelled proteins and large tumour suppressor 1, to suppress lung cancer invasion and metastasis. Journal of Pathology, 2017, 242, 435-447.	4.5	57

		CITATION REPORT		
# 1639	ARTICLE Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell, 2017, 16	59, 985-999.	IF 28.9	Citations 2,998
1640	Winding back Wnt signalling: potential therapeutic targets for treating gastric cancers. Journal of Pharmacology, 2017, 174, 4666-4683.	British	5.4	34
1641	Sirt1 suppresses Wnt/l²Catenin signaling in liver cancer cells by targeting l²Catenin in a manner. Cellular Signalling, 2017, 37, 62-73.	a PKAα-dependent	3.6	18
1642	Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast n Experimental Cell Research, 2017, 355, 83-94.	nigration.	2.6	18
1643	G ₁ /S phase progression is regulated by PLK1 degradation through the CDI FASEB Journal, 2017, 31, 2925-2936.	⟨1/βTrCP axis.	0.5	17
1644	LRP5: From bedside to bench to bone. Bone, 2017, 102, 26-30.		2.9	36
1645	A kinetic model to study the regulation of \$\$eta \$\$ β -catenin, APC, and Axin in the hurcrypt. Journal of Mathematical Biology, 2017, 75, 1171-1202.	man colonic	1.9	6
1646	Smenospongidine suppresses the proliferation of multiple myeloma cells by promoting CCAAT/enhancer-binding protein homologous protein-mediated β-catenin degradation. Pharmacal Research, 2017, 40, 592-600.	Archives of	6.3	4
1647	Inositol hexaphosphate suppresses colorectal cancer cell proliferation via the Akt/GSK-3 signaling cascade in a 1,2-dimethylhydrazine-induced rat model. European Journal of Ph 2017, 805, 67-74.		3.5	29
1648	Lentiviral Modulation of Wnt/ \hat{l}^2 -Catenin Signaling Affects In Vivo LTP. Cellular and Mole Neurobiology, 2017, 37, 1227-1241.	cular	3.3	12
1649	CpG methylation of APC promoter 1A in sporadic and familial breast cancer patients. Ca Biomarkers, 2017, 18, 133-141.	ancer	1.7	13
1650	Self-renewal molecular mechanisms of colorectal cancer stem cells. International Journa Molecular Medicine, 2017, 39, 9-20.	l of	4.0	44
1651	Vertebrate Axial Patterning: From Egg to Asymmetry. Advances in Experimental Medicir 2017, 953, 209-306.	ie and Biology,	1.6	27
1652	A Daple-Akt feed-forward loop enhances noncanonical Wnt signals by compartmentaliz Molecular Biology of the Cell, 2017, 28, 3709-3723.	ing β-catenin.	2.1	14
1653	Structural basis for Ccd1 auto-inhibition in the Wnt pathway through homomerization domain. Scientific Reports, 2017, 7, 7739.	of the DIX	3.3	6
1654	USP7 Is a Tumor-Specific WNT Activator for APC -Mutated Colorectal Cancer by Mediat Deubiquitination. Cell Reports, 2017, 21, 612-627.	ing β-Catenin	6.4	118
1655	Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/\hat{l}^2 -pathway in gliomas. Reviews in the Neurosciences, 2017, 29, 71-91.	catenin	2.9	102
1656	Complexity of the Wnt/β‑catenin pathway: Searching for an activation model. Cellula 40, 30-43.	ır Signalling, 2017,	3.6	78

#	Article	IF	CITATIONS
1657	Dissecting the CD93-Multimerin 2 interaction involved in cell adhesion and migration of the activated endothelium. Matrix Biology, 2017, 64, 112-127.	3.6	59
1658	Mutant <i> <scp>CTNNB</scp> 1 </i> and histological heterogeneity define metabolic subtypes of hepatoblastoma. EMBO Molecular Medicine, 2017, 9, 1589-1604.	6.9	38
1659	Fine-tuning and autoregulation of the intestinal determinant and tumor suppressor homeobox gene CDX2 by alternative splicing. Cell Death and Differentiation, 2017, 24, 2173-2186.	11.2	13
1660	Co-expression of Axin and APC gene fragments inhibits colorectal cancer cell growth via regulation of the Wnt signaling pathway. Molecular Medicine Reports, 2017, 16, 3783-3790.	2.4	15
1661	Arenobufagin inhibits prostate cancer epithelial-mesenchymal transition and metastasis by down-regulating β-catenin. Pharmacological Research, 2017, 123, 130-142.	7.1	57
1662	Characterization and function of a β-catenin homolog from Litopenaeus vannamei in WSSV infection. Developmental and Comparative Immunology, 2017, 76, 412-419.	2.3	16
1663	DHX32 Promotes Angiogenesis in Colorectal Cancer Through Augmenting β-catenin Signaling to Induce Expression of VEGFA. EBioMedicine, 2017, 18, 62-72.	6.1	17
1664	Rhein ameliorates adenomyosis by inhibiting NF-ήB and β-Catenin signaling pathway. Biomedicine and Pharmacotherapy, 2017, 94, 231-237.	5.6	17
1665	Synthetic polyphenol compounds inhibit β-catenin/Tcf signaling: Structure-activity relationship. Journal of Industrial and Engineering Chemistry, 2017, 56, 258-269.	5.8	4
1666	Anti-proliferative activity of CGK012 against multiple myeloma cells via Wnt/β-catenin signaling attenuation. Leukemia Research, 2017, 60, 103-108.	0.8	9
1667	Molecules, Systems and Signaling in Liver Injury. , 2017, , .		0
1668	Differential effects of voluntary treadmill exercise and caloric restriction on tau pathogenesis in a mouse model of Alzheimer's disease-like tau pathology fed with Western diet. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 79, 452-461.	4.8	23
1669	SQSTM1/p62-mediated autophagy compensates for loss of proteasome polyubiquitin recruiting capacity. Autophagy, 2017, 13, 1697-1708.	9.1	87
1670	De novo mutations in inhibitors of Wnt, BMP, and Ras/ERK signaling pathways in non-syndromic midline craniosynostosis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7341-E7347.	7.1	73
1671	Beta-Catenin and the Survival of Hepatocytes. , 2017, , 87-132.		0
1672	Impaired spliceosomal UsnRNP assembly leads to Sm mRNA down-regulation and Sm protein degradation. Journal of Cell Biology, 2017, 216, 2391-2407.	5.2	28
1673	Aerobic Glycolysis Hypothesis Through WNT/Beta-Catenin Pathway in Exudative Age-Related Macular Degeneration. Journal of Molecular Neuroscience, 2017, 62, 368-379.	2.3	54
1674	Targeting the Wnt Pathway in Cancer: A Review of Novel Therapeutics. Targeted Oncology, 2017, 12, 623-641.	3.6	47

#	Article	IF	CITATIONS
1675	pVHL suppresses Akt/β-catenin-mediated cell proliferation by inhibiting 14-3-3ζ expression. Biochemical Journal, 2017, 474, 2679-2689.	3.7	22
1676	Double phosphorylationâ€induced structural changes in the signalâ€receiving domain of lκBα in complex with NFâ€ĤB. Proteins: Structure, Function and Bioinformatics, 2017, 85, 17-29.	2.6	9
1677	Chemokine-Like Receptor 1 Is a Novel Wnt Target Gene that Regulates Mesenchymal Stem Cell Differentiation. Stem Cells, 2017, 35, 711-724.	3.2	42
1678	SUMOylation regulates the intracellular fate of ZO-2. Cellular and Molecular Life Sciences, 2017, 74, 373-392.	5.4	18
1679	High-Temperature Requirement A1 (Htra1) - A Novel Regulator of Canonical Wnt Signaling. Scientific Reports, 2017, 7, 17995.	3.3	20
1680	TCF4/β‑catenin complex is directly upstream of FGF21 in mouse stomach cancer cells. Experimental and Therapeutic Medicine, 2017, 15, 1041-1047.	1.8	6
1681	Feedback Activation of Basic Fibroblast Growth Factor Signaling via the Wnt/β-Catenin Pathway in Skin Fibroblasts. Frontiers in Pharmacology, 2017, 08, 32.	3.5	46
1682	An Isoxazole Chalcone Derivative Enhances Melanogenesis in B16 Melanoma Cells via the Akt/GSK3β/β-Catenin Signaling Pathways. Molecules, 2017, 22, 2077.	3.8	22
1683	A Tale of Two Signals: AR and WNT in Development and Tumorigenesis of Prostate and Mammary Gland. Cancers, 2017, 9, 14.	3.7	38
1684	Pofut1 point-mutations that disrupt O-fucosyltransferase activity destabilize the protein and abolish Notch1 signaling during mouse somitogenesis. PLoS ONE, 2017, 12, e0187248.	2.5	14
1685	GSK-3Beta-Dependent Activation of GEF-H1/ROCK Signaling Promotes LPS-Induced Lung Vascular Endothelial Barrier Dysfunction and Acute Lung Injury. Frontiers in Cellular and Infection Microbiology, 2017, 7, 357.	3.9	13
1686	Activation of the Wnt Pathway by Mycobacterium tuberculosis: A Wnt–Wnt Situation. Frontiers in Immunology, 2017, 8, 50.	4.8	51
1687	Ctbp2-mediated β-catenin regulation is required for exit from pluripotency. Experimental and Molecular Medicine, 2017, 49, e385-e385.	7.7	15
1688	Extracellular LDLR repeats modulate Wnt signaling activity by promoting LRP6 receptor endocytosis mediated by the Itch E3 ubiquitin ligase. Genes and Cancer, 2017, 8, 613-627.	1.9	4
1689	Suppression Of β-catenin Nuclear Translocation By CGP57380 Decelerates Poor Progression And Potentiates Radiation-Induced Apoptosis in Nasopharyngeal Carcinoma. Theranostics, 2017, 7, 2134-2149.	10.0	51
1690	LZTS2 and PTEN collaboratively regulate ß-catenin in prostatic tumorigenesis. PLoS ONE, 2017, 12, e0174357.	2.5	10
1691	Regulation of neural stem cell proliferation and differentiation by Kinesin family member 2a. PLoS ONE, 2017, 12, e0179047.	2.5	17
1692	Osteoblast Role in Rheumatic Diseases. International Journal of Molecular Sciences, 2017, 18, 1272.	4.1	39

#	Article	IF	Citations
1693	Spinal Muscular Atrophy Disease Modifiers. , 2017, , 191-210.		9
1694	Thermodynamic Aspects and Reprogramming Cellular Energy Metabolism during the Fibrosis Process. International Journal of Molecular Sciences, 2017, 18, 2537.	4.1	44
1695	Interactions between TGF-β1, canonical WNT/β-catenin pathway and PPAR γ in radiation-induced fibrosis. Oncotarget, 2017, 8, 90579-90604.	1.8	146
1696	Primate fetal hepatic responses to maternal obesity: epigenetic signalling pathways and lipid accumulation. Journal of Physiology, 2018, 596, 5823-5837.	2.9	51
1697	The inhibition of GSK-3β promotes the production of reactive oxygen species via β-catenin/C/EBPα signaling in the spleen of zebrafish (Danio rerio). Fish and Shellfish Immunology, 2018, 76, 110-120.	3.6	6
1698	Degradation for better survival? Role of ubiquitination in epithelial morphogenesis. Biological Reviews, 2018, 93, 1438-1460.	10.4	3
1699	Dioscin inhibits stem-cell-like properties and tumor growth of osteosarcoma through Akt/GSK3/β-catenin signaling pathway. Cell Death and Disease, 2018, 9, 343.	6.3	48
1700	ASAS-SSR Triennial Reproduction Symposium: Looking Back and Moving Forward—How Reproductive Physiology has Evolved: WNTs role in bovine folliculogenesis and estrogen production1,2. Journal of Animal Science, 2018, 96, 2977-2986.	0.5	4
1701	Ube2s stabilizes β-Catenin through K11-linked polyubiquitination to promote mesendoderm specification and colorectal cancer development. Cell Death and Disease, 2018, 9, 456.	6.3	43
1702	Maternal imprinting on cognition markers of wild type and transgenic Alzheimer's disease model mice. Scientific Reports, 2018, 8, 6434.	3.3	15
1703	Evidence of Wnt/β-catenin alterations in brain and bone of aÂtauopathy mouse model of Alzheimer's disease. Neurobiology of Aging, 2018, 67, 148-158.	3.1	36
1704	Crosstalk mechanisms between the WNT signaling pathway and long non-coding RNAs. Non-coding RNA Research, 2018, 3, 42-53.	4.6	47
1705	TMEM59 potentiates Wnt signaling by promoting signalosome formation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E3996-E4005.	7.1	36
1706	Ubiquitin-activating enzyme E1 inhibitor PYR-41 retards sperm enlargement after fusion to the egg. Reproductive Toxicology, 2018, 76, 71-77.	2.9	2
1707	Pgam5 released from damaged mitochondria induces mitochondrial biogenesis via Wnt signaling. Journal of Cell Biology, 2018, 217, 1383-1394.	5.2	73
1708	KSHV vPK inhibits Wnt signaling via preventing interactions between β-catenin and TCF4. Biochemical and Biophysical Research Communications, 2018, 497, 381-387.	2.1	2
1709	NDRG2 facilitates colorectal cancer differentiation through the regulation of Skp2-p21/p27 axis. Oncogene, 2018, 37, 1759-1774.	5.9	52
1710	Inhibition of the proteasome activity by graphene oxide contributes to its cytotoxicity. Nanotoxicology, 2018, 12, 185-200.	3.0	14

#	Article	IF	CITATIONS
1711	Functional significance and therapeutic implication of ring-type E3 ligases in colorectal cancer. Oncogene, 2018, 37, 148-159.	5.9	49
1712	Xom induces proteolysis of βâ€catenin through <scp>GSK</scp> 3βâ€mediated pathway. FEBS Letters, 2018, 592, 299-309.	2.8	8
1713	Beta-catenin cleavage enhances transcriptional activation. Scientific Reports, 2018, 8, 671.	3.3	22
1714	Wnt Signaling in the Central Nervous System: New Insights in Health and Disease. Progress in Molecular Biology and Translational Science, 2018, 153, 81-130.	1.7	68
1715	Capn4 promotes colorectal cancer cell proliferation by increasing MAPK7 through activation of the Wnt/β-Catenin pathway. Experimental Cell Research, 2018, 363, 235-242.	2.6	15
1716	Aerobic glycolysis in amyotrophic lateral sclerosis and Huntington's disease. Reviews in the Neurosciences, 2018, 29, 547-555.	2.9	34
1717	Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: implications for therapeutic targeting. Cancer and Metastasis Reviews, 2018, 37, 159-172.	5.9	125
1718	Multi-scale modeling of APC and \$\$eta \$\$β-catenin regulation in the human colonic crypt. Journal of Mathematical Biology, 2018, 76, 1797-1830.	1.9	3
1719	Opposite Interplay Between the Canonical WNT/β-Catenin Pathway and PPAR Gamma: A Potential Therapeutic Target in Gliomas. Neuroscience Bulletin, 2018, 34, 573-588.	2.9	49
1720	Comparative proteomic analysis of chief and oxyphil cell nodules in refractory uremic hyperparathyroidism by iTRAQ coupled LC-MS/MS. Journal of Proteomics, 2018, 179, 42-52.	2.4	7
1721	The WNT signaling pathways in wound healing and fibrosis. Matrix Biology, 2018, 68-69, 67-80.	3.6	133
1722	Thermodynamics in Neurodegenerative Diseases: Interplay Between Canonical WNT/Beta-Catenin Pathway–PPAR Gamma, Energy Metabolism and Circadian Rhythms. NeuroMolecular Medicine, 2018, 20, 174-204.	3.4	39
1723	High-content screening assay-based discovery of paullones as novel podocyte-protective agents. American Journal of Physiology - Renal Physiology, 2018, 314, F280-F292.	2.7	12
1724	Reprogramming energetic metabolism in Alzheimer's disease. Life Sciences, 2018, 193, 141-152.	4.3	28
1725	The natural agent rhein induces βâ€catenin degradation and tumour growth arrest. Journal of Cellular and Molecular Medicine, 2018, 22, 589-599.	3.6	13
1726	Reflection on the selection of doses of arenobufagin in vivo anticancer study. Pharmacological Research, 2018, 128, 402.	7.1	2
1727	Advanced oxidation protein products induce S-phase arrest of hepatocytes via the ROS-dependent, β-catenin-CDK2-mediated pathway. Redox Biology, 2018, 14, 338-353.	9.0	49
1728	Interactions Between the Canonical WNT/Beta-Catenin Pathway and PPAR Gamma on Neuroinflammation, Demyelination, and Remyelination in Multiple Sclerosis. Cellular and Molecular Neurobiology, 2018, 38, 783-795.	3.3	59

#	Article	IF	CITATIONS
1729	Signaling pathways and mesenchymal transition in pediatric high-grade glioma. Cellular and Molecular Life Sciences, 2018, 75, 871-887.	5.4	44
1730	Wnt signaling loss accelerates the appearance of neuropathological hallmarks of Alzheimer's disease in J20â€ <scp>APP</scp> transgenic and wildâ€type mice. Journal of Neurochemistry, 2018, 144, 443-465.	3.9	66
1731	UNC-5 netrin receptor B mediates osteogenic differentiation by modulating bone morphogenetic protein signaling in human adipose-derived stem cells. Biochemical and Biophysical Research Communications, 2018, 495, 1167-1174.	2.1	7
1732	Wnt/β-Catenin Signaling in Liver Development, Homeostasis, and Pathobiology. Annual Review of Pathology: Mechanisms of Disease, 2018, 13, 351-378.	22.4	288
1733	Inhibition of human mesenchymal stem cell proliferation via Wnt signaling activation. Journal of Cellular Biochemistry, 2018, 119, 1670-1678.	2.6	11
1734	Identification and characterization of functional single nucleotide polymorphisms (SNPs) in Axin 1 gene: a molecular dynamics approach. Cell Biochemistry and Biophysics, 2018, 76, 173-185.	1.8	8
1735	Frequently rearranged and overexpressed Î-catenin is responsible for low sensitivity of prostate cancer cells to androgen receptor and β-catenin antagonists. Oncotarget, 2018, 9, 24428-24442.	1.8	6
1736	Exon 3 mutations of <i>CTNNB1</i> drive tumorigenesis: a review. Oncotarget, 2018, 9, 5492-5508.	1.8	148
1738	Chromatin-associated APC regulates gene expression in collaboration with canonical WNT signaling and AP-1. Oncotarget, 2018, 9, 31214-31230.	1.8	7
1739	Wnt/β-Catenin Signaling Pathway Governs a Full Program for Dopaminergic Neuron Survival, Neurorescue and Regeneration in the MPTP Mouse Model of Parkinson's Disease. International Journal of Molecular Sciences, 2018, 19, 3743.	4.1	84
1740	The TRAX, DISC1, and GSK3 complex in mental disorders and therapeutic interventions. Journal of Biomedical Science, 2018, 25, 71.	7.0	21
1741	SPAC5 promotes hepatocellular carcinoma progression by downregulating SCARA5 through modifying β-catenin degradation. Journal of Experimental and Clinical Cancer Research, 2018, 37, 229.	8.6	45
1742	CCAAT/enhancer-binding protein-β functions as a negative regulator of Wnt/β-catenin signaling through activation of AXIN1 gene expression. Cell Death and Disease, 2018, 9, 1023.	6.3	6
1743	Smad Ubiquitination Regulatory Factor 1 (Smurf1) Promotes Thyroid Cancer Cell Proliferation and Migration via Ubiquitin-Dependent Degradation of Kisspeptin-1. Cellular Physiology and Biochemistry, 2018, 49, 2047-2059.	1.6	14
1744	The Role of WNT Signaling in Mature T Cells: T Cell Factor Is Coming Home. Journal of Immunology, 2018, 201, 2193-2200.	0.8	40
1745	The Role of the Extracellular Matrix and Its Molecular and Cellular Regulators in Cancer Cell Plasticity. Frontiers in Oncology, 2018, 8, 431.	2.8	267
1746	β-Catenin is a pH sensor with decreased stability at higher intracellular pH. Journal of Cell Biology, 2018, 217, 3965-3976.	5.2	32
1747	Regulation of Osteoblast Metabolism by Wnt Signaling. Endocrinology and Metabolism, 2018, 33, 318.	3.0	42

#	Article	IF	CITATIONS
1748	Androgen receptor suppresses prostate cancer cell invasion via altering the miR-4496/β-catenin signals. Biochemical and Biophysical Research Communications, 2018, 504, 82-88.	2.1	9
1749	Targeting LRP8 inhibits breast cancer stem cells in triple-negative breast cancer. Cancer Letters, 2018, 438, 165-173.	7.2	28
1750	MAPK and CSK3/ß-TRCP-mediated degradation of the maternal Ets domain transcriptional repressor Yan/Tel controls the spatial expression of nodal in the sea urchin embryo. PLoS Genetics, 2018, 14, e1007621.	3.5	10
1751	Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chemical Reviews, 2018, 118, 9152-9232.	47.7	253
1752	LncRNA SLCO4A1-AS1 facilitates growth and metastasis of colorectal cancer through β-catenin-dependent Wnt pathway. Journal of Experimental and Clinical Cancer Research, 2018, 37, 222.	8.6	102
1753	Wnt3a‑regulated TCF4/β‑catenin complex directly activates the key Hedgehog signalling genes Smo and Gli1. Experimental and Therapeutic Medicine, 2018, 16, 2101-2107.	1.8	15
1754	Tales from the crypt: intestinal niche signals in tissue renewal, plasticity and cancer. Open Biology, 2018, 8, .	3.6	96
1755	Exploring major signaling cascades in melanomagenesis: a rationale route for targetted skin cancer therapy. Bioscience Reports, 2018, 38, .	2.4	28
1756	PSMD2 regulates breast cancer cell proliferation and cell cycle progression by modulating p21 and p27 proteasomal degradation. Cancer Letters, 2018, 430, 109-122.	7.2	75
1757	Glycogen synthase kinase-3 (GSK-3) activity regulates mRNA methylation in mouse embryonic stem cells. Journal of Biological Chemistry, 2018, 293, 10731-10743.	3.4	27
1758	Effects of cullinÃ ⁻ ¿½4B on the proliferation and invasion of human gastric cancer cells. Molecular Medicine Reports, 2018, 17, 4973-4980.	2.4	3
1759	Role of the Wnt/ <i>β</i> -Catenin Pathway in Renal Osteodystrophy. International Journal of Endocrinology, 2018, 2018, 1-15.	1.5	14
1760	MicroRNA expression profiles identify biomarkers for predicting the response to chemoradiotherapy in rectal cancer. Molecular Medicine Reports, 2018, 18, 1909-1916.	2.4	12
1761	Involvement of GSK3/β atenin in the action of extracellular ATP on differentiation of primary cultures from rat calvaria into osteoblasts. Journal of Cellular Biochemistry, 2018, 119, 8378-8388.	2.6	5
1762	Overexpression of <i>FGFR1</i> Promotes Peritoneal Dissemination <i>Via</i> Epithelial-to-Mesenchymal Transition in Gastric Cancer. Cancer Genomics and Proteomics, 2018, 15, 313-320.	2.0	15
1763	Wnt3a/β-Catenin Signaling Conditions Differentiation of Partially Exhausted T-effector Cells in Human Cancers. Cancer Immunology Research, 2018, 6, 941-952.	3.4	34
1764	Ultramicronized palmitoylethanolamide rescues learning and memory impairments in a triple transgenic mouse model of Alzheimer's disease by exerting anti-inflammatory and neuroprotective effects. Translational Psychiatry, 2018, 8, 32.	4.8	64
1765	Warburg effect hypothesis in autism Spectrum disorders. Molecular Brain, 2018, 11, 1.	2.6	85

#	Article	IF	CITATIONS
1766	Multiple roles of Adenomatous Polyposis Coli gene in Wnt Signalling – a Computational Model. BioSystems, 2018, 172, 26-36.	2.0	4
1767	Wnt Signaling in the Hippocampus in Relation to Neurogenesis, Neuroplasticity, Stress and Epigenetics. Progress in Molecular Biology and Translational Science, 2018, 158, 129-157.	1.7	19
1768	Proteasomeâ€mediated proteostasis: Novel medicinal and pharmacological strategies for diseases. Medicinal Research Reviews, 2018, 38, 1916-1973.	10.5	29
1769	Interplay between the renin-angiotensin system, the canonical WNT/β-catenin pathway and PPARγ in hypertension. Current Hypertension Reports, 2018, 20, 62.	3.5	22
1770	Bone Cells: Osteoblast/Osteoclast/Osteocyte. , 2019, , 1-9.		0
1771	TIMP-1 Promotes Oligodendrocyte Differentiation Through Receptor-Mediated Signaling. Molecular Neurobiology, 2019, 56, 3380-3392.	4.0	35
1772	CD147 (EMMPRIN) controls malignant properties of breast cancer cells by interdependent signaling of Wnt and JAK/STAT pathways. Molecular and Cellular Biochemistry, 2019, 451, 197-209.	3.1	20
1773	De Novo Missense Variants in FBXW11 Cause Diverse Developmental Phenotypes Including Brain, Eye, and Digit Anomalies. American Journal of Human Genetics, 2019, 105, 640-657.	6.2	31
1774	Anti-mullerian hormone receptor type II as a Potential Target for Antineoplastic Therapy. Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 2019, 13, 202-213.	0.4	3
1775	Wnt signaling: implications in endoderm development and pancreas organogenesis. Current Opinion in Cell Biology, 2019, 61, 48-55.	5.4	30
1776	<i>Mycoplasma hyorhinis</i> infection promotes gastric cancer cell motility via β atenin signaling. Cancer Medicine, 2019, 8, 5301-5312.	2.8	15
1777	Cell competition corrects noisy Wnt morphogen gradients to achieve robust patterning in the zebrafish embryo. Nature Communications, 2019, 10, 4710.	12.8	56
1778	Targeting the Versatile Wnt/β-Catenin Pathway in Cancer Biology and Therapeutics: From Concept to Actionable Strategy. OMICS A Journal of Integrative Biology, 2019, 23, 517-538.	2.0	22
1779	Tnni3k alleles influence ventricular mononuclear diploid cardiomyocyte frequency. PLoS Genetics, 2019, 15, e1008354.	3.5	28
1780	Yougui pills exert osteoprotective effects on rabbit steroid-related osteonecrosis of the femoral head by activating β-catenin. Biomedicine and Pharmacotherapy, 2019, 120, 109520.	5.6	15
1781	Differentiation-inducing factor-1 prevents hepatic stellate cell activation through inhibiting GSK3Î ² inactivation. Biochemical and Biophysical Research Communications, 2019, 520, 140-144.	2.1	4
1782	Human Cortical Organoids Expose a Differential Function of GSK3 on Cortical Neurogenesis. Stem Cell Reports, 2019, 13, 847-861.	4.8	48
1783	Functions of the WNT Signaling Network in Shaping Host Responses to Infection. Frontiers in Immunology, 2019, 10, 2521.	4.8	58

#	Article	IF	CITATIONS
1784	Wnt Glycation Inhibits Canonical Signaling. Cells, 2019, 8, 1320.	4.1	7
1785	Tetrahydrocurcumin Inhibits α-MSH-induced Melanogenesis via GSK3β Activation in B16F10 Melanoma Cells. Toxicology and Environmental Health Sciences, 2019, 11, 210-218.	2.1	4
1786	Microgravity inhibits decidualization via decreasing Akt activity and FOXO3a expression in human endometrial stromal cells. Scientific Reports, 2019, 9, 12094.	3.3	16
1787	E2 ubiquitin-conjugating enzymes in cancer: Implications for immunotherapeutic interventions. Clinica Chimica Acta, 2019, 498, 126-134.	1.1	33
1788	Wnt10b Participates in Regulating Fatty Acid Synthesis in the Muscle of Zebrafish. Cells, 2019, 8, 1011.	4.1	10
1789	An aggregon in conductin/axin2 regulates Wnt/ \hat{l}^2 -catenin signaling and holds potential for cancer therapy. Nature Communications, 2019, 10, 4251.	12.8	22
1790	Functional roles of circular RNAs during epithelial-to-mesenchymal transition. Molecular Cancer, 2019, 18, 138.	19.2	79
1791	Identification of a novel selective and potent inhibitor of glycogen synthase kinase-3. American Journal of Physiology - Cell Physiology, 2019, 317, C1289-C1303.	4.6	27
1792	The Emerging Roles of Cancer Stem Cells and Wnt/Beta-Catenin Signaling in Hepatoblastoma. Cancers, 2019, 11, 1406.	3.7	34
1793	N-Myc Downstream-Regulated Gene 2 (NDRG2) as a Novel Tumor Suppressor in Multiple Human Cancers. , 0, , .		0
1794	Thioridazine Enhances P62-Mediated Autophagy and Apoptosis Through Wnt/β-Catenin Signaling Pathway in Glioma Cells. International Journal of Molecular Sciences, 2019, 20, 473.	4.1	96
1795	Canonical Wnt is inhibited by targeting one-carbon metabolism through methotrexate or methionine deprivation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2987-2995.	7.1	44
1796	Identification of Endogenous Adenomatous Polyposis Coli Interaction Partners and β-Catenin–Independent Targets by Proteomics. Molecular Cancer Research, 2019, 17, 1828-1841.	3.4	5
1797	A Review of the Role of Wnt in Cancer Immunomodulation. Cancers, 2019, 11, 771.	3.7	50
1798	The role of magnesium ions in bone regeneration involves the canonical Wnt signaling pathway. Acta Biomaterialia, 2019, 98, 246-255.	8.3	101
1799	Metabolic enzyme PDK3 forms a positive feedback loop with transcription factor HSF1 to drive chemoresistance. Theranostics, 2019, 9, 2999-3013.	10.0	35
1800	Enhancement of β-catenin/T-cell factor 4 signaling causes susceptibility to cardiac arrhythmia by suppressing NaV1.5 expression in mice. Heart Rhythm, 2019, 16, 1720-1728.	0.7	11
1801	The Role of Ubiquitination in Regulating Embryonic Stem Cell Maintenance and Cancer Development. International Journal of Molecular Sciences, 2019, 20, 2667.	4.1	13

#	Article	IF	CITATIONS
1802	Cytotoxic activity of broussochalcone a against colon and liver cancer cells by promoting destruction complex-independent β-catenin degradation. Food and Chemical Toxicology, 2019, 131, 110550.	3.6	12
1803	β‑catenin signalling inhibits cartilage endplate chondrocyte homeostasis in�vitro. Molecular Medicine Reports, 2019, 20, 567-572.	2.4	5
1804	Improved memory and reduced anxiety in δ-catenin transgenic mice. Experimental Neurology, 2019, 318, 22-31.	4.1	8
1805	OBC â€like ATP ase 1 inhibition attenuates angiotensin II â€induced hypertrophic response in human ventricular myocytes via GSK â€3beta/betaâ€catenin signalling. Clinical and Experimental Pharmacology and Physiology, 2019, 46, 743-751.	1.9	9
1806	Berberine improves advanced glycation end products‑induced osteogenic differentiation responses in human periodontal ligament stem cells through the canonical Wnt/β‑catenin pathway. Molecular Medicine Reports, 2019, 19, 5440-5452.	2.4	16
1807	Establishment of the Axial Polarity and Cell Fate in Metazoa via Canonical Wnt Signaling: New Insights from Sponges and Annelids. Biology Bulletin, 2019, 46, 14-25.	0.5	6
1808	Sorafenib/MEK inhibitor combination inhibits tumor growth and the Wnt/β‑catenin pathway in xenograft models of hepatocellular carcinoma. International Journal of Oncology, 2019, 54, 1123-1133.	3.3	20
1809	CGK062, a small chemical molecule, inhibits cancer upregulated gene 2‑induced oncogenesis through NEK2 and β‑catenin. International Journal of Oncology, 2019, 54, 1295-1305.	3.3	8
1810	Role of Î ² -Catenin Activation Levels and Fluctuations in Controlling Cell Fate. Genes, 2019, 10, 176.	2.4	28
1811	Human neural crest induction by temporal modulation of WNT activation. Developmental Biology, 2019, 449, 99-106.	2.0	40
1812	Advances in understanding the mechanisms of evasive and innate resistance to mTOR inhibition in cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1322-1337.	4.1	20
1813	Transient stabilization, rather than inhibition, of MYC amplifies extrinsic apoptosis and therapeutic responses in refractory B-cell lymphoma. Leukemia, 2019, 33, 2429-2441.	7.2	24
1814	High expression of <scp>SPAG</scp> 5 sustains the malignant growth and invasion of breast cancer cells through the activation of Wnt/l²â€catenin signalling. Clinical and Experimental Pharmacology and Physiology, 2019, 46, 597-606.	1.9	20
1815	Met-enkephalin inhibits ROS production through Wnt/β-catenin signaling in the ZF4 cells of zebrafish. Fish and Shellfish Immunology, 2019, 88, 432-440.	3.6	8
1816	Targeting β-catenin overcomes MEK inhibition resistance in colon cancer with KRAS and PIK3CA mutations. British Journal of Cancer, 2019, 120, 941-951.	6.4	16
1817	Axin-1 binds to Caveolin-1 to regulate the LPS-induced inflammatory response in AT-I cells. Biochemical and Biophysical Research Communications, 2019, 513, 261-268.	2.1	9
1818	Proteasomal deubiquitinase UCH37 inhibits degradation of β-catenin and promotes cell proliferation and motility. Acta Biochimica Et Biophysica Sinica, 2019, 51, 277-284.	2.0	5
1819	Cellular TRIM33 restrains HIV-1 infection by targeting viral integrase for proteasomal degradation. Nature Communications, 2019, 10, 926.	12.8	39

#	Article	IF	Citations
1820	Sequential Windowed Acquisition of Reporter Masses for Quantitation-First Proteomics. Journal of Proteome Research, 2019, 18, 1893-1901.	3.7	0
1821	ZNF326 promotes malignant phenotype of glioma by up-regulating HDAC7 expression and activating Wnt pathway. Journal of Experimental and Clinical Cancer Research, 2019, 38, 40.	8.6	27
1822	Wnt Signaling and Genetic Bone Diseases. , 2019, , .		1
1823	Casein kinase 1α decreases β-catenin levels at adherens junctions to facilitate wound closure in <i>Drosophila</i> larvae. Development (Cambridge), 2019, 146, .	2.5	5
1824	Preclinical murine platform to evaluate therapeutic countermeasures against radiation-induced gastrointestinal syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20672-20678.	7.1	27
1825	Screening and computational analysis of colorectal associated non-synonymous polymorphism in CTNNB1 gene in Pakistani population. BMC Medical Genetics, 2019, 20, 171.	2.1	3
1826	The CK1α Activator Pyrvinium Enhances the Catalytic Efficiency (<i>k</i> _{cat} / <i>K</i> _m) of CK1α. Biochemistry, 2019, 58, 5102-5106.	2.5	10
1827	The role of mesenchymal–epithelial transition in endometrial function. Human Reproduction Update, 2019, 25, 114-133.	10.8	161
1828	Attenuation of Tumor Suppressive Function of FBXO16 Ubiquitin Ligase Activates Wnt Signaling In Glioblastoma. Neoplasia, 2019, 21, 106-116.	5.3	26
1829	Lycorine inhibits melanoma cell migration and metastasis mainly through reducing intracellular levels of βâ€catenin and matrix metallopeptidase 9. Journal of Cellular Physiology, 2019, 234, 10566-10575.	4.1	17
1830	Hypoxia induced δ-Catenin to enhance mice hepatocellular carcinoma progression via Wnt signaling. Experimental Cell Research, 2019, 374, 94-103.	2.6	12
1831	Activating Wnt/β-catenin signaling pathway for disease therapy: Challenges and opportunities. , 2019, 196, 79-90.		154
1832	Nerigoside suppresses colorectal cancer cell growth and metastatic potential through inhibition of ERK/GSK3β/β-catenin signaling pathway. Phytomedicine, 2019, 57, 352-363.	5.3	22
1833	Differential regulation of GSK-3β in spinal dorsal horn and in hippocampus mediated by interleukin-1beta contributes to pain hypersensitivity and memory deficits following peripheral nerve injury. Molecular Pain, 2019, 15, 174480691982678.	2.1	18
1834	Wnt signaling dynamics in head and neck squamous cell cancer tumorâ€stroma interactions. Molecular Carcinogenesis, 2019, 58, 398-410.	2.7	43
1835	Capping Protein Regulator and Myosin 1 Linker 3 Is Required for Tumor Metastasis. Molecular Cancer Research, 2020, 18, 240-252.	3.4	5
1836	Hyperglycemiaâ€induced ubiquitination and degradation of βâ€catenin with the loss of platelet endothelial cell adhesion moleculeâ€1 in retinal endothelial cells. Microcirculation, 2020, 27, e12596.	1.8	7
1837	Novel insights into the complex architecture of osteoporosis molecular genetics. Annals of the New York Academy of Sciences, 2020, 1462, 37-52.	3.8	43

			_
#		IF	CITATIONS
1838	Wnt pathway: A mechanism worth considering in endocrine disrupting chemical action. Toxicology and Industrial Health, 2020, 36, 41-53.	1.4	4
1839	NEDD4 and NEDD4L regulate Wnt signalling and intestinal stem cell priming by degrading LGR5 receptor. EMBO Journal, 2020, 39, e102771.	7.8	58
1840	Pristimerin suppresses colorectal cancer through inhibiting inflammatory responses and Wnt/β-catenin signaling. Toxicology and Applied Pharmacology, 2020, 386, 114813.	2.8	36
1841	Trefoil Factor Family 1 Inhibits the Development of Hepatocellular Carcinoma by Regulating βâ€Catenin Activation. Hepatology, 2020, 72, 503-517.	7.3	21
1842	Wnt signaling and bone cell activity. , 2020, , 177-204.		0
1844	Role of the Wnt signaling pathway in keratoacanthoma. Cancer Reports, 2020, 3, e1219.	1.4	3
1845	Clinicopathologic and Immunohistochemical Correlates of CTNNB1 Mutated Endometrial Endometrioid Carcinoma. International Journal of Gynecological Pathology, 2020, 39, 119-127.	1.4	58
1846	Role of Wnt Signaling in Adult Hippocampal Neurogenesis in Health and Disease. Frontiers in Cell and Developmental Biology, 2020, 8, 860.	3.7	80
1847	β-catenin activates TGF-β-induced epithelial–mesenchymal transition in adenomyosis. Experimental and Molecular Medicine, 2020, 52, 1754-1765.	7.7	16
1848	Transcriptional Regulation of Wnt/β-Catenin Pathway in Colorectal Cancer. Cells, 2020, 9, 2125.	4.1	131
1849	Interplay Between Ion Channels and the Wnt/β-Catenin Signaling Pathway in Cancers. Frontiers in Pharmacology, 2020, 11, 525020.	3.5	15
1850	CDK11 negatively regulates Wnt/β-catenin signaling in the endosomal compartment by affecting microtubule stability. Cancer Biology and Medicine, 2020, 17, 328-342.	3.0	8
1851	Vitamin E promotes ovine Sertoli cell proliferation by regulation of genes associated with cell division and the cell cycle. Animal Biotechnology, 2022, 33, 392-400.	1.5	4
1852	Targeting Î ² -Catenin Signaling by Natural Products for Cancer Prevention and Therapy. Frontiers in Pharmacology, 2020, 11, 984.	3.5	25
1853	The influence of circadian rhythms and aerobic glycolysis in autism spectrum disorder. Translational Psychiatry, 2020, 10, 400.	4.8	14
1854	Insights into Potential Targets for Therapeutic Intervention in Epilepsy. International Journal of Molecular Sciences, 2020, 21, 8573.	4.1	22
1855	WNK regulates Wnt signalling and \hat{l}^2 -Catenin levels by interfering with the interaction between \hat{l}^2 -Catenin and GID. Communications Biology, 2020, 3, 666.	4.4	16
1856	Nucleolar and spindle-associated protein 1 accelerates cellular proliferation and invasion in nasopharyngeal carcinoma by potentiating Wnt/β-catenin signaling via modulation of GSK-3β. Journal of Bioenergetics and Biomembranes, 2020, 52, 441-451.	2.3	4

#	Article	IF	CITATIONS
1857	Oncogenic Serine 45-Deleted Î ² -Catenin Remains Susceptible to Wnt Stimulation and APC Regulation in Human Colonocytes. Cancers, 2020, 12, 2114.	3.7	7
1858	JAK3 restrains inflammatory responses and protects against periodontal disease through Wnt3a signaling. FASEB Journal, 2020, 34, 9120-9140.	0.5	14
1859	The indirubin derivative 6-bromoindirubin-3′-glycerol-oxime ether (6BIGOE) potently modulates inflammatory cytokine and prostaglandin release from human monocytes through GSK-3 interference. Biochemical Pharmacology, 2020, 180, 114170.	4.4	11
1860	Capn4 contributes to tumor invasion and metastasis in gastric cancer via activation of the Wnt/β-catenin/MMP9 signalling pathways. Experimental Cell Research, 2020, 395, 112220.	2.6	16
1861	PWP1 Promotes the Malignant Phenotypes of Lung Cancer Cells by Interacting with DVL2 and Merlin. OncoTargets and Therapy, 2020, Volume 13, 10025-10037.	2.0	3
1862	Thymoquinone inhibits the proliferation and invasion of esophageal cancer cells by disrupting the <scp>AKT</scp> / <scp>GSK</scp> â€3β/Wnt signaling pathway via <scp>PTEN</scp> upregulation. Phytotherapy Research, 2020, 34, 3388-3399.	5.8	15
1863	Wingless ligands and betaâ€catenin expression in the rat endometrium: The role of Wnt3 and Wnt7a/betaâ€catenin pathway at the embryo–uterine interface. Molecular Reproduction and Development, 2020, 87, 1159-1172.	2.0	3
1864	Wnt Network: A Brief Review of Pathways and Multifunctional Components. Critical Reviews in Eukaryotic Gene Expression, 2020, 30, 1-18.	0.9	8
1865	A phospho-switch controls RNF43-mediated degradation of Wnt receptors to suppress tumorigenesis. Nature Communications, 2020, 11, 4586.	12.8	40
1866	The epigenetic regulator Mll1 is required for Wnt-driven intestinal tumorigenesis and cancer stemness. Nature Communications, 2020, 11, 6422.	12.8	38
1867	The USP7 protein interaction network and its roles in tumorigenesis. Genes and Diseases, 2022, 9, 41-50.	3.4	20
1868	Intestinal region-specific Wnt signalling profiles reveal interrelation between cell identity and oncogenic pathway activity in cancer development. Cancer Cell International, 2020, 20, 578.	4.1	8
1869	HNF4A and GATA6 Loss Reveals Therapeutically Actionable Subtypes in Pancreatic Cancer. Cell Reports, 2020, 31, 107625.	6.4	78
1870	Clathrin regulates Wnt/β-catenin signaling by affecting Golgi to plasma membrane transport of transmembrane proteins. Journal of Cell Science, 2020, 133, .	2.0	5
1871	Small Molecules that Promote Self-Renewal of Stem Cells and Somatic Cell Reprogramming. Stem Cell Reviews and Reports, 2020, 16, 511-523.	3.8	27
1872	TIMD4 exhibits regulatory capability on the proliferation and apoptosis of diffuse large Bâ€cell lymphoma cells via the Wnt/l²â€catenin pathway. Journal of Gene Medicine, 2020, 22, e3186.	2.8	7
1873	The Role of Carcinogenesis-Related Biomarkers in the Wnt Pathway and Their Effects on Epithelial–Mesenchymal Transition (EMT) in Oral Squamous Cell Carcinoma. Cancers, 2020, 12, 555.	3.7	35
1874	Modelling the effect of subcellular mutations on the migration of cells in the colorectal crypt. BMC Bioinformatics, 2020, 21, 95.	2.6	4

#	Article	IF	CITATIONS
1875	Miclxin, a Novel MIC60 Inhibitor, Induces Apoptosis via Mitochondrial Stress in β-Catenin Mutant Tumor Cells. ACS Chemical Biology, 2020, 15, 2195-2204.	3.4	3
1876	APC controls Wnt-induced β-catenin destruction complex recruitment in human colonocytes. Scientific Reports, 2020, 10, 2957.	3.3	53
1877	An Endogenous Ligand of Aryl Hydrocarbon Receptor 6-Formylindolo[3,2-b]Carbazole (FICZ) Is a Signaling Molecule in Neurogenesis of Adult Hippocampal Neurons. Journal of Molecular Neuroscience, 2020, 70, 806-817.	2.3	13
1879	Cellular and molecular basis of liver regeneration. Seminars in Cell and Developmental Biology, 2020, 100, 74-87.	5.0	23
1880	Tannic Acid Promotes TRAIL-Induced Extrinsic Apoptosis by Regulating Mitochondrial ROS in Human Embryonic Carcinoma Cells. Cells, 2020, 9, 282.	4.1	37
1881	Tau acetylates and stabilizes βâ€catenin thereby promoting cell survival. EMBO Reports, 2020, 21, e48328.	4.5	24
1882	Primary cilia control cell alignment and patterning in bone development via ceramide-PKCζ-β-catenin signaling. Communications Biology, 2020, 3, 45.	4.4	28
1883	Circadian Rhythms in Exudative Age-Related Macular Degeneration: The Key Role of the Canonical WNT/β-Catenin Pathway. International Journal of Molecular Sciences, 2020, 21, 820.	4.1	15
1884	Bcl-3 promotes Wnt signaling by maintaining the acetylation of β-catenin at lysine 49 in colorectal cancer. Signal Transduction and Targeted Therapy, 2020, 5, 52.	17.1	26
1885	Targeting the Î ² -catenin signaling for cancer therapy. Pharmacological Research, 2020, 160, 104794.	7.1	54
1886	Sumoylation on its 25th anniversary: mechanisms, pathology, and emerging concepts. FEBS Journal, 2020, 287, 3110-3140.	4.7	127
1887	Cytotoxic Activity of Aplykurodin A Isolated From Aplysia kurodai against AXIN1-Mutated Hepatocellular Carcinoma Cells by Promoting Oncogenic β-Catenin Degradation. Marine Drugs, 2020, 18, 210.	4.6	4
1888	Are Wnt/β-Catenin and PI3K/AKT/mTORC1 Distinct Pathways in Colorectal Cancer?. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 491-506.	4.5	69
1889	A novel β-catenin from Apostichopus japonicus mediates Vibrio splendidus-induced inflammatory-like response. International Journal of Biological Macromolecules, 2020, 156, 730-739.	7.5	7
1890	Proteaphagy in Mammalian Cells Can Function Independent of ATG5/ATG7. Molecular and Cellular Proteomics, 2020, 19, 1120-1131.	3.8	11
1891	Wnt/β-Catenin Signaling in Neural Stem Cell Homeostasis and Neurological Diseases. Neuroscientist, 2021, 27, 58-72.	3.5	60
1892	Getting a Grip on the Undrugged: Targeting βâ€Catenin with Fragmentâ€Based Methods. ChemMedChem, 2021, 16, 1420-1424.	3.2	14
1893	Signaling pathways influencing stem cell self-renewal and differentiation. , 2021, , 69-87.		0

		CITATION REPORT		
#	Article		IF	CITATIONS
1894	Targeting leukemia stem cells in T-cell acute lymphoblastic leukemia (T-ALL). , 2021, , 2	161-197.		0
1895	Estrogen Receptor Signaling Pathways Involved in Invasion and Colony Formation of Androgen-Independent Prostate Cancer Cells PC-3. International Journal of Molecular 22, 1153.	Sciences, 2021,	4.1	12
1896	Understanding the Components of EMT Proteome and Their Regulations to Identify Bi Cancer Prognosis. Lecture Notes in Bioengineering, 2021, , 473-487.	omarkers for	0.4	0
1897	Parkinson's Disease: Potential Actions of Lithium by Targeting the WNT/β-Catenin Stress, Inflammation and Glutamatergic Pathway. Cells, 2021, 10, 230.	Pathway, Oxidative	4.1	37
1898	Platelet-Rich Plasma for Hair Loss. , 2021, , 71-82.			21
1899	Central signalling crossâ€talk between insulin and leptin in glucose and energy homec Neuroendocrinology, 2021, 33, e12944.	ostasis. Journal of	2.6	19
1900	Postâ€ŧranslational Wnt receptor regulation: Is the fog slowly clearing?. BioEssays, 20	21, 43, e2000297.	2.5	10
1901	Repression of Wnt/β-catenin signaling by SOX9 and Mastermind-like transcriptional co Science Advances, 2021, 7, .	oactivator 2.	10.3	22
1902	Therapeutic targeting of the oncogenic Wnt signaling pathway for treating colorectal other colonic disorders. Advanced Drug Delivery Reviews, 2021, 169, 118-136.	cancer and	13.7	58
1903	A \hat{l}^2 -catenin-driven switch in TCF/LEF transcription factor binding to DNA target sites p commitment of mammalian nephron progenitor cells. ELife, 2021, 10, .	romotes	6.0	32
1904	Pyrvinium Treatment Confers Hepatic Metabolic Benefits via Î ² -Catenin Downregulatic Activation. Pharmaceutics, 2021, 13, 330.	on and AMPK	4.5	5
1905	<scp>FAM84B</scp> acts as a tumor promoter in human glioma via affecting the Akt/ <scp>GSK</scp> â€3β/βâ€catenin pathway. BioFactors, 2021, 47, 600-611.		5.4	7
1906	Basal Cell Adenoma and Basal Cell Adenocarcinoma. Surgical Pathology Clinics, 2021,	14, 25-42.	1.7	11
1907	An early global role for Axin is required for correct patterning of the anterior-posterior sea urchin embryo. Development (Cambridge), 2021, 148, .	axis in the	2.5	6
1908	RhoGEF17—An Essential Regulator of Endothelial Cell Death and Growth. Cells, 2021	1, 10, 741.	4.1	5
1909	Comprehending the crosstalk between Notch, Wnt and Hedgehog signaling pathways squamous cell carcinoma - clinical implications. Cellular Oncology (Dordrecht), 2021, 4		4.4	19
1910	Lithium and Atypical Antipsychotics: The Possible WNT/ \hat{I}^2 Pathway Target in Glaucoma 2021, 9, 473.	Biomedicines,	3.2	5
1911	PIK3C3 Inhibition Promotes Sensitivity to Colon Cancer Therapy by Inhibiting Cancer S Cancers, 2021, 13, 2168.	item Cells.	3.7	28

#	Article	IF	CITATIONS
1912	Interplay of Opposing Effects of the WNT/β-Catenin Pathway and PPARγ and Implications for SARS-CoV2 Treatment. Frontiers in Immunology, 2021, 12, 666693.	4.8	33
1913	Cannabidiol and the Canonical WNT∫β-Catenin Pathway in Glaucoma. International Journal of Molecular Sciences, 2021, 22, 3798.	4.1	17
1914	Potential Roles of the WNT Signaling Pathway in Amyotrophic Lateral Sclerosis. Cells, 2021, 10, 839.	4.1	15
1915	Possible actions of cannabidiol in obsessive-compulsive disorder by targeting the WNT/β-catenin pathway. Molecular Psychiatry, 2022, 27, 230-248.	7.9	12
1916	Potential role of cannabidiol in Parkinson's disease by targeting the WNT/β-catenin pathway, oxidative stress and inflammation. Aging, 2021, 13, 10796-10813.	3.1	20
1917	Additional Inhibition of Wnt/β-Catenin Signaling by Metformin in DAA Treatments as a Novel Therapeutic Strategy for HCV-Infected Patients. Cells, 2021, 10, 790.	4.1	8
1918	Ubiquitination as an Important Host-Immune Response Strategy in Penaeid Shrimp: Inferences From Other Species. Frontiers in Immunology, 2021, 12, 697397.	4.8	4
1919	PHLDA3 promotes lung adenocarcinoma cell proliferation and invasion via activation of the Wnt signaling pathway. Laboratory Investigation, 2021, 101, 1130-1141.	3.7	8
1920	Opposed Interplay between IDH1 Mutations and the WNT/β-Catenin Pathway: Added Information for Glioma Classification. Biomedicines, 2021, 9, 619.	3.2	5
1921	Ionizing Radiation Induces Resistant Glioblastoma Stem-Like Cells by Promoting Autophagy via the Wnt/β-Catenin Pathway. Life, 2021, 11, 451.	2.4	9
1922	Modulating skin colour: role of the thioredoxin and glutathione systems in regulating melanogenesis. Bioscience Reports, 2021, 41, .	2.4	31
1923	Asymmetric distribution of dynamin-2 and β-catenin relative to tight junction spikes in alveolar epithelial cells. Tissue Barriers, 2021, 9, 1929786.	3.2	4
1924	Wnt/-Catenin Signaling and Liver Regeneration: Circuit, Biology, and Opportunities. Gene Expression, 2021, 20, 189-199.	1.2	17
1925	In-depth proteomic analysis of proteasome inhibitors bortezomib, carfilzomib and MG132 reveals that mortality factor 4-like 1 (MORF4L1) protein ubiquitylation is negatively impacted. Journal of Proteomics, 2021, 241, 104197.	2.4	10
1926	Clinicopathological significance of the EMT-related proteins and their interrelationships in prostate cancer. An immunohistochemical study. PLoS ONE, 2021, 16, e0253112.	2.5	2
1927	ATE1 Inhibits Liver Cancer Progression through RGS5-Mediated Suppression of Wnt/β-Catenin Signaling. Molecular Cancer Research, 2021, 19, 1441-1453.	3.4	10
1928	Quantitative live-cell imaging and computational modeling shed new light on endogenous WNT/CTNNB1 signaling dynamics. ELife, 2021, 10, .	6.0	21
1929	Photobiomodulation therapy for hair regeneration: A synergetic activation of β-CATENIN in hair follicle stem cells by ROS and paracrine WNTs. Stem Cell Reports, 2021, 16, 1568-1583.	4.8	27

#	Article	IF	CITATIONS
1930	Hair Growth Promotion by \hat{I}' -Opioid Receptor Activation. Biomolecules and Therapeutics, 2021, 29, 643-649.	2.4	3
1931	Hydroxyphenyl Butanone Induces Cell Cycle Arrest through Inhibition of GSK3β in Colorectal Cancer. BioMed Research International, 2021, 2021, 1-13.	1.9	2
1932	An MST4â€p <i>β</i> â€Catenin ^{Thr40} Signaling Axis Controls Intestinal Stem Cell and Tumorigenesis. Advanced Science, 2021, 8, e2004850.	11.2	16
1933	Cellular signaling crosstalk between Wnt signaling and gap junctions inbenzo[a]pyrene toxicity. Cell Biology and Toxicology, 2021, , 1.	5.3	3
1934	Origins, potency, and heterogeneity of skeletal muscle fibro-adipogenic progenitors—time for new definitions. Skeletal Muscle, 2021, 11, 16.	4.2	60
1936	Vitamin C regulates the production of reactive oxygen species through Wnt10b signaling in the gill of zebrafish. Fish Physiology and Biochemistry, 2021, 47, 1271-1282.	2.3	7
1937	A transcription-based mechanism for oncogenic β-catenin-induced lethality in BRCA1/2-deficient cells. Nature Communications, 2021, 12, 4919.	12.8	6
1938	Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduction and Targeted Therapy, 2021, 6, 307.	17.1	186
1939	EVI/WLS function is regulated by ubiquitylation and is linked to ER-associated degradation by ERLIN2. Journal of Cell Science, 2021, 134, .	2.0	13
1940	N471D WASH complex subunit strumpellin knockâ€in mice display mild motor and cardiac abnormalities and BPTF and KLHL11 dysregulation in brain tissue. Neuropathology and Applied Neurobiology, 2022, 48, .	3.2	4
1941	The Emerging Mechanisms of Wnt Secretion and Signaling in Development. Frontiers in Cell and Developmental Biology, 2021, 9, 714746.	3.7	38
1942	Reconstitution of the destruction complex defines roles of AXIN polymers and APC in Î ² -catenin capture, phosphorylation, and ubiquitylation. Molecular Cell, 2021, 81, 3246-3261.e11.	9.7	37
1943	Crosstalk of the Wnt/β-Catenin Signaling Pathway in the Induction of Apoptosis on Cancer Cells. Pharmaceuticals, 2021, 14, 871.	3.8	25
1944	Wnt signaling recruits KIF2A to the spindle to ensure chromosome congression and alignment during mitosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
1945	Genome-wide CNV investigation suggests a role for cadherin, Wnt, and p53 pathways in primary open-angle glaucoma. BMC Genomics, 2021, 22, 590.	2.8	10
1946	Targeting Akt in cancer for precision therapy. Journal of Hematology and Oncology, 2021, 14, 128.	17.0	94
1947	Tartrateâ€resistant acid phosphatase type 5/ <i>ACP5</i> promotes cell cycle entry of 3T3â€L1 preadipocytes by increasing IGFâ€1/Akt signaling. FEBS Letters, 2021, 595, 2616-2627.	2.8	3
1948	Root Bark of <i>Morus alba</i> L. and Its Bioactive Ingredient, Ursolic Acid, Suppress the Proliferation of Multiple Myeloma Cells by Inhibiting Wnt/l²-Catenin Pathway. Journal of Microbiology and Biotechnology, 2021, 31, 1559-1567.	2.1	6

#	Article	IF	CITATIONS
1949	Oestrogen Activates the MAP3K1 Cascade and β-Catenin to Promote Granulosa-like Cell Fate in a Human Testis-Derived Cell Line. International Journal of Molecular Sciences, 2021, 22, 10046.	4.1	0
1950	Targeting Wnt signaling pathway by polyphenols: implication for aging and age-related diseases. Biogerontology, 2021, 22, 479-494.	3.9	12
1951	Regulation of the Low-Density Lipoprotein Receptor-Related Protein LRP6 and Its Association With Disease: Wnt/β-Catenin Signaling and Beyond. Frontiers in Cell and Developmental Biology, 2021, 9, 714330.	3.7	18
1952	Brick Strex: a robust device built of LEGO bricks for mechanical manipulation of cells. Scientific Reports, 2021, 11, 18520.	3.3	6
1953	From the Evasion of Degradation to Ubiquitin-Dependent Protein Stabilization. Cells, 2021, 10, 2374.	4.1	14
1954	Proteomic Analysis of Exosomes during Cardiogenic Differentiation of Human Pluripotent Stem Cells. Cells, 2021, 10, 2622.	4.1	1
1955	Global Mass Spectrometry-Based Analysis of Protein Using K-ε-GG Remnant Antibody Enrichment. Methods in Molecular Biology, 2021, 2365, 203-216.	0.9	5
1956	The Role of Insulin-Like Growth Factors in the Epithelial to Mesenchymal Transition. , 2005, , 215-235.		2
1957	PI3K/AKT Pathway and the Epithelial-Mesenchymal Transition. , 2010, , 11-32.		7
1958	Wnt/β-Catenin Signaling and Oral Cancer Metastasis. , 2009, , 231-264.		1
1959	Regulation of Gene Expression by the Ubiquitin–Proteasome System and Implications for Neurological Disease. , 2011, , 281-315.		1
1960	An Introduction to Wnt Signaling. , 2011, , 1-18.		1
1961	Alanyl-Aminopeptidases in Human T Cells. , 2004, , 201-227.		4
1962	Targeting Inflammatory Processes for Optimization of Cartilage Homeostasis and Repair Techniques. , 2014, , 43-63.		3
1963	Role of Wnt Signaling Pathways in Multiple Myeloma Pathogenesis. , 2013, , 85-95.		1
1964	CD13/APN in Hematopoetic Cells — Expression, Function, Regulation, and Clinical Aspects. , 2002, , 25-49.		2
1965	Pathogenesis of Human ACP. , 2017, , 1-26.		2
1966	Roles of SCF and VHL Ubiquitin Ligases in Regulation of Cell Growth. Progress in Molecular and Subcellular Biology, 2002, 29, 1-15.	1.6	8

#	Article	IF	CITATIONS
1967	Elongation Factor-2 Phosphorylation and the Regulation of Protein Synthesis by Calcium. Progress in Molecular and Subcellular Biology, 2001, 27, 91-129.	1.6	44
1968	Adherens Junctions and Cancer. Sub-Cellular Biochemistry, 2012, 60, 379-414.	2.4	57
1969	Regulation of Stem Cells by Cullin-RING Ligase. Advances in Experimental Medicine and Biology, 2020, 1217, 79-98.	1.6	3
1970	Role of MSCs in Antitumor Drug Resistance. , 2017, , 295-333.		1
1971	Physiology of Gastrointestinal Stem Cells. , 2006, , 307-343.		1
1972	Tumors of the hair follicle. , 2012, , 1445-1487.		3
1973	Ubiquitin and control of transcription. Essays in Biochemistry, 2005, 41, 69-80.	4.7	26
1974	Pontin52, an interaction partner of Â-catenin, binds to the TATA box binding protein. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14787-14792.	7.1	169
1975	Endosomal Adaptor Proteins APPL1 and APPL2 Are Novel Activators of $\hat{1}^2$ -Catenin/TCF-mediated Transcription. Journal of Biological Chemistry, 2009, 284, 18115-18128.	3.4	56
1976	Effects of Forced Expression of an NH2-terminal Truncated β-Catenin on Mouse Intestinal Epithelial Homeostasis. Journal of Cell Biology, 1998, 141, 765-777.	5.2	167
1977	The Drosophila melanogaster Suppressor of deltex Gene, a Regulator of the Notch Receptor Signaling Pathway, Is an E3 Class Ubiquitin Ligase. Genetics, 1999, 152, 567-576.	2.9	135
1978	A Screen for Identifying Genes Interacting With Armadillo, the Drosophila Homolog of β-Catenin. Genetics, 1999, 153, 1753-1766.	2.9	50
1979	Walking the tight wire between cell adhesion and WNT signalling: a balancing act for β-catenin. Open Biology, 2020, 10, 200267.	3.6	49
1985	Signal-induced ubiquitination of Ikappa Balpha by the F-box protein Slimb/beta -TrCP. Genes and Development, 1999, 13, 284-294.	5.9	394
1986	Calcitriol inhibits migration and invasion of renal cell carcinoma cells by suppressing Smad2/3â€, STAT3― and βâ€cateninâ€mediated epithelialâ€mesenchymal transition. Cancer Science, 2020, 111, 59-71.	3.9	38
1987	Alterations of Lymphoid Enhancer Factor-1 Isoform Expression in Solid Tumors and Acute Leukemias. Acta Biochimica Et Biophysica Sinica, 2005, 37, 173-180.	2.0	2
1989	Ribosomal S6 protein kinase 4 promotes radioresistance in esophageal squamous cell carcinoma. Journal of Clinical Investigation, 2020, 130, 4301-4319.	8.2	30
1990	Epithelial-mesenchymal transition and its implications for fibrosis. Journal of Clinical Investigation, 2003, 112, 1776-1784.	8.2	1,367

			-
#	ARTICLE	IF	CITATIONS
1991	GSK-3β in mouse fibroblasts controls wound healing and fibrosis through an endothelin-1–dependent mechanism. Journal of Clinical Investigation, 2008, 118, 3279-90.	8.2	45
1992	Astrocyte elevated gene-1 regulates hepatocellular carcinoma development and progression. Journal of Clinical Investigation, 2009, 119, 465-477.	8.2	298
1993	Dysregulation of ubiquitin homeostasis and β-catenin signaling promote spinal muscular atrophy. Journal of Clinical Investigation, 2014, 124, 1821-1834.	8.2	151
1994	General Themes in Cell–Cell Junctions and Cell Adhesion. , 2001, , .		2
1995	BIOLOGICAL TARGETS OF OXIDATIVE STRESS Oxidative Post-translational Protein Modifi cations (OPMs). , 2012, , 39-44.		1
1996	The β-catenin homolog BAR-1 and LET-60 Ras coordinately regulate the Hox gene <i>lin-39</i> during <i>Caenorhabditis elegans</i> vulval development. Development (Cambridge), 1998, 125, 3667-3680.	2.5	223
1997	Nuclear β-catenin and the development of bilateral symmetry in normal and LiCl-exposed chick embryos. Development (Cambridge), 1999, 126, 2955-2965.	2.5	38
1998	β-catenin signaling can initiate feather bud development. Development (Cambridge), 1999, 126, 3509-3521.	2.5	163
1999	Regulation of neuronal K+ currents by target-derived factors: opposing actions of two different isoforms of TGFβ. Development (Cambridge), 1999, 126, 4157-4164.	2.5	22
2000	A <i>Drosophila Axin</i> homolog, <i>Daxin</i> , inhibits Wnt signaling. Development (Cambridge), 1999, 126, 4165-4173.	2.5	108
2001	A novel role for glycogen synthase kinase-3 in <i>Xenopus</i> development: maintenance of oocyte cell cycle arrest by a l²-catenin-independent mechanism. Development (Cambridge), 1999, 126, 567-576.	2.5	35
2002	decapentaplegic is a direct target of dTcf repression in the Drosophila visceral mesoderm. Development (Cambridge), 2000, 127, 3695-3702.	2.5	46
2003	Wnt/β-catenin signaling regulates the expression of the homeobox gene <i>Cdx1</i> in embryonic intestine. Development (Cambridge), 2000, 127, 3805-3813.	2.5	197
2004	Dorsal downregulation of GSK3β by a non-Wnt-like mechanism is an early molecular consequence of cortical rotation in early <i>Xenopus</i> embryos. Development (Cambridge), 2000, 127, 861-868.	2.5	49
2005	Ectopic Wnt signal determines the eyeless phenotype of zebrafish <i>masterblind</i> mutant. Development (Cambridge), 2001, 128, 3877-3888.	2.5	126
2006	Wnt and Bmp signalling cooperatively regulate graded <i>Emx</i> 2 expression in the dorsal telencephalon. Development (Cambridge), 2002, 129, 3045-3054.	2.5	164
2007	<i>Drosophila</i> Apc1 and Apc2 regulate Wingless transduction throughout development. Development (Cambridge), 2002, 129, 1751-1762.	2.5	85
2008	The ubiquitin-proteasome system and endocytosis. Journal of Cell Science, 1999, 112, 1417-1423.	2.0	170

#	Article	IF	CITATIONS
2009	A secreted Frizzled related protein, FrzA, selectively associates with Wnt-1 protein and regulates Wnt-1 signaling. Journal of Cell Science, 1999, 112, 3815-3820.	2.0	70
2010	E-cadherin binding prevents β-catenin nuclear localization and β-catenin/LEF-1-mediated transactivation. Journal of Cell Science, 1999, 112, 1237-1245.	2.0	470
2011	A β-catenin/engrailed chimera selectively suppresses Wnt signaling. Journal of Cell Science, 2000, 113, 1759-1770.	2.0	64
2012	Plakoglobin and \hat{l}^2 -catenin: Protein interactions, regulation and biological roles. Journal of Cell Science, 2000, 113, 3127-3139.	2.0	310
2013	The ubiquitin-proteasome pathway regulates survivin degradation in a cell cycle-dependent manner. Journal of Cell Science, 2000, 113, 4363-4371.	2.0	239
2014	Functional interaction between E-cadherin and $\hat{l}\pm v$ -containing integrins in carcinoma cells. Journal of Cell Science, 2000, 113, 425-437.	2.0	59
2015	Cross-regulation of the Wnt signalling pathway: a role of MAP kinases. Journal of Cell Science, 2000, 113, 911-919.	2.0	64
2016	p120 catenin affects cell motility via modulation of activity of Rho-family GTPases: a link between cell-cell contact formation and regulation of cell locomotion. Journal of Cell Science, 2001, 114, 695-707.	2.0	241
2017	Recruitment of Î ² -catenin to cadherin-mediated intercellular adhesions is involved in myogenic induction. Journal of Cell Science, 2001, 114, 1309-1319.	2.0	61
2018	Regulation of S33/S37 phosphorylated β-catenin in normal and transformed cells. Journal of Cell Science, 2002, 115, 2771-2780.	2.0	103
2019	TGF-β-driven downregulation of the Wnt/β-Catenin transcription factor TCF7L2/TCF4 in PDGFRα+ fibroblasts. Journal of Cell Science, 2020, 133, .	2.0	26
2020	Absence of β <i>-catenin</i> Mutations in Mouse Hepatoblastomas Induced by <i>N</i> , <i>N</i> -dimethylformamide. Journal of Toxicologic Pathology, 2004, 17, 261-265.	0.7	2
2021	Identification of a noncanonical function for ribose-5-phosphate isomerase A promotes colorectal cancer formation by stabilizing and activating β-catenin via a novel C-terminal domain. PLoS Biology, 2018, 16, e2003714.	5.6	27
2022	Probing the canonicity of the Wnt/Wingless signaling pathway. PLoS Genetics, 2017, 13, e1006700.	3.5	39
2023	Inhibition of Drosophila Wg Signaling Involves Competition between Mad and Armadillo/β-Catenin for dTcf Binding. PLoS ONE, 2008, 3, e3893.	2.5	18
2024	Accumulation of Phosphorylated β-Catenin Enhances ROS-Induced Cell Death in Presenilin-Deficient Cells. PLoS ONE, 2009, 4, e4172.	2.5	15
2025	A Lentivirus-Mediated Genetic Screen Identifies Dihydrofolate Reductase (DHFR) as a Modulator of β-Catenin/GSK3 Signaling. PLoS ONE, 2009, 4, e6892.	2.5	18
2026	Overexpression of CD97 in Intestinal Epithelial Cells of Transgenic Mice Attenuates Colitis by Strengthening Adherens Junctions. PLoS ONE, 2010, 5, e8507.	2.5	35

#	Article	IF	CITATIONS
2027	Topoisomerase IIα Binding Domains of Adenomatous Polyposis Coli Influence Cell Cycle Progression and Aneuploidy. PLoS ONE, 2010, 5, e9994.	2.5	8
2028	β-Catenin Phosphorylated at Serine 45 Is Spatially Uncoupled from β-Catenin Phosphorylated in the GSK3 Domain: Implications for Signaling. PLoS ONE, 2010, 5, e10184.	2.5	79
2029	The Notch-2 Gene Is Regulated by Wnt Signaling in Cultured Colorectal Cancer Cells. PLoS ONE, 2011, 6, e17957.	2.5	56
2030	Silymarin Targets β-Catenin Signaling in Blocking Migration/Invasion of Human Melanoma Cells. PLoS ONE, 2011, 6, e23000.	2.5	97
2031	Wnt/β-Catenin Expression Does Not Correlate with Serum Alkaline Phosphatase Concentration in Canine Osteosarcoma Patients. PLoS ONE, 2011, 6, e26106.	2.5	7
2032	Wnt Signalling Pathway Parameters for Mammalian Cells. PLoS ONE, 2012, 7, e31882.	2.5	99
2033	Involvement of Wnt Signaling Pathways in the Metamorphosis of the Bryozoan Bugula neritina. PLoS ONE, 2012, 7, e33323.	2.5	21
2034	Alternative Splicing of the Porcine Glycogen Synthase Kinase 3β (GSK-3β) Gene with Differential Expression Patterns and Regulatory Functions. PLoS ONE, 2012, 7, e40250.	2.5	22
2035	Erioflorin Stabilizes the Tumor Suppressor Pdcd4 by Inhibiting Its Interaction with the E3-ligase β-TrCP1. PLoS ONE, 2012, 7, e46567.	2.5	48
2036	Constitutive ß-Catenin Signaling by the Viral Chemokine Receptor US28. PLoS ONE, 2012, 7, e48935.	2.5	35
2037	TLR4 Activates the \hat{I}^2 -catenin Pathway to Cause Intestinal Neoplasia. PLoS ONE, 2013, 8, e63298.	2.5	94
2038	GRC5/AES Interacts with T-Cell Factor 4 (TCF4) and Downregulates Wnt Signaling in Human Cells and Zebrafish Embryos. PLoS ONE, 2013, 8, e67694.	2.5	11
2039	HIV's Nef Interacts with β-Catenin of the Wnt Signaling Pathway in HEK293 Cells. PLoS ONE, 2013, 8, e77865.	2.5	15
2040	Structural Analysis of the 14-3-3ζ/Chibby Interaction Involved in Wnt/β-Catenin Signaling. PLoS ONE, 2015, 10, e0123934.	2.5	23
2041	Activating the Wnt/β-Catenin Pathway for the Treatment of Melanoma – Application of LY2090314, a Novel Selective Inhibitor of Glycogen Synthase Kinase-3. PLoS ONE, 2015, 10, e0125028.	2.5	83
2042	Expression Pattern of Axin2 During Chicken Development. PLoS ONE, 2016, 11, e0163610.	2.5	4
2043	A bioluminescence reporter mouse that monitors expression of constitutively active β-catenin. PLoS ONE, 2017, 12, e0173014.	2.5	3
2044	Synergistic role of 5-azacytidine and ascorbic acid in directing cardiosphere derived cells to cardiomyocytes in vitro by downregulating Wnt signaling pathway via phosphorylation of β-catenin. PLoS ONE, 2017, 12, e0188805.	2.5	5

#	Article	IF	CITATIONS
2045	Wnt3a and wnt5a as Potential Chondrogenic Stimulators for Nucleus Pulposus Cell Induction: A Comprehensive Review. Neurospine, 2020, 17, 19-35.	2.9	11
2046	Mutation Hotspots in the β-Catenin Gene: Lessons from the Human Cancer Genome Databases. Molecules and Cells, 2019, 42, 8-16.	2.6	83
2047	Winding through the WNT pathway during cellular development and demise. Histology and Histopathology, 2006, 21, 103-24.	0.7	152
2048	Role of WNT signaling in normal and malignant hematopoiesis. Histology and Histopathology, 2006, 21, 761-74.	0.7	36
2049	Biological effects of lithium – fundamental and medical aspects. Ukrainian Biochemical Journal, 2017, 89, 5-16.	0.5	2
2050	Glycogen synthase kinase-3β suppresses the expression of protein phosphatase methylesterase-1 through β-catenin. Aging, 2019, 11, 9672-9688.	3.1	6
2051	Riluzole: a therapeutic strategy in Alzheimer's disease by targeting the WNT/β-catenin pathway. Aging, 2020, 12, 3095-3113.	3.1	29
2052	CK2 blockade causes MPNST cell apoptosis and promotes degradation of β-catenin. Oncotarget, 2016, 7, 53191-53203.	1.8	15
2053	Nucleophosmin leukemogenic mutant activates Wnt signaling during zebrafish development. Oncotarget, 2016, 7, 55302-55312.	1.8	14
2054	Prognostic impact of the expression of Wnt-signaling proteins in cervical carcinoma FIGO stage I-IV treated with radiotherapy or chemoradiotherapy. Oncotarget, 2016, 7, 63042-63053.	1.8	4
2055	Dalbinol, a rotenoid from <i>Amorpha fruticosa L.</i> , exerts anti-proliferative activity by facilitating β-catenin degradation in hepatocellular carcinoma cells. Oncotarget, 2017, 8, 47755-47766.	1.8	5
2056	U94 of human herpesvirus 6 down-modulates Src, promotes a partial mesenchymal-to-epithelial transition and inhibits tumor cell growth, invasion and metastasis. Oncotarget, 2017, 8, 44533-44549.	1.8	11
2057	Blocking epithelial-to-mesenchymal transition in glioblastoma with a sextet of repurposed drugs: the EIS regimen. Oncotarget, 2017, 8, 60727-60749.	1.8	27
2058	The characterization of a novel monoclonal antibody against CD93 unveils a new antiangiogenic target. Oncotarget, 2014, 5, 2750-2760.	1.8	41
2059	Acrolein- and 4-Aminobiphenyl-DNA adducts in human bladder mucosa and tumor tissue and their mutagenicity in human urothelial cells. Oncotarget, 2014, 5, 3526-3540.	1.8	45
2060	Oncogenic dependency on β-catenin in liver cancer cell lines correlates with pathway activation. Oncotarget, 2017, 8, 114526-114539.	1.8	16
2061	FGF19 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells by modulating the GSK3β/β- catenin signaling cascade via FGFR4 activation. Oncotarget, 2016, 7, 13575-13586.	1.8	83
2062	Loss of tumor suppressor Merlin results in aberrant activation of Wnt/β-catenin signaling in cancer. Oncotarget, 2016, 7, 17991-18005.	1.8	26

#	Article	IF	CITATIONS
2063	Membranous CD24 drives the epithelial phenotype of pancreatic cancer. Oncotarget, 2016, 7, 49156-49168.	1.8	19
2064	Regulation of Skeletal Muscle Plasticity by Glycogen Synthase Kinase-3β: A Potential Target for the Treatment of Muscle Wasting. Current Pharmaceutical Design, 2013, 19, 3276-3298.	1.9	15
2065	Signaling Pathways Involved in Antidepressant-Induced Cell Proliferation and Synaptic Plasticity. Current Pharmaceutical Design, 2014, 20, 3776-3794.	1.9	28
2066	Wnt/β-Catenin Signaling in Alzheimer's Disease. CNS and Neurological Disorders - Drug Targets, 2014, 13, 745-754.	1.4	82
2067	Neuronal Excitability in Epileptogenic Zones Regulated by the Wnt/ Î'-Catenin Pathway. CNS and Neurological Disorders - Drug Targets, 2020, 19, 2-11.	1.4	5
2068	Synergistic Effect of Epigenetic Inhibitors Decitabine and Suberoylanilide Hydroxamic Acid on Colorectal Cancer In vitro. Current Molecular Pharmacology, 2019, 12, 281-300.	1.5	18
2069	Wnt10b-GSK3β–dependent Wnt/STOP signaling prevents aneuploidy in human somatic cells. Life Science Alliance, 2021, 4, e202000855.	2.8	14
2070	Inhibition of PI3K/Akt signaling suppresses epithelial-to-mesenchymal transition in hepatocellular carcinoma through the Snail/GSK-3/beta-catenin pathway. Clinical and Molecular Hepatology, 2020, 26, 529-539.	8.9	33
2072	Effects of gastrin 17 on β-catenin/Tcf-4 pathway in Colo320WT colon cancer cells. World Journal of Gastroenterology, 2006, 12, 7482.	3.3	11
2073	Aberrant regulation of Wnt signaling in hepatocellular carcinoma. World Journal of Gastroenterology, 2016, 22, 7486.	3.3	81
2074	Transcriptomic study of lipopolysaccharide‑induced sepsis damage in a mouse heart model. Experimental and Therapeutic Medicine, 2020, 20, 3782-3790.	1.8	4
2075	Inhibitory effects on melanogenesis by thymoquinone are mediated through the β‑catenin pathway in B16F10 mouse melanoma cells. International Journal of Oncology, 2020, 56, 379-389.	3.3	9
2076	Inhibition of Wnt Signaling by Silymarin in Human Colorectal Cancer Cells. Biomolecules and Therapeutics, 2016, 24, 380-386.	2.4	23
2077	Endometrial Carcinogenesis and Molecular Signaling Pathways. American Journal of Molecular Biology, 2014, 04, 134-149.	0.3	21
2078	Role of Cholinergic Receptors in Colorectal Cancer: Potential Therapeutic Implications of Vagus Nerve Stimulation?. Journal of Cancer Therapy, 2013, 04, 1116-1131.	0.4	14
2079	Oncoselectivity in Oncolytic Viruses against Colorectal Cancer. Journal of Cancer Therapy, 2014, 05, 1153-1174.	0.4	5
2080	Molecular aspects of tumor cell migration and invasion. Annali Dell'Istituto Superiore Di Sanita, 2010, 46, 66-80.	0.4	71
2081	Identification of N-[3-(3,4-Dihydroxyphenyl)-1-oxo-2-propenyl]-2-hydroxybenzamide (CGK-101) as a Small Molecule Inhibitor of the Wnt/l²-catenin Pathway. Bulletin of the Korean Chemical Society, 2013, 34, 1286-1289	1.9	1

#	Article	IF	CITATIONS
2082	Mechanism of Anti-Invasive Action of Docosahexaenoic Acid in SW480 Human Colon Cancer Cell. Journal of Life Science, 2010, 20, 561-571.	0.2	2
2083	Wnt5a attenuates the pathogenic effects of the Wnt/β-catenin pathway in human retinal pigment epithelial cells via down-regulating β-catenin and Snail. BMB Reports, 2015, 48, 525-530.	2.4	24
2084	Central Immune Senescence, Reversal Potentials. , 0, , .		3
2085	Dietary Non-nutritive Factors in Targeting of Regulatory Molecules in Colorectal Cancer: An Update. Asian Pacific Journal of Cancer Prevention, 2013, 14, 5543-5552.	1.2	28
2086	Quantifying \hat{l}^2 -catenin subcellular dynamics and cyclin D1 mRNA transcription during Wnt signaling in single living cells. ELife, 2016, 5, .	6.0	58
2087	A novel ALS-associated variant in UBQLN4 regulates motor axon morphogenesis. ELife, 2017, 6, .	6.0	37
2088	Gab1 mediates PDGF signaling and is essential to oligodendrocyte differentiation and CNS myelination. ELife, 2020, 9, .	6.0	15
2090	MCPIP1 inhibits Wnt/β-catenin signaling pathway activity and modulates epithelial-mesenchymal transition during clear cell renal cell carcinoma progression by targeting miRNAs. Oncogene, 2021, 40, 6720-6735.	5.9	21
2091	Proteasome and Apoptosis. Handbook of Experimental Pharmacology, 2000, , 341-358.	1.8	0
2093	Biology and Molecular Genetics of Colorectal Cancer. , 2002, , 3-21.		1
2095	??-Catenin Mutations Correlate with Over Expression of C-myc and Cyclin D1 Genes in Bladder Cancer. Journal of Urology, 2002, , 2220-2226.	0.4	1
2096	Tiermodelle in der biomedizinischen Forschung. , 2003, , 299-339.		0
2097	Ubiquitin System-Dependent Regulation of Growth Hormone Receptor Signal Transduction. Current Topics in Microbiology and Immunology, 2004, 286, 81-118.	1.1	20
2098	Molecular Basis of Cell—Cell Interaction and Signaling in Mesenchymal Chondrogenesis. , 2004, , 3-15.		0
2099	Molecular Mechanism of Medulloblastoma Tumorigenesis. Japanese Journal of Neurosurgery, 2005, 14, 368-372.	0.0	0
2100	Wnt Signaling in Bone. , 2008, , 467-490.		0
2101	Unique Effects of Wnt Signaling on Prostate Cancer Cells: Modulation of the Androgen Signaling Pathway by Interactions of the Androgen Receptor Gene and Protein with Key Components of the Canonical Wnt Signaling Pathway. , 2009, , 569-586.		1
2102	WNT/β-Catenin Signaling in Adrenocortical Carcinoma. , 2009, , 263-282.		0

#	Article	IF	Citations
2103	Mouse Models of Intestinal Cancer. , 2009, , 27-49.		2
2104	Loss of Cadherin-Catenin Adhesion System in Invasive Cancer Cells. , 2010, , 33-66.		2
2105	Wnt Signaling in Development. , 2010, , 1873-1878.		1
2106	Exposure to Environmental Mutagens: APC and Colorectal Carcinogenesis. , 2010, , 303-329.		0
2108	APC/β-Catenin Pathway. , 2011, , 236-238.		0
2109	Adult Diseases and Low-Grade Systemic Inflammation Have Their Origins in the Perinatal Period. , 2011, , 513-549.		0
2110	miR-200a Regulation of the Wnt Signaling in Meningioma Tumorigenesis. , 2012, , 59-67.		0
2111	Glycogen Synthase Kinase-3 in Neurological Diseases. Neuromethods, 2012, , 153-188.	0.3	2
2112	Silybin Synergizes with Wnt3a in Activation of the Wnt/β-catenin Signaling Pathway through Stabilization of Intracellular β-Catenin Protein. Microbiology and Biotechnology Letters, 2012, 40, 50-56.	0.4	0
2113	ldentification of Antimycin A as a Small Molecule Inhibitor of the Wnt/β-catenin Pathway. Bulletin of the Korean Chemical Society, 2012, 33, 1405-1408.	1.9	0
2114	Inhibition of Isorhamnetin on β-Catenin/Tcf Signaling and β-Catenin-Activated Melanogenesis. Journal of Basic & Applied Sciences, 0, 9, 401-409.	0.8	3
2115	Androgen Action, Wnt Signaling, and Prostate Tumorigenesis. , 2013, , 101-116.		0
2116	Wnt Signaling in Cardiogenesis. , 2013, , 97-117.		0
2117	NR5A1 prevents centriole splitting by inhibiting centrosomal DNA-PK activation and ß-catenin accumulation. Cell Communication and Signaling, 2014, 12, 55.	6.5	5
2118	APC and the Early Events of Colon Cancer. , 1998, , 57-64.		0
2119	Signaling Pathways Regulating Stem Cells. Translational Medicine Research, 2015, , 145-177.	0.0	0
2121	APC/β-Catenin Pathway. , 2015, , 321-324.		0
2124	The roles of microRNAs related with progression and metastasis in human cancers. Scientia Sinica Vitae, 2018, 48, 1209-1216.	0.3	Ο

#	Article	IF	CITATIONS
2128	HepG2 Hücrelerinin Kısa Uçlu β-catenin Kodlayan İfade Vektörüyle Transfeksiyonu. Bilecik Şeyh Edeba Üniversitesi Fen Bilimleri Dergisi, 2020, 7, 211-220.		0
2129	Prognostic Significance of Wnt1, Wnt2, E-Cadherin, and β-catenin Expression in Operable Non-small Cell Lung Cancer. Journal of Histochemistry and Cytochemistry, 2021, 69, 711-722.	2.5	1
2130	Dysregulated Protein Phosphorylation as Main Contributor of Granulovacuolar Degeneration at the First Stages of Neurofibrillary Tangles Pathology. Neuroscience, 2023, 518, 119-140.	2.3	9
2132	Genetics of Colorectal Cancer: Role of p53. Journal of Drug Delivery and Therapeutics, 2020, 10, 183-185.	0.5	0
2136	Crosstalk of Molecular Signaling in Hepatocellular Carcinoma. , 2020, , 85-94.		1
2138	Iron Metabolism as a Potential Mechanism for Inducing TRAIL-Mediated Extrinsic Apoptosis Using Methylsulfonylmethane in Embryonic Cancer Stem Cells. Cells, 2021, 10, 2847.	4.1	5
2139	The Key Role of the WNT/β-Catenin Pathway in Metabolic Reprogramming in Cancers under Normoxic Conditions. Cancers, 2021, 13, 5557.	3.7	36
2140	Pivotal Role of Iron Homeostasis in the Induction of Mitochondrial Apoptosis by 6-Gingerol Through PTEN Regulated PD-L1 Expression in Embryonic Cancer Cells. Frontiers in Oncology, 2021, 11, 781720.	2.8	6
2141	Altered expression of β-catenin, inducible nitric oxide synthase and cyclooxygenase-2 in azoxymethane-induced rat colon carcinogenesis. Carcinogenesis, 2000, 21, 1319-1327.	2.8	1
2145	Wnt Signaling and Transcriptional Regulation. , 2006, , 519-532.		0
2147	Expression of Wnt Receptors, Frizzled, in Rat Neuronal Cells. , 2008, , 317-324.		0
2155	Wnt gene expression in human trabecular meshwork cells. Molecular Vision, 2010, 16, 122-9.	1.1	13
2156	β-catenin SUMOylation is involved in the dysregulated proliferation of myeloma cells. American Journal of Cancer Research, 2015, 5, 309-20.	1.4	22
2159	Wnt signaling pathway protein LEF1 in cancer, as a biomarker for prognosis and a target for treatment. American Journal of Cancer Research, 2017, 7, 1389-1406.	1.4	79
2160	Activation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells. Iranian Journal of Basic Medical Sciences, 2017, 20, 944-950.	1.0	4
2161	Zooming in on the WNT/CTNNB1 Destruction Complex: Functional Mechanistic Details with Implications for Therapeutic Targeting. Handbook of Experimental Pharmacology, 2021, 269, 137-173.	1.8	5
2162	Canonical Wnt Signaling in the Pathology of Iron Overload-Induced Oxidative Stress and Age-Related Diseases. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-13.	4.0	7
2163	Therapeutic Potential of Naturally Occurring Small Molecules to Target the Wnt/β-Catenin Signaling Pathway in Colorectal Cancer. Cancers, 2022, 14, 403.	3.7	16

#	Article	IF	CITATIONS
2164	Identification and Functional Analysis of a Novel CTNNB1 Mutation in Pediatric Medulloblastoma. Cancers, 2022, 14, 421.	3.7	0
2165	ERBB3 binding protein 1 promotes the progression of malignant melanoma through activation of the Wnt/ β-catenin signaling pathway. Cancer Cell International, 2022, 22, 44.	4.1	3
2166	Lucidin 3-methyl ether from Rubia philippinensis suppresses the proliferation of multiple myeloma cells through the promotion of Î ² -catenin degradation. Phytomedicine, 2022, 99, 153971.	5.3	0
2167	Wnt/β-catenin signaling in colorectal cancer: Is therapeutic targeting even possible?. Biochimie, 2022, 195, 39-53.	2.6	21
2168	Inhibition of <scp>FAM83D</scp> displays antitumor effects in glioblastoma via downâ€regulation of the <scp>AKT</scp> /Wnt/βâ€catenin pathway. Environmental Toxicology, 2022, 37, 1343-1356.	4.0	5
2169	WIN site inhibition disrupts a subset of WDR5 function. Scientific Reports, 2022, 12, 1848.	3.3	10
2170	Shifting the Focus of Signaling Abnormalities in Colon Cancer. Cancers, 2022, 14, 784.	3.7	3
2172	Sumoylation in Physiology, Pathology and Therapy. Cells, 2022, 11, 814.	4.1	24
2173	Glycogen Synthase Kinase 3β Involvement in Neuroinflammation and Neurodegenerative Diseases. Current Medicinal Chemistry, 2022, 29, 4631-4697.	2.4	14
2174	Regulation of canonical Wnt signalling by the ciliopathy protein MKS1 and the E2 ubiquitin-conjugating enzyme UBE2E1. ELife, 2022, 11, .	6.0	4
2175	Mechanical regulation of bone remodeling. Bone Research, 2022, 10, 16.	11.4	134
2176	Ginsenoside Rg1 improves Alzheimer's disease by regulating oxidative stress, apoptosis, and neuroinflammation through Wnt/GSKâ€3β/βâ€catenin signaling pathway. Chemical Biology and Drug Design, 2022, 99, 884-896.	3.2	31
2177	Ivermectin represses Wnt/β-catenin signaling by binding to TELO2, a regulator of phosphatidylinositol 3-kinase-related kinases. IScience, 2022, 25, 103912.	4.1	4
2179	Neddylation is essential for β-catenin degradation in Wnt signaling pathway. Cell Reports, 2022, 38, 110538.	6.4	11
2180	A Comprehensive View on the Quercetin Impact on Colorectal Cancer. Molecules, 2022, 27, 1873.	3.8	23
2181	Driving E3 Ligase Substrate Specificity for Targeted Protein Degradation: Lessons from Nature and the Laboratory. Annual Review of Biochemistry, 2022, 91, 295-319.	11.1	41
2182	TAK1 is essential for endothelial barrier maintenance and repair after lung vascular injury. Molecular Biology of the Cell, 2022, , mbcE21110563.	2.1	0
2183	Cell–cell adhesions in embryonic stem cells regulate the stability and transcriptional activity of βâ€catenin. FEBS Letters, 2022, 596, 1647-1660.	2.8	3

#	Article	IF	CITATIONS
2184	Junin Virus Activates p38 MAPK and HSP27 Upon Entry. Frontiers in Cellular and Infection Microbiology, 2022, 12, 798978.	3.9	2
2185	The mechanism of the WNT5A and FZD4 receptor mediated WNT/β–catenin pathway in the degeneration of ALS spinal cord motor neurons. Biochemical and Biophysical Research Communications, 2022, 609, 23-30.	2.1	4
2186	Molecular pathways, targeted therapies and proteomic investigations of colorectal cancer. Current Molecular Medicine, 2021, 22, .	1.3	1
2187	Signalling dynamics in embryonic development. Biochemical Journal, 2021, 478, 4045-4070.	3.7	16
2188	Cancer cell development, migratory response, and the role of the tumor microenvironment in invasion and metastasis. , 2022, , 245-270.		0
2189	Curcumin and Wnt/β‑catenin signaling in exudative age‑related macular degeneration (Review). International Journal of Molecular Medicine, 2022, 49, .	4.0	6
2194	Beta-catenin mutations correlate with over expression of C-myc and cyclin D1 Genes in bladder cancer. Journal of Urology, 2002, 168, 2220-6.	0.4	35
2195	Beta-catenin expression pattern in small cell lung cancer: correlation with clinical and evolutive features. Histology and Histopathology, 2001, 16, 353-8.	0.7	17
2197	Pharmacogenomics and outcomes for hepatocellular cancer treatment. , 2022, , 401-414.		0
2198	Endothelial Cell Protein Targeting by Myeloperoxidase-Derived 2-Chlorofatty Aldehyde. Antioxidants, 2022, 11, 940.	5.1	2
2200	SIRT4-Catalyzed Deacetylation of Axin1 Modulates the Wnt/ \hat{l}^2 -Catenin Signaling Pathway. Frontiers in Oncology, 0, 12, .	2.8	7
2201	<scp>DNASE1L3</scp> inhibits proliferation, invasion and metastasis of hepatocellular carcinoma by interacting with βâ€catenin to promote its ubiquitin degradation pathway. Cell Proliferation, 2022, 55, .	5.3	9
2202	Arterial Stiffness and the Canonical WNT/β-catenin Pathway. Current Hypertension Reports, 2022, 24, 499-507.	3.5	5
2203	Knockdown of Obg-like ATPase 1 enhances sorafenib sensitivity by inhibition of GSK-3β/β-catenin signaling in hepatocellular carcinoma cells. Journal of Gastrointestinal Oncology, 2022, 13, 1255-1265.	1.4	1
2204	Aspirin sensitivity of PIK3CA-mutated Colorectal Cancer: potential mechanisms revisited. Cellular and Molecular Life Sciences, 2022, 79, .	5.4	11
2205	WNT/β-catenin Pathway: a Possible Link Between Hypertension and Alzheimer's Disease. Current Hypertension Reports, 2022, 24, 465-475.	3.5	5
2207	Pharmacological Activation of Potassium Channel Kv11.1 with NS1643 Attenuates Triple Negative Breast Cancer Cell Migration by Promoting the Dephosphorylation of Caveolin-1. Cells, 2022, 11, 2461.	4.1	5
2208	Wnt Signaling in Heart Development and Regeneration. Current Cardiology Reports, 2022, 24, 1425-1438.	2.9	23

#	Article	IF	CITATIONS
2209	Shedding of N-acetylglucosaminyltransferase-V is regulated by maturity of cellular N-glycan. Communications Biology, 2022, 5, .	4.4	6
2210	WNT Happens. , 2022, , .		Ο
2211	Therapeutic approaches to activate the canonical Wnt pathway for bone regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 961-976.	2.7	5
2212	Phosphorylation of β-catenin at Serine552 correlates with invasion and recurrence of non-functioning pituitary neuroendocrine tumours. Acta Neuropathologica Communications, 2022, 10, .	5.2	2
2213	Sea anemone Frizzled receptors play partially redundant roles in oral-aboral axis patterning. Development (Cambridge), 2022, 149, .	2.5	3
2214	Molecular pathogenesis of desmoid tumor and the role of \hat{I}^3 -secretase inhibition. Npj Precision Oncology, 2022, 6, .	5.4	16
2215	The role of CTNNB1 mutations and matrix metalloproteinases (MMPs) in anti-angiogenesis treatment of endometrial carcinoma. Gynecologic Oncology, 2022, , .	1.4	1
2217	CCR3 blockage elicits polyploidization associated with the signatures of epithelial-mesenchymal transition in carcinoma cell lines. Cancer Gene Therapy, 2023, 30, 137-148.	4.6	3
2218	KYA1797K, a Novel Small Molecule Destabilizing β-Catenin, Is Superior to ICG-001 in Protecting against Kidney Aging. Kidney Diseases (Basel, Switzerland), 0, , 1-16.	2.5	0
2220	Animal Models for Mania. Neuromethods, 2023, , 233-277.	0.3	0
2220 2221		0.3	0
	Animal Models for Mania. Neuromethods, 2023, , 233-277. Novel compound C150 inhibits pancreatic cancer through induction of ER stress and proteosome		
2221	Animal Models for Mania. Neuromethods, 2023, , 233-277. Novel compound C150 inhibits pancreatic cancer through induction of ER stress and proteosome assembly. Frontiers in Oncology, 0, 12, .	2.8	1
2221 2222	Animal Models for Mania. Neuromethods, 2023, , 233-277. Novel compound C150 inhibits pancreatic cancer through induction of ER stress and proteosome assembly. Frontiers in Oncology, 0, 12, . Insights into the Wnt Signaling Pathway Evolution. Physiology, 0, , . Wnt/betaâ€catenin signaling and its modulators in nonalcoholic fatty liver diseases. Hepatobiliary and	2.8 10.0	1 0
2221 2222 2223	Animal Models for Mania. Neuromethods, 2023, , 233-277. Novel compound C150 inhibits pancreatic cancer through induction of ER stress and proteosome assembly. Frontiers in Oncology, 0, 12, . Insights into the Wnt Signaling Pathway Evolution. Physiology, 0, , . Wnt/betaâ€catenin signaling and its modulators in nonalcoholic fatty liver diseases. Hepatobiliary and Pancreatic Diseases International, 2023, 22, 333-345. Targeting Transcription Factors in Cancer: From "Undruggableâ€-to "Druggableâ€- Methods in	2.8 10.0 1.3	1 0 7
2221 2222 2223 2224	Animal Models for Mania. Neuromethods, 2023, , 233-277. Novel compound C150 inhibits pancreatic cancer through induction of ER stress and proteosome assembly. Frontiers in Oncology, 0, 12, . Insights into the Wnt Signaling Pathway Evolution. Physiology, 0, , . Wnt/betaâ€catenin signaling and its modulators in nonalcoholic fatty liver diseases. Hepatobiliary and Pancreatic Diseases International, 2023, 22, 333-345. Targeting Transcription Factors in Cancer: From "Undruggableâ€+to "Druggableâ€+ Methods in Molecular Biology, 2023, , 107-131. Structural optimization of novel Ras modulator for treatment of Colorectal cancer by promoting	2.8 10.0 1.3 0.9	1 0 7 5
2221 2222 2223 2224 2225	Animal Models for Mania. Neuromethods, 2023, , 233-277. Novel compound C150 inhibits pancreatic cancer through induction of ER stress and proteosome assembly. Frontiers in Oncology, 0, 12, . Insights into the Wnt Signaling Pathway Evolution. Physiology, 0, , . Wnt/betaâ€catenin signaling and its modulators in nonalcoholic fatty liver diseases. Hepatobiliary and Pancreatic Diseases International, 2023, 22, 333-345. Targeting Transcription Factors in Cancer: From "Undruggableâ€+to "Druggableâ€+ Methods in Molecular Biology, 2023, , 107-131. Structural optimization of novel Ras modulator for treatment of Colorectal cancer by promoting l²-catenin and Ras degradation. Bioorganic Chemistry, 2023, 130, 106234. The stem region of α1,6-fucosyltransferase FUT8 is required for multimer formation but not catalytic	2.8 10.0 1.3 0.9 4.1	1 0 7 5 0

#	Article	IF	CITATIONS
2229	The LINC Complex Assists the Nuclear Import of Mechanosensitive Transcriptional Regulators. Results and Problems in Cell Differentiation, 2022, , 315-337.	0.7	2
2230	Crosstalk between the Hippo Pathway and the Wnt Pathway in Huntington's Disease and Other Neurodegenerative Disorders. Cells, 2022, 11, 3631.	4.1	10
2231	Ubiquitin-assisted phase separation of dishevelled-2 promotes Wnt signalling. Journal of Cell Science, 2022, 135, .	2.0	9
2233	Myeloperoxidase-derived hypochlorous acid targets human airway epithelial plasmalogens liberating protein modifying electrophilic 2-chlorofatty aldehydes. Redox Biology, 2023, 59, 102557.	9.0	4
2234	Metabolome-Wide Reprogramming Modulated by Wnt/β-Catenin Signaling Pathway. Journal of Microbiology and Biotechnology, 2023, 33, 114-122.	2.1	1
2236	Tumor-Promoting Properties of TMEM9A in Breast Cancer Progression <i>via</i> Activating the Wnt/β-Catenin Signaling Pathway. Biological and Pharmaceutical Bulletin, 2023, 46, 74-85.	1.4	0
2237	Yesâ€associated protein regulates glutamate homeostasis through promoting the expression of excitatory amino acid transporterâ€2 in astrocytes via βâ€catenin signaling. Glia, 2023, 71, 1197-1216.	4.9	2
2238	How Are Synapses Born? A Functional and Molecular View of the Role of the Wnt Signaling Pathway. International Journal of Molecular Sciences, 2023, 24, 708.	4.1	2
2239	Interactions of melatonin with various signaling pathways: implications for cancer therapy. Cancer Cell International, 2022, 22, .	4.1	3
2240	BMX, a specific HDAC8 inhibitor, with TMZ for advanced CRC therapy: a novel synergic effect to elicit p53-, β-catenin- and MGMT-dependent apoptotic cell death. Cell Communication and Signaling, 2022, 20, .	6.5	3
2241	Dental Anomalies in Ciliopathies: Lessons from Patients with BBS2, BBS7, and EVC2 Mutations. Genes, 2023, 14, 84.	2.4	1
2242	Transgenic Mice Overexpressing GSK-3 <i>\hat{l}^2</i> as Animal Models for Alzheimer's Disease. , 2011, , 52-68.		0
2243	USP7 inactivation suppresses APC-mutant intestinal hyperproliferation andÂtumor development. Stem Cell Reports, 2023, 18, 570-584.	4.8	5
2244	Cannabidiol Modulates Alterations in PFC microRNAs in a Rat Model of Depression. International Journal of Molecular Sciences, 2023, 24, 2052.	4.1	3
2245	Proteomics of Animal Viruses. Sustainable Agriculture Reviews, 2023, , 89-199.	1.1	0
2246	ETC-159, an Upstream Wnt inhibitor, Induces Tumour Necrosis via Modulation of Angiogenesis in Osteosarcoma. International Journal of Molecular Sciences, 2023, 24, 4759.	4.1	1
2247	Optimization of peptide amphiphile-lipid raft interaction by changing peptide amphiphile lipophilicity. Acta Biomaterialia, 2023, , .	8.3	0
2248	lncRNA MEG3 Promotes PDK4/GSK-3β/β-Catenin Axis in MEFs by Targeting miR-532-5p. Oxidative Medicine and Cellular Longevity, 2023, 2023, 1-27.	4.0	1

#	Article	IF	CITATIONS
2249	New Biomarkers Based on Dendritic Cells for Breast Cancer Treatment and Prognosis Diagnosis. International Journal of Molecular Sciences, 2023, 24, 4058.	4.1	0
2250	Muramyl dipeptide alleviates estrogen deficiencyâ€induced osteoporosis through canonical <scp>Wnt</scp> signaling. Journal of Pathology, 2023, 260, 137-147.	4.5	1
2252	De novo familial adenomatous polyposis associated thyroid cancer with a c.2929delG frameshift deletion mutation in APC: a case report and literature review. World Journal of Surgical Oncology, 2023, 21, .	1.9	0
2253	Wnt/β-catenin Signaling Inhibitors. Current Topics in Medicinal Chemistry, 2023, 23, 880-896.	2.1	7
2254	Brain endothelial cells exposure to malaria parasites links type I interferon signalling to antigen presentation, immunoproteasome activation, endothelium disruption, and cellular metabolism. Frontiers in Immunology, 0, 14, .	4.8	1
2255	Uncoupled nitric oxide synthase activity promotes colorectal cancer progression. Frontiers in Oncology, 0, 13, .	2.8	0
2256	Effects of advanced glycation end products (AGEs) on the differentiation potential of primary stem cells: a systematic review. Stem Cell Research and Therapy, 2023, 14, .	5.5	2
2257	Connexin 43 hemichannels and prostaglandin E2 release in anabolic function of the skeletal tissue to mechanical stimulation. Frontiers in Cell and Developmental Biology, 0, 11, .	3.7	0
2258	Multimodal Wnt signalling in the mouse neocortex. Cells and Development, 2023, 174, 203838.	1.5	0
2259	Receptors that bind to PEDF and their therapeutic roles in retinal diseases. Frontiers in Endocrinology, 0, 14, .	3.5	4
2260	Galectin-3 Mediates Tumor Progression in Astrocytoma by Regulating Glycogen Synthase Kinase-3β Activity. Current Issues in Molecular Biology, 2023, 45, 3591-3602.	2.4	1
2261	Downregulation of Î ² -Catenin Contributes to type II Alveolar Epithelial Stem Cell Resistance to Epithelial-Mesenchymal Transition by Lowing Lin28/let-7 Ratios in Fibrosis-Resistant Mice after Thoracic Irradiation. Radiation Research, 2023, 200, .	1.5	1
2262	Asynchronous transcription and translation of neurotransmitter-related genes characterize the initial stages of neuronal maturation in Drosophila. PLoS Biology, 2023, 21, e3002115.	5.6	1
2263	ADAMDEC1 induces EMT and promotes colorectal cancer cells metastasis by enhancing Wnt/β-catenin signaling via negative modulation of GSK-3β. Experimental Cell Research, 2023, 429, 113629.	2.6	1
2264	Divergent regulation of $\hat{l}\pm$ -arrestin ARRDC3 function by ubiquitination. Molecular Biology of the Cell, 2023, 34, .	2.1	2
2265	USP8 positively regulates hepatocellular carcinoma tumorigenesis and confers ferroptosis resistance through β-catenin stabilization. Cell Death and Disease, 2023, 14, .	6.3	4
2267	Mechanistic Regulation of Wnt Pathway-Related Progression of Chronic Obstructive Pulmonary Disease Airway Lesions. International Journal of COPD, 0, Volume 18, 871-880.	2.3	2
2268	Targeting 14-3-3ζ by a small-molecule compound AI-34 maintains epithelial barrier integrity and alleviates colitis in mice via stabilizing β-catenin. Journal of Pharmacological Sciences, 2023, 152, 210-219.	2.5	1

#	Article	IF	CITATIONS
2269	Crosstalk between Adult Hippocampal Neurogenesis and Its Role in Alzheimer's Disease. ACS Chemical Neuroscience, 2023, 14, 2271-2281.	3.5	3
2270	Bortezomib Increased Vascular Permeability by Decreasing Cell–Cell Junction Molecules in Human Pulmonary Microvascular Endothelial Cells. International Journal of Molecular Sciences, 2023, 24, 10842.	4.1	0
2271	A novel pathogenic variant in the FZD6 gene causes recessive nail dysplasia in a Moroccan family. Clinical and Experimental Dermatology, 0, , .	1.3	0
2272	Regulation of the Wnt signaling pathway during myogenesis by the mammalian SWI/SNF ATPase BRG1. Frontiers in Cell and Developmental Biology, 0, 11, .	3.7	1
2273	Escin Activates Canonical Wnt/β-Catenin Signaling Pathway by Facilitating the Proteasomal Degradation of Glycogen Synthase Kinase-3I² in Cultured Human Dermal Papilla Cells. Current Issues in Molecular Biology, 2023, 45, 5902-5913.	2.4	0
2274	Endogenous anti-tumorigenic nitro-fatty acids inhibit the ubiquitin-proteasome system by directly targeting the 26S proteasome. Cell Chemical Biology, 2023, 30, 1277-1294.e12.	5.2	0
2275	Apoptosis of Kinetin Riboside in Colorectal Cancer Cells Occurs by Promoting Î ² -Catenin Degradation. Journal of Microbiology and Biotechnology, 2023, , .	2.1	0
2276	Mass spectrometry–based approaches for the identification of molecular mechanism of action of ayurvedic medicines in Parkinson disease. , 2023, , 425-459.		0
2277	CD58 acts as a tumor promotor in hepatocellular carcinoma via activating the AKT/GSK-3β/β-catenin pathway. Journal of Translational Medicine, 2023, 21, .	4.4	1
2278	NLRP12 downregulates the Wnt/l²-catenin pathway via interaction with STK38 to suppress colorectal cancer. Journal of Clinical Investigation, 2023, 133, .	8.2	4
2279	Tissue fibrosis induced by radiotherapy: current understanding of the molecular mechanisms, diagnosis and therapeutic advances. Journal of Translational Medicine, 2023, 21, .	4.4	3
2280	The Role of Sclerostin in Rheumatic Diseases: A Review. Journal of Clinical Medicine, 2023, 12, 6248.	2.4	0
2281	FOLR1â€stabilized β atenin promotes laryngeal carcinoma progression through EGFR/AKT/GSKâ€3β pathway. Molecular Carcinogenesis, 2024, 63, 34-44.	2.7	0
2282	The role of glycogen synthase kinase 3 beta in neurodegenerative diseases. Frontiers in Molecular Neuroscience, 0, 16, .	2.9	1
2283	Bone Marrow–Resident Stem Cells. , 2024, , 357-379.		0
2284	Phenylethanoid glycosides derived from Cistanche deserticola promote neurological functions and the proliferation of neural stem cells for improving ischemic stroke. Biomedicine and Pharmacotherapy, 2023, 167, 115507.	5.6	0
2285	Stem signaling molecules and pathways: implications in the regulation of fate and proliferation potential. , 2024, , 27-38.		0
2286	Research progress on traditional Chinese medicine-induced apoptosis signaling pathways in ovarian cancer cells. Journal of Ethnopharmacology, 2024, 319, 117299.	4.1	0

	CITATION RE	CITATION REPORT		
			_	
#	Article	IF	CITATIONS	
2287	Determining zebrafish dorsal organizer size by a negative feedback loop between canonical/non-canonical Wnts and Tlr4/NFIºB. Nature Communications, 2023, 14, .	12.8	0	
2288	Simplified Synthesis of Renieramycin T Derivatives to Target Cancer Stem Cells via β-Catenin Proteasomal Degradation in Human Lung Cancer. Marine Drugs, 2023, 21, 627.	4.6	0	
2289	Wnt Cell Signaling Pathway in Brain Tumor Development. , 2023, , 15-27.		0	
2290	Identification of the Axis β-Catenin–BTK in the Dynamic Adhesion of Chronic Lymphocytic Leukemia Cells to Their Microenvironment. International Journal of Molecular Sciences, 2023, 24, 17623.	4.1	0	
2291	Natural products in traditional Chinese medicine: molecular mechanisms and therapeutic targets of renal fibrosis and state-of-the-art drug delivery systems. Biomedicine and Pharmacotherapy, 2024, 170, 116039.	5.6	1	
2292	Tools for investigating O-GlcNAc in signaling and other fundamental biological pathways. Journal of Biological Chemistry, 2024, 300, 105615.	3.4	0	
2293	Signaling pathway and pharmacology. , 2024, , 395-601.		0	
2294	The Ligation Systems for Ubiquitin and Ubiquitin-like Proteins. Molecules and Cells, 1998, 8, 503-512.	2.6	6	
2295	Aberrant Crypt Foci - Endpoint in Colorectal Cancer. Medicina Interna (Bucharest, Romania: 1991), 2023, 20, 31-42.	0.0	0	
2296	Molecular insights on intracellular Wnt∫βâ€catenin signaling in alcoholic liver disease. Cell Biochemistry and Function, 2024, 42, .	2.9	0	
2299	Key oncogenic signaling pathways affecting tumor-infiltrating lymphocytes infiltration in hepatocellular carcinoma: basic principles and recent advances. Frontiers in Immunology, 0, 15, .	4.8	0	
2300	The <scp>CK</scp> 1îµ/ <scp>SIAH1</scp> axis regulates <scp>AXIN</scp> 1 stability in colorectal cancer cells. Molecular Oncology, 0, , .	4.6	0	
2303	Impaired skeletal muscle regeneration in diabetes: From cellular and molecular mechanisms to novel treatments. Cell Metabolism, 2024, , .	16.2	0	