RFLP mapping of five major genes and eight quantitative time in a winter \tilde{A} — spring barley (<i>Hordeum vulgare

Genome 38, 575-585 DOI: 10.1139/g95-074

Citation Report

#	Article	IF	CITATIONS
1	RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theoretical and Applied Genetics, 1995, 90, 1174-1179.	1.8	329
2	Regions of the Genome that Affect Agronomic Performance in Twoâ€Row Barley. Crop Science, 1996, 36, 1053-1062.	0.8	191
3	The regulatory role of vernalization in the expression of low-temperature-induced genes in wheat and rye. Theoretical and Applied Genetics, 1996, 93, 554-559.	1.8	109
4	RFLP mapping of the barley homeotic mutant lax-a. Theoretical and Applied Genetics, 1996, 93-93, 81-85.	1.8	8
5	Marker regression mapping of QTL controlling flowering time and plant height in a spring barley (Hordeum vulgare L.) cross. Heredity, 1996, 77, 64-73.	1.2	107
6	Responses to salt stress controlled by the homoeologous group 5 chromosomes of hexaploid wheat. Plant Breeding, 1996, 115, 81-84.	1.0	17
8	The wheat wcs120 gene family. A useful model to understand the molecular genetics of freezing tolerance in cereals. Physiologia Plantarum, 1997, 101, 439-445.	2.6	106
9	Intrachromosomal mapping of genes for dwarfing (Rht12) and vernalization response (Vrn1) in wheat by using RFLP and microsatellite markers. Plant Breeding, 1997, 116, 227-232.	1.0	102
10	Comparative genetics of flowering time. Plant Molecular Biology, 1997, 35, 167-177.	2.0	117
11	Effects of barley chromosome on heading characters in wheat-barley chromosome addition lines. Euphytica, 1997, 96, 281-287.	0.6	27
12	Genome mapping, molecular markers and marker-assisted selection in crop plants. Molecular Breeding, 1997, 3, 87-103.	1.0	498
13	Chromosome mapping of low-temperature induced Wcs120 family genes and regulation of cold-tolerance expression in wheat. Molecular Genetics and Genomics, 1997, 253, 720-727.	2.4	60
14	Effects of loci on chromosomes 2 (2H) and 7 (5H) on developmental patterns in barley (Hordeum) Tj ETQq0 0 0	rgBT /Ovei 1.8	rlo <u>gk</u> 10 Tf 50
15	Genetic mapping of QTL controlling tissue-culture response on chromosome 2B of wheat (Triticum) Tj ETQq1 1 (1047-1052.).784314 1.8	rgBT /Overloc 56
16	Location of a gene regulating cold-induced carbohydrate production on chromosome 5A of wheat. Theoretical and Applied Genetics, 1997, 95, 265-270.	1.8	54
17	RFLP-based mapping of three mutant loci in rye (Secale cereale L.) and their relation to homoeologous loci within the Gramineae. Theoretical and Applied Genetics, 1997, 95, 468-473.	1.8	41
18	Excessive homozygosity in doubled haploids — advantages and disadvantages for plant breeding and fundamental research. Acta Physiologiae Plantarum, 1997, 19, 155-167.	1.0	16

19	Genetic analysis of some flowering	; time and adaptive traits in v	vheat. New Phytologist, 1997, 137, 19-28.	3.5	106
----	------------------------------------	---------------------------------	---	-----	-----

		CITATION REPORT		
#	Article		IF	Citations
20	Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytologist, 1	.997, 137, 61-74.	3.5	265
21	Identification of a QTL decreasing yield in barley linked to Mlo powdery mildew resistar Breeding, 1998, 4, 381-393.	ce. Molecular	1.0	60
22	Golden calves or white elephants? Biotechnologies for wheat improvement. Euphytica, 207-217.	1998, 100,	0.6	12
23	Comparative genetic mapping of loci affecting plant height and development in cereals 1998, 100, 245-248.	s. Euphytica,	0.6	52
24	Genetic diversity of barley cultivars grown in Spain, estimated by RFLP, similarity and co coefficients. Plant Breeding, 1998, 117, 429-435.	bancestry	1.0	20
25	Introgression of quantitative trait loci (QTLs) determining stripe rust resistance in barle of marker-assisted line development. Theoretical and Applied Genetics, 1998, 96, 123-	y: an example 131.	1.8	151
26	Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theo Applied Genetics, 1998, 96, 1205-1215.	retical and	1.8	162
27	Comparative mapping of the wheat chromosome 5A Vrn-A1 region with rice and its relation for flowering time. Theoretical and Applied Genetics, 1998, 97, 103-109.	ationship to QTL	1.8	52
28	Molecular mapping of the photoperiod response gene ea7 in barley. Theoretical and Ap 1998, 97, 797-800.	plied Genetics,	1.8	31
29	Comparative RFLP mapping of Triticum monococcum genes controlling vernalization re Theoretical and Applied Genetics, 1998, 97, 968-975.	equirement.	1.8	217
30	The influence of the group 1 chromosomes of wheat on ear-emergence times and their with vernalization and day length. Heredity, 1998, 80, 83-91.	involvement	1.2	32
31	The Control of Flowering in Wheat and Barley: What Recent Advances in Molecular Ger Reveal. Annals of Botany, 1998, 82, 541-554.	hetics Can	1.4	71
32	Rapid reorganization of resistance gene homologues in cereal genomes. Proceedings o Academy of Sciences of the United States of America, 1998, 95, 370-375.	f the National	3.3	365
33	Synergistic epistasis between loci affecting fitness: evidence in plants and fungi. Genet 1998, 71, 39-49.	ical Research,	0.3	32
34	A Photoperiod-Insensitive Barley Line Contains a Light-Labile Phytochrome B1. Plant Ph 119, 1033-1040.	ysiology, 1999,	2.3	45
35	RFLP mapping of a gene for hairy leaf sheath using a recombinant line from Hordeum v ×Hordeum bulbosum L. cross. Genome, 1999, 42, 960-961.	ulgare L.	0.9	9
36	Detection of an earliness per se quantitative trait locus in the proximal region of wheat 5AL. Plant Breeding, 1999, 118, 391-394.	chromosome	1.0	30
37	Control of ear emergence time by chromosome 3A of wheat. Plant Breeding, 1999, 118	3, 85-87.	1.0	23

#	Article	IF	CITATIONS
38	RFLP markers associated with major genes controlling heading date evaluated in a barley germ plasm pool. Heredity, 1999, 83, 551-559.	1.2	22
39	QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. Theoretical and Applied Genetics, 1999, 98, 472-477.	1.8	119
40	RFLP- and physical mapping of resistance gene homologues in rice (O. sativa) and Barley (H. vulgare). Theoretical and Applied Genetics, 1999, 98, 509-520.	1.8	63
41	Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theoretical and Applied Genetics, 1999, 98, 977-984.	1.8	126
42	Detection of quantitative trait loci on chromosome 5R of rye (Secale cereale L.). Theoretical and Applied Genetics, 1999, 98, 1087-1090.	1.8	31
43	Physical mapping of the Vrn-A1 and Fr1 genes on chromosome 5A of wheat using deletion lines. Theoretical and Applied Genetics, 1999, 99, 199-202.	1.8	74
44	AFLP mapping of quantitative trait loci for yield-determining physiological characters in spring barley. Theoretical and Applied Genetics, 1999, 99, 244-253.	1.8	91
45	Comparative mapping of the wheat Vrn-Al region with the rice Hd-6 region. Genome, 1999, 42, 204-209.	0.9	23
46	PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annual Review of Plant Biology, 1999, 50, 571-599.	14.2	3,002
47	Molecular Analysis Of Flowering Time And Vernalization Response In Arabidopsis, A Minireview. Developments in Plant Genetics and Breeding, 2000, , 115-121.	0.6	0
48	Influence of photoperiod response on the expression of cold hardiness in wheat and barley. Canadian Journal of Plant Science, 2000, 80, 721-724.	0.3	50
49	A skeletal linkage map of Hordeum bulbosum L. and comparative mapping with barley (H. vulgare L.). Euphytica, 2000, 115, 115-120.	0.6	9
50	Genetic mapping of quantitative trait loci in rye (Secale cereale L.). Euphytica, 2000, 116, 203-209.	0.6	48
51	Identification of RFLP markers linked with heading date and its heterosis in hexaploid wheat. Euphytica, 2000, 116, 111-119.	0.6	16
52	Title is missing!. Molecular Breeding, 2000, 6, 157-167.	1.0	33
53	Localising QTLs for leaf rust resistance and agronomic traits in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 2000, 100, 881-888.	1.8	56
53 54		1.8 1.8	56 33

#	Article	IF	CITATIONS
56	Epistatic interaction between vernalization genes Vrn-Am1 and Vrn-Am2 in diploid wheat. , 2000, 91, 304-306.		97
57	The development and application of molecular markers for abiotic stress tolerance in barley. Journal of Experimental Botany, 2000, 51, 19-27.	2.4	117
58	Wild barley: a source of genes for crop improvement in the 21st century?. Journal of Experimental Botany, 2000, 51, 9-17.	2.4	228
59	Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome, 2000, 43, 487-494.	0.9	116
60	Physical characterization of the homoeologous Group 5 chromosomes of wheat in terms of rice linkage blocks, and physical mapping of some important genes. Genome, 2000, 43, 191-198.	0.9	63
62	Resistance to abiotic freezing stress in cereals. Advances in Botanical Research, 2001, 34, 237-261.	0.5	0
63	Identification of barley genome segments introgressed into wheat using PCR markers. Genome, 2001, 44, 38-44.	0.9	21
64	Quantitative trait loci for growing degree days to flowering and photoperiod response in Sunflower (Helianthus annuus L.). Theoretical and Applied Genetics, 2001, 102, 497-503.	1.8	69
65	An RFLP map of diploid Hordeum bulbosum L. and comparison with maps of barley (H. vulgare L.) and wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2001, 103, 869-880.	1.8	26
66	Multivariate analysis of traits determining adaptation in cultivated barley. Plant Breeding, 2001, 120, 217-222.	1.0	45
67	Inheritance of heading time in spring barley evaluated in multiple environments. Plant Breeding, 2001, 120, 209-215.	1.0	1
68	Pleiotropic effects of the ea7 photoperiod response gene on the morphology and agronomic traits in barley. Plant Breeding, 2001, 120, 489-495.	1.0	5
69	Mapping genes for flowering time and frost tolerance in cereals using precise genetic stocks. Euphytica, 2001, 120, 309-315.	0.6	73
70	Waiting for fine times: genetics of flowering time in wheat. Euphytica, 2001, 119, 185-190.	0.6	220
71	Mapping genetic loci for flowering time, maturity, and photoperiod insensitivity in soybean. Molecular Breeding, 2001, 8, 25-35.	1.0	115
73	Expression of Cold-Regulated (cor) Genes in Barley. , 2002, , 121-137.		1
74	Differential effects of cultivated and wild barley 5H chromosomes on heading characters in wheat-barley chromosome addition lines. Hereditas, 2002, 136, 195-200.	0.5	4
75	Two-gene systems of vernalization requirement and narrow-sense earliness in einkorn wheat. Genome, 2002, 45, 563-569.	0.9	32

#	Article	IF	CITATIONS
76	Comparative mapping and QTL analysis of early spring adaptation traits in barley (Hordeum vulgare L.). Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2002, 50, 283-294.	0.2	0
77	Mapping of genes regulating abiotic stress tolerance in cereals. Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2002, 50, 235-247.	0.2	9
78	Genetic analysis of Vrn-B1 for vernalization requirement by using linked dCAPS markers in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2002, 104, 571-576.	1.8	60
79	Molecular cloning of the wheat CK2α gene and detection of its linkage with Vrn-A1 on chromosome 5A. Theoretical and Applied Genetics, 2002, 104, 1071-1077.	1.8	23
80	RFLP mapping of a Hordeum bulbosum gene highly expressed in pistils and its relationship to homoeologous loci in other Gramineae species. Theoretical and Applied Genetics, 2002, 105, 271-276.	1.8	6
81	Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1Am. Theoretical and Applied Genetics, 2002, 105, 585-593.	1.8	116
82	Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2002, 105, 921-936.	1.8	474
83	Genomic analysis of cultivated barley (Hordeum vulgare) using sequence-tagged molecular markers. Estimates of divergence based on RFLP and PCR markers derived from stress-responsive genes, and simple-sequence repeats (SSRs). Molecular Genetics and Genomics, 2002, 267, 186-201.	1.0	30
84	Characterization of QEet.ocs-5A.1, a quantitative trait locus for ear emergence time on wheat chromosome 5AL. Plant Breeding, 2002, 121, 389-393.	1.0	17
85	Molecular mapping of major genes and quantitative trait loci determining flowering time in response to photoperiod in barley. Plant Breeding, 2002, 121, 129-132.	1.0	40
86	Title is missing!. Genetic Resources and Crop Evolution, 2002, 49, 133-144.	0.8	19
87	Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Molecular Biology, 2002, 48, 649-665.	2.0	190
88	Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology, 2002, 48, 667-681.	2.0	303
89	Trends in comparative genetics and their potential impacts on wheat and barley research. Plant Molecular Biology, 2002, 48, 729-740.	2.0	23
90	Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: associations with ecology, geography and flowering time. Plant Molecular Biology, 2002, 48, 511-527.	2.0	107
91	Allozymes and growth habit of Aegilops tauschii: genetic control and linkage patterns. Euphytica, 2003, 129, 89-97.	0.6	19
92	Genetic diversity among elite Bulgarian barley varieties evaluated by RFLP and RAPD markers. Euphytica, 2003, 129, 325-336.	0.6	5
93	Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 2003, 107, 340-352.	1.8	233

#	ARTICLE	IF	CITATIONS
94	Leaf-rust resistance in rye (Secale cereale L.). 1. Genetic analysis and mapping of resistance genes Pr1 and Pr2. Theoretical and Applied Genetics, 2003, 107, 432-438.	1.8	43
95	Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theoretical and Applied Genetics, 2003, 107, 509-514.	1.8	165
96	QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross 'Arta' × H. spontaneum 41-1. Theoretical and Applied Genetics, 2003, 107, 1215-1225.	1.8	196
97	Barley disease resistance gene analogs of the NBS-LRR class: identification and mapping. Molecular Genetics and Genomics, 2003, 269, 150-161.	1.0	76
98	Characterization and functional analysis of three wheat genes with homology to theCONSTANSflowering time gene in transgenic rice. Plant Journal, 2003, 36, 82-93.	2.8	147
99	RFLP diversity within and between major groups of barley in Europe. Plant Breeding, 2003, 122, 291-299.	1.0	33
100	Mapping of the Vrn-B1 gene in Triticum aestivum using microsatellite markers. Plant Breeding, 2003, 122, 209-212.	1.0	27
101	Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytologist, 2003, 160, 21-42.	3.5	418
102	Earliness per se and its dependence upon temperature in diploid wheat lines differing in the major gene Eps-Am1 alleles. Journal of Agricultural Science, 2003, 141, 149-154.	0.6	46
103	Segregation analysis of heading traits in hexaploid wheat utilizing recombinant inbred lines. Heredity, 2003, 90, 56-63.	1.2	56
104	Doubled Haploid Production in Crop Plants. , 2003, , .		159
105	The domestication of cultivated barley. Developments in Plant Genetics and Breeding, 2003, , 9-27.	0.6	64
106	The determinants and genome locations influencing grain weight and size in barley (Hordeum vulgare) Tj ETQqO	0 0 <u>r</u> gBT /0	Overlock 10 62
107	MADS box genes control vernalization-induced flowering in cereals. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13099-13104.	3.3	409
108	The Evolution of CONSTANS-Like Gene Families in Barley, Rice, and Arabidopsis. Plant Physiology, 2003, 131, 1855-1867.	2.3	463
109	Positional cloning of the wheat vernalization gene VRN1. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6263-6268.	3.3	1,254
110	The Need for Winter in the Switch to Flowering. Annual Review of Genetics, 2003, 37, 371-392.	3.2	100
111	Mapping and QTL analysis of the barley population Sloop × Halcyon. Australian Journal of Agricultural Research, 2003, 54, 1145.	1.5	37

#	Article	IF	CITATIONS
112	Conventional and molecular genetic analysis of factors contributing to variation in the timing of heading among spring barley (Hordeum vulgare L.) genotypes grown over a mild winter growing season. Australian Journal of Agricultural Research, 2003, 54, 1277.	1.5	68
113	Genetic Variation in Component Traits of Heading Date in Hordeum vulgare subsp. spontaneum Accessions Characterized in Controlled Environments. Crop Science, 2004, 44, 1622-1632.	0.8	25
114	Identification of Quantitative Trait Loci (QTLs) Controlling Heading Time in the Population Generated from a Cross between Oriental and Occidental Barley Cultivars (<i>Hordeum vulgare</i> L.). Breeding Science, 2004, 54, 327-332.	0.9	16
115	The Distribution of Transgene Insertion Sites in Barley Determined by Physical and Genetic Mapping. Genetics, 2004, 167, 1371-1379.	1.2	36
116	Development of PCR-based markers on chromosome 5H for assisted selection of frost-tolerant genotypes in barley. Molecular Breeding, 2004, 14, 265-273.	1.0	21
117	EST derived SSR markers for comparative mapping in wheat and rice. Molecular Genetics and Genomics, 2004, 271, 742-751.	1.0	155
118	Two loci on chromosome 5H determine low-temperature tolerance in a â€~Nure' (winter) × â€~Tremois' (spring) barley map. Theoretical and Applied Genetics, 2004, 108, 670-680.	1.8	199
119	Synteny between a major heading-date QTL in perennial ryegrass (Lolium perenne L.) and the Hd3 heading-date locus in rice. Theoretical and Applied Genetics, 2004, 108, 822-828.	1.8	104
120	Comparative AB-QTL analysis in barley using a single exotic donor of Hordeum vulgare ssp. spontaneum Theoretical and Applied Genetics, 2004, 108, 1591-1601.	1.8	73
121	Genetic linkage mapping of an annual × perennial ryegrass population. Theoretical and Applied Genetics, 2004, 109, 294-304.	1.8	79
122	Cold hardiness of wheat near-isogenic lines differing in vernalization alleles. Theoretical and Applied Genetics, 2004, 109, 839-846.	1.8	34
123	QTL mapping of chromosomal regions conferring reproductive frost tolerance in barley (Hordeum) Tj ETQq1 1 0.7	84314 rgl 1.8	BT /Overlock
124	Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population. Theoretical and Applied Genetics, 2004, 110, 106-115.	1.8	111
125	Use of new EST markers to elucidate the genetic differences in grain protein content between European and North American two-rowed malting barleys. Theoretical and Applied Genetics, 2004, 110, 116-125.	1.8	31
126	Genotyping single nucleotide polymorphisms in barley by tetra-primer ARMS–PCR. Genome, 2004, 47, 414-420.	0.9	56
127	Genome Mapping and Map Based Cloning. , 2004, , 257-299.		7
128	Comparative genetic approaches to the identification of flowering time genes in temperate cereals. Field Crops Research, 2004, 90, 87-99.	2.3	59
129	Similar genetic switch systems might integrate the floral inductive pathways in dicots and monocots. Trends in Plant Science, 2004, 9, 105-107.	4.3	50

#	Article	IF	CITATIONS
130	The Wheat VRN2 Gene Is a Flowering Repressor Down-Regulated by Vernalization. Science, 2004, 303, 1640-1644.	6.0	999
131	The Pseudo-Response Regulator Ppd-H1 Provides Adaptation to Photoperiod in Barley. Science, 2005, 310, 1031-1034.	6.0	823
132	Genetics and molecular breeding in <i>Lolium/Festuca</i> grass species complex. Grassland Science, 2005, 51, 89-106.	0.6	54
133	Analysis of QTLs for yield, yield components, and malting quality in a BC3-DH population of spring barley. Theoretical and Applied Genetics, 2005, 110, 356-363.	1.8	97
134	QTL mapping of vernalization response in perennial ryegrass (Lolium perenne L.) reveals co-location with an orthologue of wheat VRN1. Theoretical and Applied Genetics, 2005, 110, 527-536.	1.8	147
135	Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theoretical and Applied Genetics, 2005, 110, 925-931.	1.8	82
136	The Vrn-H2 locus is a major determinant of flowering time in a facultativeÂ×Âwinter growth habit barley (Hordeum vulgare L.) mapping population. Theoretical and Applied Genetics, 2005, 110, 1458-1466.	1.8	159
137	AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theoretical and Applied Genetics, 2005, 111, 583-590.	1.8	117
138	Molecular characterization of the allelic variation at the VRN-H2 vernalization locus in barley. Molecular Breeding, 2005, 15, 395-407.	1.0	102
139	Molecular and Structural Characterization of Barley Vernalization Genes. Plant Molecular Biology, 2005, 59, 449-467.	2.0	258
140	Changes in agronomic traits affected by photoperiod and vernalization in a group of wild barley accessions (Hordeum vulgare ssp. spontaneum) and barley cultivars (Hordeum vulgare L.). Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2005, 53, 89-98.	0.2	2
141	Analysis of Genetic Factors Influencing the Developmental Rate of Globally Important CIMMYT Wheat Cultivars. Crop Science, 2005, 45, 2113-2119.	0.8	63
142	Molecular characterization of the duplicated meristem identity genes <i>HvAP1a</i> and <i>HvAP1b</i> in barley. Genome, 2005, 48, 905-912.	0.9	15
143	Molecular Maps in Cereals: Methodology and Progress. , 2004, , 35-82.		5
144	Molecular cytogenetic identification of nullisomy 5B induced homoeologous recombination between wheat chromosome 5D and barley chromosome 5H. Genome, 2005, 48, 115-124.	0.9	15
146	Barley. , 2006, , 155-210.		2
147	Heritable basis for some genotype–environment stability statistics: Inferences from QTL analysis of heading date in two-rowed barley. Field Crops Research, 2006, 96, 243-251.	2.3	27
148	Believe it or not, QTLs are accurate!. Trends in Plant Science, 2006, 11, 213-216.	4.3	236

	Сітат	rion Report	
#	Article	IF	CITATIONS
149	Quantitative Trait Loci Controlling Agronomic Traits in Recombinant Inbred Lines from a Cross of Oriental- and Occidental-type Barley Cultivars. Breeding Science, 2006, 56, 243-252.	0.9	50
150	Comparative Mapping of Growth Habit, Plant Height, and Flowering QTLs in Two Interspecific Families of Leymus. Crop Science, 2006, 46, 2526-2539.	0.8	28
151	The influence of photoperiod on the Vrn-H2 locus (4H) which is a major determinant of plant development and reproductive fitness traits in a facultative�×winter barley (Hordeum vulgare L.) mapping population. Plant Breeding, 2006, 125, 468-472.	1.0	19
152	Two MADS-box genes from perennial ryegrass are regulated by vernalization and involved in the floral transition. Physiologia Plantarum, 2006, 126, 268-278.	2.6	34
153	A QTL for early heading in wheat cultivar Suwon 92. Euphytica, 2006, 146, 233-237.	0.6	18
154	Haplotype diversity in the endosperm specific β-amylase gene Bmy1 of cultivated barley (Hordeum) Tj ET	Qq1 1 0.784314 rg	gBT/Overloc
155	Distribution of β-amylase I haplotypes among European cultivated barleys. Molecular Breeding, 2006, 18 341-354.	, 1.0	20
156	Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Functional and Integrative Genomics, 2006, 7, 53-68.	1.4	143
157	Quantitative trait loci controlling vernalisation requirement, heading time and number of panicles in meadow fescue (Festuca pratensis Huds.). Theoretical and Applied Genetics, 2006, 112, 232-242.	1.8	29
158	Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theoretical and Applied Genetics, 2006, 112, 832-842.	1.8	112
159	AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theoretical and Applied Genetics, 2006, 112, 1221-1231.	1.8	143
160	Positional relationships between photoperiod response QTL and photoreceptor and vernalization genes in barley. Theoretical and Applied Genetics, 2006, 112, 1277-1285.	1.8	84
161	Identification of genetic loci associated with ear-emergence in bread wheat. Theoretical and Applied Genetics, 2006, 113, 1103-1112.	1.8	66
162	A perennial ryegrass CBF gene cluster is located in a region predicted by conserved synteny between Poaceae species. Theoretical and Applied Genetics, 2006, 114, 273-283.	1.8	38
163	Analysis of QTLs for yield components, agronomic traits, and disease resistance in an advanced backcross population of spring barley. Genome, 2006, 49, 454-466.	0.9	77
164	HvVRN2 Responds to Daylength, whereas HvVRN1 Is Regulated by Vernalization and Developmental Status. Plant Physiology, 2006, 140, 1397-1405.	2.3	209
165	Functional genomics of abiotic stress tolerance in cereals. Briefings in Functional Genomics & Proteomics, 2006, 4, 343-354.	3.8	113
166	The FLOWERING LOCUS T-Like Gene Family in Barley (Hordeum vulgare). Genetics, 2007, 176, 599-609.	1.2	281

# 167	ARTICLE Molecular Approaches and Breeding Strategies for Drought Tolerance in Barley. , 2007, , 51-79.	IF	CITATIONS 30
168	Progress in Breeding Wheat with Tolerance to Low Temperature in Different Phenological Developmental Stages. , 2007, , 301-314.		10
169	Genomics-Assisted Crop Improvement. , 2007, , .		23
171	The Importance of Barley Genetics and Domestication in a Global Perspective. Annals of Botany, 2007, 100, 999-1008.	1.4	125
172	Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. Journal of Experimental Botany, 2007, 58, 1231-1244.	2.4	422
173	Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theoretical and Applied Genetics, 2007, 114, 569-584.	1.8	143
174	A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2007, 115, 721-733.	1.8	691
175	Haplotype analysis of vernalization loci in European barley germplasm reveals novel VRN-H1 alleles and a predominant winter VRN-H1/VRN-H2 multi-locus haplotype. Theoretical and Applied Genetics, 2007, 115, 993-1001.	1.8	139
176	Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theoretical and Applied Genetics, 2007, 115, 1083-1091.	1.8	145
177	Markers associated with a QTL for grain yield in wheat under drought. Molecular Breeding, 2007, 20, 401-413.	1.0	203
178	Low-temperature acclimation of barley cultivars used as parents in mapping populations: response to photoperiod, vernalization and phenological development. Planta, 2007, 226, 139-146.	1.6	31
179	Validation of the VRN-H2/VRN-H1 epistatic model in barley reveals that intron length variation in VRN-H1 may account for a continuum of vernalization sensitivity. Molecular Genetics and Genomics, 2007, 277, 249-261.	1.0	123
180	The relationship between vernalization-and photoperiodically-regulated genes and the development of frost tolerance in wheat and barley. Biologia Plantarum, 2008, 52, 601-615.	1.9	55
181	AB-QTL analysis in spring barley: III. Identification of exotic alleles for the improvement of malting quality in spring barley (H. vulgare ssp. spontaneum). Molecular Breeding, 2008, 21, 81-93.	1.0	59
182	Joint analysis for heading date QTL in small interconnected barley populations. Molecular Breeding, 2008, 21, 383-399.	1.0	29
183	Heading date QTL in a springÂ×Âwinter barley cross evaluated in Mediterranean environments. Molecular Breeding, 2008, 21, 455-471.	1.0	58
184	Mapping chromosomal regions affecting flowering time in a spring wheat RIL population. Euphytica, 2008, 164, 769-777.	0.6	37
185	Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbred population using molecular markers. Theoretical and Applied Genetics, 2008, 117, 1129-1139.	1.8	38

		CITATION RE	PORT	
#	Article		IF	CITATIONS
186	Association mapping of partitioning loci in barley. BMC Genetics, 2008, 9, 16.		2.7	75
187	Transgressive segregation for phenological traits in barley explained by two major QTL additivity. Plant Breeding, 2008, 127, 561-568.	alleles with	1.0	15
188	Towards molecular breeding of reproductive traits in cereal crops. Plant Biotechnology 2008, 6, 529-559.	Journal,	4.1	34
189	Habitatâ€specific natural selection at a floweringâ€time QTL is a main driver of local a wild barley populations. Molecular Ecology, 2008, 17, 3416-3424.	daptation in two	2.0	63
190	Flowering time in oat: Genotype characterization for photoperiod and vernalization res Crops Research, 2008, 106, 242-247.	sponse. Field	2.3	24
191	Molecular cloning and mapping of casein kinase 2 alpha and beta subunit genes in bar 2008, 51, 208-215.	ley. Genome,	0.9	4
192	Discrete Developmental Roles for Temperate Cereal Grass VERNALIZATION1/FRUITFUL Flowering Competency and the Transition to Flowering. Plant Physiology, 2008, 146, 2		2.3	86
193	Evolutionary Dynamics as a Component of Stageâ€Structured Matrix Models: An Exan <i>Trillium grandiflorum</i> . American Naturalist, 2008, 172, 375-392.	nple Using	1.0	44
194	Effects of photo and thermo cycles on flowering time in barley: a genetical phenomics Journal of Experimental Botany, 2008, 59, 2707-2715.	approach.	2.4	47
195	Development of a Genomic Microsatellite Library in Perennial Ryegrass (Lolium perenn Trait Mapping. Annals of Botany, 2008, 101, 845-853.	e) and its Use in	1.4	27
196	Population-Based Resequencing Reveals That the Flowering Time Adaptation of Cultiva Originated East of the Fertile Crescent. Molecular Biology and Evolution, 2008, 25, 22	ited Barley 11-2219.	3.5	219
197	Black point formation in barley: environmental influences and quantitative trait loci. Au Journal of Agricultural Research, 2008, 59, 1021.	ustralian	1.5	10
198	Effects of temperature and light intensity on flowering of barley (<i>Hordeum vulgare Biologica Hungarica, 2008, 59, 205-215.</i>	L.). Acta	0.7	11
199	Effect of Advanced Cycle Breeding on Genetic Diversity in Barley Breeding Germplasm. 2008, 48, 1027-1036.	Crop Science,	0.8	36
200	PCRâ€Based Markers Diagnostic for Spring and Winter Seasonal Growth Habit in Barle 2009, 49, 403-410.	y. Crop Science,	0.8	45
201	Crop Development. , 2009, , 277-308.			36
202	Molecular and Functional Characterization of PEBP Genes in Barley Reveal the Diversifi Their Roles in Flowering Â. Plant Physiology, 2009, 149, 1341-1353.	cation of	2.3	145
203	Identification of genomic regions determining the phenological development leading t transition in wheat (Triticum aestivum L.). Journal of Experimental Botany, 2009, 60, 3	o floral 575-3585.	2.4	18

#	ARTICLE The CArG-Box Located Upstream from the Transcriptional Start of Wheat Vernalization Gene VRN1 Is	IF	Citations
204	Not Necessary for the Vernalization Response. Journal of Heredity, 2009, 100, 355-364.	1.0	57
205	Barley Genetics Newsletter. Hereditas, 1973, 73, 162-162.	0.5	1
206	Regions associated with repression of the barley (Hordeum vulgare) VERNALIZATION1 gene are not required for cold induction. Molecular Genetics and Genomics, 2009, 282, 107-117.	1.0	103
207	Structure–function analysis of the barley genome: the gene-rich region of chromosome 2HL. Functional and Integrative Genomics, 2009, 9, 67-79.	1.4	14
208	Flt-2L, a locus in barley controlling flowering time, spike density, and plant height. Functional and Integrative Genomics, 2009, 9, 243-254.	1.4	43
209	A new gene controlling the flowering response to photoperiod in wheat. Euphytica, 2009, 165, 579-585.	0.6	28
210	Detection of quantitative trait loci for heading date based on the doubled haploid progeny of two elite Chinese wheat cultivars. Genetica, 2009, 135, 257-265.	0.5	44
211	Identification and verification of QTLs for agronomic traits using wild barley introgression lines. Theoretical and Applied Genetics, 2009, 118, 483-497.	1.8	83
212	A quantitative trait locus for reduced culm internode length in barley segregates as a Mendelian gene. Theoretical and Applied Genetics, 2009, 118, 643-652.	1.8	28
213	Genetic and physical mapping of a high recombination region on chromosome 7H(1) in barley. Theoretical and Applied Genetics, 2009, 118, 811-820.	1.8	13
214	Genetic loci associated with stem elongation and winter dormancy release in wheat. Theoretical and Applied Genetics, 2009, 118, 881-889.	1.8	86
215	A major QTL conferring crown rot resistance in barley and its association with plant height. Theoretical and Applied Genetics, 2009, 118, 903-910.	1.8	68
216	Genetic loci in the photoperiod pathway interactively modulate reproductive development of winter wheat. Theoretical and Applied Genetics, 2009, 118, 1339-1349.	1.8	22
217	Detection and verification of malting quality QTLs using wild barley introgression lines. Theoretical and Applied Genetics, 2009, 118, 1411-1427.	1.8	50
218	Genes and traits associated with chromosome 2H and 5H regions controlling sensitivity of reproductive tissues to frost in barley. Theoretical and Applied Genetics, 2009, 118, 1465-1476.	1.8	24
219	Advanced backcross-QTL analysis in spring barley (H.Âvulgare ssp. spontaneum) comparing a REML versus a Bayesian model in multi-environmental field trials. Theoretical and Applied Genetics, 2009, 119, 105-123.	1.8	26
220	Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theoretical and Applied Genetics, 2009, 119, 383-395.	1.8	225
221	Genetic variants of HvCbf14 are statistically associated with frost tolerance in a European germplasm collection of Hordeum vulgare. Theoretical and Applied Genetics, 2009, 119, 1335-1348.	1.8	54

	CHATION R		
#	Article	IF	CITATIONS
222	Yield QTL affected by heading date in Mediterranean grown barley. Plant Breeding, 2009, 128, 46-53.	1.0	62
223	Multiple genetic loci for zinc uptake and distribution in barley (<i>Hordeum vulgare</i>). New Phytologist, 2009, 184, 168-179.	3.5	60
224	Genetic variability in duration of pre-heading phases and relationships with leaf appearance and tillering dynamics in a barley population. Field Crops Research, 2009, 113, 95-104.	2.3	68
225	Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Science, 2009, 176, 12-19.	1.7	158
226	Latitudinal variation in a photoperiod response gene in European barley: insight into the dynamics of agricultural spread from â€~historic' specimens. Journal of Archaeological Science, 2009, 36, 1092-1098.	1.2	57
228	Domestication of the Triticeae in the Fertile Crescent. , 2009, , 81-119.		49
229	Comparative analysis of genetic diversity between Qinghai-Tibetan wild and Chinese landrace barley. Genome, 2009, 52, 849-861.	0.9	14
230	Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC2DH population and a set of wild barley introgression lines. Theoretical and Applied Genetics, 2010, 120, 1559-1574.	1.8	103
231	Analysis of Diversity in Chinese Cultivated Barley with Simple Sequence Repeats: Differences Between Eco-Geographic Populations. Biochemical Genetics, 2010, 48, 44-56.	0.8	11
232	Genetic regulation of developmental phases in winter wheat. Molecular Breeding, 2010, 26, 573-582.	1.0	67
233	Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure. BMC Genomics, 2010, 11, 707.	1.2	81
234	QTLs and their interaction determining different heading dates of barley in Australia and China. Crop and Pasture Science, 2010, 61, 145.	0.7	4
235	Allele Variation in Loci for Adaptive Response and Plant Height and its Effect on Grain Yield in Wheat. Biotechnology and Biotechnological Equipment, 2010, 24, 1807-1813.	0.5	10
236	Genetic control of pre-heading phases and other traits related to development in a double-haploid barley (Hordeum vulgare L.) population. Field Crops Research, 2010, 119, 36-47.	2.3	51
239	Segmental chromosomal duplications harbouring group IV CONSTANS-like genes in cereals. Genome, 2010, 53, 231-240.	0.9	17
240	Determinants of barley grain yield in a wide range of Mediterranean environments. Field Crops Research, 2011, 120, 169-178.	2.3	73
241	Aegilops. , 2011, , 1-76.		89
242	Wheat genetic resources - how to exploit?. Czech Journal of Genetics and Plant Breeding, 2011, 47, S43-S48.	0.4	2

#	Article	IF	CITATIONS
243	Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Molecular Breeding, 2011, 27, 37-58.	1.0	278
244	Introgression of an intermediate VRNH1 allele in barley (Hordeum vulgare L.) leads to reduced vernalization requirement without affecting freezing tolerance. Molecular Breeding, 2011, 28, 475-484.	1.0	20
245	HvFT1 (VrnH3) drives latitudinal adaptation in Spanish barleys. Theoretical and Applied Genetics, 2011, 122, 1293-1304.	1.8	43
246	Gene and QTL detection in a three-way barley cross under selection by a mixed model with kinship information using SNPs. Theoretical and Applied Genetics, 2011, 122, 1605-1616.	1.8	53
247	QTL analyses and comparative genetic mapping of frost tolerance, winter survival and drought tolerance in meadow fescue (Festuca pratensis Huds.). Theoretical and Applied Genetics, 2011, 123, 369-382.	1.8	62
248	Adaptation of barley to mild winters: A role for PPDH2. BMC Plant Biology, 2011, 11, 164.	1.6	66
249	Genetic variation at flowering time loci in wild and cultivated barley. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 264-267.	0.4	26
250	Expression analysis of vernalization and day-length response genes in barley (Hordeum vulgare L.) indicates that VRNH2 is a repressor of PPDH2 (HvFT3) under long days. Journal of Experimental Botany, 2011, 62, 1939-1949.	2.4	57
251	Detection of photoperiod responsive and non-responsive flowering time QTL in barley. Breeding Science, 2011, 61, 183-188.	0.9	11
252	Quantitative Trait Loci and Candidate Loci for Heading Date in a Large Population of a Wide Barley Cross. Crop Science, 2012, 52, 2469-2480.	0.8	24
253	Comparison Between Linear and Non-parametric Regression Models for Genome-Enabled Prediction in Wheat. G3: Genes, Genomes, Genetics, 2012, 2, 1595-1605.	0.8	187
254	The differential expression of HvCO9, a member of the CONSTANS-like gene family, contributes to the control of flowering under short-day conditions in barley. Journal of Experimental Botany, 2012, 63, 773-784.	2.4	68
255	Identification of marker-trait associations in the German winter barley breeding gene pool (Hordeum) Tj ETQq0 0	0 [gBT /O	verlock 10 Tf 43
256	Evaluation of diagnostic molecular markers for DUS phenotypic assessment in the cereal crop, barley (Hordeum vulgare ssp. vulgare L.). Theoretical and Applied Genetics, 2012, 125, 1735-1749.	1.8	42
257	Phenotypic and genotypic variation in flowering time in Ethiopian barleys. Euphytica, 2012, 188, 309-323.	0.6	5
258	High-density mapping of the earliness per se-3Am (Eps-3A m) locus in diploid einkorn wheat and its relation to the syntenic regions in rice and Brachypodium distachyon L Molecular Breeding, 2012, 30, 1097-1108.	1.0	32
259	A quantitative trait locus for long photoperiod response mapped on chromosome 4H in barley. Molecular Breeding, 2012, 30, 1121-1130.	1.0	5
260	Phylogeographic analysis of barley DNA as evidence for the spread of Neolithic agriculture through Europe. Journal of Archaeological Science, 2012, 39, 3230-3238.	1.2	43

#	Article	IF	CITATIONS
261	A genetic linkage map of tetraploid orchardgrass (Dactylis glomerata L.) and quantitative trait loci for heading date. Genome, 2012, 55, 360-369.	0.9	24
262	Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biology, 2012, 12, 16.	1.6	341
263	Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nature Genetics, 2012, 44, 1388-1392.	9.4	477
264	Detection of nitrogen deficiency QTL in juvenile wild barley introgression linesgrowing in a hydroponic system. BMC Genetics, 2012, 13, 88.	2.7	41
265	Functional characterisation of <i>HvCO1</i> , the barley (<i>Hordeum vulgare</i>) flowering time ortholog of <i>CONSTANS</i> . Plant Journal, 2012, 69, 868-880.	2.8	136
266	The impact of photoperiod insensitive <i>Ppdâ€la</i> mutations on the photoperiod pathway across the three genomes of hexaploid wheat (<i>Triticum aestivum</i>). Plant Journal, 2012, 71, 71-84.	2.8	158
267	Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions. Theoretical and Applied Genetics, 2012, 124, 697-711.	1.8	76
268	Genetic control of pre-heading phases in the Steptoe × Morex barley population under different conditions of photoperiod and temperature. Euphytica, 2012, 183, 303-321.	0.6	32
269	Quantitative trait loci for salinity tolerance in barley (Hordeum vulgare L.). Molecular Breeding, 2012, 29, 427-436.	1.0	87
270	Genome-wide association mapping of agronomic traits in relevant barley germplasm in Uruguay. Molecular Breeding, 2013, 31, 631-654.	1.0	25
271	Diagnostics in Plant Breeding. , 2013, , .		2
272	Genomics and Breeding for Climate-Resilient Crops. , 2013, , .		10
273	Genomics and Breeding for Climate-Resilient Crops. , 2013, , .		9
274	Advance in Barley Sciences. , 2013, , .		5
275	Barley and Wheat Share the Same Gene Controlling the Short Basic Vegetative Period. Journal of Integrative Agriculture, 2013, 12, 1703-1711.	1.7	1
276	Phytochrome C Is A Key Factor Controlling Long-Day Flowering in Barley. Plant Physiology, 2013, 163, 804-814.	2.3	71
277	Earliness per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in the CutlerÂ×ÂAC Barrie spring wheat population. Theoretical and Applied Genetics, 2013, 126, 1965-1976.	1.8	49
278	The use of allele-specific markers of the Ppd and Vrn genes for predicting growing-season duration in barley cultivars. Russian Journal of Genetics: Applied Research, 2013, 3, 254-264.	0.4	4

#	Article	IF	CITATIONS
279	Genetic analysis and phenotypic associations for drought tolerance in Hordeum spontaneum introgression lines using SSR and SNP markers. Euphytica, 2013, 189, 9-29.	0.6	42
280	Detection of exotic QTLs controlling nitrogen stress tolerance among wild barley introgression lines. Euphytica, 2013, 189, 67-88.	0.6	22
281	Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect on heading time. Molecular Breeding, 2013, 31, 27-37.	1.0	163
282	Variety Protection and Plant Breeders' Rights in the â€~DNA Era'. , 2013, , 369-402.		5
283	Correlation of Vernalization Loci <i>VRN-H1</i> and <i>VRN-H2</i> and Growth Habit in Barley Germplasm. International Journal of Plant Genomics, 2013, 2013, 1-9.	2.2	7
284	Analysis of DNA polymorphism in ancient barley herbarium material: Validation of the KASP SNP genotyping platform. Taxon, 2013, 62, 779-789.	0.4	21
285	<i>Hv<scp>LUX</scp>1</i> is a candidate gene underlying the <i>early maturity 10</i> locus in barley: phylogeny, diversity, and interactions with the circadian clock and photoperiodic pathways. New Phytologist, 2013, 199, 1045-1059.	3.5	110
286	Mutant Alleles of Photoperiod-1 in Wheat (Triticum aestivum L.) That Confer a Late Flowering Phenotype in Long Days. PLoS ONE, 2013, 8, e79459.	1.1	97
287	Genes and Quantitative Trait Loci Controlling Biomass Yield and Forage Quality Traits in Perennial Wildrye. Crop Science, 2014, 54, 111-126.	0.8	5
288	Association Mapping of Agronomic QTLs in U.S. Spring Barley Breeding Germplasm. Plant Genome, 2014, 7, plantgenome2013.11.0037.	1.6	63
289	The USDA Barley Core Collection: Genetic Diversity, Population Structure, and Potential for Genome-Wide Association Studies. PLoS ONE, 2014, 9, e94688.	1.1	188
290	Genomeâ€Wide Genetic Dissection of Supernumerary Spikelet and Related Traits in Common Wheat. Plant Genome, 2014, 7, plantgenome2014.03.0013.	1.6	18
291	Genetic architecture of main effect QTL for heading date in European winter wheat. Frontiers in Plant Science, 2014, 5, 217.	1.7	86
292	HvFT1 polymorphism and effectââ,¬â€survey of barley germplasm and expression analysis. Frontiers in Plant Science, 2014, 5, 251.	1.7	49
293	Biotechnological Approaches to Barley Improvement. Biotechnology in Agriculture and Forestry, 2014, , .	0.2	7
294	Osmotic stress at the barley root affects expression of circadian clock genes in the shoot. Plant, Cell and Environment, 2014, 37, 1321-1337.	2.8	80
295	Genomics of Low-Temperature Tolerance for an Increased Sustainability of Wheat and Barley Production. , 2014, , 149-183.		6
296	Genetic variation for the duration of pre-anthesis development in durum wheat and its interaction with vernalization treatment and photoperiod. Journal of Experimental Botany, 2014, 65, 3177-3188.	2.4	25

#	Article	IF	CITATIONS
297	Flowering time in wheat (Triticum aestivum L.): a key factor for global adaptability. Euphytica, 2014, 197, 1-26.	0.6	168
298	Quantitative trait locus analysis of nitrogen use efficiency in barley (Hordeum vulgare L.). Euphytica, 2014, 199, 207-221.	0.6	35
299	Can a late bloomer become an early bird? Tools for flowering time adjustment. Biotechnology Advances, 2014, 32, 200-214.	6.0	27
300	Genomics of Plant Genetic Resources. , 2014, , .		16
301	Evaluation of juvenile drought stress tolerance and genotyping by sequencing with wild barley introgression lines. Molecular Breeding, 2014, 34, 1475-1495.	1.0	36
302	Genetic Control of Reproductive Development in Temperate Cereals. Advances in Botanical Research, 2014, 72, 131-158.	0.5	28
303	QTLs for barley yield adaptation to Mediterranean environments in the â€~Nure'Â×Ââ€~Tremois' bipare population. Euphytica, 2014, 197, 73-86.	ntal 0.6	74
304	Identification of Malting Quality QTLs in Advanced Generation Breeding Germplasm. Journal of the American Society of Brewing Chemists, 2015, 73, 29-40.	0.8	12
305	Localization of Quantitative Trait Loci for Dryland Characters in Barley by Linkage Mapping. CSSA Special Publication - Crop Science Society of America, 2015, , 191-202.	0.1	4
306	Breeding for Drought Resistance in a Changing Climate. CSSA Special Publication - Crop Science Society of America, 0, , 167-190.	0.1	26
307	Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Frontiers in Plant Science, 2015, 6, 563.	1.7	243
308	Molecular and phenotypic characterization of the alternative seasonal growth habit and flowering time in barley (Hordeum vulgare ssp. vulgare L.). Molecular Breeding, 2015, 35, 1.	1.0	16
309	Multi-environment multi-QTL association mapping identifies disease resistance QTL in barley germplasm from Latin America. Theoretical and Applied Genetics, 2015, 128, 501-516.	1.8	58
310	Circadian Clock Genes Universally Control Key Agricultural Traits. Molecular Plant, 2015, 8, 1135-1152.	3.9	182
311	Genetic dissection of earliness by analysis of a recombinant chromosome substitution double haploid mapping population of bread wheat (Triticum aestivum L.) in different geographic regions. Euphytica, 2015, 206, 191-202.	0.6	3
312	Multi-parent advanced generation inter-cross in barley: high-resolution quantitative trait locus mapping for flowering time as a proof of concept. Molecular Breeding, 2015, 35, 1.	1.0	134
313	Modelling the genetic architecture of flowering time control in barley through nested association mapping. BMC Genomics, 2015, 16, 290.	1.2	192
314	Quantitative trait loci mapping of freezing tolerance and photosynthetic acclimation to cold in winter two―and sixâ€rowed barley. Plant Breeding, 2015, 134, 271-282.	1.0	7

ARTICLE

IF CITATIONS

Allelic variance at the vernalization gene locus <i>Vrn-D1</i> in a group of sister wheat (<i>Triticum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 9.00 rgBT

316	Advances in Wheat Genetics: From Genome to Field. , 2015, , .		10
317	Global Transcriptome Profiling of Developing Leaf and Shoot Apices Reveals Distinct Genetic and Environmental Control of Floral Transition and Inflorescence Development in Barley. Plant Cell, 2015, 27, 2318-2334.	3.1	93
319	Genetic and environmental effects on crop development determining adaptation and yield. , 2015, , 285-319.		22
320	Barley Phenology: Physiological and Molecular Mechanisms for Heading Date and Modelling of Genotypeâ€Environment―Management Interactions. , 0, , .		2
321	Marker characterization of vernalization and low-temperature tolerance loci in barley genotypes adapted to semi-arid environments. Czech Journal of Genetics and Plant Breeding, 2016, 52, 157-162.	0.4	4
322	Barley. , 2016, , 125-157.		3
323	Addition of Manas barley chromosome arms to the hexaploid wheat genome. BMC Genetics, 2016, 17, 87.	2.7	13
324	Improvement of Yield and Adaptation by Manipulating Phenology Genes. , 2016, , 241-264.		1
325	The Effects of Both Recent and Long-Term Selection and Genetic Drift Are Readily Evident in North American Barley Breeding Populations. G3: Genes, Genomes, Genetics, 2016, 6, 609-622.	0.8	21
326	Genetic and physical mapping of the earliness per se locus Eps-A m 1 in Triticum monococcum identifies EARLY FLOWERING 3 (ELF3) as a candidate gene. Functional and Integrative Genomics, 2016, 16, 365-382.	1.4	102
327	Photoperiod-H1 (Ppd-H1) Controls Leaf Size. Plant Physiology, 2016, 172, 405-415.	2.3	77
328	Association between the allele compositions of major plant developmental genes and frost tolerance in barley (Hordeum vulgare L.) germplasm of different origin. Molecular Breeding, 2016, 36, 1.	1.0	24
329	Effect of <i>Ppd-1</i> genes on durum wheat flowering time and grain filling duration in a wide range of latitudes. Journal of Agricultural Science, 2016, 154, 612-631.	0.6	36
330	Genomic dissection of plant development and its impact on thousand grain weight in barley through nested association mapping. Journal of Experimental Botany, 2016, 67, 2507-2518.	2.4	82
331	Allelic variation and geographic distribution of vernalization genes HvVRN1 and HvVRN2 in Chinese barley germplasm. Molecular Breeding, 2016, 36, 1.	1.0	4
332	Genetic analysis of developmental and adaptive traits in three doubled haploid populations of barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 2016, 129, 1139-1151.	1.8	26
333	<i>CONSTANS</i> Controls Floral Repression by Up-Regulating <i>VERNALIZATION2</i> (<i>VRN-H2</i>) in Barley. Plant Physiology, 2016, 170, 325-337.	2.3	56

	CITATION RE	PORT	
#	Article	IF	CITATIONS
334	Delimitation of the <i>Earliness per se D1</i> (<i>Eps-D1</i>) flowering gene to a subtelomeric chromosomal deletion in bread wheat (<i>Triticum aestivum</i>). Journal of Experimental Botany, 2016, 67, 287-299.	2.4	100
335	Diversity of Dagestan barleys for the duration of the period between shooting and earing stages and alleles in the Ppd-H1 and Ppd-H2 loci. Russian Agricultural Sciences, 2017, 43, 99-103.	0.1	6
336	QTL mapping of root traits in phosphorus-deficient soils reveals important genomic regions for improving NDVI and grain yield in barley. Theoretical and Applied Genetics, 2017, 130, 1885-1902.	1.8	22
337	Genetic analysis of barley for Shochu quality. Journal of Cereal Science, 2017, 74, 174-182.	1.8	2
338	QTLs for earliness and yield-forming traits in the Lubuski × CamB barley RIL population under various water regimes. Journal of Applied Genetics, 2017, 58, 49-65.	1.0	46
339	The completely additive effects of two barley phenologyâ€related genes (<i>eps2S</i> and <i>sdw1</i>) are explained by specific effects at different periods within the crop growth cycle. Plant Breeding, 2017, 136, 663-670.	1.0	3
340	The identification of new candidate genes <scp><i>Triticum aestivum</i></scp> <i>FLOWERING LOCUS T3â€B1</i> (<i>TaFT3â€B1</i>) and <i>TARGET OF EAT1</i> (<i>TaTOE1â€B1</i>) controlling the shortâ€day photoperiod response in bread wheat. Plant, Cell and Environment, 2017, 40, 2678-2690.	2.8	45
341	Impact of Growth Habit and Architecture Genes on Adaptation and Performance of Bread Wheat. , 0, , .		2
342	Impact of the 7-bp deletion in HvGA20ox2 gene on agronomic important traits in barley (Hordeum) Tj ETQq0 0 0	rgBT /Ov 1.6	erlqgk 10 Tf 5
343	Genetic basis of the very short life cycle of â€~Apogee' wheat. BMC Genomics, 2017, 18, 838.	1.2	11
344	Characterization of specific DNA markers at VRN-H1 and VRN-H2 loci for growth habit of barley genotypes. Journal of Genetics, 2018, 97, 87-95.	0.4	4
345	Contrasting genetic regulation of plant development in wild barley grown in two European environments revealed by nested association mapping. Journal of Experimental Botany, 2018, 69, 1517-1531.	2.4	33
346	Integrating genetic analysis and crop modeling: A major QTL can finely adjust photoperiod-sensitive sorghum flowering. Field Crops Research, 2018, 221, 7-18.	2.3	11
347	Genetic dissection of quantitative and qualitative traits using a minimum set of barley Recombinant Chromosome Substitution Lines. BMC Plant Biology, 2018, 18, 340.	1.6	7
348	The Photoperiod-Insensitive Allele Ppd-D1a Promotes Earlier Flowering in Rht12 Dwarf Plants of Bread Wheat, Frontiers in Plant Science, 2018, 9, 1312.	1.7	24

349	Marker-trait associations in two-rowed spring barley accessions from Kazakhstan and the USA. PLoS ONE, 2018, 13, e0205421.	1.1	14
350	FLOWERING LOCUS T3 Controls Spikelet Initiation But Not Floral Development. Plant Physiology, 2018, 178, 1170-1186.	2.3	44
351	Assessing different barley growth habits under Egyptian conditions for enhancing resilience to climate change. Field Crops Research, 2018, 224, 67-75.	2.3	30

#	Article	IF	CITATIONS
352	Agrobiodiversity for Adaptive and Yield Traits in Romanian and Italian Barley Cultivars across Four Continental Environments. Agronomy, 2018, 8, 79.	1.3	2
353	A regulator of early flowering in barley (Hordeum vulgare L.). PLoS ONE, 2018, 13, e0200722.	1.1	36
354	Barley Inflorescence Architecture. Compendium of Plant Genomes, 2018, , 171-208.	0.3	10
355	Molecular Insights on the Domestication of Barley (<i>Hordeum vulgare</i> L.). Critical Reviews in Plant Sciences, 2019, 38, 280-294.	2.7	10
356	Genome mapping of quantitative trait loci (QTL) controlling domestication traits of intermediate wheatgrass (Thinopyrum intermedium). Theoretical and Applied Genetics, 2019, 132, 2325-2351.	1.8	30
357	Genetic dissection of grain elements predicted by hyperspectral imaging associated with yield-related traits in a wild barley NAM population. Plant Science, 2019, 285, 151-164.	1.7	24
358	Wild barley shows a wider diversity in genes regulating heading date compared with cultivated barley. Euphytica, 2019, 215, 1.	0.6	10
359	Genotype by Environment Interaction and Adaptation. , 2019, , 29-71.		5
360	Fine-tuning of the flowering time control in winter barley: the importance of HvOS2 and HvVRN2 in non-inductive conditions. BMC Plant Biology, 2019, 19, 113.	1.6	14
361	Divergent roles of FT-like 9 in flowering transition under different day lengths in Brachypodium distachyon. Nature Communications, 2019, 10, 812.	5.8	63
362	Examining the yield potential of barley near-isogenic lines using a genotype by environment by management analysis. European Journal of Agronomy, 2019, 105, 41-51.	1.9	41
363	Development of a Multiparent Population for Genetic Mapping and Allele Discovery in Six-Row Barley. Genetics, 2019, 213, 595-613.	1.2	23
364	Gene regulatory network and abundant genetic variation play critical roles in heading stage of polyploidy wheat. BMC Plant Biology, 2019, 19, 6.	1.6	34
365	Analysis of early-flowering genes at barley chromosome 2H expands the repertoire of mutant alleles at the Mat-c locus. Plant Cell Reports, 2020, 39, 47-61.	2.8	11
366	GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley – A review. Journal of Advanced Research, 2020, 22, 119-135.	4.4	227
367	eQTL Analysis. Methods in Molecular Biology, 2020, , .	0.4	4
368	Cloning and characterization of a putative orthologue of the wheat vernalization (VRN1) gene in perennial wheatgrass (Agropyron cristatum). Plant Breeding, 2020, 139, 1290-1298.	1.0	4
369	Genomic Regions Associated with the Control of Flowering Time in Durum Wheat. Plants, 2020, 9, 1628.	1.6	15

#	Article	IF	CITATIONS
370	Natural Genetic Variation Underlying Tiller Development in Barley (<i>Hordeum vulgare</i> L). G3: Genes, Genomes, Genetics, 2020, 10, 1197-1212.	0.8	7
371	Perspectives on Low Temperature Tolerance and Vernalization Sensitivity in Barley: Prospects for Facultative Growth Habit. Frontiers in Plant Science, 2020, 11, 585927.	1.7	19
372	Introgression Breeding in Barley: Perspectives and Case Studies. Frontiers in Plant Science, 2020, 11, 761.	1.7	32
373	Characterization of Genetic Diversity and Genome-Wide Association Mapping of Three Agronomic Traits in Qingke Barley (Hordeum Vulgare L.) in the Qinghai-Tibet Plateau. Frontiers in Genetics, 2020, 11, 638.	1.1	14
374	<i>FLOWERING LOCUS T4</i> delays flowering and decreases floret fertility in barley. Journal of Experimental Botany, 2021, 72, 107-121.	2.4	18
375	Candidate genes underlying QTL for flowering time and their interactions in a wide spring barley (Hordeum vulgare L.) cross. Crop Journal, 2021, 9, 862-872.	2.3	6
376	Stepwise increases in <i>FT1</i> expression regulate seasonal progression of flowering in wheat (<i>Triticum aestivum</i>). New Phytologist, 2021, 229, 1163-1176.	3.5	21
377	Assessment of the genetic diversity, population structure and allele distribution of major plant development genes in bread wheat cultivars using DArT and gene-specific markers. Cereal Research Communications, 0, , 1.	0.8	3
378	Specific adaptation for early maturity and height stability in Icelandic spring barley. Crop Science, 2021, 61, 2306-2323.	0.8	3
379	Major flowering time genes of barley: allelic diversity, effects, and comparison with wheat. Theoretical and Applied Genetics, 2021, 134, 1867-1897.	1.8	41
380	The effect of responses to vernalization, photoperiodism, and earliness per se of barley accessions from Dagestan on the duration of the period from shooting to heading. Proceedings on Applied Botany, Genetics and Breeding, 2021, 182, 24-33.	0.1	0
381	Genetic Mapping Reveals Novel Exotic and Elite QTL Alleles for Salinity Tolerance in Barley. Agronomy, 2021, 11, 1774.	1.3	11
383	Multi-environment multi-QTL association mapping identifies disease resistance QTL in barley germplasm from Latin America. , 2015, 128, 501.		1
384	Genomics for Cereal Improvement. , 2004, , 585-634.		3
385	Genomics of Tolerance to Abiotic Stress in the Triticeae. , 2009, , 481-558.		8
386	Genotype by Environment environment/environmental Interaction genotype/genotyping by environment interaction and Adaptation environment/environmental adaptation. , 2013, , 846-870.		5
387	The Dicktoo x Morex Population. , 1997, , 77-87.		14
388	Mapping of Genes Controlling Cold Hardiness on Wheat 5A and its Homologous Chromosomes of Cereals. , 1997, , 89-98.		1

#	Article	IF	CITATIONS
389	Genotype by Environment Interaction and Adaptation. , 2018, , 1-44.		10
390	Molecular Mapping and Breeding for Genes/QTLS Related to Climate Change. , 2013, , 179-212.		4
391	Cold Tolerance. , 2013, , 133-165.		2
392	Domestication. Biotechnology in Agriculture and Forestry, 2014, , 37-54.	0.2	2
393	Genetic Control of Reproductive Development. Biotechnology in Agriculture and Forestry, 2014, , 81-99.	0.2	3
394	Comparative genetics of flowering time. , 1997, , 167-177.		65
395	Unravelling the Genetic Basis of Drought Tolerance in Crops. , 2003, , 71-122.		11
396	Doubled haploids in genetic mapping and genomics. , 2003, , 367-390.		13
397	Molecular Markers for Flowering Time Genes in Crop Species. , 2002, , 239-263.		3
398	Waiting for Fine Times: Genetics of Flowering Time in Wheat. Developments in Plant Breeding, 2001, , 67-74.	0.2	40
399	Inheritance and molecular mapping of a gene determining vernalisation response in the Siberian spring rye variety †Onokhoyskaya'. Cereal Research Communications, 2001, 29, 259-265.	0.8	4
400	Marker regression mapping of QTL controlling flowering time and plant height in a spring barley (Hordeum vulgare L.) cross. Heredity, 1996, 77, 64-73.	1.2	17
401	The influence of the group 1 chromosomes of wheat on ear-emergence times and their involvement with vernalization and day length. Heredity, 1998, 80, 83-91.	1.2	2
402	An AFLP-Based Procedure for the Efficient Mapping of Mutations and DNA Probes in Barley. Genetics, 1998, 149, 2039-2056.	1.2	98
403	Identification and Physical Localization of Useful Genes and Markers to a Major Gene-Rich Region on Wheat Group <i>1S</i> Chromosomes. Genetics, 2001, 157, 1735-1747.	1.2	104
404	Comparative Mapping of the Barley <i>Ppd-H1</i> Photoperiod Response Gene Region, Which Lies Close to a Junction Between Two Rice Linkage Segments. Genetics, 2002, 161, 825-834.	1.2	47
405	Identification of barley genome segments introgressed into wheat using PCR markers. Genome, 2001, 44, 38-44.	0.9	15
406	Photoperiodic control of flowering in barley. Breeding Science, 2009, 59, 546-552.	0.9	15

#	Article	IF	CITATIONS
407	High-Throughput Phenotyping to Detect Drought Tolerance QTL in Wild Barley Introgression Lines. PLoS ONE, 2014, 9, e97047.	1.1	262
408	Genetic Dissection of Photoperiod Response Based on GWAS of Pre-Anthesis Phase Duration in Spring Barley. PLoS ONE, 2014, 9, e113120.	1.1	105
409	Quantitative Trait Loci for Salinity Tolerance Identified under Drained and Waterlogged Conditions and Their Association with Flowering Time in Barley (Hordeum vulgare. L). PLoS ONE, 2015, 10, e0134822.	1.1	25
410	Quantitative Trait Loci for Yield and Yield-Related Traits in Spring Barley Populations Derived from Crosses between European and Syrian Cultivars. PLoS ONE, 2016, 11, e0155938.	1.1	63
411	Quantitative trait loci for yield and grain plumpness relative to maturity in three populations of barley (Hordeum vulgare L.) grown in a low rain-fall environment. PLoS ONE, 2017, 12, e0178111.	1.1	10
412	Identification of chromosome regions involved in the genetic regulation of tillering in barley () Tj ETQq1 1 0.78431 Agricultural Science, 2006, 54, 15-23.	4 rgBT /C 0.2	Overlock 10 T 3
413	Variability of the period between germination and heading in spring barley accessions from Dagestan. Proceedings on Applied Botany, Genetics and Breeding, 2020, 181, 24-29.	0.1	1
414	Localization of Quantitative Trait Loci for Yield Components in a Cross Oriental ^ ^times; Occidental Barley Cultivar (Hordeum vulgare L.). Japan Agricultural Research Quarterly, 2007, 41, 195-199.	0.1	10
415	A florigen paralog is required for short-day vernalization in a pooid grass. ELife, 2019, 8, .	2.8	28
417	Mapping genes for flowering time and frost tolerance in cereals using precise genetic stocks. , 2002, , 17-25.		0
418	Crossâ€species and Crossâ€genera Comparisons in the Grasses. , 2004, , 374-378.		0
419	Flowering Time. , 0, , .		0
420	Association between adaptation type and changes in the yield components of barley (Hordeum vulgare) Tj ETQq0 331-338.	0 0 rgBT 0.8	Overlock 10 1
421	Studies of genetic control of growth habit in Triticeae species: methods and problems. Cereal Research Communications, 2004, 32, 317-321.	0.8	0
423	Genotype by Environment environment/environmental Interaction genotype/genotyping by environment interaction and Adaptation environment/environmental adaptation. , 2012, , 4070-4094.		0
424	Novel Genes from Wild Barley Hordeum spontaneum for Barley Improvement. , 2013, , 69-86.		7
425	Barley Adaptation: Teachings from Landraces Will Help to Respond to Climate Change. , 2013, , 327-337.		0
426	Physiology-genetical regulation of initial development rate in barley of autumn sowing. Faktori Eksperimental Noi Evolucii Organizmiv, 0, 21, 199-204.	0.0	0

#	Article	IF	CITATIONS
427	Comparative genetic mapping of loci affecting plant height and development in cereals. Developments in Plant Breeding, 1997, , 311-314.	0.2	3
428	Golden calves or white elephants? Biotechnologies for wheat improvement. Developments in Plant Breeding, 1997, , 273-283.	0.2	1
430	Barley. , 2016, , 89-125.		1
431	Correlation Analysis of Specific Markers Linked to Flowering Time in Barley (Hordeum vulgare L.). Journal of Crop Breeding, 2017, 9, 100-107.	0.4	0
434	SEARCH FOR THE CORRELATION BETWEEN ALLELIC POLYMORPHISM OF THE PPD AND VRN GENES WITH THE VARIABILITY OF THE MAIN ECONOMICALLY VALUABLE TRAITS OF WINTER BARLEY. Grain Economy of Russia, 2019, , 19-25.	0.1	1
436	Quantitative Trait Loci (QTL) Mapping. Methods in Molecular Biology, 2020, 2082, 211-229.	0.4	11
442	Extensive allele mining discovers novel genetic diversity in the loci controlling frost tolerance in barley. Theoretical and Applied Genetics, 2021, , 1.	1.8	9
443	Mapping the major quantitative trait loci of the heading date trait in Qingke barley (Hordeum vulgare) Tj ETQq1 1 Transgender Health, 2021, 14, 882-893.	0.784314 1.1	rgBT /Over 2
444	Comparative genetics of flowering time. Plant Molecular Biology, 1997, 35, 167-77.	2.0	59
445	Characterization of specific DNA markers at VRN-H1 and VRN-H2 loci for growth habit of barley genotypes. Journal of Genetics, 2018, 97, 87-95.	0.4	0
447	Evaluation of barley semi-dwarf allele sdw1.d in a near isogenic line. Euphytica, 2022, 218, 1.	0.6	5
448	Plant clock modifications for adapting flowering time to local environments. Plant Physiology, 2022, 190, 952-967.	2.3	17
449	Hybrids Provide More Options for Fine-Tuning Flowering Time Responses of Winter Barley. Frontiers in Plant Science, 2022, 13, 827701.	1.7	1
450	Sugar transporters and their molecular tradeoffs during abiotic stress responses in plants. Physiologia Plantarum, 2022, 174, e13652.	2.6	31
451	Genetic control of barley phenology in South American environments. Euphytica, 2022, 218, 1.	0.6	2
452	Identification of a Wheat-Psathyrostachys huashanica 7Ns Ditelosomic Addition Line Conferring Early Maturation by Cytological Analysis and Newly Developed Molecular and FISH Markers. Frontiers in Plant Science, 2021, 12, 784001.	1.7	5
453	Molecular labeling of <i>Vrn</i> , <i>Ppd</i> genes and vernalization response of the ultra-early lines of spring bread wheat <i>Triticum aestivum</i> L Plant Biotechnology and Breeding, 2022, 4, 26-36.	0.9	3
454	Tracking Changes in the Spring Barley Gene Pool in Poland during 120 Years of Breeding. International Journal of Molecular Sciences, 2022, 23, 4553.	1.8	5

ARTICLE

IF CITATIONS

Genome-Wide Identification and Transcriptional Expression Profiles of PP2C in the Barley (Hordeum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

468	Genetic Dissection of Three Major Quantitative Trait Loci for Spike Compactness and Length in Bread Wheat (Triticum aestivum L.). Frontiers in Plant Science, 2022, 13, .	1.7	7
469	Barley with improved drought tolerance: Challenges and perspectives. Environmental and Experimental Botany, 2022, 201, 104965.	2.0	11
470	Rapid identification and deployment of major genes for flowering time and awn traits in common wheat. Frontiers in Plant Science, 0, 13, .	1.7	2
471	Brief review of malting quality and frontier areas in barley. Cereal Research Communications, 2023, 51, 45-59.	0.8	1
472	Identification of the <i>eam8</i> allele associated with photoperiod insensitivity in barley accessions from Japan. Ecological Genetics, 2022, 20, 101-109.	0.1	1

473 Association between SSR Markers and Phenologic Plus Agronomic Traits in Barley (Hordeum valgare) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

474	Recent progress in molecular breeding approaches to improve drought tolerance in barley. , 2023, , 275-309.		1
475	Physiological and environmental dissection of developmental drivers for predicting heading date in wheat based on Vrn1, Ppd1 and Eps-D1 allelic characterization. Field Crops Research, 2023, 292, 108810.	2.3	3
476	Evaluation of a barley (<scp> <i>Hordeum vulgare</i> </scp>) chromosome 2 drought tolerance quantitative trait locusÂin genomic backgrounds of two cultivars. Plant Breeding, 0, , .	1.0	1
477	Altered regulation of flowering expands growth ranges and maximizes yields in major crops. Frontiers in Plant Science, 0, 14, .	1.7	3
478	Regulation of circadian for enhancing abiotic stress tolerance in wheat. , 2023, , 141-159.		0
479	The wheat TaF-box3, SCF ubiquitin ligase component, participates in the regulation of flowering time in transgenic Arabidopsis. Plant Science, 2023, 331, 111668.	1.7	0
480	Sense in sensitivity: difference in the meaning of photoperiod-insensitivity between wheat and barley. Journal of Experimental Botany, 0, , .	2.4	2