Seismic velocity structure and composition of the conti

Journal of Geophysical Research 100, 9761-9788 DOI: 10.1029/95jb00259

Citation Report

#	Article	IF	CITATIONS
1	Making continental crust. Nature, 1995, 378, 571-578.	13.7	1,183
2	The Earth's early evolution. Science, 1995, 269, 1535-1540.	6.0	294
3	Electromagnetic images of crustal structures in southern and central Canadian Cordillera. Canadian Journal of Earth Sciences, 1995, 32, 1541-1563.	0.6	29
4	Nature and composition of the continental crust: A lower crustal perspective. Reviews of Geophysics, 1995, 33, 267.	9.0	2,767
5	TURKIC-TYPE OROGENY AND ITS ROLE IN THE MAKING OF THE CONTINENTAL CRUST. Annual Review of Earth and Planetary Sciences, 1996, 24, 263-337.	4.6	576
6	Seismic properties and densities of middle and lower crustal rocks exposed along the North China Geoscience Transect. Earth and Planetary Science Letters, 1996, 139, 439-455.	1.8	69
7	Anomalous crust of the Bolivian Altiplano, central Andes: Constraints from broadband regional seismic waveforms. Geophysical Research Letters, 1996, 23, 1159-1162.	1.5	60
8	Uplift of the Colorado Plateau due to lithosphere attenuation during Laramide low-angle subduction. Journal of Geophysical Research, 1996, 101, 13595-13609.	3.3	115
9	Three-dimensional dynamical model of continental rift propagation and margin plateau formation. Journal of Geophysical Research, 1996, 101, 27845-27863.	3.3	28
10	Deep structure of the southern Kerguelen Plateau (southern Indian Ocean) from ocean bottom seismometer wide-angle seismic data. Journal of Geophysical Research, 1996, 101, 25077-25103.	3.3	73
11	Transient creep of a composite lower crust: 2. A polymineralic basis for rapidly evolving postseismic deformation modes. Journal of Geophysical Research, 1996, 101, 28005-28028.	3.3	46
12	Transient creep of a composite lower crust: 1. Constitutive theory. Journal of Geophysical Research, 1996, 101, 27981-28004.	3.3	36
13	Crustal evolution of the Middle Urals based on seismic reflection and refraction data. Tectonophysics, 1996, 264, 21-34.	0.9	30
14	Dniepr-Donets Rift: deep structure and evolution from DSS profiling. Tectonophysics, 1996, 268, 83-98.	0.9	23
15	Poisson's ratio and crustal seismology. Journal of Geophysical Research, 1996, 101, 3139-3156.	3.3	1,352
16	Crustal structure across the Nain – Makkovik boundary on the continental shelf off Labrador from seismic refraction data. Canadian Journal of Earth Sciences, 1996, 33, 460-471.	0.6	16
17	Three-dimensional crustal structure of the southern Sierra Nevada from seismic fan profiles and gravity modeling. Geology, 1996, 24, 367-370.	2.0	83
18	A shear - velocity model of the mantle. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1996, 354, 1385-1411.	1.6	331

ATION REDO

#	Article	IF	CITATIONS
19	Heat Flow and the Chemical Composition of Continental Crust. Journal of Geology, 1996, 104, 369-377.	0.7	96
20	A revised estimation of the steadyâ€state geotherm for the continental lithosphere and its implication for mantle melting. Terra Nova, 1996, 8, 514-524.	0.9	9
21	A lithospheric cross-section through the Swiss Alps-II. Constraints on the mechanical structure of a continent-continent collision zone. Geophysical Journal International, 1996, 127, 399-414.	1.0	52
22	Direct Calculation of Interval Velocities and Layer Thicknesses From Seismic Wide-Angle Reflection Times. Geophysical Journal International, 1996, 125, 30-38.	1.0	7
23	The role of gravitational potential energy in active deformation in the southwestern United States. Nature, 1996, 381, 37-41.	13.7	215
24	Seismic stratigraphy and structural history of the Reinga Basin and its margins, southern Norfolk Ridge system. New Zealand Journal of Geology, and Geophysics, 1997, 40, 425-451.	1.0	84
25	Comprehensive Seismic Survey Database for Developing Three-Dimensional Models of the Earth's Crust. Seismological Research Letters, 1997, 68, 734-742.	0.8	4
26	SEA96A New Predictive Relation for Earthquake Ground Motions in Extensional Tectonic Regimes. Seismological Research Letters, 1997, 68, 190-198.	0.8	74
27	Upper Crustal <1>V _p /<1>V _s Ratios in Kanto-Tokai District, Japan. Zisin (Journal of the Seismological Society of Japan 2nd Ser), 1997, 50, 315-327.	0.0	0
28	Crustal structure of the Cascadia subduction zone, southwestern British Columbia, from potential field and seismic studies. Canadian Journal of Earth Sciences, 1997, 34, 317-335.	0.6	43
29	Crustal structure along the west flank of the Cascades, western Washington. Journal of Geophysical Research, 1997, 102, 17857-17873.	3.3	35
30	Crustal structure of the East African Plateau from receiver functions and Rayleigh wave phase velocities. Journal of Geophysical Research, 1997, 102, 24469-24483.	3.3	109
31	Uplift of the Transantarctic Mountains and the bedrock beneath the East Antarctic ice sheet. Journal of Geophysical Research, 1997, 102, 27603-27621.	3.3	115
32	Lithospheric strength and intraplate seismicity in the New Madrid seismic zone. Tectonics, 1997, 16, 585-595.	1.3	156
33	Contrasting lithospheric structure between the Colorado Plateau and Great Basin: Initial results from Colorado Plateau - Great Basin PASSCAL Experiment. Geophysical Research Letters, 1997, 24, 2609-2612.	1.5	28
34	Moho reflectivity patterns — a comparison of Canadian lithoprobe transects. Tectonophysics, 1997, 269, 179-198.	0.9	39
35	Variations in the crustal structure of the Lützow–Holm Bay region, East Antarctica using shear wave velocity. Tectonophysics, 1997, 270, 43-72.	0.9	13
36	Reconciling physical properties with surface seismic data from a layered mafic intrusion. Tectonophysics, 1997, 271, 59-74.	0.9	5

#	Article	IF	CITATIONS
37	Seismic structure and evidence for eclogitization during the Himalayan convergence. Tectonophysics, 1997, 273, 1-16.	0.9	50
38	Further remarks on the interpretation of the KRISP 90 cross-rift line. Tectonophysics, 1997, 278, 273-290.	0.9	0
39	Continents as lithological icebergs: the importance of buoyant lithospheric roots. Earth and Planetary Science Letters, 1997, 149, 15-27.	1.8	67
40	Low crustal velocities and mantle lithospheric variations in southern Tibet from regional Pnl waveforms. Geophysical Research Letters, 1997, 24, 9-12.	1.5	35
41	On the heat flow variation from Archean cratons to Proterozoic mobile belts. Journal of Geophysical Research, 1997, 102, 709-721.	3.3	36
42	Pwave velocity tomography of the Venezuelan region from local arrival times. Journal of Geophysical Research, 1997, 102, 5455-5472.	3.3	5
43	Three-dimensionalVPandVP/VSVelocity Models of the Los Angeles basin and central Transverse Ranges, California. Journal of Geophysical Research, 1997, 102, 5423-5453.	3.3	105
44	Three-dimensional upper crustal velocity structure beneath San Francisco Peninsula, California. Journal of Geophysical Research, 1997, 102, 5473-5490.	3.3	33
45	Seismic images of crustal duplexing and continental subduction in the Brooks Range. Journal of Geophysical Research, 1997, 102, 20847-20871.	3.3	15
46	Composition of the crust in the Grenville and Appalachian Provinces of North America inferred from VP/VSratios. Journal of Geophysical Research, 1997, 102, 15225-15241.	3.3	102
47	U.S. mid-Atlantic margin structure and early thermal evolution. Journal of Geophysical Research, 1997, 102, 22855-22875.	3.3	39
49	Wide-angle seismic velocities in heterogeneous crust. Geophysical Journal International, 1997, 129, 269-280.	1.0	16
50	Crustal structure along the EDGE transect beneath the Kodiak shelf off Alaska derived from OBH seismic refraction data. Geophysical Journal International, 1997, 130, 283-302.	1.0	44
51	Petrogenesis of the Tanzawa plutonic complex, central Japan: Exposed felsic middle crust of the Izu-Bonin - Mariana arc. Island Arc, 1998, 7, 342-358.	0.5	381
52	Upper crustal structure in the vicinity of Lake Magadi in the Kenya Rift Valley region. Journal of African Earth Sciences, 1998, 27, 359-371.	0.9	10
53	Structure of the Jan Mayen microcontinent and implications for its evolution. Geophysical Journal International, 1998, 132, 383-400.	1.0	79
54	Lateral structural variation across a collision zone in central Hokkaido, Japan, as revealed by wide-angle seismic experiments. Geophysical Journal International, 1998, 132, 435-457.	1.0	26
55	The refraction seismic experiment GRANU95 in the Saxothuringian belt, southeastern Germany. Geophysical Journal International, 1998, 133, 245-259.	1.0	32

#	Article	IF	CITATIONS
56	A wide-angle seismic traverse through the Variscan of southwest Ireland. Geophysical Journal International, 1998, 134, 689-705.	1.0	34
57	Archean magmatism and deformation were not products of plate tectonics. Precambrian Research, 1998, 91, 143-179.	1.2	368
58	Metamorphism, denudation and sea level in the Archean and cooling of the Earth. Precambrian Research, 1998, 92, 389-412.	1.2	96
59	Temperature and heat flow density in a thick cratonic lithosphere: The SVEKA transect, central Fennoscandian Shield. Journal of Geodynamics, 1998, 26, 111-136.	0.7	29
60	The San Gabriel Mountains bright reflective zone: possible evidence of young mid-crustal thrust faulting in southern California. Tectonophysics, 1998, 286, 31-46.	0.9	49
61	Seismic exploration of continental strike-slip zones. Tectonophysics, 1998, 286, 63-78.	0.9	63
62	Thin crust and active upper mantle beneath the Southern Sierra Nevada in the western United States. Tectonophysics, 1998, 286, 237-252.	0.9	82
63	Crustal structure of China from deep seismic sounding profiles. Tectonophysics, 1998, 288, 105-113.	0.9	141
64	Crustal velocity structure beneath the eastern flank of the Ruby Mountains metamorphic core complex: results from normal-incidence to wide-angle seismic data. Tectonophysics, 1998, 295, 369-395.	0.9	12
65	Radiogenic heat production in the Variscan crust: new determinations and distribution models in Corsica (northwestern Mediterranean). Tectonophysics, 1998, 291, 63-75.	0.9	34
66	Weakness of the lower continental crust: a condition for delamination, uplift, and escape. Tectonophysics, 1998, 296, 47-60.	0.9	201
67	Shear wave anisotropy of laminated lower crust beneath Urach (SW Germany): a comparison with xenoliths and with exposed lower crustal sections. Tectonophysics, 1998, 298, 337-356.	0.9	38
68	Velocity structure, composition and discrimination of crustal provinces in the former Soviet Union. Tectonophysics, 1998, 298, 395-404.	0.9	33
69	Wide-angle seismic imaging across accreted terranes, southeastern Alaska and western British Columbia. Tectonophysics, 1998, 299, 281-296.	0.9	50
70	Chemical composition of the continental crust as revealed by studies in East China. Geochimica Et Cosmochimica Acta, 1998, 62, 1959-1975.	1.6	813
71	Thermal structure, thickness and composition of continental lithosphere. Chemical Geology, 1998, 145, 395-411.	1.4	458
72	Lithospheric structure across the western Eurasian plate from a wide-angle seismic and gravity study: evidence for a regional thermal anomaly. Earth and Planetary Science Letters, 1998, 156, 275-280.	1.8	12
73	How mafic is the lower continental crust?. Earth and Planetary Science Letters, 1998, 161, 101-117.	1.8	247

#	Article	IF	Citations
74	Three-dimensional velocity structure and earthquake locations beneath the northern Tien Shan of Kyrgyzstan, central Asia. Journal of Geophysical Research, 1998, 103, 2725-2748.	3.3	57
75	CRUST 5.1: A global crustal model at 5° × 5°. Journal of Geophysical Research, 1998, 103, 727-747.	3.3	905
76	Lithospheric structure of the Qiangtang Terrane, northern Tibetan Plateau, from complete regional waveform modeling: Evidence for partial melt. Journal of Geophysical Research, 1998, 103, 7137-7152.	3.3	70
77	Crustal velocity structure across the eastern Snake River Plain and the Yellowstone swell. Journal of Geophysical Research, 1998, 103, 7171-7186.	3.3	85
78	Electrical resistivity image of the upper crust within the Taupo Volcanic Zone, New Zealand. Journal of Geophysical Research, 1998, 103, 9665-9680.	3.3	42
79	The Hatton Basin and continental margin: Crustal structure from wide-angle seismic and gravity data. Journal of Geophysical Research, 1998, 103, 12545-12566.	3.3	58
80	Crustal thickness map of the western United States by partitioned waveform inversion. Journal of Geophysical Research, 1998, 103, 30021-30038.	3.3	40
81	Two-dimensional travel time inversion for the crustalPandSwave velocity structure of the Ruby Mountains metamorphic core complex, NE Nevada. Journal of Geophysical Research, 1998, 103, 21121-21143.	3.3	17
82	Crustal structure of the northwestern Vizcaino block and Gorda Escarpment, offshore northern California, and implications for postsubduction deformation of a paleoaccretionary margin. Journal of Geophysical Research, 1998, 103, 23795-23812.	3.3	21
83	Ophiolitic basement to a forearc basin and implications for continental growth: The Coast Range/Great Valley ophiolite, California. Tectonics, 1998, 17, 558-570.	1.3	64
84	Wide-angle seismic constraints on the evolution of the deep San Andreas plate boundary by Mendocino triple junction migration. Tectonics, 1998, 17, 802-818.	1.3	27
85	Comment on "New evidence of magmatic diapirs in the intermediate crust under the Dead Sea, Israel― by Nitzan Rabinowitz, Jean Steinberg, and Yossi Mart. Tectonics, 1998, 17, 819-820.	1.3	2
86	A Case for Delamination of the Deep Batholithic Crust beneath the Sierra Nevada, California. International Geology Review, 1998, 40, 78-93.	1.1	210
87	Crustal and uppermost mantle structure along the Deep Probe seismic profile. Rocky Mountain Geology, 1998, 33, 181-198.	0.4	78
88	Archean Tectonics and Magmatism. International Geology Review, 1998, 40, 1-39.	1.1	46
89	Geophysical studies of the structure of the Appalachian orogen in the Atlantic borderlands of Canada. Canadian Journal of Earth Sciences, 1998, 35, 1205-1221.	0.6	49
90	Medicine Bow orogeny: Timing of deformation and model of crustal structure produced during continent-arc collision, ca. 1.78 Ga, southeastern Wyoming. Rocky Mountain Geology, 1998, 33, 259-277.	0.4	86
91	Geophysical constraints on the deep structure of the Cheyenne belt, southeastern Wyoming. Rocky Mountain Geology, 1998, 33, 279-292.	0.4	9

#	Article	IF	CITATIONS
92	Structural setting, geological development and basin modelling in the Rockall Trough. Petroleum Geology Conference Proceedings, 1999, 5, 421-431.	0.7	40
93	Structure and composition of the Aleutian island arc and implications for continental crustal growth. Geology, 1999, 27, 31.	2.0	277
94	Seismic and electromagnetic evidence of dehydration as a free water source in the reactivated crust. Geophysical Journal International, 1999, 137, 159-162.	1.0	39
95	Crustal structure of central Japan and its petrological implications. Geophysical Journal International, 1999, 138, 257-274.	1.0	7
96	Lithospheric structure of the Arabian Shield and Platform from complete regional waveform modelling and surface wave group velocities. Geophysical Journal International, 1999, 138, 871-878.	1.0	98
97	Crustal and uppermost mantle structure in Italy fron the inversion of P-wave arrival times: geodynamic impliations. Geophysical Journal International, 1999, 139, 483-498.	1.0	94
98	Title is missing!. Surveys in Geophysics, 1999, 20, 33-59.	2.1	71
99	Structure and composition of the continental crust in East China. Science in China Series D: Earth Sciences, 1999, 42, 129-140.	0.9	37
100	Gravity effect calculation of three-dimensional linear density distribution and its application. Acta Seismologica Sinica, 1999, 12, 327-334.	0.2	0
101	Crustal structure in Dabieshan UHP metamorphic belt and its tectonic implication. Acta Seismologica Sinica, 1999, 12, 584-595.	0.2	8
102	The thermal structure and thickness of continental roots. Lithos, 1999, 48, 93-114.	0.6	286
103	Petrophysical studies on rocks from the Dabie ultrahigh-pressure (UHP) metamorphic belt, Central China: implications for the composition and delamination of the lower crust. Tectonophysics, 1999, 301, 191-215.	0.9	127
104	Crustal seismic velocity structure in the epicentral region of the Latur earthquake (September 29,) Tj ETQq0 0 0 r 304, 241-255.	gBT /Over 0.9	lock 10 Tf 50 23
105	Structure and genetic mechanisms of the Precambrian rifts of the East-European Platform in Russia by integrated study of seismic, gravity, and magnetic data. Tectonophysics, 1999, 313, 9-28.	0.9	34
106	3-D gravity analysis of the Dniepr–Donets Basin and Donbas Foldbelt, Ukraine. Tectonophysics, 1999, 313, 41-58.	0.9	38
107	Crustal velocity structure across the Tornquist and Iapetus Suture Zones — a comparison based on MONA LISA and VARNET data. Tectonophysics, 1999, 314, 69-82.	0.9	26
108	P- and S-wave velocity model of the southwestern margin of the Precambrian East European Craton; POLONAISE'97, profile P3. Tectonophysics, 1999, 314, 175-192.	0.9	50
109	A new convection–fractionation model for the evolution of the principal geochemical reservoirs of the Earth and Planetary Interiors, 1999, 112, 211-256.	0.7	25

#	ARTICLE Exhumation processes. Geological Society Special Publication, 1999, 154, 1-27.	IF 0.8	Citations
111	The GGT/SVEKA Transect: Structure and Evolution of the Continental Crust in the Paleoproterozoic Svecofennian Orogen in Finland. International Geology Review, 1999, 41, 287-333.	1.1	172
112	Structure of an island-arc: Wide-angle seismic studies in the eastern Aleutian Islands, Alaska. Journal of Geophysical Research, 1999, 104, 10667-10694.	3.3	87
113	Lithologic tomography: From plural geophysical data to lithology estimation. Journal of Geophysical Research, 1999, 104, 749-766.	3.3	141
114	Lateral ramps as an aid to the unroofing of deep-crustal rocks: Seismic evidence from the Grenville province. Tectonics, 1999, 18, 343-360.	1.3	20
115	Elastic thickness of the lithosphere in the Central Canadian Shield. Geophysical Research Letters, 1999, 26, 3033-3036.	1.5	40
116	Sensitivity of seismic wide-angle wave-field and first arrival times to fine scale crustal structure and moho topography. Geophysical Research Letters, 1999, 26, 2573-2576.	1.5	3
117	Pwave crustal velocity structure in the greater Mount Rainier area from local earthquake tomography. Journal of Geophysical Research, 1999, 104, 10775-10786.	3.3	45
118	Structure and evolution of the continental crust of northern east Greenland from integrated geophysical studies. Journal of Geophysical Research, 1999, 104, 15227-15245.	3.3	63
119	Three-dimensional velocity structure of Siletzia and other accreted terranes in the Cascadia forearc of Washington. Journal of Geophysical Research, 1999, 104, 18015-18039.	3.3	48
120	Crustal structure of the Filchner-Ronne Shelf and Coats Land, Antarctica, from gravity and magnetic data: Implications for the breakup of Gondwana. Journal of Geophysical Research, 1999, 104, 20379-20394.	3.3	32
121	Heterogeneity of the uppermost mantle beneath Russian Eurasia from the ultra-long-range profile quartz. Journal of Geophysical Research, 1999, 104, 20329-20348.	3.3	84
122	An efficient, probabilistic neural network approach to solving inverse problems: Inverting surface wave velocities for Eurasian crustal thickness. Journal of Geophysical Research, 1999, 104, 28841-28857.	3.3	47
123	Midcrustal reflector on INDEPTH wide-angle profiles: An ophiolitic slab beneath the India-Asia suture in southern Tibet?. Tectonics, 1999, 18, 793-808.	1.3	76
124	The Crust of the Colorado Plateau: New Views of an Old Arc. Journal of Geology, 1999, 107, 387-397.	0.7	53
125	The thermal structure and thickness of continental roots. Developments in Geotectonics, 1999, , 93-114.	0.3	13
126	Effect of thermal contrasts on gravity modeling at passive margins: Results from the western Barents Sea. Journal of Geophysical Research, 1999, 104, 15293-15311.	3.3	81
127	Seismic Properties of the Central Indian Shield. Bulletin of the Seismological Society of America, 2000, 90, 1295-1304.	1.1	49

ARTICLE IF CITATIONS # Sedimentary and geochemical evolution of the Dras forearc basin, Indus suture, Ladakh Himalaya, 128 1.6 85 India. Bulletin of the Geological Society of America, 2000, 112, 450-466. Atlantic volcanic margins: a comparative study. Geological Society Special Publication, 2000, 167, 129 0.8 39 411-428. Integrated gravity and wide-angle seismic inversion fortwo-dimensional crustal modelling. 130 1.0 46 Geophysical Journal International, 2000, 140, 222-232. Post-collisional extension of the East Greenland Caledonides: a geophysical perspective. Geophysical Journal International, 2000, 140, 559-567. Crustal structure of central and northern Iceland from analysis of teleseismic receiver functions. 132 1.0 84 Geophysical Journal International, 2000, 143, 163-184. The cause of loss of lithospheric rigidity in areas far from plate tectonic activity. Geophysical Journal International, 2000, 143, 752-776. 1.0 Crustal structure of the continent-ocean transition off the CATe d'Ivoire-Ghana transform margin: 134 implications for thermal exchanges across the palaeotransform boundary. Geophysical Journal 1.0 58 International, 2000, 143, 662-678. Lower crustal granulite xenoliths from the Arkhangelsk kimberlite pipes: petrological, geochemical 0.6 and geophysical results. Lithos, 2000, 51, 135-151. Seismic wave velocity of Archaeozoic felsic rocks from North China and its existing location in the 136 0.2 1 crust. Acta Seismologica Sinica, 2000, 13, 664-673. Early Mesozoic mantle-crust transitional zone in eastern Inner Mongolia: Evidence from measurements of compressional velocities of xenoliths at high pressure and high temperature. Science in China Series D: Earth Sciences, 2000, 43, 253-261 Crustal structure in the northern North Sea: an integrated geophysical study. Geological Society 138 0.8 58 Special Publication, 2000, 167, 15-40. The Poisson ratio of the Australian crust: geological and geophysical implications. Earth and 1.8 179 Planetary Science Letters, 2000, 183, 121-132. Lithospheric seismic structure of the eastern region of the Arabian Peninsula. Journal of 140 0.7 14 Geodynamics, 2000, 29, 125-139. Magnetic structure of the continental crust as revealed by the Wutai-Jining crustal cross-section in the North China craton. Journal of Geodynamics, 2000, 29, 1-13. 141 The effect of small random crustal reflectors on the complexity of Pg and PmP coda. Physics of the 142 0.7 5 Earth and Planetary Interiors, 2000, 120, 183-199. Crustal structure transition from oceanic arc to continental arc, eastern Aleutian Islands and Alaska 143 1.8 Peninsula. Earth and Planetary Science Letters, 2000, 179, 567-579. Hf–Nd isotopic evolution of the lower crust. Earth and Planetary Science Letters, 2000, 181, 115-129. 144 1.8 172 The Southern Urals. Decoupled evolution of the thrust belt and its foreland: a consequence of 145 metamorphism and lithospheric weakening. Tectonophysics, 2000, 320, 271-310.

	CITATION	REPORT	
#	Article	IF	Citations
146	Quantifying Precambrian crustal extraction: the root is the answer. Tectonophysics, 2000, 322, 163-190.	0.9	34
147	Evidence for crustal extension and inversion in eastern Tasmania, Australia, during the Neoproterozoic and Early Palaeozoic. Tectonophysics, 2000, 329, 1-21.	0.9	22
148	Constraints on crustal composition beneath a metamorphic core complex: results from 3-component wide-angle seismic data along the eastern flank of the Ruby Mountains, Nevada. Tectonophysics, 2000, 329, 223-250.	0.9	10
149	Deep seismic reflection evidence for ancient subduction and collision zones within the continental lithosphere of northwestern Europe. Tectonophysics, 2000, 329, 269-300.	0.9	86
150	Seismic results at Kola and KTB deep scientific boreholes: velocities, reflections, fluids, and crustal composition. Tectonophysics, 2000, 329, 301-317.	0.9	36
151	Lithospheric boundaries and upper mantle heterogeneity beneath Russian Eurasia: evidence from the DSS profile QUARTZ. Tectonophysics, 2000, 329, 333-344.	0.9	21
152	Variations of the lithospheric seismic scattering strength below the Massif Central, France and the Frankonian Jura, SE Germany. Tectonophysics, 2000, 328, 297-305.	0.9	11
153	Seismic and gravity modelling of crustal structure in the Central Graben, North Sea. Observations along MONA LISA profile 3. Tectonophysics, 2000, 328, 229-244.	0.9	31
154	Laboratory measurements of seismic P-wave velocities on rocks from the Betic chain (southern Iberian) Tj ETQ	q0 0 8 ggBT	/Overlock 10
155	High-pressure-high-temperature seismic velocity structure of the midcrustal and lower crustal rocks of the Ivrea-Verbano zone and Serie dei Laghi, NW Italy. Journal of Geophysical Research, 2000, 105, 13843-13858.	3.3	54
156	Three-dimensional seismic model of the Sierra Nevada arc, California, and its implications for crustal and upper mantle composition. Journal of Geophysical Research, 2000, 105, 10899-10921.	3.3	113
157	On the nature ofPn. Journal of Geophysical Research, 2000, 105, 16173-16180.	3.3	18
158	Crust-mantle decoupling by flexure of continental lithosphere. Journal of Geophysical Research, 2000, 105, 13221-13237.	3.3	43
159	Measured and calculated seismic velocities and densities for granulites from xenolith occurrences and adjacent exposed lower crustal sections: A comparative study from the North China craton. Journal of Geophysical Research, 2000, 105, 18965-18976.	3.3	48
160	Dynamic elevation of the Cordillera, western United States. Journal of Geophysical Research, 2000, 105, 23371-23390.	3.3	135
161	Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography. Journal of Geophysical Research, 2000, 105, 21591-21614.	3.3	409
162	Deep structure of the Namibia continental margin as derived from integrated geophysical studies. Journal of Geophysical Research, 2000, 105, 25829-25853.	3.3	191
163	Anisotropy of schists: Contribution of crustal anisotropy to active source seismic experiments and shear wave splitting observations. Journal of Geophysical Research, 2000, 105, 27991-28007.	3.3	128

#	Article	IF	CITATIONS
164	Tectonic implications of exposure of lower continental crust beneath the Iberia Abyssal Plain, Northeast Atlantic Ocean: Geophysical evidence. Tectonics, 2000, 19, 919-942.	1.3	53
165	Tectonic Evolution of the Rift Basins in the Northeastern Brazilian Region. Geophysical Monograph Series, 2000, , 293-315.	0.1	9
166	The complexity of the crust and Moho under the southeastern Superior and Grenville provinces of the Canadian Shield from seismic refraction - wide-angle reflection data. Canadian Journal of Earth Sciences, 2000, 37, 439-458.	0.6	14
167	Crustal geometry and tectonic evolution of the Archean crystalline basement beneath the southern Alberta Plains, from new seismic reflection and potential-field studies. Canadian Journal of Earth Sciences, 2000, 37, 1473-1491.	0.6	55
168	Deep structure of the ocean-continent transition in the southern Iberia Abyssal Plain from seismic refraction profiles: The IAM-9 transect at 40°20′N. Journal of Geophysical Research, 2000, 105, 5859-5885.	3.3	281
169	Geophysical evidence for the evolution of the California Inner Continental Borderland as a metamorphic core complex. Journal of Geophysical Research, 2000, 105, 5835-5857.	3.3	62
170	Seismic signature of Variscan and Alpine tectonics in NW Iberia: Crustal structure of the Cantabrian Mountains and Duero basin. Journal of Geophysical Research, 2000, 105, 3001-3018.	3.3	61
171	Comment on "The petrologic case for a dry lower crust―by Bruce W. D. Yardley and John W. Valley. Journal of Geophysical Research, 2000, 105, 6057-6064.	3.3	92
172	Crustal structure of the Altiplano from broadband regional waveform modeling: Implications for the composition of thick continental crust. Journal of Geophysical Research, 2000, 105, 607-621.	3.3	56
173	Subcontinental mantle dynamics: A further analysis based on the joint constraints of dynamic surface topography and free-air graviy. Journal of Geophysical Research, 2000, 105, 5635-5662.	3.3	31
174	Crustal structure of NW British Columbia and SE Alaska from seismic wide-angle studies: Coast Plutonic Complex to Stikinia. Journal of Geophysical Research, 2000, 105, 7961-7981.	3.3	32
175	A crustal model of the ultrahigh-pressure Dabie Shan orogenic belt, China, derived from deep seismic refraction profiling. Journal of Geophysical Research, 2000, 105, 10857-10869.	3.3	101
176	Monte Carlo simulation of seismogram envelopes in scattering media. Journal of Geophysical Research, 2000, 105, 6153-6161.	3.3	109
177	Subglacial sediments: A regional geological template for ice flow in West Antarctica. Geophysical Research Letters, 2001, 28, 3493-3496.	1.5	96
178	Nanga Parbat crustal anisotropy: Implications for interpretation of crustal velocity structure and shear-wave splitting. Geophysical Research Letters, 2001, 28, 2129-2132.	1.5	36
179	Crustal and upper mantle structure beneath Antarctica and surrounding oceans. Journal of Geophysical Research, 2001, 106, 30645-30670.	3.3	211
180	Spatial variations inTein the southern Appalachians, eastern United States. Journal of Geophysical Research, 2001, 106, 22009-22026.	3.3	24
181	Deep crustal structure of the Chicxulub impact crater. Journal of Geophysical Research, 2001, 106, 21751-21769.	3.3	83

#	Article	IF	CITATIONS
182	Kerguelen Plateau crustal structure and basin formation from seismic and gravity data. Journal of Geophysical Research, 2001, 106, 16583-16601.	3.3	23
183	Seismic evidence for partial lithospheric delamination model of Colorado Plateau Uplifts. Geophysical Research Letters, 2001, 28, 1319-1322.	1.5	23
184	Crustal structure and thermal anomalies of the Dunedin Region, South Island, New Zealand. Journal of Geophysical Research, 2001, 106, 30835-30848.	3.3	53
185	Three-dimensional structure ofVp,Vs, andVp/Vsbeneath northeastern Japan: Implications for arc magmatism and fluids. Journal of Geophysical Research, 2001, 106, 21843-21857.	3.3	356
186	Density structure of the lithosphere in the southwestern United States and its tectonic significance. Journal of Geophysical Research, 2001, 106, 721-739.	3.3	40
187	Compositional and metamorphic controls on velocity and reflectivity in the continental crust: An example from the Grenville Province of eastern Québec. Journal of Geophysical Research, 2001, 106, 665-682.	3.3	33
188	Lithospheric structure of the Costa Rican Isthmus: Effects of subduction zone magmatism on an oceanic plateau. Journal of Geophysical Research, 2001, 106, 621-643.	3.3	70
189	Rheological evolution during extension at nonvolcanic rifted margins: Onset of serpentinization and development of detachments leading to continental breakup. Journal of Geophysical Research, 2001, 106, 3961-3975.	3.3	264
190	On the conditions for lower crustal convective instability. Journal of Geophysical Research, 2001, 106, 6423-6446.	3.3	441
191	Gravity anomalies and crustal structure at the southeast Greenland margin. Journal of Geophysical Research, 2001, 106, 8853-8870.	3.3	57
192	Crustal structure beneath Orphan Basin and implications for nonvolcanic continental rifting. Journal of Geophysical Research, 2001, 106, 10923-10940.	3.3	48
193	Thermal thickness and evolution of Precambrian lithosphere: A global study. Journal of Geophysical Research, 2001, 106, 16387-16414.	3.3	729
194	Comparison between crustal density and velocity variations in southern California. Geophysical Research Letters, 2001, 28, 3087-3090.	1.5	11
195	Strain partitioning during the elastic deformation of an olivine + magnesiowüstite aggregate. Geophysical Research Letters, 2001, 28, 4647-4650.	1.5	13
196	Crustal velocity structure of western Dharwar Craton, South India. Journal of Geodynamics, 2001, 31, 227-241.	0.7	53
197	Crustal velocity structure along the Nagaur–Rian sector of the Aravalli fold belt, India, using reflection data. Journal of Geodynamics, 2001, 31, 429-443.	0.7	10
198	Experimental high pressure investigation of partial melting in natural rocks and their influence on Vp and Vs. Physics and Chemistry of the Earth, 2001, 26, 325-332.	0.6	23
199	An exposed cross-section of early precambrian continental lower crust in North China craton. Physics and Chemistry of the Earth, 2001, 26, 781-792.	0.6	79

#	Article	IF	CITATIONS
200	Geochemistry of lower crustal xenoliths from Neogene Hannuoba basalt, North China craton: implications for petrogenesis and lower crustal composition. Geochimica Et Cosmochimica Acta, 2001, 65, 2589-2604.	1.6	173
201	Freeboard revisited: continental growth, crustal thickness change and Earth's thermal efficiency. Earth and Planetary Science Letters, 2001, 185, 161-172.	1.8	24
202	Arrested orogenic development: eclogitization, delamination, and tectonic collapse. Earth and Planetary Science Letters, 2001, 185, 149-159.	1.8	179
203	Residual topography, lithospheric structure and sunken slabs in the central Mediterranean. Earth and Planetary Science Letters, 2001, 187, 117-130.	1.8	180
204	Mantle thermal structure and active upwelling during continental breakup in the North Atlantic. Earth and Planetary Science Letters, 2001, 190, 251-266.	1.8	227
205	Poisson's ratio of eclogite: the role of retrogression. Earth and Planetary Science Letters, 2001, 192, 523-531.	1.8	32
206	Heat flux and seismicity in the Fennoscandian Shield. Physics of the Earth and Planetary Interiors, 2001, 126, 147-162.	0.7	25
207	Refraction/wide-angle reflection investigation of the Cadomian crust between northern Brittany and the Channel Islands. Tectonophysics, 2001, 331, 45-64.	0.9	12
208	Radioactive heat generation and its thermal effects in the Alps–Apennines boundary zone. Tectonophysics, 2001, 331, 269-283.	0.9	20
209	Lithosphere structure along the northern part of EUROBRIDGE in Lithuania; results from integrated interpretation of DSS and gravity data. Tectonophysics, 2001, 339, 177-191.	0.9	10
210	The lower crust of SE Belarus: petrological, geophysical and geochemical constraints from xenoliths. Tectonophysics, 2001, 339, 215-237.	0.9	24
211	Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere. Tectonophysics, 2001, 336, 19-30.	0.9	350
212	Forward and inverse modelling of gravity revealing insight into crustal structures of the Eastern Alps. Tectonophysics, 2001, 337, 191-208.	0.9	58
213	A seismic model of the Precambrian crust along the coast of southeastern Sweden: the Coast Profile wide-angle airgun experiment and the southern part of FENNOLORA revisited. Tectonophysics, 2001, 339, 93-111.	0.9	16
214	EBSD-measured lattice-preferred orientations and seismic properties of eclogites. Tectonophysics, 2001, 342, 61-80.	0.9	129
215	Subduction initiation and continental crust recycling: the roles of rheology and eclogitization. Tectonophysics, 2001, 342, 163-191.	0.9	87
216	Generation of new continental crust and terrane accretion in Southeastern Alaska and Western British Columbia: constraints from P- and S-wave wide-angle seismic data (ACCRETE). Tectonophysics, 2001, 341, 49-67.	0.9	49
217	Geodynamics of central Australia during the intraplate Alice Springs Orogeny: thin viscous sheet models. Geological Society Special Publication, 2001, 184, 139-164.	0.8	22

#	Article	IF	CITATIONS
218	Crustal structure and tectonics from the Los Angeles basin to the Mojave Desert, southern California. Geology, 2001, 29, 15.	2.0	99
219	Seismic characterization of an active metamorphic massif, Nanga Parbat, Pakistan Himalaya. Geology, 2001, 29, 651.	2.0	28
220	Crust 5.1-based inference of the Earth's dynamic surface topography: geodynamic implications. Geophysical Journal International, 2001, 144, 501-516.	1.0	12
221	Moho topography beneath the Corinth Rift area (Greece) from inversion of gravity data. Geophysical Journal International, 2001, 145, 797-808.	1.0	52
222	A three-dimensional model of the Pyrenean deep structure based on gravity modelling, seismic images and petrological constraints. Geophysical Journal International, 2001, 145, 460-470.	1.0	57
223	Crustal structure of central Tibet as derived from projectÂINDEPTH wide-angle seismic data. Geophysical Journal International, 2001, 145, 486-498.	1.0	175
224	Thermal controls on flexure of underthrust continental lithosphere. Geophysical Journal International, 2001, 146, 813-826.	1.0	1
225	Oceanic upper mantle structure from experimental scaling ofVSand density at different depths. Geophysical Journal International, 2001, 147, 199-214.	1.0	34
226	Crustal structure of the central Sunda margin at the onset of oblique subduction. Geophysical Journal International, 2001, 147, 449-474.	1.0	88
227	Crustal model for the Middle East and North Africa region: implications for the isostatic compensation mechanism. Geophysical Journal International, 2001, 147, 630-638.	1.0	61
228	One-dimensional Shear Velocity Structure of Northern Africa from Rayleigh Wave Group Velocity Dispersion. , 2001, 158, 1475-1493.		11
229	Nature of the continent-ocean transition on the non-volcanic rifted margin of the central Great Australian Bight. Geological Society Special Publication, 2001, 187, 51-76.	0.8	64
230	Low seismic-wave speeds and enhanced fluid pressure beneath the Southern Alps of New Zealand. Geology, 2001, 29, 679.	2.0	75
231	Depth migration of deep seismic reflection profiles: crustal thickness variations in Alberta. Canadian Journal of Earth Sciences, 2002, 39, 331-350.	0.6	25
232	Steady-State Failure Equilibrium and Deformation of Intraplate Lithosphere. International Geology Review, 2002, 44, 383-401.	1.1	155
233	Lithology discrimination from physical rock properties. Geophysics, 2002, 67, 573-581.	1.4	33
234	Seismic Structure of the Crust and Uppermost Mantle of North America and Adjacent Oceanic Basins: A Synthesis. Bulletin of the Seismological Society of America, 2002, 92, 2478-2492.	1.1	100
235	Seismic evidence for a mantle source for mid-Proterozoic anorthosites and implications for models of crustal growth. Geological Society Special Publication, 2002, 199, 125-134.	0.8	4

#	Article	IF	CITATIONS
236	54 Seismic velocity structure of the continental lithosphere from controlled source data. International Geophysics, 2002, 81, 887-910.	0.6	32
237	The Petrology and Geochemistry of Calc-Alkaline Andesites on Shodo-Shima Island, SW Japan. Journal of Petrology, 2002, 43, 3-16.	1.1	36
238	The Emerson Lake Body: A Link between the Landers and Hector Mine Earthquakes, Southern California, as Inferred from Gravity and Magnetic Anomalies. Bulletin of the Seismological Society of America, 2002, 92, 1606-1620.	1.1	14
239	Anisotropy of Poisson's Ratio in Rock Samples at Different Confining Pressures. Chinese Journal of Geophysics, 2002, 45, 923-933.	0.2	7
240	Regional wave propagation in Tanzania, East Africa. Journal of Geophysical Research, 2002, 107, ESE 1-1-ESE 1-18.	3.3	32
241	Crustal construction of a volcanic arc, wide-angle seismic results from the western Alaska Peninsula. Journal of Geophysical Research, 2002, 107, EPM 4-1.	3.3	59
242	Crustal structure of central Lake Baikal: Insights into intracontinental rifting. Journal of Geophysical Research, 2002, 107, ETG 2-1-ETG 2-15.	3.3	61
243	Lower crustal deformation beneath the central Transverse Ranges, southern California: Results from the Los Angeles Region Seismic Experiment. Journal of Geophysical Research, 2002, 107, ETG 8-1-ETG 8-19.	3.3	25
244	Crustal thicknesses in SE Brazilian Shield by receiver function analysis: Implications for isostatic compensation. Journal of Geophysical Research, 2002, 107, ESE 2-1-ESE 2-14.	3.3	79
245	Three-dimensional crustal structure in the Southern Alps region of New Zealand from inversion of local earthquake and active source data. Journal of Geophysical Research, 2002, 107, ESE 15-1-ESE 15-20.	3.3	80
246	Crustal structure and relocated earthquakes in the Puget Lowland, Washington, from high-resolution seismic tomography. Journal of Geophysical Research, 2002, 107, ESE 22-1-ESE 22-23.	3.3	41
247	Methods for resolving the origin of large igneous provinces from crustal seismology. Journal of Geophysical Research, 2002, 107, ECV 1-1-ECV 1-27.	3.3	113
248	Post-1906 stress recovery of the San Andreas fault system calculated from three-dimensional finite element analysis. Journal of Geophysical Research, 2002, 107, ESE 3-1.	3.3	58
249	Crustal structure and dynamics of the Tien Shan. Geophysical Research Letters, 2002, 29, 4-1-4-4.	1.5	34
250	Tectonic evolution of the Pacific margin of Antarctica 2. Structure of Late Cretaceous-early Tertiary plate boundaries in the Bellingshausen Sea from seismic reflection and gravity data. Journal of Geophysical Research, 2002, 107, EPM 6-1-EPM 6-20.	3.3	24
251	Crustal velocity structure from SAREX, the Southern Alberta Refraction Experiment. Canadian Journal of Earth Sciences, 2002, 39, 351-373.	0.6	53
252	Deep Probe: imaging the roots of western North America. Canadian Journal of Earth Sciences, 2002, 39, 375-398.	0.6	131
253	Deep structure and mechanical behavior of the lithosphere in the Hangai–Hövsgöl region, Mongolia: new constraints from gravity modeling. Earth and Planetary Science Letters, 2002, 197, 133-149.	1.8	71

#	Article	IF	CITATIONS
254	Modes of raising northeastern Tibet probed by explosion seismology. Earth and Planetary Science Letters, 2002, 203, 35-43.	1.8	59
255	A model for continental crust genesis by arc accretion: rare earth element evidence from the Irish Caledonides. Earth and Planetary Science Letters, 2002, 203, 861-877.	1.8	52
256	Seismological features of island arc crust as inferred from recent seismic expeditions in Japan. Tectonophysics, 2002, 355, 53-66.	0.9	33
257	The effect of crustal anisotropy on reflector depth and velocity determination from wide-angle seismic data: a synthetic example based on South Island, New Zealand. Tectonophysics, 2002, 355, 145-161.	0.9	25
258	Compressional wave velocity of granite and amphibolite up to melting temperatures at 1 GPa. Tectonophysics, 2002, 351, 255-261.	0.9	20
259	Moho topography and lower crustal wide-angle reflectivity around the TESZ in southern Scandinavia and northeastern Europe. Tectonophysics, 2002, 360, 187-213.	0.9	36
260	The Elbe Fault System in North Central Europe—a basement controlled zone of crustal weakness. Tectonophysics, 2002, 360, 281-299.	0.9	115
261	Deep structure of the crust along the Fennoscandia–Sarmatia Junction Zone (central Belarus): results of a geophysical–geological integration. Tectonophysics, 2002, 358, 97-120.	0.9	9
262	Unusual lithospheric structure beneath the Hyderabad granitic region, eastern Dharwar craton, south India. Physics of the Earth and Planetary Interiors, 2002, 130, 59-69.	0.7	19
263	Dynamic measurement of sediment grain compressibility at atmospheric pressure: acoustic applications. IEEE Journal of Oceanic Engineering, 2002, 27, 593-601.	2.1	30
264	The nature of orogenic crust in the central Andes. Journal of Geophysical Research, 2002, 107, ESE 7-1-ESE 7-16.	3.3	260
265	Seismological evidence for a sub-volcanic arc mantle wedge beneath the Denali volcanic gap, Alaska. Geophysical Research Letters, 2002, 29, 61-1-61-4.	1.5	20
266	Geophysical evidence for Miocene extension and mafic magmatic addition in the California Continental Borderland. Bulletin of the Geological Society of America, 2002, 114, 497-512.	1.6	20
267	Comparative experimental study on several methods for measuring elastic wave velocities in rocks at high pressure. Science in China Series D: Earth Sciences, 2002, 45, 990-998.	0.9	3
268	Mapping brittle fracture zones in three dimensions: high resolution traveltime seismic tomography in a granitic pluton. Geophysical Journal International, 2002, 149, 95-105.	1.0	22
269	Nature of the crust-mantle transition zone and the thermal state of the upper mantle beneath Iceland from gravity modelling. Geophysical Journal International, 2002, 149, 281-299.	1.0	99
270	Modelling and imaging the Moho transition: the case of the southern Urals. Geophysical Journal International, 2002, 149, 134-148.	1.0	21
271	LITH5.0: a revised crustal model for Canada based on Lithoprobe results. Geophysical Journal International, 2002, 150, 285-294.	1.0	59

#	Article	IF	CITATIONS
272	Lithosphere structure of Europe and Northern Atlantic from regional three-dimensional gravity modelling. Geophysical Journal International, 2002, 151, 11-31.	1.0	20
273	Three-dimensional imaging of the P- and S-wave velocity structure and earthquake locations beneath Southwest Iceland. Geophysical Journal International, 2002, 151, 848-866.	1.0	174
274	Seismic imaging and crustal architecture across the Lachlan Transverse Zone, a possible early crossâ€cutting feature of eastern Australia. Australian Journal of Earth Sciences, 2002, 49, 311-321.	0.4	19
275	Waning buoyancy in the crustal roots of old mountains. Nature, 2002, 417, 933-936.	13.7	109
276	Crustal structure between the Knipovich Ridge and the Van Mijenfjorden (Svalbard). Marine Geophysical Researches, 2002, 23, 379-401.	0.5	48
277	Velocity structure and a seismic model for Nevado del Ruiz Volcano (Colombia). Journal of Volcanology and Geothermal Research, 2003, 119, 61-87.	0.8	26
278	Thermal and chemical variations in subcrustal cratonic lithosphere: evidence from crustal isostasy. Lithos, 2003, 71, 185-193.	0.6	27
279	Crustal structure of the Kaapvaal craton and its significance for early crustal evolution. Lithos, 2003, 71, 413-429.	0.6	91
280	Crustal structure of northwestern Svalbard and the adjacent Yermak Plateau: evidence for Oligocene detachment tectonics and non-volcanic breakup. Geophysical Journal International, 2003, 152, 139-159.	1.0	56
281	VARNET-96: three-dimensional upper crustal velocity structure of SW Ireland. Geophysical Journal International, 2003, 153, 424-442.	1.0	18
282	Upper-mantle thermochemical structure below North America from seismic-geodynamic flow models. Geophysical Journal International, 2003, 154, 279-299.	1.0	40
283	Seismological constraints on the crustal structure beneath the Zagros Mountain belt (Iran). Geophysical Journal International, 2003, 155, 403-410.	1.0	153
284	The subduction factory: its role in the evolution of the Earth's crust and mantle. Geological Society Special Publication, 2003, 219, 55-80.	0.8	113
285	Seismic and laboratory constraints on crustal formation in a former continental arc (ACCRETE,) Tj ETQq1 1 0.784	314.rgBT 3.3	/Oyerlock 10
286	Composition of the Continental Crust. , 2003, , 1-64.		2,587
287	Experimental studies of electrical conductivities and P-wave velocities of gabbro at high pressures and high temperatures. Science in China Series D: Earth Sciences, 2003, 46, 895-908.	0.9	10
288	The crustal structure from the Altai Mountains to the Altyn Tagh fault, northwest China. Journal of Geophysical Research, 2003, 108, .	3.3	67
289	Mechanisms of extension at nonvolcanic margins: Evidence from the Galicia interior basin, west of Iberia. Journal of Geophysical Research, 2003, 108, .	3.3	133

#	Article	IF	CITATIONS
290	Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. Journal of Geophysical Research, 2003, 108, .	3.3	714
291	Tonga Ridge and Lau Basin crustal structure from seismic refraction data. Journal of Geophysical Research, 2003, 108, .	3.3	93
292	INDEPTH III seismic data: From surface observations to deep crustal processes in Tibet. Tectonics, 2003, 22, n/a-n/a.	1.3	126
293	Relationship between seismic P-wave velocity and the composition of anhydrous igneous and meta-igneous rocks. Geochemistry, Geophysics, Geosystems, 2003, 4, n/a-n/a.	1.0	105
294	Constraints on the 232 Th/238 U ratio (β) of the continental crust. Geochemistry, Geophysics, Geosystems, 2003, 4, .	1.0	28
295	Arc composition at mid-crustal depths: Insights from the Coast Ridge Belt, Santa Lucia Mountains, California. Geophysical Research Letters, 2003, 30, .	1.5	25
296	Deep structure of the Baikal rift zone revealed by joint inversion of gravity and seismology. Journal of Geophysical Research, 2003, 108, .	3.3	50
297	A three-dimensionalPwave velocity model for the Charlevoix seismic zone, Quebec, Canada. Journal of Geophysical Research, 2003, 108, .	3.3	9
298	Effective elastic thicknessTeof the lithosphere in western Canada. Journal of Geophysical Research, 2003, 108, .	3.3	70
299	Structure, seismicity, and thermal regime of the Queen Charlotte Transform Margin. Journal of Geophysical Research, 2003, 108, .	3.3	39
300	Lithospheric structure across oblique continental collision in New Zealand from wide-anglePwave modeling. Journal of Geophysical Research, 2003, 108, .	3.3	81
301	Production and loss of high-density batholithic root, southern Sierra Nevada, California. Tectonics, 2003, 22, n/a-n/a.	1.3	215
302	Tectonic and magmatic development of the Salinian Coast Ridge Belt, California. Tectonics, 2003, 22, n/a-n/a.	1.3	48
303	Structure and development of a microcontinent: Elan Bank in the southern Indian Ocean. Geochemistry, Geophysics, Geosystems, 2003, 4, n/a-n/a.	1.0	58
304	Crustal structure of the Trans-European suture zone region along POLONAISE'97 seismic profile P4. Journal of Geophysical Research, 2003, 108, .	3.3	117
305	Petrogenesis of the Post-kinematic Magmatism of the Central Finland Granitoid Complex II; Sources and Magmatic Evolution. Journal of Petrology, 2003, 44, 1681-1701.	1.1	22
306	Composition of the Uralide crust from seismic velocity (V p , V s), heat flow, gravity, and magnetic data. Earth and Planetary Science Letters, 2003, 210, 333-349.	1.8	39
307	Crustal thickness in Antarctica from CHAMP gravimetry. Earth and Planetary Science Letters, 2003, 212, 103-117.	1.8	29

		CITATION REPORT	
#	Article	IF	CITATIONS
308	Serpentinization of the forearc mantle. Earth and Planetary Science Letters, 2003, 212, 417-432.	1.8	722
309	Lower-crustal strength under the Dead Sea basin from local earthquake data and rheological modeling. Earth and Planetary Science Letters, 2003, 214, 129-142.	1.8	97
310	Geophysical images and a crustal model of intrusive structures beneath the Messum ring complex Namibia. Earth and Planetary Science Letters, 2003, 216, 65-80.	' 1.8	36
311	Geophysical models for the tectonic framework of the Lake Vostok region, East Antarctica. Earth a Planetary Science Letters, 2003, 216, 663-677.	ind 1.8	74
313	Crustal structure of the continental margin of Korea in the East Sea (Japan Sea) from deep seismic sounding data: evidence for rifting affected by the hotter than normal mantle. Tectonophysics, 20 364, 25-42.	03, 0.9	54
314	Microstructures, petrofabrics and seismic properties of ultra high-pressure eclogites from Sulu region, China: implications for rheology of subducted continental crust and origin of mantle reflections. Tectonophysics, 2003, 370, 49-76.	0.9	85
315	Decompaction mechanism of deep crystalline rocks under stress relief. Tectonophysics, 2003, 370 121-128.), 0.9	14
316	Lithospheric structure of the Arabian Shield from the joint inversion of receiver functions and surface-wave group velocities. Tectonophysics, 2003, 371, 1-21.	0.9	123
317	Vp/Vs ratio along the VÃ,ring Margin, NE Atlantic, derived from OBS data: implications on lithology and stress field. Tectonophysics, 2003, 369, 175-197.	0.9	43
318	Petrological model of the northern Izu–Bonin–Mariana arc crust: constraints from high-pressume measurements of elastic wave velocities of the Tanzawa plutonic rocks, central Japan. Tectonophy 2003, 371, 213-221.	re sics, 0.9	75
319	Nature of the crust below the Southern Granulite Terrain (SGT) of Peninsular India across the Bava shear zone based on analysis of gravity data. Precambrian Research, 2003, 124, 21-40.	li 1.2	27
320	Permeability of the continental crust: implications of experimental data. Journal of Geochemical Exploration, 2003, 78-79, 697-699.	1.5	41
321	Heat-flux budget in the southeastern continental margin of the Tyrrhenian basin. Physics and Chemistry of the Earth, 2003, 28, 407-420.	1.2	16
322	Constraints on Crustal Heat Production from Heat Flow Data. , 2003, , 65-84.		59
323	Bouguer reduction density, why 2.67?. Geophysics, 2003, 68, 1559-1560.	1.4	211
324	Velocity structure of the UK continental shelf from a compilation of wide-angle and refraction data Geological Magazine, 2003, 140, 453-467.	A. 0.9	12
325	Magmatism in the South Sandwich arc. Geological Society Special Publication, 2003, 219, 285-31	3. 0.8	46
326	The Petrology and Geochemistry of High-Magnesium Andesites at the Western Tip of the Setouch Volcanic Belt, SW Japan. Journal of Petrology, 2003, 44, 1561-1578.	1.1	95

#	Article	IF	CITATIONS
327	An overview of the Izu-Bonin-Mariana subduction factory. Geophysical Monograph Series, 2003, , 175-222.	0.1	221
328	Along-strike variation in the Aleutian Island Arc: Genesis of high Mg# andesite and implications for continental crust. Geophysical Monograph Series, 2003, , 223-276.	0.1	206
329	83 Seismic velocities and densities of rocks. International Geophysics, 2003, , 1587-1594.	0.6	24
330	Structure and tectonic evolution of the South Sandwich arc. Geological Society Special Publication, 2003, 219, 255-284.	0.8	56
331	Imaging the mountainless root of the 1.8 Ga Cheyenne belt suture and clues to its tectonic stability. Geology, 2003, 31, 669.	2.0	38
332	Seismological constraints on structure and flow patterns within the mantle wedge. Geophysical Monograph Series, 2003, , 59-81.	0.1	30
333	Crustal trace of a hot convective sheet. Geology, 2003, 31, 207.	2.0	63
334	Seismic activity in Senador Sá-CE, Brazil, 1997-1998. Revista Brasileira De Geofisica, 2004, 22, 115.	0.2	7
335	Geophysical and isotopic mapping of preexisting crustal structures that influenced the location and development of the San Jacinto fault zone, southern California. Bulletin of the Geological Society of America, 2004, 116, 1143.	1.6	38
336	Crustal structure of the West Antarctic rift system and Marie Byrd Land hotspot. Geology, 2004, 32, 977.	2.0	114
337	Three-dimensional seismic imaging of a protoridge axis in the Main Ethiopian rift. Geology, 2004, 32, 949.	2.0	171
338	Mantle-driven deformation of orogenic zones and clutch tectonics. Geological Society Special Publication, 2004, 227, 41-64.	0.8	18
339	Geophysical evidence for hydration of the crust and mantle of the Nazca plate during bending at the north Chile trench. Geology, 2004, 32, 549.	2.0	162
340	Threeâ€dimensional crustal structure in central Taiwan from gravity inversion with a parallel genetic algorithm. Geophysics, 2004, 69, 917-924.	1.4	56
341	Crustal Growth by Magmatic Accretion Constrained by Metamorphic P-T Paths and Thermal Models of the Kohistan Arc, NW Himalayas. Journal of Petrology, 2004, 45, 2287-2302.	1.1	58
342	Gravity modeling of Bushveld Complex connectivity supported by Southern African Seismic Experiment results. South African Journal of Geology, 2004, 107, 207-218.	0.6	79
343	Foundering Lithosphere Imaged Beneath the Southern Sierra Nevada, California, USA. Science, 2004, 305, 660-662.	6.0	106
344	Null-space and statistical significance of first-arrival traveltime inversion. Geophysical Journal International, 2004, 156, 549-554.	1.0	4

#	Article	IF	CITATIONS
345	A deep seismic transect from Hovgård Ridge to northwestern Svalbard across the continental-ocean transition: A sheared margin study. Geophysical Journal International, 2004, 157, 683-702.	1.0	79
346	Upper-mantle reflectors: modelling of seismic wavefield characteristics and tectonic implications. Geophysical Journal International, 2004, 157, 664-682.	1.0	18
347	Deep structure of the West African continental margin (Congo, ZaÃ ⁻ re, Angola), between 5°S and 8°S, from reflection/refraction seismics and gravity data. Geophysical Journal International, 2004, 158, 529-553.	1.0	162
348	3-D density model of the crust of southern and central Finland obtained from joint interpretation of the SVEKALAPKO crustal P-wave velocity models and gravity data. Geophysical Journal International, 2004, 158, 827-848.	1.0	50
349	The crustal structure of the NW Moroccan continental margin from wide-angle and reflection seismic data. Geophysical Journal International, 2004, 159, 117-128.	1.0	91
350	A new seismic tomography of Aigion area (Gulf of Corinth, Greece) from the 1991 data set. Geophysical Journal International, 2004, 159, 1013-1031.	1.0	89
351	Wavelet and multitaper coherence methods for assessing the elastic thickness of the Irish Atlantic margin. Geophysical Journal International, 2004, 159, 445-459.	1.0	22
352	The fate of subducted continental margins: Two-stage exhumation of the high-pressure to ultrahigh-pressure Western Gneiss Region, Norway. Journal of Metamorphic Geology, 2004, 22, 671-687.	1.6	138
353	The Seismic Structure of Wilkes Land/Terre Adelie, East Antarctica and Comparison with Australia: First Steps in Reconstructing the Deep Lithosphere of Gondwana. Gondwana Research, 2004, 7, 21-30.	3.0	22
354	Structure and Evolution of the East Antarctic Lithosphere: Tectonic Implications for the Development and Dispersal of Gondwana. Gondwana Research, 2004, 7, 31-41.	3.0	14
355	Geophysical Study of the Valle Fértil Lineament Between 28°45′S and 31°30′S: Boundary Between the Cuyania and Pampia Terranes. Gondwana Research, 2004, 7, 1117-1132.	3.0	8
356	Deep Crustal Structure of the Continental Margin off the Explora Escarpment and in the Lazarev Sea, East Antarctica. Marine Geophysical Researches, 2004, 25, 283-304.	0.5	35
357	Multi-scale Tomography for Crustal P and S Velocities in Southern California. Pure and Applied Geophysics, 2004, 161, 283-302.	0.8	14
358	A new isostatic model of the lithosphere and gravity field. Journal of Geodesy, 2004, 78, 368-385.	1.6	110
359	Origins of the lower crustal reflectivity in the Lützow-Holm Complex, Enderby Land, East Antarctica. Earth, Planets and Space, 2004, 56, 151-162.	0.9	13
360	Crustal fabric in the Tibetan Plateau based on waveform inversions for seismic anisotropy parameters. Journal of Geophysical Research, 2004, 109, .	3.3	138
361	Syncollisional delamination and tectonic wedge development in convergent orogens. Tectonics, 2004, 23, n/a-n/a.	1.3	28
362	Inferring crustal structure in the Aleutian island arc from a sparse wide-angle seismic data set. Geochemistry, Geophysics, Geosystems, 2004, 5, .	1.0	85

#	Article	IF	CITATIONS
363	Seismic structure of the crust and uppermost mantle in the incipient stage of back arc rifting - northernmost Okinawa Trough. Geophysical Research Letters, 2004, 31, .	1.5	36
364	Joint inversion of gravity and arrival time data from Parkfield: New constraints on structure and hypocenter locations near the SAFOD drill site. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	68
365	Lithospheric structure and composition of the Archean western Superior Province from seismic refraction/wide-angle reflection and gravity modeling. Journal of Geophysical Research, 2004, 109, .	3.3	80
366	Influence of pressure and mineralogy on seismic velocities in oceanic gabbros: Implications for the composition and state of the lower oceanic crust. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	47
367	Accreted terranes of northwestern British Columbia, Canada: Lithospheric velocity structure and tectonics. Journal of Geophysical Research, 2004, 109, .	3.3	25
368	Continental crust under compression: A seismic refraction study of South Island Geophysical Transect I, South Island, New Zealand. Journal of Geophysical Research, 2004, 109, .	3.3	73
369	Upper crustal structure of southwestern British Columbia from the 1998 Seismic Hazards Investigation in Puget Sound. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	16
370	Uppermost mantle velocities beneath China and surrounding regions. Journal of Geophysical Research, 2004, 109, .	3.3	107
371	Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Reviews of Geophysics, 2004, 42, .	9.0	669
372	Composition and structure of the central Aleutian island arc from arc-parallel wide-angle seismic data. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	1.0	98
373	Crustal structure of the Taupo Volcanic Zone, New Zealand: Stretching and igneous intrusion. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	67
374	Discontinuous change in temperature derivative of Vp in lower crustal rocks. Geophysical Research Letters, 2004, 31, .	1.5	20
375	Change of crustal gravitational potential energy in the Taiwan orogen by the Chi-Chi earthquake sequence. Earth and Planetary Science Letters, 2004, 222, 573-581.	1.8	11
376	The evolution of the southern margin of the East European Craton based on seismic and potential field data. Tectonophysics, 2004, 381, 101-118.	0.9	24
377	Structure of the lithosphere below the southern margin of the East European Craton (Ukraine and) Tj ETQq0 0 0	rgBT_/Ove	rlock 10 Tf 50
378	Seismological structure and implications of collision between the Ontong Java Plateau and Solomon Island Arc from ocean bottom seismometer–airgun data. Tectonophysics, 2004, 389, 191-220.	0.9	112
379	Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone. Tectonophysics, 2004, 389, 137-190.	0.9	234
380	Seismic image of the deep crust at the eastern margin of the Alps (Austria): indications for crustal extension in a convergent orogen. Tectonophysics, 2004, 380, 105-122.	0.9	14

#	Article	IF	CITATIONS
381	Upper and middle crustal deformation of an arc–arc collision across Hokkaido, Japan, inferred from seismic refraction/wide-angle reflection experiments. Tectonophysics, 2004, 388, 59-73.	0.9	60
382	Deep seismic refraction and gravity crustal model and tectonic deformation in Tocantins Province, Central Brazil. Tectonophysics, 2004, 388, 187-199.	0.9	50
383	Thermo-mechanical structure beneath the young orogenic belt of Taiwan. Tectonophysics, 2004, 388, 21-31.	0.9	11
384	Processing and interpretation of the gravity field of the East African Rift: implication for crustal extension. Tectonophysics, 2004, 394, 87-110.	0.9	25
385	Crustal and mantle strengths in continental lithosphere: is the jelly sandwich model obsolete?. Tectonophysics, 2004, 394, 221-232.	0.9	175
386	Group-velocity tomography and lithospheric S-velocity structure of the South American continent. Physics of the Earth and Planetary Interiors, 2004, 147, 315-331.	0.7	86
387	Gravity anomalies, crustal structure and isostasy associated with the Proterozoic Capricorn Orogen, Western Australia. Precambrian Research, 2004, 128, 219-236.	1.2	17
388	Crustal structure of the southeastern Iceland-Faeroe Ridge (IFR) from wide aperture seismic data. Journal of Geodynamics, 2004, 37, 233-252.	0.7	26
389	Crustal structure of the Ribeira fold belt, SE Brazil, derived from receiver functions. Journal of South American Earth Sciences, 2004, 16, 743-758.	0.6	44
390	The optimization approach to lithological tomography: Combining seismic data and petrophysics for porosity prediction. Geophysics, 2004, 69, 1272-1282.	1.4	64
391	Geochronology, petrology and geochemistry of the granulite xenoliths from Nushan, east China. Geochimica Et Cosmochimica Acta, 2004, 68, 127-149.	1.6	134
392	Thermodynamic models for eclogitic mantle lithosphere. Earth and Planetary Science Letters, 2004, 218, 451-462.	1.8	14
393	The paleomagnetic effects of reheating the Ecstall pluton, British Columbia. Earth and Planetary Science Letters, 2004, 221, 397-407.	1.8	12
394	Strong seismic reflections and melts in the mantle of a continental back-arc basin. Geophysical Research Letters, 2004, 31, n/a-n/a.	1.5	56
395	Investigation of Microearthquakes, Macroseismic Data, and Liquefaction Associated with the 1867 Wamego Earthquake in Eastern Kansas. Bulletin of the Seismological Society of America, 2004, 94, 2317-2329.	1.1	8
396	The Crustal Structure Along the Geoscience Transect from Altay to Altyn Tagh. Chinese Journal of Geophysics, 2004, 47, 268-277.	0.2	12
397	Upper Crustal Structure from the Santa Monica Mountains to the Sierra Nevada, Southern California: Tomographic Results from the Los Angeles Regional Seismic Experiment, Phase II (LARSE II). Bulletin of the Seismological Society of America, 2004, 94, 619-632.	1.1	29
398	Frequency-Dependent Lg Q within the Continental United States. Bulletin of the Seismological Society of America, 2004, 94, 1630-1643.	1.1	99

#	Article	IF	CITATIONS
399	Seismic Velocity Models for the Denali Fault Zone along the Richardson Highway, Alaska. Bulletin of the Seismological Society of America, 2004, 94, S85-S106.	1.1	38
400	Elongated domes in extended orogens: A mode of mountain uplift in the Betics (southeast Spain). , 2004, , .		23
401	Methods for Measurements of Velocities of Elastic-waves in Rocks under High-temperature and High-pressure Conditions. Journal of Geography (Chigaku Zasshi), 2005, 114, 963-974.	0.1	1
402	Gulf of Mexico tectonic history: Hotspot tracks, crustal boundaries, and early salt distribution. AAPG Bulletin, 2005, 89, 311-328.	0.7	109
403	Crustal structure beneath Discovery Bank in the Scotia Sea from group velocity tomography and seismic reflection data. Antarctic Science, 2005, 17, 97-106.	0.5	19
404	Estimating the effective elastic thickness of the lithosphere of the Iberian peninsula based on multitaper spectral analysis. Geophysical Journal International, 2005, 160, 729-735.	1.0	15
405	The crustal structure of central East Greenland-I: From the Caledonian orogen to the Tertiary igneous province. Geophysical Journal International, 2005, 160, 736-752.	1.0	26
406	The crustal structure of central East Greenland-II: From the Precambrian shield to the recent mid-oceanic ridges. Geophysical Journal International, 2005, 160, 753-760.	1.0	22
407	Crustal velocity structure across the Main Ethiopian Rift: results from two-dimensional wide-angle seismic modelling. Geophysical Journal International, 2005, 162, 994-1006.	1.0	179
408	Three-dimensional rheological structure of the lithosphere in the Ordos block and its adjacent area. Geophysical Journal International, 2005, 163, 339-356.	1.0	29
409	Inverse models of gravity data from the Red Sea-Aden-East African rifts triple junction zone. Geophysical Journal International, 2005, 163, 775-787.	1.0	100
410	Imaging the Indian subcontinent beneath the Himalaya. Nature, 2005, 435, 1222-1225.	13.7	419
411	The long-term strength of Europe and its implications for plate-forming processes. Nature, 2005, 436, 381-384.	13.7	143
412	Magma mixing recorded in intermediate rocks associated with high-Mg andesites from the Setouchi volcanic belt, Japan: implications for Archean TTG formation. Journal of Volcanology and Geothermal Research, 2005, 140, 241-271.	0.8	35
413	Effect of lateral variation and model parameterization on surface wave dispersion inversion to estimate the average shallow structure in the ParanÃ _i Basin. Journal of Seismology, 2005, 9, 449-462.	0.6	9
414	Width of mantle deformation across a continental transform: Evidence from upper mantle (Pn) seismic anisotropy measurements. Geology, 2005, 33, 741.	2.0	38
415	Geophysical evidence for wedging in the San Gorgonio Pass structural knot, southern San Andreas fault zone, southern California. Bulletin of the Geological Society of America, 2005, 117, 1554.	1.6	35
416	Structural analysis of a Laramide, basement-involved, foreland fault zone, Rawlins uplift, south-central Wyoming. Rocky Mountain Geology, 2005, 40, 65-89.	0.5	10

#	Article	IF	CITATIONS
417	Stratigraphic and geochemical evolution of an oceanic arc upper crustal section: The Jurassic Talkeetna Volcanic Formation, south-central Alaska. Bulletin of the Geological Society of America, 2005, 117, 902.	1.6	66
418	Geophysical transect across a Paleoproterozoic continent–continent collision zone: The Trans-Hudson Orogen. Canadian Journal of Earth Sciences, 2005, 42, 385-402.	0.6	38
419	Is Ries crater typical for its size? An analysis based upon old and new geophysical data and numerical modeling. , 2005, , .		38
420	A Revised Ground-Motion Prediction Relation for Use in Extensional Tectonic Regimes. Bulletin of the Seismological Society of America, 2005, 95, 1209-1209.	1.1	75
421	Structure and tectonics of the erosional convergent margin off Antofagasta, north Chile (23°30′S). Journal of Geophysical Research, 2005, 110, .	3.3	78
422	Gravity modeling of the Colorado Mineral Belt. Geophysical Monograph Series, 2005, , 99-106.	0.1	4
423	Background and overview of previous controlled source seismic studies. Geophysical Monograph Series, 2005, , 201-216.	0.1	1
424	Seismic investigation of the Yavapai-Mazatzal transition zone and the Jemez Lineament in northeastern New Mexico. Geophysical Monograph Series, 2005, , 227-238.	0.1	2
425	Results of the CD-ROM project seismic refraction/wide-angle reflection experiment: The upper and middle crust. Geophysical Monograph Series, 2005, , 257-269.	0.1	2
426	Crust and upper mantle velocity structure of the southern Rocky Mountains from the Jemez Lineament to the Cheyenne belt. Geophysical Monograph Series, 2005, , 293-308.	0.1	10
427	The dynamic nature of the continental crust-mantle boundary: Crustal evolution in the southern Rocky Mountain region as an example. Geophysical Monograph Series, 2005, , 403-420.	0.1	8
428	Lithospheric structure in northwestern Canada from Lithoprobe seismic refraction and related studies: a synthesis. Canadian Journal of Earth Sciences, 2005, 42, 1277-1293.	0.6	53
429	Lithospheric structure of the Trans-Hudson Orogen from seismic refraction - wide-angle reflection studies. Canadian Journal of Earth Sciences, 2005, 42, 435-456.	0.6	36
430	Current tectonics of the northern Canadian Cordillera. Canadian Journal of Earth Sciences, 2005, 42, 1117-1136.	0.6	60
431	Empirical Relations between Elastic Wavespeeds and Density in the Earth's Crust. Bulletin of the Seismological Society of America, 2005, 95, 2081-2092.	1.1	1,243
432	Regional crustal structure derived from the CD-ROM 99 seismic refraction/wide-angle reflection profile: The lower crust and upper mantle. Geophysical Monograph Series, 2005, , 271-291.	0.1	13
433	Onshore-offshore seismic transect from the eastern Nankai Trough to central Japan crossing a zone of the Tokai slow slip event. Earth, Planets and Space, 2005, 57, 943-959.	0.9	13
434	Near-Ultrahigh Pressure Processing of Continental Crust: Miocene Crustal Xenoliths from the Pamir. Journal of Petrology, 2005, 46, 1661-1687.	1.1	162

#	Article	IF	CITATIONS
435	Geophysical evaluation of the enigmatic Bedout basement high, offshore northwestern Australia. Earth and Planetary Science Letters, 2005, 237, 264-284.	1.8	43
436	Global tectonic and climatic control of mean elevation of continents, and Phanerozoic sea level change. Earth and Planetary Science Letters, 2005, 237, 524-531.	1.8	22
437	Crust–upper mantle seismic velocity structure across Southeastern China. Tectonophysics, 2005, 395, 137-157.	0.9	100
438	Crustal and upper mantle seismic structure of the Australian Plate, South Island, New Zealand. Tectonophysics, 2005, 395, 113-135.	0.9	27
439	Laboratory measurement of P-wave velocity in crustal and upper mantle xenoliths from Ichino-megata, NE Japan: ultrabasic hydrous lower crust beneath the NE Honshu arc. Tectonophysics, 2005, 396, 245-259.	0.9	50
440	Seismic and geological structure of the crust in the transition from Baltica to Palaeozoic Europe in SE Poland—CELEBRATION 2000 experiment, profile CEL02. Tectonophysics, 2005, 401, 55-77.	0.9	75
441	Crustal density structure in the Spanish Central System derived from gravity data analysis (Central) Tj ETQq0 0 0	rgBT /Ove 0.9	rlock 10 Tf 5
442	Late Palaeozoic to Triassic evolution of the Turan and Scythian platforms: The pre-history of the Palaeo-Tethyan closure. Tectonophysics, 2005, 404, 175-202.	0.9	197
443	Seismic velocities of granulite-facies xenoliths from Central Ireland: Implications for lower crustal composition and anisotropy. Tectonophysics, 2005, 407, 81-99.	0.9	23
444	The Northern and Southern Scandes $\hat{a} \in$ " structural differences revealed by an analysis of gravity anomalies, the geoid and regional isostasy. Tectonophysics, 2005, 411, 73-87.	0.9	42
445	Lithospheric structure of the Trans-European Suture Zone along the ∏Z–CELO3 seismic transect (from NW to SE Poland). Tectonophysics, 2005, 411, 129-156.	0.9	46
446	Continent-ocean transition on the VÃ,ring Plateau, NE Atlantic, derived from densely sampled ocean bottom seismometer data. Journal of Geophysical Research, 2005, 110, .	3.3	73
447	Crustal structure in Ethiopia and Kenya from receiver function analysis: Implications for rift development in eastern Africa. Journal of Geophysical Research, 2005, 110, .	3.3	182
448	Crustal and uppermost mantle structure of the Bohemian Massif based on CELEBRATION 2000 data. Journal of Geophysical Research, 2005, 110, .	3.3	107
449	West-east variation in crustal thickness in northern Lhasa block, central Tibet, from deep seismic sounding data. Journal of Geophysical Research, 2005, 110, .	3.3	96
450	Forearc structure beneath southwestern British Columbia: A three-dimensional tomographic velocity model. Journal of Geophysical Research, 2005, 110, .	3.3	45
451	Asymmetry in elastic properties and the evolution of large continental strike-slip faults. Journal of Geophysical Research, 2005, 110, .	3.3	53
452	Shear wave properties and Poisson's ratios of ultrahigh-pressure metamorphic rocks from the Dabie-Sulu orogenic belt, China: Implications for crustal composition. Journal of Geophysical Research, 2005, 110, .	3.3	58

#	Article	IF	CITATIONS
453	Waveform tomography of crustal structure in the south San Francisco Bay region. Journal of Geophysical Research, 2005, 110, .	3.3	6
454	Upper mantle structure beneath the eastern Colorado Plateau and Rio Grande rift revealed by Bouguer gravity, seismic velocities, and xenolith data. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	1.0	29
455	Crustal structure of the NE Rockall Trough from wide-angle seismic data modeling. Journal of Geophysical Research, 2005, 110, .	3.3	51
456	New standards for reducing gravity data: The North American gravity database. Geophysics, 2005, 70, J25-J32.	1.4	171
457	Imaging teleseismic P to S scattered waves using the Kirchhoff integral. Geophysical Monograph Series, 2005, , 149-169.	0.1	20
458	Late Palaeozoic intra- and pericratonic basins on the East European Craton and its margins. Geological Society Memoir, 2006, 32, 463-479.	0.9	38
459	Crustal structure and implications for the tectonic evolution of the Archean Western Superior craton from forward and inverse gravity modeling. Tectonics, 2006, 25, n/a-n/a.	1.3	10
460	Factors controlling the crustal density structure underneath active continental margins with implications for their evolution. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	1.0	24
461	Crustal velocity structure across the southern Korean Peninsula from seismic refraction survey. Geophysical Research Letters, 2006, 33, .	1.5	54
462	LowVp/Vsratios in the crust and upper mantle beneath the Sea of Okhotsk inferred from teleseismicpMP,sMP, andsMSunderside reflections from the Moho. Journal of Geophysical Research, 2006, 111, .	3.3	27
463	Southern African crustal evolution and composition: Constraints from receiver function studies. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	141
464	Crustal heat production in the Superior Province, Canadian Shield, and in North America inferred from heat flow data. Journal of Geophysical Research, 2006, 111, .	3.3	63
465	Three-dimensional density model of the Nazca plate and the Andean continental margin. Journal of Geophysical Research, 2006, 111, .	3.3	210
466	The thermal structure of subduction zone back arcs. Journal of Geophysical Research, 2006, 111, .	3.3	301
467	Imaging the transition from Aleutian subduction to Yakutat collision in central Alaska, with local earthquakes and active source data. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	228
468	Evolution of the Southern Caribbean Plate Boundary. Eos, 2006, 87, 97.	0.1	25
469	A tomographic image of upper crustal structure using P and S wave seismic refraction data in the southern granulite terrain (SGT), India. Geophysical Research Letters, 2006, 33, .	1.5	16
470	Stability of arc lower crust: Insights from the Talkeetna arc section, south central Alaska, and the seismic structure of modern arcs. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	115

#	Article	IF	CITATIONS
471	M≥ 7.0 earthquake recurrence on the San Andreas fault from a stress renewal model. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	7
472	Crustal heterogeneity around the Nagamachi-Rifu fault, northeastern Japan, as inferred from travel-time tomography. Earth, Planets and Space, 2006, 58, 843-853.	0.9	24
473	Crustal flow in Tibet: geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow. Geological Society Special Publication, 2006, 268, 39-70.	0.8	154
474	Crustal structure across the Altyn Tagh Range at the northern margin of the Tibetan Plateau and tectonic implications. Earth and Planetary Science Letters, 2006, 241, 804-814.	1.8	104
475	Lower continental crust formation through focused flow in km-scale melt conduits: The zoned ultramafic bodies of the Chilas Complex in the Kohistan island arc (NW Pakistan). Earth and Planetary Science Letters, 2006, 242, 320-342.	1.8	119
476	Support of high elevation in the southern Basin and Range based on the composition and architecture of the crust in the Basin and Range and Colorado Plateau. Earth and Planetary Science Letters, 2006, 249, 62-73.	1.8	14
477	Crust–mantle structure difference across the gravity gradient zone in North China Craton: Seismic image of the thinned continental crust. Physics of the Earth and Planetary Interiors, 2006, 159, 43-58.	0.7	92
478	Explosion seismic P and S velocity and attenuation constraints on the lower crust of the North–Central Tibetan Plateau, and comparison with the Tethyan Himalayas: Implications on composition, mineralogy, temperature, and tectonic evolution. Tectonophysics, 2006, 412, 141-157.	0.9	41
479	Crustal thickening and variations in architecture from the Qaidam basin to the Qang Tang (North–Central Tibetan Plateau) from wide-angle reflection seismology. Tectonophysics, 2006, 412, 121-140.	0.9	57
480	Imag(in)ing the continental lithosphere. Tectonophysics, 2006, 416, 167-185.	0.9	37
481	Crustal structure and evolution of the southern VÃ,ring Basin and VÃ,ring Transform Margin, NE Atlantic. Tectonophysics, 2006, 415, 167-202.	0.9	42
482	Lithological interpretation of crustal composition in the Fennoscandian Shield with seismic velocity data. Tectonophysics, 2006, 420, 283-299.	0.9	29
483	Lessons from a joint interpretation of vibroseis wide-angle and near-vertical reflection data in the northeastern Yilgarn, Western Australia. Tectonophysics, 2006, 420, 301-316.	0.9	3
484	Crustal structure of the northeastern margin of the Tibetan plateau from the Songpan-Ganzi terrane to the Ordos basin. Tectonophysics, 2006, 420, 253-266.	0.9	159
485	Crustal structure of mainland China from deep seismic sounding data. Tectonophysics, 2006, 420, 239-252.	0.9	234
486	On the role of heat flow, lithosphere thickness and lithosphere density on gravitational potential stresses. Tectonophysics, 2006, 425, 83-99.	0.9	16
487	Seismic anisotropy of the upper crust in southeastern Poland—effect of the compressional deformation at the EEC margin: Results of CELEBRATION 2000 seismic data inversion. Geophysical	1.5	23
	Research Letters, 2006, 33, .		

#	Article	IF	CITATIONS
489	The Poisson Ratio and Crustal Structure of the Central Tibetan Plateau Inferred from Indepthâ€III Teleseismic Waveforms: Geological and Geophysical Implications. Chinese Journal of Geophysics, 2006, 49, 924-931.	0.2	12
490	Experimentally derived high-pressure cumulates from hydrous arc magmas and consequences for the seismic velocity structure of lower arc crust. Geophysical Research Letters, 2006, 33, .	1.5	122
491	The Crustal Poisson Ratio and Sâ€Wave Velocity Structure Beneath the NE Tibetan Plateau Inferred from Receiver Function and Their Implications. Chinese Journal of Geophysics, 2006, 49, 1245-1254.	0.2	25
492	On "New standards for reducing gravity data: The North American gravity database―(). Geophysics, 2006, 71, X31-X32.	1.4	9
493	Crustal structure and tectonic model of northeastern Baltica, based on deep seismic and potential field data. Geological Society Memoir, 2006, 32, 521-539.	0.9	16
494	Crustal thickness variation in south-central Alaska. Geology, 2006, 34, 781.	2.0	57
495	Seismic profiling across the Mendeleev Ridge at 82°N: evidence of continental crust. Geophysical Journal International, 2006, 165, 527-544.	1.0	92
496	Crustal structure across the Colorado Basin, offshore Argentina. Geophysical Journal International, 2006, 165, 850-864.	1.0	65
497	Seismological evidence for crustal-scale thrusting in the Zagros mountain belt (Iran). Geophysical Journal International, 2006, 166, 227-237.	1.0	176
498	Crust and upper mantle structure of a continental backarc: central North Island, New Zealand. Geophysical Journal International, 2006, 166, 469-484.	1.0	85
499	Crustal structure across the transition from rifting to spreading: the Woodlark rift system of Papua New Guinea. Geophysical Journal International, 2006, 166, 622-634.	1.0	40
500	Crustal structure across the Grand Banks-Newfoundland Basin Continental Margin - I. Results from a seismic refraction profile. Geophysical Journal International, 2006, 167, 127-156.	1.0	95
501	Crustal structure of the central Nova Scotia margin off Eastern Canada. Geophysical Journal International, 2006, 166, 878-906.	1.0	68
502	Interpretation of subhorizontal crustal reflections by metamorphic and rheologic effects in the eastern part of the Pannonian Basin. Geophysical Journal International, 2006, 167, 187-203.	1.0	7
503	Three-dimensional tomographic imaging of the Taranaki volcanoes, New Zealand. Geophysical Journal International, 2006, 166, 957-969.	1.0	28
504	Analysis of the crustal velocity structure of the British Isles using teleseismic receiver functions. Geophysical Journal International, 2006, 167, 223-237.	1.0	38
505	Crustal structure and local seismicity in western Anatolia. Geophysical Journal International, 2006, 166, 1259-1269.	1.0	93
506	Lithospheric structure of an active backarc basin: the Taupo Volcanic Zone, New Zealand. Geophysical Journal International, 2006, 167, 968-990.	1.0	70

#	Article	IF	CITATIONS
507	Implications for intraplate volcanism and back-arc deformation in northwestern New Zealand, from joint inversion of receiver functions and surface waves. Geophysical Journal International, 2006, 166, 1466-1483.	1.0	70
508	Crustal velocity structure of the British Isles; a comparison of receiver functions and wide-angle seismic data. Geophysical Journal International, 2006, 166, 795-813.	1.0	24
509	Factors responsible for the high position of the Siberian platform. Izvestiya, Physics of the Solid Earth, 2006, 42, 987-998.	0.2	9
510	EUROBRIDGE: new insight into the geodynamic evolution of the East European Craton. Geological Society Memoir, 2006, 32, 599-625.	0.9	84
511	A New Passive Tomography of the Aigion Area (Gulf of Corinth, Greece) from the 2002 Data Set. Pure and Applied Geophysics, 2006, 163, 431-453.	0.8	36
512	Calibration of the Tibetan Plateau Using Regional Seismic Waveforms. Pure and Applied Geophysics, 2006, 163, 1193-1213.	0.8	20
513	Elastic properties of granulite facies rocks of Mahabalipuram, Tamil Nadu, India. Journal of Earth System Science, 2006, 115, 673-683.	0.6	15
514	Crustal P-wave velocity structure in Lower Yangtze region: Reinterpretation of Fuliji-Fengxian deep seismic sounding profile. Science Bulletin, 2006, 51, 2391-2400.	1.7	21
515	Seismic structure of Sri Lanka using receiver function analysis: A comparison with other high-grade Gondwana terrains. Gondwana Research, 2006, 10, 198-202.	3.0	25
516	lsotopic and geophysical constraints on the structure and evolution of the Clear Lake volcanic system. Journal of Volcanology and Geothermal Research, 2006, 153, 331-356.	0.8	20
517	The distribution of radiogenic heat production as a function of depth in the Sierra Nevada Batholith, California. Lithos, 2006, 86, 229-244.	0.6	64
518	Palaeozoic Intraplate Crustal Anatexis in the Mount Painter Province, South Australia: Timing, Thermal Budgets and the Role of Crustal Heat Production. Journal of Petrology, 2006, 47, 2281-2302.	1.1	59
519	The electrical resistivity structure of the crust beneath the northern Main Ethiopian Rift. Geological Society Special Publication, 2006, 259, 293-305.	0.8	50
520	Northern Main Ethiopian Rift crustal structure from new high-precision gravity data. Geological Society Special Publication, 2006, 259, 307-321.	0.8	47
521	Shifts in the locus of crustal thickening during mesoproterozoic orogenesis in the Mt Isa Terrane. Australian Journal of Earth Sciences, 2006, 53, 41-53.	0.4	16
522	Crust and Lithospheric Structure – Active Source Studies of Crust and Lithospheric Structure. , 2007, , 247-288.		1
523	Origin of CFB Magmatism: Multi-tiered Intracrustal Picrite-Rhyolite Magmatic Plumbing at Spitzkoppe, Western Namibia, during Early Cretaceous Etendeka Magmatism. Journal of Petrology, 2007, 48, 1119-1154.	1.1	51
524	Structure of the Flemish Cap margin, Newfoundland: insights into mantle and crustal processes during continental breakup. Geological Society Special Publication, 2007, 282, 47-61.	0.8	14

#	Article	IF	CITATIONS
525	Seismic Velocity Structure and Seismotectonics of the Eastern San Francisco Bay Region, California. Bulletin of the Seismological Society of America, 2007, 97, 826-842.	1.1	43
526	Gravimetric and seismic data integration in a 2D forward gravimetric modeling for the crust and lid mantle beneath northern Brasilia Belt. , 2007, , .		2
527	Crust and Lithospheric Structure - Active Source Studies of Crust and Lithospheric Structure. , 2007, , 479-511.		0
528	Crustal structure beneath the Orange Basin, South Africa. South African Journal of Geology, 2007, 110, 249-260.	0.6	25
529	Crustal structure and evolution of the Mariana intra-oceanic island arc. Geology, 2007, 35, 203.	2.0	183
530	Imaging the Three-Dimensional Crust of the Korean Peninsula by Joint Inversion of Surface-Wave Dispersion and Teleseismic Receiver Functions. Bulletin of the Seismological Society of America, 2007, 97, 1002-1011.	1.1	58
531	Habits of a glacier-covered volcano: seismicity patterns and velocity structure of Katla volcano, Iceland. Annals of Glaciology, 2007, 45, 169-177.	2.8	16
532	Water in granulites: implications for the nature and evolution of the lower continental crust. Progress in Natural Science: Materials International, 2007, 17, 117-130.	1.8	0
533	The Southern Oklahoma and Dniepr-Donets aulacogens: A comparative analysis. Memoir of the Geological Society of America, 2007, , 127-143.	0.5	23
534	Formation of the superdeep South Caspian basin: subsidence driven by phase change in continental crust. Russian Geology and Geophysics, 2007, 48, 1002-1014.	0.3	29
535	Modal mineralogy and chemical composition of the Uralide lower crust determined from physical properties data. Tectonophysics, 2007, 433, 39-51.	0.9	8
536	A composite geologic and seismic profile beneath the southern Rio Grande rift, New Mexico, based on xenolith mineralogy, temperature, and pressure. Tectonophysics, 2007, 442, 14-48.	0.9	15
537	Structure of the Wollaston Lake Reflector (Trans-Hudson Orogen, Canada) from reflection AVO analysis: Fractured diabase intrusion, fluids, or silicified shear zone?. Tectonophysics, 2007, 441, 97-114.	0.9	2
538	Seismotectonics of strike–slip earthquakes within the deep crust of southern Italy: Geometry, kinematics, stress field and crustal rheology of the Potenza 1990–1991 seismic sequences (Mmax 5.7). Tectonophysics, 2007, 445, 281-300.	0.9	38
539	Elastic properties, fabric and seismic anisotropy of amphibolites and their contribution to the lower crust reflectivity. Tectonophysics, 2007, 445, 227-244.	0.9	44
540	Crustal structure and contact relationship revealed from deep seismic sounding data in South China. Physics of the Earth and Planetary Interiors, 2007, 165, 114-126.	0.7	130
541	Crustal structure of the basin and ridge system west of New Caledonia (southwest Pacific) from wideâ€angle and reflection seismic data. Journal of Geophysical Research, 2007, 112, .	3.3	48
542	Seismic properties of lower crustal xenoliths from El Hoyazo (SE Spain): Experimental evidence up to partial melting. Earth and Planetary Science Letters, 2007, 253, 239-253.	1.8	28

#	Article	IF	CITATIONS
543	The role of radiogenic heat production in the thermal evolution of a Proterozoic granulite-facies orogenic belt: Eastern Ghats, Indian Shield. Earth and Planetary Science Letters, 2007, 254, 39-54.	1.8	46
544	3D strength and gravity anomalies of the European lithosphere. Earth and Planetary Science Letters, 2007, 263, 56-73.	1.8	41
545	Density distribution of the India plate beneath the Tibetan plateau: Geophysical and petrological constraints on the kinetics of lower-crustal eclogitization. Earth and Planetary Science Letters, 2007, 264, 226-244.	1.8	168
546	Dynamic topography of the East European craton: Shedding light upon lithospheric structure, composition and mantle dynamics. Global and Planetary Change, 2007, 58, 411-434.	1.6	56
547	Two lithospheric profiles across southern California derived from gravity and seismic data. Journal of Geodynamics, 2007, 43, 274-307.	0.7	12
548	Measurement on Wave Velocities of Rock Glasses to 900°C at 1.0 GPa and Geophysical Implications. Earth Science Frontiers, 2007, 14, 158-164.	0.5	4
549	Cenozoic behind-arc volcanism in the Bolivian Andes, South America: implications for mantle melt generation and lithospheric structure. Journal of the Geological Society, 2007, 164, 795-814.	0.9	41
550	Crust and Lithospheric Structure – Clobal Crustal Structure. , 2007, , 361-417.		10
551	Interaction of strong lower and weak middle crust during lithospheric extension in western New Zealand. Tectonics, 2007, 26, .	1.3	49
552	In situ seismic measurements in borehole LBâ€08A in the Bosumtwi impact structure, Ghana: Preliminary interpretation. Meteoritics and Planetary Science, 2007, 42, 755-768.	0.7	17
553	Compressional and shear wave velocities in South Island, New Zealand rocks and their application to the interpretation of seismological models of the New Zealand crust. Geophysical Monograph Series, 2007, , 123-155.	0.1	22
554	Do great earthquakes occur on the Alpine Fault in central South Island, New Zealand?. Geophysical Monograph Series, 2007, , 235-251.	0.1	84
555	A comparison between the transpressional plate boundaries of South Island, New Zealand, and southern California, USA: The Alpine and San Andreas Fault Systems. Geophysical Monograph Series, 2007, , 307-327.	0.1	9
556	Influence of the crust and crustal structure on the location and composition of highâ€alumina basalts of the Taupo Volcanic Zone, New Zealand. New Zealand Journal of Geology, and Geophysics, 2007, 50, 327-342.	1.0	22
557	New seismological constraints on growth of continental crust in the Izu-Bonin intra-oceanic arc. Geology, 2007, 35, 1031.	2.0	115
558	North American dynamics and western U.S. tectonics. Reviews of Geophysics, 2007, 45, .	9.0	122
559	Crustal structure of the northwestern Basin and Range Province and its transition to unextended volcanic plateaus. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	1.0	33
560	Seismological evidence for variable growth of crust along the Izu intraoceanic arc. Journal of Geophysical Research, 2007, 112, .	3.3	141

#	Article	IF	CITATIONS
561	Continental thermal isostasy: 1. Methods and sensitivity. Journal of Geophysical Research, 2007, 112, .	3.3	28
562	Continental thermal isostasy: 2. Application to North America. Journal of Geophysical Research, 2007, 112, .	3.3	28
563	Threeâ€dimensional <i>P</i> wave velocity model for the San Francisco Bay region, California. Journal of Geophysical Research, 2007, 112, .	3.3	32
564	Rifting and lower crustal reflectivity: A case study of the intracratonic Dnieprâ€Donets rift zone, Ukraine. Journal of Geophysical Research, 2007, 112, .	3.3	39
565	Receiver function study of the crustal structure of the southeastern Caribbean plate boundary and Venezuela. Journal of Geophysical Research, 2007, 112, .	3.3	77
566	Magma intrusion and deformation predictions: Sensitivities to the Mogi assumptions. Journal of Geophysical Research, 2007, 112, .	3.3	122
567	Crustal thicknesses and Poisson's ratios in China by joint analysis of teleseismic receiver functions and Rayleigh wave dispersion. Geophysical Research Letters, 2007, 34, .	1.5	22
568	Fully nonlinear inversion of fundamental mode surface waves for a global crustal model. Geophysical Research Letters, 2007, 34, .	1.5	67
569	Threeâ€dimensional gravity and magnetic modeling of crustal indentation and wedging in the western Pyreneesâ€Cantabrian Mountains. Journal of Geophysical Research, 2007, 112, .	3.3	91
570	One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. , 2007, , 1-70.		114
571	Application of stacking and inversion techniques to three-dimensional wide-angle reflection and refraction seismic data of the Eastern Alps. Geophysical Journal International, 2007, 170, 275-298.	1.0	67
572	Estimating vertical stochastic scale parameters from seismic reflection data: deconvolution with non-white reflectivity. Geophysical Journal International, 2007, 168, 769-778.	1.0	18
573	Crustal geometry of the northeastern Gulf of Aden passive margin: localization of the deformation inferred from receiver function analysis. Geophysical Journal International, 2007, 168, 1247-1260.	1.0	38
574	A three-dimensional geophysical model of the crust in the Barents Sea region: model construction and basement characterization. Geophysical Journal International, 2007, 170, 417-435.	1.0	60
575	Crustal structure of the French Guiana margin, West Equatorial Atlantic. Geophysical Journal International, 2007, 169, 964-987.	1.0	42
576	Seismic structure of Kuwait. Geophysical Journal International, 2007, 170, 299-312.	1.0	23
577	Crustal root beneath the highlands of southern Norway resolved by teleseismic receiver functions. Geophysical Journal International, 2007, 170, 1129-1138.	1.0	55
578	Continent-ocean transition and voluminous magmatic underplating derived fromP-wave velocity modelling of the East Greenland continental margin. Geophysical Journal International, 2007, 170, 580-604.	1.0	107

#	Article	IF	CITATIONS
579	Crustal structure of the south-central Andes Cordillera and backarc region from regional waveform modelling. Geophysical Journal International, 2007, 170, 858-875.	1.0	80
580	Towards understanding the lithospheric structure of the southern Chilean subduction zone (36°S-42°S) and its role in the gravity field. Geophysical Journal International, 2007, 170, 995-1014.	1.0	49
581	Evidence for underthrusting beneath the Queen Charlotte Margin, British Columbia, from teleseismic receiver function analysis. Geophysical Journal International, 0, 171, 1198-1211.	1.0	38
582	Constraining velocity and density contrasts across the crust-mantle boundary with receiver function amplitudes. Geophysical Journal International, 2007, 171, 286-301.	1.0	82
583	Moho imbrication in the Middle Urals. Terra Nova, 2007, 19, 189-194.	0.9	5
584	LPHT metamorphism in a late orogenic transpressional setting, Albera Massif, NE Iberia: implications for the geodynamic evolution of the Variscan Pyrenees. Journal of Metamorphic Geology, 2007, 25, 321-347.	1.6	32
585	Geophysical and petrological modelling of the structure and composition of the crust and upper mantle in complex geodynamic settings: The Tyrrhenian Sea and surroundings. Earth-Science Reviews, 2007, 80, 1-46.	4.0	152
586	Petrological and seismic studies of the lithosphere in the earthquake swarm region Vogtland/NW Bohemia, central Europe. Journal of Volcanology and Geothermal Research, 2007, 159, 33-69.	0.8	31
587	Characteristics of a kilometer-scale high strain zone in the lower continental crust: Mt. Hay block, central Australia. Journal of Structural Geology, 2007, 29, 562-582.	1.0	8
588	Formation of the South Caspian basin as a result of phase transitions in the lower continental crust. Doklady Earth Sciences, 2007, 417, 1141-1146.	0.2	7
589	Gravity and S-wave modelling across the Jan Mayen Ridge, North Atlantic; implications for crustal lithology. Marine Geophysical Researches, 2007, 28, 27-41.	0.5	31
590	MT+, Integrating Magnetotellurics to Determine Earth Structure, Physical State, and Processes. Surveys in Geophysics, 2007, 28, 121-167.	2.1	75
591	Seismic velocity and Poisson's ratio tomography of the crust beneath southwest Anatolia: an insight into the occurrence of large earthquakes. Journal of Seismology, 2007, 11, 415-432.	0.6	21
592	Vp of muscovite-biotite gneiss up to 950°C at 400 MPa: Constraints on the origin of abnormal seismic layers in continental crust. Science Bulletin, 2007, 52, 3397-3402.	1.7	0
593	Gravity analysis of the main Ethiopian rift. Journal of African Earth Sciences, 2007, 48, 59-69.	0.9	40
594	Crustal structure and tectonic provinces of the Riiser-Larsen Sea area (East Antarctica): results of geophysical studies. Marine Geophysical Researches, 2008, 29, 135-158.	0.5	46
595	Key elements of regional seismic velocity models for long period ground motion simulations. Journal of Seismology, 2008, 12, 217-221.	0.6	61
597	Making continental crust: The sanukitoid connection. Science Bulletin, 2008, 53, 1620-1633.	4.3	44

#	Article	IF	CITATIONS
598	Improving the level of seismic hazard parameters in Saudi Arabia using earthquake location. Arabian Journal of Geosciences, 2008, 1, 1-15.	0.6	10
599	Demerara Plateau - the structure and evolution of a transform passive margin. Geophysical Journal International, 2008, 172, 549-564.	1.0	48
600	Imprints of a Proterozoic tectonothermal anomaly below the 1.1 Ga kimberlitic province of Southwest Cuddapah basin, Dharwar craton (Southern India). Geophysical Journal International, 2008, 172, 422-438.	1.0	37
601	Lithospheric structure and deep earthquakes beneath India, the Himalaya and southern Tibet. Geophysical Journal International, 2008, 172, 345-362.	1.0	199
602	Crustal tomographic imaging of a transitional continental rift: the Ethiopian rift. Geophysical Journal International, 2008, 172, 1033-1048.	1.0	80
603	Moho depth and Poisson's ratio in the Western-Central Alps from receiver functions. Geophysical Journal International, 2008, 173, 249-264.	1.0	83
604	Three-dimensional gravity inversion for Moho depth at rifted continental margins incorporating a lithosphere thermal gravity anomaly correction. Geophysical Journal International, 2008, 174, 1-13.	1.0	115
605	Core-log integration studies in hole-A of Taiwan Chelungpu-fault Drilling Project. Geophysical Journal International, 2008, 174, 949-965.	1.0	23
606	Structure and composition of the crust and upper mantle of the Archean-Proterozoic boundary in the Fennoscandian shield obtained by joint inversion of receiver function and surface wave phase velocity of recording of the SVEKALAPKO array. Geophysical Journal International, 2008, 175, 135-152.	1.0	30
607	Constraints on crustal structure and composition within a continental suture zone in the Irish Caledonides from shear wave wide-angle reflection data and lower crustal xenoliths. Geophysical Journal International, 2008, 175, 1254-1272.	1.0	24
608	Mountain building processes during continent–continent collision in the Uralides. Earth-Science Reviews, 2008, 89, 177-195.	4.0	24
609	Eastern Turkish high plateau as a small Turkic-type orogen: Implications for post-collisional crust-forming processes in Turkic-type orogens. Earth-Science Reviews, 2008, 90, 1-48.	4.0	246
610	Identification and analysis of shear waves recorded by three-component OBSs in northeastern South China Sea. Progress in Natural Science: Materials International, 2008, 18, 181-188.	1.8	6
611	Geophysical imaging of buried volcanic structures within a continental back-arc basin: The Central Volcanic Region, North Island, New Zealand. Journal of Volcanology and Geothermal Research, 2008, 174, 257-268.	0.8	10
612	Composition of the crust beneath southeastern China derived from an integrated geophysical data set. Journal of Geophysical Research, 2008, 113, .	3.3	49
613	Radially anisotropic shear velocity structure of the upper mantle globally and beneath North America. Journal of Geophysical Research, 2008, 113, .	3.3	245
614	Threeâ€dimensional crustal structure of the Mariana island arc from seismic tomography. Journal of Geophysical Research, 2008, 113, .	3.3	76
615	Conditions for a crustal block to be sheared off from the subducted continental lithosphere: What is an essential factor to cause features associated with collision?. Journal of Geophysical Research, 2008, 113, .	3.3	23

#	Article	IF	CITATIONS
616	Seismic constraints on a large mafic intrusion with implications for the subsidence history of the Danish Basin. Journal of Geophysical Research, 2008, 113, .	3.3	19
617	Heterogeneous crust and upper mantle across the SE Brazilian Highlands and the relationship to surface deformation as inferred from magnetotelluric imaging. Journal of Geophysical Research, 2008, 113, .	3.3	13
618	Seismic structure of the southern Gulf of California from Los Cabos block to the East Pacific Rise. Journal of Geophysical Research, 2008, 113, .	3.3	17
619	Structure and growth of the Izuâ€Boninâ€Mariana arc crust: 1. Seismic constraint on crust and mantle structure of the Mariana arc–backâ€arc system. Journal of Geophysical Research, 2008, 113, .	3.3	98
620	Structure and growth of the Izuâ€Boninâ€Mariana arc crust: 2. Role of crustâ€mantle transformation and the transparent Moho in arc crust evolution. Journal of Geophysical Research, 2008, 113, .	3.3	136
621	Dissipation analysis as a guide to mode selection during crustal extension and implications for the styles of sedimentary basins. Journal of Geophysical Research, 2008, 113, .	3.3	45
622	Static stress changes induced by the magmatic intrusions during the 2002–2003 Etna eruption. Journal of Geophysical Research, 2008, 113, .	3.3	30
623	Nature of the crust beneath northwest Basin and Range province from teleseismic receiver function data. Journal of Geophysical Research, 2008, 113, .	3.3	17
624	Crustal structure of the Caribbean–northeastern South America arc ontinent collision zone. Journal of Geophysical Research, 2008, 113, .	3.3	65
625	Deep crustal structure of the Paraná Basin from receiver functions and Rayleighâ€wave dispersion: Evidence for a fragmented cratonic root. Journal of Geophysical Research, 2008, 113, .	3.3	56
626	Threeâ€dimensional crustal <i>S</i> wave velocity structure in Japan using microseismic data recorded by Hiâ€net tiltmeters. Journal of Geophysical Research, 2008, 113, .	3.3	125
627	Seismic structure of the crust and the upper mantle beneath the Himalayas: Evidence for eclogitization of lower crustal rocks in the Indian Plate. Journal of Geophysical Research, 2008, 113, .	3.3	74
628	Lithospheric structure of the Bohemian Massif and adjacent Variscan belt in central Europe based on profile S01 from the SUDETES 2003 experiment. Journal of Geophysical Research, 2008, 113, .	3.3	77
629	Rapid exhumation and mountain building in the Western Alps: Petrology and ⁴⁰ Ar/ ³⁹ Ar geochronology of detritus from Tertiary basins of southeastern France. Tectonics, 2008, 27, .	1.3	21
630	Crustal rheology and seismicity in the Gibraltar Arc (western Mediterranean). Tectonics, 2008, 27, .	1.3	29
631	Thermal structure of the crust in the Gibraltar Arc: Influence on active tectonics in the western Mediterranean. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	33
632	Seismic imaging of a possible paleoarc in the Izuâ€Bonin intraoceanic arc and its implications for arc evolution processes. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	39
633	Upper mantle seismic structure beneath the Ethiopian hot spot: Rifting at the edge of the African lowâ€velocity anomaly. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	178
#	Article	IF	CITATIONS
-----	--	-----	-----------
634	Seismic images of a collision zone offshore NW Sabah/Borneo. Marine and Petroleum Geology, 2008, 25, 606-624.	1.5	97
635	Pliocene-Quaternary orogeny in the Central Tien Shan. Russian Geology and Geophysics, 2008, 49, 98-112.	0.3	32
636	Seismic velocity structure around the Hyuganada region, Southwest Japan, derived from seismic tomography using land and OBS data and its implications for interplate coupling and vertical crustal uplift. Physics of the Earth and Planetary Interiors, 2008, 167, 19-33.	0.7	30
637	Three-dimensional tomography and rock properties of the Larderello-Travale geothermal area, Italy. Physics of the Earth and Planetary Interiors, 2008, 168, 37-48.	0.7	26
638	Secondary phase validation—Phase classification by polarization. Physics of the Earth and Planetary Interiors, 2008, 168, 231-236.	0.7	4
639	Delamination of eclogitized lower crust: Control on the crust–mantle boundary in the central Fennoscandian shield. Tectonophysics, 2008, 457, 111-127.	0.9	41
640	Crustal structure at the easternmost termination of the Variscan belt based on CELEBRATION 2000 and ALP 2002 data. Tectonophysics, 2008, 460, 55-75.	0.9	37
641	Heat flow and lithospheric thermal regime in the Northeast German Basin. Tectonophysics, 2008, 460, 215-229.	0.9	71
642	Discontinuous and diachronous evolution of the Main Ethiopian Rift: Implications for development of continental rifts. Earth and Planetary Science Letters, 2008, 265, 96-111.	1.8	129
643	Amphibole and lower crustal seismic properties. Earth and Planetary Science Letters, 2008, 267, 118-128.	1.8	171
644	Lithosphere structure underneath the Tibetan Plateau inferred from elevation, gravity and geoid anomalies. Earth and Planetary Science Letters, 2008, 267, 276-289.	1.8	167
645	Age of Seychelles–India break-up. Earth and Planetary Science Letters, 2008, 272, 264-277.	1.8	185
646	Do fracture zones define continental margin segmentation? — Evidence from the French Guiana margin. Earth and Planetary Science Letters, 2008, 272, 553-566.	1.8	17
647	Intraplate continental deformation: Influence of a heat-producing layer in the lithospheric mantle. Earth and Planetary Science Letters, 2008, 274, 392-400.	1.8	32
648	A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth and Planetary Science Letters, 2008, 275, 326-336.	1.8	179
649	Lithium isotopic composition and concentration of the deep continental crust. Chemical Geology, 2008, 255, 47-59.	1.4	98
650	Teleseismic traveltimes, topography and the lithospheric structure across central Mongolia. Geophysical Research Letters, 2008, 35, .	1.5	27
651	Crustal structure at colliding plates boundary from receiver functions analysis: A close look beneath the northern Apennines (Italy). Geophysical Research Letters, 2008, 35, .	1.5	9

#	Article	IF	CITATIONS
652	Simultaneous high Pâ€T measurements of ultrasonic compressional and shear wave velocities in Ichinoâ€megata mafic xenoliths: Their bearings on seismic velocity perturbations in lower crust of northeast Japan arc. Journal of Geophysical Research, 2008, 113, .	3.3	46
653	Crustal structure of the southern margin of the African continent: Results from geophysical experiments. Journal of Geophysical Research, 2008, 113, .	3.3	32
654	Deep subduction and rapid exhumation: Role of crustal strength and strain weakening in continental subduction and ultrahighâ€pressure rock exhumation. Tectonics, 2008, 27, .	1.3	72
655	Automatic Wave Group Identification on Deep Seismic Refraction Data Using SMF Clustering. IEEE Geoscience and Remote Sensing Letters, 2008, 5, 687-690.	1.4	2
656	Elastic properties of high-grade metamorphosed igneous rocks from Enderby Land and eastern Dronning Maud Land, Antarctica: evidence for biotite-bearing mafic lower crust. Geological Society Special Publication, 2008, 308, 183-194.	0.8	6
657	Trans-Alaska Crustal Transect and continental evolution involving subduction underplating and synchronous foreland thrusting. Geology, 2008, 36, 267.	2.0	139
658	Crustal Thickness Variations across the Blue Ridge Mountains, Southern Appalachians: An Alternative Procedure for Migrating Wide-Angle Reflection Data. Bulletin of the Seismological Society of America, 2008, 98, 469-475.	1.1	15
659	Deep-crust strike-slip earthquake faulting in southern Italy aided by high fluid pressure: insights from rheological analysis. Geological Society Special Publication, 2008, 299, 195-210.	0.8	7
660	Volatiles in High-K Magmas from the Western Trans-Mexican Volcanic Belt: Evidence for Fluid Fluxing and Extreme Enrichment of the Mantle Wedge by Subduction Processes. Journal of Petrology, 2008, 49, 1589-1618.	1.1	119
661	Compressional and Shear-Wave Velocity versus Depth Relations for Common Rock Types in Northern California. Bulletin of the Seismological Society of America, 2008, 98, 950-968.	1.1	89
662	Exhumation Settings, Part I: Relatively Simple Cases. International Geology Review, 2008, 50, 97-120.	1.1	10
663	Study on Crustal Composition and Geodynamics Using Seismic Velocities in the Northeastern Margin of the Tibetan Plateau. Chinese Journal of Geophysics, 2008, 51, 275-297.	0.2	9
664	Frequency Dependence of Coda Q, Part I: Numerical Modeling and Examples from Peaceful Nuclear Explosions. Bulletin of the Seismological Society of America, 2008, 98, 2615-2628.	1.1	16
665	Composition and evolution of the continental crust. , 2008, , 301-324.		3
666	Three-Dimensional P-Wave Velocity Structure and Precise Earthquake Relocation at Great Sitkin Volcano, Alaska. Bulletin of the Seismological Society of America, 2008, 98, 2428-2448.	1.1	18
667	The Post-Archean continental crust. , 0, , 275-300.		0
668	Flow and diffusion. , 0, , 389-413.		1
669	Effective elastic media: bounds and mixing laws. , 2009, , 169-228.		3

ARTICLE IF CITATIONS 670 Fluid effects on wave propagation., 0, , 266-346. 0 A WADATI FILTER FOR MINE-INDUCED SEISMICITY. South African Journal of Geology, 2009, 112, 371-380. 671 A case study of lateral spreading: the Precambrian Svecofennian Orogen. Geological Society Special 672 0.8 11 Publication, 2009, 321, 225-251. P- and S-Wave Receiver Function Images of Crustal Imbrication beneath the Cheyenne Belt in Southeast Wyoming. Bulletin of the Seismological Society of America, 2009, 99, 1953-1961. Crustal structure and density models of central sector of Tocantins Province from deep seismic 674 0 refraction experiment., 2009,,. Arc-continent collisions, sediment recycling and the maintenance of the continental crust. Geological Society Special Publication, 2009, 318, 75-103. 0.8 CRUSTAL VELOCITY STRUCTURE OF THE RUKWA RIFT IN THE WESTERN BRANCH OF THE EAST AFRICAN RIFT 676 0.6 13 SYSTEM. South African Journal of Geology, 2009, 112, 251-260. VP Structure of Mount St. Helens, Washington, USA, imaged with local earthquake tomography. 0.8 70 Journal of Volcanology and Geothermal Research, 2009, 182, 113-122. Crustal redistribution, crustâ€"mantle recycling and Phanerozoic evolution of the continental crust. 678 4.0 179 Earth-Science Reviews, 2009, 97, 80-104. Gravity crustal models and heat flow measurements for the Eurasia Basin, Arctic Ocean. Marine 679 Geophysical Researches, 2009, 30, 277-292. Estimation of Vertical Continuous Stochastic Parameters from Seismic Reflection Data. Mathematical 680 1.4 1 Geosciences, 2009, 41, 761-777. Construction of regional and local seismic anisotropic structures from wide-angle seismic data: crustal deformation in the southeast of China. Journal of Seismology, 2009, 13, 241-252. Petrologic composition model of the upper crust in Bohai Bay basin, China, based on Lamé impedances. 682 0.1 10 Applied Geophysics, 2009, 6, 327-336. The thickness and structural characteristics of the crust across Tibetan plateau from active-sources 0.4 seismic profiles. Earthquake Science, 2009, 22, 21-31. Crustal wide-angle reflection imaging along Lianxian-Gangkou profile in Guangdong province, China. 684 0.4 1 Earthquake Science, 2009, 22, 357-363. Lithospheric thermal isostasy of north continental margin of the South China Sea. Journal of Earth 1.1 Science (Wuhan, China), 2009, 20, 95-106. Structure, tectonics and thermal state of the Lithosphere beneath intraplate seismic region of Latur, 686 0.5 6 central India: An appraisal. Journal of the Geological Society of India, 2009, 73, 457-468. Shallowing of mafic crust and seismic instability in the high velocity Indian Shield. Journal of the Geological Society of India, 2009, 74, 615-624.

#	Article	IF	CITATIONS
688	Thinning of granitic-gneissic crust below uplifting hyderabad granitic region of the eastern Dharwar craton (south Indian shield): Evidence from AMT/CSAMT experiment. Journal of the Geological Society of India, 2009, 74, 697-702.	0.5	2
689	Systematic Methodology for Velocity-dependent Gravity Modelling of Density Crustal Cross-Sections, using an Optimization Procedure. Pure and Applied Geophysics, 2009, 166, 375-408.	0.8	7
690	Structural Properties and Deformation Patterns of Evolving Strike-slip Faults: Numerical Simulations Incorporating Damage Rheology. Pure and Applied Geophysics, 2009, 166, 1537-1573.	0.8	94
691	The Moho depth map of the European Plate. Geophysical Journal International, 2009, 176, 279-292.	1.0	328
692	From Devonian extensional collapse to early Eocene continental break-up: an extended transect of the Kejser Franz Joseph Fjord of the East Greenland margin. Geophysical Journal International, 2009, 177, 743-754.	1.0	20
693	Shallow seismic structure of Kunlun fault zone in northern Tibetan Plateau, China: implications for the 2001 <i>M</i> s8.1 Kunlun earthquake. Geophysical Journal International, 2009, 177, 978-1000.	1.0	10
694	Variations in magmatic processes along the East Greenland volcanic margin. Geophysical Journal International, 2009, 177, 755-782.	1.0	63
695	Seismic tomography of crustalPandSacross Eurasia. Geophysical Journal International, 2009, 177, 81-92.	1.0	22
696	A 3-D shear velocity model of the crust and uppermost mantle beneath the United States from ambient seismic noise. Geophysical Journal International, 2009, 177, 1177-1196.	1.0	105
697	Seismic imaging of the crust beneath Dronning Maud Land, East Antarctica. Geophysical Journal International, 2009, 178, 860-876.	1.0	22
698	New Moho Map for onshore southern Norway. Geophysical Journal International, 2009, 178, 1755-1765.	1.0	65
699	3-D modelling of the crustal <i>S</i> -wave velocity structure from active source data: application to the Eastern Alps and the Bohemian Massif. Geophysical Journal International, 2009, 179, 265-278.	1.0	22
700	Crustal structure at the contact of the Dinarides and Pannonian basin based on 2-D seismic and gravity interpretation of the Alp07 profile in the ALP 2002 experiment. Geophysical Journal International, 2009, 179, 615-633.	1.0	44
701	Three-dimensional <i>P</i> -wave velocity structure on the shallow part of the Central Costa Rican Pacific margin from local earthquake tomography using off- and onshore networks. Geophysical Journal International, 2009, 179, 827-849.	1.0	45
702	Structural units of the central arctic and their relations to the mesozoic arctic plume. Geotectonics, 2009, 43, 462-485.	0.2	16
703	Tholeiitic vs Calc-alkalic Differentiation and Evolution of Arc Crust: Constraints from Melting Experiments on a Basalt from the Izu-Bonin-Mariana Arc. Journal of Petrology, 2009, 50, 1575-1603.	1.1	81
704	Geophysical characterisation of the ocean–continent transition at magma-poor rifted margins. Comptes Rendus - Geoscience, 2009, 341, 382-393.	0.4	76
705	An integrated kinematic and geochemical model to determine lithospheric extension and mantle temperature from syn-rift volcanic compositions. Earth and Planetary Science Letters, 2009, 278, 26-39.	1.8	6

#	Article	IF	CITATIONS
706	Gravitational potential stresses and stress field of passive continental margins: Insights from the south-Norway shelf. Earth and Planetary Science Letters, 2009, 277, 464-473.	1.8	63
707	Laboratory measurements of P-wave and S-wave velocities across a surface analog of the continental crust–mantle boundary: Cabo Ortegal, Spain. Earth and Planetary Science Letters, 2009, 285, 27-38.	1.8	26
708	Crustal structure of a young margin pair: New results across the Liguro–Provencal Basin from wide-angle seismic tomography. Earth and Planetary Science Letters, 2009, 286, 333-345.	1.8	58
709	Lithium isotopic systematics of A-type granites and their mafic enclaves: Further constraints on the Li isotopic composition of the continental crust. Chemical Geology, 2009, 262, 370-379.	1.4	91
710	Tomographic imaging of the convergent zone in Eastern Taiwan — A subducting forearc sliver revealed?. Tectonophysics, 2009, 466, 170-183.	0.9	23
711	Crustal evolution of the southwestern Kuril Arc, Hokkaido Japan, deduced from seismic velocity and geochemical structure. Tectonophysics, 2009, 472, 105-123.	0.9	34
712	Deep structure of the western South African passive margin — Results of a combined approach of seismic, gravity and isostatic investigations. Tectonophysics, 2009, 470, 57-70.	0.9	79
713	Extensional and magmatic nature of the Campbell Plateau and Great South Basin from deep crustal studies. Tectonophysics, 2009, 472, 213-225.	0.9	34
714	Extension of continental crust at the margin of the eastern Grand Banks, Newfoundland. Tectonophysics, 2009, 468, 131-148.	0.9	75
715	Seismic imaging and modelling of the lithosphere of SW-Iberia. Tectonophysics, 2009, 472, 148-157.	0.9	20
716	Layered crust–mantle transition zone below a large crustal intrusion in the Norwegian–Danish Basin. Tectonophysics, 2009, 472, 194-212.	0.9	13
717	The crust and mantle lithosphere in the Barents Sea/Kara Sea region. Tectonophysics, 2009, 470, 89-104.	0.9	69
718	P- and S-wave velocities of the lowermost crustal rocks from the Kohistan arc: Implications for seismic Moho discontinuity attributed to abundant garnet. Tectonophysics, 2009, 467, 44-54.	0.9	31
719	The growth and destruction of continental crust during arc–continent collision in the Southern Urals. Tectonophysics, 2009, 479, 185-196.	0.9	13
720	Crustal and upper mantle velocity structure in Yunnan, Southwest China. Tectonophysics, 2009, 471, 171-185.	0.9	45
721	Crustal anisotropy in southwest Ireland from analysis of controlled source shear-wave data. Tectonophysics, 2009, 474, 571-583.	0.9	11
722	Crustal structure across the Three Gorges area of the Yangtze platform, central China, from seismic refraction/wide-angle reflection data. Tectonophysics, 2009, 475, 423-437.	0.9	35
723	The lithospheric structure of the Western Carpathian–Pannonian Basin region based on the CELEBRATION 2000 seismic experiment and gravity modelling. Tectonophysics, 2009, 475, 454-469.	0.9	63

		Report	
#	Article	IF	CITATIONS
724	A new thermal and rheological model of the European lithosphere. Tectonophysics, 2009, 476, 478-495.	0.9	105
725	Continental margin deformation along the Andean subduction zone: Thermo-mechanical models. Physics of the Earth and Planetary Interiors, 2009, 177, 180-205.	0.7	34
726	3D density model of the Central Andes. Physics of the Earth and Planetary Interiors, 2009, 177, 217-234.	0.7	57
727	Flexure and seismicity across the ocean–continent transition in the Gulf of Cadiz. Journal of Geodynamics, 2009, 47, 119-129.	0.7	7
728	Upwarped high velocity mafic crust, subsurface tectonics and causes of intraplate Latur-Killari (M) Tj ETQq0 0 0 34, 781-795.	rgBT /Ove 1.0	rlock 10 Tf 50 39
729	Thermal and Rheological Model of the European Lithosphere. , 2009, , 71-101.		5
730	Nature of the lithosphere across the Variscan orogen of SW Iberia: Dense wideâ€angle seismic reflection data. Journal of Geophysical Research, 2009, 114, .	3.3	54
731	Joint inversion of surface wave velocity and gravity observations and its application to central Asian basins shear velocity structure. Journal of Geophysical Research, 2009, 114, .	3.3	70
732	Earth's global Ag, Al, Cr, Cu, Fe, Ni, Pb, and Zn cycles. Global Biogeochemical Cycles, 2009, 23, .	1.9	256
733	Amplitude modeling of the seismic reflectors in the crustâ€mantle transition layer beneath the volcanic front along the northern Izuâ€Bonin island arc. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	16
734	Structural variations of arc crusts and rifted margins in the southern Izuâ€Ogasawara arc–back arc system. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	65
735	Southern African continental margin: Dynamic processes of a transform margin. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	46
736	Linking active margin dynamics to overriding plate deformation: Synthesizing geophysical images with geological data from the Norfolk Basin. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	14
737	Lower crustal earthquakes near the Ethiopian rift induced by magmatic processes. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	85
738	LitMod3D: An interactive 3â€D software to model the thermal, compositional, density, seismological, and rheological structure of the lithosphere and sublithospheric upper mantle. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	107
739	Crustal structure in the Pakistan Himalaya from teleseismic receiver functions. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	15
740	Sundaâ€Banda arc transition: Incipient continentâ€island arc collision (northwest Australia). Geophysical Research Letters, 2009, 36, .	1.5	45
741	Crustal structure across Longmenshan fault belt from passive source seismic profiling. Geophysical Research Letters, 2009, 36, .	1.5	164

#	Article	IF	CITATIONS
742	Response of a multi-domain continental margin to compression: Study from seismic reflection–refraction and numerical modelling in the Tagus Abyssal Plain. Tectonophysics, 2009, 468, 113-130.	0.9	29
743	Continent elevation, mountains, and erosion: Freeboard implications. Journal of Geophysical Research, 2009, 114, .	3.3	18
744	Shear wave velocity structure of the lower crust in southern Africa: Evidence for compositional heterogeneity within Archaean and Proterozoic terrains. Journal of Geophysical Research, 2009, 114, .	3.3	59
745	Deep crustal structure of the Indian shield from joint inversion of P wave receiver functions and Rayleigh wave group velocities: Implications for Precambrian crustal evolution. Journal of Geophysical Research, 2009, 114, .	3.3	92
746	Crustal structure beneath the Floridaâ€ŧoâ€Edmonton broadband seismometer array. Geophysical Research Letters, 2009, 36, .	1.5	31
747	Threeâ€dimensional model of Hellenic Arc deformation and origin of the Cretan uplift. Journal of Geophysical Research, 2009, 114, .	3.3	78
748	Shallow subduction beneath Italy: Threeâ€dimensional images of the Adriaticâ€Europeanâ€Tyrrhenian lithosphere system based on highâ€quality <i>P</i> wave arrival times. Journal of Geophysical Research, 2009, 114, .	3.3	124
749	Models of the upper mantle beneath the central North Island, New Zealand, from speeds and anisotropy of subhorizontal P waves (Pn). Journal of Geophysical Research, 2009, 114, .	3.3	21
750	Crustal structure of the South American–Caribbean plate boundary at 67°W from controlled source seismic data. Journal of Geophysical Research, 2009, 114, .	3.3	31
751	No Moho uplift below the Baikal Rift Zone: Evidence from a seismic refraction profile across southern Lake Baikal. Journal of Geophysical Research, 2009, 114, .	3.3	39
752	An integrated analysis of controlled and passive source seismic data across an Archeanâ€Proterozoic suture zone in the Rocky Mountains. Journal of Geophysical Research, 2009, 114, .	3.3	16
753	Factors influencing magmatism during continental breakup: New insights from a wideâ€angle seismic experiment across the conjugate Seychellesâ€Indian margins. Journal of Geophysical Research, 2009, 114,	3.3	44
754	Moho depth and <i>V</i> _{<i>p</i>} / <i>V</i> _{<i>s</i>} ratio in peninsular Italy from teleseismic receiver functions. Journal of Geophysical Research, 2009, 114, .	3.3	110
755	Gravity modeling of the oceanâ€continent transition along the South Atlantic margins. Journal of Geophysical Research, 2009, 114, .	3.3	18
756	Plutonism at different crustal levels: Insights from the ~5–40 km (paleodepth) North Cascades crustal section, Washington. , 2009, , .		28
757	Elasticity and Hooke's law. , 0, , 21-80.		4
758	Crustal Pâ€Wave Velocity Structure and Layering Beneath Zhujiangkou–Qiongdongnan Basins in the Northern Continental Margin of South China Sea. Chinese Journal of Geophysics, 2009, 52, 1012-1023.	0.2	5
759	Potential field evidence for a volcanic rifted margin along the Texas Gulf Coast. Geology, 2009, 37, 387-390.	2.0	77

#	Article	IF	CITATIONS
760	Nature of the Moho transition in NW Canada from combined near-vertical and wide-angle seismic-reflection studies. Lithosphere, 2010, 2, 377-396.	0.6	8
761	Microstructure and elastic anisotropy of naturally deformed leucogneiss from a shear zone in Montalto (southern Calabria, Italy). Geological Society Special Publication, 2010, 332, 49-68.	0.8	20
762	Formation of deep-water depressions in the Russian sector of the American-Asian basin due to eclogitization of the lower part of the continental crust. Doklady Earth Sciences, 2010, 431, 502-506.	0.2	8
763	Attenuation coefficients of Rayleigh and Lg waves. Journal of Seismology, 2010, 14, 803-822.	0.6	10
764	Gravity modeling of the Muertos Trough and tectonic implications (north-eastern Caribbean). Marine Geophysical Researches, 2010, 31, 263-283.	0.5	17
765	Magma chamber stability in arc and continental crust. Journal of Volcanology and Geothermal Research, 2010, 190, 249-270.	0.8	91
766	Crust–mantle structure of the central North Island, New Zealand, based on seismological observations. Journal of Volcanology and Geothermal Research, 2010, 190, 58-74.	0.8	30
767	Scattered wave imaging of the lithosphere–asthenosphere boundary. Lithos, 2010, 120, 173-185.	0.6	71
768	Lithospheric cooling and thickening as a basin forming mechanism. Tectonophysics, 2010, 495, 184-194.	0.9	28
769	Lithosphere tectonics and thermo-mechanical properties: An integrated modelling approach for Enhanced Geothermal Systems exploration in Europe. Earth-Science Reviews, 2010, 102, 159-206.	4.0	97
770	The fine-scale structure of upper continental lithosphere from seismic waveform methods: insights into Phanerozoic crustal formation processes. Geophysical Journal International, 2010, 180, 101-124.	1.0	17
771	Seismic tomography of the southern California crust based on spectral-element and adjoint methods. Geophysical Journal International, 2010, 180, 433-462.	1.0	321
772	Evidence of partial melting beneath a continental margin: case of Dhofar, in the Northeast Gulf of Aden (Sultanate of Oman). Geophysical Journal International, 2010, 180, 520-534.	1.0	27
773	Upper crustal structure of an active volcano from refraction/reflection tomography, Montserrat, Lesser Antilles. Geophysical Journal International, 2010, 180, 685-696.	1.0	63
774	Structure and rifting evolution of the northern Newfoundland Basin from Erable multichannel seismic reflection profiles across the southeastern margin of Flemish Cap. Geophysical Journal International, 2010, 180, 976-998.	1.0	37
775	Intraplate earthquake swarm in Belo Jardim, NE Brazil: reactivation of a major Neoproterozoic shear zone (Pernambuco Lineament). Geophysical Journal International, 2010, 180, 1303-1312.	1.0	35
776	Resolving crustal thickness using SS waveform stacks. Geophysical Journal International, 2010, 180, 1128-1137.	1.0	20
777	Shear-velocity and anisotropy structure of a retreating extensional forearc (Tuscany, Italy) from receiver functions inversion. Geophysical Journal International, 2010, 181, 545-556.	1.0	8

#	Article	IF	CITATIONS
778	Receiver function inversion by trans-dimensional Monte Carlo sampling. Geophysical Journal International, 2010, , .	1.0	56
779	Crustal structure of the Tethyan Himalaya, southern Tibet: new constraints from old wide-angle seismic data. Geophysical Journal International, 2010, , .	1.0	16
780	Bathymetry, controlled source seismic and gravity observations of the Mendeleev ridge; implications for ridge structure, origin, and regional tectonics. Geophysical Journal International, 2010, 183, 481-502.	1.0	48
781	From the Variscan to the Alpine Orogeny: crustal structure of the Bohemian Massif and the Western Carpathians in the light of the SUDETES 2003 seismic data. Geophysical Journal International, 2010, 183, 611-633.	1.0	43
782	Structure of the crust beneath Cameroon, West Africa, from the joint inversion of Rayleigh wave group velocities and receiver functions. Geophysical Journal International, 2010, 183, 1061-1076.	1.0	130
783	Structure across the northeastern margin of Flemish Cap, offshore Newfoundland from Erable multichannel seismic reflection profiles: evidence for a transtensional rifting environment. Geophysical Journal International, 2010, 183, 572-586.	1.0	34
784	Underthrusting of Tarim beneath the Tien Shan and deep structure of their junction zone: Main results of seismic experiment along MANAS Profile Kashgar-Song-Köl. Geotectonics, 2010, 44, 102-126.	0.2	91
785	Geophysical implications of Izu–Bonin mantle wedge hydration from chemical geodynamic modeling. Island Arc, 2010, 19, 134-150.	0.5	4
786	Simultaneous measurements of compressional wave and shear wave velocities, Poisson's ratio, and <i>Vp</i> / <i>Vs</i> under deep crustal pressure and temperature conditions: Example of silicified pelitic schist from Ryoke Belt, Southwest Japan. Island Arc, 2010, 19, 30-39.	0.5	11
787	Seismicity and crustal structure in the vicinity of the southern Itoigawa-Shizuoka Tectonic Line. Earth, Planets and Space, 2010, 62, 223-235.	0.9	3
789	The Yakutat terrane: Dramatic change in crustal thickness across the Transition fault, Alaska. Geology, 2010, 38, 895-898.	2.0	129
790	Missing Oligocene Crust of the Izu-Bonin Arc: Consumed or Rejuvenated During Collision?. Journal of Petrology, 2010, 51, 823-846.	1.1	56
791	Quantum magmatism: Magmatic compositional gaps generated by melt-crystal dynamics. Geology, 2010, 38, 687-690.	2.0	284
792	Mapping of crustal scale tectonic boundaries in the Ossa-Morena Zone using reprocessed IBERSEIS reflection seismic data. Tectonophysics, 2010, 489, 139-158.	0.9	13
793	Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling. Tectonophysics, 2010, 490, 152-164.	0.9	168
794	Imaging detailed crustal structure and magmatic intrusion across the Ethiopian Rift using a dense linear broadband array. Geochemistry, Geophysics, Geosystems, 2010, 11, .	1.0	50
795	Crustal structure beneath Montserrat, Lesser Antilles, constrained by xenoliths, seismic velocity structure and petrology. Geophysical Research Letters, 2010, 37, .	1.5	35
796	Tectonic evolution of the Northeastern South China Sea from seismic interpretation. Journal of Geophysical Research, 2010, 115, .	3.3	52

#	Article	IF	CITATIONS
797	Crustal structure beneath China from receiver function analysis. Journal of Geophysical Research, 2010, 115, .	3.3	68
798	Limits of the seismogenic zone in the epicentral region of the 26 December 2004 great Sumatraâ€Andaman earthquake: Results from seismic refraction and wideâ€angle reflection surveys and thermal modeling. Journal of Geophysical Research, 2010, 115, .	3.3	57
799	Crustal thickness and average <i>V</i> _{<i>p</i>} / <i>V</i> _{<i>s</i>} ratio variations in southwest Yunnan, China, from teleseismic receiver functions. Journal of Geophysical Research, 2010, 115, .	3.3	28
800	Lower plate structure and upper plate deformational segmentation at the Sundaâ€Banda arc transition, Indonesia. Journal of Geophysical Research, 2010, 115, .	3.3	27
801	Moho map of South America from receiver functions and surface waves. Journal of Geophysical Research, 2010, 115, .	3.3	73
802	Intrusions and anomalous V _p /V _s ratios associated with the New Madrid seismic zone. Journal of Geophysical Research, 2010, 115, .	3.3	27
803	Crustal structure beneath the Montserrat region of the Lesser Antilles island arc. Geochemistry, Geophysics, Geosystems, 2010, 11, .	1.0	28
804	Threeâ€dimensional velocity structure of the northern Hikurangi margin, Raukumara, New Zealand: Implications for the growth of continental crust by subduction erosion and tectonic underplating. Geochemistry, Geophysics, Geosystems, 2010, 11, .	1.0	48
805	Alongâ€arc variation in seismic velocity structure related to variable growth of arc crust in northern Izuâ€Bonin intraoceanic arc. Geochemistry, Geophysics, Geosystems, 2010, 11, .	1.0	13
806	Lake Toba volcano magma chamber imaged by ambient seismic noise tomography. Geophysical Research Letters, 2010, 37, .	1.5	90
807	The North American upper mantle: Density, composition, and evolution. Journal of Geophysical Research, 2010, 115, .	3.3	123
808	Crustal shear wave velocity structure of the western United States inferred from ambient seismic noise and earthquake data. Journal of Geophysical Research, 2010, 115, .	3.3	94
809	The Cambrian collisional suture of Gondwana in southern India: A geophysical appraisal. Journal of Geodynamics, 2010, 50, 256-267.	0.7	65
810	Relocation of aftershocks of the 2001 Bhuj earthquake: A new insight into seismotectonics of the Kachchh seismic zone, Gujarat, India. Journal of Geodynamics, 2010, 49, 254-260.	0.7	59
811	The ICE hypothesis stands: How the dogma of late Cenozoic tectonic uplift can no longer be sustained in the light of data and physical laws. Journal of Geodynamics, 2010, 50, 102-111.	0.7	32
812	Crustal rheology of the Santorini–Amorgos zone: Implications for the nucleation depth and rupture extent of the 9 July 1956 Amorgos earthquake, southern Aegean. Journal of Geodynamics, 2010, 50, 400-409.	0.7	22
813	Thermal regime of the northwest Indian rifted margin – Comparison with predictions. Marine and Petroleum Geology, 2010, 27, 1133-1147.	1.5	8
814	Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth. Geochimica Et Cosmochimica Acta, 2010, 74, 2450-2472.	1.6	159

#	Article	IF	CITATIONS
815	Anomalous deepening of a seismic belt in the upper-plane of the double seismic zone in the Pacific slab beneath the Hokkaido corner: Possible evidence for thermal shielding caused by subducted forearc crust materials. Earth and Planetary Science Letters, 2010, 290, 415-426.	1.8	133
816	Stratification of the Earth beneath the Azores from P and S receiver functions. Earth and Planetary Science Letters, 2010, 299, 91-103.	1.8	51
817	Quantifying crustal flow in Tibet with magnetotelluric data. Physics of the Earth and Planetary Interiors, 2010, 179, 107-121.	0.7	87
818	A wide-angle upper mantle reflector in SW Iberia: Some constraints on its nature. Physics of the Earth and Planetary Interiors, 2010, 181, 88-102.	0.7	23
819	Collision-related granitic magmatism in the Granites–Tanami Orogen, Western Australia. Precambrian Research, 2010, 177, 212-226.	1.2	34
820	Ambient seismic noise tomography of Australian continent. Tectonophysics, 2010, 481, 116-125.	0.9	136
821	The deep lithospheric structure of the Namibian volcanic margin. Tectonophysics, 2010, 481, 68-81.	0.9	47
822	Seismic structure in the northeastern South China Sea: S-wave velocity and Vp/Vs ratios derived from three-component OBS data. Tectonophysics, 2010, 480, 183-197.	0.9	99
823	Lithosphere structure at the contact of the Adriatic microplate and the Pannonian segment based on the gravity modelling. Tectonophysics, 2010, 485, 94-106.	0.9	40
824	The superdeep North Chukchi Basin: formation by eclogitization of continental lower crust, with petroleum potential implications. Russian Geology and Geophysics, 2010, 51, 48-57.	0.3	15
825	Mechanism of formation of superdeep sedimentary basins: lithospheric stretching or eclogitization?. Russian Geology and Geophysics, 2010, 51, 1304-1313.	0.3	17
826	Partial Melting and Its Implications for Understanding the Seismic Velocity Structure within the Southern Tibetan Crust. Acta Geologica Sinica, 2003, 77, 64-71.	0.8	5
827	Control of Deep Tectonics on the Superlarge Deposits in China. Acta Geologica Sinica, 2004, 78, 358-367.	0.8	6
828	Coupling Effects on Gold Mineralization of Deep and Shallow Structures in the Northwestern Jiaodong Peninsula, Eastern China. Acta Geologica Sinica, 2010, 80, 400-411.	0.8	10
829	Crustal Composition of China Continent Constrained from Heat Flow Data and Helium Isotope Ratio of Underground Fluid. Acta Geologica Sinica, 2010, 84, 178-184.	0.8	6
830	Yin and yang of continental crust creation and destruction by plate tectonic processes. International Geology Review, 2010, 52, 1-31.	1.1	187
831	The anatomy and ontogeny of modern intra-oceanic arc systems. Geological Society Special Publication, 2010, 338, 7-34.	0.8	89
832	An integrated gravity model for Europe's crust and upper mantle. Earth and Planetary Science Letters, 2010, 296, 195-209.	1.8	53

#	Article	IF	CITATIONS
833	Crustal structure of the western part of the Southern Granulite Terrain of Indian Peninsular Shield derived from gravity data. Journal of Asian Earth Sciences, 2010, 39, 551-564.	1.0	48
834	Improved geophysical image of the Carpathian-Pannonian Basin region. Acta Geodaetica Et Geophysica Hungarica, 2010, 45, 284-298.	0.4	8
835	Upper mantle thermochemical structure from seismic–geodynamic flow models: constraints from the Lithoprobe initiativeThis article is one of a series of papers published in this Special Issue on the theme Lithoprobe — parameters, processes, and the evolution of a continent Canadian Journal of Earth Sciences, 2010, 47, 463-484.	0.6	2
836	The seismological structure of the Tibetan Plateau crust and mantle down to 700 km depth. Geological Society Special Publication, 2011, 353, 109-125.	0.8	16
837	Differential motion between upper crust and lithospheric mantle in the central Basin and Range. Nature Geoscience, 2011, 4, 619-623.	5.4	19
838	Kinematic evolution of the Patagonian retroarc fold-and-thrust belt and Magallanes foreland basin, Chile and Argentina, 51Â30'S. Bulletin of the Geological Society of America, 2011, 123, 1679-1698.	1.6	147
839	A probabilistic seismic model for the European Arctic. Journal of Geophysical Research, 2011, 116, .	3.3	19
840	Magma, faults, and gravitational loading at Mount Etna: The 2002–2003 eruptive period. Journal of Geophysical Research, 2011, 116, .	3.3	27
841	Injection of Tibetan crust beneath the south Qaidam Basin: Evidence from INDEPTH IV wide-angle seismic data. Journal of Geophysical Research, 2011, 116, .	3.3	105
842	Effect of water on the electrical conductivity of lower crustal clinopyroxene. Journal of Geophysical Research, 2011, 116, .	3.3	82
843	Decoupled crust-mantle accommodation of Africa-Eurasia convergence in the NW Moroccan margin. Journal of Geophysical Research, 2011, 116, .	3.3	30
844	Crustal structure and evolution beneath the Colorado Plateau and the southern Basin and Range Province: Results from receiver function and gravity studies. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	32
845	Shear wave modeling and Poisson's ratio in the Variscan Belt of SW Iberia. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	16
846	Surface wave tomography across Afar, Ethiopia: Crustal structure at a rift triple-junction zone. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	25
847	Deep seismic structure of the Tonga subduction zone: Implications for mantle hydration, tectonic erosion, and arc magmatism. Journal of Geophysical Research, 2011, 116, .	3.3	83
848	Crustal <i>V</i> _{<i>S</i>} structure in northwestern Canada: Imaging the Cordillera-craton transition with ambient noise tomography. Journal of Geophysical Research, 2011, 116, .	3.3	17
849	Electrical conductivity of continental lithospheric mantle from integrated geophysical and petrological modeling: Application to the Kaapvaal Craton and Rehoboth Terrane, southern Africa. Journal of Geophysical Research, 2011, 116, .	3.3	66
850	Refraction of Fault-Zone Guided Seismic Waves. Bulletin of the Seismological Society of America, 2011, 101, 1674-1682.	1.1	4

#	Article	IF	CITATIONS
851	The Crustal and Upper-Mantle Structures beneath the Northeastern Margin of Tibet. Bulletin of the Seismological Society of America, 2011, 101, 2782-2795.	1.1	20
852	U and Th content in the Central Apennines continental crust: A contribution to the determination of the geo-neutrinos flux at LNGS. Geochimica Et Cosmochimica Acta, 2011, 75, 2271-2294.	1.6	39
853	Global distributions of Fe, Al, Cu, and Zn contained in Earth's derma layers. Journal of Geochemical Exploration, 2011, 110, 193-201.	1.5	11
854	Fluid migration in continental subduction: The Northern Apennines case study. Earth and Planetary Science Letters, 2011, 302, 267-278.	1.8	37
855	The roles of flux- and decompression melting and their respective fractionation lines for continental crust formation: Evidence from the Kohistan arc. Earth and Planetary Science Letters, 2011, 303, 25-36.	1.8	156
856	Large contrasts in crustal structure and composition between the Ordos plateau and the NE Tibetan plateau from receiver function analysis. Earth and Planetary Science Letters, 2011, 303, 291-298.	1.8	105
857	Deep structure of the central Lesser Antilles Island Arc: Relevance for the formation of continental crust. Earth and Planetary Science Letters, 2011, 304, 121-134.	1.8	83
858	Crustal structure and composition of the Oslo Graben, Norway. Earth and Planetary Science Letters, 2011, 304, 431-442.	1.8	25
859	Heat production and geotherms for the continental lithosphere. Earth and Planetary Science Letters, 2011, 307, 59-70.	1.8	357
860	Differentiation of the continental crust by relamination. Earth and Planetary Science Letters, 2011, 307, 501-516.	1.8	414
861	Seismic evidence for the presence of Jurassic oceanic crust in the central Gulf of Cadiz (SW Iberian) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
862	Crustal-scale cross-sections across the NW Zagros belt: implications for the Arabian margin reconstruction. Geological Magazine, 2011, 148, 739-761.	0.9	169
863	The Seismic Structure of Island Arc Crust. Frontiers in Earth Sciences, 2011, , 87-119.	0.1	37
864	Processes of Arc–Continent Collision in the Uralides. Frontiers in Earth Sciences, 2011, , 311-340.	0.1	8
865	Vertical exaggeration of reflection seismic data in geoscience publications 2006–2010. Marine and Petroleum Geology, 2011, 28, 959-965.	1.5	10
866	Crustal density structure across the Central Indian Shear Zone from gravity data. Journal of Asian Earth Sciences, 2011, 42, 341-353.	1.0	21
867	Seismogenesis of the lower crustal intraplate earthquakes occurring in Kachchh, Gujarat, India. Journal of Asian Earth Sciences, 2011, 42, 479-491.	1.0	34
868	Chapter 26 Crustal structure of the East Siberian continental margin, Podvodnikov and Makarov basins, based on refraction seismic data (TransArctic 1989–1991). Geological Society Memoir, 2011, 35, 395-411.	0.9	24

#	Article	IF	Citations
869	Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography. Journal of Geophysical Research, 2011, 116, .	3.3	134
870	Lithospheric Structure and Tectonics of the Eastern Alps – Evidence from New Seismic Data. , 2011, , .		10
872	The 8 June 2008 Mw 6.4 Earthquake in Northwest Peloponnese, Western Greece: A Case of Fault Reactivation in an Overpressured Lower Crust?. Bulletin of the Seismological Society of America, 2011, 101, 438-445.	1.1	17
873	Formation of Continental Crust at the Izu–Honshu Collision Zone. Journal of Geography (Chigaku Zasshi), 2011, 120, 567-584.	0.1	4
874	Structural architecture of oceanic plateau subduction offshore Eastern Java and the potential implications for geohazards. Geophysical Journal International, 2011, 184, 12-28.	1.0	38
875	Laboratory measurements of the seismic velocities and other petrophysical properties of the Outokumpu deep drill core samples, eastern Finland. Geophysical Journal International, 2011, 184, 405-415.	1.0	17
876	Joint geophysical and petrological models for the lithosphere structure of the Antarctic Peninsula continental margin. Geophysical Journal International, 2011, 184, 90-110.	1.0	32
877	Earthquake depth distributions in central Asia, and their relations with lithosphere thickness, shortening and extension. Geophysical Journal International, 2011, 185, 1-29.	1.0	116
878	Lithosphere-asthenosphere interaction beneath Ireland from joint inversion of teleseismic P-wave delay times and GRACE gravity. Geophysical Journal International, 2011, 184, 1379-1396.	1.0	16
879	EPcrust: a reference crustal model for the European Plate. Geophysical Journal International, 2011, 185, 352-364.	1.0	150
880	Forward waveform modelling procedure for 1-D crustal velocity structure and its application to the southern Korean Peninsula. Geophysical Journal International, 2011, 185, 453-468.	1.0	47
881	Gravity inversion using seismically derived crustal density models and genetic algorithms: an application to the Caribbean-South American Plate boundary. Geophysical Journal International, 2011, 185, 577-592.	1.0	6
882	Crustal and uppermost mantle structure beneath the External Dinarides, Croatia, determined from teleseismic receiver functions. Geophysical Journal International, 2011, 185, 1103-1119.	1.0	31
883	Evaluation of intrinsic velocity-pressure trends from low-pressure P-wave velocity measurements in rocks containing microcracks. Geophysical Journal International, 2011, 185, 1312-1320.	1.0	23
884	A major step in the continental Moho and its geodynamic consequences: the Taranaki-Ruapehu line, New Zealand. Geophysical Journal International, 2011, 186, 32-44.	1.0	28
885	Teleseismic wave front anomalies at a Continental Rift: no mantle anomaly below the central Upper Rhine Graben. Geophysical Journal International, 2011, 186, 447-462.	1.0	7
886	A crustal thickness map of Africa derived from a global gravity field model using Euler deconvolution. Geophysical Journal International, 2011, 187, 1-9.	1.0	75
887	Measurements of wave velocity and electrical conductivity of an amphibolite from southwestern margin of the Tarim Basin at pressures to 1.0 GPa and temperatures to 700 ŰC: comparison with field observations. Geophysical Journal International, 2011, 187, 1393-1404.	1.0	18

		CITATION REF	PORT	
#	Article		IF	CITATIONS
888	The role of crustal quartz in controlling Cordilleran deformation. Nature, 2011, 471, 353	3-357.	13.7	141
889	Geophysical model of the lithosphere across the Variscan Belt of SW-lberia: Multidiscipli assessment. Tectonophysics, 2011, 508, 42-51.	nary	0.9	34
890	Petrophysical properties of the Himalayan granitoids: Implication on composition and so Tectonophysics, 2011, 497, 23-33.	ource.	0.9	11
891	Seismic structure and composition of the crust beneath the southern Scandes, Norway. Tectonophysics, 2011, 502, 364-382.		0.9	45
892	A seismic discontinuity in the upper mantle between the Eastern Alps and the Western Constraints from wide angle reflections and geological implications. Tectonophysics, 20122-134.	Carpathians: 111, 504,	0.9	9
893	Fore-arc mantle wedge seismicity under northeast New Zealand. Tectonophysics, 2011,	509, 272-279.	0.9	16
894	A geophysical model of the Variscan orogenic root (Bohemian Massif): Implications for r collisional orogens. Lithos, 2011, 124, 144-157.	nodern	0.6	62
895	Crustal structure of the Paleozoic Kunlun orogeny from an active-source seismic profile Moba and Guide in East Tibet, China. Gondwana Research, 2011, 19, 994-1007.	between	3.0	74
896	Genetic algorithm inversion of the average 1D crustal structure using local and regional earthquakes. Computers and Geosciences, 2011, 37, 1372-1380.		2.0	12
897	Imaging lithospheric interfaces and 3D structures using receiver functions, gravity, and in a common inversion scheme. Computers and Geosciences, 2011, 37, 1381-1390.	tomography	2.0	9
898	Chapter 12 Depth model of the Barents and Kara seas according to geophysical surveys Geological Society Memoir, 2011, 35, 209-221.	results.	0.9	17
899	Density and magnetic models of the lithosphere along CELEBRATION 2000 profile CEL0 Geophysica, 2011, 59, 526-560.	1. Acta	1.0	12
900	Origin of High Electrical Conductivity in the Lower Continental Crust: A Review. Surveys Geophysics, 2011, 32, 875-903.	in	2.1	60
901	Receiver function study in northern Sumatra and the Malaysian peninsula. Journal of Sei 15, 235-259.	smology, 2011,	0.6	26
902	A 3-D lithospheric model of the Caribbean-South American plate boundary. Internationa Earth Sciences, 2011, 100, 1697-1712.	l Journal of	0.9	11
903	Insights into the Crustal Structure and Geodynamic Evolution of the Southern Granulite India, from Isostatic Considerations. Pure and Applied Geophysics, 2011, 168, 1781-179	Terrain, 98.	0.8	24
904	Geological structures of ridges with relation to the definition of three types of seafloor h stipulated in Article 76. Acta Oceanologica Sinica, 2011, 30, 125-140.	nighs	0.4	1
905	An efficient and adaptive approach for modeling gravity effects in spherical coordinates. Applied Geophysics, 2011, 73, 221-231.	Journal of	0.9	46

#	Article	IF	CITATIONS
906	Why is the North America Cordillera high? Hot backarcs, thermal isostasy, and mountain belts. Geology, 2011, 39, 783-786.	2.0	83
907	Chapter 45 Geophysical exploration of the Arctic Ocean: the physical environment, survey techniques and brief summary of knowledge. Geological Society Memoir, 2011, 35, 685-702.	0.9	1
908	Constraints on continental crustal mass loss via chemical weathering using lithium and its isotopes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20873-20880.	3.3	70
910	Chapter 50 Geology and tectonic development of the Amerasia and Canada Basins, Arctic Ocean. Geological Society Memoir, 2011, 35, 771-799.	0.9	118
911	Diffuse Pacificâ^'North American plate boundary: 1000 km of dextral shear inferred from modeling geodetic data. Geology, 2011, 39, 943-946.	2.0	8
912	Crustal composition model across the Bangong–Nujiang suture belt derived from INDEPTH III velocity data. Journal of Geophysics and Engineering, 2011, 8, 549-559.	0.7	13
913	From crystal to crustal: petrofabric-derived seismic modelling of regional tectonics. Geological Society Special Publication, 2011, 360, 49-78.	0.8	15
914	Crustal structure from gravity signatures in the Iberian Peninsula. Bulletin of the Geological Society of America, 2011, 123, 1247-1257.	1.6	27
915	Lithospheric Mantle Modification during Cenozoic Rifting in Central Europe: Evidence from the Księginki Nephelinite (SW Poland) Xenolith Suite. Journal of Petrology, 2011, 52, 2107-2145.	1.1	30
916	Eclogite as a seismic marker in subduction channels: Seismic velocities, anisotropy, and petrofabric of Cabo Ortegal eclogite tectonites (Spain). Bulletin of the Geological Society of America, 2011, 123, 439-456.	1.6	32
917	Contribution of crystallographic preferred orientation to seismic anisotropy across a surface analog of the continental Moho at Cabo Ortegal, Spain. Bulletin of the Geological Society of America, 2012, 124, 1495-1513.	1.6	31
918	Isostatic compensation for a portion of the Southern Appalachians: Evidence from a reconnaissance study using wide-angle, three-component seismic soundings. Bulletin of the Geological Society of America, 2012, 124, 291-317.	1.6	27
919	Foundering lithosphere imaged with magnetotelluric data beneath Yosemite National Park, California. , 2012, 8, 98-104.		12
920	Elemental and Isotopic Evidence for Granitoid Genesis From Deep-Seated Sources in the Coast Mountains Batholith, British Columbia. Journal of Petrology, 2012, 53, 1505-1536.	1.1	63
921	Topographic evolution of the Sierra Nevada measured directly by inversion of low-temperature thermochronology. Numerische Mathematik, 2012, 312, 90-116.	0.7	27
922	Title is missing!. , 2012, 8, 1408.		24
923	The fate of fluids released from subducting slab in northern Cascadia. Solid Earth, 2012, 3, 121-129.	1.2	24
924	Linearization of the Sobolev and Babeyko's formulae for transformation of P-wave velocity to density in the Carpathian-Pannonian Basin region. Contributions To Geophysics and Geodesy, 2012, 42, 15-23.	0.2	1

#	Article	IF	CITATIONS
925	The Zagros core: Deformation of the continental lithospheric mantle. Geochemistry, Geophysics, Geosystems, 2012, 13, .	1.0	79
926	Thermal State and Strength of the Lithosphere Beneath the Chinese Mainland. Acta Geologica Sinica, 2012, 86, 810-827.	0.8	18
927	Crustal structure of central Norway and Sweden from integrated modelling of teleseismic receiver functions and the gravity anomaly. Geophysical Journal International, 2012, 191, 1-11.	1.0	36
928	Insights from the Jan Mayen system in the Norwegian-Greenland sea-I. Mapping of a microcontinent. Geophysical Journal International, 2012, 191, 385-412.	1.0	43
929	Validation of Shear-Wave Velocity Models of the Pacific Northwest. Bulletin of the Seismological Society of America, 2012, 102, 2611-2621.	1.1	20
930	Retroarc extension in the last 6ÂMa in the South-Central Andes (36°S–40°S) evaluated through a 3-D gravity modelling. Journal of South American Earth Sciences, 2012, 40, 23-37.	0.6	20
931	Crustal structure beneath the Archean–Proterozoic terrain of north India from receiver function modeling. Journal of Asian Earth Sciences, 2012, 58, 108-118.	1.0	14
932	A preliminary study on the lithospheric thermal structure and rheology of the Tibetan plateau. Earthquake Science, 2012, 25, 399-408.	0.4	1
933	Lithospheric structure and geodynamics at the northern margin of Tibetan plateau. Earthquake Science, 2012, 25, 433-450.	0.4	3
934	Neotectonic crustal uplifts as a consequence of mantle fluid infiltration into the lithosphere. Russian Geology and Geophysics, 2012, 53, 566-582.	0.3	18
935	Geological, Petrological and Geochemical Evidence for Progressive Construction of an Arc Crustal Section, Sierra de Valle Fertil, Famatinian Arc, Argentina. Journal of Petrology, 2012, 53, 761-800.	1.1	100
936	Lithospheric thermal structure and rheology of the eastern China. Journal of Asian Earth Sciences, 2012, 47, 51-63.	1.0	40
937	A new insight into crustal heterogeneity beneath the 2001 Bhuj earthquake region of Northwest India and its implications for rupture initiations. Journal of Asian Earth Sciences, 2012, 48, 31-42.	1.0	39
938	Velocity structure heterogeneity and tectonic motion in and around the Tan–Lu fault of China. Journal of Asian Earth Sciences, 2012, 57, 6-14.	1.0	17
939	Nature of the low velocity zone in Cascadia from receiver function waveform inversion. Earth and Planetary Science Letters, 2012, 337-338, 25-38.	1.8	58
940	Crustal structure of the Yakutat terrane and the evolution of subduction and collision in southern Alaska. Journal of Geophysical Research, 2012, 117, .	3.3	121
941	Crustal <i>S</i> -wave velocity structure of the Main Ethiopian Rift from ambient noise tomography. Geophysical Journal International, 2012, 191, 865-878.	1.0	37
942	<i>V</i> _{<i>S</i>} and density structure beneath the Colorado Plateau constrained by gravity anomalies and joint inversions of receiver function and phase velocity data. Journal of Geophysical Research, 2012, 117, .	3.3	31

#	Article	IF	CITATIONS
943	A synoptic view of the distribution and connectivity of the midâ€crustal low velocity zone beneath Tibet. Journal of Geophysical Research, 2012, 117, .	3.3	214
944	Nonlinear estimation of geometric parameters in FEMs of volcano deformation: Integrating tomography models and geodetic data for Okmok volcano, Alaska. Journal of Geophysical Research, 2012, 117, .	3.3	41
945	Anorogenic plateau formation: The importance of density changes in the lithosphere. Journal of Geophysical Research, 2012, 117, .	3.3	10
946	Threeâ€dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAICER and related seismic data sets. Journal of Geophysical Research, 2012, 117, .	3.3	104
947	Cenozoic shortening budget for the northeastern edge of the Tibetan Plateau: Is lower crustal flow necessary?. Tectonics, 2012, 31, .	1.3	86
948	The effective elastic thickness of the continental lithosphere: Comparison between rheological and inverse approaches. Geochemistry, Geophysics, Geosystems, 2012, 13, .	1.0	62
949	Seismic structure and lithospheric rheology from deep crustal xenoliths, central Montana, USA. Geochemistry, Geophysics, Geosystems, 2012, 13, .	1.0	16
950	Upper crustal structure of Newberry Volcano from Pâ€wave tomography and finite difference waveform modeling. Journal of Geophysical Research, 2012, 117, .	3.3	20
951	Mafic granulite rheology: Implications for a weak continental lower crust. Earth and Planetary Science Letters, 2012, 353-354, 99-107.	1.8	54
952	Crustal seismicity and the earthquake catalog maximum moment magnitude (Mcmax) in stable continental regions (SCRs): Correlation with the seismic velocity of the lithosphere. Earth and Planetary Science Letters, 2012, 357-358, 78-83.	1.8	80
953	Moho depths and Poisson's ratios of Precambrian crust in East Africa: Evidence for similarities in Archean and Proterozoic crustal structure. Earth and Planetary Science Letters, 2012, 355-356, 73-81.	1.8	39
954	Thick crust beneath the Ordos plateau: Implications for instability of the North China craton. Earth and Planetary Science Letters, 2012, 357-358, 366-375.	1.8	46
955	Lateral variation of the strength of lithosphere across the eastern North China Craton: New constraints on lithospheric disruption. Gondwana Research, 2012, 22, 1047-1059.	3.0	36
956	Crust–mantle boundaries in the Taiwan–Luzon arc-continent collision system determined from local earthquake tomography and 1D models: Implications for the mode of subduction polarity reversal. Tectonophysics, 2012, 578, 31-49.	0.9	65
957	Crustal structure from the Lützow-Holm Bay to the inland plateau of East Antarctica, based on on onshore gravity surveys and broadband seismic deployments. Tectonophysics, 2012, 572-573, 100-110.	0.9	3
958	Crustal structure of the Eastern Sierras Pampeanas of Argentina using high frequency local receiver functions. Tectonophysics, 2012, 580, 208-217.	0.9	36
959	3D crustal structure and its tectonic implication for nile delta and greater cairo regions, egypt, from geophysical data. Acta Geodaetica Et Geophysica Hungarica, 2012, 47, 402-429.	0.4	11
960	One-dimensional P-wave velocity model for the territory of Hungary from local earthquake data. Acta Geodaetica Et Geophysica Hungarica, 2012, 47, 344-357.	0.4	15

ARTICLE IF CITATIONS Tectonic and Basin maps of the world., 2012, , 970-1151. 2 961 Crustal features of the northeastern South China Sea: insights from seismic and magnetic interpretations. Marine Geophysical Researches, 2012, 33, 307-326. Crustal velocity structure off SW Taiwan in the northernmost South China Sea imaged from TAIGER 963 0.5 12 OBS and MCS data. Marine Geophysical Researches, 2012, 33, 327-349. Tomographic Imaging of the Seismic Structure Beneath the East Anatolian Plateau, Eastern Turkey. 964 Pure and Applied Geophysics, 2012, 169, 1749-1776. A Crustal Model for the Eastern Alps Region and a New Moho Map in Southeastern Europe. Pure and 965 0.8 10 Applied Geophysics, 2012, 169, 1575-1588. Shear Wave Velocity Models Beneath Antarctic Margins Inverted by Genetic Algorithm for Teleseismic Receiver Functions., 2012, , . Elastic-anisotropic properties of garnet granulites from the lower crust of the belomorian mobile 967 0.2 2 belt: Results of experimental study. Izvestiya, Physics of the Solid Earth, 2012, 48, 78-91. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and 968 3.3 continental fragments in subduction zones. Journal of Geophysical Research, 2012, 117, . Crustal anisotropy beneath Hudson Bay from ambient noise tomography: Evidence for postâ€orogenic 969 3.3 31 lowerâ€crustal flów?. Journal of Geophysical Research, 2012, 117, . An integrated geophysical study of Vestbakken Volcanic Province, western Barents Sea continental 970 margin, and adjacent oceanic crust. Marine Geophysical Researches, 2012, 33, 185-207. Electrical conductivity of amphibole-bearing rocks: influence of dehydration. Contributions To 971 1.2 71 Mineralogy and Petrology, 2012, 164, 17-25. Lithosphere thermal structure at the eastern margin of the Bohemian Massif: a case petrological and geophysical study of the NiedŮwiedÅ® amphibolite massif (SW Poland). International Journal of Earth Sciences, 2012, 101, 1211-1228. Crustal and uppermost mantle velocity structure along a profile across the Pamir and southern Tien Shan as derived from project TIPAGE wide-angle seismic data. Geophysical Journal International, 2012, 973 1.0 113 188, 385-407. The initiation of subduction by crustal extension at a continental margin. Geophysical Journal International, 2012, 188, 779-797. 974 1.0 14 Spatial distribution of seismic layer, crustal thickness, and Vp/Vs ratio in the Permian Emeishan Mantle 975 3.0 38 Plume region. Gondwana Research, 2012, 22, 127-139. The structure of the crust and uppermost mantle beneath South China from ambient noise and 166 earthquake tomography. Geophysical Journal International, 2012, 189, 1565-1583. The crustal structure of southern Baffin Bay: implications from a seismic refraction experiment. 977 1.0 54 Geophysical Journal International, 2012, 190, 37-58. Compressive deformations and stress propagation in intracontinental lithosphere: Finite element 978

modeling along the Dinarides–East European Craton profile. Tectonophysics, 2012, 526-529, 24-41.

#	Article	IF	CITATIONS
979	From pull-apart basins to ultraslow spreading: Results from the western Barents Sea Margin. Tectonophysics, 2012, 514-517, 44-61.	0.9	19
980	The nature of the acoustic basement on Mendeleev and northwestern Alpha ridges, Arctic Ocean. Tectonophysics, 2012, 514-517, 123-145.	0.9	48
981	Mafic intrusions east of Svalbard imaged by active-source seismic tomography. Tectonophysics, 2012, 518-521, 106-118.	0.9	23
982	Crustal thickness controlled by plate tectonics: A review of crust–mantle interaction processes illustrated by European examples. Tectonophysics, 2012, 530-531, 18-49.	0.9	53
983	Structure of the Scandes lithosphere from surface to depth. Tectonophysics, 2012, 536-537, 1-24.	0.9	51
984	Petrophysical analysis of a mid-crustal reflector in the IBERSEIS profile, SW Spain. Tectonophysics, 2012, 550-553, 35-46.	0.9	13
985	Elastic properties of amphibolite and granulite facies mid-crustal basement rocks of the Deccan volcanic covered 1993 Latur-Killari earthquake region, Maharastra (India) and mantle metasomatism. Tectonophysics, 2012, 554-557, 159-168.	0.9	20
986	Shear wave velocity structure of the Bushveld Complex, South Africa. Tectonophysics, 2012, 554-557, 83-104.	0.9	21
987	Seismic wave velocities in the sedimentary cover of Poland: Borehole data compilation. Acta Geophysica, 2012, 60, 985-1006.	1.0	6
988	Crustal structure of the northwestern sub-basin, South China Sea: Results from a wide-angle seismic experiment. Science China Earth Sciences, 2012, 55, 159-172.	2.3	54
989	One-Dimensional Thermal Modeling of the Eastern Pontides Orogenic Belt (NE Turkey). Pure and Applied Geophysics, 2012, 169, 235-248.	0.8	15
990	Paleoseismicity and seismic hazard in southern Patagonia (Argentina-Chile; 50°–55°S) and the role of the Magallanes-Fagnano transform fault. Natural Hazards, 2012, 61, 337-349.	1.6	7
991	Depth-Recursive Tomography of the Bohemian Massif at the CEL09 Transect—Part B: Interpretation. Surveys in Geophysics, 2012, 33, 243-273.	2.1	7
992	Electrical conductivity of orthopyroxene and plagioclase in the lower crust. Contributions To Mineralogy and Petrology, 2012, 163, 33-48.	1.2	106
993	Geophysical investigations of crust-scale structural model of the Qiongdongnan Basin, Northern South China Sea. Marine Geophysical Researches, 2013, 34, 259-279.	0.5	34
994	3D Crustal and Lithospheric Structures in the Southeastern Mediterranean and Northeastern Egypt. Pure and Applied Geophysics, 2013, 170, 2037-2074.	0.8	14
995	Waveform Retrieval and Phase Identification for Seismic Data from the CASS Experiment. Pure and Applied Geophysics, 2013, 170, 815-830.	0.8	5
996	Rayleigh wave constraints on the structure and tectonic history of the Gamburtsev Subglacial Mountains, East Antarctica. Journal of Geophysical Research: Solid Earth, 2013, 118, 2138-2153.	1.4	50

#	Article	IF	CITATIONS
997	A 3â€D model of the crust and uppermost mantle beneath the Central and Western US by joint inversion of receiver functions and surface wave dispersion. Journal of Geophysical Research: Solid Earth, 2013, 118, 262-276.	1.4	189
998	Seismic velocity model of the crust and upper mantle along profile PANCAKE across the Carpathians between the Pannonian Basin and the East European Craton. Tectonophysics, 2013, 608, 1049-1072.	0.9	51
999	Was Archean Dharwar Craton ever stable? A seismic perspective. Journal of the Geological Society of India, 2013, 81, 774-780.	0.5	20
1000	Exhumation and its mechanisms: A review of exhumation studies in the Himalaya. Journal of the Geological Society of India, 2013, 81, 481-502.	0.5	14
1001	Contrasts of seismic velocity, density and strength across the Moho. Tectonophysics, 2013, 609, 437-455.	0.9	39
1002	Crustal radial anisotropy across Eastern Tibet and the Western Yangtze Craton. Journal of Geophysical Research: Solid Earth, 2013, 118, 4226-4252.	1.4	126
1003	Crustal and upper mantle structure and the deep seismogenic environment in the source regions of the Lushan earthquake and the Wenchuan earthquake. Science China Earth Sciences, 2013, 56, 1158-1168.	2.3	40
1004	Structure and properties of the Adriatic crust in the centralâ€eastern Southern Alps (<scp>I</scp> taly) from local earthquake tomography. Terra Nova, 2013, 25, 504-512.	0.9	28
1005	Structural features of the Southwest African continental margin according to results of lithosphere-scale 3D gravity and thermal modelling. Tectonophysics, 2013, 604, 104-121.	0.9	37
1006	The Moho: Boundary above upper mantle peridotites or lower crustal eclogites? A global review and new interpretations for passive margins. Tectonophysics, 2013, 609, 636-650.	0.9	46
1007	Reconstruction of the Early Ordovician Famatinian arc through thermobarometry in lower and middle crustal exposures, Sierra de Valle Fértil, Argentina. Tectonophysics, 2013, 589, 151-166.	0.9	40
1008	Explaining the thick crust in ParanÃ; basin, Brazil, with satellite GOCE gravity observations. Journal of South American Earth Sciences, 2013, 45, 209-223.	0.6	51
1009	Investigation of the Moho discontinuity beneath the Chinese mainland using deep seismic sounding profiles. Tectonophysics, 2013, 609, 202-216.	0.9	89
1010	Crustal velocity structure beneath the western Andes of Colombian using receiver-function inversion. Journal of South American Earth Sciences, 2013, 48, 106-122.	0.6	9
1011	A Laboratory Study of Seismic Wave Velocities in Sandstones Bearing Different Pore Fluids at Different Pressures. Chinese Journal of Geophysics, 2013, 56, 203-212.	0.2	0
1012	Deep burial of Asian continental crust beneath the Pamir imaged with local earthquake tomography. Earth and Planetary Science Letters, 2013, 384, 165-177.	1.8	91
1013	Crustal structure across the Costa Rican Volcanic Arc. Geochemistry, Geophysics, Geosystems, 2013, 14, 1087-1103.	1.0	20
1014	The MohoroviÄić discontinuity beneath the continental crust: An overview of seismic constraints. Tectonophysics, 2013, 609, 353-376.	0.9	52

#	Article	IF	CITATIONS
1015	Garnet: Common Mineral, Uncommonly Useful. Elements, 2013, 9, 415-419.	0.5	96
1016	Crustal structure of the Central Precordillera of San Juan, Argentina (31°S) using teleseismic receiver functions. Journal of South American Earth Sciences, 2013, 46, 100-109.	0.6	24
1017	Intraplate magmatism related to opening of the southern lapetus Ocean: Cambrian Wichita igneous province in the Southern Oklahoma rift zone. Lithos, 2013, 174, 57-70.	0.6	63
1018	Lithospheric structure of southern Indian shield and adjoining oceans: integrated modelling of topography, gravity, geoid and heat flow data. Geophysical Journal International, 2013, 194, 30-44.	1.0	47
1019	Crustal density structure from 3D gravity modeling beneath Himalaya and Lhasa blocks, Tibet. Journal of Asian Earth Sciences, 2013, 78, 301-317.	1.0	33
1020	Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins. Journal of South American Earth Sciences, 2013, 42, 260-276.	0.6	94
1021	The formation of ultradeep sedimentary basins through metamorphism with rock contraction in continental crust. Doklady Earth Sciences, 2013, 452, 988-991.	0.2	1
1022	Crustal thickness map of Brazil: Data compilation and main features. Journal of South American Earth Sciences, 2013, 43, 74-85.	0.6	95
1023	The Moho as a transition zone: A revisit from seismic and electrical properties of minerals and rocks. Tectonophysics, 2013, 609, 395-422.	0.9	37
1024	Models of the Earth's crust from controlled-source seismology — Where we stand and where we go?. Acta Geophysica, 2013, 61, 1437-1456.	1.0	5
1025	Uppermost mantle (Pn) velocity model for the Afar region, Ethiopia: an insight into rifting processes. Geophysical Journal International, 2013, 193, 321-328.	1.0	27
1026	Foundering of lower island-arc crust as an explanation for the origin of the continental Moho. Nature, 2013, 504, 131-134.	13.7	121
1027	Crustal Structure of the Northeastern Tibetan Plateau from the Southern Tarim Basin to the Sichuan Basin, China. Tectonophysics, 2013, 584, 191-208.	0.9	50
1028	Mapping the Moho with seismic surface waves: A review, resolution analysis, and recommended inversion strategies. Tectonophysics, 2013, 609, 377-394.	0.9	88
1029	The control of mineral constituents and textural characteristics on the petrophysical & mechanical (PM) properties of different rocks of the Himalaya. Engineering Geology, 2013, 153, 125-143.	2.9	70
1030	EUNAseis: A seismic model for Moho and crustal structure in Europe, Greenland, and the North Atlantic region. Tectonophysics, 2013, 609, 97-153.	0.9	132
1031	The character of the Moho and lower crust within Archean cratons and the tectonic implications. Tectonophysics, 2013, 609, 690-705.	0.9	62
1032	Crustal structure of the northern margin of the North China Craton and adjacent region from SinoProbe02 North China seismic WAR/R experiment. Tectonophysics, 2013, 606, 116-126.	0.9	10

#	Article	IF	CITATIONS
1033	Seismic evidence of exhumed mantle rock basement at the Gorringe Bank and the adjacent Horseshoe and Tagus abyssal plains (SW Iberia). Earth and Planetary Science Letters, 2013, 365, 120-131.	1.8	71
1034	Crustal eclogitization and lithosphere delamination in orogens. Earth and Planetary Science Letters, 2013, 361, 195-207.	1.8	179
1035	Crustal structure of the Khartoum Basin, Sudan. Tectonophysics, 2013, 593, 151-160.	0.9	10
1036	Evolution of the African continental crust as recorded by U–Pb, Lu–Hf and O isotopes in detrital zircons from modern rivers. Geochimica Et Cosmochimica Acta, 2013, 107, 96-120.	1.6	136
1037	Seismic imaging of the Proterozoic Cuddapah basin, south India and regional geodynamics. Precambrian Research, 2013, 231, 277-289.	1.2	25
1038	Mirror symmetry of the crust in the oil/gas region of Shengli, China. Journal of Asian Earth Sciences, 2013, 78, 327-344.	1.0	12
1039	Basement inhomogeneities and crustal setting in the Barents Sea from a combined 3D gravity and magnetic model. Geophysical Journal International, 2013, 193, 557-584.	1.0	39
1040	First local seismic tomography for Red River shear zone, northern Vietnam: Stepwise inversion employing crustal P and Pn waves. Tectonophysics, 2013, 584, 230-239.	0.9	21
1041	Structure of the Lesser Antilles subduction forearc and backstop from 3D seismic refraction tomography. Tectonophysics, 2013, 603, 55-67.	0.9	27
1042	Crustal structure across northeastern Tibet from wide-angle seismic profiling: Constraints on the Caledonian Qilian orogeny and its reactivation. Tectonophysics, 2013, 606, 140-159.	0.9	58
1043	Moho, seismogenesis, and rheology of the lithosphere. Tectonophysics, 2013, 609, 491-503.	0.9	31
1044	Crustal structure of the Siberian craton and the West Siberian basin: An appraisal of existing seismic data. Tectonophysics, 2013, 609, 154-183.	0.9	98
1045	Generation of new continental crust by sublithospheric silicic-magma relamination in arcs: A test of Taylor's andesite model. Gondwana Research, 2013, 23, 1554-1566.	3.0	130
1046	Upper-lower crust thickness of the Borborema Province, NE Brazil, using Receiver Function. Journal of South American Earth Sciences, 2013, 42, 242-249.	0.6	11
1047	Seismic structure and rheology of the crust under mainland China. Gondwana Research, 2013, 23, 1455-1483.	3.0	63
1048	Systematic variations in seismic velocity and reflection in the crust of Cathaysia: New constraints on intraplate orogeny in the South China continent. Gondwana Research, 2013, 24, 902-917.	3.0	47
1049	Precambrian crustal structure in Africa and Arabia: Evidence lacking for secular variation. Tectonophysics, 2013, 609, 250-266.	0.9	66
1050	The crustal structure of the Central Mozambique continental margin — Wide-angle seismic, gravity and magnetic study in the Mozambique Channel, Eastern Africa. Tectonophysics, 2013, 599, 170-196. 	0.9	55

#	Article	IF	CITATIONS
1051	Conditions of magma crystallization in the Henties Bay-Outjo dyke swarm, Namibia: Implications for the feeder system of continental flood basalts. Lithos, 2013, 179, 16-27.	0.6	18
1052	A crust-scale 3D structural model of the Beaufort-Mackenzie Basin (Arctic Canada). Tectonophysics, 2013, 591, 30-51.	0.9	10
1053	Characterizing the Main Himalayan Thrust in the Garhwal Himalaya, India with receiver function CCP stacking. Earth and Planetary Science Letters, 2013, 367, 15-27.	1.8	202
1054	Seismic structure of the extended continental crust in the Yamato Basin, Japan Sea, from ocean bottom seismometer survey. Journal of Asian Earth Sciences, 2013, 67-68, 199-206.	1.0	13
1055	The evolution of the 87Sr/86Sr of marine carbonates does not constrain continental growth. Precambrian Research, 2013, 229, 177-188.	1.2	63
1056	Seismic images of the continental Moho of the Indian shield. Tectonophysics, 2013, 609, 217-233.	0.9	17
1057	Normal faulting from simple shear rifting in South Tibet, using evidence from passive seismic profiling across the Yadong-Gulu Rift. Tectonophysics, 2013, 606, 178-186.	0.9	34
1058	Element recycling from subducting slabs to arc crust: A review. Lithos, 2013, 170-171, 208-223.	0.6	442
1059	A reference Earth model for the heatâ€producing elements and associated geoneutrino flux. Geochemistry, Geophysics, Geosystems, 2013, 14, 2003-2029.	1.0	156
1060	Numerical modeling of geochemical variations caused by crustal relamination. Geochemistry, Geophysics, Geosystems, 2013, 14, 470-487.	1.0	58
1061	Subduction system variability across the segment boundary of the 2004/2005 Sumatra megathrust earthquakes. Earth and Planetary Science Letters, 2013, 365, 108-119.	1.8	16
1062	Crustal structure of the central Qaidam basin imaged by seismic wide-angle reflection/refraction profiling. Tectonophysics, 2013, 584, 174-190.	0.9	33
1063	100 years of seismic research on the Moho. Tectonophysics, 2013, 609, 9-44.	0.9	40
1064	The hunting of the snArc. Precambrian Research, 2013, 229, 20-48.	1.2	197
1065	Bulk crustal properties in NE Tibet and their implications for deformation model. Gondwana Research, 2013, 24, 548-559.	3.0	61
1066	Heat Flow, Heat Generation, and the Thermal State of the Lithosphere. Annual Review of Earth and Planetary Sciences, 2013, 41, 385-410.	4.6	109
1067	P- and S-wave velocity model along crustal scale refraction and wide-angle reflection profile in the southern Korean peninsula. Tectonophysics, 2013, 582, 84-100.	0.9	14
1068	Gravity and magnetic modelling in the Vrancea Zone, south-eastern Carpathians: Redefinition of the edge of the East European Craton beneath the south-eastern Carpathians. Journal of Geodynamics, 2013, 71, 52-64.	0.7	19

#	Article	IF	CITATIONS
1069	The Moho depth map of the Antarctica region. Tectonophysics, 2013, 609, 299-313.	0.9	55
1070	Joint inversion of teleseismic and GOCE gravity data: application to the Himalayas. Geophysical Journal International, 2013, 193, 149-160.	1.0	28
1071	Crustal structure along the Aleutian island arc: New insights from receiver functions constrained by activeâ€source data. Geochemistry, Geophysics, Geosystems, 2013, 14, 2977-2992.	1.0	47
1072	A new calibration of seismic velocities, anisotropy, fabrics, and elastic moduli of amphiboleâ€rich rocks. Journal of Geophysical Research: Solid Earth, 2013, 118, 4699-4728.	1.4	77
1073	Lithospheric P- and S-wave velocity models of the Sicilian area using WAM tomography: procedure and assessments. Geophysical Journal International, 2013, 195, 625-649.	1.0	23
1074	Seismological estimates of means of isostatic support of the Sierra Nevada. , 2013, 9, 1552-1561.		11
1075	The long-term topographic response of a continent adjacent to a hyperextended margin: A case study from Scandinavia. Bulletin of the Geological Society of America, 2013, 125, 184-200.	1.6	35
1076	Seismic anisotropy of the crust: electron-backscatter diffraction measurements from the Basin and Range. Geophysical Journal International, 2013, 195, 1211-1229.	1.0	47
1077	Study on the limitations of travel-time inversion applied to sub-basalt imaging. Solid Earth, 2013, 4, 543-554.	1.2	2
1078	Seismic and density structure of the lithosphereâ^asthenosphere system along transect Knipovich Ridgeâ^Spitsbergenâ^Barents Sea – geological and petrophysical implications. Polish Polar Research, 2013, 34, 111-138.	0.9	8
1079	Magnetotelluric constraints on the fluid content in the upper mantle beneath the southern Canadian Cordillera: Implications for rheology. Journal of Geophysical Research: Solid Earth, 2013, 118, 5601-5624.	1.4	42
1080	Formation of intracratonic basins by lithospheric shortening and phase changes: a case study from the ultraâ€deep East Barents Sea basin. Terra Nova, 2013, 25, 459-464.	0.9	21
1081	Earlyâ€stage rifting of the northern Tyrrhenian Sea Basin: Results from a combined wideâ€angle and multichannel seismic study. Geochemistry, Geophysics, Geosystems, 2013, 14, 3032-3052.	1.0	41
1082	Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins. Geochemistry, Geophysics, Geosystems, 2013, 14, 2575-2597.	1.0	174
1083	East Indian margin evolution and crustal architecture: integration of deep reflection seismic interpretation and gravity modelling. Geological Society Special Publication, 2013, 369, 477-496.	0.8	53
1084	Lithological model of the South China crust based on integrated geophysical data. Journal of Geophysics and Engineering, 2013, 10, .	0.7	12
1085	Global Moho from the combination of the CRUST2.0 model and GOCE data. Geophysical Journal International, 2013, 195, 222-237.	1.0	95
1086	Numerical simulation of crustal deformation using a three-dimensional viscoelastic crustal structure model for the Japanese islands under east-west compression. Earth, Planets and Space, 2013, 65, 1041-1046.	0.9	6

#	Article	IF	CITATIONS
1087	Removing source-side scattering for virtual deep seismic sounding (VDSS). Geophysical Journal International, 2013, 195, 1932-1941.	1.0	29
1088	Joint inversion of surface wave dispersion and receiver functions: a Bayesian Monte-Carlo approach. Geophysical Journal International, 2013, 192, 807-836.	1.0	202
1089	Constraints on the three-dimensional thermal structure of the lower crust in the Japanese Islands. Earth, Planets and Space, 2013, 65, 855-861.	0.9	7
1090	A rootless rockies—Support and lithospheric structure of the Colorado Rocky Mountains inferred from CREST and TA seismic data. Geochemistry, Geophysics, Geosystems, 2013, 14, 2670-2695.	1.0	65
1091	Ambient seismic noise tomography of Canada and adjacent regions: Part I. Crustal structures. Journal of Geophysical Research: Solid Earth, 2013, 118, 5865-5887.	1.4	50
1092	Seismic properties of the Kohistan oceanic arc root: Insights from laboratory measurements and thermodynamic modeling. Geochemistry, Geophysics, Geosystems, 2013, 14, 1819-1841.	1.0	11
1093	3â€D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I: <i>a priori</i> petrological information and geophysical observables. Journal of Geophysical Research: Solid Earth, 2013, 118, 2586-2617.	1.4	121
1094	Multiphased tectonic evolution of the Central Algerian margin from combined wideâ€angle and reflection seismic data off Tipaza, Algeria. Journal of Geophysical Research: Solid Earth, 2013, 118, 3899-3916.	1.4	61
1095	Accelerated subsidence and sedimentation in the Levant Basin during the Late Tertiary and concurrent uplift of the Arabian platform: Tectonic versus counteracting sedimentary loading effects. Tectonics, 2013, 32, 334-350.	1.3	48
1096	Crustal and uppermost mantle structure in the central U.S. encompassing the Midcontinent Rift. Journal of Geophysical Research: Solid Earth, 2013, 118, 4325-4344.	1.4	44
1097	Petroâ€fabrics and seismic properties of blueschist and eclogite in the North Qilian suture zone, NW China: Implications for the lowâ€velocity upper layer in subducting slab, trenchâ€parallel seismic anisotropy, and eclogite detectability in the subduction zone. Journal of Geophysical Research: Solid Earth, 2013, 118, 3037-3058.	1.4	40
1098	Characteristics of Deep Crust Structure Beneath Western Yunnan. Chinese Journal of Geophysics, 2013, 56, 252-264.	0.2	1
1099	Threeâ€Ðimensional Pâ€Wave Velocity Structure Around the Xiaojiang Fault Zone and Its Tectonic Implications. Chinese Journal of Geophysics, 2013, 56, 400-410.	0.2	2
1100	3D Rheological Structure of the Continental Lithosphere Beneath China and Adjacent Regions. Chinese Journal of Geophysics, 2013, 56, 546-558.	0.2	23
1101	Long-wavelength magnetic anomalies as a guide to the deep crustal composition and structure of eastern Australia. ASEG Extended Abstracts, 2013, 2013, 1-4.	0.1	1
1102	Temporary seismic monitoring of the Sulmona area (Abruzzo, Italy): a quality study of microearthquake locations. Natural Hazards and Earth System Sciences, 2013, 13, 2727-2744.	1.5	15
1103	Finiteâ€difference <i>P</i> wave travel time seismic tomography of the crust and uppermost mantle in the Italian region. Geochemistry, Geophysics, Geosystems, 2014, 15, 69-88.	1.0	13
1104	Relationship between the Cascadia fore-arc mantle wedge, nonvolcanic tremor, and the downdip limit of seismogenic rupture. Geochemistry, Geophysics, Geosystems, 2014, 15, 1071-1095.	1.0	27

#	Article	IF	Citations
1106	Granulite-Facies Xenoliths in Rift Basalts of Northern Tanzania: Age, Composition and Origin of Archean Lower Crust. Journal of Petrology, 2014, 55, 1243-1286.	1.1	24
1107	Crustal velocity structure associated with the eastern Tennessee seismic zone: Vp and Vs images based upon local earthquake tomography. Journal of Geophysical Research: Solid Earth, 2014, 119, 464-489.	1.4	24
1108	The porosity trend and pore sizes of the rocks in the continental crust of the earth: Evidence from experimental data on permeability. Izvestiya, Physics of the Solid Earth, 2014, 50, 593-602.	0.2	11
1109	Presence of an intralithospheric discontinuity in the central and western North China Craton: Implications for destruction of the craton. Geology, 2014, 42, 223-226.	2.0	138
1110	Density Structure, Isostatic Balance and Tectonic Models of the Central Tien Shan. Surveys in Geophysics, 2014, 35, 1375-1391.	2.1	13
1111	Rift migration explains continental margin asymmetry and crustal hyper-extension. Nature Communications, 2014, 5, 4014.	5.8	272
1112	Deep seismic reflection constraints on Paleogene crustal extension in the south-central Intermontane belt, British Columbia. Canadian Journal of Earth Sciences, 2014, 51, 393-406.	0.6	3
1113	Seismic structure of the Central Tyrrhenian basin: Geophysical constraints on the nature of the main crustal domains. Journal of Geophysical Research: Solid Earth, 2014, 119, 52-70.	1.4	62
1114	Density, temperature, and composition of the North American lithosphere—New insights from a joint analysis of seismic, gravity, and mineral physics data: 1. Density structure of the crust and upper mantle. Geochemistry, Geophysics, Geosystems, 2014, 15, 4781-4807.	1.0	50
1115	Imaging proto-oceanic crust off the Brazilian Continental Margin. Geophysical Journal International, 2014, 200, 471-488.	1.0	40
1116	Seismic imaging of the eastern Algerian margin off Jijel: integrating wide-angle seismic modelling and multichannel seismic pre-stack depth migration. Geophysical Journal International, 2014, 198, 1486-1503.	1.0	32
1117	Deep crustal structure of an arcâ€continent collision: Constraints from seismic traveltimes in central Taiwan and the Philippine Sea. Journal of Geophysical Research: Solid Earth, 2014, 119, 8397-8416.	1.4	28
1118	Crustal structure of the Gulf of Aden southern margin: Evidence from receiver functions on Socotra Island (Yemen). Tectonophysics, 2014, 637, 251-267.	0.9	17
1119	One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. , 2014, , 749-806.		136
1120	Constraints on Crustal Heat Production from Heat Flow Data. , 2014, , 53-73.		25
1121	Continental Basaltic Rocks. , 2014, , 75-110.		40
1122	A reappraisal of surface wave group velocity tomography in the Subantarctic Scotia Sea and surrounding ridges. Global and Planetary Change, 2014, 123, 223-238.	1.6	8
1123	Potential field and bathymetric investigation of the Monowai volcanic centre, Kermadec Arc: implications for caldera formation and volcanic evolution. Geophysical Journal International, 2014, 197, 1484-1499.	1.0	10

#	Article	IF	Citations
1124	Seismic imaging of crust beneath the Dharwar Craton, India, from ambient noise and teleseismic receiver function modelling. Geophysical Journal International, 2014, 197, 748-767.	1.0	40
1125	A large mantle water source for the northern San Andreas fault system: a ghost of subduction past. Earth, Planets and Space, 2014, 66, .	0.9	27
1126	Moho depth and Vp/Vs in Ireland from teleseismic receiver functions analysis. Geophysical Journal International, 2014, 199, 561-579.	1.0	18
1127	Subduction of Continental Crust to Mantle Depth. , 2014, , 309-340.		88
1128	Future accreted terranes: a compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments. Solid Earth, 2014, 5, 1243-1275.	1.2	60
1129	Seismological evidence for a fossil subduction zone in the East Greenland Caledonides. Geology, 2014, 42, 311-314.	2.0	46
1130	Surface Expressions of Rayleighâ€Taylor Instability in Continental Interiors. Acta Geologica Sinica, 2014, 88, 1004-1016.	0.8	1
1131	Structure of the upper mantle of Northern Eurasia from 2D density modeling on seismic profiles with peaceful nuclear explosions. Tectonophysics, 2014, 627, 57-71.	0.9	6
1132	Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 2014, 392, 177-191.	1.8	118
1133	Lateral variation of crustal structure in the Ordos block and surrounding regions, North China, and its tectonic implications. Earth and Planetary Science Letters, 2014, 387, 198-211.	1.8	96
1134	Accumulation of â€~anti-continent' at the base of the mantle and its recycling in mantle plumes. Geochimica Et Cosmochimica Acta, 2014, 143, 23-33.	1.6	11
1135	Deep crustal structure of the conjugate margins of the SW South China Sea from wide-angle refraction seismic data. Marine and Petroleum Geology, 2014, 58, 627-643.	1.5	105
1136	Crustal structure across the MÃ,re margin, mid-Norway, from wide-angle seismic and gravity data. Tectonophysics, 2014, 626, 21-40.	0.9	19
1137	Inhibited eclogitization and consequences for geophysical rock properties and delamination models: Constraints from cratonic lower crustal xenoliths. Gondwana Research, 2014, 25, 668-684.	3.0	13
1138	3-D density structure under South China constrained by seismic velocity and gravity data. Tectonophysics, 2014, 627, 159-170.	0.9	65
1139	Moho structure of Central America based on three-dimensional lithospheric density modelling of satellite-derived gravity data. International Journal of Earth Sciences, 2014, 103, 1733-1745.	0.9	25
1140	On the Causes of Electrical Conductivity Anomalies in Tectonically Stable Lithosphere. Surveys in Geophysics, 2014, 35, 219-257.	2.1	174
1141	Mantle origin of the Emeishan large igneous province (South China) from the analysis of residual gravity anomalies. Lithos, 2014, 204, 4-13.	0.6	38

#	Article	IF	CITATIONS
1142	Crustal thickness and velocity structure across the Moroccan Atlas from long offset wideâ€angle reflection seismic data: The SIMA experiment. Geochemistry, Geophysics, Geosystems, 2014, 15, 1698-1717.	1.0	42
1143	Crustal structure of Northern Latium (central Italy) from receiver functions analysis: New evidences of a post-collisional back-arc margin evolution. Tectonophysics, 2014, 621, 148-158.	0.9	13
1144	Conservation and redistribution of crust during the Indo-Asian collision. Tectonics, 2014, 33, 1016-1027.	1.3	46
1145	Arc crustal differentiation mechanisms. Earth and Planetary Science Letters, 2014, 396, 267-277.	1.8	77
1146	From oceanic plateaus to allochthonous terranes: Numerical modelling. Gondwana Research, 2014, 25, 494-508.	3.0	82
1147	Anomalous crustal and lithospheric mantle structure of southern part of the Vindhyan Basin and its geodynamic implications. Journal of Asian Earth Sciences, 2014, 91, 316-328.	1.0	16
1148	The lithosphere–asthenosphere system beneath Ireland from integrated geophysical–petrological modeling II: 3D thermal and compositional structure. Lithos, 2014, 189, 49-64.	0.6	31
1149	A new Moho boundary map for the northern Fennoscandian Shield based on combined controlled-source seismic and receiver function data. GeoResJ, 2014, 1-2, 19-32.	1.4	20
1150	Geophysical transect across the North China Craton: A perspective on the interaction between Tibetan eastward escape and Pacific westward flow. Gondwana Research, 2014, 26, 311-322.	3.0	14
1151	Temperature dependence of thermal diffusivity, specific heat capacity, and thermal conductivity for several types of rocks. Journal of Thermal Analysis and Calorimetry, 2014, 115, 1057-1063.	2.0	112
1152	Antarctica's hypsometry and crustal thickness: Implications for the origin of anomalous topography in East Antarctica. Earth and Planetary Science Letters, 2014, 388, 143-155.	1.8	47
1153	Crustal structure of Hubei Province of China from teleseismic receiver functions: Evidence for lower crust delamination. Tectonophysics, 2014, 636, 286-292.	0.9	33
1154	Seismic signature of the Alpine indentation, evidence from the Eastern Alps. Journal of Geodynamics, 2014, 82, 69-77.	0.7	11
1155	Thermal and geodynamic contributions to the elevation of the Altiplano–Puna plateau. Physics of the Earth and Planetary Interiors, 2014, 237, 51-64.	0.7	5
1156	An integrated geophysical study of the Beattie Magnetic Anomaly, South Africa. Tectonophysics, 2014, 636, 228-243.	0.9	16
1157	Lower crustal bodies in the MÃre volcanic rifted margin: Geophysical determination and geological implications. Tectonophysics, 2014, 636, 143-157.	0.9	38
1158	An adjoint-based FEM optimization of coseismic displacements following the 2011 Tohoku earthquake: new insights for the limits of the upper plate rebound. Physics of the Earth and Planetary Interiors, 2014, 237, 25-39.	0.7	7
1159	The model of the depth variations in the properties and state of the rocks in the upper, middle, and lower continental crust of the Kola-Norwegian block, Kola Peninsula. Izvestiya, Physics of the Solid Earth, 2014, 50, 514-527.	0.2	0

ARTICLE IF CITATIONS Composition of the Continental Crust., 2014, , 1-51. 828 1160 Seismic and gravity constraints on the nature of the basement in the Africaâ \in Eurasia plate boundary: New insights for the geodynamic evolution of the SW Iberian margin. Journal of Geophysical 1.4 Research: Solid Earth, 2014, 119, 127-149. Composition model of the crust beneath the Ordos basin and the Yinshan mountains in China, based 1162 0.9 10 on seismic velocity, heat flow and gravity data. Tectonophysics, 2014, 634, 246-256. Crustal density structure in northwestern South America derived from analysis and 3-D modeling of 0.9 34 gravity and seismicity data. Tectonophysics, 2014, 634, 97-115. Seismic anisotropy of the Archean crust in the Minnesota River Valley, Superior Province. Geophysical 1164 1.5 7 Research Letters, 2014, 41, 1514-1522. Garnet-forming reactions in felsic orthogneiss: Implications for densification and strengthening of the lower continental crust. Earth and Planetary Science Letters, 2014, 405, 207-219. 1.8 Crustal structure of the northern Perth Basin, southwest margin of Australia: insights from 1166 1.0 1 three-dimensional density models. Geophysical Journal International, 2014, 196, 204-217. Harmonic and statistical analyses of the gravity and topography of Vesta. Icarus, 2014, 240, 161-173. 1.1 1167 Seismological observations in Northwestern South America: Evidence for two subduction segments, 1168 0.9 39 contrasting crustal thicknesses and upper mantle flow. Tectonophysics, 2014, 637, 57-67. Thailand's crustal properties from tele-seismic receiver function studies. Tectonophysics, 2014, 632, 64-75. Moho depth variations in the Taiwan orogen from joint inversion of seismic arrival time and Bouguer 1170 17 0.9 gravity data. Tectonophysics, 2014, 632, 151-159. Influence of pre-Andean history over Cenozoic foreland deformation: Structural styles in the 1171 50 Malargüe fold-and-thrust belt at 35°S, Andes of Argentina. , 2014, 10, 585-609. Geochemical and mineralogical studies of chlorine-rich amphibole and biotite from the 2.5 Ga mid-crustal basement beneath the 1993 Killari earthquake region, Maharashtra: Evidence for mantle 1172 0.5 25 metasomatism beneath the Deccan Trap. Journal of the Geological Society of India, 2014, 83, 599-612. Titanite evidence for Triassic thickened lower crust along southeastern margin of North China Craton. Lithos, 2014, 206-207, 277-288. Accretionary nature of the crust of Central and East Java (Indonesia) revealed by local earthquake 1174 1.0 16 travel-time tomography. Journal of Asian Earth Sciences, 2014, 96, 287-295. Effect of fluid H2O on compressional wave velocities in quartz aggregate up to 500ŰC at 0.5 GPa. Earth, Planets and Space, 2014, 66, . Crustal structure in southeastern Egypt: Symmetric thinning of the northern Red Sea rifted margins. 1176 2.022 Geology, 2014, 42, 219-222. Seismic constraints of the formation process on the backâ€arc basin in the southeastern Japan Sea. 1.4 Journal of Geophysical Research: Solid Earth, 2014, 119, 1563-1579.

#	Article	IF	CITATIONS
1178	Upper mantle structure of the Cascades from full-wave ambient noise tomography: Evidence for 3D mantle upwelling in the back-arc. Earth and Planetary Science Letters, 2014, 390, 222-233.	1.8	73
1179	Zircon U–Pb dating from the mafic enclaves in the Tanzawa Tonalitic Pluton, Japan: Implications for arc history and formation age of the lower-crust. Lithos, 2014, 196-197, 301-320.	0.6	14
1180	Seismic velocity structure in the Hot Springs and Trifurcation areas of the San Jacinto fault zone, California, from double-difference tomography. Geophysical Journal International, 2014, 198, 978-999.	1.0	82
1181	Penetration of mid-crustal low velocity zone across the Kunlun Fault in the NE Tibetan Plateau revealed by ambient noise tomography. Earth and Planetary Science Letters, 2014, 406, 81-92.	1.8	75
1182	Late Mesozoic magmatic plumbing system in the onshore–offshore area of Hong Kong: Insight from 3-D active-source seismic tomography. Journal of Asian Earth Sciences, 2014, 96, 46-58.	1.0	29
1183	Seismic velocities and composition of the Canadian crust. Tectonophysics, 2014, 633, 256-267.	0.9	13
1184	Density structure and isostatic state of the crust in the Longmenshan and adjacent areas. Tectonophysics, 2014, 619-620, 51-57.	0.9	25
1185	Crustal structure and inferred rifting processes in the northeast South China Sea. Marine and Petroleum Geology, 2014, 58, 612-626.	1.5	100
1186	Geophysical constraints on the link between cratonization and orogeny: Evidence from the Tibetan Plateau and the North China Craton. Earth-Science Reviews, 2014, 130, 1-48.	4.0	40
1187	Investigating the role of the Itoigawa-Shizuoka tectonic line towards the evolution of the Northern Fossa Magna rift basin. Tectonophysics, 2014, 615-616, 12-26.	0.9	15
1188	Subsurface imaging, TAIGER experiments and tectonic models of Taiwan. Journal of Asian Earth Sciences, 2014, 90, 173-208.	1.0	42
1189	Petrogenesis of the Early Eocene adakitic rocks in the Napuri area, southern Lhasa: Partial melting of thickened lower crust during slab break-off and implications for crustal thickening in southern Tibet. Lithos, 2014, 196-197, 321-338.	0.6	79
1190	Crustal shear-wave velocity structure beneath northeast India from teleseismic receiver function analysis. Journal of Asian Earth Sciences, 2014, 90, 1-14.	1.0	27
1191	NACr14: A 3D model for the crustal structure of the North American Continent. Tectonophysics, 2014, 631, 65-86.	0.9	42
1192	Crustal velocity structure beneath Saurashtra, NW India, through waveform modeling: Implications for magmatic underplating. Journal of Asian Earth Sciences, 2014, 79, 173-181.	1.0	18
1193	The lithosphere–asthenosphere system beneath Ireland from integrated geophysical–petrological modeling — I: Observations, 1D and 2D hypothesis testing and modeling. Lithos, 2014, 189, 28-48.	0.6	22
1194	Preserved and modified mid-Archean crustal blocks in Dharwar craton: Seismological evidence. Precambrian Research, 2014, 246, 16-34.	1.2	54
1195	The crustal structure and tectonic development of the continental margin of the Amundsen Sea Embayment, West Antarctica: implications from geophysical data. Geophysical Journal International, 2014, 198, 327-341.	1.0	14

#	Article	IF	CITATIONS
1196	Structural complexities in a foreland thrust belt inherited from the shelf-slope transition: Insights from the Alishan area of Taiwan. Tectonics, 2014, 33, 1322-1339.	1.3	13
1197	Formation mechanisms of ultradeep sedimentary basins: the North Barents basin. Petroleum potential implications. Russian Geology and Geophysics, 2014, 55, 649-667.	0.3	18
1198	Chapter 15 The SEA-CALIPSO volcano imaging experiment at Montserrat: plans, campaigns at sea and on land, scientific results, and lessons learned. Geological Society Memoir, 2014, 39, 253-289.	0.9	5
1199	Geochemical constraints on the petrogenesis of the Salinian arc, central California: Implications for the origin of intermediate magmas. Lithos, 2014, 200-201, 126-141.	0.6	23
1200	Evolution of the middle crust beneath the western Pannonian Basin: a xenolith study. Mineralogy and Petrology, 2014, 108, 33-47.	0.4	10
1201	Regional study of the Archean to Proterozoic crust at the Sudbury Neutrino Observatory (SNO+), Ontario: Predicting the geoneutrino flux. Geochemistry, Geophysics, Geosystems, 2014, 15, 3925-3944.	1.0	17
1202	Deep crustal structure of the northeastern Gulf of Mexico: Implications for rift evolution and seafloor spreading. Journal of Geophysical Research: Solid Earth, 2014, 119, 6802-6822.	1.4	72
1203	Origins of topography in the western U.S.: Mapping crustal and upper mantle density variations using a uniform seismic velocity model. Journal of Geophysical Research: Solid Earth, 2014, 119, 2375-2396.	1.4	38
1204	Fullâ€3â€D tomography for crustal structure in Southern California based on the scatteringâ€integral and the adjointâ€wavefield methods. Journal of Geophysical Research: Solid Earth, 2014, 119, 6421-6451.	1.4	195
1205	The protracted development of focused magmatic intrusion during continental rifting. Tectonics, 2014, 33, 875-897.	1.3	47
1206	Magmatic development of the outer VÃ,ring margin from seismic data. Journal of Geophysical Research: Solid Earth, 2014, 119, 6733-6755.	1.4	21
1207	Crustal thinning in the northern Tyrrhenian Rift: Insights from multichannel and wideâ€angle seismic data across the basin. Journal of Geophysical Research: Solid Earth, 2014, 119, 1655-1677.	1.4	19
1208	The influence of porosity and crack morphology on seismic velocity and permeability in the upper oceanic crust. Geochemistry, Geophysics, Geosystems, 2014, 15, 10-27.	1.0	32
1209	Integrated geophysical-petrological modeling of lithosphere-asthenosphere boundary in central Tibet using electromagnetic and seismic data. Geochemistry, Geophysics, Geosystems, 2014, 15, 3965-3988.	1.0	40
1210	Deep crustal structure in the eastern Gulf of Mexico. Journal of Geophysical Research: Solid Earth, 2014, 119, 6782-6801.	1.4	66
1211	Comparison of Inversion Method of Wide Angle Ocean Bottom Seismometer Profile: A Case Study of Profile OBS973â€⊋ Across Liyue Bank in the South China Sea. Chinese Journal of Geophysics, 2014, 57, 607-618.	0.2	3
1212	An Experimental Study of Wave Velocity Anisotropy in Sandstone Bearing Differential Pore Fluids from the Yanchang Formation. Chinese Journal of Geophysics, 2014, 57, 401-414.	0.2	0
1213	The Elastic Wave Velocities of the Granitoids from Eastern Junggar of Xinjiang at High Temperature and High Pressure and Their Geological Constraints on the Crustal Structure. Chinese Journal of Geophysics, 2014, 57, 663-677.	0.2	0

#	Article	IF	CITATIONS
1215	Seismic evidence for crustal underplating beneath a large igneous province: The Sierra Leone Rise, equatorial Atlantic. Marine Geology, 2015, 365, 52-60.	0.9	9
1216	Crustal movement and crustal structure of the Gulf of Suez margins. Journal of Spatial Science, 2015, 60, 387-401.	1.0	0
1217	Constraints on the evolution of crustal flow beneath <scp>N</scp> orthern <scp>T</scp> ibet. Geochemistry, Geophysics, Geosystems, 2015, 16, 4237-4260.	1.0	40
1218	Magmatism on rift flanks: Insights from ambient noise phase velocity in Afar region. Geophysical Research Letters, 2015, 42, 2179-2188.	1.5	21
1219	A randomâ€walk algorithm for modeling lithospheric density and the role of body forces in the evolution of the <scp>M</scp> idcontinent <scp>R</scp> ift. Geochemistry, Geophysics, Geosystems, 2015, 16, 4084-4107.	1.0	20
1220	Effects of chemical composition, water and temperature on physical properties of continental crust. Geochemistry, Geophysics, Geosystems, 2015, 16, 2431-2449.	1.0	33
1221	Compositional dependence of lower crustal viscosity. Geophysical Research Letters, 2015, 42, 8333-8340.	1.5	40
1222	Distinct crustal isostasy trends east and west of the Rocky Mountain Front. Geophysical Research Letters, 2015, 42, 10,290.	1.5	101
1224	Variations of the lithospheric strength and elastic thickness in <scp>N</scp> orth <scp>A</scp> merica. Geochemistry, Geophysics, Geosystems, 2015, 16, 2197-2220.	1.0	48
1225	Generalization of the <i>Hâ€îº</i> stacking method to anisotropic media. Journal of Geophysical Research: Solid Earth, 2015, 120, 5135-5153.	1.4	14
1226	Rayleigh wave dispersion measurements reveal lowâ€velocity zones beneath the new crust in the Gulf of California. Geophysical Research Letters, 2015, 42, 1766-1774.	1.5	13
1227	Seismic tomography of compressional wave attenuation structure for Kı̄lauea Volcano, Hawaiâ€~i. Journal of Geophysical Research: Solid Earth, 2015, 120, 2510-2524.	1.4	15
1228	Crustal imprints of Precambrian orogenesis in western Laurentia. Journal of Geophysical Research: Solid Earth, 2015, 120, 6993-7012.	1.4	31
1229	Aseismic slip and seismogenic coupling along the central San Andreas Fault. Geophysical Research Letters, 2015, 42, 297-306.	1.5	123
1230	Mechanism of crustal extension in the Laxmi Basin, Arabian Sea. Geodesy and Geodynamics, 2015, 6, 409-422.	1.0	21
1231	Heterogeneous Crystalline Crust Controls the Shallow Thermal Field – A Case Study of Hessen (Germany). Energy Procedia, 2015, 76, 331-340.	1.8	5
1232	Seismic properties of naturally deformed quartzites of the Alaknanda valley, Garhwal Himalaya, India. Journal of Earth System Science, 2015, 124, 1159-1175.	0.6	3
1233	Crustal seismic velocity structure from Eratosthenes Seamount to Hecataeus Rise across the Cyprus Arc, eastern Mediterranean. Geophysical Journal International, 2015, 200, 933-951.	1.0	27

#	Article	IF	CITATIONS
1234	The East Greenland Caledonides—teleseismic signature, gravity and isostasy. Geophysical Journal International, 2015, 203, 1400-1418.	1.0	25
1235	Coupled onshore erosion and offshore sediment loading as causes of lower crust flow on the margins of South China Sea. Geoscience Letters, 2015, 2, .	1.3	14
1236	Seismicity and active tectonics in the Alboran Sea, Western Mediterranean: Constraints from an offshoreâ€onshore seismological network and swath bathymetry data. Journal of Geophysical Research: Solid Earth, 2015, 120, 8348-8365.	1.4	36
1237	NEW DEPTH MAPS OF THE MAIN KAROO BASIN, USED TO EXPLORE THE CAPE ISOSTATIC ANOMALY, SOUTH AFRICA. South African Journal of Geology, 2015, 118, 225-248.	0.6	19
1238	Continental breakup and the dynamics of rifting in back-arc basins: The Gulf of Lion margin. Tectonics, 2015, 34, 662-679.	1.3	80
1239	Dynamic models of an earthquake and tsunami offshore Ventura, California. Geophysical Research Letters, 2015, 42, 6599-6606.	1.5	28
1240	The Deep Structure Feature of the Sichuan Basin and Adjacent Orogens. Acta Geologica Sinica, 2015, 89, 1153-1164.	0.8	9
1241	Validation of recent shear wave velocity models in the United States with fullâ€wave simulation. Journal of Geophysical Research: Solid Earth, 2015, 120, 344-358.	1.4	13
1242	Deep structure of the Santos Basinâ€6ão Paulo Plateau System, SE Brazil. Journal of Geophysical Research: Solid Earth, 2015, 120, 5401-5431.	1.4	71
1243	Crustal structure of the eastern Borborema Province, NE Brazil, from the joint inversion of receiver functions and surface wave dispersion: Implications for plateau uplift. Journal of Geophysical Research: Solid Earth, 2015, 120, 3848-3869.	1.4	26
1244	Geophysical and geochemical nature of relaminated arcâ€derived lower crust underneath oceanic domain in southern Mongolia. Tectonics, 2015, 34, 1030-1053.	1.3	25
1245	Imaging the magmatic system of <scp>N</scp> ewberry <scp>V</scp> olcano using joint active source and teleseismic tomography. Geochemistry, Geophysics, Geosystems, 2015, 16, 4433-4448.	1.0	20
1246	Seismic velocity structure and deformation due to the collision of the Louisville Ridge with the Tonga-Kermadec Trench. Geophysical Journal International, 2015, 200, 1503-1522.	1.0	15
1247	Seismic model of the crust and upper mantle in the Scythian Platform: the DOBRE-5 profile across the north western Black Sea and the Crimean Peninsula. Geophysical Journal International, 2015, 201, 406-428.	1.0	39
1248	Geophysical Properties of the Near Surface Earth: Seismic Properties. , 2015, , 43-87.		18
1249	Crust and Lithospheric Structure - Global Crustal Structure. , 2015, , 339-390.		32
1250	Crustal architecture of the Borborema Province, NE Brazil, from receiver function CCP stacks: Implications for Mesozoic stretching and Cenozoic uplift. Tectonophysics, 2015, 649, 68-80.	0.9	19
1251	Crustal velocity structure in the Emeishan large igneous province and evidence of the Permian mantle plume activity. Science China Earth Sciences, 2015, 58, 1133-1147.	2.3	53

#	Article	IF	CITATIONS
1252	Crustal structure of Precambrian terranes in the southern African subcontinent with implications for secular variation in crustal genesis. Geophysical Journal International, 2015, 202, 533-547.	1.0	33
1253	Construction and evolution of igneous bodies: Towards an integrated perspective of crustal magmatism. Lithos, 2015, 230, 206-221.	0.6	216
1254	Noise correlation tomography of Southwest Western Canada Sedimentary Basin. Geophysical Journal International, 2015, 202, 142-162.	1.0	16
1255	Evolution of the Earth as an andesite planet: water, plate tectonics, and delamination of anti-continent. Earth, Planets and Space, 2015, 67, .	0.9	15
1256	Quantitative 3D microstructural analysis of naturally deformed amphibolite from the Southern Alps (Italy): microstructures, CPO and seismic anisotropy from a fossil extensional margin. Geological Society Special Publication, 2015, 409, 201-222.	0.8	11
1257	Integrating Geological Prior Information into the Inverse Gravimetric Problem: The Bayesian Approach. International Association of Geodesy Symposia, 2015, , 317-324.	0.2	9
1258	Deep crustal structure of the North-West African margin from combined wide-angle and reflection seismic data (MIRROR seismic survey). Tectonophysics, 2015, 656, 154-174.	0.9	25
1259	Evidence for transform motion along the South Balearic margin and implications for the kinematics of opening of the Algerian basin. Bulletin - Societie Geologique De France, 2015, 186, 353-370.	0.9	22
1260	Heat flow and thermal modeling of the Appalachian Basin, West Virginia. , 2015, 11, 1279-1290.		12
1261	Seismic imaging across the Eastern Ghats Belt-Cuddapah Basin collisional zone, southern Indian Shield and possible geodynamic implications. Precambrian Research, 2015, 271, 56-64.	1.2	23
1262	Is the Ordos Basin floored by a trapped oceanic plateau?. Earth and Planetary Science Letters, 2015, 429, 197-204.	1.8	39
1263	Is the Proterozoic Ladoga Rift (SE Baltic Shield) a rift?. Precambrian Research, 2015, 259, 34-42.	1.2	10
1264	The high resolution sedimentary filling in Qiongdongnan Basin, Northern South China Sea. Marine Geology, 2015, 361, 11-24.	0.9	90
1265	Seismological mapping of a geosuture in the Southern Granulite Province of India. Lithosphere, 2015, 7, 144-154.	0.6	7
1266	A review of crust and upper mantle structure beneath the Indian subcontinent. Tectonophysics, 2015, 644-645, 1-21.	0.9	68
1267	Effect of small-scale heterogeneities on interpretation of crustal compositions exemplified by a layered anorthosite. Lithos, 2015, 216-217, 298-314.	0.6	0
1268	Crustal rheology control on earthquake activity across the eastern margin of the Tibetan Plateau: Insights from numerical modelling. Journal of Asian Earth Sciences, 2015, 100, 20-30.	1.0	16
1269	Continental Lower Crust. Annual Review of Earth and Planetary Sciences, 2015, 43, 167-205.	4.6	260

#	Article	IF	CITATIONS
1270	The mechanics of continental extension in Qiongdongnan Basin, northern South China Sea. Marine Geophysical Researches, 2015, 36, 197-210.	0.5	26
1271	Origin of dipping structures in fast-spreading oceanic lower crust offshore Alaska imaged by multichannel seismic data. Earth and Planetary Science Letters, 2015, 424, 26-37.	1.8	30
1272	Geophysical constraints on the crustal structure of the East European Platform margin and its foreland based on the POLCRUST-01 deep reflection seismic profile. Tectonophysics, 2015, 653, 109-126.	0.9	17
1273	A three-dimensional Vp, Vs, and Vp/Vs crustal structure in Fujian, Southeast China, from active- and passive-source experiments. Journal of Asian Earth Sciences, 2015, 111, 517-527.	1.0	16
1274	Crustal velocity structure of the Neoarchean convergence zone between the eastern and western blocks of Dharwar Craton, India from seismic wide-angle studies. Precambrian Research, 2015, 266, 282-295.	1.2	38
1275	Crustal structure of northwest Namibia: Evidence for plume-rift-continent interaction. Geology, 2015, 43, 739-742.	2.0	31
1276	Geological units and Moho depth determination in the Western Balkans exploiting GOCE data. Geophysical Journal International, 2015, 202, 1054-1063.	1.0	12
1277	Crystal preferred orientation of an amphibole experimentally deformed by simple shear. Nature Communications, 2015, 6, 6586.	5.8	106
1278	Development and Testing of a 3D Seismic Velocity Model of the Po Plain Sedimentary Basin, Italy. Bulletin of the Seismological Society of America, 2015, 105, 753-764.	1.1	58
1279	Deep crustal structure across a young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) – II. Sardinia's margin. Bulletin - Societie Geologique De France, 2015, 186, 331-351.	0.9	31
1280	Volcanic–plutonic parity and the differentiation of the continental crust. Nature, 2015, 523, 301-307.	13.7	185
1281	A lithospheric velocity model for the flat slab region of Argentina from joint inversion of Rayleigh wave phase velocity dispersion and teleseismic receiver functions. Geophysical Journal International, 2015, 202, 224-241.	1.0	38
1282	Geophysical evidence for a transform margin offshore Western Algeria: a witness of a subduction-transform edge propagator?. Geophysical Journal International, 2015, 200, 1029-1045.	1.0	31
1283	Surface heat flow and lithosphere thermal structure of the Rhenohercynian Zone in the greater Luxembourg region. Geothermics, 2015, 56, 93-109.	1.5	11
1284	Bulk crustal properties of the Borborema Province, NE Brazil, from P-wave receiver functions: Implications for models of intraplate Cenozoic uplift. Tectonophysics, 2015, 644-645, 81-91.	0.9	26
1285	Hydrothermal and magmatic reservoirs at Lazufre volcanic area, revealed by a high-resolution seismic noise tomography. Earth and Planetary Science Letters, 2015, 421, 27-38.	1.8	34
1286	Abiotic resource depletion in LCA—background and update of the anthropogenic stock extended abiotic depletion potential (AADP) model. International Journal of Life Cycle Assessment, 2015, 20, 709-721.	2.2	66
1287	Crustal structure of the eastern Algerian continental margin and adjacent deep basin: implications for late Cenozoic geodynamic evolution of the western Mediterranean. Geophysical Journal International, 2015, 201, 1912-1938.	1.0	47
	CITATION R	EPORT	
------	--	-------	-----------
#	Article	IF	CITATIONS
1288	The Yellowstone magmatic system from the mantle plume to the upper crust. Science, 2015, 348, 773-776.	6.0	220
1289	Lithospheric velocity model across the Southern Central Iberian Zone (Variscan Iberian Massif): The ALCUDIA wide-angle seismic reflection transect. Tectonics, 2015, 34, 535-554.	1.3	25
1290	Depth distribution of the sedimentary basin and Moho undulation in the Yellow Sea, NE Asia interpreted by using satellite-derived gravity field. Geophysical Journal International, 2015, 202, 41-53.	1.0	22
1291	Geophysical-petrological modeling of the lithosphere beneath the Cantabrian Mountains and the North-Iberian margin: geodynamic implications. Lithos, 2015, 230, 46-68.	0.6	52
1292	Geophysical characterization of the upper crust in the transitional zone between the Pampean flat slab and the normal subduction segment to the south (32–34°S): Andes of the Frontal Cordillera to the Sierras Pampeanas. Geological Society Special Publication, 2015, 399, 167-182.	0.8	1
1293	Role of Arc Processes in the Formation of Continental Crust. Annual Review of Earth and Planetary Sciences, 2015, 43, 363-404.	4.6	181
1294	Applying local Green's functions to study the influence of the crustal structure on hydrological loading displacements. Journal of Geodynamics, 2015, 88, 14-22.	0.7	45
1295	Shear wave velocity structure of the Anatolian Plate: anomalously slow crust in southwestern Turkey. Geophysical Journal International, 2015, 202, 261-276.	1.0	61
1296	Surface wave phase-velocity tomography based on multichannel cross-correlation. Geophysical Journal International, 2015, 201, 1383-1398.	1.0	94
1297	Inferring the oriented elastic tensor from surface wave observations: preliminary application across the western United States. Geophysical Journal International, 2015, 201, 996-1021.	1.0	38
1298	Continental crust generated in oceanic arcs. Nature Geoscience, 2015, 8, 321-327.	5.4	94
1299	The continent–ocean transition at the mid-northern margin of the South China Sea. Tectonophysics, 2015, 654, 1-19.	0.9	82
1300	Continental dynamics of Eastern China: Insights from tectonic history and receiver function analysis. Earth-Science Reviews, 2015, 145, 9-24.	4.0	18
1301	Deep crustal structure across a young passive margin from wide-angle and reflection seismic data (The SARDINIA Experiment) – I. Gulf of Lion's margin. Bulletin - Societie Geologique De France, 2015, 186, 309-330.	0.9	39
1302	Pressure effect on magnetic hysteresis parameters of single-domain magnetite contained in natural plagioclase crystal. Geophysical Journal International, 2015, 202, 394-401.	1.0	5
1303	Structural and stratigraphic evolution of the Iberia–Newfoundland hyper-extended rifted margin: a quantitative modelling approach. Geological Society Special Publication, 2015, 413, 53-89.	0.8	42
1304	Getting over continent ocean boundaries. Earth-Science Reviews, 2015, 151, 244-265.	4.0	76
1305	Integration of seismic and gravity data — A case study from the western Gulf of Mexico. Interpretation, 2015, 3, SAC99-SAC106.	0.5	13

		CITATION REPORT		
#	Article		IF	CITATIONS
1306	Across and along arc geochemical variations in altered volcanic rocks: Evidence from mineral chemistry of Jurassic lavas in northern Chile, and tectonic implications. Lithos, 2015, 239, 97-13	.3.	0.6	13
1307	Crustâ€scale 3D model of the <scp>W</scp> estern <scp>B</scp> redasdorp <scp>B</scp> asir (<scp>S</scp> outhern <scp>S</scp> outh <scp>A</scp> frica): dataâ€based insights from com isostatic and 3D gravity modelling. Basin Research, 2015, 27, 125-151.	bined	1.3	9
1308	Deep vs. shallow controlling factors of the crustal thermal field – insights from 3D modelling the <scp>B</scp> eaufortâ€ <scp>M</scp> ackenzie <scp>B</scp> asin (<scp>A</scp> rctic) Tj E	of TQq0 0 0 rgBT /Ove	erl o ck 10	Т f б 0 657 Т
1309	From the North-Iberian Margin to the Alboran Basin: A lithosphere geo-transect across the Iberia Plate. Tectonophysics, 2015, 663, 399-418.	in .	0.9	34
1310	Determining the COB location along the Iberian margin and Galicia Bank from gravity anomaly inversion, residual depth anomaly and subsidence analysis. Geophysical Journal International, 20 203, 1355-1372.)15,	1.0	19
1311	CVM-S4.26. , 2015, , 345-509.			8
1312	Constraining a mafic thick crust model in the Andean Precordillera of the Pampean flat slab subduction region. Journal of South American Earth Sciences, 2015, 64, 325-338.		0.6	14
1313	Crustal structure and composition beneath the northeastern Tibetan plateau from receiver fund analysis. Physics of the Earth and Planetary Interiors, 2015, 249, 51-58.	tion	0.7	10
1314	Secular change in Archaean crust formation recorded in Western Australia. Nature Geoscience, 8, 808-813.	2015,	5.4	61
1315	Crustal structure of an intraplate thrust belt: The Iberian Chain revealed by wide-angle seismic, magnetotelluric soundings and gravity data. Tectonophysics, 2015, 663, 339-353.		0.9	16
1316	The deep geology of South India inferred from Moho depth and <i>Vp</i> / <i>Vs</i> ratio. Geoph Journal International, 2015, 203, 910-926.	ysical	1.0	25
1317	Rayleigh wave group velocities at periods of 6–23Âs across Brazil from ambient noise tomogr Geophysical Journal International, 2015, 203, 869-882.	aphy.	1.0	22
1318	3D structural and stratigraphic model of the Perth Basin, Western Australia: Implications for sub-basin evolution. Australian Journal of Earth Sciences, 2015, 62, 447-467.		0.4	22
1319	Teleseismic shear wave tomography of the Japan subduction zone. Geophysical Journal Internat 0, , .	ional,	1.0	13
1320	<i>S</i> â€velocity model and inferred Moho topography beneath the Antarctic Plate from Rayle waves. Journal of Geophysical Research: Solid Earth, 2015, 120, 359-383.	eigh	1.4	139
1321	Crustal magmatism and lithospheric geothermal state of western North America and their implications for a magnetic mantle. Tectonophysics, 2015, 638, 112-125.		0.9	33
1322	Density heterogeneity of the cratonic lithosphere: A case study of the Siberian Craton. Gondwa Research, 2015, 28, 1344-1360.	na	3.0	32
1323	Deep seismic refraction experiment in northeast Brazil: New constraints for Borborema province evolution. Journal of South American Earth Sciences, 2015, 58, 335-349.		0.6	42

#	Article	IF	CITATIONS
1324	Analysis of the Refined CRUST1.0 Crustal Model and its Gravity Field. Surveys in Geophysics, 2015, 36, 139-165.	2.1	94
1325	GEMMA: An Earth crustal model based on GOCE satellite data. International Journal of Applied Earth Observation and Geoinformation, 2015, 35, 31-43.	1.4	112
1326	3D object-oriented image analysis in 3D geophysical modelling: Analysing the central part of the East African Rift System. International Journal of Applied Earth Observation and Geoinformation, 2015, 35, 44-53.	1.4	10
1327	The Canary Islands hot spot: New insights from 3D coupled geophysical–petrological modelling of the lithosphere and uppermost mantle. Earth and Planetary Science Letters, 2015, 409, 71-88.	1.8	37
1328	Laboratory measurement of elastic anisotropy on spherical rock samples by longitudinal and transverse sounding under confining pressure. Ultrasonics, 2015, 56, 294-302.	2.1	34
1329	Repeat ridge jumps and microcontinent separation: insights from NE Arabian Sea. Marine and Petroleum Geology, 2015, 59, 406-428.	1.5	76
1330	Multiple geophysical methods used to examine neotectonic structures in the western foothills of the Sierra de El Maitén (Argentina), North Patagonian Andes. Near Surface Geophysics, 2016, 14, 255-262.	0.6	0
1331	Deformation and Related Slip Due to the 2011 Van Earthquake (Turkey) Sequence Imaged by SAR Data and Numerical Modeling. Remote Sensing, 2016, 8, 532.	1.8	7
1332	High-resolution images above the Pampean flat slab of Argentina (31–32°S) from local receiver functions: Implications on regional tectonics. Earth and Planetary Science Letters, 2016, 450, 29-39.	1.8	24
1333	Joint optimization of vertical component gravity and P-wave first arrivals by simulated annealing. Geophysics, 2016, 81, ID59-ID71.	1.4	6
1334	Crustal structure of the Newer Volcanics Province, SE Australia, from ambient noise tomography. Tectonophysics, 2016, 683, 382-392.	0.9	13
1335	Thinned continental crust intruded by volcanics beneath the northern Bay of Bengal. Marine and Petroleum Geology, 2016, 77, 471-486.	1.5	30
1336	Vertical deformation associated with normal fault systems evolved over coseismic, postseismic, and multiseismic periods. Journal of Geophysical Research: Solid Earth, 2016, 121, 2153-2173.	1.4	19
1337	Crustal Structure Along Sunda-Banda Arc Transition Zone from Teleseismic Receiver Functions. Acta Geophysica, 2016, 64, 2020-2049.	1.0	26
1338	Assessing waveform predictions of recent threeâ€dimensional velocity models of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 2016, 121, 2521-2538.	1.4	5
1339	Comparing gravity-based to seismic-derived lithosphere densities: a case study of the British Isles and surrounding areas. Geophysical Journal International, 0, , ggw483.	1.0	8
1340	Crustal and upper mantle structure of South China from Rayleigh wave tomography. Geophysical Journal International, 0, , ggw477.	1.0	12
1341	Crustal structure in the junction of Qinling Orogen, Yangtze Craton and Tibetan Plateau: implications for the formation of the Dabashan Orocline and the growth of Tibetan Plateau. Geophysical Journal International, 2016, 205, 1670-1681.	1.0	22

#	Article	IF	CITATIONS
1342	Shear-wave velocity structure of the shallow sediments in the Bohai Sea from an ocean-bottom-seismometer survey. Geophysics, 2016, 81, ID25-ID36.	1.4	15
1343	Age and provenance constraints on seismically-determined crustal layers beneath the Paleozoic southern Central Asian Orogen, Inner Mongolia, China. Journal of Asian Earth Sciences, 2016, 123, 119-141.	1.0	6
1344	The Canada Basin compared to the southwest South China Sea: Two marginal ocean basins with hyper-extended continent-ocean transitions. Tectonophysics, 2016, 691, 171-184.	0.9	12
1345	Seismic basement in Poland. International Journal of Earth Sciences, 2016, 105, 1199-1214.	0.9	25
1346	Cenozoic uplift of the Central Andes in northern Chile and Bolivia—reconciling paleoaltimetry with the geological evolution. Canadian Journal of Earth Sciences, 2016, 53, 1227-1245.	0.6	22
1347	Imaging Rayleigh wave attenuation with USArray. Geophysical Journal International, 2016, 206, 241-259.	1.0	27
1348	Magma reservoirs from the upper crust to the Moho inferred from high-resolution Vp and Vs models beneath Mount St. Helens, Washington State, USA. Geology, 2016, 44, 411-414.	2.0	94
1349	Joint inversion of multiple geophysical data using guided fuzzy <i>c</i> -means clustering. Geophysics, 2016, 81, ID37-ID57.	1.4	91
1350	An isostatic study of the Karoo basin and underlying lithosphere in 3-D. Geophysical Journal International, 2016, 206, 774-791.	1.0	2
1351	Crustal structure of the Bighorn Mountains region: Precambrian influence on Laramide shortening and uplift in northâ€central Wyoming. Tectonics, 2016, 35, 208-236.	1.3	47
1352	Origin of high-velocity anomalies beneath the Siberian craton: A fingerprint of multistage magma underplating since the Neoarchean. Russian Geology and Geophysics, 2016, 57, 713-722.	0.3	2
1353	Geophysical-petrological modelling of the East Greenland Caledonides – Isostatic support from crust and upper mantle. Tectonophysics, 2016, 692, 44-57.	0.9	16
1354	Utilizing thermal isostasy to estimate sub-lithospheric heat flow and anomalous crustal radioactivity. Earth and Planetary Science Letters, 2016, 450, 197-207.	1.8	24
1355	The crustal structure of Egypt and the northern Red Sea region. Tectonophysics, 2016, 687, 257-267.	0.9	26
1356	Incipient mantle delamination, active tectonics and crustal thickening in Northern Morocco: Insights from gravity data and numerical modeling. Earth and Planetary Science Letters, 2016, 454, 113-120.	1.8	20
1357	Monte Carlo approach to assess the uncertainty of wide-angle layered models: Application to the Santos Basin, Brazil. Tectonophysics, 2016, 683, 286-307.	0.9	26
1358	Seismicity along St. Lawrence Paleorift Faults Overprinted by a Meteorite Impact Structure in Charlevoix, QuA©bec, Eastern Canada. Bulletin of the Seismological Society of America, 2016, 106, 2663-2673.	1.1	16
1359	Wilson cycle passive margins: Control of orogenic inheritance on continental breakup. Gondwana Research, 2016, 39, 131-144.	3.0	66

#	Article	IF	CITATIONS
1360	Crustal structure beneath northeast India inferred from receiver function modeling. Physics of the Earth and Planetary Interiors, 2016, 258, 15-27.	0.7	21
1361	Magmatism at continental passive margins inferred from Ambientâ€Noise Phaseâ€velocity in the Gulf of Aden. Terra Nova, 2016, 28, 19-26.	0.9	11
1362	Constraints on residual topography and crustal properties in the western United States from virtual deep seismic sounding. Journal of Geophysical Research: Solid Earth, 2016, 121, 5917-5930.	1.4	19
1363	The Thor suture zone: From subduction to intraplate basin setting. Geology, 2016, 44, 707-710.	2.0	29
1364	S-wave velocities and anisotropy of typical rocks from Yunkai metamorphic complex and constraints on the composition of the crust beneath Southern China. Tectonophysics, 2016, 686, 27-50.	0.9	11
1365	Elasticity of calcium and calcium-sodium amphiboles. Physics of the Earth and Planetary Interiors, 2016, 261, 161-171.	0.7	36
1366	Pressure induced elastic softening in framework aluminosilicate- albite (NaAlSi3O8). Scientific Reports, 2016, 6, 34815.	1.6	19
1367	SPECTRAL PROPERTIES OF COOL STARS: EXTENDED ABUNDANCE ANALYSIS OF 1,617 PLANET-SEARCH STARS. Astrophysical Journal, Supplement Series, 2016, 225, 32.	3.0	277
1368	Importance of far-field topographic and isostatic corrections for regional density modelling. Geophysical Journal International, 2016, 207, 274-287.	1.0	33
1369	Crustal contamination and sulfide immiscibility history of the Permian Huangshannan magmatic Ni-Cu sulfide deposit, East Tianshan, NW China. Journal of Asian Earth Sciences, 2016, 129, 22-37.	1.0	41
1370	The crustal structure of Beira High, central Mozambique—Combined investigation of wide-angle seismic and potential field data. Tectonophysics, 2016, 683, 233-254.	0.9	38
1371	Three-dimensional ambient noise tomography across the Taiwan Strait: The structure of a magma-poor rifted margin. Tectonics, 2016, 35, 1782-1792.	1.3	13
1372	Threeâ€dimensional density model of the upper mantle in the Middle East: Interaction of diverse tectonic processes. Journal of Geophysical Research: Solid Earth, 2016, 121, 5349-5364.	1.4	38
1373	Highâ€grade metamorphism and partial melting of basic and intermediate rocks. Journal of Metamorphic Geology, 2016, 34, 871-892.	1.6	174
1374	Seismic imaging of the metamorphism of young sediment into new crystalline crust in the actively rifting <scp>I</scp> mperial <scp>V</scp> alley, <scp>C</scp> alifornia. Geochemistry, Geophysics, Geosystems, 2016, 17, 4566-4584.	1.0	13
1375	How sharp is the sharp Archean Moho? Example from eastern Superior Province. Geophysical Research Letters, 2016, 43, 1928-1933.	1.5	19
1376	Mismatch of geophysical datasets in distal rifted margin studies. Terra Nova, 2016, 28, 340-347.	0.9	18
1377	3D density model of the upper mantle of Asia based on inversion of gravity and seismic tomography data. Geochemistry, Geophysics, Geosystems, 2016, 17, 4457-4477.	1.0	43

#	Article	IF	CITATIONS
1378	Continental rupture and the creation of new crust in the Salton Trough rift, Southern California and northern Mexico: Results from the Salton Seismic Imaging Project. Journal of Geophysical Research: Solid Earth, 2016, 121, 7469-7489.	1.4	39
1379	The deep crustal structure of the mafic–ultramafic Seiland Igneous Province of Norway from 3-D gravity modelling and geological implications. Geophysical Journal International, 2016, 207, 1653-1666.	1.0	9
1380	Southeast Papuan crustal tectonics: Imaging extension and buoyancy of an active rift. Journal of Geophysical Research: Solid Earth, 2016, 121, 951-971.	1.4	33
1381	Lithospheric structure of Central Europe: Puzzle pieces from Pannonian Basin to Transâ€European Suture Zone resolved by geophysicalâ€petrological modeling. Tectonics, 2016, 35, 722-753.	1.3	17
1382	Crustal structure and extension mode in the northwestern margin of the South China Sea. Geochemistry, Geophysics, Geosystems, 2016, 17, 2143-2167.	1.0	59
1383	Eocene to late Oligocene history of crustal shortening within the Hoh Xil Basin and implications for the northern Tibetan Plateau. Tectonics, 2016, 35, 862-895.	1.3	74
1384	Mantleâ€induced subsidence and compression in SE Asia since the early Miocene. Geophysical Research Letters, 2016, 43, 1901-1909.	1.5	33
1385	Anomalous Seismic Velocity Drop in Iron and Biotite Rich Amphibolite to Granulite Facies Transitional Rocks from Deccan Volcanic Covered 1993 Killari Earthquake Region, Maharashtra (India): a Case Study. Pure and Applied Geophysics, 2016, 173, 2455-2471.	0.8	23
1386	Cadomian (â^1⁄4560 Ma) crust buried beneath the northern Arabian Peninsula: Mineral, chemical, geochronological, and isotopic constraints from NE Jordan xenoliths. Earth and Planetary Science Letters, 2016, 436, 31-42.	1.8	33
1387	Lithospheric structure across the central Tien Shan constrained by gravity anomalies and joint inversions of receiver function and Rayleigh wave dispersion. Journal of Asian Earth Sciences, 2016, 124, 191-203.	1.0	15
1388	Laboratory measurements of Vp and Vs in a porosity-developed crustal rock: Experimental investigation into the effects of porosity at deep crustal pressures. Tectonophysics, 2016, 677-678, 218-226.	0.9	11
1389	Insights into the crustal structure of the transition between Nares Strait and Baffin Bay. Tectonophysics, 2016, 691, 31-47.	0.9	5
1390	A 3D gravity and thermal model for the Barents Sea and Kara Sea. Tectonophysics, 2016, 684, 131-147.	0.9	25
1391	Crustal structure of Nigeria and Southern Ghana, West Africa from P-wave receiver functions. Tectonophysics, 2016, 676, 250-260.	0.9	19
1392	Seismic properties of lawsonite eclogites from the southern Motagua fault zone, Guatemala. Tectonophysics, 2016, 677-678, 88-98.	0.9	14
1393	The lithospheric shear-wave velocity structure of Saudi Arabia: Young volcanism in an old shield. Tectonophysics, 2016, 680, 8-27.	0.9	43
1394	Elasticity of plagioclase feldspars. Journal of Geophysical Research: Solid Earth, 2016, 121, 663-675.	1.4	76
1395	The role of break-up localization in microcontinent separation along a strike-slip margin: the East India–Elan Bank case study. Geological Society Special Publication, 2016, 431, 95-123.	0.8	23

#	Article	IF	CITATIONS
1396	Vp/Vs distribution in the northern Taiwan area: Implications for the tectonic structures and rock property variations. Tectonophysics, 2016, 692, 181-190.	0.9	7
1397	Gravity and magnetic constraints on the Jurassic opening of the oceanic Gulf of Mexico and the location and tectonic history of the Western Main transform fault along the eastern continental margin of Mexico. Interpretation, 2016, 4, SC23-SC33.	0.5	62
1398	Crustal and upper-mantle structure beneath ice-covered regions in Antarctica from <i>S</i> -wave receiver functions and implications for heat flow. Geophysical Journal International, 2016, 204, 1636-1648.	1.0	36
1399	Geodynamic background of the 2008 Wenchuan earthquake based on 3D visco-elastic numerical modelling. Physics of the Earth and Planetary Interiors, 2016, 252, 23-36.	0.7	21
1400	Emergy baseline for the Earth: A historical review of the science and a new calculation. Ecological Modelling, 2016, 339, 96-125.	1.2	57
1401	A lithospheric profile across northern Taiwan: from arc-continent collision to extension. Geophysical Journal International, 2016, 204, 331-346.	1.0	20
1402	Thin crust beneath the Chaco-ParanÃ; Basin by surface-wave tomography. Journal of South American Earth Sciences, 2016, 66, 1-14.	0.6	15
1403	Passive seismic experiment and receiver functions analysis to determine crustal structure at the contact of the northern Dinarides and southwestern Pannonian Basin. Geophysical Journal International, 2016, 205, 1420-1436.	1.0	15
1404	Lower crustal high-velocity bodies along North Atlantic passive margins, and their link to Caledonian suture zone eclogites and Early Cenozoic magmatism. Tectonophysics, 2016, 670, 16-29.	0.9	27
1405	Magmatic underplating beneath the Emeishan large igneous province (South China) revealed by the COMGRA-ELIP experiment. Tectonophysics, 2016, 672-673, 16-23.	0.9	35
1406	Testing models of Tibetan Plateau formation with Cenozoic shortening estimates across the Qilian Shan–Nan Shan thrust belt. , 2016, 12, 501-532.		165
1407	Crustal composition of the MÃre Margin and compilation of a conjugate Atlantic margin transect. Tectonophysics, 2016, 666, 144-157.	0.9	17
1408	Formation of lower continental crust by relamination of buoyant arc lavas and plutons. Nature Geoscience, 2016, 9, 197-205.	5.4	125
1409	Understanding Conspicuous Gravity Low Over the Koyna–Warna Seismogenic Region (Maharashtra,) Tj ETQq1	1 0.78431 0.8	.4.rgBT /Ove
1410	Role of arc magmatism and lower crustal foundering in controlling elevation history of the Nevadaplano and Colorado Plateau: A case study of pyroxenitic lower crust from central Arizona, USA. Earth and Planetary Science Letters, 2016, 439, 48-57.	1.8	43
1411	The crustal structure of Ellesmere Island, Arctic Canada—teleseismic mapping across a remote intraplate orogenic belt. Geophysical Journal International, 2016, 204, 1579-1600.	1.0	16
1412	The Crust. , 2016, , 9-41.		4
1413	The Mantle. , 2016, , 89-133.		1

#	Article	IF	CITATIONS
1415	Deep scientific drilling results from Koyna and Killari earthquake regions reveal why Indian shield lithosphere is unusual, thin and warm. Geoscience Frontiers, 2016, 7, 851-858.	4.3	32
1416	Geodynamics of the South China Sea. Tectonophysics, 2016, 692, 98-119.	0.9	192
1417	Crustal structure variations along the NW-African continental margin: A comparison of new and existing models from wide-angle and reflection seismic data. Tectonophysics, 2016, 674, 227-252.	0.9	30
1418	Crustal Modelling and Moho Estimation with GOCE Gravity Data. Springer Earth System Sciences, 2016, , 127-144.	0.1	10
1419	Gravimetric determination of the continental–oceanic boundary of the Argentine continental margin (from 36°S to 50°S). Geophysical Journal International, 2016, 204, 366-385.	1.0	5
1420	Effects of shallow density structure on the inversion for crustal shear wave speeds in surface wave tomography. Geophysical Journal International, 2016, 205, 1144-1152.	1.0	8
1421	Estimation of the Crustal Bulk Properties Beneath Mainland Portugal from P-Wave Teleseismic Receiver Functions. Pure and Applied Geophysics, 2016, 173, 1949-1970.	0.8	14
1422	How to identify oceanic crust—Evidence for a complex break-up in the Mozambique Channel, off East Africa. Tectonophysics, 2016, 693, 436-452.	0.9	33
1423	Paleoproterozoic crustal evolution in the East Sarmatian Orogen: Petrology, geochemistry, Sr–Nd isotopes and zircon U–Pb geochronology of andesites from the Voronezh massif, Western Russia. Lithos, 2016, 246-247, 61-80.	0.6	13
1424	High-resolution 3D seismic model of the crustal and uppermost mantle structure in Poland. Tectonophysics, 2016, 666, 188-210.	0.9	24
1425	Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data. Geophysical Journal International, 2016, 204, 167-179.	1.0	71
1426	Crustal structure and tectonic model of the Arctic region. Earth-Science Reviews, 2016, 154, 29-71.	4.0	97
1427	Structure of the ocean–continent transition, location of the continent–ocean boundary and magmatic type of the northern Angolan margin from integrated quantitative analysis of deep seismic reflection and gravity anomaly data. Geological Society Special Publication, 2017, 438, 159-176.	0.8	11
1428	Unravelling the along-strike variability of the Angola–Gabon rifted margin: a mapping approach. Geological Society Special Publication, 2017, 438, 49-76.	0.8	49
1429	Geophysical and petrological modeling of the lower crust and uppermost mantle in the Variscan and Proterozoic surroundings of the Trans-European Suture Zone in Central Europe. Lithos, 2017, 276, 3-14.	0.6	6
1430	Experimental measurements of seismic velocities on core samples and their dependence on mineralogy and stress; Witwatersrand Basin (South Africa). Studia Geophysica Et Geodaetica, 2017, 61, 115-144.	0.3	7
1431	3-D crustal and uppermost mantle structure beneath NE China revealed by ambient noise adjoint tomography. Earth and Planetary Science Letters, 2017, 461, 20-29.	1.8	35
1432	Chapter 4 Cenozoic rifting, passive margin development and strike-slip faulting in the Andaman Sea: a discussion of established v. new tectonic models. Geological Society Memoir, 2017, 47, 27-50.	0.9	26

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1433	What Hf isotopes in zircon tell us about crust–mantle evolution. Lithos, 2017, 274-2	75, 304-327.	0.6	78
1434	Lithospheric thinning in the Eastern Indian Craton: Evidence for lithospheric delaminatic Archean Singhbhum Craton?. Tectonophysics, 2017, 698, 91-108.	on below the	0.9	27
1435	Possible magmatic underplating beneath the west coast of India and adjoining Dharwar Imprint from Archean crustal evolution to breakup of India and Madagascar. Earth and F Science Letters, 2017, 462, 1-14.	craton: Nanetary	1.8	21
1436	Comparison of Synthetic Pseudoabsolute Response Spectral Acceleration (PSA) for Fou Regions within Central and Eastern North America (CENA). Bulletin of the Seismologica America, 2017, 107, 169-179.	r Crustal Society of	1.1	4
1437	Detecting hazardous New Zealand faults at depth using seismic velocity gradients. Eart Planetary Science Letters, 2017, 463, 333-343.	h and	1.8	13
1438	Partial melting of the orogenic lower crust: Geochemical insights from post-collisional a volcanics in the Dabie orogen. Chemical Geology, 2017, 454, 25-43.	Ikaline	1.4	34
1439	Crustal Structure, Seismic Anisotropy and Deformations of the Ediacaran/Cambrian of t MaÅ,opolska Block in SE Poland Based on Data from Two Seismic Wide-Angle Experime Applied Geophysics, 2017, 174, 1711-1728.	he nts. Pure and	0.8	1
1440	Deep seismic structure of the northeastern South China Sea: Origin of a highâ€velocity lower crust. Journal of Geophysical Research: Solid Earth, 2017, 122, 2831-2858.	layer in the	1.4	54
1441	Crustal structure of the Eratosthenes Seamount, Cyprus and S. Turkey from an amphibi seismic profile. Tectonophysics, 2017, 700-701, 32-59.	an wide-angle	0.9	37
1442	Postemplacement dynamics of basaltic intrusions in the continental crust. Journal of Ge Research: Solid Earth, 2017, 122, 966-987.	ophysical	1.4	11
1443	Deep structure of the Lofotenâ€VesterÃ¥len segment of the Midâ€Norwegian continer adjacent areas derived from 3â€Ð density modeling. Journal of Geophysical Research: So 122, 1402-1433.	tal margin and olid Earth, 2017,	1.4	16
1444	Density and magnetic intensity of the crust and uppermost mantle across the northern Tibetan Plateau. Physics of the Earth and Planetary Interiors, 2017, 265, 15-22.	margin of the	0.7	10
1445	Crustal structure across the NE Tibetan Plateau and Ordos Block from the joint inversio functions and Rayleigh-wave dispersions. Tectonophysics, 2017, 705, 33-41.	n of receiver	0.9	26
1446	Late Cretaceous crustal hydration in the Colorado Plateau, USA, from xenolith petrolog monazite geochronology. Lithosphere, 2017, , L583.1.	y and	0.6	5
1447	Retention and transport of graphene oxide in water-saturated limestone media. Chemo 180, 506-512.	sphere, 2017,	4.2	58
1448	Lateral variation in seismic velocities and rheology beneath the Qinling-Dabie orogen. Se Earth Sciences, 2017, 60, 576-588.	cience China	2.3	8
1449	Seismic crustal structure of the North China Craton and surrounding area: Synthesis an Journal of Geophysical Research: Solid Earth, 2017, 122, 5181-5207.	d analysis.	1.4	35
1450	Seismically Derived Gondwana and Proterozoic Sediments East of Cuddapah Basin, Sou and Its Possible Geotectonic Implications. Pure and Applied Geophysics, 2017, 174, 260	th Indian Shield)1-2619.	0.8	17

ARTICLE IF CITATIONS Seismic properties and anisotropy of the continental crust: Predictions based on mineral texture and 1451 9.0 127 rock microstructure. Reviews of Geophysics, 2017, 55, 367-433. Crustal and upper mantle structure and deep tectonic genesis of large earthquakes in North China. 1452 2.3 Science China Earth Sciences, 2017, 60, 821-857. On the radiogenic heat production of igneous rocks. Geoscience Frontiers, 2017, 8, 919-940. 63 1453 4.3 Joint inversion of multiple geophysical and petrophysical data using generalized fuzzy clustering 1454 algorithms. Geophysical Journal International, 2017, 208, 1201-1216. The role of rifting in the development of the continental margins of the southwest subbasin, South 1455 0.5 9 China Sea: Insights from an OBS experiment. Marine Geophysical Researches, 2017, 38, 105-123. Extensive seismic anisotropy in the lower crust of Archean metamorphic terrain, South India, inferred from ambient noise tomography. Tectonophysics, 2017, 694, 164-180. Intraplate earthquakes and their link with mantle dynamics: Insights from P-wave teleseismic tomography along the northern part of the North–South Tectonic Zone in China. Comptes Rendus - Geoscience, 2017, 349, 96-105. 1457 0.4 3 Global water cycle and the coevolution of the Earth's interior and surface environment. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 1458 1.6 119 20150393. Multiple geophysical methods examining neotectonic blind structures in the Maradona valley, 1459 0.9 3 Central Precordillera (Argentina). Tectonophysics, 2017, 712-713, 634-642. Basement configuration of the West Bengal sedimentary basin, India as revealed by seismic refraction 1460 1.0 tomography: its tectonic implications. Geophysical Journal International, 2017, 208, 1490-1507. Crustal deformation induced by mantle dynamics: insights from models of gravitational lithosphere 1461 1.0 10 removal. Geophysical Journal International, 2017, 210, 1070-1091. Crustal surface wave velocity structure of the east Albany-Fraser Orogen, Western Australia, from 1462 1.0 ambient noise recordings. Geophysical Journal International, 2017, 210, 1641-1651. High―to ultrahighâ€temperature metamorphism in the lower crust: An example resulting from Hikurangi 1463 1.6 25 Plateau collision and slab rollback in New Zealand. Journal of Metamorphic Geology, 2017, 35, 831-853. A statistical assessment of seismic models of the U.S. continental crust using Bayesian inversion of 1464 1.3 ambient noise surface wave dispersion data. Tectonics, 2017, 36, 1232-1253 New insights into the magmatism in the northern margin of the <scp>S</scp>outh <scp>C</scp>hina 1465 <scp>S</scp>ea: Spatial features and volume of intraplate seamounts. Geochemistry, Geophysics, 1.0 55 Geosystems, 2017, 18, 2216-2239. Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism. Nature Geoscience, 1466 163 2017, 10, 446-450. The uppermost mantle seismic velocity and viscosity structure of central West Antarctica. Earth and 1467 1.8 29 Planetary Science Letters, 2017, 472, 38-49. Geophysical evidence for the crustal variation and distribution of magmatism along the central coast 1468 of Mozambique. Tectonophysics, 2017, 712-713, 684-703.

#	Article	IF	CITATIONS
1469	Crustal structure, gravity anomalies, and subsidence history of the ParnaÃba cratonic basin, Northeast Brazil. Journal of Geophysical Research: Solid Earth, 2017, 122, 5591-5621.	1.4	41
1470	Opening of the central Atlantic Ocean: Implications for geometric rifting and asymmetric initial seafloor spreading after continental breakup. Tectonics, 2017, 36, 1129-1150.	1.3	48
1471	Layering of subcontinental lithospheric mantle. Science Bulletin, 2017, 62, 1030-1034.	4.3	27
1472	Lithospheric structure beneath the northeastern Tibetan Plateau and the western Sino-Korea Craton revealed by Rayleigh wave tomography. Geophysical Journal International, 2017, 210, 570-584.	1.0	44
1473	Voluminous arc dacites as amphibole reaction-boundary liquids. Contributions To Mineralogy and Petrology, 2017, 172, 1.	1.2	69
1474	Lithosphere density structure beneath the eastern margin of the Tibetan Plateau and its surrounding areas derived from GOCE gradients data. Geodesy and Geodynamics, 2017, 8, 147-154.	1.0	13
1475	Subducting continental lower crust and crustal thickness variations in the intermediate seismic zone of Pamir–Hindu Kush inferred from Moho underside reflection pmP. Tectonophysics, 2017, 718, 132-139.	0.9	0
1476	The onset of Walvis Ridge: Plume influence at the continental margin. Tectonophysics, 2017, 716, 90-107.	0.9	20
1478	A strong contrast in crustal architecture from accreted terranes to craton, constrained by controlled-source seismic data in Idaho and eastern Oregon. Lithosphere, 2017, 9, 325-340.	0.6	22
1479	Crustal radial anisotropy beneath Cameroon from ambient noise tomography. Tectonophysics, 2017, 696-697, 37-51.	0.9	20
1480	Fore-arc structure, plate coupling and isostasy in the Central Andes: Insight from gravity data modelling. Journal of Geodynamics, 2017, 104, 27-35.	0.7	2
1481	Earth's crust model of the South-Okhotsk Basin by wide-angle OBS data. Tectonophysics, 2017, 710-711, 37-55.	0.9	13
1482	Crustal structure of the southern Okinawa Trough: Symmetrical rifting, submarine volcano, and potential mantle accretion in the continental backâ€arc basin. Journal of Geophysical Research: Solid Earth, 2017, 122, 622-641.	1.4	74
1483	Lithospheric Features of the São Francisco Craton. Regional Geology Reviews, 2017, , 15-25.	1.2	12
1484	Moho depth and crustal thinning in the Marmara Sea region from gravity data inversion. Journal of Geophysical Research: Solid Earth, 2017, 122, 1381-1401.	1.4	21
1485	Comment on a paper by Sibuet etÂal. (2016) entitled "Thinned continental crust intruded by volcanics beneath the northern Bay of Bengal― Marine and Petroleum Geology, 2017, 88, 1123-1125.	1.5	9
1486	Lithospheric density structure beneath the Tarim basin and surroundings, northwestern China, from the joint inversion of gravity and topography. Earth and Planetary Science Letters, 2017, 460, 244-254.	1.8	44
1487	A review of surface heat-flow data of the northern Middle Atlas (Morocco). Journal of Geodynamics, 2017, 112, 58-71.	0.7	9

#	Article	IF	CITATIONS
1488	Ambient noise tomography reveals basalt and sub-basalt velocity structure beneath the Faroe Islands, North Atlantic. Tectonophysics, 2017, 721, 1-11.	0.9	8
1489	Gravity and Magnetics Complete Session. , 2017, , .		0
1490	Threeâ€dimensional lithospheric <i>S</i> wave velocity model of the NE Tibetan Plateau and western North China Craton. Journal of Geophysical Research: Solid Earth, 2017, 122, 6703-6720.	1.4	65
1491	Evidence for a crustal root beneath the Paleoproterozoic collision zone in the northern Ordos block, North China. Precambrian Research, 2017, 301, 124-133.	1.2	7
1492	Crustal structure of the Amazonian Craton and adjacent provinces in Brazil. Journal of South American Earth Sciences, 2017, 79, 431-442.	0.6	25
1493	Crustalâ€Scale Seismic Structure From Trench to Forearc in the Cascadia Subduction Zone. Journal of Geophysical Research: Solid Earth, 2017, 122, 7311-7328.	1.4	7
1494	Towards the Moho depth and Moho density contrast along with their uncertainties from seismic and satellite gravity observations. Journal of Applied Geodesy, 2017, 11, .	0.6	12
1495	Complexity in elucidating crustal thermal regime in geodynamically affected areas: A case study from the Deccan large igneous province (western India). Journal of the Geological Society of India, 2017, 90, 289-300.	0.5	17
1496	Anthrobiogeochemical platinum, palladium and rhodium cycles of earth: Emerging environmental contamination. Geochimica Et Cosmochimica Acta, 2017, 216, 417-432.	1.6	25
1497	Crustal thickness investigation on three broadband stations in Northern Sumatra. Journal of Physics: Conference Series, 2017, 817, 012075.	0.3	3
1498	3-D P- and S-wave velocity structure along the central Alpine Fault, South Island, New Zealand. Geophysical Journal International, 2017, 209, 935-947.	1.0	8
1499	Crustal strain-dependent serpentinisation in the Porcupine Basin, offshore Ireland. Earth and Planetary Science Letters, 2017, 474, 148-159.	1.8	32
1500	Receiver function and gravity constraints on crustal structure and vertical movements of the Upper Mississippi Embayment and Ozark Uplift. Journal of Geophysical Research: Solid Earth, 2017, 122, 4572-4583.	1.4	16
1501	Slab-Triggered Arc Flare-up in the Cretaceous Median Batholith and the Growth of Lower Arc Crust, Fiordland, New Zealand. Journal of Petrology, 2017, 58, 1145-1171.	1.1	30
1502	Crust and upper-mantle structure of Wanganui Basin and southern Hikurangi margin, North Island, New Zealand as revealed by active source seismic data. Geophysical Journal International, 2017, 211, 718-740.	1.0	12
1503	Crustal structure of the North Iberian continental margin from seismic refraction/wide-angle reflection profiles. Tectonophysics, 2017, 717, 65-82.	0.9	26
1504	Heat production in granitic rocks: Global analysis based on a new data compilation GRANITE2017. Earth-Science Reviews, 2017, 172, 1-26.	4.0	77
1505	Reply to the comment of Talwani etÂal. (2017) on the Sibuet etÂal. (2016) paper entitled "Thinned continental crust intruded by volcanics beneath the northern Bay of Bengal― Marine and Petroleum Geology, 2017, 88, 1126-1129.	1.5	6

#	Article	IF	CITATIONS
1506	The structure of the crust and uppermost mantle beneath Madagascar. Geophysical Journal International, 2017, 210, 1525-1544.	1.0	29
1507	A gravity study along a profile across the Sichuan Basin, the Qinling Mountains and the Ordos Basin (central China): Density, isostasy and dynamics. Journal of Asian Earth Sciences, 2017, 147, 310-321.	1.0	17
1508	Recurrence interval of the 2008 Mw 7.9 Wenchuan earthquake inferred from geodynamic modelling stress buildup and release. Journal of Geodynamics, 2017, 110, 1-11.	0.7	14
1509	Velocity models and hypocenter relocations for the Charlevoix Seismic Zone. Journal of Geophysical Research: Solid Earth, 2017, 122, 6685-6702.	1.4	4
1510	Geochemical and geophysical constrains on the dynamic topography of the <scp>S</scp> outhern <scp>A</scp> frican <scp>P</scp> lateau. Geochemistry, Geophysics, Geosystems, 2017, 18, 3556-3575.	1.0	20
1511	Crustal distribution in the central Gulf of Mexico from an integrated geophysical analysis. , 2017, , .		0
1512	Controls of inherited lithospheric heterogeneity on rift linkage: Numerical and analog models of interaction between the Kenyan and Ethiopian rifts across the Turkana depression. Tectonics, 2017, 36, 1767-1786.	1.3	82
1513	Crustal structure of the Transantarctic Mountains, Ellsworth Mountains and Marie Byrd Land, Antarctica: constraints on shear wave velocities, Poisson's ratios and Moho depths. Geophysical Journal International, 2017, 211, 1328-1340.	1.0	23
1514	Tectonic history of the Ordos Block and Qinling Orogen inferred from crustal thickness. Geophysical Journal International, 2017, 210, 303-320.	1.0	20
1515	Crustal Thickness Beneath Libya and the Origin of Partial Melt Beneath AS Sawda Volcanic Province From Receiver Function Constraints. Journal of Geophysical Research: Solid Earth, 2017, 122, 10,037.	1.4	11
1516	Crustal Structure at a Young Continental Rift: A Receiver Function Study From the Tanganyika Rift. Tectonics, 2017, 36, 2806-2822.	1.3	31
1517	Seismic Signature of the Continental Crust: What Thermodynamics Says. An Example From the Italian Peninsula. Tectonics, 2017, 36, 3192-3208.	1.3	21
1518	USArray Imaging of Continental Crust in the Conterminous United States. Tectonics, 2017, 36, 2882-2902.	1.3	24
1519	Crustal Structure of Active Deformation Zones in Africa: Implications for Global Crustal Processes. Tectonics, 2017, 36, 3298-3332.	1.3	72
1520	Seismic and magnetic susceptibility anisotropy of middle-lower continental crust: Insights for their potential relationship from a study of intrusive rocks from the Serre Massif (Calabria, southern) Tj ETQq0 0 0 rgBT	/ 0. øerlock	10 Tf 50 17
1521	Lithospheric velocity structure of the northeast margin of the Tibetan Plateau: Relevance to continental geodynamics and seismicity. Tectonophysics, 2017, 712-713, 482-493.	0.9	11
1522	The distribution and composition of highâ€velocity lower crust across the continental U.S.: Comparison of seismic and xenolith data and implications for lithospheric dynamics and history. Tectonics, 2017, 36, 1455-1496.	1.3	25
1523	3-D crustal velocity structure of western Turkey: Constraints from full-waveform tomography. Physics of the Earth and Planetary Interiors, 2017, 270, 90-112.	0.7	35

#	Article	IF	CITATIONS
1524	A new tectono-magmatic model for the Lofoten/Vesterålen Margin at the outer limit of the Iceland Plume influence. Tectonophysics, 2017, 718, 25-44.	0.9	17
1525	Spatial distribution of hydrocarbon reservoirs in the West Korea Bay Basin in the northern part of the Yellow Sea, estimated by 3-D gravity forward modelling. Geophysical Journal International, 2017, 208, 75-85.	1.0	3
1526	The Pelona–Orocopia–Rand and related schists of southern California: a review of the best-known archive of shallow subduction on the planet. International Geology Review, 2017, 59, 664-701.	1.1	31
1527	Islands as biological substrates: classification of the biological assemblage components and the physical island types. Journal of Biogeography, 2017, 44, 984-994.	1.4	47
1528	Rifted margin architecture and crustal rheology: Reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea. Marine and Petroleum Geology, 2017, 79, 257-281.	1.5	138
1529	From stretching to mantle exhumation in a triangular backarc basin (Vavilov basin, Tyrrhenian Sea,) Tj ETQq1 1 0	784314 rş	gBT_/Overloci
1530	The wide-angle seismic image of a complex rifted margin, offshore North Namibia: Implications for the tectonics of continental breakup. Tectonophysics, 2017, 716, 130-148.	0.9	18
1531	Crustal structure of the Southwest Subbasin, South China Sea, from wide-angle seismic tomography and seismic reflection imaging. Marine Geophysical Researches, 2017, 38, 85-104.	0.5	16
1532	Experimental Study on the Electrical Conductivity of Pyroxene Andesite at High Temperature and High Pressure. Pure and Applied Geophysics, 2017, 174, 1033-1041.	0.8	6
1533	The making of an underplate: Pyroxenites from the Ethiopian lithosphere. Chemical Geology, 2017, 455, 264-281.	1.4	21
1534	Deep crustal and uppermost mantle lithology of Island Arcs:. Journal of the Geological Society of Japan, 2017, 123, 355-364.	0.2	3
1535	Structural variability of the Tonga-Kermadec forearc characterized using robustly constrained geophysical data. Geophysical Journal International, 2017, 210, 1681-1702.	1.0	8
1536	The Kenya rift revisited: insights into lithospheric strength through data-driven 3-D gravity and thermal modelling. Solid Earth, 2017, 8, 45-81.	1.2	47
1537	Estimating subglacial structure using P-wave receiver functions. Geophysical Journal International, 2017, 209, 1064-1079.	1.0	12
1538	Refined 3D Seismicâ€Velocity Structures and Seismogenic Environment of the MsÂ6.5 Ludian Earthquake. Bulletin of the Seismological Society of America, 2017, 107, 3023-3036.	1.1	12
1539	Present-day thermal field and Mesozoic-Cenozoic thermal evolution of the Western Bredasdorp Basin (South Africa): An integrated 3D numerical forward modelling approach. Marine and Petroleum Geology, 2018, 93, 57-78.	1.5	1
1540	Crustal Structure of the Ionian Basin and Eastern Sicily Margin: Results From a Wideâ€Angle Seismic Survey. Journal of Geophysical Research: Solid Earth, 2018, 123, 2090-2114.	1.4	41
1541	Imaging exhumed lower continental crust in the distal Jequitinhonha basin, Brazil. Journal of South American Earth Sciences, 2018, 84, 351-372.	0.6	21

#	Article	IF	CITATIONS
1542	The structure and evolution of deepwater basins in the distal margin of the northern South China Sea and their implications for the formation of the continental margin. Marine and Petroleum Geology, 2018, 92, 234-254.	1.5	47
1543	Crustal Structure and Continentâ€Ocean Boundary Along the Galicia Continental Margin (NW Iberia): Insights From Combined Gravity and Seismic Interpretation. Tectonics, 2018, 37, 1576-1604.	1.3	18
1544	Influence of increasing convergence obliquity and shallow slab geometry onto tectonic deformation and seismogenic behavior along the Northern Lesser Antilles zone. Earth and Planetary Science Letters, 2018, 492, 59-72.	1.8	11
1545	Crustal properties of the northern Scandinavian mountains and Fennoscandian shield from analysis of teleseismic receiver functions. Geophysical Journal International, 2018, 214, 386-401.	1.0	11
1546	Numerical investigation on the implications of spring temperature and discharge rate with respect to the geothermal background in a fault zone. Hydrogeology Journal, 2018, 26, 2121-2132.	0.9	12
1547	Structure of the crust and upper mantle beneath the ParnaÃba Basin, Brazil, from wide-angle reflection–refraction data. Geological Society Special Publication, 2018, 472, 67-82.	0.8	13
1548	Shearâ€Wave Velocity Structure of Southern Africa's Lithosphere: Variations in the Thickness and Composition of Cratons and Their Effect on Topography. Geochemistry, Geophysics, Geosystems, 2018, 19, 1499-1518.	1.0	24
1549	A quantitative analysis of transtensional margin width. Earth and Planetary Science Letters, 2018, 491, 95-108.	1.8	26
1550	The crustal structure in the transition zone between the western and eastern Barents Sea. Geophysical Journal International, 2018, 214, 315-330.	1.0	14
1551	Deep structure of the continental margin and basin off Greater Kabylia, Algeria – New insights from wide-angle seismic data modeling and multichannel seismic interpretation. Tectonophysics, 2018, 728-729, 1-22.	0.9	35
1552	The ultimate fate of a synmagmatic shear zone. Interplay between rupturing and ductile flow in a cooling granite pluton. Journal of Structural Geology, 2018, 110, 1-23.	1.0	12
1553	Assessing uncertainties in high-resolution, multifrequency receiver-function inversion: A comparison with borehole data. Geophysics, 2018, 83, KS11-KS22.	1.4	20
1554	Tottori earthquakes and Daisen volcano: Effects of fluids, slab melting and hot mantle upwelling. Earth and Planetary Science Letters, 2018, 485, 121-129.	1.8	39
1555	Crustal structure of the Mid Black Sea High from wide-angle seismic data. Geological Society Special Publication, 2018, 464, 19-32.	0.8	9
1556	Crustal Structure of the Andean Foreland in Northern Argentina: Results From Dataâ€Integrative Threeâ€Dimensional Density Modeling. Journal of Geophysical Research: Solid Earth, 2018, 123, 1875-1903.	1.4	11
1557	Marsili and CefalÃ ¹ basins: The evolution of a rift system in the southern Tyrrhenian Sea (Central) Tj ETQq1 1 0.78	34314 rgB 1.6	T $\frac{1}{12}$ verlock
1558	Density contrast across the Moho beneath the Indian shield: Implications for isostasy. Journal of Asian Earth Sciences, 2018, 154, 67-81.	1.0	7
1559	Cretaceousâ€Paleocene Evolution and Crustal Structure of the Northern VÃ,ring Margin (Offshore) Tj ETQq1 1 0. 	784314 rg 1.3	36 ³⁶ /Overlo

#	Article	IF	Citations
1560	On the radiogenic heat production of metamorphic, igneous, and sedimentary rocks. Geoscience Frontiers, 2018, 9, 1777-1794.	4.3	61
1561	Basement inheritance and salt structures in the SE Barents Sea: Insights from new potential field data. Journal of Geodynamics, 2018, 119, 82-106.	0.7	23
1562	A reconstruction of the North Atlantic since the earliest Jurassic. Basin Research, 2018, 30, 160-185.	1.3	57
1563	Spatial variations of magmatic crustal accretion during the opening of the Tyrrhenian backâ€arc from wideâ€angle seismic velocity models and seismic reflection images. Basin Research, 2018, 30, 124-141.	1.3	13
1564	Slab avalanche-induced tectonics in self-consistent dynamic models. Tectonophysics, 2018, 746, 251-265.	0.9	24
1565	Seismic evidence for central Taiwan magnetic low and deep-crustal deformation caused by plate collision. Journal of Asian Earth Sciences, 2018, 151, 334-342.	1.0	0
1566	Strength and elastic thickness variations in the Arabian Plate: A combination of temperature, composition and strain rates of the lithosphere. Tectonophysics, 2018, 746, 398-411.	0.9	13
1567	Seismic imaging for an ocean drilling site survey and its verification in the Izu rear arc. Exploration Geophysics, 2018, 49, 1-10.	0.5	6
1568	Regional crustal architecture of Ellesmere Island, Arctic Canada. Geological Society Special Publication, 2018, 460, 19-32.	0.8	11
1569	Seismic evidence for secular evolution and alteration of Archaean crust in Indian shield. Precambrian Research, 2018, 304, 12-20.	1.2	11
1570	Identifying the Transition Zone Between East and West Dharwar Craton by Seismic Imaging. Pure and Applied Geophysics, 2018, 175, 171-191.	0.8	5
1571	Study of crustal structure and geological implications of southwestern margin of Northeast India. Journal of Seismology, 2018, 22, 229-249.	0.6	6
1572	The influence of extension rate and crustal rheology on the evolution of passive margins from rifting to break-up. Tectonophysics, 2018, 746, 155-172.	0.9	66
1573	Comprehensive crustal structure and seismological evidence for lower crustal flow in the southeastern margin of Tibet revealed by receiver functions. Gondwana Research, 2018, 55, 42-59.	3.0	41
1574	The crustal structure of the continental margin east of the Falkland Islands. Tectonophysics, 2018, 724-725, 234-253.	0.9	18
1575	The composition and structure of the deep crust of the Capricorn Orogen. Australian Journal of Earth Sciences, 2018, 65, 9-24.	0.4	8
1576	Seismically imaged shallow and deep crustal structure and potential field anomalies across the Eastern Dharwar Craton, south Indian shield: Possible geodynamical implications. Journal of Asian Earth Sciences, 2018, 157, 302-316.	1.0	18
1577	Fluid-filled fractures in Earth's lithosphere: Gravitational loading, interpenetration, and stable height of dikes and veins. Journal of Structural Geology, 2018, 109, 38-54.	1.0	31

		CITATION REPORT	
#	Article	IF	CITATIONS
1578	Paleomagnetic and gravimetrical reconnaissance of Cretaceous volcanic rocks from the Western Colombian Andes: paleogeographic connections with the Caribbean Plate. Studia Geophysica Et Geodaetica, 2018, 62, 485-511.	0.3	21
1579	Mineral equilibria constraints on openâ€system melting in metamafic compositions. Journal of Metamorphic Geology, 2018, 36, 255-281.	1.6	24
1580	Structure and origin of the rifted margin of the northern Gulf of Mexico. , 2018, 14, 1804-1817.		37
1581	The Formation of Continental Crust from a Physics Perspective. Geochemistry International, 2018, 1289-1321.	56, 0 . 2	Ο
1582	Constraints on Rift Basin Structure and Border Fault Growth in the Northern Malawi Rift From 3â€ Seismic Refraction Imaging. Journal of Geophysical Research: Solid Earth, 2018, 123, 10,003.) 1.4	27
1583	Density structure and isostasy of the lithosphere in Egypt and their relation to seismicity. Solid Eart 2018, 9, 833-846.	h, 1.2	9
1584	Geochronological and geochemical evidence of continental crust â€~relamination' in the origin intermediate arc magmas. Lithos, 2018, 322, 52-66.	of 0.6	24
1585	Lithospheric structuration onshore-offshore of the Sergipe-Alagoas passive margin, NE Brazil, based on wide-angle seismic data. Journal of South American Earth Sciences, 2018, 88, 649-672.	0.6	14
1586	Crustal Density Structure, Lithosphere Flexure Mechanism, and Isostatic State Throughout the Qinling Orogen Revealed by In Situ Dense Gravity Observations. Journal of Geophysical Research: S Earth, 2018, 123, 10,026.	olid 1.4	14
1587	The Alboran volcanic-arc modulated the Messinian faunal exchange and salinity crisis. Scientific Reports, 2018, 8, 13015.	1.6	54
1588	From Continental Hyperextension to Seafloor Spreading: New Insights on the Porcupine Basin Fron Wideâ€Angle Seismic Data. Journal of Geophysical Research: Solid Earth, 2018, 123, 8312-8330.	۱.4	16
1589	Lithospheric Structure of Greenland From Ambient Noise and Earthquake Surface Wave Tomograp Journal of Geophysical Research: Solid Earth, 2018, 123, 7850-7876.	ny. 1.4	15
1590	3â€Ð Crustal Shearâ€Wave Velocity Structure of the Taiwan Strait and Fujian, SE China, Revealed b Ambient Noise Tomography. Journal of Geophysical Research: Solid Earth, 2018, 123, 8016-8031.	y 1.4	40
1591	Inferring crustal viscosity from seismic velocity: Application to the lower crust of Southern California. Earth and Planetary Science Letters, 2018, 494, 83-91.	1.8	27
1592	The Guangshigou uranium deposit, northern Qinling Orogen, China: A product of assimilation-fractional crystallization of pegmatitic magma. Ore Geology Reviews, 2018, 99, 17-41.	1.1	15

1593	Deep crustal architecture of the ParnaÃba basin of NE Brazil from receiver function analysis: implications for basin subsidence. Geological Society Special Publication, 2018, 472, 83-100.	0.8	8
1594	New insights on regional tectonics and basement composition beneath the eastern Sierras Pampeanas (Argentine back-arc region) from seismological and gravity data. Tectonophysics, 2018, 740-741, 42-52.	0.9	12
1595	Fullâ€Waveform Sensitivity Kernels of Componentâ€Differential Traveltimes and ZH Amplitude Ratios for Velocity and Density Tomography. Journal of Geophysical Research: Solid Earth, 2018, 123, 4829-4840.	1.4	9

#	Article	IF	CITATIONS
1596	Crustal structure and properties of Archean cratons of Gondwanaland: similarity and difference. Russian Geology and Geophysics, 2018, 59, 512-524.	0.3	10
1597	Gravity modeling finds a large magma body in the deep crust below the Gulf of Naples, Italy. Scientific Reports, 2018, 8, 8229.	1.6	40
1598	Vestiges of Precambrian subduction in the south Indian shield? - A seismological perspective. Tectonophysics, 2018, 740-741, 27-41.	0.9	5
1599	Effect of dehydrogenation on the electrical conductivity of Fe-bearing amphibole: Implications for high conductivity anomalies in subduction zones and continental crust. Earth and Planetary Science Letters, 2018, 498, 27-37.	1.8	55
1600	New Seismic Evidence for Continental Collision During the Assembly of the Central Asian Orogenic Belt. Journal of Geophysical Research: Solid Earth, 2018, 123, 6687-6702.	1.4	10
1601	Craton Destruction 2: Evolution of Cratonic Lithosphere After a Rapid Keel Delamination Event. Journal of Geophysical Research: Solid Earth, 2018, 123, 10,069.	1.4	12
1602	The Arctic lithosphere: Thermo-mechanical structure and effective elastic thickness. Global and Planetary Change, 2018, 171, 2-17.	1.6	8
1603	Coupled feedbacks between mountain erosion rate, elevation, crustal temperature, and density. Earth and Planetary Science Letters, 2018, 498, 377-386.	1.8	7
1604	Moho Depth and Crustal Architecture Beneath the Levant Basin from Global Gravity Field Model. Geosciences (Switzerland), 2018, 8, 200.	1.0	14
1605	Crustal plumbing system of post-rift magmatism in the northern margin of South China Sea: New insights from integrated seismology. Tectonophysics, 2018, 744, 227-238.	0.9	38
1606	Tectonic History of the Kaapvaal Craton: Constraints From Rheological Modeling. Journal of Geophysical Research: Solid Earth, 2018, 123, 6734-6768.	1.4	2
1607	A subduction and mantle plume origin for Samoan volcanism. Scientific Reports, 2018, 8, 10424.	1.6	20
1608	The influence of NaCl-H2O fluids on reactions between olivine and plagioclase: An experimental study at 0.8†GPa and 800†900†°C. Lithos, 2018, 323, 78-90.	0.6	6
1609	Ultrasonic P- and S-Wave Attenuation and Petrophysical Properties of Deccan Flood Basalts, India, as Revealed by Borehole Studies. Pure and Applied Geophysics, 2018, 175, 2905-2930.	0.8	17
1610	Overview of Crust and Introduction to Seismic Observations on Indian Plate. , 2018, , 1-18.		0
1611	Velocity Structure of the Indian Crust. , 2018, , 203-209.		0
1613	Post-critical SsPmp and its applications to Virtual Deep Seismic Sounding (VDSS)—1: sensitivity to lithospheric 1-D and 2-D structure. Geophysical Journal International, 2018, 215, 880-894.	1.0	7
1614	Crustal structure surrounding the northern Malawi rift and beneath the Rungwe Volcanic Province, East Africa. Geophysical Journal International, 2018, 215, 1410-1426.	1.0	34

#	Article	IF	CITATIONS
1615	The Mid Norwegian - NE Greenland conjugate margins: Rifting evolution, margin segmentation, and breakup. Marine and Petroleum Geology, 2018, 98, 162-184.	1.5	31
1616	High-resolution 3D seismic exhibits new insights into the middle-late Pleistocene stratigraphic evolution and sedimentary processes of the Bear Island trough mouth fan. Marine Geology, 2018, 403, 139-149.	0.9	6
1617	Geophysical constraints on the lithospheric structure in the northeastern South China Sea and its implications for the South China Sea geodynamics. Tectonophysics, 2018, 742-743, 101-119.	0.9	25
1618	Seismic evidence for multiple-stage exhumation of high/ultrahigh pressure metamorphic rocks in the eastern Dabie orogenic belt. Geophysical Journal International, 2018, 214, 1379-1390.	1.0	10
1619	A Probabilistic Shear Wave Velocity Model of the Crust in the Central West Australian Craton Constrained by Transdimensional Inversion of Ambient Noise Dispersion. Tectonics, 2018, 37, 1994-2012.	1.3	24
1620	The geophysical characteristic of the lower lithosphere and asthenosphere in the marginal zone of the East European Craton. International Journal of Earth Sciences, 2018, 107, 2711-2726.	0.9	4
1621	Fullâ€Wave Seismic Tomography in the Northeastern United States: New Insights Into the Uplift Mechanism of the Adirondack Mountains. Geophysical Research Letters, 2018, 45, 5992-6000.	1.5	26
1622	Anisotropic H-k stacking and (revisited) crustal structure in the southeastern margin of Tibet. Journal of Asian Earth Sciences, 2019, 169, 93-104.	1.0	9
1623	The crustal structure of the Enderby Basin, East Antarctica. Marine Geophysical Researches, 2019, 40, 1-16.	0.5	8
1624	Variations in Crustal and Uppermost Mantle Structures Across Eastern Tibet and Adjacent Regions: Implications of Crustal Flow and Asthenospheric Upwelling Combined for Expansions of the Tibetan Plateau. Tectonics, 2019, 38, 3167-3181.	1.3	20
1625	The Lower Paleozoic Plutonic-Volcanic connection in the Eastern Magmatic Belt, SW Gondwana, northern Puna Argentina. Journal of South American Earth Sciences, 2019, 95, 102306.	0.6	9
1626	Constraining Crustal Properties Using Receiver Functions and the Autocorrelation of Earthquakeâ€Generated Body Waves. Journal of Geophysical Research: Solid Earth, 2019, 124, 8981-8997.	1.4	24
1627	Determining Moho Depth beneath Sedimentary Basins Using Regional Pn Multiples. Bulletin of the Seismological Society of America, 2019, 109, .	1.1	1
1628	Post-critical SsPmp and its applications to Virtual Deep Seismic Sounding (VDSS) – 2: 1-D imaging of the crust/mantle and joint constraints with receiver functions. Geophysical Journal International, 2019, 219, 1334-1347.	1.0	6
1629	Gravity Maps of the Lithospheric Structure Beneath the Indian Ocean. Surveys in Geophysics, 2019, 40, 1055-1093.	2.1	5
1630	Spurious low velocity zones in joint inversions of surface waves and receiver functions. Geophysical Journal International, 2019, 219, 1032-1042.	1.0	5
1631	Complex Lithospheric Deformation in Eastern and Northeastern Tibet From Shear Wave Splitting Observations and Its Geodynamic Implications. Journal of Geophysical Research: Solid Earth, 2019, 124, 10331-10346.	1.4	16
1632	Shear Velocity Structure From Ambient Noise and Teleseismic Surface Wave Tomography in the Cascades Around Mount St. Helens. Journal of Geophysical Research: Solid Earth, 2019, 124, 8358-8375.	1.4	16

ARTICLE IF CITATIONS Imaging the East European Craton margin in northern Poland using extended correlation processing 1633 1.2 5 of regional seismic reflection profiles. Solid Earth, 2019, 10, 683-696. Pn Tomography and Anisotropy Study of the Central United States. Journal of Geophysical Research: 1634 1.4 Solid Earth, 2019, 124, 7105-7<u>119.</u> Upper Crustal Structure and Magmatism in Southwest Washington: <i>V</i></sub><i>p</i></sub>, <i>V</i>_{<i>s</i>}, and <i>V</i>_{<i>p</i>}/<i>V</i>_{<i>s</i>} 1635 1.4 5 From the iMUSH Activeâ€Source Seismic Experiment. Journal of Geophysical Research: Solid Earth, 2019, 124, 7067-7080. An Updated Crustal Thickness Map of Central South America Based on Receiver Function Measurements in the Region of the Chaco, Pantanal, and ParanÃ_j Basins, Southwestern Brazil. Journal of Geophysical Research: Solid Earth, 2019, 124, 8491-8505. 1.4 Crustal Structure Beneath the Wabash Valley Seismic Zone From the Joint Inversion of Receiver Functions and Surfaceâ€Wave Dispersion: Implications for Continental Rifts and Intraplate Seismicity. 1637 1.4 5 Journal of Geophysical Research: Solid Earth, 2019, 124, 7028-7039. Late Paleocene adakitic granitoid from NW Iran and comparison with adakites in the NE Turkey: Adakitic melt generation in normal continental crust. Lithos, 2019, 346-347, 105151. Redefining Dharwar Craton-Southern granulite terrain boundary in south India from new 1639 1.2 8 seismological constraints. Precambrian Research, 2019, 332, 105394. Thermochemical Heterogeneity and Density of Continental and Oceanic Upper Mantle in the 1640 1.4 Europeanâ€North Atlantic Region. Journal of Geophysical Research: Solid Earth, 2019, 124, 9280-9312. A 4†Ga record of granitic heat production: Implications for geodynamic evolution and crustal 1641 1.2 17 composition of the early Earth. Precambrian Research, 2019, 331, 105375. Lithospheric Structure and Evolution of Southern Africa: Constraints From Joint Inversion of Rayleigh Wave Dispersion and Receiver Functions. Geochemistry, Geophysics, Geosystems, 2019, 20, 1642 1.0 3311-3327. Thermal structure of a vanishing subduction system. An example of seismically-derived crustal 1643 4 1.0 temperature along the Italian peninsula. Geophysical Journal International, 0, , . 3-D crustal density model of the Sea of Marmara. Solid Earth, 2019, 10, 785-807. 1644 1.2 3D data-derived lithospheric structure of the Central Andes and its implications for deformation: 1645 0.9 21 Insights from gravity and geodynamic modelling. Tectonophysics, 2019, 766, 453-468. Deep Structure of the Eastern Himalayan Collision Zone: Evidence for Underthrusting and 1646 1.3 Delamination in the Postcollisional Stage. Tectonics, 2019, 38, 3614-3628. The crustal structure of the Maurice Ewing Bank. Tectonophysics, 2019, 769, 228190. 1647 0.9 5 Effect of the lateral topographic density distribution on interpretational properties of Bouguer 1648 1.0 gravity maps. Geophysical Journal International, 2019, , . Crustal Poisson's ratio tomography and velocity modeling across tectono-magmatic lake regions of Eastern Anatolia (Turkey): New geophysical constraints for crustal tectonics. Journal of Geodynamics, 2019, 131, 101651. 1649 0.7 7 Tectonic Regionalization of the Southern California Crust From Tomographic Cluster Analysis. 1.4 Journal of Geophysical Research: Solid Earth, 2019, 124, 11840-11865.

#	Article	IF	CITATIONS
1651	Lithospheric Structure of Northwestern Venezuela From Wideâ€Angle Seismic Data: Implications for the Understanding of Continental Margin Evolution. Journal of Geophysical Research: Solid Earth, 2019, 124, 13124-13149.	1.4	11
1652	Probing crustal anisotropy by receiver functions at the deep continental drilling site KTB in Southern Germany. Geophysical Prospecting, 2019, 67, 2450-2464.	1.0	4
1653	Crustal structure of the eastern Piedmont and Atlantic coastal plain in North Carolina and Virginia, eastern North American margin. Earth, Planets and Space, 2019, 71, .	0.9	6
1654	Crustal imaging of northern Harrat Rahat, Saudi Arabia, from ambient noise tomography. Geophysical Journal International, 2019, 219, 1532-1549.	1.0	2
1655	Low-Wave-Velocity and High-Electrical-Conductivity Layer of Serpentine: A Compilation. Pure and Applied Geophysics, 2019, 176, 4941-4954.	0.8	1
1656	The role of mantle melts in the transition from rifting to seafloor spreading offshore eastern North America. Earth and Planetary Science Letters, 2019, 525, 115756.	1.8	21
1657	The formation bulk density prediction for intact and fractured siliciclastic rocks. Geodesy and Geodynamics, 2019, 10, 446-454.	1.0	7
1658	Bouguer anomalies of the NW Iberian continental margin and the adjacent abyssal plains. Journal of Maps, 2019, 15, 635-641.	1.0	7
1659	Numerical data of probabilistic 3D lithological map of Japanese crust. Data in Brief, 2019, 26, 104497.	0.5	1
1660	Crustal architecture of the northwestern and central Gulf of Mexico from integrated geophysical analysis. Interpretation, 2019, 7, T899-T910.	0.5	6
1661	Crustal structure at the southwestern margin of the Ulleung Basin, East Sea (Japan Sea), from wide-angle seismic data. Geo-Marine Letters, 2019, 39, 37-46.	0.5	3
1662	A model for thermal gradient and heat flow in central Chile: The role of thermal properties. Journal of South American Earth Sciences, 2019, 91, 88-101.	0.6	10
1663	Localized crustal deformation along the central North Anatolian Fault Zone revealed by joint inversion of <i>P</i> -receiver functions and <i>P</i> -wave polarizations. Geophysical Journal International, 2019, 217, 682-702.	1.0	12
1664	Crustal P wave velocity structure beneath the SE margin of the Tibetan Plateau from Deep Seismic Sounding results. Tectonophysics, 2019, 755, 109-126.	0.9	6
1665	Evaluating magmatic additions at a magma-poor rifted margin: An East Indian case study. Geophysical Journal International, 0, , .	1.0	5
1666	The Geology and Geodiversity of the Galapagos Islands. Volcanic Tourist Destinations, 2019, , 5-66.	0.2	0
1667	Lateral crustal variation and post-rift magmatism in the northeastern South China Sea determined by wide-angle seismic data. Marine Geology, 2019, 410, 70-87.	0.9	32
1668	Crustal Structure Across the Lord Howe Rise, Northern Zealandia, and Rifting of the Eastern Gondwana Margin. Journal of Geophysical Research: Solid Earth, 2019, 124, 3036-3056.	1.4	12

#	Article	IF	CITATIONS
1669	An analysis of the intraplate earthquake (2016M5.8_GY) that occurred in the Gyeongsang Basin in the SE of the Korean Peninsula, based on 3-D modelling of the gravity and magnetic field. Geophysical Journal International, 2019, 217, 90-107.	1.0	7
1670	Modification of crustal seismic anisotropy by geological structures ("structural geometric) Tj ETQq1 1 0.784	314 rgBT /	Overlock 10
1671	Seismic investigation of an active ocean–continent transform margin: the interaction between the Swan Islands Fault Zone and the ultraslow-spreading Mid-Cayman Spreading Centre. Geophysical Journal International, 2019, 219, 159-184.	1.0	9
1672	Constraints on Appalachian Orogenesis and Continental Rifting in the Southeastern United States From Wideâ€Angle Seismic Data. Journal of Geophysical Research: Solid Earth, 2019, 124, 6625-6652.	1.4	19
1673	Using the receiver function for studying earth deep structure in the Southern Borborema Province. Journal of South American Earth Sciences, 2019, 94, 102221.	0.6	7
1674	Estimating lateral and vertical resolution in receiver function data for shallow crust exploration. Geophysical Journal International, 2019, 218, 2045-2053.	1.0	4
1675	The Identity of Petrophysical Properties of Oceanic Serpentinites and Continental Granitoids: Implications for the Recognition of Buried Hydrocarbon-bearing Serpentinite Geobodies. Geotectonics, 2019, 53, 239-250.	0.2	2
1676	Seismic structure of the northwestern margin of the South China Sea: implication for asymmetric continental extension. Geophysical Journal International, 2019, 218, 1246-1261.	1.0	25
1677	Variations in continental heat production from 4†Ga to the present: Evidence from geochemical data. Lithos, 2019, 342-343, 391-406.	0.6	25
1678	Western Mediterranean Subcontinental Mantle Emplacement by Continental Margin Obduction. Tectonics, 2019, 38, 2142-2157.	1.3	17
1679	The application of a gravimetric forward modelling of the lithospheric structure for an estimate of the average density of the upper asthenosphere. Geodesy and Geodynamics, 2019, 10, 265-275.	1.0	2
1680	A new crustal thickness model for mainland China derived from EIGEN-6C4 gravity data. Journal of Asian Earth Sciences, 2019, 179, 430-442.	1.0	14
1681	Decompensative Gravity Anomalies Reveal the Structure of the Upper Crust of Antarctica. Pure and Applied Geophysics, 2019, 176, 4401-4414.	0.8	10
1682	The new formation bulk density predictions for siliciclastic rocks. Journal of Petroleum Science and Engineering, 2019, 180, 526-537.	2.1	11
1683	Underthrusting and duplexing beneath the northern Tibetan Plateau and the evolution of the Himalayan-Tibetan orogen. Lithosphere, 2019, 11, 209-231.	0.6	79
1684	Mantle and sub-lithosphere mantle gravity maps from the LITHO1.0 global lithospheric model. Earth-Science Reviews, 2019, 194, 38-56.	4.0	21
1685	The Record of the Transition From an Oceanic Arc to a Young Continent in the Talamanca Cordillera. Geochemistry, Geophysics, Geosystems, 2019, 20, 2733-2752.	1.0	11
1686	Lithospheric structure in the Cathaysia block (South China) and its implication for the Late Mesozoic magmatism. Physics of the Earth and Planetary Interiors, 2019, 291, 24-34.	0.7	47

#	Article	IF	CITATIONS
1687	Crustal and Upper Mantle Structure of the Tien Shan Orogenic Belt From Fullâ€Wave Ambient Noise Tomography. Journal of Geophysical Research: Solid Earth, 2019, 124, 3987-4000.	1.4	32
1688	Shear Velocity Structure Beneath Saudi Arabia From the Joint Inversion of <i>P</i> and <i>S</i> Wave Receiver Functions, and Rayleigh Wave Group Velocity Dispersion Data. Journal of Geophysical Research: Solid Earth, 2019, 124, 4767-4787.	1.4	22
1689	The causes of spatiotemporal variations in erupted fluxes and compositions along a volcanic arc. Nature Communications, 2019, 10, 1350.	5.8	42
1690	GIGJ: A Crustal Gravity Model of the Guangdong Province for Predicting the Geoneutrino Signal at the JUNO Experiment. Journal of Geophysical Research: Solid Earth, 2019, 124, 4231-4249.	1.4	16
1691	Neotectonic structures imaged by seismic velocity along the Isparta Angle. Arabian Journal of Geosciences, 2019, 12, 1.	0.6	4
1692	A new crustal model of the Anatolia–Aegean domain: evidence for the dominant role of isostasy in the support of the Anatolian plateau. Geophysical Journal International, 2019, 218, 57-73.	1.0	36
1693	Crustal Architecture and Nature of Continental Breakup Along a Transform Margin: New Insights From Tanzaniaâ€Mozambique Margin. Tectonics, 2019, 38, 1273-1291.	1.3	13
1694	Moho Depths of Antarctica: Comparison of Seismic, Gravity, and Isostatic Results. Geochemistry, Geophysics, Geosystems, 2019, 20, 1629-1645.	1.0	39
1695	Formulation and validation of a global laterally varying topographical density model. Tectonophysics, 2019, 762, 45-60.	0.9	30
1696	A crustal thickness model of Antarctica calculated in spherical approximation from satellite gravimetric data. Geophysical Journal International, 2019, 218, 388-400.	1.0	10
1697	Ionian Abyssal Plain: a window into the Tethys oceanic lithosphere. Solid Earth, 2019, 10, 447-462.	1.2	19
1698	Crust and shallow mantle structure of south India by inverting interpolated receiver function with surface wave dispersion. Journal of Asian Earth Sciences, 2019, 176, 157-167.	1.0	7
1699	Crustal architecture and Moho topography beneath the eastern Indian and Bangladesh margins – new insights on rift evolution and the continent–ocean boundary. Journal of the Geological Society, 2019, 176, 553-573.	0.9	11
1700	Constructing the Early Mesozoic Gangdese Crust in Southern Tibet by Hornblende-dominated Magmatic Differentiation. Journal of Petrology, 2019, 60, 515-552.	1.1	79
1701	Crustal Structure in Alaska From Receiver Function Analysis. Geophysical Research Letters, 2019, 46, 1284-1292.	1.5	25
1702	Damage and Strain Localization Around a Pressurized Shallow‣evel Magma Reservoir. Journal of Geophysical Research: Solid Earth, 2019, 124, 1443-1458.	1.4	10
1703	Global Crustal Thickness and Velocity Structure From Geostatistical Analysis of Seismic Data. Journal of Geophysical Research: Solid Earth, 2019, 124, 1626-1652.	1.4	86
1704	Uppermost mantle velocity and anisotropy structure beneath the North China Craton and its adjacent regions. Tectonophysics, 2019, 754, 45-55.	0.9	13

#	Article	IF	CITATIONS
1705	Architecture and dynamics of magma reservoirs. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180298.	1.6	116
1706	Tomographic Pn Velocity and Anisotropy Structure in Mongolia and the Adjacent Regions. Journal of Geophysical Research: Solid Earth, 2019, 124, 3662-3679.	1.4	12
1707	Thermomechanical Implications of Sediment Transport for the Architecture and Evolution of Continental Rifts and Margins. Tectonics, 2019, 38, 641-665.	1.3	42
1708	Making and altering the crust: A global perspective on crustal structure and evolution. Earth and Planetary Science Letters, 2019, 512, 8-16.	1.8	21
1709	Transdimensional ambient noise tomography of Bass Strait, southeast Australia, reveals the sedimentary basin and deep crustal structure beneath a failed continental rift. Geophysical Journal International, 0, , .	1.0	8
1710	Crustal density structure of the northwestern Iranian Plateau. Canadian Journal of Earth Sciences, 2019, 56, 1347-1365.	0.6	13
1711	The crustal structure of the Himalaya: A synthesis. Geological Society Special Publication, 2019, 483, 483-516.	0.8	26
1712	Crustal Structure of Eastern North Carolina: Piedmont and Coastal Plain. Bulletin of the Seismological Society of America, 2019, 109, 2288-2304.	1.1	5
1713	The Structure and Evolution of the East Greenland Continental Margin before Spreading on the Kolbeinsey Ridge. Journal of Volcanology and Seismology, 2019, 13, 403-414.	0.2	0
1714	Determination of Ground Profile and Peak Surface Acceleration (PSA) using single station microtremor Inversion method for earthquake hazard zonation of Lombok Island. IOP Conference Series: Earth and Environmental Science, 2019, 389, 012045.	0.2	3
1715	Seismic Evidence of Magmatic Rifting in the Offshore Taupo Volcanic Zone, New Zealand. Geophysical Research Letters, 2019, 46, 12949-12957.	1.5	9
1716	Southern Africa crustal anisotropy reveals coupled crust-mantle evolution for over 2 billion years. Nature Communications, 2019, 10, 5445.	5.8	8
1717	Adakiteâ€Like Potassic Magmatism and Crustâ€Mantle Interaction in a Postcollisional Setting: An Experimental Study of Melting Beneath the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 2019, 124, 12782-12798.	1.4	26
1718	Regional Gravity Field Model of Egypt Based on Satellite and Terrestrial Data. Pure and Applied Geophysics, 2019, 176, 767-786.	0.8	8
1719	A three-dimensional density model of north Andaman subduction zone. Journal of Geodynamics, 2019, 129, 247-261.	0.7	4
1720	Inverse and 3D forward gravity modelling for the estimation of the crustal thickness of Egypt. Tectonophysics, 2019, 752, 52-67.	0.9	24
1721	Upper Mantle Earth Structure in Africa From Fullâ€Wave Ambient Noise Tomography. Geochemistry, Geophysics, Geosystems, 2019, 20, 120-147.	1.0	55
1722	Seismic velocity structure across the 2013 Craig, Alaska rupture from aftershock tomography: Implications for seismogenic conditions. Earth and Planetary Science Letters, 2019, 507, 94-104.	1.8	2

		N REPORT	
#	Article	IF	CITATIONS
1723	Seismic Evidence on Different Rifting Mechanisms in Southern and Northern Segments of the Fenheâ€Weihe Rift Zone. Journal of Geophysical Research: Solid Earth, 2019, 124, 609-630.	1.4	26
1724	Structural and Geochronological Constraints on Devonian Suprasubduction Tectonic Switching and Permian Collisional Dynamics in the Chinese Altai, Central Asia. Tectonics, 2019, 38, 253-280.	1.3	60
1725	Upper Crustal <i>Vp</i> / <i>Vs</i> Ratios at the Endeavour Segment, Juan de Fuca Ridge, From Joint Inversion of <i>P</i> and <i>S</i> Traveltimes: Implications for Hydrothermal Circulation. Geochemistry, Geophysics, Geosystems, 2019, 20, 208-229.	1.0	16
1726	Crustal thickness estimates beneath four seismic stations in Ethiopia inferred from p-wave receiver function studies. Journal of African Earth Sciences, 2019, 150, 264-271.	0.9	8
1727	Lithosphere structure in Europe from thermal isostasy. Earth-Science Reviews, 2019, 188, 454-468.	4.0	43
1728	Crustal structure of the northern Harrat Rahat volcanic field (Saudi Arabia) from gravity and aeromagnetic data. Tectonophysics, 2019, 750, 9-21.	0.9	10
1729	Highly varying radiogenic heat production in Finland, Fennoscandian Shield. Tectonophysics, 2019, 750, 93-116.	0.9	13
1730	Similar crust beneath disrupted and intact cratons: Arguments against lower-crust delamination as a decratonization trigger. Tectonophysics, 2019, 750, 1-8.	0.9	14
1731	Lithospheric modification by extension and magmatism at the craton-orogenic boundary: North Tanzania Divergence, East Africa. Geophysical Journal International, 2019, 216, 1693-1710.	1.0	20
1732	Magnetotelluric Evidence for Asymmetric Simple Shear Extension and Lithospheric Thinning in South China. Journal of Geophysical Research: Solid Earth, 2019, 124, 104-124.	1.4	42
1733	Stochastic modeling of 3-D compositional distribution in the crust with Bayesian inference and application to geoneutrino observation in Japan. Physics of the Earth and Planetary Interiors, 2019, 288, 37-57.	0.7	13
1734	3â€D Density, Thermal, and Compositional Model of the Antarctic Lithosphere and Implications for Its Evolution. Geochemistry, Geophysics, Geosystems, 2019, 20, 688-707.	1.0	30
1735	Lithosphere thermal thickness and geothermal heat flux in Greenland from a new thermal isostasy method. Earth-Science Reviews, 2019, 188, 469-481.	4.0	24
1736	Isopycnicity of cratonic mantle restricted to kimberlite provinces. Earth and Planetary Science Letters, 2019, 505, 13-19.	1.8	20
1737	The threat of Centaurs for terrestrial planets and their orbital evolution as impactors. Monthly Notices of the Royal Astronomical Society, 2019, 482, 771-784.	1.6	6
1738	Different expressions of the crustal structure across the Dongsha Rise along the northeastern margin of the South China Sea. Journal of Asian Earth Sciences, 2019, 171, 187-200.	1.0	23
1739	Non-Wilsonian break-up predisposed by transforms: examples from the North Atlantic and Arctic. Geological Society Special Publication, 2019, 470, 375-392.	0.8	10
1740	Reappraisal of the magma-rich versus magma-poor rifted margin archetypes. Geological Society Special Publication, 2020, 476, 23-47.	0.8	42

#	Article	IF	CITATIONS
1741	Crustal structure beneath the east side of Pearl River Estuary from onshore-offshore seismic experiment. International Geology Review, 2020, 62, 1057-1069.	1.1	10
1742	Magma mixing model for the genesis of middle crust in the Izu–Bonin–Mariana arc: evidence from plutonic rocks in the Mineoka-Setogawa ophiolitic mélange, central Japan. International Geology Review, 2020, 62, 503-521.	1.1	3
1743	Elemental and radiogenic isotope perspective on formation and transformation of cratonic lower crust: Central Slave craton (Canada). Geochimica Et Cosmochimica Acta, 2020, 278, 78-93.	1.6	7
1744	Crustal fragmentation, magmatism, and the diachronous opening of the Norwegian-Greenland Sea. Earth-Science Reviews, 2020, 206, 102839.	4.0	63
1745	Petrophysics and mineral exploration: a workflow for data analysis and a new interpretation framework. Geophysical Prospecting, 2020, 68, 178-199.	1.0	24
1746	Geophysical constraints on a modified crust below the Rayn Anticlines, Eastern Saudi Arabia. Journal of Asian Earth Sciences, 2020, 188, 104105.	1.0	1
1747	Terrestrial single-station analog for constraining the martian core and deep interior: Implications for InSight. Icarus, 2020, 335, 113396.	1.1	2
1748	Geometry of the Deep Calabrian Subduction (Central Mediterranean Sea) From Wideâ€Angle Seismic Data and 3â€Ð Gravity Modeling. Geochemistry, Geophysics, Geosystems, 2020, 21, .	1.0	5
1749	Towards more realistic values of elastic moduli for volcano modelling. Journal of Volcanology and Geothermal Research, 2020, 390, 106684.	0.8	93
1750	Exsolving two-phase flow in oil wells. Geophysical and Astrophysical Fluid Dynamics, 2020, 114, 283-305.	0.4	1
1751	The modulation of groundwater exploitation on crustal stress in the North China Plain, and its implications on seismicity. Journal of Asian Earth Sciences, 2020, 189, 104141.	1.0	11
1752	JULOC: A local 3-D high-resolution crustal model in South China for forecasting geoneutrino measurements at JUNO. Physics of the Earth and Planetary Interiors, 2020, 299, 106409.	0.7	9
1753	Gaussian process models—l. A framework for probabilistic continuous inverse theory. Geophysical Journal International, 2020, 220, 1632-1647.	1.0	26
1754	The Formation of Continental Fragments in Subduction Settings: The Importance of Structural Inheritance and Subduction System Dynamics. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018370.	1.4	10
1755	3-D shear wave velocity model of the lithosphere below the Sardinia–Corsica continental block based on Rayleigh-wave phase velocities. Geophysical Journal International, 2020, 220, 2119-2130.	1.0	10
1756	A numerical model for the gravimetric recovery of sub-lithospheric mantle structures. Geodesy and Geodynamics, 2020, 11, 85-96.	1.0	0
1757	Repeated magmatic buildup and deep "hot zones―in continental evolution: The Cadomian crust of Iran. Earth and Planetary Science Letters, 2020, 531, 115989.	1.8	32
1758	Estimating a combined Moho model for marine areas via satellite altimetric - gravity and seismic crustal models. Studia Geophysica Et Geodaetica, 2020, 64, 1-25.	0.3	4

		EPORT	
#	Article	IF	CITATIONS
1759	Constraints on S-wave velocity structures of the lithosphere in mainland China from broadband ambient noise tomography. Physics of the Earth and Planetary Interiors, 2020, 299, 106406.	0.7	18
1760	Gondwana breakup: Messages from the North Natal Valley. Terra Nova, 2020, 32, 205-214.	0.9	27
1761	Distribution of Partial Melt Beneath Changbaishan/Paektu Volcano, China/Democratic People's Republic of Korea. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008461.	1.0	22
1762	Asthenospheric buoyancy and the origin of high-relief topography along the Cascadia forearc. Earth and Planetary Science Letters, 2020, 531, 115965.	1.8	17
1763	3D model of Svecofennian Accretionary Orogen and Karelia Craton based on geology, reflection seismics, magnetotellurics and density modelling: Geodynamic speculations. Geoscience Frontiers, 2020, 11, 999-1023.	4.3	14
1764	Ambient noise Rayleigh wave tomography across the Madagascar island. Geophysical Journal International, 2020, 220, 1657-1676.	1.0	6
1765	Thermal models of the oceanic lithosphere and upper mantle. , 2020, , 175-212.		0
1766	3D Fault Structure Inferred from a Refined Aftershock Catalog for the 2015 Gorkha Earthquake in Nepal. Bulletin of the Seismological Society of America, 2020, 110, 26-37.	1.1	13
1767	Cretaceous intracontinental rifting at the southern Chatham Rise margin and initialisation of seafloor spreading between Zealandia and Antarctica. Tectonophysics, 2020, 776, 228298.	0.9	19
1768	Complete metamorphic cycle and longâ€lived anatexis in the <i>c.</i> 2.1ÂGa Mistinibi Complex, Canada. Journal of Metamorphic Geology, 2020, 38, 235-264.	1.6	11
1769	The Role of Arcâ€Arc Collision in Accretionary Orogenesis: Insights From â^¼320 Ma Tectonoâ€sedimentary Transition in the Karamaili Area, NW China. Tectonics, 2020, 39, e2019TC005623.	1.3	23
1770	Seismic Properties of a Unique Olivine-Rich Eclogite in the Western Gneiss Region, Norway. Minerals (Basel, Switzerland), 2020, 10, 774.	0.8	4
1771	Kinematic evolution of a continental collision: Constraining the Himalayan-Tibetan orogen via bulk strain rates. Tectonophysics, 2020, 797, 228642.	0.9	12
1772	Thermal and Compositional Anomalies of the Australian Upper Mantle From Seismic and Gravity Data. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009305.	1.0	14
1773	Seismic velocity and anisotropy of the uppermost mantle beneath Madagascar from <i>Pn</i> tomography. Geophysical Journal International, 2020, 224, 290-305.	1.0	1
1774	Seismic Evidence for Proterozoic Collisional Episodes along Two Geosutures within the Southern Granulite Province of India. Lithosphere, 2020, 2020, .	0.6	2
1775	The Role of Premagmatic Rifting in Shaping a Volcanic Continental Margin: An Example From the Eastern North American Margin. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019576.	1.4	10
1776	Crustal structure and variation in the southwest continental margin of the South China Sea: Evidence from a wide-angle seismic profile. Journal of Asian Earth Sciences, 2020, 203, 104557.	1.0	12

#	Article	IF	CITATIONS
1777	Petrofabrics and Seismic Properties of Himalayan Amphibolites: Implications for a Thick Anisotropic Deep Crust Beneath Southern Tibet. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018700.	1.4	11
1778	Limited and localized magmatism in the Central Atlantic Magmatic Province. Nature Communications, 2020, 11, 3397.	5.8	23
1779	Crustal domains in the Western Barents Sea. Geophysical Journal International, 2020, 221, 2155-2169.	1.0	7
1780	Effects of Water on the Rheology of Dominant Minerals and Rocks in the Continental Lower Crust: A Review. Journal of Earth Science (Wuhan, China), 2020, 31, 1170-1182.	1.1	10
1781	Foreland seismicity associated with strike-slip faulting in southeastern Sicily, Italy: Seismotectonic implications and seismic hazard assessment. Physics of the Earth and Planetary Interiors, 2020, 307, 106553.	0.7	1
1782	High density crustal intrusive bodies beneath Shillong plateau and Indo Burmese Range of northeast India revealed by gravity modeling and earthquake data. Physics of the Earth and Planetary Interiors, 2020, 307, 106555.	0.7	10
1783	Variations in Seismic Wave Speed and <i>V</i> _{<i>P</i>} / <i>V</i> _{<i>S</i>} Ratio in the North American Lithosphere. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020574.	1.4	14
1784	Extensive Sills in the Continental Basement from Deep Seismic Reflection Profiling. Geosciences (Switzerland), 2020, 10, 449.	1.0	8
1785	A fresh look at Gulf of Mexico tectonics: Testing rotations and breakup mechanisms from the perspective of seismically constrained potential-fields modeling and plate kinematics. Interpretation, 2020, 8, SS31-SS45.	0.5	9
1786	Joint Geophysicalâ€Petrological Modeling on the Ivrea Geophysical Body Beneath Valsesia, Italy: Constraints on the Continental Lower Crust. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009397.	1.0	7
1787	Deep long period volcanic earthquakes generated by degassing of volatile-rich basaltic magmas. Nature Communications, 2020, 11, 3918.	5.8	27
1788	Seismicity along the Magallanes-Fagnano fault system. Journal of South American Earth Sciences, 2020, 103, 102799.	0.6	3
1789	The Lithospheric Structure of the Gibraltar Arc System From Wideâ€Angle Seismic Data. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019854.	1.4	16
1790	Understanding seismic reflectivity across hydrothermal alteration zones associated with gold: Example of the Karari gold deposit, Western Australia. Ore Geology Reviews, 2020, 126, 103776.	1.1	2
1791	Anomalous lower crustal structure and origin of magmatism in the southeastern margin of the South China Sea. Marine and Petroleum Geology, 2020, 122, 104711.	1.5	11
1792	Global Whole Lithosphere Isostasy: Implications for Surface Elevations, Structure, Strength, and Densities of the Continental Lithosphere. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009150.	1.0	12
1793	Imaging the Tectonic Grain of the Northern Cordillera Orogen Using Transportable Array Receiver Functions. Seismological Research Letters, 2020, 91, 3086-3105.	0.8	12
1794	Crustal velocity structure of the Northwest Sub-basin of the South China Sea based on seismic data reprocessing. Science China Earth Sciences, 2020, 63, 1791-1806.	2.3	12

т

#	Article	IF	CITATIONS
1795	The gravimetric contribution to the Moho estimation in the presence of vertical density variations. Rendiconti Lincei, 2020, 31, 69-81.	1.0	4
1796	Evidence for a Prolonged Continental Breakup Resulting From Slow Extension Rates at the Eastern North American Volcanic Rifted Margin. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB020093.	1.4	17
1797	Petrogenesis of amphibole megacrysts in lamprophyric intraplate magmatism in southern New Zealand. New Zealand Journal of Geology, and Geophysics, 2020, 63, 489-509.	1.0	4
1798	A joint inversion of receiver function and Rayleigh wave phase velocity dispersion data to estimate crustal structure in West Antarctica. Geophysical Journal International, 2020, 223, 1644-1657.	1.0	11
1799	Strength variations of the Australian continent: Effects of temperature, strain rate, and rheological changes. Global and Planetary Change, 2020, 195, 103322.	1.6	6
1800	Lithospheric density structure of the southern Central Andes constrained by 3D data-integrative gravity modelling. International Journal of Earth Sciences, 2021, 110, 2333-2359.	0.9	12
1801	Efficient regional scale 3D potential field geophysical modelling to redefine the geometry of granite bodies beneath prospective, geologically complex, northwest Tasmania. Ore Geology Reviews, 2020, 127, 103799.	1.1	3
1802	A Generic Shear Wave Velocity Profiling Model for Use in Ground Motion Simulation. Geosciences (Switzerland), 2020, 10, 408.	1.0	6
1803	Segmentation of the Aleutianâ€Alaska Subduction Zone Revealed by Fullâ€Wave Ambient Noise Tomography: Implications for the Alongâ€Strike Variation of Volcanism. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019677.	1.4	28
1804	A Middle Crustal Channel of Radial Anisotropy Beneath the Northeastern Basin and Range. Tectonics, 2020, 39, e2020TC006140.	1.3	5
1805	Geophysical imaging of ophiolite structure in the United Arab Emirates. Nature Communications, 2020, 11, 2671.	5.8	27
1806	Formation and composition of the Late Cretaceous Gangdese arc lower crust in southern Tibet. Contributions To Mineralogy and Petrology, 2020, 175, 1.	1.2	35
1807	Seismic evidence for failed rifting in the Ligurian Basin, Western Alpine domain. Solid Earth, 2020, 11, 873-887.	1.2	14
1808	Upper crustal structure of NW Iran revealed by regional 3-D Pg velocity tomography. Geophysical Journal International, 2020, 222, 1093-1108.	1.0	9
1809	High mantle seismic P-wave speeds as a signature for gravitational spreading of superplumes. Science Advances, 2020, 6, eaba7118.	4.7	13
1810	New Crustal Vs Model Along an Array in Southâ€East China: Seismic Characters and Paleoâ€Tethys Continental Amalgamation. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009024.	1.0	11
1811	Crustal architecture and isostatic compensation of the Comorin Ridge, central Indian Ocean: Implications for the breakup of east Gondwana. Journal of Asian Earth Sciences, 2020, 199, 104463.	1.0	2
1812	Extent and Cessation of the Midâ€Cretaceous Hikurangi Plateau Underthrusting: Impact on Global Plate Tectonics and the Submarine Chatham Rise. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019681.	1.4	10

#	Article	IF	CITATIONS
1813	Structure of the Ecuadorian forearc from the joint inversion of receiver functions and ambient noise surface waves. Geophysical Journal International, 2020, 222, 1671-1685.	1.0	8
1814	Crustal Structure of the Greenlandâ€iceland Ridge from Joint Refraction and Reflection Seismic Tomography. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019847.	1.4	15
1815	Crustal control on basement uplift beneath the Ghawar Anticline, Saudi Arabia—gravity modeling with receiver function constraints. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	1
1816	Gravity–magnetic appraisal at the interface of Cuddapah Basin and Nellore Schist Belt (NSB) for shallow crustal architecture and tectonic settings. Journal of Earth System Science, 2020, 129, 1.	0.6	22
1817	Sensitivity analysis of gravity gradient inversion of the Moho depth—a case example for the Amazonian Craton. Geophysical Journal International, 2020, 221, 1896-1912.	1.0	10
1818	Moho modeling of the Yellow Sea (West Sea) from spectrally correlated free-air and terrain gravity data. Geosciences Journal, 2020, 24, 531-540.	0.6	3
1819	Jurassic segmentation of the early Andean magmatic Province in southern central Chile (35–39°S): Petrological constrains and tectonic drivers. Lithos, 2020, 364-365, 105510.	0.6	5
1820	Conceptual model of a lens in the upper crust (Northern Tien Shan case study). , 2020, , 277-310.		0
1821	Geophysical evidence for breakup volcanism in the Angola and Gabon passive margins. Marine and Petroleum Geology, 2020, 116, 104330.	1.5	17
1823	Basic Tools. , 2020, , 1-36.		0
1824	Elasticity and Hooke's Law. , 2020, , 37-120.		1
1825	Seismic Wave Propagation. , 2020, , 121-219.		0
1826	Effective Elastic Media: Bounds and Mixing Laws. , 2020, , 220-308.		0
1827	Granular Media. , 2020, , 309-366.		0
1828	Fluid Effects on Wave Propagation. , 2020, , 367-473.		0
1829	Empirical Relations. , 2020, , 474-524.		1
1830	Flow and Diffusion. , 2020, , 525-576.		0
1831	Electrical Properties. , 2020, , 577-612.		0

#	Article	IF	CITATIONS
1834	From space to lithosphere: inversion of the GOCE gravity gradients. Supply to the Earth's interior study. Geophysical Journal International, 2020, 223, 398-419.	1.0	3
1835	Tectonic and basin maps of the world. , 2020, , 761-862.		4
1836	Crustal seismic structure beneath the Garhwal Himalaya using regional and teleseismic waveform modelling. Geophysical Journal International, 2020, 222, 2040-2052.	1.0	13
1837	Locally Thin Crust and High Crustal <i>V</i> _{<i>P</i>} / <i>V</i> _{<i>S</i>} Ratio Beneath the Armenian Volcanic Highland of the Lesser Caucasus: A Case for Recent Delamination. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019151.	1.4	7
1838	Aseismic mid-crustal magma reservoir at Cleveland Volcano imaged through novel receiver function analyses. Scientific Reports, 2020, 10, 1780.	1.6	15
1839	The role of deformation-reaction interactions to localize strain in polymineralic rocks: Insights from experimentally deformed plagioclase-pyroxene assemblages. Journal of Structural Geology, 2020, 134, 104008.	1.0	13
1840	Local Source <i>Vp</i> and <i>Vs</i> Tomography in the Mount St. Helens Region With the iMUSH Broadband Array. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008888.	1.0	26
1841	Crustal Composition and Moho Variations of the Central and Eastern United States: Improving Resolution and Geologic Interpretation of EarthScope USArray Seismic Images Using Gravity. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018537.	1.4	7
1842	The crustal structure of the southern Davie Ridge offshore northern Mozambique – A wide-angle seismic and potential field study. Tectonophysics, 2020, 778, 228370.	0.9	18
1843	Crustal structure of the offshore Labrador margin into deep water from combined seismic reflection interpretation and gravity modeling. Interpretation, 2020, 8, SH1-SH17.	0.5	3
1844	Lower Crustal Composition in the Southwestern United States. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB019011.	1.4	11
1845	Origin, composition and relative timing of seaward dipping reflectors on the Pelotas rifted margin. Marine and Petroleum Geology, 2020, 114, 104235.	1.5	13
1846	Fast collocation for Moho estimation from GOCE gravity data: the Iran case study. Geophysical Journal International, 2020, 221, 651-664.	1.0	7
1847	Thermo-rheological structure of the northern margin of the South China Sea: Structural and geodynamic implications. Tectonophysics, 2020, 777, 228338.	0.9	5
1848	Reference Models for Lithospheric Geoneutrino Signal. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018433.	1.4	13
1849	Continent size revisited: Geophysical evidence for West Antarctica as a back-arc system. Earth-Science Reviews, 2020, 202, 103106.	4.0	9
1850	Crustal structure and magmatic evolution in the Pearl River Delta of the Cathaysia Block: New constraints from receiver function modeling. Tectonophysics, 2020, 778, 228365.	0.9	14
1851	Improved 1D velocity model and deep long-period earthquakes in Kanlaon Volcano, Philippines: Implications for its magmatic system. Journal of Volcanology and Geothermal Research, 2020, 393, 106793.	0.8	6

#	Article	IF	CITATIONS
1852	Seismic tomography of compressional wave velocity and attenuation structure for Makushin Volcano, Alaska. Journal of Volcanology and Geothermal Research, 2020, 393, 106804.	0.8	7
1853	Magmatism versus serpentinization—crustal structure along the 13°N segment at the Mid-Atlantic Ridge. Geophysical Journal International, 2020, 221, 981-1001.	1.0	10
1854	New evidence for a thin crust and magmatic underplating beneath the Cambay rift basin, Western India through modelling of EIGEN-6C4 gravity data. Journal of Earth System Science, 2020, 129, 1.	0.6	22
1855	Fabric and anisotropy of slates: From classical studies to new results. Journal of Structural Geology, 2020, 138, 104066.	1.0	12
1856	Deriving a New Crustal Model of Northern Adria: The Northern Adria Crust (NAC) Model. Frontiers in Earth Science, 2020, 8, .	0.8	10
1857	Indian Crust. Society of Earth Scientists Series, 2020, , 331-349.	0.2	0
1858	Singhbhum and Bastar Cratons. Society of Earth Scientists Series, 2020, , 89-114.	0.2	0
1859	Measurements of the extension required for crustal breakup on the magma-poor Iberia-Newfoundland conjugate margins. Marine and Petroleum Geology, 2020, 118, 104403.	1.5	5
1860	Coupling relationship between sedimentary basin and Moho morphology in the South Yellow Sea, East China. Geological Journal, 2020, 55, 6544-6561.	0.6	3
1861	Comparing global tomography-derived and gravity-based upper mantle density models. Geophysical Journal International, 2020, 221, 1542-1554.	1.0	4
1862	Three-dimensional thermo-rheological structure of the lithosphere in the North China Craton determined by integrating multiple observations: Implications for the formation of rifts. Science China Earth Sciences, 2020, 63, 969-984.	2.3	8
1863	Strain and retrogression partitioning explain long-term stability of crustal roots in stable continents. Geology, 2020, 48, 658-662.	2.0	7
1864	Sp Receiver-Function Images of African and Arabian Lithosphere: Survey of Newly Available Broadband Data. Seismological Research Letters, 2020, 91, 1813-1819.	0.8	8
1865	Integration of tectonic geomorphology and crustal structure across the active obliquely collisional zone on the island of Hispaniola, northeastern Caribbean. Geological Society Special Publication, 2021, 504, 379-400.	0.8	6
1866	Deep structure of the Demerara Plateau: From a volcanic margin to a Transform Marginal Plateau. Tectonophysics, 2021, 803, 228645.	0.9	19
1867	Anatomy of a crustal-scale accretionary complex: Insights from deep seismic sounding of the onshore western Makran subduction zone, Iran. Geology, 2021, 49, 3-7.	2.0	21
1868	Sedimentation and viscosity controls on forearc high growth. Basin Research, 2021, 33, 1384-1406.	1.3	1
1869	¹⁰ Be exposure age for sorted polygons in the Sudetes Mountains. Permafrost and Periglacial Processes, 2021, 32, 154-168.	1.5	3

#	Article	IF	CITATIONS
1870	Lithospheric structure and evolution of the North China Craton: An integrated study of geophysical and xenolith data. Science China Earth Sciences, 2021, 64, 205-219.	2.3	18
1871	Investigation of crustal thickness and uppermost mantle velocity beneath Gujarat, western India, utilizing Moho reflected P phases. Physics of the Earth and Planetary Interiors, 2021, 310, 106619.	0.7	Ο
1872	The Moho Discontinuity. , 2021, , 732-743.		3
1873	Construction of a trans-crustal magma system: Building the Bear Valley Intrusive Suite, southern Sierra Nevada, California. Earth and Planetary Science Letters, 2021, 553, 116624.	1.8	15
1874	Well-Log-Based Velocity and Density Models for the Montney Unconventional Resource Play in Northeast British Columbia, Canada, Applicable to Induced Seismicity Monitoring and Research. Seismological Research Letters, 2021, 92, 886-894.	0.8	6
1875	Ambiguity of crustal geotherms: A thermal-conductivity perspective. Geothermics, 2021, 89, 101937.	1.5	7
1876	Characteristics of crustal variation and extensional break-up in the Western Pacific back-arc region based on a wide-angle seismic profile. Geoscience Frontiers, 2021, 12, 101082.	4.3	5
1877	Analysis of the 2020 Haenam, Korea, earthquake sequence. Geosciences Journal, 2021, 25, 33-42.	0.6	7
1878	Potential-field modelling of the prospective Chibougamau area (northeastern Abitibi subprovince,) Tj ETQq0 0 0 Earth Sciences, 2021, 58, 297-312.	rgBT /Ove 0.6	rlock 10 Tf 50 2
1879	Updated Antarctic crustal model. Gondwana Research. 2021. 89. 1-18.		
		3.0	13
1880	Cratonization, lower crust and continental lithosphere. Acta Petrologica Sinica, 2021, 37, 1-23.	3.0 0.3	13 6
1880 1881	Cratonization, lower crust and continental lithosphere. Acta Petrologica Sinica, 2021, 37, 1-23. Cooling history of the Biella pluton and implication for Oligocene to Miocene tectonics of the Sesia-Lanzo Zone, Austroalpine, Western Alps. International Geology Review, 0, , 1-30.	3.0 0.3 1.1	13 6 6
1880 1881 1882	Cratonization, lower crust and continental lithosphere. Acta Petrologica Sinica, 2021, 37, 1-23. Cooling history of the Biella pluton and implication for Oligocene to Miocene tectonics of the Sesia-Lanzo Zone, Austroalpine, Western Alps. International Geology Review, 0, , 1-30. Permeability of the Continental Crust –Possible High Values from Laboratory Measurements and Seismological Data. Innovation and Discovery in Russian Science and Engineering, 2021, , 481-498.	3.0 0.3 1.1 0.2	13 6 6 0
1880 1881 1882 1883	Cratonization, lower crust and continental lithosphere. Acta Petrologica Sinica, 2021, 37, 1-23. Cooling history of the Biella pluton and implication for Oligocene to Miocene tectonics of the Sesia-Lanzo Zone, Austroalpine, Western Alps. International Geology Review, 0, , 1-30. Permeability of the Continental Crust –Possible High Values from Laboratory Measurements and Seismological Data. Innovation and Discovery in Russian Science and Engineering, 2021, , 481-498. The relationship between <i>>Vs, Vp</i> , density and depth based on PS-logging data at K-NET and KiK-net sites. Geophysical Journal International, 2021, 225, 1467-1491.	3.0 0.3 1.1 0.2 1.0	13 6 6 0 12
1880 1881 1882 1883 1883	Cratonization, lower crust and continental lithosphere. Acta Petrologica Sinica, 2021, 37, 1-23. Cooling history of the Biella pluton and implication for Oligocene to Miocene tectonics of the Sesia-Lanzo Zone, Austroalpine, Western Alps. International Geology Review, 0, , 1-30. Permeability of the Continental Crust –Possible High Values from Laboratory Measurements and Seismological Data. Innovation and Discovery in Russian Science and Engineering, 2021, , 481-498. The relationship between <i>>Vs, Vp</i> , density and depth based on PS-logging data at K-NET and KiK-net sites. Geophysical Journal International, 2021, 225, 1467-1491. New Fault Slip Distribution for the 2010 M w 7.2 El Mayor Cucapah Earthquake Based on Realistic 3D Finite Element Inversions of Coseismic Displacements Using Space Geodetic Data. Journal of Geophysical Research: Solid Earth, 2021, 126, .	3.0 0.3 1.1 0.2 1.0 1.4	 13 6 0 12 2
1880 1881 1882 1883 1884 1885	Cratonization, lower crust and continental lithosphere. Acta Petrologica Sinica, 2021, 37, 1-23. Cooling history of the Biella pluton and implication for Oligocene to Miocene tectonics of the Sesia-Lanzo Zone, Austroalpine, Western Alps. International Geology Review, 0, , 1-30. Permeability of the Continental Crust –Possible High Values from Laboratory Measurements and Seismological Data. Innovation and Discovery in Russian Science and Engineering, 2021, , 481-498. The relationship between <i>>Vs, Vp</i> , density and depth based on PS-logging data at K-NET and KiK-net sites. Ceophysical Journal International, 2021, 225, 1467-1491. New Fault Slip Distribution for the 2010 M w 7.2 El Mayor Cucapah Earthquake Based on Realistic 3D Finite Element Inversions of Coseismic Displacements Using Space Geodetic Data. Journal of Geophysical Research: Solid Earth, 2021, 126, . Imaging the Crustal Interfaces Along the Ryukyu Arcâ€Trough System Using Precursors to Teleseismic sP and pP. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020)B020413.	3.0 0.3 1.1 0.2 1.0 1.4	 13 6 6 0 12 2 2
1880 1881 1882 1883 1884 1885 1886	Cratonization, lower crust and continental lithosphere. Acta Petrologica Sinica, 2021, 37, 1-23. Cooling history of the Biella pluton and implication for Oligocene to Miocene tectonics of the Sesia-Lanzo Zone, Austroalpine, Western Alps. International Geology Review, 0, , 1-30. Permeability of the Continental Crust –Possible High Values from Laboratory Measurements and Seismological Data. Innovation and Discovery in Russian Science and Engineering, 2021, , 481-498. The relationship between <i>Vs, Vp</i> , density and depth based on PS-logging data at K-NET and KiK-net sites. Geophysical Journal International, 2021, 225, 1467-1491. New Fault Slip Distribution for the 2010 M w 7.2 El Mayor Cucapah Earthquake Based on Realistic 3D Finite Element Inversions of Coseismic Displacements Using Space Geodetic Data. Journal of Geophysical Research: Solid Earth, 2021, 126, . Imaging the Crustal Interfaces Along the Ryukyu Arcâ€Trough System Using Precursors to Teleseismic sP and pP. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020/B020413. Gravity Anomalies, Interpretation. Encyclopedia of Earth Sciences Series, 2021, , 585-591.	3.0 0.3 1.1 0.2 1.0 1.4 1.4 0.1	 13 6 0 12 2 2 0

#	Article	IF	CITATIONS
1888	Mantle serpentinization beneath a failed rift and post-spreading magmatism in the northeastern South China Sea margin. Geophysical Journal International, 2021, 225, 811-828.	1.0	19
1889	Moho density contrast in Antarctica determined by satellite gravity and seismic models. Geophysical Journal International, 2021, 225, 1952-1962.	1.0	6
1890	Deep Structure of the Grenada Basin From Wideâ€Angle Seismic, Bathymetric and Gravity Data. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020472.	1.4	10
1891	Indiaâ€Elan Bankâ€East Antarctica Breakup, Crustal Architecture, and Margin Evolution: Results From Constrained Potential Field and Processâ€Oriented Gravity Modeling of Conjugate Margin Segments. Tectonics, 2021, 40, e2019TC005804.	1.3	3
1892	No mafic layer in 80 km thick Tibetan crust. Nature Communications, 2021, 12, 1069.	5.8	19
1893	Seismic crustal shear velocity structure across NW Himalaya and Ladakh-Karakoram using receiver function modelling: Evidence of the Main Himalayan Thrust. Physics of the Earth and Planetary Interiors, 2021, 311, 106642.	0.7	2
1894	The study of crustal structures in the southwestern part of the Baltic Sea by modeling of gravity data. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	2
1895	Seismic Imaging of an Intracrustal Deformation in the Northwestern Margin of the South China Sea: The Role of a Ductile Layer in the Crust. Tectonics, 2021, 40, e2020TC006260.	1.3	14
1896	The rigidity of the western Arabian margin: extensional strain rate field from GPS networks. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	3
1897	Seismic Structure, Gravity Anomalies and Flexure Along the Emperor Seamount Chain. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021109.	1.4	10
1898	Flow of Devonian anatectic crust in the accretionary Altai Orogenic Belt, central Asia: Insights into horizontal and vertical magma transfer. Bulletin of the Geological Society of America, 2021, 133, 2501-2523.	1.6	11
1899	Gravity modeling of the Alpine lithosphere affected by magmatism based on seismic tomography. Solid Earth, 2021, 12, 539-561.	1.2	6
1900	Novel approaches of magnetic inversion using seismic tomography in Taiwan area. Physics of the Earth and Planetary Interiors, 2021, 312, 106663.	0.7	5
1901	Magnetic Pulsations Triggered by Microseismic Ground Motion. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021416.	1.4	7
1902	Coreâ€Logâ€Seismic Integration in Metamorphic Rocks and Its Implication for the Regional Geology: A Case Study for the ICDP Drilling Project COSCâ€1, Sweden. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009376.	1.0	6
1903	GO_3D_OBS: the multi-parameter benchmark geomodel for seismic imaging method assessment and next-generation 3D survey design (version 1.0). Geoscientific Model Development, 2021, 14, 1773-1799.	1.3	6
1904	3D crustal-scale structure of the West Iberia margin: a novel approach to integrated structural characterization of passive margins. Marine Geophysical Researches, 2021, 42, 1.	0.5	5
1905	Artificial Intelligence Models for Real-Time Bulk Density Prediction of Vertical Complex Lithology Using the Drilling Parameters. Arabian Journal for Science and Engineering, 2022, 47, 10993-11006.	1.7	17

#	Article	IF	CITATIONS
1906	Archean trondhjemitic crust at depth in Yangtze Craton: Evidence from TTG xenolith in mafic dyke and apatite inclusion pressure in zircon. Precambrian Research, 2021, 354, 106055.	1.2	7
1907	Structure of the crust and upper mantle beneath the Bransfield Strait (Antarctica) using P receiver functions. Tectonophysics, 2021, 802, 228744.	0.9	9
1908	High-Resolution Crustal S-wave Velocity Model and Moho Geometry Beneath the Southeastern Alps: New Insights From the SWATH-D Experiment. Frontiers in Earth Science, 2021, 9, .	0.8	9
1909	A local lithospheric structure model for Vietnam derived from a high-resolution gravimetric geoid. Earth, Planets and Space, 2021, 73, .	0.9	8
1910	Abiotic Formation of Methane and Prebiotic Molecules on Mars and Other Planets. ACS Earth and Space Chemistry, 2021, 5, 1172-1179.	1.2	2
1911	Overview of regional gravity field computation models and application of a novel method in imaging the lithospheric architecture and destruction of the North China Craton. Earth-Science Reviews, 2021, 215, 103548.	4.0	22
1912	SAPHYR: Swiss Atlas of Physical Properties of Rocks: the continental crust in a database. Swiss Journal of Geosciences, 2021, 114, .	0.5	6
1913	When plateau meets subduction zone: A review of numerical models. Earth-Science Reviews, 2021, 215, 103556.	4.0	25
1914	Structures and geodynamics of the Mongolian tract of the Central Asian Orogenic Belt constrained by potential field analyses. Gondwana Research, 2021, 92, 26-53.	3.0	11
1915	The transition zone between the Eastern Alps and the Pannonian basin imaged by ambient noise tomography. Tectonophysics, 2021, 805, 228770.	0.9	6
1916	Crustal Structure of the UAEâ€Oman Mountain Range and Arabian Rifted Passive Margin: New Constraints From Active and Passive Seismic Methods. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021374.	1.4	11
1917	Travel-Time Inversion Method of Converted Shear Waves Using RayInvr Algorithm. Applied Sciences (Switzerland), 2021, 11, 3571.	1.3	2
1918	Crustal variability along the rifted/sheared East African margin: a review. Geo-Marine Letters, 2021, 41, 1.	0.5	7
1919	Combining Petrology and Seismology to Unravel the Plumbing System of a Typical Arc Volcano: An Example From Marapi, West Sumatra, Indonesia. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009524.	1.0	9
1920	A Thermo ompositional Model of the Cratonic Lithosphere of South America. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009307.	1.0	7
1921	Deep Structure of the North Natal Valley (Mozambique) Using Combined Wideâ€Angle and Reflection Seismic Data. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021171.	1.4	13
1922	The Geodynamic Evolution of Iran. Annual Review of Earth and Planetary Sciences, 2021, 49, 9-36.	4.6	43
1923	Subsurface structures along western Yucatan from integrated geophysical analysis. Marine and Petroleum Geology, 2021, 127, 104964.	1.5	8

#	Article	IF	CITATIONS
1924	Long-lived anatexis in the exhumed middle crust of the Torngat Orogen: Constraints from phase equilibria modeling and garnet, zircon, and monazite geochronology. Lithos, 2021, 388-389, 106022.	0.6	4
1925	Relocation of earthquakes in the southern and eastern Alps (Austria, Italy) recorded by the dense, temporary SWATH-D network using a Markov chain Monte Carlo inversion. Solid Earth, 2021, 12, 1087-1109.	1.2	9
1926	Exploration of chronological development of coastal landscape: A review on geological and geomorphological history of Subarnarekha chenier delta region, West Bengal, India. Regional Studies in Marine Science, 2021, 44, 101726.	0.4	7
1927	Seismic crustal structure beneath Jeju Volcanic Island, South Korea from teleseismic <i>P</i> -receiver functions. Geophysical Journal International, 2021, 227, 58-75.	1.0	1
1929	Isotopic spatial-temporal evolution of magmatic rocks in the Gangdese belt: Implications for the origin of Miocene post-collisional giant porphyry deposits in southern Tibet. Bulletin of the Geological Society of America, 0, , .	1.6	11
1930	The crustal structure of the Kerimbas Basin across the offshore branch of the East African Rift System. Geophysical Journal International, 2021, 226, 2073-2102.	1.0	6
1931	Geodynamic Modeling of Lithospheric Removal and Surface Deformation: Application to Intraplate Uplift in Central Mongolia. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021304.	1.4	19
1932	The early drift of the Indian plate. Scientific Reports, 2021, 11, 10796.	1.6	6
1933	The petrology of a hazardous volcano: Calbuco (Central Southern Volcanic Zone, Chile). Contributions To Mineralogy and Petrology, 2021, 176, 1.	1.2	1
1934	Imaging the Deep Crustal Structure of Central Oklahoma Using Stacking and Inversion of Local Earthquake Waveforms. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021368.	1.4	2
1935	Insights Into the Origin and Deformation Style of the Continental Moho: A Caseâ€6tudy From the Western Alps (Italy). Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021319.	1.4	4
1936	Comparison of Different Methods for a Moho Modeling Under Oceans and Marginal Seas: A Case Study for the Indian Ocean. Surveys in Geophysics, 2021, 42, 839-897.	2.1	6
1937	Kinetics of dehydrogenation of riebeckite Na2Fe3+2Fe2+3Si8O22(OH)2: an HT-FTIR study. American Mineralogist, 2021, , .	0.9	3
1938	Deep weathering in the semi-arid Coastal Cordillera, Chile. Scientific Reports, 2021, 11, 13057.	1.6	12
1939	Origin of S-, A- and I-Type Granites: Petrogenetic Evidence from Whole Rock Th/U Ratio Variations. Minerals (Basel, Switzerland), 2021, 11, 672.	0.8	10
1941	Structure of a diffuse suture between Fennoscandia and Sarmatia in SE Poland based on interpretation of regional reflection seismic profiles supported by unsupervised clustering. Precambrian Research, 2021, 358, 106176.	1.2	4
1942	A Large Magma Reservoir Beneath the Tengchong Volcano Revealed by Ambient Noise Adjoint Tomography. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022116.	1.4	8
1943	The Continental Crust beneath the Western Amerasia Basin: Mechanisms of Subsidence. Russian Geology and Geophysics, 2021, 62, 721-734.	0.3	Ο
#	Article	IF	CITATIONS
------	---	-----	-----------
1944	The crustal nature of the northern Mozambique Ridge, Southwest Indian Ocean. Acta Oceanologica Sinica, 2021, 40, 170-182.	0.4	4
1945	Thickness of sediments in the Congo basin based on the analysis of decompensative gravity anomalies. Journal of African Earth Sciences, 2021, 179, 104201.	0.9	3
1946	Small-scale lithospheric heterogeneity characterization using Bayesian inference and energy flux models. Geophysical Journal International, 2021, 227, 1682-1699.	1.0	0
1947	Crustal Velocity Variations and Constraints on Material Properties in the Charlevoix Seismic Zone, Eastern Canada. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020918.	1.4	3
1948	Lithospheric architecture and geodynamics of the Archean Dharwar craton and surrounding terranes: New insights from satellite gravity investigation. Gondwana Research, 2021, 95, 14-28.	3.0	33
1949	Crustal velocity structure of Cathaysia Block from an active-source seismic profile between Wanzai and Hui'an in SE China. Tectonophysics, 2021, 811, 228874.	0.9	15
1950	Seismic velocity and anisotropy tomography of southern Sumatra. Physics of the Earth and Planetary Interiors, 2021, 316, 106722.	0.7	5
1951	The Architecture of the Southern Puna Magmatic System: Integrating Seismic and Petrologic Observations With Geochemical Modeling. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021550.	1.4	3
1952	Radial Anisotropy in East Asia From Multimode Surface Wave Tomography. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021201.	1.4	7
1953	Modification of Crust and Mantle Lithosphere Beneath the Southern Part of the Eastern North American Passive Margin. Geophysical Research Letters, 2021, 48, e2020GL090555.	1.5	2
1954	Origin, Accretion, and Reworking of Continents. Reviews of Geophysics, 2021, 59, e2019RG000689.	9.0	48
1955	The Structure of the Continentâ€Ocean Transition in the Gulf of Lions From Joint Refraction and Reflection Travelâ€īme Tomography. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB021711.	1.4	7
1956	Crustal SiO ₂ Content of the Emeishan Large Igneous Province and its Implications for Magma Volume and Plumbing System. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009783.	1.0	11
1957	An investigation of how intracratonic rifting is "seeded― Case study of the Late Devonian Dniepr-Donets Basin rift within the East European Craton. Precambrian Research, 2021, 362, 106305.	1.2	2
1958	Crustal structure of the East African Limpopo margin, a strike-slip rifted corridor along the continental Mozambique Coastal Plain and North Natal Valley. Solid Earth, 2021, 12, 1865-1897.	1.2	9
1959	Pn tomography and anisotropic study of the Indian shield and the adjacent regions. Tectonophysics, 2021, 813, 228932.	0.9	4
1960	Geometry of the Décollement Below Eastern Bangladesh and Implications for Seismic Hazard. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021519.	1.4	12
1961	Possibility of primordial black holes collision with Earth and the consequences of this collision. Monthly Notices of the Royal Astronomical Society, 2021, 507, 914-918.	1.6	4

#	Article	IF	Citations
1962	A fine crustal structure and geodynamics revealed by receiver functions along the Guangchang-Putian line in the Cathaysia Block, South China. Tectonophysics, 2021, 815, 229007.	0.9	10
1963	Temperature and pressure dependence of P-wave velocity and electrical conductivity of gneiss: a review. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	1
1964	Influence of the microstructure on stress-dependent <i>P</i> -wave anisotropy in sandstone. Geophysical Journal International, 2021, 228, 876-892.	1.0	3
1965	Lithospheric strength variations and seismotectonic segmentation below the Sea of Marmara. Tectonophysics, 2021, 815, 228999.	0.9	2
1966	The Extended Continental Crust West of Islas MarÃas (Mexico). Frontiers in Earth Science, 2021, 9, .	0.8	1
1967	Gravity for Lithosphere Architecture Determination and Analysis: the Central Eastern Mediterranean case study. Geophysical Prospecting, 2022, 70, 173-192.	1.0	8
1968	Deep entrapment of buoyant magmas by orogenic tectonic stress: Its role in producing continental crust, adakites, and porphyry copper deposits. Earth-Science Reviews, 2021, 220, 103744.	4.0	44
1969	3D seismic velocities modeling and its application in the appreciation of the complex deep framework; the Sisseb-El Alem basin, central-eastern Tunisia. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	2
1970	Asymmetric Atlantic continental margins. Geoscience Frontiers, 2021, 12, 101205.	4.3	2
1971	Imaging Neoarchean crustal structures: An integrated geologic-seismic-magnetotelluric study in the western Wabigoon and Winnipeg River terranes, Superior craton. Precambrian Research, 2021, 364, 106339.	1.2	7
1972	3D physics-based seismic shaking scenarios for city of Zagreb, Capital of Croatia. Bulletin of Earthquake Engineering, 0, , 1.	2.3	2
1973	Deep structure of the ParÃ _i -Maranhão/Barreirinhas passive margin in the equatorial Atlantic (NE) Tj ETQq1 1 0.7	784314 rg 0.6	BT ₁ /Overlock
1974	Crustal thickness and magma storage beneath the Ecuadorian arc. Journal of South American Earth Sciences, 2021, 110, 103331.	0.6	14
1975	Crustal extension and magmatism along the northeastern margin of the South China Sea: Further insights from shear waves. Tectonophysics, 2021, 817, 229073.	0.9	5
1976	Lithospheric structure of the western Borborema Province from receiver functions and surface-wave dispersion: Implications for basin inversion. Tectonophysics, 2021, 816, 229024.	0.9	6
1977	Deformation mechanisms and seismic anisotropy in lower crustal rocks from the Barro Alto Complex, Central Brazil. Tectonophysics, 2021, , 229087.	0.9	0
1978	Crustal structure beneath the Zhongsha Block and the adjacent abyssal basins, South China Sea: New insights into rifting and initiation of seafloor spreading. Gondwana Research, 2021, 99, 53-76.	3.0	15
1979	Crustal structure of the northern Andean Precordillera, Argentina, based on seismological and gravity data. Journal of South American Earth Sciences, 2021, 111, 103478.	0.6	3

	CITA	TION REPORT	
#	Article	IF	CITATIONS
1980	The deep mantle upwelling beneath the northwestern South China Sea: Insights from the time-varying residual subsidence in the Qiongdongnan Basin. Geoscience Frontiers, 2021, 12, 101246.	4.3	13
1981	Crustal structure and subsidence history of the Mannar basin through potential field modelling and backstripping analysis: Implications on basin evolution and hydrocarbon exploration. Journal of Petroleum Science and Engineering, 2021, 206, 109000.	2.1	3
1982	Crustal thickness estimation and tectonic analysis of the Amazonian Craton from gravity data. Journal of South American Earth Sciences, 2021, 111, 103449.	0.6	2
1983	Crustal structure and Curie point depth in central Mexico inferred from the spectral analysis and forward modeling of potential field data. Journal of South American Earth Sciences, 2021, 112, 103565.	. 0.6	7
1985	The crust. , 2022, , 9-37.		1
1986	The mantle. , 2022, , 81-125.		2
1987	Structure and Density of Sedimentary Basins in the Southern Part of the East-European Platform and Surrounding Area. Applied Sciences (Switzerland), 2021, 11, 512.	1.3	6
1988	Sedimentary Basins. Encyclopedia of Earth Sciences Series, 2021, , 1353-1365.	0.1	0
1989	Continental Crustal Structure. Encyclopedia of Earth Sciences Series, 2021, , 56-63.	0.1	0
1990	Activity and activity coefficients. , 1999, , 6-10.		13
1991	Laboratory Measurements of Ultrasonic Wave Velocities of Crustal Rocks at High Pressures and Temperatures: Petrological Structure of Izu-Bonin-Mariana Arc Crust. , 2009, , 143-152.		4
1992	Ductile Instabilities and Structural Heterogeneity in the Lower Continental Crust. , 2003, , 1-36.		3
1993	The Heterogeneity of the Crust and its Effect on Seismic Wide-Angle Reflection Fields. , 2003, , 257-279).	2
1994	Seismic Modeling of Lower and Mid-Crustal Structure as Exemplified by the Massiccio dei Laghi (Ivrea-Verbano Zone and Serie dei Laghi) Crustal Section, Northwestern Italy. , 2003, , 67-97.		5
1995	Rift Grabens and Crustal Architecture of the Offshore North East Coast-Mahanadi Basin, Eastern Continental Margin of India. Springer Geology, 2015, , 63-85.	0.2	6
1996	Earth's Continental Crust. Encyclopedia of Earth Sciences Series, 2018, , 392-418.	0.1	6
1997	Microstructure and Geochemistry of Magmatic Dykes from the Arabian Margin, Red Sea. , 2019, , 437-4	71.	8
1998	Crustal and Upper Mantle Structure of the French Massif Central Plume. , 2007, , 159-184.		3

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1999	Tectonics and the Thermal Regime in the Chinese Continental Lithospher. , 2010, , 315-33	38.		1
2000	Chemical Composition of Continental Crust and the Primitive Mantle. Lecture Notes in Ea 2011, , 9-17.	rth Sciences,	0.5	6
2001	3D Crustal Model of Western and Central Europe as a Basis for Modelling Mantle Structu 39-69.	re. , 2009, ,		3
2002	Seismic Anisotropy. Encyclopedia of Earth Sciences Series, 2011, , 1070-1081.		0.1	2
2003	Deccan Traps Flood Basalt Province: An Evaluation of the Thermochemical Plume Model. ,	2011, , 29-53.		29
2004	Continental Crust. , 2003, , 635-647.			4
2005	Rock and Earth's Crust. , 2001, , 377-461.			2
2006	Secular change and the onset of plate tectonics on Earth. Earth-Science Reviews, 2020, 2	07, 103172.	4.0	171
2007	Crustal structure underneath central China across the Tibetan Plateau, the North China C South China Block and the Qinling-Dabie Orogen constrained by multifrequency receiver and surface wave data. Journal of Asian Earth Sciences, 2020, 202, 104535.	raton, the function	1.0	7
2009	Further constraints on the shear wave velocity structure of Cameroon from joint inversion receiver function, Rayleigh wave dispersion and ellipticity measurements. Geophysical Jou International, 2019, 217, 589-619.	i of rnal	1.0	9
2010	Crustal velocity structure across the Orphan Basin and Orphan Knoll to the continent $\hat{a}\in \mathcal{C}_{2}$ transition, offshore Newfoundland, Canada. Geophysical Journal International, 2020, 221	ocean , 37-59.	1.0	19
2011	Geophysical characterization of mantle melting anomalies: A crustal view. , 2007, , 507-52	24.		4
2012	Mid-Cretaceous–Recent crustal evolution in the central Coast orogen, British Columbia southeastern Alaska. , 2009, , .	and		4
2013	The role of Mesozoic rifting in the opening of the NE Atlantic: evidence from deep seismic across the Faroeâ \in Shetland Trough. Journal of the Geological Society, 2005, 162, 661-6	: profiling 73.	0.9	14
2014	Izu–Bonin Arc. , 0, , 175-199.			6
2015	Crustal thickness in the northern Andes from teleseismic pP and sS precursors. , 2013, , .			1
2016	Experience in applying the acoustopolarization method fpr metamorphosed rock samples (SC-3), German (KTB-HB) and Finnish (OKU) investigation boreholes. Acta Geodynamica E 2015, , 91-100.	from Kola Et Geomaterialia,	0.3	2
2017	Site amplifications for generic rock sites. Bulletin of the Seismological Society of America 327-341.	, 1997, 87,	1.1	692

#	Article	IF	CITATIONS
2018	Array measurements of phases used in receiver-function calculations: Importance of scattering. Bulletin of the Seismological Society of America, 1998, 88, 313-318.	1.1	53
2019	A gravity model of the North Eurasia crust and upper mantle: 1. Mantle and isostatic residual gravity anomalies. Russian Journal of Earth Sciences, 2001, 3, 125-144.	0.2	33
2020	APPLICATION OF GAUSS-MARQUARDT-LEVENBERG METHOD IN THE INVERSION OF RECEIVER FUNCTION IN CENTRAL BRAZIL. Revista Brasileira De Geofisica, 2013, 30, .	0.2	2
2021	Heterogeneous structure of the lithosphere in the Black Sea from a multidisciplinary analysis of geophysical fields. Geofizicheskiy Zhurnal, 2017, 37, 3-28.	0.0	9
2022	Geochemical diversity of Neogene granitoid plutons in the Izu Collision Zone: implications for transformation of juvenile oceanic arc into mature continental crust. Ganseki Kobutsu Kagaku, 2014, 43, 115-130.	0.1	4
2023	Caracterização sÃsmica e gravimétrica da litosfera sob a linha de refração sÃsmica profunda de Porangatu, ProvÃncia Tocantins, Brasil Central. Revista Brasileira De Geociências, 2011, 41, 130-140.	0.1	11
2026	An Earthquake Model Based on Fatigue Mechanism—A Tale of Earthquake Triad. Journal of Geoscience and Environment Protection, 2019, 07, 290-326.	0.2	1
2027	Topography of the Moho Undulation in Cameroon from Gravity Data: Preliminary Insights into the Origin, the Age and the Structure of the Crust and the Upper Mantle across Cameroon and Adjacent Areas. Open Journal of Geology, 2018, 08, 65-85.	0.1	3
2028	Three-Dimensional Seismic Velocity Structure of the Crust and Uppermost Mantle beneath Taiwan Journal of Physics of the Earth, 1996, 44, 85-105.	1.4	102
2029	Report on the ICDP workshop DIVE (Drilling the Ivrea–Verbano zonE). Scientific Drilling, 0, 23, 47-56.	1.0	15
2030	The imprint of crustal density heterogeneities on regional seismic wave propagation. Solid Earth, 2016, 7, 1591-1608.	1.2	12
2032	GRAVITY ANOMALIES OF THE CRUST AND UPPER MANTLE FOR CENTRAL AND SOUTH ASIA. Geodinamika I Tektonofizika, 2016, 7, 513-528.	0.3	4
2033	Geochemical Composition of the Continental Crust in Korean Peninsula. The Journal of the Petrological Society of Korea, 2012, 21, 113-128.	0.2	7
2034	Lithospheric Equilibrium, Environmental Changes, and Potential Induced-Earthquake Risk around the Newly Impounded Baihetan Reservoir, China. Remote Sensing, 2021, 13, 3895.	1.8	3
2035	Seismic structure and composition of the southern central Iberian crust: The ALCUDIA wide angle seismic reflection transect. Tectonophysics, 2021, 820, 229114.	0.9	3
2036	Estimating the impact process of the Jeokjung-Chogye Basin in Korea from gravity field interpretation. Geophysical Journal International, 2021, 228, 1457-1463.	1.0	4
2037	Evidence for polybaric fractional crystallization in a continental arc: Hidden Lakes mafic complex, Sierra Nevada batholith, California. Contributions To Mineralogy and Petrology, 2021, 176, 1.	1.2	9
2038	Elastic anisotropies of deformed upper crustal rocks in the Alps. Solid Earth, 2021, 12, 2303-2326.	1.2	3

	Сітатіо	CITATION REPORT	
#	Article	IF	Citations
2039	P―and Sâ€Wave Velocities of Exhumed Metasediments From the Alaskan Subduction Zone: Implications for the In Situ Conditions Along the Megathrust. Geophysical Research Letters, 2021, 48, e2021GL094511.	1.5	7
2040	Backâ€Arc Extension of the Central Bransfield Basin Induced by Ridge–Trench Collision: Implications From Ambient Noise Tomography and Stress Field Inversion. Geophysical Research Letters, 2021, 48, e2021GL095032.	1.5	6
2041	One-dimensional Shear Velocity Structure of Northern Africa from Rayleigh Wave Group Velocity Dispersion. , 2001, , 1475-1493.		1
2042	Comparative experimental study on several methods for measuring elastic wave velocities in rocks at high pressure. Science in China Series D: Earth Sciences, 2002, 45, 990.	0.9	1
2043	Petrological Causes of Seismic Heterogeneity in the Continental Crust. , 2003, , 37-66.		1
2045	Effectiveness of a new numerical technique in predicting isostatic gravity anomaly. , 2006, , .		0
2046	Seismic velocity structure of the Guerrero gap, Mexico. Geofisica International, 2006, 45, 129-139.	0.2	7
2047	Gravimetric and seismic data integration in a 2D forward gravimetric modeling for the crust and lid mantle beneath northern Brasilia Belt. , 2007, , .		1
2048	New insight into the deep structure of Antarctic Peninsula continental margin by methods of 2D gravity/magnetic modelling and 3D seismic tomography. Ukrainian Antarctic Journal, 2009, , 67-87.	0.1	2
2049	Structural Properties and Deformation Patterns of Evolving Strike-slip Faults: Numerical Simulations Incorporating Damage Rheology. , 2009, , 1537-1573.		1
2050	Crustal Structure And Density Models Of Central Sector Of Tocantins Province From Deep Seismic Refraction Experiment. , 2009, , .		0
2051	Quantitative insights into the role of gravitational collapse in major orogenic belts. Annals of Geophysics, 2009, 49, .	0.5	1
2052	Sedimentary Basins. Encyclopedia of Earth Sciences Series, 2011, , 1059-1070.	0.1	0
2053	Finite Element Numerical Solution for Modelling Ground Deformation in Volcanic Areas. Understanding Complex Systems, 2011, , 223-237.	0.3	0
2054	BASEMENT GEOMETRY, FROM MAGNETIC AND GRAVITY DATA IN GASTRE TROUGH, CHUBUT, ARGENTINA. , 2011, , .		0
2056	Seismic Structure of Earth's Crust in Finland. Lecture Notes in Earth Sciences, 2012, , 37-46.	0.5	1
2057	Control Parameters of Magnitude—Seismic Moment Correlation for the Crustal Earthquakes. Open Journal of Earthquake Research, 2013, 02, 60-74.	0.9	0
2060	Forward modelling along the Southern Carnarvon deep seismic reflection line - Using gravity data to investigate seismic interpretations. ASEG Extended Abstracts, 2013, 2013, 1-4.	0.1	0

#	Article	IF	CITATIONS
2061	Propagation characteristics of <i>Lg</i> across the Tibetan Plateau. Bulletin of the Seismological Society of America, 1996, 86, 457-469.	1.1	115
2062	Hypotheses relevant to crustal growth. Geodynamic Series, 1998, , 27-37.	0.1	Ο
2063	Properties and implications of dynamic rupture along a material interface. Bulletin of the Seismological Society of America, 1998, 88, 1085-1094.	1.1	140
2064	SEA99: A revised ground motion prediction relation for use in extensional tectonic regimes. Bulletin of the Seismological Society of America, 1999, 89, 1156-1170.	1.1	117
2065	New numerical and theoretical model to characterize the upper crustal structure of the Moroccan atlas from wide-angle seismic reflection data. Contemporary Engineering Sciences, 0, 8, 279-301.	0.2	0
2066	Composition model of the deep crust beneath the Middle and Lower Reaches of the Yangtze River Metallogenic Belt in China, based on seismic velocity, gravity and heat flow data. , 2015, , .		Ο
2067	Comparison of petrophysical characteristics of prenite-pumpellyite and amphibolite metamorphic facies (Kola peninsula). Vestnik of Institute of Geology of Komi Science Center of Ural Branch RAS, 2016, 9-10, 32-38.	0.2	0
2068	Earth's Continental Crust. Encyclopedia of Earth Sciences Series, 2017, , 1-27.	0.1	1
2069	Petrophysical properties of the Pechen rocks of the different metamorphic facies. Acta Geodynamica Et Geomaterialia, 2017, , 409-423.	0.3	1
2070	Laboratory measurements of electrical conductivity in a gabbro of the Oman ophiolite at high–pressures and high–temperatures: implications for interpretation of resistivity structures of lower oceanic crust. Journal of Mineralogical and Petrological Sciences, 2018, 113, 112-117.	0.4	2
2071	The deepest Moho in the Western Carpathians and its respective crustal density model (CEL12 section). Contributions To Geophysics and Geodesy, 2018, 48, 255-269.	0.2	1
2072	Comparison of petrophysical properties of predominant rocks from the Achaean section of the Cola superdeep (SG-3). Acta Geodynamica Et Geomaterialia, 2018, , 247-257.	0.3	Ο
2073	Lithospheric structure based on integrated analysis of geological-geophysical data along the DOBREfraction'99/DOBRE-2 profile (the East European Platform —the East Black Sea Basin). Geofizicheskiy Zhurnal, 2018, 40, 98-136.	0.0	3
2074	Statistical Characteristics and Regression Model of Deep and Superdeep Velocity and Density Structure of Sichuan Basin, SW China. , 2018, , .		Ο
2075	Spatial distribution of hydrocarbon reservoirs in the West Korea Bay Basin in the northern part of the Yellow Sea, estimated by 3D gravity forward modeling. Journal of the Geological Society of Korea, 2018, 54, 641-656.	0.3	1
2077	Understanding the Meaning of the Positive Bouguer Anomaly of Waza (Northernmost Cameroon,) Tj ETQq1 1 0.	.784314 rg 0.2	gBŢ /Overlock
2078	Continental Crustal Structure. Encyclopedia of Earth Sciences Series, 2019, , 1-7.	0.1	0

	INTEGRATED STOCHASTIC MODELING OF PETROPHYSICAL PARAMETERS FOR THE ESTIMATION OF		
2079	MINERALOGICAL COMPOSITION OF THE EARTH CRUST. Visnyk of Taras Shevchenko National University of	0.0	0
	Kyiv Geology, 2019, , 83-88.		

ARTICLE IF CITATIONS The integrative density model of the crust and upper mantle of Eurasia: representation in GIS 2080 0.2 0 environment. Russian Journal of Earth Sciences, 2019, 19, 1-15. Sedimentary Basins. Encyclopedia of Earth Sciences Series, 2020, , 1-13. 0.1 Seismic, Elastic and Petrophysical Properties of Crustal Rocks: Deccan Volcanic Province. Society of 2082 0.2 0 Earth Scientists Series, 2020, , 201-245. Seismic Instability and Major Intraplate Earthquakes. Society of Earth Scientists Series, 2020, , 247-290. 2083 0.2 Profundidad del Punto de Curie y Flujo Térmico en la Zona de Cuencas Offshore de Argentina. Revista 2084 0.2 0 Mexicana De Ciencias Geologicas, 2020, 37, 26-39. Ridge propagation in the eastern Gulf of Mexico from integrated geophysical modeling., 2020, , . Jurassic–Cenozoic tectonics of the Pequop Mountains, NE Nevada, in the North American Cordillera 2087 5 hinterland. , 2021, 17, 2078-2122. Pressure, temperature and lithological dependence of seismic and magnetic susceptibility anisotropy in amphibolites and gneisses from the central Scandinavian Caledonides. Tectonophysics, 2021, 820, 2089 229113. 2090 Was There Land on the Early Earth?. Life, 2021, 11, 1142. 1.1 21 Tectonics of the Andaman Backarc Basinâ€"Present Understanding and Some Outstanding Questions. 2091 0.2 Society of Earth Scientists Series, 2020, , 237-259. Pliocene to Quaternary Retroarc Extension in the Neuquén Basin: Geophysical Characterization of the 2092 0.1 0 Loncopué Trough. Springer Earth System Sciences, 2020, , 501-513. Dharwar Craton. Society of Earth Scientists Series, 2020, , 41-88. 2093 Aravalli and Bundelkhand Cratons. Society of Earth Scientists Series, 2020, , 115-141. 2094 0.2 0 Determination of Unit Volume Weight Value Obtained by Vp Speed by Assigning Coefficient. Journal of 2095 0.3 the Institute of Science and Technology, 2020, 10, 2704-2713 Structure and Geological Processes of the Earth: Seismic Evidences from the Indian Shield. Springer 2096 0.1 0 Natural Hazards, 2021, , 49-73. Vindhyan Basin: Anomalous Crust-Mantle Structure. Society of Earth Scientists Series, 2020, , 143-166. Seismic Anisotropy. Encyclopedia of Earth Sciences Series, 2020, , 1-11. 2098 0.1 0 Crustal thickness, Vp/Vs ratio, and shear wave velocity structures beneath Myanmar and their 2099 tectonic implications. Earthquake Research Advances, 2021, , 100060.

#	Article	IF	CITATIONS
2100	The Rift and Continentâ€Ocean Transition Structure Under the Tagus Abyssal Plain West of the Iberia. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022629.	1.4	6
2101	Multistage magmatic intrusion in Narmada–Tapti region, India: Insights from geopotential modelling. Journal of Earth System Science, 2021, 130, 1.	0.6	7
2103	A comparison of three-dimensional gravity inversion methods to constrain crustal architecture: Case studies from the Gulf of Mexico. , 2020, , .		0
2106	Acoustic Features of the Elastic Anisotropic Properties of Rock Samples Along the Section of the Kola Superdeep Borehole (SD-3). Acoustical Physics, 2021, 67, 156-174.	0.2	1
2107	Long-lived Paleoproterozoic eclogitic lower crust. Nature Communications, 2021, 12, 6553.	5.8	5
2108	Comment on †The challenge in restoring magma-rich rifted margins: The example of the Mozambique-Antarctica conjugate margins' by Tomasi S. et al Gondwana Research, 2022, 103, 401-403.	3.0	3
2109	New Insights Into the Rift to Drift Transition Across the Northeastern Nova Scotian Margin From Wideâ€Angle Seismic Waveform Inversion and Reflection Imaging. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022201.	1.4	4
2110	The Limpopo Magmaâ€Rich Transform Margin, South Mozambique: 1. Insights From Deepâ€Structure Seismic Imaging. Tectonics, 2021, 40, e2021TC006915.	1.3	10
2111	Crustal Electrical Structure and Deep Metallogenic Potential in Northern Wuyi Area (South China), based on Magnetotelluric Data. Acta Geologica Sinica, 2022, 96, 791-805.	0.8	1
2112	Opening of the Gulf of Mexico: What we know, what questions remain, and how we might answer them. Tectonophysics, 2022, 822, 229150.	0.9	10
2113	Seismic Imaging of a Magma Chamber and Melt Recharge of the Dormant Datong Volcanoes. Earth and Space Science, 2021, 8, e2021EA001931.	1.1	5
2114	A Geochemical Review of Amphibolite, Granulite, and Eclogite Facies Lithologies: Perspectives on the Deep Continental Crust. Journal of Geophysical Research: Solid Earth, 2021, 126, e2021JB022791.	1.4	10
2115	Oceanic crustal structure and tectonic origin of the southern Kyushu-Palau Ridge in the Philippine Sea. Acta Oceanologica Sinica, 2022, 41, 39.	0.4	1
2116	Timing of partial melting and granulite formation during the genesis of high to ultraâ€high temperature terranes: insight from numerical experiments Terra Nova, 0, , .	0.9	1
2117	A new 1.32ÂGa Tianshui mafic sill in the Liaodong area and its relations to the Yanliao large igneous province in the northern North China Craton. Precambrian Research, 2022, 369, 106535.	1.2	4
2118	Highly variable petrophysical properties in felsic high-pressure rocks of the continental crust. Lithos, 2022, 410-411, 106572.	0.6	3
2119	Formation, segmentation and deep crustal structure variations along the Algerian margin from the SPIRAL seismic experiment. Journal of African Earth Sciences, 2022, 186, 104433.	0.9	6
2120	Active ocean–continent transform margins: seismic investigation of the Cayman Trough-Swan Island ridge-transform intersection. Geophysical Journal International, 2022, 229, 1604-1627.	1.0	1

#	Article	IF	CITATIONS
2121	Antarctica 3-D crustal structure investigation by means of the Bayesian gravity inversion: the Wilkes Land case study. Geophysical Journal International, 2022, 229, 2147-2161.	1.0	6
2122	Crustal structure and variation along the southern part of the Kyushu-Palau Ridge. Acta Oceanologica Sinica, 2022, 41, 50-57.	0.4	1
2123	Crustal thickness and composition in the South China Block: Constraints from earthquake receiver function. Science China Earth Sciences, 2022, 65, 698-713.	2.3	11
2124	Estimation of the Impact of Basement Heterogeneity on Thermal History Reconstruction: The Western Siberian Basin. Minerals (Basel, Switzerland), 2022, 12, 97.	0.8	0
2125	New Constraints for the Onâ \in Shore Makran Subduction Zone Crustal Structure. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	14
2126	A New Moho Map for North-Eastern Eurasia Based on the Analysis of Various Geophysical Data. Pure and Applied Geophysics, 0, , 1.	0.8	8
2127	The crustal structure in the Northwest Atlantic region from receiver function inversion – Implications for basin dynamics and magmatism. Tectonophysics, 2022, 825, 229235.	0.9	3
2128	Seismic velocity imaging of the Kumaon–Garhwal Himalaya, India. Natural Hazards, 2022, 111, 2241-2260.	1.6	6
2129	From Crystals to Crustal cale Seismic Anisotropy: Bridging the Gap Between Rocks and Seismic Studies With Digital Geologic Map Data in Colorado. Tectonics, 2022, 41, .	1.3	5
2130	Some Remarks on the Electrical Conductivity of Hydrous Silicate Minerals in the Earth Crust, Upper Mantle and Subduction Zone at High Temperatures and High Pressures. Minerals (Basel, Switzerland), 2022, 12, 161.	0.8	6
2131	Joint inversion of Rayleigh wave phase velocities and P-receiver functions along the East Anatolian fault zone. Journal of Seismology, 2022, 26, 79-100.	0.6	0
2132	Zircon petrochronology of Cretaceous Cordilleran interior granites of the Snake Range and Kern Mountains, Nevada, USA. , 2022, , .		5
2133	Incipient ocean spreading beneath the Arabian shield. Earth-Science Reviews, 2022, 226, 103955.	4.0	7
2134	Deep crustal structure and compositions for tectonic and geodynamic implications of the Dharwar Craton (Southern India) inferred from 3-C wide-angle seismic data. Journal of Asian Earth Sciences, 2022, 227, 105092.	1.0	2
2135	Moho Complexity in Southern California Revealed by Local PmP and Teleseismic Ps Waves. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	4
2136	India-Antarctica collisional ridge structure below Nellore Schist and Eastern Ghats Belts as revealed by seismic studies. Geosystems and Geoenvironment, 2022, 1, 100039.	1.7	2
2137	Geoneutrinos and geoscience: an intriguing joint-venture. Rivista Del Nuovo Cimento, 2022, 45, 1-105.	2.0	6
2138	Regional <i>Vp, Vs, Vp/Vs</i> , and Poisson's ratios across earthquake source zones from Memphis, Tennessee, to St. Louis, Missouri. Bulletin of the Seismological Society of America, 1999, 89, 1591-1605.	1.1	65

#	Article	IF	CITATIONS
2139	Crustal structure of the middle segment of the Jiangnan Orogen and its implications on mineralization: Revealed by teleseismic receiver functions along the Guangchang-Liuyang profile. Acta Petrologica Sinica, 2022, 38, 559-572.	0.3	6
2140	Hydration, Melt Production and Rheological Weakening within an Intracontinental Gneiss Dome. SSRN Electronic Journal, 0, , .	0.4	0
2141	Joint inversion of receiver functions and surface wave dispersion in the Recôncavo–Tucano basin of NE Brazil: implications for basin formation. Geophysical Journal International, 2022, 230, 317-333.	1.0	5
2142	Variation in Moho topography and Poisson's ratio in the Eastern Himalayan arc. Physics and Chemistry of the Earth, 2022, , 103134.	1.2	0
2144	Deep structure of the Demerara Plateau and its two-fold tectonic evolution: from a volcanic margin to a transform marginal plateau, insights from the Conjugate Guinea Plateau. Geological Society Special Publication, 2023, 524, 339-366.	0.8	3
2145	Petrogenesis of Bonai volcanic rocks from Singhbhum Craton (Eastern India): Geophysical and geodynamic implications for pervasive plue-lithospheric interaction. Geosystems and Geoenvironment, 2022, , 100040.	1.7	3
2146	Radial Anisotropy and Sediment Thickness of West and Central Antarctica Estimated From Rayleigh and Love Wave Velocities. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	7
2147	Crust and Upper Mantle Structure Beneath the Eastern United States. Geochemistry, Geophysics, Geosystems, 2022, 23, .	1.0	9
2148	Lithologic Structure of the Anninghe Fault Zone: Constraints From High-Pressure Wave Velocity Experiments. Frontiers in Earth Science, 2022, 10, .	0.8	0
2149	Insights into the geometry and evolution of the southern San Andreas fault from geophysical data, southern California. , 2022, 18, 458-475.		2
2150	Complex seismic image of the Main Himalayan Thrust in Garhwal and implication to earthquake hazard. Journal of Earth System Science, 2022, 131, 1.	0.6	0
2151	Longâ€Term Lithospheric Strength and Upperâ€Plate Seismicity in the Southern Central Andes, 29°–39°S. Geochemistry, Geophysics, Geosystems, 2022, 23, .	1.0	10
2152	A Short-Period Surface-Wave Dispersion Dataset for Model Assessment of Africa's Crust: ADAMA. Seismological Research Letters, 2022, 93, 1943-1959.	0.8	2
2153	Numerical study on the style of delamination. Tectonophysics, 2022, 827, 229276.	0.9	5
2154	ç¼ä,œå⊷ç>†åœ°è¶ä¼,展地壳结构åŠåŽæœŸæµ·å⊷地幔柱影哕 SCIENTIA SINICA Terrae, 2022, , .	0.1	0
2155	Hyperextended crustal structure of the Qiongdongnan Basin and subsequent magmatic influence from the Hainan mantle plume. Science China Earth Sciences, 2022, 65, 845-862.	2.3	9
2156	Crustal Structure of the Chuanâ€Dian Block Revealed by Deep Seismic Sounding and its Implications for the Outward Expansion of the East Tibetan Plateau. Acta Geologica Sinica, 2022, 96, 1932-1944.	0.8	1
2157	Dynamo-thermal subsidence and sag–salt section deposition as magma-rich rifted margins move off plume centres along incipient lines of break-up. Journal of the Geological Society, 2022, 179, .	0.9	8

#	Article	IF	CITATIONS
2158	Analytical model for the activation of off-axis secondary faulting between two dissimilar rock layers. Journal of Structural Geology, 2022, 157, 104552.	1.0	4
2159	3D constrained gravity inversion to model Moho geometry and stagnant slabs of the Northwestern Pacific plate at the Japan Islands. Tectonophysics, 2022, 829, 229297.	0.9	5
2160	A crustal growth model for the eastern Central Asian Orogenic Belt: Constraints from granitoids in the Songnen Massif and Duobaoshan terrane. Gondwana Research, 2022, 107, 325-338.	3.0	6
2161	Deep Neural Networks for Creating Reliable PmP Database With a Case Study in Southern California. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	2
2162	The influence of orogenic collision inheritance on rifted margin architecture: Insights from comparing numerical experiments to the Mid-Norwegian margin. Tectonophysics, 2022, 828, 229273.	0.9	7
2163	The nature of the South Caspian Basin: Oceanic crust formation and lithospheric mantle buoyancy. Physics of the Earth and Planetary Interiors, 2022, 325, 106863.	0.7	3
2164	Automated earthquake detection and local travel time tomography in the Southâ€Central Andes (32â€35ºS): Implications for regional tectonics. Journal of Geophysical Research: Solid Earth, 0, , .	1.4	4
2165	Subduction erosion and basal accretion in the Central Chile subduction wedge inferred from local earthquake tomography. Journal of South American Earth Sciences, 2022, 115, 103765.	0.6	2
2166	Neoarchean–Paleoproterozoic HP-HT metamorphism in the Bhopalpatnam granulite belt, Bastar Craton (India): Insights from phase equilibria modelling and monazite geochronology. Precambrian Research, 2022, 373, 106629.	1.2	2
2167	Constraints on fluids in the continental crust from laboratory-based electrical conductivity measurements of plagioclase. Gondwana Research, 2022, 107, 1-12.	3.0	7
2168	Utilization of continental transforms in break-up: observations, models, and a potential link to magmatism. Geological Society Special Publication, 2023, 524, 121-145.	0.8	1
2169	Three-Dimensional Seismic-Wave Propagation Simulations in the Southern Korean Peninsula Using Pseudodynamic Rupture Models. Bulletin of the Seismological Society of America, 2022, 112, 939-960.	1.1	2
2170	The crustal structure of the Anatolian Plate from receiver functions and implications for the uplift of the central and eastern Anatolian plateaus. Geophysical Journal International, 2022, 229, 1041-1062.	1.0	8
2171	Compositional Variation in the Crust of Peninsular Ranges and Surrounding Regions, Southern California, Revealed by Fullâ€Wave Seismic and Gravity Joint Inversion. Journal of Geophysical Research: Solid Earth, 2021, 126, .	1.4	4
2172	Lithospheric Structure Near Jiuyishan, South China: Implications for Asthenospheric Upwelling and Lithospheric Modification. Geophysical Research Letters, 2021, 48, .	1.5	4
2174	Lithospheric structure of the eastern Mediterranean Sea: Inferences from surface wave tomography and stochastic inversions constrained by wide-angle refraction measurements. Tectonophysics, 2021, 821, 229159.	0.9	7
2175	Wide-angle seismic transect reveals the crustal structure of(f) southern Sri Lanka. Tectonophysics, 2022, , 229358.	0.9	2
2176	Crustal structure of the United Arab Emirates and northern Oman Mountains from constrained 3D inversion of gravity and magnetic data: The Moho and basement surfaces. Journal of Asian Earth	1.0	15

#	Article	IF	CITATIONS
2179	Shearâ€Wave Velocity Structure Beneath Northeast China From Joint Inversion of Receiver Functions and Rayleigh Wave Phase Velocities: Implications for Intraplate Volcanism. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	5
2180	Crustal Compositional Variations From Continental to Oceanic Domain: A <i>V</i> _{<i>P</i>} / <i>V</i> _{<i>S</i>} Ratio Study Across the Zhongsha Block, South China Sea. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	3
2181	Intrusions induce global warming before continental flood basalt volcanism. Nature Geoscience, 2022, 15, 417-422.	5.4	13
2182	Controls of the Lithospheric Thermal Field of an Ocean-Continent Subduction Zone: The Southern Central Andes. Lithosphere, 2022, 2022, .	0.6	3
2183	Across and along-strike crustal structure variations of the western Afar margin and adjacent plateau: Insights from receiver functions analysis. Journal of African Earth Sciences, 2022, 192, 104570.	0.9	5
2184	Seismic acquisition parameters to improve imaging beneath mafic igneous units: case study from Australia's Northwest Shelf. Exploration Geophysics, 2023, 54, 101-116.	0.5	0
2185	Mantle flow beneath western Mongolia: Evidences from lithospheric flexure analysis. Tectonophysics, 2022, 836, 229427.	0.9	1
2186	Elongated Magma Plumbing System Beneath the Coso Volcanic Field, California, Constrained by Seismic Reflection Tomography. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	5
2187	A distinct contrast in the lithospheric structure and limited crustal flow across the northeastern Tibetan Plateau: Evidence from Vs and Vp/Vs imaging. Tectonophysics, 2022, 836, 229413.	0.9	3
2189	Crustal structure along the Wanzai–Yongchun profile in the Cathaysia Block, Southeast China, constrained by a joint active- and passive-source seismic experiment. Geophysical Journal International, 2022, 231, 384-393.	1.0	3
2190	Seismic Imaging of Crust Beneath the Western Tibetâ€Pamir and Western Himalaya Using Ambient Noise and Earthquake Data. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	6
2192	A Seismic Tomography, Gravity, and Flexure Study of the Crust and Upper Mantle Structure of the Emperor Seamounts at Jimmu Guyot. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	5
2193	Thermodynamic constraints on the composition of orogenically thickened lower crust. Journal of Metamorphic Geology, 0, , .	1.6	0
2194	What controlled the thickness of continental crust in the Archean?. Geology, 2022, 50, 1091-1095.	2.0	6
2195	Laterally Varying Crustal and Quaternary Fault-Zone Structures in the Seoul Metropolitan Area, South Korea, from a Joint Inversion Analysis Based on Dense Seismic Arrays. Bulletin of the Seismological Society of America, 0, , .	1.1	5
2196	3D S-Wave Velocity Model of the Crust and Upper Mantle beneath the Sea of Okhotsk and the Kamchatka Peninsula. Lithosphere, 2022, 2022, .	0.6	1
2197	Crust and Uppermost Mantle Magma Plumbing System Beneath Changbaishan Intraplate Volcano, China/North Korea, Revealed by Ambient Noise Adjoint Tomography. Geophysical Research Letters, 2022, 49, .	1.5	8
2198	MOHV21: a least squares combination of five global Moho depth models. Journal of Geodesy, 2022, 96, .	1.6	1

#	Article	IF	CITATIONS
2199	Minimum 1D VP and VP/VS Models and Hypocentral Determinations in the Central Mediterranean Area. Seismological Research Letters, 2022, 93, 2670-2685.	0.8	3
2200	Structure of the Earth's crust and upper mantle and problems of global geodynamics. Tectonophysics, 2022, 837, 229450.	0.9	0
2201	Crustal structure in the Weiyuan shale gas field, China, and its tectonic implications. Tectonophysics, 2022, 837, 229449.	0.9	1
2202	CALM: A software tool for rapid analysis and modeling of converted shear waves in wide-angle seismic data. Computers and Geosciences, 2022, 166, 105163.	2.0	0
2203	Crustal P- and S-Wave Velocity Structure of the North China Craton at 36°N from Active-Source Seismic Data and Its Tectonic Implications. Journal of Earth Science (Wuhan, China), 2022, 33, 642-663.	1.1	3
2204	Delineation of detailed crustal seismic velocity structure and Moho depths in the Hyderabad region, eastern Dharwar craton, India. Natural Hazards, 0, , .	1.6	0
2206	Insights Into Exhumation and Mantle Hydration Processes at the Deep Galicia Margin From a 3D Highâ€Resolution Seismic Velocity Model. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	1
2207	Dichotomy in crustal melting on early Mars inferred from antipodal effect. Innovation(China), 2022, , 100280.	5.2	1
2208	Elastic Contrast, Rupture Directivity, and Damage Asymmetry in an Anisotropic Bimaterial Strike‧lip Fault at Middle Crustal Depths. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	0
2209	Moment Tensor Solutions for Earthquakes in the Southern Korean Peninsula Using Three-Dimensional Seismic Waveform Simulations. Frontiers in Earth Science, 0, 10, .	0.8	3
2210	Crustal structures and salt tectonics on the margins of the western Algerian Basin (Mediterranean) Tj ETQq0 0 0	rgBT /Ovei 1.5	lock 10 Tf 50
2211	In-situ central Qiangtang metamorphic belt in western Tibet as a typical suture zone: Evidence of crust-mantle structural footprints from P-wave receiver function analyses. Tectonophysics, 2022, 838, 229484.	0.9	0
2212	Upper- to mid-crustal seismic attenuation structure above the mantle wedge in East Anatolia, Turkey: Imaging crustal scale segmentation and differentiation. Physics of the Earth and Planetary Interiors, 2022, 329-330, 106908.	0.7	1
2213	Crust and upper mantle structure beneath Southwest China and its implications for Mesozoic multistage gold deposits. Tectonophysics, 2022, 838, 229474.	0.9	3
2214	Seismogenesis of the 2021 Mw 7.1 earthquake sequence near the northeastern Japan revealed by double-difference seismic tomography. Earth and Planetary Science Letters, 2022, 594, 117738.	1.8	5
2216	Models for the evolution of seamounts. Geophysical Journal International, 2022, 231, 1898-1916.	1.0	2
2217	Seismic Evidence for a Weakened Thick Crust at the Beaufort Sea Continental Margin. Geophysical Research Letters, 2022, 49, .	1.5	2
2218	The Thinnest Crust in South China Associated With the Cretaceous Lithospheric Extension: Evidence From SINOPROBE Seismic Reflection Profiling. Tectonics, 2022, 41, .	1.3	6

#	Article	IF	CITATIONS
2219	Compositional Attributes of the Deep Continental Crust Inferred From Geochemical and Geophysical Data. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	9
2220	Relative continent - mid-ocean ridge elevation: A reference case for isostasy in geodynamics. Earth-Science Reviews, 2022, 233, 104153.	4.0	4
2221	The crustal structure inferred from gravity data and seismic profiles beneath the Okinawa Trough in the Western Pacific. Journal of Asian Earth Sciences, 2022, , 105375.	1.0	1
2222	Distribution of oceanic crust in the Enderby Basin offshore East Antarctica. Geophysical Journal International, 0, , .	1.0	0
2223	Velocity and azimuthal anisotropy structures beneath the Dianzhong Block and its vicinity, SE Tibetan Plateau, revealed by eikonal equation-based traveltime tomography. Tectonophysics, 2022, 839, 229525.	0.9	5
2224	The Orphan Basin: A review of basin evolution, structure, stratigraphy and petroleum systems. Earth-Science Reviews, 2022, 232, 104148.	4.0	1
2225	Contribution of deformation and reaction of amphiboles to the weakening of the middle continental crust: A case study from sheared diorites along the Shuiyu shear zone in Northern Beijing. Journal of Structural Geology, 2022, 163, 104727.	1.0	4
2226	Mantle gravity anomaly and recent activation in the territory of Ukraine. Geology and Mineral Resources of World Ocean, 2022, 18, 3-21.	0.0	2
2227	Breakup mechanism of the northern South China Sea: Evidence from the deep crustal structure across the continent-ocean transition. Gondwana Research, 2023, 120, 47-69.	3.0	4
2229	Shallow Crustal Response to Arabiaâ€Eurasia Convergence in Northwestern Iran: Constraints From Multifrequency Pâ€Wave Receiver Functions. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	6
2230	Marsquake Locations and 1â€Ð Seismic Models for Mars From InSight Data. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	31
2231	Comparative analysis on seismicity and stress triggering of strong earthquakes sequence in Central Tibet. Journal of Earth System Science, 2022, 131, .	0.6	1
2232	Crystallographic and shape preferred orientation producing anisotropy in slates from Northern Spain. Journal of Structural Geology, 2022, 164, 104730.	1.0	1
2233	Reservoir Characterization and Density Velocity Analysis by using Rock Physics and Integrated Multiâ€types Postâ€stack Inversion to Identify Hydrocarbon Possibility and Lithoâ€prediction of Mishrif Formation in Kumaite and Dhafriyah Oil Fields, Southern Iraq. Geophysical Prospecting, 0, , .	1.0	1
2234	Hydration, melt production and rheological weakening within an intracontinental gneiss dome. Lithos, 2022, 432-433, 106872.	0.6	2
2235	Volcanic influence during the formation of a transform marginal plateau: Insights from wide-angle seismic data along the northwestern Demerara Plateau. Tectonophysics, 2022, 842, 229592.	0.9	0
2236	Crustal and Thermal Heterogeneities Across the Fram Strait and the Svalbard Margin. Tectonics, 2022, 41, .	1.3	3
2237	Earth's clay mineral inventory and its climate interaction: A quantitative assessment. Earth-Science Reviews, 2022, 234, 104198.	4.0	11

#	Article	IF	CITATIONS
2238	How does seismic attenuation correlate to rheology of crustal rocks? Results from a numerical approach. Global and Planetary Change, 2022, 219, 103978.	1.6	4
2239	Surface waves and crustal structure on Mars. Science, 2022, 378, 417-421.	6.0	36
2240	Waveform inversion of large data sets for radially anisotropic Earth structure. Geophysical Journal International, 2022, 232, 1311-1339.	1.0	2
2241	Evidence for paleo-continental margin and folding of relic fragment of oceanic lithosphere, northeast Indian subcontinent. Marine Geology, 2022, 453, 106927.	0.9	1
2242	Crustal structure of the northern Manila subduction zone: Is thinned continental crust or oceanic crust subducting beneath the Luzon arc and forearc?. Tectonophysics, 2022, 844, 229605.	0.9	1
2243	Using a genetic algorithm to model broadband regional waveforms for crustal structure in the western United States. Bulletin of the Seismological Society of America, 1999, 89, 202-214.	1.1	25
2244	Global Moho Gravity Inversion from GOCE Data: Updates and Convergence Assessment of the GEMMA Model Algorithm. Remote Sensing, 2022, 14, 5646.	1.8	1
2245	A Geological-Geophysical Model of the Lens in the Junction Zone of the Chu Basin and the Kyrgyz Range (Northern Tien Shan) by the Results of Seismic Tomography and Magnetotelluric Sounding. Russian Geology and Geophysics, 2022, 63, 1245-1260.	0.3	0
2246	Back-arc basins: A global view from geophysical synthesis and analysis. Earth-Science Reviews, 2023, 236, 104242.	4.0	10
2247	Testing the cenozoic lower crustal flow beneath the Qinling Orogen, northeastern Tibetan Plateau. Journal of Structural Geology, 2022, 165, 104747.	1.0	2
2248	Upper-lithospheric structure of northeastern Venezuela from joint inversion of surface-wave dispersion and receiver functions. Solid Earth, 2022, 13, 1781-1801.	1.2	0
2249	On the role of Earth's lithospheric mantle in global volatile cycles. Earth and Planetary Science Letters, 2023, 602, 117946.	1.8	6
2250	Gravity inversion for crustal thickness investigation of the continental and oceanic crusts of Brazil incorporating a lithosphere thermal gravity anomaly correction. Tectonophysics, 2023, 846, 229663.	0.9	3
2251	Vp/Vs ratios beneath a hyper-extended failed rift support a magma-poor continental margin in the northeastern South China Sea. Tectonophysics, 2023, 846, 229652.	0.9	5
2252	Enigmatic crustal and upper mantle structure in the NE Sino-Korean Craton based on nuclear explosion seismic data. Journal of Geodynamics, 2023, 155, 101957.	0.7	0
2253	Lithospheric S-velocity structure of the on-shore Potiguar Basin, NE Brazil: High heat-flow in an aborted rift. Journal of Geodynamics, 2023, 155, 101952.	0.7	0
2254	Characteristics of crustal structures in the <scp>Yamato Basin</scp> , sea of <scp>Japan</scp> , deduced from seismic explorations. Island Arc, 2023, 32, .	0.5	0
2255	Hydrogen Diffusion in Clinopyroxene at Low Temperatures (195°C–400°C) and Consequences for Subsurface Processes. Geochemistry, Geophysics, Geosystems, 2022, 23, .	1.0	0

#	Article	IF	CITATIONS
2256	Composition and Evolution of Continental Crust at Orogenic Belts: Constraints From a 3â€Ð Crustal Model of Southeast China. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	0
2257	Magma accumulation at depths of prior rhyolite storage beneath Yellowstone Caldera. Science, 2022, 378, 1001-1004.	6.0	13
2258	Genesis Mechanism of Deep Carbonate Reservoir in Jizhong Depression. Lithosphere, 2022, 2022, .	0.6	1
2259	An empirical method for the optimal setting of the potential fields inverse problem. Geophysical Prospecting, 0, , .	1.0	2
2260	Thermally-activated electron hopping in Fe-rich amphiboles: Implications for the high-conductivity anomalies in subduction zones. Chemie Der Erde, 2022, , 125942.	0.8	2
2261	Insights on Formation of the Gulf of Mexico by Rayleigh Surface Wave Imaging. Geochemistry, Geophysics, Geosystems, 2022, 23, .	1.0	1
2262	Subsurface structure of magmatic segments during continental breakup: Perspectives from a gravity data analysis along the Main Ethiopian Rift. Frontiers in Earth Science, 0, 10, .	0.8	3
2263	Viscous relaxation as a probe of heat flux and crustal plateau composition on Venus. Proceedings of the United States of America, 2023, 120, .	3.3	2
2264	Plumbing the depths of magma crystallization using 176Lu/177Hf in zircon as a pressure proxy. Geology, 2023, 51, 233-237.	2.0	5
2265	Analysis of the Causes of Clustered Scismicity Registered in Yeoncheon, the Middle Part of the Korean Peninsula through Gravity Field Interpretation and Modeling. Economic and Environmental Geology, 2022, 55, 633-648.	0.2	1
2266	Analysis of heavy metals in herbal products and their impact on human health. AIP Conference Proceedings, 2023, , .	0.3	0
2267	Velocity and thickness estimation of Zing-Zing-bar glacier. AIP Conference Proceedings, 2023, , .	0.3	0
2268	Moho topography and crustal properties in the UAE and northern Oman mountain belt from teleseismic receiver functions. Geophysical Journal International, 0, , .	1.0	2
2269	Decratonised lithosphere associated with mantle plume upwelling in the Singhbhum craton, eastern India based on geophysical and geodynamic perspective. Journal of Asian Earth Sciences, 2023, 246, 105572.	1.0	0
2270	Propagation characteristics of short-period <i>Sn</i> and <i>Lg</i> in the Middle East. Bulletin of the Seismological Society of America, 1997, 87, 396-413.	1.1	95
2271	Lithosphere Structure, Processes, and Physical State of the Alpineâ€Apennine System. Journal of Geophysical Research: Solid Earth, 2023, 128, .	1.4	2
2272	The India-Asia collision results from two possible pre-collisional crustal configurations of northern Greater India. Earth and Planetary Science Letters, 2023, 610, 118098.	1.8	4
2273	From the Lebombo Monocline to the Mozambique Deep Basin, using combined wide-angle and reflection seismic data. Tectonophysics, 2023, 855, 229814.	0.9	1

#	Article	IF	CITATIONS
2274	An early Precambrian "orogenic belt―exhumed by the Phanerozoic tectonic events: A case study of the eastern North China Craton. Earth-Science Reviews, 2023, 241, 104416.	4.0	4
2275	Complex Crust-Mantle seismic structure below north Cuddapah Basin-Eastern Ghats collisional Belt, south Indian Shield: Regional geodynamics and east Antarctica correlation. Journal of Asian Earth Sciences, 2023, 248, 105606.	1.0	0
2276	Relationship between radiogenic heat production in granitic rocks and emplacement age. Energy Geoscience, 2023, 4, 100157.	1.3	2
2277	Paleoproterozoic thick-skinned tectonics in the Central Indian Tectonic Zone: implications on the tectonic reconstructions of cratonic nuclei. International Geology Review, 2023, 65, 3028-3064.	1.1	2
2278	Towards a process-based understanding of rifted continental margins. Nature Reviews Earth & Environment, 2023, 4, 166-184.	12.2	8
2279	Crustal structure beneath the central and western North China from receiver function analysis. Earthquake Science, 2022, 35, 448-473.	0.4	1
2280	Aspect ratio analysis of distinct Paleoproterozoic mafic dyke swarms and related fracture systems in the Eastern Dharwar Craton, India: Implications for emplacement mechanism and depth of origin. Physics of the Earth and Planetary Interiors, 2023, 336, 106998.	0.7	2
2281	Acoustopolariscopy is the Method for Determining Mineral Samples and Rocks Quality. Springer Proceedings in Earth and Environmental Sciences, 2023, , 533-541.	0.2	0
2282	Geochemical features and seismic imaging of the tectonic zone between the Tibetan Plateau and Ordos Block, central northern China. Chemical Geology, 2023, 622, 121386.	1.4	2
2283	Depth migration of crustal-scale seismic reflection profiles: A case study in the Bohai Bay basin. Frontiers in Earth Science, 0, 11, .	0.8	1
2284	P-wave velocity structure and implications for magmatism and metallogenesis in the southern Altaids: Constraint from wide-angle seismic data along the Altai-Eastern Tianshan traverse. Frontiers in Earth Science, 0, 11, .	0.8	1
2285	Magmatic System and Seismicity of the Arxan Volcanic Group in Northeast China. Geophysical Research Letters, 2023, 50, .	1.5	2
2286	Confronting Solid‣tate Shear Bias: Magmatic Fabric Contribution to Crustal Seismic Anisotropy. Geophysical Research Letters, 2023, 50, .	1.5	5
2287	P- ve S- Alıcı Fonksiyonları Analizi ve Birleşik Ters Çözümü: Erzurum civarındaki Litosferik Yapı. Yerbilimleri/ Earth Sciences, 0, , .	0.2	0
2288	Large volume of magma involved in South China Sea rifting: Implication for mantle breakup earlier than crust. Tectonophysics, 2023, 853, 229801.	0.9	6
2289	New Insights Into the Riftâ€Toâ€Drift Process of the Northern South China Sea Margin Constrained by a Threeâ€Dimensional Wideâ€Angle Seismic Velocity Model. Journal of Geophysical Research: Solid Earth, 2023, 128, .	1.4	5
2290	Imaging exhumed continental and proto-oceanic crusts in the Camamu triple junction, Brazil. Journal of South American Earth Sciences, 2023, 126, 104336.	0.6	1
2291	Crustal thickness variations in southern California from Los Angeles Region Seismic Experiment passive phase teleseismic travel times. Bulletin of the Seismological Society of America, 1997, 87, 1330-1344.	1.1	27

#	Article	IF	CITATIONS
2294	Cretaceous magmatic underplating and delamination beneath continental SE Brazil and their tectonic implications: Evidence from the PABBRISE wide-angle reflection and refraction seismic profile. Tectonophysics, 2023, 856, 229856.	0.9	1
2295	Three-dimensional Moho depth model of the eastern Indian shield and its isostatic implications. Journal of Earth System Science, 2023, 132, .	0.6	1
2296	Distribution, exploitation, and utilization of intermediate-to-deep geothermal resources in eastern China. Energy Geoscience, 2023, 4, 100187.	1.3	7
2374	Geochemical modeling. , 2023, , .		0