Efficient gene transfer in C.elegans: extrachromosomal transforming sequences.

EMBO Journal 10, 3959-3970 DOI: 10.1002/j.1460-2075.1991.tb04966.x

Citation Report

`	n .		
		EDO	DT

#	Article	IF	CITATIONS
1	Mosaic Analysis in Caenorhabditis elegans. , 2000, 135, 447-462.		11
2	Analysis of dominant-negative mutations of the Caenorhabditis elegans let-60 ras gene Genes and Development, 1991, 5, 2188-2198.	2.7	100
3	Mutation of a putative sperm membrane protein in Caenorhabditis elegans prevents sperm differentiation but not its associated meiotic divisions Journal of Cell Biology, 1992, 119, 55-68.	2.3	165
4	Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science, 1992, 258, 1955-1957.	6.0	588
5	A plethora of intercellular signals during Caenorhabditis elegans development. Current Opinion in Cell Biology, 1992, 4, 939-947.	2.6	10
6	Transformation of Caenorhabditis elegans with genes from parasitic nematodes. Parasitology Today, 1992, 8, 344-346.	3.1	27
7	skn-1, a maternally expressed gene required to specify the fate of ventral blastomeres in the early C. elegans embryo. Cell, 1992, 68, 1061-1075.	13.5	356
8	UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell, 1992, 71, 289-299.	13.5	389
9	The mec-7 beta-tubulin gene of Caenorhabditis elegans is expressed primarily in the touch receptor neurons EMBO Journal, 1992, 11, 2885-2893.	3.5	141
10	Regulation of the mec-3 gene by the C.elegans homeoproteins UNC-86 and MEC-3 EMBO Journal, 1992, 11, 4969-4979.	3.5	108
11	Molecular analysis of mutations in the Caenorhabditis elegans collagen gene dpy-7 EMBO Journal, 1992, 11, 3857-3863.	3.5	53
12	C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature, 1992, 356, 340-344.	13.7	632
13	The gene lin-3 encodes an inductive signal for vulval development in C. elegans. Nature, 1992, 358, 470-476.	13.7	378
14	Genes and genomes: Reverse genetics of caenorhabditis elegans. BioEssays, 1992, 14, 629-633.	1.2	30
15	Molecular genetics of cell death in the nematodeCaenorhabditis elegans. Journal of Neurobiology, 1992, 23, 1327-1351.	3.7	75
16	Molecular markers of differentiation in Caenorhabditis elegans obtained by promoter trapping. Developmental Dynamics, 1993, 196, 124-132.	0.8	18
17	Targeted single-cell induction of gene products inCaenorhabditis elegans: A new tool for developmental studies. The Journal of Experimental Zoology, 1993, 266, 227-233.	1.4	57
18	emb-5, a gene required for the correct timing of gut precursor cell division during gastrulation in Caenorhabditis elegans, encodes a protein similar to the yeast nuclear protein SPT6. Molecular Genetics and Genomics, 1993, 239, 313-322.	2.4	40

#	Article	IF	CITATIONS
19	A study of integrative transformation in Schizosaccharomyces pombe. Molecular Genetics and Genomics, 1993, 238-238, 26-32.	2.4	33
20	Expression of a Drosophila melanogaster amber suppressor tRNASer in Caenorhabditis elegans. Molecular Genetics and Genomics, 1993, 241-241, 26-32.	2.4	5
21	Intermolecular ligation mediates efficient cotransformation in Phytophthora infestans. Molecular Genetics and Genomics, 1993, 239, 241-250.	2.4	47
22	C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature, 1993, 363, 133-140.	13.7	263
23	Expression of the UNC-5 guidance receptor in the touch neurons of C. elegans steers their axons dorsally. Nature, 1993, 364, 327-330.	13.7	229
24	Control of cell fate in C. elegans by a GLP-1 peptide consisting primarily of ankyrin repeats. Nature, 1993, 364, 632-635.	13.7	111
25	The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development. Nature, 1993, 365, 644-649.	13.7	368
26	Comparing mutants, selective breeding, and transgenics in the dissection of aging processes of Caenorhabditis elegans. Genetica, 1993, 91, 65-77.	0.5	63
27	Independent domains of the Sdc-3 protein control sex determination and dosage compensation in C. elegans. Cell, 1993, 72, 349-364.	13.5	74
28	Operons in C. elegans: Polycistronic mRNA precursors are processed by trans-splicing of SL2 to downstream coding regions. Cell, 1993, 73, 521-532.	13.5	297
29	Control of cell fates in the central body region of C. elegans by the homeobox gene lin-39. Cell, 1993, 74, 43-55.	13.5	261
30	Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin. Cell, 1993, 73, 1291-1305.	13.5	536
31	Intrinsic activity of the lin-12 and Notch intracellular domains in vivo. Cell, 1993, 74, 331-345.	13.5	466
32	The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75, 843-854.	13.5	11,149
33	Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993, 75, 855-862.	13.5	3,657
34	Cloning and Mapping of a Ryanodine Receptor Homolog Gene of Caenorhabditis elegans. Annals of the New York Academy of Sciences, 1993, 707, 540-545.	1.8	20
35	A Caenorhabditis elegans act-4::lacZ fusion: use as a transformation marker and analysis of tissue-specific expression. Gene, 1993, 131, 167-173.	1.0	16
36	Molecular characterization of the her-1 gene suggests a direct role in cell signaling during Caenorhabditis elegans sex determination Genes and Development, 1993, 7, 216-228.	2.7	100

	CIAIO		
#	Article	IF	CITATIONS
37	Functional analysis of aC.elegans trans-splice acceptor. Nucleic Acids Research, 1993, 21, 913-919.	6.5	35
38	Genetic identification, sequence, and alternative splicing of the Caenorhabditis elegans alpha 2(IV) collagen gene Journal of Cell Biology, 1993, 123, 255-264.	2.3	77
39	A gene for a low density lipoprotein receptor-related protein in the nematode Caenorhabditis elegans Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 4572-4576.	3.3	112
40	Migrations of the Caenorhabditis elegans HSNs are regulated by egl-43, a gene encoding two zinc finger proteins Genes and Development, 1993, 7, 2097-2109.	2.7	58
41	The Caenorhabditis elegans homologue of the extracellular calcium binding protein SPARC/osteonectin affects nematode body morphology and mobility Molecular Biology of the Cell, 1993, 4, 941-952.	0.9	95
42	The human GRB2 and Drosophila Drk genes can functionally replace the Caenorhabditis elegans cell signaling gene sem-5 Molecular Biology of the Cell, 1993, 4, 1175-1188.	0.9	60
43	The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. Science, 1993, 261, 617-619.	6.0	364
44	Alteration of Caenorhabditis elegans gene expression by targeted transformation Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 4359-4363.	3.3	24
45	3 Drosophila Cell Adhesion Molecules. Current Topics in Developmental Biology, 1993, 28, 81-123.	1.0	22
46	The E1 protein of bovine papilloma virus 1 is an ATP-dependent DNA helicase Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 5086-5090.	3.3	274
47	lin-31, a Caenorhabditis elegans HNF-3/fork head transcription factor homolog, specifies three alternative cell fates in vulval development Genes and Development, 1993, 7, 933-947.	2.7	161
48	The expression of two P-glycoprotein (pgp) genes in transgenic Caenorhabditis elegans is confined to intestinal cells EMBO Journal, 1993, 12, 1615-1620.	3.5	58
49	Conversion of a trans-spliced C. elegans gene into a conventional gene by introduction of a splice donor site EMBO Journal, 1993, 12, 1249-1255.	3.5	55
50	Mobilization of quiet, endogenous Tc3 transposons of Caenorhabditis elegans by forced expression of Tc3 transposase EMBO Journal, 1993, 12, 2513-2520.	3.5	40
51	Baculovirus p35 prevents developmentally programmed cell death and rescues a ced-9 mutant in the nematode Caenorhabditis elegans EMBO Journal, 1994, 13, 2023-2028.	3.5	186
52	A MAP kinase homolog, mpk-1, is involved in ras-mediated induction of vulval cell fates in Caenorhabditis elegans Genes and Development, 1994, 8, 160-173.	2.7	205
53	The Caenorhabditis elegans muscle-affecting gene unc-87 encodes a novel thin filament-associated protein Journal of Cell Biology, 1994, 127, 79-93.	2.3	61
54	In vitro mutagenesis of Caenorhabditis elegans cuticle collagens identifies a potential subtilisin-like protease cleavage site and demonstrates that carboxyl domain disulfide bonding is required for normal function but not assembly Molecular and Cellular Biology, 1994, 14, 2722-2730.	1.1	32

#	Article	IF	CITATIONS
55	Control of type-D GABAergic neuron differentiation by C. elegans UNC-30 homeodomain protein. Nature, 1994, 372, 780-783.	13.7	247
56	Caenorhabditis elegans unc-51 gene required for axonal elongation encodes a novel serine/threonine kinase Genes and Development, 1994, 8, 2389-2400.	2.7	156
57	unc-101, a gene required for many aspects of Caenorhabditis elegans development and behavior, encodes a clathrin-associated protein Genes and Development, 1994, 8, 60-73.	2.7	126
58	The lin-15 locus encodes two negative regulators of Caenorhabditis elegans vulval development Molecular Biology of the Cell, 1994, 5, 395-411.	0.9	229
59	The identification of a Caenorhabditis elegans homolog of p34cdc2 kinase. Molecular Genetics and Genomics, 1994, 245, 781-786.	2.4	18
60	The Caenorhabditis elegans unc-60 gene encodes proteins homologous to a family of actin-binding proteins. Molecular Genetics and Genomics, 1994, 242, 346-357.	2.4	113
61	The cuticle of the nematodeCaenorhabditis elegans: A complex collagen structure. BioEssays, 1994, 16, 171-178.	1.2	119
62	Green fluorescent protein as a marker for gene expression. Science, 1994, 263, 802-805.	6.0	6,353
63	A transmembrane domain of the putative channel subunit MEC-4 influences mechanotransduction and neurodegeneration in C. elegans. Nature, 1994, 367, 470-473.	13.7	212
64	Sequence of C. elegans lag-2 reveals a cell-signalling domain shared with Delta and Serrate of Drosophila. Nature, 1994, 368, 150-154.	13.7	266
65	Activation of C. elegans cell death protein CED-9 by an ammo-acid substitution in a domain conserved in Bcl-2. Nature, 1994, 369, 318-320.	13.7	172
66	Reciprocal changes in expression of the receptor lin-12 and its ligand lag-2 prior to commitment in a C. elegans cell fate decision. Cell, 1994, 79, 1187-1198.	13.5	247
67	The C. elegans gene odr-7 encodes an olfactory-specific member of the nuclear receptor superfamily. Cell, 1994, 79, 971-980.	13.5	195
68	The mechanism of transposition of Tc3 in C. elegans. Cell, 1994, 79, 293-301.	13.5	190
69	The maternal genes apx-1 and glp-1 and establishment of dorsal-ventral polarity in the early C. elegans embryo. Cell, 1994, 77, 95-106.	13.5	224
70	DPY-27: A chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell, 1994, 79, 459-474.	13.5	248
71	Translational control of maternal glp-1 mRNA establishes an asymmetry in the C. elegans embryo. Cell, 1994, 77, 183-194.	13.5	232
72	C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell, 1994, 76, 665-676.	13.5	1,141

#	Article	IF	CITATIONS
73	Target site choice of the related transposable elements Tc1 and Tc3 ofCaenorhabditis elegans. Nucleic Acids Research, 1994, 22, 262-269.	6.5	86
74	pha-1, a selectable marker for gene transfer inC.elegans. Nucleic Acids Research, 1994, 22, 1762-1763.	6.5	179
75	[13] Extracellular calcium-binding protein SPARC/osteonectin in Caenorhabditis elegans. Methods in Enzymology, 1994, 245, 257-270.	0.4	5
76	par-2, a gene required for blastomere asymmetry in Caenorhabditis elegans, encodes zinc-finger and ATP-binding motifs Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 6108-6112.	3.3	79
77	Analysis of the VPE sequences in the Caenorhabditis elegans vit-2 promoter with extrachromosomal tandem array-containing transgenic strains Molecular and Cellular Biology, 1994, 14, 484-491.	1.1	41
78	Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9368-9372.	3.3	597
79	Chapter 6 Mosaic Analysis. Methods in Cell Biology, 1995, 48, 123-146.	0.5	18
80	Chapter 3 Reverse Genetics: From Gene Sequence to Mutant Worm. Methods in Cell Biology, 1995, 48, 59-80.	0.5	49
81	Similarity of sli-1, a regulator of vulval development in C. elegans, to the mammalian proto-oncogene c-cbl. Science, 1995, 269, 1102-1105.	6.0	292
82	Molecular evidence for the direct involvement of a protein kinase C in developmental and behavioural susceptibility to tumour-promoting phorbol esters in <i>Caenorhabditis elegans</i> . Biochemical Journal, 1995, 312, 69-74.	1.7	10
83	Chapter 7 Genetic Balancers. Methods in Cell Biology, 1995, , 147-184.	0.5	32
84	APX-1 can substitute for its homolog LAG-2 to direct cell interactions throughout Caenorhabditis elegans development Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9839-9842.	3.3	40
85	Regulation of Caenorhabditis elegans degenerin proteins by a putative extracellular domain. Current Biology, 1995, 5, 441-448.	1.8	101
86	Cell fate decisions in the early embryo of the nematodeCaenorhabditis elegans. Genesis, 1995, 17, 155-166.	3.3	8
87	Characterization of thelet-653 gene inCaenorhabditis elegans. Molecular Genetics and Genomics, 1995, 248, 719-726.	2.4	39
88	Effect of thedpy-20 androl-6 cotransformation markers on α-tubulin gene expression inC. elegans transformants. Transgenic Research, 1995, 4, 332-340.	1.3	2
89	Genetic regulation of mec-3 gene expression implicated in the specification of the mechanosensory neuron cell types in Caenorhabditis elegans. Development Growth and Differentiation, 1995, 37, 551-557.	0.6	69
90	Developmental expression pattern screen for genes predicted in the C. elegans genome sequencing project. Nature Genetics, 1995, 11, 309-313.	9.4	56

ARTICLE IF CITATIONS # A transcription factor controlling development of peripheral sense organs in C. elegans. Nature, 1995, 13.7 128 91 373, 74-78. Sequential signalling during Caenorhabditis elegans vulval induction. Nature, 1995, 375, 142-146. 13.7 Patterning of the Caenorhabditis elegans head region by the Pax-6 family member vab-3. Nature, 1995, 93 13.7 168 377, 52-55. Specification of sense-organ identity by a Caenorhabditis elegans Pax-6 homologue. Nature, 1995, 377, 94 146 55-59. Specification of anteroposterior cell fates in Caenorhabditis elegans by Drosophila Hox proteins. 95 13.7 50 Nature, 1995, 377, 229-232. Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer's disease gene. Nature, 1995, 377, 351-354. 13.7 728 Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans. Nature, 97 13.7 303 1995, 378, 196-199. A stomatin-like protein necessary for mechanosensation in C. elegans. Nature, 1995, 378, 292-295. 13.7 98 290 Selective expression of the tba-1 \hat{I} + tubulin gene in a set of mechanosensory and motor neurons during 99 the development of Caenorhabditis elegans. Biochimica Et Biophysica Acta Gene Regulatory 2.4 22 Mechanisms, 1995, 1261, 401-416. dad-1, an endogenous programmed cell death suppressor in Caenorhabditis elegans and vertebrates.. 3.5 EMBO Journal, 1995, 14, 4434-4441. Embryonic tissue differentiation in Caenorhabditis elegans requires dif-1, a gene homologous to 101 3.5 22 mitochondrial solute carriers.. EMBO Journal, 1995, 14, 2307-2316. Mutations in the Caenorhabditis elegans Na,K-ATPase alpha-subunit gene, eat-6, disrupt excitable cell 132 function. Journal of Neuroscience, 1995, 15, 8408-8418 A P-glycoprotein protects Caenorhabditis elegans against natural toxins.. EMBO Journal, 1995, 14, 103 3.5 139 1858-1866. Structure and Expression of Novel Spliced Leader RNA Genes in Caenorhabditis elegans. Journal of Biological Chemistry, 1995, 270, 22066-22075. 104 1.6 The Caenorhabditis elegans spe-26 gene is necessary to form spermatids and encodes a protein similar 105 2.7 88 to the actin-associated proteins kelch and scruin.. Genes and Development, 1995, 9, 1074-1086. lin-25, a gene required for vulval induction in Caenorhabditis elegans.. Genes and Development, 1995, 9, 341-357. 64 Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans. Science, 1995, 267, 107 6.0 306 1648-1651. The bli-4 locus of Caenorhabditis elegans encodes structurally distinct kex2/subtilisin-like endoproteases essential for early development and adult morphology.. Genes and Development, 1995, 9, 956-971.

#	Article	IF	CITATIONS
109	Chapter 14 Methods for the Study of Cell Death in the Nematode Caenorhabditis elegans. Methods in Cell Biology, 1995, 46, 323-353.	0.5	16
110	Mutations in gld-1, a female germ cell-specific tumor suppressor gene in Caenorhabditis elegans, affect a conserved domain also found in Src-associated protein Sam68 Genes and Development, 1995, 9, 1491-1504.	2.7	243
111	Chapter 19 DNA Transformation. Methods in Cell Biology, 1995, , 451-482.	0.5	1,063
112	The C. elegans sex-determining gene fem-2 encodes a putative protein phosphatase Molecular Biology of the Cell, 1995, 6, 1159-1171.	0.9	79
113	The Caenorhabditis elegans gene lin-1 encodes an ETS-domain protein and defines a branch of the vulval induction pathway Genes and Development, 1995, 9, 3149-3162.	2.7	154
114	The Caenorhabditis elegans rop-1 gene encodes the homologue of the human 60-kDa Ro autoantigen. Gene, 1995, 167, 227-231.	1.0	14
115	par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 1995, 81, 611-620.	13.5	999
116	pop-1 Encodes an HMG box protein required for the specification of a mesoderm precursor in Early C. elegans embryos. Cell, 1995, 83, 599-609.	13.5	290
117	An FGF receptor signaling pathway is required for the normal cell migrations of the sex myoblasts in C. elegans hermaphrodites. Cell, 1995, 83, 611-620.	13.5	170
118	Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell, 1995, 83, 207-218.	13.5	656
119	Asymmetrically distributed PAR-3 protein contributes to cell polarity and spindle alignment in early C. elegans embryos. Cell, 1995, 83, 743-752.	13.5	387
120	The C. elegans ksr-1 gene encodes a novel raf-related kinase involved in Ras-mediated signal transduction. Cell, 1995, 83, 889-901.	13.5	295
121	The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans. Cell, 1995, 83, 903-913.	13.5	292
122	The C. elegans gene lin-44, which controls the polarity of certain asymmetric cell divisions, encodes a Wnt protein and acts cell nonautonomously. Cell, 1995, 83, 101-110.	13.5	195
123	Different Levels of the C. elegans growth factor LIN-3 promote distinct vulval precursor fates. Cell, 1995, 82, 297-307.	13.5	196
124	xo1-1 acts as an early switch in the C. elegans male/hermaphrodite decision. Cell, 1995, 80, 71-82.	13.5	94
125	Drosophila MAP kinase kinase suppresses the vulvaless phenotype of lin-3, let-23 and lin-45 mutations in Caenorhabditis elegans. Mechanisms of Development, 1995, 53, 15-22.	1.7	7
126	The Nematode Caenorhabditis elegans and Its Genome. Science, 1995, 270, 410-414.	6.0	144

#	Article	IF	CITATIONS
127	DNA transformation using electrically charged tungsten microelectrodes. , 0, , .		0
128	Injection of DNA into plant and animal tissues with micromechanical piercing structures. , 0, , .		17
129	Participation of the protein Go in multiple aspects of behavior in C. elegans. Science, 1995, 267, 1652-1655.	6.0	249
130	Activation of the mec-3 promoter in two classes of stereotyped lineages in Caenorhabditis elegans. Mechanisms of Development, 1996, 56, 165-181.	1.7	6
131	Promoter sequences for the establishment of mec-3 expression in the nematode Caenorhabditis elegans. Mechanisms of Development, 1996, 56, 183-196.	1.7	6
132	Eight Potassium Channel Families Revealed by the C. elegans Genome Project. Neuropharmacology, 1996, 35, 805-829.	2.0	246
133	ECL-10 Regulates G Protein Signaling in the C. elegans Nervous System and Shares a Conserved Domain with Many Mammalian Proteins. Cell, 1996, 84, 115-125.	13.5	562
134	An Alternatively Spliced C. elegans ced-4 RNA Encodes a Novel Cell Death Inhibitor. Cell, 1996, 86, 201-208.	13.5	146
135	G Proteins Are Required for Spatial Orientation of Early Cell Cleavages in C. elegans Embryos. Cell, 1996, 86, 619-629.	13.5	153
136	odr-10 Encodes a Seven Transmembrane Domain Olfactory Receptor Required for Responses to the Odorant Diacetyl. Cell, 1996, 84, 899-909.	13.5	511
137	Spatial and Temporal Controls Target pal-1 Blastomere-Specification Activity to a Single Blastomere Lineage in C. elegans Embryos. Cell, 1996, 87, 217-226.	13.5	197
138	Conservation of function and expression of unc-119 from two Caenorhabditis species despite divergence of non-coding DNA. Gene, 1996, 183, 77-85.	1.0	70
139	Neuroglia and Pioneer Neurons Express UNC-6 to Provide Global and Local Netrin Cues for Guiding Migrations in C. elegans. Neuron, 1996, 16, 35-46.	3.8	325
140	Extracellular Proteins Needed for C. elegans Mechanosensation. Neuron, 1996, 16, 183-194.	3.8	125
141	A Putative Cyclic Nucleotide–Gated Channel Is Required for Sensory Development and Function in C. elegans. Neuron, 1996, 17, 695-706.	3.8	421
142	Mutations in a Cyclic Nucleotide–Gated Channel Lead to Abnormal Thermosensation and Chemosensation in C. elegans. Neuron, 1996, 17, 707-718.	3.8	398
143	Chemosensory Neurons Function in Parallel to Mediate a Pheromone Response in C. elegans. Neuron, 1996, 17, 719-728.	3.8	305
144	Membrane Topology of the C. elegans SEL-12 Presenilin. Neuron, 1996, 17, 1015-1021.	3.8	213

#	Article	IF	CITATIONS
145	Interaction Between a Putative Mechanosensory Membrane Channel and a Collagen. Science, 1996, 273, 361-364.	6.0	142
146	Control of C. elegans Larval Development by Neuronal Expression of a TGF-beta Homolog. Science, 1996, 274, 1389-1391.	6.0	515
147	Hydrophobicity variations along the surface of the coiled-coil rod may mediate striated muscle myosin assembly in Caenorhabditis elegans Journal of Cell Biology, 1996, 135, 371-382.	2.3	42
148	hch-1, a gene required for normal hatching and normal migration of a neuroblast in C. elegans, encodes a protein related to TOLLOID and BMP-1 EMBO Journal, 1996, 15, 4111-4122.	3.5	57
149	The tra-3 sex determination gene of Caenorhabditis elegans encodes a member of the calpain regulatory protease family EMBO Journal, 1996, 15, 4477-4484.	3.5	96
150	A Murine Neural-Specific Homolog Corrects Cholinergic Defects in <i>Caenorhabditis elegans unc-18</i> Mutants. Journal of Neuroscience, 1996, 16, 6695-6702.	1.7	59
151	Assessment of normal and mutant human presenilin function in Caenorhabditis elegans. Proceedings of the United States of America, 1996, 93, 14940-14944.	3.3	383
152	Temporal reiteration of a precise gene expression pattern during nematode development EMBO Journal, 1996, 15, 3633-3639.	3.5	140
153	Homologues of the human multidrug resistance genes MRP and MDR contribute to heavy metal resistance in the soil nematode Caenorhabditis elegans EMBO Journal, 1996, 15, 6132-6143.	3.5	195
154	An essential ubiquitin-conjugating enzyme with tissue and developmental specificity in th nematode Caenorhabditis elegans EMBO Journal, 1996, 15, 3229-3237.	3.5	26
155	Roles of the RAM and ANK domains in signaling by the C. elegans GLP-1 receptor EMBO Journal, 1996, 15, 7002-7012.	3.5	79
156	A Point Mutation in the Extracellular Domain Activates LET-23, the <i>Caenorhabditis elegans</i> Epidermal Growth Factor Receptor Homolog. Molecular and Cellular Biology, 1996, 16, 529-537.	1.1	78
157	Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 790-794.	3.3	492
158	Lineage-specific regulators couple cell lineage asymmetry to the transcription of the Caenorhabditis elegans POU gene unc-86 during neurogenesis Genes and Development, 1996, 10, 1395-1410.	2.7	80
160	Transcriptional regulator of programmed cell death encoded by Caenorhabditis elegans gene ces-2. Nature, 1996, 382, 545-547.	13.7	163
161	Repression of gene expression in the embryonic germ lineage of C. elegans. Nature, 1996, 382, 713-716.	13.7	299
162	A bulged lin-4/lin-14 RNA duplex is sufficient for Caenorhabditis elegans lin-14 temporal gradient formation Genes and Development, 1996, 10, 3041-3050.	2.7	207
163	Transposase is the only nematode protein required for in vitro transposition of Tc1 Genes and Development, 1996, 10, 755-761.	2.7	172

#	Article	IF	CITATIONS
164	Developmental genetic analysis of troponin T mutations in striated and nonstriated muscle cells of Caenorhabditis elegans Journal of Cell Biology, 1996, 132, 1061-1077.	2.3	103
165	Developing Caenorhabditis elegans neurons may contain both cell-death protective and killer activities Genes and Development, 1996, 10, 578-591.	2.7	211
166	emo-1, a Caenorhabditis elegans Sec61p gamma homologue, is required for oocyte development and ovulation Journal of Cell Biology, 1996, 134, 699-714.	2.3	135
167	Post-transcriptional regulation of sex determination in Caenorhabditis elegans: widespread expression of the sex-determining gene fem-1 in both sexes Molecular Biology of the Cell, 1996, 7, 1107-1121.	0.9	50
168	Sequence and transmembrane topology of MEC-4, an ion channel subunit required for mechanotransduction in Caenorhabditis elegans Journal of Cell Biology, 1996, 133, 1071-1081.	2.3	105
169	eat-5 and unc-7 represent a multigene family in Caenorhabditis elegans involved in cell-cell coupling Journal of Cell Biology, 1996, 134, 537-548.	2.3	123
170	The Caenorhabditis elegans gene lin-17, which is required for certain asymmetric cell divisions, encodes a putative seven-transmembrane protein similar to the Drosophila frizzled protein Genes and Development, 1996, 10, 2189-2197.	2.7	193
171	Posterior patterning by the Caenorhabditis elegans even-skipped homolog vab-7 Genes and Development, 1996, 10, 1120-1130.	2.7	77
172	Caenorhabditis elegans sex-determining protein FEM-2 is a protein phosphatase that promotes male development and interacts directly with FEM-3 Genes and Development, 1996, 10, 2314-2325.	2.7	79
173	The SL1 trans-spliced leader RNA performs an essential embryonic function in Caenorhabditis elegans that can also be supplied by SL2 RNA Genes and Development, 1996, 10, 1543-1556.	2.7	53
174	Type IV Collagen Is Detectable in Most, but Not All, Basement Membranes of Caenorhabditis elegans and Assembles on Tissues That Do Not Express It. Journal of Cell Biology, 1997, 137, 1171-1183.	2.3	125
175	Three vha Genes Encode Proteolipids ofCaenorhabditis elegans Vacuolar-type ATPase. Journal of Biological Chemistry, 1997, 272, 24387-24392.	1.6	55
176	<i>end-1</i> encodes an apparent GATA factor that specifies the endoderm precursor in <i>Caenorhabditis elegans</i> embryos. Genes and Development, 1997, 11, 2883-2896.	2.7	203
177	The UNC-14 protein required for axonal elongation and guidance in Caenorhabditis elegans interacts with the serine/threonine kinase UNC-51 Genes and Development, 1997, 11, 1801-1811.	2.7	89
178	Inhibition of <i>Caenorhabditis elegans</i> vulval induction by <i>gap-1</i> and by <i>let-23</i> receptor tyrosine kinase. Genes and Development, 1997, 11, 2715-2728.	2.7	95
179	ELT-1, a GATA-like transcription factor, is required for epidermal cell fates in Caenorhabditis elegans embryos Genes and Development, 1997, 11, 1651-1661.	2.7	102
180	The DAF-3 Smad protein antagonizes TGF-β-related receptor signaling in the <i>Caenorhabditis elegans</i> dauer pathway. Genes and Development, 1997, 11, 2679-2690.	2.7	189
181	Caenorhabditis elegans LET-502 is related to Rho-binding kinases and human myotonic dystrophy kinase and interacts genetically with a homolog of the regulatory subunit of smooth muscle myosin phosphatase to affect cell shape Genes and Development, 1997, 11, 409-422.	2.7	153

#	Article	IF	CITATIONS
182	Characterization of α1(IV) Collagen Mutations in Caenorhabditis elegans and the Effects of α1 and α2(IV) Mutations on Type IV Collagen Distribution. Journal of Cell Biology, 1997, 137, 1185-1196.	2.3	110
183	Positive and negative tissue-specific signaling by a nematode epidermal growth factor receptor Molecular Biology of the Cell, 1997, 8, 779-793.	0.9	39
184	<i>sel-10,</i> a negative regulator of <i>lin-12</i> activity in <i>Caenorhabditis elegans,</i> encodes a member of the CDC4 family of proteins. Genes and Development, 1997, 11, 3182-3193.	2.7	216
185	Structure and Expression of the Caenorhabditis elegans Protein Kinase C2 Gene. Journal of Biological Chemistry, 1997, 272, 6629-6640.	1.6	25
186	Functional domains of LAG-2, a putative signaling ligand for LIN-12 and GLP-1 receptors in Caenorhabditis elegans Molecular Biology of the Cell, 1997, 8, 1751-1762.	0.9	77
187	MOLECULAR MODELING OF MECHANOTRANSDUCTION IN THE NEMATODECAENORHABDITIS ELEGANS. Annual Review of Physiology, 1997, 59, 659-689.	5.6	231
188	HOP-1, a Caenorhabditis elegans presenilin, appears to be functionally redundant with SEL-12 presenilin and to facilitate LIN-12 and GLP-1 signaling. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 12204-12209.	3.3	167
189	egl-17 encodes an invertebrate fibroblast growth factor family member required specifically for sex myoblast migration in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 2433-2437.	3.3	116
190	Guanylyl cyclase expression in specific sensory neurons: A new family of chemosensory receptors. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3384-3387.	3.3	415
191	<i>cis</i> Regulatory Requirements for Hypodermal Cell-Specific Expression of the <i>Caenorhabditis elegans</i> Cuticle Collagen Gene <i>dpy-7</i> . Molecular and Cellular Biology, 1997, 17, 2301-2311.	1.1	178
192	Ras Is Required for a Limited Number of Cell Fates and Not for General Proliferation in <i>Caenorhabditis elegans</i> . Molecular and Cellular Biology, 1997, 17, 2716-2722.	1.1	80
193	An activating mutation in a Caenorhabditis elegans Gs protein induces neural degeneration Genes and Development, 1997, 11, 1493-1503.	2.7	98
194	Subunit Characterization of theCaenorhabditis elegansChaperonin Containing TCP-1 and Expression Pattern of the Gene Encoding CCT-1. Biochemical and Biophysical Research Communications, 1997, 241, 687-692.	1.0	16
195	TheCaenorhabditis elegansOrphan Nuclear Hormone Receptor Genenhr-2Functions in Early Embryonic Development. Developmental Biology, 1997, 184, 303-319.	0.9	23
196	An abnormal ketamine response in mutants defective in the ryanodine receptor gene ryr-1(unc-68) of Caenorhabditis elegans. Journal of Molecular Biology, 1997, 267, 849-864.	2.0	51
197	aex-3 Encodes a Novel Regulator of Presynaptic Activity in C. elegans. Neuron, 1997, 18, 613-622.	3.8	135
198	Neuronal Migrations and Axon Fasciculation Are Disrupted in ina-1 Integrin Mutants. Neuron, 1997, 19, 51-62.	3.8	166
199	Behavioral Defects in C. elegans egl-36 Mutants Result from Potassium Channels Shifted in Voltage-Dependence of Activation, Neuron, 1997, 19, 151-164.	3.8	53

#	Article	IF	CITATIONS
200	unc-8, a DEG/ENaC Family Member, Encodes a Subunit of a Candidate Mechanically Gated Channel That Modulates C. elegans Locomotion. Neuron, 1997, 18, 107-119.	3.8	195
201	Role of a New Rho Family Member in Cell Migration and Axon Guidance in C. elegans. Cell, 1997, 90, 883-894.	13.5	238
202	Reprogramming Chemotaxis Responses: Sensory Neurons Define Olfactory Preferences in C. elegans. Cell, 1997, 91, 161-169.	13.5	404
203	Wnt Signaling Polarizes an Early C. elegans Blastomere to Distinguish Endoderm from Mesoderm. Cell, 1997, 90, 695-705.	13.5	470
204	Wnt Signaling and an APC-Related Gene Specify Endoderm in Early C. elegans Embryos. Cell, 1997, 90, 707-716.	13.5	612
205	The Cold Shock Domain Protein LIN-28 Controls Developmental Timing in C. elegans and Is Regulated by the lin-4 RNA. Cell, 1997, 88, 637-646.	13.5	782
206	Structure and expression of the gsa-1 gene encoding a G protein α(s) subunit in C. elegans. Gene, 1997, 194, 183-190.	1.0	17
207	OSM-9, A Novel Protein with Structural Similarity to Channels, Is Required for Olfaction, Mechanosensation, and Olfactory Adaptation in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 1997, 17, 8259-8269.	1.7	574
208	A dynamin GTPase mutation causes a rapid and reversible temperature-inducible locomotion defect in C. elegans. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 10438-10443.	3.3	119
209	Interpreting a Sequenced Genome: Toward a Cosmid Transgenic Library of <i>Caenorhabditis elegans</i> . Genome Research, 1997, 7, 974-985.	2.4	28
210	Neuropathology of Degenerative Cell Death inCaenorhabditis elegans. Journal of Neuroscience, 1997, 17, 1033-1045.	1.7	160
211	Genetically targeted cell disruption in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 13128-13133.	3.3	68
212	<i>Caenorhabditis elegans</i> Levamisole Resistance Genes <i>lev-1</i> , <i>unc-29</i> , and <i>unc-38</i> Encode Functional Nicotinic Acetylcholine Receptor Subunits. Journal of Neuroscience, 1997, 17, 5843-5857.	1.7	301
213	<i>Caenorhabditis elegans rab-3</i> Mutant Synapses Exhibit Impaired Function and Are Partially Depleted of Vesicles. Journal of Neuroscience, 1997, 17, 8061-8073.	1.7	350
214	Genetic control of programmed cell death and aging in the nematode Caenorhabditis elegans. Experimental Gerontology, 1997, 32, 363-374.	1.2	28
215	Worming your way through the genome. Trends in Genetics, 1997, 13, 455-460.	2.9	16
216	Mutations in the alpha 1 subunit of an L-type voltage-activated Ca2+ channel cause myotonia in Caenorhabditis elegans. EMBO Journal, 1997, 16, 6066-6076.	3.5	199
217	Conservation of the C.elegans tra-2 3'UTR translational control. EMBO Journal, 1997, 16, 6301-6313.	3.5	60

#	Article	IF	CITATIONS
218	Genes controlling ion permeability in both motorneurons and muscle. Behavior Genetics, 1997, 27, 211-221.	1.4	14
219	Molecular neurogenetics of chemotaxis and thermotaxis in the nematodeCaenorhabditis elegans. BioEssays, 1997, 19, 1055-1064.	1.2	46
220	C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature, 1998, 392, 501-504.	13.7	346
221	Evidence for evolutionary conservation of sex-determining genes. Nature, 1998, 391, 691-695.	13.7	725
222	Cloning of a trans-spliced glyceraldehyde-3-phosphate-dehydrogenase gene from the potato cyst nematode Globodera rostochiensis and expression of its putative promoter region in Caenorhabditis elegans1Note: Nucleotide sequence data reported in this paper is available in the EMBL, GenBankâ,,¢ and DDJB data bases under the accession number AF004522.1. Molecular and Biochemical Parasitology,	0.5	24
223	Importance of the basement membrane protein SPARC for viability and fertility in Caenorhabditis elegans. Current Biology, 1998, 8, 1285-S1.	1.8	70
224	The dynactin complex is required for cleavage plane specification in early Caenorhabditis elegans embryos. Current Biology, 1998, 8, 1110-1117.	1.8	196
225	Sperm-mediated gene transfer in the silkwormBombyx mori. Archives of Insect Biochemistry and Physiology, 1998, 37, 168-177.	0.6	14
226	Thermal response ofHeterorhabditis bacteriophora transformed with theCaenorhabditis eleganshsp70 encoding gene. , 1998, 281, 164-170.		29
227	Characterization of theC. elegans gapâ€2gene encoding a novel Rasâ€GTPase activating protein and its possible role in larval development. Genes To Cells, 1998, 3, 189-202.	0.5	20
228	Rapid expression screening of Caenorhabditis elegans homeobox open reading frames using a two-step polymerase chain reaction promoter-gfp reporter construction technique. Gene, 1998, 212, 127-135.	1.0	33
229	The Cα Protein ODR-3 Mediates Olfactory and Nociceptive Function and Controls Cilium Morphogenesis in C. elegans Olfactory Neurons. Neuron, 1998, 20, 55-67.	3.8	295
230	vab-8 Is a Key Regulator of Posteriorly Directed Migrations in C. elegans and Encodes a Novel Protein with Kinesin Motor Similarity. Neuron, 1998, 20, 655-666.	3.8	69
231	The Conserved Immunoglobulin Superfamily Member SAX-3/Robo Directs Multiple Aspects of Axon Guidance in C. elegans. Cell, 1998, 92, 217-227.	13.5	275
232	MIX-1: An Essential Component of the C. elegans Mitotic Machinery Executes X Chromosome Dosage Compensation. Cell, 1998, 92, 265-277.	13.5	168
233	Inositol Trisphosphate Mediates a RAS-Independent Response to LET-23 Receptor Tyrosine Kinase Activation in C. elegans. Cell, 1998, 92, 523-533.	13.5	187
234	The VAB-1 Eph Receptor Tyrosine Kinase Functions in Neural and Epithelial Morphogenesis in C. elegans. Cell, 1998, 92, 633-643.	13.5	221
235	The C. elegans spe-9 Gene Encodes a Sperm Transmembrane Protein that Contains EGF-like Repeats and Is Required for Fertilization. Cell, 1998, 93, 71-79.	13.5	153

#	Article	IF	CITATIONS
236	Odorant Receptor Localization to Olfactory Cilia Is Mediated by ODR-4, a Novel Membrane-Associated Protein. Cell, 1998, 93, 455-466.	13.5	230
237	The C. elegans Cell Corpse Engulfment Gene ced-7 Encodes a Protein Similar to ABC Transporters. Cell, 1998, 93, 951-960.	13.5	275
238	SUR-8, a Conserved Ras-Binding Protein with Leucine-Rich Repeats, Positively Regulates Ras-Mediated Signaling in C. elegans. Cell, 1998, 94, 119-130.	13.5	192
239	UNC-73 Activates the Rac GTPase and Is Required for Cell and Growth Cone Migrations in C. elegans. Cell, 1998, 92, 785-795.	13.5	303
240	PGL-1, a Predicted RNA-Binding Component of Germ Granules, Is Essential for Fertility in C. elegans. Cell, 1998, 94, 635-645.	13.5	340
241	Natural Variation in a Neuropeptide Y Receptor Homolog Modifies Social Behavior and Food Response in C. elegans. Cell, 1998, 94, 679-689.	13.5	737
242	lin-35 and lin-53, Two Genes that Antagonize a C. elegans Ras Pathway, Encode Proteins Similar to Rb and Its Binding Protein RbAp48. Cell, 1998, 95, 981-991.	13.5	317
243	Identification of the copper chaperone, CUC-1, inCaenorhabditis elegans: tissue specific co-expression with the copper transporting ATPase, CUA-1. FEBS Letters, 1998, 440, 141-146.	1.3	40
244	Gastrulation initiation in Caenorhabditis elegans requires the function of gad-1, which encodes a protein with WD repeats. Developmental Biology, 1998, 198, 253-265.	0.9	10
245	The GATA-factor elt-2 is essential for formation of the Caenorhabditis elegans intestine. Developmental Biology, 1998, 198, 286-302.	0.9	260
246	Caenorhabditis elegans as a model for parasitic nematodes. International Journal for Parasitology, 1998, 28, 395-411.	1.3	156
247	Post-embryonic expression pattern of C. elegans let-60 ras reporter constructs. Mechanisms of Development, 1998, 72, 179-182.	1.7	24
248	A Model of Elegance. American Journal of Human Genetics, 1998, 63, 955-961.	2.6	22
249	MAP Kinase Signaling Specificity Mediated by the LIN-1 Ets/LIN-31 WH Transcription Factor Complex during C. elegans Vulval Induction. Cell, 1998, 93, 569-580.	13.5	189
250	Expression Pattern of theC. elegansp21-Activated Protein Kinase, CePAK. Biochemical and Biophysical Research Communications, 1998, 245, 177-184.	1.0	8
251	Regulation of the Caenorhabditis elegans gut cysteine protease gene cpr-1: requirement for GATA motifs. Journal of Molecular Biology, 1998, 283, 15-27.	2.0	54
252	Pioneer Axon Guidance by UNC-129, a C. elegans TGF , 1998, 281, 706-709.		194
253	Disruption of a Neuropeptide Gene, flp-1, Causes Multiple Behavioral Defects in Caenorhabditis elegans. , 1998, 281, 1686-1690.		164

# 254	ARTICLE Cytokinesis and Midzone Microtubule Organization in <i>Caenorhabditis elegans</i> Require the Kinesin-like Protein ZEN-4. Molecular Biology of the Cell, 1998, 9, 2037-2049.	IF 0.9	CITATIONS 261
255	RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 15502-15507.	3.3	535
256	<i>Caenorhabditis elegans</i> Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes and Development, 1998, 12, 2488-2498.	2.7	615
257	ncl-1 Is Required for the Regulation of Cell Size and Ribosomal RNA Synthesis in Caenorhabditis elegans. Journal of Cell Biology, 1998, 140, 1321-1329.	2.3	76
258	Negative regulation of the heat shock transcriptional response by HSBP1. Genes and Development, 1998, 12, 1962-1974.	2.7	198
259	ZYG-9, A Caenorhabditis elegans Protein Required for Microtubule Organization and Function, Is a Component of Meiotic and Mitotic Spindle Poles. Journal of Cell Biology, 1998, 141, 1159-1168.	2.3	165
260	Contribution of the GTPase Domain to the Subcellular Localization of Dynamin in the Nematode Caenorhabditis elegans. Molecular Biology of the Cell, 1998, 9, 3227-3239.	0.9	26
261	The <i>Caenorhabditis elegans unc-64</i> Locus Encodes a Syntaxin That Interacts Genetically with Synaptobrevin. Molecular Biology of the Cell, 1998, 9, 1235-1252.	0.9	227
262	[36] Using Caenorhabditis elegans to study vesicular transport. Methods in Enzymology, 1998, 296, 529-547.	0.4	5
263	Multiple Genes for Vacuolar-type ATPase Proteolipids inCaenorhabditis elegans. Journal of Biological Chemistry, 1998, 273, 22570-22576.	1.6	45
264	Structure, Expression, and Properties of an Atypical Protein Kinase C (PKC3) from Caenorhabditis elegans. Journal of Biological Chemistry, 1998, 273, 1130-1143.	1.6	35
265	Reprogramming of early embryonic blastomeres into endodermal progenitors by a <i>Caenorhabditis elegans</i> GATA factor. Genes and Development, 1998, 12, 3809-3814.	2.7	143
266	<i>clr-1</i> encodes a receptor tyrosine phosphatase that negatively regulates an FGF receptor signaling pathway in <i>Caenorhabditis elegans</i> . Genes and Development, 1998, 12, 1425-1437.	2.7	97
267	Functional Properties of the unc-64 Gene Encoding aCaenorhabditis elegans Syntaxin. Journal of Biological Chemistry, 1998, 273, 2192-2198.	1.6	93
268	<i>pha-4,</i> an <i>HNF-3</i> homolog, specifies pharyngeal organ identity in <i>Caenorhabditis elegans</i> . Genes and Development, 1998, 12, 1947-1952.	2.7	191
269	An ion channel of the degenerin/epithelial sodium channel superfamily controls the defecation rhythm in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 11775-11780.	3.3	67
270	Rescue of Caenorhabditis elegans pharyngeal development by a vertebrate heart specification gene. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 5072-5075.	3.3	75
271	Additional evidence for an eight-transmembrane-domain topology for Caenorhabditis elegans and human presenilins. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 7109-7114.	3.3	159

#	Article	IF	CITATIONS
272	Differential Expression of Individual Suppressor tRNA ^{Trp} Gene Family Members In Vitro and In Vivo in the Nematode <i>Caenorhabditis elegans</i> . Molecular and Cellular Biology, 1998, 18, 703-709.	1.1	13
273	<i>Caenorhabditis elegans</i> SUR-5, a Novel but Conserved Protein, Negatively Regulates LET-60 Ras Activity during Vulval Induction. Molecular and Cellular Biology, 1998, 18, 4556-4564.	1.1	134
274	AIR-2: An Aurora/Ipl1-related Protein Kinase Associated with Chromosomes and Midbody Microtubules Is Required for Polar Body Extrusion and Cytokinesis in Caenorhabditis elegans Embryos. Journal of Cell Biology, 1998, 143, 1635-1646.	2.3	290
275	A CBP/p300 homolog specifies multiple differentiation pathways in CaenorhabditisÂelegans. Genes and Development, 1998, 12, 943-955.	2.7	152
276	Synaptic Transmission Deficits in <i>Caenorhabditis elegans</i> Synaptobrevin Mutants. Journal of Neuroscience, 1998, 18, 70-80.	1.7	253
277	UNC-55, an Orphan Nuclear Hormone Receptor, Orchestrates Synaptic Specificity among Two Classes of Motor Neurons in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 1998, 18, 10438-10444.	1.7	76
278	unc-1: A stomatin homologue controls sensitivity to volatile anesthetics in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 8761-8766.	3.3	78
279	Serine Hydroxymethyltransferase Is Maternally Essential in Caenorhabditis elegans. Journal of Biological Chemistry, 1998, 273, 6066-6073.	1.6	19
280	EAT-4, a Homolog of a Mammalian Sodium-Dependent Inorganic Phosphate Cotransporter, Is Necessary for Glutamatergic Neurotransmission in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 1999, 19, 159-167.	1.7	328
281	The <i>Caenorhabditis elegans unc-49</i> Locus Encodes Multiple Subunits of a Heteromultimeric GABA Receptor. Journal of Neuroscience, 1999, 19, 5348-5359.	1.7	193
282	The <i>Caenorhabditis elegans</i> Gene <i>unc-25</i> Encodes Glutamic Acid Decarboxylase and Is Required for Synaptic Transmission But Not Synaptic Development. Journal of Neuroscience, 1999, 19, 539-548.	1.7	249
283	Coordinated Transcriptional Regulation of the <i>unc-25</i> Glutamic Acid Decarboxylase and the <i>unc-47</i> GABA Vesicular Transporter by the <i>Caenorhabditis elegans</i> UNC-30 Homeodomain Protein. Journal of Neuroscience, 1999, 19, 6225-6234.	1.7	151
284	Expression of Three Caenorhabditis elegans N-Acetylglucosaminyltransferase I Genes during Development. Journal of Biological Chemistry, 1999, 274, 288-297.	1.6	72
285	Block of an ether-a-go-go-Like K ⁺ Channel by Imipramine Rescues <i>egl-2</i> Excitation Defects in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 1999, 19, 9831-9840.	1.7	71
286	The <i>cat-1</i> Gene of <i>Caenorhabditis elegans</i> Encodes a Vesicular Monoamine Transporter Required for Specific Monoamine-Dependent Behaviors. Journal of Neuroscience, 1999, 19, 72-84.	1.7	240
287	Netrin UNC-6 and the Regulation of Branching and Extension of Motoneuron Axons from the Ventral Nerve Cord of <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 1999, 19, 7048-7056.	1.7	41
288	The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature, 1999, 401, 371-375.	13.7	324
289	Basolateral Localization of the <i>Caenorhabditis elegans</i> Epidermal Growth Factor Receptor in Epithelial Cells by the PDZ Protein LIN-10. Molecular Biology of the Cell, 1999, 10, 2087-2100.	0.9	107

#	Article	IF	CITATIONS
290	Caenorhabditis elegans Mediator complexes are required for developmental-specific transcriptional activation. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14990-14995.	3.3	59
291	Myotactin, a Novel Hypodermal Protein Involved in Muscle–Cell Adhesion inCaenorhabditis elegans. Journal of Cell Biology, 1999, 146, 659-672.	2.3	107
292	Role of a Class Dhc1b Dynein in Retrograde Transport of Ift Motors and Ift Raft Particles along Cilia, but Not Dendrites, in Chemosensory Neurons of Living Caenorhabditis elegans. Journal of Cell Biology, 1999, 147, 519-530.	2.3	276
293	UNC-11, a <i>Caenorhabditis elegans</i> AP180 Homologue, Regulates the Size and Protein Composition of Synaptic Vesicles. Molecular Biology of the Cell, 1999, 10, 2343-2360.	0.9	251
294	CLC Chloride Channels in Caenorhabditis elegans. Journal of Biological Chemistry, 1999, 274, 34238-34244.	1.6	55
295	Receptor-mediated Endocytosis in the <i>Caenorhabditis elegans</i> Oocyte. Molecular Biology of the Cell, 1999, 10, 4311-4326.	0.9	545
296	The STAR protein QKI-6 is a translational repressor. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12605-12610.	3.3	106
297	p24 Proteins and Quality Control of LIN-12 and GLP-1 Trafficking in Caenorhabditis elegans. Journal of Cell Biology, 1999, 145, 1165-1175.	2.3	91
298	Regulation of Metallothionein Gene Transcription. Journal of Biological Chemistry, 1999, 274, 29655-29665.	1.6	89
299	The PTEN tumor suppressor homolog in Caenorhabditis elegans regulates longevity and dauer formation in an insulin receptor-like signaling pathway. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7427-7432.	3.3	169
300	The Nonmuscle Myosin Regulatory Light Chain Gene mlc-4 Is Required for Cytokinesis, Anterior-Posterior Polarity, and Body Morphology during Caenorhabditis elegans Embryogenesis. Journal of Cell Biology, 1999, 146, 439-451.	2.3	191
301	Genomic Organization, Expression, and Analysis of the Troponin C Gene pat-10 of Caenorhabditis elegans. Journal of Cell Biology, 1999, 146, 193-202.	2.3	47
302	Two Heteromeric Kinesin Complexes in Chemosensory Neurons and Sensory Cilia of <i>Caenorhabditis elegans</i> . Molecular Biology of the Cell, 1999, 10, 345-360.	0.9	142
303	Caenorhabditis elegans Has Scores of hedgehogRelated Genes: Sequence and Expression Analysis. Genome Research, 1999, 9, 909-923.	2.4	122
304	An exon that prevents transport of a mature mRNA. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3813-3818.	3.3	31
305	Three proteins involved in Caenorhabditis elegans vulval invagination are similar to components of a glycosylation pathway. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 974-979.	3.3	128
306	A neomorphic syntaxin mutation blocks volatile-anesthetic action in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2479-2484.	3.3	100
307	Direct visualization of the elt-2 gut-specific GATA factor binding to a target promoter inside the living Caenorhabditis elegans embryo. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11883-11888.	3.3	105

#	Article	IF	CITATIONS
308	Visualization of synaptic specializations in live C. elegans with synaptic vesicle protein-GFP fusions. Journal of Neuroscience Methods, 1999, 89, 33-40.	1.3	201
309	kel-1 , a novel Kelch -related gene in Caenorhabditis elegans , is expressed in pharyngeal gland cells and is required for the feeding process. Genes To Cells, 1999, 4, 325-337.	0.5	15
310	MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans. Nature, 1999, 399, 793-797.	13.7	263
311	A C. elegans Ror receptor tyrosine kinase regulates cell motility and asymmetric cell division. Nature, 1999, 400, 881-885.	13.7	151
312	Mouse ULK2, a novel member of the UNC-51-like protein kinases: unique features of functional domains. Oncogene, 1999, 18, 5850-5859.	2.6	92
313	let-756, a C. elegans fgf essential for worm development. Oncogene, 1999, 18, 6741-6747.	2.6	47
314	C. elegans vulval development as a model system to study the cancer biology of EGFR signaling. , 1999, 18, 203-213.		33
315	Transformation of nematodes via ballistic DNA transfer. Molecular and Biochemical Parasitology, 1999, 103, 261-266.	0.5	55
316	Identification of promoter elements of parasite nematode genes in transgenic Caenorhabditis elegans. Molecular and Biochemical Parasitology, 1999, 103, 171-181.	0.5	50
317	Reciprocal EGF signaling back to the uterus from the induced C. elegans vulva coordinates morphogenesis of epithelia. Current Biology, 1999, 9, 237-246.	1.8	80
318	Role of netrin UNC-6 in patterning the longitudinal nerves ofCaenorhabditis elegans. Journal of Neurobiology, 1999, 39, 107-118.	3.7	31
319	unc-45 gene ofCaenorhabditis elegans encodes a muscle-specific tetratricopeptide repeat-containing protein. Cytoskeleton, 1999, 42, 163-177.	4.4	54
320	The year of the worm. BioEssays, 1999, 21, 105-109.	1.2	17
321	Similarity of the C. elegans Developmental Timing Protein LIN-42 to Circadian Rhythm Proteins. Science, 1999, 286, 1141-1146.	6.0	172
322	A Mutation in the C. elegans EXP-2 Potassium Channel That Alters Feeding Behavior. Science, 1999, 286, 2501-2504.	6.0	58
323	Identification ofEpi-1Locus as a Laminin α Chain Gene in the NematodeCaenorhabditis Elegansand Characterization ofEpi-1Mutant Alleles. DNA Sequence, 1999, 10, 207-217.	0.7	11
324	A Phenylalanine Hydroxylase Gene from the Nematode C. Elegans is Expressed in the Hypodermis. Journal of Neurogenetics, 1999, 13, 157-180.	0.6	22
325	Multiple Ephrins Control Cell Organization in C. elegans Using Kinase-Dependent and -Independent Functions of the VAB-1 Eph Receptor. Molecular Cell, 1999, 4, 903-913.	4.5	101

#	Article	IF	CITATIONS
326	Fluoxetine-Resistant Mutants in C. elegans Define a Novel Family of Transmembrane Proteins. Molecular Cell, 1999, 4, 143-152.	4.5	98
327	Neuronal Control of Locomotion in C. elegans Is Modified by a Dominant Mutation in the GLR-1 Ionotropic Glutamate Receptor. Neuron, 1999, 24, 347-361.	3.8	255
328	A Mouse Serine/Threonine Kinase Homologous to C. elegans UNC51 Functions in Parallel Fiber Formation of Cerebellar Granule Neurons. Neuron, 1999, 24, 833-846.	3.8	126
329	Ballistic transformation of Caenorhabditis elegans. Gene, 1999, 229, 31-35.	1.0	98
330	Identification and characterization of a serine hydroxymethyltransferase isoform in Caenorhabditis briggsae. Gene, 1999, 230, 137-144.	1.0	3
331	Disruption of clh-1, a chloride channel gene, results in a wider body of Caenorhabditis elegans. Journal of Molecular Biology, 1999, 294, 347-355.	2.0	29
332	C. elegans Dynamin-Related Protein DRP-1 Controls Severing of the Mitochondrial Outer Membrane. Molecular Cell, 1999, 4, 815-826.	4.5	593
333	Defense mechanisms and disease prevention in farmed marine invertebrates. Aquaculture, 1999, 172, 125-145.	1.7	315
334	MIC-13 Positions Migrating Cells along the Anteroposterior Body Axis of C. elegans. Cell, 1999, 98, 25-36.	13.5	74
335	WRM-1 Activates the LIT-1 Protein Kinase to Transduce Anterior/Posterior Polarity Signals in C. elegans. Cell, 1999, 97, 717-726.	13.5	250
336	The Inositol Trisphosphate Receptor Regulates a 50-Second Behavioral Rhythm in C. elegans. Cell, 1999, 98, 757-767.	13.5	195
337	Lateral Signaling Mediated by Axon Contact and Calcium Entry Regulates Asymmetric Odorant Receptor Expression in C. elegans. Cell, 1999, 99, 387-398.	13.5	261
338	The rde-1 Gene, RNA Interference, and Transposon Silencing in C. elegans. Cell, 1999, 99, 123-132.	13.5	1,180
339	The Ephrin VAB-2/EFN-1 Functions in Neuronal Signaling to Regulate Epidermal Morphogenesis in C. elegans. Cell, 1999, 99, 781-790.	13.5	154
340	CLK-1 controls respiration, behavior and aging in the nematode Caenorhabditis elegans. EMBO Journal, 1999, 18, 1783-1792.	3.5	250
341	Structure and promoter activity of the 5′ flanking region of ace-1, the gene encoding acetylcholinesterase of class A in Caenorhabditis elegans. Journal of Molecular Biology, 1999, 290, 951-966.	2.0	42
342	Neuronal Expression of a Caenorhabditis elegans elav-like Gene and the Effect of Its Ectopic Expression. Biochemical and Biophysical Research Communications, 1999, 260, 646-652.	1.0	21
343	ACaenorhabditis elegansHomologue ofhunchbackIs Required for Late Stages of Development but Not Early Embryonic Patterning. Developmental Biology, 1999, 205, 240-253.	0.9	68

#	Article	IF	CITATIONS
344	ELT-3: ACaenorhabditis elegansGATA Factor Expressed in the Embryonic Epidermis during Morphogenesis. Developmental Biology, 1999, 208, 265-280.	0.9	93
345	TheCaenorhabditis elegans mel-11Myosin Phosphatase Regulatory Subunit Affects Tissue Contraction in the Somatic Gonad and the Embryonic Epidermis and Genetically Interacts with the Rac Signaling Pathway. Developmental Biology, 1999, 209, 111-127.	0.9	111
346	The Timing oflin-4RNA Accumulation Controls the Timing of Postembryonic Developmental Events inCaenorhabditis elegans. Developmental Biology, 1999, 210, 87-95.	0.9	141
347	Negative regulation of male development in Caenorhabditis elegans by a protein-protein interaction between TRA-2A and FEM-3. Genes and Development, 1999, 13, 1453-1463.	2.7	100
348	Chapter 3.3.6 Forward genetic approaches in the analysis of Caenorhabditis elegans. Handbook of Behavioral Neuroscience, 1999, , 569-584.	0.0	0
349	Chapter 3.3.7 Analyzing neuropeptide function in Caenorhabditis elegans by reverse genetics. Handbook of Behavioral Neuroscience, 1999, , 585-601.	0.0	0
350	SL1 <i>trans</i> Splicing and 3′-End Formation in a Novel Class of <i>Caenorhabditis elegans</i> Operon. Molecular and Cellular Biology, 1999, 19, 376-383.	1.1	39
351	GAS-1Â. Anesthesiology, 1999, 90, 545-554.	1.3	147
352	Alterations in the Conserved SL1 <i>trans</i> -Spliced Leader of <i>Caenorhabditis elegans</i> Demonstrate Flexibility in Length and Sequence Requirements In Vivo. Molecular and Cellular Biology, 1999, 19, 1892-1900.	1.1	18
353	Kinase Suppressor of Ras Forms a Multiprotein Signaling Complex and Modulates MEK Localization. Molecular and Cellular Biology, 1999, 19, 5523-5534.	1.1	201
354	A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes and Development, 1999, 13, 1438-1452.	2.7	375
355	The polo-like kinase PLK-1 is required for nuclear envelope breakdown and the completion of meiosis inCaenorhabditis elegans. Genesis, 2000, 26, 26-41.	0.8	134
356	The sequence and associated null phenotype of aC. elegans neurocalcin-like gene. Genesis, 2000, 26, 234-239.	0.8	7
357	MSI-1, a neural RNA-binding protein, is involved in male mating behaviour inCaenorhabditis elegans. Genes To Cells, 2000, 5, 885-895.	0.5	43
358	Sperm-mediated transformation of the honey bee, Apis mellifera. Insect Molecular Biology, 2000, 9, 625-634.	1.0	56
359	Identification and characterization of the high-affinity choline transporter. Nature Neuroscience, 2000, 3, 120-125.	7.1	305
360	SLO-2, a K+ channel with an unusual Clâ^' dependence. Nature Neuroscience, 2000, 3, 771-779.	7.1	108
361	Genetic analysis of ETS genes in C. elegans. Oncogene, 2000, 19, 6400-6408.	2.6	33

#	Article	IF	CITATIONS
362	CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans. Nature Cell Biology, 2000, 2, 131-136.	4.6	388
363	The Ras-MAPK pathway is important for olfaction in Caenorhabditis elegans. Nature, 2000, 404, 289-293.	13.7	75
364	A genetic link between co-suppression and RNA interference in C. elegans. Nature, 2000, 404, 296-298.	13.7	199
365	Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature, 2000, 408, 331-336.	13.7	854
366	MOD-1 is a serotonin-gated chloride channel that modulates locomotory behaviour in C. elegans. Nature, 2000, 408, 470-475.	13.7	212
367	The Caenorhabditis elegans heterochronic gene lin-29 coordinates the vulval–uterine–epidermal connections. Current Biology, 2000, 10, 1479-1488.	1.8	53
368	RNAi – Prospects for a General Technique for Determining Gene Function. Parasitology Today, 2000, 16, 347-349.	3.1	70
369	Genomic and genetic research on bursate nematodes: significance, implications and prospects. International Journal for Parasitology, 2000, 30, 509-534.	1.3	116
370	Expression ofram-5in the structural cell is required for sensory ray morphogenesis inCaenorhabditis elegansmale tail. EMBO Journal, 2000, 19, 3542-3555.	3.5	29
371	The Rab3 GDP/GTP exchange factor homolog AEX-3 has a dual function in synaptic transmission. EMBO Journal, 2000, 19, 4806-4816.	3.5	50
372	A Caenorhabditis elegans MAP kinase kinase, MEK-1, is involved in stress responses. EMBO Journal, 2000, 19, 5148-5156.	3.5	87
373	Graded expression of ceh-14 reporters in the hypodermis is induced by a gonadal signal. Development Genes and Evolution, 2000, 210, 564-569.	0.4	4
374	Mutational accessibility of essential genes on chromosome I(left) in Caenorhabditis elegans. Molecular Genetics and Genomics, 2000, 263, 239-252.	2.4	22
375	Into Ion Channel and Transporter Function. Caenorhabditis elegans CIC-type chloride channels: novel variants and functional expression. American Journal of Physiology - Cell Physiology, 2000, 279, C2052-C2066.	2.1	40
376	Model organisms: comparative physiology or just physiology?. American Journal of Physiology - Cell Physiology, 2000, 279, C2050-C2051.	2.1	6
377	Mutants of a Temperature-Sensitive Two-P Domain Potassium Channel. Journal of Neuroscience, 2000, 20, 7517-7524.	1.7	56
378	A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Human Molecular Genetics, 2000, 9, 869-877.	1.4	222
379	Neurogenetics of vesicular transporters inC. elegans. FASEB Journal, 2000, 14, 2414-2422.	0.2	42

#	Article	IF	CITATIONS
380	trans Splicing of Polycistronic Caenorhabditis elegans Pre-mRNAs: Analysis of the SL2 RNA. Molecular and Cellular Biology, 2000, 20, 6659-6667.	1.1	32
381	LIN-5 Is a Novel Component of the Spindle Apparatus Required for Chromosome Segregation and Cleavage Plane Specification in Caenorhabditis elegans. Journal of Cell Biology, 2000, 148, 73-86.	2.3	96
382	Mutations in β-Spectrin Disrupt Axon Outgrowth and Sarcomere Structure. Journal of Cell Biology, 2000, 149, 931-942.	2.3	112
383	Recognition and Silencing of Repeated DNA. Annual Review of Genetics, 2000, 34, 187-204.	3.2	99
384	Essential Roles for <i>Caenorhabditis elegans</i> Lamin Gene in Nuclear Organization, Cell Cycle Progression, and Spatial Organization of Nuclear Pore Complexes. Molecular Biology of the Cell, 2000, 11, 3937-3947.	0.9	378
385	Synapto-pHluorins: Chimeras between pH-sensitive mutants of green fluorescent protein and synaptic vesicle membrane proteins as reporters of neurotransmitter release. Methods in Enzymology, 2000, 327, 522-546.	0.4	36
386	Distinct and Redundant Functions of μ1 Medium Chains of the AP-1 Clathrin-Associated Protein Complex in the Nematode <i>Caenorhabditis elegans</i> . Molecular Biology of the Cell, 2000, 11, 2743-2756.	0.9	61
387	Caenorhabditis elegans Unc-45 Is a Component of Muscle Thick Filaments and Colocalizes with Myosin Heavy Chain B, but Not Myosin Heavy Chain a. Journal of Cell Biology, 2000, 148, 375-384.	2.3	69
388	Requirements of Multiple Domains of SLI-1, aCaenorhabditis elegansHomologue of c-Cbl, and an Inhibitory Tyrosine in LET-23 in Regulating Vulval Differentiation. Molecular Biology of the Cell, 2000, 11, 4019-4031.	0.9	40
389	Expression of Multiple UNC-13 Proteins in the <i>Caenorhabditis elegans</i> Nervous System. Molecular Biology of the Cell, 2000, 11, 3441-3452.	0.9	80
390	Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses. Genes and Development, 2000, 14, 3191-3203.	2.7	349
391	Cyk-4. Journal of Cell Biology, 2000, 149, 1391-1404.	2.3	356
392	Neuronal Cell Shape and Neurite Initiation Are Regulated by the Ndr Kinase SAX-1, a Member of the Orb6/COT-1/Warts Serine/Threonine Kinase Family. Molecular Biology of the Cell, 2000, 11, 3177-3190.	0.9	90
393	Structure and Function Analysis of LIN-14, a Temporal Regulator of Postembryonic Developmental Events in Caenorhabditis elegans. Molecular and Cellular Biology, 2000, 20, 2285-2295.	1.1	47
394	A C. elegans mediator protein confers regulatory selectivity on lineage-specific expression of a transcription factor gene. Genes and Development, 2000, 14, 2161-2172.	2.7	83
395	The Diabetes Autoantigen ICA69 and Its <i>Caenorhabditis elegans</i> Homologue, <i>ric-19</i> , Are Conserved Regulators of Neuroendocrine Secretion. Molecular Biology of the Cell, 2000, 11, 3277-3288.	0.9	40
396	Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5750-5755.	3.3	358
397	SEL-8, a nuclear protein required for LIN-12 and GLP-1 signaling in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 7877-7881.	3.3	61

#	Article	IF	CITATIONS
398	The genetics of ivermectin resistance in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2674-2679.	3.3	403
399	Metaphase to Anaphase (mat) Transition–Defective Mutants inCaenorhabditis elegans. Journal of Cell Biology, 2000, 151, 1469-1482.	2.3	159
400	A Novel Member of the Tob Family of Proteins Controls Sexual Fate in Caenorhabditis elegans Germ Cells. Developmental Biology, 2000, 217, 77-90.	0.9	72
401	Targets of TGF-β Signaling in Caenorhabditis elegans Dauer Formation. Developmental Biology, 2000, 217, 192-204.	0.9	140
402	mag-1, a Homolog of Drosophila mago nashi, Regulates Hermaphrodite Germ-Line Sex Determination in Caenorhabditis elegans. Developmental Biology, 2000, 218, 172-182.	0.9	54
403	CHE-3, a Cytosolic Dynein Heavy Chain, Is Required for Sensory Cilia Structure and Function in Caenorhabditis elegans. Developmental Biology, 2000, 221, 295-307.	0.9	183
404	SMA-3 Smad Has Specific and Critical Functions in DBL-1/SMA-6 TGFÎ ² -Related Signaling. Developmental Biology, 2000, 223, 70-76.	0.9	39
405	The Caenorhabditis elegans Ldb/NLI/Clim Orthologue ldb-1 Is Required for Neuronal Function. Developmental Biology, 2000, 226, 45-56.	0.9	23
406	Mechanisms Controlling Sex Myoblast Migration in Caenorhabditis elegans Hermaphrodites. Developmental Biology, 2000, 226, 137-151.	0.9	61
407	DNA Replication Defects Delay Cell Division and Disrupt Cell Polarity in Early Caenorhabditis elegans Embryos. Developmental Biology, 2000, 228, 225-238.	0.9	122
408	Microwave radiation induces a heat-shock response and enhances growth in the nematode Caenorhabditis elegans. IEEE Transactions on Microwave Theory and Techniques, 2000, 48, 2076-2081.	2.9	19
409	Mutational analysis of bli-4/kpc-4 reveals critical residues required for proprotein convertase function in C. elegans. Gene, 2000, 252, 15-25.	1.0	19
410	The C. elegans apoptotic nuclease NUC-1 is related in sequence and activity to mammalian DNase II. Gene, 2000, 252, 147-154.	1.0	42
411	The C. elegans gene lin-9,which acts in an Rb-related pathway, is required for gonadal sheath cell development and encodes a novel protein. Gene, 2000, 254, 253-263.	1.0	48
412	Transgenic organisms in evolutionary ecology. Trends in Ecology and Evolution, 2000, 15, 207-211.	4.2	19
413	RIC-8 (Synembryn). Neuron, 2000, 27, 289-299.	3.8	139
414	The LIM Homeobox Gene ceh-14 Confers Thermosensory Function to the AFD Neurons in Caenorhabditis elegans. Neuron, 2000, 25, 587-597.	3.8	77
415	Regulation of Presynaptic Terminal Organization by C. elegans RPM-1, a Putative Guanine Nucleotide Exchanger with a RING-H2 Finger Domain. Neuron, 2000, 26, 331-343.	3.8	216

ARTICLE IF CITATIONS # ARK-1 Inhibits EGFR Signaling in C. elegans. Molecular Cell, 2000, 6, 65-75. 4.5 98 416 The Survivin-like C. elegans BIR-1 Protein Acts with the Aurora-like Kinase AIR-2 to Affect Chromosomes 4.5 and the Spindle Midzone. Molecular Cell, 2000, 6, 211-223. Components of the SWI/SNF Complex Are Required for Asymmetric Cell Division in C. elegans. 418 4.5 85 Molecular Cell, 2000, 6, 617-624. The TBP-like Factor CeTLF Is Required to Activate RNA Polymerase II Transcription during C. elegans 109 Embryogenesis. Molecular Cell, 2000, 6, 705-713. MEX-5 and MEX-6 Function to Establish Soma/Germline Asymmetry in Early C. elegans Embryos. 420 4.5 219 Molecular Cell, 2000, 5, 671-682. The RFX-Type Transcription Factor DAF-19 Regulates Sensory Neuron Cilium Formation in C. elegans. Molecular Cell, 2000, 5, 411-421. 4.5 314 The ced-8 Gene Controls the Timing of Programmed Cell Deaths in C. elegans. Molecular Cell, 2000, 5, 422 4.5 122 423-433. SPK-1, a C. elegans SR protein kinase homologue, is essential for embryogenesis and required for 1.7 38 germline development. Mechanisms of Development, 2000, 99, 51-64. Analysis of Programmed Cell Death in the Nematode Caenorhabditis elegans. Methods in Enzymology, 424 0.4 12 2000, 322, 76-88. The Unc-119 Family of Neural Proteins is Functionally Conserved Between Humans, <i>Drosophila </i>and <i>C. Elegans </i>. Journal of Neurogenetics, 2000, 13, 191-212. Protein interaction surface of the POU transcription factor UNC-86 selectively used in touch 426 3.5 21 neurons. EMBO Journal, 2000, 19, 3694-3703. The germline in C. elegans: Origins, proliferation, and silencing. International Review of Cytology, 6.2 2001, 203, 139-185. Acetylcholinesterase genes in the nematode Caenorhabditis elegans. International Review of Cytology, 428 6.2 43 2001, 209, 207-239. A Systematic Gene Expression Screen of Caenorhabditis elegans Cytochrome P450 Genes Reveals CYP35 429 1.4 133 as Strongly Xenobiotic Inducible. Archives of Biochemistry and Biophysics, 2001, 395, 158-168. Important Role of Junctophilin in Nematode Motor Function. Biochemical and Biophysical Research 430 1.0 18 Communications, 2001, 289, 234-239. Regulation of Cell Fate in Caenorhabditis elegans by a Novel Cytoplasmic Polyadenylation Element 68 Binding Protein. Developmental Biology, 2001, 229, 537-553. Early Morphogenesis of the Caenorhabditis elegans Pharynx. Developmental Biology, 2001, 233, 482-494. 432 0.9 84 The Zinc Finger Protein DIE-1 Is Required for Late Events during Epithelial Cell Rearrangement in C. elegans. Developmental Biology, 2001, 236, 165-180.

#	Article	IF	CITATIONS
434	The Caenorhabditis elegans Six/sine oculis Class Homeobox Gene ceh-32 Is Required for Head Morphogenesis. Developmental Biology, 2001, 236, 289-303.	0.9	44
435	The SEL-12 Presenilin Mediates Induction of the Caenorhabditis elegans Uterine π Cell Fate. Developmental Biology, 2001, 237, 173-182.	0.9	28
436	Coordination of ges-1 Expression Between the Caenorhabditis Pharynx and Intestine. Developmental Biology, 2001, 239, 350-363.	0.9	24
437	Hypodermal Expression of Caenorhabditis elegans TGF-β Type I Receptor SMA-6 Is Essential for the Growth and Maintenance of Body Length. Developmental Biology, 2001, 240, 32-45.	0.9	61
438	APH-2/Nicastrin Functions in LIN-12/Notch Signaling in the Caenorhabditis elegans Somatic Gonad. Developmental Biology, 2001, 240, 654-661.	0.9	46
439	The third and fourth tropomyosin isoforms of Caenorhabditis elegans are expressed in the pharynx and intestines and are essential for development and morphology. Journal of Molecular Biology, 2001, 313, 525-537.	2.0	47
440	Synaptic exocytosis and nervous system development impaired in Caenorhabditis elegans unc-13 mutants. Neuroscience, 2001, 104, 287-297.	1.1	12
441	The C. elegans gon-2 gene encodes a putative TRP cation channel protein required for mitotic cell cycle progression. Gene, 2001, 266, 103-110.	1.0	38
442	Molecular identification of smg-4 , required for mRNA surveillance in C. elegans. Gene, 2001, 268, 153-164.	1.0	27
443	zyg-8, a Gene Required for Spindle Positioning in C. elegans, Encodes a Doublecortin-Related Kinase that Promotes Microtubule Assembly. Developmental Cell, 2001, 1, 363-375.	3.1	98
444	C. elegans CED-12 Acts in the Conserved CrkII/DOCK180/Rac Pathway to Control Cell Migration and Cell Corpse Engulfment. Developmental Cell, 2001, 1, 491-502.	3.1	160
445	Ca2+ Signaling via the Neuronal Calcium Sensor-1 Regulates Associative Learning and Memory in C. elegans. Neuron, 2001, 30, 241-248.	3.8	205
446	SLO-1 Potassium Channels Control Quantal Content of Neurotransmitter Release at the C. elegans Neuromuscular Junction. Neuron, 2001, 32, 867-881.	3.8	207
447	UNC-16, a JNK-Signaling Scaffold Protein, Regulates Vesicle Transport in C. elegans. Neuron, 2001, 32, 787-800.	3.8	214
448	The C. elegans E2F- and DP-Related Proteins Are Required for Embryonic Asymmetry and Negatively Regulate Ras/MAPK Signaling. Molecular Cell, 2001, 7, 451-460.	4.5	94
449	dpl-1 DP and efl-1 E2F Act with lin-35 Rb to Antagonize Ras Signaling in C. elegans Vulval Development. Molecular Cell, 2001, 7, 461-473.	4.5	165
450	Restriction of Mesendoderm to a Single Blastomere by the Combined Action of SKN-1 and a GSK-3Î ² Homolog Is Mediated by MED-1 and -2 in C. elegans. Molecular Cell, 2001, 7, 475-485.	4.5	174
451	The MED-7 transcriptional mediator encoded bylet-49is required for gonad and germ cell development inCaenorhabditis elegans. FEBS Letters, 2001, 508, 305-308.	1.3	10

#	Article	IF	CITATIONS
452	CED-1 Is a Transmembrane Receptor that Mediates Cell Corpse Engulfment in C. elegans. Cell, 2001, 104, 43-56.	13.5	542
453	Regulation of Distinct Muscle Behaviors Controls the C. elegans Male's Copulatory Spicules during Mating. Cell, 2001, 107, 777-788.	13.5	104
454	Making Sense of Eukaryotic DNA Replication Origins. Science, 2001, 294, 96-100.	6.0	278
455	Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 14000-14005.	3.3	307
456	Interplay between AAUAAA and the trans-splice site in processing of a Caenorhabditis elegans operon pre-mRNA. Rna, 2001, 7, 176-181.	1.6	20
457	Mutations in the <i>Caenorhabditis elegans</i> Serotonin Reuptake Transporter MOD-5 Reveal Serotonin-Dependent and -Independent Activities of Fluoxetine. Journal of Neuroscience, 2001, 21, 5871-5884.	1.7	150
458	Conserved Function of <i>Caenorhabditis elegans</i> UNC-30 and Mouse Pitx2 in Controlling GABAergic Neuron Differentiation. Journal of Neuroscience, 2001, 21, 6810-6819.	1.7	61
459	Direct Visualization of the Movement of the Monomeric Axonal Transport Motor UNC-104 along Neuronal Processes in Living <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2001, 21, 3749-3755.	1.7	97
460	A Conserved Mechanism of Synaptogyrin Localization. Molecular Biology of the Cell, 2001, 12, 2275-2289.	0.9	23
461	A cGMP-dependent protein kinase is implicated in wild-type motility in C. elegans. Journal of Neurochemistry, 2001, 76, 1177-1187.	2.1	30
462	High copy arrays containing a sequence upstream of mec-3 alter cell migration and axonal morphology in C. elegans. BMC Developmental Biology, 2001, 1, 2.	2.1	6
463	Heat shock and developmental expression ofhsp83in the filarial nematodeBrugia pahangi. FEBS Journal, 2001, 268, 5808-5815.	0.2	23
464	Characterization of a novel gene expressed in neuromuscular tissues and centrosomes inCaenorhabditis elegans. Cell Biochemistry and Function, 2001, 19, 79-88.	1.4	0
465	IDA-1, aCaenorhabditis elegans homolog of the diabetic autoantigens IA-2 and phogrin, is expressed in peptidergic neurons in the worm. Journal of Comparative Neurology, 2001, 429, 127-143.	0.9	69
466	Postembryonic expression ofCaenorhabditis elegans mab-21 and its requirement in sensory ray differentiation. Developmental Dynamics, 2001, 221, 422-430.	0.8	27
467	Caenorhabditis elegans p53: Role in Apoptosis, Meiosis, and Stress Resistance. Science, 2001, 294, 591-595.	6.0	440
468	Mechanotransduction in Caenorhabditis elegans: The Role of DEG/ENaC Ion Channels. Cell Biochemistry and Biophysics, 2001, 35, 01-18.	0.9	37
469	A putative GDP–GTP exchange factor is required for development of the excretory cell in <i>Caenorhabditis elegans</i> . EMBO Reports, 2001, 2, 530-535.	2.0	35

#	Article	IF	CITATIONS
470	Positive and negative regulation of Raf kinase activity and function by phosphorylation. EMBO Journal, 2001, 20, 3716-3727.	3.5	209
471	Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nature Genetics, 2001, 28, 160-164.	9.4	584
472	Regulation of endocytosis by CUP-5, the Caenorhabditis elegans mucolipin-1 homolog. Nature Genetics, 2001, 28, 64-68.	9.4	201
473	Caenorhabditis elegans auxilin: a J-domain protein essential for clathrin-mediated endocytosis in vivo. Nature Cell Biology, 2001, 3, 215-219.	4.6	91
474	Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature, 2001, 410, 227-230.	13.7	1,799
475	Evidence that RME-1, a conserved C. elegans EH-domain protein, functions in endocytic recycling. Nature Cell Biology, 2001, 3, 573-579.	4.6	248
476	The Eps15 C. elegans homologue EHS-1 is implicated in synaptic vesicle recycling. Nature Cell Biology, 2001, 3, 755-760.	4.6	65
477	Expression of Haemonchus contortus pepsinogen in Caenorhabditis elegans. Molecular and Biochemical Parasitology, 2001, 112, 125-131.	0.5	35
478	Functional analysis of leucine aminopeptidase in Caenorhabditis elegans Molecular and Biochemical Parasitology, 2001, 113, 223-232.	0.5	24
479	Gene structure of the extracellular glutathione S-transferase from Onchocerca volvulus and its overexpression and promoter analysis in transgenic Caenorhabditis elegans. Molecular and Biochemical Parasitology, 2001, 117, 145-154.	0.5	23
480	Two RGS proteins that inhibit Gαo and Gαq signaling in C. elegans neurons require a Gβ5-like subunit for function. Current Biology, 2001, 11, 222-231.	1.8	86
481	Completion of cytokinesis in C. elegans requires a brefeldin A-sensitive membrane accumulation at the cleavage furrow apex. Current Biology, 2001, 11, 735-746.	1.8	211
482	A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Current Biology, 2001, 11, 809-821.	1.8	376
483	C. elegans clk-2, a gene that limits life span, encodes a telomere length regulator similar to yeast telomere binding protein Tel2p. Current Biology, 2001, 11, 1706-1710.	1.8	48
484	Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Current Biology, 2001, 11, 1950-1957.	1.8	459
485	SQV-7, a protein involved in Caenorhabditis elegans epithelial invagination and early embryogenesis, transports UDP-glucuronic acid, UDP-N- acetylgalactosamine, and UDP-galactose. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3738-3743.	3.3	122
486	Heat Shock Protein Accumulation Is Upregulated in a Long-Lived Mutant of Caenorhabditis elegans. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2001, 56, B281-B287.	1.7	112
487	Asymmetrically distributed oligonucleotide repeats in the Caenorhabditis elegans genome sequence that map to regions important for meiotic chromosome segregation. Nucleic Acids Research, 2001, 29, 2920-2926.	6.5	21

#	Article	IF	CITATIONS
488	Intercistronic Region Required for Polycistronic Pre-mRNA Processing in Caenorhabditis elegans. Molecular and Cellular Biology, 2001, 21, 1111-1120.	1.1	56
489	Four Subunit a Isoforms ofCaenorhabditis elegans Vacuolar H+-ATPase. Journal of Biological Chemistry, 2001, 276, 33079-33085.	1.6	118
490	Roles for βpat-3 Integrins in Development and Function ofCaenorhabditis elegans Muscles and Gonads. Journal of Biological Chemistry, 2001, 276, 36404-36410.	1.6	80
491	The Caenorhabditis elegans hif-1 gene encodes a bHLH-PAS protein that is required for adaptation to hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7916-7921.	3.3	270
492	Mitochondrial Expression and Function of GAS-1 in Caenorhabditis elegans. Journal of Biological Chemistry, 2001, 276, 20551-20558.	1.6	147
493	The Caenorhabditis elegans unc-32 Gene Encodes Alternative Forms of a Vacuolar ATPase aSubunit. Journal of Biological Chemistry, 2001, 276, 11913-11921.	1.6	69
494	A DAF-1-binding protein BRA-1 is a negative regulator of DAF-7 TGF-Â signaling. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6284-6288.	3.3	29
495	RME-8, a Conserved J-Domain Protein, Is Required for Endocytosis in <i>Caenorhabditis elegans</i> . Molecular Biology of the Cell, 2001, 12, 2011-2021.	0.9	151
496	Functional Analysis of Kinetochore Assembly in Caenorhabditis elegans. Journal of Cell Biology, 2001, 153, 1209-1226.	2.3	416
497	MUP-4 is a novel transmembrane protein with functions in epithelial cell adhesion in Caenorhabditis elegans. Journal of Cell Biology, 2001, 154, 403-414.	2.3	61
498	The Nc1/Endostatin Domain of Caenorhabditis elegans Type Xviii Collagen Affects Cell Migration and Axon Guidance. Journal of Cell Biology, 2001, 152, 1219-1232.	2.3	156
499	Complementary expression patterns of six nonessential Caenorhabditis elegans core 2/I N-acetylglucosaminyltransferase homologues. Clycobiology, 2001, 11, 979-988.	1.3	23
500	Functional comparison of the nematode Hox gene lin-39 in C. elegans and P. pacificus reveals evolutionary conservation of protein function despite divergence of primary sequences. Genes and Development, 2001, 15, 2161-2172.	2.7	24
501	Cytoplasmic Dynein Light Intermediate Chain Is Required for Discrete Aspects of Mitosis in <i>Caenorhabditis elegans</i> . Molecular Biology of the Cell, 2001, 12, 2921-2933.	0.9	57
502	Inhibition of touch cell fate by egl-44 and egl-46 in C. elegans. Genes and Development, 2001, 15, 789-802.	2.7	79
503	Oxidative stress causes abnormal accumulation of familial amyotrophic lateral sclerosis-related mutant SOD1 in transgenic Caenorhabditis elegans. Human Molecular Genetics, 2001, 10, 2013-2023.	1.4	104
504	Molecular Cloning of a cDNA Encoding an Amphid-Secreted Putative Avirulence Protein from the Root-Knot Nematode Meloidogyne incognita. Molecular Plant-Microbe Interactions, 2001, 14, 72-79.	1.4	119
505	Functional Requirement for Histone Deacetylase 1 in Caenorhabditis elegans Gonadogenesis. Molecular and Cellular Biology, 2002, 22, 3024-3034.	1.1	71

#	Article	IF	CITATIONS
506	The Caenorhabditis elegans ADAMTS Family Gene adt-1 Is Necessary for Morphogenesis of the Male Copulatory Organs. Journal of Biological Chemistry, 2002, 277, 12228-12236.	1.6	13
507	Mechanisms of AIF-Mediated Apoptotic DNA Degradation in Caenorhabditis elegans. Science, 2002, 298, 1587-1592.	6.0	361
508	Regulation of sex-specific differentiation and mating behavior in C. elegans by a new member of the DM domain transcription factor family. Genes and Development, 2002, 16, 2390-2402.	2.7	95
509	The GEX-2 and GEX-3 proteins are required for tissue morphogenesis and cell migrations in C. elegans. Genes and Development, 2002, 16, 620-632.	2.7	112
510	Induction of RNA interference in Caenorhabditis elegans by RNAs derived from plants exhibiting post-transcriptional gene silencing. Nucleic Acids Research, 2002, 30, 1688-1694.	6.5	33
511	APH-1 is a multipass membrane protein essential for the Notch signaling pathway in Caenorhabditis elegans embryos. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 775-779.	3.3	391
512	The Caenorhabditis elegans vulval morphogenesis gene sqv-4 encodes a UDP-glucose dehydrogenase that is temporally and spatially regulated. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14224-14229.	3.3	70
513	Molecular Cloning and Characterization of a Novel α1,2-Fucosyltransferase (CE2FT-1) from Caenorhabditis elegans. Journal of Biological Chemistry, 2002, 277, 39823-39832.	1.6	30
514	Getting the right dose of repression. Genes and Development, 2002, 16, 769-772.	2.7	3
515	Egg Shell Collagen Formation in Caenorhabditis elegans Involves a Novel Prolyl 4-Hydroxylase Expressed in Spermatheca and Embryos and Possessing Many Unique Properties. Journal of Biological Chemistry, 2002, 277, 18238-18243.	1.6	23
516	The Caenorhabditis elegans Gene,gly-2, Can Rescue the N-Acetylglucosaminyltransferase V Mutation of Lec4 Cells. Journal of Biological Chemistry, 2002, 277, 22829-22838.	1.6	34
517	The NHX Family of Na+-H+ Exchangers in Caenorhabditis elegans. Journal of Biological Chemistry, 2002, 277, 29036-29044.	1.6	74
518	Biochemical and molecular characterization of two cytidine deaminases in the nematode Caenorhabditis elegans. Biochemical Journal, 2002, 365, 99-107.	1.7	6
519	Regulation of the Different Chromatin States of Autosomes and X Chromosomes in the Germ Line of C. elegans. Science, 2002, 296, 2235-2238.	6.0	113
520	Caenorhabditis elegansInositol 5-Phosphatase Homolog Negatively Regulates Inositol 1,4,5-Triphosphate Signaling in Ovulation. Molecular Biology of the Cell, 2002, 13, 1641-1651.	0.9	77
521	The SQV-1 UDP-glucuronic acid decarboxylase and the SQV-7 nucleotide-sugar transporter may act in the Golgi apparatus to affect Caenorhabditis elegans vulval morphogenesis and embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14218-14223.	3.3	84
522	The T-box factor MLS-1 acts as a molecular switch during specification of nonstriated muscle in C. elegans. Genes and Development, 2002, 16, 257-269.	2.7	50
523	Cathepsin L Is Essential for Embryogenesis and Development ofCaenorhabditis elegans. Journal of Biological Chemistry, 2002, 277, 3477-3486.	1.6	104

#	Article	IF	CITATIONS
524	Functional expression of a mammalian olfactory receptor in Caenorhabditis elegans. NeuroReport, 2002, 13, 2515-2520.	0.6	9
525	abf-1 and abf-2, ASABF-type antimicrobial peptide genes in Caenorhabditis elegans. Biochemical Journal, 2002, 361, 221.	1.7	85
526	Cell Cycle Specific Plasmid DNA Replication in the Nuclear Extract ofSaccharomyces cerevisiae:Â Modulation by Replication Protein A and Proliferating Cell Nuclear Antigenâ€. Biochemistry, 2002, 41, 5255-5265.	1.2	3
527	A NEWMOSSGENETICS: Targeted Mutagenesis inPhyscomitrella patens. Annual Review of Plant Biology, 2002, 53, 477-501.	8.6	173
528	The Caenorhabditis elegans EGL-26 Protein Mediates Vulval Cell Morphogenesis. Developmental Biology, 2002, 241, 247-258.	0.9	29
529	Conserved Regulation of the Caenorhabditis elegans labial/Hox1 Gene ceh-13. Developmental Biology, 2002, 242, 96-108.	0.9	66
530	lon-1 Regulates Caenorhabditis elegans Body Size Downstream of the dbl-1 TGFβ Signaling Pathway. Developmental Biology, 2002, 246, 418-428.	0.9	61
531	Tissue-Specific Regulation of the LIM Homeobox Gene lin-11 during Development of the Caenorhabditis elegans Egg-Laying System. Developmental Biology, 2002, 247, 102-115.	0.9	43
532	Downstream Targets of let-60 Ras in Caenorhabditis elegans. Developmental Biology, 2002, 247, 127-136.	0.9	25
533	Dynamics of a Developmental Switch: Recursive Intracellular and Intranuclear Redistribution of Caenorhabditis elegans POP-1 Parallels Wnt-Inhibited Transcriptional Repression. Developmental Biology, 2002, 248, 128-142.	0.9	95
534	The Caenorhabditis elegans Presenilin sel-12 Is Required for Mesodermal Patterning and Muscle Function. Developmental Biology, 2002, 251, 178-192.	0.9	12
535	Caenorhabditis elegans cog-1 Locus Encodes GTX/Nkx6.1 Homeodomain Proteins and Regulates Multiple Aspects of Reproductive System Development. Developmental Biology, 2002, 252, 202-213.	0.9	48
536	SEKâ€∃ MAPKK mediates Ca 2+ signaling to determine neuronal asymmetric development in Caenorhabditis elegans. EMBO Reports, 2002, 3, 56-62.	2.0	118
537	HAT activity is essential for CBPâ€lâ€dependent transcription and differentiation inCaenorhabditis elegans. EMBO Reports, 2002, 3, 50-55.	2.0	31
538	Reporter Transgenes for Study of Oxidant Stress in Caenorhabditis elegans. Methods in Enzymology, 2002, 353, 497-505.	0.4	82
539	Identification of host and pathogen factors involved in virulence using Caenorhabditis elegans. Methods in Enzymology, 2002, 358, 13-28.	0.4	22
540	HEN-1, a Secretory Protein with an LDL Receptor Motif, Regulates Sensory Integration and Learning in Caenorhabditis elegans. Cell, 2002, 109, 639-649.	13.5	157
541	Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues. Biophysical Journal, 2002, 82, 493-508.	0.2	889

#	Article	IF	CITATIONS
542	Expression profiles of the essential intermediate filament (IF) protein A2 and the IF protein C2 in the nematode Caenorhabditis elegans. Mechanisms of Development, 2002, 117, 311-314.	1.7	29
543	MTD-1, a touch-cell-specific membrane protein with a subtle effect on touch sensitivity. Mechanisms of Development, 2002, 119, 3-7.	1.7	8
544	Gene expression markers for Caenorhabditis elegans vulval cells. Mechanisms of Development, 2002, 119, S203-S209.	1.7	64
545	The Role of RNA Editing by ADARs in RNAi. Molecular Cell, 2002, 10, 809-817.	4.5	139
546	Regulation of Retrograde Signaling at Neuromuscular Junctions by the Novel C2 Domain Protein AEX-1. Neuron, 2002, 33, 249-259.	3.8	79
547	Negative Regulation and Gain Control of Sensory Neurons by the C. elegans Calcineurin TAX-6. Neuron, 2002, 33, 751-763.	3.8	130
548	MAX-1, a Novel PH/MyTH4/FERM Domain Cytoplasmic Protein Implicated in Netrin-Mediated Axon Repulsion. Neuron, 2002, 34, 563-576.	3.8	109
549	Combinatorial Expression of TRPV Channel Proteins Defines Their Sensory Functions and Subcellular Localization in C. elegans Neurons. Neuron, 2002, 35, 307-318.	3.8	417
550	The C. elegans evl-20 Gene Is a Homolog of the Small GTPase ARL2 and Regulates Cytoskeleton Dynamics during Cytokinesis and Morphogenesis. Developmental Cell, 2002, 2, 579-591.	3.1	61
551	Zinc Ions and Cation Diffusion Facilitator Proteins Regulate Ras-Mediated Signaling. Developmental Cell, 2002, 2, 567-578.	3.1	121
552	Characterisation of set-1 , a conserved PR/SET domain gene in Caenorhabditis elegans. Gene, 2002, 292, 33-41.	1.0	6
553	Caenorhabditis elegans receptors related to mammalian vascular endothelial growth factor receptors are expressed in neural cells. Neuroscience Letters, 2002, 329, 116-120.	1.0	58
554	A Conserved p38 MAP Kinase Pathway in Caenorhabditis elegans Innate Immunity. Science, 2002, 297, 623-626.	6.0	746
555	Identification of Domains of Netrin UNC-6 that Mediate Attractive and Repulsive Guidance and Responses from Cells and Growth Cones. Journal of Neuroscience, 2002, 22, 7080-7087.	1.7	49
556	PCR Fusion-Based Approach to Create Reporter Gene Constructs for Expression Analysis in Transgenic <i>C. elegans</i> . BioTechniques, 2002, 32, 728-730.	0.8	589
557	Brugia malayi: transient transfection by microinjection and particle bombardment. Experimental Parasitology, 2002, 100, 95-102.	0.5	52
558	Caloric restriction and lifespan: a role for protein turnover?. Mechanisms of Ageing and Development, 2002, 123, 215-229.	2.2	72
559	Transgene expression in Strongyloides stercoralis following gonadal microinjection of DNA constructs. Molecular and Biochemical Parasitology, 2002, 119, 279-284.	0.5	49

#	Article	IF	CITATIONS
560	A cathepsin L protease essential for Caenorhabditis elegans embryogenesis is functionally conserved in parasitic nematodes. Molecular and Biochemical Parasitology, 2002, 122, 21-33.	0.5	90
561	Abundant larval transcript-1 and -2 genes from Brugia malayi: diversity of genomic environments but conservation of 5′ promoter sequences functional in Caenorhabditis elegans. Molecular and Biochemical Parasitology, 2002, 125, 59-71.	0.5	35
562	The C. elegans hmr-1 Gene Can Encode a Neuronal Classic Cadherin Involved in the Regulation of Axon Fasciculation. Current Biology, 2002, 12, 59-63.	1.8	73
563	Multiple Skp1-Related Proteins in Caenorhabditis elegans. Current Biology, 2002, 12, 267-275.	1.8	68
564	CDC-25.1 regulates germline proliferation inCaenorhabditis elegans. Genesis, 2002, 33, 1-7.	0.8	35
565	Evolution of the PP2C Family in Caenorhabditis: Rapid Divergence of the Sex-Determining Protein FEM-2. Journal of Molecular Evolution, 2002, 54, 267-282.	0.8	27
566	The <i>Caenorhabditis elegans</i> Behavioral Gene <i>uncâ€24</i> Encodes a Novel Bipartite Protein Similar to Both Erythrocyte Band 7.2 (Stomatin) and Nonspecific Lipid Transfer Protein. Journal of Neurochemistry, 1996, 67, 46-57.	2.1	58
567	Identification of genes expressed in C. elegans touch receptor neurons. Nature, 2002, 418, 331-335.	13.7	230
568	Social feeding in Caenorhabditis elegans is induced by neurons that detect aversive stimuli. Nature, 2002, 419, 899-903.	13.7	229
569	Antagonistic pathways in neurons exposed to body fluid regulate social feeding in Caenorhabditis elegans. Nature, 2002, 419, 925-929.	13.7	174
570	SYD-1, a presynaptic protein with PDZ, C2 and rhoGAP-like domains, specifies axon identity in C. elegans. Nature Neuroscience, 2002, 5, 1137-1146.	7.1	107
571	A heterochromatin protein 1 homologue inCaenorhabditis elegansacts in germline and vulval development. EMBO Reports, 2002, 3, 235-241.	2.0	107
572	A CaMK cascade activates CREâ€nediated transcription in neurons of Caenorhabditis elegans. EMBO Reports, 2002, 3, 962-966.	2.0	103
573	A Caenorhabditis elegans TGF-beta, DBL-1, controls the expression of LON-1, a PR-related protein, that regulates polyploidization and body length. EMBO Journal, 2002, 21, 1063-1073.	3.5	88
574	The G-protein gamma subunit gpc-1 of the nematode C.elegans is involved in taste adaptation. EMBO Journal, 2002, 21, 986-994.	3.5	88
575	Loss of spr-5 bypasses the requirement for the C.elegans presenilin sel-12 by derepressing hop-1. EMBO Journal, 2002, 21, 5787-5796.	3.5	57
576	CRN-1, a Caenorhabditis elegans FEN-1 homologue, cooperates with CPS-6/EndoG to promote apoptotic DNA degradation. EMBO Journal, 2003, 22, 3451-3460.	3.5	106
577	The sterol modifying enzyme LET-767 is essential for growth, reproduction and development in Caenorhabditis elegans. Molecular Genetics and Genomics, 2003, 270, 121-131.	1.0	48

#	Article	IF	CITATIONS
578	A stress-responsive glutathione S-transferase confers resistance to oxidative stress in Caenorhabditis elegans. Free Radical Biology and Medicine, 2003, 34, 1405-1415.	1.3	162
579	Molecular characterisation of a male-specific serine/threonine phosphatase from Oesophagostomum dentatum (Nematoda: Strongylida), and functional analysis of homologues in Caenorhabditis elegans. International Journal for Parasitology, 2003, 33, 313-325.	1.3	47
580	Use of RNA interference to investigate gene function in the human filarial nematode parasite Brugia malayi. Molecular and Biochemical Parasitology, 2003, 129, 41-51.	0.5	145
581	Construction and evaluation of a transgenic <i>hsp</i> 16â€ <i>GFP</i> â€ <i>lacZ Caenorhabditis elegans</i> strain for environmental monitoring. Environmental Toxicology and Chemistry, 2003, 22, 111-118.	2.2	40
582	Sex-determination gene and pathway evolution in nematodes. BioEssays, 2003, 25, 221-231.	1.2	41
583	Visualization of molecular and cellular events with green fluorescent proteins in developing embryos: a review. Luminescence, 2003, 18, 1-18.	1.5	30
584	Progress and new technologies for developing vaccines against gastrointestinal nematode parasites of sheep. Parasite Immunology, 2003, 25, 283-296.	0.7	79
585	Cloning and characterization of a Caenorhabditis elegans D2-like dopamine receptor. Journal of Neurochemistry, 2003, 86, 869-878.	2.1	86
586	The voltageâ€gated calcium channel UNCâ€2 is involved in stressâ€mediated regulation of <i>tryptophan hydroxylase</i> . Journal of Neurochemistry, 2004, 88, 102-113.	2.1	40
587	Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell, 2003, 2, 131-139.	3.0	294
588	The mbkâ€2 kinase is required for inactivation of MEIâ€1/katanin in the one ell Caenorhabditis elegans embryo. EMBO Reports, 2003, 4, 1175-1181.	2.0	65
589	EXP-1 is an excitatory GABA-gated cation channel. Nature Neuroscience, 2003, 6, 1145-1152.	7.1	159
590	Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1. Nature Neuroscience, 2003, 6, 1178-1185.	7.1	231
591	Mua-6, a gene required for tissue integrity in Caenorhabditis elegans, encodes a cytoplasmic intermediate filament. Developmental Biology, 2003, 263, 330-342.	0.9	35
592	Functional analysis of the domains of the C. elegans Ror receptor tyrosine kinase CAM-1. Developmental Biology, 2003, 264, 376-390.	0.9	54
593	Sperm endogenous reverse transcriptase as mediator of new genetic information. Biochemical and Biophysical Research Communications, 2003, 312, 1039-1046.	1.0	50
594	Nematoda: Genes, Genomes and the Evolution of Parasitism. Advances in Parasitology, 2003, 54, 101-195.	1.4	83
595	Functional Analysis of the Glutathione S-transferase 3 from Onchocerca volvulus (Ov-GST-3): A Parasite GST Confers Increased Resistance to Oxidative Stress in Caenorhabditis elegans. Journal of Molecular Biology, 2003, 325, 25-37.	2.0	49

#	Article	IF	CITATIONS
596	Distinct roles of the Src family kinases, SRC-1 and KIN-22, that are negatively regulated by CSK-1 inC. elegans. FEBS Letters, 2003, 534, 133-138.	1.3	10
597	The maintenance of neuromuscular function requires UBC-25 in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2003, 305, 691-699.	1.0	21
598	The roles of an ephrin and a semaphorin in patterning cell–cell contacts in C. elegans sensory organ development. Developmental Biology, 2003, 256, 379-388.	0.9	16
599	cis-Regulatory control of three cell fate-specific genes in vulval organogenesis of Caenorhabditis elegans and C. briggsae. Developmental Biology, 2003, 257, 85-103.	0.9	50
600	Cis regulatory requirements for vulval cell-specific expression of the caenorhabditis elegans fibroblast growth factor gene egl-17. Developmental Biology, 2003, 257, 104-116.	0.9	45
601	M142.2 (cut-6), a novel Caenorhabditis elegans matrix gene important for dauer body shape. Developmental Biology, 2003, 260, 339-351.	0.9	23
602	A genetic analysis of axon guidance in the C. elegans pharynx. Developmental Biology, 2003, 260, 158-175.	0.9	24
603	Essential embryonic roles of the CKI-1 cyclin-dependent kinase inhibitor in cell-cycle exit and morphogenesis in C. elegans. Developmental Biology, 2003, 260, 273-286.	0.9	50
604	LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. Developmental Biology, 2003, 263, 81-102.	0.9	215
605	Identification of CHE-13, a novel intraflagellar transport protein required for cilia formation. Experimental Cell Research, 2003, 284, 249-261.	1.2	80
606	Role of Caenorhabditis elegans protein phosphatase type 1, CeGLC-7β,in metaphase to anaphase transition during embryonic development. Experimental Cell Research, 2003, 287, 350-360.	1.2	13
607	The augertoxins: biochemical characterization of venom components from the toxoglossate gastropod Terebra subulata. Toxicon, 2003, 42, 391-398.	0.8	30
608	The forkhead gene family of Caenorhabditis elegans. Gene, 2003, 304, 43-55.	1.0	42
609	Calcium-dependent and aspartyl proteases in neurodegeneration and ageing in C. elegans. Ageing Research Reviews, 2003, 2, 451-471.	5.0	16
610	An Essential Role in Molting and Morphogenesis of Caenorhabditis elegans for ACN-1, a Novel Member of the Angiotensin-converting Enzyme Family That Lacks a Metallopeptidase Active Site. Journal of Biological Chemistry, 2003, 278, 52340-52346.	1.6	65
611	daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes and Development, 2003, 17, 844-858.	2.7	317
612	Differential Requirement for the Nonhelical Tailpiece and the C Terminus of the Myosin Rod inCaenorhabditis elegansMuscle. Molecular Biology of the Cell, 2003, 14, 1677-1690.	0.9	13
613	Functional Analysis of the Caenorhabditis elegans UNC-73B PH Domain Demonstrates a Role in Activation of the Rac GTPase In Vitro and Axon Guidance In Vivo. Molecular and Cellular Biology, 2003, 23, 6823-6835.	1.1	37

#	Article	IF	CITATIONS
614	A Reduction in Intestinal Cell pH Due to Loss of the Caenorhabditis elegans Na+/H+ Exchanger NHX-2 Increases Life Span. Journal of Biological Chemistry, 2003, 278, 44657-44666.	1.6	108
615	Acetylation regulates subcellular localization of the Wnt signaling nuclear effector POP-1. Genes and Development, 2003, 17, 717-722.	2.7	44
616	Lipoprotein receptors and a Disabled family cytoplasmic adaptor protein regulate EGL-17/FGF export in C. elegans. Genes and Development, 2003, 17, 2798-2811.	2.7	41
617	Caenorhabditis elegans EVL-14/PDS-5 and SCC-3 Are Essential for Sister Chromatid Cohesion in Meiosis and Mitosis. Molecular and Cellular Biology, 2003, 23, 7698-7707.	1.1	60
618	Identification and molecular characterization of the GÂ12-Rho guanine nucleotide exchange factor pathway in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14748-14753.	3.3	43
619	Coordinate Expression of NADPH-dependent Flavin Reductase, Fre-1, and Hint-related 7meGMP-directed Hydrolase, DCS-1. Journal of Biological Chemistry, 2003, 278, 39051-39058.	1.6	30
620	XBX-1 Encodes a Dynein Light Intermediate Chain Required for Retrograde Intraflagellar Transport and Cilia Assembly inCaenorhabditis elegans. Molecular Biology of the Cell, 2003, 14, 2057-2070.	0.9	120
621	An uncapped RNA suggests a model for Caenorhabditis elegans polycistronic pre-mRNA processing. Rna, 2003, 9, 677-687.	1.6	19
622	Lysosomal and pseudocoelom routing protects Caenorhabditis elegans from ricin toxicity. Nematology, 2003, 5, 339-350.	0.2	1
623	Suppression of polyglutamine-induced protein aggregation in Caenorhabditis elegans by torsin proteins. Human Molecular Genetics, 2003, 12, 307-319.	1.4	126
624	The Caenorhabditis elegans Genes sqv-2and sqv-6, Which Are Required for Vulval Morphogenesis, Encode Glycosaminoglycan Galactosyltransferase II and Xylosyltransferase. Journal of Biological Chemistry, 2003, 278, 11735-11738.	1.6	75
625	UAP56 levels affect viability and mRNA export in Caenorhabditis elegans. Rna, 2003, 9, 847-857.	1.6	81
626	Enzymes involved in the biogenesis of the nematode cuticle. Advances in Parasitology, 2003, 53, 85-148.	1.4	50
627	Regulation of Intermuscular Electrical Coupling by theCaenorhabditis elegansInnexininx-6. Molecular Biology of the Cell, 2003, 14, 2630-2644.	0.9	34
628	Distinct conformations of the kinesin Unc104 neck regulate a monomer to dimer motor transition. Journal of Cell Biology, 2003, 163, 743-753.	2.3	80
629	SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes and Development, 2003, 17, 1882-1893.	2.7	627
630	Inducible Systemic RNA Silencing in Caenorhabditis elegans. Molecular Biology of the Cell, 2003, 14, 2972-2983.	0.9	135
631	The Caenorhabditis elegans Orthologue of Mammalian Puromycin-sensitive Aminopeptidase Has Roles in Embryogenesis and Reproduction. Journal of Biological Chemistry, 2003, 278, 42795-42801.	1.6	30
#	Article	IF	CITATIONS
-----	---	------	-----------
632	From Genes to Integrative Physiology: Ion Channel and Transporter Biology in <i>Caenorhabditis elegans</i> . Physiological Reviews, 2003, 83, 377-415.	13.1	73
633	<i>Caenorhabditis elegans</i> UNC-103 ERG-Like Potassium Channel Regulates Contractile Behaviors of Sex Muscles in Males before and during Mating. Journal of Neuroscience, 2003, 23, 2696-2705.	1.7	53
634	GABA Is Dispensable for the Formation of Junctional GABA Receptor Clusters in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2003, 23, 2591-2599.	1.7	71
635	<i>sup-9, sup-10</i> , and <i>unc-93</i> May Encode Components of a Two-Pore K ⁺ Channel that Coordinates Muscle Contraction in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2003, 23, 9133-9145.	1.7	89
636	The use of Caenorhabditis elegans in Molecular Neuropharmacology. International Review of Neurobiology, 2004, 62, 195-212.	0.9	14
637	Loss of srf-3-encoded Nucleotide Sugar Transporter Activity in Caenorhabditis elegans Alters Surface Antigenicity and Prevents Bacterial Adherence. Journal of Biological Chemistry, 2004, 279, 30440-30448.	1.6	80
638	Metalloproteases with EGF, CUB, and thrombospondin-1 domains function in molting of Caenorhabditis elegans. Biological Chemistry, 2004, 385, 565-568.	1.2	44
639	Alternative Polyadenylation Results in a Truncated daf-4 BMP Receptor That Antagonizes DAF-7-mediated Development in Caenorhabditis elegans. Journal of Biological Chemistry, 2004, 279, 39555-39564.	1.6	6
640	The Identities of sym-2, sym-3 and sym-4, Three Genes That Are Synthetically Lethal With mec-8 in Caenorhabditis elegansSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY220985, AY221634, AY223545, and AY372076 Genetics, 2004, 168, 1293-1306.	1.2	19
641	Type II platelet-activating factor-acetylhydrolase is essential for epithelial morphogenesis in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13233-13238.	3.3	17
642	The Lipid Binding Pleckstrin Homology Domain in UNC-104 Kinesin is Necessary for Synaptic Vesicle Transport in Caenorhabditis elegans. Molecular Biology of the Cell, 2004, 15, 3729-3739.	0.9	116
643	Neuronal Toxicity in Caenorhabditis elegans from an Editing Site Mutant in Glutamate Receptor Channels. Journal of Neuroscience, 2004, 24, 8135-8140.	1.7	18
644	A Network of Stimulatory and Inhibitory Gα-Subunits Regulates Olfaction in Caenorhabditis elegans. Genetics, 2004, 167, 1677-1687.	1.2	82
645	Dock180 and ELMO1 Proteins Cooperate to Promote Evolutionarily Conserved Rac-dependent Cell Migration. Journal of Biological Chemistry, 2004, 279, 6087-6097.	1.6	193
646	Preservation of Immunoreactivity and Fine Structure of Adult <i>C. elegans</i> Tissues Using High-pressure Freezing. Journal of Histochemistry and Cytochemistry, 2004, 52, 1-12.	1.3	116
647	Inositol 1,4,5-Trisphosphate Signaling Regulates Rhythmic Contractile Activity of Myoepithelial Sheath Cells in Caenorhabditis elegans. Molecular Biology of the Cell, 2004, 15, 3938-3949.	0.9	75
648	Caenorhabditis elegans lin-35/Rb, efl-1/E2F and Other Synthetic Multivulva Genes Negatively Regulate the Anaphase-Promoting Complex Gene mat-3/APC8. Genetics, 2004, 167, 663-672.	1.2	17
649	SMU-2 and SMU-1, Caenorhabditis elegans Homologs of Mammalian Spliceosome-Associated Proteins RED and fSAP57, Work Together To Affect Splice Site Choice. Molecular and Cellular Biology, 2004, 24, 6811-6823.	1.1	51

	Сітатіо	n Report	
#		IF	CITATIONS
650	Functional GATA- and initiator-like-elements exhibit a similar arrangement in the promoters of Caenorhabditis elegans polyamine synthesis enzymes. Biological Chemistry, 2004, 385, 711-21.	1.2	6
651	Maternal UNC-45 is involved in cytokinesis and colocalizes with non-muscle myosin in the early Caenorhabditis elegans embryo. Journal of Cell Science, 2004, 117, 5313-5321.	1.2	47
652	The Caenorhabditis elegans Cathepsin Z-like Cysteine Protease, Ce-CPZ-1, Has a Multifunctional Role during the Worms' Development. Journal of Biological Chemistry, 2004, 279, 6035-6045.	1.6	56
653	Novel transcription regulatory elements in Caenorhabditis elegans muscle genes. Genome Research, 2004, 14, 2457-2468.	2.4	27
654	A Conserved Postsynaptic Transmembrane Protein Affecting Neuromuscular Signaling in Caenorhabditis elegans. Journal of Neuroscience, 2004, 24, 2191-2201.	1.7	114
655	Homologous gene targeting in Caenorhabditis elegans by biolistic transformation. Nucleic Acids Research, 2004, 32, 40e-40.	6.5	78
656	Nematode Chondroitin Polymerizing Factor Showing Cell-/Organ-specific Expression Is Indispensable for Chondroitin Synthesis and Embryonic Cell Division. Journal of Biological Chemistry, 2004, 279, 53755-53761.	1.6	64
657	The Caenorhabditis elegans unc-63 Gene Encodes a Levamisole-sensitive Nicotinic Acetylcholine Receptor α Subunit. Journal of Biological Chemistry, 2004, 279, 42476-42483.	1.6	148
658	The Caenorhabditis elegans IMPAS gene, imp-2, is essential for development and is functionally distinct from related presenilins. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14955-14960.	3.3	54
659	Aromatic Amino Acid Transporter AAT-9 of Caenorhabditis elegans Localizes to Neurons and Muscle Cells. Journal of Biological Chemistry, 2004, 279, 49268-49273.	1.6	7
660	Cofactor-independent Phosphoglycerate Mutase Has an Essential Role in Caenorhabditis elegans and Is Conserved in Parasitic Nematodes. Journal of Biological Chemistry, 2004, 279, 37185-37190.	1.6	38
661	Methods for Delivery of Double-Stranded RNA into Caenorhabditis elegans. , 2004, 265, 23-58.		26
662	Feasibility of Genome-Scale Construction of Promoter::Reporter Gene Fusions for Expression in Caenorhabditis elegans Using a MultiSite Gateway Recombination System. Genome Research, 2004, 14, 2070-2075.	2.4	40
663	Detection of intracellular iron by its regulatory effect. American Journal of Physiology - Cell Physiology, 2004, 287, C1547-C1559.	2.1	40
664	Whole-Genome Analysis of Temporal Gene Expression during Foregut Development. PLoS Biology, 2004, 2, e352.	2.6	82
665	EGF Signal Propagation during C. elegans Vulval Development Mediated by ROM-1 Rhomboid. PLoS Biology, 2004, 2, e334.	2.6	52
666	Caenorhabditis elegans T-box genes tbx-9 and tbx-8 are required for formation of hypodermis and body-wall muscle in embryogenesis. Genes To Cells, 2004, 9, 331-344.	0.5	32
667	cGMP and a germ-line signal control body size in C. elegans through cGMP-dependent protein kinase EGL-4. Genes To Cells, 2004, 9, 773-779.	0.5	17

		CITATION REPORT		
#	Article		IF	CITATIONS
668	MFB-1, an F-box-type ubiquitin ligase, regulates TGF- \hat{I}^2 signalling. Genes To Cells, 2004	, 9, 1093-1101.	0.5	8
669	Long lifespan in worms with long telomeric DNA. Nature Genetics, 2004, 36, 607-611.		9.4	113
670	Targeted gene alteration in Caenorhabditis elegans by gene conversion. Nature Geneti 1231-1237.	cs, 2004, 36,	9.4	36
671	TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR dom protein TIR-1, an ortholog of human SARM. Nature Immunology, 2004, 5, 488-494.	ain adaptor	7.0	433
672	PH domain of ELMO functions in trans to regulate Rac activation via Dock180. Nature Molecular Biology, 2004, 11, 756-762.	Structural and	3.6	121
673	Genomic organization of an avermectin receptor subunit from Haemonchus contortus of its putative promoter region in Caenorhabditis elegans. Molecular and Biochemical 2004, 134, 267-274.	and expression Parasitology,	0.5	14
674	Functional genomics for parasitic nematodes and platyhelminths. Trends in Parasitolog 178-184.	зу, 2004, 20,	1.5	26
675	Function and evolution of the serotonin-synthetic bas-1 gene and other aromatic amir decarboxylase genes in Caenorhabditis. BMC Evolutionary Biology, 2004, 4, 24.	o acid	3.2	39
676	Soluble Guanylate Cyclases Act in Neurons Exposed to the Body Fluid to Promote C. el Aggregation Behavior. Current Biology, 2004, 14, 1105-1111.	egans	1.8	136
677	The C. elegans Thermosensory Neuron AFD Responds to Warming. Current Biology, 20	004, 14, 1291-1295.	1.8	192
678	MEC-2 Is Recruited to the Putative Mechanosensory Complex in C. elegans Touch Rece through Its Stomatin-like Domain. Current Biology, 2004, 14, 1888-1896.	ptor Neurons	1.8	96
679	A Fibulin-1 Homolog Interacts with an ADAM Protease that Controls Cell Migration in C Current Biology, 2004, 14, 2011-2018.	C. elegans.	1.8	59
680	Functional redundancy of two nucleoside transporters of the ENT family (CeENT1, CeE for development ofCaenorhabditis elegans. Molecular Membrane Biology, 2004, 21, 2	NT2) required 47-259.	2.0	10
681	Regulation of Longevity inCaenorhabditis elegansby Heat Shock Factor and Molecular Molecular Biology of the Cell, 2004, 15, 657-664.	Chaperones.	0.9	646
682	C. elegans LIN-18 Is a Ryk Ortholog and Functions in Parallel to LIN-17/Frizzled in Wnt 2004, 118, 795-806.	Signaling. Cell,	13.5	178
683	Combinatorial Marking of Cells and Organelles with Reconstituted Fluorescent Proteir 119, 137-144.	ıs. Cell, 2004,	13.5	131
684	Molecular and functional analysis ofCaenorhabditis elegansCHIP, a homologue of Man FEBS Letters, 2004, 565, 11-18.	ımalian CHIP.	1.3	7
685	Axial patterning of C. elegans male sensilla identities by selector genes. Developmenta 269, 137-151.	l Biology, 2004,	0.9	50

#	Article	IF	CITATIONS
686	The Caenorhabditis elegans aryl hydrocarbon receptor, AHR-1, regulates neuronal development. Developmental Biology, 2004, 270, 64-75.	0.9	168
687	pha-2 encodes the C. elegans ortholog of the homeodomain protein HEX and is required for the formation of the pharyngeal isthmus. Developmental Biology, 2004, 272, 403-418.	0.9	33
688	Identification of evolutionarily conserved promoter elements and amino acids required for function of the C. elegans β-catenin homolog BAR-1. Developmental Biology, 2004, 272, 536-557.	0.9	21
689	eor-1 and eor-2 are required for cell-specific apoptotic death in C. elegans. Developmental Biology, 2004, 274, 125-138.	0.9	26
690	Phospholipase CÉ› regulates ovulation in Caenorhabditis elegans. Developmental Biology, 2004, 274, 201-210.	0.9	58
691	Dissection of cis-regulatory elements in the C. elegans Hox gene egl-5 promoter. Developmental Biology, 2004, 276, 476-492.	0.9	34
692	HRP-2, a heterogeneous nuclear ribonucleoprotein, is essential for embryogenesis and oogenesis in Caenorhabditis elegans. Experimental Cell Research, 2004, 298, 418-430.	1.2	18
693	Ethanol-response genes and their regulation analyzed by a microarray and comparative genomic approach in the nematode Caenorhabditis elegans. Genomics, 2004, 83, 600-614.	1.3	84
694	The Caenorhabditis elegans ortholog of C21orf80, a potential new protein O-fucosyltransferase, is required for normal development. Genomics, 2004, 84, 320-330.	1.3	23
695	Extracellular Proteins Organize the Mechanosensory Channel Complex in C. elegans Touch Receptor Neurons. Neuron, 2004, 44, 795-807.	3.8	116
696	Neurons regulating the duration of forward locomotion in Caenorhabditis elegans. Neuroscience Research, 2004, 50, 103-111.	1.0	165
697	Technologies for the study of epididymal-specific genes. Molecular and Cellular Endocrinology, 2004, 216, 23-30.	1.6	10
698	Analysis of the two p97/VCP/Cdc48p proteins of Caenorhabditis elegans and their suppression of polyglutamine-induced protein aggregation. Journal of Structural Biology, 2004, 146, 242-250.	1.3	62
699	The C.elegans ceh-36 Gene Encodes a Putative Homemodomain Transcription Factor Involved in Chemosensory Functions of ASE and AWC Neurons. Journal of Molecular Biology, 2004, 336, 579-587.	2.0	39
700	A Peroxiredoxin Specifically Expressed in Two Types of Pharyngeal Neurons is Required for Normal Growth and Egg Production in Caenorhabditis elegans. Journal of Molecular Biology, 2004, 338, 745-755.	2.0	45
701	C.elegans Metallothioneins: New Insights into the Phenotypic Effects of Cadmium Toxicosis. Journal of Molecular Biology, 2004, 341, 951-959.	2.0	160
702	A New Class of C. elegans synMuv Genes Implicates a Tip60/NuA4-like HAT Complex as a Negative Regulator of Ras Signaling. Developmental Cell, 2004, 6, 563-576.	3.1	122
703	C. elegans SGK-1 Is the Critical Component in the Akt/PKB Kinase Complex to Control Stress Response and Life Span. Developmental Cell, 2004, 6, 577-588.	3.1	307

#	Article	IF	CITATIONS
704	Systematic Interactome Mapping and Genetic Perturbation Analysis of a C. elegans TGF-Î ² Signaling Network. Molecular Cell, 2004, 13, 469-482.	4.5	136
705	Comparative Genomics Identifies a Flagellar and Basal Body Proteome that Includes the BBS5 Human Disease Gene. Cell, 2004, 117, 541-552.	13.5	721
706	An NDPase links ADAM protease glycosylation with organ morphogenesis in C. elegans. Nature Cell Biology, 2004, 6, 31-37.	4.6	58
707	Gene CATCHRGene Cloning And Tagging for Caenorhabditis elegans using yeast Homologous Recombination: a novel approach for the analysis of gene expression. Nucleic Acids Research, 2005, 33, e163-e163.	6.5	18
708	Analysis of theCaenorhabditis elegans dlkâ€1gene expression. Animal Cells and Systems, 2005, 9, 107-111.	0.2	0
709	The Caenorhabditis elegans lev-8 gene encodes a novel type of nicotinic acetylcholine receptor alpha subunit. Journal of Neurochemistry, 2005, 93, 1-9.	2.1	96
710	Characterization of a novel D2-like dopamine receptor with a truncated splice variant and a D1-like dopamine receptor unique to invertebrates from Caenorhabditis elegans. Journal of Neurochemistry, 2005, 94, 1146-1157.	2.1	67
711	Lifespan and stress resistance of Caenorhabditis elegans are increased by expression of glutathione transferases capable of metabolizing the lipid peroxidation product 4-hydroxynonenal. Aging Cell, 2005, 4, 257-271.	3.0	90
712	Neural circuit-dependent odor adaptation in C. elegans is regulated by the Ras-MAPK pathway. Genes To Cells, 2005, 10, 517-530.	0.5	35
713	Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit. Nature Cell Biology, 2005, 7, 559-569.	4.6	144
714	Maintenance of neuronal positions in organized ganglia by SAX-7, a Caenorhabditis elegans homologue of L1. EMBO Journal, 2005, 24, 1477-1488.	3.5	68
715	Diverse regulation of sensory signaling by C. elegans nPKC-epsilon/eta TTX-4. EMBO Journal, 2005, 24, 2127-2137.	3.5	92
716	Two pathways converge at CED-10 to mediate actin rearrangement and corpse removal in C. elegans. Nature, 2005, 434, 93-99.	13.7	238
717	Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature, 2005, 436, 1040-1043.	13.7	365
718	Phosphorylation of ZEN-4/MKLP1 by Aurora B Regulates Completion of Cytokinesis. Current Biology, 2005, 15, 778-786.	1.8	194
719	Experience-Dependent Modulation of C. elegans Behavior by Ambient Oxygen. Current Biology, 2005, 15, 905-917.	1.8	195
720	Examination of the requirement for ucp-4, a putative homolog of mammalian uncoupling proteins, for stress tolerance and longevity in C. elegans. Mechanisms of Ageing and Development, 2005, 126, 1090-1096.	2.2	45
721	A mutation in a cuticle collagen causes hypersensitivity to the endocrine disrupting chemical, bisphenol A, in Caenorhabditis elegans. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 570, 71-80.	0.4	29

#	Article	IF	CITATIONS
722	Progressive neurodegeneration in C. elegans model of tauopathy. Neurobiology of Disease, 2005, 20, 372-383.	2.1	98
723	NovelCaenorhabditis elegans unc-119 axon outgrowth defects correlate with behavioral phenotypes that are partially rescued by nonneural unc-119. Genesis, 2005, 42, 104-116.	0.8	7
724	Contribution of the amino and carboxyl termini for PHA-4/FoxA function inCaenorhabditis elegans. Developmental Dynamics, 2005, 234, 346-354.	0.8	16
725	Isopentenyl-diphosphate isomerase is essential for viability of Caenorhabditis elegans. Molecular Genetics and Genomics, 2005, 273, 158-166.	1.0	9
726	Characterization of gana-1, a Caenorhabditis elegans gene encoding a single ortholog of vertebrate alpha-galactosidase and alpha-N-acetylgalactosaminidase. BMC Cell Biology, 2005, 6, 5.	3.0	13
727	C. elegans serine-threonine kinase KIN-29 modulates TGFbeta signaling and regulates body size formation. BMC Developmental Biology, 2005, 5, 8.	2.1	38
728	RNAi beginnings, Overview of the pathway in C. elegans. , 2005, , 17-28.		0
729	The abts and sulp families of anion transporters from Caenorhabditis elegans. American Journal of Physiology - Cell Physiology, 2005, 289, C341-C351.	2.1	32
730	FLR-4, a Novel Serine/Threonine Protein Kinase, Regulates Defecation Rhythm in Caenorhabditis elegans. Molecular Biology of the Cell, 2005, 16, 1355-1365.	0.9	13
731	lin-8, Which Antagonizes Caenorhabditis elegans Ras-Mediated Vulval Induction, Encodes a Novel Nuclear Protein That Interacts With the LIN-35 Rb Protein. Genetics, 2005, 171, 1017-1031.	1.2	18
732	The Caenorhabditis elegans Heterochronic Regulator LIN-14 Is a Novel Transcription Factor That Controls the Developmental Timing of Transcription from the Insulin/Insulin-Like Growth Factor Gene ins-33 by Direct DNA Binding. Molecular and Cellular Biology, 2005, 25, 11059-11072.	1.1	51
733	Requirement of the Caenorhabditis elegans RapGEF pxf-1 and rap-1 for Epithelial Integrity. Molecular Biology of the Cell, 2005, 16, 106-116.	0.9	29
734	Roles of the HIF-1 Hypoxia-inducible Factor during Hypoxia Response in Caenorhabditis elegans*. Journal of Biological Chemistry, 2005, 280, 20580-20588.	1.6	191
735	Characterization of Mos1-Mediated Mutagenesis in Caenorhabditis elegans. Genetics, 2005, 169, 1779-1785.	1.2	44
736	Polymodal Sensory Function of the Caenorhabditis elegans OCR-2 Channel Arises from Distinct Intrinsic Determinants within the Protein and Is Selectively Conserved in Mammalian TRPV Proteins. Journal of Neuroscience, 2005, 25, 1015-1023.	1.7	33
737	Expression and Phenotype Analysis of the Nephrocystin-1 and Nephrocystin-4 Homologs in Caenorhabditiselegans. Journal of the American Society of Nephrology: JASN, 2005, 16, 676-687.	3.0	45
738	Imaging ofCaenorhabditis eleganssamples and sub-cellular localization of new generation photosensitizers for photodynamic therapy, using non-linear microscopy. Journal Physics D: Applied Physics, 2005, 38, 2625-2632.	1.3	6
739	The Two Isoforms of the Caenorhabditis elegans Leukocyte-Common Antigen Related Receptor Tyrosine Phosphatase PTP-3 Function Independently in Axon Guidance and Synapse Formation. Journal of Neuroscience, 2005, 25, 7517-7528.	1.7	102

	CITATION		
#	Article	IF	CITATIONS
740	Imprinting Capacity of Gamete Lineages in Caenorhabditis elegans. Genetics, 2005, 170, 1633-1652.	1.2	29
741	Regulation of Membrane Trafficking by a Novel Cdc42-related Protein in Caenorhabditis elegans Epithelial Cells. Molecular Biology of the Cell, 2005, 16, 1629-1639.	0.9	19
742	KCNQ-like Potassium Channels in Caenorhabditis elegans. Journal of Biological Chemistry, 2005, 280, 21337-21345.	1.6	38
743	The Caenorhabditis elegans UNC-14 RUN Domain Protein Binds to the Kinesin-1 and UNC-16 Complex and Regulates Synaptic Vesicle Localization. Molecular Biology of the Cell, 2005, 16, 483-496.	0.9	112
744	Mutations That Rescue the Paralysis of Caenorhabditis elegans ric-8 (Synembryn) Mutants Activate the Gαs Pathway and Define a Third Major Branch of the Synaptic Signaling Network. Genetics, 2005, 169, 631-649.	1.2	112
745	The C. elegans homolog of the mammalian tumor suppressor Dep-1/Scc1 inhibits EGFR signaling to regulate binary cell fate decisions. Genes and Development, 2005, 19, 1328-1340.	2.7	78
746	Transcriptional silencing of a transgene by RNAi in the soma of C. elegans. Genes and Development, 2005, 19, 683-696.	2.7	156
747	Redundant Localization Mechanisms of RIM and ELKS in Caenorhabditis elegans. Journal of Neuroscience, 2005, 25, 5975-5983.	1.7	66
748	Convergent, RIC-8-Dependent Gα Signaling Pathways in the Caenorhabditis elegans Synaptic Signaling Network. Genetics, 2005, 169, 651-670.	1.2	82
749	Chromatin and RNAi factors protect the C. elegans germline against repetitive sequences. Genes and Development, 2005, 19, 782-787.	2.7	129
750	GCK-3, a Newly Identified Ste20 Kinase, Binds To and Regulates the Activity of a Cell Cycle–dependent CIC Anion Channel. Journal of General Physiology, 2005, 125, 113-125.	0.9	63
751	A Family of K+ Channel Ancillary Subunits Regulate Taste Sensitivity in Caenorhabditis elegans. Journal of Biological Chemistry, 2005, 280, 21893-21899.	1.6	29
752	Regulation of the Caenorhabditis elegans oxidative stress defense protein SKN-1 by glycogen synthase kinase-3. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16275-16280.	3.3	212
753	JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4494-4499.	3.3	473
754	Caenorhabditus elegans Arrestin Regulates Neural G Protein Signaling and Olfactory Adaptation and Recovery. Journal of Biological Chemistry, 2005, 280, 24649-24662.	1.6	47
755	The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes and Development, 2005, 19, 2278-2283.	2.7	371
756	ACT-5 Is an Essential Caenorhabditis elegans Actin Required for Intestinal Microvilli Formation. Molecular Biology of the Cell, 2005, 16, 3247-3259.	0.9	91
757	Imaging of Caenorhabditis elegans neurons by second-harmonic generation and two-photon excitation fluorescence. Journal of Biomedical Optics, 2005, 10, 024015.	1.4	18

ΙΤΛΤΙΟΝ

P

#	Article	IF	CITATIONS
758	Oscillatory Ca2+ Signaling in the Isolated Caenorhabditis elegans Intestine. Journal of General Physiology, 2005, 126, 379-392.	0.9	158
759	The dyf-3 Gene Encodes a Novel Protein Required for Sensory Cilium Formation in Caenorhabditis elegans. Journal of Molecular Biology, 2005, 346, 677-687.	2.0	46
760	The Homeoproteins MAB-18 and CEH-14 Insulate the Dauer Collagen Gene col-43 from Activation by the Adjacent Promoter of the Spermatheca Gene sth-1 in Caenorhabditis elegans. Journal of Molecular Biology, 2005, 348, 101-112.	2.0	15
761	Genetic evidence in Caenorhabditis elegans implicates a syntaxin-1A-binding protein as critical for presynaptic volatile anesthetic action. International Congress Series, 2005, 1283, 113-118.	0.2	0
762	Connections between integrins and Rac GTPase pathways control gonad formation and function in C. elegans. Biochimica Et Biophysica Acta - General Subjects, 2005, 1723, 248-255.	1.1	23
763	Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochemical and Biophysical Research Communications, 2005, 328, 929-936.	1.0	33
764	The ABC transporter PGP-2 from Caenorhabditis elegans is expressed in the sensory neuron pair AWA and contributes to lysosome formation and lipid storage within the intestine. Biochemical and Biophysical Research Communications, 2005, 338, 862-871.	1.0	19
765	Molecular characterization of HLH-17, a C. elegans bHLH protein required for normal larval development. Gene, 2005, 356, 1-10.	1.0	38
766	C. elegans homologue of the Caf1 gene, which encodes a subunit of the CCR4-NOT complex, is essential for embryonic and larval development and for meiotic progression. Gene, 2005, 358, 73-81.	1.0	43
767	Regulation of a DLK-1 and p38 MAP Kinase Pathway by the Ubiquitin Ligase RPM-1 Is Required for Presynaptic Development. Cell, 2005, 120, 407-420.	13.5	322
768	C. elegans tubby regulates life span and fat storage by two independent mechanisms. Cell Metabolism, 2005, 2, 35-42.	7.2	110
769	C. elegans daf-6 Encodes a Patched-Related Protein Required for Lumen Formation. Developmental Cell, 2005, 8, 893-906.	3.1	128
770	A Role for SIR-2.1 Regulation of ER Stress Response Genes in Determining C. elegans Life Span. Developmental Cell, 2005, 9, 605-615.	3.1	376
771	XNP-1/ATR-X acts with RB, HP1 and the NuRD complex during larval development in C. elegans. Developmental Biology, 2005, 278, 49-59.	0.9	31
772	Transcriptional control and patterning of the pho-1 gene, an essential acid phosphatase expressed in the C. elegans intestine. Developmental Biology, 2005, 279, 446-461.	0.9	51
773	Convergent genetic programs regulate similarities and differences between related motor neuron classes in Caenorhabditis elegans. Developmental Biology, 2005, 280, 494-503.	0.9	37
774	ten-1, an essential gene for germ cell development, epidermal morphogenesis, gonad migration, and neuronal pathfinding in Caenorhabditis elegans. Developmental Biology, 2005, 282, 27-38.	0.9	65
775	Genetic redundancy in endoderm specification within the genus Caenorhabditis. Developmental Biology, 2005, 284, 509-522.	0.9	101

	Article	IF	CITATIONS
776	MOM-5 Frizzled regulates the distribution of DSH-2 to control C. elegans asymmetric neuroblast divisions. Developmental Biology, 2005, 284, 246-259.	0.9	30
777	The C. elegans Frizzled CFZ-2 is required for cell migration and interacts with multiple Wnt signaling pathways. Developmental Biology, 2005, 285, 447-461.	0.9	57
778	The spe-42 gene is required for sperm–egg interactions during C. elegans fertilization and encodes a sperm-specific transmembrane protein. Developmental Biology, 2005, 286, 169-181.	0.9	52
779	The C. elegans eyes absent ortholog EYA-1 is required for tissue differentiation and plays partially redundant roles with PAX-6. Developmental Biology, 2005, 286, 452-463.	0.9	25
780	The C. elegans lethal gut-obstructed gob-1 gene is trehalose-6-phosphate phosphatase. Developmental Biology, 2005, 287, 35-47.	0.9	68
781	The C. elegans RUNX transcription factor RNT-1/MAB-2 is required for asymmetrical cell division of the T blast cell. Developmental Biology, 2005, 287, 262-273.	0.9	31
782	The Ror Receptor Tyrosine Kinase CAM-1 Is Required for ACR-16-Mediated Synaptic Transmission at the C. elegans Neuromuscular Junction. Neuron, 2005, 46, 581-594.	3.8	122
783	Alteration of the DNA binding domain disrupts distinct functions of the C. elegans Pax protein EGL-38. Mechanisms of Development, 2005, 122, 887-899.	1.7	6
784	Identification of ciliated sensory neuron-expressed genes in Caenorhabditis elegans using targeted pull-down of poly(A) tails. Genome Biology, 2005, 6, R17.	13.9	81
785	Modeling Polyglutamine Pathogenesis in C. elegans. Methods in Enzymology. 2006. 412. 256-282.		
		0.4	80
786	SMK-1, an Essential Regulator of DAF-16-Mediated Longevity. Cell, 2006, 124, 1039-1053.	0.4	213
786 787	SMK-1, an Essential Regulator of DAF-16-Mediated Longevity. Cell, 2006, 124, 1039-1053. Analysis of the C. elegans Argonaute Family Reveals that Distinct Argonautes Act Sequentially during RNAi. Cell, 2006, 127, 747-757.	0.4 13.5 13.5	213 576
786 787 788	SMK-1, an Essential Regulator of DAF-16-Mediated Longevity. Cell, 2006, 124, 1039-1053. Analysis of the C. elegans Argonaute Family Reveals that Distinct Argonautes Act Sequentially during RNAi. Cell, 2006, 127, 747-757. Comparative analysis of expression of two p97 homologues in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2006, 345, 746-753.	0.4 13.5 13.5 1.0	213 576 19
786 787 788 788	SMK-1, an Essential Regulator of DAF-16-Mediated Longevity. Cell, 2006, 124, 1039-1053. Analysis of the C. elegans Argonaute Family Reveals that Distinct Argonautes Act Sequentially during RNAi. Cell, 2006, 127, 747-757. Comparative analysis of expression of two p97 homologues in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2006, 345, 746-753. An efficient transgenic system by TA cloning vectors and RNAi for C. elegans. Biochemical and Biophysical Research Communications, 2006, 349, 1345-1350.	0.4 13.5 13.5 1.0 1.0	80 213 576 19 32
786 787 788 789 790	SMK-1, an Essential Regulator of DAF-16-Mediated Longevity. Cell, 2006, 124, 1039-1053. Analysis of the C. elegans Argonaute Family Reveals that Distinct Argonautes Act Sequentially during RNAi. Cell, 2006, 127, 747-757. Comparative analysis of expression of two p97 homologues in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2006, 345, 746-753. An efficient transgenic system by TA cloning vectors and RNAi for C. elegans. Biochemical and Biophysical Research Communications, 2006, 349, 1345-1350. Functional expression ofÂmammalian bitter taste receptors inÂCaenorhabditisÂelegans. Biochimie, 2006, 88, 801-806.	0.4 13.5 13.5 1.0 1.0 1.3	80 213 576 19 32 10
786 787 788 789 790 791	SMK-1, an Essential Regulator of DAF-16-Mediated Longevity. Cell, 2006, 124, 1039-1053. Analysis of the C. elegans Argonaute Family Reveals that Distinct Argonautes Act Sequentially during RNAi. Cell, 2006, 127, 747-757. Comparative analysis of expression of two p97 homologues in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2006, 345, 746-753. An efficient transgenic system by TA cloning vectors and RNAi for C. elegans. Biochemical and Biophysical Research Communications, 2006, 349, 1345-1350. Functional expression ofÂmammalian bitter taste receptors inÂCaenorhabditisÂelegans. Biochimie, 2006, 88, 801-806. Multiple Wnts and Frizzled Receptors Regulate Anteriorly Directed Cell and Growth Cone Migrations in Caenorhabditis elegans. Developmental Cell, 2006, 10, 367-377.	0.4 13.5 13.5 1.0 1.0 1.3 3.1	80 213 576 19 32 10 151
 786 787 788 789 790 791 792 	SMK-1, an Essential Regulator of DAF-16-Mediated Longevity. Cell, 2006, 124, 1039-1053. Analysis of the C. elegans Argonaute Family Reveals that Distinct Argonautes Act Sequentially during RNAi. Cell, 2006, 127, 747-757. Comparative analysis of expression of two p97 homologues in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2006, 345, 746-753. An efficient transgenic system by TA cloning vectors and RNAi for C. elegans. Biochemical and Biophysical Research Communications, 2006, 349, 1345-1350. Functional expression ofÂmammalian bitter taste receptors inÂCaenorhabditisÂelegans. Biochimie, 2006, 88, 801-806. Multiple Whts and Frizzled Receptors Regulate Anteriorly Directed Cell and Growth Cone Migrations in Caenorhabditis elegans. Developmental Cell, 2006, 10, 367-377. Novel heterochronic functions of the Caenorhabditis elegans period-related protein LIN-42. Developmental Biology, 2006, 289, 30-43.	0.4 13.5 13.5 1.0 1.0 1.3 3.1 0.9	 80 213 576 19 32 10 151 59

#	Article	IF	CITATIONS
794	Med-type GATA factors and the evolution of mesendoderm specification in nematodes. Developmental Biology, 2006, 289, 444-455.	0.9	32
795	The bZip proteins CES-2 and ATF-2 alter the timing of transcription for a cell-specific target gene in C. elegans. Developmental Biology, 2006, 289, 456-465.	0.9	12
796	The C. elegans histone deacetylase HDA-1 is required for cell migration and axon pathfinding. Developmental Biology, 2006, 289, 229-242.	0.9	17
797	Nucleoporins NPP-1, NPP-3, NPP-4, NPP-11 and NPP-13 are required for proper spindle orientation in C. elegans. Developmental Biology, 2006, 289, 360-371.	0.9	45
798	Characterization of loss-of-function and gain-of-function Eph receptor tyrosine kinase signaling in C. elegans axon targeting and cell migration. Developmental Biology, 2006, 290, 164-176.	0.9	40
799	The role of the laminin β subunit in laminin heterotrimer assembly and basement membrane function and development in C. elegans. Developmental Biology, 2006, 290, 211-219.	0.9	51
800	The hedgehog-related gene wrt-5 is essential for hypodermal development in Caenorhabditis elegans. Developmental Biology, 2006, 290, 323-336.	0.9	25
801	ARI-1, an RBR family ubiquitin-ligase, functions with UBC-18 to regulate pharyngeal development in C. elegans. Developmental Biology, 2006, 291, 239-252.	0.9	29
802	A novel noncanonical Wnt pathway is involved in the regulation of the asymmetric B cell division in C. elegans. Developmental Biology, 2006, 293, 316-329.	0.9	56
803	Novel gain-of-function alleles demonstrate a role for the heterochronic gene lin-41 in C. elegans male tail tip morphogenesis. Developmental Biology, 2006, 297, 74-86.	0.9	33
804	The C. elegans HP1 homologue HPL-2 and the LIN-13 zinc finger protein form a complex implicated in vulval development. Developmental Biology, 2006, 297, 308-322.	0.9	50
805	SER-1, a Caenorhabditis elegans 5-HT2-like receptor, and a multi-PDZ domain containing protein (MPZ-1) interact in vulval muscle to facilitate serotonin-stimulated egg-laying. Developmental Biology, 2006, 298, 379-391.	0.9	44
806	Interaction of PAR-6 with CDC-42 is required for maintenance but not establishment of PAR asymmetry in C. elegans. Developmental Biology, 2006, 299, 386-397.	0.9	93
807	Chondroitin acts in the guidance of gonadal distal tip cells in C. elegans. Developmental Biology, 2006, 300, 635-646.	0.9	30
808	The Claudin Superfamily Protein NSY-4 Biases Lateral Signaling to Generate Left-Right Asymmetry in C. elegans Olfactory Neurons. Neuron, 2006, 51, 291-302.	3.8	38
810	Visualization of C. elegans transgenic arrays by GFP. BMC Genetics, 2006, 7, 36.	2.7	35
811	Expression of mammalian GPCRs in C. elegans generates novel behavioural responses to human ligands. BMC Biology, 2006, 4, 22.	1.7	12
812	Initiation of male sperm-transfer behavior in Caenorhabditis elegans requires input from the ventral nerve cord. BMC Biology, 2006, 4, 26.	1.7	38

#	Article	IF	CITATIONS
813	The eggshell is required for meiotic fidelity, polar-body extrusion and polarization of the C. elegans embryo. BMC Biology, 2006, 4, 35.	1.7	63
814	The short coiled-coil domain-containing protein UNC-69 cooperates with UNC-76 to regulate axonal outgrowth and normal presynaptic organization in Caenorhabditis elegans. Journal of Biology, 2006, 5, 9.	2.7	28
815	Molecular Genetic Mechanisms of Life Span Manipulation in <i>Caenorhabditis elegans</i> . Annals of the New York Academy of Sciences, 2000, 908, 40-49.	1.8	26
816	Degenerins. Annals of the New York Academy of Sciences, 2001, 940, 28-41.	1.8	40
817	Germ line transformation of the olive fly Bactrocera oleae using a versatile transgenesis marker. Insect Molecular Biology, 2006, 15, 95-103.	1.0	37
818	The nongenotoxic carcinogens naphthalene and para-dichlorobenzene suppress apoptosis in Caenorhabditis elegans. Nature Chemical Biology, 2006, 2, 338-345.	3.9	31
819	SYD-2 Liprin-α organizes presynaptic active zone formation through ELKS. Nature Neuroscience, 2006, 9, 1479-1487.	7.1	187
820	Antagonistic sensory cues generate gustatory plasticity in Caenorhabditis elegans. EMBO Journal, 2006, 25, 312-322.	3.5	90
821	Cell fate-specific regulation of EGF receptor trafficking during Caenorhabditis elegans vulval development. EMBO Journal, 2006, 25, 2347-2357.	3.5	46
822	A biochemist's guide to Caenorhabditis elegans. Analytical Biochemistry, 2006, 359, 1-17.	1.1	76
823	Generation of biologically active retro-genes upon interaction of mouse spermatozoa with exogenous DNA. Molecular Reproduction and Development, 2006, 73, 1239-1246.	1.0	48
824	Caenorhabditis elegans dpy-14: an essential collagen gene with unique expression profile and physiological roles in early development. Molecular Genetics and Genomics, 2006, 275, 527-539.	1.0	8
825	pWormgatePro enables promoter-driven knockdown by hairpin RNA interference of muscle and neuronal gene products in Caenorhabditis elegans. Invertebrate Neuroscience, 2006, 6, 5-12.	1.8	15
826	Controlled and localized genetic manipulation in the brain. Journal of Cellular and Molecular Medicine, 2006, 10, 333-352.	1.6	22
827	The fork head transcription factor FKTF-1b from Strongyloides stercoralis restores DAF-16 developmental function to mutant Caenorhabditis elegans. International Journal for Parasitology, 2006, 36, 347-352.	1.3	44
828	Characterisation and expression of an Hsp70 gene from Parastrongyloides trichosuri. International Journal for Parasitology, 2006, 36, 467-474.	1.3	10
829	Heritable transgenesis of Parastrongyloides trichosuri: A nematode parasite of mammals. International Journal for Parasitology, 2006, 36, 475-483.	1.3	86
830	Successful transgenesis of the parasitic nematode Strongyloides stercoralis requires endogenous non-coding control elements. International Journal for Parasitology, 2006, 36, 671-679.	1.3	62

#	Article	IF	CITATIONS
831	RNAi mediated silencing of actin expression in adult Litomosoides sigmodontis is specific, persistent and results in a phenotype. International Journal for Parasitology, 2006, 36, 661-669.	1.3	47
832	Intestinal calcium waves coordinate a behavioral motor program in C. elegans. Cell Calcium, 2006, 40, 319-327.	1.1	56
833	C. elegans models of age-associated neurodegenerative diseases: Lessons from transgenic worm models of Alzheimer's disease. Experimental Gerontology, 2006, 41, 1007-1013.	1.2	181
834	A Genome-Wide Map of Conserved MicroRNA Targets in C. elegans. Current Biology, 2006, 16, 460-471.	1.8	380
835	Behavioral Motifs and Neural Pathways Coordinating O2 Responses and Aggregation in C. elegans. Current Biology, 2006, 16, 649-659.	1.8	126
836	Overlapping and distinct functions for a Caenorhabditis elegans SIR2 and DAF-16/FOXO. Mechanisms of Ageing and Development, 2006, 127, 48-56.	2.2	242
837	C. elegans 14-3-3 proteins regulate life span and interact with SIR-2.1 and DAF-16/FOXO. Mechanisms of Ageing and Development, 2006, 127, 741-747.	2.2	117
838	Caenorhabditis elegans ivermectin receptors regulate locomotor behaviour and are functional orthologues of Haemonchus contortus receptors. Molecular and Biochemical Parasitology, 2006, 147, 118-125.	0.5	49
839	Thehedgehog-related genequa-1 is required for molting inCaenorhabditis elegans. Developmental Dynamics, 2006, 235, 1469-1481.	0.8	42
840	Predictable mosaic transgene expression in ascidian embryos produced with a simple electroporation device. Developmental Dynamics, 2006, 235, 1921-1932.	0.8	31
841	The CRAL/TRIO and GOLD Domain Protein CGR-1 Promotes Induction of Vulval Cell Fates in Caenorhabditis elegans and Interacts Genetically With the Ras Signaling Pathway. Genetics, 2006, 172, 929-942.	1.2	4
842	Semi-supervised analysis of gene expression profiles for lineage-specific development in the Caenorhabditis elegans embryo. Bioinformatics, 2006, 22, e417-e423.	1.8	7
843	Caenorhabditis elegans reporter fusion genes generated by seamless modification of large genomic DNA clones. Nucleic Acids Research, 2006, 34, e72-e72.	6.5	60
844	Creation of Transgenic Lines Using Microparticle Bombardment Methods. , 2006, 351, 93-108.		36
845	Inositol monophosphatase regulates localization of synaptic components and behavior in the mature nervous system of C. elegans. Genes and Development, 2006, 20, 3296-3310.	2.7	61
846	BEHAVIORAL GENETICS OFCAENORHABDITIS ELEGANS UNC-103-ENCODED ERG-LIKE K+CHANNEL. Journal of Neurogenetics, 2006, 20, 41-66.	0.6	44
847	The Dunce cAMP Phosphodiesterase PDE-4 Negatively Regulates Gαs-Dependent and Gαs-Independent cAMP Pools in the Caenorhabditis elegans Synaptic Signaling Network. Genetics, 2006, 173, 111-130.	1.2	48
848	Genetic Regulation of Unsaturated Fatty Acid Composition in C. elegans. PLoS Genetics, 2006, 2, e108.	1.5	198

#	Article	IF	CITATIONS
849	Temporal Regulation of Foregut Development by HTZ-1/H2A.Z and PHA-4/FoxA. PLoS Genetics, 2006, 2, e161.	1.5	57
850	Searching for Neuronal Left/Right Asymmetry: Genomewide Analysis of Nematode Receptor-Type Guanylyl Cyclases. Genetics, 2006, 173, 131-149.	1.2	115
851	Regulation of Synaptic Transmission by RAB-3 and RAB-27 in Caenorhabditis elegans. Molecular Biology of the Cell, 2006, 17, 2617-2625.	0.9	144
852	Function of a STIM1 Homologue in C. elegans: Evidence that Store-operated Ca2+ Entry Is Not Essential for Oscillatory Ca2+ Signaling and ER Ca2+ Homeostasis. Journal of General Physiology, 2006, 128, 443-459.	0.9	45
853	Conditional Dominant Mutations in the Caenorhabditis elegans Gene act-2 Identify Cytoplasmic and Muscle Roles for a Redundant Actin Isoform. Molecular Biology of the Cell, 2006, 17, 1051-1064.	0.9	34
854	Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16370-16375.	3.3	175
855	Presynaptic UNC-31 (CAPS) Is Required to Activate the $Gl\pm s$ Pathway of the Caenorhabditis elegans Synaptic Signaling Network. Genetics, 2006, 172, 943-961.	1.2	83
856	Enhancement of Actin-depolymerizing Factor/Cofilin-dependent Actin Disassembly by Actin-interacting Protein 1 Is Required for Organized Actin Filament Assembly in the Caenorhabditis elegans Body Wall Muscle. Molecular Biology of the Cell, 2006, 17, 2190-2199.	0.9	45
857	Cell cycle regulators control centrosome elimination during oogenesis in Caenorhabditis elegans. Journal of Cell Biology, 2006, 174, 751-757.	2.3	39
858	The Caenorhabditis elegans rhy-1 Gene Inhibits HIF-1 Hypoxia-Inducible Factor Activity in a Negative Feedback Loop That Does Not Include vhl-1. Genetics, 2006, 174, 1205-1214.	1.2	65
859	Some C. elegans class B synthetic multivulva proteins encode a conserved LIN-35 Rb-containing complex distinct from a NuRD-like complex. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16782-16787.	3.3	123
860	A Differential Cytolocalization Assay for Analysis of Macromolecular Assemblies in the Eukaryotic Cytoplasm. Molecular and Cellular Proteomics, 2006, 5, 2175-2184.	2.5	20
861	UNC-83 Is a KASH Protein Required for Nuclear Migration and Is Recruited to the Outer Nuclear Membrane by a Physical Interaction with the SUN Protein UNC-84. Molecular Biology of the Cell, 2006, 17, 1790-1801.	0.9	124
862	The autophagy-related kinase UNC-51 and its binding partner UNC-14 regulate the subcellular localization of the Netrin receptor UNC-5 in Caenorhabditis elegans. Development (Cambridge), 2006, 133, 3441-3450.	1.2	70
863	The Caenorhabditis elegans snf-11 Gene Encodes a Sodium-dependent GABA Transporter Required for Clearance of Synaptic GABA. Molecular Biology of the Cell, 2006, 17, 3021-3030.	0.9	36
864	Caenorhabditis elegans DYF-2, an Orthologue of Human WDR19, Is a Component of the Intraflagellar Transport Machinery in Sensory Cilia. Molecular Biology of the Cell, 2006, 17, 4801-4811.	0.9	68
865	Integration of Male Mating and Feeding Behaviors in Caenorhabditis elegans. Journal of Neuroscience, 2006, 26, 169-179.	1.7	49
866	The Molecular Identities of the Caenorhabditis elegans Intraflagellar Transport Genes dyf-6, daf-10 and osm-1. Genetics, 2006, 173, 1275-1286.	1.2	57

#	Article	IF	CITATIONS
867	Molecular Physiology of the Neural Circuit for Calcineurin-Dependent Associative Learning in Caenorhabditis elegans. Journal of Neuroscience, 2006, 26, 9355-9364.	1.7	47
868	Characterization of a Novel Protein Kinase D. Journal of Biological Chemistry, 2006, 281, 17801-17814.	1.6	21
869	The Caenorhabditis elegans CPI-2a Cystatin-like Inhibitor Has an Essential Regulatory Role during Oogenesis and Fertilization. Journal of Biological Chemistry, 2006, 281, 28415-28429.	1.6	16
870	Identification and Classification of Genes That Act Antagonistically to let-60 Ras Signaling in Caenorhabditis elegans Vulval Development. Genetics, 2006, 173, 709-726.	1.2	50

Chromosome structure and behaviour in Bursaphelenchus xylophilus (Nematoda:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 582 Td (Parasita

872	Essential Roles of 3′-Phosphoadenosine 5′-Phoshosulfate Synthase in Embryonic and Larval Development of the Nematode Caenorhabditis elegans. Journal of Biological Chemistry, 2006, 281, 11431-11440.	1.6	27
873	Deletion of the Ubiquitin Ligase CHIP Leads to the Accumulation, But Not the Aggregation, of Both Endogenous Phospho- and Caspase-3-Cleaved Tau Species. Journal of Neuroscience, 2006, 26, 6985-6996.	1.7	234
874	Identification of Guanylyl Cyclases That Function in Thermosensory Neurons of Caenorhabditis elegans. Genetics, 2006, 172, 2239-2252.	1.2	153
875	Sulfated Signal from ASJ Sensory Neurons Modulates Stomatin-dependent Coordination in Caenorhabditis elegans. Journal of Biological Chemistry, 2006, 281, 35989-35996.	1.6	26
876	Starvation Induces cAMP Response Element-Binding Protein-Dependent Gene Expression through Octopamine-Gq Signaling in Caenorhabditis elegans. Journal of Neuroscience, 2006, 26, 10082-10090.	1.7	97
877	Noncell- and Cell-Autonomous G-Protein-Signaling Converges With Ca2+/Mitogen-Activated Protein Kinase Signaling to Regulate str-2 Receptor Gene Expression in Caenorhabditis elegans. Genetics, 2006, 173, 1287-1299.	1.2	8
878	Familial Parkinson Mutant α-Synuclein Causes Dopamine Neuron Dysfunction in Transgenic Caenorhabditis elegans*. Journal of Biological Chemistry, 2006, 281, 334-340.	1.6	163
879	Knockdown of Mitochondrial Heat Shock Protein 70 Promotes Progeria-like Phenotypes in Caenorhabditis elegans. Journal of Biological Chemistry, 2007, 282, 5910-5918.	1.6	96
880	UNC-31 (CAPS) Is Required for Dense-Core Vesicle But Not Synaptic Vesicle Exocytosis in Caenorhabditis elegans. Journal of Neuroscience, 2007, 27, 6150-6162.	1.7	261
881	Temporal Control of Cell-Specific Transgene Expression in <i>Caenorhabditis elegans</i> . Genetics, 2007, 176, 2651-2655.	1.2	47
882	Caenorhabditis elegans Glutamate Transporters Influence Synaptic Function and Behavior at Sites Distant from the Synapse. Journal of Biological Chemistry, 2007, 282, 34412-34419.	1.6	43
883	High-Throughput In Vivo Analysis of Gene Expression in Caenorhabditis elegans. PLoS Biology, 2007, 5, e237.	2.6	346
884	Evolutionarily conserved WNK and Ste20 kinases are essential for acute volume recovery and survival after hypertonic shrinkage in Caenorhabditis elegans. American Journal of Physiology - Cell Physiology, 2007, 293, C915-C927.	2.1	78

#	Article	IF	CITATIONS
885	Food Deprivation Attenuates Seizures through CaMKII and EAG K+ Channels. PLoS Genetics, 2007, 3, e156.	1.5	29
886	The <i>C. elegans</i> protein CEH-30 protects male-specific neurons from apoptosis independently of the Bcl-2 homolog CED-9. Genes and Development, 2007, 21, 3181-3194.	2.7	71
887	The tailless Ortholog nhr-67 Regulates Patterning of Gene Expression and Morphogenesis in the C. elegans Vulva. PLoS Genetics, 2007, 3, e69.	1.5	38
888	Molecular cloning and characterization of the Caenorhabditis elegans α1,3-fucosyltransferase family. Glycobiology, 2007, 17, 586-599.	1.3	31
889	A Caenorhabditis elegans Wild Type Defies the Temperature–Size Rule Owing to a Single Nucleotide Polymorphism in tra-3. PLoS Genetics, 2007, 3, e34.	1.5	104
890	Molecular Evolution of Drosophilacdc6, an Essential DNA Replication-Licensing Gene, Suggests an Adaptive Choice of Replication Origins. Fly, 2007, 1, 155-163.	0.9	3
891	Mos1 Mutagenesis Reveals a Diversity of Mechanisms Affecting Response of Caenorhabditis elegans to the Bacterial Pathogen Microbacterium nematophilum. Genetics, 2007, 175, 681-697.	1.2	71
892	Properties, Regulation, and in Vivo Functions of a Novel Protein Kinase D. Journal of Biological Chemistry, 2007, 282, 31273-31288.	1.6	37
893	A Specific Subset of Transient Receptor Potential Vanilloid-Type Channel Subunits in Caenorhabditis elegans Endocrine Cells Function as Mixed Heteromers to Promote Neurotransmitter Release. Genetics, 2007, 175, 93-105.	1.2	57
894	Targeted cell killing by reconstituted caspases. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2283-2288.	3.3	144
895	Identification of muscle-specific regulatory modules in Caenorhabditis elegans. Genome Research, 2007, 17, 348-357.	2.4	38
896	A Zn-finger/FH2-domain containing protein, FOZI-1, acts redundantly with CeMyoD to specify striated body wall muscle fates in the Caenorhabditis elegans postembryonic mesoderm. Development (Cambridge), 2007, 134, 19-29.	1.2	28
897	Functional genomics and biochemical characterization of the C. elegans orthologue of the Machadoâ€Joseph disease protein ataxinâ€3. FASEB Journal, 2007, 21, 1126-1136.	0.2	62
898	<i>Caenorhabditis elegans prom-1</i> Is Required for Meiotic Prophase Progression and Homologous Chromosome Pairing. Molecular Biology of the Cell, 2007, 18, 4911-4920.	0.9	34
899	Vigorous Motor Activity in <i>Caenorhabditis elegans</i> Requires Efficient Clearance of Dopamine Mediated by Synaptic Localization of the Dopamine Transporter DAT-1. Journal of Neuroscience, 2007, 27, 14216-14227.	1.7	108
900	Caenorhabditis elegans Integrates the Signals of Butanone and Food to Enhance Chemotaxis to Butanone. Journal of Neuroscience, 2007, 27, 741-750.	1.7	95
901	Genes Required for Osmoregulation and Apical Secretion in Caenorhabditis elegans. Genetics, 2007, 175, 709-724.	1.2	73
902	LIN-61, One of Two Caenorhabditis elegans Malignant-Brain-Tumor-Repeat-Containing Proteins, Acts With the DRM and NuRD-Like Protein Complexes in Vulval Development but Not in Certain Other Biological Processes, Genetics, 2007, 176, 255-271	1.2	36

#	Article	IF	CITATIONS
903	Choline Transport and <i>de novo</i> Choline Synthesis Support Acetylcholine Biosynthesis in <i>Caenorhabditis elegans</i> Cholinergic Neurons. Genetics, 2007, 177, 195-204.	1.2	22
904	Functional redundancy of worm spliceosomal proteins U1A and U2B''. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9753-9757.	3.3	25
905	In vivo construction of recombinant molecules within the Caenorhabditis elegans germ line using short regions of terminal homology. Nucleic Acids Research, 2007, 35, e133-e133.	6.5	9
906	Cloning and functional characterization of a folate transporter from the nematodeCaenorhabditis elegans. American Journal of Physiology - Cell Physiology, 2007, 293, C670-C681.	2.1	23
907	Role of T-box gene tbx-2 for anterior foregut muscle development in C. elegans. Developmental Biology, 2007, 302, 25-39.	0.9	36
908	The Pax2/5/8 gene egl-38 coordinates organogenesis of the C. elegansegg-laying system. Developmental Biology, 2007, 301, 240-253.	0.9	19
909	Gland-specific expression of C. elegans hlh-6 requires the combinatorial action of three distinct promoter elements. Developmental Biology, 2007, 302, 295-308.	0.9	19
910	Transcriptional control of Notch signaling by a HOX and a PBX/EXD protein during vulval development in C. elegans. Developmental Biology, 2007, 302, 661-669.	0.9	44
911	Similar requirements for CDC-42 and the PAR-3/PAR-6/PKC-3 complex in diverse cell types. Developmental Biology, 2007, 305, 347-357.	0.9	61
912	Transcriptional repressor and activator activities of SMA-9 contribute differentially to BMP-related signaling outputs. Developmental Biology, 2007, 305, 714-725.	0.9	55
913	Membrane localization of the NlpC/P60 family protein EGL-26 correlates with regulation of vulval cell morphogenesis in Caenorhabditis elegans. Developmental Biology, 2007, 308, 196-205.	0.9	10
914	Regulation of anchor cell invasion and uterine cell fates by the egl-43 Evi-1 proto-oncogene in Caenorhabditis elegans. Developmental Biology, 2007, 308, 187-195.	0.9	48
915	A C. elegans Myc-like network cooperates with semaphorin and Wnt signaling pathways to control cell migration. Developmental Biology, 2007, 310, 226-239.	0.9	37
916	crm-1 facilitates BMP signaling to control body size in Caenorhabditis elegans. Developmental Biology, 2007, 311, 95-105.	0.9	20
917	The C. elegans M3 neuron guides the growth cone of its sister cell M2 via the Krüppel-like zinc finger protein MNM-2. Developmental Biology, 2007, 311, 185-199.	0.9	12
918	mab-7 encodes a novel transmembrane protein that orchestrates sensory ray morphogenesis in C. elegans. Developmental Biology, 2007, 312, 353-366.	0.9	10
919	The frataxin-encoding operon of Caenorhabditis elegans shows complex structure and regulation. Genomics, 2007, 89, 392-401.	1.3	14
920	C. elegans RPM-1 Regulates Axon Termination and Synaptogenesis through the Rab GEF GLO-4 and the Rab GTPase GLO-1. Neuron, 2007, 55, 587-601.	3.8	116

#	Article	IF	CITATIONS
921	Dopamine Mediates Context-Dependent Modulation of Sensory Plasticity in C. elegans. Neuron, 2007, 55, 662-676.	3.8	150
922	Control of sex-specific apoptosis in <i>C. elegans</i> by the BarH homeodomain protein CEH-30 and the transcriptional repressor UNC-37/Groucho. Genes and Development, 2007, 21, 3195-3207.	2.7	62
923	Human NPC1L1 and NPC1 can functionally substitute for the ncr genes to promote reproductive development in C. elegans. Biochimica Et Biophysica Acta - General Subjects, 2007, 1770, 1345-1351.	1.1	14
924	Molecular characterization of a novel RhoGAP, RRC-1 of the nematode Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2007, 357, 377-382.	1.0	2
925	A novel non-coding DNA family in Caenorhabditis elegans. Gene, 2007, 388, 61-73.	1.0	1
926	Establishment of a tissue-specific RNAi system in C. elegans. Gene, 2007, 400, 166-173.	1.0	183
927	Differential expression and function of synaptotagmin 1 isoforms in Caenorhabditis elegans. Molecular and Cellular Neurosciences, 2007, 34, 642-652.	1.0	7
928	A Morphologically Conserved Nonapoptotic Program Promotes Linker Cell Death in Caenorhabditis elegans. Developmental Cell, 2007, 12, 73-86.	3.1	101
929	Technology transfer from worms and flies to vertebrates: transposition-based genome manipulations and their future perspectives. Genome Biology, 2007, 8, S1.	13.9	56
930	A Micropositioning System with Real-Time Feature Extraction Capability for Quantifying C. elegans Locomotive Behavior. , 2007, , .		3
931	The C. elegans Twist target gene, arg-1, is regulated by distinct E box promoter elements. Mechanisms of Development, 2007, 124, 377-389.	1.7	22
932	C. elegans Agrin Is Expressed in Pharynx, IL1 Neurons and Distal Tip Cells and Does Not Genetically Interact with Genes Involved in Synaptogenesis or Muscle Function. PLoS ONE, 2007, 2, e731.	1.1	22
933	Gene Silencing by Double‣tranded RNA (Nobel Lecture). Angewandte Chemie - International Edition, 2007, 46, 6966-6984.	7.2	112
934	Gen‧tummschaltung durch doppelsträgige RNA (Nobelâ€Vortrag). Angewandte Chemie, 2007, 119, 7094-7113.	1.6	15
935	The serotonin receptor SER-1 (5HT2ce) contributes to the regulation of locomotion inCaenorhabditis elegans. Developmental Neurobiology, 2007, 67, 189-204.	1.5	49
936	Venomous auger snail <i>Hastula</i> (<i>Impages</i>) <i>hectica</i> (Linnaeus, 1758): molecular phylogeny, foregut anatomy and comparative toxinology. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2007, 308B, 744-756.	0.6	40
937	The twisted pharynx phenotype in C. elegans. BMC Developmental Biology, 2007, 7, 61.	2.1	13
938	Left-right olfactory asymmetry results from antagonistic functions of voltage-activated calcium channels and the Raw repeat protein OLRN-1 in C. elegans. Neural Development, 2007, 2, 24.	1.1	61

#	Article	IF	CITATIONS
939	CRAC channel activity inC. elegansis mediated by Orai1 and STIM1 homologues and is essential for ovulation and fertility. Journal of Physiology, 2007, 580, 67-85.	1.3	36
940	Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans. Nature Biotechnology, 2007, 25, 663-668.	9.4	286
941	Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nature Methods, 2007, 4, 727-731.	9.0	539
942	PKC-1 regulates secretion of neuropeptides. Nature Neuroscience, 2007, 10, 49-57.	7.1	228
943	Regulation of apoptosis by C. elegans CED-9 in the absence of the C-terminal transmembrane domain. Cell Death and Differentiation, 2007, 14, 1925-1935.	5.0	21
945	Prodomain-dependent tissue targeting of an ADAMTS protease controls cell migration in Caenorhabditis elegans. EMBO Journal, 2007, 26, 2607-2620.	3.5	20
946	RAP-1 and the RAL-1/exocyst pathway coordinate hypodermal cell organization in Caenorhabditis elegans. EMBO Journal, 2007, 26, 5083-5092.	3.5	49
947	PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature, 2007, 447, 550-555.	13.7	500
948	Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature, 2007, 447, 545-549.	13.7	591
949	The adaptor-like protein ROG-1 is required for activation of the Ras-MAP kinase pathway and meiotic cell cycle progression in Caenorhabditis elegans. Genes To Cells, 2007, 12, 407-420.	0.5	6
950	<i>Caenorhabditis elegans </i> DYFâ€11, an orthologue of mammalian Traf3ip1/MIPâ€T3, is required for sensory cilia formation. Genes To Cells, 2008, 13, 13-25.	0.5	41
951	Insight into transcription factor gene duplication from Caenorhabditis elegans Promoterome-driven expression patterns. BMC Genomics, 2007, 8, 27.	1.2	120
952	Oesophagostomum dentatum — Potential as a model for genomic studies of strongylid nematodes, with biotechnological prospects. Biotechnology Advances, 2007, 25, 281-293.	6.0	19
953	Altered DNA damage response in Caenorhabditis elegans with impaired poly(ADP-ribose) glycohydrolases genes expression. DNA Repair, 2007, 6, 329-343.	1.3	31
954	Characterization of STIP, a multi-domain nuclear protein, highly conserved in metazoans, and essential for embryogenesis in Caenorhabditis elegans. Experimental Cell Research, 2007, 313, 1460-1472.	1.2	10
955	Role of phosphatidylinositol-4-phosphate 5′ kinase (ppk-1) in ovulation of Caenorhabditis elegans. Experimental Cell Research, 2007, 313, 2465-2475.	1.2	23
956	The Caenorhabditis elegans nicotinamidase PNC-1 enhances survival. Mechanisms of Ageing and Development, 2007, 128, 346-349.	2.2	46
957	Manipulating the manipulators: advances in parasitic helminth transgenesis and RNAi. Trends in Parasitology, 2007, 23, 197-204.	1.5	61

#	Article	IF	CITATIONS
958	MEL-47, a novel protein required for early cell divisions in the nematode Caenorhabditis elegans. Molecular Genetics and Genomics, 2007, 277, 315-328.	1.0	6
959	The bromodomain protein LEX-1 acts with TAM-1 to modulate gene expression in C. elegans. Molecular Genetics and Genomics, 2007, 278, 507-518.	1.0	17
961	RNA interference in nematodes and the chance that favored Sydney Brenner. Journal of Biology, 2008, 7, 34.	2.7	41
962	Cellular and molecular determinants targeting the <i>Caenorhabditis elegans</i> PHR protein RPMâ€1 to perisynaptic regions. Developmental Dynamics, 2008, 237, 630-639.	0.8	35
963	Differential expression pattern of the four mitochondrial adenine nucleotide transporter <i>ant</i> genes and their roles during the development of <i>Caenorhabditis elegans</i> . Developmental Dynamics, 2008, 237, 1668-1681.	0.8	20
964	The MAP kinase JNKâ€1 of <i>Caenorhabditis elegans</i> : Location, activation, and influences over temperatureâ€dependent insulinâ€like signaling, stress responses, and fitness. Journal of Cellular Physiology, 2008, 214, 721-729.	2.0	46
965	The Tol1 element of the medaka fish, a member of the hAT transposable element family, jumps in Caenorhabditis elegans. Heredity, 2008, 101, 222-227.	1.2	8
966	<i>Caenorhabditis elegans</i> Rab escort protein (REPâ€1) differently regulates each Rab protein function and localization in a tissueâ€dependent manner. Genes To Cells, 2008, 13, 1141-1157.	0.5	11
967	Single-copy insertion of transgenes in Caenorhabditis elegans. Nature Genetics, 2008, 40, 1375-1383.	9.4	1,057
968	Vector-free DNA constructs improve transgene expression in C. elegans. Nature Methods, 2008, 5, 3-3.	9.0	43
969	Visualization of protein interactions in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis. Nature Protocols, 2008, 3, 588-596.	5.5	75
970	Clyoxalaseâ€l prevents mitochondrial protein modification and enhances lifespan in <i> Caenorhabditis elegans</i> . Aging Cell, 2008, 7, 260-269.	3.0	251
971	The evolutionarily conserved gene LNP-1 is required for synaptic vesicle trafficking and synaptic transmission. European Journal of Neuroscience, 2008, 27, 621-630.	1.2	12
972	In vivo imaging of cellular structures in Caenorhabditis elegans by combined TPEF, SHG and THG microscopy. Journal of Microscopy, 2008, 229, 141-150.	0.8	39
973	Transgenesis and neuronal ablation in parasitic nematodes: revolutionary new tools to dissect host–parasite interactions. Parasite Immunology, 2008, 30, 203-214.	0.7	14
974	Strongyloides stercoralis: Cell- and tissue-specific transgene expression and co-transformation with vector constructs incorporating a common multifunctional 3′ UTR. Experimental Parasitology, 2008, 118, 253-265.	0.5	55
975	Modulation of longevity and diapause by redox regulation mechanisms under the insulin-like signaling control in Caenorhabditis elegans. Experimental Gerontology, 2008, 43, 520-529.	1.2	79
976	Memory in Caenorhabditis elegans Is Mediated by NMDA-Type Ionotropic Glutamate Receptors. Current Biology, 2008, 18, 1010-1015.	1.8	80

	Сітаті	on Report	
#	Article	IF	CITATIONS
977	Positive and negative regulatory inputs restrict pax-6/vab-3 transcription to sensory organ precursors in Caenorhabditis elegans. Mechanisms of Development, 2008, 125, 486-497.	1.7	6
978	Mesodermal expression of the C. elegans HMX homolog mls-2 requires the PBC homolog CEH-20. Mechanisms of Development, 2008, 125, 451-461.	1.7	13
979	Transcription Factors GATA/ELT-2 and Forkhead/HNF-3/PHA-4 Regulate the Tropomyosin Gene Expression in the Pharynx and Intestine of Caenorhabditis elegans. Journal of Molecular Biology, 2008, 379, 201-211.	2.0	12
980	The C. elegans glycosyltransferase BUS-8 has two distinct and essential roles in epidermal morphogenesis. Developmental Biology, 2008, 317, 549-559.	0.9	104
981	Insulin-like signaling negatively regulates muscle arm extension through DAF-12 in Caenorhabditis elegans. Developmental Biology, 2008, 318, 153-161.	0.9	16
982	Different isoforms of the C. elegans FGF receptor are required for attraction and repulsion of the migrating sex myoblasts. Developmental Biology, 2008, 318, 268-275.	0.9	24
983	UNC-85, a C. elegans homolog of the histone chaperone Asf1, functions in post-embryonic neuroblast replication. Developmental Biology, 2008, 319, 100-109.	0.9	13
984	Copulation in C. elegans males requires a nuclear hormone receptor. Developmental Biology, 2008, 322, 11-20.	0.9	18
985	The CSL transcription factor LAG-1 directly represses hlh-6 expression in C. elegans. Developmental Biology, 2008, 322, 334-344.	0.9	17
986	Tissue-specific functions of the Caenorhabditis elegans p120 Ras GTPase activating protein GAP-3. Developmental Biology, 2008, 323, 166-176.	0.9	12
987	The WAVE/SCAR complex promotes polarized cell movements and actin enrichment in epithelia during C. elegans embryogenesis. Developmental Biology, 2008, 324, 297-309.	0.9	96
988	A Krüppel-Like Factor in <i>Caenorhabditis elegans</i> with Essential Roles in Fat Regulation, Cell Death, and Phagocytosis. DNA and Cell Biology, 2008, 27, 545-551.	0.9	20
989	Regulation of rnt-1 expression mediated by the opposing effects of BRO-1 and DBL-1 in the nematode Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2008, 367, 130-136.	1.0	5
990	The anesthetic action of ethanol analyzed by genetics in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2008, 367, 219-225.	1.0	6
991	Protons Act as a Transmitter for MuscleÂContraction in C. elegans. Cell, 2008, 132, 149-160.	13.5	117
992	C. elegans Telomeres Contain G-Strand and C-Strand Overhangs that Are Bound by Distinct Proteins. Cell, 2008, 132, 745-757.	13.5	121
993	C. elegans AP-2 and Retromer Control Wnt Signaling by Regulating MIG-14/Wntless. Developmental Cell, 2008, 14, 132-139.	3.1	189
994	STAR family RNA-binding protein ASD-2 regulates developmental switching of mutually exclusive alternative splicing in vivo. Genes and Development, 2008, 22, 360-374.	2.7	64

#	Article	IF	CITATIONS
995	Tyrosine-rich Conopeptides Affect Voltage-gated K+ Channels. Journal of Biological Chemistry, 2008, 283, 23026-23032.	1.6	27
996	Proteasomal Regulation of the Proliferation vs. Meiotic Entry Decision in the Caenorhabditis elegans Germ Line. Genetics, 2008, 180, 905-920.	1.2	31
997	A novel Â1,2-fucosyltransferase (CE2FT-2) in Caenorhabditis elegans generates H-type 3 glycan structures. Glycobiology, 2008, 18, 290-302.	1.3	15
998	Large-scale gene expression pattern analysis, in situ, in Caenorhabditis elegans. Briefings in Functional Genomics & Proteomics, 2008, 7, 175-183.	3.8	18
999	ADBP-1 Regulates an ADAR RNA-Editing Enzyme to Antagonize RNA-Interference-Mediated Gene Silencing in <i>Caenorhabditis elegans</i> . Genetics, 2008, 180, 785-796.	1.2	18
1000	C. elegans as a model organism for in vivo screening in cancer: effects of human c-Met in lung cancer affect C. elegans vulva phenotypes. Cancer Biology and Therapy, 2008, 7, 856-863.	1.5	30
1001	PAR proteins direct asymmetry of the cell cycle regulators Polo-like kinase and Cdc25. Journal of Cell Biology, 2008, 180, 877-885.	2.3	84
1002	Oxidative stress in <i>Caenorhabditis elegans</i> : protective effects of the Omega class glutathione transferase (<i>GSTOâ€I</i>). FASEB Journal, 2008, 22, 343-354.	0.2	119
1003	Control of feeding behavior in <i>C. elegans</i> by human G protein-coupled receptors permits screening for agonist-expressing bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14826-14831.	3.3	6
1004	A Novel Sorting Nexin Modulates Endocytic Trafficking and α-Secretase Cleavage of the Amyloid Precursor Protein. Journal of Biological Chemistry, 2008, 283, 14257-14268.	1.6	74
1005	An Iron Enhancer Element in the FTN-1 Gene Directs Iron-dependent Expression in Caenorhabditis elegans Intestine. Journal of Biological Chemistry, 2008, 283, 716-725.	1.6	38
1006	<i>Caenorhabditis elegans</i> Genes Required for the Engulfment of Apoptotic Corpses Function in the Cytotoxic Cell Deaths Induced by Mutations in <i>lin-24</i> and <i>lin-33</i> . Genetics, 2008, 179, 403-417.	1.2	19
1007	Intestinal Ca ²⁺ wave dynamics in freely moving <i>C. elegans</i> coordinate execution of a rhythmic motor program. American Journal of Physiology - Cell Physiology, 2008, 294, C333-C344.	2.1	40
1008	The Anticonvulsant Ethosuximide Disrupts Sensory Function to Extend C. elegans Lifespan. PLoS Genetics, 2008, 4, e1000230.	1.5	39
1009	A Novel Molecular Solution for Ultraviolet Light Detection in Caenorhabditis elegans. PLoS Biology, 2008, 6, e198.	2.6	250
1010	The HLH-6 Transcription Factor Regulates C. elegans Pharyngeal Gland Development and Function. PLoS Genetics, 2008, 4, e1000222.	1.5	38
1011	<i>>mls-2</i> and <i>vab-3</i> control glia development, <i>hlh-17</i> /Olig expression and glia-dependent neurite extension in <i>C. elegans</i> . Development (Cambridge), 2008, 135, 2263-2275.	1.2	84
1012	Role of the <i>Caenorhabditis elegans</i> Shc Adaptor Protein in the c-Jun N-Terminal Kinase Signaling Pathway. Molecular and Cellular Biology, 2008, 28, 7041-7049.	1.1	34

#	Article	IF	CITATIONS
1013	The <i>Caenorhabditis elegans</i> vulva: A post-embryonic gene regulatory network controlling organogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20095-20099.	3.3	34
1014	The <i>Caenorhabditis elegans PcG-</i> like Gene <i>sop-2</i> Regulates the Temporal and Sexual Specificities of Cell Fates. Genetics, 2008, 178, 1445-1456.	1.2	10
1015	Distinct Isoforms of the RFX Transcription Factor DAF-19 Regulate Ciliogenesis and Maintenance of Synaptic Activity. Molecular Biology of the Cell, 2008, 19, 5517-5528.	0.9	49
1016	SHC-1/p52Shc targets the insulin/IGF-1 and JNK signaling pathways to modulate life span and stress response in <i>C. elegans</i> . Genes and Development, 2008, 22, 2721-2735.	2.7	51
1017	Deletion of smn-1, the Caenorhabditis elegans ortholog of the spinal muscular atrophy gene, results in locomotor dysfunction and reduced lifespan. Human Molecular Genetics, 2008, 18, 97-104.	1.4	85
1018	<i>glo-3</i> , a Novel <i>Caenorhabditis elegans</i> Gene, Is Required for Lysosome-Related Organelle Biogenesis. Genetics, 2008, 180, 857-871.	1.2	32
1019	Insulin Signaling and the Heat Shock Response Modulate Protein Homeostasis in the Caenorhabditis elegans Intestine during Infection. Journal of Biological Chemistry, 2008, 283, 194-201.	1.6	97
1020	<i>Caenorhabditis elegans mboa-7</i> , a Member of the MBOAT Family, Is Required for Selective Incorporation of Polyunsaturated Fatty Acids into Phosphatidylinositol. Molecular Biology of the Cell, 2008, 19, 1174-1184.	0.9	119
1021	<i>Caenorhabditis elegans</i> Teneurin, <i>ten-1</i> , Is Required for Gonadal and Pharyngeal Basement Membrane Integrity and Acts Redundantly with Integrin <i>ina-1</i> and Dystroglycan <i>dgn-1</i> . Molecular Biology of the Cell, 2008, 19, 3898-3908.	0.9	52
1022	A "FLP-Out―System for Controlled Gene Expression in <i>Caenorhabditis elegans</i> . Genetics, 2008, 180, 103-119.	1.2	72
1023	Functional Redundancy of the B9 Proteins and Nephrocystins in <i>Caenorhabditis elegans</i> Ciliogenesis. Molecular Biology of the Cell, 2008, 19, 2154-2168.	0.9	88
1024	Acrylamide-Responsive Genes in the Nematode Caenorhabditis elegans. Toxicological Sciences, 2008, 101, 215-225.	1.4	68
1025	The Conserved Proteins CHE-12 and DYF-11 Are Required for Sensory Cilium Function in <i>Caenorhabditis elegans</i> . Genetics, 2008, 178, 989-1002.	1.2	41
1026	Chapter 30 Autophagy in Caenorhabditis elegans. Methods in Enzymology, 2008, 451, 521-540.	0.4	25
1027	E1 Ubiquitin-Activating Enzyme UBA-1 Plays Multiple Roles throughout C. elegans Development. PLoS Genetics, 2008, 4, e1000131.	1.5	55
1028	Artificial Dirt: Microfluidic Substrates for Nematode Neurobiology and Behavior. Journal of Neurophysiology, 2008, 99, 3136-3143.	0.9	162
1029	Generation of Stable Transgenic C. elegans Using Microinjection. Journal of Visualized Experiments, 2008, , .	0.2	65
1030	Coordinated Regulation of Intestinal Functions in C. elegans by LIN-35/Rb and SLR-2. PLoS Genetics, 2008, 4, e1000059.	1.5	23

#	Article	IF	CITATIONS
1031	The Roles and Acting Mechanism of Caenorhabditis elegans DNase II Genes in Apoptotic DNA Degradation and Development. PLoS ONE, 2009, 4, e7348.	1.1	14
1032	SMF-1, SMF-2 and SMF-3 DMT1 Orthologues Regulate and Are Regulated Differentially by Manganese Levels in C. elegans. PLoS ONE, 2009, 4, e7792.	1.1	80
1033	Worms With a Single Functional Sensory Cilium Generate Proper Neuron-Specific Behavioral Output. Genetics, 2009, 183, 595-605.	1.2	12
1034	Adenine Nucleotide Translocator Cooperates with Core Cell Death Machinery To Promote Apoptosis in <i>Caenorhabditis elegans</i> . Molecular and Cellular Biology, 2009, 29, 3881-3893.	1.1	23
1035	Crystal Structure of CRN-4: Implications for Domain Function in Apoptotic DNA Degradation. Molecular and Cellular Biology, 2009, 29, 448-457.	1.1	23
1036	A feedback circuit involving let-7-family miRNAs and DAF-12 integrates environmental signals and developmental timing in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18668-18673.	3.3	141
1037	A Caenorhabditis elegans Glycolipid-binding Galectin Functions in Host Defense against Bacterial Infection. Journal of Biological Chemistry, 2009, 284, 26493-26501.	1.6	58
1038	Control of Rapsyn Stability by the CUL-3-containing E3 Ligase Complex. Journal of Biological Chemistry, 2009, 284, 8195-8206.	1.6	22
1039	N-Glycosylation Regulates Fibroblast Growth Factor Receptor/EGL-15 Activity in Caenorhabditis elegans in Vivo. Journal of Biological Chemistry, 2009, 284, 33030-33039.	1.6	21
1040	Statins inhibit protein lipidation and induce the unfolded protein response in the non-sterol producing nematode Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18285-18290.	3.3	84
1041	Impaired dense core vesicle maturation in <i>Caenorhabditis elegans</i> mutants lacking Rab2. Journal of Cell Biology, 2009, 186, 881-895.	2.3	78
1042	UNC-18 Modulates Ethanol Sensitivity in <i>Caenorhabditis elegans</i> . Molecular Biology of the Cell, 2009, 20, 43-55.	0.9	32
1043	Export of RNA silencing from <i>C. elegans</i> tissues does not require the RNA channel SID-1. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2283-2288.	3.3	110
1045	The Potassium Chloride Cotransporter KCC-2 Coordinates Development of Inhibitory Neurotransmission and Synapse Structure in Caenorhabditis elegans. Journal of Neuroscience, 2009, 29, 9943-9954.	1.7	66
1046	Analysis of Intraflagellar Transport in C. elegans Sensory Cilia. Methods in Cell Biology, 2009, 93, 235-266.	0.5	14
1047	An ALS-Linked Mutant SOD1 Produces a Locomotor Defect Associated with Aggregation and Synaptic Dysfunction When Expressed in Neurons of Caenorhabditis elegans. PLoS Genetics, 2009, 5, e1000350.	1.5	175
1048	A Mechanistic Basis for the Coordinated Regulation of Pharyngeal Morphogenesis in Caenorhabditis elegans by LIN-35/Rb and UBC-18–ARI-1. PLoS Genetics, 2009, 5, e1000510.	1.5	24
1049	A Neuronal Acetylcholine Receptor Regulates the Balance of Muscle Excitation and Inhibition in Caenorhabditis elegans. PLoS Biology, 2009, 7, e1000265.	2.6	111

#	Article	IF	CITATIONS
1050	A Surrogate Approach to Study the Evolution of Noncoding DNA Elements That Organize Eukaryotic Genomes. Journal of Heredity, 2009, 100, 624-636.	1.0	10
1051	The Cation Diffusion Facilitator Gene <i>cdf-2</i> Mediates Zinc Metabolism in <i>Caenorhabditis elegans</i> . Genetics, 2009, 182, 1015-1033.	1.2	51
1052	The <i>Caenorhabditis elegans ing-3</i> Gene Regulates Ionizing Radiation-Induced Germ-Cell Apoptosis in a p53-Associated Pathway. Genetics, 2009, 181, 473-482.	1.2	22
1053	Normal Formation of a Subset of Intestinal Granules in <i>Caenorhabditis elegans</i> Requires ATP-binding Cassette Transporters HAF-4 and HAF-9, Which Are Highly Homologous to Human Lysosomal Peptide Transporter TAP-Like. Molecular Biology of the Cell, 2009, 20, 2979-2990.	0.9	18
1054	UNC-108/RAB-2 and its effector RIC-19 are involved in dense core vesicle maturation in <i>Caenorhabditis elegans </i> . Journal of Cell Biology, 2009, 186, 897-914.	2.3	90
1055	Retrofitting ampicillin resistant vectors by recombination for use in generating C. elegans transgenic animals by bombardment. Plasmid, 2009, 62, 140-145.	0.4	13
1056	Transgenesis in parasitic nematodes: building a better array. Trends in Parasitology, 2009, 25, 345-347.	1.5	15
1057	The Caenorhabditis elegans sirtuin gene, sir-2.1, is widely expressed and induced upon caloric restriction. Mechanisms of Ageing and Development, 2009, 130, 762-770.	2.2	30
1058	Mutation in Caenorhabditis elegans Krüppel-like factor, KLF-3 results in fat accumulation and alters fatty acid composition. Experimental Cell Research, 2009, 315, 2568-2580.	1.2	29
1059	Effects of non-steroidal anti-inflammatory drugs on Al̂² deposition in Al̂²1–42 transgenic C. elegans. Brain Research, 2009, 1295, 186-191.	1.1	18
1060	A cathepsin L-like protease from Strongylus vulgaris: An orthologue of Caenorhabditis elegans CPL-1. Experimental Parasitology, 2009, 121, 293-299.	0.5	6
1061	Functional characterisation of a cyst nematode acetylcholinesterase gene using Caenorhabditis elegans as a heterologous system. International Journal for Parasitology, 2009, 39, 849-858.	1.3	19
1062	Functional genomics of hsp-90 in parasitic and free-living nematodes. International Journal for Parasitology, 2009, 39, 1071-1081.	1.3	37
1063	Actinâ€ADF/cofilin rod formation in <i>Caenorhabditis elegans</i> muscle requires a putative Fâ€actin binding site of ADF/cofilin at the Câ€ŧerminus. Cytoskeleton, 2009, 66, 398-408.	4.4	7
1064	The JIP3 scaffold protein UNCâ€16 regulates RABâ€5 dependent membrane trafficking at <i>C. elegans</i> synapses. Developmental Neurobiology, 2009, 69, 174-190.	1.5	36
1065	Regulation of the <i>Caenorhabditis elegans</i> posterior hox gene <i>egl</i> â€ <i>5</i> by microRNA and the polycombâ€like gene <i>sop</i> â€ <i>2</i> . Developmental Dynamics, 2009, 238, 595-603.	0.8	10
1066	Molecular cloning of a dominant roller mutant and establishment of DNAâ€mediated transformation in the nematode <i>Pristionchus pacificus</i> . Genesis, 2009, 47, 300-304.	0.8	92
1067	HLB-1 functions as a new regulator for the organization and function of neuromuscular junctions in nematode Caenorhabditis elegans. Neuroscience Bulletin, 2009, 25, 75-86.	1.5	9

#	Article	IF	CITATIONS
1068	The DEAD-box protein MEL-46 is required in the germ line of the nematode Caenorhabditis elegans. BMC Developmental Biology, 2009, 9, 35.	2.1	13
1069	What have worm models told us about the mechanisms of neuronal dysfunction in human neurodegenerative diseases?. Molecular Neurodegeneration, 2009, 4, 38.	4.4	62
1070	Functional analysis of GS28, an intraâ€Golgi SNARE, in <i>Caenorhabditis elegans</i> . Genes To Cells, 2009, 14, 1003-1013.	0.5	15
1071	Nonâ€receptor tyrosine kinase CSKâ€1 controls pharyngeal muscle organization in <i>Caenorhabditis elegans</i> . Genes To Cells, 2009, 14, 381-393.	0.5	14
1072	Dopamine counteracts octopamine signalling in a neural circuit mediating food response in C. elegans. EMBO Journal, 2009, 28, 2437-2448.	3.5	74
1073	Caenorhabditis elegans dauers need LKB1/AMPK to ration lipid reserves and ensure long-term survival. Nature, 2009, 457, 210-214.	13.7	284
1074	Natural variation in a neural globin tunes oxygen sensing in wild Caenorhabditis elegans. Nature, 2009, 458, 1030-1033.	13.7	125
1075	A conserved ubiquitination pathway determines longevity in response to diet restriction. Nature, 2009, 460, 396-399.	13.7	117
1076	A secreted complement-control-related protein ensures acetylcholine receptor clustering. Nature, 2009, 461, 992-996.	13.7	110
1077	Identification of chromosome sequence motifs that mediate meiotic pairing and synapsis in C. elegans. Nature Cell Biology, 2009, 11, 934-942.	4.6	123
1078	Mutation of SHOC2 promotes aberrant protein N-myristoylation and causes Noonan-like syndrome with loose anagen hair. Nature Genetics, 2009, 41, 1022-1026.	9.4	358
1079	Optical interrogation of neural circuits in Caenorhabditis elegans. Nature Methods, 2009, 6, 891-896.	9.0	210
1080	The <i>C. elegans </i> P4â€ATPase TAT″ Regulates Lysosome Biogenesis and Endocytosis. Traffic, 2009, 10, 88-100.	1.3	53
1081	Methionine sulfoxide reductase A expression is regulated by the DAFâ€16/FOXO pathway in <i>Caenorhabditis elegans</i> . Aging Cell, 2009, 8, 690-705.	3.0	70
1082	nhl-2 Modulates MicroRNA Activity in Caenorhabditis elegans. Cell, 2009, 136, 926-938.	13.5	159
1083	Tissue-Specific Activities of an Immune Signaling Module Regulate Physiological Responses to Pathogenic and Nutritional Bacteria in C. elegans. Cell Host and Microbe, 2009, 6, 321-330.	5.1	138
1084	Coordinated Regulation of Foraging and Metabolism in C. elegans by RFamide Neuropeptide Signaling. Cell Metabolism, 2009, 9, 375-385.	7.2	105
1085	Dissection of lin-11 enhancer regions in Caenorhabditis elegans and other nematodes. Developmental Biology, 2009, 325, 402-411.	0.9	16

#	Article	IF	Citations
1086	Knockdown of SKN-1 and the Wnt effector TCF/POP-1 reveals differences in endomesoderm specification in C. briggsae as compared with C. elegans. Developmental Biology, 2009, 325, 296-306.	0.9	45
1087	CWN-1 functions with DSH-2 to regulate C. elegans asymmetric neuroblast division in a β-catenin independent Wnt pathway. Developmental Biology, 2009, 328, 245-256.	0.9	10
1088	A conserved Six–Eya cassette acts downstream of Wnt signaling to direct non-myogenic versus myogenic fates in the C. elegans postembryonic mesoderm. Developmental Biology, 2009, 331, 350-360.	0.9	30
1089	HOM-C genes, Wnt signaling and axial patterning in the C. elegans posterior ventral epidermis. Developmental Biology, 2009, 332, 156-165.	0.9	10
1090	Spatio-temporal reference model of Caenorhabditis elegans embryogenesis with cell contact maps. Developmental Biology, 2009, 333, 1-13.	0.9	34
1091	Regulation of sperm gene expression by the GATA factor ELT-1. Developmental Biology, 2009, 333, 397-408.	0.9	22
1092	Ribosomal protein RPS-14 modulates let-7 microRNA function in Caenorhabditis elegans. Developmental Biology, 2009, 334, 152-160.	0.9	22
1093	Two Hox cofactors, the Meis/Hth homolog UNC-62 and the Pbx/Exd homolog CEH-20, function together during C. elegans postembryonic mesodermal development. Developmental Biology, 2009, 334, 535-546.	0.9	21
1094	Characterization of the Caenorhabditis elegans UDP-galactopyranose mutase homolog glf-1 reveals an essential role for galactofuranose metabolism in nematode surface coat synthesis. Developmental Biology, 2009, 335, 340-355.	0.9	35
1095	The conserved zinc finger protein VAB-23 is an essential regulator of epidermal morphogenesis in Caenorhabditis elegans. Developmental Biology, 2009, 336, 84-93.	0.9	4
1096	DPL-1 (DP) acts in the germ line to coordinate ovulation and fertilization in C. elegans. Mechanisms of Development, 2009, 126, 406-416.	1.7	13
1097	Binding of UNC-18 to the N-terminus of syntaxin is essential for neurotransmission in <i>Caenorhabditis elegans</i> . Biochemical Journal, 2009, 418, 73-80.	1.7	54
1098	Nematode, an Experimental Animal in the National BioResource Project. Experimental Animals, 2009, 58, 351-356.	0.7	34
1099	Functional modularity of nuclear hormone receptors in a <i>Caenorhabditis elegans</i> metabolic gene regulatory network. Molecular Systems Biology, 2010, 6, 367.	3.2	93
1100	Generation of Transgenic C. elegans by Biolistic Transformation. Journal of Visualized Experiments, 2010, , .	0.2	23
1101	Animal transgenesis: an overview. Brain Structure and Function, 2010, 214, 91-109.	1.2	122
1102	Coordinate regulation of gene expression in the C. elegans excretory cell by the POU domain protein CEH-6. Molecular Genetics and Genomics, 2010, 283, 73-87.	1.0	10
1103	The gene structure and promoter region of the vaccine target aminopeptidase H11 from the blood-sucking nematode parasite of ruminants, Haemonchus contortus. Functional and Integrative Genomics, 2010, 10, 589-601.	1.4	9

#	Article	IF	CITATIONS
1104	Genes required for the functions of olfactory AWA neuron regulate the longevity of Caenorhabditis elegans in an insulin/IGF signaling-dependent fashion. Neuroscience Bulletin, 2010, 26, 91-103.	1.5	26
1105	Regulation of longevity by genes required for the functions of AIY interneuron in nematode Caenorhabditis elegans. Mechanisms of Ageing and Development, 2010, 131, 732-738.	2.2	34
1106	Distributed probing of chromatin structure in vivo reveals pervasive chromatin accessibility for expressed and non-expressed genes during tissue differentiation in C. elegans. BMC Genomics, 2010, 11, 465.	1.2	21
1107	Determination of the mobility of novel and established Caenorhabditis elegans sarcomeric proteins in vivo. European Journal of Cell Biology, 2010, 89, 437-448.	1.6	12
1108	Many Families of C. elegans MicroRNAs Are Not Essential for Development or Viability. Current Biology, 2010, 20, 367-373.	1.8	263
1109	Loss of Individual MicroRNAs Causes Mutant Phenotypes in Sensitized Genetic Backgrounds in C. elegans. Current Biology, 2010, 20, 1321-1325.	1.8	122
1110	MicroRNAs Both Promote and Antagonize Longevity in C. elegans. Current Biology, 2010, 20, 2159-2168.	1.8	264
1111	Failure of Parastrongyloides trichosuri daf-7 to complement a Caenorhabditis elegans daf-7 (e1372) mutant: Implications for the evolution of parasitism. International Journal for Parasitology, 2010, 40, 1675-1683.	1.3	14
1112	Phosphorylation motifs in the nonhelical domains of myosin heavy chain and paramyosin may negatively regulate assembly in <i>Caenorhabditis elegans</i> striated muscle. Cytoskeleton, 2010, 67, 309-321.	1.0	4
1113	Analysis of conserved residues in the β <i>patâ€3</i> cytoplasmic tail reveals important functions of integrin in multiple tissues. Developmental Dynamics, 2010, 239, 763-772.	0.8	7
1114	Cell fate specification in the <i>C. elegans</i> embryo. Developmental Dynamics, 2010, 239, 1315-1329.	0.8	42
1115	In vitro and in vivo characterization of <i>Caenorhabditis elegans</i> PHAâ€4/FoxA response elements. Developmental Dynamics, 2010, 239, 2219-2232.	0.8	8
1116	Automated imaging of neuronal activity in freely behaving Caenorhabditis elegans. Journal of Neuroscience Methods, 2010, 187, 229-234.	1.3	83
1117	The caenorhabditis elegans CDT-2 ubiquitin ligase is required for attenuation of EGFR signalling in vulva precursor cells. BMC Developmental Biology, 2010, 10, 109.	2.1	3
1118	C. elegans ten-1 is synthetic lethal with mutations in cytoskeleton regulators, and enhances many axon guidance defective mutants. BMC Developmental Biology, 2010, 10, 55.	2.1	31
1119	Regulation of genes affecting body size and innate immunity by the DBL-1/BMP-like pathway in Caenorhabditis elegans. BMC Developmental Biology, 2010, 10, 61.	2.1	66
1120	mab-31 and the TGF-β pathway act in the ray lineage to pattern C. elegansmale sensory rays. BMC Developmental Biology, 2010, 10, 82.	2.1	6
1121	Alternative trans-splicing of Caenorhabditis elegans sma-9/schnurri generates a short transcript that provides tissue-specific function in BMP signaling. BMC Molecular Biology, 2010, 11, 46.	3.0	10

#	Article	IF	CITATIONS
1122	The G Protein regulators EGL-10 and EAT-16, the Giα GOA-1 and the Gqα EGL-30 modulate the response of the C. elegansASH polymodal nociceptive sensory neurons to repellents. BMC Biology, 2010, 8, 138.	1.7	23
1123	Expression patterns of intronic microRNAs in Caenorhabditis elegans. Silence: A Journal of RNA Regulation, 2010, 1, 5.	8.0	59
1124	Inhibiting miRNA in Caenorhabditis elegans using a potent and selective antisense reagent. Silence: A Journal of RNA Regulation, 2010, 1, 9.	8.0	14
1125	<i>drrâ€2</i> encodes an elF4H that acts downstream of TOR in dietâ€restrictionâ€induced longevity of <i>C.Âelegans</i> . Aging Cell, 2010, 9, 545-557.	3.0	50
1126	A <i>Caenorhabditis elegans</i> model of orotic aciduria reveals enlarged lysosomeâ€related organelles in embryos lacking <i>umpsâ€l</i> function. FEBS Journal, 2010, 277, 1420-1439.	2.2	13
1127	Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO Journal, 2010, 29, 3571-3589.	3.5	431
1128	A new DAF-16 isoform regulates longevity. Nature, 2010, 466, 498-502.	13.7	166
1129	Conditional gene expression and RNAi using MEC-8–dependent splicing in C. elegans. Nature Methods, 2010, 7, 407-411.	9.0	28
1130	A photoconvertible reporter of the ubiquitin-proteasome system in vivo. Nature Methods, 2010, 7, 473-478.	9.0	112
1131	Enhanced neuronal RNAi in C. elegans using SID-1. Nature Methods, 2010, 7, 554-559.	9.0	333
1132	An antibiotic selection marker for nematode transgenesis. Nature Methods, 2010, 7, 721-723.	9.0	72
1133	Rapid selection of transgenic C. elegans using antibiotic resistance. Nature Methods, 2010, 7, 725-727.	9.0	77
1134	C. elegans select. Nature Methods, 2010, 7, 693-695.	9.0	6
1135	Visualization and genetic analysis of alternative splicing regulation in vivo using fluorescence reporters in transgenic Caenorhabditis elegans. Nature Protocols, 2010, 5, 1495-1517.	5.5	69
1136	Magnesium Excretion in C. elegans Requires the Activity of the GTL-2 TRPM Channel. PLoS ONE, 2010, 5, e9589.	1.1	27
1137	Genetic and Cellular Characterization of Caenorhabditis elegans Mutants Abnormal in the Regulation of Many Phase II Enzymes. PLoS ONE, 2010, 5, e11194.	1.1	31
1138	Intracellular Trafficking and Synaptic Function of APL-1 in Caenorhabditis elegans. PLoS ONE, 2010, 5, e12790.	1.1	42
1139	Metallothioneins Are Required for Formation of Cross-Adaptation Response to Neurobehavioral Toxicity from Lead and Mercury Exposure in Nematodes. PLoS ONE, 2010, 5, e14052.	1.1	34

#	Article	IF	CITATIONS
1140	A Ubiquitin E2 Variant Protein Acts in Axon Termination and Synaptogenesis in <i>Caenorhabditis elegans</i> . Genetics, 2010, 186, 135-145.	1.2	15
1141	The <i>C. elegans</i> developmental timing protein LIN-42 regulates diapause in response to environmental cues. Development (Cambridge), 2010, 137, 3501-3511.	1.2	28
1142	Nuclear pre-mRNA 3′-end processing regulates synapse and axon development in <i>C. elegans</i> . Development (Cambridge), 2010, 137, 2237-2250.	1.2	19
1143	The FoxF/FoxC factor LET-381 directly regulates both cell fate specification and cell differentiation in <i>C. elegans</i> mesoderm development. Development (Cambridge), 2010, 137, 1451-1460.	1.2	25
1144	Protein phosphatase 2A cooperates with the autophagy-related kinase UNC-51 to regulate axon guidance in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2010, 137, 1657-1667.	1.2	35
1145	The <i>Caenorhabditis elegans</i> Ste20-Related Kinase and Rac-Type Small GTPase Regulate the c-Jun N-Terminal Kinase Signaling Pathway Mediating the Stress Response. Molecular and Cellular Biology, 2010, 30, 995-1003.	1.1	14
1146	Molecular characterization of <i>numr-1</i> and <i>numr-2</i> : genes that increase both resistance to metal-induced stress and lifespan in <i>Caenorhabditis elegans</i> . Journal of Cell Science, 2010, 123, 2124-2134.	1.2	25
1147	The Conserved miR-51 microRNA Family Is Redundantly Required for Embryonic Development and Pharynx Attachment in <i>Caenorhabditis elegans</i> . Genetics, 2010, 185, 897-905.	1.2	60
1148	Insulin Signaling Plays a Dual Role in Caenorhabditis elegans Memory Acquisition and Memory Retrieval. Journal of Neuroscience, 2010, 30, 8001-8011.	1.7	66
1149	Kinesin-1 and dynein at the nuclear envelope mediate the bidirectional migrations of nuclei. Journal of Cell Biology, 2010, 191, 115-128.	2.3	137
1150	Arrestin and the Multi-PDZ Domain-containing Protein MPZ-1 Interact with Phosphatase and Tensin Homolog (PTEN) and Regulate Caenorhabditis elegans Longevity. Journal of Biological Chemistry, 2010, 285, 15187-15200.	1.6	17
1151	Reversal of Salt Preference Is Directed by the Insulin/PI3K and Gq/PKC Signaling in <i>Caenorhabditis elegans</i> . Genetics, 2010, 186, 1309-1319.	1.2	63
1152	Double bromodomain protein BET-1 and MYST HATs establish and maintain stable cell fates in <i>C. elegans</i> . Development (Cambridge), 2010, 137, 1045-1053.	1.2	25
1153	Single-cell transcriptional analysis of taste sensory neuron pair in Caenorhabditis elegans. Nucleic Acids Research, 2010, 38, 131-142.	6.5	143
1154	The Arf-like GTPase Arl8 Mediates Delivery of Endocytosed Macromolecules to Lysosomes in <i>Caenorhabditis elegans</i> . Molecular Biology of the Cell, 2010, 21, 2434-2442.	0.9	66
1155	The early-onset torsion dystonia-associated protein, torsinA, is a homeostatic regulator of endoplasmic reticulum stress response. Human Molecular Genetics, 2010, 19, 3502-3515.	1.4	92
1156	Normal Ciliogenesis Requires Synergy between the Cystic Kidney Disease Genes MKS-3 and NPHP-4. Journal of the American Society of Nephrology: JASN, 2010, 21, 782-793.	3.0	54
1157	Characterization of the xenobiotic response of <i>Caenorhabditis elegans</i> to the anthelmintic drug albendazole and the identification of novel drug glucoside metabolites. Biochemical Journal, 2010, 432, 505-516.	1.7	59

#	Article	IF	CITATIONS
1158	The CRL2LRR-1 ubiquitin ligase regulates cell cycle progression during <i>C. elegans</i> development. Development (Cambridge), 2010, 137, 3857-3866.	1.2	31
1159	Enhancement of Odor Avoidance Regulated by Dopamine Signaling in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2010, 30, 16365-16375.	1.7	70
1160	Genes Required for Cellular UNC-6/Netrin Localization in <i>Caenorhabditis elegans</i> . Genetics, 2010, 185, 573-585.	1.2	19
1161	The RGM protein DRAG-1 positively regulates a BMP-like signaling pathway in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2010, 137, 2375-2384.	1.2	39
1162	The Flamingo ortholog FMI-1 controls pioneer-dependent navigation of follower axons in <i>C. elegans</i> . Development (Cambridge), 2010, 137, 3663-3673.	1.2	73
1163	<i>Caenorhabditis elegans</i> P _{5B} â€type ATPase CATPâ€5 operates in polyamine transport and is crucial for norspermidineâ€mediated suppression of RNA interference. FASEB Journal, 2010, 24, 206-217.	0.2	39
1164	Somatic sex determination in Caenorhabditis elegans is modulated by SUP-26 repression of tra-2 translation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18022-18027.	3.3	29
1165	RACK-1 Acts with Rac GTPase Signaling and UNC-115/abLIM in Caenorhabditis elegans Axon Pathfinding and Cell Migration. PLoS Genetics, 2010, 6, e1001215.	1.5	36
1166	Dynamic Chromatin Organization during Foregut Development Mediated by the Organ Selector Gene PHA-4/FoxA. PLoS Genetics, 2010, 6, e1001060.	1.5	54
1167	A Novel zf-MYND Protein, CHB-3, Mediates Guanylyl Cyclase Localization to Sensory Cilia and Controls Body Size of Caenorhabditis elegans. PLoS Genetics, 2010, 6, e1001211.	1.5	18
1168	An Alpha-Catulin Homologue Controls Neuromuscular Function through Localization of the Dystrophin Complex and BK Channels in Caenorhabditis elegans. PLoS Genetics, 2010, 6, e1001077.	1.5	38
1169	Neuroligin-deficient mutants of <i>C. elegans</i> have sensory processing deficits and are hypersensitive to oxidative stress and mercury toxicity. DMM Disease Models and Mechanisms, 2010, 3, 366-376.	1.2	81
1170	Genetics of Extracellular Matrix Remodeling During Organ Growth Using the <i>Caenorhabditis elegans</i> Pharynx Model. Genetics, 2010, 186, 969-982.	1.2	22
1171	Otx-dependent expression of proneural bHLH genes establishes a neuronal bilateral asymmetry in <i>C. elegans</i> . Development (Cambridge), 2010, 137, 4017-4027.	1.2	21
1172	In Vivo Imaging and Toxicity Assessments of Fluorescent Nanodiamonds in <i>Caenorhabditis elegans</i> . Nano Letters, 2010, 10, 3692-3699.	4.5	514
1173	Caenorhabditis elegans, A Simple Worm: Bridging the Gap Between Traditional and Systems-Level Biology. , 2010, , 787-794.		0
1174	Vectors for co-expression of two genes in Caenorhabditis elegans. Gene, 2010, 455, 16-21.	1.0	13
1175	Caenopores are antimicrobial peptides in the nematode Caenorhabditis elegans instrumental in nutrition and immunity. Developmental and Comparative Immunology, 2010, 34, 203-209.	1.0	76

#	Article	IF	CITATIONS
1176	Role of matrix metalloproteinase ZMP-2 in pathogen resistance and development in Caenorhabditis elegans. Developmental and Comparative Immunology, 2010, 34, 1160-1169.	1.0	28
1177	Genomic analysis of the telomeric length effect on organismic lifespan in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2010, 396, 382-387.	1.0	8
1178	UNC-31/CAPS docks and primes dense core vesicles in C. elegans neurons. Biochemical and Biophysical Research Communications, 2010, 397, 526-531.	1.0	27
1179	Torque generation by one of the motor subunits of heterotrimeric kinesin-2. Biochemical and Biophysical Research Communications, 2010, 401, 53-57.	1.0	23
1180	UNC-83 coordinates kinesin-1 and dynein activities at the nuclear envelope during nuclear migration. Developmental Biology, 2010, 338, 237-250.	0.9	121
1181	C. elegans BED domain transcription factor BED-3 controls lineage-specific cell proliferation during organogenesis. Developmental Biology, 2010, 338, 226-236.	0.9	23
1182	hunchback and Ikaros-like zinc finger genes control reproductive system development in Caenorhabditis elegans. Developmental Biology, 2010, 339, 51-64.	0.9	15
1183	Binding to PKC-3, but not to PAR-3 or to a conventional PDZ domain ligand, is required for PAR-6 function in C. elegans. Developmental Biology, 2010, 340, 88-98.	0.9	41
1184	Methylation and demethylation activities of a C. elegans MLL-like complex attenuate RAS signalling. Developmental Biology, 2010, 341, 142-153.	0.9	50
1185	Cell autonomous specification of temporal identity by Caenorhabditis elegans microRNA lin-4. Developmental Biology, 2010, 344, 603-610.	0.9	26
1186	Conserved mechanism of Wnt signaling function in the specification of vulval precursor fates in C. elegans and C. briggsae. Developmental Biology, 2010, 346, 128-139.	0.9	39
1187	C. elegans twist gene expression in differentiated cell types is controlled by autoregulation through intron elements. Developmental Biology, 2010, 346, 224-236.	0.9	12
1188	FLN-1/Filamin is required for maintenance of actin and exit of fertilized oocytes from the spermatheca in C. elegans. Developmental Biology, 2010, 347, 247-257.	0.9	42
1189	Improved gene targeting in C. elegans using counter-selection and Flp-mediated marker excision. Genomics, 2010, 95, 37-46.	1.3	16
1190	Two classes of silencing RNAs move between Caenorhabditis elegans tissues. Nature Structural and Molecular Biology, 2011, 18, 1184-1188.	3.6	48
1191	Fluorescent Nanodiamond – A Novel Nanomaterial for<i>In Vivo</i>Applications . Materials Research Society Symposia Proceedings, 2011, 1362, 1.	0.1	8
1192	Cloning Argonaute-Associated Small RNAs from Caenorhabditis elegans. Methods in Molecular Biology, 2011, 725, 251-280.	0.4	22
1193	A synthetic icosahedral DNA-based host–cargo complex for functional in vivo imaging. Nature Communications, 2011, 2, 339.	5.8	215

# 1194	ARTICLE The UNC-4 homeobox protein represses mab-9 expression in DA motor neurons in Caenorhabditis elegans. Mechanisms of Development, 2011, 128, 49-58.	IF 1.7	Citations
1195	Control of Cdc14 activity coordinates cell cycle and development in Caenorhabditis elegans. Mechanisms of Development, 2011, 128, 317-326.	1.7	11
1196	Developmental functions for the Caenorhabditis elegans Sp protein SPTF-3. Mechanisms of Development, 2011, 128, 428-441.	1.7	6
1197	Affinity Purification of Protein Complexes in C. elegans. Methods in Cell Biology, 2011, 106, 289-322.	0.5	40
1198	Transgenesis in C. elegans. Methods in Cell Biology, 2011, 106, 159-185.	0.5	16
1199	C. elegans as a Resource for Studies on Plant Parasitic Nematodes. , 2011, , 175-220.		10
1200	Regulation of behavioral plasticity by systemic temperature signaling in Caenorhabditis elegans. Nature Neuroscience, 2011, 14, 984-992.	7.1	70
1201	Analysis of microRNA Expression and Function. Methods in Cell Biology, 2011, 106, 219-252.	0.5	66
1202	Replication-Coupled Chromatin Assembly Generates a Neuronal Bilateral Asymmetry in C.Âelegans. Cell, 2011, 147, 1525-1536.	13.5	91
1203	Gene editing activity on extrachromosomal arrays in C. elegans transgenics. Gene, 2011, 475, 87-93.	1.0	1
1204	Dye-filling of the amphid sheath glia: Implications for the functional relationship between sensory neurons and glia in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2011, 406, 188-193.	1.0	11
1205	The thioredoxin TRX-1 regulates adult lifespan extension induced by dietary restriction in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2011, 406, 478-482.	1.0	36
1206	Regulation of Fat Storage and Reproduction by Krüppel-Like Transcription Factor KLF3 and Fat-Associated Genes in Caenorhabditis elegans. Journal of Molecular Biology, 2011, 411, 537-553.	2.0	57
1207	The C. elegans MAGI-1 protein is a novel component of cell junctions that is required for junctional compartmentalization. Developmental Biology, 2011, 350, 24-31.	0.9	19
1208	C. elegans MCM-4 is a general DNA replication and checkpoint component with an epidermis-specific requirement for growth and viability. Developmental Biology, 2011, 350, 358-369.	0.9	28
1209	C. elegans ADAMTS ADT-2 regulates body size by modulating TGF \hat{I}^2 signaling and cuticle collagen organization. Developmental Biology, 2011, 352, 92-103.	0.9	25
1210	ENU-3 is a novel motor axon outgrowth and guidance protein in C. elegans. Developmental Biology, 2011, 352, 243-253.	0.9	8
1211	The C. elegans nck-1 gene encodes two isoforms and is required for neuronal guidance. Developmental Biology, 2011, 354, 55-66.	0.9	16

#	Article	IF	CITATIONS
1212	Caenorhabditis elegans as a model system for identifying effectors of α-synuclein misfolding and dopaminergic cell death associated with Parkinson's disease. Methods, 2011, 53, 220-225.	1.9	31
1213	The Immunoglobulin Super Family Protein RIG-3 Prevents Synaptic Potentiation and Regulates Wnt Signaling. Neuron, 2011, 71, 103-116.	3.8	38
1214	Sub-cellular distribution of UNC-104(KIF1A) upon binding to adaptors as UNC-16(JIP3), DNC-1(DCTN1/Glued) and SYD-2(Liprin-α) in C. elegans neurons. Neuroscience, 2011, 176, 39-52.	1.1	17
1215	Crystal structure of the cell corpse engulfment protein CED-2 in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2011, 410, 189-194.	1.0	5
1216	Histidine Protects Against Zinc and Nickel Toxicity in Caenorhabditis elegans. PLoS Genetics, 2011, 7, e1002013.	1.5	42
1217	The Thioredoxin TRX-1 Modulates the Function of the Insulin-Like Neuropeptide DAF-28 during Dauer Formation in Caenorhabditis elegans. PLoS ONE, 2011, 6, e16561.	1.1	18
1218	In Vivo Functional Genomic Studies of Sterol Carrier Protein-2 Gene in the Yellow Fever Mosquito. PLoS ONE, 2011, 6, e18030.	1.1	23
1219	Increased Expression of the Dyslexia Candidate Gene DCDC2 Affects Length and Signaling of Primary Cilia in Neurons. PLoS ONE, 2011, 6, e20580.	1.1	113
1220	The Adiponectin Receptor Homologs in C. elegans Promote Energy Utilization and Homeostasis. PLoS ONE, 2011, 6, e21343.	1.1	53
1221	Characterization of Fluorescent Eye Markers for Mammalian Transgenic Studies. PLoS ONE, 2011, 6, e29486.	1.1	9
1222	Identification of the AFD neuron as the site of action of the CREB protein in <i>Caenorhabditis elegans</i> thermotaxis. EMBO Reports, 2011, 12, 855-862.	2.0	52
1223	RNAi Mediated Gene Knockdown and Transgenesis by Microinjection in the Necromenic Nematode Pristionchus pacificus . Journal of Visualized Experiments, 2011, , e3270.	0.2	21
1224	PKC-1 acts with the ERK MAPK signaling pathway to regulate Caenorhabditis elegans mechanosensory response. Genes, Brain and Behavior, 2011, 10, 286-298.	1.1	22
1225	Protein localization in electron micrographs using fluorescence nanoscopy. Nature Methods, 2011, 8, 80-84.	9.0	339
1226	The early bird catches the worm: new technologies for the Caenorhabditis elegans toolkit. Nature Reviews Genetics, 2011, 12, 793-801.	7.7	44
1227	Bidirectional regulation of thermotaxis by glutamate transmissions in <i>Caenorhabditis elegans</i> . EMBO Journal, 2011, 30, 1376-1388.	3.5	86
1228	Food sensitizes <i>C. elegans</i> avoidance behaviours through acute dopamine signalling. EMBO Journal, 2011, 30, 1110-1122.	3.5	124
1229	Two types of chloride transporters are required for GABA _A receptor-mediated inhibition in <i>C. elegans</i> . EMBO Journal, 2011, 30, 1852-1863.	3.5	33

#	Article	IF	CITATIONS
1230	Transcriptional profiling of C. elegans DAF-19 uncovers a ciliary base-associated protein and a CDK/CCRK/LF2p-related kinase required for intraflagellar transport. Developmental Biology, 2011, 357, 235-247.	0.9	65
1231	Initial diameter of the polar body contractile ring is minimized by the centralspindlin complex. Developmental Biology, 2011, 359, 137-148.	0.9	18
1232	In vivo transfection of developmentally competent Brugia malayi infective larvae. International Journal for Parasitology, 2011, 41, 355-362.	1.3	28
1233	Rapid De Novo Centromere Formation Occurs Independently of Heterochromatin Protein 1 in C.Aelegans Embryos. Current Biology, 2011, 21, 1800-1807.	1.8	41
1234	Aversive olfactory learning and associative long-term memory in <i>Caenorhabditis elegans</i> . Learning and Memory, 2011, 18, 654-665.	0.5	63
1235	Distinct mechanisms for delimiting expression of four Caenorhabditis elegans transcription factor genes encoding activators or repressors. Molecular Genetics and Genomics, 2011, 286, 95-107.	1.0	1
1236	A Possible Role for FRM-1, a C. elegans FERM Family Protein, in Embryonic Development. Molecules and Cells, 2011, 31, 455-460.	1.0	5
1237	Selectable genetic markers for nematode transgenesis. Cellular and Molecular Life Sciences, 2011, 68, 1917-1927.	2.4	15
1238	Identification of the neuronal effects of ethanol on C. elegans by in vivo fluorescence imaging on a microfluidic chip. Analytical and Bioanalytical Chemistry, 2011, 399, 3475-3481.	1.9	18
1239	Real Time FRET Based Detection of Mechanical Stress in Cytoskeletal and Extracellular Matrix Proteins. Cellular and Molecular Bioengineering, 2011, 4, 148-159.	1.0	65
1240	Intracellular Trafficking of Histone Deacetylase 4 Regulates Longâ€Term Memory Formation. Anatomical Record, 2011, 294, 1025-1034.	0.8	38
1241	Microfluidic worm-chip for in vivo analysis of neuronal activity upon dynamic chemical stimulations. Analytica Chimica Acta, 2011, 701, 23-28.	2.6	34
1242	Tau/PTL-1 associates with kinesin-3 KIF1A/UNC-104 and affects the motor's motility characteristics in C. elegans neurons. Neurobiology of Disease, 2011, 43, 495-506.	2.1	29
1243	Natural polymorphisms in C. elegans HECW-1 E3 ligase affect pathogen avoidance behaviour. Nature, 2011, 480, 525-529.	13.7	79
1244	Optogenetic analysis of synaptic transmission in the central nervous system of the nematode Caenorhabditis elegans. Nature Communications, 2011, 2, 306.	5.8	83
1245	PPM-1, a PP2Cα/β phosphatase, Regulates Axon Termination and Synapse Formation in <i>Caenorhabditis elegans</i> . Genetics, 2011, 189, 1297-1307.	1.2	21
1246	Using Caenorhabditis elegans to Study Serpinopathies. Methods in Enzymology, 2011, 499, 259-281.	0.4	1
1247	Using C. elegans to Identify the Protease Targets of Serpins In Vivo. Methods in Enzymology, 2011, 499, 283-299.	0.4	5

#	Article	IF	CITATIONS
1248	Non-stringent tissue-source requirements for BMP ligand expression in regulation of body size in <i>Caenorhabditis elegans</i> . Genetical Research, 2011, 93, 427-432.	0.3	10
1249	The <i>C. elegans</i> SoxC protein SEM-2 opposes differentiation factors to promote a proliferative blast cell fate in the postembryonic mesoderm. Development (Cambridge), 2011, 138, 1033-1043.	1.2	10
1250	Molecular and Genetic Approaches for the Analysis of C. elegans Neuronal Development. Methods in Cell Biology, 2011, 106, 413-443.	0.5	1
1251	Genome Engineering by Transgene-Instructed Gene Conversion in C. elegans. Methods in Cell Biology, 2011, 106, 65-88.	0.5	6
1252	Specialized Chromosomes and Their Uses in Caenorhabditis elegans. Methods in Cell Biology, 2011, 106, 23-64.	0.5	4
1253	PGL proteins self associate and bind RNPs to mediate germ granule assembly in <i>C. elegans</i> . Journal of Cell Biology, 2011, 192, 929-937.	2.3	105
1254	TDP-43 neurotoxicity and protein aggregation modulated by heat shock factor and insulin/IGF-1 signaling. Human Molecular Genetics, 2011, 20, 1952-1965.	1.4	104
1255	Identification of transcription start sites of <i>trans</i> -spliced genes: Uncovering unusual operon arrangements. Rna, 2011, 17, 327-337.	1.6	19
1256	Multiple mechanisms actively target the SUN protein UNC-84 to the inner nuclear membrane. Molecular Biology of the Cell, 2011, 22, 1739-1752.	0.9	39
1257	The LIN-15A and LIN-56 Transcriptional Regulators Interact to Negatively Regulate EGF/Ras Signaling in <i>Caenorhabditis elegans</i> Vulval Cell-Fate Determination. Genetics, 2011, 187, 803-815.	1.2	10
1258	The Liprin Homology Domain Is Essential for the Homomeric Interaction of SYD-2/Liprin-α Protein in Presynaptic Assembly. Journal of Neuroscience, 2011, 31, 16261-16268.	1.7	42
1259	VAB-10 spectraplakin acts in cell and nuclear migration in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2011, 138, 4013-4023.	1.2	27
1260	Regulation of Anoxic Death in <i>Caenorhabditis elegans</i> by Mammalian Apoptosis Signal-Regulating Kinase (ASK) Family Proteins. Genetics, 2011, 187, 785-792.	1.2	29
1261	Glia delimit shape changes of sensory neuron receptive endings in <i>C. elegans</i> . Development (Cambridge), 2011, 138, 1371-1381.	1.2	89
1262	The <i>Caenorhabditis elegans</i> GARP complex contains the conserved Vps51 subunit and is required to maintain lysosomal morphology. Molecular Biology of the Cell, 2011, 22, 2564-2578.	0.9	25
1263	Neural integrity is maintained by dystrophin in <i>C. elegans</i> . Journal of Cell Biology, 2011, 192, 349-363.	2.3	14
1264	Neuroblast migration along the anteroposterior axis of <i>C. elegans</i> is controlled by opposing gradients of Wnts and a secreted Frizzled-related protein. Development (Cambridge), 2011, 138, 2915-2924.	1.2	88
1265	Coexpressed D1- and D2-Like Dopamine Receptors Antagonistically Modulate Acetylcholine Release in <i>Caenorhabditis elegans</i> . Genetics, 2011, 188, 579-590.	1.2	50

#	Article	IF	CITATIONS
1266	Genetic interaction between <i>Caenorhabditis elegans</i> teneurin <i>ten-1</i> and prolyl 4-hydroxylase <i>phy-1</i> and their function in collagen IV–mediated basement membrane integrity during late elongation of the embryo. Molecular Biology of the Cell, 2011, 22, 3331-3343.	0.9	24
1267	The <i>Caenorhabditis elegans</i> paxillin orthologue, PXL-1, is required for pharyngeal muscle contraction and for viability. Molecular Biology of the Cell, 2011, 22, 2551-2563.	0.9	21
1268	The Response of <i>Caenorhabditis elegans</i> to Hydrogen Sulfide and Hydrogen Cyanide. Genetics, 2011, 189, 521-532.	1.2	67
1269	Cell Architecture: Surrounding Muscle Cells Shape Gland Cell Morphology in the <i>Caenorhabditis elegans</i> Pharynx. Genetics, 2011, 189, 885-897.	1.2	14
1270	The Atg6/Vps30/Beclin 1 ortholog BEC-1 mediates endocytic retrograde transport in addition to autophagy in <i>C. elegans</i> . Autophagy, 2011, 7, 386-400.	4.3	109
1271	On the nature of in vivo requirements forrde-4in RNAi and developmental pathways inC. elegans. RNA Biology, 2011, 8, 458-467.	1.5	20
1272	A Seven-Transmembrane Receptor That Mediates Avoidance Response to Dihydrocaffeic Acid, a Water-Soluble Repellent in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2011, 31, 16603-16610.	1.7	28
1273	The Cooperation of FGF Receptor and Klotho Is Involved in Excretory Canal Development and Regulation of Metabolic Homeostasis in Caenorhabditis elegans*. Journal of Biological Chemistry, 2011, 286, 5657-5666.	1.6	23
1274	The α1 Subunit EGL-19, the α2/δ Subunit UNC-36, and the β Subunit CCB-1 Underlie Voltage-dependent Calcium Currents in Caenorhabditis elegans Striated Muscle. Journal of Biological Chemistry, 2011, 286, 36180-36187.	1.6	32
1275	HID-1, a New Component of the Peptidergic Signaling Pathway. Genetics, 2011, 187, 467-483.	1.2	20
1276	Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis. Nature Cell Biology, 2011, 13, 1189-1201.	4.6	118
1277	A Novel Sperm-Delivered Toxin Causes Late-Stage Embryo Lethality and Transmission Ratio Distortion in C. elegans. PLoS Biology, 2011, 9, e1001115.	2.6	158
1278	Regulation of <i>C. elegans</i> presynaptic differentiation and neurite branching via a novel signaling pathway initiated by SAM-10. Development (Cambridge), 2011, 138, 87-96.	1.2	13
1279	Spatial Regulation of <i>lag-2</i> Transcription During Vulval Precursor Cell Fate Patterning in <i>Caenorhabditis</i> Â <i>elegans lag-2</i> . Genetics, 2011, 188, 847-858.	1.2	37
1280	In vivo effects on intron retention and exon skipping by the U2AF large subunit and SF1/BBP in the nematode <i>Caenorhabditis elegans</i> . Rna, 2011, 17, 2201-2211.	1.6	16
1281	Novel and Conserved Protein Macoilin Is Required for Diverse Neuronal Functions in Caenorhabditis elegans. PLoS Genetics, 2011, 7, e1001384.	1.5	15
1282	TRY-5 Is a Sperm-Activating Protease in Caenorhabditis elegans Seminal Fluid. PLoS Genetics, 2011, 7, e1002375.	1.5	83
1283	Multiple Wnts Redundantly Control Polarity Orientation in Caenorhabditis elegans Epithelial Stem Cells. PLoS Genetics, 2011, 7, e1002308.	1.5	43
#	Article	IF	CITATIONS
------	---	-----	-----------
1284	The Rac GTP Exchange Factor TIAM-1 Acts with CDC-42 and the Guidance Receptor UNC-40/DCC in Neuronal Protrusion and Axon Guidance. PLoS Genetics, 2012, 8, e1002665.	1.5	66
1285	Laminin is required to orient epithelial polarity in the <i>C. elegans</i> pharynx. Development (Cambridge), 2012, 139, 2050-2060.	1.2	56
1286	C. elegans SIRT6/7 Homolog SIR-2.4 Promotes DAF-16 Relocalization and Function during Stress. PLoS Genetics, 2012, 8, e1002948.	1.5	58
1287	The Caenorhabditis elegans Gene mfap-1 Encodes a Nuclear Protein That Affects Alternative Splicing. PLoS Genetics, 2012, 8, e1002827.	1.5	27
1288	The doublecortin-related gene zyg-8 is a microtubule organizer in Caenorhabditis elegans neurons. Journal of Cell Science, 2012, 125, 5417-27.	1.2	12
1289	Methods for Studying Programmed Cell Death in C. elegans. Methods in Cell Biology, 2012, 107, 295-320.	0.5	7
1290	TBC-8, a Putative RAB-2 GAP, Regulates Dense Core Vesicle Maturation in Caenorhabditis elegans. PLoS Genetics, 2012, 8, e1002722.	1.5	25
1291	Integrin α PAT-2/CDC-42 Signaling Is Required for Muscle-Mediated Clearance of Apoptotic Cells in Caenorhabditis elegans. PLoS Genetics, 2012, 8, e1002663.	1.5	29
1292	SPE-44 Implements Sperm Cell Fate. PLoS Genetics, 2012, 8, e1002678.	1.5	36
1293	PTEN Negatively Regulates MAPK Signaling during Caenorhabditis elegans Vulval Development. PLoS Genetics, 2012, 8, e1002881.	1.5	40
1294	Diapause Formation and Downregulation of Insulin-Like Signaling via DAF-16/FOXO Delays Axonal Degeneration and Neuronal Loss. PLoS Genetics, 2012, 8, e1003141.	1.5	59
1295	RIC-7 Promotes Neuropeptide Secretion. PLoS Genetics, 2012, 8, e1002464.	1.5	27
1296	The Caenorhabditis elegans Eph Receptor Activates NCK and N-WASP, and Inhibits Ena/VASP to Regulate Growth Cone Dynamics during Axon Guidance. PLoS Genetics, 2012, 8, e1002513.	1.5	33
1297	A role for α-adducin (ADD-1) in nematode and human memory. EMBO Journal, 2012, 31, 1453-1466.	3.5	49
1298	Neural Maintenance Roles for the Matrix Receptor Dystroglycan and the Nuclear Anchorage Complex in Caenorhabditis elegans. Genetics, 2012, 190, 1365-1377.	1.2	18
1299	Genetic Control of Vulval Development in Caenorhabditis briggsae. G3: Genes, Genomes, Genetics, 2012, 2, 1625-1641.	0.8	16
1300	Novel Roles of Caenorhabditis elegans Heterochromatin Protein HP1 and Linker Histone in the Regulation of Innate Immune Gene Expression. Molecular and Cellular Biology, 2012, 32, 251-265.	1.1	34
1301	AP-1 is required for the maintenance of apico-basal polarity in the <i>C. elegans</i> intestine. Development (Cambridge), 2012, 139, 2061-2070.	1.2	61

#	Article	IF	CITATIONS
1302	Stabilization of RNT-1 Protein, Runt-related Transcription Factor (RUNX) Protein Homolog of Caenorhabditis elegans, by Oxidative Stress through Mitogen-activated Protein Kinase Pathway*. Journal of Biological Chemistry, 2012, 287, 10444-10452.	1.6	13
1303	Clathrin and AP-1 regulate apical polarity and lumen formation during <i>C. elegans</i> tubulogenesis. Development (Cambridge), 2012, 139, 2071-2083.	1.2	53
1304	Mutations in the <i>pqe-1</i> Gene Enhance Transgene Expression in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2012, 2, 741-751.	0.8	3
1305	Structural Domains Required for Caenorhabditis elegans G Protein-coupled Receptor Kinase 2 (GRK-2) Function in Vivo. Journal of Biological Chemistry, 2012, 287, 12634-12644.	1.6	15
1306	Cell Excitability Necessary for Male Mating Behavior in <i>Caenorhabditis elegans</i> Is Coordinated by Interactions Between Big Current and Ether-A-Go-Go Family K+ Channels. Genetics, 2012, 190, 1025-1041.	1.2	22
1307	Tissue Architecture in the <i>Caenorhabditis elegans</i> Gonad Depends on Interactions Among Fibulin-1, Type IV Collagen and the ADAMTS Extracellular Protease. Genetics, 2012, 190, 1379-1388.	1.2	30
1308	Knockout of glial channel ACD-1 exacerbates sensory deficits in a <i>C. elegans</i> mutant by regulating calcium levels of sensory neurons. Journal of Neurophysiology, 2012, 107, 148-158.	0.9	32
1309	Endocannabinoid-Goα signalling inhibits axon regeneration in Caenorhabditis elegans by antagonizing Gqα-PKC-JNK signalling. Nature Communications, 2012, 3, 1136.	5.8	48
1311	A <i>Caenorhabditis elegans</i> Insulin-Like Peptide, INS-17: Its Physiological Function and Expression Pattern. Bioscience, Biotechnology and Biochemistry, 2012, 76, 2168-2172.	0.6	23
1312	The growth factor SVH-1 regulates axon regeneration in C. elegans via the JNK MAPK cascade. Nature Neuroscience, 2012, 15, 551-557.	7.1	80
1313	Deficiency of Cardiolipin Synthase Causes Abnormal Mitochondrial Function and Morphology in Germ Cells of Caenorhabditis elegans. Journal of Biological Chemistry, 2012, 287, 4590-4601.	1.6	35
1314	Structural Insights into Apoptotic DNA Degradation by CED-3 Protease Suppressor-6 (CPS-6) from Caenorhabditis elegans. Journal of Biological Chemistry, 2012, 287, 7110-7120.	1.6	11
1315	Spatiotemporal Localization of <scp>d</scp> -Amino Acid Oxidase and <scp>d</scp> -Aspartate Oxidases during Development in <i>Caenorhabditis elegans</i> . Molecular and Cellular Biology, 2012, 32, 1967-1983.	1.1	21
1316	Vasopressin/Oxytocin-Related Signaling Regulates Gustatory Associative Learning in <i>C. elegans</i> . Science, 2012, 338, 543-545.	6.0	162
1317	Identification of a novel ADAMTS9/GON-1 function for protein transport from the ER to the Golgi. Molecular Biology of the Cell, 2012, 23, 1728-1741.	0.9	24
1318	Recruitment of sphingosine kinase to presynaptic terminals by a conserved muscarinic signaling pathway promotes neurotransmitter release. Genes and Development, 2012, 26, 1070-1085.	2.7	65
1319	Sensory Organ Remodeling in <i>Caenorhabditis elegans</i> Requires the Zinc-Finger Protein ZTF-16. Genetics, 2012, 190, 1405-1415.	1.2	18
1320	Enhanced Energy Metabolism Contributes to the Extended Life Span of Calorie-restricted Caenorhabditis elegans. Journal of Biological Chemistry, 2012, 287, 31414-31426.	1.6	60

ш		15	CITATIONS
Ŧ	ARTICLE	IF	CHATIONS
1321	Polyglutamine-Repeat Protein. Science, 2012, 335, 970-973.	6.0	69
1322	A Network of Genes Antagonistic to the LIN-35 Retinoblastoma Protein of <i>Caenorhabditis elegans</i> . Genetics, 2012, 191, 1367-1380.	1.2	5
1324	A Molecular Readout of Long-term Olfactory Adaptation in C. elegans . Journal of Visualized Experiments, 2012, , .	0.2	0
1325	Temporally-regulated quick activation and inactivation of Ras is important for olfactory behaviour. Scientific Reports, 2012, 2, 500.	1.6	17
1326	Nucleic acid transfection and transgenesis in parasitic nematodes. Parasitology, 2012, 139, 574-588.	0.7	35
1327	Expression profiles and <i>unc-27</i> mutation rescue of the striated muscle type troponin l isoform-3 in <i>Caenorhabditis elegans</i> . Genes and Genetic Systems, 2012, 87, 243-251.	0.2	6
1328	RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature, 2012, 489, 263-268.	13.7	372
1329	Localized Sphingolipid Signaling at Presynaptic Terminals Is Regulated by Calcium Influx and Promotes Recruitment of Priming Factors. Journal of Neuroscience, 2012, 32, 17909-17920.	1.7	32
1330	In Vivo Models of Developmental Toxicology. Methods in Molecular Biology, 2012, 889, 7-13.	0.4	5
1331	Role of MicroRNA Processing in Adipose Tissue in Stress Defense and Longevity. Cell Metabolism, 2012, 16, 336-347.	7.2	229
1332	The Intersection of Aging, Longevity Pathways, and Learning and Memory in C. elegans. Frontiers in Genetics, 2012, 3, 259.	1.1	39
1333	A Core Metabolic Enzyme Mediates Resistance to Phosphine Gas. Science, 2012, 338, 807-810.	6.0	143
1334	<i>C. elegans</i> dystroglycan coordinates responsiveness of follower axons to dorsal/ventral and anterior/posterior guidance cues. Developmental Neurobiology, 2012, 72, 1498-1515.	1.5	7
1335	The GPS Motif Is a Molecular Switch for Bimodal Activities of Adhesion Class G Protein-Coupled Receptors. Cell Reports, 2012, 2, 321-331.	2.9	123
1336	Generating transgenic nematodes by bombardment and antibiotic selection. Nature Methods, 2012, 9, 118-119.	9.0	33
1337	Regulation of DLK-1 Kinase Activity by Calcium-Mediated Dissociation from an Inhibitory Isoform. Neuron, 2012, 76, 534-548.	3.8	98
1338	Expanding the Genetic Code of <i>Caenorhabditis elegans</i> Using Bacterial Aminoacyl-tRNA Synthetase/tRNA Pairs. ACS Chemical Biology, 2012, 7, 1292-1302.	1.6	80
1339	Behavioral decay in aging male C. elegans correlates with increased cell excitability. Neurobiology of Aging, 2012, 33, 1483.e5-1483.e23.	1.5	37

#	Article	IF	CITATIONS
1340	Notch Signaling Inhibits Axon Regeneration. Neuron, 2012, 73, 268-278.	3.8	97
1341	Reduced expression of BTBD10, an Akt activator, leads to motor neuron death. Cell Death and Differentiation, 2012, 19, 1398-1407.	5.0	27
1342	Effects of Pathogenic Proline Mutations on Myosin Assembly. Journal of Molecular Biology, 2012, 415, 807-818.	2.0	21
1343	fidgetin homolog FIGL-1, a nuclear-localized AAA ATPase, binds to SUMO. Journal of Structural Biology, 2012, 179, 143-151.	1.3	9
1344	Genetic analysis of IP3 and calcium signalling pathways in C. elegans. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1253-1268.	1.1	13
1345	Physiological function, expression pattern, and transcriptional regulation of a Caenorhabditis elegans insulin-like peptide, INS-18. Biochemical and Biophysical Research Communications, 2012, 423, 478-483.	1.0	40
1346	CED-1, CED-7, and TTR-52 Regulate Surface Phosphatidylserine Expression on Apoptotic and Phagocytic Cells. Current Biology, 2012, 22, 1267-1275.	1.8	81
1347	The C.Âelegans MicroRNA mir-71 Acts in Neurons to Promote Germline-Mediated Longevity through Regulation of DAF-16/FOXO. Cell Metabolism, 2012, 15, 439-450.	7.2	190
1348	Analysis of C. elegans NR2E nuclear receptors defines three conserved clades and ligand-independent functions. BMC Evolutionary Biology, 2012, 12, 81.	3.2	10
1349	Excessive folate synthesis limits lifespan in the C. elegans: E. coliaging model. BMC Biology, 2012, 10, 67.	1.7	102
1350	IRK-1 Potassium Channels Mediate Peptidergic Inhibition of <i>Caenorhabditis elegans</i> Serotonin Neurons via a G _o Signaling Pathway. Journal of Neuroscience, 2012, 32, 16285-16295.	1.7	46
1351	Coordinated Lumen Contraction and Expansion during Vulval Tube Morphogenesis in Caenorhabditis elegans. Developmental Cell, 2012, 23, 494-506.	3.1	29
1352	CCDC-55 is required for larval development and distal tip cell migration in Caenorhabditis elegans. Mechanisms of Development, 2012, 128, 548-559.	1.7	8
1353	Transcriptional regulation of HLH-6-independent and subtype-specific genes expressed in the Caenorhabditis elegans pharyngeal glands. Mechanisms of Development, 2012, 129, 284-297.	1.7	10
1354	Fluorescent Protein Methods: Strategies and Applications. Methods in Cell Biology, 2012, 107, 67-92.	0.5	14
1355	<i>C. elegans</i> AMPKs promote survival and arrest germline development during nutrient stress. Biology Open, 2012, 1, 929-936.	0.6	87
1356	Dissecting a central flip-flop circuit that integrates contradictory sensory cues in C. elegans feeding regulation. Nature Communications, 2012, 3, 776.	5.8	75
1358	Synaptic Polarity Depends on Phosphatidylinositol Signaling Regulated by <i>myo</i> -Inositol Monophosphatase in <i>Caenorhabditis elegans</i> . Genetics, 2012, 191, 509-521.	1.2	20

#	Article	IF	CITATIONS
1359	Cell ycle regulation of NOTCH signaling during <i>C. elegans</i> vulval development. Molecular Systems Biology, 2012, 8, 618.	3.2	39
1360	The Transcriptional Response of Caenorhabditis elegans to Ivermectin Exposure Identifies Novel Genes Involved in the Response to Reduced Food Intake. PLoS ONE, 2012, 7, e31367.	1.1	31
1361	Developmental Characterization of the MicroRNA-Specific C. elegans Argonautes alg-1 and alg-2. PLoS ONE, 2012, 7, e33750.	1.1	65
1362	A Single Gene Target of an ETS-Family Transcription Factor Determines Neuronal CO2-Chemosensitivity. PLoS ONE, 2012, 7, e34014.	1.1	38
1363	A Novel Mutation in β Integrin Reveals an Integrin-Mediated Interaction between the Extracellular Matrix and cki-1/p27KIP1. PLoS ONE, 2012, 7, e42425.	1.1	6
1364	C. elegans BLOC-1 Functions in Trafficking to Lysosome-Related Gut Granules. PLoS ONE, 2012, 7, e43043.	1.1	26
1365	NRFL-1, the C. elegans NHERF Orthologue, Interacts with Amino Acid Transporter 6 (AAT-6) for Age-Dependent Maintenance of AAT-6 on the Membrane. PLoS ONE, 2012, 7, e43050.	1.1	11
1366	Molecular Control of TiO2-NPs Toxicity Formation at Predicted Environmental Relevant Concentrations by Mn-SODs Proteins. PLoS ONE, 2012, 7, e44688.	1.1	62
1367	Genetically Encoded Green Fluorescent Ca2+ Indicators with Improved Detectability for Neuronal Ca2+ Signals. PLoS ONE, 2012, 7, e51286.	1.1	212
1368	Single/low-copy integration of transgenes in Caenorhabditis elegans using an ultraviolet trimethylpsoralen method. BMC Biotechnology, 2012, 12, 1.	1.7	64
1369	From genes to function: the <i>C. elegans</i> genetic toolbox. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 114-137.	5.9	33
1370	Compartmentalized calcium dynamics in a C. elegans interneuron encode head movement. Nature, 2012, 487, 99-103.	13.7	147
1371	Caenorhabditis elegans as a model organism to study APP function. Experimental Brain Research, 2012, 217, 397-411.	0.7	28
1372	MIGâ€13 controls anteroposterior cell migration by interacting with UNCâ€71/ADMâ€1 and SRCâ€1 in <i>Caenorhabditis elegans</i> . FEBS Letters, 2012, 586, 740-746.	1.3	8
1373	Identification of a nuclear carbonic anhydrase in Caenorhabditis elegans. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 808-817.	1.9	9
1374	A novel and conserved protein AHOâ€3 is required for thermotactic plasticity associated with feeding states in <i>Caenorhabditis elegans</i> . Genes To Cells, 2012, 17, 365-386.	0.5	12
1375	Depletion of <i>mboaâ€7</i> , an enzyme that incorporates polyunsaturated fatty acids into phosphatidylinositol (<scp>Pl</scp>), impairs <scp>Pl</scp> 3â€phosphate signaling in <i><i><scp>C</scp>aenorhabditis elegans</i>. Genes To Cells, 2012, 17, 748-757.</i>	0.5	19
1376	Chronic Al2O3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditis elegans. Journal of Hazardous Materials, 2012, 219-220, 221-230.	6.5	123

#	Article	IF	CITATIONS
1377	Some, but not all, retromer components promote morphogenesis of C. elegans sensory compartments. Developmental Biology, 2012, 362, 42-49.	0.9	20
1378	The in vivo dissection of direct RFX-target gene promoters in C. elegans reveals a novel cis-regulatory element, the C-box. Developmental Biology, 2012, 368, 415-426.	0.9	23
1379	Distinct <i>Caenorhabditis elegans</i> HLHâ€8/twistâ€containing dimers function in the mesoderm. Developmental Dynamics, 2012, 241, 481-492.	0.8	10
1380	TEGâ€I CD2BP2 regulates stem cell proliferation and sex determination in the <i>C. elegans</i> germ line and physically interacts with the UAFâ€I U2AF65 splicing factor. Developmental Dynamics, 2012, 241, 505-521.	0.8	25
1381	Transgenic nematodes as biosensors for metal stress in soil pore water samples. Ecotoxicology, 2012, 21, 439-455.	1.1	47
1382	Optimized conditions for transgenesis of the ascidian Ciona using square wave electroporation. Development Genes and Evolution, 2012, 222, 55-61.	0.4	16
1383	The Caenorhabditis elegans voltage-gated calcium channel subunits UNC-2 and UNC-36 and the calcium-dependent kinase UNC-43/CaMKII regulate neuromuscular junction morphology. Neural Development, 2013, 8, 10.	1.1	31
1384	An Sp1 transcription factor coordinates caspase-dependent and -independent apoptotic pathways. Nature, 2013, 500, 354-358.	13.7	54
1385	A Novel Strategy for Cell-Autonomous Gene Knockdown in <i>Caenorhabditis elegans</i> Defines a Cell-Specific Function for the G-Protein Subunit GOA-1. Genetics, 2013, 194, 363-373.	1.2	3
1386	The significance of alternative transcripts for Caenorhabditis elegans transcription factor genes, based on expression pattern analysis. BMC Genomics, 2013, 14, 249.	1.2	10
1387	A simplified counter-selection recombineering protocol for creating fluorescent protein reporter constructs directly from C. elegans fosmid genomic clones. BMC Biotechnology, 2013, 13, 1.	1.7	98
1388	Conditional targeted genome editing using somatically expressed TALENs in C. elegans. Nature Biotechnology, 2013, 31, 934-937.	9.4	40
1389	The p38 MAPK PMK-1 shows heat-induced nuclear translocation, supports chaperone expression, and affects the heat tolerance of Caenorhabditis elegans. Cell Stress and Chaperones, 2013, 18, 293-306.	1.2	43
1390	Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nature Methods, 2013, 10, 1028-1034.	9.0	905
1391	Degradome sequencing reveals an endogenous microRNA target in <i>C. elegans</i> . FEBS Letters, 2013, 587, 964-969.	1.3	17
1392	Nonautonomous Regulation of Neuronal Migration by Insulin Signaling, DAF-16/FOXO, and PAK-1. Cell Reports, 2013, 4, 996-1009.	2.9	31
1393	Fluorescent nanodiamond as a probe for the intercellular transport ofÂproteins inÂvivo. Biomaterials, 2013, 34, 8352-8360.	5.7	83
1394	A simple optogenetic system for behavioral analysis of freely moving small animals. Neuroscience Research, 2013, 75, 65-68.	1.0	17

#	Article	IF	CITATIONS
1395	Exciting Prospects for Precise Engineering of <i>Caenorhabditis elegans</i> Genomes with CRISPR/Cas9. Genetics, 2013, 195, 635-642.	1.2	75
1396	Crucial role of the biological barrier at the primary targeted organs in controlling the translocation and toxicity of multi-walled carbon nanotubes in the nematode Caenorhabditis elegans. Nanoscale, 2013, 5, 11166.	2.8	81
1397	Regulation of Lipoprotein Assembly, Secretion and Fatty Acid β-Oxidation by Krüppel-Like Transcription Factor, klf-3. Journal of Molecular Biology, 2013, 425, 2641-2655.	2.0	29
1398	The Unfolded Protein Response in a Pair of Sensory Neurons Promotes Entry of C.Âelegans into Dauer Diapause. Current Biology, 2013, 23, 2540-2545.	1.8	23
1399	Strongly alkaline pH avoidance mediated by ASH sensory neurons in C. elegans. Neuroscience Letters, 2013, 555, 248-252.	1.0	20
1400	Concentration memory-dependent synaptic plasticity of a taste circuit regulates salt concentration chemotaxis in Caenorhabditis elegans. Nature Communications, 2013, 4, 2210.	5.8	104
1401	A Rapid Protocol for Integrating Extrachromosomal Arrays With High Transmission Rate into the C. elegans Genome. Journal of Visualized Experiments, 2013, , e50773.	0.2	38
1402	Epitope-Guided Engineering of Monobody Binders for <i>in Vivo</i> Inhibition of Erk-2 Signaling. ACS Chemical Biology, 2013, 8, 608-616.	1.6	14
1403	RNA Targets and Specificity of Staufen, a Double-stranded RNA-binding Protein in Caenorhabditis elegans. Journal of Biological Chemistry, 2013, 288, 2532-2545.	1.6	45
1404	A Loss-of-Function Variant in the Human Histidyl-tRNA Synthetase (<i>HARS</i>) Gene is Neurotoxic In Vivo. Human Mutation, 2013, 34, 191-199.	1.1	104
1405	Insulin/IGF-1 Signaling Regulates Proteasome Activity through the Deubiquitinating Enzyme UBH-4. Cell Reports, 2013, 3, 1980-1995.	2.9	56
1406	Interaxonal Interaction Defines Tiled Presynaptic Innervation in C.Âelegans. Neuron, 2013, 77, 655-666.	3.8	61
1407	Rapid and Permanent Neuronal Inactivation InÂVivo via Subcellular Generation of Reactive Oxygen with the Use of KillerRed. Cell Reports, 2013, 5, 553-563.	2.9	73
1408	Development of an integrated microfluidic device for evaluating of in vivo chemo-sensing of intact Caenorhabditis elegans. Sensors and Actuators B: Chemical, 2013, 178, 343-349.	4.0	14
1409	Characterization and comparative analysis of the complete Haemonchus contortus β-tubulin gene family and implications for benzimidazole resistance in strongylid nematodes. International Journal for Parasitology, 2013, 43, 465-475.	1.3	53
1410	Mitochondrial SIRT4-type proteins in Caenorhabditis elegans and mammals interact with pyruvate carboxylase and other acetylated biotin-dependent carboxylases. Mitochondrion, 2013, 13, 705-720.	1.6	18
1411	Chaperone-Interacting TPR Proteins in Caenorhabditis elegans. Journal of Molecular Biology, 2013, 425, 2922-2939.	2.0	35
1412	Discoidin domain receptors guide axons along longitudinal tracts in C. elegans. Developmental Biology, 2013, 374, 142-152.	0.9	23

# 1413	ARTICLE The CC1-FHA dimer is essential for KIF1A-mediated axonal transport of synaptic vesicles in C. elegans. Biochemical and Biophysical Research Communications, 2013, 435, 441-446.	IF 1.0	CITATIONS
1414	Two Wnts Instruct Topographic Synaptic Innervation in C.Âelegans. Cell Reports, 2013, 5, 389-396.	2.9	34
1415	The LIM homeobox gene ceh-14 is required for phasmid function and neurite outgrowth. Developmental Biology, 2013, 380, 314-323.	0.9	19
1416	A Neuronal Signaling Pathway of CaMKII and Gqα Regulates Experience-Dependent Transcription of <i>tph-1 </i> . Journal of Neuroscience, 2013, 33, 925-935.	1.7	25
1417	Intracellular lumen extension requires ERM-1-dependent apical membrane expansionÂandÂAQP-8-mediated flux. Nature Cell Biology, 2013, 15, 143-156.	4.6	89
1418	A SLC6 transporter of the novel B0,- system aids in absorption and detection of nutrient amino acids in Caenorhabditis elegans. Journal of Experimental Biology, 2013, 216, 2843-57.	0.8	10
1419	Neuropeptide Secreted from a Pacemaker Activates Neurons to Control a Rhythmic Behavior. Current Biology, 2013, 23, 746-754.	1.8	85
1420	An Organelle Gatekeeper Function for <i>Caenorhabditis elegans</i> UNC-16 (JIP3) at the Axon Initial Segment. Genetics, 2013, 194, 143-161.	1.2	62
1421	The C. elegans CDK8 Mediator module regulates axon guidance decisions in the ventral nerve cord and during dorsal axon navigation. Developmental Biology, 2013, 377, 385-398.	0.9	13
1422	Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nature Methods, 2013, 10, 741-743.	9.0	825
1423	Genetic Analysis of Synaptogenesis. , 2013, , 537-577.		2
1424	LIN-12/Notch Regulates lag-1 and lin-12 Expression during Anchor Cell/Ventral Uterine Precursor Cell Fate Specification. Molecules and Cells, 2013, 35, 249-254.	1.0	2
1425	The sirtuin SIRT6 regulates stress granules formation in C. elegans and in mammals. Journal of Cell Science, 2013, 126, 5166-77.	1.2	58
1426	Arl8/ARL-8 functions in apoptotic cell removal by mediating phagolysosome formation in <i>Caenorhabditis elegans</i> . Molecular Biology of the Cell, 2013, 24, 1584-1592.	0.9	43
1427	FER-1/Dysferlin promotes cholinergic signaling at the neuromuscular junction in <i>C. elegans</i> and mice. Biology Open, 2013, 2, 1245-1252.	0.6	11
1428	Clathrin and AP2 Are Required for Phagocytic Receptor-Mediated Apoptotic Cell Clearance in Caenorhabditis elegans. PLoS Genetics, 2013, 9, e1003517.	1.5	36
1429	A Genome-Wide RNAi Screen in Caenorhabditis elegans Identifies the Nicotinic Acetylcholine Receptor Subunit ACR-7 as an Antipsychotic Drug Target. PLoS Genetics, 2013, 9, e1003313.	1.5	21
1430	Co-operative function and mutual stabilization of the half ATP-binding cassette transporters HAF-4 and HAF-9Âin <i>Caenorhabditis elegans</i> . Biochemical Journal, 2013, 452, 467-475.	1.7	18

#	Article	IF	CITATIONS
1431	EGL-13/SoxD Specifies Distinct O2 and CO2 Sensory Neuron Fates in Caenorhabditis elegans. PLoS Genetics, 2013, 9, e1003511.	1.5	25
1432	Caspase-mediated activation of Caenorhabditis elegans CED-8 promotes apoptosis and phosphatidylserine externalization. Nature Communications, 2013, 4, 2726.	5.8	68
1433	Neuron-Specific Feeding RNAi in C. elegans and Its Use in a Screen for Essential Genes Required for GABA Neuron Function. PLoS Genetics, 2013, 9, e1003921.	1.5	57
1434	PKA Controls Calcium Influx into Motor Neurons during a Rhythmic Behavior. PLoS Genetics, 2013, 9, e1003831.	1.5	34
1435	Neurons Refine the Caenorhabditis elegans Body Plan by Directing Axial Patterning by Wnts. PLoS Biology, 2013, 11, e1001465.	2.6	16
1436	The Conserved SKN-1/Nrf2 Stress Response Pathway Regulates Synaptic Function in Caenorhabditis elegans. PLoS Genetics, 2013, 9, e1003354.	1.5	61
1437	The C. elegans cGMP-Dependent Protein Kinase EGL-4 Regulates Nociceptive Behavioral Sensitivity. PLoS Genetics, 2013, 9, e1003619.	1.5	27
1438	acr-23 Encodes a Monepantel-Sensitive Channel in Caenorhabditis elegans. PLoS Pathogens, 2013, 9, e1003524.	2.1	37
1439	Physiological and molecular mechanisms of salt and water homeostasis in the nematode Caenorhabditis elegans. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R175-R186.	0.9	30
1440	Sumoylated NHR-25/NR5A Regulates Cell Fate during C. elegans Vulval Development. PLoS Genetics, 2013, 9, e1003992.	1.5	36
1441	The Secretory Pathway Calcium ATPase PMR-1/SPCA1 Has Essential Roles in Cell Migration during Caenorhabditis elegans Embryonic Development. PLoS Genetics, 2013, 9, e1003506.	1.5	18
1442	Cross-Modulation of Homeostatic Responses to Temperature, Oxygen and Carbon Dioxide in C. elegans. PLoS Genetics, 2013, 9, e1004011.	1.5	31
1443	The Caenorhabditis elegans JNK Signaling Pathway Activates Expression of Stress Response Genes by Derepressing the Fos/HDAC Repressor Complex. PLoS Genetics, 2013, 9, e1003315.	1.5	33
1444	FGF signaling regulates Wnt ligand expression to control vulval cell lineage polarity in <i>C. elegans</i> . Development (Cambridge), 2013, 140, 3882-3891.	1.2	18
1445	Extension of the <i>Caenorhabditis elegans</i> Pharyngeal M1 Neuron Axon Is Regulated by Multiple Mechanisms. G3: Genes, Genomes, Genetics, 2013, 3, 2015-2029.	0.8	8
1446	CLHM-1 is a Functionally Conserved and Conditionally Toxic Ca2+-Permeable Ion Channel in Caenorhabditis elegans. Journal of Neuroscience, 2013, 33, 12275-12286.	1.7	34
1447	Two Novel DEG/ENaC Channel Subunits Expressed in Glia Are Needed for Nose-Touch Sensitivity in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2013, 33, 936-949.	1.7	47
1448	<i>Caenorhabditis elegans</i> Histone Deacetylase <i>hda-1</i> Is Required for Morphogenesis of the Vulva and LIN-12/Notch-Mediated Specification of Uterine Cell Fates. G3: Genes, Genomes, Genetics, 2013, 3, 1363-1374.	0.8	17

#	Article	IF	CITATIONS
1449	Mechanisms of CDC-42 activation during contact-induced cell polarization. Journal of Cell Science, 2013, 126, 1692-702.	1.2	52
1450	<i>Caenorhabditis elegans</i> PIG-1/MELK Acts in a Conserved PAR-4/LKB1 Polarity Pathway to Promote Asymmetric Neuroblast Divisions. Genetics, 2013, 193, 897-909.	1.2	30
1451	New Role for DCR-1/Dicer in Caenorhabditis elegans Innate Immunity against the Highly Virulent Bacterium Bacillus thuringiensis DB27. Infection and Immunity, 2013, 81, 3942-3957.	1.0	25
1452	Assembly of the Synaptonemal Complex Is a Highly Temperature-Sensitive Process That Is Supported by PGL-1 During Caenorhabditis elegans Meiosis. G3: Genes, Genomes, Genetics, 2013, 3, 585-595.	0.8	40
1453	CPNA-1, a copine domain protein, is located at integrin adhesion sites and is required for myofilament stability in <i>Caenorhabditis elegans</i> . Molecular Biology of the Cell, 2013, 24, 601-616.	0.9	37
1454	A high-salinity solution with calcium chloride enables RNase-free, easy plasmid isolation within 55 minutes. BioScience Trends, 2013, , .	1.1	2
1455	Cytochrome P450 Drives a HIF-Regulated Behavioral Response to Reoxygenation by <i>C. elegans</i> . Science, 2013, 341, 554-558.	6.0	32
1456	Extrasynaptic Muscarinic Acetylcholine Receptors on Neuronal Cell Bodies Regulate Presynaptic Function in Caenorhabditis elegans. Journal of Neuroscience, 2013, 33, 14146-14159.	1.7	22
1457	An Epidermal MicroRNA Regulates Neuronal Migration Through Control of the Cellular Glycosylation State. Science, 2013, 341, 1404-1408.	6.0	73
1458	Betaine acts on a ligand-gated ion channel in the nervous system of the nematode C. elegans. Nature Neuroscience, 2013, 16, 1794-1801.	7.1	41
1459	Interdomain lateral gene transfer of an essential ferrochelatase gene in human parasitic nematodes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7748-7753.	3.3	48
1460	Establishing a novel C. elegans model to investigate the role of autophagy in amyotrophic lateral sclerosis. Acta Pharmacologica Sinica, 2013, 34, 644-650.	2.8	41
1461	Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination. Nucleic Acids Research, 2013, 41, e193-e193.	6.5	134
1462	A Chemoreceptor That Detects Molecular Carbon Dioxide. Journal of Biological Chemistry, 2013, 288, 37071-37081.	1.6	48
1463	The mitochondrial unfolded protein response activator ATFS-1 protects cells from inhibition of the mevalonate pathway. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5981-5986.	3.3	111
1464	Characterization of heat shock protein 70 gene fromHaemonchus contortusand its expression and promoter analysis inCaenorhabditis elegans. Parasitology, 2013, 140, 683-694.	0.7	8
1465	<i><i>piggyBac</i></i> . Mobile Genetic Elements, 2013, 3, e24417.	1.8	16
1466	A Method for Culturing Embryonic C. elegans Cells. Journal of Visualized Experiments, 2013, , e50649.	0.2	10

#	Article	IF	CITATIONS
1467	Effects of α-Synuclein Overexpression in Transgenic Caenorhabditis elegans Strains. CNS and Neurological Disorders - Drug Targets, 2013, 11, 965-975.	0.8	37
1468	The SAX-3 Receptor Stimulates Axon Outgrowth and the Signal Sequence and Transmembrane Domain Are Critical for SAX-3 Membrane Localization in the PDE Neuron of C. elegans. PLoS ONE, 2013, 8, e65658.	1.1	5
1469	A Sexually Conditioned Switch of Chemosensory Behavior in C. elegans. PLoS ONE, 2013, 8, e68676.	1.1	42
1470	A Small Conductance Calcium-Activated K+ Channel in C. elegans, KCNL-2, Plays a Role in the Regulation of the Rate of Egg-Laying. PLoS ONE, 2013, 8, e75869.	1.1	6
1471	Six Innexins Contribute to Electrical Coupling of C. elegans Body-Wall Muscle. PLoS ONE, 2013, 8, e76877.	1.1	21
1472	CATP-6, a C. elegans Ortholog of ATP13A2 PARK9, Positively Regulates GEM-1, an SLC16A Transporter. PLoS ONE, 2013, 8, e77202.	1.1	12
1473	A Caenorhabditis elegans Locomotion Phenotype Caused by Transgenic Repeats of the hlh-17 Promoter Sequence. PLoS ONE, 2013, 8, e81771.	1.1	2
1474	Loss of HMG-CoA Reductase in C. elegans Causes Defects in Protein Prenylation and Muscle Mitochondria. PLoS ONE, 2014, 9, e100033.	1.1	20
1475	Holocentromeres are dispersed point centromeres localized at transcription factor hotspots. ELife, 2014, 3, e02025.	2.8	103
1476	TRPV channel-mediated calcium transients in nociceptor neurons are dispensable for avoidance behaviour. Nature Communications, 2014, 5, 4734.	5.8	17
1477	Light and pheromone-sensing neurons regulates cold habituation through insulin signalling in Caenorhabditis elegans. Nature Communications, 2014, 5, 4412.	5.8	83
1478	Transient Receptor Potential Melastatin (TRPM) Channels Mediate Clozapine-induced Phenotypes in <i>Caenorhabditis elegans</i> . Journal of Neurogenetics, 2014, 28, 86-97.	0.6	6
1479	The Novel Secreted Factor MIG-18 Acts with MIG-17/ADAMTS to Control Cell Migration in <i>Caenorhabditis elegans</i> . Genetics, 2014, 196, 471-479.	1.2	8
1480	C. elegans Punctin specifies cholinergic versus GABAergic identity of postsynaptic domains. Nature, 2014, 511, 466-470.	13.7	55
1481	The Balanced Regulation of Hsc70 by DNJ-13 and UNC-23 Is Required for Muscle Functionality. Journal of Biological Chemistry, 2014, 289, 25250-25261.	1.6	12
1482	GLOBIN-5-Dependent O2 Responses Are Regulated by PDL-1/PrBP That Targets Prenylated Soluble Guanylate Cyclases to Dendritic Endings. Journal of Neuroscience, 2014, 34, 16726-16738.	1.7	23
1483	S6 Kinase Inhibits Intrinsic Axon Regeneration Capacity via AMP Kinase in Caenorhabditis elegans. Journal of Neuroscience, 2014, 34, 758-763.	1.7	29
1484	Exploring the role of two interacting phosphoinositide 3-kinases of Haemonchus contortus. Parasites and Vectors, 2014, 7, 498.	1.0	13

# 1485	ARTICLE Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis. Human Molecular Genetics, 2014, 23, 4315-4327.	IF 1.4	CITATIONS
1486	Interactions Between Endosomal Maturation and Autophagy. Methods in Enzymology, 2014, 534, 93-118.	0.4	5
1487	The survival motor neuron genesmn-1interacts with the U2AF large subunit geneuaf-1to regulateCaenorhabditis eleganslifespan and motor functions. RNA Biology, 2014, 11, 1148-1160.	1.5	16
1488	A novel mechanism underlies caspase-dependent conversion of the dicer ribonuclease into a deoxyribonuclease during apoptosis. Cell Research, 2014, 24, 218-232.	5.7	13
1489	Shaping Magnetic Fields to Direct Therapy to Ears and Eyes. Annual Review of Biomedical Engineering, 2014, 16, 455-481.	5.7	71
1490	LIN-42, the Caenorhabditis elegans PERIOD homolog, Negatively Regulates MicroRNA Transcription. PLoS Genetics, 2014, 10, e1004486.	1.5	39
1491	The Translational Regulators GCN-1 and ABCF-3 Act Together to Promote Apoptosis in C. elegans. PLoS Genetics, 2014, 10, e1004512.	1.5	22
1492	Regulation of Synaptic nlg-1/Neuroligin Abundance by the skn-1/Nrf Stress Response Pathway Protects against Oxidative Stress. PLoS Genetics, 2014, 10, e1004100.	1.5	45
1493	The Evolutionarily Conserved Mediator Subunit MDT-15/MED15 Links Protective Innate Immune Responses and Xenobiotic Detoxification. PLoS Pathogens, 2014, 10, e1004143.	2.1	49
1494	The Caenorhabditis elegans lodotyrosine Deiodinase Ortholog SUP-18 Functions through a Conserved Channel SC-Box to Regulate the Muscle Two-Pore Domain Potassium Channel SUP-9. PLoS Genetics, 2014, 10, e1004175.	1.5	9
1495	An In Vivo EGF Receptor Localization Screen in C. elegans Identifies the Ezrin Homolog ERM-1 as a Temporal Regulator of Signaling. PLoS Genetics, 2014, 10, e1004341.	1.5	34
1496	EVA-1 Functions as an UNC-40 Co-receptor to Enhance Attraction to the MADD-4 Guidance Cue in Caenorhabditis elegans. PLoS Genetics, 2014, 10, e1004521.	1.5	19
1497	The Response to High CO2 Levels Requires the Neuropeptide Secretion Component HID-1 to Promote Pumping Inhibition. PLoS Genetics, 2014, 10, e1004529.	1.5	9
1498	RNA-Processing Protein TDP-43 Regulates FOXO-Dependent Protein Quality Control in Stress Response. PLoS Genetics, 2014, 10, e1004693.	1.5	40
1499	Genetic Analysis of a Novel Tubulin Mutation That Redirects Synaptic Vesicle Targeting and Causes Neurite Degeneration in C. elegans. PLoS Genetics, 2014, 10, e1004715.	1.5	14
1500	PKG and NHR-49 signalling co-ordinately regulate short-term fasting-induced lysosomal lipid accumulation in <i>C. elegans</i> . Biochemical Journal, 2014, 461, 509-520.	1.7	11
1501	BLMP-1/Blimp-1 Regulates the Spatiotemporal Cell Migration Pattern in C. elegans. PLoS Genetics, 2014, 10, e1004428.	1.5	27
1502	The DAF-16 FOXO Transcription Factor Regulates natc-1 to Modulate Stress Resistance in Caenorhabditis elegans, Linking Insulin/IGF-1 Signaling to Protein N-Terminal Acetylation. PLoS Genetics, 2014, 10, e1004703.	1.5	38

#	Article	IF	CITATIONS
1503	Neuronal Migration Is Regulated by Endogenous RNAi and Chromatin-Binding Factor ZFP-1/AF10 in Caenorhabditis elegans. Genetics, 2014, 197, 207-220.	1.2	8
1504	Nonredundant function of two highly homologous octopamine receptors in foodâ€deprivationâ€mediated signaling in <i>Caenorhabditis elegans</i> . Journal of Neuroscience Research, 2014, 92, 671-678.	1.3	18
1505	Versatile strategy for isolating transcription activatorâ€like effector nucleaseâ€mediated knockout mutants in <i><scp>C</scp>aenorhabditis elegans</i> . Development Growth and Differentiation, 2014, 56, 78-85.	0.6	12
1506	Regulation of Experience-Dependent Bidirectional Chemotaxis by a Neural Circuit Switch in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2014, 34, 15631-15637.	1.7	34
1507	The SUN protein UNC-84 is required only in force-bearing cells to maintain nuclear envelope architecture. Journal of Cell Biology, 2014, 206, 163-172.	2.3	49
1508	Deletion of the four phospholipid hydroperoxide glutathione peroxidase genes accelerates aging in <i><scp>C</scp>aenorhabditis elegans</i> . Genes To Cells, 2014, 19, 778-792.	0.5	28
1509	Dissecting the Signaling Mechanisms Underlying Recognition and Preference of Food Odors. Journal of Neuroscience, 2014, 34, 9389-9403.	1.7	42
1510	Identification of a Peptide Inhibitor of the RPM-1·FSN-1 Ubiquitin Ligase Complex. Journal of Biological Chemistry, 2014, 289, 34654-34666.	1.6	16
1511	TGF-β signaling can act from multiple tissues to regulate C. elegansbody size. BMC Developmental Biology, 2014, 14, 43.	2.1	14
1512	The DEP domain-containing protein TOE-2 promotes apoptosis in the Q lineage of C. elegans through two distinct mechanisms. Development (Cambridge), 2014, 141, 2724-2734.	1.2	13
1513	EOL-1, the Homolog of the Mammalian Dom3Z, Regulates Olfactory Learning in <i>C. elegans</i> . Journal of Neuroscience, 2014, 34, 13364-13370.	1.7	6
1514	Systematic Analyses of <i>rpm-1</i> Suppressors Reveal Roles for ESS-2 in mRNA Splicing in <i>Caenorhabditis elegans</i> . Genetics, 2014, 198, 1101-1115.	1.2	17
1515	The conserved LIM domain-containing focal adhesion protein ZYX-1 regulates synapse maintenance in Caenorhabditis elegans. Development (Cambridge), 2014, 141, 3922-3933.	1.2	22
1516	The JNK-Like MAPK KGB-1 of <i>Caenorhabditis Elegans</i> Promotes Reproduction, Lifespan, and Gene Expressions for Protein Biosynthesis and Germline Homeostasis but Interferes with Hyperosmotic Stress Tolerance. Cellular Physiology and Biochemistry, 2014, 34, 1951-1973.	1.1	25
1517	Methods for single/low-copy integration by ultraviolet and trimethylpsoralen treatment in Caenorhabditis elegans. Methods, 2014, 68, 397-402.	1.9	11
1518	Applying antibiotic selection markers for nematode genetics. Methods, 2014, 68, 403-408.	1.9	5
1519	Chemotaxis behavior toward an odor is regulated by constant sodium chloride stimulus in Caenorhabditis elegans. Neuroscience Research, 2014, 81-82, 51-54.	1.0	1
1520	Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein. Nature Methods, 2014, 11, 572-578.	9.0	196

#	Article	IF	Citations
1521	Forgetting Is Regulated via Musashi-Mediated Translational Control of the Arp2/3 Complex. Cell, 2014, 156, 1153-1166.	13.5	100
1522	The neurodegenerative effects of selenium are inhibited by FOXO and PINK1/PTEN regulation of insulin/insulin-like growth factor signaling in Caenorhabditis elegans. NeuroToxicology, 2014, 41, 28-43.	1.4	46
1523	Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection. Lab on A Chip, 2014, 14, 1230-1245.	3.1	110
1524	Human superoxide dismutase 1 overexpression in motor neurons of Caenorhabditis elegans causes axon guidance defect and neurodegeneration. Neurobiology of Aging, 2014, 35, 837-846.	1.5	26
1525	Repurposing an endogenous degradation system for rapid and targeted depletion of <i>C. elegans</i> proteins. Development (Cambridge), 2014, 141, 4640-4647.	1.2	122
1526	SLC30A10 Is a Cell Surface-Localized Manganese Efflux Transporter, and Parkinsonism-Causing Mutations Block Its Intracellular Trafficking and Efflux Activity. Journal of Neuroscience, 2014, 34, 14079-14095.	1.7	174
1527	Caspase-activated phosphoinositide binding by CNT-1 promotes apoptosis by inhibiting the AKT pathway. Nature Structural and Molecular Biology, 2014, 21, 1082-1090.	3.6	18
1528	Efficient Marker-Free Recovery of Custom Genetic Modifications with CRISPR/Cas9 in <i>Caenorhabditis elegans</i> . Genetics, 2014, 198, 837-846.	1.2	738
1529	Random and targeted transgene insertion in Caenorhabditis elegans using a modified Mos1 transposon. Nature Methods, 2014, 11, 529-534.	9.0	321
1530	Expression of Caenorhabditis elegans-expressed Trans-HPS, partial aminopeptidase H11 from Haemonchus contortus. Experimental Parasitology, 2014, 145, 87-98.	0.5	6
1531	High-throughput optical quantification of mechanosensory habituation reveals neurons encoding memory in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17236-17241.	3.3	15
1532	The small <scp>GTP</scp> ase Arf1 modulates mitochondrial morphology and function. EMBO Journal, 2014, 33, 2659-2675.	3.5	81
1533	Protective Role of DNJ-27/ERdj5 in <i>Caenorhabditis elegans</i> Models of Human Neurodegenerative Diseases. Antioxidants and Redox Signaling, 2014, 20, 217-235.	2.5	57
1534	Engineering Recombinant Orsay Virus Directly in the Metazoan Host Caenorhabditis elegans. Journal of Virology, 2014, 88, 11774-11781.	1.5	18
1535	A Novel CaM Kinase II Pathway Controls the Location of Neuropeptide Release from <i>Caenorhabditis elegans</i> Motor Neurons. Genetics, 2014, 196, 745-765.	1.2	28
1536	Scalable and Versatile Genome Editing Using Linear DNAs with Microhomology to Cas9 Sites in <i>Caenorhabditis elegans</i> . Genetics, 2014, 198, 1347-1356.	1.2	292
1537	Hc-fau, a novel gene regulating diapause in the nematode parasite Haemonchus contortus. International Journal for Parasitology, 2014, 44, 775-786.	1.3	16
1538	A Krüppel-like factor downstream of the E3 ligase WWP-1 mediates dietary-restriction-induced longevity in Caenorhabditis elegans. Nature Communications, 2014, 5, 3772.	5.8	27

#	Article	IF	Citations
1539	Conditional Knockouts Generated by Engineered CRISPR-Cas9 Endonuclease Reveal the Roles of Coronin in C.Âelegans Neural Development. Developmental Cell, 2014, 30, 625-636.	3.1	139
1540	SLC6 family transporter SNF-10 is required for protease-mediated activation of sperm motility in C. elegans. Developmental Biology, 2014, 393, 171-182.	0.9	17
1541	Sequential histone-modifying activities determine the robustness of transdifferentiation. Science, 2014, 345, 826-829.	6.0	69
1542	Polarized exocyst-mediated vesicle fusion directs intracellular lumenogenesis within the C. elegans excretory cell. Developmental Biology, 2014, 394, 110-121.	0.9	53
1543	Transgenerational epigenetics in the germline cycle of Caenorhabditis elegans. Epigenetics and Chromatin, 2014, 7, 6.	1.8	77
1544	The PAF1 complex is involved in embryonic epidermal morphogenesis in Caenorhabditis elegans. Developmental Biology, 2014, 391, 43-53.	0.9	11
1545	Hc-daf-2 encodes an insulin-like receptor kinase in the barber's pole worm, Haemonchus contortus, and restores partial dauer regulation. International Journal for Parasitology, 2014, 44, 485-496.	1.3	25
1546	Simplified method for cell-specific gene expression analysis in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2014, 450, 330-334.	1.0	1
1547	Analyzing cell physiology in C. elegans with fluorescent ratiometric reporters. Methods, 2014, 68, 508-517.	1.9	9
1548	Deep Conservation of Genes Required for Both Drosophila melanogaster and Caenorhabditis elegans Sleep Includes a Role for Dopaminergic Signaling. Sleep, 2014, 37, 1439-1451.	0.6	69
1549	Microscopic Investigation of Protein Function in C. elegans Using Fluorescent Imaging. Current Protocols in Cytometry, 2015, 74, 12.41.1-12.41.17.	3.7	3
1550	Distinct roles of the RasGAP family proteins in C. elegans associative learning and memory. Scientific Reports, 2015, 5, 15084.	1.6	18
1551	Super-resolution mapping of glutamate receptors in C. elegans by confocal correlated PALM. Scientific Reports, 2015, 5, 13532.	1.6	21
1552	New genetic regulators question relevance of abundant yolk protein production in C. elegans. Scientific Reports, 2015, 5, 16381.	1.6	46
1553	The Cell Death Pathway Regulates Synapse Elimination through Cleavage of Gelsolin in Caenorhabditis elegans Neurons. Cell Reports, 2015, 11, 1737-1748.	2.9	39
1554	Navigational choice between reversal and curve during acidic pH avoidance behavior in Caenorhabditis elegans. BMC Neuroscience, 2015, 16, 79.	0.8	9
1555	Multiple <i>cis</i> elements and GATA factors regulate a cuticle collagen gene in <i>Caenorhabditis elegans</i> . Genesis, 2015, 53, 278-284.	0.8	12
1556	Developmental Function of the PHR Protein RPM-1 Is Required for Learning in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2015, 5, 2745-2757.	0.8	15

		CITATION REPOR	Т	
#	Article	IF	Сп	TATIONS
1557	The Amyloid Precursor Protein Controls PIKfyve Function. PLoS ONE, 2015, 10, e0130485.	1.1	21	
1558	Loss of C. elegans GON-1, an ADAMTS9 Homolog, Decreases Secretion Resulting in Altered Lifes Dauer Formation. PLoS ONE, 2015, 10, e0133966.	span and 1.1	8	
1559	The Validation of Nematode-Specific Acetylcholine-Gated Chloride Channels as Potential Antheli Drug Targets. PLoS ONE, 2015, 10, e0138804.	nintic 1.1	13	
1560	Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes. PLoS Pathogens, 2015, 11, e1005267.	2.1	31	
1561	ABCE1 Is a Highly Conserved RNA Silencing Suppressor. PLoS ONE, 2015, 10, e0116702.	1.1	14	
1562	Acyl-CoA Dehydrogenase Drives Heat Adaptation by Sequestering Fatty Acids. Cell, 2015, 161, 2	1152-1163. 13.:	5 10	5
1563	Somatic CRISPR–Cas9-induced mutations reveal roles of embryonically essential dynein chain <i>Caenorhabditis elegans</i> cilia. Journal of Cell Biology, 2015, 208, 683-692.	s in 2.3	51	
1564	A role for Ras in inhibiting circular foraging behavior as revealed by a new method for time and cell-specific RNAi. BMC Biology, 2015, 13, 6.	1.7	13	
1565	Conserved RNA-Binding Proteins Required for Dendrite Morphogenesis in <i>Caenorhabditis elegans</i> Sensory Neurons. G3: Genes, Genomes, Genetics, 2015, 5, 639-653.	0.8	5 20	1
1566	A Mutation in <i>Caenorhabditis elegans</i> NDUF-7 Activates the Mitochondrial Stress Respor Prolongs Lifespan via ROS and CED-4. G3: Genes, Genomes, Genetics, 2015, 5, 1639-1648.	ise and 0.8	32	
1567	<i>Cis</i> - and <i>Trans</i> -Regulatory Mechanisms of Gene Expression in the ASJ Sensory Neu <i>Caenorhabditis elegans</i> . Genetics, 2015, 200, 123-134.	ron of 1.2	14	
1568	Computer-Assisted Transgenesis of Caenorhabditis elegans for Deep Phenotyping. Genetics, 20 39-46.	15, 201, <u>1.2</u>	23	
1569	Efficient Genome Editing in <i>Caenorhabditis elegans</i> with a Toolkit of Dual-Marker Selectic Cassettes. Genetics, 2015, 201, 449-458.	on 1.2	91	
1570	Rendering the Intractable More Tractable: Tools from <i>Caenorhabditis elegans</i> Ripe for Im into Parasitic Nematodes. Genetics, 2015, 201, 1279-1294.	port 1.2	47	
1571	A Novel Mechanism of pH Buffering in <i>C. elegans</i> Glia: Bicarbonate Transport via the Voltage-Gated ClC Cl ^{â^'} Channel CLH-1. Journal of Neuroscience, 2015, 35, 16377-	16397. 1.7	21	
1572	Synapse-Assembly Proteins Maintain Synaptic Vesicle Cluster Stability and Regulate Synaptic Ve Transport in <i>Caenorhabditis elegans</i> . Genetics, 2015, 201, 91-116.	esicle 1.2	20	
1573	20 Years of <i>unc-119</i> as a transgene marker. Worm, 2015, 4, e1046031.	1.0	12	
1574	The Function and Regulation of the GATA Factor ELT-2 in the <i>C. elegans</i> Endoderm. Develo (Cambridge), 2015, 143, 483-91.	pment 1.2	43	

#	Article	IF	CITATIONS
1575	Engulfment pathways promote programmed cell death by enhancing the unequal segregation of apoptotic potential. Nature Communications, 2015, 6, 10126.	5.8	34
1576	<i>daf-18</i> /PTEN locally antagonizes insulin signalling to couple germline stem cell proliferation to oocyte needs in <i>C. elegans</i> . Development (Cambridge), 2015, 142, 4230-41.	1.2	20
1577	The Importance of cGMP Signaling in Sensory Cilia for Body Size Regulation in <i>Caenorhabditis elegans</i> . Genetics, 2015, 201, 1497-1510.	1.2	14
1578	Optogenetic mutagenesis in Caenorhabditis elegans. Nature Communications, 2015, 6, 8868.	5.8	28
1579	Developmental alterations of the C. elegans male anal depressor morphology and function require sex-specific cell autonomous and cell non-autonomous interactions. Developmental Biology, 2015, 398, 24-43.	0.9	5
1580	Neuropeptide Receptors NPR-1 and NPR-2 Regulate Caenorhabditis elegans Avoidance Response to the Plant Stress Hormone Methyl Salicylate. Genetics, 2015, 199, 523-531.	1.2	23
1581	Spillover Transmission Is Mediated by the Excitatory GABA Receptor LGC-35 in <i>C. elegans</i> . Journal of Neuroscience, 2015, 35, 2803-2816.	1.7	24
1582	C. elegans NIMA-related kinases NEKL-2 and NEKL-3 are required for the completion of molting. Developmental Biology, 2015, 398, 255-266.	0.9	30
1583	A Ribonuclease Coordinates siRNA Amplification and mRNA Cleavage during RNAi. Cell, 2015, 160, 407-419.	13.5	71
1584	An Evolutionarily Conserved Switch in Response to GABA Affects Development and Behavior of the Locomotor Circuit of <i>Caenorhabditis elegans</i> . Genetics, 2015, 199, 1159-1172.	1.2	32
1585	Double-stranded RNA made in <i>C. elegans</i> neurons can enter the germline and cause transgenerational gene silencing. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2133-2138.	3.3	123
1586	PLR-1, a putative E3 ubiquitin ligase, controls cell polarity and axonal extensions in C. elegans. Developmental Biology, 2015, 398, 44-56.	0.9	9
1587	Comparative RNA-Seq analysis reveals pervasive tissue-specific alternative polyadenylation in Caenorhabditis elegans intestine and muscles. BMC Biology, 2015, 13, 4.	1.7	70
1588	A Novel Nondevelopmental Role of the SAX-7/L1CAM Cell Adhesion Molecule in Synaptic Regulation in <i>Caenorhabditis elegans</i> . Genetics, 2015, 199, 497-509.	1.2	10
1589	Suppression of RNAi by dsRNA-Degrading RNaseIII Enzymes of Viruses in Animals and Plants. PLoS Pathogens, 2015, 11, e1004711.	2.1	22
1590	Getting Down to Specifics. Advances in Genetics, 2015, 91, 103-151.	0.8	12
1591	Neural activity and CaMKII protect mitochondria from fragmentation in aging <i>Caenorhabditis elegans</i> neurons. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8768-8773.	3.3	51
1592	Tissue Expression Pattern of PMK-2 p38 MAPK Is Established by the miR-58 Family in C. elegans. PLoS Genetics, 2015, 11, e1004997.	1.5	36

#	Article	IF	CITATIONS
1593	The Deubiquitylase MATH-33 Controls DAF-16 Stability and Function in Metabolism and Longevity. Cell Metabolism, 2015, 22, 151-163.	7.2	29
1594	WAVE binds Ena/VASP for enhanced Arp2/3 complex–based actin assembly. Molecular Biology of the Cell, 2015, 26, 55-65.	0.9	58
1595	A Novel Role for the Zinc-Finger Transcription Factor EGL-46 in the Differentiation of Gas-Sensing Neurons in <i>Caenorhabditis elegans</i> . Genetics, 2015, 199, 157-163.	1.2	19
1596	Sequence Features and Transcriptional Stalling within Centromere DNA Promote Establishment of CENP-A Chromatin. PLoS Genetics, 2015, 11, e1004986.	1.5	92
1597	Multiple Sensory Inputs Are Extensively Integrated to Modulate Nociception in C. elegans. Journal of Neuroscience, 2015, 35, 10331-10342.	1.7	32
1598	RNA helicase HEL-1 promotes longevity by specifically activating DAF-16/FOXO transcription factor signaling in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4246-55.	3.3	34
1599	Systemic Regulation of RAS/MAPK Signaling by the Serotonin Metabolite 5-HIAA. PLoS Genetics, 2015, 11, e1005236.	1.5	58
1600	Using transgenic reporter assays to functionally characterize enhancers in animals. Genomics, 2015, 106, 185-192.	1.3	63
1601	Loss of function mutations in <i>HARS</i> cause a spectrum of inherited peripheral neuropathies. Brain, 2015, 138, 2161-2172.	3.7	71
1602	G1/S Inhibitors and the SWI/SNF Complex Control Cell-Cycle Exit during Muscle Differentiation. Cell, 2015, 162, 300-313.	13.5	93
1603	Off-response in ASH neurons evoked by CuSO4 requires the TRP channel OSM-9 in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2015, 461, 463-468.	1.0	21
1604	A modular system of DNA enhancer elements mediates tissue-specific activation of transcription by high dietary zinc in C. elegans. Nucleic Acids Research, 2015, 43, 803-816.	6.5	25
1605	Feedback from Network States Generates Variability in a Probabilistic Olfactory Circuit. Cell, 2015, 161, 215-227.	13.5	204
1606	An instructive role for C. elegans E-cadherin in translating cell contact cues into cortical polarity. Nature Cell Biology, 2015, 17, 726-735.	4.6	67
1607	Noncoding regions of <i>C. elegans</i> mRNA undergo selective adenosine to inosine deamination and contain a small number of editing sites per transcript. RNA Biology, 2015, 12, 162-174.	1.5	12
1608	Structural basis for Na+ transport mechanism by a light-driven Na+ pump. Nature, 2015, 521, 48-53.	13.7	224
1609	Neural Mechanisms for Evaluating Environmental Variability in Caenorhabditis elegans. Neuron, 2015, 86, 428-441.	3.8	75
1610	The principle of antagonism ensures protein targeting specificity at the endoplasmic reticulum. Science, 2015, 348, 201-207.	6.0	114

#	Article	IF	CITATIONS
1611	Autonomous and nonautonomous regulation of Wnt-mediated neuronal polarity by the C. elegans Ror kinase CAM-1. Developmental Biology, 2015, 404, 55-65.	0.9	13
1612	Crescerin uses a TOC domain array to regulate microtubules in the primary cilium. Molecular Biology of the Cell, 2015, 26, 4248-4264.	0.9	52
1613	ULP-2 SUMO Protease Regulates E-Cadherin Recruitment to Adherens Junctions. Developmental Cell, 2015, 35, 63-77.	3.1	23
1614	Holocentromeres in <i>Rhynchospora</i> are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13633-13638.	3.3	96
1615	Distinct Mechanisms Underlie Quiescence during Two <i>Caenorhabditis elegans</i> Sleep-Like States. Journal of Neuroscience, 2015, 35, 14571-14584.	1.7	63
1616	UNC-16 (JIP3) Acts Through Synapse-Assembly Proteins to Inhibit the Active Transport of Cell Soma Organelles to <i>Caenorhabditis elegans</i> Motor Neuron Axons. Genetics, 2015, 201, 117-141.	1.2	25
1617	Mutations in <i>Caenorhabditis briggsae</i> identify new genes important for limiting the response to EGF signaling during vulval development. Evolution & Development, 2015, 17, 34-48.	1.1	10
1618	Presynaptic BK channel localization is dependent on the hierarchical organization of alpha-catulin and dystrobrevin and fine-tuned by CaV2 calcium channels. BMC Neuroscience, 2015, 16, 26.	0.8	17
1619	Streamlined Genome Engineering with a Self-Excising Drug Selection Cassette. Genetics, 2015, 200, 1035-1049.	1.2	557
1620	RNA ligation in neurons by RtcB inhibits axon regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8451-8456.	3.3	58
1621	Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nature Communications, 2015, 6, 8264.	5.8	266
1622	Direct and positive regulation of Caenorhabditis elegans bed-3 by PRDM1/BLIMP1 ortholog BLMP-1. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 1229-1236.	0.9	11
1623	The Rho guanine exchange factor RHGF-2 acts through the Rho-binding kinase LET-502 to mediate embryonic elongation in C. elegans. Developmental Biology, 2015, 405, 250-259.	0.9	12
1624	Context-dependent modulation of Pol II CTD phosphatase SSUP-72 regulates alternative polyadenylation in neuronal development. Genes and Development, 2015, 29, 2377-2390.	2.7	7
1625	<scp>IRE</scp> â€1/ <scp>XBP</scp> â€1 pathway of the unfolded protein response is required for properly localizing neuronal <scp>UNC</scp> â€6/Netrin for axon guidance in <i>C.Âelegans</i> . Genes To Cells, 2015, 20, 153-159.	0.5	4
1626	Microfluidic device for analysis of gas-evoked neuronal sensing in C. elegans. Sensors and Actuators B: Chemical, 2015, 209, 109-115.	4.0	18
1627	HSF-1 activates the ubiquitin proteasome system to promote non-apoptotic developmental cell death in C. elegans. ELife, 2016, 5, .	2.8	22
1628	The Slavery of the h-index—Measuring the Unmeasurable. Frontiers in Human Neuroscience, 2016, 10, 556.	1.0	53

#	Article	IF	CITATIONS
1629	Forward Genetic Screen in Caenorhabditis elegans Suggests F57A10.2 and acp-4 As Suppressors of C9ORF72 Related Phenotypes. Frontiers in Molecular Neuroscience, 2016, 9, 113.	1.4	16
1630	Understanding Synaptogenesis and Functional Connectome in C. elegans by Imaging Technology. Frontiers in Synaptic Neuroscience, 2016, 8, 18.	1.3	6
1631	Genome Editing in C. elegans and Other Nematode Species. International Journal of Molecular Sciences, 2016, 17, 295.	1.8	16
1632	Cas9-assisted recombineering in <i>C. elegans</i> : genome editing using <i>in vivo</i> assembly of linear DNAs. Nucleic Acids Research, 2016, 44, gkw502.	6.5	92
1633	Caenorhabditis elegans PAQR-2 and IGLR-2 Protect against Glucose Toxicity by Modulating Membrane Lipid Composition. PLoS Genetics, 2016, 12, e1005982.	1.5	53
1634	The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles. PLoS Genetics, 2016, 12, e1006074.	1.5	53
1635	Cell-Autonomous and Non-Cell-Autonomous Regulation of a Feeding State-Dependent Chemoreceptor Gene via MEF-2 and bHLH Transcription Factors. PLoS Genetics, 2016, 12, e1006237.	1.5	21
1636	Mg2+ Extrusion from Intestinal Epithelia by CNNM Proteins Is Essential for Gonadogenesis via AMPK-TORC1 Signaling in Caenorhabditis elegans. PLoS Genetics, 2016, 12, e1006276.	1.5	16
1637	A Farnesyltransferase Acts to Inhibit Ectopic Neurite Formation in C. elegans. PLoS ONE, 2016, 11, e0157537.	1.1	2
1638	The nematode stoma: Homology of cell architecture with improved understanding by confocal microscopy of labeled cell boundaries. Journal of Morphology, 2016, 277, 1168-1186.	0.6	10
1639	Probing and rearranging the transcription factor network controlling theC. elegansendoderm. Worm, 2016, 5, e1198869.	1.0	4
1640	Molecular evolution of troponin I and a role of its Nâ€ŧerminal extension in nematode locomotion. Cytoskeleton, 2016, 73, 117-130.	1.0	13
1641	Chaperone complex <scp>BAG</scp> 2– <scp>HSC</scp> 70 regulates localization of <i>Caenorhabditis elegans</i> leucineâ€rich repeat kinase <scp>LRK</scp> â€1 to the Golgi. Genes To Cells, 2016, 21, 311-324.	0.5	16
1642	Efficient generation of transgenic reporter strains and analysis of expression patterns in <i>Caenorhabditis elegans</i> using library MosSCI. Developmental Dynamics, 2016, 245, 925-936.	0.8	19
1643	Endocannabinoid signaling regulates regenerative axon navigation in <i>Caenorhabditis elegans</i> via the GPCRs NPRâ€19 and NPRâ€32. Genes To Cells, 2016, 21, 696-705.	0.5	28
1644	Splicing factors control C. elegans behavioural learning in a single neuron by producing DAF-2c receptor. Nature Communications, 2016, 7, 11645.	5.8	33
1645	A method to rapidly create protein aggregates in living cells. Nature Communications, 2016, 7, 11689.	5.8	29
1646	PIGN prevents protein aggregation in the endoplasmic reticulum independently of its function in the GPI synthesis. Journal of Cell Science, 2016, 130, 602-613.	1.2	13

#	Article	IF	CITATIONS
1647	In actio optophysiological analyses reveal functional diversification of dopaminergic neurons in the nematode C. elegans. Scientific Reports, 2016, 6, 26297.	1.6	23
1648	A hybrid microfluidic device for on-demand orientation and multidirectional imaging of <i>C. elegans</i> organs and neurons. Biomicrofluidics, 2016, 10, 064111.	1.2	15
1649	Targeted genome engineering in Caenorhabditis elegans. Cell and Bioscience, 2016, 6, 60.	2.1	15
1650	Identification of an evolutionary conserved structural loop that is required for the enzymatic and biological function of tryptophan 2,3-dioxygenase. Scientific Reports, 2016, 6, 39199.	1.6	12
1651	Maintenance of Membrane Integrity and Permeability Depends on a Patched-Related Protein in <i>Caenorhabditis elegans</i> . Genetics, 2016, 202, 1411-1420.	1.2	16
1652	Curcumin improves tau-induced neuronal dysfunction of nematodes. Neurobiology of Aging, 2016, 39, 69-81.	1.5	43
1653	Pioneer Axon Navigation Is Controlled by AEX-3, a Guanine Nucleotide Exchange Factor for RAB-3 in Caenorhabditis elegans. Genetics, 2016, 203, 1235-1247.	1.2	10
1654	Impaired removal of H3K4 methylation affects cell fate determination and gene transcription. Development (Cambridge), 2016, 143, 3751-3762.	1.2	15
1655	Transcriptional control of non-apoptotic developmental cell death in C. elegans. Cell Death and Differentiation, 2016, 23, 1985-1994.	5.0	15
1656	Structural and functional characterisation of FOXO/ Acan -DAF-16 from the parasitic nematode Angiostrongylus cantonensis. Acta Tropica, 2016, 164, 125-136.	0.9	7
1657	Regulation of UNC-130/FOXD-mediated mesodermal patterning in C. elegans. Developmental Biology, 2016, 416, 300-311.	0.9	6
1658	Emerging Technologies in the Analysis of C. elegans Nicotinic Acetylcholine Receptors. Neuromethods, 2016, , 77-96.	0.2	2
1659	Sperm Affects Head Sensory Neuron in Temperature Tolerance of Caenorhabditis elegans. Cell Reports, 2016, 16, 56-65.	2.9	39
1660	A C.Âelegans Thermosensory Circuit Regulates Longevity through crh-1 /CREB-Dependent flp-6 Neuropeptide Signaling. Developmental Cell, 2016, 39, 209-223.	3.1	66
1661	Anti-aging treatments slow propagation of synucleinopathy by restoring lysosomal function. Autophagy, 2016, 12, 1849-1863.	4.3	59
1662	A glial K ⁺ /Cl ^{â~`} cotransporter modifies temperatureâ€evoked dynamics in <i>Caenorhabditis elegans</i> sensory neurons. Genes, Brain and Behavior, 2016, 15, 429-440.	1.1	29
1663	Distinct roles of the two <scp>VPS33</scp> proteins in the endolysosomal system in <i>Caenorhabditis elegans</i> . Traffic, 2016, 17, 1197-1213.	1.3	9
1664	The C. elegans hox gene lin-39 controls cell cycle progression during vulval development. Developmental Biology, 2016, 418, 124-134.	0.9	9

#	Article	IF	CITATIONS
1665	Somatic increase of CCT8 mimics proteostasis of human pluripotent stem cells and extends C. elegans lifespan. Nature Communications, 2016, 7, 13649.	5.8	81
1666	The Core Molecular Machinery Used for Engulfment of Apoptotic Cells Regulates the JNK Pathway Mediating Axon Regeneration in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2016, 36, 9710-9721.	1.7	20
1667	Dopamine receptor DOP-4 modulates habituation to repetitive photoactivation of a <i>C. elegans</i> polymodal nociceptor. Learning and Memory, 2016, 23, 495-503.	0.5	44
1668	Analysis of <i>C. elegans</i> muscle transcriptome using trans-splicing-based RNA tagging (SRT). Nucleic Acids Research, 2016, 44, gkw734.	6.5	19
1669	Tissue homogeneity requires inhibition of unequal gene silencing during development. Journal of Cell Biology, 2016, 214, 319-331.	2.3	7
1670	Identification of a dTDP-rhamnose biosynthetic pathway that oscillates with the molting cycle in <i>Caenorhabditis elegans</i> . Biochemical Journal, 2016, 473, 1507-1521.	1.7	21
1671	The SH3 domain of UNC-89 (obscurin) interacts with paramyosin, a coiled-coil protein, in <i>Caenorhabditis elegans</i> muscle. Molecular Biology of the Cell, 2016, 27, 1606-1620.	0.9	18
1672	Developmentally programmed germ cell remodelling by endodermal cell cannibalism. Nature Cell Biology, 2016, 18, 1302-1310.	4.6	56
1673	Somatically expressed germ-granule components, PGL-1 and PGL-3, repress programmed cell death in C. elegans. Scientific Reports, 2016, 6, 33884.	1.6	6
1674	Nuclei migrate through constricted spaces using microtubule motors and actin networks in <i>C. elegans</i> hypodermal cells. Development (Cambridge), 2016, 143, 4193-4202.	1.2	35
1675	Lab-on-chips for manipulation of small-scale organisms to facilitate imaging of neurons and organs. , 2016, 2016, 5749-5752.		1
1676	Diapause is associated with a change in the polarity of secretion of insulin-like peptides. Nature Communications, 2016, 7, 10573.	5.8	17
1677	Endomembrane-associated RSD-3 is important for RNAi induced by extracellular silencing RNA in both somatic and germ cells of Caenorhabditis elegans. Scientific Reports, 2016, 6, 28198.	1.6	10
1678	Coordinated inhibition of C/EBP by Tribbles in multiple tissues is essential for Caenorhabditis elegans development. BMC Biology, 2016, 14, 104.	1.7	33
1679	Characterization of HAF-4- and HAF-9-localizing organelles as distinct organelles in Caenorhabditis elegans intestinal cells. BMC Cell Biology, 2016, 17, 4.	3.0	10
1680	Neuron-specific knock-down of SMN1 causes neuron degeneration and death through an apoptotic mechanism. Human Molecular Genetics, 2016, 25, ddw119.	1.4	21
1681	EFN-4/Ephrin functions in LAD-2/L1CAM-mediated axon guidance in Caenorhabditis elegans. Development (Cambridge), 2016, 143, 1182-91.	1.2	4
1682	CDC-25.2, a <i>C. elegans</i> ortholog of <i>cdc25</i> , is essential for the progression of intestinal divisions. Cell Cycle, 2016, 15, 654-666.	1.3	21

#	Article	IF	CITATIONS
1683	Preventing Illegitimate Extrasynaptic Acetylcholine Receptor Clustering Requires the RSU-1 Protein. Journal of Neuroscience, 2016, 36, 6525-6537.	1.7	12
1684	Translation readthrough mitigation. Nature, 2016, 534, 719-723.	13.7	90
1685	Glutathione reductase gsr-1 is an essential gene required for Caenorhabditis elegans early embryonic development. Free Radical Biology and Medicine, 2016, 96, 446-461.	1.3	16
1686	The SWI/SNF chromatin remodeling complex exerts both negative and positive control over LET-23/EGFR-dependent vulval induction in Caenorhabditis elegans. Developmental Biology, 2016, 415, 46-63.	0.9	Ο
1687	Molecular characterization of the Haemonchus contortus phosphoinositide-dependent protein kinase-1 gene (Hc-pdk-1). Parasites and Vectors, 2016, 9, 65.	1.0	13
1688	Axotomy-induced HIF-serotonin signalling axis promotes axon regeneration in C. elegans. Nature Communications, 2016, 7, 10388.	5.8	40
1689	The H3K4me3/2 histone demethylase RBR-2 controls axon guidance by repressing the actin-remodeling gene wsp-1. Development (Cambridge), 2016, 143, 851-63.	1.2	24
1690	A Two-Immunoglobulin-Domain Transmembrane Protein Mediates an Epidermal-Neuronal Interaction to Maintain Synapse Density. Neuron, 2016, 89, 325-336.	3.8	35
1691	Locus-specific integration of extrachromosomal transgenes in C. elegans with the CRISPR/Cas9 system. Biochemistry and Biophysics Reports, 2016, 5, 70-76.	0.7	20
1692	Neuropeptidergic Signaling and Active Feeding State Inhibit Nociception in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2016, 36, 3157-3169.	1.7	41
1693	Cell Size Determines the Strength of the Spindle Assembly Checkpoint during Embryonic Development. Developmental Cell, 2016, 36, 344-352.	3.1	69
1694	Folate Acts in E.Âcoli to Accelerate C.Âelegans Aging Independently of Bacterial Biosynthesis. Cell Reports, 2016, 14, 1611-1620.	2.9	81
1695	Regulation of Neuronal Oxygen Responses in <i>C. elegans</i> Is Mediated through Interactions between Globin 5 and the H-NOX Domains of Soluble Guanylate Cyclases. Journal of Neuroscience, 2016, 36, 963-978.	1.7	15
1696	Reconstruction of Spatial Thermal Gradient Encoded in Thermosensory Neuron AFD in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2016, 36, 2571-2581.	1.7	35
1697	CRISPR-Based Methods for <i>Caenorhabditis elegans</i> Genome Engineering. Genetics, 2016, 202, 885-901.	1.2	258
1698	A 44 bp intestine-specific hermaphrodite-specific enhancer from the C. elegans vit-2 vitellogenin gene is directly regulated by ELT-2, MAB-3, FKH-9 and DAF-16 and indirectly regulated by the germline, by daf-2 /insulin signaling and by the TGF-Ĩ²/Sma/Mab pathway. Developmental Biology, 2016, 413, 112-127.	0.9	24
1699	Palmitoylation controls DLK localization, interactions and activity to ensure effective axonal injury signaling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 763-768.	3.3	92
1700	Aging and SKN-1-dependent Loss of 20S Proteasome Adaptation to Oxidative Stress inC. elegans. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 143-151.	1.7	30

	Сіт	ation Report	
#	Article	IF	Citations
1701	Sequence determinants of the Caenhorhabditis elegans dopamine transporter dictating in vivo axonal export and synaptic localization. Molecular and Cellular Neurosciences, 2017, 78, 41-51.	1.0	11
1702	Transgenesis in <i>Strongyloides</i> and related parasitic nematodes: historical perspectives, current functional genomic applications and progress towards gene disruption and editing. Parasitology, 2017, 144, 327-342.	0.7	69
1703	Tissue-specific regulation of alternative polyadenylation represses expression of neuronal ankyrin isoform in <i>C. elegans</i> epidermal development. Development (Cambridge), 2017, 144, 698-707.	1.2	14
1704	JMJD-1.2/PHF8 controls axon guidance by regulating Hedgehog-like signaling. Development (Cambridg 2017, 144, 856-865.	e), 1.2	14
1705	MTCH2 is a conserved regulator of lipid homeostasis. Obesity, 2017, 25, 616-625.	1.5	20
1706	Defining Minimal Binding Regions in Regulator of Presynaptic Morphology 1 (RPM-1) Using Caenorhabditis elegans Neurons Reveals Differential Signaling Complexes. Journal of Biological Chemistry, 2017, 292, 2519-2530.	1.6	7
1707	Characterization and function analysis of a novel gene, Hc-maoc-1, in the parasitic nematode Haemonochus contortus. Parasites and Vectors, 2017, 10, 67.	1.0	11
1708	Excitatory neurons sculpt GABAergic neuronal connectivity in the <i>C. elegans</i> motor circuit. Development (Cambridge), 2017, 144, 1807-1819.	1.2	11
1709	Bioimaging with Macromolecular Probes Incorporating Multiple BODIPY Fluorophores. Bioconjugate Chemistry, 2017, 28, 1519-1528.	1.8	28
1710	The cAMP-PKA pathway-mediated fat mobilization is required for cold tolerance in C. elegans. Scientific Reports, 2017, 7, 638.	1.6	41
1711	A Genetic Analysis of the <i>Caenorhabditis elegans</i> Detoxification Response. Genetics, 2017, 206, 939-952.	' 1.2	21
1712	Alternative Polyadenylation Directs Tissue-Specific miRNA Targeting in <i>Caenorhabditis elegans</i> Somatic Tissues. Genetics, 2017, 206, 757-774.	1.2	67
1713	Characterization of gene expression associated with the adaptation of the nematode C. elegans to hypoxia and reoxygenation stress reveals an unexpected function of the neuroglobin GLB-5 in innate immunity. Free Radical Biology and Medicine, 2017, 108, 858-873.	1.3	11
1714	A new platform for long-term tracking and recording of neural activity and simultaneous optogenetic control in freely behaving Caenorhabditis elegans. Journal of Neuroscience Methods, 2017, 286, 56-68.	1.3	12
1715	Asynchronous Cholinergic Drive Correlates with Excitation-Inhibition Imbalance via a Neuronal Ca2+ Sensor Protein. Cell Reports, 2017, 19, 1117-1129.	2.9	20
1716	Control of Neuropeptide Expression by Parallel Activity-dependent Pathways in Caenorhabditis elegans. Scientific Reports, 2017, 7, 38734.	1.6	14
1717	The VPS-34 PI3 kinase negatively regulates RAB-5 during endosome maturation. Journal of Cell Science 2017, 130, 2007-2017.	, 1.2	40
1718	Molecular dissection of Caenorhabditis elegans ATP-binding cassette transporter protein HAF-4 to investigate its subcellular localization and dimerization. Biochemical and Biophysical Research Communications, 2017, 490, 78-83.	1.0	2

#	Article	IF	Citations
1719	Angiostrongylus cantonensis daf-2 regulates dauer, longevity and stress in Caenorhabditis elegans. Veterinary Parasitology, 2017, 240, 1-10.	0.7	4
1720	Differing roles for sur-2/MED23 in C. elegans and C. briggsae vulval development. Development Genes and Evolution, 2017, 227, 213-218.	0.4	7
1721	Genome Editing of C. elegans. Methods in Molecular Biology, 2017, 1630, 247-254.	0.4	1
1722	Ageing and hypoxia cause protein aggregation in mitochondria. Cell Death and Differentiation, 2017, 24, 1730-1738.	5.0	40
1723	Discovery of Stromal Regulatory Networks that Suppress Ras-Sensitized Epithelial Cell Proliferation. Developmental Cell, 2017, 41, 392-407.e6.	3.1	25
1724	Behavioral Deficits Following Withdrawal from Chronic Ethanol Are Influenced by SLO Channel Function in <i>Caenorhabditis elegans</i> . Genetics, 2017, 206, 1445-1458.	1.2	22
1725	Phenotypic plasticity and remodeling in the stressâ€induced <i>Caenorhabditis elegans</i> dauer. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e278.	5.9	25
1726	STITCHER 2.0: primer design for overlapping PCR applications. Scientific Reports, 2017, 7, 45349.	1.6	3
1727	Intron-specific patterns of divergence of lin-11 regulatory function in the C. elegans nervous system. Developmental Biology, 2017, 424, 90-103.	0.9	5
1728	Aging Effects of Caenorhabditis elegans Ryanodine Receptor Variants Corresponding to Human Myopathic Mutations. G3: Genes, Genomes, Genetics, 2017, 7, 1451-1461.	0.8	13
1729	The NCA-1 and NCA-2 Ion Channels Function Downstream of Gq and Rho To Regulate Locomotion in <i>Caenorhabditis elegans</i> . Genetics, 2017, 206, 265-282.	1.2	26
1730	Myosin activity drives actomyosin bundle formation and organization in contractile cells of the <i>Caenorhabditis elegans</i> spermatheca. Molecular Biology of the Cell, 2017, 28, 1937-1949.	0.9	26
1731	Selenoprotein T is required for pathogenic bacteria avoidance in Caenorhabditis elegans. Free Radical Biology and Medicine, 2017, 108, 174-182.	1.3	7
1732	The Caenorhabditis elegans matrix non-peptidase MNP-1 is required for neuronal cell migration and interacts with the Ror receptor tyrosine kinase CAM-1. Developmental Biology, 2017, 424, 18-27.	0.9	3
1733	Long-Term High-Resolution Imaging of Developing C.Âelegans Larvae with Microfluidics. Developmental Cell, 2017, 40, 202-214.	3.1	75
1734	The Role of the UNC-82 Protein Kinase in Organizing Myosin Filaments in Striated Muscle of <i>Caenorhabditis elegans </i> . Genetics, 2017, 205, 1195-1213.	1.2	6
1735	cGAL, a temperature-robust GAL4–UAS system for Caenorhabditis elegans. Nature Methods, 2017, 14, 145-148.	9.0	69
1736	The conserved SNARE SEC-22 localizes to late endosomes and negatively regulates RNA interference in <i>Caenorhabditis elegans</i> . Rna, 2017, 23, 297-307.	1.6	15

#	Article	IF	CITATIONS
1737	Systematic Proteogenomic Approach To Exploring a Novel Function for NHERF1 in Human Reproductive Disorder: Lessons for Exploring Missing Proteins. Journal of Proteome Research, 2017, 16, 4455-4467.	1.8	12
1738	PKA/KIN-1 mediates innate immune responses to bacterial pathogens in <i>Caenorhabditis elegans</i> . Innate Immunity, 2017, 23, 656-666.	1.1	23
1739	The C. elegans Excretory Canal as a Model for Intracellular Lumen Morphogenesis and In Vivo Polarized Membrane Biogenesis in a Single Cell: labeling by GFP-fusions, RNAi Interaction Screen and Imaging. Journal of Visualized Experiments, 2017, , .	0.2	3
1740	Rabies virus modifies host behaviour through a snake-toxin like region of its glycoprotein that inhibits neurotransmitter receptors in the CNS. Scientific Reports, 2017, 7, 12818.	1.6	38
1741	Ethanol Stimulates Locomotion via a Gαs-Signaling Pathway in IL2 Neurons in <i>Caenorhabditis elegans</i> . Genetics, 2017, 207, 1023-1039.	1.2	14
1742	Convergent Transcriptional Programs Regulate cAMP Levels in C.Âelegans GABAergic Motor Neurons. Developmental Cell, 2017, 43, 212-226.e7.	3.1	39
1743	Non-Mendelian assortment of homologous autosomes of different sizes in males is the ancestral state in the Caenorhabditis lineage. Scientific Reports, 2017, 7, 12819.	1.6	13
1744	A conserved KLF-autophagy pathway modulates nematode lifespan and mammalian age-associated vascular dysfunction. Nature Communications, 2017, 8, 914.	5.8	58
1745	The SEK-1 p38 MAP Kinase Pathway Modulates Gq Signaling in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2017, 7, 2979-2989.	0.8	13
1746	Glia initiate brain assembly through noncanonical Chimaerin–Furin axon guidance in C. elegans. Nature Neuroscience, 2017, 20, 1350-1360.	7.1	52
1747	The Heterochronic Gene lin-14 Controls Axonal Degeneration in C.Âelegans Neurons. Cell Reports, 2017, 20, 2955-2965.	2.9	7
1748	The C.Âelegans mRNA decapping enzyme shapes morphology of cilia. Biochemical and Biophysical Research Communications, 2017, 493, 382-387.	1.0	4
1749	Mitigating Motor Neuronal Loss in C. elegans Model of ALS8. Scientific Reports, 2017, 7, 11582.	1.6	7
1750	Highly Efficient, Rapid and Co-CRISPR-Independent Genome Editing in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2017, 7, 3693-3698.	0.8	45
1751	Cdc42 regulates junctional actin but not cell polarization in the <i>Caenorhabditis elegans</i> epidermis. Journal of Cell Biology, 2017, 216, 3729-3744.	2.3	49
1752	Habituation as an adaptive shift in response strategy mediated by neuropeptides. Npj Science of Learning, 2017, 2, 9.	1.5	33
1753	A Calcium- and Diacylglycerol-Stimulated Protein Kinase C (PKC), <i>Caenorhabditis elegans</i> PKC-2, Links Thermal Signals to Learned Behavior by Acting in Sensory Neurons and Intestinal Cells. Molecular and Cellular Biology, 2017, 37, .	1.1	12
1754	Cysteine protease cathepsin B mediates radiation-induced bystander effects. Nature, 2017, 547, 458-462.	13.7	57

#	Article		CITATIONS
1755	The denseâ€core vesicle maturation protein <scp>CCCP</scp> â€1 binds <scp>RAB</scp> â€2 and membranes through its Câ€ŧerminal domain. Traffic, 2017, 18, 720-732.	1.3	15
1756	<i> <scp>KLB</scp> </i> , encoding βâ€Klotho, is mutated in patients with congenital hypogonadotropic hypogonadism. EMBO Molecular Medicine, 2017, 9, 1379-1397.	3.3	77
1757	Stress-Induced Sleep After Exposure to Ultraviolet Light Is Promoted by p53 in <i>Caenorhabditis elegans</i> . Genetics, 2017, 207, 571-582.	1.2	46
1758	Animal Models to Study MicroRNA Function. Advances in Cancer Research, 2017, 135, 53-118.	1.9	53
1759	Targeted genome editing in <i>Caenorhabditis elegans</i> using <scp>CRISPR</scp> /Cas9. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e287.	5.9	15
1760	C. elegans Vulva Induction: An In Vivo Model to Study Epidermal Growth Factor Receptor Signaling and Trafficking. Methods in Molecular Biology, 2017, 1652, 43-61.	0.4	10
1761	SID-1 Domains Important for dsRNA Import in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2017, 7, 3887-3899.	0.8	30
1762	A lysosomal switch triggers proteostasis renewal in the immortal C. elegans germ lineage. Nature, 2017, 551, 629-633.	13.7	126
1763	Phosphorylation of Argonaute proteins affects <scp>mRNA</scp> binding and is essential for micro <scp>RNA</scp> â€guided gene silencing <i>inÂvivo</i> . EMBO Journal, 2017, 36, 2088-2106.	3.5	69
1764	Lifespan extension by peroxidase/dual oxidase-mediated ROS signaling through pyrroloquinoline quinone in <i>C. elegans</i> . Journal of Cell Science, 2017, 130, 2631-2643.	1.2	30
1765	Defective lipid metabolism associated with mutation in klf-2 and klf-3: important roles of essential dietary salts in fat storage. Nutrition and Metabolism, 2017, 14, 22.	1.3	7
1766	The R148.3 Gene Modulates <i>Caenorhabditis elegans</i> Lifespan and Fat Metabolism. G3: Genes, Genomes, Genetics, 2017, 7, 2739-2747.	0.8	5
1767	Establishment of Time- and Cell-Specific RNAi in Caenorhabditis elegans. Methods in Molecular Biology, 2017, 1507, 67-79.	0.4	1
1768	A <i>Caenorhabditis elegans</i> model to study dopamine transporter deficiency syndrome. European Journal of Neuroscience, 2017, 45, 207-214.	1.2	11
1769	<i>Caenorhabditis elegans</i> HIF-1 Is Broadly Required for Survival in Hydrogen Sulfide. G3: Genes, Genomes, Genetics, 2017, 7, 3699-3704.	0.8	9
1770	The double-stranded RNA binding protein RDE-4 can act cell autonomously during feeding RNAi in C. elegans. Nucleic Acids Research, 2017, 45, 8463-8473.	6.5	11
1771	Comprehensive functional genomics using <i>Caenorhabditis elegans</i> as a model organism. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2017, 93, 561-577.	1.6	9
1772	Site-Directed Mutagenesis Study Revealed Three Important Residues in Hc-DAF-22, a Key Enzyme Regulating Diapause of Haemonchus contortus. Frontiers in Microbiology, 2017, 8, 2176.	1.5	6

#	Article	IF	CITATIONS
1773	A Select Subset of Electron Transport Chain Genes Associated with Optic Atrophy Link Mitochondria to Axon Regeneration in Caenorhabditis elegans. Frontiers in Neuroscience, 2017, 11, 263.	1.4	15
1774	Caenorhabditis elegans as a Model to Assess Reproductive and Developmental Toxicity. , 2017, , 303-314.		4
1775	A pathway for low zinc homeostasis that is conserved in animals and acts in parallel to the pathway for high zinc homeostasis. Nucleic Acids Research, 2017, 45, 11658-11672.	6.5	24
1776	Myosin Storage Myopathy in C. elegans and Human Cultured Muscle Cells. PLoS ONE, 2017, 12, e0170613.	1.1	9
1777	The intestinal TORC2 signaling pathway contributes to associative learning in Caenorhabditis elegans. PLoS ONE, 2017, 12, e0177900.	1.1	10
1778	Functional Requirements for Heparan Sulfate Biosynthesis in Morphogenesis and Nervous System Development in C. elegans. PLoS Genetics, 2017, 13, e1006525.	1.5	19
1779	Differential regulation of polarized synaptic vesicle trafficking and synapse stability in neural circuit rewiring in Caenorhabditis elegans. PLoS Genetics, 2017, 13, e1006844.	1.5	8
1780	Knock-out of a mitochondrial sirtuin protects neurons from degeneration in Caenorhabditis elegans. PLoS Genetics, 2017, 13, e1006965.	1.5	10
1781	Cell-to-cell Transmission of Polyglutamine Aggregates in <i>C. elegans</i> . Experimental Neurobiology, 2017, 26, 321-328.	0.7	19
1782	Generation of Caenorhabditis elegans Transgenic Animals by DNA Microinjection. Bio-protocol, 2017, 7,	0.2	25
1783	High-glucose toxicity is mediated by AICAR-transformylase/IMP cyclohydrolase and mitigated by AMP-activated protein kinase in Caenorhabditis elegans. Journal of Biological Chemistry, 2018, 293, 4845-4859.	1.6	5
1784	Conserved roles of C. elegans and human MANFs in sulfatide binding and cytoprotection. Nature Communications, 2018, 9, 897.	5.8	62
1786	Four specific Ig domains in UNC-52/Perlecan function with NID-1/Nidogen during dendrite morphogenesis in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2018, 145, .	1.2	15
1787	Rapid Integration of Multi-copy Transgenes Using Optogenetic Mutagenesis in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2018, 8, 2091-2097.	0.8	12
1788	Cell-Autonomous Regulation of Dendrite Self-Avoidance by the Wnt Secretory Factor MIC-14/Wntless. Neuron, 2018, 98, 320-334.e6.	3.8	24
1789	Modulation of Gq-Rho Signaling by the ERK MAPK Pathway Controls Locomotion in <i>Caenorhabditis elegans</i> . Genetics, 2018, 209, 523-535.	1.2	14
1790	A large transcribed enhancer region regulates C. elegans bed-3 and the development of egg laying muscles. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2018, 1861, 519-533.	0.9	11
1791	Activation of Cαq Signaling Enhances Memory Consolidation and Slows Cognitive Decline. Neuron, 2018, 98, 562-574.e5.	3.8	35

ARTICLE IF CITATIONS Ratiometric Calcium Imaging of Individual Neurons in Behaving Caenorhabditis 1792 0.2 16 Elegans. Journal of Visualized Experiments, 2018, , A Sex Chromosome piRNA Promotes Robust Dosage Compensation and Sex Determination in C.Âelegans. 1793 3.1 44 Developmental Cell, 2018, 44, 762-770.e3. Functional Dysregulation of CDC42 Causes Diverse Developmental Phenotypes. American Journal of 1794 2.6 138 Human Genetics, 2018, 102, 309-320. A Neuronal piRNA Pathway Inhibits Axon Regeneration in C.Âelegans. Neuron, 2018, 97, 511-519.e6. 1795 Quantitating transcription factor redundancy: The relative roles of the ELT-2 and ELT-7 GATA factors 1796 0.9 23 in the C. elegans endoderm. Developmental Biology, 2018, 435, 150-161. What Can We Learn About Human Disease from the Nematode C. elegans?. Methods in Molecular 1797 0.4 66 Biology, 2018, 1706, 53-75. Genomic Identification and Functional Characterization of Essential Genes in <i>Caenorhabditis 1798 0.8 18 elegans</i>. G3: Genes, Genomes, Genetics, 2018, 8, 981-997. Transgenesis by microparticle bombardment for live imaging of fluorescent proteins in Pristionchus 1700 0.4 pacificus germline and early embryos. Development Genes and Evolution, 2018, 228, 75-82. Antagonistic regulation of trafficking to Caenorhabditis elegans sensory cilia by a Retinal 1800 Degeneration 3 homolog and retromer. Proceedings of the National Academy of Sciences of the 3.3 9 United States of America, 2018, 115, E438-E447. Cholinergic Sensorimotor Integration Regulates Olfactory Steering. Neuron, 2018, 97, 390-405.e3. 3.8 An Expanded Role for the RFX Transcription Factor DAF-19, with Dual Functions in Ciliated and 1802 1.2 11 Nonciliated Neurons. Genetics, 2018, 208, 1083-1097. An Antimicrobial Peptide and Its Neuronal Receptor Regulate Dendrite Degeneration in Aging and 3.8 79 Infection. Neuron, 2018, 97, 125-138.e5. A C9orf72 ALS/FTD Ortholog Acts in Endolysosomal Degradation and Lysosomal Homeostasis. Current 1804 1.8 75 Biology, 2018, 28, 1522-1535.e5. Histone H3K9 and H4 Acetylations and Transcription Facilitate the Initial CENP-AHCPâ^{*}3 Deposition and De Novo Centromere Establishment in Caenorhabditis elegans Artificial Chromosomes. Epigenetics 1805 1.8 and Chromatin, 2018, 11, 16. Tissue-Specific Functions of <i>fem-2</i>/PP2c Phosphatase and <i>fhod-1</i>/formin During vi>Caenorhabditis elegans </i>Embryonic Morphogenesis. G3: Genes, Genomes, Genetics, 2018, 8, 1806 0.8 5 2277-2290. Increased Reticulon 3 (RTN3) Leads to Obesity and Hypertriglyceridemia by Interacting With Heat Shock Protein Family A (Hsp70) Member 5 (HSPA5). Circulation, 2018, 138, 1828-1838. Structure-guided design and functional characterization of an artificial red lightâ€"regulated 1808 guanylate/adenylate cyclase for optogenetic applications. Journal of Biological Chemistry, 2018, 293, 1.6 45 9078-9089. A Strategy To Isolate Modifiers of <i>Caenorhabditis elegans </i>Lethal Mutations: Investigating the 1809 Endoderm Specifying Ability of the Intestinal Differentiation GATA Factor ELT-2. G3: Genes, Genomes, Genetics, 2018, 8, 1425-1437.

#	Article	IF	CITATIONS
1810	EFF-1 fusogen promotes phagosome sealing during cell process clearance in Caenorhabditis elegans. Nature Cell Biology, 2018, 20, 393-399.	4.6	19
1811	WAVE regulates Cadherin junction assembly and turnover during epithelial polarization. Developmental Biology, 2018, 434, 133-148.	0.9	20
1812	The biotin-ligating protein BPL-1 is critical for lipid biosynthesis and polarization of the Caenorhabditis elegans embryo. Journal of Biological Chemistry, 2018, 293, 610-622.	1.6	23
1813	Neuropeptides encoded by <i>nlp-49</i> modulate locomotion, arousal and egg-laying behaviours in <i>Caenorhabditis elegans</i> via the receptor SEB-3. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170368.	1.8	28
1814	Sentryn and SAD Kinase Link the Guided Transport and Capture of Dense Core Vesicles in <i>Caenorhabditis elegans</i> . Genetics, 2018, 210, 925-946.	1.2	10
1815	Spatial Transcriptomics of C.Âelegans Males and Hermaphrodites Identifies Sex-Specific Differences in Gene Expression Patterns. Developmental Cell, 2018, 47, 801-813.e6.	3.1	55
1816	SLO potassium channels antagonize premature decision making in C. elegans. Communications Biology, 2018, 1, 123.	2.0	13
1817	The polarity protein VANG-1 antagonizes Wnt signaling by facilitating Frizzled endocytosis. Development (Cambridge), 2018, 145, .	1.2	6
1818	<i>C. elegans</i> PTEN and AMPK block neuroblast divisions by inhibiting a BMP-insulin-PP2A-MAPK pathway. Development (Cambridge), 2018, 145, .	1.2	24
1819	G2019S LRRK2 Increases Stress Susceptibility Through Inhibition of DAF-16 Nuclear Translocation in a 14-3-3 Associated-Manner in Caenorhabditis elegans. Frontiers in Neuroscience, 2018, 12, 782.	1.4	7
1820	Sentryn Acts with a Subset of Active Zone Proteins To Optimize the Localization of Synaptic Vesicles in <i>Caenorhabditis elegans</i> . Genetics, 2018, 210, 947-968.	1.2	8
1821	Genetic inhibition of an ATP synthase subunit extends lifespan in C. elegans. Scientific Reports, 2018, 8, 14836.	1.6	23
1822	Inhibition of cell fate repressors secures the differentiation of the touch receptor neurons of <i>Caenorhabditis elegans</i> . Development (Cambridge), 2018, 145, .	1.2	7
1823	RBM-5 modulates U2AF large subunit-dependent alternative splicing in <i>C. elegans</i> . RNA Biology, 2018, 15, 1295-1308.	1.5	6
1824	A TGF-β type I receptor-like molecule with a key functional role in Haemonchus contortus development. International Journal for Parasitology, 2018, 48, 1023-1033.	1.3	16
1825	Distinct CED-10/Rac1 domains confer context-specific functions in development. PLoS Genetics, 2018, 14, e1007670.	1.5	11
1826	The receptor tyrosine kinase HIR-1 coordinates HIF-independent responses to hypoxia and extracellular matrix injury. Science Signaling, 2018, 11, .	1.6	19
1827	Maintenance of Proteostasis by P Body-Mediated Regulation of elF4E Availability during Aging in Caenorhabditis elegans. Cell Reports, 2018, 25, 199-211.e6.	2.9	31

ARTICLE IF CITATIONS Robust Genome Editing with Short Single-Stranded and Long, Partially Single-Stranded DNA Donors 1828 335 1.2 in<i>Caenorhabditis elegans</i>. Genetics, 2018, 210, 781-787. A functional study of all 40 Caenorhabditis elegans insulin-like peptides. Journal of Biological 1829 1.6 Chemistry, 2018, 293, 16912-16922. Sphingosine Kinase Activates the Mitochondrial Unfolded Protein Response and Is Targeted to 1830 2.9 48 Mitochondria by Stress. Cell Reports, 2018, 24, 2932-2945.e4. C. elegans MANF Homolog Is Necessary for the Protection of Dopaminergic Neurons and ER Unfolded Protein Response. Frontiers in Neuroscience, 2018, 12, 544. Thioredoxin shapes the C. elegans sensory response to Pseudomonas produced nitric oxide. ELife, 2018, 1832 2.8 41 7,. A Rapid and Facile Pipeline for Generating Genomic Point Mutants in C. elegans Using CRISPR/Cas9 Ribonucleoproteins. Journal of Visualized Experiments, 2018, , . 0.2 FLP-18 Functions through the G-Protein-Coupled Receptors NPR-1 and NPR-4 to Modulate Reversal 1834 1.7 35 Length in<i>Caenorhabditis elegans</i>. Journal of Neuroscience, 2018, 38, 4641-4654. The Protein Arginine Methyltransferase PRMT-5 Regulates SER-2 Tyramine Receptor-Mediated Behaviors 0.8 in (i) Caenorhabditis elegans (i). G3: Genes, Genomes, Genetics, 2018, 8, 2389-2398. A Comprehensive Mutagenesis Screen of the Adhesion GPCR Latrophilin-1/ADGRL1. IScience, 2018, 3, 1836 1.9 46 264-278. The Claudin-like Protein HPO-30 Is Required to Maintain LAChRs at the <i>C. elegans</i> 1.7 Neuromuscular Junction. Journal of Neuroscience, 2018, 38, 7072-7087. Transgene-Assisted Genetic Screen Identifies <i>rsd-6</i> and Novel Genes as Key Components of 1838 1.5 5 Antiviral RNA Interference in Caenorhabditis elegans. Journal of Virology, 2018, 92, . Silencing of Syntaxin 1A in the Dopaminergic Neurons Decreases the Activity of the Dopamine Transporter and Prevents Amphetamine-Induced Behaviors in C. elegans. Frontiers in Physiology, 2018, 1.3 9, 576. The UBR-1 ubiquitin ligase regulates glutamate metabolism to generate coordinated motor pattern in 1840 1.5 5 Caenorhabditis elegans. PLoS Genetics, 2018, 14, e1007303. Whts Promote Synaptic Assembly Through T-Cell Specific Transcription Factors in Caenorhabditis 1841 1.4 elegans. Frontiers in Molecular Neuroscience, 2018, 11, 194. A transcription factor collective defines the HSN serotonergic neuron regulatory landscape. ELife, 1842 2.8 46 2018, 7, . A genetic program mediates cold-warming response and promotes stress-induced phenoptosis in C. 1843 elegans. ELife, 2018, 7, . Noninvasive Mechanochemical Imaging in Unconstrained Caenorhabditis elegans. Materials, 2018, 11, 1844 1.37 1034. Hypoxia-inducible factor cell non-autonomously regulates C. elegans stress responses and behavior 1845 2.8 via a nuclear receptor. ELife, 2018, 7, .

#	Article	IF	CITATIONS
1846	Spectrin regulates cell contractility through production and maintenance of actin bundles in the <i>Caenorhabditis elegans</i> spermatheca. Molecular Biology of the Cell, 2018, 29, 2433-2449.	0.9	19
1847	Sphingosine Kinase Regulates Neuropeptide Secretion During the Oxidative Stress-Response Through Intertissue Signaling. Journal of Neuroscience, 2018, 38, 8160-8176.	1.7	16
1848	Caenorhabditis elegans BRICHOS Domain–Containing Protein C09F5.1 Maintains Thermotolerance and Decreases Cytotoxicity of Al²42 by Activating the UPR. Genes, 2018, 9, 160.	1.0	2
1849	LRRK2 kinase regulates α-synuclein propagation via RAB35 phosphorylation. Nature Communications, 2018, 9, 3465.	5.8	121
1850	Role of tyramine in calcium dynamics of GABAergic neurons and escape behavior in Caenorhabditis elegans. Zoological Letters, 2018, 4, 19.	0.7	14
1851	The C.Âelegans BRCA2-ALP/Enigma Complex Regulates Axon Regeneration via a Rho GTPase-ROCK-MLC Phosphorylation Pathway. Cell Reports, 2018, 24, 1880-1889.	2.9	20
1852	Immobility in the sedentary plant-parasitic nematode H. glycines is associated with remodeling of neuromuscular tissue. PLoS Pathogens, 2018, 14, e1007198.	2.1	9
1853	Membrane Fluidity Is Regulated Cell Nonautonomously by <i>Caenorhabditis elegans</i> PAQR-2 and Its Mammalian Homolog AdipoR2. Genetics, 2018, 210, 189-201.	1.2	40
1854	The myosin light-chain kinase MLCK-1 relocalizes during <i>Caenorhabditis elegans</i> ovulation to promote actomyosin bundle assembly and drive contraction. Molecular Biology of the Cell, 2018, 29, 1975-1991.	0.9	14
1855	Phosphatidylserine exposure mediated by ABC transporter activates the integrin signaling pathway promoting axon regeneration. Nature Communications, 2018, 9, 3099.	5.8	31
1856	Biology and genome of a newly discovered sibling species of Caenorhabditis elegans. Nature Communications, 2018, 9, 3216.	5.8	102
1857	Streptothricin acetyl transferase 2 (Sat2): A dominant selection marker for Caenorhabditis elegans genome editing. PLoS ONE, 2018, 13, e0197128.	1.1	18
1858	Prostaglandin signals from adult germline stem cells delay somatic ageing of Caenorhabditis elegans. Nature Metabolism, 2019, 1, 790-810.	5.1	30
1859	CRISPR/Cas9 Mutagenesis and Expression of Dominant Mutant Transgenes as Functional Genomic Approaches in Parasitic Nematodes. Frontiers in Genetics, 2019, 10, 656.	1.1	19
1860	Inhibition of Axon Regeneration by Liquid-like TIAR-2 Granules. Neuron, 2019, 104, 290-304.e8.	3.8	51
1861	KLF-1 orchestrates a xenobiotic detoxification program essential for longevity of mitochondrial mutants. Nature Communications, 2019, 10, 3323.	5.8	25
1862	Advances in the Molecular and Cellular Biology of Strongyloides spp Current Tropical Medicine Reports, 2019, 6, 161-178.	1.6	14
1863	Hedgehog-related genes regulate reactivation of quiescent neural progenitors in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2019, 520, 532-537.	1.0	10

#	Article	IF	CITATIONS
1864	HRPK-1, a conserved KH-domain protein, modulates microRNA activity during Caenorhabditis elegans development. PLoS Genetics, 2019, 15, e1008067.	1.5	12
1865	Sphingosine kinase and p38 MAP kinase signaling promote resistance to arsenite-induced lethality in Caenorhabditis elegan. Molecular and Cellular Toxicology, 2019, 15, 415-424.	0.8	1
1866	A Novel Mechanism To Prevent H2S Toxicity in <i>Caenorhabditis elegans</i> . Genetics, 2019, 213, 481-490.	1.2	17
1867	RIMB-1/RIM-Binding Protein and UNC-10/RIM Redundantly Regulate Presynaptic Localization of the Voltage-Gated Calcium Channel in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2019, 39, 8617-8631.	1.7	36
1868	The <i>Caenorhabditis elegans</i> Transgenic Toolbox. Genetics, 2019, 212, 959-990.	1.2	118
1869	Pheromones Modulate Learning by Regulating the Balanced Signals of Two Insulin-like Peptides. Neuron, 2019, 104, 1095-1109.e5.	3.8	29
1870	Repression of an activity-dependent autocrine insulin signal is required for sensory neuron development in <i>C. elegans</i> . Development (Cambridge), 2019, 146, .	1.2	12
1871	Integrins Have Cell-Type-Specific Roles in the Development of Motor Neuron Connectivity. Journal of Developmental Biology, 2019, 7, 17.	0.9	4
1872	Gene silencing by double-stranded RNA from C. elegans neurons reveals functional mosaicism of RNA interference. Nucleic Acids Research, 2019, 47, 10059-10071.	6.5	4
1873	Liposome-based transfection enhances RNAi and CRISPR-mediated mutagenesis in non-model nematode systems. Scientific Reports, 2019, 9, 483.	1.6	47
1874	A Photoactivatable Botulinum Neurotoxin for Inducible Control of Neurotransmission. Neuron, 2019, 101, 863-875.e6.	3.8	45
1875	Morphogenesis of neurons and glia within an epithelium. Development (Cambridge), 2019, 146, .	1.2	40
1876	A conserved retromer-independent function for RAB-6.2/RAB6 in <i>C. elegans</i> epidermis integrity. Journal of Cell Science, 2019, 132, .	1.2	4
1877	Functional importance of an inverted formin Câ€ŧerminal tail at morphologically dynamic epithelial junctions. Cytoskeleton, 2019, 76, 322-336.	1.0	0
1878	A tensile trilayered cytoskeletal endotube drives capillary-like lumenogenesis. Journal of Cell Biology, 2019, 218, 2403-2424.	2.3	12
1879	The kynurenine pathway is essential for rhodoquinone biosynthesis in Caenorhabditis elegans. Journal of Biological Chemistry, 2019, 294, 11047-11053.	1.6	19
1880	Defective Expression of Mitochondrial, Vacuolar H+-ATPase and Histone Genes in a C. elegans Model of SMA. Frontiers in Genetics, 2019, 10, 410.	1.1	2
1881	A Model of Hereditary Sensory and Autonomic Neuropathy Type 1 Reveals a Role of Glycosphingolipids in Neuronal Polarity. Journal of Neuroscience, 2019, 39, 5816-5834.	1.7	13

#	Article	IF	CITATIONS
1882	Expression of the amyloid-Î ² peptide in a single pair of C. elegans sensory neurons modulates the associated behavioural response. PLoS ONE, 2019, 14, e0217746.	1.1	10
1883	<i>C. elegans</i> Tensin Promotes Axon Regeneration by Linking the Met-like SVH-2 and Integrin Signaling Pathways. Journal of Neuroscience, 2019, 39, 5662-5672.	1.7	11
1884	Single-Copy Knock-In Loci for Defined Gene Expression in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2019, 9, 2195-2198.	0.8	57
1885	Dopamine-dependent, swimming-induced paralysis arises as a consequence of loss of function mutations in the RUNX transcription factor RNT-1. PLoS ONE, 2019, 14, e0216417.	1.1	6
1886	Expression of Ice-Binding Proteins in Caenorhabditis elegans Improves the Survival Rate upon Cold Shock and during Freezing. Scientific Reports, 2019, 9, 6246.	1.6	15
1887	The Role of Tissue Inhibitors of Metalloproteinases in Organ Development and Regulation of ADAMTS Family Metalloproteinases in <i>Caenorhabditis elegans</i> . Genetics, 2019, 212, 523-535.	1.2	7
1888	Molybdenum cofactor transfer from bacteria to nematode mediates sulfite detoxification. Nature Chemical Biology, 2019, 15, 480-488.	3.9	27
1889	Pathogenetic basis of Takenouchi-Kosaki syndrome: Electron microscopy study using platelets in patients and functional studies in a Caenorhabditis elegans model. Scientific Reports, 2019, 9, 4418.	1.6	16
1890	Caenorhabditis elegans and its applicability to studies on restless legs syndrome. Advances in Pharmacology, 2019, 84, 147-174.	1.2	5
1891	A Protein Disulfide Isomerase Controls Neuronal Migration through Regulation of Wnt Secretion. Cell Reports, 2019, 26, 3183-3190.e5.	2.9	12
1892	A Receptor Tyrosine Kinase Network Regulates Neuromuscular Function in Response to Oxidative Stress in <i>Caenorhabditis elegans</i> . Genetics, 2019, 211, 1283-1295.	1.2	4
1893	A complex containing the O-GlcNAc transferase OGT-1 and the ubiquitin ligase EEL-1 regulates GABA neuron function. Journal of Biological Chemistry, 2019, 294, 6843-6856.	1.6	25
1894	Molecular and cellular modulators for multisensory integration in C. elegans. PLoS Genetics, 2019, 15, e1007706.	1.5	22
1895	Green Fluorescent Protein-Based Glucose Indicators Report Glucose Dynamics in Living Cells. Analytical Chemistry, 2019, 91, 4821-4830.	3.2	47
1896	Lifespan Extension in C.Âelegans Caused by Bacterial Colonization of the Intestine and Subsequent Activation of an Innate Immune Response. Developmental Cell, 2019, 49, 100-117.e6.	3.1	83
1897	An Excitatory/Inhibitory Switch From Asymmetric Sensory Neurons Defines Postsynaptic Tuning for a Rapid Response to NaCl in Caenorhabditis elegans. Frontiers in Molecular Neuroscience, 2018, 11, 484.	1.4	15
1898	The transcription factor NHR-8: A new target to increase ivermectin efficacy in nematodes. PLoS Pathogens, 2019, 15, e1007598.	2.1	34
1899	Purine Homeostasis Is Necessary for Developmental Timing, Germline Maintenance and Muscle Integrity in <i>Caenorhabditis elegans</i> . Genetics, 2019, 211, 1297-1313.	1.2	19

		CITATION REPORT		
#	Article		IF	CITATIONS
1900	C. elegans collectively forms dynamical networks. Nature Communications, 2019, 10,	683.	5.8	37
1901	The Enigmatic Canal-Associated Neurons Regulate <i>Caenorhabditis elegans</i> Larv Through a cAMP Signaling Pathway. Genetics, 2019, 213, 1465-1478.	al Development	1.2	3
1902	Differential Regulation of Innate and Learned Behavior by <i>Creb1/Crh-1</i> in <i>Caer elegans</i> . Journal of Neuroscience, 2019, 39, 7934-7946.	ıorhabditis	1.7	9
1903	<i>N</i> -Clycosylation of the Discoidin Domain Receptor Is Required for Axon Regener <i>Caenorhabditis elegans</i> . Genetics, 2019, 213, 491-500.	ation in	1.2	6
1904	Multiple sensory neurons mediate starvation-dependent aversive navigation in <i>Cae elegans</i> . Proceedings of the National Academy of Sciences of the United States of 18673-18683.	norhabditis America, 2019, 116,	3.3	23
1905	Nanoluciferase-Based Method for Detecting Gene Expression in <i>Caenorhabditis ele Genetics, 2019, 213, 1197-1207.</i>	gans.	1.2	10
1906	Muscle-Specific Lipid Hydrolysis Prolongs Lifespan through Global Lipidomic Remodeli Reports, 2019, 29, 4540-4552.e8.	ıg. Cell	2.9	23
1907	Modeling succinate dehydrogenase loss disorders in C. elegans through effects on hyp factor. PLoS ONE, 2019, 14, e0227033.	oxia-inducible	1.1	4
1908	Revealing Functional Crosstalk between Distinct Bioprocesses through Reciprocal Fun of Genetically Interacting Genes. Cell Reports, 2019, 29, 2646-2658.e5.	ctional Tests	2.9	2
1909	Expressional artifact caused by a co-injection marker rol-6 in C. elegans. PLoS ONE, 20	19, 14, e0224533.	1.1	0
1910	Adhesive L1CAM-Robo Signaling Aligns Growth Cone F-Actin Dynamics to Promote Ax Fasciculation in C.Âelegans. Developmental Cell, 2019, 48, 215-228.e5.	on-Dendrite	3.1	26
1911	Secreted <scp>d</scp> â€aspartate oxidase functions in <i>C. elegans</i> reproductions FEBS Journal, 2019, 286, 124-138.	n and development.	2.2	7
1912	Epidermal Remodeling in <i>Caenorhabditis elegans</i> Dauers Requires the Nidogen DEX-1. Genetics, 2019, 211, 169-183.	Domain Protein	1.2	12
1913	Key role of SMN/SYNCRIP and RNA-Motif 7 in spinal muscular atrophy: RNA-Seq and m human motor neurons. Brain, 2019, 142, 276-294.	otif analysis of	3.7	31
1914	Systems Properties and Spatiotemporal Regulation of Cell Position Variability during E Cell Reports, 2019, 26, 313-321.e7.	mbryogenesis.	2.9	23
1915	A Tet/Q Hybrid System for Robust and Versatile Control of Transgene Expression in C./ 2019, 11, 224-237.	Aelegans. IScience,	1.9	14
1916	Using Microinjection to Generate Genetically Modified Caenorhabditis elegans by CRIS Methods in Molecular Biology, 2019, 1874, 431-457.	PR/Cas9 Editing.	0.4	10
1917	Highâ€Throughput Analysis of Behavior Under the Control of Optogenetics in <i>Caer elegans</i> . Current Protocols in Neuroscience, 2019, 86, e57.	orhabditis	2.6	7

ARTICLE IF CITATIONS Insights on UNCâ€104â€dynein/dynactin interactions and their implications on axonal transport in 1918 1.3 13 <i>Caenorhabditis elegans</i>. Journal of Neuroscience Research, 2019, 97, 185-201. Diseaseâ€associated tau impairs mitophagy by inhibiting Parkin translocation to mitochondria. EMBO 3.5 Journal, 2019, 38, . The <i>Caenorhabditis elegans</i> SMOC-1 Protein Acts Cell Nonautonomously To Promote Bone 1920 1.2 10 Morphogenetic Protein Signaling. Genetics, 2019, 211, 683-702. The tissue- and developmental stage-specific involvement of autophagy genes in aggrephagy. Autophagy, 2020, 16, 589-599. Serotonergic modulation of feeding behavior in Caenorhabditis elegans and other related nematodes. 1922 1.0 28 Neuroscience Research, 2020, 154, 9-19. Ferritin is regulated by a neuro-intestinal axis in the nematode Caenorhabditis elegans. Redox Biology, 2020, 28, 101359. A serine/threonineâ€specific protein kinase of <i>Haemonchus contortus </i>with a role in the 1924 0.2 8 development. FASEB Journal, 2020, 34, 2075-2086. The Caenorhabditis elegans INX $\hat{\epsilon} \hat{\epsilon}$ /Innexin is required for the fine $\hat{\epsilon} \hat{\epsilon}$ uning of temperature orientation in 0.5 thermotaxis behavior. Genes To Cells, 2020, 25, 154-164. Genetic and epigenetic effects on centromere establishment. Chromosoma, 2020, 129, 1-24. 9 1926 1.0 Loss of egli-1, the Caenorhabditis elegans Orthologue of a Downstream Target of SMN, Leads to 1.9 Abnormalities in Sensorimotor Integration. Molecular Neurobiology, 2020, 57, 1553-1569. <scp>FLN</scp>â€1/filamin is required to anchor the actomyosin cytoskeleton and for global 1928 1.0 8 organization of subâ€cellular organelles in a contractile tissue. Cytoskeleton, 2020, 77, 379-398. VPS-22/SNF8 regulates longevity via modulating the activity of DAF-16 in C.Âelegans. Biochemical and 1929 1.0 Biophysical Research Communications, 2020, 532, 94-100. UBC-9 Acts in GABA Neurons to Control Neuromuscular Signaling inC. elegans. Neuroscience Insights, 1930 0.9 1 2020, 15, 263310552096279. Improving Transgenesis Efficiency and CRISPR-Associated Tools Through Codon Optimization and 1.2 29 Native Intron Addition in <i>Pristionchus</i> Nematodes. Genetics, 2020, 216, 947-956. Functional characterization of a novel gene, Hc-dhs-28 and its role in protecting the host after 1932 Haemonchus contortus infection through regulation of diapause formation. International Journal 2 1.3 for Parasitology, 2020, 50, 945-957. Harmonization of L1CAM expression facilitates axon outgrowth and guidance of a motor neuron. 1.2 Development (Cambridge), 2020, 147, . The C. elegans miR-235 regulates the toxicity of graphene oxide via targeting the nuclear hormone 1934 1.6 4 receptor DAF-12 in the intestine. Scientific Reports, 2020, 10, 16933. Detection of amyloid aggregation in living systems., 2020, , 127-152.
#	Article	IF	CITATIONS
1936	Regulators of H3K4 methylation mutated in neurodevelopmental disorders control axon guidance in <i>C. elegans</i> . Development (Cambridge), 2020, 147, .	1.2	9
1937	Genetic analysis of synaptogenesis. , 2020, , 77-118.		0
1938	NMDAR-mediated modulation of gap junction circuit regulates olfactory learning in C. elegans. Nature Communications, 2020, 11, 3467.	5.8	19
1939	IGLR-2, a Leucine-Rich Repeat Domain Containing Protein, Is Required for the Host Defense in Caenorhabditis elegans. Frontiers in Immunology, 2020, 11, 561337.	2.2	4
1940	A Hemidesmosome-to-Cytoplasm Translocation of Small Heat Shock Proteins Provides Immediate Protection against Heat Stress. Cell Reports, 2020, 33, 108410.	2.9	7
1941	Genetic map construction and functional characterization of genes within the segregation distortion regions (SDRs) in the F2:3 populations derived from wild cotton species of the D genome. Journal of Cotton Research, 2020, 3, .	1.0	0
1942	Enhanced MAPK1 Function Causes a Neurodevelopmental Disorder within the RASopathy Clinical Spectrum. American Journal of Human Genetics, 2020, 107, 499-513.	2.6	48
1943	Fluorescent dATP for DNA Synthesis <i>In Vivo</i> . ACS Chemical Biology, 2020, 15, 2996-3003.	1.6	5
1944	Modeling neurodegeneration in <i>Caenorhabditis</i> â€^ <i>elegans</i> . DMM Disease Models and Mechanisms, 2020, 13, .	1.2	83
1945	d-Serine and d-Alanine Regulate Adaptive Foraging Behavior in <i>Caenorhabditis elegans</i> via the NMDA Receptor. Journal of Neuroscience, 2020, 40, 7531-7544.	1.7	7
1946	Leveraging a gain-of-function allele of Caenorhabditis elegans paqr-1 to elucidate membrane homeostasis by PAQR proteins. PLoS Genetics, 2020, 16, e1008975.	1.5	11
1947	Melting dsDNA Donor Molecules Greatly Improves Precision Genome Editing in <i>Caenorhabditis elegans</i> . Genetics, 2020, 216, 643-650.	1.2	112
1948	SWI/SNF complexes act through CBP-1 histone acetyltransferase to regulate acute functional tolerance to alcohol. BMC Genomics, 2020, 21, 646.	1.2	6
1949	Synaptic remodeling, lessons from <i>C. elegans</i> . Journal of Neurogenetics, 2020, 34, 307-322.	0.6	12
1950	Fusogen-mediated neuronâ^'neuron fusion disrupts neural circuit connectivity and alters animal behavior. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23054-23065.	3.3	11
1951	Real-time nanodiamond thermometry probing in vivo thermogenic responses. Science Advances, 2020, 6, .	4.7	97
1952	Multiple Chemosensory Neurons Mediate Avoidance Behavior to Rare Earth Ions in Caenorhabditis elegans. Biological Trace Element Research, 2021, 199, 2764-2769.	1.9	1
1953	Quantitative cytogenetics reveals molecular stoichiometry and longitudinal organization of meiotic chromosome axes and loops. PLoS Biology, 2020, 18, e3000817.	2.6	36

#	Article	IF	Citations
1954	Rapid Self-Selecting and Clone-Free Integration of Transgenes into Engineered CRISPR Safe Harbor Locations in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2020, 10, 3775-3782.	0.8	13
1955	<scp>FHOD</scp> â€l is the only formin in <i>Caenorhabditis elegans</i> that promotes striated muscle growth and Zâ€line organization in a cell autonomous manner. Cytoskeleton, 2020, 77, 422-441.	1.0	4
1956	Engineering rules that minimize germline silencing of transgenes in simple extrachromosomal arrays in C. elegans. Nature Communications, 2020, 11, 6300.	5.8	43
1957	Downregulated RPS-30 in Angiostrongylus cantonensis L5 plays a defensive role against damage due to oxidative stress. Parasites and Vectors, 2020, 13, 617.	1.0	3
1958	A Single Amino Acid Residue Regulates PTEN-Binding and Stability of the Spinal Muscular Atrophy Protein SMN. Cells, 2020, 9, 2405.	1.8	4
1959	p.His16Arg of STXBP1 (MUNC18-1) Associated With Syntaxin 3B Causes Autosomal Dominant Congenital Nystagmus. Frontiers in Cell and Developmental Biology, 2020, 8, 591781.	1.8	6
1960	Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and Promises. Frontiers in Cellular Neuroscience, 2020, 14, 581907.	1.8	25
1961	The connectome of the <scp><i>Caenorhabditis elegans</i></scp> pharynx. Journal of Comparative Neurology, 2020, 528, 2767-2784.	0.9	26
1962	Methylation deficiency disrupts biological rhythms from bacteria to humans. Communications Biology, 2020, 3, 211.	2.0	17
1963	C. elegans MAGU-2/Mpp5 homolog regulates epidermal phagocytosis and synapse density. Journal of Neurogenetics, 2020, 34, 298-306.	0.6	4
1964	The evolutionarily conserved deubiquitinase UBH1/UCH-L1 augments DAF7/TGF-β signaling, inhibits dauer larva formation, and enhances lung tumorigenesis. Journal of Biological Chemistry, 2020, 295, 9105-9120.	1.6	9
1965	Redox signaling modulates Rho activity and tissue contractility in the <i>Caenorhabditis elegans</i> spermatheca. Molecular Biology of the Cell, 2020, 31, 1486-1497.	0.9	6
1966	FSHR-1/GPCR Regulates the Mitochondrial Unfolded Protein Response in <i>Caenorhabditis elegans</i> . Genetics, 2020, 214, 409-418.	1.2	30
1967	Multimodal nonlinear optical imaging of <i>Caenorhabditis elegans</i> with multiplex coherent anti-Stokes Raman scattering, third-harmonic generation, second-harmonic generation, and two-photon excitation fluorescence. Applied Physics Express, 2020, 13, 072002.	1.1	7
1968	Efficient Transgenesis in <i>Caenorhabditis elegans</i> Using Flp Recombinase-Mediated Cassette Exchange. Genetics, 2020, 215, 903-921.	1.2	50
1969	The noncanonical small heat shock protein HSP-17 from Caenorhabditis elegans is a selective protein aggregase. Journal of Biological Chemistry, 2020, 295, 3064-3079.	1.6	9
1970	Sensory cilia as the Achilles heel of nematodes when attacked by carnivorous mushrooms. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6014-6022.	3.3	20
1971	Optogenetic control of mitochondrial protonmotive force to impact cellular stress resistance. EMBO Reports, 2020, 21, e49113.	2.0	31

#	Article	IF	CITATIONS
1972	Intestine-to-Germline Transmission of Epigenetic Information Intergenerationally Ensures Systemic Stress Resistance in C.Âelegans. Cell Reports, 2020, 30, 3207-3217.e4.	2.9	18
1973	Microfluidic Device for Microinjection of Caenorhabditis elegans. Micromachines, 2020, 11, 295.	1.4	9
1974	Transcriptomic analysis of hookworm Ancylostoma ceylanicum life cycle stages reveals changes in G-protein coupled receptor diversity associated with the onset of parasitism. International Journal for Parasitology, 2020, 50, 603-610.	1.3	9
1975	How affinity of the ELT-2 GATA factor binding to <i>cis-</i> acting regulatory sites controls <i>C. elegans</i> intestinal gene transcription. Development (Cambridge), 2020, 147, .	1.2	4
1976	C. elegans flamingo FMI-1 controls dendrite self-avoidance through F-actin assembly. Development (Cambridge), 2020, 147, .	1.2	5
1977	<i>APP</i> -Induced Patterned Neurodegeneration Is Exacerbated by <i>APOE4</i> in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2020, 10, 2851-2861.	0.8	4
1978	Sensory regulated Wnt production from neurons helps make organ development robust to environmental changes in C. elegans. Development (Cambridge), 2020, 147, .	1.2	0
1979	Metabolic Reconfiguration in C.Âelegans Suggests a Pathway for Widespread Sterol Auxotrophy in the Animal Kingdom. Current Biology, 2020, 30, 3031-3038.e7.	1.8	20
1980	Rotatable microfluidic device for simultaneous study of bilateral chemosensory neurons in Caenorhabditis elegans. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	4
1981	Broadly conserved roles of TMEM131 family proteins in intracellular collagen assembly and secretory cargo trafficking. Science Advances, 2020, 6, eaay7667.	4.7	39
1982	Control of clathrin-mediated endocytosis by NIMA family kinases. PLoS Genetics, 2020, 16, e1008633.	1.5	32
1983	ATP13A2 deficiency disrupts lysosomal polyamine export. Nature, 2020, 578, 419-424.	13.7	193
1984	Evolution of Transcriptional Repressors Impacts Caenorhabditis Vulval Development. Molecular Biology and Evolution, 2020, 37, 1350-1361.	3.5	3
1985	Caudal-dependent cell positioning directs morphogenesis of the C.Âelegans ventral epidermis. Developmental Biology, 2020, 461, 31-42.	0.9	5
1986	Epidermal control of axonal attachment via \hat{l}^2 -spectrin and the GTPase-activating protein TBC-10 prevents axonal degeneration. Nature Communications, 2020, 11, 133.	5.8	14
1987	Niche Cell Wrapping Ensures Primordial Germ Cell Quiescence and Protection from Intercellular Cannibalism. Current Biology, 2020, 30, 708-714.e4.	1.8	10
1988	Isolation and characterization of a novel member of the ACC ligand-gated chloride channel family, Hco-LCG-46, from the parasitic nematode Haemonchus contortus. Molecular and Biochemical Parasitology, 2020, 237, 111276.	0.5	3
1989	"Lessons from the extremes: Epigenetic and genetic regulation in point monocentromere and holocentromere establishment on artificial chromosomes― Experimental Cell Research, 2020, 390, 111974.	1.2	6

#	Article	IF	Citations
1990	Ageâ€dependent changes in response property and morphology of a thermosensory neuron and thermotaxis behavior in <i>Caenorhabditis elegans</i> . Aging Cell, 2020, 19, e13146.	3.0	17
1991	The NALCN Channel Regulator UNC-80 Functions in a Subset of Interneurons To Regulate <i>Caenorhabditis elegans</i> Reversal Behavior. G3: Genes, Genomes, Genetics, 2020, 10, 199-210.	0.8	5
1992	N6-adenosine methylation of ribosomal RNA affects lipid oxidation and stress resistance. Science Advances, 2020, 6, eaaz4370.	4.7	41
1993	The Role of <i>pkc-3</i> and Genetic Suppressors in <i>Caenorhabditis elegans</i> Epithelial Cell Junction Formation. Genetics, 2020, 214, 941-959.	1.2	12
1994	The UIG-1/CDC-42 guanine nucleotide exchange factor acts in parallel to CED-10/Rac1 during axon outgrowth in Caenorhabditis elegans. Small GTPases, 2021, 12, 60-66.	0.7	3
1995	A sensorless angular displacement measurement method for rotational oscillation generation in biomedical applications with Ros-Drill©. Transactions of the Institute of Measurement and Control, 2021, 43, 1774-1785.	1.1	0
1996	Novel amyloid-beta pathology C. elegans model reveals distinct neurons as seeds of pathogenicity. Progress in Neurobiology, 2021, 198, 101907.	2.8	14
1997	The <i>C. elegans</i> Regulatory Factor X (RFX) DAF-19M Module: A Shift From General Ciliogenesis to Ciliary and Behavioral Specialization. SSRN Electronic Journal, 0, , .	0.4	0
1998	Reduced peroxisomal import triggers peroxisomal retrograde signaling. Cell Reports, 2021, 34, 108653.	2.9	9
1999	Caenorhabditis elegans F-Box Protein Promotes Axon Regeneration by Inducing Degradation of the Mad Transcription Factor. Journal of Neuroscience, 2021, 41, 2373-2381.	1.7	3
2000	The G-Protein-Coupled Receptor SRX-97 Is Required for Concentration-Dependent Sensing of Benzaldehyde in <i>Caenorhabditis elegans</i> . ENeuro, 2021, 8, ENEURO.0011-20.2020.	0.9	2
2001	An Epigenetic Priming Mechanism Mediated by Nutrient Sensing Regulates Transcriptional Output during C.Âelegans Development. Current Biology, 2021, 31, 809-826.e6.	1.8	22
2003	BRCA1–BARD1 Regulates Axon Regeneration in Concert with the Gqα–DAG Signaling Network. Journal of Neuroscience, 2021, 41, 2842-2853.	1.7	6
2005	The conserved transmembrane protein TMEM-39 coordinates with COPII to promote collagen secretion and regulate ER stress response. PLoS Genetics, 2021, 17, e1009317.	1.5	23
2008	Split-wrmScarlet and split-sfGFP: tools for faster, easier fluorescent labeling of endogenous proteins in <i>Caenorhabditis elegans</i> . Genetics, 2021, 217, .	1.2	17
2009	A Living Organism in your CRISPR Toolbox: <i>Caenorhabditis elegans</i> Is a Rapid and Efficient Model for Developing CRISPR-Cas Technologies. CRISPR Journal, 2021, 4, 32-42.	1.4	9
2010	The narrow-spectrum anthelmintic oxantel is a potent agonist of a novel acetylcholine receptor subtype in whipworms. PLoS Pathogens, 2021, 17, e1008982.	2.1	10
2012	Small RNA research and the scientific repertoire: a tale about biochemistry and genetics, crops and worms, development and disease. History and Philosophy of the Life Sciences, 2021, 43, 30.	0.6	5

#	Article	IF	CITATIONS
2013	Intertissue small RNA communication mediates the acquisition and inheritance of hormesis in Caenorhabditis elegans. Communications Biology, 2021, 4, 207.	2.0	9
2014	Glia actively sculpt sensory neurons by controlled phagocytosis to tune animal behavior. ELife, 2021, 10, .	2.8	16
2015	H3K27 modifiers regulate lifespan in C. elegans in a context-dependent manner. BMC Biology, 2021, 19, 59.	1.7	17
2016	Dauer Formation in C. elegans Is Modulated through AWC and ASI-Dependent Chemosensation. ENeuro, 2021, 8, ENEURO.0473-20.2021.	0.9	5
2017	Golgi localization of the LIN-2/7/10 complex points to a role in basolateral secretion of LET-23 EGFR in the <i>Caenorhabditis elegans</i> vulval precursor cells. Development (Cambridge), 2021, 148, .	1.2	5
2020	3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images. ELife, 2021, 10, .	2.8	53
2021	TOR functions as a molecular switch connecting an iron cue with host innate defense against bacterial infection. PLoS Genetics, 2021, 17, e1009383.	1.5	3
2022	Mitochondrial hydrogen peroxide positively regulates neuropeptide secretion during diet-induced activation of the oxidative stress response. Nature Communications, 2021, 12, 2304.	5.8	27
2023	<i>Caenorhabditis elegans</i> junctophilin has tissue-specific functions and regulates neurotransmission with extended-synaptotagmin. Genetics, 2021, 218, .	1.2	9
2024	Caenorhabditis elegans PTR/PTCHD PTR-18 promotes the clearance of extracellular hedgehog-related protein via endocytosis. PLoS Genetics, 2021, 17, e1009457.	1.5	8
2025	RbAp46/48LIN-53 and HAT-1 are required for initial CENP-AHCP-3 deposition and de novo holocentromere formation on artificial chromosomes in Caenorhabditis elegans embryos. Nucleic Acids Research, 2021, 49, 9154-9173.	6.5	6
2027	A highly conserved 3 ₁₀ helix within the kinesin motor domain is critical for kinesin function and human health. Science Advances, 2021, 7, .	4.7	31
2028	The Nesprin-1/-2 ortholog ANC-1 regulates organelle positioning in C. elegans independently from its KASH or actin-binding domains. ELife, 2021, 10, .	2.8	21
2029	HDAC1 SUMOylation promotes Argonaute-directed transcriptional silencing in C. elegans. ELife, 2021, 10, .	2.8	18
2030	Tissue-specific regulation of epidermal contraction during Caenorhabditis elegans embryonic morphogenesis. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	1
2031	Immunity-longevity tradeoff neurally controlled by GABAergic transcription factor PITX1/UNC-30. Cell Reports, 2021, 35, 109187.	2.9	15
2032	Extracellular Matrix Muscle Arm Development Defective Protein Cooperates with the One Immunoglobulin Domain Protein To Suppress Precocious Synaptic Remodeling. ACS Chemical Neuroscience, 2021, 12, 2045-2056.	1.7	2
2034	PIE-1 SUMOylation promotes germline fates and piRNA-dependent silencing in C. elegans. ELife, 2021, 10, .	2.8	13

#	Article	IF	CITATIONS
2036	Identification of the 5-HT1A serotonin receptor as a novel therapeutic target in a C. elegans model of Machado-Joseph disease. Neurobiology of Disease, 2021, 152, 105278.	2.1	7
2037	GABAergic synapses suppress intestinal innate immunity via insulin signaling in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118,	3.3	25
2038	The Integrin Signaling Network Promotes Axon Regeneration via the Src–Ephexin–RhoA GTPase Signaling Axis. Journal of Neuroscience, 2021, 41, 4754-4767.	1.7	15
2039	Presynaptic coupling by electrical synapses coordinates a rhythmic behavior by synchronizing the activities of a neuron pair. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
2040	Replication stress promotes cell elimination by extrusion. Nature, 2021, 593, 591-596.	13.7	20
2041	Non-autonomous regulation of germline stem cell proliferation by somatic MPK-1/MAPK activity in C.Âelegans. Cell Reports, 2021, 35, 109162.	2.9	10
2042	Fast genetic mapping using insertion-deletion polymorphisms in Caenorhabditis elegans. Scientific Reports, 2021, 11, 11017.	1.6	4
2043	E-Cadherin/HMR-1 Membrane Enrichment Is Polarized by WAVE-Dependent Branched Actin. Journal of Developmental Biology, 2021, 9, 19.	0.9	6
2044	Live-cell imaging of PVD dendritic growth cone in post-embryonic C.Âelegans. STAR Protocols, 2021, 2, 100402.	0.5	2
2045	An acentriolar centrosome at the C.Âelegans ciliary base. Current Biology, 2021, 31, 2418-2428.e8.	1.8	25
2046	Development of red genetically encoded biosensor for visualization of intracellular glucose dynamics. Cell Chemical Biology, 2022, 29, 98-108.e4.	2.5	14
2049	Structural Perspective on Ancient Neuropeptide Y-like System reveals Hallmark Features for Peptide Recognition and Receptor Activation. Journal of Molecular Biology, 2021, 433, 166992.	2.0	6
2050	Neuronal mitochondrial dynamics coordinate systemic mitochondrial morphology and stress response to confer pathogen resistance in C.Âelegans. Developmental Cell, 2021, 56, 1770-1785.e12.	3.1	31
2051	Crosstalk in oxygen homeostasis networks: SKN-1/NRF inhibits the HIF-1 hypoxia-inducible factor in Caenorhabditis elegans. PLoS ONE, 2021, 16, e0249103.	1.1	0
2052	Rewiring of the ubiquitinated proteome determines ageing in C. elegans. Nature, 2021, 596, 285-290.	13.7	64
2056	Fast wholeâ€body motor neuron calcium imaging of freely moving <scp><i>Caenorhabditis elegans</i></scp> without coverslip pressed. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 1143-1157.	1.1	4
2057	Tissue-specific targeting of DNA nanodevices in a multicellular living organism. ELife, 2021, 10, .	2.8	6
2058	Eukaryotic initiation factor EIF-3.C augments mRNA translation efficiency to regulate neuronal activity. ELife, 2021, 10, .	2.8	8

#	Article	IF	CITATIONS
2059	A Zinc Metalloprotease nas-33 Is Required for Molting and Survival in Parasitic Nematode Haemonchus contortus. Frontiers in Cell and Developmental Biology, 2021, 9, 695003.	1.8	5
2062	Formation of artificial chromosomes in <i>Caenorhabditis elegans</i> and analyses of their segregation in mitosis, DNA sequence composition and holocentromere organization. Nucleic Acids Research, 2021, 49, 9174-9193.	6.5	13
2063	Guanylate cyclases link serotoninergic signaling to modulate ethanol-induced food intake in C.Âelegans. Biochemical and Biophysical Research Communications, 2021, 567, 29-34.	1.0	1
2065	CDK14 Promotes Axon Regeneration by Regulating the Noncanonical Wnt Signaling Pathway in a Kinase-Independent Manner. Journal of Neuroscience, 2021, 41, 8309-8320.	1.7	6
2066	Sustained expression of unc-4 homeobox gene and unc-37/Groucho in postmitotic neurons specifies the spatial organization of the cholinergic synapses in C. elegans. ELife, 2021, 10, .	2.8	6
2067	pre-piRNA trimming and 2′-O-methylation protect piRNAs from 3′ tailing and degradation in C.Âelegans. Cell Reports, 2021, 36, 109640.	2.9	22
2068	Ectocytosis prevents accumulation of ciliary cargo in C. elegans sensory neurons. ELife, 2021, 10, .	2.8	22
2071	Microinjection for precision genome editing in Caenorhabditis elegans. STAR Protocols, 2021, 2, 100748.	0.5	52
2073	Imaging of Actin Cytoskeletal Integrity During Aging in C. elegans. Methods in Molecular Biology, 2022, 2364, 101-137.	0.4	5
2074	Identification of essential genes in <i>Caenorhabditis elegans</i> through whole-genome sequencing of legacy mutant collections. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	6
2076	Gene expression profiling of epidermal cell types in <i>C. elegans</i> using Targeted DamID. Development (Cambridge), 2021, 148, .	1.2	11
2077	Screening by deep sequencing reveals mediators of microRNA tailing in <i>C. elegans</i> . Nucleic Acids Research, 2021, 49, 11167-11180.	6.5	16
2079	UPRmt scales mitochondrial network expansion with protein synthesis via mitochondrial import in Caenorhabditis elegans. Nature Communications, 2021, 12, 479.	5.8	65
2080	Stress-Induced Neural Plasticity Mediated by Glial GPCR REMO-1 Promotes C.Âelegans Adaptive Behavior. Cell Reports, 2021, 34, 108607.	2.9	10
2081	Neuronal Cell Death in C. elegans. , 1999, , 123-144.		2
2082	Genetic Engineering of an Insect Parasite. , 1996, 18, 135-155.		5
2083	A Transgenic Approach to Live Imaging of Heparan Sulfate Modification Patterns. Methods in Molecular Biology, 2015, 1229, 253-268.	0.4	4
2084	Transposon-Assisted Genetic Engineering with Mos1-Mediated Single-Copy Insertion (MosSCI). Methods in Molecular Biology, 2015, 1327, 49-58.	0.4	22

		CITATION R	EPORT	
#	Article		IF	CITATIONS
2085	Optogenetic Applications in the Nematode Caenorhabditis elegans. Neuromethods, 20	18,,89-116.	0.2	1
2086	Germline Transformation of Caenorhabditis elegans by Injection. Methods in Molecular 518, 123-133.	Biology, 2009,	0.4	33
2087	Transgenesis in Caenorhabditis elegans. Methods in Molecular Biology, 2009, 561, 21-3	39.	0.4	23
2088	Alternatives to Mammalian Pain Models 1: Use of C. elegans for the Study of Volatile A Methods in Molecular Biology, 2010, 617, 1-17.	nesthetics.	0.4	2
2089	Expression Pattern Analysis of Regulatory Transcription Factors in Caenorhabditis elega in Molecular Biology, 2012, 786, 21-50.	ns. Methods	0.4	8
2090	Modeling Dopamine Neuron Degeneration in Caenorhabditis elegans. Methods in Mole 2011, 793, 129-148.	cular Biology,	0.4	30
2091	Contributions of Cell Death to Aging in C. elegans. Results and Problems in Cell Differen 29, 113-129.	ntiation, 2000,	0.2	3
2092	Genetic Transformation of the Moss Physcomitrella patens. Biotechnology in Agricultur Forestry, 1994, , 349-364.	e and	0.2	22
2093	Transgenic Nematodes as Biosensors of Environmental Stress. Focus on Biotechnology	, 2002, , 221-236.	0.4	1
2094	Genetic and Molecular Strategies for the Cloning of (A)Virulence Genes in Sedentary Pl Nematodes. Developments in Plant Pathology, 1997, , 167-175.	ant-Parasitic	0.1	4
2095	Specification of Neuronal Identity in Caenorhabditis elegans. , 1992, , 1-43.			6
2096	Ciliary Tip Signaling Compartment Is Formed and Maintained by Intraflagellar Transport Biology, 2020, 30, 4299-4306.e5.	. Current	1.8	25
2097	Structure and expression of a novel, neuronal protein kinase C (PKC1B) from Caenorha PKC1B is expressed selectively in neurons that receive, transmit, and process environm Journal of Biological Chemistry, 1994, 269, 9234-9244.	bditis elegans. ental signals	1.6	55
2098	Combinatorial structure of a body muscle-specific transcriptional enhancer in Caenorha elegans Journal of Biological Chemistry, 1994, 269, 27021-27028.	bditis	1.6	21
2099	The novel metallothionein genes of Caenorhabditis elegans. Structural organization and cell-specific expression Journal of Biological Chemistry, 1993, 268, 2554-2564.	d inducible,	1.6	142
2100	An interphase contractile ring reshapes primordial germ cells to allow bulk cytoplasmic Journal of Cell Biology, 2020, 219, .	remodeling.	2.3	11
2101	Spatial and temporal control of targeting Polo-like kinase during meiotic prophase. Jour Biology, 2020, 219, .	nal of Cell	2.3	15
2102	Genetic and molecular characterization of the Caenorhabditis elegans spermatogenesis spe-17 Genetics, 1993, 134, 769-780.	defective gene	1.2	23

#	Article	IF	CITATIONS
2103	The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signaling pathway, encodes two different proteins Genetics, 1994, 137, 987-997.	1.2	246
2104	Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system Genetics, 1995, 141, 977-988.	1.2	417
2105	Analysis of osm-6, a Gene That Affects Sensory Cilium Structure and Sensory Neuron Function in Caenorhabditis elegans. Genetics, 1998, 148, 187-200.	1.2	221
2106	A New Marker for Mosaic Analysis in Caenorhabditis elegans Indicates a Fusion Between hyp6 and hyp7, Two Major Components of the Hypodermis. Genetics, 1998, 149, 1323-1334.	1.2	201
2107	Identification of Heterochronic Mutants in Caenorhabditis elegans: Temporal Misexpression of a Collagen::Green Fluorescent Protein Fusion Gene. Genetics, 1998, 149, 1335-1351.	1.2	68
2108	Molecular Evolution of a Sex Determination Protein: FEM-2 (PP2C) in Caenorhabditis. Genetics, 1998, 149, 1353-1362.	1.2	46
2109	Genetic Analysis of the Caenorhabditis elegans MAP Kinase Gene mpk-1. Genetics, 1998, 150, 103-117.	1.2	106
2110	Genetic and Molecular Characterization of the Caenorhabditis elegans Gene, mel-26, a Postmeiotic Negative Regulator of MEI-1, a Meiotic-Specific Spindle Component. Genetics, 1998, 150, 119-128.	1.2	56
2111	smg-7 Is Required for mRNA Surveillance in Caenorhabditis elegans. Genetics, 1999, 151, 605-616.	1.2	107
2112	spe-12 Encodes a Sperm Cell Surface Protein That Promotes Spermiogenesis in Caenorhabditis elegans. Genetics, 1999, 152, 209-220.	1.2	47
2113	lir-2, lir-1 and lin-26 Encode a New Class of Zinc-Finger Proteins and Are Organized in Two Overlapping Operons Both in Caenorhabditis elegans and in Caenorhabditis briggsae. Genetics, 1999, 152, 221-235.	1.2	20
2114	Evidence for Multiple Promoter Elements Orchestrating Male-Specific Regulation of the her-1 Gene in Caenorhabditis elegans. Genetics, 1999, 152, 237-248.	1.2	13
2115	Homologs of the Caenorhabditis elegans Masculinizing Gene her-1 in C. briggsae and the Filarial Parasite Brugia malayi. Genetics, 1999, 152, 1573-1584.	1.2	40
2116	Functional Overlap Between the mec-8 Gene and Five sym Genes in Caenorhabditis elegans. Genetics, 1999, 153, 117-134.	1.2	43
2117	A Local, High-Density, Single-Nucleotide Polymorphism Map Used to Clone Caenorhabditis elegans cdf-1. Genetics, 1999, 153, 743-752.	1.2	74
2118	Structural Requirements for the Tissue-Specific and Tissue-General Functions of the Caenorhabditis elegans Epidermal Growth Factor LIN-3. Genetics, 1999, 153, 1257-1269.	1.2	22
2119	SEL-5, A Serine/Threonine Kinase That Facilitates lin-12 Activity in Caenorhabditis elegans. Genetics, 1999, 153, 1641-1654.	1.2	16
2120	Mutational Analysis of the Caenorhabditis elegans Cell-Death Gene ced-3. Genetics, 1999, 153, 1655-1671.	1.2	82

#	Article	IF	CITATIONS
2121	EAT-20, a Novel Transmembrane Protein With EGF Motifs, Is Required for Efficient Feeding in Caenorhabditis elegans. Genetics, 2000, 154, 635-646.	1.2	45
2122	A Transmembrane Guanylyl Cyclase (DAF-11) and Hsp90 (DAF-21) Regulate a Common Set of Chemosensory Behaviors in <i>Caenorhabditis elegans</i> . Genetics, 2000, 155, 85-104.	1.2	330
2123	<i>Caenorhabditis elegans lin-13</i> , a Member of the LIN-35 Rb Class of Genes Involved in Vulval Development, Encodes a Protein With Zinc Fingers and an LXCXE Motif. Genetics, 2000, 155, 1127-1137.	1.2	41
2124	dpy-18 Encodes an α-Subunit of Prolyl-4-Hydroxylase in Caenorhabditis elegans. Genetics, 2000, 155, 1139-1148.	1.2	43
2125	<i>Caenorhabditis elegans msh-5</i> Is Required for Both Normal and Radiation-Induced Meiotic Crossing Over but Not for Completion of Meiosis. Genetics, 2000, 156, 617-630.	1.2	228
2126	A Region of the Myosin Rod Important for Interaction With Paramyosin in <i>Caenorhabditis elegans</i> Striated Muscle. Genetics, 2000, 156, 631-643.	1.2	23
2127	Caenorhabditis elegans lin-25: A Study of Its Role in Multiple Cell Fate Specification Events Involving Ras and the Identification and Characterization of Evolutionarily Conserved Domains. Genetics, 2000, 156, 1083-1096.	1.2	14
2128	The <i>Caenorhabditis elegans odr-2</i> Gene Encodes a Novel Ly-6-Related Protein Required for Olfaction. Genetics, 2001, 157, 211-224.	1.2	98
2129	Creation of Low-Copy Integrated Transgenic Lines in <i>Caenorhabditis elegans</i> . Genetics, 2001, 157, 1217-1226.	1.2	768
2130	Mutations Affecting Nerve Attachment of <i>Caenorhabditis elegans</i> . Genetics, 2001, 157, 1611-1622.	1.2	52
2131	Genes Regulating Touch Cell Development in <i>Caenorhabditis elegans</i> . Genetics, 2001, 158, 197-207.	1.2	36
2132	Genetic Analysis of Endocytosis in <i>Caenorhabditis elegans</i> : Coelomocyte Uptake Defective Mutants. Genetics, 2001, 159, 133-145.	1.2	244
2133	Frequent Germline Mutations and Somatic Repeat Instability in DNA Mismatch-Repair-Deficient Caenorhabditis elegans. Genetics, 2002, 161, 651-660.	1.2	49
2134	Characterization of <i>Caenorhabditis elegans</i> Homologs of the Down Syndrome Candidate Gene DYRK1A. Genetics, 2003, 163, 571-580.	1.2	54
2135	Deficiencies in C20 Polyunsaturated Fatty Acids Cause Behavioral and Developmental Defects in <i>Caenorhabditis elegans fat-3</i> Mutants. Genetics, 2003, 163, 581-589.	1.2	91
2136	New Genes That Interact With <i>lin-35 Rb</i> to Negatively Regulate the <i>let-60 ras</i> Pathway in <i>Caenorhabditis elegans</i> . Genetics, 2003, 164, 135-151.	1.2	44
2137	Isolation and Characterization of High-Temperature-Induced Dauer Formation Mutants in <i>Caenorhabditis elegans</i> . Genetics, 2003, 165, 127-144.	1.2	70
2138	The <i>Caenorhabditis elegans spe-39</i> Gene Is Required for Intracellular Membrane Reorganization During Spermatogenesis. Genetics, 2003, 165, 145-157.	1.2	21

#	Article	IF	CITATIONS
2139	The Promotion of Gonadal Cell Divisions by the <i>Caenorhabditis elegans</i> TRPM Cation Channel GON-2 Is Antagonized by GEM-4 Copine. Genetics, 2003, 165, 563-574.	1.2	35
2140	<i>Caenorhabditis elegans</i> Cαq Regulates Egg-Laying Behavior via a PLCβ-Independent and Serotonin-Dependent Signaling Pathway and Likely Functions Both in the Nervous System and in Muscle. Genetics, 2003, 165, 1805-1822.	1.2	87
2141	A388 ANESTHETIC SENSITIVITY AND MEMBRANE CONDUCTANCE. Anesthesiology, 1997, 87, 388A.	1.3	1
2142	A611 A MUTATION IN A SUBUNIT OF THE RESPIRATORY CHAIN INCREASES SENSITIVITY TO VOLATILE ANESTHETICS. Anesthesiology, 1997, 87, 611A.	1.3	1
2143	A Gain-of-function Mutation in Adenylate Cyclase Confers Isoflurane Resistance in <i>Caenorhabditis elegans</i> Â. Anesthesiology, 2011, 115, 1162-1171.	1.3	17
2159	Antagonism between Goalpha and Gqalpha in Caenorhabditis elegans: the RGS protein EAT-16 is necessary for Goalpha signaling and regulates Gqalpha activity. Genes and Development, 1999, 13, 1780-1793.	2.7	177
2160	The RING finger/B-Box factor TAM-1 and a retinoblastoma-like protein LIN-35 modulate context-dependent gene silencing in Caenorhabditis elegans. Genes and Development, 1999, 13, 2958-2970.	2.7	103
2161	<i>daf-12</i> encodes a nuclear receptor that regulates the dauer diapause and developmental age in <i>C. elegans</i> . Genes and Development, 2000, 14, 1512-1527.	2.7	363
2162	Transgene-mediated cosuppression in the <i>C. elegans</i> germ line. Genes and Development, 2000, 14, 1578-1583.	2.7	122
2163	Evidence Suggesting That a Fifth of Annotated Caenorhabditis elegans Genes May Be Pseudogenes. Genome Research, 2002, 12, 770-775.	2.4	76
2164	Cosuppression inC. elegans. Cold Spring Harbor Protocols, 2006, 2006, pdb.prot4318.	0.2	2
2165	Gene Expression Profiling of Cells, Tissues, and Developmental Stages of the Nematode C. elegans. Cold Spring Harbor Symposia on Quantitative Biology, 2003, 68, 159-170.	2.0	273
2166	In Vitro Mutagenesis of <i>Caenorhabditis elegans</i> Cuticle Collagens Identifies a Potential Subtilisin-Like Protease Cleavage Site and Demonstrates that Carboxyl Domain Disulfide Bonding Is Required for Normal Function but Not Assembly. Molecular and Cellular Biology, 1994, 14, 2722-2730.	1.1	8
2167	FRMD7 Mutations Disrupt the Interaction with GABRA2 and May Result in Infantile Nystagmus Syndrome. , 2020, 61, 41.		21
2168	A transgene containing <i>lacZ</i> is expressed in primary sensory neurons in zebrafish. Development (Cambridge), 1992, 115, 421-426.	1.2	71
2169	Combinatorial control of touch receptor neuron expression in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1993, 119, 773-783.	1.2	128
2170	<i>glp-1</i> can substitute for <i>lin-12</i> in specifying cell fate decisions in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1993, 119, 1019-1027.	1.2	71
2171	Soma-germline asymmetry in the distributions of embryonic RNAs in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1994, 120, 2823-2834.	1.2	305

#	Article	IF	CITATIONS
2172	<i>lag-2</i> may encode a signaling ligand for the GLP-1 and LIN-12 receptors of <i>C. elegans</i> . Development (Cambridge), 1994, 120, 2913-2924.	1.2	347
2173	Genesis of an organ: molecular analysis of the <i>pha-1</i> gene. Development (Cambridge), 1994, 120, 3005-3017.	1.2	50
2174	Identification of a candidate primary sex determination locus, <i>fox-1</i> , on the X chromosome of <i>Caenorhabditis elegans</i> . Development (Cambridge), 1994, 120, 3681-3689.	1.2	69
2175	The <i>Caenorhabditis elegans</i> MYOD homologue HLH-1 is essential for proper muscle function and complete morphogenesis. Development (Cambridge), 1994, 120, 1631-1641.	1.2	95
2176	The <i>Caenorhabditis elegans</i> NK-2 class homeoprotein CEH-22 is involved in combinatorial activation of gene expression in pharyngeal muscle. Development (Cambridge), 1994, 120, 2175-2186.	1.2	196
2177	The Caenorhabditis elegans gene lin-26 is required to specify the fates of hypodermal cells and encodes a presumptive zinc-finger transcription factor. Development (Cambridge), 1994, 120, 2359-2368.	1.2	71
2178	DPY-30, a nuclear protein essential early in embryogenesis for <i>Caenorhabditis elegans</i> dosage compensation. Development (Cambridge), 1995, 121, 3323-3334.	1.2	71
2179	The <i>mab-21</i> gene of <i>Caenorhabditis elegans</i> encodes a novel protein required for choice of alternate cell fates. Development (Cambridge), 1995, 121, 3615-3626.	1.2	79
2180	Interchangeability of Caenorhabditis <i>elegans</i> DSL proteins and intrinsic signalling activity of their extracellular domains in vivo. Development (Cambridge), 1995, 121, 4275-4282.	1.2	146
2181	The C. elegans neuronally expressed homeobox gene ceh-10 is closely related to genes expressed in the vertebrate eye. Development (Cambridge), 1995, 121, 1253-1262.	1.2	58
2182	The <i>Caenorhabditis elegans</i> heterochronic gene pathway controls stage-specific transcription of collagen genes. Development (Cambridge), 1995, 121, 2471-2478.	1.2	77
2183	Mosaic analysis of the <i>let-23</i> gene function in vulval induction of <i>Caenorhabditis elegans</i> . Development (Cambridge), 1995, 121, 2655-2666.	1.2	81
2184	Expression of the <i>unc-4</i> homeoprotein in <i>Caenorhabditis elegans</i> motor neurons specifies presynaptic input. Development (Cambridge), 1995, 121, 2877-2886.	1.2	102
2185	A predicted membrane protein, TRA-2A, directs hermaphrodite development in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1995, 121, 2995-3004.	1.2	38
2186	A sperm-supplied factor required for embryogenesis in <i>C. elegans</i> . Development (Cambridge), 1996, 122, 391-404.	1.2	96
2187	The <i>C. elegans</i> vulval induction gene <i>lin-2</i> encodes a member of the MAGUK family of cell junction proteins. Development (Cambridge), 1996, 122, 97-111.	1.2	185
2188	<i>cdh-3</i> , a gene encoding a member of the cadherin superfamily, functions in epithelial cell morphogenesis in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1996, 122, 4149-4157.	1.2	95
2189	The <i>C. elegans</i> gene <i>vab-8</i> guides posteriorly directed axon outgrowth and cell migration. Development (Cambridge), 1996, 122, 671-682.	1.2	58

#	Article	IF	CITATIONS
2190	lag-1, a gene required for lin-12 and glp-1 signaling in Caenorhabditis elegans, is homologous to human CBF1 and Drosophila Su(H). Development (Cambridge), 1996, 122, 1373-1383.	1.2	203
2191	The mec-8 gene of C. elegans encodes a protein with two RNA recognition motifs and regulates alternative splicing of unc-52 transcripts. Development (Cambridge), 1996, 122, 1601-1610.	1.2	80
2192	Stage-specific accumulation of the terminal differentiation factor LIN-29 during <i>Caenorhabditis elegans</i> development. Development (Cambridge), 1996, 122, 2517-2527.	1.2	100
2193	The <i>Caenorhabditis elegans</i> LIN-26 protein is required to specify and/or maintain all non-neuronal ectodermal cell fates. Development (Cambridge), 1996, 122, 2579-2588.	1.2	95
2194	A Ras-mediated signal transduction pathway is involved in the control of sex myoblast migration in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1996, 122, 2823-2833.	1.2	51
2195	The <i>C. elegans</i> gene <i>pag-3</i> is homologous to the zinc finger proto-oncogene gfi <i>-1</i> . Development (Cambridge), 1997, 124, 2063-2073.	1.2	25
2196	Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of <i>Caenorhabditis elegans</i> and <i>Drosophila melanogaster</i> . Development (Cambridge), 1997, 124, 2191-2201.	1.2	287
2197	Genes that guide growth cones along the <i>C. elegans</i> ventral nerve cord. Development (Cambridge), 1997, 124, 2571-2580.	1.2	63
2198	The role of <i>lin-22</i> , a <i>hairy/Enhancer of split</i> homolog, in patterning the peripheral nervous system of <i>C. elegans</i> . Development (Cambridge), 1997, 124, 2875-2888.	1.2	59
2199	Maternal control of a zygotic patterning gene in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1997, 124, 3865-3869.	1.2	15
2200	The <i>PAX</i> gene <i>egl-38</i> mediates developmental patterning in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1997, 124, 3919-3928.	1.2	60
2201	The <i>Caenorhabditis elegans</i> NK-2 homeobox gene <i>ceh-22</i> activates pharyngeal muscle gene expression in combination with <i>pha-1</i> and is required for normal pharyngeal development. Development (Cambridge), 1997, 124, 3965-3973.	1.2	78
2202	The terminal differentiation factor LIN-29 is required for proper vulval morphogenesis and egg laying in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1997, 124, 4333-4342.	1.2	34
2203	SUP-17, a <i>Caenorhabditis elegans</i> ADAM protein related to <i>Drosophila</i> KUZBANIAN, and its role in LIN-12/NOTCH signalling. Development (Cambridge), 1997, 124, 4759-4767.	1.2	139
2204	Structure, function, and expression of SEL-1, a negative regulator of LIN-12 and GLP-1 in <i>C. elegans</i> . Development (Cambridge), 1997, 124, 637-644.	1.2	59
2205	The <i>C. elegans</i> MEX-1 protein is present in germline blastomeres and is a P granule component. Development (Cambridge), 1997, 124, 731-739.	1.2	118
2206	A genetic pathway for regulation of <i>tra-2</i> translation. Development (Cambridge), 1997, 124, 749-758.	1.2	43
2207	Germ-line tumor formation caused by activation of <i>glp-1</i> , a <i>Caenorhabditis elegans</i> member of the <i>Notch</i> family of receptors. Development (Cambridge), 1997, 124, 925-936.	1.2	236

#	Article	IF	CITATIONS
2208	VP16-activation of the <i>C. elegans</i> neural specification transcription factor UNC-86 suppresses mutations in downstream genes and causes defects in neural migration and axon outgrowth. Development (Cambridge), 1997, 124, 1159-1168.	1.2	17
2209	The Groucho-like transcription factor UNC-37 functions with the neural specificity gene <i>unc-4</i> to govern motor neuron identity in <i>C. elegans</i> . Development (Cambridge), 1997, 124, 1699-1709.	1.2	100
2210	<i>pha-4</i> is <i>Ce-fkh-1</i> , a <i>fork head</i> /HNF-3α,β,γ homolog that functions in organogenesis of the <i>C. elegans</i> pharynx. Development (Cambridge), 1998, 125, 2171-2180.	1.2	159
2211	Interactions of EGF, Wnt and HOM-C genes specify the P12 neuroectoblast fate in <i>C. elegans</i> . Development (Cambridge), 1998, 125, 2337-2347.	1.2	87
2212	Chromatin silencing and the maintenance of a functional germline in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1998, 125, 2451-2456.	1.2	227
2213	MES-2, a maternal protein essential for viability of the germline in <i>Caenorhabditis elegans</i> , is homologous to a <i>Drosophila</i> Polycomb group protein. Development (Cambridge), 1998, 125, 2457-2467.	1.2	134
2214	The Polycomb group in <i>Caenorhabditis elegans</i> and maternal control of germline development. Development (Cambridge), 1998, 125, 2469-2478.	1.2	124
2215	LIN-12 protein expression and localization during vulval development in <i>C. elegans</i> . Development (Cambridge), 1998, 125, 3101-3109.	1.2	56
2216	Effects of SEL-12 presenilin on LIN-12 localization and function in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1998, 125, 3599-3606.	1.2	85
2217	The β-catenin homolog BAR-1 and LET-60 Ras coordinately regulate the Hox gene <i>lin-39</i> during <i>Caenorhabditis elegans</i> vulval development. Development (Cambridge), 1998, 125, 3667-3680.	1.2	223
2218	Regulation of touch receptor differentiation by the <i>Caenorhabditis elegans mec-3</i> and <i>unc-86</i> genes. Development (Cambridge), 1998, 125, 4107-4119.	1.2	126
2219	A highly conserved centrosomal kinase, AIR-1, is required for accurate cell cycle progression and segregation of developmental factors in <i>Caenorhabditis elegans</i> embryos. Development (Cambridge), 1998, 125, 4391-4402.	1.2	164
2220	<i>Caenorhabditis elegans lin-25</i> : cellular focus, protein expression and requirement for <i>sur-2</i> during induction of vulval fates. Development (Cambridge), 1998, 125, 4809-4819.	1.2	17
2221	Anterior-posterior patterning within the <i>Caenorhabditis elegans</i> endoderm. Development (Cambridge), 1998, 125, 4877-4887.	1.2	35
2222	Muscle and nerve-specific regulation of a novel NK-2 class homeodomain factor in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1998, 125, 421-429.	1.2	83
2223	EGL-17(FGF) expression coordinates the attraction of the migrating sex myoblasts with vulval induction in <i>C. elegans</i> . Development (Cambridge), 1998, 125, 1083-1093.	1.2	177
2224	<i>unc-3</i> , a gene required for axonal guidance in <i>Caenorhabditis elegans</i> , encodes a member of the O/E family of transcription factors. Development (Cambridge), 1998, 125, 1561-1568.	1.2	139
2225	PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in <i>Caenorhabditis elegans</i> embryos. Development (Cambridge), 1999, 126, 127-135.	1.2	256

#	Article	IF	CITATIONS
2226	COG-2, a Sox domain protein necessary for establishing a functional vulval- uterine connection in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1999, 126, 169-179.	1.2	66
2227	A Wnt signaling pathway controls Hox gene expression and neuroblast migration in <i>C. elegans</i> . Development (Cambridge), 1999, 126, 37-49.	1.2	214
2228	The <i>C. elegans</i> homeodomain gene <i>unc-42</i> regulates chemosensory and glutamate receptor expression. Development (Cambridge), 1999, 126, 2241-2251.	1.2	47
2229	The <i>Caenorhabditis elegans</i> genes <i>egl-27</i> and <i>egr-1</i> are similar to MTA1, a member of a chromatin regulatory complex, and are redundantly required for embryonic patterning. Development (Cambridge), 1999, 126, 2483-2494.	1.2	104
2230	SDQR migrations in <i>Caenorhabditis elegans</i> are controlled by multiple guidance cues and changing responses to netrin UNC-6. Development (Cambridge), 1999, 126, 3881-3890.	1.2	29
2231	A BMP homolog acts as a dose-dependent regulator of body size and male tail patterning in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1999, 126, 241-250.	1.2	218
2232	Specificity of TGFβ signaling is conferred by distinct type I receptors and their associated SMAD proteins in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1999, 126, 251-260.	1.2	123
2233	Control of DAF-7 TGF-β expression and neuronal process development by a receptor tyrosine kinase KIN-8 in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1999, 126, 5387-5398.	1.2	46
2234	Patterning of dopaminergic neurotransmitter identity among <i>Caenorhabditis elegans</i> ray sensory neurons by a TGFI²family signaling pathway and a <i>Hox</i> gene. Development (Cambridge), 1999, 126, 5819-5831.	1.2	182
2235	Hox gene expression in a single <i>Caenorhabditis elegans</i> cell is regulated by a <i>caudal</i> homolog and intercellular signals that inhibit <i>Wnt</i> signaling. Development (Cambridge), 1999, 126, 805-814.	1.2	54
2236	Similarity of DNA binding and transcriptional regulation by <i>Caenorhabditis elegans</i> MAB-3 and <i>Drosophila melanogaster</i> DSX suggests conservation of sex determining mechanisms. Development (Cambridge), 1999, 126, 873-881.	1.2	126
2237	Regulation of body length and male tail ray pattern formation of <i>Caenorhabditis elegans</i> by a member of TGF-β family. Development (Cambridge), 1999, 126, 1337-1347.	1.2	136
2238	<i>C. elegans</i> MAC-1, an essential member of the AAA family of ATPases, can bind CED-4 and prevent cell death. Development (Cambridge), 1999, 126, 2021-2031.	1.2	44
2239	<i>Caenorhabditis elegans</i> Twist plays an essential role in non-striated muscle development. Development (Cambridge), 2000, 127, 2041-2051.	1.2	55
2240	TRA-1A regulates transcription of <i>fog-3</i> , which controls germ cell fate in <i>C. elegans</i> . Development (Cambridge), 2000, 127, 3119-3129.	1.2	76
2241	A <i>Caenorhabditis elegans</i> type I TGFβ receptor can function in the absence of type II kinase to promote larval development. Development (Cambridge), 2000, 127, 3337-3347.	1.2	67
2242	The homeodomain protein CePHOX2/CEH-17 controls antero-posterior axonal growth in <i>C. elegans</i> . Development (Cambridge), 2000, 127, 3361-3371.	1.2	61
2243	The <i>C. elegans</i> NeuroD homolog <i>cnd-1</i> functions in multiple aspects of motor neuron fate specification. Development (Cambridge), 2000, 127, 4239-4252.	1.2	90

#	Article	IF	CITATIONS
2244	Expression of the vertebrate Cli proteins in <i>Drosophila</i> reveals a distribution of activator and repressor activities. Development (Cambridge), 2000, 127, 4293-4301.	1.2	180
2245	MES-1, a protein required for unequal divisions of the germline in early <i>C. elegans</i> embryos, resembles receptor tyrosine kinases and is localized to the boundary between the germline and gut cells. Development (Cambridge), 2000, 127, 4419-4431.	1.2	40
2246	<i>mab-3</i> is a direct <i>tra-1</i> target gene regulating diverse aspects of <i>C. elegans</i> male sexual development and behavior. Development (Cambridge), 2000, 127, 4469-4480.	1.2	127
2247	Establishment of left/right asymmetry in neuroblast migration by UNC-40/DCC, UNC-73/Trio and DPY-19 proteins in <i>C. elegans</i> . Development (Cambridge), 2000, 127, 4655-4668.	1.2	83
2248	Evolutionary conservation of redundancy between a diverged pair of forkhead transcription factor homologues. Development (Cambridge), 2000, 127, 4825-4835.	1.2	28
2249	Patterning of the C. elegans 1 degrees vulval lineage by RAS and Wnt pathways. Development (Cambridge), 2000, 127, 5047-5058.	1.2	42
2250	Regulation of the UNC-5 netrin receptor initiates the first reorientation of migrating distal tip cells in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2000, 127, 585-594.	1.2	94
2251	The fax-1 nuclear hormone receptor regulates axon pathfinding and neurotransmitter expression. Development (Cambridge), 2000, 127, 703-712.	1.2	62
2252	The bromodomain protein LIN-49 and trithorax-related protein LIN-59 affect development and gene expression in Caenorhabditis elegans. Development (Cambridge), 2000, 127, 713-723.	1.2	46
2253	A retrograde signal is involved in activity-dependent remodeling at a <i>C. elegans</i> neuromuscular junction. Development (Cambridge), 2000, 127, 1253-1266.	1.2	48
2254	Hemicentin, a conserved extracellular member of the immunoglobulin superfamily, organizes epithelial and other cell attachments into oriented line- shaped junctions. Development (Cambridge), 2001, 128, 883-894.	1.2	165
2255	A single histone H1 isoform (H1.1) is essential for chromatin silencing and germline development in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2001, 128, 1069-1080.	1.2	81
2256	The <i>C. elegans</i> homolog of the murine cystic kidney disease gene <i>Tg737</i> functions in a ciliogenic pathway and is disrupted in <i>osm-5</i> mutant worms. Development (Cambridge), 2001, 128, 1493-1505.	1.2	195
2257	A nematode gene required for sperm vesicle fusion. Journal of Cell Science, 1997, 110, 1073-1081.	1.2	159
2258	<i>cyk-1</i> : a <i>C. elegans</i> FH gene required for a late step in embryonic cytokinesis. Journal of Cell Science, 1998, 111, 2017-2027.	1.2	124
2259	The presenilin protein family member SPE-4 localizes to an ER/Golgi derived organelle and is required for proper cytoplasmic partitioning during <i>Caenorhabditis elegans</i> spermatogenesis. Journal of Cell Science, 1998, 111, 3645-3654.	1.2	94
2260	MEC-12, an α-tubulin required for touch sensitivity in <i>C. elegans</i> . Journal of Cell Science, 1999, 112, 395-403.	1.2	145
2261	Mutations and Expressions of the Tropomyosin Gene and the Troponin C Gene of Caenorhabditis elegans Cell Structure and Function, 1997, 22, 213-218.	0.5	35

#	Article	IF	CITATIONS
2262	The Nuclear Receptor HIZR-1 Uses Zinc as a Ligand to Mediate Homeostasis in Response to High Zinc. PLoS Biology, 2017, 15, e2000094.	2.6	22
2263	Mutations in the Caenorhabditis elegans U2AF Large Subunit UAF-1 Alter the Choice of a 3′ Splice Site In Vivo. PLoS Genetics, 2009, 5, e1000708.	1.5	19
2264	Axon Regeneration Is Regulated by Ets–C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways. PLoS Genetics, 2015, 11, e1005603.	1.5	30
2265	The MADD-3 LAMMER Kinase Interacts with a p38 MAP Kinase Pathway to Regulate the Display of the EVA-1 Guidance Receptor in Caenorhabditis elegans. PLoS Genetics, 2016, 12, e1006010.	1.5	7
2266	The C. elegans Discoidin Domain Receptor DDR-2 Modulates the Met-like RTK–JNK Signaling Pathway in Axon Regeneration. PLoS Genetics, 2016, 12, e1006475.	1.5	25
2267	GW182-Free microRNA Silencing Complex Controls Post-transcriptional Gene Expression during Caenorhabditis elegans Embryogenesis. PLoS Genetics, 2016, 12, e1006484.	1.5	27
2268	β-Integrin de-phosphorylation by the Density-Enhanced Phosphatase DEP-1 attenuates EGFR signaling in C. elegans. PLoS Genetics, 2017, 13, e1006592.	1.5	17
2269	Dopamine negatively modulates the NCA ion channels in C. elegans. PLoS Genetics, 2017, 13, e1007032.	1.5	24
2270	Mutually exclusive dendritic arbors in C. elegans neurons share a common architecture and convergent molecular cues. PLoS Genetics, 2020, 16, e1009029.	1.5	8
2271	Recent Duplication and Functional Divergence in Parasitic Nematode Levamisole-Sensitive Acetylcholine Receptors. PLoS Neglected Tropical Diseases, 2016, 10, e0004826.	1.3	22
2272	Cyclin E and CDK2 Repress the Terminal Differentiation of Quiescent Cells after Asymmetric Division in C. elegans. PLoS ONE, 2007, 2, e407.	1.1	19
2273	The Cell Signaling Adaptor Protein EPS-8 Is Essential for C. elegans Epidermal Elongation and Interacts with the Ankyrin Repeat Protein VAB-19. PLoS ONE, 2008, 3, e3346.	1.1	18
2274	Nematode Homologue of PQBP1, a Mental Retardation Causative Gene, Is Involved in Lipid Metabolism. PLoS ONE, 2009, 4, e4104.	1.1	21
2275	Neuron-Specific Regulation of Associative Learning and Memory by MAGI-1 in C. elegans. PLoS ONE, 2009, 4, e6019.	1.1	55
2276	Allyl Isothiocyanate that Induces GST and UGT Expression Confers Oxidative Stress Resistance on C. elegans, as Demonstrated by Nematode Biosensor. PLoS ONE, 2010, 5, e9267.	1.1	46
2277	The C. elegans D2-Like Dopamine Receptor DOP-3 Decreases Behavioral Sensitivity to the Olfactory Stimulus 1-Octanol. PLoS ONE, 2010, 5, e9487.	1.1	42
2278	MISC-1/OGC Links Mitochondrial Metabolism, Apoptosis and Insulin Secretion. PLoS ONE, 2011, 6, e17827.	1.1	23
2279	The Retrograde IFT Machinery of C. elegans Cilia: Two IFT Dynein Complexes?. PLoS ONE, 2011, 6, e20995.	1.1	44

		CITATION R	EPORT	
#	Article		IF	CITATIONS
2280	Structural and Functional Evaluation of C. elegans Filamins FLN-1 and FLN-2. PLoS ONE	., 2011, 6, e22428.	1.1	17
2281	A Functional Nuclear Localization Sequence in the C. elegans TRPV Channel OCR-2. PLc e25047.	os one, 2011, 6,	1.1	11
2282	Downregulation of the Hsp90 System Causes Defects in Muscle Cells of Caenorhabditi ONE, 2011, 6, e25485.	s Elegans. PLoS	1.1	52
2283	Evolution of Susceptibility to Ingested Double-Stranded RNAs in Caenorhabditis Nemat 2012, 7, e29811.	todes. PLoS ONE,	1.1	65
2284	RHGF-2 Is an Essential Rho-1 Specific RhoGEF that binds to the Multi-PDZ Domain Scaf in Caenorhabditis elegans. PLoS ONE, 2012, 7, e31499.	fold Protein MPZ-1	1.1	19
2285	Exocyst Subunits Exo70 and Exo84 Cooperate with Small GTPases to Regulate Behavic Trafficking in C. elegans. PLoS ONE, 2012, 7, e32077.	r and Endocytic	1.1	15
2286	RAB-7 Antagonizes LET-23 EGFR Signaling during Vulva Development in Caenorhabditis ONE, 2012, 7, e36489.	s elegans. PLoS	1.1	21
2287	UNC-41/Stonin Functions with AP2 to Recycle Synaptic Vesicles in Caenorhabditis eleg 2012, 7, e40095.	ans. PLoS ONE,	1.1	28
2288	Specific Expression of Channelrhodopsin-2 in Single Neurons of Caenorhabditis elegans 2012, 7, e43164.	s. PLoS ONE,	1.1	69
2289	The F-Box Protein MEC-15 (FBXW9) Promotes Synaptic Transmission in GABAergic Morelegans. PLoS ONE, 2013, 8, e59132.	tor Neurons in C.	1.1	13
2290	Efficient and Rapid C. elegans Transgenesis by Bombardment and Hygromycin B Select 2013, 8, e76019.	ion. PLoS ONE,	1.1	66
2291	Control of Protein Activity and Cell Fate Specification via Light-Mediated Nuclear Trans ONE, 2015, 10, e0128443.	location. PLoS	1.1	95
2292	Hsp72 (HSPA1A) Prevents Human Islet Amyloid Polypeptide Aggregation and Toxicity: for Type 2 Diabetes Treatment. PLoS ONE, 2016, 11, e0149409.	A New Approach	1.1	27
2293	Sar1, a Novel Regulator of ER-Mitochondrial Contact Sites. PLoS ONE, 2016, 11, e0154	1 280.	1.1	22
2294	Diverse Regulation of Temperature Sensation by Trimeric C-Protein Signaling in Caenor elegans. PLoS ONE, 2016, 11, e0165518.	habditis	1.1	17
2295	A Computational Model Based on Multi-Regional Calcium Imaging Represents the Spat Dynamics in a Caenorhabditis elegans Sensory Neuron. PLoS ONE, 2017, 12, e016841	io-Temporal 5.	1.1	26
2296	Genetic interactions among ADAMTS metalloproteases and basement membrane mole migration in Caenorhabditis elegans. PLoS ONE, 2020, 15, e0240571.	cules in cell	1.1	6
2297	<scp>TDP</scp> 2 negatively regulates axon regeneration by inducing <scp>SUMOEts transcription factor. EMBO Reports, 2019, 20, e47517.</scp>	cp> ylation of an	2.0	6

#	Article	IF	CITATIONS
2298	The mechanoreceptor DEGâ€1 regulates cold tolerance in <i>Caenorhabditis elegans</i> . EMBO Reports, 2020, 21, e48671.	2.0	28
2299	Modular Organization of <i>Cis</i> -regulatory Control Information of Neurotransmitter Pathway Genes in <i>Caenorhabditis elegans</i> . Genetics, 2020, 215, 665-681.	1.2	18
2300	A model for the rare human channelopathy, Timothy syndrome type 1. MicroPublication Biology, 2018, 2018, .	0.1	3
2301	regulates the expression of ASH terminal fate markers. MicroPublication Biology, 2019, 2019, .	0.1	3
2302	Transformation and microinjection. WormBook, 2006, , .	5.3	208
2303	Caenorhabditis briggsae methods. WormBook, 2006, , 1-9.	5.3	13
2304	The hypoxia-response pathway modulates RAS/MAPK–mediated cell fate decisions in <i>Caenorhabditis elegans</i> . Life Science Alliance, 2019, 2, e201800255.	1.3	14
2305	In Vivo Simultaneous Analysis of Gene Expression by Dual-Color Luciferases in Caenorhabditis elegans. International Journal of Molecular Sciences, 2021, 22, 119.	1.8	7
2306	Clustered LAG-1 binding sites in lag-1/CSL are involved in regulating lag-1 expression during lin-12/Notch-dependent cell-fate specification. BMB Reports, 2013, 46, 219-224.	1.1	8
2307	Development and Cell Polarity of the C. elegans Intestine. , 0, , .		2
2308	Position of UNC-13 in the active zone regulates synaptic vesicle release probability and release kinetics. ELife, 2013, 2, e01180.	2.8	76
2309	The Caenorhabditis elegans microtubule minus-end binding homolog PTRN-1 stabilizes synapses and neurites. ELife, 2014, 3, e01637.	2.8	65
2310	Developmental programming modulates olfactory behavior in C. elegans via endogenous RNAi pathways. ELife, 2016, 5, .	2.8	36
2311	An extrasynaptic GABAergic signal modulates a pattern of forward movement in Caenorhabditis elegans. ELife, 2016, 5, .	2.8	44
2312	The RFamide receptor DMSR-1 regulates stress-induced sleep in C. elegans. ELife, 2017, 6, .	2.8	55
2313	Calcium dynamics regulating the timing of decision-making in C. elegans. ELife, 2017, 6, .	2.8	50
2314	Inhibitory peptidergic modulation of C. elegans serotonin neurons is gated by T-type calcium channels. ELife, 2017, 6, .	2.8	9
2315	Luqin-like RYamide peptides regulate food-evoked responses in C. elegans. ELife, 2017, 6, .	2.8	42

#	Article	IF	CITATIONS
2316	Neurexin directs partner-specific synaptic connectivity in C. elegans. ELife, 2018, 7, .	2.8	71
2317	Ordered arrangement of dendrites within a C. elegans sensory nerve bundle. ELife, 2018, 7, .	2.8	18
2318	Rap2 and TNIK control Plexin-dependent tiled synaptic innervation in C. elegans. ELife, 2018, 7, .	2.8	18
2319	Expanded genetic screening in Caenorhabditis elegans identifies new regulators and an inhibitory role for NAD+ in axon regeneration. ELife, 2018, 7, .	2.8	34
2320	Membrane fluidity is regulated by the C.Âelegans transmembrane protein FLD-1 and its human homologs TLCD1/2. ELife, 2018, 7, .	2.8	38
2321	Evolutionarily conserved long-chain Acyl-CoA synthetases regulate membrane composition and fluidity. ELife, 2019, 8, .	2.8	22
2322	Gradient-independent Wnt signaling instructs asymmetric neurite pruning in C. elegans. ELife, 2019, 8, .	2.8	7
2323	The CHORD protein CHP-1 regulates EGF receptor trafficking and signaling in C. elegans and in human cells. ELife, 2020, 9, .	2.8	3
2324	A muscle-epidermis-glia signaling axis sustains synaptic specificity during allometric growth in Caenorhabditis elegans. ELife, 2020, 9, .	2.8	9
2326	Imaging Glycosaminoglycan Modification Patterns In Vivo. Methods in Molecular Biology, 2022, 2303, 539-557.	0.4	1
2327	5′-Modifications improve potency and efficacy of DNA donors for precision genome editing. ELife, 2021, 10, .	2.8	30
2328	<i>Caenorhabditis elegans</i> provides an efficient drug screening platform for <i>GNAO1</i> -related disorders and highlights the potential role of caffeine in controlling dyskinesia. Human Molecular Genetics, 2022, 31, 929-941.	1.4	32
2329	An Expanded Polyproline Domain Maintains Mutant Huntingtin Soluble in vivo and During Aging. Frontiers in Molecular Neuroscience, 2021, 14, 721749.	1.4	6
2330	Evidence Suggesting That a Fifth of Annotated Caenorhabditis elegans Genes May Be Pseudogenes. Genome Research, 2002, 12, 770-775.	2.4	31
2331	Genetic and Molecular Characterization of Ca2+ and IP3 Signaling in the Nematode Caenorhabditis elegans. , 2005, , 161-186.		0
2332	Ginkgo biloba Extract EGb 761 Extends Life Span and Attenuates H2O2 Levels in a Caenorhabditis elegans Model of Alzheimer's Disease. Oxidative Stress and Disease, 2005, , 301-326.	0.3	0
2333	Chapter 20. New Genetic Information Generated by Endogenous Reverse Transcription in Sperm Cells. Issues in Toxicology, 2007, , 235-246.	0.2	0
2334	Signal Transduction during Caenorhabditis elegans Vulval Determination. , 1993, , 391-447.		1

	CITATION	Report	
# 2335	ARTICLE Two Novel Transmembrane Protein Tyrosine Kinases Expressed during Caenorhabditis elegans Hypodermal Development. Molecular and Cellular Biology, 1993, 13, 7133-7143.	IF 1.1	CITATIONS
2336	Comparing mutants, selective breeding, and transgenics in the dissection of aging processes of Caenorhabditis elegans. Contemporary Issues in Genetics and Evolution, 1994, , 83-95.	0.9	0
2337	Analysis of the VPE sequences in the Caenorhabditis elegans vit-2 promoter with extrachromosomal tandem array-containing transgenic strains. Molecular and Cellular Biology, 1994, 14, 484-491.	1.1	12
2338	Genetic Analysis in Caenorhabditis Elegans. , 1994, , 19-33.		0
2339	C. elegans as a Model system for Germ Cell Death. , 1997, , 8-18.		1
2340	Death signalling in C. elegans and activation mechanisms of caspases. , 1998, , 167-203.		1
2343	Aging-Related Neurodegenerative Diseases in Caenorhabditis elegans. , 2015, , 171-180.		0
2355	A Protein Disulfide Isomerase Controls Neuronal Migration Through Regulation of Wnt Secretion. SSRN Electronic Journal, 0, , .	0.4	0
2356	CHAPTER 1: Literature review. , 2018, , 41-62.		0
2401	Very Deep Neural Networks for Extracting MITE Families Features and Classifying them based on DNA Scalograms. International Journal of Advanced Computer Science and Applications, 2020, 11, .	0.5	0
2412	Construction and analysis of artificial chromosomes with de novo holocentromeres in Caenorhabditis elegans. Essays in Biochemistry, 2020, 64, 233-249.	2.1	2
2416	Using Caenorhabditis elegans to produce functional secretory proteins of parasitic nematodes. Acta Tropica, 2022, 225, 106176.	0.9	3
2421	High-efficiency CRISPR gene editing in C. elegans using Cas9 integrated into the genome. PLoS Genetics, 2021, 17, e1009755.	1.5	18
2422	Haemonchus contortus Transthyretin-Like Protein TTR-31 Plays Roles in Post-Embryonic Larval Development and Potentially Apoptosis of Germ Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 753667.	1.8	2
2425	The serotonin receptor SER-1 (5HT2ce) contributes to the regulation of locomotion inCaenorhabditis elegans. Journal of Neurobiology, 2006, , .	3.7	0
2431	Functional Genomics in <i>Caenorhabditis elegans</i> : An Approach Involving Comparisons of Sequences from Related Nematodes. Genome Research, 1999, 9, 348-359.	2.4	45
2432	The <i>Caenorhabditis elegans</i> APC-related gene <i>apr-1</i> is required for epithelial cell migration and <i>Hox</i> gene expression. Genes and Development, 2000, 14, 874-886.	2.7	95
2433	MEI-1/MEI-2 katanin-like microtubule severing activity is required for <i>Caenorhabditis elegans</i> meiosis. Genes and Development, 2000, 14, 1072-1084.	2.7	172

#	Article	IF	CITATIONS
2434	rab-27 acts in an intestinal pathway to inhibit axon regeneration in C. elegans. PLoS Genetics, 2021, 17, e1009877.	1.5	8
2435	Efficient visual screening of CRISPR/Cas9 genome editing in the nematode <i>Pristionchus pacificus</i> . Development Growth and Differentiation, 2021, 63, 488-500.	0.6	6
2438	Repulsive guidance molecule acts in axon branching in Caenorhabditis elegans. Scientific Reports, 2021, 11, 22370.	1.6	1
2439	phiC31 integrase for recombination-mediated single-copy insertion and genome manipulation in <i>Caenorhabditis elegans</i> . Genetics, 2022, 220, .	1.2	7
2440	PQN-59 antagonizes microRNA-mediated repression during post-embryonic temporal patterning and modulates translation and stress granule formation in C. elegans. PLoS Genetics, 2021, 17, e1009599.	1.5	5
2441	A class I histone deacetylase HDA-2 is essential for embryonic development and size regulation of fertilized eggs in Caenorhabditis elegans. Genes and Genomics, 2021, , 1.	0.5	1
2442	A glial ClC Clâ" channel mediates nose touch responses in C.Âelegans. Neuron, 2022, 110, 470-485.e7.	3.8	15
2443	Cholinergic signaling at the body wall neuromuscular junction distally inhibits feeding behavior in Caenorhabditis elegans. Journal of Biological Chemistry, 2022, 298, 101466.	1.6	8
2444	Chemical Signaling Regulates Axon Regeneration via the GPCR–Gqα Pathway in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2022, 42, 720-730.	1.7	4
2445	A Complicated Regulation for One Interneuron's Activity Through Rigid Synaptic Connections with Asymmetric Salt-Sensory Neurons in <i>C. Elegans</i> . SSRN Electronic Journal, 0, , .	0.4	0
2446	A role for dopamine in C. elegans avoidance behavior induced by mitochondrial stress. Neuroscience Research, 2022, 178, 87-92.	1.0	7
2447	piRNAs initiate transcriptional silencing of spermatogenic genes during C.Âelegans germline development. Developmental Cell, 2022, 57, 180-196.e7.	3.1	25
2448	The redundancy and diversity between two novel PKC isotypes that regulate learning in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
2449	Redundant neural circuits regulate olfactory integration. PLoS Genetics, 2022, 18, e1010029.	1.5	7
2450	Methods to Study the Mitochondrial Unfolded Protein Response (UPRmt) in Caenorhabditis elegans. Methods in Molecular Biology, 2022, 2378, 249-259.	0.4	3
2451	Kinesin-3 mediated axonal delivery of presynaptic neurexin stabilizes dendritic spines and postsynaptic components. PLoS Genetics, 2022, 18, e1010016.	1.5	11
2452	An intestinally secreted host factor promotes microsporidia invasion of C. elegans. ELife, 2022, 11, .	2.8	12
2453	NanoBRET in C. elegans illuminates functional receptor interactions in real time. BMC Molecular and Cell Biology, 2022, 23, 8.	1.0	2

#	Article	IF	CITATIONS
2454	Atypical TGF-β signaling controls neuronal guidance in Caenorhabditis elegans. IScience, 2022, 25, 103791.	1.9	7
2455	Dynamic motions of ice-binding proteins in living Caenorhabditis elegans using diffracted X-ray blinking and tracking. Biochemistry and Biophysics Reports, 2022, 29, 101224.	0.7	2
2456	Kinesin-II Motors Differentially Impact Biogenesis of Distinct Extracellular Vesicle Subpopulations Shed From Sensory Cilia. SSRN Electronic Journal, 0, , .	0.4	0
2457	The transcriptional corepressor CTBP-1 acts with the SOX family transcription factor EGL-13 to maintain AIA interneuron cell identity in Caenorhabditis elegans. ELife, 2022, 11, .	2.8	3
2458	Reprogramming the piRNA pathway for multiplexed and transgenerational gene silencing in C. elegans. Nature Methods, 2022, 19, 187-194.	9.0	19
2459	BTBD9 attenuates manganese-induced oxidative stress and neurotoxicity by regulating insulin growth factor signaling pathway. Human Molecular Genetics, 2022, 31, 2207-2222.	1.4	5
2460	Forgetting generates a novel state that is reactivatable. Science Advances, 2022, 8, eabi9071.	4.7	9
2461	Targeted and Random Transposon-Assisted Single-Copy Transgene Insertion in C. elegans. Methods in Molecular Biology, 2022, 2468, 239-256.	0.4	0
2462	Caenorhabditis elegans as a model to assess reproductive and developmental toxicity. , 2022, , 253-264.		0
2465	Bidirectional regulation of structural damage on autophagy in the <i>C. elegans</i> epidermis. Autophagy, 2022, 18, 2731-2745.	4.3	2
2467	Nematode chromosomes. Genetics, 2022, 221, .	1.2	20
2468	Activation of the CaMKII-Sarm1-ASK1-p38 MAP kinase pathway protects against axon degeneration caused by loss of mitochondria. ELife, 2022, 11, .	2.8	18
2469	Loss of intermediate filament <scp>IFB</scp> â€1 reduces mobility, density, and physiological function of mitochondria in <i>Caenorhabditis elegans</i> sensory neurons. Traffic, 2022, 23, 270-286.	1.3	1
2470	Characterization of phalloidinâ€negative nuclear actin filaments in <scp>U2OS</scp> cells expressing cytoplasmic <scp>actinâ€EGFP</scp> . Genes To Cells, 2022, 27, 317-330.	0.5	6
2471	Axon-dendrite and apical-basolateral sorting in a single neuron. Genetics, 2022, 221, .	1.2	4
2472	Transgenesis in parasitic helminths: a brief history and prospects for the future. Parasites and Vectors, 2022, 15, 110.	1.0	12
2473	A serotonergic circuit regulates aversive associative learning under mitochondrial stress in <i>C. elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115533119.	3.3	6
2474	Small RNAs couple embryonic developmental programs to gut microbes. Science Advances, 2022, 8,	4.7	4

		CITATION REPO	ORT	
#	Article	I	F	CITATIONS
2475	The metalloprotease ADM-4/ADAM17 promotes axonal repair. Science Advances, 2022, 8, eabn	12882. 4	4.7	2
2477	The great small organisms of developmental genetics: Caenorhabditis elegans and Drosophila melanogaster. Developmental Biology, 2022, 485, 93-122.	(0.9	12
2479	Concatenation of Transgenic DNA: Random or Orchestrated?. Genes, 2021, 12, 1969.	I	1.0	6
2483	An <scp>ALS</scp> â€associated <scp>KIF5A</scp> mutant forms oligomers and aggregates a neuronal toxicity. Genes To Cells, 2022, 27, 421-435.	nd induces	0.5	22
2484	The <scp>PAF1</scp> complex cell autonomously promotes oogenesis in <i>Caenorhabditis elegans</i> . Genes To Cells, 2022, 27, 409-420.	(0.5	4
2486	The C. elegans regulatory factor X (RFX) DAF-19M module: A shift from general ciliogenesis to cell-specific ciliary and behavioral specialization. Cell Reports, 2022, 39, 110661.	2	2.9	4
2523	Genome editing in animals with minimal PAM CRISPR-Cas9 enzymes. Nature Communications, 2601.	2022, 13,	5.8	24
2524	SAMS-1 coordinates HLH-30/TFEB and PHA-4/FOXA activities through histone methylation to m dietary restriction-induced autophagy and longevity. Autophagy, 2023, 19, 224-240.	ediate	4.3	3
2525	Proteotoxic stress disrupts epithelial integrity by inducing MTOR sequestration and autophagy overactivation. Autophagy, 2023, 19, 241-255.	2	4.3	1
2526	Differential modulation of C. elegans motor behavior by NALCN and two-pore domain potassiun channels. PLoS Genetics, 2022, 18, e1010126.	n I	L.5	4
2527	Distinct designer diamines promote mitophagy, and thereby enhance healthspan in <i>C. elega and protect human cells against oxidative damage. Autophagy, 2023, 19, 474-504.</i>	ns	4.3	7
2529	Intracellular Ca2+ dynamics in the ALA neuron reflect sleep pressure and regulate sleep in Caenorhabditis elegans. IScience, 2022, 25, 104452.		L.9	3
2530	Molecular encoding and synaptic decoding of context during salt chemotaxis in C. elegans. Nat Communications, 2022, 13, .	ure E	5.8	16
2532	Mosaic gene expression analysis of semaphorin–plexin interactions in <i>Caenorhabditis eleg using the <scp>IRâ€LEGO</scp> singleâ€cell gene induction system. Development Growth and Differentiation, 2022, 64, 230-242.</i>	ans	0.6	3
2537	The Choice of a Donor Molecule in Genome Editing Experiments in Animal Cells. Molecular Biolo 2022, 56, 372-381.	ygy, (0.4	0
2538	Transient expression of a luciferase mRNA in plant-parasitic and free-living nematodes by electroporation. Molecular and Biochemical Parasitology, 2022, 250, 111489.		0.5	0
2539	Distinct roles for two Caenorhabditis elegans acid-sensing ion channels in an ultradian clock. EL 0, 11, .	ife,	2.8	6
2540	A novel, essential <i>trans</i> -splicing protein connects the nematode SL1 snRNP to the CBC-A complex. Nucleic Acids Research, 0, , .	RS2	5.5	0

#	Article	IF	CITATIONS
2543	PharmacoGenetic targeting of a C. elegans essential neuron provides an in vivo screening for novel modulators of nematode ion channel function. Pesticide Biochemistry and Physiology, 2022, 186, 105152.	1.6	0
2544	Aromaticity at position 39 in αâ€synuclein: A modulator of amyloid fibril assembly and membraneâ€bound conformations. Protein Science, 2022, 31, .	3.1	7
2545	OLA-1, an Obg-like ATPase, integrates hunger with temperature information in sensory neurons in C. elegans. PLoS Genetics, 2022, 18, e1010219.	1.5	1
2549	The <i>Caenorhabditis elegans</i> ASPP homolog APE-1 is a junctional protein phosphatase 1 modulator. Genetics, 2022, 222, .	1.2	2
2551	Modular safe-harbor transgene insertion for targeted single-copy and extrachromosomal array integration in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	15
2552	Dopamine plays a critical role in the olfactory adaptive learning pathway in <i>Caenorhabditis elegans</i> . Journal of Neuroscience Research, 2022, 100, 2028-2043.	1.3	4
2554	TGS1 impacts snRNA 3â€2-end processing, ameliorates <i>survival motor neuron</i> -dependent neurological phenotypes <i>in vivo</i> and prevents neurodegeneration. Nucleic Acids Research, 2022, 50, 12400-12424.	6.5	2
2555	De novo mutations in KIF1A-associated neuronal disorder (KAND) dominant-negatively inhibit motor activity and axonal transport of synaptic vesicle precursors. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	22
2559	Structural model of microtubule dynamics inhibition by kinesin-4 from the crystal structure of KLP-12 –tubulin complex. ELife, 0, 11, .	2.8	8
2560	A mutation to a fish ice-binding protein synthesized in transgenic Caenorhabditis elegans modulates its cold tolerance. Biochemical and Biophysical Research Communications, 2022, 628, 98-103.	1.0	1
2561	C. Elegans Vab-6ÂEncodes a Kinesin and Functions Cell Non-Autonomously to Regulate Epidermal Morphogenesis. SSRN Electronic Journal, 0, , .	0.4	0
2562	Co-Opted Genes of Algal Origin Protect <i>C. Elegans</i> Against Cyanogenic Toxins. SSRN Electronic Journal, 0, , .	0.4	0
2563	The mIAA7 degron improves auxin-mediated degradation in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	9
2567	Forward genetic screening identifies novel roles for N-terminal acetyltransferase C and histone deacetylase in C. elegans development. Scientific Reports, 2022, 12, .	1.6	4
2569	Genetic screens identified dual roles of microtubule-associated serine threonine kinase and CREB within a single thermosensory neuron in the regulation of <i>Caenorhabditis elegans</i> thermotaxis behavior. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	3
2571	A natural transdifferentiation event involving mitosis is empowered by integrating signaling inputs with conserved plasticity factors. Cell Reports, 2022, 40, 111365.	2.9	6
2573	Kinesin-2 motors differentially impact biogenesis of extracellular vesicle subpopulations shed from sensory cilia. IScience, 2022, 25, 105262.	1.9	3
2574	A genetic screen for aldicarb resistance of <i>C. elegans</i> dauer larvae uncovers two alleles of <i>dach-1</i> , a cytochrome P450 gene. G3: Genes, Genomes, Genetics, 0, , .	0.8	0

#	Article	IF	CITATIONS
2575	Physiological insight into the conserved properties of <i>Caenorhabditis elegans</i> acidâ€sensing degenerin/epithelial sodium channels. Journal of Physiology, 2023, 601, 1625-1653.	1.3	7
2576	The GATA factor ELT-3 specifies endoderm in <i>Caenorhabditis angaria</i> in an ancestral gene network. Development (Cambridge), 2022, 149, .	1.2	1
2577	Positive interaction between ASH and ASK sensory neurons accelerates nociception and inhibits behavioral adaptation. IScience, 2022, 25, 105287.	1.9	3
2578	Micromechanical valve-operated needle-on-a-chip microinjection module for microfluidic large-scale integration. Journal of Micromechanics and Microengineering, 0, , .	1.5	1
2579	The transforming growth factor beta ligand TIG-2 modulates the function of neuromuscular junction and muscle energy metabolism in Caenorhabditis elegans. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	4
2580	A <i>Caenorhabditis elegans</i> model of autosomal dominant adult-onset neuronal ceroid lipofuscinosis identifies ethosuximide as a potential therapeutic. Human Molecular Genetics, 2023, 32, 1772-1785.	1.4	1
2581	Phosphorylation of MSI-1 is implicated in the regulation of associative memory in Caenorhabditis elegans. PLoS Genetics, 2022, 18, e1010420.	1.5	0
2583	Histidine dephosphorylation of the Gβ protein <scp>GPB</scp> â€1 promotes axon regeneration in <i>C. elegans</i> . EMBO Reports, 2022, 23, .	2.0	2
2584	In Vivo Analysis of a Biomolecular Condensate in the Nervous System of C. elegans. Methods in Molecular Biology, 2023, , 575-593.	0.4	0
2585	PXF-1 promotes synapse development at the neuromuscular junction in Caenorhabditis elegans. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	1
2586	Human FAM3C restores memory-based thermotaxis of <i>Caenorhabditis elegans famp-1/m70.4</i> loss-of-function mutants. , 0, , .		0
2588	A conserved megaprotein-based molecular bridge critical for lipid trafficking and cold resilience. Nature Communications, 2022, 13, .	5.8	10
2589	(-)-ÂGossypol Inhibition of Musashi-Mediated Forgetting Improves Memory and Age-Dependent Memory Decline in Caenorhabditis elegans. Molecular Neurobiology, 0, , .	1.9	0
2590	Fear conditioning in invertebrates. Frontiers in Behavioral Neuroscience, 0, 16, .	1.0	3
2592	Channel-independent function of UNC-9/Innexin in spatial arrangement of GABAergic synapses in C. elegans. ELife, 0, 11, .	2.8	5
2593	TES-1/Tes and ZYX-1/Zyxin protect junctional actin networks under tension during epidermal morphogenesis in the C.Âelegans embryo. Current Biology, 2022, , .	1.8	3
2594	Mitochondria-originated redox signalling regulates KLF-1 to promote longevity in Caenorhabditis elegans. Redox Biology, 2022, 58, 102533.	3.9	6
2595	Parental mutations influence wild-type offspring via transcriptional adaptation. Science Advances, 2022, 8, .	4.7	3

		CITATION REPORT		
#	Article		IF	CITATIONS
2596	Manipulating chromatin architecture in C. elegans. Epigenetics and Chromatin, 2022, 1	15,.	1.8	0
2597	Transgenic Rodent Models in Toxicological and Environmental Research: Future Perspe of Pharmacology and Pharmacotherapeutics, 0, , 0976500X2211356.	ctives. Journal	0.2	0
2598	<scp>GPCR</scp> signaling regulates severe stressâ€induced organismic death in <i>Gelegans</i> . Aging Cell, 2023, 22, .	Caenorhabditis	3.0	11
2600	The bZIP transcription factor BATF3/ZIP-10 suppresses innate immunity by attenuating signaling. International Immunology, 2023, 35, 181-196.	РМК-1/р38	1.8	1
2601	Rapid and reversible optogenetic silencing of synaptic transmission by clustering of syr Nature Communications, 2022, 13, .	naptic vesicles.	5.8	4
2602	A specific type of Argonaute phosphorylation regulates binding to microRNAs during C development. Cell Reports, 2022, 41, 111822.	. elegans	2.9	10
2603	Glial regulators of ions and solutes required for specific chemosensory functions in Cae elegans. IScience, 2022, 25, 105684.	norhabditis	1.9	5
2604	Neurogenetic Analysis in Caenorhabditis elegans. Learning Materials in Biosciences, 20	23, , 13-46.	0.2	0
2605	Function of cell adhesion molecules in differentiation of ray sensory neurons in <i>C. el Genes, Genomes, Genetics, 2023, 13, .</i>	egans. G3:	0.8	0
2606	cGMP dynamics that underlies thermosensation in temperature-sensing neuron regulate behavior in C. elegans. PLoS ONE, 2022, 17, e0278343.	tes thermotaxis	1.1	1
2607	Hypoxia induces transgenerational epigenetic inheritance of small RNAs. Cell Reports, 2	2022, 41, 111800.	2.9	11
2608	Transgenesis in Worms: Candidates for an Ideal Model. Molecular Biology, 2022, 56, 9	15-920.	0.4	0
2609	Dynein intermediate chains <scp>DYCI</scp> â€1 and <scp>WDR</scp> â€60 have spe <i>Caenorhabditis elegans</i> . Genes To Cells, 2023, 28, 97-110.	cific functions in	0.5	5
2611	Pathogenic bacteria modulate pheromone response to promote mating. Nature, 2023,	613, 324-331.	13.7	14
2612	Transgenic <scp>RFPâ€RPSâ€3O^{UbL}</scp> strain of the nematode <i>Ca as a biomonitor for environmental pollutants. Environmental Toxicology, 2023, 38, 770</i>	enorhabditis elegans)-782.	2.1	0
2613	G protein-coupled receptor kinase-2 (GRK-2) controls exploration through neuropeptid Caenorhabditis elegans. PLoS Genetics, 2023, 19, e1010613.	e signaling in	1.5	4
2614	Microinjection in <i>C. elegans</i> by direct penetration of elastomeric membranes. Bi 2023, 17, 014103.	omicrofluidics,	1.2	0
2615	Targeting endogenous proteins for spatial and temporal knockdown using auxin-induc Caenorhabditis elegans. STAR Protocols, 2023, 4, 102028.	ble degron in	0.5	3

#	Article	IF	CITATIONS
2616	Phenotypic Assessment of Pathogenic Variants in GNAO1 and Response to Caffeine in C. elegans Models of the Disease. Genes, 2023, 14, 319.	1.0	5
2617	Ubiquitination of stalled ribosomes enables mRNA decay via HBS-1 and NONU-1 in vivo. PLoS Genetics, 2023, 19, e1010577.	1.5	4
2618	Vitellogenin accumulation leads to reproductive senescence by impairing lysosomal function. Science China Life Sciences, 2023, 66, 439-452.	2.3	1
2620	A carnivorous mushroom paralyzes and kills nematodes via a volatile ketone. Science Advances, 2023, 9, .	4.7	9
2621	N-glycosylated intestinal protein BCF-1 shapes microbial colonization by binding bacteria via its fimbrial protein. Cell Reports, 2023, 42, 111993.	2.9	5
2622	Genome Editing of C. elegans. Methods in Molecular Biology, 2023, , 389-396.	0.4	0
2623	C.Âelegans vab-6 encodes a KIF3A kinesin and functions cell non-autonomously to regulate epidermal morphogenesis. Developmental Biology, 2023, 497, 33-41.	0.9	0
2624	DEC-7/SUSD2, a sushi domain containing protein, regulates an ultradian behavior mediated by intestinal epithelial Ca ²⁺ oscillations in Caenorhabditis elegans. American Journal of Physiology - Cell Physiology, 0, , .	2.1	0
2626	The <i>Caenorhabditis elegans</i> innexin INX-20 regulates nociceptive behavioral sensitivity. Genetics, 2023, 223, .	1.2	0
2627	FLInt: single shot safe harbor transgene integration via <i>F</i> luorescent <i>L</i> andmark <i>Int</i> erference. G3: Genes, Genomes, Genetics, 2023, 13, .	0.8	6
2628	TIR-1/SARM1 inhibits axon regeneration and promotes axon degeneration. ELife, 0, 12, .	2.8	5
2630	Disexcitation in the ASH/RIM/ADL negative feedback circuit fine-tunes hyperosmotic sensation and avoidance in Caenorhabditis elegans. Frontiers in Molecular Neuroscience, 0, 16, .	1.4	1
2633	CRISPR/Cas9 Mediated Fluorescent Tagging of Caenorhabditis elegans SPE-38 Reveals a Complete Localization Pattern in Live Spermatozoa. Biomolecules, 2023, 13, 623.	1.8	1
2634	Cold temperature extends longevity and prevents disease-related protein aggregation through PA28γ-induced proteasomes. Nature Aging, 2023, 3, 546-566.	5.3	13
2635	Modelling organophosphate intoxication in C. elegans highlights nicotinic acetylcholine receptor determinants that mitigate poisoning. PLoS ONE, 2023, 18, e0284786.	1.1	1
2665	ATFS-1 counteracts mitochondrial DNA damage by promoting repair over transcription. Nature Cell Biology, 0, , .	4.6	1
2672	In planta expression of human polyQ-expanded huntingtin fragment reveals mechanisms to prevent disease-related protein aggregation. Nature Aging, 2023, 3, 1345-1357.	5.3	1