Standard karyotype and nomenclature system for description description aberrations in wheat (<i>Triticum aestivum<

Genome 34, 830-839 DOI: 10.1139/g91-128

Citation Report

#	Article	IF	CITATIONS
1	Physical mapping of a male-fertility gene of common wheat Japanese Journal of Genetics, 1991, 66, 291-295.	1.0	26
2	Evolution und Züchtung des Saatweizens(Triticum aestivum L.). Biologie in Unserer Zeit, 1991, 21, 248-254.	0.3	3
3	Identification of the Extra Chromosomes of the Primary Trisomics in Durum Wheat, Triticum durum var. hordeiforme by Wright C-banding Technique Cytologia, 1992, 57, 491-499.	0.2	0
4	Toward a cytogenetically based physical map of the wheat genome Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 11307-11311.	3.3	227
5	Comparison of C-banding patterns and in situ hybridization sites using highly repetitive and total genomic rye DNA probes of 'Imperial' rye chromosomes added to 'Chinese Spring' wheat Japanese Journal of Genetics, 1992, 67, 71-83.	1.0	69
6	C-banding polymorphisms in several accessions of Triticum tauschii (Aegilops squarrosa). Genome, 1992, 35, 192-199.	0.9	41
7	Characterization of rust-resistant wheat-Agropyron intermedium derivatives by C-banding, in situ hybridization and isozyme analysis. Theoretical and Applied Genetics, 1992, 83-83, 775-782.	1.8	56
8	C-banding pattern and polymorphism of Aegilops caudata and chromosomal constitutions of the amphiploid T. aestivum — Ae. caudata and six derived chromosome addition lines. Theoretical and Applied Genetics, 1992, 83, 589-596.	1.8	89
9	C-banding and in-situ hybridization analyses of Agropyron intermedium, a partial wheat x Ag. intermedium amphiploid, and six derived chromosome addition lines. Theoretical and Applied Genetics, 1992, 84-84, 899-905.	1.8	68
10	Karyological characterization of a partial amphiploid, Triticum turgidum L. var. durum � Agropyron intermedium (Host) P.B Euphytica, 1992, 62, 83-88.	0.6	6
11	Transfer of the Glu-D1 Gene from Chromosome 1D of Breadwheat to Chromosome 1R in Hexaploid Triticale. Plant Breeding, 1992, 109, 203-210.	1.0	66
12	Cytological and molecular characterization of a chromosome interchange and addition lines in Cadet involving chromosome 5B of wheat and 6Ag of Lophopyrum ponticum. Theoretical and Applied Genetics, 1993, 86, 827-832.	1.8	10
13	Molecular detection of Lophopyrum chromatin in wheat-Lophopyrum recombinants and their use in the physical mapping of chromosome 7D. Theoretical and Applied Genetics, 1993, 85, 561-567.	1.8	49
14	Metaphase-I bound-arm frequency and genome analysis in wheat-Aegilops hybrids. 2. Cytogenetical evidence for excluding Ae. Sharonensis as the donor of the B genome of polyploid wheats. Theoretical and Applied Genetics, 1993, 85, 587-592.	1.8	5
15	Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theoretical and Applied Genetics, 1993, 86-86, 141-149.	1.8	102
16	Stabilization of tetraploid triticale with chromosomes from Triticum aestivum (ABD)(ABD)RR (2n =) Tj ETQq1 1 0.	784314 rg	gBT /Overloo
17	Molecular cytogenetic analysis of Agropyron elongatum chromatin in wheat germplasm specifying resistance to wheat streak mosaic virus. Theoretical and Applied Genetics, 1993, 86, 41-48.	1.8	43
18	Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma, 1993, 102, 88-95.	1.0	126

CITATION REPORT ARTICLE IF CITATIONS A chromosome region-specific mapping strategy reveals gene-rich telomeric ends in wheat. 1.0 193 Chromosoma, 1993, 102, 374-381. CHy-banding patterns and chromatin organization inAegilops and Triticum species (Poaceae). Plant 0.3 9 Systematics and Evolution, 1993, 184, 1-10. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence <i>in situ</i> hybridization using total genomic and highly repeated DNA probes. Genome, 1993, 36, 0.9 352 489-494. C-banding polymorphism and linkage of nonhomoeologous RFLP loci in the D genome progenitor of 0.9 wheat. Genome, 1993, 36, 235-243. A cytogenetically based physical map of chromosome 1B in common wheat. Genome, 1993, 36, 548-554. 0.9 97 Standard karyotype of <i>Triticum longissimum</i> and its cytogenetic relationship with <i>T</i>. <i>aestivum</i>. Genome, 1993, 36, 731-742. 94 A Noncompensating Wheat-Rye Translocation Maintained in Perpetual Monosomy in Alloplasmic 1.0 7 Wheat. Journal of Heredity, 1993, 84, 126-129. Introgression of Elymus trachycaulus chromatin into common wheat. Chromosome Research, 1994, 2, 1.0 Thinopyrum distichum chromosome morphology and C-band distribution. Theoretical and Applied 1.8 6 Genetićs, 1994, 88, 949-955. Metaphase I-bound arms frequency and genome analysis in wheat-Aegilops hybrids. 3. Similar relationships between the B genome of wheat and S or S l genomes of Ae. speltoides, Ae. longissima and Ae. sharonensis. Theoretical and Applied Genetics, 1994, 88, 1043-1049. 1.8 Transfer of Ph I genes promoting homoeologous pairing from Triticum speltoides to common wheat. 1.8 118 Theoretical and Applied Genetics, 1994, 88, 97-101. Hybrids and backcross progenies between wheat (Triticum aestivum L.) and apomictic Australian wheatgrass [Elymus rectisetus (Nees in Lehm.) A. Löve & Connor]: karyotypic and genomic analyses. 1.8 Theoretical and Applied Genetics, 1994, 89, 599-605 Chromosome painting of Amigo wheat. Theoretical and Applied Genetics, 1994, 89-89, 811-813. 1.8 56 Waxy protein deficiency and chromosomal location of coding genes in common wheat. Theoretical and Applied Genetics, 1994, 89-89, 179-184. 1.8

Sister chromatid exchanges in cultured immature embryos of wheat species and regenerants. 33 1.8 10 Theoretical and Applied Genetics, 1994, 89-89, 287-292. High-resolution cytological mapping of the long arm of chromosome 5A in common wheat using a series of deletion lines induced by gametocidal (Gc) genes of Aegilops speltoides. Molecular Genetics and Genomics, 1994, 244, 253-259. 46 C-band polymorphism and structural rearrangements detected in common wheat (Triticum aestivum). 35 0.6 60 Euphytica, 1994, 78, 1-5. Recent advances in alien gene transfer in wheat. Euphytica, 1994, 73, 199-212. 431

#

19

21

23

25

26

27

29

 $\mathbf{31}$

3-13.

#	Article	IF	CITATIONS
37	Addition of Brassica alboglabra Bailey chromosomes to B. campestris L. with special emphasis on seed colour. Heredity, 1994, 73, 185-189.	1.2	32
38	Transfer of the Glu-D1 Gene from Chromosome 1D to Chromosome 1A in Hexaploid Triticale. Plant Breeding, 1994, 112, 177-182.	1.0	37
39	New 18S�26S ribosomal RNA gene loci: chromosomal landmarks for the evolution of polyploid wheats. Chromosoma, 1994, 103, 179-185.	1.0	177
40	Presence of various rye-specific repeated DNA sequences on the midget chromosome of rye. Genome, 1994, 37, 619-624.	0.9	4
41	Structural changes of rye chromosome 1R induced by a gametocidal chromosome Japanese Journal of Genetics, 1994, 69, 13-19.	1.0	44
42	Genetic and physical characterization of theLR1 leaf rust resistance locus in wheat (Triticum aestivum) Tj ETQq1	1 0.78431 2.4	.4 rgBT /Ov <mark>e</mark> r
43	Non-homoeologous wheat-rye chromosomal translocations conferring resistance to greenbug. Euphytica, 1995, 84, 121-125.	0.6	16
44	Detection of 5S rDNA and other repeated DNA on supernumerary B chromosomes ofTriticum species (Poaceae). Plant Systematics and Evolution, 1995, 196, 131-139.	0.3	25
45	Atomic force microscopy of plant chromosomes. Chromosome Research, 1995, 3, 128-131.	1.0	15
46	Cytogenetical studies in wheat XVI. Chromosome location of a new gene for resistance to leaf rust in a Japanese wheat-rye translocation line. Euphytica, 1995, 82, 141-147.	0.6	52
47	Chromosome structure of Triticum longissimum relative to wheat. Theoretical and Applied Genetics, 1995, 91, 105-109.	1.8	27
48	Standard karyotype of Triticum searsii and its relationship with other S-genome species and common wheat. Theoretical and Applied Genetics, 1995, 91, 248-254.	1.8	49
49	Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. Theoretical and Applied Genetics, 1995, 90, 150-156.	1.8	67
50	Physical distribution of translocation breakpoints in homoeologous recombinants induced by the absence of the Ph1 gene in wheat and triticale. Theoretical and Applied Genetics, 1995, 90, 714-719.	1.8	69
51	A cytogenetic ladder-map of the wheat homoeologous group-4 chromosomes. Theoretical and Applied Genetics, 1995, 90, 1007-1011.	1.8	158
52	Comparison of wheat physical maps with barley linkage maps for group 7 chromosomes. Theoretical and Applied Genetics, 1995, 91, 618-626.	1.8	75
53	Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theoretical and Applied Genetics, 1995, 91-91, 1125-1128.	1.8	241
54	Physical mapping of restriction fragment length polymorphisms (RFLPs) in homoeologous group 7 chromosomes of wheat by in situ hybridization. Heredity, 1995, 75, 225-233.	1.2	31

#	Article	IF	CITATIONS
55	Variation in highly repetitive DNA composition of heterochromatin in rye studied by fluorescence in situ hybridization. Genome, 1995, 38, 1061-1069.	0.9	61
56	Detection of maize DNA sequences amplified in wheat. Genome, 1995, 38, 946-950.	0.9	5
57	Characterization of <i>Hordeum chilense</i> chromosomes by C-banding and in situ hybridization using highly repeated DNA probes. Genome, 1995, 38, 435-442.	0.9	73
58	Nonrandom chromosome variation and morphogenic potential in cell lines of bread wheat (<i>Triticum aestivum</i> L.). Genome, 1995, 38, 869-878.	0.9	8
59	Chromosome 5D instability in cell lines of <i>Triticum tauschii</i> and morphological variation in regenerated plants. Genome, 1995, 38, 737-742.	0.9	6
60	Targeted mapping of rye chromatin in wheat by representational difference analysis. Genome, 1995, 38, 458-466.	0.9	19
61	Plant Cell, Tissue and Organ Culture. , 1995, , .		25
62	Detection of a 2.6â€,kb single/low copy DNA sequence on chromosomes of wheat (<i>Triticum) Tj ETQq1 1 0.784 246-249.</i>	314 rgBT / 0.9	Overlock 1 34
63	Standard Giemsa C-banded karyotype of Russian wildrye (<i>Psathyrostachys juncea</i>) and its use in identification of a deletion–translocation heterozygote. Genome, 1995, 38, 1262-1270.	0.9	6
64	Analysis off cereal chromosomes by atomic force microscopy. Genome, 1996, 39, 439-444.	0.9	25
65	Genome differentiation in <i>Aegilops</i> . 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome, 1996, 39, 293-306.	0.9	176
66	Genome and chromosome identification in cultivated barley and related species of the Triticeae (Poaceae) by in situ hybridization with the GAA-satellite sequence. Genome, 1996, 39, 93-104.	0.9	145
67	Molecular cytogenetic analysis of Agropyron chromatin specifying resistance to barley yellow dwarf virus in wheat. Genome, 1996, 39, 336-347.	0.9	75
68	Characterization of an Agropyron elongatum chromosome conferring resistance to cephalosporium stripe in common wheat. Genome, 1996, 39, 56-62.	0.9	35
69	Allocation of a gametocidal chromosome of Aegilops cylindrica to wheat homoeologous group 2 Genes and Genetic Systems, 1996, 71, 243-246.	0.2	24
70	Chromosomal localization of a tandemly repeated DNA sequence in Trifolium repens L Cell Research, 1996, 6, 39-46.	5.7	5
71	Standard karyotypes ofAegilops uniaristata, Ae. mutica, Ae. comosa subspeciescomosa andheldreichii (Poaceae). Plant Systematics and Evolution, 1996, 202, 199-210.	0.3	29
72	The karyotype ofFestucopsis serpentini (Poaceae Triticeae) from Albania studied by banding techniques and in situ hybridization. Plant Systematics and Evolution, 1996, 201, 75-82.	0.3	5

#	Article	IF	CITATIONS
73	Sequential combinations of C-banding and in situ hybridization and their use in the detection of interspecific introgressions into wheat. Euphytica, 1996, 89, 107-112.	0.6	2
74	Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica, 1996, 91, 59-87.	0.6	834
75	Identification of Haynaldia villosa chromosomes added to wheat using a sequential C-banding and genomic in situ hybridization technique. Theoretical and Applied Genetics, 1996, 92, 116-120.	1.8	19
76	C-banding analysis on wild Emmer (Triticum dicoccoides Körn) strains with and without spontaneous reciprocal translocations. Theoretical and Applied Genetics, 1996, 92, 173-178.	1.8	13
77	Chromosome substitutions of Triticum timopheevii in common wheat and some observations on the evolution of polyploid wheat species. Theoretical and Applied Genetics, 1996, 93, 1291-1298.	1.8	26
78	Variation of starch granule proteins and chromosome mapping of their coding genes in common wheat. Theoretical and Applied Genetics, 1996, 93-93, 275-281.	1.8	79
79	N-banded karyotype of Aegilops ovata and chromosomal constitution of its amphiploid with Triticum aestivum. Plant Breeding, 1996, 115, 330-334.	1.0	4
80	Cytogenetic identification of Triticum peregrinum chromosomes added to common wheat. Genome, 1996, 39, 272-276.	0.9	37
81	The Deletion Stocks of Common Wheat. Journal of Heredity, 1996, 87, 295-307.	1.0	649
82	Construction of midget chromosomes in wheat. Genome, 1997, 40, 566-569.	0.9	12
82 83	Construction of midget chromosomes in wheat. Genome, 1997, 40, 566-569. Molecular structure of a wheat chromosome end healed after gametocidal gene-induced breakage. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3140-3144.	0.9	12 40
82 83 84	Construction of midget chromosomes in wheat. Genome, 1997, 40, 566-569. Molecular structure of a wheat chromosome end healed after gametocidal gene-induced breakage. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3140-3144. Characterization of <i>Thinopyrum distichum</i> chromosomes using double fluorescence in situ hybridization, RFLP analysis of 5S and 26S rRNA, and C-banding of parents and addition lines. Genome, 1997, 40, 689-696.	0.9 3.3 0.9	12 40 11
82 83 84 85	Construction of midget chromosomes in wheat. Genome, 1997, 40, 566-569. Molecular structure of a wheat chromosome end healed after gametocidal gene-induced breakage. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3140-3144. Characterization of <i>Thinopyrum distichum</i> chromosomes using double fluorescence in situ hybridization, RFLP analysis of 5S and 26S rRNA, and C-banding of parents and addition lines. Genome, 1997, 40, 689-696. Root tip cell cycle synchronization and metaphase-chromosome isolation suitable for flow sorting in common wheat (<i>Triticum aestivum</i> L). Genome, 1997, 40, 633-638.	0.9 3.3 0.9 0.9	12 40 11 58
82 83 84 85 86	Construction of midget chromosomes in wheat. Genome, 1997, 40, 566-569. Molecular structure of a wheat chromosome end healed after gametocidal gene-induced breakage. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3140-3144. Characterization of <1>Thinopyrum distichum chromosomes using double fluorescence in situ hybridization, RFLP analysis of 5S and 26S rRNA, and C-banding of parents and addition lines. Genome, 1997, 40, 689-696. Root tip cell cycle synchronization and metaphase-chromosome isolation suitable for flow sorting in common wheat (<i>Triticum aestivum </i> L.). Genome, 1997, 40, 633-638. Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome, 1997, 40, 589-593.	0.9 3.3 0.9 0.9	12 40 11 58 182
82 83 84 85 86 87	Construction of midget chromosomes in wheat. Genome, 1997, 40, 566-569. Molecular structure of a wheat chromosome end healed after gametocidal gene-induced breakage. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3140-3144. Characterization of <i>Thinopyrum distichum</i> chromosomes using double fluorescence in situ hybridization, RFLP analysis of 5S and 26S rRNA, and C-banding of parents and addition lines. Genome, 1997, 40, 689-696. Root tip cell cycle synchronization and metaphase-chromosome isolation suitable for flow sorting in common wheat (<i>Triticum aestivum</i> L.). Genome, 1997, 40, 633-638. Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome, 1997, 40, 589-593. Transfer of disease resistance genes from Triticum araraticum to common wheat. Plant Breeding, 1997, 116, 105-112.	0.9 3.3 0.9 0.9 0.9	12 40 11 58 182
82 83 84 85 86 87 88	Construction of midget chromosomes in wheat. Cenome, 1997, 40, 566-569. Molecular structure of a wheat chromosome end healed after gametocidal gene-induced breakage. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3140-3144. Characterization of <i>Thinopyrum distichum</i> chromosomes using double fluorescence in situ hybridization, RFLP analysis of 5S and 26S rRNA, and C-banding of parents and addition lines. Genome, 1997, 40, 689-696. Root tip cell cycle synchronization and metaphase-chromosome isolation suitable for flow sorting in common wheat (<i>Triticum aestivum</i> L.). Genome, 1997, 40, 633-638. Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome, 1997, 40, 589-593. Transfer of disease resistance genes from Triticum araraticum to common wheat. Plant Breeding, 1997, 116, 105-112. Title is missing!. Euphytica, 1997, 96, 289-296.	0.9 3.3 0.9 0.9 0.9 1.0	12 40 11 58 182 14
82 83 84 85 86 87 88 88 88	Construction of midget chromosomes in wheat. Genome, 1997, 40, 566-569. Molecular structure of a wheat chromosome end healed after gametocidal gene-induced breakage. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3140-3144. Characterization of <1>Thinopyrum distichum 1 chromosomes using double fluorescence in situ hybridization, RFLP analysis of 5S and 26S rRNA, and C-banding of parents and addition lines. Genome, 1997, 40, 689-696. Root tip cell cycle synchronization and metaphase-chromosome isolation suitable for flow sorting in common wheat (<1>Triticum aestivum 1 L.). Genome, 1997, 40, 633-638. Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome, 1997, 40, 589-593. Transfer of disease resistance genes from Triticum araraticum to common wheat. Plant Breeding, 1997, 116, 105-112. Title is missing!. Euphytica, 1997, 96, 289-296. Homoeologous relationships of Triticum sharonense chromosomes to T. aestivum. Theoretical and Applied Genetics, 1997, 94, 657-663.	0.9 3.3 0.9 0.9 1.0 0.6 1.8	12 40 11 58 182 14 41 25

#	Article	IF	CITATIONS
91	DNA content of wheat monosomics at interphase estimated by flow cytometry. Theoretical and Applied Genetics, 1997, 95, 1300-1304.	1.8	22
92	Molecular cytogenetic analysis of tetraploid and hexaploid Aegilops crassa. Chromosome Research, 1998, 6, 629-637.	1.0	34
93	RFLP mapping of the three major genes, Vrn1, Q and B1, on the long arm of chromosome 5A of wheat. Euphytica, 1998, 101, 91-95.	0.6	70
94	Characterization of wheat-triticale doubled haploid lines by cytological and biochemical markers. Plant Breeding, 1998, 117, 7-12.	1.0	6
95	The chromosomal organization of simple sequence repeats in wheat and rye genomes. Chromosoma, 1998, 107, 587-594.	1.0	136
96	Molecular cytogenetic characterization of Thinopyrum intermedium-derived wheat germplasm specifying resistance to wheat streak mosaic virus. Theoretical and Applied Genetics, 1998, 96, 1-7.	1.8	49
97	Structural rearrangement in chromosome 2M of Aegilops comosa has prevented the utilization of the Compair and related wheat-Ae. comosa translocations in wheat improvement. Theoretical and Applied Genetics, 1998, 96, 780-785.	1.8	27
98	Homoeologous relationships of Aegilops speltoides chromosomes to bread wheat. Theoretical and Applied Genetics, 1998, 97, 181-186.	1.8	72
99	Identification and physical mapping of three Haynaldia villosa chromosome-6V deletion lines. Theoretical and Applied Genetics, 1998, 97, 1042-1046.	1.8	44
100	Cytogenetic analysis of a spontaneous 5B/6B translocation in tetraploid wheat landraces from Ethiopia, and implications for breeding. Plant Breeding, 1998, 117, 537-542.	1.0	7
101	The physical mapping of microsatellite markers in wheat. Genome, 1998, 41, 278-283.	0.9	159
102	Brief communication. The effect of mixed selected and unselected samples on the power of QTL mapping. Journal of Heredity, 1998, 89, 193-195.	1.0	2
103	Mapping a gene conferring resistance to Pseudocercosporella herpotrichoides on chromosome 4V of Dasypyrum villosum in a wheat background. Genome, 1998, 41, 1-6.	0.9	57
104	Brief communication. Karyotypic analysis of N-banded chromosomes of diploid alfalfa: Medicago sativa ssp. Caerulea and ssp. falcata and their hybrid. Journal of Heredity, 1998, 89, 191-193.	1.0	11
105	High-resolution RFLP map of the long arm of chromosome 5A in wheats and its synteny among cereals Genes and Genetic Systems, 1998, 73, 51-58.	0.2	9
106	Introduction of multi-alien chromatins carrying different powdery mildew-resistant genes from rye and Haynaldia villosa into wheat genome Genes and Genetic Systems, 1998, 73, 377-384.	0.2	4
107	Transfer of Wheatâ€Rye Translocation Chromosomes Conferring Resistance to Hessian Fly from Bread Wheat into Durum Wheat. Crop Science, 1999, 39, 1692-1696.	0.8	24
108	Molecular cytogenetic identification of wheat-Elymus tsukushiense introgression lines. Euphytica, 1999, 107, 217-224.	0.6	13

ARTICLE IF CITATIONS Title is missing!. Euphytica, 1999, 109, 123-129. 109 0.6 9 Structural chromosome differentiation between Triticum timopheevii and T. turgidum and T. aestivum. 1.8 Theoretical and Applied Genetics, 1999, 98, 744-750. Isolating individual wheat (Triticum aestivum) chromosome arms by flow cytometric analysis of 111 1.8 41 ditelosomic lines. Theoretical and Applied Genetics, 1999, 98, 1248-1252. Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively 1.8 184 express a rice thaumatin-like protein gene. Théoretical and Applied Genetics, 1999, 99, 755-760. Identification of wheat and tritordeum chromosomes by genomic in situ hybridization using total 113 0.9 7 Hordeum chilense DNA as probe. Genome, 1999, 42, 1194-1200. Development and identification of a complete set of <i>Triticum aestivum</i> - <i>Aegilops geniculata</i> chromosome addition lines. Genome, 1999, 42, 374-380. Physical mapping of wheat-<i>Aegilops longissima</i>breakpoints in mildew-resistant recombinant 115 0.9 18 lines using FISH with highly repeated and low-copy DNA probes. Genome, 1999, 42, 1013-1019. Molecular cytogenetic analysis of Aegilops cylindrica Host. Genome, 1999, 42, 497-503. 116 64 Constitutive heterochromatin DNA polymorphisms in diploid <i>Medicago sativa</i> ssp. 117 0.9 11 <i>falcata</i>. Genome, 1999, 42, 930-935. Chromosome-mediated and direct gene transfers in wheat. Genome, 1999, 42, 570-583. Homoeologous relationships of Haynaldia villosa chromosomes with those of Triticum aestivum as 119 17 0.2 revealed by RFLP analysis. Genes and Genetic Systems, 1999, 74, 77-82. Patterns of heterochromatin distribution in plant chromosomes. Genetics and Molecular Biology, 182 2000, 23, 1029-1041. Title is missing!. Euphytica, 2000, 112, 117-123. 121 0.6 57 Isolation of mildew resistant wheat-rye translocation lines from a double substitution line. Euphytica, 2000, 115, 167-172. 123 Title is missing!. Euphytica, 2000, 115, 49-57. 0.6 11 Meiotic metaphase I pairing behavior of a 5BL recombinant isochromosome in wheat. Chromosome 124 Research, 2000, 8, 671-676. Extended physical maps and a consensus physical map of the homoeologous group-6 chromosomes of 125 1.8 35 wheat (Triticum aestivum L. em Thell.). Theoretical and Applied Genetics, 2000, 100, 519-527. Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. 1.8

CITATION REPORT

Theoretical and Applied Genetics, 2000, 101, 51-58.

#	Article	IF	CITATIONS
127	Fixation of translocation 2A·4B infers the monophyletic origin of Ethiopian tetraploid wheat. Theoretical and Applied Genetics, 2000, 101, 705-710.	1.8	18
128	Direct isolation of differentially expressed genes from a specific chromosome region of common wheat: application of the amplified fragment length polymorphism-based mRNA fingerprinting (AMF) method in combination with a deletion line of wheat. Molecular Genetics and Genomics, 2000, 263, 635-641.	2.4	17
129	Recombination in an isochromosome preferentially occurs between cis isochromatids. Chromosoma, 2000, 109, 390-396.	1.0	1
130	OCCURRENCE OF THE 1RS/1BL WHEAT–RYE TRANSLOCATION IN HUNGARIAN WHEAT VARIETIES. Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2000, 48, 227-236.	0.2	18
131	Chromosome behaviour in the male and female sex mother cells of wheat(Triticum aestivumL.), oat (AvenasativaL.) and pearl millet(Pennisetum americanum(L.) Leeke). Caryologia, 2000, 53, 175-183.	0.2	10
132	Identification of AFLP markers on the satellite region of chromosome 1BS in wheat. Genome, 2000, 43, 729-735.	0.9	16
133	Physical location of homoeologous groups 5 and 6 molecular markers mapped in Triticum aestivum L , 2000, 91, 441-445.		5
134	Chromosomes Today. , 2000, , .		0
135	Pairing affinities of the B- and C-genome chromosomes of polyploid wheats with those of <i>Aegilops speltoides</i> . Genome, 2000, 43, 814-819.	0.9	36
137	MicroMeasure: A new computer program for the collection and analysis of cytogenetic data. Genome, 2001, 44, 439-443.	0.9	147
138	Large-scale selection of lines with deletions in chromosome 1B in wheat and applications for fine deletion mapping. Genome, 2001, 44, 501-508.	0.9	19
139	Candidate-gene cloning and targeted marker enrichment of wheat chromosomal regions using RNA fingerprinting - differential display. Genome, 2001, 44, 633-639.	0.9	3
140	Breeding Behavior of the Cytogenetically Engineered Wheatâ€Rye Translocation Chromosomes 1RS.1BL. Crop Science, 2001, 41, 1062-1065.	0.8	21
141	Attempts to Transfer Russian Wheat Aphid Resistance from a Rye Chromosome in Russian Triticales to Wheat. Crop Science, 2001, 41, 1743-1749.	0.8	25
142	The Au family, a novel short interspersed element (SINE) from Aegilops umbellulata. Theoretical and Applied Genetics, 2001, 102, 463-470.	1.8	34
143	Molecular cytogenetic characterization of Roegneria ciliaris chromosome additions in common wheat. Theoretical and Applied Genetics, 2001, 102, 651-657.	1.8	22
144	High-resolution structural analysis of biolistic transgene integration into the genome of wheat. Theoretical and Applied Genetics, 2001, 103, 56-62.	1.8	69
145	Early evolution of the chromosomal structure of Triticum turgidum–Aegilops ovata amphiploids carrying and lacking the Ph1 gene. Theoretical and Applied Genetics, 2001, 103, 1123-1128.	1.8	17

#	Article	IF	CITATIONS
146	High-density physical maps reveal that the dominant male-sterile gene Ms3 is located in a genomic region of low recombination in wheat and is not amenable to map-based cloning. Theoretical and Applied Genetics, 2001, 103, 998-1006.	1.8	44
147	Chromosome healing by addition of telomeric repeats in wheat occurs during the first mitotic divisions of the sporophyte and is a gradual process. Chromosome Research, 2001, 9, 137-146.	1.0	40
148	Introduction into Plant Genomics. Molecular Biology, 2001, 35, 285-293.	0.4	7
149	Localisation of DNA sequences on plant chromosomes using PRINS and C-PRINS. Cytotechnology, 2001, 23, 71-82.	0.7	26
150	Title is missing!. Plant and Soil, 2001, 237, 267-274.	1.8	6
151	Production of Near-Isogenic Lines and Marked Monosomic Lines in Common Wheat (Triticum aestivum) cv. Chinese Spring. Journal of Heredity, 2001, 92, 254-259.	1.0	13
152	Physical mapping of restriction fragment length polymorphism (RFLP) markers in homoeologous groups 1 and 3 chromosomes of wheat by in situ hybridization. Genome, 2001, 44, 401-412.	0.9	21
153	Gene-Containing Regions of Wheat and the Other Grass Genomes. Plant Physiology, 2002, 128, 803-811.	2.3	112
154	Genome Analysis and Meiotic Behaviour of New Tetraploid Secalotricum Forms Cytologia, 2002, 67, 297-300.	0.2	0
155	Karyotype and C-banding patterns of mitotic chromosomes in Henrardia persica (Boiss.) C.E. Hubb. Caryologia, 2002, 55, 289-293.	0.2	9
156	Identification of Expressed Sequence Markers for a Major Geneâ€Rich Region of Wheat Chromosome Group <i>1</i> Using RNA Fingerprinting–Differential Display. Crop Science, 2002, 42, 1285-1290.	0.8	10
157	Meiosis in allopolyploids – the importance of â€~Teflon' chromosomes. Trends in Genetics, 2002, 18, 456-463.	2.9	47
158	Physical location of a HSP70 gene homologue on the centromere of chromosome 1B of wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2002, 104, 184-191.	1.8	21
159	Production of a new wheat line possessing the 1BL.1RS wheat-rye translocation derived from Korean rye cultivar Paldanghomil. Theoretical and Applied Genetics, 2002, 104, 171-176.	1.8	54
160	The effect of a deficiency and a deletion on recombination in chromosome 1BL in wheat. Theoretical and Applied Genetics, 2002, 104, 1204-1208.	1.8	30
161	Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2002, 104, 1362-1372.	1.8	120
162	Origin of an apparent B chromosome by mutation, chromosome fragmentation and specific DNA sequence amplification. Chromosoma, 2002, 111, 332-340.	1.0	95
163	Chromosomal organization of ribosomal genes and NOR-associated heterochromatin, and NOR activity in some populations of Allium commutatum Guss. (Alliaceae). Botanical Journal of the Linnean Society, 2002, 139, 99-108.	0.8	16

#	Article	IF	CITATIONS
164	Characterisation of mildew resistant wheat-rye substitution lines and identification of an inverted chromosome by fluorescent in situ hybridisation. Heredity, 2002, 88, 349-355.	1.2	17
165	A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function. Plant Molecular Biology, 2002, 48, 767-789.	2.0	95
166	Structural and functional organization of the '1S0.8 gene-rich region' in the Triticeae. Plant Molecular Biology, 2002, 48, 791-804.	2.0	24
167	Title is missing!. Euphytica, 2002, 126, 153-159.	0.6	28
168	A strategy for enhancing recombination in proximal regions of chromosomes. Chromosome Research, 2002, 10, 645-654.	1.0	23
169	History of Modern Chromosomal Analysis. Differential Staining of Plant Chromosomes. Russian Journal of Developmental Biology, 2003, 34, 1-13.	0.1	2
170	High-resolution mapping of the leaf rust disease resistance gene Lr1 in wheat and characterization of BAC clones from the Lr1 locus. Theoretical and Applied Genetics, 2003, 106, 875-882.	1.8	39
171	Characterization of a knock-out mutation at the Gc2 locus in wheat. Chromosoma, 2003, 111, 509-517.	1.0	44
172	Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Functional and Integrative Genomics, 2003, 3, 39-55.	1.4	138
173	Fluorescence in situ hybridization polymorphism using two repetitive DNA clones in different cultivars of wheat. Plant Breeding, 2003, 122, 396-400.	1.0	85
174	Development of Triticum aestivum-Leymus racemosus translocation lines using gametocidal chromosomes. Science in China Series C: Life Sciences, 2003, 46, 522.	1.3	8
175	Analysis of Expressed Sequence Tag Loci on Wheat Chromosome Group 4. Genetics, 2004, 168, 651-663.	1.2	90
176	Chromosome Bin Map of Expressed Sequence Tags in Homoeologous Group 1 of Hexaploid Wheat and Homoeology With Rice and Arabidopsis. Genetics, 2004, 168, 609-623.	1.2	78
177	A Chromosome Bin Map of 2148 Expressed Sequence Tag Loci of Wheat Homoeologous Group 7. Genetics, 2004, 168, 687-699.	1.2	68
178	Deletion Mapping of Homoeologous Group 6-Specific Wheat Expressed Sequence Tags. Genetics, 2004, 168, 677-686.	1.2	43
179	Group 3 Chromosome Bin Maps of Wheat and Their Relationship to Rice Chromosome 1. Genetics, 2004, 168, 639-650.	1.2	81
180	Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Research, 2004, 32, 3546-3565.	6.5	181
181	Advances in Molecular Cytogenetics: Potential for Crop Improvement. , 2004, , 97-114.		2

#	Article	IF	CITATIONS
182	A Chromosome Bin Map of 16,000 Expressed Sequence Tag Loci and Distribution of Genes Among the Three Genomes of Polyploid Wheat. Genetics, 2004, 168, 701-712.	1.2	369
184	High-resolution FISH on super-stretched flow-sorted plant chromosomes. Plant Journal, 2004, 37, 940-950.	2.8	95
185	Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant Journal, 2004, 39, 960-968.	2.8	146
186	Chromosome Translocations in the Common Wheat Variety â€~Amigo'. Hereditas, 2004, 121, 199-202.	0.5	8
187	A new secondary reciprocal translocation discovered in Chinese wheat. Euphytica, 2004, 137, 333-338.	0.6	7
188	Analysis of Intraspecific Divergence of Hexaploid Wheat Triticum spelta L. by C-Banding of Chromosomes. Russian Journal of Genetics, 2004, 40, 1111-1126.	0.2	17
189	A cytogenetic method for stacking gene pairs in common wheat. Theoretical and Applied Genetics, 2004, 109, 1115-1124.	1.8	5
190	Construction of a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat. Theoretical and Applied Genetics, 2004, 109, 1337-1345.	1.8	60
191	A 2600-Locus Chromosome Bin Map of Wheat Homoeologous Group 2 Reveals Interstitial Gene-Rich Islands and Colinearity With Rice. Genetics, 2004, 168, 625-637.	1.2	78
192	Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome, 2004, 47, 36-45.	0.9	70
193	Identification of Wheat Chromosomal Regions Containing Expressed Resistance Genes. Genetics, 2004, 166, 461-481.	1.2	78
194	A New Source of Resistance to Tapesia yallundae Associated with a Homoeologous Group 4 Chromosome in Thinopyrum ponticum. Phytopathology, 2004, 94, 932-937.	1.1	24
195	Resistance of Tangmai 4 wheat to powdery mildew, stem rust, leaf rust, and stripe rust and its chromosome composition. Canadian Journal of Plant Science, 2004, 84, 1015-1023.	0.3	10
196	Chromosome Flow Sorting and Physical Mapping. , 2005, , 151-171.		6
197	Alien DNA introgression and wheat DNA rearrangements in a stable wheat line derived from the early generation of distant hybridization. Science in China Series C: Life Sciences, 2005, 48, 424.	1.3	2
198	Water-saving approaches for improving wheat production. Journal of the Science of Food and Agriculture, 2005, 85, 1379-1388.	1.7	39
199	Development and characterization of wheat- Leymus racemosus translocation lines with resistance to Fusarium Head Blight. Theoretical and Applied Genetics, 2005, 111, 941-948.	1.8	69
200	Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Functional and Integrative Genomics, 2005, 5, 80-96.	1.4	177

#	Article	IF	CITATIONS
201	Distribution of genes and recombination in wheat and other eukaryotes. Plant Cell, Tissue and Organ Culture, 2005, 79, 257-270.	1.2	30
202	Development and characterization of a Triticum aestivum-Haynaldia villosa translocation line T4VSâ‹4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica, 2005, 145, 317-320.	0.6	73
203	Distribution of genes and recombination on wheat homoeologous group 6 chromosomes: a synthesis of available information. Molecular Breeding, 2005, 15, 45-53.	1.0	7
205	Stable barley chromosomes without centromeric repeats. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9842-9847.	3.3	199
206	Comprehensive Molecular Cytogenetic Analysis of Sorghum Genome Architecture: Distribution of Euchromatin, Heterochromatin, Genes and Recombination in Comparison to Rice. Genetics, 2005, 171, 1963-1976.	1.2	94
207	Origin, structure, and behavior of a highly rearranged deletion chromosome 1BS-4 in wheat. Genome, 2005, 48, 591-597.	0.9	3
208	Analysis of recombination and gene distribution in the 2L1.0 region of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.). Genomics, 2005, 86, 47-54.	1.3	9
209	Robertsonian translocations in wheat arise by centric misdivision of univalents at anaphase I and rejoining of broken centromeres during interkinesis of meiosis II. Cytogenetic and Genome Research, 2005, 109, 293-297.	0.6	88
210	Detection of alien chromatin introgression from <i>Thinopyrum</i> into wheat using S genomic DNA as a probe – A landmark approach for <i>Thinopyrum</i> genome research. Cytogenetic and Genome Research, 2005, 109, 350-359.	0.6	66
211	LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model. Cytogenetic and Genome Research, 2005, 110, 91-107.	0.6	253
213	Structural and functional analyses of the wheat genomes based on expressed sequence tags (ESTs) related to abiotic stresses. Genome, 2006, 49, 1324-1340.	0.9	17
214	Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Genome, 2006, 49, 1023-1035.	0.9	89
215	Complex genome rearrangements reveal evolutionary dynamics of pericentromeric regions in the Triticeae. Genome, 2006, 49, 1628-1639.	0.9	41
216	Wheat Genetics Resource Center: The First 25 Years. Advances in Agronomy, 2006, 89, 73-136.	2.4	56
217	High-density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A. Genomics, 2006, 88, 74-87.	1.3	41
218	Spontaneous Hybridization between Bread Wheat (Triticum aestivum L.) and Its Wild Relatives in Europe. Crop Science, 2006, 46, 512-527.	0.8	63
219	Karyotypic Evolution and Molecular Cytogenetic Analysis of Solanum pinnatisectum, a New Source of Resistance to Late Blight and Colorado Potato Beetle in Potato. Cytologia, 2006, 71, 25-33.	0.2	6
220	Distribution of the wheat-rye translocation 1RS.1BL among bread wheat varieties of Bulgaria. Plant Breeding, 2006, 125, 102-104.	1.0	31

IF ARTICLE CITATIONS Advanced resources for plant genomics: a BAC library specific for the short arm of wheat 221 2.8 71 chromosomeâ€f1B. Plant Journal, 2006, 47, 977-986. Cytogenetic analysis of alloplasmic recombinant lines (H. vulgare)—T. aestivum unstable in fertility and viability. Russian Journal of Genetics, 2006, 42, 140-149. 0.2 Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum 223 0.6 38 intermedium ssp. trichophorum. Euphytica, 2006, 149, 11-17. Targeted mapping of ESTs linked to the adult plant resistance gene Lr46 in wheat using synteny with 224 rice. Functional and Integrative Genomics, 2006, 6, 122-131.

CITATION REPORT

Map-based analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum) Tj ETQq0 0 0 rgBT $\frac{10}{105}$ f 50 58

226	Genomic analysis and marker development for the Tsn1 locus in wheat using bin-mapped ESTs and flanking BAC contigs. Theoretical and Applied Genetics, 2006, 112, 1132-1142.	1.8	54
227	Biochemical and genetic characterization of wheat (Triticum spp.) kernel polyphenol oxidases. Journal of Cereal Science, 2006, 44, 353-367.	1.8	33
228	Molecular Analysis, Cytogenetics and Fertility of Introgression Lines From Transgenic Wheat to Aegilops cylindrica Host. Genetics, 2006, 174, 2061-2070.	1.2	19
229	Gene evolution at the ends of wheat chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4162-4167.	3.3	67
230	Karyotype of Araucaria angustifolia and the decondensation/activation mode of its nucleolus organiser region. Australian Journal of Botany, 2007, 55, 165.	0.3	8
231	Preferential elimination of chromosome 1D from homoeologous group-1 alien addition lines in hexaploid wheat. Genes and Genetic Systems, 2007, 82, 403-408.	0.2	11
232	Chromosomal rearrangements in wheat: their types and distribution. Genome, 2007, 50, 907-926.	0.9	166
233	Mass Production of Intergeneric Chromosomal Translocations through Pollen Irradiation of <i>Triticum durumâ€Haynaldia villosa</i> Amphiploid. Journal of Integrative Plant Biology, 2007, 49, 1619-1626.	4.1	32
234	Quinoa (Chenopodium quinoa). , 2007, , 147-158.		8
235	Wheat genome structure and function: genome sequence data and the International Wheat Genome Sequencing Consortium. Australian Journal of Agricultural Research, 2007, 58, 470.	1.5	12
236	Cytogenetics in the age of molecular genetics. Australian Journal of Agricultural Research, 2007, 58, 498.	1.5	24
237	Physical Mapping of Wheat and Rye Expressed Sequence Tag–Simple Sequence Repeats on Wheat Chromosomes. Crop Science, 2007, 47, S-3.	0.8	10
238	Water and Nutrient Use Efficiency in Diploid, Tetraploid and Hexaploid Wheats. Journal of Integrative Plant Biology, 2007, 49, 706-715.	4.1	41

#	Article	IF	CITATIONS
239	Chromosome C-banding of the teosinte Zea nicaraguensis and comparison to other Zea species. Hereditas, 2007, 144, 96-101.	0.5	9
240	Analysis of intraspecific diversity of cultivated emmer Triticum dicoccum (Schrank.) schuebl using C-banding technique. Russian Journal of Genetics, 2007, 43, 1271-1285.	0.2	10
241	Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theoretical and Applied Genetics, 2007, 114, 1379-1389.	1.8	175
242	Map-based analysis of genetic loci on chromosome 2D that affect glume tenacity and threshability, components of the free-threshing habit in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2007, 116, 135-145.	1.8	41
243	Effects of the 6VS.6AL translocation on agronomic traits and dough properties of wheat. Euphytica, 2007, 155, 305-313.	0.6	42
244	The gametocidal chromosome as a tool for chromosome manipulation in wheat. Chromosome Research, 2007, 15, 67-75.	1.0	109
245	Chromosome-based genomics in the cereals. Chromosome Research, 2007, 15, 51-66.	1.0	146
246	Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Research, 2007, 15, 3-19.	1.0	278
247	A synthetic wheat with 56 chromosomes derived fromTriticum turgidum andAegilops tauschii. Journal of Applied Genetics, 2008, 49, 41-44.	1.0	6
248	A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theoretical and Applied Genetics, 2008, 117, 181-189.	1.8	161
249	Analysis of introgression of Aegilops ventricosa Tausch. genetic material in a common wheat background using C-banding. Theoretical and Applied Genetics, 2008, 117, 803-811.	1.8	16
250	Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theoretical and Applied Genetics, 2008, 117, 1155-1166.	1.8	132
251	Inducement of chromosome translocation with small alien segments by irradiating mature female gametes of the whole arm translocation line. Science in China Series C: Life Sciences, 2008, 51, 346-352.	1.3	27
252	Development of Triticum aestivum-Leymus racemosus ditelosomic substitution line 7Lr#1S(7A) with resistance to wheat scab and its meiotic behavior analysis. Science Bulletin, 2008, 53, 3522-3529.	4.3	11
253	A Physical Map of the 1-Gigabase Bread Wheat Chromosome 3B. Science, 2008, 322, 101-104.	6.0	356
254	Production and molecular and cytogenetic analyses of euploid (2n = 42) and telocentric addition (2n) Tj ETQq1 1 Journal of Genetics, 2008, 44, 67-73.	0.784314 0.2	rgBT /Overl 13
255	Statistical evaluation of length measurements on barley chromosomes with a proposal for a new nomenclature for symbols and positions of cytological markers. Hereditas, 2008, 117, 51-59.	0.5	22
256	Physical organisation of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications. Cytogenetic and Genome Research, 2008, 120, 210-219.	0.6	73

ARTICLE

A novel resource for genomics of Triticeae: BAC library specific for the short arm of rye (Secale) Tj ETQq0 0 0 rgBT $\frac{10}{1.2}$ Tf 50 74

258	The use of cytogenetic tools for studies in the crop-to-wild gene transfer scenario. Cytogenetic and Genome Research, 2008, 120, 384-395.	0.6	25
259	Structural Changes of 2V Chromosome of Haynaldia villosa Induced by Gametocidal Chromosome 3C of Aegilops triuncialis. Agricultural Sciences in China, 2008, 7, 804-811.	0.6	8
260	Characterization of T. aestivum-H. californicum chromosome addition lines DA2H and MA5H. Journal of Genetics and Genomics, 2008, 35, 673-678.	1.7	15
261	Comparative analysis of D and R genomes in two lignes (X- <i>Trit-icosecale</i> wittmak) and their genitors (<i>Secale cereale</i> L., <i>Triticum aestivum</i> L.) by N-banding. Caryologia, 2008, 61, 245-252.	0.2	1
262	The Origin of a "Zebra―Chromosome in Wheat Suggests Nonhomologous Recombination as a Novel Mechanism for New Chromosome Evolution and Step Changes in Chromosome Number. Genetics, 2008, 179, 1169-1177.	1.2	27
263	Recurrent Deletions of Puroindoline Genes at the Grain <i>Hardness</i> Locus in Four Independent Lineages of Polyploid Wheat. Plant Physiology, 2008, 146, 200-212.	2.3	68
264	Wheat– Thinopyrum Intermedium Recombinants Resistant to Wheat Streak Mosaic Virus and Triticum Mosaic Virus. Crop Science, 2009, 49, 1221-1226.	0.8	45
265	Genetic diversity and phylogeny in Hystrix (Poaceae, Triticeae) and related genera inferred from Giemsa C-banded karyotypes. Genetics and Molecular Biology, 2009, 32, 521-527.	0.6	6
266	A Molecular-Cytogenetic Method for Locating Genes to Pericentromeric Regions Facilitates a Genomewide Comparison of Synteny Between the Centromeric Regions of Wheat and Rice. Genetics, 2009, 183, 1235-1247.	1.2	14
267	Detailed Recombination Studies Along Chromosome 3B Provide New Insights on Crossover Distribution in Wheat (<i>Triticum aestivum</i> L.). Genetics, 2009, 181, 393-403.	1.2	157
268	Removing celiac disease-related gluten proteins from bread wheat while retaining technological properties: a study with Chinese Spring deletion lines. BMC Plant Biology, 2009, 9, 41.	1.6	97
269	Orthology between genomes of Brachypodium, wheat and rice. BMC Research Notes, 2009, 2, 93.	0.6	55
270	Centromeric distribution of 350-family in <i>Dasypyrum villosum</i> and its application to identifying <i>Dasypyrum</i> chromatin in the wheat genome. Hereditas, 2009, 146, 58-66.	0.5	32
271	Molecular cytogenetic characterization of wheat–Secale africanum amphiploids and derived introgression lines with stripe rust resistance. Euphytica, 2009, 167, 197-202.	0.6	21
272	Development of isohomoeoallelic lines within the wheat cv. Courtot for high molecular weight glutenin subunits: transfer of the Glu-D1 locus to chromosome 1A. Theoretical and Applied Genetics, 2009, 119, 471-481.	1.8	12
273	Microsatellite mapping of genes that determine supernumerary spikelets in wheat (T.Âaestivum) and rye (S.Âcereale). Theoretical and Applied Genetics, 2009, 119, 867-874.	1.8	39
274	Evaluation of the genetic variability of homoeologous group 3 SSRS in bread wheat. Cytology and Genetics, 2009, 43, 99-111.	0.2	0

#	Article	IF	CITATIONS
275	Construction of secalotriticum (Rye-wheat amphidiploids with the rye cytoplasm (RRAABB, 2n = 42)), the formation of the karyotypes of the F1BC1 and F1BC2 rye-triticale amphidiploids, and commercial and biological characteristics of the early secalotriticum generations. Russian Journal of Genetics, 2009, 45, 562-570.	0.2	1
276	Diversity and the origin of the European population of Triticum dicoccum (Schrank) Schuebl. As revealed by chromosome analysis. Russian Journal of Genetics, 2009, 45, 1082-1091.	0.2	11
277	An improved method of genomic in situ hybridization (GISH) for distinguishing closely related genomes of tetraploid and hexaploid wheat species. Russian Journal of Developmental Biology, 2009, 40, 90-94.	0.1	3
278	Localization of <i>Rad50, </i> a Single-Copy Gene, on Group 5 Chromosomes of Wheat, Using a FISH Protocol Employing Tyramide for Signal Amplification (Tyr-FISH). Cytogenetic and Genome Research, 2009, 125, 321-328.	0.6	16
279	Distribution of Eu- and Heterochromatin in <i>Plantagoovata</i> . Cytogenetic and Genome Research, 2009, 125, 235-240.	0.6	18
281	Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight. Genome, 2009, 52, 467-483.	0.9	66
282	Induction and transmission of wheat-Haynaldia villosa chromosomal translocations. Journal of Genetics and Genomics, 2009, 36, 313-320.	1.7	20
283	Cytogenetic and molecular identification of three Triticum aestivum-Leymus racemosus translocation addition lines. Journal of Genetics and Genomics, 2009, 36, 379-385.	1.7	10
284	Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum) Tj ETQq0	000 rgBT	/Qverlock 10
285	Isolated chromosomes as a new and efficient source of DArT markers for the saturation of genetic maps. Theoretical and Applied Genetics, 2010, 121, 465-474.	1.8	35
286	Characterization of a wheat–Thinopyrum bessarabicum (T2JS-2BS·2BL) translocation line. Theoretical and Applied Genetics, 2010, 121, 589-597.	1.8	49
287	Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres. Chromosoma, 2010, 119, 553-563.	1.0	58
288	Molecular cytogenetic analysis of Triticum aestivum-Leymus racemosus reciprocal chromosomal translocation T7DS·5LrL/T5LrS·7DL. Science Bulletin, 2010, 55, 1026-1031.	1.7	8
289	Cytogenetic analysis of hybrids derived from wheat and Tritipyrum using conventional staining and genomic in situ hybridization. Biologia Plantarum, 2010, 54, 252-258.	1.9	8
290	Dynamic nature of a wheat centromere with a functional gene. Molecular Breeding, 2010, 26, 177-187.	1.0	5
291	Development and characterization of two new Triticum aestivum–Dasypyrum villosum Robertsonian translocation lines T1DS·1V#3L and T1DL·1V#3S and their effect on grain quality. Euphytica, 2010, 175, 343-350.	0.6	26

292	Comparative physical mapping between wheat chromosome arm 2BL and rice chromosome 4. Genetica, 2010, 138, 1277-1296.	0.5	4
293	Molecular cytogenetic characterization of the amphiploid between bread wheat and Psathyrostachys huashanica. Genetic Resources and Crop Evolution, 2010, 57, 111-118.	0.8	15

#	Article	IF	Citations
294	C-banded karyotype of Thinopyrum bessarabicum and identification of its chromosomes in wheat background. Genetic Resources and Crop Evolution, 2010, 57, 319-324.	0.8	10
295	Development and characterization of a Triticum aestivum-H. villosa T5VS•5DL translocation line with soft grain texture. Journal of Cereal Science, 2010, 51, 220-225.	1.8	19
296	Wheatâ€Rye T2BS·2BLâ€2RL Recombinants with Resistance to Hessian Fly (<i>H21</i>). Crop Science, 2010, 50 920-925.	^{0,} 0.8	14
297	Megabase Level Sequencing Reveals Contrasted Organization and Evolution Patterns of the Wheat Gene and Transposable Element Spaces. Plant Cell, 2010, 22, 1686-1701.	3.1	258
298	A Comparative Analysis of Chromosome Pairing at Metaphase I in Interspecific Hybrids between Durum Wheat <i>(Triticum turgidum </i> L <i>.)</i> and the Most Widespread <i>Aegilops</i> Species. Cytogenetic and Genome Research, 2010, 129, 124-132.	0.6	10
299	Morphological variation in <i>Elymus hystrix</i> L. (Poaceae: Triticeae). Caryologia, 2010, 63, 359-366.	0.2	1
300	Frequent Gene Movement and Pseudogene Evolution Is Common to the Large and Complex Genomes of Wheat, Barley, and Their Relatives Â. Plant Cell, 2011, 23, 1706-1718.	3.1	190
301	Development of a set of compensating <i>Triticum aestivum – Dasypyrum villosum</i> Robertsonian translocation lines. Genome, 2011, 54, 836-844.	0.9	50
302	Dasypyrum. , 2011, , 185-292.		42
303	Construction of Identification System for Alien Chromatin in Crop Plant. Procedia Environmental Sciences, 2011, 8, 637-644.	1.3	1
304	Chromosomes analysis of five diploid garden Hyacinth species. Scientia Horticulturae, 2011, 131, 82-87.	1.7	2
305	Aegilops. , 2011, , 1-76.		89
306	Introgression of Chromosome 3Ns from Psathyrostachys huashanica into Wheat Specifying Resistance to Stripe Rust. PLoS ONE, 2011, 6, e21802.	1.1	42
307	Dough quality of bread wheat lacking α-gliadins with celiac disease epitopes and addition of celiac-safe avenins to improve dough quality. Journal of Cereal Science, 2011, 53, 206-216.	1.8	27
308	Molecular cytogenetic identification of a new wheat-Thinopyrum substitution line with stripe rust resistance. Euphytica, 2011, 177, 169-177.	0.6	42
309	A Tal-PhI wheat genetic stock facilitates efficient alien introgression. Genetic Resources and Crop Evolution, 2011, 58, 667-678.	0.8	17
310	Identification and development of diagnostic markers for a powdery mildew resistance gene on chromosome 2R of Chinese rye cultivar Jingzhouheimai. Molecular Breeding, 2011, 27, 455-465.	1.0	30
311	Development and characterization of wheat-Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust. Theoretical and Applied Genetics, 2011, 122, 1537-1545.	1.8	77

#	Article	IF	CITATIONS
312	A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theoretical and Applied Genetics, 2011, 123, 159-167.	1.8	114
313	Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011, 123, 1055-1063.	1.8	125
314	Molecular cytogenetic characterization of a new wheat Secale africanum 2Ra(2D) substitution line for resistance to stripe rust. Journal of Genetics, 2011, 90, 283-287.	0.4	18
315	Molecular characterization of a wheat -Thinopyrum ponticum partial amphiploid and its derived substitution line for resistance to stripe rust. Journal of Applied Genetics, 2011, 52, 279-285.	1.0	28
316	Molecular cytogenetic characterization of a new leaf rolling triticale. Genetics and Molecular Research, 2011, 10, 2953-2961.	0.3	5
317	Genetic Compensation Abilities of Aegilopsspeltoides Chromosomes for Homoeologous B-Genome Chromosomes of Polyploid Wheat in Disomic S(B) Chromosome Substitution Lines. Cytogenetic and Genome Research, 2011, 134, 144-150.	0.6	15
318	The 3Ns Chromosome of <i>Psathyrostachys huashanica</i> Carries the Gene(s) Underlying Wheat Stripe Rust Resistance. Cytogenetic and Genome Research, 2011, 134, 136-143.	0.6	7
319	Chromosome Size in Diploid Eukaryotic Species Centers on the Average Length with a Conserved Boundary. Molecular Biology and Evolution, 2011, 28, 1901-1911.	3.5	31
320	Alien introgressions represent a rich source of genes for crop improvement. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7657-7658.	3.3	89
321	BAC Libraries from Wheat Chromosome 7D: Efficient Tool for Positional Cloning of Aphid Resistance Genes. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-11.	3.0	33
322	A Compensating Wheat– <i>Thinopyrum intermedium</i> Robertsonian Translocation Conferring Resistance to <i>Wheat Streak Mosaic Virus</i> and <i>Triticum</i> Mosaic Virus. Crop Science, 2011, 51, 2382-2390.	0.8	43
323	Genetic Mapping Analysis of Breadâ€Making Quality Traits in Spring Wheat. Crop Science, 2012, 52, 2182-2197.	0.8	40
324	Physical Mapping of <i>Puroindoline bâ€2</i> Genes in Wheat using †Chinese Spring' Chromosome Group 7 Deletion Lines. Crop Science, 2012, 52, 2674-2678.	0.8	18
325	Development of High-Density Genetic Maps for Barley and Wheat Using a Novel Two-Enzyme Genotyping-by-Sequencing Approach. PLoS ONE, 2012, 7, e32253.	1.1	1,685
326	Karyotypic Variation and Karyomorphology in Iranian Endemic Ecotypes of <i>Plantago ovata</i> Forsk Cytologia, 2012, 77, 215-223.	0.2	10
327	Effect of a rye B chromosome and its segments on homoeologous pairing in hybrids between common wheat and <i>Aegilops variabilis</i> . Genes and Genetic Systems, 2012, 87, 1-7.	0.2	19
328	Characterization of a new T2DS.2DL-?R translocation triticale ZH-1 with multiple resistances to diseases. Genetic Resources and Crop Evolution, 2012, 59, 1161-1168.	0.8	18
329	Molecular and cytogenetic characterization of a small alien-segment translocation line carrying the softness genes of <i>Haynaldia villosa</i> . Genome, 2012, 55, 639-646.	0.9	19

#	Article	IF	CITATIONS
330	Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma, 2012, 121, 597-611.	1.0	104
331	Chromosome arm-specific BAC end sequences permit comparative analysis of homoeologous chromosomes and genomes of polyploid wheat. BMC Plant Biology, 2012, 12, 64.	1.6	22
332	Construction of Whole Genome Radiation Hybrid Panels and Map of Chromosome 5A of Wheat Using Asymmetric Somatic Hybridization. PLoS ONE, 2012, 7, e40214.	1.1	5
333	Positive or negative effects on dough strength in large-scale group-1 chromosome deletion lines of common wheat (Triticum aestivum L.). Euphytica, 2012, 186, 57-65.	0.6	8
334	Inversions of chromosome arms 4AL and 2BS in wheat invert the patterns of chiasma distribution. Chromosoma, 2012, 121, 201-208.	1.0	29
335	Radiation hybrid QTL mapping of Tdes2 involved in the first meiotic division of wheat. Theoretical and Applied Genetics, 2013, 126, 1977-1990.	1.8	12
336	Distribution of highly repeated DNA sequences in Haynaldia villosa and its application in the identification of alien chromatin. Science Bulletin, 2013, 58, 890-897.	1.7	26
337	Comparative characteristic of Triticum aestivum/Triticum durum and Triticum aestivum/Triticum dicoccum hybrid lines by genomic composition and resistance to fungal diseases under different environmental conditions. Russian Journal of Genetics, 2013, 49, 1112-1118.	0.2	9
338	Development and characterization of a compensating wheat-Thinopyrum intermedium Robertsonian translocation with Sr44 resistance to stem rust (Ug99). Theoretical and Applied Genetics, 2013, 126, 1167-1177.	1.8	54
339	Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome, 2013, 56, 131-137.	0.9	167
340	Cytomolecular Identification of Individual Wheat-Wheat Chromosome Arm Associations in Wheat-Rye Hybrids. Cytogenetic and Genome Research, 2013, 139, 128-136.	0.6	8
342	Dissection of rye chromosomes by the gametocidal system. Genes and Genetic Systems, 2013, 88, 321-327.	0.2	14
343	Genome Structure and Salt Stress Response of Some Segregated Lines from Wheat and Tritipyrum Crosses. Cytologia, 2013, 78, 367-377.	0.2	4
344	Characterization of a new wheat-Aegilops biuncialis addition line conferring quality-associated HMW glutenin subunits. Genetics and Molecular Research, 2014, 13, 660-669.	0.3	30
345	Development and discrimination of 12 double ditelosomics in tetraploid wheat cultivar DR147. Genome, 2014, 57, 89-95.	0.9	9
346	Cytogenetic and molecular markers for detecting <i>Aegilops uniaristata</i> chromosomes in a wheat background. Genome, 2014, 57, 489-497.	0.9	17
347	A Novel Wheat- <i>Dasypyrum breviaristatum </i> Substitution Line with Stripe Rust Resistance. Cytogenetic and Genome Research, 2014, 143, 280-287.	0.6	18
348	Cytogenetic and molecular identification of small-segment chromosome translocation lines from wheat-rye substitution lines to create wheat germplasm with beneficial traits. Biotechnology and Biotechnological Equipment, 2014, 28, 8-13.	0.5	2

#	Article	IF	Citations
349	Production and Molecular Cytogenetic Identification of Wheat-Alien Hybrids and Introgression Lines. , 2014, , 255-283.		22
350	Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theoretical and Applied Genetics, 2014, 127, 715-730.	1.8	98
351	Molecular cytogenetic characteristics of a translocation line between common wheat and Thinopyrum intermedium with resistance to powdery mildew. Euphytica, 2014, 197, 201-210.	0.6	21
352	Introduction of chromosome segment carrying the seed storage protein genes from chromosome 1V of Dasypyrum villosum showed positive effect on bread-making quality of common wheat. Theoretical and Applied Genetics, 2014, 127, 523-533.	1.8	41
353	Next-Generation Survey Sequencing and the Molecular Organization of Wheat Chromosome 6B. DNA Research, 2014, 21, 103-114.	1.5	45
354	Development of T. aestivum L.–H. californicum Alien Chromosome Lines and Assignment of Homoeologous Groups of Hordeum californicum Chromosomes. Journal of Genetics and Genomics, 2014, 41, 439-447.	1.7	9
355	C-banding patterns in six taxa ofParis(Melanthiaceae). Caryologia, 2014, 67, 106-109.	0.2	0
356	Structural and functional partitioning of bread wheat chromosome 3B. Science, 2014, 345, 1249721.	6.0	542
357	Metaâ€Analysis of Wheat QTL Regions Associated with Adaptation to Drought and Heat Stress. Crop Science, 2015, 55, 477-492.	0.8	202
358	(GAA)n microsatellite as an indicator of the A genome reorganization during wheat evolution and domestication. Comparative Cytogenetics, 2015, 9, 533-547.	0.3	26
359	Molecular and Cytogenetic Characterization of a Powdery Mildew-Resistant Wheat-Aegilops mutica Partial Amphiploid and Addition Line. Cytogenetic and Genome Research, 2015, 147, 186-194.	0.6	8
360	Crop Production and Clobal Environmental Issues. , 2015, , .		32
361	Nonhomologous Chromosome Pairing in <i>Aegilops</i> - <i>Secale</i> Hybrids. Cytogenetic and Genome Research, 2015, 147, 268-273.	0.6	9
362	Use of Alien Diversity to Combat Some Major Biotic Stresses in Triticum aestivum L. , 2015, , 319-347.		2
363	<i>IdeoKar</i> : an ideogram constructing and karyotype analyzing software. Caryologia, 2015, 68, 31-35.	0.2	27
364	Constructing an alternative wheat karyotype using barley genomic DNA. Journal of Applied Genetics, 2015, 56, 45-48.	1.0	2
365	A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases. Euphytica, 2015, 204, 91-101.	0.6	43
366	Precise identification of two wheat–Thinopyrum intermedium substitutions reveals the compensation and rearrangement between wheat and Thinopyrum chromosomes. Molecular Breeding, 2015, 35, 1.	1.0	150

#	Article	IF	CITATIONS
367	Efficient marker-assisted screening of structural changes involving Haynaldia villosa chromosome 6V using a double-distal-marker strategy. Molecular Breeding, 2015, 35, 1.	1.0	30
368	Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from Elymus tsukushiensis into wheat. Theoretical and Applied Genetics, 2015, 128, 1019-1027.	1.8	79
369	Thinopyrum ponticum Chromatin-Integrated Wheat Genome Shows Salt-Tolerance at Germination Stage. International Journal of Molecular Sciences, 2015, 16, 4512-4517.	1.8	8
370	Mapping the â€`breaker' element of the gametocidal locus proximal to a block of sub-telomeric heterochromatin on the long arm of chromosome 4Ssh of Aegilops sharonensis. Theoretical and Applied Genetics, 2015, 128, 1049-1059.	1.8	15
371	Molecular Characterization of a New Wheat-Thinopyrum intermedium Translocation Line with Resistance to Powdery Mildew and Stripe Rust. International Journal of Molecular Sciences, 2015, 16, 2162-2173.	1.8	25
372	Advances in Wheat Genetics: From Genome to Field. , 2015, , .		10
373	Wheat Chromosome Analysis. , 2015, , 65-72.		1
374	Identification of genes bordering breakpoints of the pericentric inversions on 2B, 4B, and 5A in bread wheat (Triticum aestivum L.). Genome, 2015, 58, 385-390.	0.9	8
375	BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes. Plant Biotechnology Journal, 2016, 14, 1523-1531.	4.1	104
376	Cytogenetic Analysis of Lilium rosthornii. Journal of the American Society for Horticultural Science, 2016, 141, 444-448.	0.5	2
377	Cereal cyst nematode resistance gene CreV effective against Heterodera filipjevi transferred from chromosome 6VL of Dasypyrum villosum to bread wheat. Molecular Breeding, 2016, 36, 1.	1.0	33
378	Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theoretical and Applied Genetics, 2016, 129, 1975-1984.	1.8	92
379	Characterization of the homeologous genes of C24-sterol methyltransferase in Triticum aestivum L Doklady Biochemistry and Biophysics, 2016, 470, 357-360.	0.3	0
380	Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat. Theoretical and Applied Genetics, 2017, 130, 841-848.	1.8	65
381	Banding Techniques in Chromosome Analysis. , 2017, , 167-180.		0
382	Genotyping of hexaploid wheat varieties from different Russian regions. Russian Journal of Genetics: Applied Research, 2017, 7, 6-13.	0.4	8
383	Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat. Theoretical and Applied Genetics, 2017, 130, 549-556.	1.8	33
384	Karyotype and Fluorescence In Situ Hybridization Analysis of 15 Lilium Species from China. Journal of the American Society for Horticultural Science, 2017, 142, 298-305.	0.5	3

	CITATION REI	PORT	
#	Article	IF	CITATIONS
385	The Aegilops tauschii genome reveals multiple impacts of transposons. Nature Plants, 2017, 3, 946-955.	4.7	164
386	Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and <i>Thinopyrum bessarabicum</i> chromosomes. Genome, 2017, 60, 93-103.	0.9	96
387	Photosynthetic response of tetraploid and hexaploid wheat to water stress. Photosynthetica, 2017, 55, 454-466.	0.9	12
388	FISH karyotype of 85 common wheat cultivars/lines displayed by ND-FISH using oligonucleotide probes. Cereal Research Communications, 2017, 45, 549-563.	0.8	41
389	A High-Density Consensus Map of Common Wheat Integrating Four Mapping Populations Scanned by the 90K SNP Array. Frontiers in Plant Science, 2017, 8, 1389.	1.7	62
390	DRAWID: user-friendly java software for chromosome measurements and idiogram drawing. Comparative Cytogenetics, 2017, 11, 747-757.	0.3	62
391	Cytomolecular characterization of cultivars and landraces of wheat tolerant and sensitive to aluminum toxicity. Bragantia, 2017, 76, 456-469.	1.3	3
392	Analyse génomique chez le triticale (8x) et leurs géniteurs (blé et seigle) par les techniques C-banding, N-banding et Hybridation <i>in situ </i> : Identification de la translocation 2BL/7RS. Journal of Applied Bioscience, 2017, 116, 11577.	0.7	1
393	Genetic classification of <i>Aegilops columnaris</i> Zhuk. (2 <i>n</i> =4 <i>x</i> =28,) Tj ETQq0 0 0 rgBT /Overlock substitution patterns in common wheat × <i>Ae. columnaris</i> introgressive lines. Genome, 2018, 61, 131-143.	. 10 Tf 50 0.9	432 Td (U <s 12</s
394	Highâ€density genotyping of the A.E. Watkins Collection of hexaploid landraces identifies a large molecular diversity compared to elite bread wheat. Plant Biotechnology Journal, 2018, 16, 165-175.	4.1	67
395	Evolution of the S-Genomes in Triticum-Aegilops Alliance: Evidences From Chromosome Analysis. Frontiers in Plant Science, 2018, 9, 1756.	1.7	46
396	Cytogenetic Diversity of Korean Hexaploid Wheat (Triticum aestivum L.) with Simple Sequence Repeats (SSRs) by Fluorescence In Situ Hybridization. Journal of Crop Science and Biotechnology, 2018, 21, 491-497.	0.7	1
397	Evolution of Triticum aethiopicum Jakubz. from the Position of Chromosome Analysis. Russian Journal of Genetics, 2018, 54, 629-642.	0.2	8
398	The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. Theoretical and Applied Genetics, 2018, 131, 2213-2227.	1.8	64
399	Meiotic homoeologous recombination-based mapping of wheat chromosome 2B and its homoeologues in Aegilops speltoides and Thinopyrum elongatum. Theoretical and Applied Genetics, 2018, 131, 2381-2395.	1.8	21
400	Fluorescence in situ hybridization karyotyping reveals the presence of two distinct genomes in the taxon Aegilops tauschii. BMC Genomics, 2018, 19, 3.	1.2	53
401	Development of an oligonucleotide dye solution facilitates high throughput and cost-efficient chromosome identification in peanut. Plant Methods, 2019, 15, 69.	1.9	7
402	The Effect of Chromosome Structure upon Meiotic Homologous and Homoeologous Recombinations in Triticeae. Agronomy, 2019, 9, 552.	1.3	11

#	ARTICLE Cytological and molecular characterization of Thinopyrum bessarabicum chromosomes and	IF	CITATIONS
403	structural rearrangements introgressed in wheat. Molecular Breeding, 2019, 39, 1. Nuclear Disposition of Alien Chromosome Introgressions into Wheat and Rye Using 3D-FISH. International Journal of Molecular Sciences, 2019, 20, 4143.	1.8	12
405	Chromosome Arm Locations of Barley Sucrose Transporter Gene in Transgenic Winter Wheat Lines. Frontiers in Plant Science, 2019, 10, 548.	1.7	1
406	Molecular cytogenetic analysis reveals evolutionary relationships between polyploid Aegilops species. Plant Systematics and Evolution, 2019, 305, 459-475.	0.3	20
407	Physical Mapping of Peroxidase Genes and Development of Functional Markers for TaPod-D1 on Bread Wheat Chromosome 7D. Frontiers in Plant Science, 2019, 10, 523.	1.7	8
408	Instability of Alien Chromosome Introgressions in Wheat Associated with Improper Positioning in the Nucleus. International Journal of Molecular Sciences, 2019, 20, 1448.	1.8	14
409	Cytological markers used for identification and transfer of Aegilops spp. chromatin carrying valuable genes into cultivated forms of Triticum. Comparative Cytogenetics, 2019, 13, 41-59.	0.3	9
410	Marker-Assisted Development of a Blue-Grained Substitution Line Carrying the Thinopyrum ponticum Chromosome 4Th(4D) in the Spring Bread Wheat Saratovskaya 29 Background. Agronomy, 2019, 9, 723.	1.3	10
411	Chromosome Painting Facilitates Anchoring Reference Genome Sequence to Chromosomes In Situ and Integrated Karyotyping in Banana (Musa Spp.). Frontiers in Plant Science, 2019, 10, 1503.	1.7	59
412	Cytogenetics in the Study of Chromosomal Rearrangement during Wheat Evolution and Breeding. , 0, ,		3
413	Physical location of tandem repeats in the wheat genome and application for chromosome identification. Planta, 2019, 249, 663-675.	1.6	57
414	Molecular cytological analysis of alien introgressions in common wheat lines derived from the cross of TRITICUM AESTIVUM with T. kiharae. BMC Plant Biology, 2020, 20, 201.	1.6	8
415	Production of synthetic wheat lines to exploit the genetic diversity of emmer wheat and D genome containing Aegilops species in wheat breeding. Scientific Reports, 2020, 10, 19698.	1.6	6
416	Intervarietal Karyomorphological Studies on Two Species of Passiflora L. (Passifloraceae). Cytology and Genetics, 2020, 54, 465-471.	0.2	0
417	Molecular Cytogenetic Identification of Wheat-Aegilops Biuncialis 5Mb Disomic Addition Line with Tenacious and Black Glumes. International Journal of Molecular Sciences, 2020, 21, 4053.	1.8	12
418	Development of self-fertile deletion homozygous and ditelosomic lines for the long arm of chromosome 2A in common wheat. Genes and Genetic Systems, 2020, 95, 95-99.	0.2	0
419	Partitioning and physical mapping of wheat chromosome 3B and its homoeologue 3E in Thinopyrum elongatum by inducing homoeologous recombination. Theoretical and Applied Genetics, 2020, 133, 1277-1289.	1.8	4
420	An efficient Oligoâ€FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae. Plant Journal, 2021, 105, 978-993.	2.8	58

	Cı	CITATION REPORT	
#	Article	IF	CITATIONS
421	Cytogenetic and Micro-Morphological Studies on Several Accessions of Some Lepidium L. Species in Iran. Iranian Journal of Science and Technology, Transaction A: Science, 2021, 45, 417-426.	0.7	1
422	Clustered and dispersed chromosomal distribution of the two classes of Revolver transposon family in rye (Secale cereale). Journal of Applied Genetics, 2021, 62, 365-372.	1.0	0
423	Geçmişten Günümüze Genetik ve Kromozom Mühendisliği Çalışmalarının Süi Islahına Katkısı. Yuzuncu Yil University Journal of Agricultural Sciences, 2021, 31, 246-258.	rdürülebilir TarÄ 0.1	±m ve Bitki 1
426	Structural and Functional Genomics of Chenopodium quinoa. Compendium of Plant Genomes, 2021, 81-105.	, 0.3	2
427	Ear photosynthetic anatomy effect on wheat yield and water use efficiency. Agronomy Journal, 2020, 112, 1778-1793.	0.9	2
428	Gene Distribution in Cereal Genomes. , 2004, , 361-384.		1
429	Cytogenetic Analysis of Wheat and Rye Genomes. , 2009, , 121-135.		6
430	Preparation and Fluorescent Analysis of Plant Metaphase Chromosomes. Methods in Molecular Biology, 2016, 1370, 87-103.	0.4	14
431	Genome evolution in Triticeae. , 2000, , 155-167.		22
432	Epigenetic Variation Amongst Polyploidy Crop Species. , 2014, , 33-46.		3
433	Expanding genetic maps: reevaluation of the relationship between chiasmata and crossovers. , 1997, , 283-298.	,	8
434	Localisation of DNA sequences on plant chromosomes using PRINS and C-PRINS. , 2001, , 71-82.		16
435	Integrated physical maps of 2DL, 6BS and 7DL carrying loci for grain protein content and pre-harvest sprouting tolerance in bread wheat. Cereal Research Communications, 2001, 29, 33-40.	0.8	14
436	Identification of Aegilops ovata chromosomes added to the wheat (Triticum aestivum L.) genome. Cereal Research Communications, 1999, 27, 55-61.	0.8	7
437	Cytotaxonomy: The end of childhood. Plant Biosystems, 2012, 146, 703-710.	0.8	102
438	Identification and High-Density Mapping of Gene-Rich Regions in Chromosome Group <i>5</i> of Whe Genetics, 1996, 143, 1001-1012.	eat. 1.2	344
439	Flow Sorting of Mitotic Chromosomes in Common Wheat (<i>Triticum aestivum</i> L.). Genetics, 200 156, 2033-2041.)0, 1.2	200
440	Identification and Physical Localization of Useful Genes and Markers to a Major Gene-Rich Region on Wheat Group <i>15</i>	1.2	104

#	Article	IF	CITATIONS
441	Molecular cytogenetic analysis of <i>Aegilops cylindrica</i> Host. Genome, 1999, 42, 497-503.	0.9	42
443	Chromosomal Location and Comparative Genomics Analysis of Powdery Mildew Resistance Gene Pm51 in a Putative Wheat-Thinopyrum ponticum Introgression Line. PLoS ONE, 2014, 9, e113455.	1.1	70
444	Structure and Stability of Telocentric Chromosomes in Wheat. PLoS ONE, 2015, 10, e0137747.	1.1	16
445	Evidence of Allopolyploidy in Urochloa humidicola Based on Cytological Analysis and Genetic Linkage Mapping. PLoS ONE, 2016, 11, e0153764.	1.1	39
446	Collinearity Analysis and High-Density Genetic Mapping of the Wheat Powdery Mildew Resistance Gene Pm40 in Pl 672538. PLoS ONE, 2016, 11, e0164815.	1.1	12
447	Alien introgressions and chromosomal rearrangements do not affect the activity of gliadin-coding genes in hybrid lines of Triticum aestivum L. × Aegilops columnaris Zhuk. Vavilovskii Zhurnal Genetiki I Selektsii, 2018, 22, 507-514.	0.4	3
448	Wheat Genomics: Exploring the Polyploid Model. Current Genomics, 2002, 3, 577-591.	0.7	26
449	Characterization of EST‑SSR markers in bread wheat EST related to drought tolerance and functional analysis of SSR‑containing unigenes. , 0, , 1-12.		3
450	A Review of Genome Sequencing in the Largest Cereal Genome, <i>Triticum aestivum</i> L. Agricultural Sciences, 2017, 08, 194-207.	0.2	1
451	Meta-analysis of QTLs Involved in Pre-harvest Sprouting Tolerance and Dormancy in Bread Wheat. Triticeae Genomics and Genetics, 0, , .	0.0	19
453	Chromosome Banding. , 2004, , 263-265.		0
454	Karyotype and C-banding Patterns of Mitotic Chromosomes in Heteranthelium piliferum. Pakistan Journal of Biological Sciences, 2007, 10, 4160-4163.	0.2	1
455	Cytogenetic identification of wheat-Psathyrostachys huashanica amphiploid × triticale progenies for English grain aphid resistance. Scientia Agricola, 2013, 70, 161-166.	0.6	0
456	Comparison of C-banding patterns and in situ hybridization sites using highly repetitive and total genomic rye DNA probes of `Imperial' rye chromosomes added to `Chinese Spring' wheat. Genes and Genetic Systems, 1992, 67, 71-83.	0.2	1
457	Identification and Breeding Significance of Translocated Chromosomes in a Japanese Common Wheat Variety Eshimashinriki Breeding Science, 1994, 44, 391-396.	0.2	0
458	Repeated DNA Sequence 350bp Family Cloned from Agropyron intermedium for Identification of the Agropyron Chromosomes Added to Common Wheat Lines Breeding Science, 1994, 44, 183-189.	0.2	4
459	Chromosome Morphology and Number. , 1998, , 67-84.		1
460	Somatic karyotype and chromosome N-banding patterns of local Afghan wheats, Triticum aestivum L Cereal Research Communications, 1998, 26, 383-390.	0.8	0

IF

ARTICLE

New Aneuploids of Common Wheat. , 2015, , 73-81.

2

CITATIONS

463	Epigenetic Variation Amongst Polyploidy Crop Species. , 2019, , 171-183.		0
464	Cytomolecular Genetic Diversity Assessments of Two Wheat Species Grows in Egypt Journal of Agricultural Chemistry and Biotechnology, 2019, 10, 269-277.	0.0	0
465	The Kengyilia hirsuta karyotype polymorphisms as revealed by FISH with tandem repeats and single-gene probes. Comparative Cytogenetics, 2021, 15, 375-392.	0.3	4
467	Morphological, cytological, and molecular evidences for natural hybridization between <i>Roegneria stricta</i> and <i>Roegneria turczaninovii</i> (Triticeae: Poaceae). Ecology and Evolution, 2022, 12, e8517.	0.8	9
468	Advances in the Molecular Cytogenetics of Bananas, Family Musaceae. Plants, 2022, 11, 482.	1.6	7
469	Molecular cytogenetics for a wheat–Aegilops geniculata 3Mg alien addition line with resistance to stripe rust and powdery mildew. BMC Plant Biology, 2021, 21, 575.	1.6	4
475	Precise Identification of Chromosome Constitution and Rearrangements in Wheat–Thinopyrum intermedium Derivatives by ND-FISH and Oligo-FISH Painting. Plants, 2022, 11, 2109.	1.6	4
476	Development and identification of an elite wheat-Hordeum californicum T6HcS/6BL translocation line ND646 containing several desirable traits. Genetics and Molecular Biology, 2022, 45, .	0.6	1
480	Tools for Drawing Informative Idiograms. Methods in Molecular Biology, 2023, , 515-527.	0.4	3
481	Triticum L., 2023, , 365-526.		0
482	Aegilops L , 2023, , 213-364.		0
483	Evolution of the Allopolyploid Species of the Sub-tribe Triticineae. , 2023, , 555-604.		0
485	Genome Sequences from Diploids and Wild Relatives of Wheat for Comparative Genomics and Alien Introgressions. Compendium of Plant Genomes, 2024, , 241-263.	0.3	0