Standard karyotype and nomenclature system for desc structural aberrations in wheat (<i>Triticum aestivum<

Cenome

34, 830-839
DOI: 10.1139/g91-128

Citation Report

\#	Article	IF	Citations
1	Physical mapping of a male-fertility gene of common wheat.. Japanese Journal of Genetics, 1991, 66, 291-295.	1.0	26
2	Evolution und $Z \tilde{A}^{1} / 4$ chtung des Saatweizens(Triticum aestivum L.). Biologie in Unserer Zeit, 1991, 21, 248-254.	0.3	3
3	Identification of the Extra Chromosomes of the Primary Trisomics in Durum Wheat, Triticum durum var. hordeiforme by Wright C-banding Technique.. Cytologia, 1992, 57, 491-499.	0.2	0
4	Toward a cytogenetically based physical map of the wheat genome.. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 11307-11311.	3.3	227
5	Comparison of C-banding patterns and in situ hybridization sites using highly repetitive and total genomic rye DNA probes of 'Imperial' rye chromosomes added to 'Chinese Spring' wheat.. Japanese Journal of Genetics, 1992, 67, 71-83.	1.0	69
6	C-banding polymorphisms in several accessions of Triticum tauschii (Aegilops squarrosa). Genome, 1992, 35, 192-199.	0.9	41
7	Characterization of rust-resistant wheat-Agropyron intermedium derivatives by C-banding, in situ hybridization and isozyme analysis. Theoretical and Applied Genetics, 1992, 83-83, 775-782.	1.8	56
8	C-banding pattern and polymorphism of Aegilops caudata and chromosomal constitutions of the amphiploid T. aestivum â $€$ " Ae. caudata and six derived chromosome addition lines. Theoretical and Applied Genetics, 1992, 83, 589-596.	1.8	89
9	C-banding and in-situ hybridization analyses of Agropyron intermedium, a partial wheat $\times \mathrm{Ag}$. intermedium amphiploid, and six derived chromosome addition lines. Theoretical and Applied Genetics, 1992, 84-84, 899-905.	1.8	68
10	Karyological characterization of a partial amphiploid, Triticum turgidum L. var. durum ï¿1/2 Agropyron intermedium (Host) P.B.. Euphytica, 1992, 62, 83-88.	0.6	6
11	Transfer of the Clu-D1 Gene from Chromosome 1D of Breadwheat to Chromosome 1R in Hexaploid Triticale. Plant Breeding, 1992, 109, 203-210.	1.0	66
12	Cytological and molecular characterization of a chromosome interchange and addition lines in Cadet involving chromosome 5B of wheat and 6Ag of Lophopyrum ponticum. Theoretical and Applied Genetics, 1993, 86, 827-832.	1.8	10
13	Molecular detection of Lophopyrum chromatin in wheat-Lophopyrum recombinants and their use in the physical mapping of chromosome 7D. Theoretical and Applied Genetics, 1993, 85, 561-567.	1.8	49
14	Metaphase-I bound-arm frequency and genome analysis in wheat-Aegilops hybrids. 2. Cytogenetical evidence for excluding Ae. Sharonensis as the donor of the B genome of polyploid wheats. Theoretical and Applied Genetics, 1993, 85, 587-592.	1.8	5
15	Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theoretical and Applied Genetics, 1993, 86-86, 141-149.	1.8	102
16	Stabilization of tetraploid triticale with chromosomes from Triticum aestivum (ABD)(ABD)RR (2n=) Tj		$\mathrm{BT}_{6} /$ Overld
17	Molecular cytogenetic analysis of Agropyron elongatum chromatin in wheat germplasm specifying resistance to wheat streak mosaic virus. Theoretical and Applied Genetics, 1993, 86, 41-48.	1.8	43
18	Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly. Chromosoma, 1993, 102, 88-95.	1.0	126

\#	Article	IF	Citations
19	A chromosome region-specific mapping strategy reveals gene-rich telomeric ends in wheat. Chromosoma, 1993, 102, 374-381.	1.0	193
20	CHy-banding patterns and chromatin organization inAegilops andTriticum species (Poaceae). Plant Systematics and Evolution, 1993, 184, 1-10.	0.3	9
21	Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence <i>in situ</i> hybridization using total genomic and highly repeated DNA probes. Genome, 1993, 36, 489-494.	0.9	352
22	C-banding polymorphism and linkage of nonhomoeologous RFLP loci in the D genome progenitor of wheat. Genome, 1993, 36, 235-243.	0.9	6
23	A cytogenetically based physical map of chromosome 1B in common wheat. Genome, 1993, 36, 548-554.	0.9	97
24	Standard karyotype of <i> Triticum longissimum</i> and its cytogenetic relationship with <i> $\mathrm{T}<\|\mathrm{i}\rangle$. <i>aestivum</i>. Genome, 1993, 36, 731-742.	0.9	94
25	A Noncompensating Wheat-Rye Translocation Maintained in Perpetual Monosomy in Alloplasmic Wheat. Journal of Heredity, 1993, 84, 126-129.	1.0	7
26	Introgression ofElymus trachycaulus chromatin into common wheat. Chromosome Research, 1994, 2, 3-13.	1.0	27
27	Thinopyrum distichum chromosome morphology and C-band distribution. Theoretical and Applied Genetics, 1994, 88, 949-955.	1.8	6
28	Metaphase l-bound arms frequency and genome analysis in wheat-Aegilops hybrids. 3. Similar relationships between the B genome of wheat and S or S I genomes of Ae. speltoides, Ae. longissima and Ae. sharonensis. Theoretical and Applied Genetics, 1994, 88, 1043-1049.	1.8	16
29	Transfer of Ph I genes promoting homoeologous pairing from Triticum speltoides to common wheat. Theoretical and Applied Genetics, 1994, 88, 97-101.	1.8	118
30	Hybrids and backcross progenies between wheat (Triticum aestivum L.) and apomictic Australian wheatgrass [Elymus rectisetus (Nees in Lehm.) A. LÃqve \& Connor]: karyotypic and genomic analyses. Theoretical and Applied Genetics, 1994, 89, 599-605.	1.8	22

31 Chromosome painting of Amigo wheat. Theoretical and Applied Genetics, 1994, 89-89, 811-813. 1.8
32 Waxy protein deficiency and chromosomal location of coding genes in common wheat. Theoretical 1.8 136 and Applied Genetics, 1994, 89-89, 179-184.

Sister chromatid exchanges in cultured immature embryos of wheat species and regenerants.
1.8

10
Theoretical and Applied Genetics, 1994, 89-89, 287-292.
$1.8 \quad 10$

High-resolution cytological mapping of the long arm of chromosome 5A in common wheat using a
34 series of deletion lines induced by gametocidal (Gc) genes of Aegilops speltoides. Molecular Cenetics
2.4

46
and Genomics, 1994, 244, 253-259.

C-band polymorphism and structural rearrangements detected in common wheat (Triticum aestivum).
Euphytica, 1994, 78, 1-5.

\#	Article	IF	Citations
37	Addition of Brassica alboglabra Bailey chromosomes to B. campestris L. with special emphasis on seed colour. Heredity, 1994, 73, 185-189.	1.2	32
38	Transfer of the Clu-D1 Gene from Chromosome 1D to Chromosome 1A in Hexaploid Triticale. Plant Breeding, 1994, 112, 177-182.	1.0	37
39	New 18Sïi $1 / 226 \mathrm{~S}$ ribosomal RNA gene loci: chromosomal landmarks for the evolution of polyploid wheats. Chromosoma, 1994, 103, 179-185.	1.0	177
40	Presence of various rye-specific repeated DNA sequences on the midget chromosome of rye. Genome, 1994, 37, 619-624.	0.9	4
41	Structural changes of rye chromosome 1R induced by a gametocidal chromosome.. Japanese Journal of Genetics, 1994, 69, 13-19.	1.0	44
42	Genetic and physical characterization of theLR1 leaf rust resistance locus in wheat (Triticum aestivum) Tj		rgBT / O
43	Non-homoeologous wheat-rye chromosomal translocations conferring resistance to greenbug. Euphytica, 1995, 84, 121-125.	0.6	16
44	Detection of 5 S rDNA and other repeated DNA on supernumerary B chromosomes ofTriticum species (Poaceae). Plant Systematics and Evolution, 1995, 196, 131-139.	0.3	25
45	Atomic force microscopy of plant chromosomes. Chromosome Research, 1995, 3, 128-131.	1.0	15
46	Cytogenetical studies in wheat XVI. Chromosome location of a new gene for resistance to leaf rust in a Japanese wheat-rye translocation line. Euphytica, 1995, 82, 141-147.	0.6	52
47	Chromosome structure of Triticum longissimum relative to wheat. Theoretical and Applied Genetics, 1995, 91, 105-109.	1.8	27
48	Standard karyotype of Triticum searsii and its relationship with other S-genome species and common wheat. Theoretical and Applied Genetics, 1995, 91, 248-254.	1.8	49
49	Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. Theoretical and Applied Genetics, 1995, 90, 150-156.	1.8	67
50	Physical distribution of translocation breakpoints in homoeologous recombinants induced by the absence of the Ph1 gene in wheat and triticale. Theoretical and Applied Genetics, 1995, 90, 714-719.	1.8	69

51 A cytogenetic ladder-map of the wheat homoeologous group-4 chromosomes. Theoretical and Applied
1.8

158
Genetics, 1995, 90, 1007-1011.

Comparison of wheat physical maps with barley linkage maps for group 7 chromosomes. Theoretical
and Applied Genetics, 1995, 91, 618-626.
$1.8 \quad 75$

Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation
lines specifying resistance to powdery mildew. Theoretical and Applied Genetics, 1995, 91-91, 1125-1128.
1.8

61 Plant Cell, Tissue and Organ Culture. , 1995, , .

Detection of a 2.6 â $€, \mathrm{~kb}$ single/low copy DNA sequence on chromosomes of wheat (<i> Triticum) Tj ETQq1 10.784314 rgBT /Overlock

Standard Giemsa C-banded karyotype of Russian wildrye (<i>Psathyrostachys juncea</i>) and its use in identification of a deletionâ€"translocation heterozygote. Genome, 1995, 38, 1262-1270.
$0.9 \quad 6$
$0.9 \quad 25$

64 Analysis off cereal chromosomes by atomic force microscopy. Genome, 1996, 39, 439-444. $\quad \begin{aligned} & \text { Genome differentiation in <i>Aegilops. 1. Distribution of highly repetitive DNA sequences on } \\ & \text { chromosomes of diploid species. Genome, 1996, 39, 293-306. }\end{aligned}$
64 Analysis off cereal chromosomes by atomic force microscopy. Genome, 1996, 39, 439-444. $\quad \begin{aligned} & \text { Genome differentiation in <i>Aegilops. 1. Distribution of highly repetitive DNA sequences on } \\ & \text { chromosomes of diploid species. Genome, 1996, 39, 293-306. }\end{aligned}$
0.9

176
66 Genome and chromosome identification in cultivated barley and related species of the Triticeae
(Poaceae) by in situ hybridization with the GAA-satellite sequence. Genome, 1996, 39, 93-104.
0.9

145

Molecular cytogenetic analysis of Agropyron chromatin specifying resistance to barley yellow dwarf
0.9 virus in wheat. Genome, 1996, 39, 336-347.
.
75

Characterization of an Agropyron elongatum chromosome conferring resistance to cephalosporium
0.9

35
$68 \quad \begin{aligned} & \text { Characterization of an Agropyron eiongatum chrom } \\ & \text { stripe in common wheat. Genome, 1996, 39, 56-62. }\end{aligned}$

Allocation of a gametocidal chromosome of Aegilops cylindrica to wheat homoeologous group 2..
0.2

Genes and Genetic Systems, 1996, 71, 243-246.
24

70 Chromosomal localization of a tandemly repeated DNA sequence in Trifolium repens L.. Cell Research,
1996, 6, 39-46.
5.7

5

The karyotype ofFestucopsis serpentini (Poaceae Triticeae) from Albania studied by banding techniques
0.3

5

\#	Article	IF	Citations
73	Sequential combinations of C-banding and in situ hybridization and their use in the detection of interspecific introgressions into wheat. Euphytica, 1996, 89, 107-112.	0.6	2
74	Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica, 1996, 91, 59-87.	0.6	834
75	Identification of Haynaldia villosa chromosomes added to wheat using a sequential C-banding and genomic in situ hybridization technique. Theoretical and Applied Genetics, 1996, 92, 116-120.	1.8	19
76	C-banding analysis on wild Emmer (Triticum dicoccoides $K \tilde{A} \uparrow r n$) strains with and without spontaneous reciprocal translocations. Theoretical and Applied Genetics, 1996, 92, 173-178.	1.8	13
77	Chromosome substitutions of Triticum timopheevii in common wheat and some observations on the evolution of polyploid wheat species. Theoretical and Applied Genetics, 1996, 93, 1291-1298.	1.8	26
78	Variation of starch granule proteins and chromosome mapping of their coding genes in common wheat. Theoretical and Applied Genetics, 1996, 93-93, 275-281.	1.8	79
79	N-banded karyotype of Aegilops ovata and chromosomal constitution of its amphiploid with Triticum aestivum. Plant Breeding, 1996, 115, 330-334.	1.0	4
80	Cytogenetic identification of Triticum peregrinum chromosomes added to common wheat. Genome, 1996, 39, 272-276.	0.9	37

81 The Deletion Stocks of Common Wheat. Journal of Heredity, 1996, 87, 295-307.
1.0

649
82 Construction of midget chromosomes in wheat. Genome, 1997, 40, 566-569. $\quad 0.912$

83	Molecular structure of a wheat chromosome end healed after gametocidal gene-induced breakage. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3140-3144.	3.3	40
84	Characterization of <i> Thinopyrum distichum chromosomes using double fluorescence in situ hybridization, RFLP analysis of 5S and 26S rRNA, and C-banding of parents and addition lines. Genome, 1997, 40, 689-696.	0.9	11
85	Root tip cell cycle synchronization and metaphase-chromosome isolation suitable for flow sorting in common wheat (<i>Triticum aestivum</i> L.). Genome, 1997, 40, 633-638.	0.9	58
86	Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome, 1997, 40, 589-593.	0.9	182

Transfer of disease resistance genes from Triticum araraticum to common wheat. Plant Breeding, 1997, 116, 105-112.

\#	Article	IF	Citations
91	DNA content of wheat monosomics at interphase estimated by flow cytometry. Theoretical and Applied Genetics, 1997, 95, 1300-1304.	1.8	22
92	Molecular cytogenetic analysis of tetraploid and hexaploid Aegilops crassa. Chromosome Research, 1998, 6, 629-637.	1.0	34
93	RFLP mapping of the three major genes, $\mathrm{Vrn1}, \mathrm{Q}$ and B 1 , on the long arm of chromosome 5 A of wheat. Euphytica, 1998, 101, 91-95.	0.6	70
94	Characterization of wheat-triticale doubled haploid lines by cytological and biochemical markers. Plant Breeding, 1998, 117, 7-12.	1.0	6
95	The chromosomal organization of simple sequence repeats in wheat and rye genomes. Chromosoma, 1998, 107, 587-594.	1.0	136
96	Molecular cytogenetic characterization of Thinopyrum intermedium-derived wheat germplasm specifying resistance to wheat streak mosaic virus. Theoretical and Applied Genetics, 1998, 96, 1-7.	1.8	49
97	Structural rearrangement in chromosome 2 M of Aegilops comosa has prevented the utilization of the Compair and related wheat-Ae. comosa translocations in wheat improvement. Theoretical and Applied Genetics, 1998, 96, 780-785.	1.8	27
98	Homoeologous relationships of Aegilops speltoides chromosomes to bread wheat. Theoretical and Applied Genetics, 1998, 97, 181-186.	1.8	72
99	Identification and physical mapping of three Haynaldia villosa chromosome-6V deletion lines. Theoretical and Applied Genetics, 1998, 97, 1042-1046.	1.8	44
100	Cytogenetic analysis of a spontaneous $5 \mathrm{~B} / 6 \mathrm{~B}$ translocation in tetraploid wheat landraces from Ethiopia, and implications for breeding. Plant Breeding, 1998, 117, 537-542.	1.0	7

101 The physical mapping of microsatellite markers in wheat. Genome, 1998, 41, 278-283. 0.9 159
102 Brief communication. The effect of mixed selected and unselected samples on the power of QTL mapping. Journal of Heredity, 1998, 89, 193-195.
$1.0 \quad 2$

Mapping a gene conferring resistance to Pseudocercosporella herpotrichoides on chromosome 4 V of Dasypyrum villosum in a wheat background. Genome, 1998, 41, 1-6.

High-resolution RFLP map of the long arm of chromosome 5A in wheats and its synteny among cereals..

110	Structural chromosome differentiation between Triticum timopheevii and T. turgidum and T. aestivum. Theoretical and Applied Genetics, 1999, 98, 744-750.	1.8	57
111	Isolating individual wheat (Triticum aestivum) chromosome arms by flow cytometric analysis of ditelosomic lines. Theoretical and Applied Genetics, 1999, 98, 1248-1252.	1.8	41
112	Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theoretical and Applied Genetics, 1999, 99, 755-760.	1.8	184
113	Identification of wheat and tritordeum chromosomes by genomic in situ hybridization using total Hordeum chilense DNA as probe. Genome, 1999, 42, 1194-1200.	0.9	7
114	Development and identification of a complete set of <i>Triticum aestivum</i>-<i>Aegilops geniculata</i> chromosome addition lines. Genome, 1999, 42, 374-380.	0.9	72

Physical mapping of wheat-<i>Aegilops longissima</i>breakpoints in mildew-resistant recombinant lines using FISH with highly repeated and low-copy DNA probes. Genome, 1999, 42, 1013-1019.

116 Molecular cytogenetic analysis ofAegilops cylindrica Host. Genome, 1999, 42, 497-503. $\quad 0.964$

> Constitutive heterochromatin DNA polymorphisms in diploid <i>Medicago sativa</i> ssp.
> <i>falcata</i>. Genome, 1999, 42, 930-935.
0.9

11

118 Chromosome-mediated and direct gene transfers in wheat. Genome, 1999, 42, 570-583.
0.9

81

119 Homoeologous relationships of Haynaldia villosa chromosomes with those of Triticum aestivum as revealed by RFLP analysis.. Genes and Genetic Systems, 1999, 74, 77-82.
0.2

17
\square
120 Patterns of heterochromatin distribution in plant chromosomes. Genetics and Molecular Biology, 2000, 23, 1029-1041.
$0.6 \quad 182$

121 Title is missing!. Euphytica, 2000, 112, 117-123.
0.6

57
Isolation of mildew resistant wheat-rye translocation lines from a double substitution line.
Euphytica, 2000, 115, 167-172.

123 Title is missing!. Euphytica, 2000, 115, 49-57.
0.6

11

> Meiotic metaphase I pairing behavior of a 5BL recombinant isochromosome in wheat. Chromosome Research, 2000, 8, 671-676.
$1.0 \quad 2$

Extended physical maps and a consensus physical map of the homoeologous group-6 chromosomes of wheat (Triticum aestivum L. em Thell.). Theoretical and Applied Genetics, 2000, 100, 519-527.

\#	Article	IF	Citations
127	Fixation of translocation $2 A \hat{A} \cdot 4 B$ infers the monophyletic origin of Ethiopian tetraploid wheat. Theoretical and Applied Genetics, 2000, 101, 705-710.	1.8	18
128	Direct isolation of differentially expressed genes from a specific chromosome region of common wheat: application of the amplified fragment length polymorphism-based mRNA fingerprinting (AMF) method in combination with a deletion line of wheat. Molecular Genetics and Genomics, 2000, 263, 635-641.	2.4	17
129	Recombination in an isochromosome preferentially occurs between cis isochromatids. Chromosoma, 2000, 109, 390-396.	1.0	1
130	OCCURRENCE OF THE 1RS/1BL WHEATâ€"RYE TRANSLOCATION IN HUNGARIAN WHEAT VARIETIES. Acta Agronomica Hungarica: an International Multidisciplinary Journal in Agricultural Science, 2000, 48, 227-236.	0.2	18
131	Chromosome behaviour in the male and female sex mother cells of wheat(Triticum aestivumL.), oat (AvenasativaL.) and pearl millet(Pennisetum americanum(L.) Leeke). Caryologia, 2000, 53, 175-183.	0.2	10
132	Identification of AFLP markers on the satellite region of chromosome 1BS in wheat. Genome, 2000, 43, 729-735.	0.9	16
133	Physical location of homoeologous groups 5 and 6 molecular markers mapped in Triticum aestivum L.. , 2000, 91, 441-445.		5
134	Chromosomes Today., 2000, , .		0
135	Pairing affinities of the B- and G-genome chromosomes of polyploid wheats with those of <i>Aegilops speltoides<\|i>. Genome, 2000, 43, 814-819.	0.9	36
137	MicroMeasure: A new computer program for the collection and analysis of cytogenetic data. Genome, 2001, 44, 439-443.	0.9	147
138	Large-scale selection of lines with deletions in chromosome 1B in wheat and applications for fine deletion mapping. Genome, 2001, 44, 501-508.	0.9	19
139	Candidate-gene cloning and targeted marker enrichment of wheat chromosomal regions using RNA fingerprinting - differential display. Genome, 2001, 44, 633-639.	0.9	3
140	Breeding Behavior of the Cytogenetically Engineered Wheatâ€Rye Translocation Chromosomes 1RS.1BL. Crop Science, 2001, 41, 1062-1065.	0.8	21
141	Attempts to Transfer Russian Wheat Aphid Resistance from a Rye Chromosome in Russian Triticales to Wheat. Crop Science, 2001, 41, 1743-1749.	0.8	25
142	The Au family, a novel short interspersed element (SINE) from Aegilops umbellulata. Theoretical and Applied Genetics, 2001, 102, 463-470.	1.8	34
143	Molecular cytogenetic characterization of Roegneria ciliaris chromosome additions in common wheat. Theoretical and Applied Genetics, 2001, 102, 651-657.	1.8	22
144	High-resolution structural analysis of biolistic transgene integration into the genome of wheat. Theoretical and Applied Genetics, 2001, 103, 56-62.	1.8	69
145	Early evolution of the chromosomal structure of Triticum turgidumâ€"Aegilops ovata amphiploids carrying and lacking the Ph1 gene. Theoretical and Applied Genetics, 2001, 103, 1123-1128.	1.8	17

High-density physical maps reveal that the dominant male-sterile gene Ms3 is located in a genomic
146 region of low recombination in wheat and is not amenable to map-based cloning. Theoretical and

151	Production of Near-Isogenic Lines and Marked Monosomic Lines in Common Wheat (Triticum aestivum) cr. Chinese Spring. Journal of Heredity, 2001, 92, 254-259.	1.0	13
152	Physical mapping of restriction fragment length polymorphism (RFLP) markers in homoeologous groups 1 and 3 chromosomes of wheat by in situ hybridization. Genome, 2001, 44, 401-412.	0.9	21
153	Gene-Containing Regions of Wheat and the Other Grass Genomes. Plant Physiology, 2002, 128, 803-811.	2.3	112

154 Genome Analysis and Meiotic Behaviour of New Tetraploid Secalotricum Forms.. Cytologia, 2002, 67, 297-300.

155	Karyotype and C-banding patterns of mitotic chromosomes in Henrardia persica (Boiss.) C.E. Hubb. Caryologia, 2002, 55, 289-293.	0.2	9
156	Identification of Expressed Sequence Markers for a Major Geneâ€Rich Region of Wheat Chromosome Group<i>1</i>Using RNA Fingerprintingâ "'Differential Display. Crop Science, 2002, 42, 1285-1290. $^{\text {2 }}$.	0.8	10
157	Meiosis in allopolyploids $\hat{\not} €^{\prime \prime}$ the importance of $\hat{a} €^{\prime} T e f l o n a ̂ \not €^{T M}$ chromosomes. Trends in Cenetics, 2002, 18, 456-463.	2.9	47
158	Physical location of a HSP70 gene homologue on the centromere of chromosome 1B of wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2002, 104, 184-191.	1.8	21
159	Production of a new wheat line possessing the 1BL.1RS wheat-rye translocation derived from Korean rye cultivar Paldanghomil. Theoretical and Applied Genetics, 2002, 104, 171-176.	1.8	54
160	The effect of a deficiency and a deletion on recombination in chromosome 1BL in wheat. Theoretical and Applied Genetics, 2002, 104, 1204-1208.	1.8	30
161	Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2002, 104, 1362-1372.	1.8	120
162	Origin of an apparent B chromosome by mutation, chromosome fragmentation and specific DNA sequence amplification. Chromosoma, 2002, 111, 332-340.	1.0	95
163	Chromosomal organization of ribosomal genes and NOR-associated heterochromatin, and NOR activity in some populations of Allium commutatum Guss. (Alliaceae). Botanical Journal of the Linnean Society, 2002, 139, 99-108.	0.8	16

\#	Article	IF	Citations
164	Characterisation of mildew resistant wheat-rye substitution lines and identification of an inverted chromosome by fluorescent in situ hybridisation. Heredity, 2002, 88, 349-355.	1.2	17
165	A high-density cytogenetic map of the Aegilops tauschii genome incorporating retrotransposons and defense-related genes: insights into cereal chromosome structure and function. Plant Molecular Biology, 2002, 48, 767-789.	2.0	95
166	Structural and functional organization of the '1S0.8 gene-rich region' in the Triticeae. Plant Molecular Biology, 2002, 48, 791-804.	2.0	24
167	Title is missing!. Euphytica, 2002, 126, 153-159.	0.6	28
168	A strategy for enhancing recombination in proximal regions of chromosomes. Chromosome Research, 2002, 10, 645-654.	1.0	23
169	History of Modern Chromosomal Analysis. Differential Staining of Plant Chromosomes. Russian Journal of Developmental Biology, 2003, 34, 1-13.	0.1	2
170	High-resolution mapping of the leaf rust disease resistance gene Lrl in wheat and characterization of BAC clones from the Lr1 locus. Theoretical and Applied Genetics, 2003, 106, 875-882.	1.8	39
171	Characterization of a knock-out mutation at the Gc2 locus in wheat. Chromosoma, 2003, 111, 509-517.	1.0	44
172	Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Functional and Integrative Genomics, 2003, 3, 39-55.	1.4	138
173	Fluorescence in situ hybridization polymorphism using two repetitive DNA clones in different cultivars of wheat. Plant Breeding, 2003, 122, 396-400.	1.0	85
174	Development of Triticum aestivum-Leymus racemosus translocation lines using gametocidal chromosomes. Science in China Series C: Life Sciences, 2003, 46, 522.	1.3	8
175	Analysis of Expressed Sequence Tag Loci on Wheat Chromosome Group 4. Genetics, 2004, 168, 651-663.	1.2	90
176	Chromosome Bin Map of Expressed Sequence Tags in Homoeologous Group 1 of Hexaploid Wheat and Homoeology With Rice and Arabidopsis. Genetics, 2004, 168, 609-623.	1.2	78
177	A Chromosome Bin Map of 2148 Expressed Sequence Tag Loci of Wheat Homoeologous Group 7. Genetics, 2004, 168, 687-699.	1.2	68

\#	Article	IF	Citations
182	A Chromosome Bin Map of 16,000 Expressed Sequence Tag Loci and Distribution of Genes Among the Three Genomes of Polyploid Wheat. Genetics, 2004, 168, 701-712.	1.2	369
184	High-resolution FISH on super-stretched flow-sorted plant chromosomes. Plant Journal, 2004, 37, 940-950.	2.8	95
185	Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant Journal, 2004, 39, 960-968.	2.8	146
186	Chromosome Translocations in the Common Wheat Variety ấ ${ }^{\sim}$ Amigoấ ${ }^{\text {TM }}$. Hereditas, 2004, 121, 199-202.	0.5	8
187	A new secondary reciprocal translocation discovered in Chinese wheat. Euphytica, 2004, 137, 333-338.	0.6	7
188	Analysis of Intraspecific Divergence of Hexaploid Wheat Triticum spelta L. by C-Banding of Chromosomes. Russian Journal of Cenetics, 2004, 40, 1111-1126.	0.2	17
189	A cytogenetic method for stacking gene pairs in common wheat. Theoretical and Applied Genetics, 2004, 109, 1115-1124.	1.8	5
190	Construction of a subgenomic BAC library specific for chromosomes 1D, 4D and 6D of hexaploid wheat. Theoretical and Applied Genetics, 2004, 109, 1337-1345.	1.8	60
191	A 2600-Locus Chromosome Bin Map of Wheat Homoeologous Group 2 Reveals Interstitial Gene-Rich Islands and Colinearity With Rice. Genetics, 2004, 168, 625-637.	1.2	78
192	Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome, 2004, 47, 36-45.	0.9	70
193	Identification of Wheat Chromosomal Regions Containing Expressed Resistance Genes. Genetics, 2004, 166, 461-481.	1.2	78
194	A New Source of Resistance to Tapesia yallundae Associated with a Homoeologous Group 4 Chromosome in Thinopyrum ponticum. Phytopathology, 2004, 94, 932-937.	1.1	24
195	Resistance of Tangmai 4 wheat to powdery mildew, stem rust, leaf rust, and stripe rust and its chromosome composition. Canadian Journal of Plant Science, 2004, 84, 1015-1023.	0.3	10

196 Chromosome Flow Sorting and Physical Mapping. , 2005, , 151-171. 6
Alien DNA introgression and wheat DNA rearrangements in a stable wheat line derived from the early generation of distant hybridization. Science in China Series C: Life Sciences, 2005, 48, 424.
Water-saving approaches for improving wheat production. Journal of the Science of Food and1.739

ARTICLE			
201	Distribution of genes and recombination in wheat and other eukaryotes. Plant Cell, Tissue and Organ Culture, 2005, 79, 257-270.		Development and characterization of a Triticum aestivum-Haynaldia villosa translocation line
:---			
T4VSâ<...4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica, 2005, 145, $317-320$.			

217 High-density mapping and comparative analysis of agronomically important traits on wheat

Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum

Map-based analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum) Tj ETQq0 00 rgBT /Oyerlock 18 Tf 5058

226	Genomic analysis and marker development for the Tsn1 locus in wheat using bin-mapped ESTs and flanking BAC contigs. Theoretical and Applied Genetics, 2006, 112, 1132-1142.	1.8	54
227	Biochemical and genetic characterization of wheat (Triticum spp.) kernel polyphenol oxidases. Journal of Cereal Science, 2006, 44, 353-367.	1.8	33
228	Molecular Analysis, Cytogenetics and Fertility of Introgression Lines From Transgenic Wheat to Aegilops cylindrica Host. Genetics, 2006, 174, 2061-2070.	1.2	19
229	Gene evolution at the ends of wheat chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4162-4167.	3.3	67
230	Karyotype of Araucaria angustifolia and the decondensation/activation mode of its nucleolus organiser region. Australian Journal of Botany, 2007, 55, 165.	0.3	8
231	Preferential elimination of chromosome 1D from homoeologous group-1 alien addition lines in hexaploid wheat. Genes and Genetic Systems, 2007, 82, 403-408.	0.2	11
232	Chromosomal rearrangements in wheat: their types and distribution. Genome, 2007, 50, 907-926.	0.9	166
233	Mass Production of Intergeneric Chromosomal Translocations through Pollen Irradiation of <i>Triticum durumâ€Haynaldia villosa</i>Amphiploid. Journal of Integrative Plant Biology, 2007, 49, 1619-1626.	4.1	32
234	Quinoa (Chenopodium quinoa). , 2007, , 147-158.		8

235 Wheat genome structure and function: genome sequence data and the International Wheat Genome
1.5 Sequencing Consortium. Australian Journal of Agricultural Research, 2007, 58, 470.

236 Cytogenetics in the age of molecular genetics. Australian Journal of Agricultural Research, 2007, 58,
498.
1.5

24

\#	Article	IF	Citations
239	Chromosome C-banding of the teosinte Zea nicaraguensis and comparison to other Zea species. Hereditas, 2007, 144, 96-101.	0.5	9
240	Analysis of intraspecific diversity of cultivated emmer Triticum dicoccum (Schrank.) schuebl using C-banding technique. Russian Journal of Genetics, 2007, 43, 1271-1285.	0.2	10
241	Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theoretical and Applied Genetics, 2007, 114, 1379-1389.	1.8	175
242	Map-based analysis of genetic loci on chromosome 2D that affect glume tenacity and threshability, components of the free-threshing habit in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2007, 116, 135-145.	1.8	41
243	Effects of the 6VS.6AL translocation on agronomic traits and dough properties of wheat. Euphytica, 2007, 155, 305-313.	0.6	42
244	The gametocidal chromosome as a tool for chromosome manipulation in wheat. Chromosome Research, 2007, 15, 67-75.	1.0	109
245	Chromosome-based genomics in the cereals. Chromosome Research, 2007, 15, 51-66.	1.0	146
246	Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Research, 2007, 15, 3-19.	1.0	278
247	A synthetic wheat with 56 chromosomes derived fromTriticum turgidum andAegilops tauschii. Journal of Applied Genetics, 2008, 49, 41-44.	1.0	6
248	A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theoretical and Applied Genetics, 2008, 117, 181-189.	1.8	161
249	Analysis of introgression of Aegilops ventricosa Tausch. genetic material in a common wheat background using C-banding. Theoretical and Applied Genetics, 2008, 117, 803-811.	1.8	16
250	Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theoretical and Applied Genetics, 2008, 117, 1155-1166.	1.8	132
251	Inducement of chromosome translocation with small alien segments by irradiating mature female gametes of the whole arm translocation line. Science in China Series C: Life Sciences, 2008, 51, 346-352.	1.3	27
252	Development of Triticum aestivum-Leymus racemosus ditelosomic substitution line 7Lr\#1S(7A) with resistance to wheat scab and its meiotic behavior analysis. Science Bulletin, 2008, 53, 3522-3529.	4.3	11
253	A Physical Map of the 1-Gigabase Bread Wheat Chromosome 3B. Science, 2008, 322, 101-104.	6.0	356
254	Production and molecular and cytogenetic analyses of euploid ($2 n=42$) and telocentric addition $(2 n) \mathrm{Tj}$ Journal of Genetics, 2008, 44, 67-73.	$\begin{gathered} 0.78 \\ 0.2 \end{gathered}$	$\begin{aligned} & \mathrm{rgBT} / \mathrm{OvE} \\ & 13 \end{aligned}$
255	Statistical evaluation of length measurements on barley chromosomes with a proposal for a new nomenclature for symbols and positions of cytological markers. Hereditas, 2008, 117, 51-59.	0.5	22
256	Physical organisation of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications. Cytogenetic and Genome Research, 2008, 120, 210-219.	0.6	73

A novel resource for genomics of Triticeae: BAC library specific for the short arm of rye (Secale) Tj ETQqO 00 rgBT /Qyerlock 10 45 50 Tf 50
258
259
The use of cytogenetic tools for studies in the crop-to-wild gene transfer scenario. Cytogenetic and Genome Research, 2008, 120, 384-395.
$0.6 \quad 25$

Structural Changes of 2 V Chromosome of Haynaldia villosa Induced by Gametocidal Chromosome 3C of Aegilops triuncialis. Agricultural Sciences in China, 2008, 7, 804-811.
$0.6 \quad 8$

260 Characterization of T. aestivum-H. californicum chromosome addition lines DA2H and MA5H. Journal of Genetics and Genomics, 2008, 35, 673-678.
1.7

15

261 Comparative analysis of D and R genomes in two lignes (X - $\langle i\rangle$ Trit-icosecale $</ \mathrm{i}\rangle$ wittmak) and their genitors (<i>Secale cereale</i>L.,<i>Triticum aestivum</i>L.) by N-banding. Caryologia, 2008, 61, 245-252.
0.21The Origin of a â€œZebraâ€•Chromosome in Wheat Suggests Nonhomologous Recombination as a Novel262 Mechanism for New Chromosome Evolution and Step Changes in Chromosome Number. Genetics, 2008,$1.2 \quad 27$179, 1169-1177.263 Recurrent Deletions of Puroindoline Genes at the Grain<i>Hardness</i>Locus in Four IndependentLineages of Polyploid Wheat. Plant Physiology, 2008, 146, 200-212.
$2.3 \quad 68$
264 Wheatâ $€^{\prime \prime}$ Thinopyrum Intermedium Recombinants Resistant to Wheat Streak Mosaic Virus and Triticum
Mosaic Virus. Crop Science, 2009, 49, 1221-1226.
$0.8 \quad 45$
265 Genetic diversity and phylogeny in Hystrix (Poaceae, Triticeae) and related genera inferred from GiemsaC-banded karyotypes. Genetics and Molecular Biology, 2009, 32, 521-527.
A Molecular-Cytogenetic Method for Locating Genes to Pericentromeric Regions Facilitates a
266 Genomewide Comparison of Synteny Between the Centromeric Regions of Wheat and Rice. Genetics, 1.2 2009, 183, 1235-1247.
267 Detailed Recombination Studies Along Chromosome 3B Provide New Insights on CrossoverDistribution in Wheat (<i>Triticum aestivum</i> L.). Genetics, 2009, 181, 393-403.1.2157
268 Removing celiac disease-related gluten proteins from bread wheat while retaining technological
97properties: a study with Chinese Spring deletion lines. BMC Plant Biology, 2009, 9, 41.
269 Orthology between genomes of Brachypodium, wheat and rice. BMC Research Notes, 2009, 2, 93.0.655
$270 \begin{aligned} & \text { Centromeric distribution of } 350 \text {-family in <i> Dasypyrum villosum</i>and its application to } \\ & \text { identifying <i>Dasypyrum</i>chromatin in the wheat genome. Hereditas, 2009, 146, 58-66. }\end{aligned}$0.532Molecular cytogenetic characterization of wheatâ $\epsilon^{\prime \prime}$ Secale africanum amphiploids and derivedintrogression lines with stripe rust resistance. Euphytica, 2009, 167, 197-202.Development of isohomoeoallelic lines within the wheat cv. Courtot for high molecular weight272 glutenin subunits: transfer of the Glu-D1 locus to chromosome 1A. Theoretical and Applied Genetics,

Construction of secalotriticum (Rye-wheat amphidiploids with the rye cytoplasm (RRAABB, 2n=42)),
the formation of the karyotypes of the F1BC1 and F1BC2 rye-triticale amphidiploids, and commercial

276	Diversity and the origin of the European population of Triticum dicoccum (Schrank) Schuebl. As revealed by chromosome analysis. Russian Journal of Genetics, 2009, 45, 1082-1091.	0.2	11
277	An improved method of genomic in situ hybridization (CISH) for distinguishing closely related genomes of tetraploid and hexaploid wheat species. Russian Journal of Developmental Biology, 2009, 40, 90-94.	0.1	3
278	Localization of \< \&\>Rad50, \</i\>a Single-Copy Gene, on Group 5 Chromosomes of Wheat, Using a FISH Protocol Employing Tyramide for Signal Amplification (Tyr-FISH). Cytogenetic and Genome Research, 2009, 125, 321-328.	0.6	16
279	Distribution of Eu- and Heterochromatin in <i>Plantago<\|i><i>ovata</i>. Cytogenetic and Genome Research, 2009, 125, 235-240.	0.6	18
281	Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight. Cenome, 2009, 52, 467-483.	0.9	66
282	Induction and transmission of wheat-Haynaldia villosa chromosomal translocations. Journal of Genetics and Genomics, 2009, 36, 313-320.	1.7	20
283	Cytogenetic and molecular identification of three Triticum aestivum-Leymus racemosus translocation addition lines. Journal of Genetics and Genomics, 2009, 36, 379-385.	1.7	10

Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum) Tj ETQq0 1.8 rgBT /Qyerlock 10

$$
285 \text { Isolated chromosomes as a new and efficient source of DArT markers for the saturation of genetic }
$$

285 maps. Theoretical and Applied Genetics, 2010, 121, 465-474.

286 Characterization of a wheatâ€"Thinopyrum bessarabicum (T2JS-2BSÂ-2BL) translocation line. Theoretical and Applied Genetics, 2010, 121, 589-597.
1.8

49
287 Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres. Chromosoma, 2010, 119, 553-563.
$1.0 \quad 58$

Molecular cytogenetic analysis of Triticum aestivum-Leymus racemosus reciprocal chromosomal translocation T7DSÂ•5LrL/T5LrSÂ•7DL. Science Bulletin, 2010, 55, 1026-1031.
$1.7 \quad 8$

Cytogenetic analysis of hybrids derived from wheat and Tritipyrum using conventional staining and genomic in situ hybridization. Biologia Plantarum, 2010, 54, 252-258.
1.9

8

290 Dynamic nature of a wheat centromere with a functional gene. Molecular Breeding, 2010, 26, 177-187.
$1.0 \quad 5$

Development and characterization of two new Triticum aestivumấ "Dasypyrum villosum Robertsonian
291 translocation lines T1DSÂ•1V\#3L and T1DLÂAV\#3S and their effect on grain quality. Euphytica, 2010, 175,
$0.6 \quad 26$
343-350.
Comparative physical mapping between wheat chromosome arm 2BL and rice chromosome 4. Genetica,
2010, 138, 1277-1296.

\#	Article	IF	Citations
294	C-banded karyotype of Thinopyrum bessarabicum and identification of its chromosomes in wheat background. Genetic Resources and Crop Evolution, 2010, 57, 319-324.	0.8	10
295	Development and characterization of a Triticum aestivum-H. villosa T5VSâ€\&5DL translocation line with soft grain texture. Journal of Cereal Science, 2010, 51, 220-225.	1.8	19
296	Wheatâ \in Rye T2BSÂ-2BLâ€2RL Recombinants with Resistance to Hessian Fly (<i>H21</i>). Crop Science, 920-925.		14
297	Megabase Level Sequencing Reveals Contrasted Organization and Evolution Patterns of the Wheat Gene and Transposable Element Spaces. Plant Cell, 2010, 22, 1686-1701.	3.1	258
298	A Comparative Analysis of Chromosome Pairing at Metaphase I in Interspecific Hybrids between Durum Wheat \<;\>(Triticum turgidum \</i\>L\<i\>.)\</i\> and the Most Widespread \& lt; \>Aegilops\</i\> Species. Cytogenetic and Cenome Research, 2010, 129, 124-132.	0.6	10
299	Morphological variation in <i> Elymus hystrix L. (Poaceae: Triticeae). Caryologia, 2010, 63, 359-366.	0.2	1
300	Frequent Gene Movement and Pseudogene Evolution Is Common to the Large and Complex Genomes of Wheat, Barley, and Their Relatives Â. Plant Cell, 2011, 23, 1706-1718.	3.1	190
301	Development of a set of compensating <i> Triticum aestivum ấ ${ }^{\text {" }}$ Dasypyrum villosum</i> Robertsonian translocation lines. Genome, 2011, 54, 836-844.	0.9	50

302 Dasypyrum. , 2011, , 185-292. 42

303 Construction of Identification System for Alien Chromatin in Crop Plant. Procedia Environmental

303 Sciences, 2011, 8, 637-644.

304 Chromosomes analysis of five diploid garden Hyacinth species. Scientia Horticulturae, 2011, 131, 82-87.
$1.7 \quad 2$
305 Aegilops. , 2011, , 1-76. 89

Introgression of Chromosome 3Ns from Psathyrostachys huashanica into Wheat Specifying Resistance
1.1

42 to Stripe Rust. PLoS ONE, 2011, 6, e21802.

> 307 Dough quality of bread wheat lacking $\hat{\text { It}}$-gliadins with celiac disease epitopes and addition of celiac-safe avenins to improve dough quality. Journal of Cereal Science, 2011, 53, 206-216.

Molecular cytogenetic identification of a new wheat-Thinopyrum substitution line with stripe rust resistance. Euphytica, 2011, 177, 169-177.

313	Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011, 123, 1055-1063.	1.8	125
314	Molecular cytogenetic characterization of a new wheat Secale africanum $2 \mathrm{Ra}(2 \mathrm{D})$ substitution line for resistance to stripe rust. Journal of Genetics, 2011, 90, 283-287.	0.4	18
315	Molecular characterization of a wheat -Thinopyrum ponticum partial amphiploid and its derived substitution line for resistance to stripe rust. Journal of Applied Genetics, 2011, 52, 279-285.	1.0	28
316	Molecular cytogenetic characterization of a new leaf rolling triticale. Genetics and Molecular Research, 2011, 10, 2953-2961.	0.3	5
317	Genetic Compensation Abilities of Aegilopsspeltoides Chromosomes for Homoeologous B-Genome Chromosomes of Polyploid Wheat in Disomic S(B) Chromosome Substitution Lines. Cytogenetic and Genome Research, 2011, 134, 144-150.	0.6	15

321 BAC Libraries from Wheat Chromosome 7D: Efficient Tool for Positional Cloning of Aphid ResistanceGenes. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-11.

```
323 Genetic Mapping Analysis of Breadâ€Making Quality Traits in Spring Wheat. Crop Science, 2012, 52,
325 Development of High-Density Genetic Maps for Barley and Wheat Using a Novel Two-Enzyme
325 Development of High-Density Genetic Maps for Barley and Wheat
\begin{tabular}{|c|c|c|c|}
\hline 333 & Positive or negative effects on dough strength in large-scale group-1 chromosome deletion lines of common wheat (Triticum aestivum L.). Euphytica, 2012, 186, 57-65. & 0.6 & 8 \\
\hline 334 & Inversions of chromosome arms 4AL and 2BS in wheat invert the patterns of chiasma distribution. Chromosoma, 2012, 121, 201-208. & 1.0 & 29 \\
\hline 335 & Radiation hybrid QTL mapping of Tdes2 involved in the first meiotic division of wheat. Theoretical and Applied Genetics, 2013, 126, 1977-1990. & 1.8 & 12 \\
\hline 336 & Distribution of highly repeated DNA sequences in Haynaldia villosa and its application in the identification of alien chromatin. Science Bulletin, 2013, 58, 890-897. & 1.7 & 26 \\
\hline 337 & Comparative characteristic of Triticum aestivum/Triticum durum and Triticum aestivum/Triticum dicoccum hybrid lines by genomic composition and resistance to fungal diseases under different environmental conditions. Russian Journal of Genetics, 2013, 49, 1112-1118. & 0.2 & 9 \\
\hline 338 & Development and characterization of a compensating wheat-Thinopyrum intermedium Robertsonian translocation with Sr 44 resistance to stem rust (Ug99). Theoretical and Applied Genetics, 2013, 126, 1167-1177. & 1.8 & 54 \\
\hline 339 & Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome, 2013, 56, 131-137. & 0.9 & 167 \\
\hline
\end{tabular}
\(346 \quad\)\begin{tabular}{l} 
Cytogenetic and molecular markers for detecting <i>Aegilops uniaristata</i>chromosomes in a wheat \\
background. Genome, 2014, 57, 489-497.
\end{tabular}

Production and Molecular Cytogenetic Identification of Wheat-Alien Hybrids and Introgression Lines.
\begin{tabular}{|c|c|c|c|}
\hline 350 & Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theoretical and Applied Genetics, 2014, 127, 715-730. & 1.8 & 98 \\
\hline 351 & Molecular cytogenetic characteristics of a translocation line between common wheat and Thinopyrum intermedium with resistance to powdery mildew. Euphytica, 2014, 197, 201-210. & 0.6 & 21 \\
\hline 352 & Introduction of chromosome segment carrying the seed storage protein genes from chromosome 1 V of Dasypyrum villosum showed positive effect on bread-making quality of common wheat. Theoretical and Applied Genetics, 2014, 127, 523-533. & 1.8 & 41 \\
\hline 353 & Next-Generation Survey Sequencing and the Molecular Organization of Wheat Chromosome 6B. DNA Research, 2014, 21, 103-114. & 1.5 & 45 \\
\hline 354 & Development of T. aestivum L.â€"H. californicum Alien Chromosome Lines and Assignment of Homoeologous Croups of Hordeum californicum Chromosomes. Journal of Genetics and Cenomics, 2014, 41, 439-447. & 1.7 & 9 \\
\hline 355 & C-banding patterns in six taxa ofParis(Melanthiaceae). Caryologia, 2014, 67, 106-109. & 0.2 & 0 \\
\hline 356 & Structural and functional partitioning of bread wheat chromosome 3B. Science, 2014, 345, 1249721. & 6.0 & 542 \\
\hline 357 & Metaâ€Analysis of Wheat QTL Regions Associated with Adaptation to Drought and Heat Stress. Crop Science, 2015, 55, 477-492. & 0.8 & 202 \\
\hline 358 & (GAA) \(n\) microsatellite as an indicator of the A genome reorganization during wheat evolution and domestication. Comparative Cytogenetics, 2015, 9, 533-547. & 0.3 & 26 \\
\hline
\end{tabular}
359 Molecular and Cytogenetic Characterization of a Powdery Mildew-Resistant Wheat-Aegilops mutica

Partial Amphiploid and Addition Line. Cytogenetic and Genome Research, 2015, 147, 186-194.

0.6

8
360 Crop Production and Clobal Environmental Issues. , 2015, , .32
Nonhomologous Chromosome Pairing inCytogenetic and Genome Research, 2015, 147, 268-273.
362 Use of Alien Diversity to Combat Some Major Biotic Stresses in Triticum aestivum L.. , 2015, , 319-347.2
363 <i>ldeoKar</i>: an ideogram constructing and karyotype analyzing software. Caryologia, 2015, 68, 31-35. ..... 0.2 ..... 27
\(364 \begin{aligned} & \text { Constructing an } \\ & 2015,56,45-48 .\end{aligned}\) 1.0 ..... 2
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & Citations \\
\hline 367 & Efficient marker-assisted screening of structural changes involving Haynaldia villosa chromosome 6 V using a double-distal-marker strategy. Molecular Breeding, 2015, 35, 1. & 1.0 & 30 \\
\hline 368 & Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from Elymus tsukushiensis into wheat. Theoretical and Applied Genetics, 2015, 128, 1019-1027. & 1.8 & 79 \\
\hline 369 & Thinopyrum ponticum Chromatin-Integrated Wheat Genome Shows Salt-Tolerance at Germination Stage. International Journal of Molecular Sciences, 2015, 16, 4512-4517. & 1.8 & 8 \\
\hline 370 & Mapping the â \(€^{\sim}\) breakerâ \(€^{\mathrm{TM}}\) element of the gametocidal locus proximal to a block of sub-telomeric heterochromatin on the long arm of chromosome 4Ssh of Aegilops sharonensis. Theoretical and Applied Genetics, 2015, 128, 1049-1059. & 1.8 & 15 \\
\hline 371 & Molecular Characterization of a New Wheat-Thinopyrum intermedium Translocation Line with Resistance to Powdery Mildew and Stripe Rust. International Journal of Molecular Sciences, 2015, 16, 2162-2173. & 1.8 & 25 \\
\hline 372 & Advances in Wheat Genetics: From Genome to Field. , 2015, & & 10 \\
\hline 373 & Wheat Chromosome Analysis. , 2015, , 65-72. & & 1 \\
\hline 374 & Identification of genes bordering breakpoints of the pericentric inversions on \(2 \mathrm{~B}, 4 \mathrm{~B}\), and 5 A in bread wheat (Triticum aestivum L.). Genome, 2015, 58, 385-390. & 0.9 & 8 \\
\hline 375 & BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes. Plant Biotechnology Journal, 2016, 14, 1523-1531. & 4.1 & 104 \\
\hline 376 & Cytogenetic Analysis of Lilium rosthornii. Journal of the American Society for Horticultural Science, 2016, 141, 444-448. & 0.5 & 2 \\
\hline 377 & Cereal cyst nematode resistance gene CreV effective against Heterodera filipjevi transferred from chromosome 6VL of Dasypyrum villosum to bread wheat. Molecular Breeding, 2016, 36, 1. & 1.0 & 33 \\
\hline 378 & Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theoretical and Applied Genetics, 2016, 129, 1975-1984. & 1.8 & 92 \\
\hline 379 & Characterization of the homeologous genes of C24-sterol methyltransferase in Triticum aestivum L.. Doklady Biochemistry and Biophysics, 2016, 470, 357-360. & 0.3 & 0 \\
\hline 380 & Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat. Theoretical and Applied Genetics, 2017, 130, 841-848. & 1.8 & 65 \\
\hline
\end{tabular}

381 Banding Techniques in Chromosome Analysis. , 2017, , 167-180.
o

Genotyping of hexaploid wheat varieties from different Russian regions. Russian Journal of Genetics:
Applied Research, 2017, 7, 6-13.

Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak
383 mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat.
1.8

33
Theoretical and Applied Genetics, 2017, 130, 549-556.

Photosynthetic response of tetraploid and hexaploid wheat to water stress. Photosynthetica, 2017, 55,

The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as
398 revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes.
Instability of Alien Chromosome Introgressions in Wheat Associated with Improper Positioning in the
\(408 \quad \begin{aligned} & \text { Instability of Alien Chromosome Introgressions in Wheat Associated w } \\ & \\ & \text { Nucleus. International Journal of Molecular Sciences, 2019, 20, } 1448 .\end{aligned}\)
1.8

14
20

409 Cytological markers used for identification and transfer of Aegilops spp. chromatin carrying valuable genes into cultivated forms of Triticum. Comparative Cytogenetics, 2019, 13, 41-59.
\(0.3 \quad 9\)
\(410 \quad \begin{aligned} & \text { Marker-Assisted Development of a Blue-Crained Substitution Line Carrying the Thinopyrum po } \\ & \text { Chromosome 4Th(4D) in the Spring Bread Wheat Saratovskaya } 29 \text { Background. Agronomy, }\end{aligned}\) ( \(\begin{aligned} & \text { Chromosome Painting Facilitates Anchoring Reference Genome Sequence to Chromosomes } \\ & \text { Integrated Karyotyping in Banana (Musa Spp.). Frontiers in Plant Science, 2019, 10, 1503. }\end{aligned}\)
1.6

57
Molecular cytological analysis of alien introgressions in common wheat lines derived from the
cross of TRITICUM AESTIVUM with T. kiharae. BMC Plant Biology, 2020, 20, 201.
\(1.6 \quad 8\)
cross of TRITICUM AESTIVUM with T. kiharae. BMC Plant Biology, 2020, 20, 201.
Production of synthetic wheat lines to exploit the genetic diversity of emmer wheat and \(D\) genome
1.6

6
.

> Intervarietal Karyomorphological Studies on Two Species of Passiflora L. (Passifloraceae). Cytology and Genetics, 2020, 54, 465-471.
0.2

0

417 Molecular Cytogenetic Identification of Wheat-Aegilops Biuncialis 5Mb Disomic Addition Line with
1.8

12
Tenacious and Black Clumes. International Journal of Molecular Sciences, 2020, 21, 4053.

Development of self-fertile deletion homozygous and ditelosomic lines for the long arm of
chromosome 2A in common wheat. Genes and Genetic Systems, 2020, 95, 95-99.
\(0.2 \quad 0\)

Partitioning and physical mapping of wheat chromosome 3B and its homoeologue 3E in Thinopyrum elongatum by inducing homoeologous recombination. Theoretical and Applied Genetics, 2020, 133,
1.8

4 1277-1289.

\footnotetext{
420
An efficient Oligoâ€FISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae. Plant Journal, 2021, 105, 978-993.
}

422 Clustered and dispersed chromosomal distribution of the two classes of Revolver transposon family
in rye (Secale cereale). Journal of Applied Genetics, 2021, 62, 365-372.
 IslahÄ \(\pm n a \operatorname{KatkÄ} \pm s A ̈ \pm\). Yuzuncu Yil University Journal of Agricultural Sciences, 2021, 31, 246-258.
```

426 Structural and Functional Genomics of Chenopodium quinoa. Compendium of Plant Genomes, 2021, , 81-105.

```

427 Ear photosynthetic anatomy effect on wheat yield and water use efficiency. Agronomy Journal, 2020, 112, 1778-1793. Biology, 2016, 1370, 87-103.

433 Expanding genetic maps: reevaluation of the relationship between chiasmata and crossovers. , 1997, , 283-298.

Integrated physical maps of 2DL, 6BS and 7DL carrying loci for grain protein content and pre-harvest

Flow Sorting of Mitotic Chromosomes in Common Wheat (<i>Triticum aestivum</i> L.). Genetics, 2000, 156, 2033-2041.
1.2
\begin{tabular}{|c|c|c|c|}
\hline \# & Article & IF & Citations \\
\hline 441 & Molecular cytogenetic analysis of <i>Aegilops cylindrica</i> Host. Genome, 1999, 42, 497-503. & 0.9 & 42 \\
\hline 443 & Chromosomal Location and Comparative Genomics Analysis of Powdery Mildew Resistance Gene Pm51 in a Putative Wheat-Thinopyrum ponticum Introgression Line. PLoS ONE, 2014, 9, el13455. & 1.1 & 70 \\
\hline 444 & Structure and Stability of Telocentric Chromosomes in Wheat. PLoS ONE, 2015, 10, e0137747. & 1.1 & 16 \\
\hline 445 & Evidence of Allopolyploidy in Urochloa humidicola Based on Cytological Analysis and Genetic Linkage Mapping. PLoS ONE, 2016, 11, e0153764. & 1.1 & 39 \\
\hline 446 & Collinearity Analysis and High-Density Genetic Mapping of the Wheat Powdery Mildew Resistance Gene Pm40 in PI 672538. PLoS ONE, 2016, 11, e0164815. & 1.1 & 12 \\
\hline 447 & Alien introgressions and chromosomal rearrangements do not affect the activity of gliadin-coding genes in hybrid lines of Triticum aestivum L. Ã-Aegilops columnaris Zhuk. Vavilovskii Zhurnal Genetiki I Selektsii, 2018, 22, 507-514. & 0.4 & 3 \\
\hline 448 & Wheat Genomics: Exploring the Polyploid Model. Current Genomics, 2002, 3, 577-591. & 0.7 & 26 \\
\hline 449 & Characterization of ESTâ€'SSR markers in bread wheat EST related to drought tolerance and functional analysis of SSRâ \(€^{\prime}\) containing unigenes. , 0, , 1-12. & & 3 \\
\hline 450 & A Review of Genome Sequencing in the Largest Cereal Genome, \&lt;i\&gt;Triticum aestivum\&lt;/i\&gt; L.. Agricultural Sciences, 2017, 08, 194-207. & 0.2 & 1 \\
\hline 451 & Meta-analysis of QTLs Involved in Pre-harvest Sprouting Tolerance and Dormancy in Bread Wheat. Triticeae Genomics and Genetics, 0, . . & 0.0 & 19 \\
\hline
\end{tabular}

453 Chromosome Banding. , 2004, , 263-265.
0
\[
\begin{aligned}
& 454 \text { Karyotype and C-banding Patterns of Mitotic Chromosomes in Heteranthelium piliferum. Pakistan } \\
& \text { Journal of Biological Sciences, 2007, 10, 4160-4163. }
\end{aligned}
\]

Cytogenetic identification of wheat-Psathyrostachys huashanica amphiploid \(\tilde{A}-\) triticale progenies for

Comparison of C-banding patterns and in situ hybridization sites using highly repetitive and total
456 genomic rye DNA probes of 'Imperial' rye chromosomes added to `Chinese Spring' wheat. Genes and
Genetic Systems, 1992, 67, 71-83.
Identification and Breeding Significance of Translocated Chromosomes in a Japanese Common Wheat Variety Eshimashinriki.. Breeding Science, 1994, 44, 391-396.

Repeated DNA Sequence 350bp Family Cloned from Agropyron intermedium for Identification of the Agropyron Chromosomes Added to Common Wheat Lines.. Breeding Science, 1994, 44, 183-189.

464 Cytomolecular Genetic Diversity Assessments of Two Wheat Species Grows in Egypt.. Journal of Agricultural Chemistry and Biotechnology, 2019, 10, 269-277.
The Kengyilia hirsuta karyotype polymorphisms as revealed by FISH with tandem repeats and single-gene
probes. Comparative Cytogenetics, 2021, 15, 375-392.

Morphological, cytological, and molecular evidences for natural hybridization between <i>Roegneria
467 stricta</i> and <i>Roegneria turczaninovii</i> (Triticeae: Poaceae). Ecology and Evolution, 2022, 12, e8517.

468 Advances in the Molecular Cytogenetics of Bananas, Family Musaceae. Plants, 2022, 11, 482.
1.6

7

469 Molecular cytogenetics for a wheatâe"Aegilops geniculata 3 Mg alien addition line with resistance to stripe rust and powdery mildew. BMC Plant Biology, 2021, 21, 575.
1.6

4

Precise Identification of Chromosome Constitution and Rearrangements in Wheatâ€"Thinopyrum
intermedium Derivatives by ND-FISH and Oligo-FISH Painting. Plants, 2022, 11, 2109.

Development and identification of an elite wheat-Hordeum californicum \(\mathrm{T} 6 \mathrm{HcS} / 6 \mathrm{BL}\) translocation line ND646 containing several desirable traits. Genetics and Molecular Biology, 2022, 45, .
```

482 Aegilops L.. , 2023, , 213-364.

```
```

