
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9998003/publications.pdf

Version: 2024-02-01

POREDT C. COOK

#	Article	IF	CITATIONS
1	Concept learning by pigeons: Matching-to-sample with trial-unique video picture stimuli. Learning and Behavior, 1988, 16, 436-444.	3.4	214
2	Implicit and explicit categorization: A tale of four species. Neuroscience and Biobehavioral Reviews, 2012, 36, 2355-2369.	6.1	163
3	Flexible memory processing by rats: Use of prospective and retrospective information in the radial maze Journal of Experimental Psychology, 1985, 11, 453-469.	1.7	130
4	Evidence for large long-term memory capacities in baboons and pigeons and its implications for learning and the evolution of cognition. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17564-17567.	7.1	118
5	Cognitive precedence for local information in hierarchical stimulus processing by pigeons Journal of Experimental Psychology, 2001, 27, 3-16.	1.7	97
6	Variability Discrimination in Humans and Animals: Implications for Adaptive Action American Psychologist, 2004, 59, 879-890.	4.2	97
7	Pigeons' categorization may be exclusively nonanalytic. Psychonomic Bulletin and Review, 2011, 18, 414-421.	2.8	95
8	Stages of Abstraction and Exemplar Memorization in Pigeon Category Learning. Psychological Science, 2006, 17, 1059-1067.	3.3	87
9	Two-itemsame-different concept learning in pigeons. Learning and Behavior, 2005, 33, 67-77.	3.4	79
10	Capacity and limits of associative memory in pigeons. Psychonomic Bulletin and Review, 2005, 12, 350-358.	2.8	75
11	Same-different texture discrimination and concept learning by pigeons Journal of Experimental Psychology, 1995, 21, 253-260.	1.7	61
12	Mechanisms of multidimensional grouping, fusion, and search in avian texture discrimination. Learning and Behavior, 1996, 24, 150-167.	3.4	57
13	Successive two-item same-different discrimination and concept learning by pigeons. Behavioural Processes, 2003, 62, 125-144.	1.1	54
14	Temporal control of internal states in pigeons. Psychonomic Bulletin and Review, 2010, 17, 915-922.	2.8	53
15	Pigeon same–different concept learning with multiple stimulus classes Journal of Experimental Psychology, 1997, 23, 417-433.	1.7	50
16	Learning and transfer of relational matching-to-sample by pigeons. Psychonomic Bulletin and Review, 2007, 14, 1107-1114.	2.8	48
17	Acquisition and transfer of visual texture discriminations by pigeons Journal of Experimental Psychology, 1992, 18, 341-353.	1.7	46
18	Touchscreen-enhanced visual learning in rats. Behavior Research Methods, 2004, 36, 101-106.	1.3	45

ROBERT G COOK

#	Article	IF	CITATIONS
19	Genetic Enhancement of Visual Learning by Activation of Protein Kinase C Pathways in Small Groups of Rat Cortical Neurons. Journal of Neuroscience, 2005, 25, 8468-8481.	3.6	43
20	Testing meter, rhythm, and tempo discriminations in pigeons. Behavioural Processes, 2010, 85, 99-110.	1.1	43
21	Landmark geometry and identity controls spatial navigation in rats. Learning and Behavior, 1997, 25, 312-323.	3.4	42
22	The Contribution of Monocular Depth Cues to Scene Perception by Pigeons. Psychological Science, 2006, 17, 628-634.	3.3	42
23	First trial rewards promote 1-trial learning and prolonged memory in pigeon and baboon. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9530-9533.	7.1	39
24	Dimensional organization and texture discrimination in pigeons Journal of Experimental Psychology, 1992, 18, 354-363.	1.7	35
25	Dynamic object perception by pigeons: discrimination of action in video presentations. Animal Cognition, 2001, 4, 137-146.	1.8	31
26	Improved spatial learning in aged rats by genetic activation of protein kinase C in small groups of hippocampal neurons. Hippocampus, 2009, 19, 413-423.	1.9	31
27	Mind the gap: means–end discrimination by pigeons. Animal Behaviour, 2006, 71, 599-608.	1.9	30
28	Chord Discrimination by Pigeons. Music Perception, 2010, 27, 183-196.	1.1	29
29	Shape from shading in pigeons. Cognition, 2012, 124, 284-303.	2.2	29
30	Interstimulus interval and viewing time effects in monkey list memory. Learning and Behavior, 1991, 19, 153-163.	3.4	28
31	Retroactive interference in pigeon short-term memory by a reduction in ambient illumination Journal of Experimental Psychology, 1980, 6, 326-338.	1.7	27
32	The Experimental Analysis of Cognition in Animals. Psychological Science, 1993, 4, 174-178.	3.3	27
33	The Comparative Psychology of Avian Visual Cognition. Current Directions in Psychological Science, 2000, 9, 83-89.	5.3	27
34	The Organization of Behavior over Time: Insights from Mid-session Reversal. Comparative Cognition and Behavior Reviews, 2016, 11, 103-125.	2.0	25
35	THE STRUCTURE OF PIGEON MULTIPLE-CLASS SAME-DIFFERENT LEARNING. Journal of the Experimental Analysis of Behavior, 2002, 78, 345-364.	1.1	23
36	Differential effects of visual context on pattern discrimination by pigeons (Columba livia) and humans (Homo sapiens) Journal of Comparative Psychology (Washington, D C: 1983), 2003, 117, 200-208.	0.5	23

#	Article	IF	CITATIONS
37	Rotational object discrimination by pigeons Journal of Experimental Psychology, 2009, 35, 250-265.	1.7	23
38	Categorization of birds, mammals, and chimeras by pigeons. Behavioural Processes, 2013, 93, 98-110.	1.1	23
39	RELATIONAL AND ABSOLUTE STIMULUS LEARNING BY MONKEYS IN A MEMORY TASK. Journal of the Experimental Analysis of Behavior, 1989, 52, 237-248.	1.1	22
40	Identified circuit in rat postrhinal cortex encodes essential information for performing specific visual shape discriminations. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14478-14483.	7.1	21
41	Dynamic cue use in pigeon mid-session reversal. Behavioural Processes, 2017, 137, 53-63.	1.1	21
42	Discrimination and Categorization of Actions by Pigeons. Psychological Science, 2012, 23, 617-624.	3.3	20
43	Experimental Divergences in the Visual Cognition of Birds and Mammals. Comparative Cognition and Behavior Reviews, 2015, 10, 73-105.	2.0	20
44	The role of video coherence on object-based motion discriminations by pigeons Journal of Experimental Psychology, 2007, 33, 287-298.	1.7	19
45	Black-capped chickadee (Poecile atricapillus) and human (Homo sapiens) chord discrimination Journal of Comparative Psychology (Washington, D C: 1983), 2012, 126, 57-67.	0.5	18
46	"Insight―in pigeons: absence of means–end processing in displacement tests. Animal Cognition, 2014, 17, 207-220.	1.8	18
47	Avian detection and identification of perceptual organization in random noise. Behavioural Processes, 2005, 69, 79-95.	1.1	16
48	Testing analogical rule transfer in pigeons (Columba livia). Cognition, 2019, 183, 256-268.	2.2	16
49	Generalized auditory same-different discrimination by pigeons Journal of Experimental Psychology, 2009, 35, 108-115.	1.7	14
50	Temporal properties of visual search in pigeon target localization Journal of Experimental Psychology, 2012, 38, 209-216.	1.7	14
51	Visual control of an action discrimination in pigeons. Journal of Vision, 2014, 14, 16-16.	0.3	14
52	Shape from shading in starlings (Sturnus vulgaris) Journal of Comparative Psychology (Washington,) Tj ETQq0 () 0 ₀ gBT /0	Overlock 10 T
53	Active change detection by pigeons and humans Journal of Experimental Psychology, 2013, 39, 383-389.	1.7	13

54	Functional Segregation of the Entopallium in Pigeons. Philosophy, 2013, 130, 59-86.	0.2	13

#	Article	IF	CITATIONS
55	On the Role of Memory in Concept Learning by Pigeons. Psychological Record, 1990, 40, 359-371.	0.9	12
56	Absolute and relational control of a sequential auditory discrimination by pigeons (Columba livia). Behavioural Processes, 2008, 77, 210-222.	1.1	12
57	Velocity-based motion categorization by pigeons Journal of Experimental Psychology, 2011, 37, 175-188.	1.7	12
58	CaMKII, MAPK, and CREB are coactivated in identified neurons in a neocortical circuit required for performing visual shape discriminations. Hippocampus, 2012, 22, 2276-2289.	1.9	11
59	Short-term item memory in successive same–different discriminations. Behavioural Processes, 2006, 72, 255-264.	1.1	9
60	Not all same-different discriminations are created equal: Evidence contrary to a unidimensional account of same-different learning. Learning and Motivation, 2006, 37, 189-208.	1.2	9
61	The Analysis of Visual Cognition in Birds: Implications for Evolution, Mechanism, and Representation. Psychology of Learning and Motivation - Advances in Research and Theory, 2015, 63, 173-210.	1.1	9
62	Pigeons and humans use action and pose information to categorize complex human behaviors. Vision Research, 2017, 131, 16-25.	1.4	9
63	Perception of Ebbinghaus–Titchener stimuli in starlings (Sturnus vulgaris). Animal Cognition, 2019, 22, 973-989.	1.8	9
64	An identified ensemble within a neocortical circuit encodes essential information for geneticallyâ€enhanced visual shape learning. Hippocampus, 2019, 29, 710-725.	1.9	9
65	Auditory Same/Different Concept Learning and Generalization in Black-Capped Chickadees (Poecile) Tj ETQq1 1	0.784314 2.5	⊦rg₿T /Overlo
66	Discrimination of Complex Human Behavior by Pigeons (Columba livia) and Humans. PLoS ONE, 2014, 9, e112342.	2.5	8
67	Pigeons use high spatial frequencies when memorizing pictures Journal of Experimental Psychology Animal Learning and Cognition, 2015, 41, 277-285.	0.5	8
68	The adaptive analysis of visual cognition using genetic algorithms Journal of Experimental Psychology, 2013, 39, 357-376.	1.7	7
69	Timbre influences chord discrimination in black-capped chickadees (Poecile atricapillus) but not humans (Homo sapiens) Journal of Comparative Psychology (Washington, D C: 1983), 2014, 128, 387-401.	0.5	7
70	Temporal dynamics of task switching and abstract-concept learning in pigeons. Frontiers in Psychology, 2015, 6, 1334.	2.1	7
71	The perception of Class patterns by starlings (Sturnus vulgaris). Psychonomic Bulletin and Review, 2015, 22, 687-693.	2.8	7
72	Stimulus repetition effects on texture-based visual search by pigeons Journal of Experimental Psychology, 2000, 26, 220-236.	1.7	6

#	Article	IF	CITATIONS
73	Discrimination of dynamic change and constancy over time by pigeons. Psychonomic Bulletin and Review, 2011, 18, 697-704.	2.8	4
74	Complex conditional control by pigeons in a continuous virtual environment. Journal of the Experimental Analysis of Behavior, 2016, 105, 211-229.	1.1	4
75	Examining the extents of same/different processing in non-human animals. Current Opinion in Behavioral Sciences, 2021, 37, 98-102.	3.9	4
76	Detection and discrimination of complex sounds by pigeons (Columba livia). Behavioural Processes, 2016, 123, 114-124.	1.1	3
77	Characteristic and intermingled neocortical circuits encode different visual object discriminations. Behavioural Brain Research, 2017, 331, 261-275.	2.2	3
78	Within-session dynamics of categorical and memory mechanisms in pigeons. Psychonomic Bulletin and Review, 2021, 28, 548-555.	2.8	3
79	Visualizing search behavior with adaptive discriminations. Behavioural Processes, 2014, 102, 40-50.	1.1	2
80	Endpoint distinctiveness facilitates analogical mapping in pigeons. Behavioural Processes, 2015, 112, 72-80.	1.1	1
81	Examination of long-term visual memorization capacity in the Clark's nutcracker (Nucifraga) Tj ETQq1 1 0.78	34314 rgB 2.8	T /Qverlock 1
82	The effect of learning on heart rate and behavior of European starlings (<i>Sturnus vulgaris</i>). Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2019, 331, 506-516.	1.9	1
83	Pigeons simultaneously attend to static and dynamic features of complex displays. Behavioural Processes, 2019, 158, 77-84.	1.1	1
84	Pigeons process actor-action configurations more readily than bystander-action configurations. Learning and Behavior, 2020, 48, 41-52.	1.0	1
85	Perceptual grouping and detection of trial-unique emergent structures by pigeons. Animal Cognition, 2022, , 1.	1.8	1
86	Towards describing scenes by animals: Pigeons' ordinal discrimination of objects varying in depth. Learning and Behavior, 2021, 49, 85-98.	1.0	0