Eva Medina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9995830/publications.pdf

Version: 2024-02-01

		159585	138484
59	3,577	30	58
papers	citations	h-index	g-index
61	61	61	5432
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Dysregulated Immunometabolism Is Associated with the Generation of Myeloid-Derived Suppressor Cells in <i>Staphylococcus aureus</i> Chronic Infection. Journal of Innate Immunity, 2022, 14, 257-274.	3.8	7
2	The emerging potential of microbiome transplantation on human health interventions. Computational and Structural Biotechnology Journal, 2022, 20, 615-627.	4.1	14
3	Cytosolic Sensing of Intracellular <i>Staphylococcus aureus</i> by Mast Cells Elicits a Type I IFN Response That Enhances Cell-Autonomous Immunity. Journal of Immunology, 2022, 208, 1675-1685.	0.8	3
4	Mesaconate is synthesized from itaconate and exerts immunomodulatory effects in macrophages. Nature Metabolism, 2022, 4, 524-533.	11.9	32
5	Repurposing human kinase inhibitors to create an antibiotic active against drug-resistant Staphylococcus aureus, persisters and biofilms. Nature Chemistry, 2020, 12, 145-158.	13.6	78
6	Staphylococcus aureus Alpha-Toxin Limits Type 1 While Fostering Type 3 Immune Responses. Frontiers in Immunology, 2020, 11, 1579.	4.8	12
7	Identification of a Novel LysR-Type Transcriptional Regulator in Staphylococcus aureus That Is Crucial for Secondary Tissue Colonization during Metastatic Bloodstream Infection. MBio, 2020, 11, .	4.1	7
8	Liposomal mupirocin holds promise for systemic treatment of invasive Staphylococcus aureus infections. Journal of Controlled Release, 2019, 316, 292-301.	9.9	27
9	Mast cells as protectors of health. Journal of Allergy and Clinical Immunology, 2019, 144, S4-S18.	2.9	88
10	Longitudinal proliferation mapping in vivo reveals NADPH oxidase-mediated dampening of Staphylococcus aureus growth rates within neutrophils. Scientific Reports, 2019, 9, 5703.	3.3	7
11	Staphylococcus aureus strategies to evade the host acquired immune response. International Journal of Medical Microbiology, 2018, 308, 625-630.	3.6	49
12	Myeloid-Derived Suppressor Cells in Infection: A General Overview. Journal of Innate Immunity, 2018, 10, 407-413.	3.8	76
13	Zirconyl Clindamycinphosphate Antibiotic Nanocarriers for Targeting Intracellular Persisting <i>Staphylococcus aureus</i> . ACS Omega, 2018, 3, 8589-8594.	3.5	8
14	Changed Expression of Cytoskeleton Proteins During Lung Injury in a Mouse Model of Streptococcus pneumoniae Infection. Frontiers in Microbiology, 2018, 9, 928.	3 . 5	3
15	An Interferon Signature Discriminates Pneumococcal From Staphylococcal Pneumonia. Frontiers in Immunology, 2018, 9, 1424.	4.8	11
16	Host-inherent variability influences the transcriptional response of Staphylococcus aureus during in vivo infection. Nature Communications, 2017, 8, 14268.	12.8	58
17	IL-10 Plays Opposing Roles during <i>Staphylococcus aureus</i> Systemic and Localized Infections. Journal of Immunology, 2017, 198, 2352-2365.	0.8	65
18	Identification of a Novel Subset of Myeloid-Derived Suppressor Cells During Chronic Staphylococcal Infection That Resembles Immature Eosinophils. Journal of Infectious Diseases, 2017, 216, 1444-1451.	4.0	48

#	Article	IF	CITATIONS
19	A Chemical Disruptor of the ClpX Chaperone Complex Attenuates the Virulence of Multidrugâ€Resistant <i>Staphylococcus aureus</i> . Angewandte Chemie - International Edition, 2017, 56, 15746-15750.	13.8	34
20	\hat{l}_{\pm} -Hemolysin enhances <i>Staphylococcus aureus </i> internalization and survival within mast cells by modulating the expression of \hat{l}^21 integrin. Cellular Microbiology, 2016, 18, 807-819.	2.1	29
21	Tackling Threats and Future Problems of Multidrug-Resistant Bacteria. Current Topics in Microbiology and Immunology, 2016, 398, 3-33.	1.1	178
22	Exploring the transcriptome of Staphylococcus aureus in its natural niche. Scientific Reports, 2016, 6, 33174.	3.3	52
23	Local activation of coagulation factor XIII reduces systemic complications and improves the survival of mice after Streptococcus pyogenes M1 skin infection. International Journal of Medical Microbiology, 2016, 306, 572-579.	3.6	7
24	Differential Contributions of the Complement Anaphylotoxin Receptors C5aR1 and C5aR2 to the Early Innate Immune Response against Staphylococcus aureus Infection. Pathogens, 2015, 4, 722-738.	2.8	10
25	Application of a Novel "Pan-Genome―Based Strategy for Assigning RNAseq Transcript Reads to Staphylococcus aureus Strains. PLoS ONE, 2015, 10, e0145861.	2.5	9
26	Group A <i>Streptococcus</i> Modulates Host Inflammation by Manipulating Polymorphonuclear Leukocyte Cell Death Responses. Journal of Innate Immunity, 2015, 7, 612-622.	3.8	9
27	A Major Role for Myeloid-Derived Suppressor Cells and a Minor Role for Regulatory T Cells in Immunosuppression during <i>Staphylococcus aureus</i> Infection. Journal of Immunology, 2015, 194, 1100-1111.	0.8	89
28	Staphylococcus aureus-induced clotting of plasma is an immune evasion mechanism for persistence within the fibrin network. Microbiology (United Kingdom), 2015, 161, 621-627.	1.8	30
29	Methicillin-Sensitive and Methicillin-Resistant Staphylococcus aureus Nasal Carriage in a Random Sample of Non-Hospitalized Adult Population in Northern Germany. PLoS ONE, 2014, 9, e107937.	2.5	55
30	High-Resolution Transcriptomic Analysis of the Adaptive Response of Staphylococcus aureus during Acute and Chronic Phases of Osteomyelitis. MBio, 2014, 5, .	4.1	65
31	The role of coagulation/fibrinolysis during Streptococcus pyogenes infection. Frontiers in Cellular and Infection Microbiology, 2014, 4, 128.	3.9	86
32	Prognostic Value and Therapeutic Potential of TREM-1 in <i>Streptococcus pyogenes-</i> Induced Sepsis. Journal of Innate Immunity, 2013, 5, 581-590.	3.8	24
33	Phagocytosis Escape by a Staphylococcus aureus Protein That Connects Complement and Coagulation Proteins at the Bacterial Surface. PLoS Pathogens, 2013, 9, e1003816.	4.7	103
34	Comparative evaluation of establishing a human gut microbial community within rodent models. Gut Microbes, 2012, 3, 234-249.	9.8	113
35	Dendritic Cells Are Central Coordinators of the Host Immune Response to Staphylococcus aureus Bloodstream Infection. American Journal of Pathology, 2012, 181, 1327-1337.	3.8	54
36	A Novel Mouse Model of Staphylococcus aureus Chronic Osteomyelitis That Closely Mimics the Human Infection. American Journal of Pathology, 2012, 181, 1206-1214.	3.8	107

#	Article	IF	Citations
37	The expanding world of extracellular traps: not only neutrophils but much more. Frontiers in Immunology, 2012, 3, 420.	4.8	166
38	In Vivo and Ex Vivo Protocols for Measuring the Killing of Extracellular Pathogens by Macrophages. Current Protocols in Immunology, 2011, 92, Unit 14.19.1-17.	3.6	3
39	<i>Staphylococcus aureus</i> phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Molecular Medicine, 2011, 3, 129-141.	6.9	401
40	The dynamics of T cells during persistent <i>Staphylococcus aureus</i> infection: from antigenâ€reactivity to <i>in vivo</i> anergy. EMBO Molecular Medicine, 2011, 3, 652-666.	6.9	56
41	Staphylococcus aureus Evades the Extracellular Antimicrobial Activity of Mast Cells by Promoting Its Own Uptake. Journal of Innate Immunity, 2011, 3, 495-507.	3.8	76
42	Ageâ€related susceptibility to <i>Streptococcus pyogenes</i> infection in mice: underlying immune dysfunction and strategy to enhance immunity. Journal of Pathology, 2010, 220, 521-529.	4.5	14
43	Protective Role of Complement C5a in an Experimental Model of <i>Staphylococcus aureus</i> Bacteremia. Journal of Innate Immunity, 2010, 2, 87-92.	3.8	30
44	Murine Model of Pneumococcal Pneumonia. Methods in Molecular Biology, 2010, 602, 405-410.	0.9	9
45	Aberrant Inflammatory Response to Streptococcus pyogenes in Mice Lacking Myeloid Differentiation Factor 88. American Journal of Pathology, 2010, 176, 754-763.	3.8	32
46	Murine Model of Cutaneous Infection with Streptococcus pyogenes. Methods in Molecular Biology, 2010, 602, 395-403.	0.9	10
47	Murine Model of Polymicrobial Septic Peritonitis Using Cecal Ligation and Puncture (CLP). Methods in Molecular Biology, 2010, 602, 411-415.	0.9	25
48	Beyond the NETs. Journal of Innate Immunity, 2009, 1, 175-175.	3.8	2
49	<i>Streptococcus pyogenes</i> induces oncosis in macrophages through the activation of an inflammatory programmed cell death pathway. Cellular Microbiology, 2009, 11, 138-155.	2.1	80
50	Neutrophil Extracellular Traps: A Strategic Tactic to Defeat Pathogens with Potential Consequences for the Host. Journal of Innate Immunity, 2009, 1, 176-180.	3.8	94
51	Phagocytosis-independent antimicrobial activity of mast cells by means of extracellular trap formation. Blood, 2008, 111, 3070-3080.	1.4	491
52	Immunological Mechanisms Underlying the Genetic Predisposition to Severe Staphylococcus aureus Infection in the Mouse Model. American Journal of Pathology, 2008, 173, 1657-1668.	3.8	115
53	Immune Recognition of <i>Streptococcus pyogenes </i> by Dendritic Cells. Infection and Immunity, 2008, 76, 2785-2792.	2.2	60
54	The Contribution of Dendritic Cells to Host Defenses against <i>Streptococcus pyogenes</i> . Journal of Infectious Diseases, 2007, 196, 1794-1803.	4.0	46

#	ARTICLE	IF	CITATIONS
55	The Role of the MHC on Resistance to Group A Streptococci in Mice. Journal of Immunology, 2005, 175, 3862-3872.	0.8	20
56	Role of Macrophages in Host Resistance to Group A Streptococci. Infection and Immunity, 2004, 72, 2956-2963.	2.2	101
57	Immune Mechanisms Underlying Host Susceptibility to Infection with Group A Streptococci. Journal of Infectious Diseases, 2003, 187, 854-861.	4.0	39
58	Genetic Control of Susceptibility to Group A Streptococcal Infection in Mice. Journal of Infectious Diseases, 2001, 184, 846-852.	4.0	59
59	Novel Experimental Models for Dissecting Genetic Susceptibility of Superantigen-Mediated Diseases. , 0, , 183-194.		1