Roberto Sitia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/998638/publications.pdf

Version: 2024-02-01

163 papers 11,729 citations

56 h-index 30087 103 g-index

167 all docs

167 docs citations

times ranked

167

11458 citing authors

#	Article	IF	CITATIONS
1	Profound architectural and functional readjustments of the secretory pathway in decidualization of endometrial stromal cells. Traffic, 2022, 23, 4-20.	2.7	4
2	Biogenesis of secretory immunoglobulin M requires intermediate nonâ€native disulfide bonds and engagement of the protein disulfide isomerase ERp44. EMBO Journal, 2022, 41, e108518.	7.8	10
3	Transfer of H2O2 from Mitochondria to the endoplasmic reticulum via Aquaporin-11. Redox Biology, 2022, 55, 102410.	9.0	11
4	Endoplasmic reticulum oxidoreductase 1 alpha modulates prostate cancer hallmarks. Translational Andrology and Urology, 2021, 10, 1110-1120.	1.4	5
5	A virtuous cycle operated by ERp44 and ERGIC-53 guarantees proteostasis in the early secretory compartment. IScience, 2021, 24, 102244.	4.1	12
6	Molecular Evaluation of Endoplasmic Reticulum Homeostasis Meets Humoral Immunity. Trends in Cell Biology, 2021, 31, 529-541.	7.9	23
7	Human aquaporin-11 guarantees efficient transport of H2O2 across the endoplasmic reticulum membrane. Redox Biology, 2020, 28, 101326.	9.0	85
8	Aquaporins: Gatekeepers in the borders of oxidative stress and redox signaling., 2020,, 167-181.		0
9	<scp>The importance of naturally attenuated SARSâ€CoV</scp> â€2 <scp>in the fight against COVID</scp> â€19. Environmental Microbiology, 2020, 22, 1997-2000.	3.8	54
10	Evolution, role in inflammation, and redox control of leaderless secretory proteins. Journal of Biological Chemistry, 2020, 295, 7799-7811.	3.4	29
11	Role of the early secretory pathway in SARS-CoV-2 infection. Journal of Cell Biology, 2020, 219, .	5.2	63
12	Monitoring cytosolic H2O2 fluctuations arising from altered plasma membrane gradients or from mitochondrial activity. Nature Communications, 2019, 10, 4526.	12.8	33
13	Atypical IgM on T cells predict relapse and steroid dependence in idiopathic nephrotic syndrome. Kidney International, 2019, 96, 971-982.	5.2	22
14	Zinc regulates ERp44-dependent protein quality control in the early secretory pathway. Nature Communications, 2019, 10, 603.	12.8	52
15	Inadequate BiP availability defines endoplasmic reticulum stress. ELife, 2019, 8, .	6.0	50
16	Redox crosstalk at endoplasmic reticulum (ER) membrane contact sites (MCS) uses toxic waste to deliver messages. Cell Death and Disease, 2018, 9, 331.	6.3	158
17	The unconventional secretion of IL- $\hat{1}^2$: Handling a dangerous weapon to optimize inflammatory responses. Seminars in Cell and Developmental Biology, 2018, 83, 12-21.	5.0	47
18	Role of Selenof as a Gatekeeper of Secreted Disulfide-Rich Glycoproteins. Cell Reports, 2018, 23, 1387-1398.	6.4	49

#	Article	IF	Citations
19	Progressive waves of IL- $1\hat{1}^2$ release by primary human monocytes via sequential activation of vesicular and gasdermin D-mediated secretory pathways. Cell Death and Disease, 2018, 9, 1088.	6.3	61
20	A persulfidation-based mechanism controls aquaporin-8 conductance. Science Advances, 2018, 4, eaar5770.	10.3	44
21	Redox-Dependent Circuits Regulating B Lymphocyte Physiology. , 2018, , 183-201.		0
22	CHAPTER 3.4. Mechanisms of Oxidative Protein Folding and Thiol-dependent Quality Control: Tales of Cysteines and Cystines. Chemical Biology, 2018, , 249-266.	0.2	5
23	Regulation of Calcium Fluxes by GPX8, a Type-II Transmembrane Peroxidase Enriched at the Mitochondria-Associated Endoplasmic Reticulum Membrane. Antioxidants and Redox Signaling, 2017, 27, 583-595.	5.4	63
24	Structural basis of pH-dependent client binding by ERp44, a key regulator of protein secretion at the ER–Golgi interface. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3224-E3232.	7.1	32
25	A peptide extension dictates IgM assembly. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8575-E8584.	7.1	19
26	Roles of N-glycans in the polymerization-dependent aggregation of mutant lg- \hat{l} /4 chains in the early secretory pathway. Scientific Reports, 2017, 7, 41815.	3.3	8
27	Dysregulated IL- $1\hat{l}^2$ Secretion in Autoinflammatory Diseases: A Matter of Stress?. Frontiers in Immunology, 2017, 8, 345.	4.8	36
28	Cysteines as Redox Molecular Switches and Targets of Disease. Frontiers in Molecular Neuroscience, 2017, 10, 167.	2.9	95
29	Ratiometric sensing of BiP-client versus BiP levels by the unfolded protein response determines its signaling amplitude. ELife, 2017, 6, .	6.0	64
30	Regulation of H2O2 Transport across Cell Membranes. , 2017, , 365-385.		1
31	Assessing Heterogeneity of Osteolytic Lesions in Multiple Myeloma by 1H HR-MAS NMR Metabolomics. International Journal of Molecular Sciences, 2016, 17, 1814.	4.1	5
32	Crystal Structure of the ERp44-Peroxiredoxin 4 Complex Reveals the Molecular Mechanisms of Thiol-Mediated Protein Retention. Structure, 2016, 24, 1755-1765.	3.3	34
33	AQP8 transports NOX2-generated H2O2 across the plasma membrane to promote signaling in B cells. Journal of Leukocyte Biology, 2016, 100, 1071-1079.	3.3	69
34	Stress Regulates Aquaporin-8 Permeability to Impact Cell Growth and Survival. Antioxidants and Redox Signaling, 2016, 24, 1031-1044.	5.4	82
35	Transit of H2O2 across the endoplasmic reticulum membrane is not sluggish. Free Radical Biology and Medicine, 2016, 94, 157-160.	2.9	48
36	Aberrant disulphide bonding contributes to the ER retention of alpha1-antitrypsin deficiency variants. Human Molecular Genetics, 2016, 25, 642-650.	2.9	28

#	Article	IF	Citations
37	Biochemical nature of Russell Bodies. Scientific Reports, 2015, 5, 12585.	3.3	8
38	Sialylation of N-Linked Glycans Influences the Immunomodulatory Effects of IgM on T Cells. Journal of Immunology, 2015, 194, 151-157.	0.8	48
39	Proteostasis and "redoxtasis―in the secretory pathway: Tales of tails from ERp44 and immunoglobulins. Free Radical Biology and Medicine, 2015, 83, 323-330.	2.9	36
40	MHC Class II Transactivator Is an In Vivo Regulator of Osteoclast Differentiation and Bone Homeostasis Co-opted From Adaptive Immunity. Journal of Bone and Mineral Research, 2014, 29, 290-303.	2.8	15
41	Different redox sensitivity of endoplasmic reticulum associated degradation clients suggests a novel role for disulphide bonds in secretory proteins. Biochemistry and Cell Biology, 2014, 92, 113-118.	2.0	11
42	A RIDDle solved: Why an intact IRE1α/XBPâ€1 signaling relay is key for humoral immune responses. European Journal of Immunology, 2014, 44, 641-645.	2.9	4
43	Progressive quality control of secretory proteins in the early secretory compartment by ERp44. Journal of Cell Science, 2014, 127, 4260-9.	2.0	36
44	Glutathione Peroxidase 7 Utilizes Hydrogen Peroxide Generated by Ero1 \hat{l}_{\pm} to Promote Oxidative Protein Folding. Antioxidants and Redox Signaling, 2014, 20, 545-556.	5 . 4	98
45	A Dynamic Study of Protein Secretion and Aggregation in the Secretory Pathway. PLoS ONE, 2014, 9, e108496.	2.5	14
46	A pH-Regulated Quality Control Cycle for Surveillance of Secretory Protein Assembly. Molecular Cell, 2013, 50, 783-792.	9.7	70
47	Response to Marinelli and Marchissio. Antioxidants and Redox Signaling, 2013, 19, 897-897.	5 . 4	1
48	Plasma cells require autophagy for sustainable immunoglobulin production. Nature Immunology, 2013, 14, 298-305.	14.5	358
49	Tyrosine Kinase Signal Modulation: A Matter of H ₂ O ₂ Membrane Permeability?. Antioxidants and Redox Signaling, 2013, 19, 1447-1451.	5.4	104
50	Ero1–PDI interactions, the response to redox flux and the implications for disulfide bond formation in the mammalian endoplasmic reticulum. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20110403.	4.0	59
51	Remembering Michael S Neuberger (1953-2013). EMBO Journal, 2013, 32, 3112-3113.	7.8	0
52	Dynamic Regulation of Ero1 \hat{l} ± and Peroxiredoxin 4 Localization in the Secretory Pathway. Journal of Biological Chemistry, 2013, 288, 29586-29594.	3.4	57
53	Iron increases the susceptibility of multiple myeloma cells to bortezomib. Haematologica, 2013, 98, 971-979.	3.5	40
54	Production of H ₂ O ₂ in the Endoplasmic Reticulum Promotes <i>In Vivo</i> Disulfide Bond Formation. Antioxidants and Redox Signaling, 2012, 16, 1088-1099.	5.4	26

#	Article	IF	CITATIONS
55	Pivotal Advance: Protein synthesis modulates responsiveness of differentiating and malignant plasma cells to proteasome inhibitors. Journal of Leukocyte Biology, 2012, 92, 921-931.	3.3	67
56	Peroxides and Peroxidases in the Endoplasmic Reticulum: Integrating Redox Homeostasis and Oxidative Folding. Antioxidants and Redox Signaling, 2012, 16, 763-771.	5.4	64
57	Ero1α Regulates Ca ²⁺ Fluxes at the Endoplasmic Reticulum–Mitochondria Interface (MAM). Antioxidants and Redox Signaling, 2012, 16, 1077-1087.	5.4	180
58	On the Redox Control of B Lymphocyte Differentiation and Function. Antioxidants and Redox Signaling, 2012, 16, 1139-1149.	5.4	35
59	Metabolomics of B to Plasma Cell Differentiation. Journal of Proteome Research, 2011, 10, 4165-4176.	3.7	83
60	Oxidative Protein Folding in the Secretory Pathway and Redox Signaling Across Compartments and Cells. Traffic, 2011, 12, 1-8.	2.7	62
61	Proteostenosis and plasma cell pathophysiology. Current Opinion in Cell Biology, 2011, 23, 216-222.	5.4	46
62	Molecular Bases of Cyclic and Specific Disulfide Interchange between Human ERO1α Protein and Protein-disulfide Isomerase (PDI). Journal of Biological Chemistry, 2011, 286, 16261-16271.	3.4	63
63	Proteostenosis and plasma cell pathophysiology. , 2011, 23, 216-216.		1
64	Expression of Mutant or Cytosolic PrP in Transgenic Mice and Cells Is Not Associated with Endoplasmic Reticulum Stress or Proteasome Dysfunction. PLoS ONE, 2011, 6, e19339.	2.5	32
65	ERp44 and ERGIC-53 Synergize in Coupling Efficiency and Fidelity of IgM Polymerization and Secretion. Traffic, 2010, 11, 651-659.	2.7	50
66	Pathogenesis of ER Storage Disorders: Modulating Russell Body Biogenesis by Altering Proximal and Distal Quality Control. Traffic, 2010, 11, 947-957.	2.7	31
67	Pathogenesis of ER Storage Disorders: Modulating Russell Body Biogenesis by Altering Proximal and Distal Quality Control. Traffic, 2010, 11, 1380-1380.	2.7	0
68	Crystal structures of human $\text{Erol}\hat{l}_{\pm}$ reveal the mechanisms of regulated and targeted oxidation of PDI. EMBO Journal, 2010, 29, 3330-3343.	7.8	113
69	From antibodies to adiponectin: role of ERp44 in sizing and timing protein secretion. Diabetes, Obesity and Metabolism, 2010, 12, 39-47.	4.4	25
70	CHOP-independent apoptosis and pathway-selective induction of the UPR in developing plasma cells. Molecular Immunology, 2010, 47, 1356-1365.	2.2	56
71	Physiology and pathology of proteostasis in the early secretory compartment. Seminars in Cell and Developmental Biology, 2010, 21, 520-525.	5.0	24
72	Redox Remodeling Allows and Controls B-Cell Activation and Differentiation. Antioxidants and Redox Signaling, 2010, 13, 1145-1155.	5.4	83

#	Article	IF	CITATIONS
73	B- to Plasma-Cell Terminal Differentiation Entails Oxidative Stress and Profound Reshaping of the Antioxidant Responses. Antioxidants and Redox Signaling, 2010, 13, 1133-1144.	5.4	110
74	A New Fluorogenic Peptide Determines Proteasome Activity in Single Cells. Journal of Medicinal Chemistry, 2010, 53, 7452-7460.	6.4	20
75	Chemo-metabolic regulation of immune responses by Tregs. Nature Chemical Biology, 2009, 5, 709-710.	8.0	5
76	Stress as an Intercellular Signal: The Emergence of Stress-Associated Molecular Patterns (SAMP). Antioxidants and Redox Signaling, 2009, 11, 2621-2629.	5.4	31
77	The proteasome load versus capacity balance determines apoptotic sensitivity of multiple myeloma cells to proteasome inhibition. Blood, 2009, 113, 3040-3049.	1.4	220
78	SEL1L and HRD1 are involved in the degradation of unassembled secretory Igâ€Âμ chains. Journal of Cellular Physiology, 2008, 215, 794-802.	4.1	38
79	Dampening Ab responses using proteasome inhibitors following <i>in vivo</i> B cell activation. European Journal of Immunology, 2008, 38, 658-667.	2.9	56
80	Crystal structure of human ERp44 shows a dynamic functional modulation by its carboxyâ€ŧerminal tail. EMBO Reports, 2008, 9, 642-647.	4.5	66
81	Protein quality control in the early secretory pathway. EMBO Journal, 2008, 27, 315-327.	7.8	543
82	Redox homeostasis modulates the sensitivity of myeloma cells to bortezomib. British Journal of Haematology, 2008, 141, 494-503.	2.5	65
83	Building and operating an antibody factory: Redox control during B to plasma cell terminal differentiation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 578-588.	4.1	44
84	Multistep, sequential control of the trafficking and function of the multiple sulfatase deficiency gene product, SUMF1 by PDI, ERGIC-53 and ERp44. Human Molecular Genetics, 2008, 17, 2610-2621.	2.9	62
85	Proteotoxic stress and cell lifespan control. Molecules and Cells, 2008, 26, 323-8.	2.6	9
86	Diseases Originating from Altered Protein Quality Control in the Endoplasmic Reticulum. Current Medicinal Chemistry, 2007, 14, 1639-1652.	2.4	15
87	Interplays Between Covalent Modifications in the Endoplasmic Reticulum Increase Conformational Diversity in Nascent Prion Protein. Prion, 2007, 1, 236-242.	1.8	5
88	Bortezomib in the treatment of AL amyloidosis: targeted therapy?. Haematologica, 2007, 92, 1302-1307.	3.5	85
89	Managing and exploiting stress in the antibody factory. FEBS Letters, 2007, 581, 3652-3657.	2.8	104
90	Cellular stress. FEBS Letters, 2007, 581, 3581-3581.	2.8	2

#	Article	IF	Citations
91	Sequential steps and checkpoints in the early exocytic compartment during secretory IgM biogenesis. EMBO Journal, 2007, 26, 4177-4188.	7.8	120
92	Endoplasmic Reticulum Stress. Annals of the New York Academy of Sciences, 2007, 1113, 58-71.	3.8	161
93	Progressively impaired proteasomal capacity during terminal plasma cell differentiation. EMBO Journal, 2006, 25, 1104-1113.	7.8	139
94	ER storage diseases: a role for ERGIC-53 in controlling the formation and shape of Russell bodies. Journal of Cell Science, 2006, 119, 2532-2541.	2.0	59
95	The Diversity of Oxidative Protein Folding. Antioxidants and Redox Signaling, 2006, 8, 271-273.	5.4	4
96	Dynamic Retention of $\text{Erol}\hat{1}$ and $\text{Erol}\hat{1}$ in the Endoplasmic Reticulum by Interactions with PDI and ERp44. Antioxidants and Redox Signaling, 2006, 8, 274-282.	5.4	93
97	Conditions of Endoplasmic Reticulum Stress Favor the Accumulation of Cytosolic Prion Protein. Journal of Biological Chemistry, 2006, 281, 30431-30438.	3.4	91
98	Glutathione Limits Ero1-dependent Oxidation in the Endoplasmic Reticulum. Journal of Biological Chemistry, 2004, 279, 32667-32673.	3.4	130
99	Two Conserved Cysteine Triads in Human Erolî± Cooperate for Efficient Disulfide Bond Formation in the Endoplasmic Reticulum. Journal of Biological Chemistry, 2004, 279, 30047-30052.	3.4	51
100	Stress, Protein (Mis)folding, and Signaling: The Redox Connection. Science Signaling, 2004, 2004, pe27-pe27.	3.6	76
101	Fibroblasts from FAD-linked presenilin 1 mutations display a normal unfolded protein response but overproduce A \hat{l}^2 42 in response to tunicamycin. Neurobiology of Disease, 2004, 15, 380-386.	4.4	17
102	Immunoglobulin Assembly and Secretion. , 2004, , 261-273.		24
103	Thiol-mediated protein retention in the endoplasmic reticulum: the role of ERp44. EMBO Journal, 2003, 22, 5015-5022.	7.8	208
104	Quality control in the endoplasmic reticulum protein factory. Nature, 2003, 426, 891-894.	27.8	625
105	Sequential Waves of Functionally Related Proteins Are Expressed When B Cells Prepare for Antibody Secretion. Immunity, 2003, 18, 243-253.	14.3	341
106	The Making of a Professional Secretory Cell: Architectural and Functional Changes in the ER during B Lymphocyte Plasma Cell Differentiation. Biological Chemistry, 2003, 384, 1273-7.	2.5	16
107	ERdj5, an Endoplasmic Reticulum (ER)-resident Protein Containing DnaJ and Thioredoxin Domains, Is Expressed in Secretory Cells or following ER Stress. Journal of Biological Chemistry, 2003, 278, 1059-1066.	3.4	175
108	Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1491-1496.	7.1	342

#	Article	IF	CITATIONS
109	Formation, isomerisation and reduction of disulphide bonds during protein quality control in the endoplasmic reticulum. Histochemistry and Cell Biology, 2002, 117, 151-157.	1.7	78
110	ERp44, a novel endoplasmic reticulum folding assistant of the thioredoxin family. EMBO Journal, 2002, 21, 835-844.	7.8	237
111	The C-terminal domain of yeast Ero1p mediates membrane localization and is essential for function. FEBS Letters, 2001, 508, 117-120.	2.8	46
112	Expression of KIF3C kinesin during neural development and inÂvitro neuronal differentiation. Journal of Neurochemistry, 2001, 77, 741-753.	3.9	23
113	Manipulation of oxidative protein folding and PDI redox state in mammalian cells. EMBO Journal, 2001, 20, 6288-6296.	7.8	231
114	Glycoprotein Quality Control in the Endoplasmic Reticulum. Journal of Biological Chemistry, 2001, 276, 12885-12892.	3.4	101
115	Reduction of Interchain Disulfide Bonds Precedes the Dislocation of Ig-µ Chains from the Endoplasmic Reticulum to the Cytosol for Proteasomal Degradation. Journal of Biological Chemistry, 2001, 276, 40962-40967.	3.4	77
116	Degradation of unassembled soluble Ig subunits by cytosolic proteasomes: evidence that retrotranslocation and degradation are coupled events. FASEB Journal, 2000, 14, 769-778.	0.5	96
117	ERO1-L, a Human Protein That Favors Disulfide Bond Formation in the Endoplasmic Reticulum. Journal of Biological Chemistry, 2000, 275, 4827-4833.	3.4	264
118	Endoplasmic Reticulum Oxidoreductin 1 -L $^{\hat{1}^2}$ (ERO1-L $^{\hat{1}^2}$), a Human Gene Induced in the Course of the Unfolded Protein Response. Journal of Biological Chemistry, 2000, 275, 23685-23692.	3.4	239
119	CD36 Is a Ditopic Glycoprotein with the N-Terminal Domain Implicated in Intracellular Transport. Biochemical and Biophysical Research Communications, 2000, 275, 446-454.	2.1	45
120	Aspects of Gene Regulation during the UPR in Human Cells. Biochemical and Biophysical Research Communications, 2000, 278, 530-536.	2.1	24
121	Genomic organization and transcriptional analysis of the human genes coding for caveolin-1 and caveolin-2. Gene, 2000, 243, 75-83.	2.2	29
122	Aggresomes and Russell bodies. EMBO Reports, 2000, 1, 225-231.	4.5	225
123	A computer-driven approach to PCR-based differential screening, alternative to differential display. Bioinformatics, 1999, 15, 93-105.	4.1	14
124	Reply to Reinhold et al Trends in Immunology, 1999, 20, 384-385.	7.5	0
125	HIV-1 Tat: immunosuppression via TGF-β1 induction. Trends in Immunology, 1999, 20, 384.	7.5	46
126	Human Caveolin-1 and Caveolin-2 Are Closely Linked Genes Colocalized with WI-5336 in a Region of 7q31 Frequently Deleted in Tumors. Genomics, 1999, 56, 355-356.	2.9	26

#	Article	IF	CITATIONS
127	Changes in gene expression during the growth arrest of HepG2 hepatoma cells induced by reducing agents or TGF \hat{l}^21 . Oncogene, 1998, 16, 2935-2943.	5.9	15
128	HIV-1 Tat: a polypeptide for all seasons. Trends in Immunology, 1998, 19, 543-545.	7. 5	108
129	Biogenesis and function of IgM: the role of the conserved \hat{l} 4-chain tailpiece glycans. Molecular Immunology, 1998, 35, 837-845.	2.2	37
130	KIF3C, a Novel Member of the Kinesin Superfamily: Sequence, Expression, and Mapping to Human Chromosome 2 at 2p23. Genomics, 1998, 47, 405-408.	2.9	27
131	Antibodies, Secretion. , 1998, , 144-148.		0
132	Differential expression of GalÂ1,3Gal epitope in polymeric and monomeric IgM secreted by mouse myeloma cells deficient in Â2,6-sialyltransferase. Glycobiology, 1998, 8, 841-848.	2.5	13
133	Secretion of Thiols and Disulfide Bond Formation: Retraction. Science, 1998, 279, 1283j-1283.	12.6	2
134	Formation of one or more intrachain disulphide bonds is required for the intracellular processing and transport of CD36. Biochemical Journal, 1997, 328, 635-642.	3.7	29
135	Cysteine and Glutathione Secretion in Response to Protein Disulfide Bond Formation in the ER. Science, 1997, 277, 1681-1684.	12.6	93
136	The Association of HIV-1 Tat with Nuclei Is Regulated by Ca2+ Ions and Cytosolic Factors. Journal of Biological Chemistry, 1997, 272, 11256-11260.	3.4	9
137	Stringent thiol-mediated retention in B lymphocytes and Xenopus oocytes correlates with inefficient IgM polymerization. European Journal of Immunology, 1997, 27, 1283-1291.	2.9	8
138	Secretion of Mammalian Proteins that Lack a Signal Sequence. Molecular Biology Intelligence Unit, 1997, , 87-114.	0.2	39
139	IgM polymerization inhibits the Golgi-mediated processing of the \hat{l} -/4-chain carboxy-terminal glycans. Molecular Immunology, 1996, 33, 15-24.	2.2	49
140	Synthesis, Processing, and Intracellular Transport of CD36 during Monocytic Differentiation. Journal of Biological Chemistry, 1996, 271, 1770-1775.	3.4	65
141	Exposed Thiols Confer Localization in the Endoplasmic Reticulum by Retention Rather than Retrieval. Journal of Biological Chemistry, 1996, 271, 26138-26142.	3.4	40
142	Nuclear translocation of an exogenous fusion protein containing HIV Tat requires unfolding. Aids, 1995, 9, 995-1000.	2.2	43
143	Entry of exogenous polypeptides into the nucleus of living cells: facts and speculations. Trends in Cell Biology, 1995, 5, 409-412.	7.9	15
144	The efficiency of cysteine-mediated intracellular retention determines the differential fate of secretory IgA and IgM in B and plasma cells. European Journal of Immunology, 1994, 24, 2477-2482.	2.9	42

#	Article	IF	CITATIONS
145	A novel way to get out of the cell. Cytotechnology, 1993, 11, S37-S40.	1.6	5
146	Post-translational regulation of interleukin $1\hat{l}^2$ secretion. Cytokine, 1993, 5, 117-124.	3.2	53
147	The Endoplasmic Reticulum as a Site of Protein Degradation. Sub-Cellular Biochemistry, 1993, 21, 143-168.	2.4	36
148	Interleukin $ \langle i \rangle ^2 \langle i \rangle$ and thioredoxin are secreted through a novel pathway of secretion. Biochemical Society Transactions, 1991, 19, 255-259.	3.4	73
149	Secretion of immunoglobulin M assembly intermediates in the presence of reducing agents. Nature, 1990, 347, 485-487.	27.8	145
150	Developmental regulation of IgM secretion: The role of the carboxy-terminal cysteine. Cell, 1990, 60, 781-790.	28.9	248
151	Protein degradation in the endoplasmic reticulum. Cell, 1990, 62, 611-614.	28.9	739
152	A novel pathway for secretory proteins?. Trends in Biochemical Sciences, 1990, 15, 86-88.	7.5	285
153	Regulation of IgM biosynthesis in human chronic lymphocytic leukemia. Normal and neoplastic B cells respond differently to TPA. Leukemia Research, 1989, 13, 1105-1111.	0.8	1
154	The control of membrane and secreted heavy chain biosynthesis varies in different immunoglobulin isotypes produced by a monoclonal B cell lymphoma. Molecular Immunology, 1988, 25, 189-197.	2.2	19
155	Differentiation in the murine B cell lymphoma I.29: individual $\hat{l}\frac{1}{4}$ + clones may be induced by lipopolysaccharide to both IgM secretion and isotype switching. European Journal of Immunology, 1987, 17, 555-562.	2.9	31
156	Differentiation in the murine B cell lymphoma 1.29: inductive capacities of lipopolysaccharide and Mycoplasma fermentans products. European Journal of Immunology, 1985, 15, 570-575.	2.9	19
157	Maturation of chronic lymphocytic leukemia B cells: Correlation between the capacity of responding to T-cell factors in vitro and the stage of maturation reached in vivo. Clinical Immunology and Immunopathology, 1985, 34, 296-303.	2.0	4
158	Biosynthesis of membrane and secreted ϵ-chains during lipopolysaccharideinduced differentiation of an IgE+ murine B-lymphoma. Molecular Immunology, 1985, 22, 1289-1296.	2.2	12
159	The role of glycosylation in secretion and membrane expression of immunoglobulins M and A. Molecular Immunology, 1984, 21, 709-719.	2.2	24
160	Expression of a receptor for sheep erythrocytes by B lymphocytes from a chronic lymphocytic leukemia patient. Clinical Immunology and Immunopathology, 1983, 27, 210-222.	2.0	7
161	The ontogeny of B lymphocytes V. Lipopolysaccharide-induced changes of IgD expression on murine B lymphocytes. European Journal of Immunology, 1979, 9, 859-864.	2.9	21
162	Lymphocyte membrane immunoglobulins: similarities between human IgD and mouse IgD-like molecules. European Journal of Immunology, 1977, 7, 503-507.	2.9	15

#	Article	IF	CITATIONS
163	Stress as an intercellular signal: the emergence of stress associated molecular patterns (SAMP) Antioxidants and Redox Signaling, 0, , 110306091003087.	5.4	1