Youjun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/998263/publications.pdf

Version: 2024-02-01

279798 214800 2,387 64 23 47 h-index citations g-index papers 65 65 65 2801 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A Highly Selective Low-Background Fluorescent Imaging Agent for Nitric Oxide. Journal of the American Chemical Society, 2010, 132, 13114-13116.	13.7	222
2	An Organic White Light-Emitting Fluorophore. Journal of the American Chemical Society, 2006, 128, 14081-14092.	13.7	198
3	A Three-Channel Fluorescent Probe That Distinguishes Peroxynitrite from Hypochlorite. Journal of the American Chemical Society, 2012, 134, 18479-18482.	13.7	160
4	Bright, Stable, and Biocompatible Organic Fluorophores Absorbing/Emitting in the Deep Nearâ€Infrared Spectral Region. Angewandte Chemie - International Edition, 2017, 56, 2979-2983.	13.8	142
5	A Concise Colorimetric and Fluorimetric Probe for Sarin Related Threats Designed via the "Covalent-Assembly―Approach. Journal of the American Chemical Society, 2014, 136, 6594-6597.	13.7	119
6	Seminaphthofluorones are a family of water-soluble, low molecular weight, NIR-emitting fluorophores. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8829-8834.	7.1	114
7	Red-Emission Fluorescent Probe Sensing Cadmium and Pyrophosphate Selectively in Aqueous Solution. Organic Letters, 2011, 13, 3656-3659.	4.6	112
8	Tailored Engineering of Novel Xanthonium Polymethine Dyes for Synergetic PDT and PTT Triggered by 1064 nm Laser toward Deepâ€Seated Tumors. Small, 2021, 17, e2100398.	10.0	87
9	A general approach to the design of high-performance near-infrared (NIR) D-ï∈-A type fluorescent dyes. Chinese Chemical Letters, 2019, 30, 839-846.	9.0	85
10	Practical Assay for Nitrite and Nitrosothiol as an Alternative to the Griess Assay or the 2,3-Diaminonaphthalene Assay. Analytical Chemistry, 2015, 87, 1274-1280.	6.5	73
11	Photocalibrated NO Release from N-Nitrosated Napthalimides upon One-Photon or Two-Photon Irradiation. Analytical Chemistry, 2016, 88, 7274-7280.	6.5	66
12	Super-Resolution Monitoring of Mitochondrial Dynamics upon Time-Gated Photo-Triggered Release of Nitric Oxide. Analytical Chemistry, 2018, 90, 2164-2169.	6.5	65
13	Highly Sensitive Hill-Type Small-Molecule pH Probe That Recognizes the Reversed pH Gradient of Cancer Cells. Analytical Chemistry, 2018, 90, 5803-5809.	6.5	56
14	A Convenient Preparation of Xanthene Dyes. Journal of Organic Chemistry, 2005, 70, 6907-6912.	3.2	54
15	Simultaneous Quantification of Hg ²⁺ and MeHg ⁺ in Aqueous Media with a Single Fluorescent Probe by Multiplexing in the Time Domain. Analytical Chemistry, 2014, 86, 11919-11924.	6.5	47
16	Super-resolution imaging of lysosomes with a nitroso-caged rhodamine. Chemical Communications, 2018, 54, 2842-2845.	4.1	45
17	Structurally Rigid 9-Amino-benzo[<i>c</i>]cinnoliniums Make Up a Class of Compact and Large Stokes-Shift Fluorescent Dyes for Cell-Based Imaging Applications. Journal of Organic Chemistry, 2015, 80, 5906-5911.	3.2	44
18	Engineering the Chargeâ€Transfer State to Facilitate Spin–Orbit Charge Transfer Intersystem Crossing in Spirobis[anthracene]diones. Angewandte Chemie - International Edition, 2020, 59, 22179-22184.	13.8	44

#	Article	IF	CITATIONS
19	A Water-Soluble, Green-Light Triggered, and Photo-Calibrated Nitric Oxide Donor for Biological Applications. Bioconjugate Chemistry, 2018, 29, 1194-1198.	3 . 6	42
20	A diversity-oriented rhodamine library for wide-spectrum bactericidal agents with low inducible resistance against resistant pathogens. Nature Communications, 2019, 10, 258.	12.8	41
21	A Fluorogenic ONOO [–] -Triggered Carbon Monoxide Donor for Mitigating Brain Ischemic Damage. Journal of the American Chemical Society, 2022, 144, 2114-2119.	13.7	39
22	Understanding the Selectivity of a Multichannel Fluorescent Probe for Peroxynitrite Over Hypochlorite. Bioconjugate Chemistry, 2016, 27, 341-353.	3.6	34
23	Nitroso-Caged Rhodamine: A Superior Green Light-Activatable Fluorophore for Single-Molecule Localization Super-Resolution Imaging. Analytical Chemistry, 2021, 93, 7833-7842.	6.5	30
24	Bright, Stable, and Biocompatible Organic Fluorophores Absorbing/Emitting in the Deep Nearâ€Infrared Spectral Region. Angewandte Chemie, 2017, 129, 3025-3029.	2.0	29
25	Synthesis of Sterically Protected Xanthene Dyes with Bulky Groups at C-3′ and C-7′. Journal of Organic Chemistry, 2015, 80, 11538-11543.	3.2	25
26	2-Amino-3′-dialkylaminobiphenyl-based fluorescent intracellular probes for nitric oxide surrogate N ₂ O ₃ . Chemical Science, 2020, 11, 1394-1403.	7.4	24
27	Highly selective, naked-eye and fluorescent "off-on―probe for detection of histidine/histidine-rich proteins and its application in living cell imaging. Organic and Biomolecular Chemistry, 2012, 10, 1653.	2.8	23
28	A zero-background fluorescent probe for Hg ²⁺ designed via the "covalent-assembly― principle. Analytical Methods, 2014, 6, 7597-7600.	2.7	23
29	Molecular probe design <i>via</i> the "covalent-assembly―principle. Chemical Communications, 2020, 56, 9067-9078.	4.1	23
30	A Photo-triggered and photo-calibrated nitric oxide donor: Rational design, spectral characterizations, and biological applications. Free Radical Biology and Medicine, 2018, 123, 1-7.	2.9	22
31	Nearâ€Unity Triplet Generation Promoted via Spiroâ€Conjugation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	20
32	Oxoanion recognition by benzene-based tripodal pyrrolic receptors. Supramolecular Chemistry, 2012, 24, 72-76.	1.2	19
33	A novel chromogenic and fluorogenic scaffold for detection of oxidative radicals. Chinese Chemical Letters, 2017, 28, 2001-2004.	9.0	19
34	"Xanthene―is a premium bridging group for xanthenoid dyes. Chinese Chemical Letters, 2021, 32, 3865-3869.	9.0	18
35	Ring-restricted N-nitrosated rhodamine as a green-light triggered, orange-emission calibrated and fast-releasing nitric oxide donor. Chinese Chemical Letters, 2018, 29, 1497-1499.	9.0	17
36	Mild dealkylative <i>N</i> -nitrosation of <i>N</i> , <i>N</i> -dialkylaniline derivatives for convenient preparation of photo-triggered and photo-calibrated NO donors. Organic Chemistry Frontiers, 2018, 5, 3206-3209.	4.5	16

#	Article	IF	Citations
37	Recent progresses on the development of thioxo-naphthalimides. Chinese Chemical Letters, 2020, 31, 2877-2883.	9.0	16
38	Copper-promoted probe for nitric oxide based on o-phenylenediamine: Large blue-shift in absorption and fluorescence enhancement. Analytical Methods, 2012, 4, 919.	2.7	15
39	Ultrafast Intersystem Crossing in Epigenetic DNA Nucleoside 2′-Deoxy-5-formylcytidine. Journal of Physical Chemistry B, 2019, 123, 5782-5790.	2.6	14
40	A Monochromophoric Approach to Succinct Ratiometric Fluorescent Probes without Probe-Product Crosstalk. CCS Chemistry, 2021, 3, 2307-2315.	7.8	14
41	Mild Colorimetric Detection of Sialic Acid. Collection of Czechoslovak Chemical Communications, 2004, 69, 1282-1291.	1.0	13
42	A nucleolus-targeting hill-type pH probe. Sensors and Actuators B: Chemical, 2021, 335, 129712.	7.8	13
43	Engineering the Chargeâ€Transfer State to Facilitate Spin–Orbit Charge Transfer Intersystem Crossing in Spirobis[anthracene]diones. Angewandte Chemie, 2020, 132, 22363-22368.	2.0	11
44	TPZ, a bright centrosymmetric two-photon scaffold for bioimaging. Chemical Communications, 2017, 53, 10938-10941.	4.1	10
45	From Spontaneous to Photoâ€∢riggered and Photoâ€Calibrated Nitric Oxide Donors. Israel Journal of Chemistry, 2021, 61, 159-168.	2.3	10
46	Development of an online citrate/Ca ²⁺ sensing system for dialysis. Analyst, The, 2011, 136, 317-320.	3.5	8
47	Light-Induced Ultrafast Molecular Dynamics: From Photochemistry to Optochemistry. Journal of Physical Chemistry Letters, 2022, 13, 5881-5893.	4.6	8
48	Modulation of the lifespan of <i>C. elegans</i> by the controlled release of nitric oxide. Chemical Science, 2020, 11, 8785-8792.	7.4	5
49	Modulating the p <i>K</i> _a Values of Hill-Type pH Probes for Biorelevant Acidic pH Range. ACS Applied Bio Materials, 2021, 4, 2097-2103.	4.6	5
50	Harnessing Thorpe–Ingold Dialkylation to Access High-Hill-Percentage pH Probes. Journal of Organic Chemistry, 2022, 87, 85-93.	3.2	5
51	A scalable synthesis of 1-amino-5-cyanonaphthalene, a precursor for a nitric oxide probe (NO550) designed via the "dye assembly―principle. Chinese Chemical Letters, 2013, 24, 7-8.	9.0	4
52	A Threshold-Limited Fluorescence Probe for Viscosity. Frontiers in Chemistry, 2019, 7, 342.	3.6	4
53	Structurally-thrifty and visible-absorbing fluorophores. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 245, 118907.	3.9	4
54	Dihydro-Si-rhodamine for live-cell localization microscopy. Chemical Communications, 2021, 57, 7553-7556.	4.1	4

#	Article	lF	CITATIONS
55	One-electron reduction triggered nitric oxide release for ischemia-reperfusion protection. Free Radical Biology and Medicine, 2021, 164, 13-19.	2.9	4
56	Imaging of lysosomal oxidative stress during autophagy with a ratiometric probe featuring a large probe-product spectral separation. Sensors and Actuators B: Chemical, 2021, 335, 129713.	7.8	4
57	A dual-channel Hill-type small-molecule pH probe. Analytical Methods, 2021, 13, 3012-3016.	2.7	4
58	Mild Chemotriggered Generation of a Fluorophore-Tethered Diazoalkane Species via Smiles Rearrangement. Organic Letters, 2016, 18, 4674-4677.	4.6	3
59	Biodegradable ion-selective nanosensors with p-diethylaminophenol functionalized rhodamine as chromoionophore for metal ions measurements. Sensors and Actuators B: Chemical, 2021, 336, 129672.	7.8	3
60	Fusing the Nagano's and the Anslyn's chemistry for lyso-specific NO detection. Sensors and Actuators B: Chemical, 2021, 346, 130562.	7.8	3
61	The mechanodonor-acceptor coupling (MDAC) approach for unidirectional multi-state fluorochromism. Science China Chemistry, 2021, 64, 253-262.	8.2	3
62	Nearâ€Unity Triplet Generation Promoted via Spiroâ€Conjugation. Angewandte Chemie, 2022, 134, e202113190.	2.0	3
63	A Convenient Preparation of Xanthene Dyes ChemInform, 2005, 36, no.	0.0	0
64	Aspirin damages the cell wall of <i>Saccharomyces cerevisiae</i> by inhibiting the expression and activity of dolicholâ€phosphate mannose synthase 1. FEBS Letters, 2022, 596, 369-380.	2.8	0